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A PLÜCKER COORDINATE MIRROR FOR PARTIAL FLAG VARIETIES

AND QUANTUM SCHUBERT CALCULUS

CHANGZHENG LI, KONSTANZE RIETSCH, MINGZHI YANG, AND CHI ZHANG

Abstract. We construct a Plücker coordinate superpotential F− that is mirror to a partial
flag variety Fℓ(n•). Its Jacobi ring recovers the small quantum cohomology of Fℓ(n•), and we
prove a folklore conjecture in mirror symmetry. Namely, we show that the eigenvalues for the
action of the first Chern class c1(Fℓ(n•)) on quantum cohomology are equal to the critical
values of F−. We achieve this by proving new identities in quantum Schubert calculus that
are inspired by our formula for F− and the mirror symmetry conjecture.
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1. Introduction

Mirror symmetry is a fascinating phenomenon arising in string theory: two apparently com-
pletely different objects on A-model and B-model give rise to equivalent physics. Mathematical
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descriptions of mirror symmetry, in terms of equivalence of mathematical structures, were first
made for pairs of Calabi-Yau manifolds in early 1990s (see e.g. [HKetal]). The (closed string)
mirror symmetry was extended to Fano manifolds X on the topological A-model soon after by
Givental [Giv95, Giv98] and Eguchi-Hori-Xiong [EHX97]. In this case, the topological B-model
is given by a Landau-Ginzburg model (X̌,W ), consisting of a non-compact Kähler manifold
X̌ and a holomorphic function W : X̌ → C called the superpotential. Mirror symmetry pre-
dicts equivalences between both sides on various levels. For instance on one level, the (small)
quantum cohomology ring QH∗(X) should be isomorphic to the Jacobi ring Jac(W ) of W .

Studying mirror symmetry for X a priori requires a good construction of the mirror su-
perpotential W . However, this is only known for certain Fano manifolds, with toric Fano
manifolds and complete intersections inside toric manifolds being typical examples, following
work of Givental [Giv95, Giv98] and Hori-Vafa [HV00]. In this article, we will focus on the
case when X = Fℓ(n•) is a partial flag variety parameterizing flags of quotient vector subspaces
of Cn. Special cases include complex Grassmannians Gr(k, n) and complete flag variety Fℓn.
Candidate Landau-Ginzburg models for Gr(k, n) and Fℓn were constructed by Eguchi-Hori-
Xiong [EHX97] and Givental [Giv97] respectively. They were later generalized to Fℓ(n•) by
Batyrev-Ciocan-Fontanine-Kim-van Straten [BCFKS00]. See also [NNU10] for a construction
using holomorphic disk counts. Here different approaches turned out to result in identical ver-
sions of the superpotential, namely arriving at a particular Laurent polynomial Wtor defined
on a complex torus of dimension dimFℓ(n•). It turned out that there is a toric degeneration of
Fℓ(n•) with the central fiber a singular toric variety X0, and the superpotential Wtor coincides
with the superpotential mirror to X0 as constructed by Givental and Hori-Vafa. This super-
potential, however, has a disadvantage as mirror for Fℓ(n•) in that its Jacobi ring does not
fully recover quantum cohomology. For example, for Gr(2, 4) the mirror superpotential should
ideally have 6 = dimH∗(Gr(2, 4)) critical points, but Wtor only has 4.

In [Rie08], the second-named author wrote down a Lie theoretical superpotential, namely a
function FLie : ZP → C defined on a subvariety ZP of B−. Here G is a connected complex
reductive Lie group, and P is a parabolic subgroup of G containing a Borel subgroup B−. This
function had appeared separately earlier in a different context, as part of a theory of geometric
crystals [BK07]. It is shown in [Rie08] that the fiberwise critical locus of FLie is isomorphic to
(an open dense part of) the so-called Peterson variety stratum YP in the flag variety G/B−.
This relates the superpotential FLie to quantum cohomology via the remarkable isomorphism of
Dale Peterson’s, described in his unpublished lecture notes [Peterson], between C[YP ] and the
small quantum cohomology ring QH∗(G∨/P∨) of the Langlands dual flag variety. A proof of
Peterson’s isomorphism for the type A case, that is for G∨/P∨ = Fℓ(n•), was given in [Rie03].
Some other cases were covered in [Cheo09, LS10], and the general case was proved in a recent
preprint [Chow22]. The combination of both isomorphisms leads to mirror symmetry for flag
varieties on the level of small quantum cohomology. Namely, the ring QH∗(G∨/P∨), with
inverse quantum parameters adjoined, is isomorphic to the (fiberwise) Jacobi ring of FLie.

This is not the end of the story, but only the end of the beginning. The function FLie is
defined quite indirectly, and it is desirable to find a compact expression in terms of coordinates
on the mirror space ZP . In the special case of Fℓ(n•) = Gr(n − k, n), a natural isomorphic
interpretation of the mirror space was given in [MR20]. There, ZP was identified with a trivial
family over C∗ with fiber a particular open log Calabi-Yau subvariety in the Langlands dual
Grassmannian Gr(k, n). Moreover, [MR20] gave a very compact and clean expression for FLie

using the Plücker coordinates of Gr(k, n). This also led to an improved mirror symmetry result
on the higher level of D-modules.



A PLÜCKER COORDINATE MIRROR FOR PARTIAL FLAG VARIETIES 3

One generalization of this Gr(n−k, n) construction is to cominuscule Grassmannians of other
types. The fiber of the mirror space is then inside the Langlands dual minuscule Grassmannian,
which has (generalized) Plücker coordinates, due to its embedding into the projective space of a
minuscule representation. Corresponding coordinate presentation of FLie have been individually
obtained for quadrics [PRW16], Lagrangian Grassmannians [PR13], the Cayley plane and the
Freudenthal variety [SW23].

The generalization of Gr(n−k, n) of interest to us here is the partial flag variety X = Fℓ(n•).
As the first main result of this paper, we provide a Plücker coordinate formula version F− of
the superpotential FLie for this case. To construct the domain we consider the Langlands dual
partial flag variety Fℓn• = Fℓn1,··· ,nr;n = P\G that parameterizes flags of vector subspaces Vnj

in the dual vector space of Cn. Let (P\G)◦ denote the complement of the Knutson-Lam-Speyer
anti-canonical divisor −KFℓn•

[KLS14], which consists of (n − 1 + r) irreducible components
(see Proposition 3.12).

Theorem 1.1. There is an isomorphism

ψ− : ZP −→ (P\G)◦ ×
∏

i∈IP

C
∗
q , where IP := {n1, · · · , nr},

constructed in (3.7). The superpotential F− := FLie ◦ ψ
−1
− : (P\G)◦ ×

∏
i∈IP

C∗
q → C consists of

(n− 1 + r) summands,

F−(Pz,q) =
∑

i∈IP

qivi,i+1 +
n−1∑

i=1

ui,i+1.

The summands satisfy

(1) the vi,i+1 are all of the form pJ′

pJ
for some Plücker coordinates;

(2) the ui,i+1 are of the form pJ′

pJ
if i ∈ IP , or if 1 ≤ i ≤ n1 or nr ≤ i ≤ n− 1. Otherwise,

if nj < i < nj+1 for some j ∈ {1, · · · , r − 1}, then ui,i+1 is of the form f1
f2

with each fi
a quadratic polynomial in the Plücker coordinates;

(3) all vi,i+1 and ui,i+1 have pole of order 1 along a (unique) irreducible component of
−KFℓn•

.

In fact, the denominators in the summands of F− are precisely the defining equations of the
irreducible components of −KFℓn•

[LSZ23].
The isomorphism Ψ− will be constructed explicitly in Definition 3.6. Explicit expressions

for vi,i+1 and ui,i+1 will be given in Theorem 3.18. Here we provide an example to give a
first impression.

Example 1.2. For Fℓn• = Fℓ2,4;7 →֒ P(
∧2

C7)× P(
∧4

C7), we have

F− = q2
p46
p67

+ q4
p1467
p4567

+
p27
p17

+
p24p1567 − p14p2567 + p12p4567
p23p1567 − p13p2567 + p12p3567

+
p2346
p2345

+
p3457
p3456

+
p13
p12

+
p1235
p1234

.

Remark 1.3. A straightforward generalization of the superpotential in [MR20] leads to another
superpotential F+ defined on (P+\G)◦ ×

∏
i∈IP C∗

q. The Plücker coordinate expression of F+,
however, appears to be complicated and does not have the similar good properties (especially
property (3) above). We refer to Examples 3.2 and 3.19 for a comparison of F+ and F− in the
case of the complete flag variety Fℓ3.

Remark 1.4. There is a special embedding of the domain of the [BCFKS00] Laurent polynomial
mirror, Wtor, into Fℓn• constructed in [Rie06]. Conjecturally, Wtor should be the pullback of
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FLie under this embedding. This conjecture is known to hold in the complete flag variety and
the Grassmannian cases [Rie08, MR20]. For more general partial flag varieties the conjecture is
not proved, but it is shown in [Rie06] that Wtor and the pullback of FLie have the same fiberwise
critical points. This conjecture now translates into a conjecture about F− via the isomorphism
between F− and FLie.

Remark 1.5. In [GS18], Gu and Sharpe proposed a construction of ‘non-abelian’ mirrors,
examples of which included Fℓ(n•). Their approach is closely related to [HV00] but involves
more variables than the dimension of Fℓ(n•) (see also [GK20]). Their mirror diverges already
in the Grassmannian case from the mirror constructions [EHX97, Rie08, MR20] that are related
to ours here, see [GS18, Section 4.9].

Another mirror construction inspired by viewing flag varieties as non-abelian GIT quotients
was given by Kalashnikov [Kala22]. Namely, Kalashnikov proposed a generalization of the super-
potential from [MR20] for Gr(n− k, n) to partial flag varieties Fℓ(n•) in the form of a rational
function on a product of Grassmannians, expressed explicitly in terms of Plücker coordinates.
The Kalashnikov superpotential has the advantage that it recovers the aforementioned Laurent
polynomial Wtor in a cluster chart, and is directly related to a toric degeneration of Fℓ(n•).
Kalashnikov also described a relation (on the level of critical points) between her superpotential
and Gu-Sharpe’s superpotential in a special case.

To compare the Kalashnikov formula with our F−, consider the partial flag variety Fℓ(n•) =
Fℓ(4; 2, 1). Kalashnikov’s superpotential is a rational function on Gr(2, 4) × Gr(1, 2) × (C∗)2

described in terms of Plücker coordinates [pij ; p̂k] by

WKal =
p13
p12

+
p24 + q2
p23

+
p24
p14

+
q2p13p̂2
p34

+
p̂2
p̂1

+
q1
p̂2
.

Our superpotential F− is a rational function on Fℓ1,2;4 × (C∗)2, given in terms of [pk; pij ] by

F− = q1
p3
p4

+ q2
p14
p34

+
p2
p1

+
p13
p12

+
p24
p23

.

The superpotential WKal is always a positive Laurent polynomial in Plücker coordinates, while
ours in general is not (neither Laurent, nor positive). However, for certain special values of
the parameters qi the superpotential WKal does not have the full set of critical points, as was
also pointed out in [Kala22]. Namely, in the above example, F− has 12 critical points along its
q1 = q2 = 1 fiber, in agreement with dimH∗(Fℓ(4; 2, 1)) = 12. One of these critical points, the
one with critical value −3, is not visible for WKal|q=(1,1).

Let us now recall that, on the A-side, the (small) quantum cohomology ring QH∗(X) =
(H∗(X,C) ⊗ C[q], ·) of the Fano manifold X is a deformation of the classical cohomology
ring H∗(X,C) by incorporating genus zero, 3-point Gromov-Witten invariants. The quantum
multiplication by the first Chern class of X induces a linear operator

ĉ1(q) : QH
∗(X) −→ QH∗(X); β 7→ c1(X) · β

depending on the values of the deformation parameters q = (qi)i, also called quantum param-
eters. Here we treat the qi as nonzero complex numbers, so that QH∗(X) = H∗(X) as vector
spaces. On the B-side, we consider the superpotential W = Wq with the quantum parameters
fixed correspondingly. Now let us state a celebrated folklore conjecture in mirror symmetry.

Conjecture 1.6. The eigenvalues of the first Chern class operator ĉ1(q) coincide with the
critical values of the mirror superpotential Wq.

There has been very little progress on this conjecture in the past two decades. The case of
toric Fano manifolds was first proved by Auroux [Aur07], which was also known to Kontsevich
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and Seidel. Recently, Yuan [Yuan21] proved that the critical values of the family Floer mirror
Landau-Ginzburg superpotential are the eigenvalues of the first Chern class, under certain
assumptions. The cases of complex Grassmannians and quadrics were proved implicitly in
[MR20] and [Hu22] respectively.

As a central result of this paper, we prove a theorem that implies this conjecture for any
partial flag variety X = Fℓ(n•).

Let us write q = (qn1 , · · · , qnr ) for the quantum parameters associated to Fℓ(n•), and view
them as coordinates on an algebraic torus that we denote by

∏
i∈IP C∗

q . Let us consider the
(fiberwise) Jacobi ring,

(1.1) Jac(F−) := O

(
(P\G)◦ ×

∏

i∈IP

C
∗
q

)
/(∂(P\G)◦F−),

where we are taking partial derivatives of F− in the (P\G)◦ directions only. Using Theorem 1.1,
and the isomorphism between fiberwise Jacobi ring of FLie and quantum cohomology resulting
from [Peterson, Rie03, Rie08], we obtain an isomorphism of rings

(1.2) Θ : Jac(F−)
∼
−→ QH∗(X)[q−1

n1
, · · · , q−1

nr
].

See Section 4.2 for a more detailed description. We can now state our second main theorem.

Theorem 1.7. For the class [F−] of F− in the Jacobi ring Jac(F−), we have

Θ([F−]) = c1(X),

where c1(X) is the first Chern class of X = Fℓ(n•), as element of the small quantum cohomology
ring.

The above theorem is stated again in an isomorphic form in Theorem 4.14, using a version
FR of the superpotential whose domain relates more directly to the Peterson variety. By
interpreting the critical values of F− as eigenvalues for the operator of multiplication by [F−]
on Jac(F−), we obtain the following corollary.

Corollary 1.8. Conjecture 1.6 holds for X = Fℓ(n•) and the mirror superpotential F−.

We note that isomorphically changing the domain of the superpotential does not affect the
critical values. Therefore the same corollary holds for FLie, and FR. We also note that FR and
F− look to be related by the chiral map in [GL22].

An exciting aspect of this part of our paper is the interaction between the Conjecture 1.6
in mirror symmetry and identities in quantum Schubert calculus. The quantum cohomology
ring QH∗(Fℓ(n•)) has a C[q]-basis of Schubert classes σw, that is indexed by permutations
in Sn with descents at most in nj , for j ∈ {1, · · · , r}. The study of the ring structure of
QH∗(Fℓ(n•)) in terms of this basis, referred to as (type A) quantum Schubert calculus, is an
area of great independent interest from the viewpoint of enumerative geometry. One of the most
central problems is to find a manifestly positive formula for the Schubert structure constants
in the quantum product of two Schubert classes. Another topic of interest is the study of
identities among quantum products of Schubert classes. For example, the quantum Schubert
polynomials [FGP97, C-Fon99] are expressions for general Schubert classes as polynomials in
special Schubert classes. The quantum Giambelli formula [Bert97] for complex Grassmannians
is another example. It turns out, that mirror symmetry also helps us find identities of this
kind. Let us illustrate this from the perspective of the following natural question. Consider the
isomorphism Θ from (1.2)

Question 1.9. What are the preimages of the Schubert classes in QH∗(Fℓ(n•)) under Θ?
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Assuming the answer, one may expect to find relations in QH∗(Fℓ(n•)) simply by studying
the mirror superpotential. Indeed, in the special case of Fℓ(n•) = Gr(n − k, n), our F− turns
out to coincide with the superpotential F+ of [MR20] (see Example 3.20). Therefore, we have
Θ−1(σw) = [pw], where pw denotes the (suitably normalised) Plücker coordinate corresponding
to the Grassmannian permutation w, as described in [MR20]. Each term in F− turns out to
reveal a quantum cohomology relation, see [MR20, Remark 6.2], recovering an instance of the
known quantum Pieri-Chevalley formula in this case. For more general partial flag varieties
the question above can be answered for certain Schubert classes using work of Peterson, see
Section 4.1. This means that quantum Schubert calculus relations involving these classes can
be viewed as relations in the Jacobi ring.

