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Abstract

Despite the notable advancements of existing prompting methods, such as In-
Context Learning and Chain-of-Thought for Large Language Models (LLMs),
they still face challenges related to various biases. Traditional debiasing methods
primarily focus on the model training stage, including approaches based on data
augmentation and reweighting, yet they struggle with the complex biases inherent
in LLMs. To address such limitations, the causal relationship behind the prompting
methods is uncovered using a structural causal model, and a novel causal prompting
method based on front-door adjustment is proposed to effectively mitigate LLMs
biases. In specific, causal intervention is achieved by designing the prompts without
accessing the parameters and logits of LLMs. The chain-of-thought generated by
LLM is employed as the mediator variable and the causal effect between input
prompts and output answers is calculated through front-door adjustment to mitigate
model biases. Moreover, to accurately represent the chain-of-thoughts and estimate
the causal effects, contrastive learning is used to fine-tune the encoder of chain-of-
thought by aligning its space with that of the LLM. Experimental results show that
the proposed causal prompting approach achieves excellent performance across
seven natural language processing datasets on both open-source and closed-source
LLMs.

1 Introduction

Large Language Models (LLMs) have shown remarkable emergent abilities, including In-Context
Learning (ICL) [Brown et al., 2020] and Chain-of-Thought (CoT) prompting [Wei et al., 2022, Wang
et al., 2022], which allow LLMs to perform natural language tasks based on only a few instances
without weight updating. These prompting methods have achieved significant results across many
traditional natural language processing tasks, including sentiment analysis, natural language inference,
and machine reading comprehension [Kojima et al., 2022, Zhou et al., 2022, Liu et al., 2023].

However, recent studies have shown that these advanced prompting methods are not robust enough [Ye
et al., 2023] and can lead LLMs to produce hallucinatory results with incorrect or unfaithful in-
termediate reasoning steps [Lyu et al., 2023, Wang et al., 2023a, Bao et al., 2024, Turpin et al.,
2024].
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Aspect Based Sentiment Analysis (SemEval2014-Laptop)

Math Reasoning (GSM8K)

Multi-hop Question Answering (HotpotQA)

Prompt

Please detect the sentiment polarity towards the target 
given the sentence.

Sentence: I got the new adapter and there was no 
change, but on/off switch is obscure.
Target: adapter

CoT output
First, we need to identify the sentiment polarity of the sentence towards 
the target "adapter". The sentence mentions that the speaker got a new 
adapter, but there was no change. This could indicate a neutral sentiment 
towards the adapter. 
However, the second part of the sentence mentions that the on/off switch 
is obscure, which could indicate a negative sentiment towards the adapter. 
Therefore, the overall sentiment polarity towards the adapter in this 
sentence is negative.

Prompt
John plans to sell all his toys and use the money to 
buy video games. He has 13 lego sets and he sells 
them for $15 each. He ends up buying 8 video games 
for $20 each and has $5 left. How many lego sets 
does he still have?

CoT output

John has 13 lego sets and sells them for $15 each. So, he gets 13 x 15 = 
195 dollars. He uses 8 x 20 = 160 dollars to buy video games and has 5 
dollars left. So, he has 195 - 160 - 5 = 30 dollars left. 
Since he sold all his lego sets, he doesn't have any lego sets left. The 
answer is 0.

Prompt

Context:
Our Stories Films is an American film studio founded 
on July 13, 2006…
It began as a joint venture between RLJ Companies 
and The Weinstein Company…
The Weinstein Company (TWC) is a mini-major film 
studio, founded in New York City by Bob and Harvey 
Weinstein in 2005…

Question:
What year was a joint venture between RLJ 
Companies and this film studio founded in 2005, 
founded?

CoT output
Step 1: Identify the film studio mentioned in the question. According to 
the context, The question mentions "this film studio founded in 2005 ", 
which refers to The Weinstein Company (TWC).
Step 2: Find the information about the joint venture between RLJ 
Companies and The Weinstein Company. According to the context, 
Our Stories Films was a joint venture between RLJ Companies and 
The Weinstein Company.
Step 3: Answer the question. The question asks what year the joint 
venture between RLJ Companies and this film studio (TWC) was 
founded. We know that The Weinstein Company was founded in 2005, 
and Our Stories Films was a joint venture between RLJ Companies 
and The Weinstein Company. 
We can conclude that the joint venture was also founded in 2005. The 
answer is 2005.

Correct Answer: 2

Correct Answer: neutral

Correct Answer: 2006

Figure 1: LLMs suffer from bias in the pertaining corpus, leading them to rely on irrelevant text spans
in prompts and generating incoherent chain-of-thoughts that harm the logical reasoning capability
of the model. These examples were obtained by using the CoT prompting [Wei et al., 2022] on the
LLaMA3-8B model.

Some studies [Mallen et al., 2023, Wang et al., 2023b] believe that this phenomenon is due to the a
conflict between the internal knowledge bias of LLMs and the external knowledge. Therefore, an
effective solution is to interact with an external knowledge base to validate and adjust the reasoning
process of LLMs [Wang et al., 2023a, Zhang et al., 2023a]. Moreover, recent work debiases the chain-
of-thoughts of LLMs by incorporating counterfactual knowledge and causal interventions [Lanham
et al.]. However, these methods are specifically tailored for knowledge-intensive tasks. Bias problems
are also observed in other NLP tasks. As shown in Figure 1, in aspects-based sentiment analysis,
mathematical reasoning, and multi-hop question-answering tasks, LLMs sometimes overly depend
on certain text spans in the prompts, leading to wrong reasoning and answers. Notably, the first two
tasks mentioned are not knowledge-intensive. We argue that LLMs fail to capture the true causal
effect between questions and reasoning results and instead establish spurious correlations between
certain text spans and answers.

In addition to the above qualitative analysis, our quantitative experiments also show that the current
prompting methods are ineffective in addressing the bias issue. As shown in Figure 2, the performance
of all prompting methods drops significantly when evaluated on the corresponding adversarial dataset
compared to the original dataset, indicating that LLMs may suffer from bias in the pertaining corpus.
Moreover, it has been demonstrated that LLMs exhibit label bias, recency bias, and entity bias from
context [Zhao et al., 2021, Wang et al., 2023c, Fei et al., 2023].

Traditional debiasing methods mitigate the bias issue mainly during the model training stage, utilizing
approaches such as data augmentation-based [Wei and Zou, 2019, Lee et al., 2021] and reweight-
ing [Schuster et al., 2019, Mahabadi et al., 2019]. Data augmentation-based methods face challenges
due to the cost and complexity of annotating bias cases, particularly limited by context length.
Reweight-based methods encounter difficulties in assigning weights to each sample in prompt-based
learning scenarios. Recently, debias methods based on causal inference [Pearl et al., 2000, Pearl,
2022] have become popular because of their strict theoretical guarantees and good generalization.
Causal inference-based methods only need to calibrate model prediction results during the inference
stage [Niu et al., 2021, Tian et al., 2022, Guo et al., 2022, Xu et al., 2023, Chen et al., 2023a], which
makes them well-suited for prompt-based learning scenarios. However, counterfactual inference
requires accessing LLM output logits, while back-door adjustment requires specific confounding
variable values.
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To address the aforementioned challenge, we propose to debias prompting methods through causal
intervention using front-door adjustment [Pearl et al., 2016]. Front-door adjustment enables causal
intervention without the need to access confounding variable values or LLM output logits. As shown
in Figure 3(a), the causal relationship behind the prompting method is uncovered using a structural
causal model. Here X denotes the input prompt, comprising demonstrations and test examples.

IO standard ICL CoT CoT-SC

Original ReverseTarget ReverseNonTarge AddDiff

Figure 2: Performance of different prompting
methods on ABSA [Pontiki et al., 2016] and
its adversarial datasets on LLaMA-7b. Rever-
seTarget, ReverseNonTarget, and AddDiff de-
note three different adversarial transformations by
TextFlint [Wang et al., 2021]. IO denotes the zero-
shot setting where only the input question outputs
the answer.

A denotes the predicted answer generated by the
LLM. U is the unobservable confounder that in-
troduces various biases in the pertaining corpus.

The debiasing process involves measuring the
causal effect between the treatment X and the
outcome A. However, as U absorbs complex
biases of LLMs that are difficult to model or
detect, back-door adjustment is not feasible for
calculating the causal effect between X and A.
To address this issue, as shown in Figure 3(b),
we use the chain-of-thought generated by LLM
as the mediator variable R between X and A.

As Figure 1 illustrates, while LLMs initially rea-
son correctly, biases often confuse the final step
of answer derivation. To simplify, we ignore
the edges between U and R, aligning our causal
graph with the front-door criterion [Pearl et al.,
2016]. By this way, we can use the front-door
adjustment to estimate the causal effect between
X and A without accessing U .

Therefore, in this paper, we propose Causal Prompting, a novel prompting method for debiasing
based on front-door adjustment. Unlike previous causal inference-based methods, causal interven-
tion is implemented by modifying prompts without accessing the parameters and logits of LLMs.
Specifically, to estimate the causal effect between X and R, we leverage self-consistency (SC) [Wang
et al., 2022] of LLMs and a clustering algorithm to compute the probability of the chain-of-thought
R. To measure the causal effect between R and A, we use the normalized weighted geometric mean
(NWGM) approximation [Xu et al., 2015] to select the optimal demonstration set, which can help
the model to generate an unbiased answer. Overall, CoT, SC, and ICL are effectively combined
through front-door adjustment to mitigate LLM biases in NLP tasks. Note that in the clustering
and NWGM algorithms, an Encoder is needed to obtain the representations of chain-of-thoughts.
Since Encoder and LLMs have different semantic understanding of the chain-of-thought, we use
contrastive learning [Chen et al., 2020] to fine-tune the Encoder to align its representation space with
LLMs to estimate causal effects more accurately.

The contributions of this work are summarized as follows:

• Our work aims to identify and analyze the bias problem in LLM prompting methods from
the perspective of causal inference, adhering more closely to the principles of the field.
Moreover, the front-door adjustment is proposed to theoretically address the bias problem in
prompting.

• Contrastive learning is proposed to fine-tune the Encoder of the chain-of-thoughts, aligning
the space of the Encoder with LLMs to accurately capture representations of chain-of-
thoughts and estimate causal effects.

• The proposed approach achieves excellent performance across seven natural language
processing datasets using both open-source and closed-source LLMs.

2 Preliminaries

2.1 Structural Causal Model and Causal Intervention

A Structural Causal Model (SCM) [Pearl et al., 2016] is used to describe the causal relationships
between variables. In SCM, we typically use a directed acyclic graph G = {V,E}, where V
represents the set of variables and E represents the set of direct causal relationships.
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As shown in Figure 3(a), X denotes the input prompt, including demonstrations and test examples. A
denotes the predicted answer generated by the LLMs. LLMs generate answers based on prompt, so we
have X → A, which means that X is the direct cause of A. LLMs might learn spurious correlations
between text patterns and answers from pre-trained corpora or instruction-supervised fine-tuning
datasets [Xing et al., 2020, Li et al., 2024, Bao et al., 2024], leading to bias in downstream tasks.

(a) Structural Causal 
Model

(b) Causal Intervention with 
Frontdoor Adjustment

U

X A

Prompt Answer

R

U

X A

Unobserved
Confounder

Prompt Chain-of-Thought Answer

Unobserved
Confounder

Figure 3: Structural causal model for the prompt-
ing method. (a) The causality of prompt and answer
is confounded by unobservable variable. (b) The chain-
of-thought generated by LLMs as a mediator variable
between prompt and answer.

