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Fusion and Discrimination:
A Multimodal Graph Contrastive Learning

Framework for Multimodal Sarcasm Detection
Bin Liang, Lin Gui, Yulan He, Erik Cambria, Fellow, IEEE , and Ruifeng Xu⋆, Member, IEEE

Abstract—Identifying the sarcastic cues from both textual and visual information has become an important research issue, called
Multimodal Sarcasm Detection. In this paper, we investigate multimodal sarcasm detection from a novel perspective, where a
multimodal graph contrastive learning strategy is proposed to fuse and distinguish the sarcastic cues from both text and image
modalities. Specifically, we first utilize object detection to derive the crucial visual regions accompanied by their captions of the images,
which allows better learning of the image-modality and better modeling of the relations between visual regions. In addition, to make full
use of the semantic information of the image-modality, we employ optical character recognition to extract the textual descriptions in the
images. Then, based on image regions and the textual descriptions of the image-modality and the context of the text-modality, we build
a multimodal graph for each instance to model the intricate relations and incongruous sentiment expressions between modalities.
Furthermore, we devise a graph-oriented contrastive learning strategy to leverage the correlations in the same label and differences
between different labels, so as to capture better multimodal representations for multimodal sarcasm detection. Extensive experiments
and in-depth analysis show that our method outperforms the state-of-the-art models in multimodal sarcasm detection.

Index Terms—Multimodal sarcasm detection, sarcasm detection, graph model, contrastive learning.

✦

1 INTRODUCTION

SARCASM is a peculiar form and sophisticated linguis-
tic phenomenon of language behavior, where people

express ironic sentiment or intention that is opposite to
the authentic/apparent sentiment [1], [2], [3], [4]. Merriam-
Webster1 defines sarcasm as “the use of words that mean the
opposite of what you really want to say especially in order to
insult someone, to show irritation, or to be funny.”. Sarcasm
is popular on social media platforms, which may mislead
the prediction of sentiment analysis methods. Therefore,
detecting the sarcastic expression of the social media data
is a recommended strategy to improve the performance
of sentiment analysis and opinion mining [5], [6]. Early
research work usually focused on the problem of text-
only stance detection [7], [8], [9]. In recent years, with the
development of social media, more and more people tend
to post multimodal messages on social platforms.
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(a) I love commuting.

Image:

Text: (b) LOL! ! Few can!

Fig. 1. Examples of multimodal sarcastic expressions.

Therefore, many recent studies have been carried out
learning multimodal features for social media data. Corre-
sponding to the sarcasm detection, a study on multimodal
sarcasm detection for text and image has received much
research attention [10], [11]. Unlike sarcasm detection purely
based on text, multimodal sarcasm detection towards text-
and image-modality requires reasoning of the sarcastic cues
from both the two modalities [10]. As two sarcastic examples
shown in Figure 1, owing to the phrase “love commuting” in
the context of Figure 1 (a) and the word “LOL” in the context
of Figure 1 (b), text-only sarcasm detection methods may er-
roneously identify the two examples as a positive sentiment
polarity. However, combining the information in the image-
modality, both these two cases contain a sarcastic expression
with negative sentiment, because they are accompanied
by an image with visual information of “traffic jam” or
an image with textual descriptions of “flirting is being as
sarcastic as humanly possible”. Therefore, understanding the
relations and information from text and image modalities is
a key issue for multimodal sarcasm detection. To deal with
multimodal sarcasm detection on multimodal instances that
are composed of text and image modalities, existing research
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(a) I love commuting. (a1) A traffic jam here.

(b) LOL! ! Few can! (b1) LOL! ! Few can!

Fig. 2. Two multimodal sarcastic examples accompanied with the crucial
visual regions ((a) and (b)). (a1) and (b1) are the variants of non-
sarcastic examples with respect to (a) and (b), respectively. Boxes and
words in the same color are highly correlated expressions.

studies generally attempt to combine the features from text
and image modalities to learn the multimodal sarcastic clues
based on features concatenation [10], incorporate external
knowledge, such as image attributes [11], adjective-noun
pairs (ANPs) [12] or hash tags [13] to implicitly fuse the
features of different modalities with attention mechanism,
or explore graph neural model to learn the relationships be-
tween different modalities [14]. Despite promising progress
made, they still suffer from the following limitations:

• For image-modality, modeling the image purely from
the visual information may be inadequate to reason
the semantic information of satirical expression. As
the sarcastic example shown in Figure 2 (a), accu-
rately extracting the crucial information in the red
boxes and identifying it as “a traffic jam” is the key to
correctly detecting sarcasm in this example.

• Simply understanding the visual information of the
images may lead to a poor performance, since as
the example shown in Figure 1 (b), crucial satirical
clues in some images may be presented in the form
of text description. Therefore, leveraging the text
information of the image-modality is significant in
improving the learning of visual information.

• As the example shown in Figure 2 (a), the key visual
information, which is associated with different words
in the text-modality, may be overlapping or scattered
in an image. Therefore, it is imperative to model the
intricate relationships between the modalities and
learn the incongruent sentiment expressions between
the key visual information “a traffic jam” and the
crucial textual words “love commuting”.

• The combination of the same/similar image with
different texts (Figure 2 (a) → Figure 2 (a1)), or
the same/similar text with different images (Fig-
ure 2 (b) → Figure 2 (b1)), may lead to different
sarcasm detection results. Therefore, discriminating
the representations of different multimodal instances
in the latent space may lead to improved learning of
sarcastic clues in multimodal sarcasm detection.

To address the above limitations, we propose a novel
Multimodal Graph Contrastive Learning (MMGCL) frame-
work to deal with the multimodal sarcasm detection task,
in which the crucial information of image-modality can be
explicitly linked with the associated words of text-modality
to model the multimodal relations with a multimodal graph
structure and distinguish the multimodal representations
with a graph-oriented contrastive learning strategy To be
specific, 1) for limitation#1, we employ the object detection
model proposed by [15] to capture the crucial visual regions
and the corresponding attribute-object pairs for each image;
2) for limitation#2, we utilize an awesome open-source
optical character recognition (OCR) toolkit PaddleOCR2 to
extract the textual descriptions presented in the images,
allowing more effective learning of images’ semantic infor-
mation for sarcastic clues extraction; 3) for limitation#3,
we build a multimodal graph for each instance based on
the image regions derived by object detection (called visual
mode), the textual descriptions derived by OCR (called OCR
mode), and the context from the text-modality. More con-
cretely, based on the results of Part-of-Speech Tagging, we
explore a novel strategy to assign weights to the edges in the
multimodal graph. On the one hand, we compute the word
similarity across the contextual nouns of text-modality, the
nouns of OCR mode, and the object caption of visual mode to
model the intricate relations between modalities effectively.
On the other hand, to leverage the incongruous sentiment
expressions of sarcastic clues, we compute the sentiment
inconsistency scores across the contextual adjectives of text-
modality, the adjectives of OCR mode, and the attribute
caption of visual mode based on the external affective
knowledge (SenticNet [16]); 4) for limitation#4, we devise
a contrastive loss towards the graph-oriented multimodal
representations to pull together the clusters of representa-
tions belonging to the same label in the embedding space
and simultaneously push apart representations of samples
from different labels. This essentially allows the learning of
the correlation of features in the same sarcasm label and
the difference between sarcasm and non-sarcasm features,
enabling the model to derive better multimodal representa-
tions for multimodal sarcasm detection.