The approach of using the superpotential for understanding quantum cohomology was used
also in [CK23]. Namely, one can consider partial derivatives of the superpotential which natu-
rally represent the zero class in the Jacobi ring, and translate these into quantum cohomology
relations via the mirror isomorphism. Following this approach, [CK23] obtained certain rela-
tions involving ‘quantum hooks’ via WKal.

Our final result is a set of quantum Schubert calculus identities related to our formula for F−.
The proof of Theorem 1.7, turns out to involve showing each term in F− corresponds to specific
class in quantum cohomology. This requires certain relations to be proved in QH∗(Fℓ(n•)). For
instance, the term p24p1567−p14p2567+p12p4567

p23p1567−p13p2567+p12p3567
in Example 1.2 relates to an identity

σ24 · σ1567 − σ14 · σ2567 + σ12 · σ4567 = (σ23 · σ1567 − σ13 · σ2567 + σ12σ3567) · (σ13 + σ1235)

in quantum Schubert calculus. Note that we have simplified the notations, for instance by σ24
above we mean the Schubert class σ2413567 indexed by the Grassmannian permutation 2413567
in one-line notation. The above identity is equivalent to the following simpler one by using
quantum Chevalley-Monk formula [C-Fon99, Buch05, Miha07],

σ1526347 · σ2314567 − σ2516347 · σ1324567 + σ3516247 · σ1234567 = 0.(1.3)

Our final theorem, that we prove concurrently with Theorem 1.7, gives new relations in
quantum Schubert calculus of QH∗(Fℓ(n•)), including identity (1.3) as one example.

Theorem 1.10. In QH∗(Fℓ(n•)), there are quantum relations of the form
∑

J

(−1)|J|σwJσ[1,nj+d]\J = 0.

We will postpone the explanations of the relevant notations to Section 5, and will restate the
identity fully in Theorem 5.3. The proof of the above theorem goes via the complete flag
variety Fℓn using Peterson’s remarkable extension property (see Proposition 5.23). The proof
of Theorem 1.7 is closely linked to to the above result.

Remarks for further directions. Closed string mirror symmetry in full generality at genus
zero predicts an isomorphism on the level of Frobenius manifolds. The notion of a Frobenius
manifold was first introduced by B. Dubrovin in 1990s [Dubr96], while the first construction
of a Frobenius manifold could date back to K. Saito [Sai83] in early 1980s in the name of
flat structures using his primitive form theory. Mirror symmetry predicts that the Frobenius
manifold associated to the Gromov-Witten theory of a Fano manifold X (the big quantum
cohomology ring of X) should be isomorphic to the Frobenius manifold of the mirror Landau-
Ginzburg model (X̌,W ) associated to an appropriate Saito’s primitive form. This was indirectly
proved for complex Grassmannians in [KS08, CFKS08] by a reduction to the case of projective
spaces [Bara00]. The case of quadrics was recently proved in [Hu22], where the verification of
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Conjecture 1.6 is an important step. We expect that our Theorem 1.7 will play an important
role in studying mirror symmetry Fℓ(n•) on such level as well.

For the mirror symmetry on the intermediate level of D-modules, the Plücker coordinate
versions of the superpotential of FLie play a very important role in proving an explicit injective
morphism of D-modules for complex Grassmannians and quadrics [MR20, PRW16]. An implicit
isomorphism of D-modules for minuscule Grassmannians was proved in [LT23]. A proof for
an equivariant D-module isomorphism for general G∨/P∨ was recently given in [Chow23].
However, the isomorphism therein seems not explicit enough either. Moreover, verification of
the Gauss-Manin connection along z-direction was missing, which is an indispensable piece in
the mirror symmetry on the level of Frobenius manifolds. We believe that our Theorem 1.7
will be helpful towards getting a better understanding of the D-module mirror symmetry for
Fℓ(n•).

Conjecture 1.6 also appeared in the context of Kontsevich’s homological mirror symmetry
[Kont95], which is one main approach to (open string) mirror symmetry (in addition to another
main approach by Strominger-Yau-Zaslow [SYZ]). For G∨/P∨, homological mirror symmetry
was so far only proved for complex Grassmannians G(n− k, n) with n prime [Cast20], beyond
the projective space case covered earlier [Abou09]. Here it is important to understand the
superpotential F− in a Floer theoretical way, which has only been achieved for very few cases
including Gr(2, n) [HKL23]. It will be desirable to understand the superpotential more deeply.

Another closely related direction is about the Gamma conjecture I and its underlying conjec-
ture O proposed by Galkin-Golyshev-Iritani [GGI16]. Here conjecture O concerns the eigenval-
ues of the aforementioned linear operator ĉ1|q=1. For flag varieties G∨/P∨, conjecture O has
already been proved in [CL17], while the Gamma conjecture I was only known for very few cases
including complex Grassmannians and quadrics. One main approach to Gamma conjecture I in
[GI19] relies on a B-side analogy of conjecture O and a conifold condition. Our Theorem 4.14,
together with [CL17], ensures the B-side analogy of conjecture O. Therefore it will play an
important role in the study of the Gamma conjecture I for Fℓ(n•) via this approach.

Finally, we would propose a deeper interaction between mirror symmetry and quantum
Schubert calculus for G∨/P∨. Indeed, for the type C case, some conjectural quantum relations
in the quantum cohomology of a Lagrangian Grassmannian were given in [PR13, Conjecture
4.1], inspired by Conjecture 1.6. Even in type A, we would ask which quantum relations arise
from the natural partial derivatives of the mirror superpotential F− via the mirror isomorphism.
We also note that some new quantum relations in QH∗(Fℓ(n•)) related with a cluster algebra
structure were discovered in [HZ23]. It will be interesting to investigate whether these relations
could also be revealed using cluster charts in the domain of F−.

The paper is organized as follows. In Section 2, we introduce the basic notions. In Section
3, we construct two superpotentials F±, and provide the Plücker coordinate expression of F−.
In Section 4, we prove Theorem 1.7 by assuming Lemma 4.19 first. Section 5 is devoted to a
proof of Lemma 4.19 in terms of equivalent identities on quantum product of Schubert classes.
Finally, in the Appendix we provide a description of F− using Young diagrams.

Acknowledgements. The authors thank Kentaro Hori, Xiaowen Hu, Elana Kalashnikov,
Tony Yue Yu, and Hang Yuan for helpful discussions. C. Li is supported in part by the National
Key Research and Development Program of China No. 2023YFA100980001 and NSFC Grant
12271529. K. Rietsch is supported by EPSRC grant EP/V002546/1.

2. Preliminaries

We review some background in Lie theory (see e. g. [Borel] for details).
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2.1. Notation. Let G = GLn(C). Let B+ and B− denote the upper-triangular and lower-
triangular Borel subgroups of G with unipotent radicals U+ and U−, respectively. Then T =
B− ∩B+ is the maximal torus of diagonal matrices in G.

Let b−, b+, u−, u+, h be the Lie algebras of B−, B+, U−, U+ and T respectively. Let ∆ =
{α1, · · · , αn−1} be the standard base of simple roots, and R (resp. R+) be the set of (positive)
roots. That is, we have the Cartan decomposition

gl(n,C) = h⊕
⊕

α∈R

gα with gαi+αi+1+···+αj−1 = CEij ∀1 ≤ i < j ≤ n,

where Ei,j is the matrix with entry 1 in row i and column j and zeros elsewhere. We will view
elements of ∆ as lying in the character group of T , so that

αi : T → C
∗ := C\{0}; t = diag(t1, · · · , tn) 7→ αi(t) =

ti
ti+1

.

For any positive integers k,m with k < m, we denote the integral interval [k,m] := {k, k +
1, · · · ,m}, and simply denote [m] := [1,m]. Set I = [n− 1]. The Weyl group W of gl(n,C) is
generated by simple reflections si = sαi , i ∈ I. We will freely identify W with the Weyl group
NG(T )/T of G as well as the symmetric group Sn, by using the isomorphisms

Sn
∼=
−→ W

∼=
−→ NG(T )/T,

where (i, i+ 1) 7→ si 7→ ṡiT for ṡi = exp(Ei,i+1) exp(−Ei+1,i) exp(Ei,i+1).

Moreover, we let ℓ : W → Z≥0 be the standard length function. For w = si1 · · · sim with
m = ℓ(w), the element ẇ := ṡi1 · · · ṡim ∈ NG(T ) is independent of the reduced expression
chosen.

We let P ⊇ B− be a parabolic subgroup of G. Set IP = {i ∈ I | ṡi ∈ P} and IP = I \ IP .
We write

IP = {n1, · · · , nr},

where 1 ≤ n1 < n2 < · · · < nr ≤ n− 1.
Let WP be the Weyl subgroup of W associated to P , and WP be the set of minimal length

coset representatives in W/WP . Precisely,

WP = 〈si | i ∈ IP 〉, WP = {u ∈ W | ℓ(usi) > ℓ(u), ∀i ∈ IP }.

Denote by wP (resp. wP , w0) the longest element in WP (resp. WP , W ).
The Langlands dual group G∨ to G is again GL(n,C), but plays a different role. Let

B∨
±, P

∨
± , T

∨,∆∨ be the Langlands dual versions of B±, P±, T,∆, respectively. The base ∆∨ for
G∨ are canonically identified with the set {α∨

1 , · · · , α
∨
n−1} of simple coroots for G. In particular,

we have sαi = sα∨
i
. The Weyl group for G∨ is again W , and IP∨ = IP for any parabolic

subgroup P of G containing B+ or B−. The deeper relationship between the original group
GLn(C) and its Langlands dual group is described by the geometric Satake correspondence
[Lus83, Gin95, MV07].

2.2. Langlands dual flag varieties. A partial flag variety is a quotient of GL(n,C) by a
parabolic subgroup on the left or right. We can think of it as parameterizing flags of subspaces
(of row vectors) in Hom(Cn,C) or flags of quotients of the space Cn (in column vectors), to be
precisely described below. Since we will focus more on the B-side of mirror symmetry, we will
use G there, and leave G∨ for the A-side of mirror symmetry.

On the B-side, recall that P ⊇ B− is the parabolic subgroup of G with IP = {n1, · · · , nr}.
Denote n0 := 0 and nr+1 := n, and set

aj := nj − nj−1, ∀j ∈ [r + 1].
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Then P consists of block-lower-triangular matrices in G with block-diagonal matrices of the
form diag{M1,M2, · · · ,Mr+1}, where each Mj is an aj × aj invertible matrix.

Consider the partial flag variety Fℓn• = Fℓn1,··· ,nr;n that parameterizes flag of vector sub-
spaces Vnj in Hom(Cn,C), namely

Fℓn• = {Vn1 ⊂ · · · ⊂ Vnr ⊂ Hom(Cn,C) | dim Vnj = nj , 1 ≤ j ≤ r}.

The Lie group G transitively acts on Fℓn• on the right, inducing an isomorphism

τP : P \G
∼=
−→ Fℓn• .

The isomorphism τP sends Pb to the partial flag V• such that Vnj is spanned by the first nj
row vectors of the matrix b for all j ∈ [r].

On the A-side, we consider the partial flag variety Fℓ(n•) = Fℓ(n;nr, · · · , n1) that parame-
terizes flag of quotients, namely

Fℓ(n•) = {Cn ։ Λnr ։ · · · ։ Λn1 → 0 | dimΛnj = nj, ∀j ∈ [r]}/ ∼ .

Here Λ• ∼ Λ′
• if and only if there are isomorphisms Λnj → Λ′

nj
making the diagram of the two

flags of quotients commutative. There is a canonical isomorphism

G∨/P∨ ∼=
−→ Fℓ(n•),

which sends gP∨ to the class of a flag Λ• of quotients such that the kernel of Cn ։ Λnj is the
vector subspace spanned by the last n− nj column vectors of the matrix g for all j.

We remark that there are many canonical isomorphisms between group quotients and dif-
ferent parameterizations of flag varieties floating around. Here we are taking the above iso-
morphisms, to fit the philosophy of Langlands dual as well as the word “mirror”. It does not
matter much if different isomorphisms are taken.

2.3. Open Richardson varieties. For v, w ∈ W , with v ≤ w with respect to the Bruhat
order, we have the open Richardson subvarieties,

R−
v,w := (B−\B−v̇

−1B+) ∩ (B−\B−ẇ
−1B−) ⊂ B−\G,

R+
v,w := (B+\B+v̇

−1B−) ∩ (B+\B+ẇ
−1B+) ⊂ B+\G.

These are smooth and irreducible of dimension ℓ(w) − ℓ(v) [KL79].Note that the intersections
above are empty if v 6≤ w. The Zariski closures are called a (closed) Richardson varieties and

denoted by R
−
v,w and R

+

v,w, respectively. We will also consider the following (open) Richardson
varieties in G/B−.

RR−

v,w := (B+v̇B−/B−) ∩ (B−ẇB−/B−) ⊂ G/B−,

RR+

v,w := (B−v̇B+/B+) ∩ (B+ẇB+/B+) ⊂ G/B+..

Open Richardson varieties and their projections will be our main target spaces on the B-side.
We use the notation (P\G)◦ for the top-dimensional projected open Richardson variety inside

P\G, namely (P\G)◦ = prP (R
−
id,w0wP

) under the projection prP : B−\G −→ P \G.

2.3.1. Schubert varieties. On the A-side, we consider the Bruhat decompositions

X = G∨/P∨ =
⊔

v∈WP

B∨
+v̇P

∨/P∨ =
⊔

w∈WP

B∨
−ẇP

∨/P∨.

The Zariski closures of the (opposite) Schubert cells B∨
+v̇P

∨/P∨ and B∨
−ẇP

∨/P∨,

Xv = B∨
+v̇P

∨/P∨, Xw := B∨
−ẇP

∨/P∨
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are (opposite) Schubert varieties in X . They are of codimension ℓ(v) and dimension ℓ(w)
respectively. It is well-known that the classical cohomology ring H∗(X,Z) has a Z-basis of
Schubert classes σv:

H∗(X,Z) =
⊕

v∈WP

Zσv, where σv := P.D.[Xv] ∈ H2ℓ(v)(X,Z),

and P.D.[Xv] stands for the Poincaré dual of the fundamental homology class of Xv.

3. The Plücker coordinate superpotentials

In this section, we will construct two versions of a superpotential for X = G∨/P∨ defined
on projected open Richardson varieties for G. The first superpotential F+ is a straightforward
extension of a construction for complex Grassmannians given in [MR20]. It has a natural
formula in terms of Plücker coordinates in the Grassmannian case, as was shown in [MR20],
but this formula does not generalise well to more general partial flag varieties. The construction
of the second superpotential F−, which has a natural Plücker coordinate presentation in general,
is the main outcome of this section.

3.1. The superpotential F+ generalising [MR20]. Recall we have the following (open)
Richardson variety in B+\G,

R+
id,w0wP

:= (B+\B+B−) ∩ (B+\B+ẇ
−1
P w−1

0 B+) ⊂ B+\G

and the projection map prP+
: B+\ G → P+\G, where P+ is upper-triangular parabolic sub-

group with IP+ = {n1, · · · , nr}. It is shown in [KLS14, Lemma 3.1] that prP+
: R+

id,w0wP
→

(P+\G)◦ = prP+
(R+

id,w0wP
) is an isomorphism. Moreover, implicitly from [KLS14], the pro-

jected open Richardson variety prP+
(R+

id,w0wP
) is the complement of an anti-canonical divisor

in P+\G.
As in [MR20], we use GL(n,C) as the starting point instead of PSL(n,C) used in [Rie08],

and thus need to cut down to a codimension one subtorus in T . The torus T has an adjoint
action by W . Consider the invariant subtorus

T WP = {t ∈ T | tn = 1, ẇtẇ−1 = t, ∀w ∈WP }.