Previous work argues that the reason for
this bias is that LLMs tend to follow a
certain latent concept [Xie et al., 2021]
or an implicit reasoning results [Li et al.,
2024] in the reasoning process, rather
than following the explicitly generated
chain-of-thought. This leads to the final
answer does not necessarily follow from
the generated chain-of-thought, specifi-
cally, there is no actual causal relation-
ship between the chain-of-thought and
the answer [Lyu et al., 2023, Bao et al.,
2024]. To accurately calculate the causal
effect between X and A, we use the un-
observable variable U to describe this la-
tent concept or implicit reasoning results,
using the back-door path X ← U → A
denotes that the causality of X and A is
confounded by U .

In SCM, if we want to compute the true causal effect between two variables X and A, we should
block every back-door path between them [Pearl and Mackenzie, 2018]. For example, as shown
in Figure 3(a), we should block X ← U → A to obtain the true causal effect between X and A.
We typically use causal interventions for this purpose, which use the do operation to estimate the
causal effect between X and A. In the causal graph satisfying Figure 3(a), the do-operation can be
computed by back-door adjustment [Pearl et al., 2016]:

P (A|do(X)) =
∑
u

P (A|X,u)P (u) (1)

2.2 Front-door Adjustment

Since confounding factor U is inaccessible, back-door adjustment cannot be performed. Fortunately,
the front-door adjustment [Pearl et al., 2016] does not require access to the values of the confounding
factor U to calculate the causal effect between X and A. As shown in Figure 3(b), we use the
chain-of-thought generated by LLM as a mediator variable R between X and A.

In practice, as depicted in Figure 1, LLM can perform correct reasoning at the beginning, but it is
often easily confused by bias in the last step of deriving the answer. Consequently, we decided to
start with the simple SCM and focus on the confounder between X and A. In order to simplify the
causal graph, we ignore the confounder of R with other variables, aligning our causal graph with the
front-door criterion [Pearl et al., 2016]. According to the front door adjustment, P (A|do(X)) can be
formulated as:

P (A|do(X)) =
∑
r

P (A|do(r))P (r|do(X)) (2)

where r ∈ R is the chain-of-thought generated by LLMs in response to the prompt X . The causal
effect between X and A is decomposed into two partially causal effects P (r|do(X)) and P (A|do(r)).
Next, we discuss how to estimate these two components separately. The first component is
P (r|do(X)), represents the probability distribution of the chain-of-thought r given the intervention
do(X). To compute P (r|do(X)), we need to block the backdoor path X ← U → A ← R be-
tween X and R. Since there exists a collision structure U → A← R, the backdoor path has been
blocked [Pearl et al., 2016] and we can get:

P (r|do(X)) = P (r|X) (3)
Now, we focus on the computation of the second component P (A|do(r)), represents the probability
distribution of the answer A given the intervention do(r). To compute P (A|do(r)), we need to block
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the backdoor path R← X ← U → A between R and A. Since we do not have access to the details
of U , we implement back-door adjustments with the help of prompt X:

P (A|do(r)) =
∑
x

P (x)P (A|r, x) (4)

where x ∈ X denotes the input prompt, including demonstrations and test examples.

Finally, substituting Equations (3) and (4) into Equation (2) after we obtain the estimation of
P (r|do(X)) and P (A|do(r)). Hence, the final P (A|do(X)) can be represented as follows:

P (A|do(X)) =
∑
r

P (r|do(X))P (A|do(r)) =
∑
r

P (r|X)︸ ︷︷ ︸
CoT−SC

∑
x

P (x)P (A|r, x)︸ ︷︷ ︸
ICL

(5)

where the first component
∑

r P (r|do(X)) can be estimated by combining the CoT and SC prompting
methods, and the second component P (A|do(r)) can be computed by selecting the demonstration
examples in ICL prompting.

3 Method

LLM-

based

prompting

𝑋

𝑑1 𝑑𝑛
…

𝑞

𝑐1

𝑐𝑚

𝑐2

𝑐3

…

𝐶1

𝐶𝐾

…

Encoder-

based

intervening

𝒫𝑟1
𝑖𝑡𝑒𝑟 , 𝑟1

𝑑𝑙
↑
…

𝑞 𝑟1𝑑1
↑𝑟1

𝑟𝐾 𝑑𝑙
↑
…

𝑞 𝑟𝐾𝑑1
↑

𝒫𝑟𝐾
𝑖𝑡𝑒𝑟 , 𝑟𝐾

LLM-

based

prompting…

𝑎1,1

𝑎1,𝑇

𝑎𝐾,1

𝑎𝐾,𝑇

𝐴

𝑃(𝑟|𝑑𝑜(𝑋)) 𝑃(𝐴|𝑑𝑜(𝑟))

𝑃 𝐴 𝑑𝑜 𝑋 =
𝑟
𝑃(𝑟|𝑑𝑜(𝑋))𝑃 𝐴 𝑑𝑜 𝑟

LLM

Encoder

Contrastive Learning

𝑟1,1
𝑖𝑝

𝑟1,𝑇
𝑖𝑝

𝑟𝐾,1
𝑖𝑝

𝑟𝐾,𝑇
𝑖𝑝

Encoder-

based

clustering …

Figure 4: The overall framework of Causal Prompting. Firstly, based on the input prompt X
consisting of the demonstration examples and a question of the test example, we query the
LLM to generate m distinct CoTs . Then, these CoTs are clustered into K clusters by an Encoder-
based clustering algorithm. Subsequently, K representative CoTs are selected by searching the
closest CoT to the cluster center. Secondly, the optimal demonstration examples are retrieved for
each representative CoT through the Encoder-based intervention algorithm, and then the input
prompt Piter

rk
after the intervention is obtained. Finally, we query the LLM T times, obtaining T

improved CoTs and T answers for each representative CoT . The final answer is obtained
by performing a weighted voting.

As shown in Figure 4, Causal Prompting aims to estimate the causal effect between input X and
answer A. The estimation is achieved using the front-door adjustment, which divides the causal
pathway into two distinct parts: the causal effect between X and chain-of-thought r, and the causal
effect between r and A.

First, the causal effect between X and chain-of-thought r, P (r|do(X)) is estimated by combining
the Chain-of-Thought prompting with a Encoder-based clustering algorithm. Second, the causal
effect between r and A, P (A|do(r)) is estimated by combining the In-Context Learning prompting
with the normalized weighted geometric mean (NWGM) approximation algorithm. The final answer
is aggregated by performing a weighted voting algorithm. Moreover, contrastive learning[Chen et al.,
2020, Gao et al., 2022, Zhang et al., 2023b] is employed to align the representation space of the
Encoder and the LLMs for more precise estimation.

We will first introduce the estimation of P (r|do(X)) and P (A|do(r)), respectively, then combine
them to derive P (A|do(X)). Finally, we will discuss how we align the representation space between
the Encoder and the LLM.
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3.1 Estimation of P (r|do(X))

We firstly undertake the estimation of P (r|do(X)). P (r|do(X)) measures the causal effect between
input X and chain-of-thought r. As shown in Eq. (3), the estimation of P (r|do(X)) is equivalent
to the estimation of P (r|X). However, P (r|X) is still intractable for LLMs. On the one hand,
the output probability is often inaccessible for most closed-source LLMs; on the other hand, the
chain-of-thoughts r are challenging to enumerate comprehensively. Therefore, to estimate the causal
effect P (r|do(X)) for both open-source and closed-source LLMs, we employ the CoT prompting
and integrate it with a clustering algorithm. To be more specific, we initially prompt the LLMs
to generate multiple CoTs based on the input. The prompts for CoTs generation are detailed in
Appendix H.1. Subsequently, the CoTs are projected into embeddings. The embeddings are then
clustered to form distinct groups based on their similarity. Finally, the centroid of each cluster is
selected as the optimal and representative chain-of-thought. The probability associated with each
representative chain-of-thought is then estimated based on the size of its respective cluster.

To enhance the quality of generated CoTs, n in-context demonstrations d are selected from training
set based on question similarity. These demonstrations are then concatenated with the test question
qtest to form the final prompt. Thus, the final prompt P is structured as follows:

P = [d1, ..., dn, q
test] (6)

where each di = (qdemo
i , rdemo

i ) contain the demonstration question qdemo
i and its corresponding

demonstration chain-of-thought rdemo
i . Where i ∈ {1, ..., n}, n denotes the number of demonstration

examples in few-shot prompt method. In the practical implementation, we use prompt P , which is
fed into the LLMs to represent X in the structural causal model.

Based on the input prompt P , LLMs are prompted to generate m distinct CoTs c by increasing the
temperature parameter of LLMs. This adjustment encourages more diverse outputs, where the same
procedure is also employed in self-consistency prompting of LLMs Wang et al. [2023d]. In this way,
we can obtain the set of chain-of-thoughts as follows:

{ci|i = 1, ...,m} = LLM(P) (7)

To perform the distance-based clustering method, the generated CoT ci are further fed into a Encoder
to get the text embedding ci. Following the previous work [Devlin et al., 2018], the input is
concatenated with the special tokens [CLS] and [SEP], and the embedding of the [CLS] token is taken as the
embedding of CoT ci.

ci = Encoder([CLS], ci, [SEP]) (8)
Then K-means clustering algorithm [Har-Peled and Kushal, 2005, Wu et al., 2023] is applied to the embeddings
to get k clusters C as follows:

{C1, ..., CK} = K-means(c1, ..., cm) (9)
where Ck refers to the k-th cluster of the clustering result, K denotes the number of clusters.

Based on the clusters, K representative chain-of-thoughts r are selected by searching the closest chain-of-thought
to the cluster center.

rk = Center(Ck), k = 1, ...,K (10)
The causal effect between input X and chain-of-thought rk is estimated based on the cluster size as follows:

P (rk|do(X)) ≈ |Ck|
m

(11)

where |Ck| denotes the size of cluster Ck.

3.2 Estimation of P (A|do(r))
Based on the K chain-of-thoughts selected by Equation (10) in Section 3.1, we estimate P (A|do(rk)) for each
chain-of-thought rk. For convenience, we omit the subscript k and use P (A|do(r)) to denote P (A|do(rk)) in
the following. P (A|do(r)) measures the causal effect between the chain-of-thought r and the answer A. Based
on the discussion in Equation (4), P (A|do(r)) can be calculated with backdoor adjustment as follows:

P (A|do(r)) =
∑
x∈X

P (x)P (A|r, x) = Ex∈X [P (A|r, x)] (12)

where P (A|r, x) denotes the probability of the final answer A generated by LLM based on the given prompt x
and the chain-of-thought r.
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However, the value space of X is inexhaustible in most of the cases, and previous work employs the normalized
weighted geometric mean (NWGM) approximation [Xu et al., 2015, Tian et al., 2022, Chen et al., 2023a] to
tackle this problem, where a confounder embedding x

′
is estimated to approximate the expectation of variable

X .

Ex∈X [P (A|r, x)] ≈ P (A|r,Ex∈X [x]) ≈ P (A|concat(r, x
′
)) (13)

where concat(·, ·) denotes vector concatenation, x
′

denotes the confounder embedding of X .

Inspired by the previous works [Xu et al., 2015, Tian et al., 2022, Chen et al., 2023a, Zhang et al., 2024], we
propose a prompt version of NWGM approximation to perform the back-door adjustment for LLMs prompting
by combining a Encoder-based intervention and In-Context Learning (ICL) prompting. The original idea of
NWGM is to augment the representation of the chain-of-thought r with an embedding x

′
that contains all

sample information as much as possible. However, at the prompt level, we cannot include all samples in context
due to the limited context length, so we use only those samples that are most useful for improving the current
chain-of-thought r.

