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Consider a population evolving as a critical continuous-time Galton–
Watson (GW) tree. Conditional on the population surviving until a large
time T , sample k individuals uniformly at random (without replacement)
from amongst those alive at time T . What is the genealogy of this sample
of individuals? In cases where the offspring distribution has finite variance,
the probabilistic properties of the joint ancestry of these k particles are well
understood, as seen in (Ann. Appl. Probab. 30 (2020) 1368–1414; Electron.
J. Probab. 24 (2019) 1–35). In the present article, we study the joint ances-
try of a sample of k particles under the following regime: the offspring dis-
tribution has mean 1 (critical) and the tails of the offspring distribution are
heavy in that α ∈ (1,2] is the supremum over indices β such that the βth mo-
ment is finite. We show that for each α, after rescaling time by 1/T , there
is a universal stochastic process describing the joint coalescent structure of
the k distinct particles. The special case α = 2 generalises the known case
of sampling from critical GW trees with finite variance where only pairwise
mergers are observed and the genealogical tree is, roughly speaking, some
kind of mixture of time-changed Kingman coalescents. The cases α ∈ (1,2)

introduce new universal limiting partition-valued stochastic processes with
interesting probabilistic structures, which, in particular, have representations
connected to the Lauricella function and the Dirichlet distribution and whose
coalescent structures exhibit multiple-mergers of family lines. Moreover, in
the case α ∈ (1,2), we show that the coalescent events of the ancestry of the
k particles are associated with birth events that produce giant numbers of off-
spring of the same order of magnitude as the entire population size, and we
compute the joint law of the ancestry together with the sizes of these giant
births.

1. Introduction.

1.1. Continuous-time Galton–Watson trees and their coalescent processes. Let r > 0,
and let p = (pi)i∈N0 be a probability mass function on the nonnegative integers. Consider
a continuous-time Galton–Watson tree with branching rate r and offspring distribution p,
where we start from a single initial particle at time zero. The initial particle has an exponential
lifetime with parameter r (i.e., expected length 1/r) and upon death is replaced by a random
number L of offspring particles, where P(L = i) = pi . Similarly, each offspring particle
independently repeats the behaviour of their parent and so on for all subsequent generations:
each particle dies at rate r and upon death is replaced by a random number of offspring
distributed like p. In this process we write Zt for the number of particles alive at time t .

Continuous-time Galton–Watson trees are endowed with a natural notion of genealogy:
each particle living at some time t had a unique ancestor particle living at each earlier time
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s < t . It is then natural to ask questions about the shared genealogy of different particles alive
in the population alive at a certain time. Specifically, conditioning on the event {ZT ≥ k} that
there are at least k particles alive at a time T > 0, consider picking k particles uniformly
at random without replacement from the population alive at time T . Label these k sampled
particles with the integers 1 through k. Recalling some standard terminology, a collection
of disjoint nonempty subsets of {1, . . . , k} whose union is {1, . . . , k} is known as a set par-
tition of {1, . . . , k}. We may associate with our sample of k labelled particles a stochastic
process π(k,T ) := (π

(k,T )
t )t∈[0,T ] taking values in the collection of set partitions of {1, . . . , k}

by declaring

i and j in the same block of π
(k,T )
t

⇐⇒ i and j are descended from the same time t ancestor,
(1)

where, more precisely, in (1) we mean that the time T particle labelled with i ∈ {1, . . . , k}
and the time T particle labelled with j ∈ {1, . . . , k} share the same unique ancestor in the
time t population. This set partition process construction is also seen in, for example, [8] and
[21].

Since the entire process begins with a single particle at time 0, it follows that each of
the k particles share the same initial ancestor, and accordingly, π

(k,T )
0 = {{1, . . . , k}}, that is,

π
(k,T )
0 is the partition of {1, . . . , k} into a single block. Conversely, since we choose uniformly

without replacement, each of the particles are distinct at time T , hence π
(k,T )
T = {{1}, . . . , {k}}

is the partition of {1, . . . , k} into singletons. More generally, as t increases across [0, T ],
the stochastic process π(k,T ) takes a range of values in the partitions of {1, . . . , k} with the
property that the constituent blocks of the process break apart as time passes. With this picture
in mind, we define the split times

τ1 < · · · < τm

to be the times of discontinuity of π(k,T ). That is, at each time τi , a block of π
(k,T )
τi− breaks

into several smaller blocks in π
(k,T )
τi . We note that π(k,T ) is almost surely right continuous.

Numerous authors have studied the process π(k,T ) in its various incarnations and in the
setting of various continuous-time Galton–Watson trees (see Section 1.6 for further discus-
sion). Harris, Johnston and Roberts [18] studied the large T asymptotics of the process π(k,T )

in the setting where the offspring distribution is critical (i.e.,
∑

i≥0 ipi = 1) with finite vari-
ance (i.e.,

∑
i≥0 i(i − 1)pi < ∞). Under these conditions they established the convergence

in distribution of the renormalised process (π
(k,T )
sT )s∈[0,1] to a universal stochastic process

ν(k,2) := (ν
(k,2)
s )s∈[0,1] taking values in the set of partitions of {1, . . . , k}. This limiting pro-

cess ν(k,2) is universal in the sense that it does not depend on the precise form of the off-
spring distribution, only that the distribution is (near) critical and has finite variance. Har-
ris et al. [18] show that ν(k,2) only exhibits binary splits (i.e., every discontinuity amounts
to one block breaking into exactly two subblocks) where if there are currently i blocks of
sizes a1, a2, . . . , ai , the probability the next block to split is block j is (aj − 1)/(k − i);
for any block of size a that splits, the size of its first subblock is uniformly distributed on
{1,2, . . . , a − 1}, and independently of the block topology, the joint distribution of the k − 1
splitting times 0 < τ1 < · · · < τk−1 < 1 is given by

fk(t1, . . . , tk−1) = k!
∫ ∞

0

(
k−1∏
i=1

ϕ

(1 + ϕ(1 − ti))2

)
1

(1 + ϕ)2 dϕ dt1 · · ·dtk−1.(2)

Further, when viewed backward in time, this partition process ν(k,2) has the same topology as
Kingman’s coalescent [24], that is, any two blocks are equally likely to be the next to merge.
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1.2. Main results. In the present article, we will consider Galton–Watson trees whose
offspring distribution is critical but with heavy tails, ultimately discovering a new collec-
tion of universal stochastic processes {ν(k,α) := (ν

(k,α)
s )s∈[0,1] : α ∈ (1,2]} that describe their

limiting genealogical structures. We define the probability generating function (PGF) of the
offspring distribution p = (pi)i∈N0 by

f (s) := E
[
sL]= ∑

j≥0

pj s
j for s ∈ [0,1].

Throughout, we will assume p0 > 0. For some α ∈ (1,2], suppose that the PGF of p can be
written as

(H1) f (s) = s + (1 − s)α�

(
1

1 − s

)
,

where � is a slowly varying function at infinity, that is, for any λ > 0,

lim
x→∞

�(λx)

�(x)
= 1.

Note, such an α will be unique, and it can be verified that, for f of the form in (H1), we
have f ′(1) = ∑

j≥0 jpj = 1, that is, f is the PGF of a critical offspring distribution. The
higher moments are slightly more delicate. If α ∈ (1,2), we will see later that if L is an
integer-valued random variable whose moment generating function takes the form in (H1),
then E[Lκ ] < ∞ whenever κ < α, and E[Lκ ] = ∞ whenever κ > α. The moment E[Lα]
itself may be either finite or infinite. In the setting where α = 2, however, it turns out that
moment generating functions of the form in (H1) encompass those of all unit-mean proba-
bility distributions on the nonnegative integers with finite variance. On the other hand, as we
will observe at (3), it is possible to find infinite variance random variables whose moment
generating functions take the form (H1) with α = 2.

We are now ready to state our first main result on universality classes for the coalescent
structure of Galton–Watson trees with heavy-tailed offspring distributions.

THEOREM 1.1. Consider a continuous-time Galton–Watson tree with branching rate r

and a critical offspring distribution p whose moment generating function satisfies (H1) for
some α ∈ (1,2]. Conditional on {ZT ≥ k}, let (π

(k,T )
t )t∈[0,T ] denote the ancestral process

associated with k particles sampled uniformly at random without replacement from the pop-
ulation alive at time T . Then the ancestral process converges in distribution for large times
with (

π
(k,T )
sT

)
s∈[0,1] =⇒ (

ν(k,α)
s

)
s∈[0,1] as T → ∞,

where, for each α ∈ (1,2], (ν(k,α)
s )s∈[0,1] is a stochastic process taking values in the set of par-

titions of {1, . . . , k}, which is universal in the sense that its law depends only on the moment
index α but not on the specific offspring distribution. In other words, for each α ∈ (1,2],
the set of Galton–Watson trees with offspring generating function of the form (H1) form a
universality class in terms of their asymptotic sample coalescent structure.

We remark that, due to the time scaling in T , the branching rate parameter r plays no role
in Theorem 1.1. We will describe the complete structure of these universal partition processes
(ν

(k,α)
s )s∈[0,1] (which can also be thought of as coalescent trees) in Theorem 1.2.
Before discussing distributional properties of the stochastic process ν(k,α) := (ν

(k,α)
s )s∈[0,1]

for general α, we take a moment to elucidate further on the case α = 2. We will see shortly
(c.f. the case α = 2 of Theorem 1.2) that the stochastic process ν(k,2) coincides with the
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one mentioned above from the work by Harris et al. [18], in particular, that ν(k,2) has bi-
nary splits and the joint distribution of the k − 1 splits is given by (2). As such, the case
α = 2 of Theorem 1.1 implies the critical case in Harris et al. [18] (Theorem 3), namely,
that ν(k,2) is a limiting object for the coalescent structure of critical trees with finite vari-
ance.

In fact, as touched on above, the class of offspring distributions whose moment generating
functions of the form (H1) with α = 2 is broader than critical distributions with finite vari-
ance. Indeed, there are cases when α = 2, but the variance is infinite; an explicit example is
the offspring distribution with moment generation function

(3) f (s) = s + (1 − s)2
(

1

2
+ 1

4
log

(
1

1 − s

))
;

see Slack [33] for further details. As such, our special case α = 2 of Theorems 1.1 & 1.2
represents a slight generalisation of the critical finite variance case found in [18]. Essentially,
we are only able to extend to infinite variance offspring cases in the present paper by intro-
ducing discounting of the total population size into various spine changes of measure whilst,
perhaps somewhat surprisingly, simultaneously being able to preserve key properties as well
as understanding their more complex structures. This novel approach was not featured in
[18], where instead some kth moment assumptions were needed combined with truncation
approximation argument. An analogous method of spine changes of measure with discount-
ing has been concurrently developed by Harris, Palau, and Pardo [19] for the (significantly
different) setting of a discrete time critical Galton–Watson in varying environment with finite
variances.

We now turn to describing the processes ν(k,α) for α ∈ (1,2), which are more complicated
than their α = 2 counterpart. In the α ∈ (1,2) setting, the blocks of the stochastic process
(ν

(k,α)
s )s∈[0,1] may break into three or more subblocks at any splitting event, and consequently,

we need to take care to describe the topology of the process.
Let ν := (νs)s∈[0,1] be a stochastic process taking values in the set of partitions of {1, . . . , k}

with the property that ν0 is one block, ν1 is singletons, and each discontinuity of ν is a block
breaking into several subblocks. Write 0 =: τ0 < τ1 < · · · < τm < 1 for the splitting times
(i.e., times of discontinuity) of ν. The topology T (ν) of ν is the sequence of partitions

T (ν) := (T0, . . . ,Tm) with Ti := ντi
.

The resulting sequence (T0, . . . ,Tm) is what we call a splitting sequence of {1, . . . , k}. A split-
ting sequence is a collection of partitions (β0, . . . , βm) of {1, . . . , k} such that β0 is one block,
βm is the singletons, and each βi+1 is obtained from βi by breaking a single block of βi into
two or more subblocks.

Given a splitting sequence (β0, . . . , βm), we define the ith split size, gi , to be the number
of new blocks created at the ith split time, that is,

gi := #βi − #βi−1 + 1 i = 1, . . . ,m,

where #βi is the number of blocks in the partition βi . Since β0 contains one block, and βm

contains k blocks, k − 1 blocks are created across the entire sequence, and as such we have

m∑
i=1

(gi − 1) = k − 1.

With this notation at hand, we are now ready to state our second main result, characterising
the law of the limit processes (ν

(k,α)
s )s∈[0,1] occuring in Theorem 1.1.
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THEOREM 1.2.

(a) For α ∈ (1,2), the probability law P(k,α) of ν(k,α) is given by the formula

P(k,α)(T (ν(k,α))= β, τ1 ∈ dt1, . . . , τm ∈ dtm
)

= 1

(α − 1)(k − 1)!(4)

·
m∏

i=1

α�(gi − α)

�(2 − α)
·
∫ 1

0
(1 − w)k−1wm+ 2−α

α−1

m∏
i=1

(1 − wti)
−gi dti dw,

where m ≥ 1, β = (β0, . . . , βm) is any splitting sequence for {1, . . . , k} with split sizes
g1, . . . , gm, and 0 < t1 < · · · < tm < 1 are splitting times.

(b) For α = 2, here we have P(k,2)(m = k − 1, gi = 2 ∀i) = 1, and we have

P(k,2)(T (ν(k,2))= P̄ , τ1 ∈ dt1, . . . , τk−1 ∈ dtk−1
)

= 2k−1

(k − 1)!
∫ 1

0
(1 − w)k−1wk−1

k−1∏
i=1

(1 − wti)
−2 dti dw,

(5)

where P̄ is any splitting sequence of {1, . . . , k} consisting only of binary splits.

Let us make a few remarks. First, we note that in the setting of Theorem 1.2, after fixing
the split sizes g1, . . . , gm, the topology T (ν(k,α)) has no effect on the formula in (4). As such,
conditional on the event that ν(k,α) has m splits at times t1, . . . , tm of sizes g1, . . . , gm, the
topology of the process is uniformly distributed on the set of possible splitting sequences
with m splits of sizes g1, . . . , gm. This property may be regarded as a generalisation of the
Kingman topology found in the case α = 2: going backward in time, whenever a merger of
g ancestral lines is about to occur, it is equally likely to consist of any subcollection of g

existing ancestral lines.
Next, let us note that the α = 2 formula (5) is consistent with the formula for α ∈ (1,2) in a

limit when α ↑ 2. The fact that the formula is asymptotically supported on {g1 = 2, . . . , gm =
2} when α = 2 corresponds to the fact that α�(g − α)/�(2 − α) → 21{g=2} as α ↑ 2.

Additionally, we observe that after taking the change of variable ϕ = w/(1 − w) and ac-
counting for the k!(k −1)!/2k−1 different binary trees with k labelled leaves and k −1 ranked
internal nodes, we can verify that (5) is equivalent to the formula from (2).

Recall that a splitting sequence (β0, . . . , βm) is a sequence of partitions of {1, . . . , k} such
that β0 is one block, βm is the singletons, and for each i ≥ 1, βi is obtained from βi−1 by
breaking a single block of βi−1 into gi ≥ 2 subblocks. Note that βi has gi − 1 more blocks
than βi−1 so that

#βj = 1 +
j∑

i=1

(gi − 1) =: kj .

In particular, k0 = 1, and km = k. We now observe that

(6) #
{
Splitting sequences of {1, . . . , k} with ordered split sizes (g1, . . . , gm)

}= k!
m∏

i=1

ki

gi ! .

To see (6), it is best to work backward. Each splitting sequence arises in precisely the follow-
ing way: starting with {1}, . . . , {k}, we choose gm of km blocks to merge first, then gm−1 of
km−1 blocks to merge next, and continue until on the mth step we merge g1 = k1 blocks to
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one block. Thus, the quantity in (6) is equal to
(km

gm

)(km−1
gm−1

) · · · (k1
g1

)
. Using kj − gj = kj−1 − 1,

a series of cancellations occur, and we obtain (6).
Finally, we remark that equation (6) now supplies a way of describing the marginal dis-

tribution of the split times and split sizes without any other regard for the topology of the
process. Namely, by multiplying (4) by the number k!∏m

j=1
kj

gj ! of splitting sequences of
partitions with order split sizes (g1, . . . , gm), we see that the probability density of splits of
ordered sizes (g1, . . . , gm) in times dt1, . . . ,dtm is given by

P(k,α)(Splits of sizes (g1, . . . , gm) at times dt1, . . . ,dtm
)

= k

(α − 1)
·

m∏
i=1

αki�(gi − α)

gi !�(2 − α)
·
∫ 1

0
(1 − w)k−1wm+ 2−α

α−1

m∏
i=1

(1 − wti)
−gi dti dw,

for all 0 < t1 < · · · < tm < 1, where, as above, for j = 1, . . . ,m, kj := 1 +∑j
i=1(gi − 1) is

the number of blocks after the j th split.

1.3. The Lauricella representation. It turns out that it is possible to describe the dis-
tribution of the partition process ν(k,α) in terms of a certain special function known as the
Lauricella hypergeometric function [12]. The Lauricella function is given by

(7) F
(n)
D (c, a;b; t) =

∫
Tn

(
1 − 〈t, x〉)−c

Dn(a;b;x)dx a ∈Rn
>0, b > 0, c > 0,

where 〈t, x〉 :=∑n
i=1 tixi and

Dn(a;b;x) = �(b +∑n
i=1 ai)

�(b)�(
∑n

i=1 ai)
.

