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Abstract— Terrain classification is crucial for the successful 

execution of autonomous navigation and path planning during 

Mars rover missions. This study focuses on enhancing the 

rover's capability to traverse the Martian surface by 

investigating the integration of advanced semantic segmentation 

models based on deep learning. The aim is to identify the most 

effective deep learning model from recent advancements and 

establish efficient training approaches. 

 

The study selected the state-of-the-art U-Net and 

DeepLabV3+ models for further assessment and evaluation, 

utilizing both the AI4Mars and ESA's LabelMars datasets. 

Techniques such as preprocessing, augmentation, and various 

loss functions were investigated to improve model performance 

and class imbalance issues are tackled. To mitigate overfitting, 

regularization techniques like weight decay and early stopping 

were applied, ensuring robust model training. Additionally, to 

further enhance the model’s performance, especially in 

recognizing rare classes, the study investigated the use of state-

of-the-art GAN models for generating new Mars rover images.  

 
Our findings reveal that excluding the background class from 

training and testing significantly improves model performance. 

Using early stopping regularization reduces the training time 

drastically while giving high model performance. Notably, the 

DeepLabV3+ model surpasses the performance reported in 

existing literature, achieving a maximum segmentation accuracy 

and mIoU of 99% and 87% on the AI4Mars dataset, and 87% 

and 72% on the LabelMars dataset, respectively. The 

integration of GAN-generated images into training further 

improved rare class performance by up to 2%. These 

advancements in deep learning models for terrain classification 

promise to significantly enhance the capabilities of Mars rovers 

in autonomous navigation and path planning.  

I. INTRODUCTION 

The successful exploration of Mars depends on the ability 
of rovers to autonomously navigate the complex and often 
hazardous terrain of the Red Planet. A crucial aspect of this 
navigation is terrain classification, which entails identifying 
and categorizing various surfaces and obstacles on Mars. This 
classification is vital for enabling the rover to make informed 
decisions regarding safe paths, avoiding potential hazards, and 
planning its route efficiently. 

In recent years, the field of deep learning has experienced 
significant progress in computer vision and image analysis. 
These advancements offer exciting prospects for applying 
deep learning techniques to Mars rover terrain classification. 
Deep learning models, known for their capacity to learn 
complex patterns and features from large datasets, present a 
promising solution for enhancing the rover's autonomy and 
adaptability to the challenging Martian environment. This 
article explores the intersection of deep learning and Mars 
rover terrain classification, aiming to develop and assess 
advanced deep learning models for efficiently classifying the 
geological properties of the Martian surface. The objective is 
to identify the best-performing model, establish effective 
training methodologies, and select optimal hyperparameters to 
achieve accurate semantic segmentation of Martian terrain. 
Leveraging state-of-the-art methods, evaluating preprocessing 
techniques, and addressing class imbalances, this study aspires 
to elevate the rover's navigation precision and safety on Mars. 

Terrain classification is viewed as a semantic segmentation 
task, a more complex process than general classification tasks. 
Semantic segmentation involves assigning a label to every 
pixel in an image, with each label identifying a specific object. 
This technique is crucial for Mars rover terrain classification, 
where the model needs to accurately differentiate between 
various surfaces like soil, sand, bedrock, and large rocks. 
Thanks to recent advancements in deep learning, approaches 
such as U-Net and DeepLabV3 have emerged as leading 
methods for semantic segmentation. These models have 
shown great success in various fields, including Martian 
terrain classification. In our experiments, we employ these 
models with varying hyperparameters to compare their 
effectiveness. Additionally, we explore the use of advanced 
generative models, such as GauGAN and semanticStyleGAN, 
to create new Mars surface images to expand the datasets.   

One common challenge in machine learning, including 
deep learning, is model overfitting. This issue arises, 
particularly with small datasets or complex models, when a 
model learns to fit the training data too precisely, struggling to 
generalize to new, unseen data. To mitigate overfitting, 
various methods such as dropouts, L1 & L2 regularizations, 
and early stopping are employed. Early stopping, involving 
monitoring the model's performance on a validation dataset 
during training and stopping the process when the model's 
performance no longer improves, proves effective and is 
utilized in our experiments. 



  

II. BACKGROUND 

The attempt to use deep learning for Mars rover terrain 
classification has been driven by a growing body of research 
in the field of planetary science and artificial intelligence. 
Several scientific papers have laid the foundation for the 
application of deep learning techniques which are reviewed in 
the followings. 