The main contributions of our work can be summarized
as follows.

• To the best of our knowledge, we are the first to
explore the use of multimodal graph contrastive
learning for modeling the intricate relations between
modalities and distinguishing the multimodal rep-
resentations between classes in the multimodal sar-
casm detection task.

• We exploit the visual regions’ captions of object
detection and the textual descriptions of OCR results
to improve the learning of image-modality, and then
model the multimodal relations and contradictory
sentiments between textual and visual information
based on the external knowledge sources for learning
sarcastic clues.

• We explore a multimodal graph-oriented contrastive
learning strategy to distinguish the similarity be-
tween examples in one class and the difference be-

2. https://github.com/PaddlePaddle/PaddleOCR
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tween examples in other classes, so as to improve the
multimodal representations for extracting sarcastic
features in multimodal sarcasm detection.

• Extensive experiments and in-depth analysis on
a public multimodal sarcasm detection benchmark
dataset show that our proposed method outperforms
the state-of-the-art baselines in the multimodal sar-
casm detection task.

2 RELATED WORK

2.1 Textual Sarcasm Detection

Textual sarcasm detection aims to detect the sarcastic expres-
sion of a context purely from the text-modality [8]. Some
early studies extracted the contextual incongruity expres-
sion with feature engineering approaches, such as searching
a set of positive verbs and negative situations [7], [17] or
building lexical indicators [18], [19] to produce the sarcastic
patterns. Further, neural network-based methods are widely
used in textual sarcasm detection [9], [20] due to less feature
engineering. Such as [21], [22] adopted a pre-trained con-
volutional neural networks (CNNs) architecture to extract
sentiment, emotion and personality features for sarcasm
detection. [20] utilize a bi-directional gated recurrent neural
network and a pooling neural network to respectively cap-
ture tweet content and contextual information for tweet sar-
casm detection. [23] modeled the contrast and incongruity
sentiment of the context with an attention-based neural
model, [9] learned the incongruity expressions between the
word pairs with a deep neural architecture fused by self-
matching network, bi-directional long short-term memory
(Bi-LSTM), and Low-rank Bilinear Pooling method. In addi-
tion, [24] designed an affective dependency graph network
based on the dependency tree and affective knowledge to
leverage the long-range inconsistent sentiment relations in
detecting sarcastic expressions. For a more powerful BERT-
based [25] method, [26] produced affective and contextual
feature embeddings to extend the architecture of BERT for
textual sarcasm detection.

2.2 Multimodal Sarcasm Detection

Different from sarcasm detection purely based on text,
multimodal sarcasm detection aims to detect the sarcastic
expression of the instances composed of different modal-
ities [10], [27]. Detecting the sarcastic expression for data
composed of text- and image-modality has achieved much
research attention in recent years. Among them, [10] firstly
presented the research of multimodal sarcasm detection
towards text and image modalities, and proposed a model
based on manually designed features to deal with multi-
modal sarcasm detection. Further, [11] created a new dataset
composed of text- and image-modality for multimodal sar-
casm detection, and proposed a hierarchical fusion model
with multimodal features to improve the learning of multi-
modal sarcasm detection. [12] explored decomposition and
relation network to devise a fused model for learning both
cross-modality contrast and semantic association. For BERT-
based methods, [13] proposed to model the intra-modality
and inter-modality incongruous sentiment expressions with
the inter-modality attention and co-attention mechanism

based on BERT [25]. Further, [14] devised an interactive
in-modal and cross-modal graph architecture to model the
relationships within and across modalities in learning the
sarcastic clues for multimodal sarcasm detection.

2.3 Graph Neural Networks
Recently, study methods based on graph neural networks,
including graph convolutional network (GCN) [28] and
graph attention network (GAT) [29], have achieved promis-
ing progress in many research domains. Such as computer
vision [30], [31], natural language processing [32], [33], and
recommendation systems [34], [35], etc. Correspondingly,
there are also a series graph network-based research studies
in the multimodal learning domain, such as multimodal
sentiment analysis [36], multimodal neural machine trans-
lation [37], multimodal video moment retrieval [38], and
multimodal named entity recognition [39], etc. Furthermore,
in the task of multimodal sarcasm detection, there is also
a graph neural network-based model proposed by [14],
in which an interactive in-modal and cross-modal graph
architecture is devised to learn the relationships within and
across modalities for learning the incongruous sentiment
expressions of sarcasm. Inspired by the remarkable perfor-
mance achieved by [14] in multimodal sarcasm detection
and by [24] in textual sarcasm detection, in our work, we
explore a novel multimodal GCN architecture to leverage
the inconsistent sentiment implications among the text-
modality and visual and OCR modes, allowing the under-
standing of intricate multimodal relationships to reason the
sarcasm expression.

2.4 Contrastive Learning
Contrastive learning in the latent space, which aims to
automatically make the representation of a given anchor
example to be similar to its positive pairs and dissimilar
to its negative pairs, has recently shown promising progress
in many research fields [40], [41], [42], [43], [44]. Further, a
series of contrastive learning methods have been explored
to deal with multimodal learning tasks, such as multimodal
representation learning [45], visual representation learn-
ing [46], and image registration [47], etc. In addition, some
research studies attempted to explore contrastive learning
based on graph models, so as to improve the learning of
graph representations. [48] proposed a graph contrastive
learning framework based on graph data augmentation,
which improves the graph representations for better gener-
alizability and robustness. [49] devised a graph contrastive
representation learning method with adaptive augmenta-
tion that incorporates various priors for topological and
semantic aspects of the graph, so as to highlight important
connective structures and enforce the model to recognize
underlying semantic information. Furthermore, supervised
contrastive learning is proposed by [42], which is built
on the contrastive self-supervised literature [40], [50] and
allows us to effectively leverage the label information of
the data. In which, clusters of points belonging to the same
class are pulled together in embedding space, while simul-
taneously pushing apart clusters of samples from different
classes. Inspired by [42], [49], we devise a graph contrastive
loss based on the supervised signal from sarcasm labels,
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Fig. 3. The architecture of our Multimodal Graph Contrastive Learning (MMGCL) framework.

aiming to capture the similarity between examples in one
class and contrast them with examples in other classes, so as
to derive better multimodal representation for multimodal
sarcasm detection.