(
1 −

n∑
i=1

xi

)b−1 n∏
i=1

x
ai−1
i

is the density of the Dirichlet distribution with parameters (a, b) = (a1, . . . , an, b). In Sec-
tion 5.5 we show that equation (4), describing the law of ν(k,α), may alternatively be written

P(k,α)(T (ν) = β, τ1 ∈ dt1, . . . , τm ∈ dtm
)

= 1

(α − 1)

m∏
i=1

α�(gi − α)

�(2 − α)

�(m + 1
α−1)

�(k + m + 1
α−1)

(8)

× F
(m)
D

[
m + 1

α − 1
, g1, . . . , gm;k + m + 1

α − 1
; t1, . . . , tm

]
.(9)

1.4. Population size and giant birth events. In addition to describing the joint ancestral
structure of k uniformly sampled particles chosen at a large time T from the population of
a branching process in the (H1) universality class, in the setting α ∈ (1,2) it transpires that
there are also giant birth events occurring in conjunction with the split times.

To explain this connection, let us begin by noting that in Section 4, using tools from Pakes
[32], we undertake a careful analysis of the generating functions of branching trees whose
offspring generating functions lies in the universality class (H1). Ultimately, we show that
the survival probability takes the form

F(T ) := P(ZT > 0) ∼ T −1/(α−1)�̃(T ),

where �̃(·) is another function slowly varying at infinity that may be described explicitly in
terms of the slowly varying function �(·) occuring in (H1); see (59) below.

Consider now that the criticality E[L] = 1 of the offspring distribution entails that the
expected number of particles alive at time T satisfies E[ZT ] = 1 for all T . This implies
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that E[ZT |ZT > 0] = F(T )−1, and as such, we may expect that conditional on the event
{ZT > 0}, the number of particles alive has the order F(T )−1. Indeed, the following limit
due to Pakes [32] states that conditionally on {ZT > 0}, F(T )ZT converges to a limit as T

gets large, with

lim
T →∞E

[
e−θF (T )ZT |ZT > 0

]= 1 − (
1 + θ1−α)−1/(α−1)

.(10)

Recall the process (π
(k,T )
sT )s∈[0,1] characterising the joint ancestral structure of a sample of

k particles from the population at time T and that we denote by τ1 < · · · < τm the disconti-
nuities, or splitting times, of this process. According to Theorem 1.3, which we state shortly,
when T is large, the splitting times τ1 < · · · < τm coincide with seismic birth events of size of
the same order of magnitude as the entire population. To formulate this observation precisely,
let

Li := Number of individuals born at time τi , i = 1, . . . ,m.

Let (π
k,T
sT )s∈[0,1] be the rescaled partition process characterising the joint ancestry of k parti-

cles sampled from the population at time T . Our next result is an extension of Theorem 1.2.

THEOREM 1.3. Let α ∈ (1,2). Conditioned on the event {ZT ≥ k}, as T → ∞, we have
the convergence in distribution((

π
k,T
sT

)
s∈[0,1],F (T )L1, . . . ,F (T )Lm

)→ ((
ν(k,α)
s

)
s∈[0,1],X1, . . . ,Xm

)
of the time-rescaled partition process (π

k,T
sT )s∈[0,1] together with the F(T )-rescaled offspring

sizes at the split times, where the limiting object ((ν
(k,α)
s )s∈[0,1],X1, . . . ,Xm) is a partition

process (ν
(k,α)
s )s∈[0,1] together with a random vector (X1, . . . ,Xm) of nonnegative random

variables, where m is the (random) number of splitting events of νk,α .
Further, the joint law of ((ν

(k,α)
s )s∈[0,1],X1, . . . ,Xm) is given by

P(k,α)(T (ν) = β, τ1 ∈ dt1, . . . , τm ∈ dtm,X1 ∈ dx1, . . . ,Xm ∈ dxm

)
(11)

=
∏m

i=1
α�(gi−α)
�(2−α)

(α − 1)(k − 1)!
∫ 1

0
(1 − w)k−1wm+ 2−α

α−1

m∏
i=1

(1 − wti)
−gi dti

w
gi,ti

(xi)dxi dw,

where β = (β0, . . . , βm) is any splitting sequence for {1, . . . , k} with m ≥ 1 splits having split
sizes g1, . . . , gm, 0 < t1 < · · · < tm < 1 are split times, x1, . . . , xm ≥ 0 are split offspring
sizes, and where

w
g,t (x) := xg−α−1

�(g − α)(1/w − t)
g−α
α−1

exp
{
− x

(1/w − t)
1

α−1

}
(12)

is the probability density function of a standard Gamma random variable with shape param-

eter g − α and rate parameter (w/(1 − wt))
1

α−1 .

Let us take a moment to unpack Theorem 1.3. First, we note that (11) is an immediate
generalisation of (4); indeed, integrating through the variables x1, . . . , xm of the former, we
immediately obtain the latter. Let us comment further that the variable w is like an (unob-
servable) mixture random variable that acts as a proxy for the entire population size, and
after fixing the value of w, the topology and split times have a joint law proportional to∏m

i=1
�(gi−α)
�(2−α)

(1 − wti)
−gi . After choosing w, the topology and the split sizes g1, . . . , gm, the
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offspring events are conditionally gamma distributed with shape parameter g − α and scale

factor (1/w − t)
1

α−1 (equivalently, rate parameter w
1

α−1 /(1 − wt)
1

α−1 ).
Let us touch on the interpretation of Theorem 1.3 as α ↑ 2. We recall from our discus-

sion following the statement of Theorem 1.2 that ν(k,2) only has binary splitting events, that
is, when α = 2, each gi = 2. In the case g = 2, we can interpret the probability measure
w

g,t (x)dx as approximating the Dirac mass at zero as α ↑ 2. This captures the vanishing of
giant birth events as α ↑ 2.

Finally, let us note that using the Laplace transform of the gamma distribution, we have∫ ∞
0

e−γ xw
g,t (x)dx = (

1 − (1/w − t)
1

α−1 γ
)−(g−α)

, γ ≥ 0.

Consequently, for nonnegative parameters γ1, . . . , γm, we may alternatively write

E(k,α)[e−∑m
j=1 γmXm;T (ν) = β, τ1 ∈ dt1, . . . , τm ∈ dtm

]
(13)

=
∏m

i=1
α�(gi−α)
�(2−α)

(α − 1)(k − 1)!
∫ 1

0
(1 − w)k−1wm+ 2−α

α−1

m∏
i=1

(1 − wti)
−gi

(1 − (1/w − ti)
1

α−1 γi)gi−α
dw.

1.5. Outline of proofs. Let us outline briefly our approach to proving Theorems 1.1, 1.2,
and 1.3. We begin by introducing a collection of spines, which are distinguished lines of
descent that flow through a continuous-time Galton–Watson tree forward in time. We adapt
and generalise the techniques in Harris et al. [18] by constructing a change of measure Q(k)

θ,T

that encourages the spines to flow through the tree in such a way that at time T they represent
a uniform sample of k distinct particles of the tree in such a way that the overall population
is size biased by the function n �→ n(n − 1) · · · (n − k + 1)e−θn. (Harris et al. [18] have
θ = 0 in their set-up.) The parameter θ , which is a discounting parameter controlling the size
of the tree, furnishes a simple interpretation of sampling from a k times size biased tree in
the absence of a second (let alone kth) moment. Let us mention here that this exponential
discounting technique was used by first and third authors in concurrent work with Sandra
Palau [19].

A further innovation in our approach here is in accounting for the sizes of the offspring
events at spine split times. This tool ultimately leads to the more descriptive limit in Theo-
rem 1.3 of not just the ancestral process of the spines but also the magnitudes of the birth
events.

After establishing basic properties of change of measure Q(k)
θ,T , in Section 4 we undertake

a careful analysis of the generating functions associated with processes in the universality
class (H1), which allows us in Section 5 to ultimately tie our work together to prove our main
results.

The behaviour of the spines under Q(k)
θ,T may be understood as a proxy for the ancestral

behaviour of uniformly chosen particles under the original measure governing the Galton–
Watson tree, though under Q(k)

θ,T the spines have a tractable distribution which is fairly easily
described.

Moreover, under the measure Q(k)
θ,T , we are able to describe in full detail the joint distribu-

tion of the entire population size in conjunction with the ancestral behaviour of the spines.
Finally, we mention that various authors, such as Yakymiv [34] and Lagerås and Sagitov

[25], have studied the so-called reduced process associated with heavy-tailed continuous-
time Galton–Watson trees; the reduced process up until a time t is the associated random
process of a Galton–Watson process consisting of particles living at times s ∈ [0, t] who have
a descendent alive at time t . In particular, Yakymiv [34], Theorem 3, showed that the reduced
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process associated with our universality class (H1) may be described in terms of a certain de-
terministic time change of a supercritical Galton–Watson process with a particular offspring
distribution. (This offspring distribution also appears in Proposition 19 in Berestycki et al. [7]
in the context of Beta coalescents.) In principle, this paves a potential alternative avenue to
our intermediate result in Theorem 1.2: in order to obtain the coalescent structure of Galton–
Watson trees in our university class (H1), one may argue that the coalescent structure of a
Galton–Watson tree is identical to that of its reduced tree, and thereafter study the coales-
cent structure of the particular supercritical tree, and ultimately undo the time change. We
nonetheless favour our more direct approach, since it provides a rich probabilistic descrip-
tion of the coalescent structure under the size biased change of measure and, significantly,
together with the understanding of the uniform sampling at large times. The latter supplies a
more intricate understanding of the relationship between the coalescent structure of the uni-
form sample and the population size and, in particular, gives us the full description of this
relationship afforded by Theorem 1.3.

1.6. Further discussion of related work. As mentioned above, countless authors have
studied various special cases of the partition process (π

(k,T )
t )t∈[0,T ] associated with the an-

cestry of k uniformly sampled particles from a continuous-time Galton–Watson tree. The
case k = 2, which amounts to sampling two particles from the population and studying their
time to most recent common ancestor, is particularly well trodden [3–5, 11, 14, 26, 31].
Work for k ≥ 3 has appeared only more recently. In the setting of general continuous-time
Galton–Watson trees, the second author [21] found an explicit integral formula for the finite
dimensional distributions of π(k,T ) in terms of the generation function Ft(s) := E[sZt ] of the
process and thereafter considered the large-T asymptotics in the supercritical and subcritical
cases; see also Grosjean and Huillet [16] and Le [30]. Zubkov [35] studied a certain aspect of
the k = ∞ case for critical Galton–Watson trees, showing that asymptotically the most recent
common ancestor of the entire population at time T is uniformly distributed on [0, T ].

Several related models have also been considered. The first and last author have worked
recently on the problem of sampling k particles from a critical branching process in a varying
environment (see [19]). A similar result was obtained independently by Boenkost et al. [10].
The second author has worked recently with David Cheek [13] on the problem of sampling
a single particle uniformly from the population of a continuous-time Galton–Watson tree
and studying the point process of reproduction times along the particles ancestral lineage,
and with Amaury Lambert [22] on the ancestry of continuous-state branching processes. The
three authors of this manuscript have also considered the problem of sampling k particles
from a critical branching process with infinite mean (see [17]). Let us also mention work by
Amaury Lambert and coauthors [27, 28] on coalescent point processes associated with trees
as well Aldous and Popovic [2] and Gernhard [15].

1.7. Overview. We now give the structure of the remainder of the article. In Section 2
we introduce multiple spines and our changes of measure that will underpin our approach.
In Section 3 we prove properties of the multiple spines under the change of measure Q(k)

θ,T .
Section 4 is dedicated to studying basic properties of trees in the universality class (H1) and
the large-T asymptotic behaviour of spines under Q(k)

θ,T for trees in this universality class. In
the final section, Section 5, we study the joint law of the population size and the spines under
Q(k)

θ,T , thereby ultimately inverting the change of measure.

2. Spines and changes of measures. In this section we introduce various probability
measures that will serve as essential tools for our understanding of the genealogies of sam-
ples of k individuals drawn from the population without replacement at time T . We start by
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giving a more precise description of the continuous-time Galton–Watson (GW) population
model. Then we will extend the original GW model by identifying k distinguished lines of
descent, known as spines. Via a change of measure, we will then define our key size-biased
and discounted GW process with k-spines under a probability measure Q(k)

θ,T , describing its
properties and how it modifies the behaviour of both the population process and the spines.

2.1. Notation. Throughout, we use the convention that Z+ := {0,1,2,3, . . . } and N :=
{1,2,3, . . . }. We will make use of the standard Ulam–Harris labelling system to keep track of
genealogical information of particles: when an individual labelled u dies and is replaced by L

offspring, these are labelled by concatenating the parent label with the number of each child,
yielding offspring labels u1, u2, . . . , uL and so on. If there is only one initial particle, for
convenience, the single root is usually labelled ∅. Then, for example, 2.3.1 would represent
the first child of the third child of the second child of the initial ancestor. With this notation it
is easy to refer to subtrees within, or join subtrees onto, existing trees.

Denote by Zt the set of labels of all particles alive at time t > 0, and let Zt = |Zt | be the
number of particles alive at time t > 0. If u is an ancestor of v or equal to v, then we write
u � v, and if u is a strict ancestor of v, then we write u ≺ v. An initial labelling Z0 is said to
be permissible as long as no initial individual is an ancestor of, or the same as, any other one,
that is, u � v for any distinct pair u, v ∈ Z0.

Throughout, we will use a common sample space and σ -algebra (�,F), which is suffi-
ciently enriched to describe the randomness associated with all the various processes encoun-
tered below. In the following subsections, we will introduce various probability measures, P,
Pθ,T , P(k), Q(k)

θ,T , and P(k)
unif,T , which will all be defined on this same common space (�,F).

Considering the same process under different probability laws will be foundational to our
approach.

We define (Ft , t ≥ 0) to be the natural filtration of the population process Z := (Zs)s≥0,
that is, Ft := σ(Zs : s ≤ t). (We will introduce other filtrations in the sequel; see Sec-
tion 2.4.2.)

2.2. The continuous-time Galton–Watson process under P. Let (�,F,P) be a proba-
bility space. Suppose p = (pi)i∈Z+ is a probability distribution on Z+ with finite mean
m :=∑

i∈Z+ ipi < ∞.

DEFINITION 2.1 (Galton–Watson process under P). Under the probability measure P,
we say that Z = (Zs)s≥0 is a continuous-time Galton–Watson process with branching rate r

and offspring distribution p, started with one individual, if:

1. The process initially starts with one particle alive (i.e., Z0 = 1 with label Z0 = {∅}).
2. The branching property: Any particles currently alive evolve forward in time indepen-

dently of one another and of the history of the process.
3. Any particle currently alive at time t undergoes branching at rate r (i.e., the time until

the particle branches is exponentially distributed at rate r).
4. Given that particle v branches at time t , it immediately dies and is simultaneously

replaced by Lv offspring, where Lv is an independent realisation of the offspring random
variable L with P(L = i) = pi , for i ∈ Z+.

Similarly, a Galton–Watson process initially started with j ≥ 2 particles alive is de-
fined analogously simply by modifying (1), typically with the labelling convention that
Z0 = {1,2, . . . , j}, although any permissible labelling Z0 can be specified.
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2.3. The Galton–Watson discounted by population size under Pθ,T . Consider any fixed
T > 0 and θ ≥ 0, and define a new probability measure Pθ,T on FT via the Radon-Nikodym
derivative

(14)
dPθ,T

dP

∣∣∣∣
FT

:= e−θZT

E[e−θZT ] .

In other words, the law of the process Z under Pθ,T is like that of the original law P, except
with exponential discounting at rate θ according to the size of population at time T . In fact,
the process under Pθ,T remains a branching process, although the behaviour becomes time-
dependent, as below (Lemma 2.2).

Introducing discounting by the final population size turns out to be quite natural and indeed
will be crucial in allowing our methods to work without any additional moment assumptions
on the offspring distribution L, in particular, to encompass the heavy-tailed laws of interest.

The following lemma describes the behaviour of the particles under Pθ,T .

LEMMA 2.2 (Galton–Watson discounted by population size under Pθ,T ). Under the
probability law Pθ,T , the process Z = (Zs)s≥0 evolves over time period [0, T ] as a time
inhomogeneous Markov branching process, where:

1. The process initially starts with a single particle alive.
2. Any particles currently alive evolve forward in time independently of one another and

of the history of the process (branching property).
3. Any particle currently alive at time t undergoes branching at rate

rE
[(
E
[
e−θZT −t

])L−1]
.

4. Given that particle v branches at time t , it immediately dies and is simultaneously
replaced by Lv offspring, where Lv is an independent realisation of the offspring random
variable at time t , L(t), where

Pθ,T

(
L(t) = �

)= p�

(E[e−θZT −t ])�
E[(E[e−θZT −t ])L] .

Lemma 2.2 follows from the case k = 0 of Lemma 3.9, which is proven in Section 3.

2.4. The Galton–Watson process with k-spines under P(k). For any fixed k ∈ N, we now
proceed to define a measure P(k) under which the population process Z has k distinguished
lines of descent, known as spines. The measure P(k) will serve as a natural and convenient
reference measure when looking at the behaviour of other population processes with k dis-
tinguished particles (e.g., later we will select a sample of k individuals uniformly at random
at time T ).