The work [1] introduces Soil Property and Object 
Classification (SPOC), a novel software capability that utilizes 
DeepLab FCNNs implementation and machine learning to 
visually identify terrain types and features on planetary 
surfaces, working with both orbital and ground-based images. 
SPOC utilizes a machine learning strategy, learning from a 
limited set of examples provided by human experts and then 
effectively applying this learned model to process a substantial 
amount of data. As a result, it efficiently offers crucial terrain 
data for rover assessments, streamlining the labor-intensive 
manual classification procedure. The paper details the 
technology behind SPOC and its successful applications in 
Mars rover missions, including terrain classification of 17 
terrain object classes for the Mars 2020 Rover's landing site 
selection and slip prediction for the Mars Science Laboratory 
(MSL) mission.  

A subsequent paper [2] introduces practical enhancements 
to the SPOC method. Initially, the approach undergoes 
pretraining using data sourced from the publicly available 
AI4Mars dataset and is subsequently fine-tuned for application 
to the Mars 2020 Rover (M2020). This fine-tuning involves 
feeding a small volume of data between different Sols, 
resulting in an overall pixel accuracy of 84.2% and a recall rate 
of 93.4% for the identification of sand, a critical class affecting 
the rover's traversability. Furthermore, the SPOC model 
pretrained on ImageNet, leading to a significant reduction in 
the decline of accuracy over time. Lastly, to enable 
deployment on mobile devices like rovers, the SPOC method 
is reimplemented with the lightweight CNN model 
MobileNetV2. 

The NOAH-H project [3] aimed to create a comprehensive 
set of ontological classes for diverse surface textures and 
aeolian bedforms in Oxia Planum and Mawrth Vallis on Mars. 
Following this, a deep learning-based system for terrain 
classification was applied to categorize the diverse terrain 
types. The paper discusses the process of selecting these 
ontological classes, evaluates the model's pixel-scale 
accuracy, and explores how qualitative factors can impact its 
reliability and practicality. The Google DeepLab model was 
used for the semantic segmentation of the collected terrain 
images, yielding 74.15% mIoU.  

A large-scale dataset AI4Mars created for training and 
validating terrain classification models for Mars rovers is 
introduced by NASA [4]. The dataset is used to train a 
DeepLabv3 model with a ResNet-101 backend pretrained on 
ImageNet, which achieved over 96% overall classification 
accuracy on the testing set. The testing is conducted on a gold 
standard testing set where each image was labelled by three 
expert labellers. However, other important semantic 
segmentation performance metrics like mIoU or IoU for 
individual classes are not provided. 

Liu et al. [5] proposes a semantic segmentation method for 
the Chinese Zhurong Mars rover's terrain classification. By 
combining historical mission data from AI4Mars dataset and 
simulation rover data with semantic segmentation labels 
generated using Unreal Engine 4 from Epic Games. 
Contributions include a knowledge transfer-based 
segmentation strategy, integrating historical and simulation 
data to distinguish Martian landforms, and creating a virtual 
Mars scene. Evaluation with real Zhurong rover images shows 
an overall accuracy of 98.33%. 

In [6], an semantic segmentation method with a hybrid 
attention-based approach is presented. This method utilizes a 
dual-branch network to effectively merge both the broader 
global context and finer local context information for 
unstructured terrains. This integration is facilitated by a 
merging module and a newly crafted loss function. The 
method's performance is assessed on two datasets: 
MarsScapes, which is a recently collected panorama dataset of 
Martian landforms, and AI4Mars, a publicly available dataset. 
The results show a 60% mIoU on MarsScapes and a high 
performance on AI4Mars with a 91% mIoU and 97% 
accuracy. Nevertheless, it's important to highlight that the 
computational performance, specifically the inference speed, 
has not been confirmed and could potentially be slower due to 
the inclusion of the dual network branch. Additionally, there 
is a lack of specific information regarding the AI4Mars testing 
set and the number of classes used for training and 
performance evaluation. 

A semi-supervised learning framework is proposed for 
Mars terrain classification [7] where the deep segmentation 
network is trained in an unsupervised manner on unlabeled 
images and then transferred to the task of training terrain 
segmentation model using a small number of labeled images. 
The evaluation utilizes the AI4Mars dataset, which originally 
comprises four classes: soil, bedrock, sand, and big rock. 
However, the dataset is expanded by adding two additional 
classes that represent the rover itself and areas that are beyond 
30 meters. The findings demonstrate a remarkable pixel-level 
accuracy of 97.5% when evaluated on the M3 testing set. This 
outperforms the accuracy achieved through standard 
supervised learning, which reached 95% on the same dataset. 
Nevertheless, the paper fails to provide IoU and mIoU values 
for the proposed approach, crucial metrics for evaluating the 
effectiveness of any semantic segmentation technique. In our 
experiments, we combined three categories – rover hardware, 
distances exceeding 30 meters, and unlabeled pixels – into one 
single class. This approach resulted in a segmentation model 
that distinguishes four distinct classes, while the combined 
fifth class was not included in the training process. 

