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Abstract. The Emissions Trading System (ETS) is a market-oriented
policy aimed at regulating and diminishing greenhouse gas emissions by
allocating and trading carbon allowances. Previous studies have mainly
focused on dynamic model simulations, while the overall equilibrium
state of ETS systems has yet to be explored. To this end, this paper
proposes an empirical agent-based model to analyse European carbon al-
lowance auctions: Within the ETS framework, energy companies adopt
different strategies to interact in the primary carbon auction market.
We use two different methods: partial equilibrium analysis and role-
symmetric game analysis to simplify the model strategy space. We then
apply the α-rank algorithm to determine the model’s equilibrium strat-
egy and conduct an in-depth analysis of the combination of these strate-
gies. We examine carbon output levels under these conditions and find
that the ETS framework effectively reduces carbon emissions across the
system. We also explore the impact of different simplification methods
and auction formats on the ETS market: Our results indicate that role-
symmetric game analysis has better payoff performance; in addition, uni-
form auctions improve production efficiency, while discriminatory auc-
tions successfully allocate resources, leading to fairer market competition.

Keywords: Emissions Trading System · Evolutionary Game Theory ·
Agent-based Model · α-Rank Algorithm.

1 Introduction

The Emissions Trading System (ETS) is a market-driven policy tool aimed at
controlling greenhouse gas emissions by setting carbon quotas for trading [31].
The government sets an overall cap and allocates emission permits, which com-
panies can buy or sell. Companies emitting less than their quota can sell excess
permits, while those exceeding must buy more or face fines [8].

The European Emissions Trading System (EU ETS) is the world’s first sig-
nificant carbon emissions market, launched in 2005, the EU ETS has progressed
through three complete phases and is currently in its fourth phase. The EU ETS
covers about 11,000 entities in the EU, including power stations, manufactur-
ing plants and airlines, accounting for about 45% of the EU’s greenhouse gas
emissions [1].
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In this context, studying carbon emissions markets and ETS is necessary
and timely, but also poses significant challenges for financial AI research. The
system’s complexity, involving multiple heterogeneous entities, makes it chal-
lenging to compute emission reductions efficiently with traditional statistical
methods [23]. Moreover, analyzing corporate strategies within the carbon emis-
sions trading system is crucial, as inefficient auction strategies can undermine
ETS performance, potentially leading to market failure due to factors like bid
price volatility [19], low participation [3], or low clearing prices [11].

Analyzing agent interactions in the ETS to find stable strategies and achieve
emission reductions is significant for individual entities and the system. This pa-
per models the European primary carbon emissions auction using game theory
method to explore the auction strategies of energy companies. We use agent-
based modelling (ABM) [21] to calculate the stable strategy under various sce-
narios, helping us understand agent behaviour and evaluate carbon emission
levels and auction clearing prices.

Building on Tang et al.’s ABM [24], we use evolutionary dynamics algorithms
to calculate the system’s equilibrium strategy in the auction model, quantifying
payoffs and carbon emissions reduction in the ETS. By varying auction strate-
gies, we analyze their effectiveness in reducing emissions and examine the impact
of different management methods. Our model is grounded in real industry data,
underscoring the relevance and significance of our findings.

2 Related Work

Promoting greenhouse gas reduction is the core goal of ETS [6]. Since its in-
ception, many studies have examined the policy’s impact on corporate opera-
tions [15, 29]. For example, research by Chan et al. [2] shows that the promotion
of the EU ETS platform has effectively reduced the material cost input of Euro-
pean power companies and significantly increased the income of these companies.
Krass et al. [17] believe that combining taxes generated during the ETS process
with subsidies and rebates can better promote the adoption of green technologies
and thereby reduce greenhouse gas emissions.

Hepburn et al. [16] point out that the government’s increase in auctions in
the second phase of the EU ETS may improve efficiency by supporting border
tax adjustments and other measures, helping to mitigate price fluctuations and
enhance the long-term price signal. Further, Sarto et al. [22] study the carbon
emission allocation rules of the third phase of the EU ETS and suggest that
these regulations changed the way emission allowances are allocated for free to
energy-intensive industries.