Specifically, we use the Encoder to obtain the embedding rk of the k-th chain-of-thought rk. Subsequently,
ICL demonstrations are selected by searching the entire training set based on the chain-of-thought embedding rk
to approximate the effect of taking expectations on input X . Finally, we rank the ICL demonstrations according
to their similarity weights to indicate the importance of different samples.

Note that, as shown in Equation (6), the input prompt P includes demonstrations d and test question qtest.
Directly modifying the certain text span of test examples will change the semantics of question qtest. Therefore,
we only modify the demonstrations d and implement the NWGM approximation by In-Context Learning. In fact,
the goal of our prompt version of the NWGM algorithm is to enable the LLMs to learn from the demonstrations
how to improve the chain-of-thought r of the test example. As shown in the prompt template in Appendix H.2,
we introduce both wrong and correct chain-of-thoughts of demonstrations.

Given a training set D = {dj = (qj , r
wrong
j , rcorrectj )}Nj=1, and a chain-of-thought rk of test example, where qj

denotes the question of j-th training sample, rwrong
j and rcorrectj denote the wrong and correct chain-of-thoughts

of demonstration dj , rk refers to the k-th chain-of-thought selected by Equation (10) in Section 3.1, N denotes
the size of the training set. The embedding rk of chain-of-thought rk and the embedding dj of demonstration dj
are obtained by the following:

rk = Encoder([SEP], rk, [SEP])

dj = Encoder([CLS], rwrong
j , [SEP])

(14)

Previous works [Margatina et al., 2023, Liu et al., 2022] have shown that using demonstration examples that
are semantically similar to the test examples allows better performance for In-Context Learning. Therefore,
the back-door intervention is approximated by searching the most similar instance based on chain-of-thought
embedding rk. Specifically, we sort the training set D from largest to smallest according to the cosine similarity
between rkand dj .

{d↑j}
N
j=1 = Sort(D, rk, {dj}Nj=1) (15)

where d↑j denotes the sorted demonstration example, Sort means that, given a predefined cosine similarity
function cos, the samples are ordered so that cos(rk, di) ≥ cos(rk, dj) when i < j.

Then the l most similar demonstration examples are selected to concatenate into prompt, where l ≪ N . Note
that, unlike the KATE [Liu et al., 2021] method, we put the most similar demonstration samples closer to the test
samples because this order is more beneficial for our NWGM algorithm to learn information for improving the
chain-of-thoughts from the demonstration based on practical experiments, detailed in Appendix E.2. For each
chain-of-thought rk of a test sample, the final input prompt after intervention is given as follows:

Piter
rk = [d↑l , ..., d

↑
1, q

test] (16)

Subsequently, we query the LLMs T times, obtaining T answers and T improved chain-of-thoughts using the
prompt Piter

rk and chain-of-thought rk.

{(ripk,t, ak,t)|t = 1, ..., T} = LLM(Piter
rk , rk) (17)

where ripk,t denotes the t-th improved chain-of-thought for chain-of-thought rk.

We then use majority voting to estimate the probability of the answer as follows:

P (A|do(rk)) ≈
∑T

t=1 I(A = ak,t)

T
(18)
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3.3 Estimation of P (A|do(X))

Based on the results of Equation (11) in Section 3.1 and Equation (18) in Section 3.2, the final answer is obtained
by performing a weighted voting as follows:

P (A|do(X)) =
∑
rk

P (rk|do(X))P (A|do(rk)) =
K∑

k=1

|Ck|
m

·
∑T

t=1 I(A = ak,t)

T
(19)

Finally, we chose the answer with the largest weight as the final answer. In this way, with the front-door
adjustment, we calibrate the probability distribution P (A|X) obtained by the CoT-SC method to P (A|do(X))
obtained by the Causal Prompting method. Algorithm 1 in Appendix B shows the overall prompting process.
Cases in Appendix G show the overall flow and intermediate step output of Causal Prompting on mathematical
reasoning and multi-hop question answering datasets.

3.4 Representation Space Alignment

In the clustering discussed in Section 3.1 and NWGM algorithm presented in Section 3.2, an Encoder is needed
to derive the representations of chain-of-thoughts. However, the semantic representation of Encoder and LLM
differ significantly. Two chain-of-thoughts that LLM considers similar may not be close in the representation
space of the Encoder. As illustrated in Figure 7 in Appendix A, the chain-of-thoughts generated by LLM are
not distinctly separable in the representation space of the vanilla Encoder.

To align the representation spaces of the Encoder and the LLMs, we take each chain-of-thought r in the training
dataset D as an anchor, use LLM to generate the corresponding positive samples, use the other samples within
the batch as negative samples, and then use contrastive learning to fine-tune the Encoder. The prompt template
used to generate positive samples is detailed in Appendix H.3.

For chain-of-thought r, we prompt the LLM to generate a similar sentence r+ as the positive sample. Following
previous works [Gao et al., 2022, Zhang et al., 2023b], we use the InfoNCE loss [Chen et al., 2020] to fine-tune
the Encoder : ∑

rp∈Pos(r)

−log
g(r, rp)

g(r, rp) +
∑

j∈Neg(r) g(r, rj)
(20)

where the r and rp are the representations of r and its positive samples. Pos(r) and Neg(r) refer to the positive
set and the negative set for the chain-of-thought r. Pos(r) = {rp1, rp2}, where rp1 is augmented representation
of the same chain-of-thought r, obtained with different dropout masks, and rp2 is the representation of positive
sample r+. j ∈ Neg(r) is the index of in-batch negative samples. g is a function: g(r, rp) = exp(rT rp/temp),
where temp is a positive value of temperature in the contrastive learning.

4 Experiments

4.1 Datasets

We evaluate the effectiveness of our approach on three tasks: Math Reasoning (GSM8K [Cobbe et al.,
2021], MATH [Hendrycks et al., 2021]), Multi-hop Question Answering (HotpotQA [Yang et al., 2018],
MuSiQue [Trivedi et al., 2022]), and Natural Language Understanding (Aspect-based Sentiment Analysis
(ABSA) [Pontiki et al., 2016], Natural Language Inference (NLI) [Williams et al., 2017], and Fact Verification
(FV) [Thorne et al., 2018]). For the NLU tasks, we use the original datasets (in-distribution, ID) and the
corresponding adversarial datasets (out-of-distribution, OOD) to verify the robustness of our method. Further
details regarding the datasets are provided in Appendix C.4. The details regarding the evaluation can be found in
Appendix C.5.

4.2 Baselines

We compare our approach with three other few-shot prompting approaches to evaluate its effectiveness: Stan-
dard ICL, CoT and CoT-SC. Their detailed settings are presented in Appendix C.1. Detailed settings and
implementations of our method Causal Prompting can be found in Appendix C.2 and Appendix C.3.

4.3 Main Results

Table 1 shows the comparison results between causal prompting and the aforementioned baselines. Expectedly,
the performance of Standard ICL, CoT, and CoT-SC improves progressively, as each subsequent method is an
enhanced version of its predecessor. It not only confirms the effectiveness of integrating CoT into ICL, consistent
with [Brown et al., 2020, Wei et al., 2022, Zhou et al., 2022], but also validates the efficacy of employing multiple
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Table 1: The comparison results of Causal Prompting against baselines across different backbone
LLMs, including LLaMA2, LLaMA3 and GPT-3.5, on seven datasets. The best results are in bold.

GSM8K MATH HotpotQA MuSiQue ABSA NLI FV

Method Acc Acc EM F1 EM F1 Acc Acc Acc

LLaMA2

Standard ICL 6.14 3.71 41.20 59.56 26.09 41.16 47.26 28.20 56.87
CoT 27.07 4.72 44.70 64.84 18.71 30.27 49.12 27.56 70.07
CoT-SC 31.92 6.32 49.30 68.53 31.16 46.36 53.70 33.57 72.20
Causal Prompting 36.47 8.76 52.20 70.88 34.68 48.79 67.55 50.83 81.07

LLaMA3

Standard ICL 18.65 14.24 37.20 62.17 17.42 24.22 72.14 63.75 80.67
CoT 74.07 40.35 48.90 72.75 38.88 54.38 71.55 64.19 81.80
CoT-SC 82.41 56.61 52.70 75.43 41.37 59.78 75.92 65.15 83.87
Causal Prompting 87.95 62.76 58.50 78.18 48.07 64.23 79.06 67.97 86.67

GPT-3.5

Standard ICL 33.74 23.08 2.10 3.68 28.84 39.27 69.26 53.52 75.33
CoT 71.87 53.50 11.70 16.49 41.37 57.82 65.74 63.55 80.67
CoT-SC 80.21 58.38 41.60 56.82 46.27 60.83 74.59 66.88 82.73
Causal Prompting 85.44 70.18 58.20 78.10 50.13 65.40 80.13 71.93 86.53

Table 2: The results of the robustness study on LLaMA3. Ori denotes the original dataset (ID) and
Adv denotes the adversarial dataset (OOD). The best results are in bold.

ABSA NLI FV

Methods Ori Adv Ori Adv Ori Adv

Standard ICL 75.71 70.30 76.30 50.27 90.00 76.00
CoT 77.27 68.60 74.81 54.77 91.40 77.00
CoT-SC 80.56 73.53 76.17 57.16 93.40 79.10

Causal Prompting 79.78 78.69 76.67 58.62 95.40 82.30

sampling and voting strategies [Wang et al., 2022]. Causal Prompting consistently delivers the best results
across all metrics and datasets. It indicates that our prompting method can comprehensively improve the ability
of LLM in all three tasks. Specifically, our method exhibits a more pronounced improvement in Math Reasoning
and Multi-hop Question Answering tasks, with an average performance enhancement of approximately 5%-10%.
This substantial increase underscores our method’s greater efficacy in tackling more challenging problems.

4.4 Robustness Study

To verify the robustness of our method, we further test the performance of Causal Prompting on the original
data and adversarial data of the NLU task, respectively. Tables 2 show the performance comparison results of
our method and baselines on LLaMA3 model. Although the performance of Causal Prompting decreases on Ori
of ABSA, the improvement is larger on Adv data, resulting in the highest overall performance, see in 1. This
phenomenon aligns with findings reported in previous work on causal inference [Tian et al., 2022, Wang et al.,
2023c]. It can be observed that the Adv of Causal Prompting is the highest on all datasets. This shows that our
method generalizes well for both synthetic adversarial data in ABSA and NLI generated by TextFlint [Wang
et al., 2021] and human-annotated real adversarial data in FV. This further validates the robustness of our model
in handling datasets with significant bias. The robustness studies of LLaMA2 and GPT3.5 are presented in
Appendix E.1.

5 Conclusion

We introduced Causal Prompting, a novel method for debiasing LLMs in NLP tasks by utilizing front-door
adjustment in this work. The CoT generated by LLMs is employed as a mediator variable in the causal
graph. Specifically, the causal effect between input prompt and output answer is decomposed into two distinct
components, the causal effect from the input prompt to CoTs and from CoTs to the answer. The former
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component is estimated by combining the CoT prompting with a Encoder-based clustering algorithm. The latter
component is estimated by combining the ICL prompting with the NWGM approximation algorithm. Moreover,
Contrastive learning is used to fine-tune the Encoder so that the representation space of the Encoder is aligned
with the LLM to estimate the causal effect more accurately. Our experimental results demonstrate that Causal
Prompting significantly improves performance across seven NLP tasks on both open-source and closed-source
LLMs.
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Figure 5: Comparison of FLOPs cost between Causal Prompting and CoT-SC method on LLaMA3.