We define a map

ψ+ : B− ∩ U+T WP ẇP ẇ
−1
0 U+ −→ (P+\G)◦ ×

∏
i∈IP

C∗
q

b− = u1tẇP ẇ
−1
0 u2 7→ (P+b−,q(t))

where

(3.1)
T WP

∼
−→

∏
i∈IP

C∗
q

t 7→ q(t ) := (αn1(t ), . . . , αnr(t )).

It follows from [Rie08, Section 4] and [KLS14] that ψ+ is an isomorphism.

Definition 3.1. We define the superpotential F+ by

F+ : (P+\G)◦ ×
∏
i∈IP

C∗
q

ψ−1
+

−→ B− ∩ U+T WP ẇP ẇ
−1
0 U+ −→ C

(P+b−,q(t)) 7→ b− = u1tẇP ẇ
−1
0 u2 7→

n−1∑
i=1

e∗i (u1) + e∗i (u2).

Where e∗k : U+ → C is the map that sends u = (uij) in U+ to its (k, k + 1)-entry, namely
e∗k(u) = uk,k+1. This is well-defined by [Rie08, Lemma 5.2].
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This definition is a direct translation of the Lie-theoretic superpotential defined in [Rie08]
via the isomorphism ψ+. If P+ is a maximal parabolic, then this definition agrees with the
one used to give a Plücker coordinate superpotential for Grassmannians in [MR20]. In general,
viewing F+, as a rational function on the partial flag variety P+\ G (depending additionally
on parameters qi), there will be a Plücker coordinate formula also in the partial flag setting.
However, it turns out that this construction gives a superpotential that is not as well-suited for
being expressed in terms of Plücker coordinates as we would like.

Example 3.2. Consider the complete flag variety G∨/B∨
− for GL3(C) and the associated su-

perpotential F+. Fix a representative b− of P+b−. For a subset I of {1, 2, 3} let pI denote the
minor of b− with column set I and row set the last |I| many rows. Then

F+(P+b−, (q1, q2)) =
p2
p1

+
p13
p12

+ q2
p1p13
p3p12

+ q1
p2p12
p1p23

.

This example will be useful for comparison between F+ and our alternative version of the su-
perpotential that we construct in Section 3.3 (see Example 3.19).

3.2. Superpotential FLie. We now give the construction of the original Lie theoretic super-
potential FLie in a form that is suitable for our applications. The following definition is a slight
change of conventions on [MR20, Definition 6.3] and [Rie08].

We recall the definition of the torus T WP and the isomorphism from (3.1), as well as the
maps e∗k : U+ → C. We also recall that P ⊇ B− is the parabolic subgroup of G with IP =
{n1, · · · , nr}.

Definition 3.3 (The Lie-theoretic superpotential). Let ZP := B− ∩U+T WP ẇ−1
P ẇ0U+. Define

the map FLie : ZP −→ C by

b− = u1tẇ
−1
P ẇ0u2 7→ −

(
n−1∑
i=1

e∗i (u1) +
n−1∑
i=1

e∗i (u2)

)
.

It is an important fact that the map FLie is well-defined even though u1 and u2 are not uniquely
determined by b−, see [Rie08, Lemma 5.2].

3.3. The superpotential F−. In this section we give a non-standard isomorphism from ZP to
the product of the projected open Richardson variety (P\G)◦ = prP (R

−
id,w0wP

) with
∏
i∈IP C∗

q .

The superpotential F− will then be defined as a function on (P\G)◦ ×
∏
i∈IP C∗

q .
We start by considering the isomorphism

γ : ZP = B− ∩ U+T WP ẇ−1
P ẇ0U+ −→ (B− ∩ U+ẇ

−1
P ẇ0U+)×

∏
i∈IP C∗

q

b− = u1tẇ
−1
P ẇ0u2 7→ (b̂ = t−1b−,q(t)),

where q(t) is as in (3.1). Here the first factor of the right-hand side may be considered as fiber
of ZP where t equals to the identity element. The qni = αni(t) can also be obtained directly
using minors of b−.

We translate the superpotential FLie to a function on the right-hand side above, and write

down a formula for it for future reference. Namely, we have b̂ = v̂ẇ−1
P ẇ0 û for b̂ ∈ B− ∩

U+ẇ
−1
P ẇ0U+. Then

(3.2) FLie ◦ γ
−1 (b̂, (qi)i∈IP ) = −

(
∑

i∈IP

v̂i,i+1 +
∑

i∈IP

qiv̂i,i+1 +

n−1∑

i=1

ûi,i+1

)
.

The main step in the construction now is to make a choice for v̂ for which only the quantum

terms in the formula above will appear, and the other v̂i,i+1 vanish. Recall that RR+

id,wPw0
=
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B−B+ ∩B+wPw0B+/B+. We define the variety

(3.3) Z := U+ẇ
−1
P ẇ0 ∩ ẇ

−1
P ẇ0U− ∩B−B+,

which will play a central role in our constructions.

Lemma 3.4. Consider the intersection B− ∩U+ẇ
−1
P ẇ0U+ and the variety Z as defined above.

We have the following isomorphisms

ζ1 : B− ∩ U+ẇ
−1
P ẇ0U+ −→ RR+

id,wPw0

b̂ 7→ b̂B+,

ζ2 : Z −→ RR+

id,wPw0

z 7→ zB+.

We consider the composition ζ = ζ−1
2 ◦ ζ1,

ζ : B− ∩ U+ẇ
−1
P ẇ0U+ −→ Z

b̂ 7→ z,

where z ∈ Z is the unique representative with zB+ = b̂B+.

Proof. The map ζ1 is just the restriction to the fiber over e ∈ TWP of the isomorphism B− ∩

U+T
WP ẇ−1

P ẇ0U+
∼= RR+

id,wPw0
× TWP from [Rie08, Section 4.1]. We now show that ζ2 is an

isomorphism.

Note that RR+

id,wPw0
is the open dense subset of the Bruhat cell B+wPw0B+/B+ obtained

by intersecting with opposite big cell B−B+/B+. We have the factorisation U+ = UP+ U+,P ,
where

UP+ := U+ ∩ ẇ−1
P U+ẇP ,(3.4)

U+,P := U+ ∩ ẇ−1
P U−ẇP ,

and the map u 7→ uẇ−1
P ẇ0B+ from U+ restricts to an isomorphism UP+ → B+wPw0B+/B+.

Equivalently, the projection map g 7→ gB+ restricts to an isomorphism

(3.5) UP+ ẇ
−1
P ẇ0

∼
−→ B+wPw0B+/B+.

We now rewrite the definition of Z as follows,

Z = U+ẇ
−1
P ẇ0 ∩ ẇ

−1
P ẇ0U− ∩B−B+

=
(
U+ ∩ ẇ−1

P U+ẇP
)
ẇ−1
P ẇ0 ∩B−B+

= UP+ ẇ
−1
P ẇ0 ∩B−B+.

It follows that (3.5) restricts to an isomorphism Z → RR+

id,wPw0
, and this is precisely the

map ζ2. �

Lemma 3.5. Recall that (P\G)◦ = prP(R
−
id,w0wP

) and let Z be as defined in (3.3). We have
an isomorphism

π : Z −→ (P\G)◦,
z 7→ Pz.

Proof. Note that

R−
id,w0wP

= R−
wP ,w0

ẇ0 = B−\(B−ẇ
−1
P B+ ∩B−ẇ

−1
0 B−)ẇ0.
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Consider UP+ and U+,P as defined in (3.4) and the factorisation U+ = U+,PU
P
+ . The Bruhat

cell B−\B−ẇ
−1
P B+ is isomorphic to UP+ via the map u 7→ B−ẇ

−1
P u. It follows that

(3.6)
ẇ−1
P UP+ ∩B−ẇ

−1
0 B− → B−\(B−ẇ

−1
P B+ ∩B−ẇ

−1
0 B−)

ẇ−1
P u 7→ B−ẇ

−1
P u.

is an isomorphism. We can rewrite the definition of Z as follows,

Z = U+ẇ
−1
P ẇ0 ∩ ẇ

−1
P ẇ0U− ∩B−B+

= ẇ−1
P

(
ẇPU+ẇ

−1
P ∩ ẇ0U−ẇ

−1
0

)
ẇ0 ∩ (B−ẇ

−1
0 B−)ẇ0.

=
(
ẇ−1
P UP+ ∩B−ẇ

−1
0 B−

)
ẇ0.

We now translate both sides of the isomorphism from (3.6) by ẇ0 and obtain an isomorphism

π′ : Z → R−
id,w0wP

,

z 7→ B−z.

The composition of π′ above with the isomorphism R−
id,w0wP

∼
→ (P\G)◦ from [KLS14] is the

map π : Z → (P\G)◦, which proves that π is an isomorphism. �

Definition 3.6 (The superpotential F−). We denote by ψ− the composition of isomorphisms,
where B = B− ∩ U+ẇ

−1
P ẇ0U+,

(3.7) ψ− : ZP
γ

−→ B ×
∏

i∈IP

C
∗
q

ζ×id
−→ Z ×

∏

i∈IP

C
∗
q

π×id
−→ (P\G)◦ ×

∏

i∈IP

C
∗
q .

We now define the superpotential F− by

F− := FLie ◦ ψ
−1
− : (P\G)◦ ×

∏

i∈IP

C
∗
q → C.

3.4. Notations for F−. In summary, we have shown above that we may write any element of
(P\G)◦ uniquely as Pz for some z ∈ Z. We can then write

(3.8) z = v−1ẇ−1
P ẇ0

for a unique v ∈ U+. Next let b̂ := ζ−1(z) ∈ B− ∩ U+ẇ
−1
P ẇ0U+. We can write

(3.9) b̂ = zu−1 = v−1ẇ−1
P ẇ0u

−1,

for a unique u ∈ U+. Finally, the superpotential F− is computed by

(3.10) F−(Pz, q) = FLie ◦ γ
−1 (b̂, (qi)i∈IP ) =

∑

i∈IP

vi,i+1 +
∑

i∈IP

qivi,i+1 +

n−1∑

i=1

ui,i+1,

using the description of FLie in (3.2).

Definition 3.7. Given z ∈ Z we will always use the notations above for the related elements

b̂, v, u with b̂ ∈ B− ∩ U+ẇ
−1
P ẇ0U+ and u, v ∈ U+, satisfying

b̂B+ = zB+,
z = v−1ẇ−1

P ẇ0,

b̂ = zu−1 = v−1ẇ−1
P ẇ0u

−1.

We will also let b := b̂−1 = uẇ−1
0 ẇP v.

We can immediately simplify the formula (3.10) using the following lemma.
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Lemma 3.8. Let z ∈ Z. For v ∈ U+ as in Definition 3.7, we have that v ∈ ẇ−1
P U+ẇP , and

therefore the entry vi,i+1 = 0 for all i ∈ IP .

Remark 3.9. This lemma says that v ∈ UP+ , in the notation (3.4) from Lemma 3.4.

Proof of Lemma 3.8. By (3.3) we have that z ∈ ẇ−1
P ẇ0U−. The lemma follows from this and

the fact that v = ẇ−1
P ẇ0z

−1. �

As a consequence of Lemma 3.8 we have the formula,

(3.11) F−(Pz,q) =
∑

i∈IP

qivi,i+1 +

n−1∑

i=1

ui,i+1,

for F− in terms of u, v.
We can now use the formula (3.11) as our starting point for studying F−. The rest of this

section will be devoted to giving a compact description of F− in terms of Plücker coordinates.

3.5. The description of Z. We first give a concrete description of our variety

(3.12) Z = U+ẇ
−1
P ẇ0 ∩ ẇ

−1
P ẇ0U− ∩B−B+.

Recall that aj = nj − nj−1 where IP = {n1, . . . , nr}.

Lemma 3.10. Let Iaj denote the aj × aj identity matrix. If z ∈ Z then z is of the following
form,

(3.13)




∗ ∗ . . . ∗ ∗ Ia1
∗ ∗ . . . ∗ (−1)n1Ia2 0

∗ ∗ . .
.

. .
.

0 0...
... . .

.
. .
. ...

...
∗ (−1)nr−1Iar 0 · · · 0 0

(−1)nrIar+1 0 0 · · · 0 0




n×n

.

We write z = v−1ẇ−1
P ẇ0 as in Definition 3.7. Then the matrix v ∈ U+ has its non-zero

above-diagonal entries given by

vnj ,nj+1 = (−1)nj+1znj ,n−nj+1+1.

Proof. Given square matrices Ai, we let diag{A1, · · · , Am} denote the block-diagonal matrix
with diagonal blocks Ai. Similarly we write

antidiag{A1, · · · , Am} :=




A1

A2

. .
.

Am


 .

for the anti block-diagonal matrix with blocks Ai.
We have that Z ⊂ U+ẇ

−1
P ẇ0 ∩ ẇ−1

P ẇ0U−. It follows that z ∈ Z has anti-diagonal blocks

according to ẇ−1
P ẇ0, and all other non-zero entries must lie above and to the left of these blocks.

By direct calculation we have ẇ0 = antidiag{1,−1, · · · , (−1)n−1}. Moreover, ẇP is block
diagonal with j-th diagonal block given by antidiag{1,−1, · · · , (−1)aj−1}. Therefore ẇ−1

P =

diag{I
(1)
± , · · · , I

(r+1)
± } where I

(j)
± := antidiag{(−1)aj−1 · · · ,−1, 1}. It follows that ẇ−1

P ẇ0 is an
anti-diagonal block matrix with top right-hand block given by Ia1 , and (j + 1)-st block given
by (−1)njIaj+1 ,

(3.14) ẇ−1
P ẇ0 = antidiag{Ia1 , (−1)n1Ia2 , · · · , (−1)nrIar+1}.
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Here the overall signs of the blocks follow from the fact that the nj+1-st row of ẇ−1
P is the row

vector δ
nj+1
t , and the (n− nj)-th column of ẇ0 is (−1)njδtnj+1.

This finishes the proof that the matrix z has the form indicated in (3.13). We can now check
the formula for vnj ,nj+1. We apply v−1 to δtnj+1, giving

(3.15) v−1 · δtnj+1 = zẇ−1
0 ẇP · δtnj+1 = (−1)njz · δtn−nj+1+1

Here we used the inverse of (3.14),

(3.16) ẇ−1
0 ẇP = antidiag{(−1)nrIar+1 , · · · , (−1)n1Ia2 , Ia1}.

From (3.15) we get

(v−1)nj ,nj+1 = (−1)njznj ,n−nj+1+1.

The formula now follows, since (v−1)nj ,nj+1 = −vnj ,nj+1. �

Remark 3.11. The complete description of Z is that it consists of those matrices of the form
(3.13) for which the upper left-hand corner minors are all non-vanishing. This final condition
encodes the intersection with B−B+ in (3.12).

3.6. A Plücker coordinate formula for F−. For positive integers j ≤ m, we denote by
(
[m]
j

)

the set of subsets J of [m] of cardinality j. We denote the complement Jc(m) = [m] \ J simply

as Jc whenever J ⊂ [m] is well understood. We always write J, Jc as increasing sequences, and
define |J | :=

∑
i∈J i.

We consider the Plücker embedding

Pl : P\G −→ P
( n
n1
)−1 × · · · × P

( n
nr
)−1

Pg 7→

(
[pK1(g)]K1∈([n]

n1
), · · · , [pKr(g)]Kr∈([n]

nr
)

)

where the Plücker coordinate pKj (g) of Pg is the determinant of the nj × nj sub-matrix of g
with first nj rows and the columns from Kj .

The next proposition is a combination of Propositions 2.2 and 3.9 in [LSZ23] with respect
to the quotient P \G, which was also implicitly contained in [KLS14].

