

King’s Research Portal

Document Version
Peer reviewed version

Link to publication record in King's Research Portal

Citation for published version (APA):
Ferraioli, D., & Ventre, C. (in press). An Algorithmic Theory of Simplicity in Mechanism Design. In Proceedings of
the 20th Conference on Web and Internet Economics (WINE 2024) https://arxiv.org/abs/2403.08610

Citing this paper
Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may
differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination,
volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are
again advised to check the publisher's website for any subsequent corrections.

General rights
Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights.

•Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research.
•You may not further distribute the material or use it for any profit-making activity or commercial gain
•You may freely distribute the URL identifying the publication in the Research Portal
Take down policy
If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing details, and we will remove access to
the work immediately and investigate your claim.

Download date: 13. Jan. 2025

https://kclpure.kcl.ac.uk/portal/en/publications/45beed89-06df-454f-bdd0-c64323c129f5
https://arxiv.org/abs/2403.08610

An Algorithmic Theory of Simplicity in Mechanism
Design

Diodato Ferraioli1[0000−0002−7962−5200] and Carmine Ventre2[0000−0003−1464−1215]

1 Università degli Studi di Salerno, Fisciano (SA) 84016, Italy
dferraioli@unisa.it

2 King’s College London, Strand London WC2R 2LS, United Kingdom
carmine.ventre@kcl.ac.uk

Abstract. A growing body of work in economics and computation focuses on
the trade-off between implementability and simplicity in mechanism design.
The goal is to develop a theory that not only allows to design an incentive struc-
ture easy to grasp for imperfectly rational agents, but also understand the en-
suing limitations on the class of mechanisms that enforce it. In this context,
OSP mechanisms have assumed a prominent role since they provably account
for the absence of contingent reasoning skills, a specific cognitive limitation.
For single-dimensional agents, it is known that OSP mechanisms need to use
certain greedy algorithms. In this work, we introduce a notion that interpo-
lates between OSP and SOSP, a more stringent notion where agents only plan a
subset of their own future moves. We provide an algorithmic characterization
of this novel class of mechanisms for single-dimensional domains and binary
allocation problems, that precisely measures the interplay between simplic-
ity and implementability. We further show how mechanisms based on reverse
greedy algorithms (a.k.a., deferred acceptance auctions) are algorithmically
more robust to imperfectly rationality than those adopting greedy algorithms.

1 Introduction

A set of agents need to determine an outcome that will affect each of them. In these
cases, a mechanism is designed to interact with the agents and compute an outcome
based on the decisions made during the interaction. In its more general form, the
mechanism can be modelled as an extensive-form game. To guarantee properties
on the quality of the solution computed (e.g., optimality for an objective function
of interest) mechanisms are required to provide incentives for the agents to behave
in a predictable and desirable way. For example, in dominant-strategy incentive-
compatible mechanisms, it is pointwise optimal for the agents to behave correctly
and truthfully report their private information to the mechanism. This property can
however be too weak for certain agents, as observed experimentally [7, 20]. In partic-
ular, different extensive-form implementations of the mechanism can lead to differ-
ent degrees of strategic confusion. Consider, for example, software agents that take
decisions during the execution of the mechanism. These agents could take actions
that are irrational from the economic point of view when they have been “badly” pro-
grammed, either because the programmer misunderstood the incentive structure in

2 D. Ferraioli and C. Ventre

place or due to computational barriers preventing from comparing payoffs for each
strategy adopted by the other agents [26]. A less complex decision process would be
guaranteed by associating one outcome/payoff to each possible action taken by the
agent, since she would simply need to rank her own actions independently of the
behavior of the other agents. This is the idea behind obviously strategyproof (OSP)
mechanisms [23]. OSP is a stronger notion of incentive-compatibility that takes a
conservative view and requires honesty to be an obviously dominant strategy: the
worst payoff that can be achieved with it is not worse than the best possible payoff
obtained with a different strategy, where worst and best are chosen over the possible
strategies of the remaining agents.