We denote the k spines by ξ = (ξ (1), ξ (2), . . . , ξ (k)), where ξ (i) corresponds to the distin-
guished line of decent of the ith spine. Each spine is represented by a sequence of Ulam–
Harris labels v0v1v2 . . . , which start at the initial ancestor and where the next label in the
sequence is always an offspring of the previous (i.e., v0 = ∅, and for each i ∈ N, vi+1 = vi�

for some � ∈ {1, . . . ,Lvi
}). A spine may be an infinite line of descent or a finite path which

terminates at a leaf in the underlying genealogical tree of the population. If a particle u has j

distinct spines passing though it (i.e., #{i ∈ {1, . . . , k} : u ∈ ξ (i)} = j ), then we say particle u

is carrying j spines.
The process Z with k spines ξ under measure P(k) is constructed as a simple extension of

Z under P, in that all particles behave exactly as in the original branching process but some
particles are additionally identified as carrying the spines, as follows. First, the population
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Z is constructed according to P. Then, given a realisation of the population Z , the k spine
lineages are chosen independently, each spine starts by following the initial ancestor, and then
at each subsequent branching event follows one of the offspring chosen uniformly at random
(or dies if there are no offspring). More precisely, we have the following construction.

DEFINITION 2.3 (Galton–Watson process with k spines under P(k)). Under probability
measure P(k), the process Z = (Zs)s≥0 with k spines ξ = (ξ (1), ξ (2), . . . , ξ (k)) is defined as
follows:

1. The process initially starts with one particle alive (i.e., Z0 = {∅}, with Z0 = 1 particle
labelled as the root ∅) which is carrying the k spines.

2. The branching property: Any particle alive—either carrying or not carrying spines—
evolves forward in time independently of the other particles in the system and of the
history of the process.

3. Any particle currently alive at time t undergoes branching at rate r .
4. Given that a particle v branches at time t , it immediately dies and is simultaneously re-

placed by Lv offspring, where Lv is an independent realisation of the offspring random
variable L with P(L = i) = pi for i ∈ Z+.

5. Conditional on particle v carrying j spines at the time it branches and on having Lv = �

offspring:

(a) If � ≥ 1, each of the j spines chooses independently and uniformly at random
which of the Lv offspring to continue to follow.

(b) � = 0, there are no offspring for the spines to continue to follow, and those j spine
paths terminate and pass into the cemetery state δ.

REMARK 1. We note that a Galton–Watson processes with k-spines under P(k) can also
be thought of as a multitype Galton–Watson process, where the type of each particle in
{0,1, . . . , k} corresponds to the number of spines passing along it. Here a type j individ-
ual can only have offspring types of the same or lower value and where the sum of offspring
types must match the parent’s type (the number of spines are preserved at branching events).
We may enrich this construction further by keeping track of the individual spine trajectories
so that the type of each particle could also include of the labels of any spines passing along
it (e.g., taking the type space as all possible subsets of {1, . . . , k}), although again only the
number of spines along each particle would affect its rate of branching.

We write ξt = (ξ
(1)
t , . . . , ξ

(k)
t ) to identify the k spines at time t , where ξ

(i)
t is the label of

the particle carrying spine i at time t . Since each spine chooses its path independently and
uniformly from amongst the available offspring, we can immediately observe that, for any
u1, . . . , uk ∈ Zt and u = (u1, . . . , uk),

(15) P(k)(ξt = u|Ft ) =
k∏

i=1

∏
v≺ui

1

Lv

.

For more details, see the proof of Lemma 6 in Harris et al. [18]. At this stage we also observe
that a spine’s path may end in a leaf under P(k).

We emphasise that the law of the underlying Galton–Watson tree is the same under P(k) as
under P, that is

P(k) = P on Ft .

We will use this fact without comment in the sequel.
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2.4.1. Some further terminology and notation. When we are interested in which partic-
ular spines pass though a given particle, it is sometimes convenient to think of a particle
carrying marks. The k spines are marked (i.e., labelled) as 1, . . . , k, so we can identify which
spines a particle is carrying by their marks. Since all the spines start at the initial ancestor, par-
ticle ∅ carries all k marks, 1,2,3, . . . , k. A particle v through which j spines pass will carry
j marks for some b1 < b2 < · · · < bj , where each bi ∈ {1, . . . , k} uniquely identifes a spine.

The set of distinct spine particles at any time t , and the marks that are following those
spine particles, induces a partition π

(k)
t of {1, . . . , k} as follows: we declare i and j to be

in the same block of π
(k)
t if ξ

(i)
t = ξ

(j)
t . The partition-valued stochastic process (π

(k)
t )t∈[0,T ]

has at most k − 1 times of discontinuity; we call these times τ1, . . . , τm the split times of the
spines. For convenience we also set τ0 = 0.

If we then let Ti = π
(k)
τi for i = 0, . . . ,m, where m is the number of split times of the

partition process, then we have created a splitting sequence of partitions T0,T1, . . . ,Tm,
which describe the topological information about the spines without the information about
the spine split times. On occasion in the sequel, it will be useful to consider the σ -algebra
H = σ(T0,T1, . . . ,Tm).

Further, let nt be the number of distinct spines (i.e., the number of distinct particles in
Zt carrying marks) at time t . We also let ρ

(i)
t be the total number of spines accompanying

spine i at time t , including i itself (ρ(i)
t = 0 if ξ (i) = δ corresponding to spine i already in the

cemetery state).
For any particle u ∈ Zt , there exists a last time at which u was a spine (which may be t).

If this time equals τi for some i, then we say that u is a residue particle; if it does not equal
τi for any i and u is not a spine, then we say that u is ordinary. Each particle is exactly one
of residue, ordinary, or a spine (i.e., carrying one or more marks).

2.4.2. Filtrations. Whilst all our processes and probability measures are assumed to be
carried on a sufficiently rich common space (�,F), it will be very convenient for us to
make use of a number of different sub-σ -algebras and filtrations according to how much
information we want to know about the particles and spines. To this end, we let:

• (F (k)
t )t≥0 be the filtration containing all information about the process, including the k

spines, up to time t .
• (Ft )t≥0 be the filtration containing only the information about the Galton–Watson tree but

nothing about the identity of any spines.
• (G̃(k)

t )t≥0 be the filtration containing all the information about the k spines up to time t ,
including the birth events and numbers of offspring along the k spines, but no information
about the rest of the tree.

• (G(k)
t )t≥0 be the filtration containing information only about the spine splitting events (in-

cluding which marks follow which spine); (G(k)
t )t≥0 does not know when births of ordinary

particles along the spines occur (i.e., any births coming off the spines when the spines all
stay together).

Note, P(k) can be defined on F (k)∞ ⊆ F , and this is the smallest σ -algebra we might use. For
further details, see Harris and Roberts [20].

2.5. The k-spine measure Q(k)
θ,T . We will now introduce the key probability measure un-

der which the spines will form a uniform choice (without replacement) from the population
alive at time T , as required, but where there will also be k-size biasing and discounting by the
population size at time T . In particular, the population process with spines under this measure
will turn out to have sufficient structural independence properties to greatly facilitate compu-
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tations and, where the discounting allows us, to develop k-spine methods without requiring
any additional moment conditions.

We will often make use of the notation n(k) to represent the number of ways of choosing k

distinct objects from n objects, more precisely, for any integers n and k,

n(k) :=

⎧⎪⎪⎨⎪⎪⎩
n(n − 1) · · · (n − k + 1) if n ≥ k ≥ 1,

1 if n ≥ 1, k = 0,

0 otherwise.

Let us fix T > 0 and θ ≥ 0, and introduce a new probability measure Q(k)
θ,T on F (k)

T by
setting

(16)
dQ(k)

θ,T

dP(k)

∣∣∣∣
F (k)

T

:=
1Ak,T

(
∏k

i=1
∏

v≺ξ
(i)
T

Lv)e
−θZT

E[Z(k)
T e−θZT ] ,

where

Ak,T := {The k-spines are alive and following distinct particles at time T },
and we are noting that E[Z(k)

T e−θZT ] = E(k)[Z(k)
T e−θZT ], since the underlying Galton–

Watson process has the same law under P as under P(k).
We now comment on some key properties of Q(k)

θ,T . First, we note that Q(0)
θ,T = Pθ,T .

Let Z(k)
T denote the collection of distinct k-tuples of individuals alive at time T so that

#Z(k)
T = Z

(k)
T . Using the selection of the spines under P(k), given the underlying population

process (Definition 2.3) and then using (15), we find that

E(k)

[
1Ak,T

e−θZT

k∏
i=1

∏
v≺ξ

(i)
T

Lv

∣∣∣FT

]

= ∑
u1,...,uk∈Z(k)

T

P(k)(ξT = u|FT )e−θZT

k∏
i=1

∏
v≺ui

Lv = Z
(k)
T e−θZT .

(17)

This confirms that Q(k)
θ,T is a probability measure and also that

(18)
dQ(k)

θ,T

dP(k)

∣∣∣∣
FT

= Z
(k)
T e−θZT

E[Z(k)
T e−θZT ] .

In particular, the distribution of the random variable ZT under Q(k)
θ,T is that of P(k) but k-size

biased and θ -discounted by the function n �→ n(k)e−θn.
Importantly, for any u1, . . . , uk ∈ ZT , we have

Q(k)
θ,T (ξT = u|FT ) ∝ P(k)(ξT = u|FT )1Ak,T

(
k∏

i=1

∏
v≺ui

Lv

)
e−θZT ,

then from (15) we deduce the crucial equation

(19) Q(k)
θ,T (ξT = u|FT ) = 1Ak,T

Z
(k)
T

,

which states the property that, under the measure Q(k)
θ,T , the k-spines are a uniform choice

without replacement from those particles alive a time T .
From the previous observation and its definition in (16), we can think of Q(k)

θ,T by first:
(i) k-size biasing and discounting by the population size ZT , given FT , and then (ii) choosing
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k-spines uniformly without replacement under Q(k)
θ,T , given FT , that is,

(20)
dQ(k)

θ,T

dP(k)

∣∣∣∣
F (k)

T

= Z
(k)
T e−θZT

E[Z(k)
T e−θZT ] · 1Ak,T

Z
(k)
T

·
k∏

i=1

∏
v≺ξ

(i)
T

Lv.

Also, observe that Q(k)
θ,T (ZT ≥ k) = 1.

Our aim is to provide a complete description of the evolution of the Galton–Watson process
with k-spines under Q(k)

θ,T ; its desirable properties (including uniformly sampled spines) and
tractability, due to the independence within its structure (due to the size-biasing), will prove
absolutely crucial to our later analysis of uniform sampling.

We already remarked that a Galton–Watson process with k-spines under P(k)
θ,T can be

thought of as a time inhomogeneous multitype Galton–Watson process, where the type of
a particle is the number of spines it carries. Since the branching structure is preserved by the
“product” structure of the Radon–Nikodyn derivative in (16), it turns out that the Galton–
Watson process with k-spines under Q(k)

θ,T can be seen as another time inhomogeneous mul-
titype Galton–Watson process (cf. Abraham and Debs [1] for a discrete GW with k-spines
described this way). We have the following property.

LEMMA 2.4 (Branching Markov property/Symmetry Lemma). Suppose that u ∈ Zt is
carrying j marks at time t , that is, that u has j spines passing through it. Then under Q(k)

θ,T ,
the subtree generated by u after time t is independent of the rest of the process and behaves
as if under Q(j)

θ,T −t .

The proof of this Lemma follows from the same arguments of Lemma 8 in Harris et al.
[18], where the measure Q(k)

θ,T is considered without the compensation term θ . Thus, it just

remains to identify the branching rates for k-spines to describe Q(k)
θ,T .

The following result gives a full account of the behaviour of the spine and nonspine parti-
cles under the change of measure Q(k)

θ,T .

LEMMA 2.5 (Size-biased and discounted Galton–Watson process with k spines under
Q(k)

θ,T ). The process Z = (Zs)s∈[0,T ] with k spines ξ = (ξ (1), ξ (2), . . . , ξ (k)) under measure

Q(k)
θ,T evolves as follows:

1. The process starts at time 0 with one particle carrying all k spines (i.e., Z0 = {∅}, and
ξ0 = (1,2, . . . , k)).

2. A particle carrying j spines evolves a subtree forward in time independently of the rest of
the process (branching Markov property).

3. A particle carrying j ≥ 1 spines at time t branches into � offspring, and the j spines split
into g ∈ {1, . . . , j} groups of sizes k1, . . . , kg ≥ 1 with

∑g
i=1 ki = j at rate

j !∏j
m=1 hm!∏g

i=1 ki !
·
∏g

i=1 E[Z(ki)
T −t e

−θZT −t ]
E[Z(j)

T −t e
−θZT −t ]

rE
[
L(g)(E[e−θZT −t

])L−g]

× �(g)(E[e−θZT −t ])�−gp�

E[L(g)(E[e−θZT −t ])L−g] ,

where hm := |{i : ki = m}| is the number of spine groups of size m so that
∑j

m=1 mhm = j

and
∑j

m=1 hm = g.
4. Given a particle carrying j ≥ 1 spines branches into � offspring where the j spines split

into g groups of sizes k1, . . . , kg ≥ 1, the spines are assigned between the offspring as
follows:
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(a) Choose g of the � offspring to carry the spine groups uniformly amongst the
�!/(g!(� − g)! distinct ways.

(b) Assign the group sizes k1, . . . , kg amongst the g offspring chosen to carry the spine

groups uniformly amongst the g!/∏j
m=1 hm! distinct allocations.

(c) Partition the j (labelled) spines between the g chosen offspring with their given
group sizes from k1, . . . , kg uniformly amongst the j !/∏g

m=1 km! distinct ways.

5. Finally, any particle v, which is alive at time t and carries no spines, behaves indepen-
dently of the remainder of the process and undergoes branching into � offspring that carry
no spines at rate

rE
[(
E
[
e−θZT −t

])L−1] · (E[e−θZT −t ])�p�

E[(E[e−θZT −t ])L] .

For the proof of Lemma 2.5, Part (1) follows from the definition, Part (2) follows from the
Markov branching property of Lemma 2.4, Part (3) and Part (4) follow from Lemma 3.6, and
finally, Part (5) will be given by Lemma 3.9.

The number of spines following each offspring is of particular interest as whenever spines
split apart going forward in time this corresponds to coalescence of family lines when viewing
backward in time starting from the individuals sampled at the end. There are various other
ways of describing the process with spines, each of which can be extracted from the above
description that involves the number of spines particles carry. If instead we are interested in
the partitions formed by individual spines and how they break up or want to formulate the
process as a multitype Galton–Watson process, the spine splitting rates above can be readily
adjusted by the required combinatorial factors.

Observe that the rate a particle carrying j spines at time t branches and all the spines stay
together (so g = 1) is given by

rE
[
L
(
E
[
e−θZT −t

])L−1]
,

and the offspring distribution at a branching event at time t when all spine stay together is
size-biased and discounted by time to go with the probability of getting � offspring being

�(E[e−θZT −t ])�−1p�

E[L(E[e−θZT −t ])L−1] .
Such branching events, where all the spines follow the same particle (g = 1), are sometimes
referred to as births off the spine, as opposed to spine splitting branching events where the
spine break apart into two or more groups (g ≥ 2). Importantly here, the births off any spine
branch occur independently of the number of spines following that branch (i.e., independent
of j whenever g = 1, as above). This very convenient feature means that the subpopulations
that have come off any particular spine branch only depend on time period over which that
branch has run but not on the number of spines along that branch or whether it changes along
it. As the total population is made up of the spine plus the subpopulations coming off each
spine branch, this observation will make understanding the total population size relatively
straightforward under Q(k)

θ,T .

2.6. Uniform sampling from a Galton–Watson process. As was noted in Harris et al.
[18], the measure Q(k)

θ,T provides a tractable tool for studying the forward in time the past
genealogies of particles sampled uniformly from the population at time T .

We now introduce a probability measure P(k)
unif,T associated with uniform sampling from

our Galton–Watson tree. Let f be a measurable functional on the genealogies of k-tuples of
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particles. That is, let f be a functional of the Ulam–Harris labelling of the ancestors of the
k particles, their birth times, death times, and the number of offspring they have upon death.
Let ξT = (ξ

(1)
T , . . . , ξ

(k)
T ) be a uniform sample without replacement at time T taken from a

Galton–Watson process conditioned on the event that {ZT ≥ k}.
Define the probability measure P(k)

unif,T on {ZT ≥ k} as follows:

E(k)
unif,T

[
f (ξT )|ZT ≥ k

]= E
[

1

Z
(k)
T

∑
u∈Z(k)

T

f (u)
∣∣ZT ≥ k

]
,(21)

where the first term of the right-hand side of (21) is the probability for any given choice of
distinct u ∈ Z(k)

T . Equivalently, we can make the definition

(22)
dP(k)

unif,T (·|ZT ≥ k)

dP(k)

∣∣∣∣
F (k)

T

:= 1Ak,T

Z
(k)
T

·
k∏

i=1

∏
v≺ξ

(i)
T

Lv.

In particular, recalling (20), we directly see the size-biased relationship between Q(k)
θ,T and

P(k)
unif,T as

dQ(k)
θ,T

dP(k)
unif,T (·|ZT ≥ k)

∣∣∣∣
F (k)

T

= Z
(k)
T e−θZT

E[Z(k)
T e−θZT ] .

For the particular case of the splitting times of distinct k-tuples of particles alive at time T

under the event of {ZT ≥ k}, we have the following relationship between P(k)
unif,T and Q(k)

θ,T ,
which will be very useful for our purposes.

