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Harnessing centrifugal and Euler forces for tunable buckling of a rotating elastica
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aFlexible Structures Laboratory, Institute of Mechanical Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
bDepartment of Engineering, King’s College London, Strand, London WC2R 2LS, United Kingdom

Abstract

We investigate the geometrically nonlinear deformation and buckling of a slender elastic beam subject to time-dependent ‘ficti-
tious’ (non-inertial) forces arising from unsteady rotation. Using a rotary apparatus that accurately imposes an angular acceleration
around a fixed axis, we demonstrate that dynamically coupled centrifugal and Euler forces can produce tunable structural defor-
mations. Specifically, by systematically varying the acceleration ramp in a highly automated experimental setup, we show how the
buckling onset of a cantilevered beam can be precisely tuned and its deformation direction selected. In a second configuration, we
demonstrate that Euler forces can cause a pre-arched beam to snap-through, on demand, between its two stable states. We also for-
mulate a theoretical model rooted in Euler’s elastica that rationalizes the problem and provides predictions in excellent quantitative
agreement with the experimental data. Our findings demonstrate an innovative approach to the programmable actuation of slender
rotating structures, where complex loading fields can be produced by controlling a single input parameter, the angular position of a
rotating system. The ability to predict and control the buckling behaviors under such non-trivial loading conditions opens avenues
for designing devices based on rotational fictitious forces.
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1. Introduction

Nearly every modern machine involves rotary elements [1]
(e.g., shafts, wheels, bearings, fans, and turbines), which are
so ubiquitous that they often go unnoticed. Since the pio-
neering stud ies on rotating shafts by Rankine [2], Föppl [3],
and Jeffcott [4] over a century ago, predictive modeling has
become essential in designing and analyzing rotating machin-
ery. Rotordynamics [5–9] has since evolved into a mature field
with the primary focus of understanding the vibratory dynam-
ics of rotating structures, to prevent large-amplitude motions
that may cause catastrophic failure. Representative examples
from the vast literature on rotating structures include improv-
ing the operational range and efficiency of machinery, including
jet-engine turbines [10], turbo-compressors [11] and hydraulic
machines [12], as well as designing centrifugal microfluidic de-
vices [13–15] and novel space structures [16–18].

When formulating Newton’s equations of motion in a rotat-
ing (non-inertial) frame of reference (FoR), three ‘fictitious’
body forces appear to act on a rotating body [19]: (i) the cen-
trifugal force (proportional to the square of the angular veloc-
ity); (ii) the Coriolis force (resulting from FoR-body relative
motion); and (iii) the Euler force (opposing angular acceler-
ation). Unlike bulk elastic media, slender structures may un-
dergo large, global deformations and instabilities under mod-
erate rotational loads, making them well suited to applications
in actuation, sensing, and deployable mechanisms [20]. Prior
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research has investigated rotation-induced instabilities in slen-
der rods [21–24], plates [25–29], and shells [30, 31]. These
studies primarily considered the centrifugal forces caused by
constant angular velocities, sometimes accompanied by Corio-
lis forces [32–34], but rarely taking the effects of Euler forces
into account: in the presence of angular acceleration, it is nec-
essary to simultaneously consider time-dependent centrifugal
forces and other unsteady effects that may be present, signifi-
cantly complicating analysis. As an exception, motivated by the
‘spin-up’ of disk drives, the stress distribution and wrinkling of
unsteadily rotating elastic disks have been quantified [35, 36].

Here, we perform experiments on unsteadily rotating, slender
elastic beams placed eccentrically about a fixed axis (Fig. 1a–
c and Supplementary Material, Video S1). We also conduct
simulations of a dynamic model based on Euler’s elastica [37],
specialized to a rotating FoR. Two configurations are examined:
cantilevered beams (clamped-free ends) and beams pre-buckled
into a bistable arch (double-clamped). In both cases, the load-
ing arises primarily from centrifugal and Euler forces. For can-
tilevered beams, beyond a critical angular velocity, the centrifu-
gal force (along +ex; see Fig. 1 bottom-centre) triggers a buck-
ling instability (Fig. 1d). Simultaneously, the Euler force (along
−ey) acts as a symmetry-breaking ‘imperfection’ that selects
the buckling direction, potentially opposing the beam’s natu-
ral curvature (Fig. 1e). For arched beams, these forces switch
roles: the Euler force drives snap-through buckling while the
centrifugal force modulates the asymmetry of the arched shape
and the acceleration threshold for instability (Fig. 1f). In both
cantilever and arch configurations, we show how combined cen-
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Fig. 1. Elastic beams rotating under controlled angular acceleration. (a) A beam (1) is mounted on a rigid arm (2) inside an acrylic box (3). A torque motor (4)
rotates the arm and a camera (5). Right: representative time-series of (b) imposed angular velocity, Ω(t), and (c) angular acceleration, Ω̇(t), with α = {2.5, 5} rad s−2

(blue/green curves; see legend) and (Ω0, Ωe) = (5, 15) rad s−1. Bottom panels: undeformed (top row) and deformed (lower row) specimens for (d) straight and
(e) naturally-curved cantilevers; and (f) pre-arched (double-clamped) beam. Deformed configurations are taken at the instances labeled in panels (b, c). See also
Supplementary Material, Videos S1–S3.

trifugal and Euler forces cause a subtle interplay between dy-
namic and symmetry-breaking structural effects, which can be
rationalized and precisely controlled. Our study highlights how
unsteady rotational loads can be leveraged for function in a new
class of tunable mechanisms.

2. Experiments with controlled acceleration ramps

We perform experiments on beams cast from vinyl polysilox-
ane (VPS, Elite Double, Zhermack), a silicone-based elas-
tomer: for the cantilevered beams we use VPS32 (Young’s
modulus E = 1.164 MPa, density ρ = 1170 kg m−3), while
for the pre-arched beams we use VPS22 (E = 863 kPa, ρ =

1190 kg m−3) [38, 39]. The casting is achieved using laser-cut
acrylic molds to yield uniform, rectangular beams of width b =

10 mm, thickness h ∈ [1.8, 2.3] mm, length L ∈ [40, 100] mm
and (constant) natural curvature κ0 ∈ [−5, 5] m−1. The latter
range is only for the cantilevered beams; the arched beams are
fabricated with no natural curvature, κ0 = 0, prior to clamping.
Each specimen is mounted onto a rigid arm attached to a high-
torque motor (ETEL RTMBi140-030). An encoder records
the angular position of the system at 20 kHz. The beams are
clamped in the radial direction ex, with the outer end at a dis-
tance R ∈ [350, 700] mm from the center of rotation (Fig. 1a).
The inner end is either free (cantilevered beams; Figs. 1d, e)
or clamped at a distance L(1 − χ) radially inwards from the
outer end, where χ ∈ (0, 1) (pre-arched beams; Fig. 1f). A dig-
ital camera (Mikrotron Eosens mini1, 100–550 fps) mounted
onto the rotating FoR records the deformed beams, whose cen-
terlines are extracted via image processing. A transparent box
protects each specimen against air drag.

