
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 

 

 
 

 

 

King’s Research Portal 
 

DOI:
10.1145/3677052.3698643

Document Version
Peer reviewed version

Link to publication record in King's Research Portal

Citation for published version (APA):
Balcau, A., Sanchez-Betancourt, L., Sarkadi, S., & Ventre, C. (2024). Detecting Collective Liquidity Taking
Distributions. In Proceedings of the 5th ACM International Conference on AI in Finance (ICAIF 2024) (pp. 504 -
512) https://doi.org/10.1145/3677052.3698643

Citing this paper
Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may
differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination,
volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are
again advised to check the publisher's website for any subsequent corrections.

General rights
Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights.

•Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research.
•You may not further distribute the material or use it for any profit-making activity or commercial gain
•You may freely distribute the URL identifying the publication in the Research Portal
Take down policy
If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing details, and we will remove access to
the work immediately and investigate your claim.

Download date: 15. Jan. 2025

https://doi.org/10.1145/3677052.3698643
https://kclpure.kcl.ac.uk/portal/en/publications/588a5c81-76c7-4eee-9d48-0627b8f38fdb
https://doi.org/10.1145/3677052.3698643


Detecting Collective Liquidity Taking Distributions
Andrei-Bogdan Balcau
King’s College London

London, United Kingdom
andrei-bogdan.1.balcau@kcl.ac.uk

Leandro Sánchez-Betancourt
University of Oxford

Oxford, United Kingdom

Stefan Sarkadi
King’s College London

London, United Kingdom

Carmine Ventre
King’s College London

London, United Kingdom

Abstract
Tools to identify and characterise the various types of agents in
financial markets are essential for both regulators and practitioners.
We introduce a methodology that combines agent-based modelling
and machine learning to detect collective trading behaviour. Our de-
tectionmethod employs observable market variables to estimate the
hidden composition of market participants. More precisely, we use
the paths followed by the trend and the volatility of the midprice,
and the traded volumes to infer the proportions in which different
types of liquidity takers are active in the market (i.e., the market
composition). We focus on a market with strategic continuous liq-
uidity provision, populated by three common types of liquidity
takers: informed traders, noise traders, and trend followers. We
find that the paths of the trend and the volatility carry insufficient
information about market composition when employed separately
as estimators. However, when these two are non-linearly combined
with the volume path, the detector performance increases substan-
tially. Our study contributes to the financial behaviour recognition
literature by offering insights into which market factors best de-
scribe the collective trading behaviour of liquidity takers.

CCS Concepts
• Computing methodologies→Multi-agent systems; Agent /
discrete models; Machine learning.
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1 Introduction
According to Akerlof and Shiller [1], economic systems are gov-
erned by the “animal spirits" that drive their evolution. Financial
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markets are considered to be extensions of these economic systems
[14] in which traders adopt different strategies to make profit [10]
and where, as part of these trading activities, “behavioural biases”
manifest themselves [33]. To remain competitive, traders engage
in an arms race of computational power and effective trading al-
gorithms [21]. However, these algorithms often use models and
metrics that are either not reflective of reality or out of sync with
it [23]. Whilst collective economic behaviour can trigger crises [3],
high-frequency algorithmic trading may exacerbate this risk by
incentivising anticompetitive or undesirable practices that poten-
tially jeopardise market stability, thus underscoring the need for
rigorous empirical studies on trading interactions [18]. An example
of such a study is presented by Byrd [8], who proposed a theory for
automatic spoofing detection and a general framework for incorpo-
rating such detectors into reinforcement learning (RL). In the same
vein, we develop an automatic detector to recognise the market
composition of the algorithms guiding the liquidity-taking activity.
The liquidity takers in our study belong to one of three categories:
(i) informed traders, (ii) noise traders, and (iii) trend followers. These
categories are representative of the behaviours found in financial
markets. The detector’s task is to determine the percentages of
market activity attributable to each of these three types.

We employ machine learning (ML) to train a detection system
on observable market data showing that behaviour recognition can
be solved without the need of identifiable action sequences. More
precisely, we study the extent to which volatility of the midprice,
the trend of the midprice, and the volumes traded in the market can
be used to determine the distribution of behaviour among liquidity
takers. Our research question is the following:

(RQ) Do the paths followed by the trend of the midprice, the volatil-
ity of the midprice, and the traded volumes carry information about
the proportion in which different types of liquidity takers are active
in the market?

To address the research question, this paper makes two key
contributions:
(1) We present a cost-effective computational method for learn-
ing the collective behaviour of active liquidity takers in financial
markets. This method uses machine learning and agent-based ab-
stractions of realistic, parameterised algorithmic trading activity.
We employ a simplemachine learning algorithm to ensure efficiency
and to test the feasibility of our approach.
(2) We demonstrate how we employ our approach using observable
time-series market data, exponentially weighted moving averages
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(EWMAs), non-linear feature transformations, and linear discrimi-
nant analysis (LDA).