LEMMA 2.6. Let f be a measurable functional on the genealogies of k-tuples of parti-
cles. Then

(23) E(k)
unif,T

[
f (ξT )|ZT ≥ k

]= Q(k)
θ,T

[
f (ξT )

Z
(k)
T e−θZT

1{ZT ≥k}
]
E
[
Z

(k)
T e−θZT |ZT ≥ k

]
.

In particular, if τ1, . . . , τm are the split times of the k uniformly chosen individuals ξT ∈ Z(k)
T ,

then we have

P(k)
unif,T (τ1 ∈ dt1, . . . , τm ∈ dtm|ZT ≥ k)

= Q(k)
θ,T

(
1

Z
(k)
T e−θZT

1{τ1∈dt1,...,τm∈dtm}
)
E
[
Z

(k)
T e−θZT |ZT ≥ k

]
.

PROOF. We first observe from (19) that for a functional along the spines ξT =
(ξ

(1)
T , . . . , ξ

(k)
T ), we have

Q(k)
θ,T

[
f (ξT )|FT

]= Q(k)
θ,T

[ ∑
u∈Z(k)

T

1{ξT =u}f (u)
∣∣FT

]

= ∑
u∈Z(k)

T

f (u)Q(k)
θ,T (ξT = u|FT )

= 1

Z
(k)
T

∑
u∈Z(k)

T

f (u).
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Hence, from (21) and the above identity, it follows that

E(k)
unif,T

[
f (ξT )|ZT ≥ k

]= E
[

1

Z
(k)
T

∑
u∈Z(k)

T

f (u)
∣∣ZT ≥ k

]

= E
[
Q(k)

θ,T

[
f (ξT )|FT

]|ZT ≥ k
]

= 1

P(ZT ≥ k)
E
[
Q(k)

θ,T

[
f (ξT )|FT

]
1{ZT ≥k}

]
.

Finally, using (18), we now deduce

E(k)
unif,T

[
f (ξT )|ZT ≥ k

]= Q(k)
θ,T

[
f (ξT )

Z
(k)
T e−θZT

]
E
[
Z

(k)
T e−θZT |ZT ≥ k

]
.

This completes the proof. �

As we will show in the next section, one can describe the spine behaviour completely under
Q(k)

θ,T and hence implicitly, thanks to the above result, under P(k)
unif,T . We also observe that if

we let θ depend on T , according to an appropriate scaling limit, the term on the far right-hand
side of (23) can be computed using a relevant Yaglom theorem. (For instance, in the finite
variance case, we have ZT /T converges in distribution to an exponential distribution as T →
∞.) Further, this will similarly be the case for other individual terms appearing in the de-
scription of Q(k)

θ,T . This scaling procedure will lead to a limiting k-spine construction and ulti-
mately determine the asymptotic genealogies from uniform samples at large times, as desired.

3. Behaviour of Galton–Watson with k-spines under Q(k)
θ,T .

3.1. Behaviour of the spines and births off the spine. In this section we are interested in
computing explicitly some functionals of Galton–Watson trees with k-spines under Q(k)

θ,T that
will prove essential in the forthcoming sections. Before delving into the proofs, let us give a
brief overview of some key results in this section:

• According to Lemma 3.5, if a particle is carrying j ≥ 1 spines, then “births-off-the-spine”
(i.e., births along this particle after which all of the j spines follow the same offspring
particle) occur at rate

rE
[
L
(
E
[
e−θZT −t

])L−1]
at time t , and when that they do occur, the number of offspring are distributed according
to the size-biased probability distribution

P(A birth-off-the-spine at time t has size�) = �E[e−θZT −t ]�−1]p�

E[LE[e−θZt ]L−1] .

It is important to note that both these quantities (i.e., the rate and offspring distribution) for
the births off the spine are independent of j , the number of spines being carried.

• Another main result of this section is Lemma 3.8, which reveals that

Q(k)
θ,T

(
τ1 ∈ dt1, . . . , τm ∈ dtm,T (ξ) = (β0, . . . , βm),Lτ1 = �1, . . . ,Lτm = �m

)
(24)

= F ′
T (e−θ )

E[Z(k)
T e−θZT ]

m∏
i=1

�
(gi)
i

(
E
[
e−θZT −ti

])�−g
p�i

F ′
T −ti

(
e−θ )gi−1

,

where Ft(s) = E[sZt ], for |s| < 1 and t ≥ 0, 0 < t1 < · · · < tm < T are times, (β0, . . . , βm)

is a splitting process of {1, . . . , k} with split sizes g1, . . . , gm, and �1, . . . , �m are integers
with �i ≥ gi .
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As mentioned, the spine change of measure results under Q(k)
θ,T of this section generalise some

earlier spine approaches for the continuous time GW found in [21] (Section 4) and [18] (Sec-
tion 4) with the significant addition of exponentially θ -discounting by the final population
size in addition to k-size biasing. Whilst this introduces extra complexity, all key properties
are preserved, and the discounting is crucial to permit the spine approach to be applied when
heavy-tailed offspring distributions are present.

First, we compute the event that there are no births along the spine by time t . The proof
of the following result follows similar arguments as those of Lemma 9 in [18], we provide its
proof for the sake of completeness.

LEMMA 3.1. Let χ1 be the time of the first birth event in the entire population. Then

Q(k)
θ,T (χ1 > t) = e−rt

E[Z(k)
T −t e

−θZT −t ]
E[Z(k)

T e−θZT ] .

PROOF. Recall that Ak,T denotes the event that spines are separated and alive by time T .
Then

Q(k)
θ,T (χ1 > t) =

E(k)[(∏k
i=1

∏
v≺ξ

(i)
T

Lv)e
−θZT 1{χ1>t,Ak,T }]

E[Z(k)
T e−θZT ]

= P(χ1 > t)
E(k)[(∏k

i=1
∏

v≺ξ
(i)
T

Lv)e
−θZT 1Ak,T

|Zt = 1]
E[Z(k)

T e−θZT ]

= e−rt
E[Z(k)

T −t e
−θZT −t ]

E[Z(k)
T e−θZT ] ,

where the third equality follows from the Markov property and identity (17). �

Recall that we call birth events that occur along the spines but which do not occur at spine
splitting events, births off the spine. The following lemmas tells us the distribution of the
number of children at the first birth off spines at time t .

LEMMA 3.2. Let Bχ1 be the event that spines stay together at time χ1 and Lχ1 be the
number of offspring at the first birth event; then

Q(k)
θ,T (χ1 ∈ dt,Lχ1 = �;Bχ1) = �

(
E
[
e−θZT −t

])�−1
p�re

−rt
E[Z(k)

T −t e
−θZT −t ]

E[Z(k)
T e−θZT ] dt.

PROOF. We first observe that the probability the first particle dies in time dt and has
� offspring particles is re−rtdtp�. Moreover, if the first particle has � offspring, then the
probability all k spines follow the same one of these offspring is 1/�k−1. Thus, from the
Markov property and Lemma 3.1, we have

Q(k)
θ,T (χ1 ∈ dt,Lχ1 = �;Bχ1)

=
E(k)[(∏k

i=1
∏

v≺ξ
(i)
T

Lv)e
−θZT 1{Ak,T ;χ1∈dt,Lχ1=�;Bχ1 }]

E[Z(k)
T e−θZT ](25)

= re−rtdtp�

(
1

�

)k−1E(k)[(∏k
i=1

∏
v≺ξ

(i)
T

Lv)e
−θZT 1Ak,T

|χ1 ∈ dt,Lχ1 = �;Bχ1]
E[Z(k)

T e−θZT ] .
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Consider that on the event {χ1 ∈ dt,Lχ1 = �;Bχ1}, at time t we have �− 1 nonspine particles
alive and a single particle carrying all � spines. Thus, appealing to the identity (17), we have

E(k)

[(
k∏

i=1

∏
v≺ξ

(i)
T

Lv

)
e−θZT 1Ak,T

∣∣∣χ1 ∈ dt,Lχ1 = �;Bχ1

]
(26)

= �k(E[e−θZT −t
])�−1E

[
Z

(k)
T −t e

−θZT −t
]
.

Plugging (26) into (25), we obtain the result. �

From the previous lemma, by summing over all possible values of �, we deduce that

Q(k)
θ,T (χ1 ∈ dt,Bχ1) = E

[
L
(
E
[
e−θZT −t

])L−1]
re−rt

E[Z(k)
T −t e

−θZT −t ]
E[Z(k)

T e−θZT ] dt.

The following result tells us the probability that the k spines are still following the same
particle at time t .

LEMMA 3.3. Let τ1 be the first time that the spines split apart. Then

(27) Q(k)
θ,T (τ1 > t) = exp

{
−
∫ t

0
r
(
1 −E

[
L
(
E
[
e−θZT −s

])L−1])ds

}E[Z(k)
T −t e

−θZT −t ]
E[Z(k)

T e−θZT ] .

PROOF. Using the definition of Q(k)
θ,T , we have

Q(k)
θ,T (τ1 > t) =

E(k)[(∏k
i=1

∏
v≺ξ

(i)
T

Lv)e
−θZT 1{τ1>t;Ak,T }]

E[Z(k)
T e−θZT ] .

Expanding the product, this further reduces to

Q(k)
θ,T (τ1 > t) = 1

E[Z(k)
T e−θZT ]E

(k)

[
1{τ1>t;Ak,T }

∏
u�ξ

(1)
t

(
1

Lu

)k−1

×
( ∏

u�ξ
(1)
t

Lk
u

)( k∏
i=1

∏
ξ

(i)
t ≺w≺ξ

(i)
T

Lw

)
e−θZ

(1)
T −t

∏
u�ξ

(1)
t

e
−θ

∑Lu−1
j=1 Z

u,j
T −σu

]
,

where σu denotes the time of the birth off spine of particle u and Z
u,j
T −σu

represents the con-

tribution of the j -child of the particle u to the population alive at time T . Moreover, Z
(1)
T −t

denotes the contribution of ξ
(1)
t to the population alive at time T , implying that ZT can be

rewritten as follows:

ZT = ∑
u�ξ

(1)
t

Lu−1∑
j=1

Z
u,j
T −σu

+ Z
(1)
T −t .

It is important to note that for each node u, the random variables (Z
u,j
T −σu

, j ≥ 1) are i.i.d.,

conditionally on σu, and that for u ≺ v � ξ
(1)
t the families (Z

u,j
T −σu

, j ≥ 1) and (Z
v,j
T −σv

, j ≥ 1)

are independent, conditionally on (σu, σv).
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Using the Markov branching property at time t , we obtain

Q(k)
θ,T (τ1 > t)

=
E(k)[1{τ1>t;Ak,T }

∏
u�ξ

(1)
t

Lue
−θ

∑Lu−1
i=1 Z

u,i
T −σu (

∏k
i=1

∏
ξ

(i)
t ≺v≺ξ

(i)
T

Lv)e
−θZ

(1)
T −t ]

E[Z(k)
T e−θZT ](28)

= E(k)

[ ∏
u�ξ

(1)
t

Lue
−θ

∑Lu−1
i=1 Z

u,i
T −σu

]E[Z(k)
T −t e

−θZT −t ]
E[Z(k)

T e−θZT ] .

To complete the proof, we use a Campbell formula technique to compute the expectation of
the former term above. Namely, let ηt denote the cardinality of {u � ξ

(1)
t }, that is, the number

of births off the first spine up until time t . Then since the particle carrying the ξ
(1)
t branches

at rate r , ηt is Poisson distributed with mean rt . Thus,

E(k)

[ ∏
u�ξ

(1)
t

Lue
−θ

∑Lu−1
i=1 Z

u,i
T −σu

]
= ∑

j≥0

(rtQ)j e−rt /j ! = e−rt (1−Q),(29)

where Q is the expected contribution to the product of a birth uniformly distributed on [0, t],
that is,

Q := 1

t

∫ t

0
E
[
Le−θ

∑L−1
i=1 Zi

T −s
]
ds = 1

t

∫ t

0
E
[
LE

[
e−θZT −s

]L−1]ds.(30)

Plugging (30) into (29), we obtain the Campbell formula

E(k)

[ ∏
u�ξ

(1)
t

Lue
−θ

∑Lu−1
i=1 Z

u,i
T −σu

]
= exp

{
−r

∫ t

0
1 −E

[
LE

[
e−θZT −s

]L−1]ds

}
.(31)

Using (31) in (28), we obtain the result. �

Whilst the above proof provides some clear probabilistic insight, note that an alternative
approach to compute the event that all spines are together at time t was given in [18]. More
precisely, in the current context, the probability Q(k)

θ,T (τ1 > t) can be computed without using
Campbell’s formula and equivalently written in terms of the derivatives of Ft(s) = E(sZt ), as
follows.

LEMMA 3.4. Let τ1 be the first time that spines split apart. Then

Q(k)
θ,T (τ1 > t) = F

(k)
T −t (e

−θ )

F
(k)
T (e−θ )

F ′
T (e−θ )

F ′
T −t (e

−θ )
,(32)

where F
(j)
t (s) := ∂j

∂sj Ft (s).

PROOF. Using the same notation as in the previous lemma, we observe that on the event
{τ1 > t} that the spines are following the same particle at time t , we may decompose the
population ZT as

ZT = Z′
T + Z′′

T ,
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where Z′
T are the descendents of the unique particle the k spines are following at time t

and Z′′
T counts the rest of the particles at time T . Observe that Z′′

T = ZT − Z′
T and that,

conditionally on {τ1 > t}, Z′
T and Z′′

T are independent. Hence,

E(k)

[(
k∏

i=1

∏
v≺ξ

(i)
T

Lv

)
e−θZT 1{τ1>t;Ak,T }

]

= E(k)

[
E(k)

[(
k∏

i=1

∏
v≺ξ

(i)
T

Lv

)
e−θZT 1{τ1>t;Ak,T }

∣∣∣F (k)
t

]]

= E(k)

[(
k∏

i=1

∏
v≺ξ

(i)
t

Lv

)
E(k)

[(
k∏

i=1

∏
ξ

(i)
t �v≺ξ

(i)
T

Lv

)
e−θZ′

T 1{Ak,T }
∣∣∣F (k)

t

]
E
[
e−θZ′′

T |Ft

]
1{τ1>t}

]
.

On the one hand, we have E[e−θZ′′
T |Ft ] = FT −t (e

−θ )Zt−1. On the other, we have

E(k)

[(
k∏

i=1

∏
ξ

(i)
t �v≺ξ

(i)
T

Lv

)
e−θZ′

T 1{Ak,T }
∣∣∣F (k)

t

]
= E

[
Z

(k)
T −t e

−θZT −t
]
,

independently of F (k)
t given {τ1 > t}. Putting all pieces together, we obtain

E(k)

[(
k∏

i=1

∏
v≺ξ

(i)
T

Lv

)
e−θZT 1{τ1>t;Ak,T }

]

= E
[
Z

(k)
T −t e

−θZT −t
]
E(k)

[(
k∏

i=1

∏
v≺ξ

(i)
t

Lv

)
FT −t

(
e−θ )Zt−11{τ1>t}

]
.

(33)

Finally, by summing over the possible elements of the time t population, we deduce

E(k)

[(
k∏

i=1

∏
v≺ξ

(i)
t

Lv

)
1{τ1>t}

∣∣∣Ft

]
= Zt .(34)

Taking Ft -conditional expectations in (33) and using (34), we deduce

E(k)

[(
k∏

i=1

∏
v≺ξ

(i)
T

Lv

)
e−θZT 1{τ1>t;Ak,T }

]
= E

[
Z

(k)
T −t e

−θZT −t
]
E
[
ZtFT −t

(
e−θ )Zt−1]

= F
(k)
T −t

(
e−θ )F ′

t

(
FT −t

(
e−θ )).

(35)

Let us note that from the semigroup identity FT (s) = Ft(FT −t (s)), we have

F ′
t

(
FT −t (s)

)= F ′
T (s)/F ′

T −t (s).(36)

Substituting (35) into (33) and using (36) allows us to deduce (32). �

Noting that E[Z(k)
t e−θ(Zt−k)] = F

(k)
t (e−θ ), the agreement of the two representations of

Q(k)
θ,T (τ1 > t) in Lemmas 3.3 and 3.4 amounts to the identity

exp
{
−
∫ t

0
r
(
1 −E

[
L
(
E
[
e−θZT −s

])L−1])ds

}
= F ′

t

(
FT −t

(
e−θ )),
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the proof of which is a standard calculation in the theory of continuous-time Galton–Watson
processes; see, for example, Lemma 2.5 of [13].

We continue our exposition by computing the rate of births off the spine.