Zhang et al. [8] introduced a semi-supervised learning 
(SSL) framework designed for semantic segmentation of Mars 
images, employing a two-branch teacher-student architecture. 
The student model is built upon DeepLabV3+ with a ResNet50 
backbone pretrained on ImageNet. Additionally, they 
proposed two augmentation methods: AugIN, which generates 
new images by altering the statistics of two distinct images, 
and SAM-Mix, which utilizes out-of-shelf segmentation 
(SAM) to duplicate an object from one image and paste it onto 
another, thereby enhancing the SSL framework's performance. 
The evaluation of this framework was conducted on the 



  

AI4Mars and S5Mars datasets, resulting in an impressive 75% 
mIoU and 80% mean Accuracy (MACC) on the AI4Mars 
dataset. 

In [9], an obstacle mapping technique is introduced for 
enabling autonomous navigation in robotic platforms such as 
planetary rovers. While the traditional approach of using 
LiDAR sensors for occupancy grid mapping is widespread in 
obstacle detection, it encounters difficulties in recognizing flat 
obstacles like sandy or rocky terrains. To overcome this 
challenge, the proposed method employs DeepLabV3+ for 
semantic segmentation, enabling the identification of theses 
flat obstacles within planetary environments. These obstacles 
are then integrated with depth data from a stereo camera to 
construct a laser scan like model using ORB-SLAM. The 
method's performance is assessed using images from the ESA 
Katwijk Beach Planetary Rover Dataset, with a comparison 
made between the resulting occupancy map and a manually 
segmented orthomosaic map obtained through drone surveys. 

The work in [10] introduces a lightweight ViT-based 
terrain segmentation method named SegMarsViT. The 
proposed approach utilizes a mobile vision transformer 
(MViT) block in the encoder to extract local–global spatial 
information and capture multiscale contextual details. 
Additionally, cross-scale feature fusion modules (CFF) in the 
decoder integrate hierarchical context information, while the 
compact feature aggregation module (CFA) combines multi-
level feature representation. The method is evaluated on three 
public datasets—AI4Mars, MSL-Seg, and S5Mars—
achieving mIoU scores of 68.4%, 78.22%, and 67.28%, 
respectively, at a speed of 69.52 frames per second (FPS). The 
results demonstrate the efficiency and effectiveness of 
SegMarsViT for on-board satellite deployment in Martian 
terrain segmentation. 

A rock detection in a Mars-like environment is proposed 
using a modified U-net-based model to segment images into 
rock and background [11]. The U-Net has fewer parameters to 
enhance inference speed. The methodology's effectiveness is 
demonstrated on Devon Island dataset comprising Mars-like 
environment images, achieving an impressive F-score of 
78.5%. 

III. MODEL ARCHITECTURES 

In the following, both U-Net [12] and DeeplabV3Plus [13] 
models for semantic segmentations used in this work are 
briefly described: 

A. U-Net Model 

U-Net, initially designed for medical/biomedical image 
segmentation, features an encoder-decoder architecture. The U 
shape of the model is attributed to its encoding (contracting or 
downsampling) and decoding (expanding or upsampling) 
paths, as illustrated in Figure 1. To facilitate the reuse of 
features acquired during downsampling, the feature maps from 
the downsampling path are concatenated with their mirrored 
counterparts along the upsampling path. This integration, 
denoted by the grey arrows in Figure 1, allows the model to 
capture diverse levels of abstractions. 

B. DeepLabV3+ Model 

This model represents the latest model within the well-known 
DeepLab family, encompassing earlier versions such as 

DeepLabV1, DeepLabV2, DeepLabV3, and now 
DeepLabV3+. This model adopts an encoder-decoder 
architecture and employs atrous/dilated convolutions, 
effectively expanding the field of view without a proportional 
increase in parameters, as depicted in Fig 2. This approach 
enhances the receptive field of convolutions without imposing 
additional computational costs. DeepLabV3+ utilizes filters at 
various sampling rates to capture diverse objects and 
multiscale image contexts. The model integrates cascaded and 
parallel modules of dilated convolutions, providing a 
comprehensive strategy for effective feature extraction and 
semantic segmentation. 

Figure 1.  U-Net Architecture [12] 

 

Figure 2.  DeepLabV3+ Architecture [13] 

 

Both models leverage encoder-decoder architectures. U-
Net employs a distinctive approach by copying uncompressed 
activations, often referred to as skip connections, from 
encoding blocks to their mirrored counterparts within the 
decoding blocks. In contrast, DeepLabV3+ utilizes filters at 
multiple sampling rates to capture multiscale image contexts. 
Additionally, it incorporates atrous convolutions to expand the 
field of view.  