The rotational loading is set by imposing linear ramps of the
angular velocity, Ω(t) (Fig. 1b). These ramps are characterized
by the initial angular velocity, Ω0, and the plateau value α of
the angular acceleration, Ω̇(t) = dΩ/dt: we have Ω̇(t) = α ex-
cept for short intervals at the start/end of the ramping where Ω̇

varies between 0 and α (Fig. 1c). Additional details on the ro-
tation protocol are provided in Appendix A. The experimental
system (motor, encoder, and camera) is fully automated, en-
abling a systematic exploration of parameters such as angular
velocity, acceleration, and jerk.

3. Buckling of unsteadily-rotating cantilevers

First, we perform a series of experiments on rotating, straight
(κ0 = 0), cantilevered beams (Fig. 1d). The centrifugal force
acts along the axis of the undeformed beam (+ex), exerting a
compressive distributed load. Above a critical angular veloc-
ity, Ωc, the beam buckles, causing it to bend abruptly towards
−ey, the direction of the Euler force (Fig. 1d, bottom). When
Ω is varied quasi-statically (Ω̇ ≈ 0), the scenario is analogous
to the buckling of a vertical cantilever under increasing self-
weight [22, 40, 41]. This gravity-induced buckling is described
by a supercritical pitchfork bifurcation [42, 43], as sketched in
Fig. 2(a) (solid curve): as the relevant bifurcation parameter in-
creases, the initial (undeformed) state becomes linearly unsta-
ble at the bifurcation point where two stable branches of buck-
led solutions emerge. We anticipate that the buckling in our
rotating system also corresponds to a supercritical pitchfork bi-
furcation at Ω = Ωc, but only when Ω̇ ≈ 0.

For a cantilevered beam rotated with non-negligible angular
acceleration Ω̇, which reaches the plateau value of α (Fig. 1c),
there are, a priori, two possible, opposing effects: (I) Due to
dynamic effects, the buckling onset may occur at a higher Ω

compared to the quasi-static scenario (dashed curve, Fig. 2a).
Such delayed bifurcations are typically associated with dynam-
ical systems involving a bifurcation parameter varied at a finite
rate [44–46], as is the case with Ω(t) here. Physically, this de-
lay arises because the system recovers from perturbations over
an increasingly long timescale as it approaches the bifurcation
point, thus ‘lagging’ behind its equilibrium value [45]. (II) Al-
ternatively, buckling may occur at a lower Ω (dashed-dotted
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(b)

(a) (c) (d)

Fig. 2. Buckling of naturally straight, cantilevered beams. (a) Typical response diagrams near a supercritical pitchfork bifurcation. A ‘perfect’ pitchfork (black
curves) is not expected for our system due to either dynamic effects (dashed curve) or symmetry-breaking imperfections (dashed-dotted curve). (b) Normalized
midpoint deflection, Ym = ym/L, obtained experimentally as the angular velocity, Ω, is ramped with acceleration α = {1.5, 5.0, 10.0} rad s−2 (symbols; see legend).
The dashed curve represents the equilibrium solution of Eqs. (4)–(5). (c) ‘Heatmap’ of Ym (see colorbar) vs. Ω and α. Here, and in panel (b), stars indicate the onset
of |Ym | ≥ 0.15. (d) Critical centrifugal number Cc (onset of |Ym | ≥ 0.15) vs. Euler number, E, for experiments and simulations (see legend).

curve, Fig. 2a) due to the asymmetry (or ‘imperfection’) in-
troduced by the Euler force, similar to how a transverse force
(or natural curvature) lowers the buckling onset of a column
under self-weight [43]. To discern whether effect (I) or (II)
dominates, we vary α in the experiments while fixing all other
parameters. In Fig. 2(b), we plot data for the beam’s nor-
malized midpoint deflection, Ym = ym/L, versus the instan-
taneous angular velocity, Ω, for three different accelerations,
α ∈ {1.5, 5.0, 10.0} rad s−2. We find that a higher α decreases
the buckling onset and smooths the perfect pitchfork shape, as
expected for scenario (II). This behavior is further evidenced in
Fig. 2(c), which shows a ‘heatmap’ of Ym versus both Ω and
α. These results demonstrate that effect (II) prevails: despite
the dynamic nature of the loading, the buckling instability is
dominated by the symmetry-breaking effect of the Euler force.
We will show below that, for cantilevered beams, the loading
is quasi-static to a good approximation: the timescale of the
loading is slower than the timescale over which oscillations of
the beam decay, so that unsteady effects (effect I) are generally
negligible.

4. Reduced-order model of a rotating elastica

Next, we formulate a geometrically nonlinear model for the
elastic deformation of a beam undergoing unsteady rotation
and, thus, loaded by fictitious forces. We adopt the elastica
framework [37], albeit in a rotating FoR, to describe both a
cantilevered beam (Fig. 1d–e; experimental results above) and
a pre-arched beam (Fig. 1f; discussed below). These two con-
figurations are distinguished by the respective boundary condi-
tions (BCs) applied to the beam’s inner end (free or clamped,
respectively). We define Cartesian coordinates in the rotating
FoR with unit vectors {ex, ey, ez}, such that the beam’s outer end
lies on the x-axis; see Fig. 1. Since the beam’s dimensions
satisfy h � b � L, we assume that the beam undergoes pla-
nar (x-y), inextensible, unshearable bending deformations [37];

the strains remain small but with possibly large centerline dis-
placements. The beam is assumed to be in quasi-static moment
balance since the rotational inertia of each of its elements is
negligible in the limit h � L [46].

Under the above assumptions, we represent the deformed
centerline in the FoR by r(s, t) = x(s, t)ex + y(s, t)ey, where
the arclength s ∈ (0, L) is measured from the beam’s inner end
(Fig. 1e). The tangent angle of the centerline, θ(s, t), is defined
by r′ = cos θ ex + sin θ ey (Fig. 1f), where we use (·)′ ≡ ∂(·)/∂s
and ˙(·) ≡ ∂(·)/∂t. The centrifugal, Euler, and Coriolis forces
(per unit length) experienced by the beam are, respectively,
fω = ρAΩ2r, fe = −ρAΩ̇ez × r, and fc = −2ρAΩez × (ṙ)r,
where A = bh is the cross-section area and (ṙ)r = ẋex + ẏey is
the linear velocity in the rotating FoR; (·)r denotes differentia-
tion with respect to this frame. Writing n(s, t) for the resultant
force, the dynamic elastica equations, expressing conservation
of linear and angular momentum with a linearly elastic (Euler-
Bernoulli) constitutive law, are [37]:

n′ + fω + fe + fc = ρA (r̈)r + η (ṙ)r , (1)
Bθ′′ez + r′ × n = 0, (2)

where B = EI is the bending modulus, I = h3b/12 is the area
moment of inertia, and we assume isotropic viscous damping
(coefficient η), which lumps both external and material effects.
The BCs at the outer end are r(L, t) = Rex and θ(L, t) = 0
(Figs. 1d, f). At the inner end, we impose n(0, t) = 0, θ′(0, t) =

κ0 (cantilever), or r(0, t) =
[
R − L (1 − χ)

]
ex, θ(0, t) = 0 (arch).