Advances in computer technology have popularized ABM in carbon market
research, providing deeper insights into agent behaviours under various poli-
cies [23]. Cong and Wei’s [5] agent-based carbon allowance auction model (CAAM)
contributed to EU ETS analysis and was expanded by Tang et al. [24] to study
government-firm interactions, highlighting its positive impact on China’s carbon
reduction. Wei et al. [25] also used ABM to investigate enterprise compliance
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strategies under the ETS, and revealed a non-monotonic "L-shaped" carbon
price trend and highlighted the current ETS penalty mechanism’s inefficiency.

Finally, the spread of evolutionary game theory from its biological roots has
become a crucial tool in economic analysis, particularly in evolutionary eco-
nomics. Illustrating its applications to energy markets, the Nie et al.’s [20] study
in public transportation demonstrates how different carbon tax and subsidy com-
binations affect corporate decision-making, particularly in adopting new energy
buses. Chen et al. [4] apply the theory to analyse manufacturers’ responses to
carbon tax and subsidy scenarios and show that dynamic approaches are more
effective for encouraging low-carbon production.

3 Game Model

This section details our agent-based model for ETS, designed to dissect the dy-
namics of the primary auction market and accurately forecast market-clearing
prices with authentic market data. In this market, firms can only purchase car-
bon emission quotas from the government. The model delves into agents’ inter-
action in the carbon allowance auction system during the fourth phase of EU
ETS (2021-2030) and studies differences in their decision-making across differ-
ent industries from a bottom-up perspective. This offers advice for the European
Commission on the policy development for the next phase of EU ETS.

We extend the Tang et al.’s [24] model, paying particular attention to the
behaviours of energy companies that use different raw materials for power gen-
eration in the primary carbon emissions auction platform. This initial allowance
market is the most essential part of the ETS design [30, 16]. In the ETS, the gov-
ernment serves as policy architect, carbon quota provider, and auctioneer, while
energy firms, mainly non-renewable, actively bid in such auctions. For simplicity,
our model does not account for the distribution of free allowances.

3.1 Model Parameters

First, we set the model’s fundamental parameters, which remain constant when
varying agent strategies in the simulation.

Model Parameters We collected data from the European Energy Exchange
(EEX) [7], which indicates that an average of 18 agents participated in each
auction in 2021 at the start of the EU ETS’s fourth phase. The reports also detail
the total carbon emissions and the number of auctions in 2021. Accordingly, we
set the number of auction participants, N , at 18 and schedule annual auctions.
The initial carbon emissions allocation, Et0 , is based on 2021’s total carbon
emissions divided by the year’s auction count, representing the carbon emission
quotas the government plans to sell in the first auction. This approach aligns our
model with the EEX’s actual trading environment, enabling a realistic simulation
of auction mechanisms and strategies in the EU ETS.
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Agent Parameters Each agent is assigned an initial expected carbon price,
pvi,t0 , and submits a first bid, bidi,t0 , randomly selected from [0, pvi,t0 ]. The
expected prices follow a normal distribution around the 2021 EU ETS average
transaction price, adjusted by a factor of 1.5. This approach introduces random-
ness while reflecting realistic market expectations. In addition, we use the initial
allocation of carbon emission, Et0 , multiplied by the cover ratio, to obtain the
expected overall emissions of the agents participating in the auction. The cover
ratio is the ratio of agents’ total demand emissions to the government’s available
auction emissions. We then use the Dirichlet distribution to randomly assign the
total expected emissions among agents in the auction, generating their initial
expected emissions, vi,t0 .

3.2 Auction Process

Allowance auctions on the EU ETS platform can take several forms, including
two primary variants of sealed-bid auctions: discriminatory or uniform-price for-
mats. The main distinction between these formats lies in the payment structure
for the winning bidders.

Auction Formats In the uniform-price auction, all winning bidders pay a
uniform price, which is determined by the auction’s clearing price at time t.
Within this framework, each agent will announce its bidding price, bidi,t, and the
needed carbon permits, vi,t. All the agents are ranked according to the bidding
price, from high to low (w.l.o.g., bidder i is the one with the i-th highest bid).
Accordingly, when the cumulative quantity of permits reaches the total allowance
supply, Et, the clearing price of the market is expressed as pct = bidi=m,t, where
m represents the last agent that successfully bid and received all or some of
the required permits. The payment price, bid′i,t, and the corresponding purchase
volume, v′i,t, for each agent i at step t are calculated as follows:

bid′i,t =

{
pct = bidm,t, i ≤ m

0, i > m

v′i,t =


vi,t, for bidi,t > bidm,t

vi,t ·
Et−

∑w−1
j=1 vj,t∑m

j=w vj,t
, for bidi,t = bidw,t ∧m = i = w

0, for bidi,t < bidm,t

Each successful agent’s payment for carbon emissions equal to the equilibrium or
clearing price of the auction. On the other hand, carbon allowances are allocated
based on the bid hierarchy. If the supply falls short and multiple agents, w, place
bids equal to the final successful bid, the remaining items will be proportionally
allocated among these agents.