C. GAN Model 

Generative Adversarial Networks (GANs) [14] are 
common deep learning methods for generating synthetic data 
that closely resembles original training data. They operate 
through two contesting deep learning networks, hence the term 
'adversarial.' Among the various models, such as DCGAN 
[15], CycleGAN [16], and SAGAN [17], Conditional GANs 
are particularly noteworthy. These type of GANs generate 
images based on additional information like class labels, data 

 

 



  

from other modalities, or a semantic mask, which aligns well 
with our current semantic segmentation task. These models 
include GauGAN [18] and SemanticStyleGAN [19]. 

GauGAN, for instance, creates new images conditioned on 
input semantic masks, using either original training masks or 
manually created ones. In contrast, SemanticStyleGAN 
simultaneously generates images and their corresponding 
semantic segmentation masks, eliminating the need for 
additional labeling. In our work, we utilize 
SemanticStyleGAN to generate synthetic images, thus 
expanding our dataset for training terrain classification 
models. To evaluate the quality of these generated images, we 
employ standard metrics such as the Inception Score (IS) [20] 
and Fréchet Inception Distance (FID) [21]. 

IV. DATASETS 

Two datasets AI4Mars [4] and LabelMars [22] are used in 
the experiments conducted in this study. In the following, we 
briefly describe each of the datasets. 

A. Ai4Mars 

AI4Mars, a publicly available comprehensive dataset for 
Mars terrain classification, comprises 35,000 high-resolution 
images from the Curiosity, Opportunity, and Spirit rovers. It 
features semantic segmentation labels in four primary 
categories: Soil, Bedrock, Sand, and Big Rock, with Bedrock 
being the most common and Big Rock the rarest, as depicted 
in Figure 3. Unlabeled pixels and elements like the sky, 
distances beyond 30 meters, and rover hardware are 
categorized as background class, which can be ignored during 
training and testing. The dataset also includes three distinct 
testing sets of 255 images (M1, M2, M3) with labels verified 
by up to three specialists, enhancing the dataset's reliability for 
model evaluation. 

Figure 3.  AI4Mars MSL class composition [4]  

 

B. LabelMars 

The LabelMars dataset, curated by the European Space 
Agency (ESA) under the NOAH project, comprises 5000 
images without a designated testing set. It is organized into 
five main categories: Artificial, Float Rock, Outcrop, 
Unconsolidated, and Sky, further divided into 25 sub-
categories. Similar to AI4Mars, LabelMars employs a 'Don't 
Know' class for unassigned pixels, which can be excluded in 
training and testing. 

V. EXPERIMENTAL RESULTS 

A. Experimental Setup 

U-Net and DeepLabV3+ models are developed using 
PyTorch, deployed locally on Anaconda/Spyder on a Linux 

machine utilizing Quadro RTX 4000 GPU with 8GB RAM for 
training. Testing sets for AI4Mars were provided, and the 
training set was randomly split into 90% training and 10% 
validation sets. The LabelMars dataset underwent a similar 
random split into 80% training, 10% validation, and 10% 
testing sets. On both datasets the background class is excluded 
from training and testing processes.  

In all experiments, models were trained and validated on 
designated training and validation sets and subsequently tested 
on the testing sets. Performance metrics such as pixel-level 
accuracy (Acc), class Intersection over Union (IoU), and mean 
IoU (mIoU) over all classes were recorded for the testing sets. 
During the training process, the best model is identified as the 
one that achieves the highest mIoU on the validation set within 
the final five epochs before the early stopping mechanism is 
triggered. The models trained using two distinct backbones, 
namely ResNet50 and ResNet101, with the inclusion of two 
different input image sizes, (256x256) and (512x512), to 
assess their impact on the model's performance. 

Key parameters for the experiments included a base 
learning rate of 0.001 with a polynomial learning rate decay. 
Although the number of epochs was set at 100 for all 
experiments, training concluded at varying epochs due to early 
stopping regularization. Stochastic gradient descent (SGD) 
was the chosen optimizer, as experiments with the Adam 
optimizer did not exhibit performance differences. The cross-
entropy loss function consistently outperformed other 
alternatives such as focal and dice losses, and thus was adopted 
in all experiments. A weight decay (L2 regularization) of 
0.0001 was implemented, and batch sizes were optimized to 
the highest feasible values before GPU memory limitations 
were reached. 

B. Using semanticStyleGAN 

In our experiments with semanticStyleGAN, we addressed 
the lower IoU performance of the Big Rock class in the 
AI4Mars dataset and the Float Rock class in the LabelMars 
dataset. The GAN model trained on the original images, 
specifically those containing the rare class.  