3 METHODOLOGY

In this section, we describe our proposed Multimodal Graph
Contrastive Learning (MMGCL) framework in detail. The
architecture of our (MMGCL) framework is shown in Figure 3.
There are four main components in the (MMGCL) framework:
1) Preprocess of image-modality, in which we use object de-
tection to capture the crucial visual regions accompanied by
their attribute-object captions of the image and exploit optical
character recognition (OCR) to derive the textual description
of the image; 2) Encoder module, in which we utilize the pre-
trained uncased BERT-base model [25] as the text encoder
and OCR encoder to capture the hidden representations of
the inputs of text-modality and OCR mode, and employ
the pre-trained Vision Transformer (ViT) [51] as the visual
encoder to capture the hidden representation of the input
of visual mode; 3) Multimodal graph, in which we build a
multimodal graph for each input example based on the hid-
den representations, the Part-of-Speech Tagging results of
text-modality and OCR mode, the attribute-object captions of
visual mode, and the affective information from an external
knowledge source; 4) Graph-oriented contrastive learning,
in which we devise a contrastive loss for the graph-oriented
multimodal representations based on the supervised signal
from sarcasm labels to leverage the correlation of features
in the same sarcasm label and the difference of features
between sarcasm and non-sarcasm expressions.

3.1 Task Description
Given an example composed by a sentence consists of Nt

words ST = {wi}Nt
i=1, where wi represents the i-th contex-

tual word, and an image I . The aim of multimodal sarcasm
detection is to predict the sarcasm label (Sarcasm or Non-
sarcasm) of the given example.

3.2 Preprocess of Image-Modality
In this section, we describe how to capture the crucial visual
information of the image-modality by exploring the merit
of object detection and optical character recognition (OCR),
so as to make full use of the sarcastic cues from the image-
modality in multimodal sarcasm detection.

3.2.1 Object Detection
Previous studies generally attempt to understand the se-
mantic information of the image simply by modeling the
visual features of the image-modality, which may lead to
a poor understanding of the image-modality in learning
sarcastic information. Therefore, we utilize a trained object
detection model proposed by [15] to derive a series of visual
regions of objects {vi}Nv

i=1 paired with their attribute-object
pairs, as the bounding boxes in the image shown in Figure 3.
Nv is the number of visual regions of the image. Then the
visual regions can be regarded as the visual mode input
to represent the visual information of the image. Further,
the attribute-object pairs (such as “man”, “black shirt”, etc.)
serve as a bridge to link the representations of visual mode
with the text-modality and the OCR mode for building the
multimodal graph.

3.2.2 Optical Character Recognition
The intention of using optical character recognition (OCR)
to extract the textual descriptions from images is to better
learn the textual semantic information presented in the im-
ages for reasoning sarcastic cues. As the example shown in
Figure 1 (b), extracting the textual description in the image is
imperative to understand the ironic expression of the image-
modality, allowing a better learning of semantic information
for reasoning sarcastic clues than simply modeling the vi-
sual features. Therefore, we exploit a public awesome open-
source optical character recognition toolkit PaddleOCR3 to
extract the textual description of each image:

SO = {oi}No
i=1 = OCR(I) (1)

3. https://github.com/PaddlePaddle/PaddleOCR
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where oi represents the i-th word in the textual description
of the OCR result, No is the length of the textual description.
Note that if the images contain no text, the length of OCR
results is 0: i.e. No = 0.

3.3 Encoder Module

In this section, we describe the three encoder modules used
in our MMGCL framework in detail.

3.3.1 Text Encoder

For the processing of text-modality, given a sequence of
words ST = {wi}Nt

i=1, Nt is the length of ST . We employ the
pre-trained uncased BERT-base model [25] to encode each
word wi into a dT -dimensional embedding:

XT = [xT
1 ,x

T
2 , · · · ,xT

Nt
] = BERT([CLS]ST [SEP]) (2)

where XT is the embedding representations of the text-
modality. Note that the representations of tokens [CLS] and
[SEP] are not adopted in building the multimodal graph,
since the graph structure aims to model the multimodal
relationships for the context words of the text-modality.
Then, to unify the dimensions of representations between
different modalities and capture the sequential relations of
the context, we utilize a bidirectional LSTM [52] (Bi-LSTM)
to learn the hidden representation of the text-modality:

T = {t1, t2, · · · , tNt
} = Bi-LSTM(XT ) (3)

where Bi-LSTM(·) is the computation of the Bi-LSTM lay-
ers, tj ∈ R2dh denotes the hidden state vector at time step j
from the bidirectional LSTM, dh denotes the dimensionality
of the text-modality hidden state representation.

3.3.2 OCR Encoder

For the processing of OCR mode, for each textual descrip-
tion of the OCR mode SO = {oi}No

i=1. Corresponding to the
Text Encoder, we utilize the pre-trained uncased BERT-base
model [25] to encode each word oi into a dO-dimensional
embedding:

XO = [xO
1 ,x

O
2 , · · · ,xO

No
] = BERT([CLS]SO[SEP]) (4)

where XO is the embedding matrix of the OCR mode input.
As processed in Section 3.3.1, the representations of tokens
[CLS] and [SEP] are not utilized for constructing the
multimodal graph. Then, we utilize a bidirectional LSTM
(Bi-LSTM) to learn the hidden representation of the input of
OCR mode:

C = {c1, c2, · · · , cNo
} = Bi-LSTM(XO) (5)

where cj ∈ R2dh denotes the hidden state vector at time
step j from the bidirectional LSTM, and dh denotes the
dimensionality of the hidden state representation of each
word in OCR mode.

3.3.3 Visual Encoder
For the processing of visual mode, for each visual re-
gion vi ∈ RLh×Lw , following [12], we first resize it to
224 × 224, i.e. L = Lh = Lw = 224. Then, follow-
ing [51], we reshape the region vi ∈ RL×L into a sequence
vi = {pj ∈ RL/p×L/p}rj=1, where r = p × p is the number
of patches. Further, we flatten and embed each patch to
a dV -dimensional vector with a trainable linear projection:
zj = pjE.

Based on the sequence of the image patches, a [class]
token embedding z[class] ∈ RdV

is prepended for the se-
quence of embedded patches, and simultaneously position
embeddings are added to retain positional information.
Therefore, the input of each visual region vi is represented
as:

Zi = [z[class]; z1; z2; · · · ; zr] +Epos (6)

where Zi ∈ R(r+1)×dV

represents the embedding matrix of
the image patches, and Epos ∈ R(r+1)×dV

represents the
position embedding matrix. Then, we feed the matrix Zi

into the pretrained ViT to derive the representation xV
i of

the visual region vi:

XV
i = ViT(Zi), x

V
i = XV

i,[class] (7)

Note that, to capture a vector representation for each visual
region, the representation of the [class] token embedding
is used to represent the visual region. As such, the represen-
tation of the image I is defined as:

XV = {xV
1 ,x

V
2 , · · · ,xV

Nv
} (8)

Subsequently, to unify the dimensions of representations
between different modalities, we employ a trainable Linear
Projection to map each vi to a 2dh-dimensional vector:

V = {v1,v2, · · · ,vNv
} = XV W V (9)

where W V ∈ RdV ×2dh is a trainable weight matrix.

3.4 Multimodal Graph

In this section, we describe how to construct a multimodal
graph for each instance and how to fuse the multimodal
features by modeling the multimodal graphs.