In the discriminative-price auction, winning firms need to pay different car-
bon allowance prices. These prices, bid′i,t, are directly contingent upon the indi-
vidual bid prices, bidi,t, put forth by each firm, and the weighted average of all
successful transactions gives the clearing price.
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Auction Cost In both cases, winning agents need to pay the transaction price
to the government. In the uniform-price auction, each agent’s cost, Ccosti,t,uni,
equals the clearing price pct multiplied by the obtained emission permits v′i,t. In
the discriminative-price auction, a firm’s cost, Ccosti,t,dis, is the product of its
payment price bid′i,t and the allocated allowances volume v′i,t.

3.3 Production Process

After having acquired carbon permits in the auction, agents will use different
energy sources to generate electricity. Each agent will generate income and pay
production costs (and, possibly, penalties) during this process. For brevity, other
expenditures on power generation are ignored.

Production Cost The production cost, denoted as Ecosti,t, represents the cost
incurred by an agent for energy generated. Our framework categorises electricity-
generating agents into three classes: Oil, Gas, and Coal. Specifically, each agent’s
unit cost of generated electricity is computed based on two key factors: the 2021
average energy price and the energy conversion coefficient pertinent to each
energy source. For each agent, the production cost calculation formula is as
follows:

Ecosti,t = vi,t/ ftype ·Rtype. (1)

In this context, Rtype signifies different raw material prices agents required to
generate 1Mwh of electricity in 2021. The ftype denotes the ratio of the carbon
dioxide emissions the corresponding energy source generates to produce 1Mwh
of electricity [18]. Additionally, vi,t represents each agent’s anticipated carbon
dioxide emissions at stage t, encapsulating their expected production level.

Production Income At each stage t, each agent will perform power generation
activities based on its expected carbon emissions and sell the generated electricity
to the government or other consumers. The calculation formula for production
income is as follows:

Incomei,t = vi,t/ftype · Pi,ele. (2)

In the equation, Pi,ele represents the electricity sales price of agent i in eu-
ros/MWh. Before the simulation, we take the 2021 European electricity prices
as a normal distribution of the mean (excluding the extreme 5% values on both
sides) and generate a random price for each agent [9]. This price will not change
over time.

Penalties As for the penalties, if the actual carbon emissions produced during
the agent production process exceed the total carbon volume allowed by auction
v′i,t, i.e. if vi,t > v′i,t, agents should be punished for such illegal carbon emissions:

Penaltyi,t =

{
0, vi,t − v′i,t ≤ 0

ξ · (vi,t − v′i,t), vi,t − v′i,t > 0
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The parameter ξ is the penalty per unit. According to EU ETS, the EU will
impose a fine of a fixed amount per ton of carbon dioxide that exceeds the
allowed emissions.

Payoff Finally, at each stage t, each agent i receives its current payoff, ui,t, for
auction participation and power generation:

ui,t = Incomei,t − Ecosti,t − Ccosti,t − Penaltyi,t.

Based on the current payoff, each agent will adjust the parameters in the next
auction and production activities stage.

3.4 Strategies Decision Process

In the current model, we define three different strategies regarding the firm’s
preference for uncertainty and volatility associated with market prices according
to the following principles inspired by [10, 5, 24]:

Risk-seeking Strategy: bidi,t+1 = pct +
3
4 (pvi,t − pct),

Risk-neutral Strategy: bidi,t+1 = pct +
1
2 (pvi,t − pct),

Risk-averse Strategy: bidi,t+1 = pct +
1
4 (pvi,t − pct).