LEMMA 3.5. Let σ1 represent the first time there is a birth off the spine event, that is, a
birth event where all the spines stay together. The rate of births occurring off the k spines is
given by

Q(k)
θ,T (σ1 ∈ dt;Lσ1 = �|τ1 > t) = �

(
E
[
e−θZT −t

])�−1
p�re

−rt
F ′

T −t (e
−θ )

F ′
T (e−θ )

.(37)

PROOF. In order to deduce this identity, we will use Lemmas 3.2 and 3.4. Observe that
under the event {τ1 > t}, the spines stay together by time t and that, by time t , the first birth
event and the first birth off spines are the same. More precisely, we have

Q(k)
θ,T (σ1 ∈ dt;Lσ1 = �|τ1 > t) = Q(k)

θ,T (σ1 ∈ dt;Lσ1 = �,Bσ1, τ1 > t)

Q(k)
θ,T (τ1 > t)

= Q(k)
θ,T (χ1 ∈ dt;Lχ1 = �,Bχ1)

Q(k)
θ,T (τ1 > t)

=
�(E[e−θZT −t ])�−1p�re

−rt E[Z(k)
T −t e

−θZT −t ]
E[Z(k)

T e−θZT ] dt

F
(k)
T −t (e

−θ )

F
(k)
T (e−θ )

F ′
T (e−θ )

F ′
T −t (e

−θ )

= �
(
E
[
e−θZT −t

])�−1
p�re

−rt
F ′

T −t (e
−θ )

F ′
T (e−θ )

,

as required. �

Let us make a brief remark interpreting (37). Note that we may alternatively write

Q(k)
θ,T (σ1 ∈ dt;Lσ1 = �|τ1 > t)

= �(E[e−θZT −t ])�−1p�

E[L(E[e−θZT −t ])L−1] ×E
[
L
(
E
[
e−θZT −t

])L−1]
re−rt

F ′
T −t (e

−θ )

F ′
T (e−θ )

dt.
(38)

As mentioned in the opening of this section, the first term

�(E[e−θZT −t ])�−1p�

E[L(E[e−θZT −t ])L−1]
in the above identity is a probability mass function in the variable �. The latter term represents
the total rate of births off the spine. In other words, the rate of births off a spine branch and
number of births off a spine branch are size biased and discounted by time to go and are
independent of the number of spines following that branch k.

Now, we compute the probability of the event that spines split at time t with � offspring.
Suppose k spines are split into g ∈ {2, . . . , k} groups of sizes k1, k2, . . . kg ≥ 1. Let hi be the
number of groups of size i. We note that

g∑
i=1

ki = k and
k∑

j=1

jhj = k.
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LEMMA 3.6. Let Cg;k1,...,kg
be the event that at the first splitting event, the spines split

into g groups of sizes k1, . . . , kg . Then

Q(k)
θ,T (τ1 ∈ dt;Cg;k1,...,kg

;Lτ1 = �)

= �(g)(E[e−θZT −t
])�−g

p�

k!∏k
j=1 hj !∏g

i=1 ki !
∏g

i=1 E[Z(ki)
T −t e

−θZT −t ]
E[Z(k)

T e−θZT ]
F ′

T (e−θ )

F ′
T −t (e

−θ )
r dt.

Observe that the term �(g)(E[e−θZT −t ])�−gp� represents the g-size biased discounted off-
spring.

PROOF. Recall that Akj ,T represents the event that kj spines are separated and alive by
time T . Then

Q(k)
θ,T (τ1 ∈ dt;Cg;k1,...,kg

;Lτ1 = �)

=
E(k)[(∏k

i=1
∏

v≺ξ
(i)
T

Lv)e
−θZT ; τ1 ∈ dt;Cg;k1,...,kg

;Lτ1 = �;Ak,T ]
E[Z(k)

T e−θZT ] .

Decomposing the product and ZT , we can now write

Q(k)
θ,T (τ1 ∈ dt;Cg;k1,...,kg

;Lτ1 = �)

= 1

E[Z(k)
T e−θZT ]E

(k)

[ ∏
u≺ξ

(1)
t

(
1

Lu

)k−1 (�

g

)
g!∏k

i=1 hi !
k!∏g

j=1 kj !
(

1

�

)k

1{τ1∈dt;Lτ1=�}

×
�∏

i=g+1

e−θZ
(i)
T −t

∏
u�ξ

(1)
t

e
−θ

∑Lu−1
j=1 Z

u,j
T −σu

( g∏
j=1

1Akj ,T

kj∏
i=1

∏
ξ

(j)
t ≺v≺ξ

(j,i)
T

Lv

)

× �k
∏

u≺ξ
(1)
t

Lk
u

( g∏
i=1

e−θZ
(i)
T −t

)]
,

where ξ
(j,i)
T denotes the ith spine at time T whose ancestor is ξ

(j)
t at time t and, similarly in

the proof of Lemma 3.3, σu denotes the time of the birth off spine of particle u and Z
u,j
T −σu

represents the contribution of the j -child of the particle u to the population alive at time T .
Moreover, for 1 ≤ i ≤ �, Z

(i)
T −t denotes the contribution of the ith offspring at first spine

splitting to the population alive at time T . Without loss of generality, we assume that (Z
(i)
T −t :

1 ≤ i ≤ g) are the populations associated with the spine particles born at time t and that
(Z

(i)
T −t : g + 1 ≤ i ≤ �) are the populations associated with the � − g nonspine particles born

at time t . In other words, ZT can be rewritten as follows:

ZT = ∑
u�ξ

(1)
t

Lu−1∑
j=1

Z
u,j
T −σu

+
�∑

i=1

Z
(i)
T −t .

It is important to note that, for each node u, the random variables (Z
u,j
T −σu

, j ≥ 1) are i.i.d.,

conditionally on σu, and that, for u ≺ v � ξ
(1)
t , the families (Z

u,j
T −σu

, j ≥ 1) and (Z
v,j
T −σv

,

j ≥ 1) are independent, conditionally on (σu, σv).
Before we continue with the simplification of the terms inside the expectation, let us pro-

vide some explanations about each term. The term (1/Lu)
k−1 represents the probability that

all k spines follow the same particle following a birth of size Lu.
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The next few terms are combinatorial: the term
(�
g

)
represents the way we choose off-

spring which get spine groups, the next term is the way we choose which group gets which
group size, and the third term is the number of ways dividing k spines into groups with sizes
k1, k2, . . . , kg . All three terms together represents the number of ways to get g groups of sizes
k1, k2, . . . , kg with � offsprings from k spines. Finally, the fourth term (1/�)k is due to the
individual probabilities of each of k spines following one of � possible particles.

The first term in the second row (just after the product sign) represents the contribution at
time T of the nonspine individuals. The next term are the contributions to ZT from births off
spines before time t . The three terms inside the brackets provides the contributions from g

groups with k1, . . . , kg spines after time t . The last two terms are nothing but k spines and
follow the same path before time t and the contribution to ZT of the spines.

Therefore, from the Markov branching property, we obtain

Q(k)
θ,T (τ1 ∈ dt;Cg;k1,...,kg

;Lτ1 = �)

= r dtE
[ ∏
u≺ξ

(1)
t

Lue
−θ

∑Lu−1
j=1 Z

u,j
T −σu

]

× �!
(� − g)!

(
E
[
e−θZT −t

])�−g
p�

k!∏k
i=1 hi !∏g

j=1 kj !
∏g

i=1 E[Z(ki)
T −t e

−θZT −t ]
E[Z(k)

T e−θZT ] .

Using the Campbell formula (31), we complete the proof. �

We now derive the third point of Lemma 2.5 from Lemma 3.6. Combining Lemmas 3.3
and 3.6, we obtain

Q(k)
θ,T (τ1 ∈ dt;Cg;k1,...,kg

;Lτ1 = �|τ1 > t)

= �(g)(E[e−θZT −t ])�−gp�

E[L(g)(E[e−θZT −t ])L−g]

× k!∏k
j=1 hj !∏g

i=1 ki !
∏g

i=1 E[Z(ki)
T −t e

−θZT −t ]
E[Z(k)

T −t e
−θZT −t ] r dt.

(39)

Importantly, there is another way of reinterpreting the above result in terms of partitions.
Recall that we write (T0,T1, . . . ,Tm) for the topology of the spine process, that is, Ti is the
spine partition after the ith split time. Hence, the joint law of the first spine split time τ1, the
offspring size Lτ1 at the split as well as T1, the partition describing the grouping of the spines
after this first split satisfies.

LEMMA 3.7. Let β1 be a partition of {1, . . . , k} into g blocks of sizes k1, . . . , kg . Then

Q(k)
θ,T (τ1 ∈ dt;T1 = β1;Lτ1 = �)

= �(g)(E[e−θZT −t
])�−g

p�

∏g
i=1 E[Z(ki)

T −t e
−θZT −t ]

E[Z(k)
T e−θZT ]

F ′
T (e−θ )

F ′
T −t (e

−θ )
r dt.

(40)

PROOF. Let k1 ≥ · · · ≥ kg be integers with k1 + · · · + kg = k. Let hj := #{i : ki = j}.
Then there are

k!
k1! · · ·kg!h1! · · ·hk!
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different set partitions of {1, . . . , k} such that the block sizes, listed in decreasing order,
are given by k1, k2, . . . , kg . Since the spines are exchangeable, it follows that, given the
event in Lemma 3.6, it is equally likely that any of these partitions occur. The result, there-
fore, follows by dividing through the formula in Lemma 3.6 by the combinatorial factor
k!/(k1! · · ·kg!h1! · · ·hk!). �

We are now ready to state the main result of this section, providing an explicit description
of the joint law of the spine ancestry process (πk

t )t∈[0,T ] (through its split times τ1, . . . , τm

and topology (β0, . . . , βm)) and the birth sizes Lτ1, . . . ,Lτm at these split times.

LEMMA 3.8. Let 0 < t1 < · · · < tm < T . Let (β0, . . . , βm) be a splitting process of
{1, . . . , k}, and let g1, . . . , gm be the associated split sizes. Let �1, . . . , �m be integers with
�i ≥ gi . Then

Q(k)
θ,T

(
τ1 ∈ dt1, . . . , τm ∈ dtm,T (ξ) = (β0, . . . , βm),Lτ1 = �1, . . . ,Lτm = �m

)
= F ′

T (e−θ )

E[Z(k)
T e−θZT ]

m∏
i=1

�
(gi)
i

(
E
[
e−θZT −ti

])�i−gip�i
F ′

T −ti

(
e−θ )gi−1

r dti .
(41)

PROOF. We induct on m. The case m = 1 follows immediately from the previous lemma.
We now assume the result holds for m′ = 1, . . . ,m−1 splits, and prove the result holds for

m′ = m splits. Let p1 := {�1, . . . ,�g1} be the partition after the first split so that �i contains
ki elements. According to the symmetry lemma, after the first split time τ1 = t1, the spines
in each of the g1 different groups behave independently from one another and as if under
Q(ki)

θ,T −t1
.

Consider now each of the subsequent splitting events τ2, . . . , τm. Each of these splitting
events corresponds to some subblock of some �j (1 ≤ j ≤ g1) breaking into smaller blocks.
As such, we can reindex the (τi)i=2,...,m as (τi,j )1≤i≤mj ,1≤j≤g1 , where mj ≥ 0 is the number
of subsequent splitting events involving a subblock of �j . Specifically, for i ≥ 1, τi,j is the ith
time, after τ1, some subblock of �j (possibly equal to �j itself) breaks into smaller subblocks.
Under the same reindexing, we can reindex (ti)i=2,...,m to (ti,j )1≤i≤mj ,1≤j≤g1 , (�i)i=2,...,m to
(�i,j )1≤i≤mj ,1≤j≤g1 , and (gi)i=2,...,m to (gi,j )1≤i≤mj ,1≤j≤g1 .

Let T (ξ) := (T0, . . . ,Tm) be the splitting sequence of the partition {1, . . . , k} associated

with the spine splitting times. Given a block �j of T1, we define T �j (ξ) = (T �j

0 , . . . ,T �j
mj )

to be the splitting sequence of �j associated with any spine splitting event involving a spine

in �j after time t1. T �j (ξ) = (T �j

0 , . . . ,T �j
mj ) is a sequence of partitions of �j with the

property that T �j

0 = {�j }, T �j
mj is the singletons, and each T �j

�+1 is obtained from T �j

� by

breaking precisely one block of T �j

� into two or more subblocks.
Let us work through some aspects of the example in Figure 1. Here after the first split, we

break into three blocks, �1 = {1}, �2 = {2,5}, and �3 = {3,4,6,7,8,9}. Each block �i has
mi subsequent splits; here m1 = 0, m2 = 1, m3 = 2. We can reindex the subsequent split times
τ2, τ3, τ4, so that, for instance, τ1,3 = τ2 and τ2,3 = τ4. Let us consider the subsplitting process
associated with the block �3 = {3,4,6,7,8,9}. This is given by T �3 = (T �3

0 ,T �3
1 ,T �3

2 ),

where T �3
0 = {�3} is the partition of �3 into a single block, T �3

1 = {{3}, {4,6,7,9}, {8}}, and

finally T �3
2 = {{x} : x ∈ �3} is the singletons.

Write � := {τ1 ∈ dt1, . . . , τm ∈ dtm,T (ξ) = (β0, . . . , βm),Lτ1 = �1, . . . ,Lτm = �m}. We
can then decompose the event � as

� = {τ1 ∈ dt1,T1 = β1,Lτ1 = �1} ∩
g1⋂

j=1

�j ,(42)



COALESCENT STRUCTURE OF HEAVY-TAILED GW TREES 413

FIG. 1. The ancestral tree of k = 9 spines. After the initial split at time τ1 into three blocks, the remaining split
times and the splitting process can be divided across these three blocks.

where

�j = {
τi,j ∈ dti,j ∀1 ≤ i ≤ mj,T �j = (

β
�j

0 , . . . , β
�j
mj

)}
.

Now, according to the symmetry lemma, conditionally on the event {τ1 ∈ dt1,T1 = β1,Lτ1 =
�1}, the spines in group �j behave as if under Q(k1)

θ,T −t1
. Using the inductive hypothesis (which

we may use since mj < m), we have

Q(k)
θ,T (�j |τ1 = t1,T1 = β1,Lτ1 = �1)

(43)

= F ′
T −t1

(e−θ )

E[Z(kj )

T −t1
e−θZT −t1 ]

mj∏
i=1

�
(gi,j )

i,j

(
E
[
e
−θZT −ti,j

])�i,j−gi,j p�i,j
F ′

T −ti,j

(
e−θ )gi,j−1 dti,j ,

where we are using the simplification (T − t1) − (ti,j − t1) = T − ti,j .
Additionally using the fact that the spines in groups �1, . . . ,�g1 are independent after

time t1, using (43) in (42), we have

Q(k)
θ,T (�|τ1 = t1,T1 = β1,Lτ1 = �1)

=
g1∏

j=1

F ′
T −t1

(e−θ )

E[Z(kj )

T −t1
e−θZT −t1 ]

(44)

×
mj∏
i=1

�
(gi,j )

i,j

(
E
[
e
−θZT −ti,j

])�i,j−gi,j p�i,j
F ′

T −ti,j

(
e−θ )gi,j−1 dti,j .

Reaggregating all of the indices, (44) simplifies to

Q(k)
θ,T (�|τ1 = t1,T1 = β1,Lτ1 = �1)

(45)

= F ′
T −t1

(e−θ )g1∏g1
j=1 E[Z(kj )

T −t1
e−θZT −t1 ]

m∏
i=2

�
(gi)
i

(
E
[
e
−θZT −ti,j

])�i−gip�i
F ′

T −ti,j

(
e−θ )gi−1 dti .
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Now, according to Lemma 3.7, we have

Q(k)
θ,T (τ1 ∈ dt1;T1 = β1;Lτ1 = �1)

= �
(g1)
1

(
E
[
e−θZT −t1

])�1−g1p�

∏g1
i=1 E[Z(ki)

T −t1
e−θZT −t1 ]

E[Z(k)
T e−θZT ]

F ′
T (e−θ )

F ′
T −t1

(e−θ )
r dt1.

(46)

Multiplying (45) and (46) and using the definition of �, we obtain

Q(k)
θ,T

(
τ1 ∈ dt1, . . . , τm ∈ dtm,T (ξ) = (β0, . . . , βm),Lτ1 = �1, . . . ,Lτm = �m

)
= F ′

T (e−θ )

E[Z(k)
T e−θZT ]

m∏
i=1

�
(gi)
i

(
E
[
e−θZT −ti

])�i−gip�i
F ′

T −ti

(
e−θ )gi−1 dti ,

(47)

as required. �

REMARK 2. We remark that one consequence of Lemma 3.8 is that, given that a
split of size gi occurs at time ti , the size of the birth at this time is distributed accord-
ing to the probability mass function � �→ �(g)(E[e−θZT −t ])�−gp�/E[E[L(g)e−θZT −t ]L−g].
In particular, in the case g = 1, we see that births off the spine are (i.e., births after
which every spine follows the same particle) are distributed according to the distribution
� �→ �(E[e−θZT −ti ])�−1p�/E[LE[e−θZT −t ]L−1].

REMARK 3. We also note it is possible by summing over �i to give the following pro-
jected version of Lemma 3.8:

Q(k)
θ,T

(
τ1 ∈ dt1, . . . , τm ∈ dtm,T (ξ) = (β0, . . . , βm)

)
= F ′

T (e−θ )

E[Z(k)
T e−θZT ]

m∏
i=1

E
[
L(gi)

(
E
[
e−θZT −ti

])L−gi
]
F ′

T −ti

(
e−θ )gi−1

r dti .
(48)

Finally, our results so far have given a detailed description of the spine particles under
Q(k)

θ,T . In our final lemma of this section, we describe the behaviour of the nonspine particles

under Q(k)
θ,T .

LEMMA 3.9. Under Q(k)
θ,T , nonspine particles behave independently of the other parti-

cles and independently of the history of the process. Moreover, at time t any nonspine parti-
cles behave like the initial ancestor under a copy of the measure Pθ,T −t defined in (14).