Figure 4.  Synthetic image generation using semanticStyleGAN trained on 

AI4Mars dataset 

 

Figure 5.  Synthetic image generation using semanticStyleGAN trained on 

LabelMars dataset 

 

 

 

 



  

We generated synthetic images and corresponding masks 
matching the quantity in the original training set to duplicate 
the size of the training set. To evaluate the quality of the 
generated images, we used the Inception Score (IS) and 
Fréchet Inception Distance (FID) metrics. Figure 4 and 5 
illustrate generated sample images along with its 
corresponding semantic masks. 

C. Experiments on AI4Mars Dataset 

In each experiment the IoU of the four classes and mIoU 
over all classes are recorded for each of the three testing sets. 
Additionally, the Acc of the validation set and the testing sets 
were recorded (see Table I). 

It's noteworthy that all models exhibit highest performance 
on the M3 testing set, where consensus among three specialists 
is required for labelling, establishing it as a gold standard for 
evaluation. Across all models, pixel-level testing accuracies 
(Acc) remain similar. However, notable variations emerge in 
terms of mIoU and the rare class’s IoU. Interestingly, utilizing 
a larger image size (512x512) consistently yields better overall 
performance for both U-Net and DeepLabV3+. DeepLabV3+ 
outperforms U-Net, achieving the highest mIoU of 87% and 
the highest IoU for "Big Rock" at 59% on the M3 testing set. 
The performance is slightly better on the other two testing sets 
too, establishing DeepLabV3+ as the best performing model. 
The final row in the table shows results from a repeated 
experiment using the best model configuration with expanded 
training set using GAN-generated images enhancing the rare 
class's IoU by approximately 1-2%. 

D. Experiments on LabelMars Dataset 

Here the same experiments in the last section are repeated 
on the LabelMars dataset, reporting only the results using 5 
main class categories. Initial trials involving 26 sub-class 
categories yielded lower results, with a recorded mIoU of 
approximately 20%. This performance drop could be 
attributed to the heigh complexity of the dataset, possibly due 
to the increased number of classes.  

Similar to the experiments on AI4Mars, the adoption of a 
larger input image size of 512x512 proved advantageous for 
both U-Net and DeepLabV3+. Unlike the previous 
experiment, both the DeepLabV3+ and U-Net models exhibit 
comparable performance, attaining the highest mIoU of 72% 
and a testing accuracy of 87% establishing both models as 
equally good. Notably, the "Float Rock" class exhibits the 
lowest IoU at a maximum of 21%, echoing a similar behavior 
observed in the case of the "Big Rock" class in the AI4Mars 
dataset. An observation emerges regarding the performance of 
ResNet50 and ResNet101 as backbones. Despite their 
equivalence in performance, ResNet50 stands out as the 
preferred choice due to its efficiency – requiring fewer 
parameters and less memory, thereby accelerating the training 
and inference process. Doubling the size of the training set 
with images generated by GAN model, trained on original 
images including the rare class 'Float Rock,' resulted in a 
modest increase of about 1% in both testing accuracy and the 
IoU for the rare class. 

VI. RESULTS COMPARISON & DISCUSSION 

Our model shows notable improvements on the AI4Mars 
dataset, with a 2% increase in accuracy and a 5% rise in mIoU 

compared to existing literature (see Table III). These gains are 
achieved through the exclusion of the background class during 
training and testing and implementing early stopping 
regularization in addition to expanding the dataset using GAN 
model. It's important to note that there is a lack of comparable 
works using the LabelMars dataset, preventing direct 
comparison. 

TABLE I.  ACC, IOU, AND MIOU OF THE SEMANTIC SEGMENTATION 

MODELS USING AI4MARS DATASET. 

 

While excluding the background class improves our 
model's performance in training and testing for Mars rover 
terrain classification, its application needs careful 
consideration. The AI4Mars dataset's background class 
includes varied elements like the sky, rover hardware, distant 
beyond 30 meters, and unlabelled pixels. Notably, our model 
often misclassifies the sky as sand and rover hardware as 
bedrock (refer to Fig 6). However, these misclassifications 
may not critically impact rover navigation. The rover doesn't 
need to avoid the sky or its hardware, and the hardware is 

Model (Backbone) 

(Image size, Batch 

size)  

Test. Acc mIoU 

IoU 

Soil Bedrock Sand 
Big 

Rock 

U-Net 

(Resnet101) 

(256, 16)  

M1 0.92 0.66 0.91 0.80 0.84 0.11 

M2 0.96 0.72 0.95 0.87 0.91 0.13 

M3 0.98 0.81 0.97 0.93 0.95 0.38 

U-Net 

(Resnet50) 

(256, 16) 

M1 0.92 0.66 0.91 0.80 0.83 0.11 

M2 0.96 0.71 0.95 0.87 0.90 0.12 

M3 0.98 0.82 0.97 0.93 0.94 0.42 

U-Net 

(Resnet50) 
(512, 4) 