The different strategies explore agents’ attitudes to market uncertainty, with
risk seekers adjusting bids for better payoffs and risk-averse firms opting for
safer bids near the clearing price. These strategic distinctions influence not only
individual bidding behaviors but also impact overall market dynamics. Firms
can navigate market fluctuations by aligning bidding strategies with their risk
tolerance.

According to the firm’s strategy, each agent will regenerate the auction bid,
bidi,t+1, for the next stage. Each agent does not change the strategy it uses
during the simulation. Also, the new personal value, pvi,t+1, for each agent is
derived using data from the previous stage, calculated as:

pvi,t+1 = (Incomei,t − Ecosti,t)/vi,t.

Furthermore, new output volumes vi,t+1 are determined based on the firm’s
payoff changes, adhering to the formula:

vi,t+1 =


vi,t · (1 +∆xt+1), if ui,t − ui,t−1 > δ · ui,t

vi,t, if|ui,t − ui,t−1| ≤ δ · ui,t

vi,t/(1 +∆xt+1), if ui,t − ui,t−1 < −δ · ui,t

where ui,t and vi,t+1 represent the payoff and output volume of enterprise i at
time t, and ∆xt and δ represent two parameters for the output adjustment and
a price increment, which are set to 50% and 20% respectively.

Additionally, considering that the total carbon emissions in each stage de-
crease at a decay rate of λ, the new total supply of carbon emissions for auction
is calculated as follows:

Et+1 = (1− λ) · Et.
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After updating the data required for the next stage of the auction, the sim-
ulation of the model was repeated until the end of the fourth stage of the EU
ETS, going through a total of 10 steps in 10 years. Ultimately, each agent i will
get its final payoff, represented by ui,t10.

Our goal is to study how the carbon auction platform can achieve steady
reductions in carbon emissions by setting different auction methods and carbon
emissions policies. According to the EU ETS report [13, 12], the emission cap in
the fourth stage continues to decrease yearly, with an annual linear decay rate
of 2.2%. At the same time, the EU ETS imposes a fine of 100 euros per ton for
carbon emissions that exceed the allowed amount.

In our research, we set various simulation variables to assess the impact
of the different parameters. Initially, we examine two auction models: uniform
price and discriminative price. We also investigate the effects of two emission cap
decay rates, specifically at 2.2% and 3.2%, along with three penalty factors set at
100, 200, and 500, as illustrated in Table 1. We utilise an agent-based model to
compute the payoff matrix and apply the α-rank method to solve the game. This
method calculates the set of stable strategies within the system, which enables
us to determine the system’s equilibrium solutions under various scenarios and
evaluate the allocation efficiency of the auction model, amongst other things.

Table 1: ETS policy scenarios and auction designs considered.
Auction Format Decay Rate (%) Penalty (e)

Uniform, Discriminative 2.2, 3.2 100, 200, 500

4 Equilibrium

4.1 Background on α-Rank

We consider N agents game, each of whom can play Si strategies and receives a
payoff Mi :

∏N
i=1 Si → R. Let SJoint =

∏N
i=1 Si be the space of the joint strategy

profile. The α-rank of the game is calculated by defining an irreducible Markov
chain whose nodes are pure strategy profiles in SJoint. We define the Markov
probability transition matrix as C. Consider any two joint strategy profiles a, b ∈
SJoint, that differ in only one individual strategy for the ith agent, the probability
of transitioning from a to b which varies only in player i ’s strategy is:

Ca,b =

{
η 1−exp(−α(Mi(a)−Mi(b))
1−exp(−αm(Mi(a)−Mi(b)))

if a ̸= b
η
m otherwise,

where η = 1∑N
i=1(Si−1)

, α ≥ 0, m ∈ N are hyperparameters to be chosen. Also,
Ca,a = 1−

∑
b ̸=a Ca,b ensures that transition probabilities are valid, and Ca,v = 0

for all v that differ from a in more than a single player’s strategy. We denote π
as the unique stationary distribution of the chain C as α → ∞ [21]. The score
of the strategies profile can be calculated via the stationary distribution π of
this Markov chain. The higher the score, the better the stability of the strategies
profile.



8 Zhao et al.

4.2 Strategy Configuration

Using the α-rank algorithm in multi-agent games requires substantial computa-
tional power and time due to its NP-hardness [28]. As agent numbers increase,
the payoff matrix grows exponentially, significantly increasing computational
complexity. Therefore, we simplify the model’s strategy space with two meth-
ods: partial equilibrium analysis and role-symmetric game analysis.