3.4.1 Multimodal Graph Construction
In light of the merit of the graph model, we de-
vise a multimodal graph for each instance to explic-
itly link the textual words with the associated visual
regions and OCR tokens, so as to leverage the in-
tricate sarcastic relations between multimodal features.
To be specific, the nodes H of the multimodal graph
are the hidden representations from text-modality, OCR
mode and visual mode: H = {h1,h2, · · · ,hN} =
{t1, · · · , tNt

, c1, · · · , cNo
,v1, · · · ,vNv

}. Here, N = Nt +
No + Nv is the length of the hidden representations. The
edges of the graph reflect the association of nodes.

As previously discussed by [24], [36], [53], the weights
of the edges are crucial in graph information aggregation.
Therefore, the key issue of constructing a multimodal graph
boils down to the computation of the edge weights in the
graph. Here, corresponding to the hidden representations
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of the nodes H , we define A ∈ RN×N as the adjacency
matrix of the multimodal graph. Note that the elements
in A are initialized by 0. To describe the construction of
multimodal graphs more clearly, we split the procedure of
constructing multimodal graphs as 1) setting edges for text-
modality; 2) setting edges for OCR mode; 3) setting edges
for visual mode; and 4) setting edges between modalities.

3.4.1.1 Setting edges for text-modality: As in the
examples shown in Figure 2, the sarcastic information of
text-modality may be expressed by multiple words, such
as “love commuting”. Therefore, we incorporate the syntax-
aware relations over the dependency tree of the sentence
into the multimodal graph to advance the learning of the
contextual dependencies4, so as to better learn the relations
between words. Here, we employ the dependency tree of the
text-modality to set the weights of edges for the sub-graph
of text-modality AT ∈ RNt×Nt as:

AT
i,j =

{
1 if Di,j

0 otherwise
(10)

where Di,j represents there is a relation between words wi

and wj in the dependency tree of the sentence.
3.4.1.2 Setting edges for OCR mode: Correspond-

ing to the processing of text-modality, we also compute the
weights of edges for OCR mode based on the dependency
tree of the textual description of the image extracted by the
OCR, aiming to better learn the syntactical relations between
words in the light of the graph structure. The sub-graph
AO ∈ RNo×No of OCR mode is defined as:

AO
i,j =

{
1 if Di,j

0 otherwise
(11)

3.4.1.3 Setting edges for visual mode: For the vi-
sual mode, since there is no given information to present the
relations between the representations of visual regions, we
explore a novel solution to explicitly link the representations
in the graph by exploiting the attribute-object pairs of the
visual regions to compute the weights of edges. Specifically,
we set the weights of edges for the sub-graph of visual
mode by computing the word similarities between the object
words. Since intuitively, the greater the similarity of words,
the more likely the two visual regions are to present similar
information. The adjacency matrix AV ∈ RNv×Nv of the
visual mode graph is defined as:

AV
i,j = Sim(obji, objj) (12)

where Sim(·) denotes the computation of word similarity5.
obji and objj represent the two object words of visual region
vi and vj . We set Sim(·) = 0 if the return value is None.

3.4.1.4 Setting edges between modalities: Based
on the adjacency matrices of the sub-graphs of text-modality,
OCR mode, and visual mode, we then set the weights of
edges between modalities to build the complete adjacency
matrix A ∈ RN×N of the multimodal graph regarding the
hidden representations of the nodes H . As described in the
examples of Figure 1, the key to understanding the sarcastic

4. We utilize the spaCy toolkit (https://spacy.io/) to derive the
dependency tree of a sentence.

5. We use the NLTK toolkit (http://www.nltk.org/) to compute the
similarity of a word pair based on the WordNet.

clues of multimodal sarcasm detection is to capture the rela-
tions and understand the incongruous sentiment expression
between modalities. As such, the main issue of constructing
a multimodal graph evolves into how to link the related
nodes and express the incongruous sentiment relationships
between different modalities by the graph structure. That
is, to model the related nodes and capture the incongruous
sentiment relationships between different modalities, we
need to 1) track the related description between modalities;
and 2) reason the sentiment expression between the related
description.

Intuitively, it is easy to understand the similarity of
words and the sentiment expression of words for text-
modality and OCR mode. Therefore, for the visual mode,
we regard the attribute-object pairs of the image regions as
a bridge to track the relations and sentiment expressions.
Based on it, we explore a novel solution of setting the
weights of edges between modalities based on the word
similarities and the affective clues from external knowledge.
In the real-world scenario, nouns usually express objects
or entities, while adjectives are usually rich in sentiment
expressions6. Therefore, based on the results of Part-of-
Speech Tagging, 1) similar to the strategy described in Sec-
tion 3.4.1.3, we compute the word similarities between each
noun pair of text-modality, OCR mode, and visual mode.
Here, the word in each word pair could be a noun in text-
modality or OCR mode, or a object caption in visual mode;
2) with the help of the affective clues extracted from the
SenticNet [16], we then capture the sentiment incongruity
between adjectives of text-modality or OCR mode and at-
tribute captions of visual mode by computing the difference
of sentiment scores. The complete adjacency matrix A is
defined as:

Ai,j =



Sim(wi, objj) if wn
i , i < Nto, j ≥ Nto

Sim(wi, wj) if wn
i , wn

j , i < Nt, Nto > j ≥ Nt

|ω(wi)− ω(attj)| if wa
i , i < Nto, j ≥ Nto

|ω(wi)− ω(wj)| if wa
i , wa

j ,i < Nt, Nto > j ≥ Nt

AT
i,j if i < Nt, j < Nt

AO
i−Nt,j−Nt

if Nto > i ≥ Nt, Nto > j ≥ Nt

AV
i−Nto,j−Nto

if N > i ≥ Nto, N > j ≥ Nto

(13)
Nto = Nt +No (14)

where wn
i represents wi is a noun, wa

i represents wi is an
adjective, attj represents the attribute of visual region j.

ω(wi) ∈ [−1, 1] represents the affective weight of word
wi retrieved from SenticNet [16]. We set ω(wi) = 0 if
wi cannot be found in SenticNet. | · | represents absolute
value calculation. The intention of computing the absolute
value of the sentiment score between a word pair is that
the greater the sentiment difference, the more likely it is to
illustrate the sentiment inconsistency of sarcastic expression.
We hence need to set greater weights to these edges in the
graph, so as to focus on the relationships of them in the
graph learning. Further, inspired by [28], we construct the
multimodal graph as an undirected graph, Ai,j = Aj,i, and
set a self-loop for each node, Ai,i = 1.