M1 0.92 0.66 0.90 0.80 0.84 0.10 

M2 0.96 0.71 0.95 0.88 0.91 0.09 

M3 0.98 0.81 0.98 0.94 0.95 0.39 

U-Net 

(Resnet101) 

(512, 4) 

M1 0.93 0.67 0.92 0.81 0.86 0.12 

M2 0.96 0.72 0.96 0.89 0.93 0.12 

M3 0.99 0.84 0.98 0.95 0.97 0.44 

DeepLabV3+ 

(Resnet50) 

(256, 8)  

M1 0.92 0.66 0.91 0.80 0.84 0.10 

M2 0.96 0.71 0.95 0.88 0.91 0.10 

M3 0.98 0.82 0.97 0.94 0.94 0.42 

DeepLabV3+ 

(Resnet101) 
(256, 8)  

M1 0.92 0.67 0.92 0.81 0.85 0.10 

M2 0.96 0.72 0.96 0.88 0.92 0.11 

M3 0.98 0.79 0.98 0.94 0.96 0.29 

DeepLabV3+ 

(Resnet50) 
(512, 4) 

M1 0.92 0.67 0.86 0.80 0.79 0.11 

M2 0.96 0.71 0.96 0.88 0.92 0.10 

M3 0.98 0.79 0.98 0.93 0.96 0.30 

DeepLabV3+ 

(Resnet101) 

(512, 4)  

M1 0.93 0.68 0.91 0.81 0.86 0.12 

M2 0.96 0.73 0.96 0.89 0.93 0.13 

M3 0.99 0.87 0.99 0.94 0.97 0.59 

DeepLabV3+ 

& GAN 

(Resnet101) 
(512, 4)  

M1 0.93 0.68 0.92 0.82 0.85 0.13 

M2 0.97 0.73 0.97 0.89 0.93 0.13 

M3 0.99 0.88 0.99 0.95 0.97 0.61 

 



  

usually outside the front camera's view, reducing the need for 
avoidance. Thus, these misclassifications are unlikely to 
significantly affect the rover's operational decision-making 
during exploration. In contrast, the LabelMars dataset's 
background class contains only unlabeled pixels, presenting 
different considerations than the AI4Mars dataset. 

TABLE II.  ACC, IOU, AND MIOU OF THE SEMANTIC SEGMENTATION 

MODELS USING LABELMARS DATASET. 

  

Figure 6.  Original images and their true and pridicted masks using 

DeepLabV3+ model on AI4Mars dataset. 

 

VII. CONCLUSION 

This study investigates advanced deep learning models for 

terrain classification, aimed at enhancing autonomous 

navigation and path planning in Mars rover missions. The 

primary objective was to identify the most effective deep 

learning model and establish efficient training approaches. 

 

After evaluating the current state-of-the-art, we chose U-

Net and DeepLabV3+ for further analysis. Using the AI4Mars 

dataset and the LabelMars dataset, we explored various 

preprocessing and augmentation techniques to improve model 

performance. 

TABLE III.  COMPARISON OF THE RESULTS OBTAINED USING OUR 

MODEL WITH EXISTING WORK. OUR BEST PERFROMING DEEPLABV3+ WITH 

GAN IMAGES IS USED WHICH TESTED ON AI4MARS M3 TESTING SET. 

 

Addressing class imbalance, we experimented with 

different loss functions and implemented regularization 

techniques such as weight decay and early stopping to 

mitigate overfitting. Moreover, we explored advanced 

generative models for generating images with rare classes, 

thereby improving model robustness. 

 

A key finding of this research is the significant 

improvement in performance by excluding the background 

class during both training and testing. Early stopping 

regularization significantly reduced training time while 

maintaining high model performance. The DeepLabV3+ 

model exhibited highest accuracy of up to 99% and highest 

mIoU of 87% on the AI4Mars dataset—surpassing existing 

literature—and 87% and 72% on the LabelMars dataset, 

respectively. The use of semanticStyleGAN to augment 

datasets led to a 2% increase in IoU for rare classes in the 

AI4Mars dataset and a 1% increase in the LabelMars dataset. 