– Partial Equilibrium Analysis
In the partial equilibrium analysis method (PEA), we categorize the 18
agents into two distinct groups. The first group consists of 9 agents, each
employing a strategy in the auction, evenly distributed across three energy
types: oil, gas, and coal, with each energy type represented by three com-
panies. The second group, also comprising nine agents, is designated as the
"environmental" group. These agents maintain consistent bidding behaviour
throughout the simulation, adhering to a risk-neutral strategy without alter-
ing their bids [14]. To minimize the influence of the environmental grouping
on the game dynamics, we simulate this group one million times, using the
average results as environmental data to ensure a stable market analysis
background.
This approach simplifies the complex game into an asymmetric game involv-
ing nine experimental agents. The model’s strategy configuration space, Sp,
is a 39 strategy combination profile, meaning each of the nine agents has three
strategies from the strategy set s = [Risk-seeking,Risk-neutral,Risk-averse].

– Role-symmetric Game Analysis
In the role-symmetric game analysis method (RSA), we partially replace the
original complex asymmetric game with a part-symmetric game to reduce
the strategy space of the original game [27]. Specifically, in each ETS sim-
ulation, each agent’s initial unit expected price pvi,t0 comes from the same
prior distribution, namely, the normal distribution related to the real mar-
ket transaction price. We believe that simplifying the strategy configuration
space in this case can ensure that the interests of agents are as unaffected
as possible by the arrangements of other agents.
In the ETS model, the agents in our study scenario are divided into three
roles according to their power generation mode. Each type of firm has six
agents, and all agents in each role are considered homogeneous. The strategy
combination number of strategy configuration space, Sr, is greatly simplified
compared to the original strategy space.

After simplifying the strategy space, we use Empirical Game Theory Anal-
ysis (EGTA) to compute the equilibrium strategy for the ETS model [26]. This
process involves initializing the market, defining strategies, simulating combi-
nations, and recording payoffs. The results form a payoff matrix, from which
the equilibrium strategy is calculated using the α-Rank algorithm. Agents then
retrade based on this profile, and market performance and payoff changes are
recorded.
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Specifically, we simulated the ETS model for each strategy combination in
the configuration spaces Sp and Sr, calculating each agent’s payoff at each step
under different strategy combinations. After the simulation, we applied a 1%
discount rate to the payoffs at each step, discounting them according to the
time elapsed before the end of the simulation. We then summed the discounted
payoffs for each agent and created the payoff matrix. To fully capture all possible
scenarios, we used random data in each simulation, covering all scenarios and
simulating each one 100 times.

4.3 Equilibrium Strategies

After simplifying the game strategy space with the two methods described above,
we employed the α-Rank algorithm to estimate the approximate equilibrium of
the model. Specifically, we calculated the weight of each strategy in various
scenarios, with each simulation scenario containing a different set of strategy
weights. When multiple profiles had the same highest score, the average weight of
each feature across all stable strategies was provided. Following a large number of
simulations, we collected the average results in the equilibrium state and defined
the weight in the strategy combination as the probability of different types of
agents adopting each strategy.

(a) Uni, PEA (b) Uni, RSA

(c) Dis, PEA (d) Dis, RSA

Fig. 1: Equilibrium distribution under different auction methods and analysis
approaches
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Figures 1a and 1b show the strategy probability distributions obtained by the
two simplified methods when the uniform auction model is used, and the carbon
supply decay rate is 2.2%. From the figure, we can see that when the penalty
is 100, oil and gas agents significantly tend to adopt risk-averse strategies, and
more than half of the agents prefer this conservative bidding method. As the
penalty coefficient increases, the strategies of these two types of entities tend to
be more conservative, especially those of oil agents. This pattern implies that oil
industry agents may opt to curtail production by lowering auction bids, thereby
minimising the potential for more losses due to the higher penalties. On the
contrary, the coal agents’ actions show a more balanced distribution across risk
strategies. Although they tend to use risk-seeking strategies, they do not increase
significantly with the increase in the penalty.