A Discussion

In this section, we will address the following Research Questions (RQ) to elucidate our contributions more
clearly.

RQ1: How can we reduce computational costs incurred by additional operations?
Compared to CoT-SC, Causal Prompting involves numerous additional operations, resulting in increased cost

overhead. Importantly, not every test instance necessitates a front-door adjustment. To determine whether a
a front-door adjustment is needed for a given example, we employ a self-consistency metric, defined as the
proportion of answers receiving the majority of votes. A front-door adjustment is executed if the self-consistency
metric falls below a predefined threshold s. As shown in Figure 5, adjusting the threshold s allows us to control
the cost of the entire test dataset. In our experiments, the computational cost is quantified in terms of Floating
Point Operations per Second (FLOPs). For a test set containing 1000 samples with an average sample length
of 500, the inference time on LLaMA3 is approximately two hours using the vLLM framework [Kwon et al.,
2023]. All computations using open-source LLMs were executed on an NVIDIA A100 80GB GPU. The value
of the threshold s ranges from 0 to 1; a smaller s results in more samples requiring front-door adjustment and
consequently increases the cost of FLOPs. To facilitate a fair comparison of equivalent costs, we set the number
of votes for CoT-SC at m = 1, 5, 8, 10, 40, 80, 100. Our method achieves superior performance at equivalent
costs. As computational costs increase, the performance of CoT-SC gradually reaches its upper limit, whereas
the performance of our proposed method continues to rise. It indicates Causal Prompting has more potential to
scale effectively with increased computational costs.
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Figure 6: The impact of threshold s on LLaMA3-
8B.

RQ2: How does adjusting the threshold s af-
fect performance?

We also explored the effect of the threshold s on
different tasks on LLaMA3. As shown in Figure 6,
the performance of mathematical reasoning and multi-
hop question answering tasks keeps improving as the
threshold s increases. On the other hand, the per-
formance on the NLU task first increases and then
decreases, and when we apply the front-door adjust-
ment to all samples (i.e., s = 1.0), the performance
drops significantly. This is because we introduce the
wrong and correct chain-of-thoughts in the NWGM
algorithm part, and the labels of the two chain-of-
thoughts are usually opposite, which is easy to cause
LLM to change the correct answer into the wrong one, especially in classification tasks such as NLU. The best
threshold s across different backbone LLMs and different datasets are shown in Table 3. Table 1 reports the
model’s performance when the threshold s takes the best value.

RQ3: What are the effects of employing contrastive learning methods?
To better explore the importance of contrastive learning, we present a visualization of the embeddings of

the chain-of-thought obtained by the vanilla Encoder and the Encoder trained by contrastive learning with
T-SNE [Van der Maaten and Hinton, 2008]. As shown in Figure 7, the vanilla Encoder fails to distinctly
separate different categories, blending multiple chain-of-thoughts into indistinct representations. In contrast,
the Encoder that is trained by contrastive learning exhibits a clear delineation between different categories.
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Table 3: The best threshold s across different backbone LLMs, including LLaMA2, LLaMA3 and
GPT-3.5, on seven datasets.

Threshold s GSM8K MATH HotpotQA MuSiQue ABSA NLI FV

LLaMA2 1.0 0.2 0.5 1.0 0.4 0.4 0.6
LLaMA3 1.0 1.0 1.0 1.0 0.6 0.6 0.5
GPT-3.5 1.0 0.3 1.0 0.1 0.6 0.9 1.0

Table 4: Notations used in our proposed method Causal Prompting.
Notation Description

Encoder The encoder-only model for generating text embedding
LLM The large language model for text generation
Sort The function to sort the training set
D The training set
d The demonstration examples in the prompt

qtest The test sample
n The number of demonstration examples in the prompt
m The number of CoTs generated by LLM
K The number of clusters for the K-means clustering algorithm
T The query times to LLM for each intervention prompt

Figure 7: Visualization of the embeddings of chain-
of-thought obtained by the original Encoder (left)
and the Encoder trained through contrastive learn-
ing (right) on the GSM8K dataset.

This shows that contrastive learning can align the rep-
resentation spaces of the encoder and LLMs, allowing
the encoder to learn how to distinguish the seman-
tics between different chain-of-thoughts generated by
the LLMs. In Appendix E.2, we present quantitative
analyses to further substantiate the effectiveness of
contrastive learning.

RQ4: Why do we not need any additional
baselines?

See Appendix C.1, where we list all the baselines
used to compare with our proposed method. However,
numerous other prompting strategies such as ToT [Yao et al., 2024] or GoT [Besta et al., 2024] have not been
explored as baselines. We do not conclude these strategies based on the following three primary considerations:
First, we focus on solving the more fundamental problem of prompting methods: the estimation of the causal
effect between the input prompt and the response of the LLM. The efficacy of our causal prompting approach
is substantiated by the experimental results presented. Second, more complex prompting methods require the
construction of intricate causal graphs. In other words, building causal graphs for these advanced prompting
methods is challenging due to their involvement with cycles and numerous mediating variables. As an early
work on combining causal inference with LLM, we start with the basic prompting method. Finally, our approach
is not specifically intended to improve the ability of LLMs to solve complex problems, but rather to hope that
LLMs generate more causal, faithful and unbiased answers. Therefore, we only experimented on the most
commonly used tasks and did not compare them with other prompting methods designed for complex tasks.

B Causal Prompting Algorithm

B.1 Notations

The notations used in the approach are shown in Table 4 to clarify their usage and significance throughout the
algorithm.

B.2 Algorithm Details

As shown in Algorithm 1, we describe the operation flow of Causal Prompting.
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Algorithm 1 Causal Prompting
Input: Encoder,LLM, Sort,D, d, qtest, n,m,K, T

1: P ← [d1, ..., dn, q
test]

2: {ci|i = 1, ...,m} ← LLM(P)
3: ci ← Encoder([CLS], ci, [SEP])
4: {C1, ..., CK} ← K-means(c1, ..., cm)
5: for k = 1 to K:
6: rk ← Center(Ck)

7: P (rk|do(X))← |Ck|
m

8: end for
9: for k = 1 to K:

10: rk ← Encoder([SEP], rk, [SEP])
11: dj ← Encoder([CLS], rwrong

j , [SEP])

12: {d↑j}Nj=1 ← Sort(D, rk, {dj}Nj=1)

13: Piter
rk
← [d↑l , ..., d

↑
1, q

test]

14: {(ripk,t, ak,t)|t = 1, ..., T} ← LLM(Piter
rk

, rk)

15: P (A|do(rk))←
∑T

t=1 I(A=ak,t)

T
16: end for
17: P (A|do(X))←

∑K
k=1

|Ck|
m ·

∑T
t=1 I(A=ak,t)

T
18: return argmaxA(P (A|do(X)))

C Experimental Details

C.1 Baselines

Standard ICL [Brown et al., 2020]: Prompt LLMs with some demonstration examples containing only questions
and their corresponding answers, without any additional explanatory context or reasoning.

CoT [Wei et al., 2022]: Unlike Standard ICL, CoT method enhances the prompt with demonstration examples
that include detailed chain-of-thoughts. These chain-of-thoughts guide the LLMs through the steps required to
reach an answer.

CoT-SC [Wang et al., 2022]: Extent the CoT methods by having the LLMs generate multiple different chain-of-
thoughts for the same query and use majority voting to determine the final answer.

C.2 Settings

Demonstration Construction For the GSM8K and MATH datasets, we directly use the gold rationale in
the dataset as the chain-of-thought for the demonstration. For multi-hop question answering and NLU tasks
without gold rationale, we use a few manually constructed demonstrations to prompt the LLM to generate
chain-of-thoughts and answers for all examples in the dataset. For the samples with wrong answers, we provide
the LLM with the correct answers and then ask the LLM to generate the correct chain-of-thoughts. See
Appendix H.4 for the prompt template used to generate the demonstration examples. Finally, we retain the
wrong and correct chain-of-thoughts and use them to construct the training set. Note that to better evaluate
the debiasing effect of our method, we only use the original dataset to build demonstration examples without
including the adversarial dataset, and evaluate on both original and adversarial datasets.

Demonstration Selection To fair comparison, the same demonstration samples are utilized across all
few-shot prompting methods. For each instance, the most relevant demonstration samples are selected based on
the similarity of their embeddings with the question. These selected demonstration samples are then concatenated
into the prompt, as exemplified in the Appendix H.1 for CoT prompting. Specifically, for Math Reasoning and
Multi-hop QA tasks, 4-shot and 2-shot settings are employed, respectively, corresponding to n = 4 and n = 2
in Equation (6). For NLU tasks, we maintain a balanced label space by including one demonstration sample for
each category. For ABSA and NLI, which are 3-way classification tasks, n = 3 is adopted, while for FV, a 2-way
task, n = 2 is used. After the application of NWGM-based causal intervention, as described in Section 3.2, and l
different demonstration samples are selected to be incorporated into the prompt as shown in the prompt templates
of CoT Improvement based on NWGM approximation in Appendix H.2. For the mathematical reasoning task,
l = 2 in Equation (16). For the multi-hop question answering task, l = 1. For the ABSA and NLI tasks, l = 3.
For the FV task, we set l = 2.
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C.3 Implementation Details

Details of LLM We evaluate our prompting method on the open-source LLaMA-2-7B-Chat [Touvron et al.,
2023]2 and LLaMA-3-8B-Instruct [AI@Meta, 2024]3 using Transformer[Wolf et al., 2019] library, as well as
the closed-source GPT-3.5-turbo-0125 [OpenAI, 2022]4. The generation hyperparameters remain consistent
across all prompting methods: temperature is set to 0.7, and top_p is set to 0.9. Following previous work [Lyu
et al., 2023], we set the number of votes in COT-SC is 40. In our method, the number of chain-of-thoughts
generated in the first part is m = 40, and then these chain-of-thoughts are clustered into K = 8. For each
chain-of-thought representing the cluster center, we generated T = 10 answers based on the prompt modified by
intervention. Finally, the K · T = 80 answers were weighted voting to get the final answer.

Details of Encoder We use BERT-base [Devlin et al., 2018]5 as the Encoder in computing sentence
similarity, clustering algorithm, and NWGM algorithm following [Tian et al., 2022, Zhang et al., 2024]. We
independently fine-tune an Encoder for each LLM, as well as for each specific task, employing a contrastive
learning approach. During training, we set the batch size is 128. The learning rate is 1e− 4. The temperature
temp is set to 0.3. The max length of Encoder is 512. The total training epochs are 20.

C.4 Dataset Details

Math Reasoning For the GSM8K [Cobbe et al., 2021] dataset, we use its official dataset split6. The number
of samples in the training set is 7473 and the number of samples in the test set is 1319. For the MATH [Hendrycks
et al., 2021] dataset, we only use algebra type data due to limited computational resources. We use the official
dataset split7, the training set of MATH-algebra includes 1744 samples, and the test set includes 1187 samples.

Multi-hop Question Answering For the HotpotQA [Yang et al., 2018] dataset, to reduce the experimental
cost, we randomly selected 5000 samples from the official training set8 as our training set and 1000 samples
from the official validation set9 as our test set. For the MuSiQue [Trivedi et al., 2022] dataset, we use the official
dataset split of MuSiQue-Answerable version10, and we experiment on the more challenging part of the dataset
with hop ≥ 3. After extracting the data with a hop ≥ 3, the number of training sets is 5562 and the number of
test sets is 1165. For both datasets above, we extract the support documents to form the paragraph.