The unloaded configurations set the initial conditions.
At this point, we may estimate the relative importance of the

different underlying forces (per unit length), noting that the cen-
trifugal force scales as |fω| ∼ ρAΩ2R and the Euler force as
|fe| ∼ ρAΩ̇R (using |r| ∼ R). Comparing these two with the
typical bending force, |n′| ∼ B/L3, yields the dimensionless
quantities:

C =
ρAΩ2RL3

B
and E =

ρAΩ̇RL3

B
, (3)
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which we term the centrifugal and Euler numbers. Similar
parameters have been identified in related problems [21, 25–
28, 35, 36], albeit with other geometric factors. The timescale
of bending motions is t∗ = (ρAL4/B)1/2, obtained from the
balance of inertial and bending forces in Eq. (1). Thus, as-
suming the beam deforms by a distance L over the timescale
t∗, the beam velocity scales as |(ṙ)r | ∼ L/t∗ and the Corio-
lis force as |fc| ∼ ρAΩL/t∗. Using Eq. (3), we find the ra-
tio |fc|L3/B = (δC)1/2, where δ = L/R. Because, in general,
C = O(1) and δ � 1 in our experiments, the Coriolis force is
negligible. Alternatively, we note that the typical magnitude of
the Coriolis force can be directly compared with the centrifugal
force: |fc|/|fω| ∼ |(ṙ)r |/(ΩR). The Coriolis force is, therefore,
only significant when the beam’s velocity in the FoR is compa-
rable to the tangential velocity of the imposed rotation, which
is not the case here due to the small size of the beam.

In what follows, it is advantageous to recast the dynamic
elastica equations (Eqs. (1)–(2) and the geometric relation r′ =

cos θ ex + sin θ ey) as a single equation involving the tangent
angle θ only. This process (detailed in the Supplementary
Material, sections S1.1–S1.2) involves integrating the geomet-
ric relation and Eq. (1) to express r and n in terms of sin-
gle and double integrals involving θ, respectively; then substi-
tuting these expressions into Eq. (2) and the boundary condi-
tions. In terms of the dimensionless arclength S = s/L, time
T = t/t∗, and force components at the inner end, n(0, t) =

B/L2(Pex + Qey), we obtain the following integro-differential
equation for θ(S ,T ):

0 =
∂2θ

∂S 2 − (P − CS ) sin θ + (Q + ES ) cos θ

−

∫ S

0

∫ 1

ξ

{ [
∂2θ

∂T 2 (σ,T ) + Υ
∂θ

∂T
(σ,T ) + δE

]
cos ∆θ(S , σ,T )

+

[
∂θ

∂T
(σ,T ) + (δC)1/2

]2

sin ∆θ(S , σ,T )
}
dσ dξ, (4)

where we have introduced ∆θ(S , σ,T ) ≡ θ(S ,T ) − θ(σ,T ) and
Υ = ηL4/(Bt∗). The BCs becomeP = Q = 0, ∂θ

∂S (0,T ) = κ̃0, θ(1,T ) = 0 (cantilever);

θ(0,T ) = θ(1,T ) = 0,
∫ 1

0

(
cos θ
sin θ

)
dS =

(
1−χ

0

)
(arch),

(5)
where κ̃0 = Lκ0 is the dimensionless natural curvature of the
beam. For arched beams, P(T ) and Q(T ) are unknown and act
as Lagrange multipliers to enforce the integral constraints in
Eq. (5).

The main advantage of the integro-differential formulation in
Eqs. (4)–(5) is that it is more amenable to reveal the bifurcation
structure of the system when working with the single unknown
θ (see below). In addition, following previous work [46, 47], the
formulation allows for efficient dynamic simulations using the
method of lines, in which we discretize the equations in space
and integrate the resulting set of ordinary differential equations
in time. Since we do not need to explicitly impose the inex-
tensibility of the beam’s centerline between each grid point, we
avoid a large number of constraints, enabling us to integrate

the discretized equations efficiently. The loading is imposed
via the time-dependent centrifugal and Euler numbers defined
in Eq. (3), evaluated using analytical approximations of the ex-
perimental velocity/acceleration profiles (see Appendix C). The
other dimensionless parameters fixed in each experiment are the
geometric ratio δ and the dimensionless damping coefficient Υ.
Further details on the numerical solution are provided in Ap-
pendix D.

4.1. Buckling onset: weakly nonlinear analysis
To further investigate the buckling transition observed in can-

tilevered beams, we perform a weakly nonlinear analysis of
equilibrium solutions near the buckling onset, similar to that
performed in other buckling problems [48]. We assume a small
Euler number, E � 1, and small natural curvature, κ̃0 � 1,
so that the amplitude of the solution before buckling is small:
θ � 1. We write C? for the value of the centrifugal number C
at the buckling onset (to be determined). We then perturb [48]

C = C? + ε C(1) and θ = ε1/2
(
θ(0) + ε θ(1) + . . .

)
, (6)

where ε � 1 is a fixed parameter (such that E = O(ε3/2) and
κ̃0 = O(ε3/2)) and C(1) is a control parameter. We substitute
the asymptotic expansions into Eqs. (4)–(5) (neglecting time
derivatives, and setting P = Q = 0 for cantilevered beams) and
solve at successive orders in ε.

At O(ε1/2), we obtain the homogeneous, linear eigenvalue
problem for θ(0)(S ) and C?:

Lθ(0) = 0,
dθ(0)

dS
(0) = 0, θ(0)(1) = 0, (7)

where Lθ ≡
d2θ

dS 2 + C?
[
S θ − δ

∫ S

0

∫ 1

ξ

∆θ(S , σ) dσ dξ
]
.

This determines θ(0) up to an unknown (scalar) amplitude A(0):
we can write θ(0) = A(0)φ(0), where φ(0) satisfies Eq. (7) with
normalization φ(0)(0) = 1. In the limit δ = L/R → 0 applicable
to our experimental system, Eq. (7) is equivalent to the classical
Greenhill problem for gravitational buckling [40, 42], which
can be solved exactly in terms of Airy functions:

φ(0)(S ) =
31/6Γ(2/3)

2

[√
3 Ai

(
−C?

1/3S
)

+ Bi
(
−C?

1/3S
)]
. (8)

The remaining boundary condition φ(0)(1) = 0 then yields√
3 Ai(−C?1/3)+Bi(−C?1/3) = 0, the first positive root of which

is C? ≈ 7.84. For non-zero δ, however, the integral term in
L(·) means that an analytical solution to Eq. (7) is generally not
possible. We solve the eigenvalue problem numerically (using
a shooting method) to determine φ(0)(S ; δ) and C?(δ); see Sup-
plementary Material, section S2.1 for details.

At O(ε3/2), Eqs. (4)–(5) yield an inhomogeneous problem of
the form (Supplementary Material, section S2.2)

Lθ(1) = −

[
(1 − δ) S +

δ

2
S 2

]
ε−3/2E + F

(
C(1), A(0), φ(0),C?

)
,

dθ(1)

dS
(0) = ε−3/2κ̃0, θ(1)(1) = 0. (9)
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Because the homogeneous problem L(·) = 0 has the non-trivial
solution φ(0), the Fredholm Alternative Theorem [49] implies
that a solution for θ(1) exists only if the right-hand side of
Eq. (9) satisfies a solvability condition. This solvability con-
dition, which can be formulated by multiplying Eq. (9) by φ(0)

and integrating over S ∈ (0, 1), yields a cubic equation for the
leading-order amplitude A(0):

0 = ε−3/2 (κ̃0 − c1E) − c2 C
(1)A(0) + c3A(0)3

, (10)

where c1, c2, and c3 are constants that can be expressed in terms
of integrals of φ0(S ; δ) (see Supplementary Material, section
S2.2).