Proposition 3.12. The projected open Richardson variety (P\G)◦ = prP (R
−
id,w0wP

) is the

complement of the anti-canonical divisor −KP\G in P \G, where

−KP\G =
∑

i∈I

prP (R
−
si,w0wP

) +
∑

i∈IP

prP (R
−
id,w0siwP

).

Definition 3.13. For any homogeneous polynomial p in Plücker coordinates, we denote V(p) :=
{Pg ∈ P\G | p([pK1 ]K1 , · · · , [pKr ]Kr)(Pq) = 0} and define

Dk :=





V(p[k]), if k ∈ {n1, · · · , nr},

V(p[n]\[k+1,n−n1+k]), if 1 ≤ k < n1,

V(p[k−nr+1,k]), if nr < k ≤ n− 1,

V(
∑

J∈([min{k,k̂}]
k−nj

)

(−1)|J|p[k]rJ · pJ∪[k̂+1,n]),
if nj < k < nj+1 with j ∈ [r−1]

where k̂ := n− nj+1 + k − nj
,

V(p[n−nk−n+1,n]), if k ∈ {n, · · · , n− 1 + r}.

The following proposition from [LSZ23], provides explicit equations for the irreducible com-
ponents of the the anti-canonical divisor −KP\G in terms of Plücker coordinates.
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Proposition 3.14 ([LSZ23, Theorem 4.1]). We have

Dk =

{
prP (R

−
sk,w0wP

), if 1 ≤ k ≤ n− 1,

prP (R
−
id,w0snk−n+1

wP
) if n ≤ k ≤ n− 1 + r,

and
∑n−1+r

k=1 Dk is an anti-canonical divisor in P\G, denoted as −KP\G.

We will give a Plücker coordinate expansion of F− where each summand has a pole of order
1 along a (unique) irreducible component Dk of −KP\G, giving rise to a bijection between
divisors Dk and summands of F−.

For any n × m matrix A ∈ Mn×m(C), we let ∆J
K(A) denote the minor with row set J

and column set K, whenever the sub-matrix is a square matrix. We will need the following
generalization in [GAE02] of the famous Cramer’s rule in linear algebra.

Lemma 3.15 (Generalized Cramer’s rule). Let A ∈ GLn(C) and X,Y ∈ Mn×m(C) such that

AX = Y . For any J ∈
(
[n]
l

)
and K ∈

(
[m]
l

)
where l ≤ min{n,m}, we have

∆J
K(X) =

det(AY (J,K))

detA

where AY (J,K) denotes the matrix constructed from A by order-preserving replacing the column
set J of A by the column set K of Y .

The special case of X = A−1 in the generalized Cramer’s rule yields Jacobi Theorem for the
minors of an inverse matrix immediately as follows.

Corollary 3.16 (Jacobi Theorem). Let A ∈ GLn(C). For any J,K ∈
(
[n]
l

)
where l ∈ [n], we

write Jc = [n] \ J and Kc = [n] \K in increasing sequences. We have

∆J
K(A−1) =

(−1)|J|+|K|

detA
∆Kc

Jc
(A).

Using Lemma 3.10, we have the next key proposition.

Proposition 3.17. Let z ∈ Z. We define b, u and v as in Definition 3.7, so that b =
uẇ−1

0 ẇP v = uz−1. Then

ui,i+1 =
∆

[i]
[i−1]∪{i+1}(z)

∆
[i]
[i](z)

, for any i ∈ [n− 1];

vi,i+1 =






∆
[nj ]

{n−nj+1+1}∪[n−nj+1,n]\{n−nj−1}
(z)

∆
[nj]

[n−nj+1,n]
(z)

, if i = nj with j ∈ [r],

0, otherwise.

Proof. Since u ∈ U+ and b ∈ B−, we have û := u−1 ∈ U+ and b̂ := b−1 ∈ B−. For m = n− i,

we let û(m) (resp. b̂(m)) be the n×m matrix obtained by taking the last m columns of û (resp.

b̂). Since b = uz−1, we have zû(m) = b̂(m). By using Lemma 3.15 and noting b̂ ∈ B− and
det z = 1, we have

ûn−m,n−m+1 = ∆
{n−m}∪[n−m+2,n]
[m] (û(m))

= det(zb̂(m)({n−m} ∪ [n−m+ 2, n], [m]))

= −(

n∏

j=n−m+1

b̂jj)∆
[i]
[i−1]∪{i+1}(z),
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1 = ∆
[n−m+1,n]
[m] (û(m)) = (

n∏

j=n−m+1

b̂jj)∆
[i]
[i](z).

Thus for i ∈ [n− 1], we have

ui,i+1 = −ûi,i+1 = −
ûi,i+1

1
=

∆
[i]
[i−1]∪{i+1}(z)

∆
[i]
[i](z)

.

By Lemma 3.8, we have vi,i+1 = 0 if i 6= {n1, · · · , nr}; We recall that by Lemma 3.10, z is
of the form (3.13) and therefore for j ∈ [r] we have

vnj ,nj+1 = (−1)nj+1znj ,n−nj+1+1

= (−1)nj+1∆
{nj}
{n−nj+1+1}(z)

= (−1)nj+1(−1)aj−1(−1)nj−1
∆

[nj ]

{n−nj+1+1}∪[n−nj+1,n]\{n−nj−1}
(z)

∆
[nj ]

[n−nj+1,n](z)

=
∆

[nj ]

{n−nj+1+1}∪[n−nj+1,n]\{n−nj−1}
(z)

∆
[nj ]

[n−nj+1,n](z)
.

�

Theorem 3.18. Let (qn1 , · · · , qnr) denote the coordinates of (C∗)r =
∏
i∈IP

C∗
q. The superpo-

tential F− : (P\G)◦ × (C∗)r −→ C is given by the explicit formula

F− =

n1−1∑

i=1

p[i−1]∪{i+1}∪[n−n1+i+1,n]

p[i]∪[n−n1+i+1,n]
+

r−1∑

j=1

nj+1−1∑

i=nj+1

S
(j)
i +

n−1∑

i=nr+1

p[i−nr+1,i+1]\{i}

p[i−nr+1,i]

+

r∑

j=1

p[nj−1]∪{nj+1}

p[nj]
+

r∑

j=1

qnj

p{n−nj+1+1}∪[n−nj+1,n]\{n−nj−1}

p[n−nj+1,n]
,

where

S
(j)
i =

∑
J∈([min{i+1,̂i}]r{i}

i−nj
)
ǫ(J)(−1)|J|p[i−1]∪{i+1}rJ · pJ∪[̂i+1,n]

∑
J∈([min{i,̂i}]

i−nj
)
(−1)|J|p[i]rJ · pJ∪[̂i+1,n]

with î = n− nj+1 + i− nj and ǫ(J) =

{
1, if i+ 1 /∈ J,

−1, if i+ 1 ∈ J.

Proof. We let b̂, b, u, v be defined as in Definition 3.7 for given z ∈ Z. By Lemma 3.8, we have

F−(Pz,q) =
∑

i∈IP

qivi,i+1 +

n−1∑

i=1

ui,i+1,

Since by Proposition 3.17 ui,i+1 and vi,i+1 are quotients of minors of z, it suffices to interpret

those minors by the Plücker coordinates. Recall that for subsets K ∈
(
[n]
nj

)
, pK(z) = ∆

[nj ]
K (z)

is the determinant of the submatrix of z with first nj rows and columns from K. Therefore
if i ∈ {n1, · · · , nr}, this is already done for both ui,i+1 and vi,i+1, as given in the last two
sums of the expression of F−. Recall that z is of the form (3.13). For i < n1 then both
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∆
[i]
[i−1]∪{i+1}(z) = ∆

[n1]
[i−1]∪{i+1}∪[n−n1+i+1,n](z) and ∆

[i]
[i](z) = ∆

[n1]
[i]∪[n−n1+i+1,n](z) hold. Then

we have

ui,i+1 =
p[i−1]∪{i+1}∪[n−n1+i+1,n]

p[i]∪[n−n1+i+1,n]
.

Next we consider the case i > nr. Let 0µ,ν denote the zero matrix with µ rows and ν

columns. then the last (i − nr) rows for minors ∆
[i]
[i−1]∪{i+1}(z) and ∆

[i]
[i](z) are both given

by
(
(−1)nrIi−nr , 0i−nr,n−i+nr

)

(i−nr)×i
. The Laplace expansion on the last (i− nr) rows leads

to the third sum in the expression of F− immediately.
It remains to discuss ui,i+1 for the case nj < i < nj+1 for some j ∈ [r−1]. Denote k = i−nj.

The first i rows of z is given by




∗ ∗ ∗ . . . ∗ ∗ Ia1
∗ ∗ ∗ . . . ∗ (−1)n1Ia2 0
...

...
... . .

.
. .
.

0 0
∗ ∗ ∗ (−1)nj−1Iaj 0 0 0
∗ (−1)njIk 0k,aj+1−k 0 · · · 0 0




i×n

.

Here the first column block has size n− nj+1. Using Laplace expansion on the last k rows, we
obtain

∆
[i]
[i−1]∪{i+1}(z) =

∑

J∈([i−1]∪{i+1}
k )

(−1)|[i−nj+1,i]|+|J|ǫ(J)∆
[nj ]

[i−1]∪{i+1}rJ (z) · zJ ,

where zJ is the determinant of the submatrix with columns from J and last k rows. Since the
last k row is

(
∗ (−1)nk−1Ik 0k,aj+1−k 0 · · · 0

)
. Its last nonzero column is in position

î := n−nj+1+k, so we may assume that J ⊂ [l′] \ {i} where l′ = min{i + 1, î}, as otherwise

zJ = 0 for J occurring in the above sum. Similarly and more easily, we set l = min{i, î} and
have

∆
[i]
[i](z) =

∑

J̃∈([l]k )

(−1)|[i−nj+1,i]|+|J̃|∆
[nj ]

[i]rJ̃
(z) · zJ̃ .

Since z is of the specified form as above, we have zJ = εpJ∪[n−nj+1+k+1,n] and zJ̃ = εpJ̃∪[n−nj+1+k+1,n],

in which ε = ±1 depends only on {n1, · · · , nj}. Hence, we have ui,i+1 =
∆

[i]

[i−1]∪{i+1}
(z)

∆
[i]

[i]
(z)

= S
(j)
i

and the proof is complete. �

Example 3.19. When IP = I, we have that P\G is a complete flag variety. In this case, there

is no S
(j)
i -term, and the superpotential F− is simply given by

F− =

n−1∑

i=1

p [i−1]∪{i+1}
p[i]

+

n−1∑

i=1

qi
p[n−i,n]\{n−i+1}

p[n−i+1,n]
.

Example 3.20. When IP = {k}, we have that P\G is the complex Grasssmannian Gr(k, n).

In this case, there are no S
(j)
i -terms, and the superpotential F− is simply given by

F− =

k−1∑

i=1

p[i−1]∪{i+1}∪[n−k+i+1,n]

p[i]∪[n−k+i+1,n]
+

n−1∑

i=k+1

p[i−k+1,i+1]\{i}

p[i−k+1,i]
+
p[k−1]∪{k+1}

p[k]
+ qk

p[n−k,n]\{n−k+1}

p[n−k+1,n]
.
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4. Quantum cohomology of partial flag varieties

The main result of this section will be to show that the image of the superpotential in the
Jacobi ring agrees with the the first Chern class under the known isomorphism with quantum
cohomology (Section 4.1). This result is Theorem 4.14.

On the A-side, we consider the small quantum cohomology ring of X = G∨/P∨, denoted by
QH∗(X). It is an associative and commutative algebra over C[qn1 , · · · , qnr ] with a basis given
by the Schubert classes σv, where qnj are formal variables.

QH∗(X) = C[qn1 , · · · , qnr ]⊗H∗(X,Z)

The structure constants are defined through the 3-point, genus-zero Gromov-Witten invariants
of X . There is also an enumerative meaning of these constants (see e.g. [FP97]). Recall that

the number r occurs in the isomorphism G∨/P∨
∼=
−→ Fℓ(n•) = Fℓ(n;nr, · · · , n1).

A permutation w ∈ Sn is an element in WP if and only if w(nj + 1) < · · · < w(nj+1) for
all 0 ≤ j ≤ r. In particular, if w = snj−i+1 · · · snj , 1 ≤ j ≤ r, 1 ≤ i ≤ nj , then σw is called a
special Schubert class. The following is a special case of the quantum Pieri rule in [C-Fon99].

Proposition 4.1 (Ciocan-Fontanine). Let w be a Grassmannian permutation with w(1) <
· · · < w(m) and w(m + 1) < · · · < w(n) for some m = nj, 1 ≤ j ≤ r. Then in QH∗(X), we
have

σw · σsnj
=

∑

a≤nj<b,
ℓ(wtab)=ℓ(w)+1

σwtab
+

∑

ℓ(wτ)=ℓ(w)−ℓ(τ)

qnjσwτ ,

where tab is the transposition interchanging a and b, τ := snj · snj+1 × · · · × snj+1−1 · snj−1 ·
snj−2 × · · · × snj−1+1.

Remark 4.2. Since w is a Grassmannian permutation, there is at most one quantum term in
the expansion of the product σw ·σsnj

. Note that the condition ℓ(wτ) = ℓ(w)− ℓ(τ) is equivalent

to w(nj) > w(nj+1), w(nj + 1) < w(nj−1 + 1).

4.1. Peterson isomorphism. In this section we state three theorems of D. Peterson, of which
the proofs may be found in [Rie03, Section 4].

Definition 4.3. For 1 ≤ i ≤ m < n, we define a rational function Gmi on G/B− as follows:

Gmi (gB−) :=
∆

{m−i+1}∪[m+2,n]
[m+1,n] (g)

∆
[m+1,n]
[m+1,n](g)

.

Definition 4.4 (Peterson variety). Let Y denote the (type A) Peterson variety, which is the
projective subvariety of G/B− cut out by the relation

(4.1) g−1fg ∈ b− ⊕

(
⊕

i∈I

gαi

)
=









∗ ∗ 0 . . . 0

∗
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
...

. . .
. . .

. . . ∗
∗ . . . . . . ∗ ∗









,
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where g represents gB− and f is the principal nilpotent

f =




0
1 0

. . .
. . .

1 0


 .

We set

YP := Y ∩B+ẇPB−/B−,

and refer to this intersection as the Peterson variety associated to the parabolic subgroup P .

Theorem 4.5 (D. Peterson). Let YP be the Peterson variety associated to the parabolic sub-
group P . There is a unique isomorphism

O(YP )
∼
−→ QH∗(G∨/P∨),

G
nj

i 7→ (−1)iσsnj−i+1···snj

where 1 ≤ j ≤ r, 1 ≤ i ≤ nj and G
nj

i is as constructed in Definition 4.3.

Remark 4.6. The isomorphism we are using differs from the one used in [Rie03] by signs.

Remark 4.7. The rational function Gmi is a regular function on the Schubert cell B+ẇPB−/B−

if m ∈ IP .

More generally, for a Grassmannian permutation w, with w(1) < · · · < w(m) and w(m+1) <
· · · < w(n) for some 1 < m < n, we can define a rational function Gw on G/B− as follows:

Gw(gB−) :=
∆

{w(m+1),··· ,w(n)}
[m+1,n] (g)

∆
[m+1,n]
[m+1,n](g)

.

We use G{w(m+1),··· ,w(n)}(gB−) := Gw(gB−) for short. This will not lead to any misunder-
standing since our n is fixed throughout the paper. Then we have the following result, by
[Rie03, Prop 11.3].

Proposition 4.8. If w is a Grassmannian permutation with descent m and m ∈ IP , then the
isomorphism in Theorem 4.5 sends Gw to (−1)ℓ(w)σw.

Theorem 4.9 (D. Peterson). Let XP := YP ∩ (B−ẇ0B−/B−). Then the map in Theorem 4.5
induces an isomorphism between O(XP ) and QH∗(G∨/P∨)[q−1

n1
, · · · , q−1

nr
].