6. For text-modality and OCR mode, we utilize NLTK toolkit for Part-
of-Speech Tagging to find nouns and adjectives in sentences. For visual
mode, we use the attribute word as the adjective of a visual region.
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3.4.2 Multimodal Features Fusion

Based on the adjacency matrix A derived in Section 3.4.1, for
each multimodal example, we explore a graph architecture
to update the multimodal representations and extract the
crucial sarcastic clues by aggregating the correlation of
nodes in the multimodal graph. To be specific, we feed the
adjacency matrix of the multimodal graph A and the cor-
responding nodes’ representations H of each multimodal
instance into a multi-layer GCNs architecture to capture the
graph representation of the input instance. For the graph
convolutional operation, each node in the l-th GCN layer
is updated according to the hidden representations of its
neighborhoods in the adjacency matrices of the multimodal
graph, which is defined as:

Gl = ReLU(ÃGl−1W l + bl) (15)

where Ã = D− 1
2AD− 1

2 is the normalized symmetric
adjacency matrix. D is the degree matrix of A, where
Dii =

∑
j Ai,j . Gl−1 is the hidden graph representation

evolved from the preceding GCN layer. W l ∈ R2dh×2dh ,
bl ∈ R2dh are the trainable parameters of the l-th GCN layer.
The node’s input of the first GCN layer is the concatenation
of text-modality and image-modality representations, i.e.
G0 = H .

Then, as previously discussed by [54], we employ a
retrieval-based attention mechanism to capture the graph-
oriented multimodal representation based on the concate-
nation of the representations of text-modality, OCR mode,
and visual mode: H = {h1,h2, · · · ,hN} according to the
graph representation GL = {gi}Ni=1 derived from the final
GCN layer. The aim is to retrieve significantly correlated
multimodal features where nodes are associated with other
nodes in the multimodal graph. The attention weights are
defined as:

αt =
exp(βt)∑N
i=1 exp(βi)

(16)

βt =
∑
i∈I

h⊤
t gi (17)

where I denotes a set of indices in which nodes contain an
edge with a weight other than 0 in the graph. ⊤ represents
the matrix transposition. The final representation of an input
instance i is defined as:

zi =
N∑
t=1

αtht (18)

3.5 Graph-Oriented Contrastive Learning

Supervised contrastive learning is proposed by [42], which
is built on the contrastive self-supervised literature [40],
[50], [55], [56] and allows us to effectively leverage the
label information of the data. In which, clusters of points
belonging to the same class are pulled together in embed-
ding space, while simultaneously pushing apart clusters of
samples from different classes. More concretely, the super-
vised contrastive loss is an extension of the self-supervised
contrastive loss that adapting contrastive learning to the

fully supervised setting. The supervised contrastive loss is
defined as follows:

Lsup =
∑
i∈I

−1

|P (i)|
∑

p∈P (i)

log
exp(zi, zp/τ)∑

a∈A(i) exp(zi, za/τ)
(19)

Here, i is the anchor, P (i) ≡ {p ∈ A(i) : ŷp = ŷi} is the set
of indices of all positives in the batch distinct from i, and
|P (i)| is its cardinality. A(i) ≡ I \ {i}. I is the set of batch
indices. τ denotes the temperature parameter.

In our work, inspired by the supervised contrastive
learning proposed by [42], we devise a graph-oriented
supervised contrastive learning strategy to pull together
the clusters of graph-oriented multimodal representations
belonging to the same label in embedding space, and si-
multaneously push apart representations of samples from
different labels, allowing the learning of the correlation of
features in the same sarcasm label and the difference of
features between sarcasm and non-sarcasm classes. Given
the final multimodal representations derived by graph-
oriented attention mechanism {zi}Nb

i=1 in a mini-batch B
(here, Nb is the size of mini-batch), and an anchor zi. Here,
zi, zj ∈ B with the same stance label is considered as a
positive pair, i.e. yi = yj , where yi and yj are the labels of
zi and zj , respectively, while the samples {zk ∈ B, k ̸= i}
are treated as negative representations with respect to the
anchor. Then the contrastive loss is computed across all
positive pairs, in a mini-batch:

Lcon =
−1

Nb

∑
zi∈B

ℓ(zi) (20)

ℓ(zi) = log

∑
j∈B\i 1[yi=yj ]exp(f(zi, zj)/τ)∑

j∈B\i exp(f(zi, zj)/τ)
(21)

where 1[i=j] ∈ {0, 1} is an indicator function evaluating to
1 iff i = j. f(u,v) = sim(u,v) = u⊤v/∥u∥∥v∥ denotes the
cosine similarity between vectors u and v.

3.6 Sarcasm Detection
For each instance i, we feed the final representation into
a fully connected layer with a softmax function to capture
a probability distribution ŷ ∈ Rdy in the sarcasm decision
space:

ŷ = softmax(Wozi + bo) (22)

where dy is the dimensionality of sarcasm labels. Wo ∈
Rdy×2dh and bo ∈ Rdy are trainable parameters. Then, we
employ a cross-entropy loss between predicted distribution
ŷi and ground-truth distribution yi of instance i to train the
classifier:

Lsar = −
Nb∑
i=1

dy∑
j=1

yji logŷ
j
i (23)

3.7 Learning Objective
The learning objective of the proposed MMGCL is to train the
framework by jointly minimizing the two losses derived by
sarcasm detection and graph-oriented contrastive learning.
The overall loss L is formulated as:

L = Lsar + Lcon + λ||Θ||2 (24)

where Θ denotes all trainable parameters of the model, λ
represents the coefficient of L2-regularization.
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TABLE 1
Statistics of the experimental data.

Training Development Testing

Positive 8642 959 959
Negative 11174 1451 1450

All 19816 2410 2409

4 EXPERIMENTAL SETUP

4.1 Dataset
To evaluate the effectiveness of our MMGCL framework, we
conduct experiments on a publicly available multimodal
sarcasm detection benchmark dataset collected by [11]. This
dataset contains English tweets, where examples express
sarcasm information are Positive examples and express non-
sarcasm information are Negative examples. Each instance
consists of a text and an associated image. The dataset is
divided into a training set, a development set, and a testing
set with a ratio of 80%:10%:10%. The statistics of the dataset
are shown in Table 1.

4.2 Experimental Settings
Following [11], the tweets containing sarcasm, sarcastic, irony,
ironic, jokes, humor, exgag as regular words and URLs are
discarded during data pre-processing, and the NLTK toolkit
is adopted to separate words, emoticons and hashtags. We
set the maximum number of visual regions as 10 for object
detection results. Note that we select the top 10 bounding
boxes with the highest scores if the number of output
bounding boxes is greater than 10. We utilize the pre-trained
uncased BERT-base [25] mode as the Text Encoder module
and OCR Encoder module to embed each word from text-
modality and OCR mode as a 768-dimensional embedding7.
For visual mode, we employ the pre-trained ViT8 proposed
by [51] to embed each visual region patch into a 768-
dimensional embedding. That is, dT = dO = dV = 768.
The resolution of the visual region patch is set to Lp = 32,
correspondingly, p = 7, r = 49. In the preliminary ex-
periments, we also tried other division resolutions, and
found that the fluctuation of performance is negligible over
different resolutions of image patches. The number of GCN
layers is set to 2, which is the optimal depth in the pilot
experiments. The dimensionality of hidden representations
is set to dh = 512. For the graph-oriented contrastive loss,
we set the temperature parameter τ to 0.07. For the complete
loss function, we set γs = 1 and γc = 1, which are the
optimal coefficients in the pilot experiments. The coefficient
λ is set to 0.00001. Adam is utilized as the optimizer with a
learning rate of 0.00002, and the mini-batch size is 32. The
dropout rate of 0.1 is utilized to avoid overfitting. We use
early-stopping with a patience of 5.