Additionally, as the penalty coefficient increases, the strategy probability
distribution under the RSA method follows a similar trend to that of the PEA
method, but its changes are less drastic. This may be because the PEA method
does not have to follow the homogeneity assumption, leading to more sensitive
and diverse responses from each agent. In contrast, the RSA method, constrained
by the homogeneity assumption, restricts agents of the same type from adjusting
within a smaller strategy space, resulting in less overall change in the strategy
probability distribution.

Shifting the focus to the discriminative auctions, the data presents a con-
trasting scenario. As shown in Figures 1c and 1d, the risk-seeking strategies are
more pronounced, particularly in the coal sector at the 100 penalty level with the
PEA method, where a striking majority of 95% prefer risk-taking. This trend
suggests that higher potential bid rewards in a discriminative auction entice
agents to adopt more aggressive strategies despite penalty risks.

When comparing the two auction types, we find that the clearing price mech-
anism of uniform auctions leads to a greater preference for risk-averse strategies.
By contrast, discriminatory auctions encourage riskier practices, especially in the
coal industry, because winning bids determine the price. Agents appear willing
to accept the possibility of higher penalties to ensure greater personal rewards.

5 Effects of ETS Framework

To gain insights into the ETS model’s impact, our experiment concentrated on
several key aspects. Firstly, we analysed the payoffs achieved by various types of
agents. Secondly, we examined the bid prices within the auction market. Lastly,
we focused on assessing the carbon emission levels of the participating agents.
During the experiments, agents were required to utilise the equilibrium strategy
during the ETS simulation.

5.1 Agents’ Payoff in the ETS System

Within our ETS model, each agent category has three distinct firms. To facili-
tate a more effective comparison across different types of agents, we employ the
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average payoff of the three agents within each field for our analyses. Initially, we
delve into the impact of variations in the carbon emission supply decay rate on
different types of energy companies.

In our analysis, it was intriguing to observe that the agent’s payoff volatility
is markedly higher in discriminative auctions compared to uniform auctions.
This pronounced fluctuation manifests in the final payoff and throughout the
simulation process. To quantify this, we calculated the average R2 values of the
agents’ payoff curves over time for both auction formats.

Table 2: Performance of R2 under different scenarios
Simplification Method Auction Format R2

PEA Uniform 0.91
PEA Discriminative 0.79
RSA Uniform 0.95
RSA Discriminative 0.83

Table 2 shows the changing trend of the model yield curve under different
scenarios as the emission decay rate increases. Under the PEA method, the
R2

uni,partial is greater than R2
dis,partial, signifying a more stable payoff trend.

This suggests that changes in the decay rate in uniform auctions primarily lead
to an overall shift in the payoff curve without significantly altering its trajectory.
However, in discriminative auctions, not only does the payoff curve shift, but its
trend also varies, resulting in more pronounced changes and fluctuations during
the auction process. Furthermore, the R2 of different auction formats in the RSA
scenario is greater than that in the PEA method. This also shows that the RSA
method is more stable with parameter emission decay rate changes.

We averaged the payoff data across various decay rates to further examine
the influence of different auction formats on agent payoff. Figure 2 illustrates
the agent payoff trend changes as the simulation progresses under each auction
format and game simplification method. Firstly, due to constraints in raw mate-
rial prices, the payoffs for oil agents are consistently negative. In contrast, coal
agents achieve substantial profits owing to their lower material costs. Secondly,
in the uniform auction, we observe that all agent types’ payoffs initially de-
crease and then rise, indicating that this method improved production efficiency
and reduced carbon emissions. Conversely, in the discriminative auction, agents’
payoffs approach zero by the end, which shows effective resource allocation and
reduced profit margins due to market competition.

After further comparing the payoff data under PEA and RSA, we found that
the overall payoff of RSA is higher than that of PEA. This may be because PEA
involves solving complex games with multiple interacting parties, which increases
computational complexity and may lead to lower payoffs due to approximate
solutions or local optimal solutions. RSA simplifies the internal structure of
each agent type, reducing computational complexity, making it easier to achieve
the global optimal solution, and consequently obtaining higher overall payoffs.
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(a) Uni, PEA (b) Dis, PEA

(c) Uni, RSA (d) Dis, RSA

Fig. 2: Payoff over time for each type of agent under different auction methods
and analysis approaches

5.2 Bids and Clearing Price in Auction Market

In the ETS model, analysing the changes in bids of different types of agents in
the carbon emission auction market under market equilibrium can help us better
study the interactions in the model. We present the data graphically to visualise
this correlation, plotting the agent’s bidding curve under different scenarios.