Preliminary results demonstrate that LDA can be successfully
applied to detect the proportions of known liquidity-taking types
active in the market. This method achieves a Matthews correlation
coefficient (MCC) of 0.708 (F1-score = 0.805), using a simple non-
linear combination of the paths followed by the midprice trend and
volatility, and the traded volumes; that is, the cross-product of 200-
step paths followed by the trend, the volatility and the traded vol-
umes. Our findings have practical applications for both regulators
and practitioners, enabling them to discern market compositions
from observable market data.

2 Background & Related Work
Understanding algorithmic trading behaviour is not a novel re-
search strand. Recent work has employed both supervised and
unsupervised ML techniques to categorise algorithmic trading pat-
terns in major exchanges, such as Euronext Amsterdam [10]. For
example, Cartea et al. [10] find that in their dataset, around one
third of the algorithms with a liquidity provider dealing capacity
behave like market makers. To get to this conclusion, the authors
use identifiable transactions (transactions with trader-id) to build
models that explain behaviour and then cluster the coefficients
from their models. In contrast, we take a bottom-up approach when
creating our detector, splitting market participants into liquidity
providers and instances of typical liquidity takers.

Research in mainstream economics as early as Samuelson’s
“Foundations of Economics Analysis" [39] highlights economic indi-
viduals as profit maximisers. More recently, Lo’s “Adaptive Market
Hypothesis" [33] suggests seeing economic individuals as adaptive
or maladaptive, their ultimate goal being survival and not always
profit maximisation. Financial markets possess unique social struc-
tures, making it challenging to discern traders’ ultimate objectives.
In our approach, we define the goals of traders and their methods
for achieving them, while leaving the proportion of each liquidity-
taking type as an unknown variable to be determined.

Our model is used in conjunction with liquidity providing (mar-
ketmaking).We envisage the situationwhere the liquidity providers
learn about the liquidity-taking market composition and decide to
adjust their policies accordingly. Therefore, we use sequence mod-
elling on observable market data so our detector can be integrated
with ease in learning agentic architectures as the one in [8].

Our approach resembles methods used in the computational
opponent modelling literature. In the context of complex markets,
most opponent modelling research has focused on agent negoti-
ation strategies, on multi-agent reinforcement learning (MARL)
approaches, or on a combination of both. With a few exceptions
[35], most of these works have adopted a model-based approach
[22], where agents are given a model of their opponent that they
learn to optimise – see a detailed account in the survey fromNashed
and Zilberstein [37]. Popular approaches include Bayesian optimi-
sation [24], deep learning methods with MARL [41], fictitious play
[40] and evolutionary transfer learning [25].

In our study, the liquidity provider uses an optimal strategy that
balances profits and inventory control, and models the behaviour of

liquidity takers (the ‘opponents’) who belong to one of three well-
studied types in the financial markets literature: trend followers,
noise traders, and informed traders.

3 Methodology
To answer our research question, we use a learning architecture
combining agent-based models (ABMs) with ML. ABMs are used to
generate collective behaviour abstractions. The ML detector uses
those abstractions to establish relationships between observable
market data and trading behaviour. We approach the problem of
detecting collective trading behaviour from market data as a multi-
class path classification task. We first create a number of labelled
synthetic datasets containing information about the midprice and
the volume traded via simulations of agentic markets. Then, we
make use of the datasets obtained via simulations to solve our clas-
sification problem. We choose LDA as our classifier to analyse the
linear separability in the feature space.

Our method analyses the behaviour of traders playing repeated
games assuming the market is formed of liquidity providers and
liquidity takers. For simplicity, we consider a market scenario with
a single liquidity provider andmultiple types of liquidity takers. The
task is to build a detector that predicts the composition of liquidity
takers in the market. This detector can be thought of as part of the
liquidity provider’s perception of the market to be used in adapting
to forthcoming conditions. Alternatively, this can be thought of as
a study instrument that any market participant or regulator might
use. Our method does not need the member identification in any
live market for recognising behaviour.
Calibration&DataGeneration.To generate the synthetic datasets
we use ABM simulations of trading populations operating in a limit-
order book market. We calibrate the simulations to reflect stylised
facts in the literature and label the generated data with tags specific
to each population type.
Feature Preprocessing. Trend and volatility measurements are
smoothed using the EWMA. Volume is computed using the total
number of units traded per step. We choose to preserve the infor-
mation about time. Therefore, all feature-path measurements are
spread along the time dimension. Each sample has a size of 200 × 3
(200 time-steps and 3 feature measurements).
Classification. We first use LDA to find the most discriminant
individual feature path for our classification task by considering
trend, volatility, and volume. Then, we use sequential data trans-
formations to test various combinations between our basic feature
paths. These combinations enable us to highlight relationships in
the market data that are useful for classifying sequential collective
behaviour.