Following [11], we use Accuracy, Precision, Recall, and F1-
score to measure the performance of models. In addition,
since the label distribution of the dataset is imbalanced,

7. We also tried BERT-Large and RoBERTa [57] in the experiments of
Section 5.3 and found that they achieved slightly better performance
than BERT-base. Since the baselines are BERT-base based, we construct
our model based on BERT-base for a fair comparison.

8. https://github.com/lukemelas/PyTorch-Pretrained-ViT

following [13], we also report the Macro-average results
to evaluate the performance of models. The experimental
results of our models are averaged over 10 runs with dif-
ferent random seeds to ensure the final reported results are
statistically stable.

4.3 Comparison Models
We compare our proposed MMGCL framework with a series
of related baseline models, which are summarized as fol-
lows:

• Image-modality methods: These models only use
the visual information of the image-modality for
sarcasm detection, including Image [11], which uti-
lizes the image vector after the pooling layer of
ResNet [59] to train a classifier for sarcasm detection;
and ViT [51], which employs the ‘[class]’ token
representation of the pre-trained ViT model to detect
the sarcasm of the input instance.

• Text-modality methods: These models only utilize
the textual information for sarcasm detection, includ-
ing TextCNN [58], a convolutional neural network-
based text classification for sarcasm detection; Bi-
LSTM [52], a sarcasm detector based on the bidi-
rectional LSTM network; SIARN [23], which uses
an inner-attention for textual sarcasm detection;
SMSD [9], which explores a self-matching network
to learn the textual incongruity information for sar-
casm detection; and BERT [25], the vanilla pre-
trained uncased BERT-base model that takes ‘[CLS]
text [SEP]’ as input for detecting sarcasm.

• Multimodal methods: These models consider the in-
formation from both text and image modalities. Mod-
els in this category include HFM [11], which adopts a
hierarchical multimodal features fusion strategy for
multimodal sarcasm detection; D&R Net [12], which
explores Decomposition and Relation Network to
model both cross-modality contrast and semantic
association; Res-BERT [13], which combines image
features and BERT-based text features for sarcasm
detection; Att-BERT [13], which is a BERT-based
model based on inter-modality attention and a co-
attention for modeling the incongruity of multimodal
sarcasm detection; and InCrossMGs [14], a graph
neural network-based model that leverages the sar-
castic relations from both intra- and inter-modal per-
spectives for multimodal sarcasm detection.

Furthermore, we devise several variants of our MMGCL
to analyze the impact of different components of the frame-
work in the ablation study:

• w/o G + C. This variant represents removing the mul-
timodal graph contrastive learning. It only concate-
nates the representations of ‘[CLS]’ tokens from the
BERT encoder modules of text-modality and OCR
mode and ‘[class]’ token from the ViT encoder
module of the visual mode to derive the final rep-
resentation.

• w/o G. This variant represents removing the multi-
modal graph. It concatenates the representations of
‘[CLS]’ tokens from the BERT encoder modules of
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TABLE 2
Main comparison results on unimodal (only image-modality or text-modality) and multimodal scenarios. The results of the baselines with ♮ are

retrieved from [14], others are run by the open source codes. Best scores of each group are in bold. Results with ⋆ denote the significance tests of
the proposed MMGCL over the baseline models at p−value < 0.05.

MODALITY METHOD Accuracy (%) F1-score Macro-average

Precision (%) Recall (%) F1-score (%) Precision (%) Recall (%) F1-score (%)

image Image [11] 64.76♮ 54.41♮ 70.80♮ 61.53♮ 60.12 73.08 65.97
ViT [51] 67.83 57.93 70.07 63.43 65.68 71.35 68.40

text

TextCNN [58] 80.03♮ 74.29♮ 76.39♮ 75.32♮ 78.03 78.28 78.15
Bi-LSTM [52] 81.90♮ 76.66♮ 78.42♮ 77.53♮ 80.97 80.13 80.55
SIARN [23] 80.57♮ 75.55♮ 75.70♮ 75.63♮ 80.34 78.81 79.57
SMSD [9] 80.90♮ 76.46♮ 75.18♮ 75.82♮ 80.87 78.20 79.51
BERT [25] 83.85♮ 78.72♮ 82.27♮ 80.22♮ 81.31 80.87 81.09

image+text

HFM [11] 83.44♮ 76.57♮ 84.15♮ 80.18♮ 79.40 82.45 80.90
D&R Net [12] 84.02♮ 77.97♮ 83.42♮ 80.60♮ - - -
Res-BERT [13] 84.80♮ 77.80 84.15 80.85 78.87♮ 84.46♮ 81.57♮

Att-BERT [13] 86.05♮ 78.63 83.31 80.90 80.87♮ 85.08♮ 82.92♮

InCrossMGs [14] 86.10♮ 81.38♮ 84.36♮ 82.84♮ 85.39♮ 85.80♮ 85.60♮
MMGCL (ours) 88.57⋆ 84.36⋆ 85.31⋆ 84.83⋆ 87.89⋆ 87.72⋆ 87.80⋆

text-modality and OCR mode and ‘[class]’ token
from the ViT encoder module of the visual mode
to derive the representation of multimodal example,
and then combines the cross-entropy loss and con-
trastive learning loss to train the model.

• w/o C. This variant represents removing the graph-
oriented contrastive learning. That is, the loss func-
tion (Eq. 24) is replaced with L = Lsar + λ||Θ||2.

• w/o V . This variant represents without deriving vi-
sual regions by object detection. That is, the whole
image is input into the visual encoder, and the edge
weights related to the modes of visual mode are set
to 1 in the multimodal graphs.

• w/o O. This variant represents without deriving the
textual description from the images by OCR. That is,
we build the multimodal graph only based on the
features from text-modality and visual mode.

• w/o S . This variant represents without using word
similarity and external affective knowledge to com-
pute the relationships and incongruous sentiment
between tokens. That is, all the weights of edges are
set to 1 in the multimodal graph. Further, w/o Sa

represents without using affective knowledge, and
w/o Sw represents without using word similarity.

• w/o D. This variant represents without using syntax-
aware information to learn the phrasal relations of
text-modality and OCR mode in the multimodal
graph construction.

In addition, to investigate the effectiveness and general-
ization of our proposed multimodal graph contrastive learn-
ing framework regarding different pre-trained methods, we
also experiment with the following variations:

• -GloVe+ResNet: We replace the BERT-base encoders
in our MMGCL framework with GloVe [60] to initialize
each word into a 300-dimensional embedding for the
text-modality and the OCR mode and replace ViT
with ResNet-152 [59] to embed each image patch as
a 2048-dimensional vector for the visual mode.

• -GloVe+ViT: We employ GloVe for deriving hidden
representations for text-modality and OCR mode and
use ViT as the encoder of the visual mode.