Figure 3 reveals notable differences in the bidding behaviour of various agents
throughout the auction process. We observe that coal agents consistently place
the highest bids in both auction formats, whereas bids from oil agents are com-
paratively lower. However, in the early stages of the simulation, the differences
between the bids of different types of agents are not very significant.

Additionally, under PEA, agents’ bidding behavior shows distinct patterns
in the two auction formats. In the uniform auction, bidding curves of the same
agent type under different penalties are similar initially but diverge over time.
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(a) Uni, PEA (b) Dis, PEA

(c) Uni, RSA (d) Dis, RSA

Fig. 3: Bids evolution over time for each agent under different auction methods
and analysis approaches

Conversely, in the discriminative auction, bidding curves show marked vari-
ation initially but gradually converge. These observations corroborate previous
findings: bidding curves under various penalties converge and stabilize in the
discriminative auction, indicating a late-phase equilibrium. In contrast, in the
uniform auction, bidding curves diverge in the later stages, suggesting agents
adapt their bids to optimize payoffs based on generation efficiency. On the other
hand, the figures of RSA bid curves in different auction modes are more similar,
and the differences between the bids of different types of agents are smaller than
those in PEA.

5.3 Carbon Emissions Analysis

One of the most essential tasks of the ETS model is effectively reducing carbon
emissions in the system. To study it more deeply, we calculated the proportion
of emission reductions for different types of agents in the simulated final stage
compared with the starting stage under the two auction formats, as shown in
Table 3.



14 Zhao et al.

Table 3: Proportion of agent emission changes under different auction forms
PEA RSA

Uniform Discriminative Uniform Discriminative

Total -17.48% -8.20% -11.45% -6.29%
Oil -51.28% -25.03% -34.48% -17.63%
Gas -24.77% 30.83% -22.86% 25.25%
Coal 24.09% -30.61% 25.07% -23.74%

We can find that both auction methods can effectively reduce the agent’s
overall carbon emissions in the model. Oil power generation companies have the
best emission reduction effects, while natural gas and coal power generation com-
panies have very different emission reduction effects under two auction models.
On the other hand, we found that the overall emission reduction of the ETS
model in the PEA method is more significant than that of the RSA method.
This difference in emission reduction leads to a lower income for the agent in the
PEA method, which leads to a smaller payoff result for the ETS model.

However, from (1) and (2), the agent’s power generation strongly correlates
with its emissions, so reducing carbon emissions will also reduce fossil fuel power
generation. While the government can stabilise the power market’s supply using
various auction formats and penalty values, only by advancing clean energy
technologies to supplant conventional energy sources can achieve both carbon
emission reduction and power price stability.

6 Conclusions

This paper presents an agent-based model to study the dynamics of the EU
ETS primary carbon emissions auction market, using data from various energy
sector industries. The model employs two strategy space simplification methods
and the α-rank algorithm to calculate the equilibrium strategy. It examines the
impact of these simplification methods and auction formats on agents’ strategic
decisions and bidding patterns. Additionally, the ETS model integrates auction
and production processes, comparing scenarios with different penalty coefficients
and supply decay rates.

Our findings indicate that agents prefer risk-averse strategies in uniform auc-
tions and risk-preferring strategies in discriminative auctions. These findings are
valid under both PEA and RSA methods, indicating their robustness.

We also discover that uniform auctions increase production efficiency and
reduce carbon emissions, while discriminative auctions effectively allocate re-
sources and foster balanced market competition. The bidding result shows that
uniform auction bidding curves diverge over time, and discriminative auction
curves converge. These insights can help regulators select auction formats to
enhance ETS market efficiency.
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Finally, our experiments show variations in carbon emissions across differ-
ent model scenarios. Most agents successfully reduced emissions, indicating the
ETS framework can lower carbon emissions while maintaining stable payoffs.
However, reducing production emissions may negatively impact electricity mar-
kets, necessitating government efforts to transition fossil fuel power generation
to clean energy.

Overall, our results provide valuable insights for policymakers, especially the
European Commission, in shaping future EU ETS policies. Future work could
extend the model to include a secondary auction market to assess allocation ef-
ficiency and explore interactions among agents from different industrial sectors.
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