3.1 Agent-Based Model Overview
We develop our simulator from scratch using the Mesa Python
library [27], opting for this approach over existing simulators (e.g.,
ABIDES [9]) to focus specifically on the interplay between liquidity
provision, consumption, and simple limit-order book dynamics.
This bespoke design allows us to maintain straightforward inter-
actions whilst tailoring the simulation to our research needs. To
generate sequential data in a similar format to [8], we use a trad-
ing horizon of 200 steps for our trading interactions. Our market
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model uses a limit-order book to record all buy and sell orders,
allowing traders to place either immediate-execution market orders
or price-specific limit orders. The interactions between traders are
computed via sequential model steps. Each model step includes an
action from the liquidity provider followed by the actions of the
liquidity takers. The liquidity provider lists her quotes using an
order size that can fit the incoming demand. Liquidity takers can
list market orders of a single unit at the bid or ask price quoted by
the liquidity provider.

Our model can be configured to produce realistic trading inter-
actions by changing the parameters of the price dynamics or the
market behaviours. It is important to find a good level of abstraction
when designing synthetic populations for the detector to fit a range
of trading scenarios. Selecting very specific trading algorithms
might lead to overfitting, while a broad trading strategy umbrella
might be too general. In this study, we employ trading behaviours
that are widely recognised as representative in the algorithmic
trading literature. Our model permits adding prior information
about more specific market cases through the configuration of the
algorithmic trading parameters, population sizes or price dynamics.
PriceDynamics.Weassume a financial marketwith a single traded
asset. This makes it easier to model the fundamental price evolution
without having to deal with cross-asset interactions. To employ the
price dynamics in the environment, we use the assumption that
financial markets are efficient as defined by the mainstream eco-
nomics framework [16]. Here, the fundamental price of the traded
asset is 𝑆𝑡 and is given by 𝑆𝑡 = 𝑆0 + 𝜎𝑊𝑡 where 𝜎 > 0 is a volatility
parameter and𝑊𝑡 is a standard Brownian motion. The liquidity
provider quotes around the observed price process 𝑆𝑡 which follows
𝑆𝑡 = 𝑆𝑡+

∫ 𝑡

0 𝛼𝑠 d𝑠 where𝛼𝑡 is a zeromean-reverting (short-lived) sig-
nal that only the informed liquidity taker observes. More precisely,
and similar to [11, 12, 15, 30] we take d𝛼𝑡 = −𝜅 𝛼𝑡 d𝑡 + 𝜎𝛼 d𝑊 𝛼

𝑡

where 𝜅 ≥ 0 is the mean-reversion speed, 𝜎𝛼 > 0 is the volatility
of the signal, and𝑊 𝛼 is a Brownian motion independent of𝑊 .1

Market Behaviours.We employ a single market maker that acts
as the liquidity provider for the market. Market makers aim to make
profits on the spread between their bids and asks. In this study, we
use the market making algorithm in [2] that skews quotes based on
the inventory held by the market maker. That is, if we denote by𝑄𝑡

the inventory of the market maker at time 𝑡 , the bid and ask quotes
are 𝑆𝑡 − 𝑓 𝑏 (𝑡,𝑄𝑡− ) and 𝑆𝑡 + 𝑓 𝑎 (𝑡,𝑄𝑡− ) respectively, for deterministic
functions 𝑓 𝑎,𝑏 – see Chapter 11 in Guéant [19].2 The notation 𝑄𝑡−

refers to the inventory of the market maker just before time 𝑡

(left limit). Given that the liquidity provider follows this strategy,
we remark that the path of midprices depends on the activity of
the liquidity takers. For liquidity taking, we consider informed
traders, trend followers and noise traders. In short, the informed
trader observes the alpha signal that influences the observed price
updates and sends buy or sell orders based on the value of the
signal. The trend follower constructs a measure of the midprice
trend using a fast and a slow EWMA, and trades as a function of
that measure. The noise trader sends random buy or sell orders.
Table 1 summarises the trading algorithms. For completeness, we
give the pseudocode of the trading algorithms in Appendix A.
1For alternative approaches to modelling informed trading see [4, 7].
2See [20, 28, 36] for alternative formulations of the market making problem.