In future research, exploring a wider range of semantic 

segmentation models with different hyperparameters is 

feasible. Additionally, generative models could be employed 

to create higher resolution images, utilizing GPUs with larger 

memory capacities. 
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Model 

(Backbone) 

(Image size, 

Batch size)  

Test Acc mIoU 

IoU 

Outcrop 
Float 

Rock 
Artificial 

Uncons

olidated 
Sky 

U-Net 

(Resnet50) 
(256, 8) 

0.86 0.70 0.70 0.18 0.83 0.77 0.99 

U-Net 

(Resnet50) 

(512,  4) 

0.87 0.72 0.72 0.21 0.87 0.78 0.99 

U-Net 

(Resnet101) 
(256, 8) 

0.85 0.69 0.69 0.17 0.83 0.77 0.99 

U-Net 

(Resnet101) 

(512, 4) 

0.87 0.72 0.72 0.21 0.88 0.79 0.99 

DeepLabv3+ 

(Resnet50) 
(256, 8) 

0.86 0.69 0.71 0.16 0.82 0.77 0.99 

DeepLabv3+ 

(Resnet50) 

(512, 4) 

0.87 0.72 0.72 0.21 0.87 0.79 0.99 

DeepLabv3+ 
(Resnet101) 

(256, 8) 

0.86 0.68 0.72 0.14 0.80 0.77 0.98 

DeepLabv3+ 

(Resnet101) 

(512, 4) 

0.87 0.72 0.72 0.21 0.87 0.79 0.99 

DeepLabv3+ 

& GAN 

(Resnet101) 

(512, 4) 

0.88 0.72 0.73 0.22 0.87 0.79 0.99 

 

 

 

Paper Model Input Size Acc mIoU 

Swan et al [4]   DeepLabv3+ (ResNet101) 513x513 0.96 0.75 

Atha et al [2] 
DeepLabv3+ 

(mobileNetV2) 
513x513 0.97 0.83 

Zhang et al [8] 

Self-Supervised model 
based on  

Teacher student 

(DeepLabv3+ with 
ResNet50) segmentation 

framework. 

512x512 -- 0.75 

Dai et al [10] 

SegMarsViT (vision 

transformer ViT) 
Encoder (MobileViT-s) 

512x512 0.92 0.68 

Our Method 
Based on DeepLabv3+ 

(ResNet101) 
512x512 0.99 0.88 

 



  

REFERENCES 

[1] B. Rothrock, R. Kennedy, C. Cunningham, J. Papon, M. Heverly, and 

M. Ono, ‘SPOC: Deep Learning-based Terrain Classification for 

Mars Rover Missions’, in AIAA SPACE 2016, Long Beach, 

California: American Institute of Aeronautics and Astronautics, Sep. 
2016. doi: 10.2514/6.2016-5539. 

[2] D. Atha, R. M. Swan, A. Didier, Z. Hasnain, and M. Ono, ‘Multi-

mission Terrain Classifier for Safe Rover Navigation and Automated 
Science’, in 2022 IEEE Aerospace Conference (AERO), Big Sky, MT, 

USA: IEEE, Mar. 2022, pp. 1–13. doi: 

10.1109/AERO53065.2022.9843615. 
[3] A. M. Barrett et al., ‘NOAH-H, a deep-learning, terrain classification 

system for Mars: Results for the ExoMars Rover candidate landing 

sites’, Icarus, vol. 371, p. 114701, Jan. 2022, doi: 
10.1016/j.icarus.2021.114701. 

[4] R. M. Swan et al., ‘AI4MARS: A Dataset for Terrain-Aware 

Autonomous Driving on Mars’, in 2021 IEEE/CVF Conference on 
Computer Vision and Pattern Recognition Workshops (CVPRW), 

Nashville, TN, USA: IEEE, Jun. 2021, pp. 1982–1991. doi: 

10.1109/CVPRW53098.2021.00226. 

[5] J. Liu, S. Liu, Y. Shao, X. Wan, and H. Zhao, ‘Mars Terrain Semantic 

Segmentation using Zhurong Rover Imagery Based on Transfer 

Learning of Historical Mission Data’, in 2022 International 
Conference on Service Robotics (ICoSR), Chengdu, China: IEEE, Jun. 

2022, pp. 139–144. doi: 10.1109/ICoSR57188.2022.00034. 

[6] H. Liu, M. Yao, X. Xiao, and H. Cui, ‘A hybrid attention semantic 
segmentation network for unstructured terrain on Mars’, Acta 

Astronaut., vol. 204, pp. 492–499, Mar. 2023, doi: 

10.1016/j.actaastro.2022.08.002. 
[7] E. Goh, J. Chen, and B. Wilson, ‘Mars Terrain Segmentation with 

Less Labels’, in 2022 IEEE Aerospace Conference (AERO), Big Sky, 

MT, USA: IEEE, Mar. 2022, pp. 1–10. doi: 
10.1109/AERO53065.2022.9843245. 