Natural Language Understanding For the Aspect-based Sentiment Analysis (ABSA) and Natural
Language Inference (NLI) tasks, we use SemEval2014-Laptop [Pontiki et al., 2016] and MNLI-m [Williams
et al., 2017] as the original datasets (in-distribution, ID) and the corresponding transformation data generated
by TextFlint [Wang et al., 2021] as the adversarial datasets (out-of-distribution, OOD). For the FV task, we
use FEVER [Thorne et al., 2018] as the ID dataset and its adversarial dataset Symmetric FEVER [Schuster
et al., 2019] as the OOD dataset. To reduce the experimental cost, we randomly sample a certain number of
samples from these NLU datasets for experiments. See Table 5 and Table 6 for details of the adversarial dataset
generation method and data statistics for the NLU dataset.

C.5 Evaluation

Following previous works [Ye et al., 2023, Lyu et al., 2023], for Math Reasoning and NLU tasks, we adopt the
label classification accuracy (Acc) as the evaluation metric, and for Multi-hop QA tasks, we adopt the Exact
Match (EM) and F1 [Yang et al., 2018] as the evaluation metric. Following previous work [Lyu et al., 2023], we
extract the text span following the keyword "answer is" as the answer.

D Related Works

D.1 Prompting Strategies

The performance of LLMs on downstream tasks is largely influenced by the employed prompting strategy [Sahoo
et al., 2024]. Current prompting strategies primarily improve the quantity and robustness through two approaches.

2https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
3https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
4https://platform.openai.com/docs/models/gpt-3-5-turbo
5https://huggingface.co/google-bert/bert-base-uncased
6https://github.com/openai/grade-school-math
7https://github.com/hendrycks/math
8http://curtis.ml.cmu.edu/datasets/hotpot/hotpot_train_v1.1.json
9http://curtis.ml.cmu.edu/datasets/hotpot/hotpot_dev_distractor_v1.json

10https://github.com/StonyBrookNLP/musique
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Table 5: Multiple adversarial categories for ABSA, NLI, and FV tasks.
Task Adversarial Category Description

ABSA

ReverseTarget Reverse the sentiment of the target aspect.

ReverseNonTarget Reverse the sentiment of the non-target aspects with originally the same
sentiment as target.

AddDiff Add aspects with the opposite sentiment from the target aspect.

NLI

AddSent Add some meaningless sentence to premise, which do not change the
semantics.

NumWord Find some num words in sentences and replace them with different num
word.

SwapAnt Find some keywords in sentences and replace them with their antonym.

FV Symmetric
For each claim-evidence pair, generating a synthetic pair that holds the
same relation (e.g. SUPPORTS or REFUTES) but expressing a different,
contrary, fact.

Table 6: Details of all datasets used in the experiments.

Tasks Datasets Train Test MeasureOri Adv

Math Reasoning GSM8K 7473 1319 - Accuracy
MATH 1744 1187 - Accuracy

Multi-hop Question Answering HotpotQA 5000 1000 - F1 & EM
MuSiQue 5562 1165 - F1 & EM

Natural Language Understanding
ABSA 2358 638 1239 Accuracy

NLI 5000 810 754 Accuracy
FV 5000 500 1000 Accuracy

On one hand, incorporating a few labeled examples within the instruction can significantly enhance the
performance of LLM, occasionally even better than fine-tuned models [Brown et al., 2020, Chung et al.,
2022, Dong et al., 2022]. This method is referred to as In-Context Learning (ICL). Several works involve the
modification of instruction examples to address the issue of LLMs being particularly sensitive to the designing
of demonstration examples, including example selection [Liu et al., 2021], example format Dong et al. [2022],
example label [Min et al., 2022, Yoo et al., 2022], and example order [Lu et al., 2021]. Following this way,
recent works have suggested that including chain-of-thoughts (CoTs) in the context of these examples can further
augment the quality of LLM’s responses [Nye et al., 2021, Lampinen et al., 2022, Wei et al., 2022]. On the other
hand, to tackle the instability in the outputs of LLMs, attributable to the “multinomial sampling” [Holtzman
et al., 2019], some works involve enhancement by employing multiple sampling and voting mechanisms to
determine the final answer [Chen et al., 2021, Wang et al., 2022, Li et al., 2022], which is referred to as
self-consistency (SC). Moreover, for more complex tasks, many other prompting methods based on multiple
sampling have been proposed, such as React [Yao et al., 2022], ToT [Yao et al., 2024], and GoT [Besta et al.,
2024].

In this work, we primarily combine these two directions by modeling front-door adjustments to address bias
issues in LLM prompting. CoT is utilized as a mediator variable. In such scenarios, we further employ NWGM
approximation to select the demonstration, which can represent the expectation of the entire dataset and help the
model generate an unbiased answer.

D.2 Debiasing with Causal Inference

Causal inference uses scientific methods to identify causal relationships between variables [Pearl et al., 2016].
Because of its rigorous theoretical guarantees and mature causal modeling tools [Pearl, 2019], causal inference
has advantages in debiasing work. Recently, causal inference has been widely used in natural language
processing [Feder et al., 2022, Chen et al., 2023b] and computer vision [Yang et al., 2021a].

Some works apply counterfactual reference to remove the bias of the model [Xu et al., 2023, Guo et al., 2023,
Niu et al., 2021, Xu et al., 2024]. For instance, Niu et al. [2021] debias the visual question answering task by
subtracting the predictions of the language-only model from the predictions of the vision-language model to
reduce linguistic biases in the integrated system. Other work uses causal interventions for debiasing, including
backdoor adjustment [Tian et al., 2022, Zhu et al., 2023, Wang et al., 2023c, Wu et al., 2024] and front-door
adjustment [Yang et al., 2021b,a, Zhang et al., 2024]. In the era of LLMs, several studies have integrated
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Table 7: Results of the robustness study on LLaMA2 and GPT-3.5. Ori denotes the original dataset
(in-distribution) and Adv denotes the adversarial dataset (out-of-distribution). The best results are in
bold.

ABSA NLI FV

Methods Ori Adv Ori Adv Ori Adv

LLaMA2

Standard ICL 71.63 34.71 36.42 19.36 72.00 49.30
CoT 66.14 40.36 29.51 25.46 76.60 66.80

CoT-SC 75.24 42.62 36.91 29.97 77.80 69.40
Causal Prompting 73.04 64.73 55.06 46.29 89.00 77.10

GPT-3.5

Standard ICL 75.24 66.18 74.32 31.17 88.20 68.90
CoT 70.69 63.2 74.07 52.25 89.60 76.20

CoT-SC 79.94 71.83 76.91 56.10 91.00 78.60
Causal Prompting 82.29 79.02 80.74 62.47 94.60 82.50

Table 8: The results of ablation study on LLaMA3. The best results are in bold.
GSM8K MATH HotpotQA MuSiQue

Methods Acc Acc EM F1 EM F1

Causal Prompting 87.95 62.76 58.5 78.18 48.07 64.23
NWGM-Reverse 87.72 62.26 57.7 77.97 47.81 63.48
NWGM-Random 86.13 52.99 56.9 77.23 47.38 61.60
w/o Contrastive Learning 86.58 59.56 57.9 77.88 47.47 62.45

LLMs with causal inference techniques [Jin et al., 2023a, Lyu et al., 2024, Jin et al., 2023b, Stolfo et al., 2023].
However, some of these studies do not fully adhere to the structural causal model, relying excessively on
heuristic methods [Lu et al., 2022, Wang et al., 2023c, Zhang et al., 2023a, Tang et al., 2023]; others employ
overly simplistic causal diagrams, which are inadequate for complex tasks [Abdali et al., 2023, Lyu et al., 2024].
Overall, counterfactual inference necessitates the acquisition of logits from LLM outputs, whereas back-door
adjustment demands modeling of specific values of confounding variables. In contrast, front-door adjustment
allows causal intervention without access to the values of confounding variables or logits of LLM outputs. This
makes front-door adjustment particularly apt for application in LLM scenarios.

Therefore, we propose to debias the prompting methods by causal intervention based on front-door adjustment.
The work most closely related to ours is DeCOT [Lanham et al.]; DeCoT [Lanham et al.] debiases the chain-of-
thoughts of LLMs by incoroporating counterfactual knowledge and front-door adjustment. Both our work and
DeCoT use the front-door adjustment on LLMs. Howerver, DeCoT requires the introduction of instrumental
variables to model counterfactual knowledge, limiting its applicability to knowledge-intensive tasks. In contrast,
our approach is versatile and can be applied to a wide range of tasks. Our approach, on one hand, adapts the
traditional front-door adjustment to make it suitable for the task of LLM prompting. On the other hand, it adheres
more closely to the established principles of the field.

E More Experimental Results

E.1 Robustness Study

We also provide robustness studies on LLaMA2 and GPT3.5 in Table 7. The findings are consistent with
experiments conducted on LLaMA3 in Section 4.4, demonstrating that our method possesses a distinct advantage
on adversarial robustness datasets.

E.2 Ablation Study

In the ablation study presented in Table 8, we perform a detailed ablation analysis to evaluate two pivotal aspects:
the effectiveness of the NWGM approximation and the impact of incorporating contrastive learning. This
analysis spans four datasets, including GSM8K, MATH, HotpotQA, and MuSiQue, utilizing the LLaMA3-8B
model.
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Effectiveness of the NWGM The NWGM approximation is employed in the Estimation of P (A|do(r)) to
perform the back-door adjustment, where we select the ICL demonstration that is most similar to the query
and put the most similar demonstration samples closer to the test samples, as detailed in Section 3.2. We
evaluate the impact of the NWGM approximation by comparing the standard setup against two variants of
NWGM-Reverse and NWGM-Random, respectively. NWGM-Reverse means that we reverse the order of
standard ICL demonstrations, that is, Piter

rk = [d↑1, ..., d
↑
n, q

test] with the same order of KATE [Liu et al., 2021]
method. NWGM-Random denotes that ICL demonstrations are selected at random from the raining set D. The
performance decline observed in these two variants validates the effectiveness of our approach in selecting the
most relevant samples, thereby enabling a more accurate estimation of P (A|do(r)).

Impact of contrastive learning The second aspect of our ablation study is to assess the role of contrastive
learning. By removing contrastive learning, we can observe a decline in performance metrics compared to
Causal Prompting. For example, there is a decrease of 1.37% in accuracy on GSM8K and 3.20% on MATH. It
indicates that contrastive learning facilitates the alignment of feature representations between the Encoder and
LLMs.

F Limitations

Although our results already outperform baselines overall, our work still suffers from the following limitations.

• We evaluate the effectiveness of our approach on three tasks: Math Reasoning, Multi-hop Question
Answering, and Natural Language Understanding. We need to test the effectiveness of Causal
Prompting on other more complex tasks.

• As mentioned in Appendix A, although our method outperforms baselines at the same cost, how to
reduce the cost of prompt remains an important issue.

• We only evaluated the effectiveness of Causal Prompting on three Large Language Models, LLaMA2-
7B, LLaMA3-8B and GPT-3.5, and we need to evaluate our method on more Large Language Models
of different kinds and scales.

G Case Study

In this section, we provide two running samples from GSM8K and HotpotQA with intermediate output for each
module.

G.1 Case on GSM8K

Intermediate output details of a GSM8K example.

Question

A merchant wants to make a choice of purchase between 2 purchase plans: jewelry worth $5,000 or
electronic gadgets worth $8,000. His financial advisor speculates that the jewelry market will go up
2.5% while the electronic gadgets market will rise 1.2% within the same month. If the merchant is
looking to maximize profit at the end of this month by making a choice, how much profit would this
be?
(The correct answer is 125)

Outputs from CoT-SC

The number of chain−of−thoughts m=40.
Answer voting results:
P (A = 96|X) = 19/40 = 0.475
P (A = 125|X) = 18/40 = 0.45
...
(Omit answers with fewer votes)
Therefore, the final answer obtained according to the COT−SC method is 96.