Table 1: Trading algorithms

Trader type Processes References

Market maker (MM) inventory & price Avellaneda and Stoikov [2]
Informed trader (I) alpha signal Kyle [29]
Noise trader (N) N/A Kyle [29]
Trend follower (T) midprice Levine and Pedersen [31]

4 Experimental Setup
We study the case when there are more liquidity takers of one type
than others. Here, we use the Avellaneda-Stoikov market maker [2]
to engage in trading interactions of 200 time-steps with different
liquidity taking populations. We construct three of those popula-
tions, each containing a single market maker; each population has
four liquidity takers — the four liquidity takers are two traders of a
given type and one for each of the other types. For example, the
population ‘TTNI’ has two trend followers, one noise trader, and
one informed trader. The other two populations are ‘TNNI’ and
‘TNII’. We use 10,000 runs for each population type to account for
complexity especially generated by the random behaviour of noise
traders and fundamental price dynamics. Therefore, each dataset
we analyse contains 30,000 labelled runs of 200 steps.

To determine if the historical paths of trend, volatility, and traded
volumes provide insights into the composition of liquidity-taking
market participants, we first extract these three features from our
synthetic dataset. We then analyse whether these feature paths
carry information about the market composition by creating differ-
ent ML pipelines and evaluating them against well-known classi-
fication metrics. In this study, we use the accuracy, F1-score and
the Matthews Correlation Coefficient (MCC). We are interested
in the amount of information the trend, volatility and the traded
volumes contain about the market composition. More precisely, we
analyse whether these features can be used individually or in com-
bination to find significant differences between the runs generated
by the TNII, TNNI and TTNI populations. The training and predic-
tion times of the ML classifiers are also evaluated to offer guaran-
tees about the suitability of our approach within a high-frequency
finance setting. Since we believe there is no benchmark for the
collective behaviour recognition task in the literature, we use the
default random guessing benchmark employed in multiclass classi-
fication problems. Here, we use three classes in a balanced fashion
for our dataset. Therefore, our benchmark is 0.333 for accuracy
(MCC = −0.0). We use LDA for classification, a computationally-
efficient learning algorithm with a linear decision boundary.

4.1 Calibration
There are different population templates and parameters that can be
selected for creating high-fidelity simulations of real financial mar-
kets. A summarised view of the parameters, their meaning, range
and selected values after our calibration procedure can be seen in
Table 2. The ABM needs to be reflective of the economic reality, but
general enough to capture numerous trading interaction typologies.
We use market making, trend following, informed trading and noise
trading to highlight our view of a realistic algorithmic market repre-
sentation. This is based on the following financial market literature:
(i) Fama [17] separates the common stock price prediction activities
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Table 2: Model parameters

Component Parameter Description Range Value

Price Signal’s volatility The volatility of the alpha component in the fundamental price. ≥ 0 10
Signal’s mean-reversion rate The mean-reversion rate of the alpha component in the fundamental price. ≥ 0 1
Fundamental price initial value The initial value of the fundamental price. > 0 100
Fundamental price volatility The volatility of the fundamental price. ≥ 0 1

Market maker Risk aversion (𝛾 ) Risk aversion of the market maker. (0,1] 0.01
Generosity sensitivity How the order flow intensity reacts to distance from observed price. ≥ 0 0.75

Trend follower Fast decay (f) The decay of the fast EWMA applied to the midprice. (0, 1] 0.6
Slow decay The decay of the slow EWMA applied to the midprice. (0, f)* 0.4
Fast initial The fast EMWA initial midprice observation. > 0 100
Slow initial The slow EMWA initial midprice observation. > 0 100
Threshold The minimum difference between the fast and slow EWMAs to trigger an order. > 0 ≈ 0.039

Noise trader Activation probability The activation rate of the noise trader. [0, 1] 0.25
Buy probability If activated, the noise trader will either buy or sell based on this value. [0, 1] 0.5

Informed trader Buy threshold If the fundamental price signal (alpha) is above the threshold, the trader will buy. > 0 ≈ 5.94
Sell threshold If the fundamental price signal (alpha) is below the threshold, the trader will sell. < 0 ≈ −5.94

*The slow EWMA needs to weigh recent midprice observations lower than the fast EWMA as discussed in [31]. Therefore, the slow decay is lower than the fast decay.