We may also refer to XP as Peterson variety. We recall that XP can be described using
Toeplitz matrices using an idea going back to B. Kostant.

Theorem 4.10 (D. Peterson). Consider the following variety of lower-triangular Toeplitz ma-
trices given by

XP :=





b− =




x1
x2 x1
...

. . .
. . .

xn · · · x2 x1


 | b− ∈ B+ẇP ẇ0B+





.

The map XP → XP sending b− to b−ẇ0B− is an isomorphism.
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4.2. Critical points of the superpotential. We have the following isomorphism ψR which
is a version of an isomorphism from [Rie08, Section 4.1],

ψR : B− ∩ U+T
WP ẇ−1

P ẇ0U+

∼=
−→ RR−

wP ,w0
×
∏

i∈IP

C
∗
q ;

b− = u1tẇ
−1
P ẇ0u2 7→ ψR(b−) = (b−ẇ0B−, (αni(t))

r
i=1).

Define FR by

FR := FLie ◦ ψ
−1
R : RR−

wP ,w0
×
∏

i∈IP

C
∗
q −→ C.

We now consider the ring

(4.2) Jac(FR) := O

(
RR−

wP ,w0
×
∏

i∈IP

C
∗
q

)
/(∂RR−

wP ,w0

FR),

where we are taking partial derivatives of FR in the RR−

wP ,w0
directions, and which we refer to

as the (fiberwise) Jacobi ring of FR. This ring describes the critical points of FR along the

fibres of the projection pr2 : RR−

wP ,w0
×
∏
i∈IP C∗

q →
∏
i∈IP C∗

q .
The next theorem shows that the Jacobi ring of FR is isomorphic to the coordinate ring of

the Peterson variety XP . Namely, Consider the subvariety of RR−

wP ,w0
×
∏
i∈IP C∗

q cut out by

the ideal (∂RR−
wP ,w0

FR) of partial derivatives of FR along RR−

wP ,w0
. We denote the corresponding

subvariety in ZP = B− ∩ U+T
WP ẇ−1

P ẇ0U+ by ZcritP . The theorem stated below is a direct
translation of [Rie08, Theorem 4.1] with our notation.

Theorem 4.11. We have that ZcritP = XP . Moreover, the subvariety

ψR(Z
crit
P ) ⊂ RR−

wP ,w0
×
∏

i∈IP

C
∗
q ,

which is defined by the ideal (∂RR−
wP ,w0

FR) is isomorphic to XP via the restriction of the first

projection pr1 : RR−

wP ,w0
×
∏
i∈IP C∗

q → RR−

wP ,w0
.

Proof. We have the following result proved in [Rie08] that we state for the parabolic subgroup

Q := ẇ0Pẇ
−1
0 . Let us set T̃ WQ := ẇ−1

0 T WP ẇ0. We define

F̃Q : Z̃Q = B− ∩ U+T̃ WQ ẇQẇ
−1
0 U+ → C,

b̃− = u1t̃ẇQẇ
−1
0 u2 7→

∑
i e

∗
i (u1) +

∑
i e

∗
i (u2),

and its restrictions

F̃Q,t̃ : Z̃Q,t̃ = B− ∩ U+t̃ẇQẇ
−1
0 U+ → C.

Then it is shown in [Rie08] that the critical points of F̃Q,t̃ lie in XQ. Namely,

Z̃critQ,t̃ := {b̃− ∈ B− ∩ U+t̃ẇQẇ
−1
0 U+ | ∂F̃Q,t̃(b̃) = 0} = XQ ∩ Z̃Q,t̃,

where XQ is as in Theorem 4.10. Moreover the fiberwise critical point variety Z̃critQ (union over

all fibers Z̃crit
Q,t̃

) agrees with XQ.

We can now compare F̃Q with our superpotential FLie. We have that

FLie(b− = u1tẇ
−1
P ẇ0u2) = F̃Q(b

−1
− = u−1

2 t̃ẇQẇ
−1
0 u−1

1 )

where t̃ = ẇ−1
0 ẇP t

−1ẇ−1
P ẇ0 = ẇ−1

0 t−1ẇ0. Therefore, b− is a critical point of the analogous

restriction FLie,t if and only if b−1
− is a critical point of F̃Q,t̃ and we have that the critical point
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variety ZcritP of FLie is equal to the inverse of XQ. Finally, the inverse of XQ is precisely XP

(using that the inverse of a Toeplitz matrix is again Toeplitz). It follows that ψR(Z
crit
Lie ) projects

to XP , thanks to Theorem 4.10 �

Corollary 4.12. The fiberwise Jacobi ring Jac(FR) of the superpotential FR is isomorphic to
the quantum cohomology ring QH∗(X)[q−1

n1
, · · · , q−1

nr
].

Proof. The Jacobi ring is related to QH∗(X)[q−1
n1
, · · · , q−1

nr
] by

Jac(FR)
∼
−→ O(XP ) (Theorem 4.11)
∼
−→ QH∗(G∨/P∨)[q−1

n1
, · · · , q−1

nr
] (Theorem 4.9).

�

We have the following corollary of Theorem 4.11 that we record for use later on. Suppose
q ∈

∏
i∈IP C∗

q . Define

(4.3) Fq : B− ∩ U+ẇ
−1
P ẇ0U+ → C

by Fq(b̂) = FLie ◦ γ−1(b̂,q). This is precisely the function from (3.2), but now with quantum
parameters fixed.

Corollary 4.13. If b̂ is a critical point of Fq, then tb̂ = γ−1(b̂,q) is a Toeplitz matrix.

Proof. In the notation from the proof of Theorem 4.11, we have b̂ is a critical point of Fq if and

only if tb̂ is a critical point of FLie,t. But the critical points of FLie,t lie in ZcritP , which equals

to XP by Theorem 4.11. Therefore tb̂ is a Toeplitz matrix. �

4.3. Image of first Chern class. The following theorem is the main result in this section,
the proof of which is in the end of this subsection.

Theorem 4.14. Let θ be the isomorphism Jac(FR)
∼
−→ QH∗(X)[q−1

n1
, · · · , q−1

nr
] in Corol-

lary 4.12. Let [FR] be the class of superpotential FR in the Jacobi ring. Then we have

θ([FR]) = c1(X).

The proof of Theorem 4.14 will occupy the rest of the paper.
Fix q ∈

∏
i∈IP C

∗
q and recall the map Fq : B− ∩ U+ẇ

−1
P ẇ0U+ → C defined in (4.3). Let us

consider b̂ ∈ B− ∩ U+ẇ
−1
P ẇ0U+ and let z, u, v and b be as in Definition 3.7. We then have

(4.4) b = uẇ−1
0 ẇP v = uz−1.

Also recall that b− = tb̂ = tb−1, with t ∈ T WP corresponding to q via (3.1). The following
lemmas are key ingredients in the proof of Theorem 4.14.

Lemma 4.15. Let nj ∈ IP . Then vnj ,nj+1 = −
tnj+1

tnj
G
nj

1 (b−ẇ0B−).
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Proof. Since u, v ∈ U+ and ẇ−1
0 ẇP = antidiag{(−1)nrIar+1 , · · · , (−1)n1Ia2 , Ia1}, we have

vnj ,nj+1 =
∆

[nj ]

[nj−1]∪{nj+1}(v)

∆
[nj ]

[nj ]
(v)

=
∆

[n−nj+1,n]

[nj−1]∪{nj+1}(ẇ
−1
0 ẇP v)

∆
[n−nj+1,n]

[nj ]
(ẇ−1

0 ẇP v)

=
∆

[n−nj+1,n]

[nj−1]∪{nj+1}(b)

∆
[n−nj+1,n]

[nj ]
(b)

Note that for the diagonal entries of t we have that tnj+1 = tnj+2 = · · · = tnj+1 , where
0 ≤ j ≤ r. Therefore, we have

vnj ,nj+1 =
∆

[n−nj+1,n]

[nj−1]∪{nj+1}(b)

∆
[n−nj+1,n]

[nj ]
(b)

=
tnj+1

tnj

∆
[n−nj+1,n]

[nj−1]∪{nj+1}(bt
−1)

∆
[n−nj+1,n]

[nj ]
(bt−1)

= −
tnj+1

tnj

∆
[nj ]∪[nj+2,n]

[n−nj ]
(tb−1)

∆
[nj+1,n]

[n−nj ]
(tb−1)

= −
tnj+1

tnj

G
nj

1 (b−ẇ0B−).

where in the second to last equality one needs to apply Corollary 3.16. �

The situation for ui,i+1 is slightly more complicated.

Lemma 4.16. Let 1 ≤ i < n − nr. Suppose b̂ is a critical point of Fq, then ui,i+1 =
un−nr,n−nr+1.

Proof. Since u ∈ U+, we have ui,i+1 = ∆
[n]\{i+1}
[n]\{i} (u). By Collorary 3.16, we have that

∆
[n]\{i+1}
[n]\{i} (u) = −∆

{i}
{i+1}(u

−1). Applying generalized Cramer’s rule, see Lemma 3.15, to the

equation b−1 = zu−1, we have ∆
{i}
{i+1}(u

−1) = det zb−1({i}, {i + 1}). Now since b̂ is a criti-

cal point of Fq, we have that tb̂ = tb−1 is a Toeplitz matrix by Corollary 4.13. Note that
tnr+1 = tnr+2 = · · · = tn. Therefore for 1 ≤ i < n− nr we have

det zb−1({i}, {i+ 1}) = det zt−1(tb−1)({i}, {i+ 1})

= t−1
n det z(tb−1)({i}, {i+ 1})

= t−1
n det z(tb−1)({n− nr}, {n− nr + 1})

= det zb−1({n− nr}, {n− nr + 1}).

Therefore, we have shown that ui,i+1 = un−nr,n−nr+1 whenever b is a critical point of Fq for
1 ≤ i < n− nr.

�

Lemma 4.17. Let i = n − nj for some 1 ≤ j ≤ r. Suppose b̂ is a critical point of Fq, then
ui,i+1 = −G

nj

1 (b−ẇ0B−).
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Proof. Since u, v ∈ U+ and ẇ−1
0 ẇP = antidiag{(−1)nrIar+1 , · · · , (−1)n1Ia2 , Ia1}, we have

un−nj,n−nj+1 =
∆

{n−nj}∪[n−nj+2,n]

[n−nj+1,n] (u)

∆
[n−nj+1,n]

[n−nj+1,n](u)

=
∆

{n−nj}∪[n−nj+2,n]

[nj ]
(uẇ−1

0 ẇP )

∆
[n−nj+1,n]

[nj ]
(uẇ−1

0 ẇP )

=
∆

{n−nj}∪[n−nj+2,n]

[nj ]
(b)

∆
[n−nj+1,n]

[nj ]
(b)

=
∆

{n−nj}∪[n−nj+2,n]

[nj ]
(bt−1)

∆
[n−nj+1,n]

[nj ]
(bt−1)

.

Now since b̂ is a critical point of Fq, we have that tb̂ = tb−1 is a Toeplitz matrix by Corol-
lary 4.13. So that its inverse bt−1 is also a Toeplitz matrix. Therefore, we have

∆
{n−nj}∪[n−nj+2,n]

[nj ]
(bt−1)

∆
[n−nj+1,n]

[nj ]
(bt−1)

=
∆

[n−nj+1,n]

[nj−1]∪{nj+1}(bt
−1)

∆
[n−nj+1,n]

[nj ]
(bt−1)

.

Then it follows as in the proof of Lemma 4.15 that un−nj ,n−nj+1 = −G
nj

1 (b−ẇ0B−).
�

Lemma 4.18. Let n − n1 < i ≤ n − 1. Suppose b̂ is a critical point of Fq, then ui,i+1 =
−Gn1

1 (b−ẇ0B−).

Proof. By Proposition 3.17, we have ui,i+1 =
∆

[i]

[i−1]∪{i+1}
(z)

∆
[i]

[i]
(z)

. Since z is of the form (3.13), if we

set d = i− (n− n1), then d < min{i, n1} and we have

∆
[i]
[i−1]∪{i+1}(z)

∆
[i]
[i](z)

= −
∆

{d}∪{d+2,i]}
[i−d] (z)

∆
[d+1,i]
[i−d] (z)

= −
∆

{d}∪{d+2,i]}
[i−d] (b−1)

∆
[d+1,i]
[i−d] (b−1)

.

Recall that b− = tb̂ = tb−1. Note that t1 = t2 = · · · = tn1 and 1 ≤ d < d+ 1 ≤ n1. So we have

ui,i+1 = −
∆

{d}∪{d+2,i]}
[i−d] (b−1)

∆
[d+1,i]
[i−d] (b−1)

= −
∆

{d}∪[d+2,i]
[n−n1]

(tb−1)

∆
[d+1,i]
[n−n1]

(tb−1)

= −
G{d}∪[d+2,i](b−ẇ0B−)

G[d+1,i](b−ẇ0B−)

= −Gn1
1 (b−ẇ0B−).

The last equality follows from Proposition 4.1 and the isomorphism in Corollary 4.12. �
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Lemma 4.19. Suppose n− nj+1 < i < n− nj for some 1 ≤ j ≤ r − 1. Suppose b̂ is a critical
point of Fq, then

ui,i+1 = −(G
nj

1 (b−ẇ0B−) +G
nj+1

1 (b−ẇ0B−)).

We leave the proof of this lemma to the next section. Now we are ready to prove Theorem 4.14
assuming the above lemmas.

Proof of Theorem 4.14. Let b̂ ∈ B−∩U+ẇ
−1
P ẇ0U+ and let z, u, v and b be as in Definition 3.7.

Also recall that b− = tb̂ and qnj =
tnj

tnj+1
. By Equation 3.11, we have FR(b−ẇ0B−,q) =

FLie(b−) = F−(Pz,q) =
∑
i∈IP

qivi,i+1+
n−1∑
i=1

ui,i+1. Suppose that b̂ is a critical point of Fq. Then

by Corollary 4.12 and the above lemmas, we have

θ([FR]) =
r∑

j=1

(nj+1 − nj−1)σsnj
= c1(X) ∈ QH∗(X).

�

5. Proof of Lemma 4.19 and Quantum Schubert calculus

The goal of this section is to prove the most difficult of the lemmas, which is Lemma 4.19.

5.1. Equivalence of Lemma 4.19 and an identity in quantum Schubert calculus. We
first prove that Lemma 4.19 is equivalent to the identity in quantum Schubert calculus stated
in the following theorem.

Definition 5.1. Recall that we are considering n− nj+1 < i < n− nj for some 1 ≤ j ≤ r − 1,
and let d := i− (n− nj+1). We set

Ξ :=

{
J ∈

(
[i]

d

)
| J ∩ [nj + d+ 1, n] = ∅

}
,

and define Weyl group elements wJ ∈ WP for certain J ∈ Ξ as follows. For J = {j1 < j2 <
· · · < jd} ∈ Ξ, let {x1 < x2 < · · · < xi−d} := [i]\J .

(1) If nj ≥ d, then wJ is the following permutation

{w(1) < · · · < w(nj)} = {j1 < j2 < · · · < jd < i+ 1 < i+ 2 < · · · < i+ nj − d}

{w(nj + 1) < · · · < w(nj+1)} = {x1 < i+ nj − d+ 1 < i+ nj − d+ 2 < · · · < n− 1}

{w(nj+1 + 1) < · · · < w(nj+2)} = {x2 < · · · < xnj+2−nj+1 < n}

{w(nj+2 + 1) < · · · < w(n)} = {xnj+2−nj+1+1 < · · · < xi−d}

(2) If nj < d, and x1 < jnj+1 then wJ is defined by

{w(1) < · · · < w(nj)} = {j1 < · · · < jnj}

{w(nj + 1) < · · · < w(nj+1)} = {x1 < jnj+1 < · · · < jd < i+ 1 < · · · < n− 1}

{w(nj+1 + 1) < · · · < w(nj+2)} = {x2 < · · · < xnj+2−nj+1 < n}

{w(nj+2 + 1) < · · · < w(n)} = {xnj+2−nj+1+1 < · · · < xi−d}.