When κ̃0 = 0 and E = 0, Eq. (10) has the form of an am-
plitude equation associated with a pitchfork bifurcation [50]:
A(0)(c2C

(1) − c3A(0)2) = 0. Since the constants c2 and c3 are
positive for δ ≥ 0 (Supplementary Material, Fig. S1), this con-
firms that the buckling instability is a supercritical pitchfork bi-
furcation at the critical centrifugal number C?(δ): below the
buckling threshold (i.e., C(1) < 0) the only (real) solution is
A(0) = 0, while above the buckling threshold (C(1) > 0) the
non-zero (real) solutions A(0) = ±(c2C

(1)/c3)1/2 exist.

4.2. Numerical solution compared with cantilever experiments
The weakly nonlinear analysis above is not valid when the

Euler number E = O(1), or the system is well beyond the
buckling onset so that θ is no longer small; in these cases,
we must appeal to numerical solutions. For naturally straight,
cantilevered beams, Fig. 2(b) shows that the computed post-
buckled equilibrium branch (dashed curve) is in excellent
agreement with the experiments for small but finite accelera-
tions, serving as validation of the model.

As observed in the experimental results presented in
Fig. 2(b), the buckling onset and the ensuing deformation are
typically smooth in the presence of imperfections when com-
pared to a perfect pitchfork [50]. Thus, we introduce an em-
pirical definition for the critical centrifugal number, Cc, as the
centrifugal number at which the normalized midpoint displace-
ment first exceeds |Ym| = 0.15 (stars in Figs. 2b–d). To further
examine the relative importance of the different dynamic effects
that are present, we probe the model and decouple the effects
resulting from (I) a time-dependent angular velocity and (II) a
non-zero Euler force. To do so, we either artificially omit the
Euler force in Eq. (4) while keeping a time-dependent angu-
lar velocity or, instead, we ignore time-dependence by varying
C quasi-statically while maintaining the Euler force. As evi-
denced by the data in Fig. 2(d), where we plot Cc versus E,
the full and quasi-static simulations (squares and triangles, re-
spectively) are in agreement with the experiments (stars). (In
Fig. 2(d) and later figures, the Euler number E is evaluated us-
ing Eq. (3) with Ω̇ = α, the plateau value of the acceleration
during the angular velocity ramp.) By contrast, the simulations
with only time-dependence of the angular velocity (circles) de-
viate significantly from the experiments (see inset). These re-
sults further evidence that unsteady effects are negligible com-
pared to the ‘imperfection’ introduced by the Euler force, i.e.,
(II) is the relevant scenario.

(a) (b)

(c) (d)

Fig. 3. Buckling of naturally curved, cantilevered beams. (The legend in
(a) applies to all panels.) (a, b) Normalized midpoint deflection, Ym = ym/L,
versus the centrifugal number, C, during ramping with Euler number (a) E = 0.3
and (b) E = 0.1. Each panel shows data for two beams with curvatures κ0 =

±1.5 m−1 (purple/blue lines; see legend). See also Supplementary Material,
Video S2. (c) Post-buckled midpoint deflection, Ym |C=15, versus E for beams
with dimensionless natural curvatures κ̃0 = κ0/L ∈ {0.06, 0.08, 0.1, 0.13, 0.2}.
(d) Critical Euler number Ec (at which the buckling direction is inverted) as a
function of κ̃0. Also shown is the predicted boundary, Eq. (11), from the weakly
nonlinear stability analysis (dashed line).

Remarkably, despite the dynamic nature of the loading,
the quasi-static solution captures the experimental results in
Fig. 2(d) nearly as closely as the full dynamic simulations for
E . 0.3 (corresponding to α . 3.5 rad s−2). This finding can
be rationalized by the following scaling argument. Given an
angular acceleration Ω̇, the timescale over which the angular
velocity changes appreciably is ∼ Ω/Ω̇. Thus, over a timescale
t � Ω/Ω̇, the variation of Ω is negligible and Ω can be consid-
ered constant. Meanwhile, oscillations of the beam will decay
sufficiently for times t � [t]d, where [t]d = 2ρA/η is the decay
timescale of small-amplitude underdamped oscillations [51].
Combining these two observations, we expect that the beam is
in quasi-static equilibrium for each Ω provided ρA/η � Ω/Ω̇
(or Υ−1 � δ−1/2C1/2E−1 in dimensionless terms). For acceler-
ations Ω̇ = α . 3.5 rad s−2, using Ω ∼ 10 rad s−1 (the typical
value at the buckling onset; see Fig. 2c) and η ≈ 0.032 Pa s for
our VPS32 beams (see Appendix B), we find that Ω/Ω̇ & 2.9 s
and ρA/η ∼ 0.67 s, so that a quasi-static assumption is reason-
able.

A detailed analysis of the midpoint trajectories during ramp-
ing indicates the presence of small oscillations due to unsteady
effects. In accordance with the scaling argument above, these
oscillations are usually small in magnitude so that the numer-
ical curves closely follow the quasi-static solutions. However,
the oscillation amplitudes become significant for larger acceler-
ations, causing the discrepancy between the full dynamic simu-
lations and the quasi-static simulations in Fig. 2(d) for E & 0.3.
We also note that, for pre-arched beams, large oscillations occur
and the quasi-static assumption is generally not satisfied due to
the much larger accelerations required for snap-through (dis-
cussed below).
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5. Selecting the buckling direction of curved beams

While for a straight cantilever, the centrifugal load (along
+ex) always buckles the beam in the direction of the Euler force
(−ey), it may be desirable in applications to pre-select the op-
posite buckling direction (+ey). This can be achieved by fab-
ricating beams with non-zero natural curvature, κ0 (Fig. 1e).
Fig. 3(a, b) presents experimental results for two such beams
possessing equal and opposite non-dimensional natural curva-
tures, κ̃0 = ±0.06, while fixing all other parameters (experimen-
tally, a single beam can be flipped about ex before clamping).
For large accelerations (E = 0.3 in Fig. 3a; see also panels a–b
in Video S2), the two cases are nearly identical, with excellent
agreement between experiments and simulations, including the
matching of the oscillatory nature of the curves. However, for
lower accelerations (E = 0.1 in Fig. 3b; Video S2 panels c–d),
the two beams buckle in opposite directions, indicating that the
geometric imperfection dominates the transverse Euler force.

To delineate the transition from a curvature-controlled to
an (Euler) force-controlled buckling direction, we consider the
beam’s midpoint displacement, Ym, at a fixed centrifugal num-
ber beyond buckling (C = 15): in Fig. 3(c), this is plotted ver-
sus E for five beams with different dimensionless natural cur-
vatures κ̃0 = κ0/L ∈ [0.06, 0.2]. As κ̃0 is increased (i.e., in-
creasingly imperfect beams), the transition from buckling along
+ey (the direction of natural curvature) to −ey (the direction of
Euler force) occurs at higher values of E, both in experiments
(symbols) and simulations (curves). In Fig. 3(d), we plot the
critical Euler number, Ec, for this transition as a function of κ̃0,
effectively constructing a phase diagram of the beam’s buckling
direction. Again, there is excellent agreement between experi-
ments (symbols) and simulations (solid curve). The variations
in the solid curve are due to oscillations in the numerical trajec-
tories, which become more pronounced for larger values of the
Euler number (recall the discussion at the end of section 4.2);
close to the boundary in the phase plane, the buckling direc-
tion is highly sensitive to the interaction between these oscilla-
tions and the Euler force during ramping when the displacement
starts to grow significantly. While centrifugal forces drive the
buckling instability of cantilevered beams, for a given κ̃0, the
buckling direction can, therefore, be selected on-demand via ac-
curate control of E according to the phase diagram in Fig. 3(d).