in technical and fundamental asset value analysis;3 (ii) Kyle [29]
highlights the liquidity taking activity as either informed of the
fundamental asset value evolution or noisy trading;4 (iii) Cartea
et al. [10] characterise market-making behaviour among active
algorithms in a real financial exchange. Here, we combine those
trading strategies into one model. We continue with a discussion
about the empirical calibration of the trading and price dynamics
parameters.
Market Making & Price Dynamics. The risk aversion of the mar-
ket maker is set to 0.01 as in [2]. As a robustness check, we study
the sensitivity to different risk aversion levels for the overall perfor-
mance of the detector in Section 5.1. The market making algorithm
is used to quote around the price process 𝑆𝑡 . This price process can
be created in a data-driven way by extracting information from real
markets. Here, we use 100 as the initial value of the fundamental
price for each run as in [2].
Liquidity Taking. The calibration goal for the liquidity taking
population is alignment with the stylised fact discussed in [12];
that is, liquidity providers trade at a loss with informed traders,
and profit from noise traders.5 On average, the profitability of in-
formed traders is higher than that of trend followers, which in
turn is higher than that of the noise traders; we show the prof-
itability of the market maker against each of the three populations
in Section 5. Liquidity takers are set to be adaptive and strategic,
their behaviour being a function of the environment as discussed
in [32]. Here we assume the total volume traded per trading hori-
zon (trading intensity ratio) is roughly the same across different
trading populations to avoid trivial classification outcomes. More
precisely, we set some expected traded volume target and config-
ure the trading algorithms’ parameters to keep the value constant
across populations and different price dynamics. We believe that a
25% trading intensity ratio is a reasonable assumption and therefore
set the traded volume per liquidity taker in any run to be roughly
around 50 units. The sensitivity to different trading intensities for
the overall performance of the detector is evaluated in Section 5.1.

3Here, we use trend following as a representative type of predictive trading activity
based on historic data (technical analysis).
4This concept is also used in [12] to model informed and uninformed traders.
5This is because informed traders are aware of the fundamental price evolution.

4.2 Feature Preprocessing
Our dataset, generated through calibrated simulations, contains
aggregated information from multiple trading runs. It comprises
10,000 simulations, each consisting of 200 steps, for three distinct
population types: TNII, TNNI, and TTNI. Extracting the trend,
volatility and volume paths results in a dataset of size 30,000×200×3.

Trend.We use the EWMA-crossover signal to compute the trend
path as in [31]. This method computes a fast EWMA of midprice
observations which gives more importance to the most recent ones,
and a slow EWMA which values the historic observations more.
The signal is computed via the difference between the fast and slow
EWMAs. For the fast and slow decays, we use the same values as
our trend followers operating in the environment: 0.6 for the fast
decay and 0.4 for the slow decay (cf. Table 2).

Volatility. We use EWMA to generate the volatility path using
the midprice returns as suggested in the JP Morgan and Reuters
RiskMetrics Technical Report [34], choosing a decay of 0.94 and
assuming an initial volatility observation of 0.

Volume.We compute volume paths by considering the total volume
traded per time-step for each run.

4.3 Classification
We analyse the collective behaviour classification usefulness for the
trend, volatility and volume using the LDA classifier from scikit-
learn [38]. We employ LDA specifically to evaluate which combina-
tions of features provide better linear separation of the data. We
initially generate a labelled dataset using the calibrated ABMs for
representative algorithmic trading behaviour. We use a five-fold
cross-validation procedure and measure the mean classification
accuracy, F1-score and MCC to evaluate the LDA detector.

4.4 Trend, Volatility and Volume Compositions
We analyse different compositions of the preprocessed trend (𝛼)
and volatility (�̂�) paths and the volume (𝑣) path – our base feature
paths – to empirically assess whether our LDA-based detector can
classify collective behaviour.
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LDA Soft Voting Ensemble. One way of combining the base
feature paths is using an ensemble of three LDA classifiers. All sub-
models use the LDA algorithm, but each sub-model is trained on a
specific type of feature path: one on trend paths, one on volatility
paths and one on volume paths. We employ a soft voting classifier
that uses the average predicted probabilities of the sub-models to
predict the final class labels. This is very similar to a feature bagging
ensemble usually used in random forests [6], but without a random
feature selection in the underlying models.
Flattening. Another way to combine the base feature paths is
stacking them along the time dimension according to Figure 1. This

Figure 1: Flattening composition of base features

creates tensors, similarly to how images are flattened in deep learn-
ing image recognition tasks. The advantage of this technique is
that the information about time is preserved. However, the feature
space is large in size, each sample is now represented in 600 di-
mensions – the new dataset is of 30,000 × 600 points. This might
be computationally-inefficient and force the detector into learning
feature path relationships that are not useful.
PCAPathReductions. To address the feature dimensionality issue
of flattening, we use PCA on the time dimension for each feature
path to reduce its length to a single component. The obtained
principal components are stacked in a single vector to represent
the sample. Figure 2 highlights the feature composition process via
the PCA transformation.