Example 5.2. Suppose n1 = 2, n2 = 4, n = 7. Let j = 1 and i = 4 (which indeed satisfies
n− nj+1 < i < n− nj). Then d = 1 and

Ξ =

{
J ∈

(
[4]

1

)
| J ∩ [4, 7] = ∅

}
= {{1}, {2}, {3}}.
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Since nj = 2 ≥ d = 1 we have a Weyl group element wJ for each J ∈ Ξ. Suppose J = {j1} and
[4] \ J = {x1, x2, x3}. Then the definition of wJ is

wJ (1) = j1, wJ (2) = 5, wJ (3) = x1, wJ (4) = 6, wJ (5) = x2, wJ (6) = x3, wJ (7) = 7.

For our three choices of J this gives the following three Weyl group elements,

w{1} = 1526347, w{2} = 2516347, w{3} = 3516247,

with descents at 2 and 4, so in WP .

We can now state our theorem. Note that since wJ ∈ WP , we have an associated Schubert
class σwJ . If a permutation w ∈ WP is Grassmannian, so that it is determined by the values
w(1) < . . . < w(m) up to m = nk for some k, then we may write σ{w(1),··· ,w(m)} for σw. Recall
that we set |J | :=

∑
i∈J i.

Theorem 5.3. Consider X = G∨/P∨ and fix i such that n − nj+1 < i < n − nj for some
1 ≤ j ≤ r− 1. Let d := i− (n−nj+1). For each wJ defined above we consider σwJ ∈ QH∗(X),
and we set σwJ := 0 for J ∈ Ξ where wJ is not defined. Then the identity

∑

J∈Ξ

(−1)|J|σwJσ[1,nj+d]\J = 0(5.1)

holds in QH∗(X).

Remark 5.4. The quantum product σJ∪[i+1,n] · σsnj+1
consists of at most one quantum part,

say qnj+1σwJ . The above definition of wJ is an explicit description of such a class.

Lemma 5.5. The formula for ui,i+1 in Lemma 4.19 is equivalent to the corresponding identity
in Theorem 5.3.

Proof. We use determinantal identities to rewrite the ui,i+1 in Lemma 4.19. By Proposition

3.17, we have ui,i+1 =
∆

[i]

[i−1]∪{i+1}
(z)

∆
[i]

[i]
(z)

. Using Laplace expansion on the first n− nj+1 columns,

we have

∆
[i]
[i−1]∪{i+1}(z)

∆
[i]
[i](z)

=

∑

J∈([i]d )
(−1)|J|∆

[i]\J
[n−nj+1]

(z) ·∆J
[n−nj+1+1,i−1]∪{i+1}(z)

∑

J∈([i]d )
(−1)|J|∆

[i]\J
[n−nj+1]

(z) ·∆J
[n−nj+1+1,i](z)

where d := i − (n − nj+1). Since z is of the form (3.13), we have that the determinant
∆J

[n−nj+1+1,i−1]∪{i+1}(z) vanishes if J ∩ ({nj + d} ∪ [nj + d + 2, n]) 6= ∅, and ∆J
[n−nj+1+1,i](z)

vanishes if J ∩ [nj + d+ 1, n] 6= ∅. If we set

A := {J ∈

(
[i]

d

)
|J ∩ ({nj + d} ∪ [nj + d+ 2, n]) = ∅}
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and Ξ = {J ∈
(
[i]
d

)
|J ∩ [nj + d+ 1, n] = ∅} as already defined, then we have

∑

J∈([i]d )
(−1)|J|∆

[i]\J
[n−nj+1]

(z) ·∆J
[n−nj+1+1,i−1]∪{i+1}(z)

∑

J∈([i]d )
(−1)|J|∆

[i]\J
[n−nj+1]

(z) ·∆J
[n−nj+1+1,i](z)

=−

∑
J∈A

η(J)(−1)|J|∆
[i]\J
[n−nj+1]

(z) ·∆
J∪{nj+d}∪[nj+d+2,n]

[n−nj ]
(z)

∑
J∈Ξ

(−1)|J|∆
[i]\J
[n−nj+1]

(z) ·∆
J∪[nj+d+1,n]

[n−nj ]
(z)

in which η(J) is the function

η(J) =

{
1, if nj + d+ 1 /∈ J,

−1, if nj + d+ 1 ∈ J.

Since b−1 = zu−1 and u ∈ U+, we have

∑
J∈A

η(J)(−1)|J|∆
[i]\J
[n−nj+1]

(z) ·∆
J∪{nj+d}∪[nj+d+2,n]

[n−nj ]
(z)

∑
J∈Ξ

(−1)|J|∆
[i]\J
[n−nj+1]

(z) ·∆
J∪[nj+d+1,n]

[n−nj ]
(z)

=

∑
J∈A

η(J)(−1)|J|∆
[i]\J
[n−nj+1]

(b−1) ·∆
J∪{nj+d}∪[nj+d+2,n]

[n−nj ]
(b−1)

∑
J∈Ξ

(−1)|J|∆
[i]\J
[n−nj+1]

(b−1) ·∆
J∪[nj+d+1,n]

[n−nj ]
(b−1)

We recall that b− = tb̂ = tb−1. Note that tnj+1 = tnj+2 = · · · = tnj+1 for all 0 ≤ j ≤ r. Since
nj < nj + d < nj + d+ 1 ≤ nj+1, we have

ui,i+1 = −

∑
J∈A

η(J)(−1)|J|∆
[i]\J
[n−nj+1]

(b−1) ·∆
J∪{nj+d}∪[nj+d+2,n]

[n−nj ]
(b−1)

∑
J∈Ξ

(−1)|J|∆
[i]\J
[n−nj+1]

(b−1) ·∆
J∪[nj+d+1,n]

[n−nj ]
(b−1)

= −

∑
J∈A

η(J)(−1)|J|∆
[i]\J
[n−nj+1]

(tb−1) ·∆
J∪{nj+d}∪[nj+d+2,n]

[n−nj ]
(tb−1)

∑
J∈Ξ

(−1)|J|∆
[i]\J
[n−nj+1]

(tb−1) ·∆
J∪[nj+d+1,n]

[n−nj ]
(tb−1)

= −

∑
J∈A

η(J)(−1)|J|G[i]\J (b−ẇ0B−) ·G
J∪{nj+d}∪[nj+d+2,n](b−ẇ0B−)

∑
J∈Ξ

(−1)|J|G[i]\J (b−ẇ0B−) ·GJ∪[nj+d+1,n](b−ẇ0B−)

Applying the isomorphism in Corollary 4.12, we see that the formula for ui,i+1 in Lemma 4.19
is equivalent to the following identity in QH∗(X).

∑

J∈Ξ

(−1)|J|(σJ∪[i+1,n] · σsnj+1
) · σ[1,nj+d]\J +

∑

J∈Ξ

(−1)|J|σJ∪[i+1,n] · (σ[1,nj+d]\J · σsnj
)

=
∑

J∈A

η(J)(−1)|J|σJ∪[i+1,n] · σ([1,nj+d−1]∪{nj+d+1})\J .(5.2)

It remains to show that this is exactly the identity in Theorem 5.3.
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Assume that J = {j1 < j2 < · · · < jd}, then by Proposition 4.1,

σJ∪[i+1,n] · σsnj+1
=
∑

1≤s≤d

σ{j1,··· ,js−1,js+1,js+1,··· ,jd,i+1,··· ,n} + qnj+1σwJ .

Here, we set σ{j1,··· ,js−1,js+1,js+1,··· ,jd,i,··· ,n} := 0 if either s = d and jd = i or js+1 = js+1 holds.
We divide the above sum into two parts as follows

C1(J) :=
∑

1≤s≤d−1

σ{j1,··· ,js−1,js+1,js+1,··· ,jd,i+1,··· ,n}

C2(J) := σ{j1,··· ,jd−1,jd+1,i+1,··· ,n}

Similarly, we have

σ[1,nj+d]\J · σsnj
=
∑

1≤j≤d

σ[1,nj+d]\{j1,··· ,js−1,js−1,js+1,··· ,jd} +D2(J)

= D1(J) +D2(J)

Here, D1(J) is defined as

D1(J) :=
∑

1≤j≤d

σ[1,nj+d]\{j1,··· ,js−1,js−1,js+1,··· ,jd}

where we set σ[1,nj+d]\{j1,··· ,js−1,js−1,js+1,··· ,jd} := 0 if either s = 1 and j1 = 1 or js − 1 = js−1

holds. And D2(J) is defined as follows

D2(J) :=

{
σ[1,nj+d−1]∪{nj+d+1}\J , if nj + d /∈ J,

0, if nj + d ∈ J.

Note that since nj+1 > nj + d, we have w(nj+1) > w(nj) and therefore there are no quantum
terms in the product σ[1,nj+d]\J · σsnj

by the remark after Proposition 4.1.

If nj + d ∈ J , namely, jd = nj + d, then directly from the definition of A and Ξ we have
∑

J∈Ξ
nj+d∈J

(−1)|J|C2(J) · σ[1,nj+d]\J =
∑

J∈A
nj+d+1∈J

η(J)(−1)|J|σJ∪[i+1,n] · σ([1,nj+d−1]∪{nj+d+1})\J .

If nj + d /∈ J , then we have
∑

J∈Ξ
nj+d/∈J

(−1)|J|σJ∪[i+1,n] ·D2(J) =
∑

J∈A
nj+d+1/∈J

η(J)(−1)|J|σJ∪[i+1,n] · σ([1,nj+d−1]∪{nj+d+1})\J .

Moreover, for J = {j1 < j2 < · · · < jd}, we denote J+
s := {j1, · · · , js−1, js + 1, js+1, · · · , jd} and

J−
s := {j1, · · · , js−1, js − 1, js+1, · · · , jd}. Then

∑

J∈Ξ

(−1)|J|σJ∪[i+1,n] ·D1(J) =
∑

J∈Ξ

d∑

s=1

(−1)|J|σJ∪[i+1,n] · σ[1,nj+d]\J
−
s
.

Since σ[1,nj+d]\J
−
s
6= 0 only if J−

s ∈ J , in which case (J−
s )+s = J ∈ Ξ, we have

∑

J∈Ξ

d∑

s=1

(−1)|J|σJ∪[i+1,n] · σ[1,nj+d]\J
−
s
=
∑

J∈Ξ

d−1∑

s=1

(−1)|J|+1σJ+
s ∪[i+1,n] · σ[1,nj+d]\J+

∑

J∈Ξ
nj+d/∈J

(−1)|J|+1σJ+
d
∪[i+1,n] · σ[1,nj+d]\J .

Therefore, we have
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∑

J∈Ξ

(−1)|J|C1(J)·σ[1,nj+d]\J+
∑

J∈Ξ
nj+d/∈J

(−1)|J|C2(J)·σ[1,nj+d]\J+
∑

J∈Ξ

(−1)|J|σJ∪[i+1,n]·D1(J) = 0.

We therefore see that the identity (5.2) is equivalent to the identity
∑

J∈Ξ

(−1)|J|σwJσ[1,nj+d]\J = 0

in Theorem 5.3. Hence, the statement follows. �

The structure of the proof of Lemma 4.19 and Theorem 5.3 is now the following. We will first
prove Theorem 5.3 in the special case where nj + nj+1 ≤ n. It then follows that Lemma 4.19
holds whenever nj + nj+1 ≤ n, because of Lemma 5.5. Next, we introduce a symmetry on the
domain of the superpotential FR that allows us to deduce the statement of Lemma 4.19 for
nj+nj+1 ≥ n from the one for nj+nj+1 ≤ n. Finally, we obtain Theorem 5.3 for nj+nj+1 ≤ n,
since this proposition and Lemma 4.19 are equivalent in every case. This strategy also shows
an interaction between mirror symmetry and quantum Schubert calculus.

5.2. A special case of Theorem 5.3. In this section we prove Theorem 5.3 in the case
where nj + nj+1 ≤ n. To do this we first prove a version of the identity (5.1) in the quantum
cohomology of the complete flag variety Fℓn in the following key lemma.

Lemma 5.6. Assume that nj + nj+1 ≤ n. With notations as in Theorem 5.3, the following
identity, obtained simply by replacing the Schubert classes in (5.1) with corresponding ones for
Fℓn, holds in the quantum cohomology ring QH∗(Fℓn).

∑

J∈Ξ

(−1)|J|σBwJ
σB[1,nj+d]\J

= 0.

To prove the above lemma, we need some preparation. Recall that a permutation w is
called 321−avoiding if there does not exist i < j < k such that w(i) > w(j) > w(k). The key
observation in the proof of Lemma 5.6 is the following lemma, that the permutations wJ arising
above are all 321−avoiding.

Lemma 5.7. The permutations wJ constructed in Definition 5.1 are 321−avoiding.

Proof. We will argue by contradiction. Consider the case nj ≥ d first. Suppose that there
exists i0 < j0 < k0 satisfying wJ (i0) > wJ (j0) > wJ(k0). Since i0 < j0 and wJ (i0) > wJ(j0),
we must have nj + 1 ≤ j0. If we assume that j0 ≤ nj+1, then we must have j0 = nj + 1 since
wJ (i0) > wJ (j0). So we have wJ (j0) = x1. However, this is in contradiction with j0 < k0 and
wJ (j0) > wJ (k0). Therefore we must have j0 > nj+1. Since j0 < k0 and wJ (j0) > wJ(k0),
we have j0 = nj+2 and wJ(j0) = n. But this is in contradiction with wJ (i0) > wJ (j0). In
conclusion, for the case nj ≥ d, wJ is a 321−avoiding permutation. The case nj < d can be
proved similarly. �

Remark 5.8. For example, the identity in Lemma 5.6 coming from Fℓ(7; 4, 2), where nj =
2, nj+1 = 4 and i = 4, d = 1, is

σB1526347 · σ
B
2314567 − σB2516347 · σ

B
1324567 + σB3516247 · σ

B
1234567 = 0,

and it involves only 321-avoiding permutations.

Definition 5.9. Let w ∈ Sn be a permutation, then the code of w is defined as

c(w) = (c1, c2, · · · , cn)

where ci := ♯{j|i < j, w(j) < w(i)}.
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Definition 5.10. Let w be a 321−avoiding permutation with code c(w) = (c1, · · · , cn). The
flag of the partition is defined as φ(w) = {j1 < j2 < · · · < jl} := {j|cj > 0}. We define a skew
partition λ/µ by embedding it into Z× Z as follows:

λk − µk = cjk

λ/µ = {(k, h) : 1 ≤ k ≤ l, k − jk − cjk + 1 ≤ h ≤ k − jk}

Example 5.11. We continue with the example from Remark 5.8.

(1) If w = 1526347, then the code of w is c(w) = (0, 3, 0, 2, 0, 0, 0). And we have {j1 <
j2} = {2 < 4} with l = 2. Then we have

k = 1, 1− 2− 3 + 1 ≤ h ≤ 1− 2

k = 2, 2− 4− 2 + 1 ≤ h ≤ 2− 4

Therefore, the skew partition is with λ = (3, 2) and µ = (0, 0).
(2) If w = 2516347, then the code of w is c(w) = (1, 3, 0, 2, 0, 0, 0) with flag φ(w) = {1, 2, 4}.

Then

k = 1, 1− 1− 1 + 1 ≤ h ≤ 1− 1

k = 2, 2− 2− 3 + 1 ≤ h ≤ 2− 2

k = 3, 3− 4− 2 + 1 ≤ h ≤ 3− 4

Therefore, the skew partition is λ/µ = with λ = (3, 3, 2) and µ = (2, 0, 0).

(3) If w = 3516247, then the code of w is c(w) = (2, 3, 0, 2, 0, 0, 0) with flag φ(w) = {1, 2, 4}.
Then

k = 1, 1− 1− 2 + 1 ≤ h ≤ 1− 1

k = 2, 2− 2− 3 + 1 ≤ h ≤ 2− 2

k = 3, 3− 4− 2 + 2 + 1 ≤ h ≤ 3− 4

Therefore, the skew partition is λ/µ = with λ = (3, 3, 2) and µ = (1, 0, 0).