An example of an error is shown:

Let’s calculate the future value of each option:
Option 1: Jewelry
Current value = $5,000
Expected increase = 2.5% of $5,000 = $125
Future value = $5,000 + $125 = $5,125
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Option 2: Electronic Gadgets
Current value = $8,000
Expected increase = 1.2% of $8,000 = $96
Future value = $8,000 + $96 = $8,096
Since the merchant wants to maximize profit, they should choose the option with the higher future
value. In this case, it’s Option 2: Electronic Gadgets with a future value of $8,096.
The profit would be the difference between the future value and the current value: $8,096 − $8,000 =
$96.
Therefore, the answer is $96.

Cluster results

The number of chain−of−thoughts selected from clustering results k=8.
−−−−−−−−−−−−−−−−−−−−
CoT−1: P (r1|X) = 0.375
−−−−−−−−−−−−−−−−−−−−
Let’s calculate the profit for each option:
Option 1: Jewelry
* Current value: $5,000
* Expected increase: 2.5% of $5,000 = $125
* Future value: $5,000 + $125 = $5,125
* Profit: $5,125 − $5,000 = $125
Option 2: Electronic Gadgets
* Current value: $8,000
* Expected increase: 1.2% of $8,000 = $96
* Future value: $8,000 + $96 = $8,096
* Profit: $8,096 − $8,000 = $96
Comparing the profits, the merchant would make a higher profit by choosing the jewelry option,
which is $125. Therefore, the answer is $125.

−−−−−−−−−−−−−−−−−−−−
CoT−2: P (r2|X) = 0.025
−−−−−−−−−−−−−−−−−−−−
Let’s analyze the situation step by step:
1. The merchant has to choose between jewelry worth $5,000 and electronic gadgets worth $8,000.
2. The financial advisor predicts that the jewelry market will go up 2.5% within the same month. This
means that the value of the jewelry will increase by 2.5% of $5,000, which is:

$5,000 x 0.025 = $125
So, the value of the jewelry will become:
$5,000 + $125 = $5,125
3. The financial advisor predicts that the electronic gadgets market will rise 1.2% within the same
month. This means that the value of the electronic gadgets will increase by 1.2% of $8,000, which is:
$8,000 x 0.012 = $96
So, the value of the electronic gadgets will become:
$8,000 + $96 = $8,096
4. Now, let’s compare the profit from each option:
Option 1: Jewelry ($5,125 − $5,000) = $125
Option 2: Electronic Gadgets ($8,096 − $8,000) = $96
Since $125 is greater than $96, the merchant would make a maximum profit by choosing the jewelry
option, which is $125.

−−−−−−−−−−−−−−−−−−−−
CoT−3: P (r3|X) = 0.075
−−−−−−−−−−−−−−−−−−−−
Let’s analyze the situation:
Option 1: Jewelry worth $5,000
* The jewelry market will go up 2.5%, so the value will increase by 2.5% of $5,000 = $125
* The merchant will sell the jewelry for $5,000 + $125 = $5,125
* The profit = Selling price − Cost price = $5,125 − $5,000 = $125
Option 2: Electronic gadgets worth $8,000
* The electronic gadgets market will go up 1.2%, so the value will increase by 1.2% of $8,000 = $96
* The merchant will sell the electronic gadgets for $8,000 + $96 = $8,096
* The profit = Selling price − Cost price = $8,096 − $8,000 = $96
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Comparing the profits, we can see that the merchant would make a profit of $125 if they choose the
jewelry option, and a profit of $96 if they choose the electronic gadgets option. Since $125 is greater
than $96, the merchant would maximize their profit by choosing the jewelry option.

−−−−−−−−−−−−−−−−−−−−
CoT−4: P (r4|X) = 0.025
−−−−−−−−−−−−−−−−−−−−
Let’s analyze the situation step by step:
1. If the merchant chooses to buy jewelry worth $5,000, its value will increase by 2.5% in the next
month. To find the increase in value, multiply the current value by the percentage increase:
$5,000 x 2.5% = $5,000 x 0.025 = $125
The total value of the jewelry after the increase will be:
$5,000 + $125 = $5,125
2. If the merchant chooses to buy electronic gadgets worth $8,000, its value will increase by 1.2% in
the next month. To find the increase in value, multiply the current value by the percentage increase:
$8,000 x 1.2% = $8,000 x 0.012 = $96
The total value of the electronic gadgets after the increase will be:
$8,000 + $96 = $8,096
3. To maximize profit, the merchant should choose the option that results in the highest total value. In
this case, the merchant should choose to buy electronic gadgets worth $8,096, which is $976 more

than the value of the jewelry.
The profit will be the difference between the increased value of the electronic gadgets and their
original price:
$8,096 − $8,000 = $96
So, the maximum profit the merchant can make is $96.

−−−−−−−−−−−−−−−−−−−−
CoT−5: P (r5|X) = 0.15
−−−−−−−−−−−−−−−−−−−−
Let’s calculate the value of the jewelry after the market goes up 2.5%:
Initial value: $5,000
Percentage increase: 2.5%
Value after increase: $5,000 + (2.5% of $5,000) = $5,000 + $125 = $5,125
Now, let’s calculate the value of the electronic gadgets after the market goes up 1.2%:
Initial value: $8,000
Percentage increase: 1.2%
Value after increase: $8,000 + (1.2% of $8,000) = $8,000 + $96 = $8,096
Since the merchant wants to maximize profit, he should choose the option that gives him the highest
value after the market increase. In this case, the electronic gadgets option is worth $8,096, which is
higher than the jewelry option worth $5,125.
The profit would be the difference between the value of the chosen option and its initial value:
Profit = $8,096 − $8,000 = $96
Therefore, the answer is $96.

−−−−−−−−−−−−−−−−−−−−
CoT−6: P (r6|X) = 0.025
−−−−−−−−−−−−−−−−−−−−
Let’s analyze the situation step by step:
1. The merchant has two options: purchasing jewelry worth $5,000 or electronic gadgets worth $8
,000.
2. The financial advisor predicts that the jewelry market will rise by 2.5%, which means the value of
the jewelry will increase by 2.5% of $5,000 = $125.
3. The value of the jewelry will then become $5,000 + $125 = $5,125.
4. The financial advisor also predicts that the electronic gadgets market will rise by 1.2%, which
means the value of the electronic gadgets will increase by 1.2% of $8,000 = $96.
5. The value of the electronic gadgets will then become $8,000 + $96 = $8,096.
6. The merchant wants to maximize profit, which means they should choose the option that results in
the highest profit.
Comparing the two options:
* Jewelry: $5,125 (new value) − $5,000 (original value) = $125 profit
* Electronic gadgets: $8,096 (new value) − $8,000 (original value) = $96 profit
The merchant should choose the jewelry option, as it results in a higher profit of $125 compared to
$96 for the electronic gadgets. Therefore, the answer is $125.
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−−−−−−−−−−−−−−−−−−−−
CoT−7: P (r7|X) = 0.15
−−−−−−−−−−−−−−−−−−−−
Let’s calculate the profit for each option:
Option 1: Jewelry worth $5,000
The jewelry market will rise 2.5%, so the value of the jewelry will increase to:
$5,000 x (1 + 0.025) = $5,000 x 1.025 = $5,125
Profit = Selling price − Purchase price = $5,125 − $5,000 = $125
Option 2: Electronic gadgets worth $8,000
The electronic gadgets market will rise 1.2%, so the value of the gadgets will increase to:
$8,000 x (1 + 0.012) = $8,000 x 1.012 = $8,096
Profit = Selling price − Purchase price = $8,096 − $8,000 = $96
Since the merchant is looking to maximize profit, they should choose Option 1, which yields a profit
of $125.

−−−−−−−−−−−−−−−−−−−−
CoT−8: P (r8|X) = 0.175
−−−−−−−−−−−−−−−−−−−−
Let’s analyze the situation step by step:
1. Jewelry worth $5,000 with a 2.5% increase:
New value = $5,000 + (2.5% of $5,000) = $5,000 + $125 = $5,125
Profit = New value − Original value = $5,125 − $5,000 = $125
2. Electronic gadgets worth $8,000 with a 1.2% increase:
New value = $8,000 + (1.2% of $8,000) = $8,000 + $96 = $8,096
Profit = New value − Original value = $8,096 − $8,000 = $96
Comparing the profits, the merchant would make a profit of $125 if they choose the jewelry plan and
a profit of $96 if they choose the electronic gadgets plan. Since the merchant wants to maximize
profit, they should choose the jewelry plan, which would yield a profit of $125.

Intervention results

For the above eight chain−of−thoughts, we use the NWGM algorithm to perform causal intervention
operations on them respectively. We can then compute the causal effect between the chain−of−
thought and the answer.

P (A = 125|do(r1)) = 9/10 = 0.9
P (A = 96|do(r1)) = 0/10 = 0.0

P (A = 125|do(r2)) = 10/10 = 1.0
P (A = 96|do(r2)) = 0/10 = 0.0

P (A = 125|do(r3)) = 10/10 = 1.0
P (A = 96|do(r3)) = 0/10 = 0.0

P (A = 125|do(r4)) = 0/10 = 0.0
P (A = 96|do(r4)) = 8/10 = 0.8

P (A = 125|do(r5)) = 0/10 = 0.0
P (A = 96|do(r5)) = 10/10 = 1.0

P (A = 125|do(r6)) = 9/10 = 0.9
P (A = 96|do(r6)) = 1/10 = 0.1

P (A = 125|do(r7)) = 8/10 = 0.8
P (A = 96|do(r7)) = 0/10 = 0.0

P (A = 125|do(r8)) = 10/10 = 1.0
P (A = 96|do(r8)) = 0/10 = 0.0

Final results

The final answer is obtained by performing a weighted voting as follows:
P (A = 125|do(X)) = 0.375 * 0.9 + 0.025 * 1.0 + 0.075 * 1.0 + 0.025 * 0.0 + 0.15 * 0.0 + 0.025 *
0.9 + 0.15 * 0.8 + 0.175 * 1.0 = 0.755
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P (A = 96|do(X)) = 0.375 * 0.0 + 0.025 * 0.0 + 0.075 * 0.0 + 0.025 * 0.8 + 0.15 * 1.0 + 0.025 * 0.1
+ 0.15 * 0.0 + 0.175 * 0.0 = 0.1725

Finally, we chose the answer with the largest weight as the final answer.
Therefore, the final answer obtained according to the Causal Prompting method is 125.

G.2 Case on HotpotQA

Intermediate output details of a HotpotQA example.

Context

The Walton family is an American family whose collective fortune makes them among the richest
families in the world. The majority of their wealth derives from the heritage of Bud and Sam Walton,
who were the co−founders of the world’s largest retailer, Walmart. The three most prominent living
members (Jim, Rob and Alice) have consistently been in the top ten of the "Forbes" 400 since 2001,
as were John ( 2005) and Helen (d. 2007) prior to their deaths. Christy Walton took her husband John
’s place after his death. Helen Robson Kemper Walton (December 3, 1919 − April 19, 2007) was the
wife of Wal−Mart and Sam’s Club founder Sam Walton. At one point in her life, she was the richest
American and the eleventh−richest woman in the world.