Figure 2: PCA composition of the base features

Covariational Flattening. Finally, we implement a feature trans-
formation to analyse the temporal covariance among trend, volatil-
ity, and traded volumes. We introduce six more features obtained

Table 3: LDA detector performance

Feature composition Accuracy F1-score MCC

𝛼 0.333 0.333 -0.0
�̂� 0.338 0.338 0.008
𝑣 0.560 0.551 0.342
VOTINGLDA (𝛼, �̂�, 𝑣) 0.493 0.487 0.241
(𝛼, �̂�, 𝑣) 0.653 0.645 0.481
(PCA1 (𝛼 ), PCA1 (�̂� ), PCA1 (𝑣) ) 0.349 0.340 0.024
(PCA5 (𝛼 ), PCA5 (�̂� ), PCA5 (𝑣) ) 0.410 0.391 0.119
𝛼2 0.344 0.344 0.017
�̂�2 0.339 0.339 0.009
𝑣2 0.520 0.518 0.281
𝛼 �̂� 0.333 0.333 -0.001
𝛼 𝑣 0.335 0.335 0.003
�̂� 𝑣 0.514 0.506 0.273
(𝛼, �̂�, 𝑣, 𝛼2, �̂�2, 𝑣2, 𝛼�̂�, 𝛼𝑣, �̂�𝑣) 0.805 0.805 0.708

using a cross-product combination along the time dimension of
the base features. We evaluate their linear separation capabilities
individually and in a flattened method as with the base features.
The flattened dataset is of size 30,000 × 1,800.

5 Results & Analysis
After the calibration process, each liquidity taker trades around 50
units per run independently of the population type (parameter val-
ues are selected, cf. Table 2). The noise and informed traders do not
change their parameters across populations since their behaviour
is independent of the midprice evolution. The trend follower uses a
0.03875 signal magnitude activation threshold for TNII and TNNI
and 0.039 in TTNI; see Appendix A for how this threshold is used in
the trend-following algorithm. This value must be increased when
adding trend followers, as they are prone to herding behaviour.

The trend followers use a fast decay of 0.6 and a slow decay of
0.4 to compute their trading signal. We use the same values for
computing our EWMA trend model. Figure 3 illustrates the cross-
sectional distributions of trend, volatility, and traded volume for
individual steps in the paths generated by the three population
types comprising a market maker (MM) and four liquidity takers
(TNII, TNNI, and TTNI). From this, we observe how rich the volume
information is in differentiating between aggregated algorithmic
trading behaviours. The populationwith two trend followers (TTNI)
trades the trends created by the high risk inventory position of the
market maker at the beginning of the trading horizon. Close to the
trading horizon midpoint, it is the population with two informed
traders that starts trading more. Simply adding the traded volume
units in a sample does not help in classifying it. However, the
volume path demonstrates discriminative power. The trend and
volatility paths alone seem to offer insufficient information for the
classification task.

In Table 3, we quantify the classification usefulness for our base
feature paths and their combinations using LDA. Volume alone
carries rich information about the distribution of liquidity taking
strategies active in the market. LDA’s performance using the paths
followed by the trend or the volatility is equal to a random guessing
system. While soft voting aggregation does not even surpass the
volume base feature, flattening offers higher classification power.
PCA is not very useful in reducing the time axis for each feature
without losing information. Covariational flattening is the suitable
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Figure 3: Cross-sectional distributions of the trend, volatility and traded volumes

Table 4: LDA and polynomial SVC comparison

Feature composition Model Accuracy F1-score MCC Training time (s) Prediction time (s)

(𝛼, �̂�, 𝑣, 𝛼2, �̂�2, 𝑣2, 𝛼�̂�, 𝛼𝑣, �̂�𝑣) LDA 0.805 0.805 0.708 5.055 0.12
PCA→ LDA 0.749 0.747 0.625 8.22 0.23

(𝛼, �̂�, 𝑣) PolySVC2 0.842 0.841 0.764 569.25 16.69
PCA→ PolySVC2 0.817 0.817 0.728 2076.34 7.96

Table 5: Market maker profit

Population PnL (mean) PnL (std)

TNII -37.49 351.34
TNNI 64.63 237.83
TTNI -10.05 339.32

transformation for the collective behaviour recognition task. This
suggests the initial flattened dataset is not linearly separable and
we require a higher-dimensional transformation instead.

Covariational flattening is similar to applying a polynomial ker-
nel of degree two to the flattened base feature paths. We test this
hypothesis by training a polynomial support vector machine clas-
sifier (SVC) of degree two on the flattened base feature paths and
confirm the results, as shown in Table 4. We also add the training
and prediction times for these algorithms since we envisage the
behavioural profile detection system to be used in a high-frequency

scenario.6 The training and prediction times are measured once the
base features are extracted and separated into the training and vali-
dation sets to account for the composition times. The training and
prediction times of the SVC are much higher. Table 4 also highlights
our attempt to reduce the feature space to the lowest dimension
possible explaining 95% variance in the dataset using PCA. We
obtain comparative results with using all the steps in the combined
feature paths, but the training and prediction times are larger. We
recommend using the covariational flattening transformation of
the base feature paths LDA and without PCA if the memory used
by the detector is not a concern.