In particular, under Q(k)
θ,T , at time t nonspine particles undergo branching at rate

r
E[(E[e−θZT −t ])L]

E[e−θZT −t ] ,

and given that they branch at time t , their offspring distribution is given by

Pθ,T

(
L(t) = �

)= p�

(E[e−θZT −t ])�
E[(E[e−θZT −t ])L] .

PROOF. Suppose v is a nonspine particle alive at time t . Then the Radon–Nikodym
derivative of Q(k)

θ,T against P, defined in (16), may be written

1Ak,T
(
∏k

i=1
∏

u≺ξ
(i)
T

Lu)e
−θZT

E[Z(k)
T e−θZT ] = e−θZv

T

1Ak,T
(
∏k

i=1
∏

u≺ξ
(i)
T

Lu)e
−θ(ZT −Zv

T )

E[Z(k)
T e−θZT ] ,
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where Zv
T is the number of particles alive at time t descended from v. Now, under P, since v is

not carrying any marks at time t , the random variables (ZT −Zv
T ) and 1Ak,T

(
∏k

i=1
∏

u≺ξ
(i)
T

Lu)

are independent of the particle v and of the behaviour of v over the course of [t, T ]. It follows
that we can write

1Ak,T
(
∏k

i=1
∏

u≺ξ
(i)
T

Lu)e
−θZT

E[Z(k)
T e−θZT ] = e−θZv

T Q
(v)
T ,

where Q
(v)
T is a random variable independent of v and the descendents of v. By the branching

property, under P, Zv
T is distributed like ZT −t . It follows that, under Q(k)

θ,T , the nonspine
particle v behaves independently of the other particles in the system at time t and has its
behaviour tilted by the exponential factor e−θZv

T . In short, v behaves like the initial ancestor
under a copy of the measure Pθ,T −t .

In order to now describe the branching of v at time t , we, therefore, need only describe
the branching of the initial ancestor under a copy of Pθ,T . (Thereafter, we can replace T by
T − t as necessary.)

We now note that if �(h, �) is the indicator function of the event that the initial ancestor
dies in the time interval [0, h) and has � offspring, then using the definition (14) of the change
of measure Pθ,T , we have

Pθ,T

(
�(h, �)

) := P[�(h, �)e−θZT ]
P[e−θZT ] .(49)

For small h we then have

P
[
�(h, �)e−θZT

]= rp�

(
h + o(h)

)
P
[
e−θZT

∣∣�(h, �)
]

= rp�

(
h + o(h)

)
P
[
e−θZT −h

]�
= rhp�P

[
e−θZT

]� + o(h).

Plugging this into (49), we see that Pθ,T (�(h, �)) = rhp�P[e−θZT ]�/P[e−θZT ] + o(h).
Since under Pθ,T the particles at time t behave independently and as if under an inde-

pendent copy of Pθ,T −t , it follows that the time t rate of splitting into � particles is given by
rp�P[e−θZT −t ]�/P[e−θZT −t ]. Rearranging so that this quantity is proportional to a probability
mass function in �, we obtain the stated branching rates and probabilities. �

3.2. Subpopulation sizes. It will be important later to understand the sizes of subpopula-
tions coming off the spine under Q(k)

θ,T .
Suppose a nonspine particle v is alive at time t and Zv

T represents the number of descen-
dants of v alive at time T . Then by Lemma 3.9 and Definition (14), we have

(50) Q(k)
θ,T

[
e−φZv

T |Ft

]= Pθ,T −t

[
e−φZT −t

]= E[e−(φ+θ)ZT −t ]
E[e−θZT −t ] .

Similarly, if a particle v alive at time t is carrying j spines and Zv
T represents the number

of descendants of v alive at time T , then recalling Lemma 2.4 and (18), we find

Q(k)
θ,T

[
e−φZv

T
∣∣F (k)

t

]=Q(j)
θ,T −t

[
e−φZT −t

]= E[Z(j)
T −t e

−(φ+θ)ZT −t ]
E[Z(j)

T −t e
−θZT −t ]

.

In particular, the Laplace transform for the number of descendents at time T of births coming
off a single spine branch (k = 1) started at time t (plus the spine itself) is given by

(51)
E[ZT −t e

−(φ+θ)ZT −t ]
E[ZT −t e−θZT −t ] .
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FIG. 2. A decomposition of the spine tree into lineages. Using (52), we see that here the separation times are
given by ς1 = 0, ς2 = τ1, ς3 = τ1, ς4 = τ2, ς5 = τ3).

Moreover, since we observed that the rate of births off any spine particle and the correspond-
ing offspring distribution are independent of the actual number of spines following it, the
above expression remains unchanged for the number of descendants coming off any single
spine branch over the time period [T − t, T ].

3.3. Lineage and population decompositions for the ancestral tree. We now define the
subpopulations off spines. We begin by decomposing the spine tree into lineages. Recall that
the split times τ1 < · · · < τm associated with the k spines are the times at which a particle
carrying some spines dies, and these spines do not all follow the same child. With these in
mind, we now define the separation times of the spines; see Figure 2. Define ς1 := 0, and for
1 ≤ j ≤ k − 1, define the (j + 1)th separation time ςj+1 to be the first time that the (j + 1)th
spine is separate from spines 1, . . . , j , that is,

ςj+1 := inf
{
t ≥ 0 : ξ (j+1)

t �= ξ
(i)
t for all 1 ≤ i ≤ j

}
.(52)

We note that, for all j ≥ 1, ςj+1 is equal to some τi . In fact, if gi is the size of the split at
time τi , then there are exactly gi − 1 elements j ∈ {1, . . . , k} for which ςj = τi .

With the separation times at hand, we can decompose the entire ancestral tree of the spine
into j lineages, where the length of lineage j is given by T − ςj . Of course, then the total
length of the tree is given by kT −∑k

j=1 ςj . This lineage decomposition affords us a decom-
position of the entire population at time T . Giving first an informal definition, let us define

ZT ,j := {u ∈ ZT : u is a descendant of a birth off the spine of the j th lineage}.
Now, let us a give a more precise definition. We say a particle carrying spines is nonsplitting
if its death is a birth off the spine, that is, at the death of this particle, all of the spines it was
carrying follow the same child of this particle. Now, define, for 1 ≤ j ≤ k − 1, ZT ,j+1 to be

the set of particles at time T (excluding ξ
(j+1)
T ) who are descended from any nonsplitting

ancestor of ξ
(j+1)
T who is not an ancestor of any ξ

(1)
T , . . . , ξ

(j)
T , that is,

ZT ,j+1

:= {
u ∈ ZT − {

ξ
(j+1)
T

} :
∃t,∃v ∈ Zt nonsplitting : v ≺ u, v ≺ ξ

(j+1)
T , v ⊀ ξ

(i)
T ∀1 ≤ i ≤ j

}
.
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We now define Z̃T ,1, . . . , Z̃T ,m by letting

Z̃T ,j := {u ∈ZT : u is a descendent of a nonspine particle born at splitting event τj }.
We know that every particle alive at time T is either a spine, a descendent of a birth off
the spine, or a descendent of a nonspine particle born at a splitting event. This creates a
decomposition of the population at time T via

ZT := {
ξ

(1)
T , . . . , ξ

(k)
T

}∪
k⋃

j=1

ZT ,j ∪
m⋃

j=1

Z̃T ,j .

Accordingly, if ZT,j := #ZT ,j and Z̃T ,j := #Z̃T ,j denote cardinalities, then we have

ZT = k +
k∑

j=1

ZT,j +
m∑

j=1

Z̃T ,j .

Further, conditional on the separation times, the Laplace transforms for each subpopulation
appearing in this decomposition can readily be written down using (50) and (51).

4. Uniform sampling for critical Galton–Watson trees in the regularly varying
regime. Throughout this section, whenever A(λ) and B(λ) are functions depending on a
real or integer-valued parameter, we use the notation

A(λ) ∼ B(λ) as λ → ∞
to denote limλ→∞ B(λ)/A(λ) = 1. Let us consider a random variable L taking values in
Z+ = {0,1, . . .} with the same distribution as L∅ and recall that Z denotes a critical Galton–
Watson process whose offspring distribution is given by L. In other words,

pn = P(L = n) for n ≥ 0, E[L] = ∑
j≥0

jpj = 1 and f (s) = E
[
sL].

Recall that we are assuming that (H1) holds, that is p0 > 0 and that, for α ∈ (1,2],
f (s) = s + (1 − s)α�

(
1

1 − s

)
,

where � is a slowly varying function at ∞. The asymptotic behaviour of f provides enough
information about the behaviour of the offspring probabilities pk , for k large.

Indeed, first let us observe from using the geometric sum and interchanging the order of
summation

1 − f (s) = ∑
j≥1

pj

(
1 − sj )= (1 − s)

∑
j≥1

pj

j−1∑
k=0

sk = (1 − s)
∑
k≥0

pks
k,

where pj :=∑
i>j pi .

Using a similar argument to obtain the final equality below, we have

f (s) − s

1 − s
= 1 − 1 − f (s)

1 − s
= 1 −∑

k≥0

pks
k = (1 − s)

∑
k≥0

pks
k,

where pk :=∑
j>k pj .

In other words, we have

(1 − s)α−2�

(
1

1 − s

)
= f (s) − s

(1 − s)2 = ∑
k≥0

pks
k.
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Hence, Karamata’s Tauberian Theorem for power series (see, for instance, Corollary 1.7.3 in
Bingham, Goldie and Teugels [9]) allows us to deduce in the case α ∈ (1,2) that

pk ∼ 1

�(2 − α)
k1−α�(k) as k → ∞(53)

and in the case α = 2 that
k∑

j=0

pj ∼ �(k) as k → ∞.

Now, since the sequence {pk}k≥0 is monotone, from the monotone density theorem (see, for
instance, Theorem 1.7.2 in [9]) we obtain in the case α = 2 that

pk ∼ k−1�(k) as k → ∞.(54)

Consolidating (53) and (54), we have

pk ∼ Q̃αk1−α�(k) as k → ∞,(55)

where Q̃α := 1
�(2−α)

in the case α ∈ (1,2), and Q2 := 1.
Since the sequences {pk}k≥0 is monotone, it follows from the monotone density theorem

(see, for instance, Theorem 1.7.2 in [9]) we obtain in the case α ∈ (1,2] that

pk ∼ Qαk−α�(k) as k → ∞,

where Qα = (α − 1)Q̃α so that Qα = α−1
�(2−α)

when α ∈ (1,2) and Qα = 1 when α = 2.
Our assumption (H1) also implies that the probability of survival is regularly varying at

infinity with a precise index that we deduce below. Recall that the probability generating func-
tion of Zt , for t > 0, is denoted by Ft(s). According to the backward Kolmogorov equation,
Ft(s) satisfies the partial differential equation ∂

∂t
Ft (s) = r(f (Ft (s)) − Ft(s)) with bound-

ary condition F0(s) = s, where f (s) is the probability generating function of the offspring
distribution; see Athreya and Ney [6], Chapter 3. Writing this partial differential equation in
integrated form, we obtain ∫ Ft (s)

s

dy

f (y) − y
= rt.

When s = 0, it is clear that

F(t) := Ft(0) = P1(Zt = 0) = P1(T0 ≤ t),

where T0 = inf{s : Zs = 0} and, therefore,∫ F(t)

0

dy

f (y) − y
= rt.

We also introduce

V (x) :=
∫ 1−1/x

0

dy

f (y) − y
for x ≥ 1,

which is increasing and concave, and denote by R its inverse, which is convex and increasing
(see Lemma 2.1 in Pakes [32]).

Note then that we have

(56) V
(
1/F (t)

)= rt,

where F(t) := P1(Zt > 0).



COALESCENT STRUCTURE OF HEAVY-TAILED GW TREES 419

Under our assumptions, the function V can be rewritten as follows:

V (x) =
∫ x

1

du

u2−α�(u)
.

Following the same ideas as in the proof of Proposition 1.5.8, in [9] we see that

V (x) ∼ xα−1

(α − 1)�(x)
= xα−1�1(x) as x → ∞,

where �1(x) = 1
(α−1)�(x)

is also slowly varying. From Theorem 1.5.12 in [9], the inverse
function R of V is regularly varying at infinity with index 1/(α − 1), that is,

(57) R(x) ∼ (α − 1)
1

α−1 x
1

α−1 �2(x) as x → ∞,

where �2 is another slowly varying function at ∞ and the constant (α − 1)
1

α−1 in front is cho-
sen to lighten formulas in the sequel. Moreover, a calculation using R(V (x)) = 1 tells us that

�2(x) ∼ �
(
x

1
α−1

) 1
α−1 .(58)

We refer the reader to Theorem 1.5.13 and Proposition 1.5.15 in [9] for further information
on inverses of regularly varying functions and the associated De Bruijn conjugation.

Thus, under assumption (H1), by applying R to both sides of (56) and thereafter using
(57), we obtain

F(t) ∼ 1

R((α − 1)rt)
= cα,r t

−1/(α−1)/�2(t) as t → ∞,(59)

where cα,r = ((α − 1)r)−1/(α−1).
We will also use the fact that

(60) E
[
e−θF (t)Zt |Zt > 0

]−−−→
t→∞ 1 − (

1 + θ1−α)−1/(α−1);
see, for example, Theorem 3.1 of Pakes [32].

Let us denote by Wα−1 for the r.v. whose Laplace transform is such that

E
[
e−θWα−1

]= 1 − (
1 + θ1−α)−1/(α−1)

.

We note that when α = 2, the limiting random variable W1 is an exponential random variable
with parameter equals 1 regardless of whether σ 2 is finite or infinite.

4.1. Properties of Wα−1. When α = 2, it is not so difficult to verify that W1 possesses
all positive moments. More precisely, for k ≥ 1, we have

(61) E
[
Wk

1
]= k! and E

[
Wk

1 e−θW1
]= k!

(1 + θ)k+1 .

The compensated moments of Wα−1 in the setting α ∈ (1,2) are more involved. To compute
these, write

fα(θ) := E
[
e−θWα−1

]= 1 − (
1 + θ1−α)−1/(α−1)

,

where gα(θ) = 1 − (1 + θ)−
1

α−1 and hα(θ) = θ1−α . We can compute the derivatives of fα(θ)

using Faà di Bruno formula’s (equation (2) of [23]), which states that given sufficiently dif-
ferentiable functions f and g we have

dk

dθk
g
(
h(θ)

)= ∑
π∈Pk

g(#π)(h(θ)
) ∏
�∈π

h(#�)(θ),

where the sum is taken over all set partitions π of {1, . . . , k}, and given a partition π , the
product is taken over all blocks � of π .
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Indeed, note the j th derivatives of gα and hα are given by

g(j)
α (θ) = (−1)j−1(1 + θ)−

1
α−1 −j

j∏
i=1

(
1

α − 1
+ i − 1

)
,

and

h(j)
α (θ) = (−1)j θ1−α−j

j∏
i=1

(α + i − 2).

It follows from Faà di Bruno’s formula that

dk

dθk
fα(θ) = ∑

π∈Pk

(−1)#π−1(1 + θ1−α)− 1
α−1 −#π

#π∏
i=1

(
1

α − 1
+ i − 1

)

× ∏
�∈π

{
(−1)#�θ1−α−#�

#�∏
i=1

(α + i − 2)

}
,

which, using
∑

�∈π #� = k, simplifies to

dk

dθk
fα(θ) = (−1)k−1θ−k

∑
π∈Pk

(−1)#π (1 + θ1−α)− 1
α−1 −#π

θ(1−α)#π

(62)

×
#π∏
i=1

(
1

α − 1
+ i − 1

) ∏
�∈π

#�∏
i=1

(α + i − 2).

It follows that the first compensated moment is

(63) E
[
Wα−1e

−θWα−1
]= −f ′

α(θ) = 1

(1 + θα−1)1+1/(α−1)
,

and, in particular, E[Wα−1] = 1. For the second compensated moment, we get

E
[
W 2

α−1e
−θWα−1

]= f ′′
α (θ) = α

(1 + θα−1)2+1/(α−1)θ2−α
.

Finally, the third compensated moment satisfies

E
[
W 3

α−1e
−θWα−1

]= −f (3)
α (θ) = α

(1 + θα−1)2+1/(α−1)

(
2α − 1

(1 + θα−1)θ2(2−α)
+ 2 − α

θ3−α

)
= α

θ2(1 + θα−1)3+1/(α−1)

(
(α + 1)θ2(α−1) + (2 − α)θα−1).

We note at this stage that E[W 2
α−1] is infinite whenever α ∈ (1,2), and hence every higher

moment E[Wk
α−1] is also infinite for k ≥ 2. We can, however, study the asymptotics of

E[Wk
α−1e

−θWα−1] as θ → 0. Indeed, from (62) we see that these asymptotics concentrate
on the partition minimising the power (1 − α)#π , that is, the partition of {1, . . . , k} into k

singletons. In particular, one can show that

(64) E
[
Wk

α−1e
−θWα−1

]∼ α(k − 1 − α) · · · (2 − α)θα−k = α
�(k − α)

�(2 − α)
θα−k as θ → 0.