Question

Who was the husband of the prominent Walton family member who died after John died in 2005?
(The correct answer is Sam Walton)

Outputs from CoT-SC

The number of chain−of−thoughts m=40.
Answer voting results:
P (A = John|X) = 13/40 = 0.325
P (A = SamWalton|X) = 12/40 = 0.3
P (A = JohnWalton|X) = 9/40 = 0.225
...
(Omit answers with fewer votes)
Therefore, the final answer obtained according to the COT−SC method is John.

An example of an error is shown:

Step 1: Identify the prominent Walton family member who died after John died in 2005. Helen
Robson Kemper Walton died in 2007.
Step 2: Determine who Helen was married to. Helen was the wife of Sam Walton.
Step 3: Identify who took Helen’s place after her death. Christy Walton took her husband John’s
place after his death.
Step 4: Determine who John is. John is the husband of Christy Walton.
Step 5: Combine the information to answer the question. The husband of the prominent Walton
family member who died after John died in 2005 is John.
Therefore, the answer is: John.

Cluster results

The number of chain−of−thoughts selected from clustering results k=8.
−−−−−−−−−−−−−−−−−−−−
CoT−1: P (r1|X) = 0.325
−−−−−−−−−−−−−−−−−−−−
Step 1: Identify the prominent Walton family member who died after John died in 2005. According
to the text, Helen Robson Kemper Walton died in 2007.
Step 2: Determine who Helen’s husband was. According to the text, Helen was the wife of Sam
Walton.
Step 3: Determine who John’s wife was. According to the text, John’s wife was Christy Walton.
Step 4: Combine the information to answer the question. Since Helen was Sam’s wife and Christy is
John’s wife, it means that John is not Helen’s husband. Therefore, the answer is: Sam Walton.

−−−−−−−−−−−−−−−−−−−−
CoT−2: P (r2|X) = 0.25
−−−−−−−−−−−−−−−−−−−−
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Step 1: Identify the prominent Walton family member who died after John died in 2005. The
prominent Walton family member who died after John died in 2005 is Helen (d. 2007).
Step 2: Determine who Helen was married to. Helen was married to Sam Walton, the founder of
Walmart and Sam’s Club.
Step 3: Identify the current spouse of Helen. Christy Walton took her husband John’s place after his
death.
Step 4: Determine who John is. John is Christy Walton’s husband.
Step 5: Combine the information to answer the question. Helen’s husband after John died in 2005 is
John, who is also Christy Walton’s husband.
Therefore, the answer is: John.

−−−−−−−−−−−−−−−−−−−−
CoT−3: P (r3|X) = 0.075
−−−−−−−−−−−−−−−−−−−−
Step 1: Identify the prominent Walton family member who died after John died in 2005. The
prominent Walton family member who died after John died in 2005 is Helen Robson Kemper Walton.

Step 2: Determine the husband of Helen Robson Kemper Walton. Helen Robson Kemper Walton was
the wife of Sam Walton.

Step 3: Combine the information to answer the question. Since John died in 2005, it is likely that the
question is asking about the husband of Helen Robson Kemper Walton after John’s death. Since
Helen was married to Sam Walton, the correct answer is that there is no husband of Helen Robson
Kemper Walton after John’s death, as Sam Walton passed away before John.
Therefore, the answer is: There is no answer (as Helen Robson Kemper Walton was already married
to Sam Walton and John had passed away).

−−−−−−−−−−−−−−−−−−−−
CoT−4: P (r4|X) = 0.125
−−−−−−−−−−−−−−−−−−−−
Step 1: Identify the prominent Walton family member who died after John died in 2005. The
prominent Walton family member who died after John died in 2005 is Helen Robson Kemper Walton.

Step 2: Determine who Helen’s husband was. Helen’s husband was Sam Walton, the founder of
Walmart and Sam’s Club.
Step 3: Since John died in 2005, it is likely that Helen’s husband John is referring to John Walton,
who died in 2005. This means Christy Walton took John’s place after his death, as stated in the
context.
Step 4: Therefore, the husband of the prominent Walton family member who died after John died in
2005 is John Walton.
Therefore, the answer is: John Walton.

−−−−−−−−−−−−−−−−−−−−
CoT−5: P (r5|X) = 0.125
−−−−−−−−−−−−−−−−−−−−
Step 1: Identify the prominent Walton family member who died after John died in 2005. Helen
Robson Kemper Walton died in 2007, after John Walton’s death in 2005.
Step 2: Determine who Helen Robson Kemper Walton was married to. Helen Robson Kemper
Walton was married to Sam Walton.
Step 3: Determine who took Sam Walton’s place after his death. Sam Walton’s wife Helen took her
husband’s place after his death.
Step 4: Identify who took John Walton’s place after his death. Christy Walton took her husband John’
s place after his death.
Step 5: Combine the information to answer the question. Since Christy Walton took John’s place
after his death, it can be inferred that John was Christy’s husband.
Step 6: Therefore, the answer is: John Walton.

−−−−−−−−−−−−−−−−−−−−
CoT−6: P (r6|X) = 0.025
−−−−−−−−−−−−−−−−−−−−
Step 1: Identify the Walton family member who died after John died in 2005. The Walton family
member who died after John died in 2005 is Helen Robson Kemper Walton.
Step 2: Determine who Helen Robson Kemper Walton was married to. According to the context,
Helen was the wife of Sam Walton, the founder of Walmart and Sam’s Club.
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Step 3: Since John is mentioned as dying in 2005, it implies that Helen’s husband is not John, but
rather Sam Walton. However, the question asks about the husband of the prominent Walton family
member who died after John died in 2005, which would be Helen.
Step 4: Since Helen is the only prominent Walton family member mentioned as dying after John died
in 2005, it can be inferred that her husband is the one being asked about. However, the question is
asking about the husband of the prominent Walton family member who died after John died in 2005,
not Helen herself. This implies that the question is actually asking about the husband of Christy
Walton, who took her husband John’s place after his death.
Step 5: Therefore, the answer is: John Walton, who was Christy Walton’s husband.

−−−−−−−−−−−−−−−−−−−−
CoT−7: P (r7|X) = 0.05
−−−−−−−−−−−−−−−−−−−−
Step 1: Identify the Walton family member who died after John died in 2005. Helen Robson Kemper
Walton died in 2007, after John’s death in 2005.
Step 2: Determine who Helen’s husband was. Helen’s husband was Sam Walton, the co−founder of
Walmart.
Step 3: However, the question asks for the husband of the prominent Walton family member who
died after John died in 2005. Since Helen died in 2007, it cannot be her.
Step 4: The question does not provide the exact date of Christy Walton’s husband John’s death, but it
mentions that Christy took her husband John’s place after his death. Therefore, it can be inferred that
Christy Walton’s husband is the answer to the question.
Step 5: Combine the information to answer the question. The husband of the prominent Walton
family member who died after John died in 2005 is John Walton’s husband, which is Christy Walton’
s husband, also named John.
Therefore, the answer is: John.

−−−−−−−−−−−−−−−−−−−−
CoT−8: P (r8|X) = 0.025
−−−−−−−−−−−−−−−−−−−−
Step 1: Identify the prominent Walton family member who died after John died in 2005. Helen
Robson Kemper Walton died in 2007.
Step 2: Determine the relationship between Helen and John. Helen was the wife of John.
Step 3: Identify the question being asked. The question is asking for the husband of the prominent
Walton family member who died after John died in 2005.
Step 4: Combine the information to answer the question. Since Helen died after John in 2005, John is
the husband of the prominent Walton family member who died after John died in 2005.

Therefore, the answer is: John.

Intervention results

For the above eight chain−of−thoughts, we use the NWGM algorithm to perform causal intervention
operations on them respectively. We can then compute the causal effect between the chain−of−
thought and the answer.

P (A = John|do(r1)) = 1/10 = 0.1
P (A = SamWalton|do(r1)) = 6/10 = 0.6
P (A = JohnWalton|do(r1)) = 2/10 = 0.2

P (A = John|do(r2)) = 3/10 = 0.3
P (A = SamWalton|do(r2)) = 4/10 = 0.4
P (A = JohnWalton|do(r2)) = 1/10 = 0.1

P (A = John|do(r3)) = 4/10 = 0.4
P (A = SamWalton|do(r3)) = 0/10 = 0.0
P (A = JohnWalton|do(r3)) = 1/10 = 0.1

P (A = John|do(r4)) = 0/10 = 0.0
P (A = SamWalton|do(r4)) = 2/10 = 0.2
P (A = JohnWalton|do(r4)) = 8/10 = 0.8

P (A = John|do(r5)) = 0/10 = 0.0
P (A = SamWalton|do(r5)) = 0/10 = 0.0
P (A = JohnWalton|do(r5)) = 5/10 = 0.5
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P (A = John|do(r6)) = 0/10 = 0.0
P (A = SamWalton|do(r6)) = 0/10 = 0.0
P (A = JohnWalton|do(r6)) = 8/10 = 0.8

P (A = John|do(r7)) = 8/10 = 0.8
P (A = SamWalton|do(r7)) = 0/10 = 0.0
P (A = JohnWalton|do(r7)) = 2/10 = 0.2

P (A = John|do(r8)) = 6/10 = 0.6
P (A = SamWalton|do(r8)) = 0/10 = 0.0
P (A = JohnWalton|do(r8)) = 1/10 = 0.1

Final results

The final answer is obtained by performing a weighted voting as follows:
P (A = John|do(X)) = 0.325 * 0.1 + 0.25 * 0.3 + 0.075 * 0.4 + 0.125 * 0.0 + 0.125 * 0.0 + 0.025 *
0.0 + 0.05 * 0.8 + 0.025 * 0.6 = 0.1925

P (A = SamWalton|do(X)) = 0.325 * 0.6 + 0.25 * 0.4 + 0.075 * 0.0 + 0.125 * 0.2 + 0.125 * 0.0 +
0.025 * 0.0 + 0.05 * 0.0 + 0.025 * 0.0 = 0.32

P (A = JohnWalton|do(X)) = 0.325 * 0.2 + 0.25 * 0.1 + 0.075 * 0.1 + 0.125 * 0.8 + 0.125 * 0.5 +
0.025 * 0.8 + 0.05 * 0.2 + 0.025 * 0.1 = 0.2925
Finally, we chose the answer with the largest weight as the final answer.
Therefore, the final answer obtained according to the Causal Prompting method is Sam Walton.
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H Prompt Templates

In this section, we introduce the prompt templates of Chain-of-thought prompting (detailed in Section 3.1), CoT
Improvement based on NWGM approximation (detailed in Section 3.2), Samples generation for Contrastive
Learning (detailed in Section 3.4) and Demonstration Construction (detailed in Appendix C.2), respectively. The
blue texts in prompts are required for LLM completion.

H.1 Chain-of-thought prompting

CoT Prompt template of Multi-hop Question Answering task.

Instruction

You are a helpful assistant to perform Multi−hop Question Answering. Based on the context, answer
the question step by step and provide the final answer in the end.

Demonstration

Q:
The context is: [paragraphs]
The question is: [question]
Let us think step by step.
A:
Sure! Let us think step by step. [cot]
Therefore, the final answer is: [answer]

Test example:

Q:
The context is: [paragraphs]
The question is: [question]
Let us think step by step.
A:
Sure! Let us think step by step. [cot]
Therefore, the final answer is: [answer]

CoT Prompt template of GSM8K dataset.

Instruction

You are a helpful assistant to perform Mathematical reasoning. Answer the question step by step and
provide the final answer in the end.