The phase boundary in Fig. 3(d) can also be rationalized us-
ing Eq. (10), the amplitude equation obtained from the weakly
nonlinear analysis. Eq. (10) indicates that the natural curva-
ture, κ̃0, and Euler number, E, behave analogously to symmetry-
breaking imperfections that ‘unfold’ the perfect pitchfork bifur-
cation: for κ̃0 , 0 or E , 0, the amplitude A(0) smoothly varies
from zero as C is quasi-statically increased past C? (meanwhile,
the other buckled solution in the pair A(0) = ±(c2C

(1)/c3)1/2

forms a disconnected branch). We can infer the direction
of buckling from the sign of the constant term in Eq. (10),
namely ε−3/2 (κ̃0 − c1E), as this term determines the sign of
the amplitude A(0) (since c2 > 0). In particular, the constant
term changes sign at the critical Euler number Ec = κ̃0/c1.
While, in general, c1 must be evaluated numerically, in the
relevant limit of δ → 0, we can obtain an analytical ex-

(a) b)

(c)

15mm

Fig. 4. Snap-through of a pre-arched (double-clamped) beam. (a) Phase
diagram for the presence (closed symbols) or absence (open symbols) of snap-
ping in the parameter space of Euler number and end-to-end shortening, (E, χ)
(here Ce = 373). (b) Beam profiles obtained experimentally and numerically
(solid and dashed curves, respectively) for χ = 0.035 (left panel) and χ = 0.050
(right). Shapes are shown at rest (dark gray) and rotating at Ω = 15 rad s−1

(light gray). (c) Critical Euler number for snapping, Ec, versus χ at different
centrifugal numbers Ce ∈ {151, 198, 250, 309, 373, 445, 522, 605}. See also
Supplementary Material, Video S3.

pression using the solution for φ(0) in Eq. (8). We evaluate
c1 = 3−1/3Γ(1/3)−1C?

−2/3Ai(−C?1/3)
−1

(Supplementary Mate-
rial, section S2.2) where C? ≈ 7.84, and hence

Ec = 31/3Γ

(
1
3

)
C?

2/3Ai
(
−C?

1/3)
κ̃0 ≈ 3.59 κ̃0. (11)

Eq. (11) is used to plot the phase boundary (dashed line) in
Fig. 3(d), which agrees well with the numerical and experimen-
tal results despite being formally valid only for E � 1.

6. Acceleration-driven snap-through of a bistable arch

Thus far, for cantilevered beams, we showed that the cen-
trifugal force drives buckling while the Euler force lowers the
instability onset. We now turn to the pre-arched beams (Fig. 1f),
for which the centrifugal and Euler forces switch roles: the
latter drives snapping while the former modulates the insta-
bility. In Fig. 4(a), we present a phase diagram for the pres-
ence/absence (closed/open symbols) of snapping in the (E, χ)
parameter space; we fix the final centrifugal number at Ce =

373 (Ωe = 12 rad s−1). As might be expected, the phase bound-
ary above which snapping occurs increases with the end-to-
end shortening χ, corresponding to deeper arches. This phase
boundary is consistent with the scaling E ∼ χ1/2 (dashed curve);
an analogous scaling appears in other snap-through problems
involving pre-arched beams [52], and it can be rationalized by
comparing the typical midpoint deflection (here due to Euler
forces) to the initial arch height. We have thus demonstrated
the possibility of actuating rotating mechanisms via the Euler
force, whose acting direction can be selected. Euler-actuated
mechanisms may switch reversely between stable states, unlike
if actuated alone by centrifugal forces, which always act radi-
ally outwards.

Although the centrifugal force does not drive snapping, the
arch shape becomes increasingly asymmetric when driven at
higher angular velocities due to the centrifugal force (Fig. 4c).
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Naively, one might expect that this asymmetry would tend to in-
crease the total bending energy, thereby significantly decreasing
the energetic barrier for snapping (and hence Ec). In Fig. 4(b)
we explore the effect of the centrifugal load, Ce, on the criti-
cal Euler number for snapping, Ec, again plotted as a function
of end-to-end shortening, χ. Surprisingly, we observe only a
modest reduction of Ec with Ce, in particular for higher values
of χ when the shape asymmetry may be large. It is important
to note that for the control stability of the motor, we impose
loading profiles with finite and constant jerk across experiments
(see Appendix A). This imposition places a physical limit on
the maximum achievable angular acceleration for a given ve-
locity change. Consequently, at high levels of compression χ,
it is generally not possible to generate sufficient Euler forces
to induce beam snapping. This physical constraint limits our
ability to fully explore the effects of angular velocity in cases
with large χ, where one might expect more pronounced effects
of shape asymmetry. Overall, these results demonstrate that al-
though the angular velocity does not have a major impact on the
critical snap-through load, an accurate angular velocity control
can both trigger and modify the snapping of a pre-arched beam.

7. Conclusions

In conclusion, we demonstrated the feasibility of leveraging
both centrifugal and Euler forces to precisely trigger and
tune, on-demand, instabilities in rotating elastica structures by
accurately controlling their angular velocity drive. Looking
ahead, our investigation can be broadened to include more
complex loading profiles (e.g., harmonic velocities), diverse
geometries (e.g., tapered beams, plates, and shells), varying
material properties (e.g., nonlinear and metamaterial behavior),
and different boundary conditions (e.g., pins or roller-springs
whose position depends on the centrifugal force). While for
our cantilevered beams, we found that the loading is approxi-
mately quasi-static, future efforts should address the conditions
under which the unsteady effects (effect I) dominate. Even
speculatively, we envisage that the understanding developed
here will find practical application in a variety of systems
involving unsteady rotations, particularly where functionality
is achieved through the active actuation of embedded com-
ponents. Examples include acceleration-actuated operators
for centrifugal microfluidic cartridges and automated quality
testing of micro-components via complex loading protocols.
At larger scales, our insights into the structural effects of Euler
forces may contribute to the development of turbines capable of
better operating under unsteady regimes and also in aerospace,
enabling the design of mechanical switches that are actuated
by accelerations encountered during orbital changes. Thus,
the advances offered by the present study offer the potential to
pave the way for a new class of ‘programmable’ mechanisms
that harness the rich instabilities inherent to unsteadily rotating
structures, a novel conceptional framework applicable to
generic rotating systems.
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Appendix A. Rotation protocol

The rotational loading is set by imposing a time-dependent
angular velocity, Ω(t), in two stages. First, in a pre-loading
stage, Ω(t) is slowly ramped from zero to Ω0 > 0 at an acceler-
ation Ω̇ = 5 rad s−2, before being held at Ω0 for 2 s, ensuring the
decay of any transient oscillations. Next, in the second loading
stage, Ω(t) is ramped from Ω0 to Ωe (where Ωe > Ω0); through-
out this stage, the angular acceleration is constant, Ω̇ = α,
except for short ‘jerk intervals’ (duration t j = 100 ms) at the
start/end of the ramping when Ω̇ rapidly varies between α and
zero. Two representative time series of Ω(t) and Ω̇(t) are pre-
sented in Fig. 1(b) and Fig. 1(c), respectively. The error bars as-
sociated with the experimental data are calculated considering
the uncertainty of the beam’s material properties and geometry,
the pixel size and resolution of the imaging system, and uncer-
tainty in the angular position output by the motor encoder. Be-
sides, the error bars of the centrifugal and Euler numbers con-
sider the standard deviation of the measured angular velocity
between recorded frames since the temporal resolution of the
encoder (20 kHz) is much larger than the recording framerate
(100-550 Hz).