The market maker is integral to our detection method. We use it
to gather real-world samples that are later matched with learned
trading behaviours. However, the effectiveness of our detection
method may be compromised if the market maker sustains signifi-
cant losses during the initial data collection phase. Table 5 shows the
6Results in Table 4 are obtained on a machine with a 13th Gen Intel® Core™ i7-
13850HX, 28 cores CPU, and a 32GB memory.
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profits of our market maker with the liquidity taking populations
used to train the recogniser. As expected, the market maker benefits
from a higher proportion of noise traders and loses profitability to
the informed traders [13].

Bounding our method to a more specific market case requires
calibrating the parameters of the ABM using data from the markets.
For example, we can change the parameters of the trend followers
to trade more than 50 units if we had information from the stud-
ied market. The same can be applied to the market maker or the
fundamental price dynamics. Our modelling technique permits the
injection of market priors in the population abstractions later used
in training the detector.

5.1 Sensitivity Analysis
Next, we empirically evaluate the sensitivity of our trading be-
haviour detection method. Each experiment is computed indepen-
dently of the other sensitivity hypotheses. For the trading intensity
and risk aversion experiments, the ABM part of the detector needs
to be re-calibrated to maintain stylised facts about the trading ac-
tivity and profitability as in Section 4.1. We observe the following
effects on the detector performance.

(1) Performance is improved if a lower value is selected for the
decay in the volatility EWMA model. We believe this is because
more weight is put on past EWMA predictions that have an influ-
ence on the current measurements. Hunter [26] suggests as well
that a decay of 0.2±0.1 usually offers better EWMA predictions, but
this highly depends on the scale of the econometric data. Figure 4
shows the performance of the detector under different volatility
decay values.

Figure 4: Covariational flattening LDA detector performance
per volatility modelling decay

(2) Performance is not sensitive to changes in the fast and slow
decays of the trend EWMA preprocessing.

(3) Increasing the trading intensity decreases the performance
of the detector, but increases the market maker average profit.
However, the standard deviation of the of the profit increases as
well. We believe this is due to the activity of the noise traders.
Table 6 compares the performance of the detector for different
trading intensities after re-calibration.7

7A trading intensity ratio of 50% is achieved via re-calibration with a market maker
generosity sensitivity of 0.875, a trend-following fast decay of 0.9, and a slow decay
of 0.1. To increase the trading intensity ratio to 75%, we retain the trend-following
parameters but adjust the market maker generosity to 1. The trend-following threshold
is also updated for each population, but the values are omitted for brevity.

Table 6: Covariational flattening LDA detector performance
per trading intensity ratio

Detector performance MM profit

Ratio Accuracy MCC TNII TNNI TTNI

25% 0.805 0.708 -37.49 (±351.34) 64.63 (±237.83) -10.05 (±339.32)
50% 0.702 0.553 -23.61 (±546.81) 132.1 (±371.38) 13.45 (±544.55)
75% 0.721 0.582 86.59 (±659.69) 227 (±460.26) 121.53 (±654.41)

Table 7: Covariational flattening LDA detector performance
per market maker risk aversion

Detector performance MM profit

𝛾 Accuracy MCC TNII TNNI TTNI

0.01 0.805 0.708 -37.49 (±351.34) 64.63 (±237.83) -10.05 (±339.32)
0.1 0.805 0.708 -3.47 (±34.49) 6.45 (±23.96) -0.84 (±32.9)
1 0.805 0.708 -0.38 (±3.53) 0.62 (±2.45) -0.12 (±3.35)

(4) Increasing market maker’s risk aversion (𝛾 ) sequentially to
0.1 and 1 does not change the performance of the detector.8 The
market maker profit changes are nearly proportional to the change
in risk aversion as described in Table 7.9

6 Conclusion
In this paper we introduced a novel hybrid method by combining
agent-based modelling and machine learning to detect collective
liquidity taking behaviour in financial markets. An important aspect
of our work is the use of observable market data, in contrast to
approaches that use identifiable sequences (e.g., [10]).

Our results show that the midprice trend and volatility in the
market alone are not helpful in classifying trading behaviour. This is
the case even when trend followers are present in the environment.
However, we found that the traded volumes carry significant infor-
mation about the distribution of different types of active liquidity
takers in the market. We also showed how accuracy of predictions
can be increased through non-linear combinations of the paths fol-
lowed by the trend, volatility and traded volumes. To summarise, in
this paper, we made the following contributions: (i) we described a
cost-effective detector for behaviour profiles of existing algorithmic
traders in financial markets; and (ii) we calibrated the model of
such profiles by learning time-series observable market data.