4.2. Critical Galton–Watson processes in the regularly varying regime. In the sequel we
will require an understanding of the factorial moments of our Galton–Watson processes at
large times. To begin computing these in this section, we start by noting from (59) to obtain
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the second line below and (60) to obtain the third, for ρ ∈ [0,1) we have

1 −E
[
e−θF (T )ZT (1−ρ)

]
= F

(
T (1 − ρ)

)
E
[
1 − e

−θ
F(T )

F (T (1−ρ))
F (T (1−ρ))ZT (1−ρ) |ZT (1−ρ) > 0

]
(65)

∼ (1 − ρ)−
1

α−1 F(T )E
[
1 − e−θ(1−ρ)

1
α−1 F(T (1−ρ))ZT (1−ρ) |ZT (1−ρ) > 0

]
∼ F(T )

(1 − ρ + θ−(α−1))
1

α−1

as T → ∞. We remark that in each case above, the convergence in question is a consequence
of the monotone convergence theorem.

Recall that n(k) = n(n − 1) · · · (n − k + 1) for n ≥ k. Then for k ≥ 1 and ρ ∈ [0,1), as a
consequence of (60), we have

E
[
Z

(k)
T (1−ρ)e

−θF (T )ZT (1−ρ)
]∼ F

(
T (1 − ρ)

)−(k−1)E
[
Wk

α−1e
−θ(1−ρ)1/(α−1)Wα−1

]
,(66)

as T goes to infinity.
When α = 2, the previous asymptotic is much simpler to write. Indeed, for T large enough,

we have

E
[
Z

(k)
T (1−ρ)e

−θF (T )ZT (1−ρ)
]∼ rk−1(1 − ρ)k−1T k−1�k−1

2 (T )
k!

(1 + θ(1 − ρ))k+1 ,

and

E
[
Z

(k)
(1−p)T e−θF (T )Z(1−p)T |Z(1−p)T ≥ k

]∼ rk(1 − ρ)kT k�k
2(T )

k!
(1 + θ(1 − p))k+1 .

Recalling the definition (16) of Q(k)
θ,T we study the asymptotics of ZT under the rescaling

θ → θF (T ). From the asymptotic in (66) with ρ = 0, we have

Q(k)

θF (T ),T

[
e−ϕF(T )ZT

]= E[Z(k)
T e−(θ+ϕ)F (T )ZT ]

E[Z(k)
T e−θF (T )ZT ] −−−→

T →∞
E[Wk

α−1e
−(θ+ϕ)Wα−1]

E[Wk
α−1e

−θWα−1] .(67)

In particular, the population off a single spine satisfies

Q(1)

θF (T ),T

[
e−ϕF(T )ZT

]−−−→
T →∞

E[Wα−1e
−(θ+ϕ)Wα−1]

E[Wα−1e−θWα−1]

=
(

1 + θα−1

1 + (θ + ϕ)α−1

)1+1/(α−1)

.

Moreover, subpopulations along spine branch of length (1 − ρ)T with ρ ∈ [0,1) satisfy

Q(1)
θF (T ),T (1−ρ)

[
e−ϕF(T )Z(1−ρ)T

]−−−→
T →∞

(
1 + θα−1(1 − ρ)

1 + (θ + ϕ)α−1(1 − ρ)

)1+1/(α−1)

.

When α = 2, we have an explicit expression, for k ≥ 1, that is

Q(k)

θF (T ),T (1−ρ)

[
eredϕF(T )ZT

]−−−→
T →∞

E[Wk
1 e−(θ+ϕ)W1]

E[Wk
1 e−θW1] =

(
1 + θ

1 + θ + ϕ

)k+1
,

where the right-hand side of the previous asymptotic is nothing but the Laplace exponent
of a Gamma random variable with parameters k + 1 and 1 + θ , here denoted by �k+1,1+θ .
In other words, when α = 2, F(T )ZT , under Q(k)

θF (T ),T
, tends to �k+1,1+θ , under a new

probability measure that we denote as Q(k)
θ,∞. That is to say, the sum of k + 1 independent

e1+θ , exponential random variables with parameter 1 + θ . In particular, the mass coming off
a single spine branch is distributed as �2,1+θ .
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4.3. Large offspring.

LEMMA 4.1. If L is an offspring variable satisfying (H1), then as λ → 0, we have

(68) E
[
Le−λL]∼ 1.

More generally, for either g = 2, α = 2, or for any g ≥ 2 and α ∈ (1,2), we have

(69) E
[
L(g)e−λL]∼ �(g − α)

�(−α)
λα−g�

(
1

λ

)
,

as λ → 0.

PROOF. The equation (68) is a consequence of the fact that E[L] = 1 and the monotone
convergence theorem.

As for (69), the assumption (H1) states that f (s) = E[sL] takes the form f (s) = s + (1 −
s)α�( 1

1−s
) as s → 1, where �(·) is slowly varying at ∞. We note that every derivative of f

is monotone decreasing, and accordingly, by the monotone density theorem, whenever either
g = 2, α = 2 or g ≥ 2, α ∈ (1,2), we have

f (g)(s) := E
[
L(g)sL−g]∼ (−1)gα(α − 1) · · · (α − g + 1)(1 − s)α−g�

(
1

1 − s

)
,

as s → 1. Now, set s = e−λ, and use the definition of the Gamma function. �

The previous results imply the following useful Lemma.

LEMMA 4.2. For any α ∈ (1,2], as T → ∞, we have

E
[
L
(
E
[
e−θF (T )ZT (1−ρ)

])L−1]∼ 1,(70)

and for either g = 2, α = 2, or for any g ≥ 2 and α ∈ (1,2), we have

(71) E
[
L(g)(E[e−θF (T )ZT (1−ρ)

])L−g]∼ �(g − α)

�(−α)

(
F(T )

(1 − ρ + θ−(α−1))
1

α−1

)α−g

�2(T )(α−1),

as T → ∞.

PROOF. Recall that by (65) 1 −E[e−θF (T )ZT (1−ρ)] ∼ λT , where

λT = F(T )

(1 − ρ + θ−(α−1))
1

α−1

→ 0

as T → ∞. The first part (70) now follows from (68).
As for the latter equation, (71), we note first that, by (69), we have

E
[
L(g)(E[e−θF (T )ZT (1−ρ)

])L−1]∼ �(g − α)

�(−α)
λ

α−g
T �

(
1

λT

)
.(72)

Now, note that, using the definition of λT to obtain the first equality below, the asymptotics
(59) for F(T ) to obtain the second, and (58) to obtain the third, we have

�(1/λT ) ∼ �
(
1/F (T )

)∼ �
(
T

1
α−1

)= �2(T )α−1;
using this fact in (72), we obtain the result. �

The next result tells us that the asymptotic law of the offspring size at a size g splitting
event under Q(k)

θF (T ),T
.
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LEMMA 4.3. Let α ∈ (1,2) and g ≥ 2. Condition on the event that some spines are
following a particle just before time ρT , at this point in time this particle dies, and after
this event the spines following this particle split into g groups. Let J denote the number of
offspring of the dying particle at this splitting event. Then the rescaled conditional Laplace
transform of J is given by

Q(k)

θF (T ),T

[
e−ϕF(T )J

∣∣G(k)
T , split of size g at time ρT

]∼ (
1 + ϕ

(
1 − ρ + θ1−α) 1

α−1
)−(g−α)

.

PROOF. According to Remark 2, given that a splitting event of size g occurs at
time t , under Q(k)

θ,T , the conditional distribution of the size of offspring event is given by
�(g)E[e−θZT −t ]�−gp�/E[L(g)E[e−θZT −t ]L−g].

In particular, setting t = ρT , we have

Q(k)

θF (T ),T

[
e−ϕF(T )J

∣∣G(k)
T , split of size g at time ρT

]
∼ E[L(g)E[e−θF (T )ZT (1−ρ)]L−ge−ϕF(T )L]

E[L(g)E[e−θF (T )ZT (1−ρ)]L−g] .

Now, with λT as in the proof of Lemma 4.2, we have E[e−θF (T )ZT (1−ρ)] = e−(1+o(1))λT so
that

Q(k)

θF (T ),T

[
e−ϕF(T )J

∣∣G(k)
T , split of size g at time ρT

]∼ E[L(g)e−(λT L+ϕF(T ))L]
E[L(g)e−λT L] .

Now, using (69), we have

Q(k)

θF (T ),T

[
e−ϕF(T )J

∣∣G(k)
T , split of size g at time ρT

]∼ (
λT

λT + ϕF(T )

)g−α

∼ (
1 + ϕ

(
1 − ρ + θ1−α) 1

α−1
)−(g−α)

,

where the final display follows from using the definition of λT in the proof of the previous
lemma. That completes the proof. �

We note that the previous lemma states that F(T )J is asymptotically distributed like a

Gamma random variable with shape parameter g −α and scale parameter (1−ρ + θ1−α)
1

α−1 .
More explicitly, we have the following immediate corollary.

COROLLARY 4.4. Let α ∈ (1,2) and g ≥ 2. Let Jj denote the number of offspring at a
splitting event of size gj at time ρjT . Then

Q(k)

θF (T ),T

(
FT Jj ∈ dx

∣∣G(k)
T , split of size gj at time ρjT

)= θ
gj ,ρj

(x)dx,

where

θ
g,ρ(x) := θ

g,ρ,α,θ (x) := xg−α−1

�(g − α)(1 − ρ + θ1−α)
g−α
α−1

exp
{
− x

(1 − ρ + θ1−α)
1

α−1

}
(73)

is the density function of (1−ρ + θ1−α)
1

α−1 times a Gamma random variable with parameter
g − α.

Our final result tells us about the asymptotic distribution of the number of children de-
scended from nonspine particles born at a splitting event. Recall from Section 3.3 that Z̃T ,j

counts the number of particles who are descended from nonspine particles born at the j th
splitting event τj .
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LEMMA 4.5. Let α ∈ (1,2]. Then under Q(k)

θF (T ),T
, the asymptotic distribution of Z̃T ,j ,

conditional on F(T )Jj = xj , is given by

Q(k)

θF (T ),T

[
e−ϕF(T )Z̃T ,j

∣∣G(k)
T , split of size g at time ρT ,F (T )Jj = xj

]
∼ exp

{
−
(

1

(1 − ρj + (ϕ + θ)1−α)
1

α−1

− 1

(1 − ρj + θ1−α)
1

α−1

)
xj

}
,

regardless of the size g of the split.

PROOF. Recall that particles not carrying spines behave at time t as if under the origi-
nal measure P but with discounting by e−θF (T )ZT −t under Q(k)

θF (T ),T
. In other words, if YT

denotes the number of descendants at time T of a nonspine particle u living at time t , we
have

Q(k)

θF (T ),T

[
e−ϕF(T )YT

∣∣F (k)
t

]= FT

(
e−(θ+ϕ)F (T ))/FT

(
e−θF (T )).

Moreover, YT is independent of the remainder of the population. In particular, since xj

F (T )
−g

nonspine particles are born at time τj , we have

Q(k)

θF (T ),T

[
e−ϕF(T )Z̃T ,j

∣∣G(k)
T , split of size g at time ρT ,F (T )Jj = xj

]
=
(

FT (e−(θ+ϕ)F(T ))

FT (e−θF (T ))

) xj

F (T )
−g

.

The result now follows from (65). �

We remark that in Lemma 4.5, the linear dependence of the Laplace transform on x is due
to a branching property.

5. Inverting the change of measure.

5.1. The ancestral tree probability under Q(k),T

θF (T )
.

LEMMA 5.1. Let (β0, . . . , βm) be a splitting process of {1, . . . , k}. Let 0 < t1 < · · · <

tm < 1. Then

lim
T →∞Q(k)

θF (T ),T

(
τ1/T ∈ dt1, . . . , τm/T ∈ dtm,T (ξ) = (β0, . . . , βm)

)
=

∏m
i=1 dti

E[Wk
α−1e

−θWα−1]
m∏

i=1

α�(gi − α)

�(2 − α)

(
1 − ti + θ1−α) gi−α

α−1(74)

×
m∏

i=0

θ−α(gi−1)(θ1−α + 1 − ti
)− α

α−1 (gi−1)
.

PROOF. According to (48), we have

lim
T →∞Q(k)

θF (T ),T

(
τ1/T ∈ dt1, . . . , τm/T ∈ dT tm,T (ξ) = (β0, . . . , βm)

)
= lim

T →∞
F ′

T (e−θF (T ))

E[Z(k)
T e−θF (T )ZT ](75)

×
m∏

i=1

E
[
L(gi)

(
E
[
e−θF (T )ZT (1−ti )

])L−gi
]
F ′

T (1−ti )

(
e−θF (T ))gi−1

rT dti .
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Now, according to (66) and then (63), we have F ′
T (1−ρ)(e

−θF (T )) ∼ (1 + θα−1(1 − ρ))−
α

α−1 .
Using this fact in conjunction with the asymptotics in (71) and (66), we obtain

lim
T →∞Q(k)

θF (T ),T

(
τ1/T ∈ dt1, . . . , τm/T ∈ dtm,T (ξ) = (β0, . . . , βm)

)
= lim

T →∞
F(T )(k−1)

E[Wk
α−1e

−θWα−1]
m∏

i=1

(rT dti)

×
m∏

i=1

�(gi − α)

�(−α)

(
F(T )

(1 − ti + θ1−α)
1

α−1

)α−gi

�2(T )(α−1)

×
m∏

i=0

(
1 + θα−1(1 − ti)

)− α
α−1 (gi−1)

,

(76)

where we are using the conventions g0 = 2 and t0 = 0.

We now gather the asymptotic terms in T . Recall from (59) that F(T ) ∼ cα,rT
− 1

α−1 /�2(T )

where cα,r = ((α − 1)r)−
1

α−1 . Using this fact in conjunction with the simple identity∑m
i=1(gi − 1) = k − 1, we have

T mF(T )k−1
m∏

i=1

F(T )α−gi �2(T )(α−1) ∼ 1

((α − 1)r)m
(77)

as T → ∞. Plugging (77) into (76) and using the identity (α − 1)�(−α) = �(2 − α)/α, we
obtain

lim
T →∞Q(k)

θF (T ),T

(
τ1/T ∈ dt1, . . . , τm/T ∈ dtm,T (ξ) = (β0, . . . , βm)

)
=

∏m
i=1 dti

E[Wk
α−1e

−θWα−1]
m∏

i=1

α�(gi − α)

�(2 − α)

(
1 − ti + θ1−α) gi−α

α−1

×
m∏

i=0

θ−α(gi−1)(θ1−α + 1 − ti
)− α

α−1 (gi−1)
,

completing the proof. �

Combining the previous result and Corollary 4.4, and aggregating the product using the
identity

∑m
i=1(gi − 1) = k − 1, we obtain the following result.

COROLLARY 5.2. We have

lim
T →∞Q(k)

θF (T ),T

(
T (ξ) = (β0, . . . , βm),

τi

T
∈ dti , F (T )Li ∈ dxi for all i = 1, . . . ,m

)
(78)

= θ−αk(θ1−α + 1)−
α

α−1

E[Wk
α−1e

−θWα−1]
m∏

i=1

α�(gi − α)

�(2 − α)

(
1 − ti + θ1−α)−gi dti

m∏
i=1

θ
gi,ti

(dxi).

5.2. The conditional distribution of ZT given ancestral tree under Q(k),T

θF (T )
. In the previ-

ous section, we computed the Q(k)
θ,∞ probabilities associated with the limiting ancestral tree.

In this section we compute the conditional Laplace transform for the entire population ZT at
time T given a certain ancestral tree with certain offspring sizes at splitting events.
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Let us begin by recalling from Section 3.3 the decomposition

ZT = k +
k∑

j=1

ZT,j +
m∑

j=1

Z̃T ,j(79)

of the entire population at time T into conditionally independent constituents. Here ZT,j

counts the number of individuals born off the spine of lineage j , and Z̃T ,j counts the number
of descendants of nonspine particles born at the time of the j th splitting event. Our next two
lemmas characterise the conditional laws of ZT,j and Z̃T ,j , given the ancestral tree, split
times, and offspring sizes.

Recall the definition of ςj given in Section 3.3. Each ςj is the initial time of a lineage and

is equal to some τi . It transpires that asymptotically under Q(k)

θF (T ),T
, the spine subpopulations

have a highly tractable form.

LEMMA 5.3. Conditional on G(k)
T given ςj = ρT , we have

lim
T →∞Q(k),T

θF (T )

[
e−ϕF(T )ZT,j

∣∣G(k)
T , ςj = ρT

]= (
1 + (1 − ρ)θα−1

1 + (1 − ρ)(θ + ϕ)α−1

) α
α−1

,(80)

as T → ∞.

PROOF. Note that, according to Lemma 3.5, the rate of births occuring off the spine is
independent of the number of spines following a particle. In particular, it follows that the
contribution to births off the spine along a lineage [ρT ,T ] is identical to what it would be
under the 1-spine measure run across [0, (1 − ρ)T ]. It follows that

Q(k),T

θF (T )

[
e−ϕF(T )ZT,j

∣∣G(k)
T , ςj = ρT

]= Q(1),T (1−ρ)

θF (T )

[
e−ϕF(T )ZT (1−ρ)

]
.

Now, appealing to the case k = 1 of (18), we have

Q(1),T (1−ρ)

θF (T )

[
e−ϕF(T )ZT (1−ρ)

]= E[ZT (1−ρ)e
−(ϕ+θ)F (T )ZT (1−ρ)]

E[ZT (1−ρ)e
−θF (T )ZT (1−ρ)] .

Using (59) to replace F(T ) with F(T (1−ρ)) and using the monotone convergence theorem,
we have

lim
T →∞Q(1),T (1−ρ)

θF (T )

[
e−ϕF(T )ZT (1−ρ)

]= lim
T →∞

E[ZT (1−ρ)e
−(ϕ+θ)(1−ρ)

1
α−1 F(T (1−ρ))ZT (1−ρ)]

E[ZT (1−ρ)e
−θ(1−ρ)

1
α−1 F(T (1−ρ))ZT (1−ρ)]

.