Appendix B. Damping coefficient characterization

The value of the damping coefficient η used in our model
was measured from underdamped oscillations of the beams (in a
cantilevered configuration) in the absence of rotational loading.
According to linear stability analysis, small-amplitude under-
damped oscillations decay in time like e−t/[t]d , where the time
constant is [t]d = 2ρA/η [51]. Experimentally, we perturbed
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the beams and extracted the time series of the tip displacement;
the time constant [t]d was then determined by fitting the en-
velope of the oscillations. Using the known values of ρ and
A (see main text), we obtain η = (0.032 ± 0.003) Pa s and
η = (0.043 ± 0.003) Pa s for the beams fabricated using VPS32
and VPS22, respectively.

Appendix C. Rotational loading model

In our dimensionless model, Eqs. (4)–(5), the rotational load-
ing is imposed via the time-dependent centrifugal number, C,
and Euler number, E, defined in Eq. (3). To evaluate C and E,
we use analytical expressions for Ω(t) and Ω̇(t) that approxi-
mate the angular velocity and acceleration imposed experimen-
tally. In particular, we simulate the two dynamic stages (pre-
loading and loading) as described above (Rotation protocol).
During the second (loading) stage, we approximate the angu-
lar acceleration during each jerk interval using the so-called
smootherstep function [53], denoted S 2. For a general quan-
tity a(t), this function is a monotonic ramp between the points
(a, t) = (a0, t0) and (a1, t1), with zero first and second-order
derivatives at the end-points:

S 2(t; t0, t1, a0, a1) = a0 + (a1 − a0)
(
6τ5 − 15τ4 + 10τ3

)
,

where τ =
t − t0
t1 − t0

∈ (0, 1).

With ∆t denoting the duration of the loading stage (taken to
start at t = 0), the angular acceleration during the loading stage
is modeled as the piece-wise function

Ω̇(t) =


S 2(t; 0, t j, 0, α) 0 ≤ t < t j,

α t j ≤ t < ∆t − t j,

S 2(t; ∆t − t j,∆t, α, 0) ∆t − t j ≤ t < ∆t.

The corresponding angular velocity, Ω(t), can be determined by
integration using the initial condition Ω(0) = Ω0. The angular
velocity at the end of the loading stage is then Ω(∆t) = Ω0 +

α(∆t − t j). Thus, to satisfy the imposed final value Ω(∆t) = Ωe,
we choose ∆t = (Ωe −Ω0) /α + t j.

Appendix D. Numerical solutions

We define a uniform mesh on S ∈ [0, 1] with spacing ∆S =

1/N (so that there are N +1 grid points in total). Our discretiza-
tion of Eqs. (4)–(5) on this mesh follows that employed pre-
viously by Refs. [46, 47] to simulate the snap-through dynam-
ics of an elastica. We formulate a scheme with second-order
accuracy as ∆S → 0: we approximate the ∂2θ/∂S 2 term in
Eq. (4) using a second-order centered difference on the numer-
ical mesh, and we use the trapezium rule to approximate inte-
grals. The resulting system of ODEs is written in matrix-vector
form and integrated using the solver ode15s in MATLAB. For
pre-arched beams, the integral constraints in Eq. (5) mean that
the system is differential-algebraic (since the Lagrange multi-
pliers P and Q do not explicitly appear in the integral con-
straints). This can be avoided using the method described in

Ref. [54]: we differentiate the integral constraints twice in time,
then eliminate ∂2θ/∂T 2 terms (using the discretized form of
Eq. (4)) to obtain a closed linear system for P and Q. In all
simulations reported in the main text, we take N = 100, having
checked that the results are insensitive to increasing N or de-
creasing integration tolerances. Each simulation typically com-
pletes in a few seconds on a laptop computer.

At the start of the pre-loading stage, the beam is at rest and
in equilibrium in the absence of external loads, C = E = 0.
For cantilevered beams, the beam is stress-free in this equi-
librium and everywhere adopts its natural curvature κ̃0, i.e.,
θ(S ) = −κ̃0(1 − S ). (This may be verified as the equilibrium
solution of Eqs. (4)–(5) when C = E = 0.) In the case of
pre-arched beams (with κ̃0 = 0), the beam undergoes Euler
(pre-)buckling in the absence of external loads due to the im-
posed end-to-end shortening, χ, between the double-clamped
boundaries. To determine the beam shape, we solve numeri-
cally the steady version of Eqs. (4)–(5) (with C = E = 0). This
is achieved by discretizing the equations (in an identical man-
ner to our dynamic simulations) and solving the resulting set
of algebraic equations in MATLAB using the routine fsolve.
As an initial guess, we use the linearized solution for θ � 1
corresponding to mode-1 Euler buckling:

θ(S ) = 2χ1/2 sin(2πS ).
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In this document, we provide additional information for the calculations presented in the main text. In §S1, we
detail the elastica model that we use to perform dynamic simulations; in particular, we discuss its formulation in terms
of the tangent angle, θ, and its non-dimensionalization. In §S2, we provide further details on the weakly-nonlinear
buckling analysis of cantilever beams. Finally, in §S3, we present the captions for the Supplementary Videos S1–S3.

S1. Theoretical formulations

S1.1. Formulation of the elastica equations in terms of the tangent angle
Here we show how to recast the dynamic elastica equations (Eqs. (1)–(2) in the main text, together with the

geometric relation r′ = cos θ ex + sin θ ey) as a single integro-differential equation for the tangent angle, θ. To this
end, we reproduce the equations here in component form. Writing n(s, t) = nx(s, t)ex + ny(s, t)ey, and substituting
the expressions for the fictitious forces (fω = ρAΩ2r, fe = −ρAΩ̇ez × r and fc = −2ρAΩez × (ṙ)r where r(s, t) =
x(s, t)ex + y(s, t)ey), the dynamic elastica equations become

n′x + ρAΩ
2x + ρAΩ̇y + 2ρAΩẏ = ρAẍ + ηẋ, (1)

n′y + ρAΩ
2y − ρAΩ̇x − 2ρAΩẋ = ρAÿ + ηẏ, (2)

Bθ′′ − nx sin θ + ny cos θ = 0, (3)
x′ = cos θ, y′ = sin θ. (4)

Here, as in the main text, we use the shorthand (·)′ ≡ ∂(·)/∂s and ˙(·) ≡ ∂(·)/∂t. The boundary conditions (recall the
discussion below Eq. (2) in the main text) in component form are

x(L, t) = R, y(L, t) = 0, θ(L, t) = 0 and

nx(0, t) = 0, ny(0, t) = 0, θ′(0, t) = κ0 (cantilever);
x(0, t) = R − L (1 − χ) , y(0, t) = 0, θ(0, t) = 0 (arch).