In [BJS93], Schubert polynomial Sw is explicitly written down in a determinantal formula
for a 321−avoiding permutation as follows.

Theorem 5.12 (Corollary 2.3 of [BJS93]). Let w be a 321−avoiding permutation with flag
φ(w) = (φ1 < · · · < φk) and skew partition λ/µ. Let Xi = (x1, x2, · · · , xi). Then we have

Sw = det(hλi−µj−i+j(Xφi))1≤i,j≤k

where hr(Xi) is the complete homogeneous symmetric polynomial of degree r in variables Xi.

In [Kirillov], A.N. Kirillov defines quantum Schubert polynomials and conjectures that the
quantum version of the above determinantal formula holds as well, see [Kirillov, Conjecture 1].
We will verify this conjecture in the quantum cohomology ring of the complete flag variety
Fℓn using the work of [FGP97]. This should have been known to the experts (see e.g. [CK23,
formula (6)]). Since we are not aware of this formula appearing in form of a theorem, we state
it here as Theorem 5.20 and provide a detailed argument for completeness.
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Definition 5.13. Let Gk be the matrix



x1 q1 0 · · · 0
−1 x2 q2 · · · 0
0 −1 x3 · · · 0
...

...
...

. . .
...

0 0 0 · · · xk




The quantum elementary polynomial Eki is defined by the following formula

det(1 + λGk) =

k∑

i=0

Eki λ
i

And we set Eki = 0 if i < 0 or i > k.

By setting q1 = q2 = · · · = qk−1 = 0, Eki recovers the ordinary elementary symmetric
polynomial eki = eki (x1, · · · , xk). Let ei1···im := e1i1 · · · e

m
im

be standard elementary monomial.
The following lemma is a classical result, and can be found in [Macdonald].

Lemma 5.14. Let In be the ideal in Z[x1, · · · , xn] generated by en1 , · · · , e
n
n, then each of the

following forms a Z−basis in Z[x1, · · · , xn]/In:

(1) the standard elementary monomials ei1···in−1 , with 0 ≤ ik ≤ k;
(2) the Schubert polynomials Sw for w ∈ Sn.

Moreover, each of these families spans the same vector space Ln ⊂ Z[x1, · · · , xn] which is
complementary to In.

Therefore, any Schubert polynomial Sw is uniquely a linear combination of standard ele-
mentary monomials with integer coefficients. In [FGP97], the quantum Schubert polynomial is
defined as the linear combination of the quantum elementary monomials Ei1···im := E1

i1
· · ·Emim

with the same coefficients. Namely, we have

Definition 5.15. The quantum Schubert polynomial Sq
w for a permutation w ∈ Sn is defined

as
Sq
w =

∑
αi1···in−1Ei1···in−1

where the coefficients αi1···in−1 are the same as the coefficients found in the classical expansion
Sw =

∑
αi1···in−1ei1···in−1 .

We recall the quantum analogue of Lemma 5.14 proved in [FGP97].

Lemma 5.16. Let Iqn be the ideal in Z[q1, · · · , qn−1][x1, · · · , xn] generated by En1 , · · · , E
n
n , then

each of the following determines a Z[q]−basis in Z[q, x]/Iqn:

(1) the quantum standard elementary monomials Ei1···in−1 , with 0 ≤ ik ≤ k;
(2) the quantum Schubert polynomials Sq

w for w ∈ Sn.

Moreover, each of these families spans the same vector space Lqn ⊂ Z[q, x] which is complemen-
tary to Iqn.

One of the main results in [FGP97] is the following

Theorem 5.17 (Theorem 1.2 of [FGP97]). The map

π : Z[q1, · · · , qn−1][x1, · · · , xn] −→ QH∗(Fℓn)

sending x1 + · · · + xi to σBsi ∈ QH∗(Fℓn) is a surjective ring homomorphism with kernel Iqn
generated by En1 , · · · , E

n
n . Under the induced isomorphism Z[q, x]/Iqn

∼= QH∗(Fℓn), the coset of
the quantum Schubert polynomial Sq

w is sent to the corresponding quantum Schubert class σBw .
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Now we are ready to prove the quantum version of the determinantal formula for a 321−avoiding
permutation.

Definition 5.18. We call Hk
l := det(Ek+l−1

j−i+1 )1≤i,j≤l the quantum complete homogeneous poly-

nomial in k variables of degree l. Set Hi1,··· ,in−1 := H1
i1
· · ·Hn−1

in−1
.

Remark 5.19. Hk
ik

∈ Iqn if ik > n− k.

Theorem 5.20. Let w be a 321−avoiding permutation with flag φ(w) = (φ1 < · · · < φk) and
skew partition λ/µ. Let Xi = (x1, x2, · · · , xi). Then in Z[q, x]/Iqn we have

Sq
w = det(Hλi−µj−i+j(Xφi))1≤i,j≤k.

Proof. We consider the involution ω of Z[q1, · · · , qn−1][x1, · · · , xn] defined by ω(xk) = −xn+1−k

and ω(qk) = qn−k, for 1 ≤ k ≤ n. According to [FGP97], Iqn is an invariant subspace for the
involution ω. Therefore ω induces an automorphism on Z[q, x]/Iqn. Moreover, we have

ω(Ei1···in−1) = Hin−1···i1 ; ω(Hi1···in−1) = Ein−1···i1 ; ω(Sq
w) = Sq

w0ww0
.

Therefore it suffices to show

Sq
w0ww0

= det(Eλi−µj−i+j(Xn−φi))1≤i,j≤k

Note that the right hand side of the equality is a linear combination of quantum standard
elementary monomials by the definition of determinants. Then by Lemma 5.16 it suffices to
show that the coefficient of any standard elementary monomial Ei1,··· ,in−1 with 0 ≤ ik ≤ k on
the right hand side is the same as in the definition of the quantum Schubert polynomial. But
by Definition 5.15, it suffices to show this in the classical case. However, by applying involution
to Theorem 5.12, we have the following equality in Z[x1, · · · , xn]/In

Sw0ww0 = det(eλi−µj−i+j(Xn−φi))1≤i,j≤k

Since the right hand side is a linear combination of ei1,··· ,in−1 and the standard elemen-
tary monomials ei1,··· ,in−1 with 0 ≤ ik ≤ k span a vector space complementary to In, by
discarding the other monomials in the expansion of the determinant, we get the formula
Sw0ww0 =

∑
0≤ik≤k

αi1···in−1ei1···in−1 as wanted. �

Remark 5.21. In the proof we used the involution ω, therefore we are only able to prove
the identity Sq

w = det(Hλi−µj−i+j(Xφi))1≤i,j≤k in the quotient ring Z[q, x]/Iqn. However, the
original conjectural identity in [Kirillov] is stated in the ring Z[q, x].

We now use this theorem to prove Lemma 5.6.

Proof of Lemma 5.6. Using the isomorphism Z[q, x]/Iqn
∼= QH∗(Fℓn), we may identify Sq

w with
σBw , and treat Hr(Xi) as an element in QH∗(Fℓn). Also we use × for the multiplication. Since
wJ is a 321−avoiding permutation by Lemma 5.7, we are able to apply Theorem 5.20. The
proof is divided into two cases: nj ≥ d and nj < d.

(1) Consider the case nj ≥ d first. Then for J = {j1 < · · · < jd} ∈ Ξ = {J ∈
(
[i]
d

)
|J ∩ [nj +

d+ 1, n] = ∅}, let {x1 < x2 < · · · < xi−d} := [i]\J , wJ is the following permutation

{w(1) < · · · < w(nj)} = {j1 < j2 < · · · < jd < i+ 1 < i+ 2 < · · · < i+ nj − d}

{w(nj + 1) < · · · < w(nj+1)} = {x1 < i+ nj − d+ 1 < i+ nj − d+ 2 < · · · < n− 1}

{w(nj+1 + 1) < · · · < w(nj+2)} = {x2 < · · · < xnj+2−nj+1 < n}

{w(nj+2 + 1) < · · · < w(n)} = {xnj+2−nj+1+1 < · · · < xi−d}.
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The code of wJ is c(wJ ) = (j1 − 1, j2 − 2, · · · , jd − d, i − d, i − d, · · · , i − d, 0, i − d −
1, · · · , i−d− 1, 0, · · · , 0, n− nj+2, 0, · · · , 0) with flag φ(wJ ) = (1, 2, · · · , nj , nj +2, nj+
3, · · · , , nj+1, nj+2). Then it determines a skew partition λ/µ, where

λ = (i− d, · · · , i− d, i− d− 1, · · · , i− d− 1, n− nj+2) with nj many i− d

and nj+1 − nj − 1 many i− d− 1;

µ = (i− d− (j1 − 1), i− d− (j2 − 2), · · · , i− d− (jd − d), 0, · · · , 0).

Then by Theorem 5.20, we have σBwJ
= det(Hλr−µs−r+s(Xφr ))1≤r,s≤nj+1 . Here we

do assume nj+2 < n, the case nj+2 = n can be dealt with similarly. We are going to
use Laplace expansion on the first d columns of this determinant. Let R = (r1 < · · · <

rd) ∈
([nj+1]

d

)
be row index for the expansion, and denote MR for the cofactor (with

sign) obtained by removing the first d columns and rows indexed by R. Then Laplace
expansion says that

det(Hλr−µs−r+s(Xφr ))1≤r,s≤nj+1 =
∑

R

MR × det(Hλr−µs−r+s(Xφr ))1≤s≤d,r∈R.

We observe thatMR is independent of J since it involves only the last nj+1−d columns
of det(Hλr−µs−r+s(Xφr ))1≤r,s≤nj+1 and only the first d items of µ depend on J . There-
fore, we have

∑

J∈Ξ

(−1)|J|σBwJ
σB[1,nj+d]\J

=
∑

J∈Ξ

∑

R

(−1)|J|MR × det(Hλr−µs−r+s(Xφr))1≤s≤d,r∈R × σB[1,nj+d]\J

=
∑

R

MR

∑

J∈Ξ

(−1)|J| det(Hλr−µs−r+s(Xφr))1≤s≤d,r∈R × σB[1,nj+d]\J
.

The Schubert class σB[1,nj+d]\J
is indexed by a Grassmannian permutation, which in

particular is a 321−avoiding permutation. Let α = (α1, · · · , αnj ) be the corresponding
partition such that J ∪ {α1 + nj , · · · , αnj + 1} = [1, nj + d]. Then we have

σB[1,nj+d]\J
= det(Hαa−a+b(Xnj+1−b))1≤a,b≤nj .

We will construct an (nj + d)× (nj + d) matrix AR. We define the first d row vectors
of AR to be

(Hλr−r−i+d+1(Xφr), Hλr−r−i+d+2(Xφr ), · · · , Hλr−r−i+d+nj+d(Xφr ))

where r runs through R = (r1 < · · · < rd). And we define the last nj row vectors of
AR to be

(H1−nj−1+b(Xnj+1−b), H2−nj−1+b(Xnj+1−b), · · · , Hnj+d−nj−1+b(Xnj+1−b))

where b run through [1, nj].
Next we show that detAR = 0. We will prove this by showing that either AR

contains two identical row vectors or AR contains a zero row vector. We observe that
λr − r − i+ d+ φr = 0, therefore, in order to show that AR contains two identical row
vectors it suffices to prove that φr = nj + 1− b for some r ∈ R and b ∈ [1, nj], namely,
R ∩ [1, nj] 6= ∅. Now suppose we have the opposite, namely R ∩ [1, nj] = ∅. Then we
have r1 ≥ nj + 1 and rd ≥ nj + d. So we have λrd − rd − i + d = −φrd < −(nj + d).
Therefore the dth row of AR is a zero vector since Hm(X) := 0 form < 0. In conclusion,
we have detAR = 0.



34 CHANGZHENG LI, KONSTANZE RIETSCH, MINGZHI YANG, AND CHI ZHANG

Note that λr is independent of J ∈ Ξ and µs = i− d− (js − s), so λr − µs − r+ s =
λr − r − i + d + js. Also note that αa − a+ b = αa + (nj + 1 − a)− nj − 1 + b, while
αa + (ni + 1 − a) lies in the complement of J ⊆ [1, nj + d]. By our assumption that

nj+nj+1 ≤ n, we have i ≥ nj+d = nj+i−(n−nj+1). Therefore we have Ξ =
(
[nj+d]
d

)
.

Then by taking the Laplace expansion on the first d rows of AR, we see that

detAR =
∑

J∈Ξ

(−1)|J| det(Hλr−µs−r+s(Xφr ))1≤s≤d,r∈R × σB[1,nj+d]\J
.

Therefore, under the assumption nj + nj+1 ≤ n, we have

∑

J∈Ξ

(−1)|J|σBwJ
σB[1,nj+d]\J

=
∑

R

MR

∑

J∈Ξ

(−1)|J| det(Hλr−µs−r+s(Xφr))1≤s≤d,r∈R × σB[1,nj+d]\J

=
∑

R

MR detAR

=0.

(2) For the case nj < d, the proof is similar. Let J = {j1 < · · · < jd} ∈ Ξ = {J ∈(
[i]
d

)
|J ∩ [nj + d+ 1, n] = ∅}. Let {x1 < · · · < xi−d} = [i]\J . We consider those J with

x1 < jnj+1 only. Then wJ is defined as

{w(1) < · · · < w(nj)} = {j1 < · · · < jnj}

{w(nj + 1) < · · · < w(nj+1)} = {x1 < jnj+1 < · · · < jd < i+ 1 < · · · < n− 1}

{w(nj+1 + 1) < · · · < w(nj+2)} = {x2 < · · · < xnj+2−nj+1 < n}

{w(nj+2 + 1) < · · · < w(n)} = {xnj+2−nj+1+1 < · · · < xi−d}.

The code of wJ is c(wJ ) = (j1 − 1, j2 − 2, · · · , jnj − nj , 0, jnj+1 − nj − 2, jnj+2 − nj −
3, · · · , jd − d − 1, i − d − 1, i − d − 1, · · · , i − d − 1, 0, · · · , 0, n− nj+2, 0, · · · , 0) with
flag φ(wJ ) = (1, 2, · · · , nj , nj + 2, nj + 3, · · · , nj+1, nj+2). Then it determines a skew
partition λ/µ, where

λ = (i− d, · · · , i− d, i− d− 1, · · · , i− d− 1, n− nj+2) with nj many i− d

and nj+1 − nj − 1 many i− d− 1;

µ = (i− d− (j1 − 1), i− d− (j2 − 2), · · · , i− d− (jd − d), 0, · · · , 0).

We notice that the flag φ(wJ ) and the skew partition λ/µ are the same as the case
nj ≥ d. Therefore, the rest of the proof is similar to the case nj ≥ d.

�

Example 5.22. We demonstrate the idea of the above proof in the following identity.

σB1526347 · σ
B
2314567 − σB2516347 · σ

B
1324567 + σB3516247 · σ

B
1234567 = 0.
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Applying the determinantal formula, we see that

σB1526347 = det

(
H3(X2) H4(X2)
H1(X4) H2(X4)

)
, σB2314567 = det

(
H1(X2) H2(X1)
H0(X2) H1(X1)

)
,

σB2516347 = det




H1(X1) H4(X1) H5(X1)
H0(X2) H3(X2) H4(X2)
H−2(X4) H1(X4) H2(X4)



 , σB1324567 = det

(
H1(X2) H2(X1)
H−1(X2) H0(X1)

)
,

σB3516247 = det




H2(X1) H4(X1) H5(X1)
H1(X2) H3(X2) H4(X2)
H−1(X4) H1(X4) H2(X4)



 , σB1234567 = det

(
H0(X2) H1(X1)
H−1(X2) H0(X1)

)
.

We write

σB1526347 = det

(
H3(X2) H4(X2)
H1(X4) H2(X4)

)
= det




1 H4(X1) H5(X1)
0 H3(X2) H4(X2)
0 H1(X4) H2(X4)



 .