Now, use (63). �

Let us mention here that a simple calculation using (80) establishes the following corollary
in the setting α = 2:

COROLLARY 5.4. Let α = 2. Then the distribution of ZT,j converges in distribution
as T → ∞ to the sum of two independent exponential random variables with parameter

1
1−ρ

+ θ .

We also recall now from Lemma 4.5 that

lim
T →∞Q(k)

θF (T ),T

[
e−ϕF(T )Z̃T ,j

∣∣G(k)
T , split of size g at time ρjT ,F (T )Jj = xj

]
(81)

= exp
{−G(ρj ,ϕ)xj

}
,
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where

G(ρj ,ϕ) :=
(

1

(1 − ρj + (ϕ + θ)1−α)
1

α−1

− 1

(1 − ρj + θ1−α)
1

α−1

)
.

The main result of this section is a simple consequence of what we have seen in this section
so far and gives a characterisation of the asymptotic conditional law of ZT under Q(k)

θF (T ),T

after conditioning on the spine ancestral tree and the offspring sizes at split times.

LEMMA 5.5. For short, write

�T := {
τ1/T ∈ dt1, . . . , τm/T ∈ dtm,T (ξ) = (β0, . . . , βm),

F (T )Lτ1 ∈ dx1, . . . ,F (T )Lτm ∈ dxm

}
.

Then

lim
T →∞Q(k)

θF (T ),T

[
e−ϕF(T )ZT |�T

]
(82)

= e
−∑m

j=1 xjG(tj ,ϕ)
m∏

j=0

(
1 + (1 − tj )θ

α−1

1 + (1 − tj )(θ + ϕ)α−1

)(gj−1) α
α−1

,

where we are using the convention ρ0 = 0, g0 = 2.

PROOF. Using the decomposition (79), we have

Q(k)

θF (T ),T

[
e−ϕF(T )ZT |�T

]
= e−θF (T )k

k∏
j=1

Q(k),T

θF (T )

[
e−ϕF(T )ZT,j |�T

] m∏
j=1

Q(k)

θF (T ),T

[
e−ϕF(T )Z̃T ,j |�T

]
.

Recall that each ςj is the initial time of a lineage and is equal to some τi . Moreover, for each
j = 0, . . . ,m, there are exactly gj −1 different i such that ςi = τj . It follows, using (80), that

lim
T →∞

k∏
j=1

Q(k),T

θF (T )

[
e−ϕF(T )ZT,j |�T

]= m∏
j=0

(
1 + (1 − tj )θ

α−1

1 + (1 − tj )(θ + ϕ)α−1

)(gj−1) α
α−1

.

As for the other term, by (81) we have immediately

lim
T →∞

m∏
j=1

Q(k)

θF (T ),T

[
e−ϕF(T )Z̃T ,j |�T

]= exp

(
−

m∑
j=1

xjG(tj , ϕ)

)
.

Combining the two equations completes the proof. �

5.3. The joint law of the ancestral tree, split offspring sizes, and entire population. With
Corollary 5.2 and Lemma 5.5 at hand, we now prove the following.

LEMMA 5.6. With �T as in Lemma 5.5, we have

lim
T →∞Q(k)

θF (T ),T

[
e−(ϕ−θ)F (T )ZT ;�T

]= 1

E[Wk
α−1e

−θWα−1]ϕ
−αk(1 + ϕ1−α)− α

α−1

×
m∏

i=1

α�(gi − α)

�(2 − α)

(
1 − ti + ϕ1−α)−gi

ϕ
gi,ti

(xi).
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PROOF. Simply multiplying the main equations of Corollary 5.2 and Lemma 5.5 (and
carefully separating the j = 0 term out in the product in (82)), we have immediately

(83) Q(k)

θF (T ),T

[
e−(ϕ−θ)F (T )ZT ;�T

]= θ−αk(θ1−α + 1)−
α

α−1

E[Wα−1e−θWα−1]
(

1 + θα−1

1 + ϕα−1

) α
α−1

m∏
i=1

Ri dxi dti ,

where

Ri = α�(gi − α)

�(2 − α)

(
1 − ti + θ1−α)−gi

(
1 + (1 − ti)θ

α−1

1 + (1 − ti)ϕα−1

)(gi−1) α
α−1

× θ
gi,ti

(xi) exp
(−xiG(ti, ϕ)

)
.

Using the definition (73) of θ
g,ρ(x), a calculation verifies that

Ri = α�(gi − α)

�(2 − α)
(θ/ϕ)(gi−1)α(1 − ti + ϕ1−α)−gi

ϕ
gi,ti

(xi),(84)

where we note the latter expression above involves 
ϕ
gi,ti

as opposed to θ
gi,ti

.
Plugging (83) into (84) and making good use of the identity

∑m
i=1(gi − 1) = k − 1, we

obtain the result. �

The reader will note from Lemma 5.6, we have

Q(k)

θF (T ),T

[
e−(ϕ−θ)F (T )ZT ;�T

]= Q(k)

ϕF (T ),T
[�T ]E[Wα−1e

−ϕWα−1]
E[Wα−1e−θWα−1] .

This identity may alternatively be derived from considering the respective changes of mea-
sure.

5.4. Tree probabilities for uniform choice under P(k)
unif,T . We are almost ready to prove

the main results, Theorems 1.1, Theorem 1.2, and Theorem 1.3. We begin with the following
formulation. Recall that Li denotes the number of particles born at time τi .

THEOREM 5.7. We have

lim
T →∞P(k)

unif,T

(
T (ξ) = (β0, . . . , βm), τi/T ∈ dti , F (T )Li ∈ dxi, i = 1, . . . ,m|ZT ≥ k

)
(85)

=
∫ ∞

0

ϕ−(α−1)k−1

(k − 1)!
(
1 + ϕ1−α)− α

α−1

m∏
i=1

α�(gi − α)

�(2 − α)

(
1 − ti + ϕ1−α)−gi

ϕ
gi,ti

(xi)dϕ,

where, recalling (73), we have

ϕ
g,ρ(x) := xg−α−1

�(g − α)(1 − ρ + ϕ1−α)
g−α
α−1

exp
{
− x

(1 − ρ + ϕ1−α)
1

α−1

}
.(86)

PROOF. Taking an asymptotic version of (23) (simply replacing Z
(k)
T with Zk

T ) with
θF (T ) in place of θ , we have

(87) E(k)
unif,T

[
f (ξT )|ZT ≥ k

]∼ E
[
Zk

T e−θF (T )ZT |ZT ≥ k
]
Q(k)

θ,T

[
f (ξT )

Zk
T e−θF (T )ZT

]
.

Now, according to the Gamma integral, we have 1
zk = 1

(k−1)!
∫∞

0 ϕk−1e−ϕzdϕ so that using
Fubini’s theorem we may instead write

E(k)
unif,T

[
f (ξT )|ZT ≥ k

]
(88)

∼ 1

(k − 1)!E
[
Zk

T e−θF (T )ZT |ZT ≥ k
] ∫ ∞

0
ϕk−1Q(k)

θ,T

[
f (ξT )eZT e−(ϕ−θ)F (T )ZT

]
dϕ.
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Changing variable from ϕ to ϕF(T ), we obtain

E(k)
unif,T

[
f (ξT )|ZT ≥ k

]
(89)

∼ F(T )k

(k − 1)!E
[
Zk

T e−θF (T )ZT |ZT ≥ k
] ∫ ∞

0
ϕk−1Q(k)

θ,T

[
f (ξT )e−(ϕ−θ)F (T )ZT

]
dϕ.

Now, using the case ρ = 0 in (66), this reduces to

E(k)
unif,T

[
f (ξT )|ZT ≥ k

]
∼ E[Wk

α−1e
−θWα−1]

(k − 1)!
∫ ∞

0
ϕk−1Q(k)

θ,T

[
f (ξT )e−(ϕ−θ)F (T )ZT

]
dϕ.

(90)

Now, we consider the case where f (ξT ) is the indicator function of the event {T (ξ) =
(β0, . . . , βm), τi/T ∈ dti , F (T )Li ∈ dxi, i = 1, . . . ,m}. Using Lemma 5.6 and the bounded
convergence theorem, we obtain

lim
T →∞E(k)

unif,T

[
f (ξT )|ZT ≥ k

]
(91)

=
∫ ∞

0

ϕk−1ϕ−αk

(k − 1)!
(
1 + ϕ1−α)− α

α−1

m∏
i=1

α�(gi − α)

�(2 − α)

(
1 − ti + ϕ1−α)−gi

ϕ
gi,ti

(xi)dϕ,

thereby completing the proof. �

Consider now taking the change of variable w = (1 + ϕ1−α)−1. The following equations
are easily verified:

ϕ−(α−1) = 1 − w

w
,(92)

dϕ

ϕ
= dw

(α − 1)w(1 − w)
.(93)

Using (92) and (93) in (85), we obtain

lim
T →∞P(k)

unif,T

({
T (ξ) = (β0, . . . , βm), τi/T ∈ dti , F (T )Li ∈ dxi, i = 1, . . . ,m

}|ZT ≥ k
)

= 1

(α − 1)(k − 1)!(94)

×
∫ 1

0

dw

w(1 − w)

(
1 − w

w

)k

w
α

α−1

m∏
i=1

α�(gi − α)

�(2 − α)

(
1

w
− ti

)−gi

w
gi,ti

(xi),

where we are abusing notation slightly and writing

w
g,ρ(x) := xg−α−1

�(g − α)(1/w − ρ)
g−α
α−1

exp
{
− x

(1/w − ρ)
1

α−1

}
(95)

for the probability density function of (1/w − ρ)
1

α−1 times a Gamma random variable with
shape g − α. Tidying (94) and using the identity

∑m
i=1(gi − 1) = k − 1, we ultimately obtain

lim
T →∞P(k)

unif,T

({
T (ξ) = (β0, . . . , βm), τi/T ∈ dti , F (T )Li ∈ dxi, i = 1, . . . ,m

}|ZT ≥ k
)

= 1

(α − 1)(k − 1)!(96)

×
∫ 1

0
(1 − w)k−1wm+ 2−α

α−1

m∏
i=1

α�(gi − α)

�(2 − α)
(1 − wti)

−giw
gi,ti

(xi)dw.
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Let us now recapitulate and prove Theorem 1.1, Theorem 1.2, and Theorem 1.3 explic-
itly.

PROOF OF THEOREMS 1.1, 1.2, AND 1.3. Consider a continuous-time Galton–Watson
tree with offspring distribution in the universality class (H1). Under a probability measure
P(k)

unif,T (·|ZT ≥ k), condition on the event {ZT ≥ k} that there are at least k particles alive at

time T , and sample k particles uniformly from the population at time T . Let (π
(k,T )
t )t∈[0,T ]

denote the joint ancestral process of these particles. Let T (π(k,T )) denote the splitting process
associated with this ancestry, and let τ1, . . . , τm denote the split times. Finally, let L1, . . . ,Lm

denote the offspring sizes at these split times.
Asymptotically in T , the equation (96) holds, which, in particular, does not depend on the

explicit form of the offspring distribution but only the parameter α governing the universality
class (H1). As such, that proves Theorem 1.1.

Next, we note that the convergence in distribution for such trees in this universality class
proves Theorem 1.3.

Finally, we note that Theorem 1.2 is obtained from Theorem 1.3 by integrating against xi .
�

5.5. The Lauricella representation. In this section we derive the Lauricella representa-
tion for the joint density of the split times. According to Theorem 1.2, we have

P
(
T (ν) = β, τ1 ∈ dt1, . . . , τm ∈ dtm

)
(97)

= 1

(α − 1)(k − 1)!
m∏

i=1

α�(gi − α)

�(2 − α)

∫ 1

0
(1 − w)k−1wm+ 2−α

α−1

m∏
i=1

(1 − wti)
−gi dw.

We now derive our alternative representation for the right-hand side. Let us begin by noting
that ∫ 1

0
wm+ 2−α

α−1 (1 − w)k−1
m∏

i=1

(1 − wti)
−gi dw

=
∫ 1

0
dwwm+ 2−α

α−1 (1 − w)k−1
m∑

ji ,...,jm=0

(g1)j1 · · · (gm)jm

j1! · · · jm! (wt1)
j1 · · · (wtm)jm

=
m∑

ji ,...,jm=0

(g1)j1 · · · (gm)jm

j1! · · · jm! t
j1
1 · · · tjm

m

∫ 1

0
wm+ 1

α−1 +∑m
i=1 ji−1(1 − w)k−1 dw(98)

= �(m + 1
α−1)�(k)

�(k + m + 1
α−1)

m∑
ji ,...,jm=0

(m + 1
α−1)j1+···+jm(g1)j1 · · · (gm)jm

(k + m + 1
α−1)j1+···+jmj1! · · · jm! t

j1
1 · · · tjm

m

= �(m + 1
α−1)�(k)

�(k + m + 1
α−1)

F
(m)
D

[
m + 1

α − 1
, g1, . . . , gm;k + m + 1

α − 1
; t1, . . . , tm

]
,

where F
(m)
D is the Lauricella hypergeometric function in m variables t1, . . . , tm, which was

introduced by Lauricella [29]. We note now that by plugging (98) into (97) we obtain (8), as
stated in the Introduction.

We now appeal to a probabilistic representation of Chamayou and Wesolowski [12]. To
set this up, let (X1, . . . ,Xn) be a random vector with Dirichlet distribution with parameters
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a = (a1, . . . , an) and b > 0, here denoted by Dir(a;b). In other words, its distribution is
absolutely continuous with respect to the Lebesgue measure on Rd and

Dn(a;b;x) = C

(
1 −

n∑
i=1

xi

)b−1 n∏
i=1

x
ai−1
i 1Tn

(x),

where x = (x1, . . . , xn) ∈ Rn,

Tn =
{
(x1, . . . , xn) : xi > 0, i = 1, . . . , n,

n∑
i=1

xi < 1

}
and C = �(b +∑n

i=1 ai)

�(b)�(
∑n

i=1 ai)
.

An important property of the Dirichlet distribution is that it can be represented through in-
dependent gamma distributions; that is, let U1, . . . ,Un be independent Gamma r.v.’s with
parameters (σ, ai), for i = 1, . . . , n, then

(X1, . . . ,Xn)
d= (U1, . . . ,Un)∑n

i=1 Ui

,

where the latter is independent of
∑n

i=1 Ui .
Moreover, the Laplace exponent of the Dirichlet distribution satisfies

E
[
e〈t,X〉]= C

∫
Tn

e〈t,x〉
(

1 −
n∑

i=1

xi

)b−1 n∏
i=1

x
ai−1
i dx1 · · ·dxn = �

(n)
2 (a;b; t),

where t = (t1, . . . , tn). The function �
(n)
2 can be viewed as multivariate version of the hyper-

geometric function 1F1, that is,

�
(1)
2 (a, b, t) = 1F1(a;a + b; t),

where the right-hand side is the Laplace transform of a beta r.v. with parameters (a, b).
Next, let Z be a Gamma r.v. with parameters (1, c). If X ∼ Dir(a;b) and X and Z are

independent, then the random vector Y = ZX satisfies

E
[
exp

{〈t, Y 〉}]= F
(n)
D (c, a;b; t).

Thus, conditioning with respect to Z, we have

F
(n)
D (c, a;b; t) = 1

�(c)

∫ ∞
0

zc−1e−z�
(n)
2 (a;b; tz)dz.

Conditioning with respect to X, we have

(99) F
(n)
D (c, a;b; t) =

∫
Tn

(
1 − 〈t, x〉)−c

Dn(a;b;x)dx.

Using (99) in (98), we obtain∫ 1

0
wm+ 2−α

α−1 (1 − w)k−1
m∏

i=1

(1 − wti)
−gi dw

= �(m + 1
α−1)�(k)

�(k + m + 1
α−1)

∫
Tm

(
1 − 〈t, x〉)−m− 1

α−1 Dm

(
g1, . . . , gm, k + m + 1

α − 1
;dx

)
.

We finally note that if (E1, . . . ,Em) is distributed according to Dm(g1, . . . , gm, k + m +
1

α−1 ;dx), then we have the identity in distribution

Ei = Wi

W1 + · · · + Wm + Q
, Wi ∼ �(gi),Q ∼ �

(
k + m + 1

α − 1

)
.
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As such, we may instead write∫ 1

0
wm+ 2−α

α−1 (1 − w)k−1
m∏

i=1

(1 − wti)
−gi dw

= �(m + 1
α−1)�(k)

�(k + m + 1
α−1)

E
[(

1 − t1W1 + · · · + tmWm

W1 + · · · + Wm + Q

)−m− 1
α−1

]
.

Using (97), we obtain

P
(
T (ν) = β, τ1 ∈ dt1, . . . , τm ∈ dtm

)
= 1

(α − 1)(k − 1)!
m∏

i=1

α�(gi − α)

�(2 − α)

�(m + 1
α−1)�(k)

�(k + m + 1
α−1)

(100)

×E
[(

1 − t1W1 + · · · + tmWm

W1 + · · · + Wm + Q

)−m− 1
α−1

]
,

where, as above, W1 are Gamma distrbuted with parameter gi and Q is Gamma distributed
with parameter k + m + 1

α−1 .
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