(5)

We first integrate the geometric relations (Eq. (4)) with the boundary conditions x(L, t) = R, y(L, t) = 0 to obtain

x(s, t) = R −
∫ L

s
cos θ(σ, t) dσ, y(s, t) = −

∫ L

s
sin θ(σ, t) dσ.

Substituting the above expressions into Eqs. (1)–(2), and integrating again with nx(0, t) ≡ p(t) and ny(0, t) ≡ q(T ) (we
do not restrict to the cantilever/pre-arched scenarios for now), we can determine the force resultants as

nx(s, t) = p(t) − ρAΩ2Rs +
∫ s

0

∫ L

ξ

{[
ρAθ̈(σ, t) + ηθ̇(σ, t) + ρAΩ̇

]
sin θ(σ, t) + ρA

[
θ̇(σ, t) + Ω

]2
cos θ(σ, t)

}
dσ dξ,

ny(s, t) = q(t) + ρAΩ̇Rs −
∫ s

0

∫ L

ξ

{[
ρAθ̈(σ, t) + ηθ̇(σ, t) + ρAΩ̇

]
cos θ(σ, t) − ρA

[
θ̇(σ, t) + Ω

]2
sin θ(σ, t)

}
dσ dξ.
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Inserting these expressions into Eq. (3), and making use of the addition formulae for sin[θ(s, t)−θ(σ, t)] and cos[θ(s, t)−
θ(σ, t)], we arrive at

0 = Bθ′′ −
(
p − ρAΩ2Rs

)
sin θ +

(
q + ρAΩ̇Rs

)
cos θ −

∫ s

0

∫ L

ξ

{ [
ρAθ̈(σ, t) + ηθ̇(σ, t) + ρAΩ̇

]
cos∆θ(s, σ, t)

+ ρA
[
θ̇(σ, t) + Ω

]2
sin∆θ(s, σ, t)

}
dσ dξ, (6)

where ∆θ(s, σ, t) ≡ θ(s, t) − θ(σ, t). The remaining boundary conditions in Eq. (5) in terms of θ becomep = q = 0, θ′(0, t) = κ0, θ(L, t) = 0 (cantilever);

θ(0, t) = 0, θ(L, t) = 0,
∫ L

0 cos θ(s, t) ds = L(1 − χ),
∫ L

0 sin θ(s, t) ds = 0 (arch).
(7)

For arched beams, p and q are (unknown) Lagrange multipliers to enforce the integral constraints in Eq. (7).

S1.2. Non-dimensionalization of the dynamic elastica equations
To non-dimensionalize the problem, it is natural to scale lengths by the beam length, L, time by the inertia-bending

timescale, t∗ = (ρAL4/B)1/2, and forces by the typical buckling force, B/L2. We therefore introduce

s = LS , t = t∗T, (p, q) =
B
L2 (P,Q).

With these re-scalings, and dropping the shorthand (·)′ and ˙(·) to avoid confusing dimensional/dimensionless deriva-
tives, Eq. (6) becomes (changing dummy variables ξ → Lξ, σ→ Lσ in the integrals)

0 =
∂2θ

∂S 2 − (P − CS ) sin θ + (Q + ES ) cos θ −
∫ S

0

∫ 1

ξ

{ [
∂2θ

∂T 2 (σ,T ) + Υ
∂θ

∂T
(σ,T ) + δE

]
cos∆θ(S , σ,T )

+

[
∂θ

∂T
(σ,T ) + (δC)1/2

]2

sin∆θ(S , σ,T )
}
dσ dξ, (8)

where

C =
ρAΩ2RL3

B
, E =

ρAΩ̇RL3

B
, δ =

L
R
, Υ =

ηL4

Bt∗
.

We note that δ ≥ 0 compares the beam’s size, L, to the radial distance, R, and hence measures the relative variation of
the fictitious forces along the beam’s length.

The boundary conditions (Eq. (7)) becomeP = Q = 0, ∂θ
∂S (0,T ) = κ̃0, θ(1,T ) = 0 (cantilever);

θ(0,T ) = 0, θ(1,T ) = 0,
∫ 1

0 cos θ(S ,T ) dS = 1 − χ,
∫ 1

0 sin θ(S ,T ) dS = 0 (arch),
(9)

where κ̃0 = Lκ0. Equations (8)–(9) are reported as Eqs. (4)–(5) in the main text.

S2. Weakly-nonlinear analysis of buckling of cantilevered beams

In this section, we provide further details on the weakly-nonlinear analysis of the buckling of cantilevered beams.
Considering equilibrium solutions, Eqs. (8)–(9) become

0 =
d2θ

dS 2 + CS sin θ + ES cos θ − δ
∫ S

0

∫ 1

ξ

[E cos∆θ(S , σ) + C sin∆θ(S , σ)] dσ dξ,
dθ
dS

(0) = κ̃0, θ(1) = 0. (10)

As in the main text, we assume that the amplitude of the solution before buckling is small, |θ| ≪ 1 (which requires
E ≪ 1 and κ̃0 ≪ 1), and that the system is close to the buckling threshold at the critical centrifugal number C⋆, i.e.,
|C − C⋆| ≪ 1. We then expand the solution as

C = C⋆ + ϵ C(1), θ = ϵ1/2
(
θ(0) + ϵ θ(1) + . . .

)
, (11)
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Fig. S1. Solution to the leading-order problem, Eq. (13), obtained numerically by shooting. Left panel: Solution for ϕ(0)(S ) for different values of
δ (see legend), together with the analytical solution (Eq. (14)) for δ → 0 (red dashed curve). Right panel: Corresponding values of the eigenvalue
C⋆ and the constants c1, c2 and c3 (defined in Eq. (19)).

where ϵ ≪ 1 is a fixed parameter. The asymptotic expansion of θ begins at O(ϵ1/2) because we anticipate a supercritical
pitchfork bifurcation, in which the amplitude of the solution grows like the square root of the perturbation beyond
buckling [1]. In what follows, we assume that E = O(ϵ3/2) and κ̃0 = O(ϵ3/2), so that the intrinsic curvature and Euler
force only enter the problem at first order, i.e., at O(ϵ3/2). In practice, given E ≪ 1 and κ̃0 ≪ 1, this can be satisfied
by choosing [max (E, κ̃0)]2/3 ≲ ϵ ≪ 1.