Notice that the last two columns of these 3× 3 matrix are the same, so it suffices to prove that

1× det

(

H1(X2) H2(X1)

H0(X2) H1(X1)

)

−H1(X1) det

(

H1(X2) H2(X1)

H−1(X2) H0(X1)

)

+H2(X1) det

(

H0(X2) H1(X1)

H−1(X2) H0(X1)

)

= 0,

−H0(X2) det

(

H1(X2) H2(X1)

H−1(X2) H0(X1)

)

+H1(X2) det

(

H0(X2) H1(X1)

H−1(X2) H0(X1)

)

= 0.

These follow from the Laplace expansion of the following identities respectively.

det




H2(X1) H1(X2) H2(X1)
H1(X1) H0(X2) H1(X1)

1 = H0(X1) H−1(X2) H0(X1)


 = 0,

det




H1(X2) H1(X2) H2(X1)
H0(X2) H0(X2) H1(X1)

0 = H−1(X2) H−1(X2) H0(X1)


 = 0.

It remains in this section to deduce the identity (5.1) also in the partial flag variety setting.
We use the following result due to Dale Peterson.

Proposition 5.23 (Proposition 11.1 in [Rie03]). Let w ∈ W and let σBw be the corresponding
quantum Schubert class regarded as a function on the Peterson variety YB− for the complete

flag variety. Let σ̃Bw be the rational function on the closure Y = YB− that agrees with σBw on YB .

If w ∈ WP , then σ̃w restricts to a regular function on YP ⊂ Y, and this restriction represents
the quantum Schubert class σPw ∈ QH∗(G∨/P∨) associated to w.

This proposition implies that any identity in quantum Schubert calculus for the complete flag
variety G∨/B∨ = Fℓn involving only Schubert classes of the form σBw for w ∈WP and without
quantum parameters, holds also in QH∗(G∨/P∨) with σBw replaced by σPw . As a consequence
we have the following corollary; namely we obtain Theorem 5.3 in the case nj + nj+1 ≤ n.

Corollary 5.24. Let n− nj+1 < i < n− nj for some 1 ≤ j ≤ r − 1 and d := i − (n − nj+1).
Let Ξ and wJ be as defined in Definition 5.1. Assume that nj + nj+1 ≤ n. Set σwJ := 0 if wJ
is not defined. Then the following identity holds in QH∗(X),

∑

J∈Ξ

(−1)|J|σwJσ[1,nj+d]\J = 0.
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5.3. Proof of Lemma 4.19.

Lemma 5.25. Suppose n − nj+1 < i < n − nj for some 1 ≤ j ≤ r − 1. Assume additionally

that nj + nj+1 ≤ n. If b̂ is a critical point of Fq, then

ui,i+1 = −(G
nj

1 (b−ẇ0B−) +G
nj+1

1 (b−ẇ0B−)).

Proof. The statement is a direct consequence of Corollary 5.24 combined with Lemma 5.5. �

Definition 5.26. We define a group involution on G = GLn(C) using a combination of inverse,
transpose and conjugation by ẇ0,

g 7→ τ(g) := ẇ0(g
−1)T ẇ−1

0 .

Let Q ⊇ B− be the parabolic subgroup with IQ = n − IP = {n − nr, · · · , n − n1}. It is
straightforward to check that our involution has the following properties.

(1) τ(P ) = Q and τ(U+) = U+.
(2) τ(ẇP ) = ẇQ.
(3) for x ∈ U+ we have the relationship τ(x)i,i+1 = xn−i,n−i+1, for the entries just above

the diagonal.

Lemma 5.27. Suppose n − nj+1 < i < n − nj for some 1 ≤ j ≤ r − 1. Assume additionally

that nj + nj+1 ≥ n. If b̂ is a critical point of Fq, then

(5.3) ui,i+1 = −(G
nj

1 (b−ẇ0B−) +G
nj+1

1 (b−ẇ0B−)).

Proof. Since b̂ ∈ B−∩U+ẇ
−1
P ẇ0U+, we have that τ(b̂) ∈ B−∩U+ẇ

−1
Q ẇ0U+. We can now apply

Lemma 5.25 to τ(b̂), where we must replace P by Q. Namely for τ(b̂), Lemma 5.25 says that,
if nj = n− (n− nj) < n− i < n− (n− nj+1) = nj+1, and (n− nj) + (n− nj+1) ≤ n (which is
equivalent to our assumptions on i), then

τ(u)n−i,n−i+1 = −(G
n−nj

1 (τ(b−)ẇ0B−) +G
n−nj+1

1 (τ(b−)ẇ0B−)).

Recall that

Gm1 (gB−) :=
∆

{m}∪[m+2,n]
[m+1,n] (g)

∆
[m+1,n]
[m+1,n](g)

.

Now we deduce that

Gn−m1 (τ(b−)ẇ0B−) = Gm1 (b−ẇ0B−),

using Jacobi’s theorem. Moreover by property (3) above, we have τ(u)n−i,n−i+1 = ui,i+1.
Therefore the identity (5.3) holds. �

Proof of Lemma 4.19 and Theorem 5.3. Lemma 4.19 follows from the combination of Lemmas
5.25 and 5.27. We showed in Lemma 5.5, that Theorem 5.3 is true if and only if Lemma 4.19
holds. Since Lemma 4.19 has now been proved, we are done. �
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6. Appendix

In this Appendix we give a translation of the Plücker coordinate formula for the superpo-
tential F− using Young diagrams.

For 1 ≤ k < n, we consider the set of partitions inside k × (n− k) rectangle,

Pk,n := {(λ1, · · · , λk) ∈ Z
k | n− k ≥ λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 0}.

There is a bijection
(
[n]

k

)
→ Pk,n; J = (j1, · · · , jk) 7→ λ(J) = (jk − k, · · · , j2 − 2, j1 − 1).

Geometrically, we consider the k × (n − k) rectangle of k(n − k) unit boxes. A positive path
of such rectangle is a path starting from the lower left hand corner and moving either upward
or to the right along edges, towards the upper right hand corner. In particular, a Plücker
coordinate pj1···jk is naturally viewed as the positive path that moves upwards precisely at the
j1, j2, · · · , jk-th steps. Moreover, the boxes above the positive path pJ form the partition λ(J).
We therefore use the following notation convention

pJ = pλ = p
(k)
YD(λ),

where the superscript (k) is used to indicate that the Young diagram YD(λ) of the partition λ
is inside k × (n− k) rectangle. In particular,

p[k] = p(0,··· ,0) = p
(k)
∅ .

Example 6.1. The Young diagrams of the partitions (4, 4, 4) and (3, 2, 0) in P3,7 are given as
follows.

(4, 4, 4) (3, 2, 0)

The Plücker coordinate p146 for Gr(3, 7) corresponds to the partition (3, 2, 0).

By (ml, 0k−l) we mean the partition (m, · · · ,m, 0, · · · , 0) ∈ Pk,n with l copies of m. The
Young diagram YD(ml, 0k−l) is an l × m rectangle �l×m, and YD(1, 0k−1) = �. We call
(ml, 0k−l) a maximal partition in Pk,n if l = k or m = n− k holds.

Definition 6.2. Let λ ∈ Pk,n and ν ∈ Pk−a,n−a. We define

p
(k)
�k×m,YD(λ) :=

{
p
(k)

YD(mk+λ)
, if mk + λ ∈ Pk,n,

0, otherwise;

p
(k)
�a×(n−k),YD(ν) :=

{
p
(k)
YD((n−k)a,ν), if ((n− k)a, ν) ∈ Pk,n,

0, otherwise.

Definition 6.3. Let k < l < n and 1 ≤ m < l− k. We define

L(p
(k)
�k×m

· p
(l)
�(l−m)×(n−l)

) :=
∑

µ≤mk

(−1)|µ|+kmp
(k)
YD(µ) · p

(l)

�(l−m)×(n−l),YD((mk/µ)c)
,

where (mk/µ)c ∈ Pm,m+k denotes the conjugate of (m− µk, · · · ,m− µ1). We define

L(p
(k)
�k×m,�

· p
(l)
�(l−m)×(n−l)

) :=
∑

µ≤λ′ ;µ1 6=m

(−1)|µ|+kmp
(k)
YD(µ) · p

(l)
�(l−m)×(n−l),YD((λ′/µ)c),
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where λ′ = (m+1,mk−1); (λ′/µ)c ∈ Pm,m+k+1 denotes the conjugate of (m−µk, · · · ,m−µ2, 0)
if µ1 = m+ 1, or of (m− µk, · · · ,m− µ1, 1) if µ1 < m.

Theorem 6.4. In terms of the Plücker coordinates indexed by Young diagrams,

F− =

n1−1∑

i=1

p
(n1)
�i×(n−n1),�

p
(n1)
�i×(n−n1)

+

r−1∑

j=1

nj+1−nj−1∑

m=1

L(p
(nj)

�nj×m,�
· p

(nj+1)

�(nj+1−m)×(n−nj+1)
)

L(p
(nj)

�nj×m
· p

(nj+1)

�(nj+1−m)×(n−nj+1)
)

+

n−nr−1∑

i=1

p
(nr)
�nr×i,�

p
(nr)
�nr×i

+

r∑

j=1

p
(nj)

�

p
(nj)

∅

+

r∑

j=1

qnj

p
(nj)

�nj×(n−nj)
\qnj

p
(nj)

�nj×(n−nj)

where �nj×(n−nj) \ qnj denotes the Young diagram obtained by removing nj − nj−1 boxes from
the last column of �nj×(n−nj) and removing nj+1−nj boxes from the last row, with the removal
of the box at the bottom-right corner double counted.

Proof. It suffices to discuss the S
(j)
i -terms in Theorem 3.18. (Other terms therein are direct

translations to Young diagrams.)

For the denominator L(p
(nj)

�nj×m
· p

(nj+1)

�(nj+1−m)×(n−nj+1)
) as above, where m = i− nj, we define

a map α : {J |J ∈
(
[i]
m

)
} → {µ|µ ≤ mnj} as follows: it sends J = {a1, ..., am} to the Young dia-

gram α(J) with a1, ..., am steps horizontal. It follows directly that α is a bijection. It remains
to check the following facts:

(1) J ∈
(
[min{i,̂i}]

m

)
if and only if the join �(nj+1−m)×(n−nj+1),YD((mk/α(J))c) is inside the

nj+1 × (n− nj+1) rectangle.

(2) For J ∈
(
[min{i,̂i}]

m

)
, we have pJ∪[̂i+1,n] = p

(nj+1)

�(nj+1−m)×(n−nj+1),YD((mk/α(J))c)
and p[i]rJ =

p
(nj)

YD(α(J)). In particular for J = [m], the corresponding product is the leading term

p
(nj)

�nj×m
· p

(nj+1)

�(nj+1−m)×(n−nj+1)
.

By definition, J ∈
(
[min{i,̂i}]

m

)
if and only if the numbering of the first m vertical steps of the

Young diagram J ∪ [̂i + 1, n] are a1, ..., am and J ∪ [̂i + 1, n] is inside the nj+1 × (n − nj+1)
rectangle. Notice that YD((mnj/α(J))c) is the Young diagram (am − m, ..., a1 − 1). Thus
when the join �(nj+1−m)×(n−nj+1),YD((mnj/α(J))c) is inside the nj+1 × (n− nj+1) rectangle,
the numbering of its first m vertical steps are exactly a1, ..., am, and hence coincides with the
Young diagram of α(J ∪ [̂i + 1, n]). Therefore in this case, the Plücker coordinates are also
identified.

The arguments for the numerators are similar. Let λ
′

= (m + 1,mnj−1). Here we define

α
′

: {J |J ∈
(
[i+1]ri
m

)
} → {µ|µ ≤ λ

′

, µ1 6= m} as follows: α
′

sends {a1, ..., am} to the (unique)

Young diagram α
′

(J) inside λ
′

with [i + 1] r {i, a1, ..., am} steps vertical and µ1 6= m. Such
map is a bijection. Again we can similarly check the following facts:

(1) J ∈
(
[min{i+1,̂i}]ri}

m

)
if and only if the join �(nj+1−m)×(n−nj+1),YD((λ

′

/α
′

(J))c) is in-
side the nj+1 × (n− nj+1) rectangle.

(2) For J ∈
(
[min{i+1,̂i}]ri}

m

)
, we have p[i−1]∪{i+1}rJ = p

(nj)

YD(α′(J))
and

pJ∪[̂i+1,n] = p
(nj+1)

�(nj+1−m)×(n−nj+1),YD((λ′/α′ (J))c)
.



A PLÜCKER COORDINATE MIRROR FOR PARTIAL FLAG VARIETIES 39

When α
′

(J)1 = m+1. Let J = {a1, ..., am}. (λ
′

/α
′

(J))c is a partition given by the conjugate

of (m − µk, ...,m − µ2, 0), and we have the fact that am 6= i + 1 and YD((λ
′

/α
′

(J))c) is the

Young diagram (am −m, ..., a1 − 1). Thus when the join �(nj+1−m)×(n−nj+1),YD((λ
′

/α
′

(J))c)
is inside the nj+1 × (n− nj+1) rectangle, the numbering of its first m vertical steps are exactly

a1, ..., am and hence it coincides with the Young diagram of J ∪ [̂i+1, n]. Therefore the Plücker
coordinates are also identified. The argument about other parts is similar. �

Example 6.5. For Fℓ2,4;7, we have

F− =
p27
p17

+
p24p1567 − p14p2567 + p12p4567
p23p1567 − p13p2567 + p12p3567

+
p2346
p2345

+
p3457
p3456

+
p13
p12

+
p1235
p1234

+ q2
p46
p67

+ q4
p1467
p4567

=
p
(2)

p
(2)

+

p
(2)
p
(4)

− p
(2)
p
(4)

+ p
(2)
∅ p

(4)

p
(2)
p
(4)

− p
(2)
p
(4)

+ p
(2)
∅ p

(4)
+

p
(4)

p
(4)

+

p
(4)

p
(4)

+
p
(2)

p
(2)
∅

+
p
(4)

p
(4)
∅

+ q2
p
(2)

p
(2)

+ q4

p
(4)

p
(4)
.
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[Giv97] A.B. Givental, Stationary phase integrals, quantum Toda lattices, flag manifolds and the mirror con-

jecture, in: Topics in Singularity Theory: V.I. Arnold’s 60th Anniversary Collection, in: Amer. Math. Soc.
Transl. (2), vol. 180, 1997, pp. 103-116.

[Giv98] A.B. Givental, A mirror theorem for toric complete intersections, in: Topological Field Theory, Primi-
tive Forms and Related Topics, Kyoto, 1996, in: Progress in Mathematics, vol. 160, 1998, pp. 141-175.

[GAE02] Z. Gong, M. Aldeen and L. Elsner, A note on a generalized Cramer’s rule, Linear Algebra Appl. 340
(2002), 253-254.

[GS18] W. Gu, E. Sharpe, A proposal for nonabelian mirrors, arXiv: hep-th/1806.04678.
[GK20] W. Gu, E. lashnikov, A rim-hook rule for quiver flag varieties, preprint at arXiv: math. AG/2009.02810.

[HZ23] W. He, Y. Zhang, A cluster algebra structure in the quantum cohomology ring of a quiver variety,
preprint: to appear.

[HKL23] H. Hong, Y. Kim and S.-C. Lau, Immersed two-spheres and SYZ with application to Grassmannians,
J. Differential Geom.125(2023), no.3, 427-507.

[HKetal] K. Hori, S. Katz, A. Klemm, R. Pandharipande, R. Thomas, C. Vafa, R. Vakil and E. Zaslow, Mir-
ror symmetry, Clay Math. Monogr., 1, American Mathematical Society, Providence, RIClay Mathematics
Institute, Cambridge, MA, 2003.

[HV00] K. Hori, C. Vafa, , Mirror symmetry, preprint at arXiv: hep-th/0002222.
[Hu22] X. Hu, Mirror symmetry for quadric hypersurfaces, preprint at arXiv: math.AG/2204.07858
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