Demonstration

Q:
The question is: [question]
Let us think step by step.
A:
Sure! Let us think step by step. [cot]
Therefore, the final answer is: [answer]

Test example:

Q:
The question is: [question]
Let us think step by step.
A:
Sure! Let us think step by step. [cot]
Therefore, the final answer is: [answer]
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CoT Prompt template of MATH dataset.

Instruction

You are a helpful assistant to perform Mathematical reasoning. Answer the question step by step and
provide the final answer in the end. Presented in Latex format in text mode. Your answer should be
inside \boxed{}, such as \boxed{answer}.

Demonstration

Q:
The question is: [problem]
Let us think step by step.
A:
Sure! Let us think step by step. [cot]
Therefore, the final answer is: [answer]

Test example:

Q:
The question is: [problem]
Let us think step by step.
A:
Sure! Let us think step by step. [cot]
Therefore, the final answer is: [answer]

CoT Prompt template of Aspect-based Sentiment Analysis (ABSA) task.

Instruction

You are a helpful assistant to perform sentiment classification. Please detect the sentiment polarity
towards the target given the sentence. The sentiment polarities include positive, negative and neutral.
Please focus on sentiment of the target itself. Detect the sentiment polarity step by step and provide
the final answer in the end.

Demonstration

Q:
The sentence is: [text]
The target is: [target].
Let us think step by step.
A:
Sure! Let us think step by step. [cot]
Therefore, the final answer is: [answer]

Test example:

Q:
The sentence is: [text]
The target is: [target].
Let us think step by step.
A:
Sure! Let us think step by step. [cot]
Therefore, the final answer is: [answer]
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CoT Prompt template of Natural Language Inference (NLI) task.

Instruction

You are a helpful assistant to perform Natural language inference. Natural language inference is the
task of determining whether a "hypothesis" is true (entailment), false (contradiction), or
undetermined (neutral) given a "premise". Answer in a consistent style. Please write the reasoning
process before giving the answer. Please provide your answer in the last sentence of your response.
Your answer should be entailment, contradiction or neutral.

Demonstration

Q:
The premise is: [premise]
The hypothesis is: [hypothesis]
Let us think step by step.
A:
Sure! Let us think step by step. [cot]
Therefore, the final answer is: [answer]

Test example:

Q:
The premise is: [premise]
The hypothesis is: [hypothesis]
Let us think step by step.
A:
Sure! Let us think step by step. [cot]
Therefore, the final answer is: [answer]

CoT Prompt template of Fact Verification (FV) task.

Instruction

You are a helpful assistant to perform fact verification. Please check the veracity of the claim
according to the evidence, including SUPPORTS and REFUTES. Answer in a consistent style.
Please write the reasoning process before giving the answer. Please provide your answer in the last
sentence of your response. Your answer should be either SUPPORTS or REFUTES.

Demonstration

Q:
The claim is: [question]
The evidence is: [context]
Let us think step by step.
A:
Sure! Let us think step by step. [cot]
Therefore, the final answer is: [answer]

Test example:

Q:
The claim is: [question]
The evidence is: [context]
Let us think step by step.
A:
Sure! Let us think step by step. [cot]
Therefore, the final answer is: [answer]

H.2 CoT Improvement based on NWGM approximation

We show the prompt templates of CoT Improvement based on NWGM approximation for the seven datasets
listed below, including HotpotQA, MuSiQue, GSM8K, MATH, ABSA, NLI and FV. Among them, HotpotQA
and MuSiQue datasets share the same template.
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Prompt template of Multi-hop Question Answering task.

Instruction

You are a helpful assistant to perform Multi−hop Question Answering. Based on the context, answer
the question step by step and provide the final answer in the end. I will provide a reasoning process,
and please improve the reasoning process and make sure you get the correct answer. Give your final
answer using the "The answer is:" format.

Demonstration

Q:
The context is: [paragraphs]
The question is: [question]
Let us think step by step.
The provided reasoning process is: [wrong_cot]
A:
The improved reasoning process is: [correct_cot]
Therefore, the correct answer is: [answer]

Test example:

Q:
The context is: [paragraphs]
The question is: [question]
Let us think step by step.
The provided reasoning process is: [wrong_cot]
A:
The improved reasoning process is: [improved_cot]
Therefore, the correct answer is: [answer]

Prompt template of GSM8K dataset.

Instruction

You are a helpful assistant to perform Mathematical reasoning. Answer the question step by step
and provide the final answer in the end. I will provide a reasoning process, and please improve the
reasoning process and make sure you get the correct answer.

Demonstration

Q:
The question is: [question]
Let us think step by step.
The provided reasoning process is: [wrong_cot]
A:
The improved reasoning process is: [correct_cot]
Therefore, the correct answer is: [answer]

Test example:

Q:
The question is: [question]
Let us think step by step.
The provided reasoning process is: [wrong_cot]
A:
The improved reasoning process is: [improved_cot]
Therefore, the correct answer is: [answer]
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Prompt template of MATH dataset.

Instruction

You are a helpful assistant to perform Mathematical reasoning. Answer the question step by step and
provide the final answer in the end. I will provide a reasoning process, and please improve the
reasoning process and make sure you get the correct answer. Presented in Latex format in text mode.
Your answer should be inside \boxed{}, such as \boxed{answer}.

Demonstration

Q:
The question is: [problem]
Let us think step by step.
The provided reasoning process is: [wrong_cot]
A:
The improved reasoning process is: [correct_cot]
Therefore, the correct answer is: [answer]

Test example:

Q:
The question is: [problem]
Let us think step by step.
The provided reasoning process is: [wrong_cot]
A:
The improved reasoning process is: [improved_cot]
Therefore, the correct answer is: [answer]

Prompt template of Aspect-based Sentiment Analysis (ABSA) task.

Instruction

You are a helpful assistant to perform sentiment classification. Please detect the sentiment polarity
towards the target given the sentence. The sentiment polarities include positive, negative and neutral.
Please focus on sentiment of the target itself. Detect the sentiment polarity step by step and provide
the final answer in the end. I will provide a reasoning process, and please improve the reasoning
process and make sure you get the correct answer.

Demonstration

Q:
The sentence is: [text]
The target is: [target].
Let us think step by step.
The provided reasoning process is: [wrong_cot]
A:
The improved reasoning process is: [correct_cot]
Therefore, the correct answer is: [answer]

Test example:

Q:
The sentence is: [text]
The target is: [target].
Let us think step by step.
The provided reasoning process is: [wrong_cot]
A:
The improved reasoning process is: [improved_cot]
Therefore, the correct answer is: [answer]
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Prompt template of Natural Language Inference (NLI) task.

Instruction

You are a helpful assistant to perform Natural language inference. Natural language inference is the
task of determining whether a "hypothesis" is true (entailment), false (contradiction), or
undetermined (neutral) given a "premise". Answer in a consistent style. Please write the reasoning
process before giving the answer. Please provide your answer in the last sentence of your response.
Your answer should be entailment, contradiction or neutral. I will provide a reasoning process, and
please improve the reasoning process and make sure you get the correct answer.

Demonstration

Q:
The premise is: [premise]
The hypothesis is: [hypothesis]
Let us think step by step.
The provided reasoning process is: [wrong_cot]
A:
The improved reasoning process is: [correct_cot]
Therefore, the correct answer is: [answer]

Test example:

Q:
The premise is: [premise]
The hypothesis is: [hypothesis]
Let us think step by step.
The provided reasoning process is: [wrong_cot]
A:
The improved reasoning process is: [improved_cot]
Therefore, the correct answer is: [answer]

Prompt template of Fact Verification (FV) task.

Instruction

You are a helpful assistant to perform fact verification. Please check the veracity of the claim
according to the evidence, including SUPPORTS and REFUTES. Answer in a consistent style.
Please write the reasoning process before giving the answer. Please provide your answer in the last
sentence of your response. Your answer should be either SUPPORTS or REFUTES. I will provide a
reasoning process, and please improve the reasoning process and make sure you get the correct
answer.

Demonstration

Q:
The claim is: [question]
The evidence is: [context]
Let us think step by step.
The provided reasoning process is: [wrong_cot]
A:
The improved reasoning process is: [correct_cot]
Therefore, the correct answer is: [answer]

Test example:

Q:
The claim is: [question]
The evidence is: [context]
Let us think step by step.
The provided reasoning process is: [wrong_cot]
A:
The improved reasoning process is: [improved_cot]
Therefore, the correct answer is: [answer]
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H.3 Samples generation for Contrastive Learning

Prompt template of samples generation for Contrastive Learning.

Instruction

You are an expert in data augmentation. Please generate similar sentences based on the sentences I
provided. Don’t generate extraneous content.

Test example:

Q:
Provided sentences: [anchor_sentences]
A:
Positive sentences: [positive_sentences]

H.4 Demonstration Construction

Prompt template of demos generation for Multi-hop Question Answering task.

Instruction

You are a helpful assistant to perform Multi−hop Question Answering. Based on the context, answer
the question step by step and provide the final answer in the end. I will provide the correct answer
and ask you to write your thought process based on the answer.

Demonstration

Q:
The context is: [paragraphs]
The question is: [question]
The correct answer is: [answer]
Let us think step by step.
A:
The correct reasoning process is: [cot]

Test example:

Q:
The context is: [paragraphs]
The question is: [question]
The correct answer is: [answer]
Let us think step by step.
A:
The correct reasoning process is: [cot]
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Prompt template of demos generation for Aspect-based Sentiment Analysis (ABSA) task.

Instruction

You are a helpful assistant to perform sentiment classification. Please detect the sentiment polarity
towards the target given the sentence. The sentiment polarities include positive, negative and neutral.
Please focus on sentiment of the target itself. Detect the sentiment polarity step by step and provide
the final answer in the end. I will provide the correct answer and ask you to write your thought
process based on the answer.

Demonstration

Q:
The sentence is: [text]
The target is: [target].
The correct answer is: [answer]
Let us think step by step.
A:
The correct reasoning process is: [cot]

Test example:

Q:
The sentence is: [text]
The target is: [target].
The correct answer is: [answer]
Let us think step by step.
A:
The correct reasoning process is: [cot]

Prompt template of demos generation for Natural Language Inference (NLI) task.

Instruction

You are a helpful assistant to perform Natural language inference. Natural language inference is the
task of determining whether a "hypothesis" is true (entailment), false (contradiction), or
undetermined (neutral) given a "premise". Answer in a consistent style. Please write the reasoning
process before giving the answer. Please provide your answer in the last sentence of your response.
Your answer should be entailment, contradiction or neutral. I will provide the correct answer and ask
you to write your thought process based on the answer.

Demonstration

Q:
The premise is: [premise]
The hypothesis is: [hypothesis]
The correct answer is: [answer]
Let us think step by step.
A:
The correct reasoning process is: [cot]

Test example:

Q:
The premise is: [premise]
The hypothesis is: [hypothesis]
The correct answer is: [answer]
Let us think step by step.
A:
The correct reasoning process is: [cot]
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Prompt template of demos generation for Fact Verification (FV) task.

Instruction

You are a helpful assistant to perform fact verification. Please check the veracity of the claim
according to the evidence, including SUPPORTS and REFUTES. Answer in a consistent style.
Please write the reasoning process before giving the answer. Please provide your answer in the last
sentence of your response. Your answer should be either SUPPORTS or REFUTES. I will provide
the correct answer and ask you to write your thought process based on the answer.

Demonstration

Q:
The claim is: [question]
The evidence is: [context]
The correct answer is: [answer]
Let us think step by step.
A:
The correct reasoning process is: [cot]

Test example:

Q:
The claim is: [question]
The evidence is: [context]
The correct answer is: [answer]
Let us think step by step.
A:
The correct reasoning process is: [cot]
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