S2.1. Leading-order problem

At O(ϵ1/2), Eq. (10) yields the homogeneous, linear eigenvalue problem for θ(0) and C⋆:

Lθ(0) = 0,
dθ(0)

dS
(0) = 0, θ(0)(1) = 0 where Lθ ≡

d2θ

dS 2 + C
⋆

[
S θ − δ

∫ S

0

∫ 1

ξ

∆θ(S , σ) dσ dξ
]
. (12)

We have θ(0) = A(0)ϕ(0), where A(0) is an unknown (scalar) amplitude and ϕ(0) satisfies the eigenvalue problem with
normalization condition ϕ(0)(0) = 1, i.e.,

Lϕ(0) = 0, ϕ(0)(0) = 1,
dϕ(0)

dS
(0) = 0, ϕ(0)(1) = 0. (13)

In the limit δ→ 0 (i.e., L/R→ 0), the spatial variation of the fictitious forces along the beam length is negligible.
The centrifugal force acts analogously to a uniform gravitational field so that the leading-order problem (which only
involves the centrifugal force) is equivalent to the classical Greenhill problem for gravitational buckling [2, 3]. In this
case, Lϕ(0) = 0 reduces to the Airy equation d2ϕ(0)/dS 2 + C⋆Sϕ(0) = 0; the solution of Eq. (13) is

ϕ(0)(S ) =
31/6Γ(2/3)

2

[√
3 Ai

(
−C⋆

1/3S
)
+ Bi

(
−C⋆

1/3S
)]

where
√

3 Ai
(
−C⋆

1/3)
+ Bi

(
−C⋆

1/3)
= 0, (14)

as reported in Eq. (8) of the main text. The first buckling mode, corresponding to the smallest positive root of the
second equation in Eq. (14), occurs at C⋆ ≈ 7.84.

For general δ, we solve Eq. (13) numerically using a shooting method: we solve Lϕ(0) = 0 with the bound-
ary conditions at S = 0 to determine ϕ(0)(S ;C⋆), then we impose ϕ(0)(1;C⋆) = 0 to determine C⋆. The shoot-
ing is performed in Mathematica [4] using the routines ParametricNDSolve and FindRoot. Fig. S1 shows the
numerically-determined ϕ(0)(S ) (for the first buckling mode) for several values of δ ∈ [0, 5] (left panel), together with
the corresponding values of C⋆(δ) (right panel).
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S2.2. First-order problem

At O(ϵ3/2), Eq. (10) becomes

Lθ(1) = − S
(
ϵ−3/2E + C(1)θ(0) −

C⋆

6
θ(0)3

)
+ δ

∫ S

0

∫ 1

ξ

{
ϵ−3/2E + C(1)∆θ(0)(S , σ) −

C⋆

6

[
∆θ(0)(S , σ)

]3
}

dσ dξ, (15)

dθ(1)

dS
(0) = ϵ−3/2κ̃0, θ

(1)(1) = 0, (16)

where L(·) is the same operator defined in the leading-order problem (Eq. (12)). After expanding the integrand in
Eq. (15) using ∆θ(0)(S , σ) = θ(0)(S )−θ(0)(σ), substituting θ(0) = A(0)ϕ(0), and integrating all terms that are independent
of σ, Eq. (15) becomes

Lθ(1) = −

[
(1 − δ) S +

δ

2
S 2

]
ϵ−3/2E − C(1)

{[
(1 − δ) S +

δ

2
S 2

]
ϕ(0) − δU(0)

}
A(0)

+
C⋆

6

{[
(1 − δ) S +

δ

2
S 2

]
ϕ(0)3

− 3δϕ(0)2
U(0) + 3δϕ(0)V (0) − δW (0)

}
A(0)3
, (17)

where we have introduced the variables

U(0)(S ) ≡ −
∫ S

0

∫ 1

ξ

ϕ(0)(σ) dσ dξ, V (0)(S ) ≡ −
∫ S

0

∫ 1

ξ

[
ϕ(0)(σ)

]2
dσ dξ, W (0)(S ) ≡ −

∫ S

0

∫ 1

ξ

[
ϕ(0)(σ)

]3
dσ dξ.

Because the homogeneous problem L(·) = 0 has the non-trivial solution ϕ(0) (the solution of the leading-order
problem, Eq. (13)), the Fredholm Alternative Theorem [5] implies that a solution for θ(1) exists only if the right-hand
side of Eq. (17) satisfies a solvability condition. This solvability condition can be found by multiplying Eq. (17) by
ϕ(0) and integrating over S ∈ (0, 1). After integrating by parts, making use of Eq. (13) and the boundary conditions in
Eq. (16), the terms in θ(1) vanish and we are left with an equation for the leading-order amplitude A(0) (as reported in
Eq. (10) of the main text):

0 = ϵ−3/2 (κ̃0 − c1E) − c2 C
(1)A(0) + c3A(0)3

, (18)

where we define the constants

c1 =

∫ 1

0

[
(1 − δ) S +

δ

2
S 2

]
ϕ(0)(S ) dS , c2 =

∫ 1

0

{[
(1 − δ) S +

δ

2
S 2

] [
ϕ(0)(S )

]2
− δU(0)(S )ϕ(0)(S )

}
dS ,

c3 =
C⋆

6

∫ 1

0

{[
(1 − δ) S +

δ

2
S 2

] [
ϕ(0)(S )

]4
− 3δU(0)(S )

[
ϕ(0)(S )

]3
+ 3δV (0)(S )

[
ϕ(0)(S )

]2
− δW (0)(S )ϕ(0)(S )

}
dS . (19)

For each δ, these constants are evaluated using the numerical solution for ϕ(0); see Fig. S1 (right panel). In addition,
in the simplified case δ → 0, we can obtain an analytical expression for c1 using the analytical solution for ϕ(0)

given above (Eq. (14)). Substituting this solution into Eq. (19), and simplifying using standard identities for Airy
functions and the fact that C⋆ (≈ 7.84) satisfies the eigenvalue equation

√
3 Ai(−C⋆1/3) + Bi(−C⋆1/3) = 0, we obtain

c1 = 3−1/3Γ(1/3)−1C⋆
−2/3Ai(−C⋆1/3)

−1
≈ 0.278.

S3. Supplementary Videos

Video S1: Experimental set-up and sample experiment.
This video corresponds to Fig. 1 of the main text, providing a representative example of an experimental run with a
pre-arched clamped-clamped beam with a level of compression χ = 0.07. The main panel is imaged in the lab frame,
whereas the inset is imaged in the rotating FoR using the camera mounted on the rotating arm. The geometric and
material parameters of the beam have been specified in the main text. The rotation drive is characterized by an initial
angular velocity Ω0 = 5 rad/s, final angular velocity Ωe = 15 rad/s, and maximum angular acceleration α = 70 rad/s2.
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Video S2: Selecting the buckling direction of an intrinsically curved cantilevered beam.
This video corresponds to Fig. 3(a,b) of the main text, providing a view of two naturally-curved cantilevers in the
rotating FoR as imaged by the camera mounted on the rotating arm. These beams are rotated with two values of
acceleration, α = {1.5, 10} rad/s2, while fixing the initial angular velocity, Ω0 = 5rad/s, and the final angular velocity,
Ωe = 15rad/s. The two specimens are fabricated with the same geometry but opposite natural curvature, κ0=±1.5m−1.
The other geometric and material properties of the beam have been specified in the main text. Note that the reproduc-
tion speed of the videos is different for the two values of acceleration: (a, b) sped-up factor ×1.5 w.r.t. real-time, and
(c, d) slowed-up factor ×0.3 w.r.t. real-time.

Video S3: Acceleration-driven snapping of a rotating pre-arched beam .
This video corresponds to Fig. 4(a,b) of the main text, providing a view of pre-arched beams in the rotating FoR
as imaged by the camera mounted on the rotating arm. These beams are subject to two values of the end-to-end
shortening, χ = {0.07, 0.09}, and are rotated with two values of the final angular velocity, Ωe = {12, 15} rad/s1, and
different accelerations, α (see legend in the video). The specimen is fabricated according to geometric and material
properties specified in the main text.
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