Our method extends the research agenda of financial behaviour
recognition using learned detectors [8]. We envisage an adaptive
market maker architecture incorporating the collective behaviour
recogniser and following a three-stage process. First, the market
maker trains the recogniser. Second, it trades in the market for a
predefined period to extract data about market composition. Fi-
nally, the market maker uses the trained recogniser to adapt to the
discovered market composition. This is also a human-in-the-loop
approach because it is the designer of the market-making algorithm
that lets the market maker know what population abstractions to
learn and what are the adaptation goals. Therefore, the approach is
8For𝛾 = 0.1, we set the alpha signal volatility to 1 and the fundamental price volatility
to 0.1 through re-calibration. When 𝛾 = 1, we adjust the alpha signal volatility to
0.1 and the fundamental price volatility to 0.01. The trend-following threshold is also
updated for each population, but the values are omitted for brevity.
9This largely depends on how trading activity would change once the market maker
updates 𝛾 . We leave these second-order studies for future research.
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sound from a machine safety and trustworthiness perspective, but
empirical guarantees need to be provided in future work.

Here, we focused on a market with a single market maker, al-
though real markets might include multiple market makers. Our
approach remains applicable in more complex environments. In a
multi-market-maker setting, one can deploy our detector by cre-
ating the abstraction of how they interact. Incorporating market
maker competition [5] is a topic for future research. Another inter-
esting strand for future research is developing an efficient method
to adapt our detector to changes in population size and dynamic
shifts in activity proportions. Ideally, the detector should recognise
the proportions of each liquidity-taking type regardless of the over-
all population size; for example, identifying the same ratios whether
the population is TNII or TTNNIIII (double the traders but main-
taining the same ratios). In real-world scenarios, these proportions
could even shift during data collection (e.g., from TNII to TNNI
within the 200-step sample). These challenges can be addressed
through re-training, by providing the detector with more labelled
examples of behaviour occurring in real markets. Re-training is
computationally-expensive, but LDA is an efficient algorithm.
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A Trading Algorithms

Input :Fundamental price 𝑝𝑟𝑖𝑐𝑒 , inventory 𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦, current time-step 𝑡
for each step do

// T is the terminal time-step - the trading horizon limit

rPrice← ReservationPrice(price,inventory,riskAversion,t,T);
s← Spread(riskAversion,priceVolatility,generositySensitivity,t,T);

// The order size is preset to satisfy the incoming demand

SendBuyOrder(rPrice − s/2, orderSize);
SendSellOrder(rPrice + s/2, orderSize);

end
Algorithm 1: Avellaneda-Stoikov Market Making [2].

Input :Market𝑚𝑖𝑑𝑝𝑟𝑖𝑐𝑒 , 𝑎𝑠𝑘𝑃𝑟𝑖𝑐𝑒 , 𝑏𝑖𝑑𝑃𝑟𝑖𝑐𝑒
for each step do

signal← FastEWMA(midprice,fDecay) - SlowEWMA(midprice,sDecay);

// The order size is preset to 1

if |signal | ≥ threshold then
if signal > 0 then

SendBuyOrder(askPrice,orderSize);
else

SendSellOrder(bidPrice,orderSize);
end

else
// Do not trade

end
end

Algorithm 2: Fast-Slow EWMA Trend Following.

Input :Fundamental alpha 𝑎𝑙𝑝ℎ𝑎, Market 𝑎𝑠𝑘𝑃𝑟𝑖𝑐𝑒 , 𝑏𝑖𝑑𝑃𝑟𝑖𝑐𝑒
for each step do

// The order size is preset to 1

if alpha ≥ thresholdBuy then
SendBuyOrder(askPrice,orderSize);

else
if alpha ≤ thresholdSell then

SendSellOrder(bidPrice,orderSize);
end

end
end

Algorithm 3: Informed Trading.

Input :Market 𝑎𝑠𝑘𝑃𝑟𝑖𝑐𝑒 , 𝑏𝑖𝑑𝑃𝑟𝑖𝑐𝑒
for each step do

if activationRate < Random(0, 1) then
// The order size is preset to 1

if Random([𝑡𝑟𝑢𝑒, 𝑓 𝑎𝑙𝑠𝑒 ]) then
SendBuyOrder(askPrice,orderSize);

else
SendSellOrder(bidPrice,orderSize);

end
else

// Do not trade

end
end

Algorithm 4: Noise Trading.
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