• -BERT+ResNet: We use BERT-base as the encoders
for text-modality and OCR mode and use ResNet-
152 as the encoder of the visual mode.

• -BERT-Large+ViT: We replace the BERT-base en-
coders in our MMGCL framework with BERT-Large.

• -RoBERTa+ViT: We replace the BERT-base encoders
in our MMGCL framework with RoBERTa [57].

5 EXPERIMENTAL RESULTS

5.1 Main Results
Table 2 shows the results of our proposed MMGCL and
the comparison baselines regarding Text-modality, Image-
modality, and Text+Image modalities (multimodal) on the
evaluation metrics of Accuracy, Precision, Recall, F1-score,
and macro metrics From the experimental results, we can
draw the following conclusions. 1) Our MMGCL framework
performs consistently better than all the baseline models
across all evaluation metrics. This verifies the effectiveness
of our proposed MMGCL in multimodal sarcasm detection. 2)
We conduct significance tests of our MMGCL over the baseline
models, the results of significance tests demonstrate that
our MMGCL significantly outperforms the baseline models
on all the evaluation metrics (with p−value < 0.05). 3)
From the unimodal results, we can see that the methods
based on text-modality perform consistently better than the
methods based on image-modality, which indicates that the
expression of sarcastic/non-sarcastic information primarily
resides in the text modality. This also verifies the feasibility
and significance of exploring OCR to derive the textual de-
scriptions in the images from another angle. 4) Furthermore,
BERT and ViT perform overall better than other baseline
models in the unimodal scenario. This indicates that the
learning of sarcastic information could be improved in the
light of using a more powerful pre-trained model. 5) Meth-
ods based on both image and text modalities (image+text)
perform better than the unimodal baselines overall. This
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TABLE 3
Experimental results of ablation study.

MODEL Accuracy (%) F1 (%) Macro-F1 (%)

MMGCL 88.57 84.83 87.80

w/o G + C 85.17 81.06 82.55
w/o G 85.98 81.84 84.68
w/o C 86.73 83.05 85.26

w/o V 86.38 82.54 84.87
w/o O 86.23 82.35 84.72

w/o S 86.57 83.12 85.20
w/o Sa 86.83 83.34 85.53
w/o Sw 87.15 83.69 85.84
w/o D 87.41 84.03 86.62

implies that leveraging the sarcastic information from both
image and text modalities is more effective for multimodal
sarcasm detection. 6) The results of macro metrics are better
than the common F1-score, which implies that models may
perform better in the “negative” (non-sarcasm) class due to
the imbalanced distribution of classes. 7) Compared with
the previous state-of-the-art model (InCrossMG), our MMGCL
achieves consistently outstanding performance on all the
evaluation metrics. This verifies that modeling intricate
relations and incongruous sentiment expressions between
modalities in the graph based on the external knowledge
sources can improve the understanding and fusion of multi-
modal information, and thus lead to improved performance
of multimodal sarcasm detection.

5.2 Ablation Study

In this section, we analyze the impact of different compo-
nents of our MMGCL on the performance. We conduct experi-
ments of ablation study and report the results in Table 3. We
can see that the removal of multimodal graph contrastive
learning (w/o G + C) sharply degrades the performance on
all evaluation metrics. This verifies the significance of the
proposed multimodal graph contrastive learning strategy in
understanding multimodal sarcastic clues for multimodal
sarcasm detection. Further, the removal of the multimodal
graph (w/o G) performs significantly poorer than the com-
plete MMGCL. This verifies the importance and effectiveness
of exploring graph structure to fuse multimodal features in
learning sarcastic clues, which can lead to better multimodal
sarcasm detection performance. The experimental results of
w/o C show that the removal of graph-oriented contrastive
learning leads to considerable performance degradation.
This implies that graph-oriented contrastive learning can
derive a better representation of multimodal features by
capturing the similarity between examples in one class and
contrasting them with examples in other classes, thus lead-
ing to better performance of multimodal sarcasm detection.

In addition, the removal of using object detection to
derive visual regions of the image-modality (w/o V) leads to
a serious performance degradation. This demonstrates that
utilizing object detection to extract crucial visual regions
and their attribute-object captions of the image-modality is
important for better understanding the visual features of
multimodal sarcastic cues. Further, the removal of OCR

Fig. 4. Comparison results of using different pre-trained methods.

(w/o O) also leads to very serious performance degrada-
tion. This verifies that employing OCR to extract the textual
description of the image-modality can lead to a better un-
derstanding of the visual information, so as to achieve a
better performance of multimodal sarcasm detection.

For the multimodal graph construction, from the experi-
mental results of w/o S , w/o Sa and w/o Sw, we can con-
clude that both affective knowledge and word similarity are
significant for linking the nodes in building the multimodal
graph. This also verifies that exploiting the attribute-object
pairs of visual regions as a bridge to set the weights of edge
based on word similarity and affective scores is effective in
building multimodal graphs. Further, in comparison with
the experimental results of w/o Sa and w/o Sw, we can
see that the removal of affective knowledge leads to poorer
performance. This indicates that exploiting external affective
knowledge to compute the sentiment inconsistency is sig-
nificant to reasoning the sarcastic expression in multimodal
sarcasm detection. In addition, the removal of syntax-aware
information (w/o D) of text-modality and OCR mode leads
to considerable performance degradation, which indicates
that incorporating syntactic information in the graph makes
better learning of dependency relations of textual words and
thus improves the performance of sarcasm detection.

5.3 Generalizability of Multimodal Graph Contrastive
Learning
To investigate the generalizability and effectiveness of our
multimodal graph contrastive learning MMGCL framework
with regard to different pre-trained methods, we conduct
comparison experiments with five variants of our MMGCL
by using different encoder modules and the model without
multimodal graph contrastive learning (w/o G + C). The
comparison results are shown in Figure 4. Compared with
w/o G + C, all the five variants of our MMGCL consistently
achieve better performance on all evaluation metrics. This
verifies that the proposed multimodal graph contrastive
learning framework can directly work with various pre-
trained models and achieve outstanding performance. In
addition, according to the performance of the variants of “-
GloVe+ResNet”, “-GloVe+ViT”, “-BERT+ResNet” and ours
(“-BERT+ViT”), we can conclude that superior performance
is obtained when using more powerful pre-trained meth-
ods, such as ViT and BERT. Furthermore, both “-BERT-
Large+ViT” and “-RoBERTa+ViT” perform better than the
proposed MMGCL (“-BERT+ViT”). This further proves that
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Fig. 5. Experimental results of using different GCN layers.

our proposed multimodal graph contrastive learning strat-
egy can achieve better performance with the enhancement
of the pre-trained methods.