[8] J. Zhang, L. Lin, Z. Fan, W. Wang, and J. Liu, ‘S$^{5}$Mars: Semi-

Supervised Learning for Mars Semantic Segmentation’. arXiv, Sep. 
24, 2023. Accessed: Nov. 22, 2023. [Online]. Available: 

http://arxiv.org/abs/2207.01200 

[9] S. Chiodini, M. Pertile, and S. Debei, ‘Occupancy grid mapping for 

rover navigation based on semantic segmentation’, ACTA IMEKO, 

vol. 10, no. 4, p. 155, Dec. 2021, doi: 

10.21014/acta_imeko.v10i4.1144. 
[10] Y. Dai, T. Zheng, C. Xue, and L. Zhou, ‘SegMarsViT: Lightweight 

Mars Terrain Segmentation Network for Autonomous Driving in 

Planetary Exploration’, Remote Sens., vol. 14, no. 24, p. 6297, Dec. 
2022, doi: 10.3390/rs14246297. 

[11] F. Furlán, E. Rubio, H. Sossa, and V. Ponce, ‘Rock Detection in a 

Mars-Like Environment Using a CNN’, in Pattern Recognition, vol. 
11524, J. A. Carrasco-Ochoa, J. F. Martínez-Trinidad, J. A. Olvera-

López, and J. Salas, Eds., in Lecture Notes in Computer Science, vol. 

11524. , Cham: Springer International Publishing, 2019, pp. 149–158. 
doi: 10.1007/978-3-030-21077-9_14. 

[12] O. Ronneberger, P. Fischer, and T. Brox, ‘U-Net: Convolutional 
Networks for Biomedical Image Segmentation’, in Medical Image 

Computing and Computer-Assisted Intervention – MICCAI 2015, vol. 

9351, N. Navab, J. Hornegger, W. M. Wells, and A. F. Frangi, Eds., 
in Lecture Notes in Computer Science, vol. 9351. , Cham: Springer 

International Publishing, 2015, pp. 234–241. doi: 10.1007/978-3-319-

24574-4_28. 
[13] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, 

‘Encoder-Decoder with Atrous Separable Convolution for Semantic 

Image Segmentation’, in Computer Vision – ECCV 2018, vol. 11211, 
V. Ferrari, M. Hebert, C. Sminchisescu, and Y. Weiss, Eds., in 

Lecture Notes in Computer Science, vol. 11211. , Cham: Springer 

International Publishing, 2018, pp. 833–851. doi: 10.1007/978-3-030-
01234-2_49. 

[14] I. J. Goodfellow, ‘Generative Adversarial Nets’, Proc Adv Neural Inf 

Process Syst, 2014, [Online]. Available: 
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf 

[15] A. Radford, L. Metz, and S. Chintala, ‘Unsupervised Representation 

Learning with Deep Convolutional Generative Adversarial 
Networks’. arXiv, Jan. 07, 2016. Accessed: Dec. 29, 2023. [Online]. 

Available: http://arxiv.org/abs/1511.06434 

[16] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, ‘Unpaired Image-to-
Image Translation using Cycle-Consistent Adversarial Networks’. 

arXiv, Aug. 24, 2020. Accessed: Dec. 29, 2023. [Online]. Available: 

http://arxiv.org/abs/1703.10593 
[17] H. Zhang, I. Goodfellow, D. Metaxas, and A. Odena, ‘Self-Attention 

Generative Adversarial Networks’. arXiv, Jun. 14, 2019. Accessed: 

Dec. 29, 2023. [Online]. Available: http://arxiv.org/abs/1805.08318 
[18] T. Park, M.-Y. Liu, T.-C. Wang, and J.-Y. Zhu, ‘GauGAN: semantic 

image synthesis with spatially adaptive normalization’, in ACM 

SIGGRAPH 2019 Real-Time Live!, Los Angeles California: ACM, 
Jul. 2019, pp. 1–1. doi: 10.1145/3306305.3332370. 

[19] Y. Shi, X. Yang, Y. Wan, and X. Shen, ‘SemanticStyleGAN: 

Learning Compositional Generative Priors for Controllable Image 
Synthesis and Editing’, 2021, doi: 10.48550/ARXIV.2112.02236. 

[20] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and 

X. Chen, ‘Improved Techniques for Training GANs’. arXiv, Jun. 10, 
2016. Accessed: Jun. 10, 2023. [Online]. Available: 

http://arxiv.org/abs/1606.03498 

[21] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. 
Hochreiter, ‘GANs Trained by a Two Time-Scale Update Rule 

Converge to a Local Nash Equilibrium’. arXiv, Jan. 12, 2018. 

Accessed: Jun. 10, 2023. [Online]. Available: 
http://arxiv.org/abs/1706.08500 

[22] S. P. Schwenzer, M. Woods, S. Karachalios, N. Phan, and L. Joudrier, 

‘LabelMars: Creating an Extremely Large Martian Image Dataset 
Through Machine Learning’, p. 1970, Mar. 2019. 

 

 