5.4 Impact of GCN Layers

To analyze the impact of the number of GCN layers on the
performance of our MMGCL framework, we vary the number
of layers from 1 to 8 and show the experimental results
in Figure 5. We can see that the 2-layer GCN architecture
consistently performs better than other numbers on all eval-
uation metrics, and thus we set the number of GCN layers
to 2 in our MMGCL. The GCN architecture with one layer
performs worse on all evaluation metrics, which indicates
that a shallow graph network structure is inadequate to
make full use of the sarcastic features in multimodal sarcasm
detection. When the number of layers is between 2 and 5,
the performance of the MMGCL fluctuates in all evaluation
metrics. This implies that the performance of the model is
influenced by the deeper layers of the GCN architecture.
Furthermore, when the number of layers is greater than 5,
the performance considerably tends to decline. This poten-
tially indicates that further increasing the number of layers
beyond 5 degrades the model performance possibly due
to the inappropriate increase of parameters in the graph
architecture.

5.5 Analysis of Graph-Oriented Contrastive Learning

In this section, we analyze how the graph-oriented con-
trastive learning in our MMGCL helps the model improve
the quality of representation in the training process, and
thus leads to improved performance of multimodal sar-
casm detection. We track the checkpoints from the two
variants of “w/o G + C” and “w/o C”, and our complete
MMGCL during the training process. Then, following [61],
we visualize the alignment and uniformity metrics of the
checkpoints in Figure 6. As previously discussed by [61],
models attain both lower alignment and uniformity will
achieve better performance. From the results, we can see
that our MMGCL shows lower Lalign and Luniform during
the training, which verifies that our MMGCL attain strong

Fig. 6. Visualization of the contrastive representation of checkpoints in
every 50 training steps. The darker the color of the point, the greater
the accuracy. The arrows present the training direction. As previously
discussed by [61], models with low Lalign and Luniform consistently
perform well (lower left corner).

(a)

(c) (d)

(b)

Fig. 7. Visualization of the intermediate vectors learned by the variants
of “w/o G + C” and “w/o C”, the previous state-of-the-art model “InCross-
MGs” [14], and our MMGCL. Red dots denote sarcasm examples, green
dots denote non-sarcasm examples.

ability in contrastive learning. It can be seen that both
“w/o G + C” and “w/o C” present the worst alignment and
uniformity, which indicates that contrastive learning can
advance a better latent space for the learned representations.
That is, the graph-oriented contrastive learning strategy
explored in our MMGCL is effective and significant in learning
sarcastic clues for multimodal sarcasm detection.

5.6 Visualization of Intermediate Vectors
In this section, we qualitatively demonstrate how the pro-
posed MMGCL achieves better sarcastic feature representa-
tions in multimodal sarcasm detection. We randomly select
200 test instances for each label from the dataset, and then
show the t-SNE [62] visualization of intermediate embed-
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(a) When my best friend 

tells me he got full marks in 

the exam!

(b) It was nice enjoying 

this cooler weather for 

a change today.

Fig. 8. Examples of the misclassified instances.

dings learned by the variants of “w/o G + C” and “w/o C”,
the previous state-of-the-art model “InCrossMGs” [14] and
our MMGCL framework. The results are shown in Figure 7.
We can observe that the distributions of the intermediate
representations derived from “w/o G + C” or “w/o C”
largely diffuse and overlap between different labels. But
there are clear separations between different labels pro-
duced by our proposed MMGCL. This further verifies the
effectiveness of our proposed multimodal graph contrastive
learning strategy, and qualitatively demonstrates that our
MMGCL can learn better feature representations with the help
of multimodal graph contrastive learning. Furthermore, the
distributions of the intermediate representations derived
from the previous graph-based model (“InCrossMGs”) are
more separated between different labels compared with
both “w/o G + C” and “w/o C” but still partially overlap.
This indicates that the novel multimodal graph contrastive
learning strategy in our MMGCL can better separate repre-
sentations from different labels than the previous “InCross-
MGs” with the help of the solution of multimodal construc-
tion and the merit of multimodal graph-oriented contrastive
learning strategy, and thus improves the performance of
multimodal sarcasm detection.

5.7 Error Analysis
In this section, we conduct an error analysis of the er-
roneously predicted examples. We find that most of the
misclassified examples can be broadly categorized as: 1)
the image-modality contains a facial expression or emoji.
We need to understand the meaning of the expression to
judge whether the instance is sarcastic or not (as the example
shown in Figure 8 (a)); 2) the image-modality contains some
data metrics. We need to understand the data metrics to
get the answer of the multimodal sarcasm detection (as the
example shown in Figure 8 (b)). This may be because both
object detection and OCR are inadequate to make sense
of the realistic visual information from the images. There-
fore, our future research can consider exploring background
knowledge of the image-modality, such as facial expression
source, emoji dictionary, visual commonsense knowledge,
etc., to further improve the performance of the multimodal
sarcasm detection task.

6 CONCLUSION AND FUTURE WORK

In this paper, we propose a novel multimodal graph con-
trastive learning MMGCL framework for multimodal sarcasm
detection, in which a novel multimodal graph structure is
devised to leverage the multimodal sarcastic cues between
modalities and a graph-oriented contrastive learning strat-
egy is explored to improve the multimodal representations
for sarcasm information extraction. To be specific, we uti-
lize object detection to derive the crucial visual regions
accompanied by their attribute-object captions for the image-
modality and employ OCR to make sense of the textual
descriptions in the images. This essentially allows the model
more easily to understand the significant visual information
and semantic expression of the image-modality, so as to
better reason the sarcastic expressions of the images. Then,
to leverage the intricate multimodal sarcastic relations, we
build a multimodal graph for each instance based on the
context of text-modality, the textual descriptions extracted
by OCR, and the crucial visual regions derived by object
detection. In the multimodal graph, we explore word sim-
ilarity to explicitly link the associated tokens for learning
the correlative semantic relations between modalities and
exploit an external affective knowledge source to present the
sentiment inconsistency for leveraging the incongruous sen-
timent expression of sarcasm. Afterwards, graph-oriented
contrastive learning is devised to capture the similarity be-
tween examples in the same sarcasm class and contrast them
with examples in other classes, allowing better multimodal
representations for sarcasm detection. Extensive experimen-
tal results on a public benchmark dataset show that the pro-
posed MMGCL framework significantly outperforms state-of-
the-art baseline methods in multimodal sarcasm detection.

As described in Section 5.7, there are still two typi-
cal misclassified examples regarding the proposed MMGCL.
Therefore, future research can consider exploiting prac-
ticable approaches to improve the learning of facial ex-
pressions/gestures and statistics/data metrics for image-
modality. Such as incorporating facial expression sources,
emoji dictionaries, or visual commonsense knowledge into
the graph structure to fuse the multimodal features for
multimodal sarcasm detection.
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and N. Sladoje, “Comir: Contrastive multimodal image represen-
tation for registration,” Advances in neural information processing
systems, vol. 33, pp. 18 433–18 444, 2020.

[48] Y. You, T. Chen, Y. Sui, T. Chen, Z. Wang, and Y. Shen, “Graph
contrastive learning with augmentations,” Adv. Neur. In., vol. 33,
pp. 5812–5823, 2020.

[49] Y. Zhu, Y. Xu, F. Yu, Q. Liu, S. Wu, and L. Wang, “Graph con-
trastive learning with adaptive augmentation,” in Proceedings of
the Web Conference 2021, 2021, pp. 2069–2080.
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