OSP is shown to capture the incentives of a specific form of imperfect rational-
ity — absence of contingent reasoning skills. From the computational point of view,
OSP is known to be intimately linked with greedy algorithms for single-dimensional
agents: OSP is equivalent to certain well-defined combinations of greedy algorithms
that are suitably monotone in the agent’s private information [13, 18]. This algorith-
mic lens allows to focus on the quality of the solutions output by OSP mechanisms,
measured in terms of the approximation guarantee to a given objective function, and
conclude that these monotone greedy algorithms can perform well for some binary
allocation problems [13] but, in general, less well for richer solution spaces [18].

Does OSP encapsulate strategic simplicity in mechanism design? Let us consider
agents with limited foresight, who can only devise a plan for their next k moves (their
planning horizon) but cannot anticipate what they will do after that. It may not be
simple enough for agents to go beyond that horizon in their reasoning; in chess, for
example, if white can always win, any winning strategy is obviously dominant but
requires to look at many moves in the future meaning that the strategic choices in
chess are far from obvious [28]. Similarly, software agents may need more data to be
“retrained” and get a more granular picture of the scenarios that go beyond their k-
th future move and plan accordingly. What is simplicity in mechanism design for
these agents? OSP would result simple for agents with infinite planning horizons
(e.g., agents who need not retrain and have all the data available from the begin-
ning). A solution concept called Strong OSP (SOSP) has been recently introduced in
the literature to define simplicity for agents who cannot forecast any of their own
future moves [28] (e.g., those who need to retrain after each move). Can we interpo-
late between these two extremes? Is, in case, the class of implementable mechanisms
larger the longer the agents’ planning horizons?

Our Contribution. We introduce the notion of k-step OSP mechanisms to capture
the incentive compatibility of agents who decide their next move by only planning
for the subsequent k steps and leave the remaining moves undecided. Thus, OSP
corresponds to the case in which k = ∞ since, when determining their next move,
agents reason about all their subsequent actions in the extensive-form mechanism.
SOSP, on the contrary, corresponds to the case in which k = 0 in that no extra future
action is planned for in addition to the one under consideration. We fully character-
ize k-step OSP mechanisms as follows:

An Algorithmic Theory of Simplicity in Mechanism Design 3

Main Theorem 1 (informal). A mechanism is k-step OSP for single-parameter
agents and binary allocation problems if and only if each agent receives at most
k +2 “OSP queries”, the (k +2)-th (if any) being “payoff-neutral up to one type”.

In the informal statement above, “OSP query” means that the extensive-form mech-
anism must satisfy the ensuing OSP constraints, whereas “payoff-neutral up to one
type query” means that the payoff for the queried agent i is essentially determined
for all her moves but potentially one; this move corresponds to a single type of i for
which her outcome can still be undecided at that point. Whilst it is expected that
the queries must be OSP, it is surprising that there is clean connection between the
number of possible queries that each agent can be asked and her planning horizon,
with up to k + 1 “unrestricted” queries to each agent i and one closing query that
not only can affect the outcome that the other players will receive but also i ’s (albeit
very limitedly)3. Thus, our notion fully captures the trade-off between simplicity and
implementability. The more sophisticated the decision making of the agents is, the
more mechanisms are incentive compatible. In particular, our notion gives rise to a
fully nested class of mechanisms since every k-step OSP mechanism is also k ′-step
OSP for k ′ > k.

To prove this characterization, we develop the theoretical foundations to study
k-step OSP mechanisms. We prove that it is w.l.o.g. to focus on a certain family of
implementations and find a structural property of k-OSP constraints that limits the
class of queries that the mechanism can make. We subsequently give a version of
the Taxation Principle for k-OSP mechanisms by proving that from a certain point
of the extensive-form game, outcomes (and payments) need to be constant for the
agent being queried. Few additional structural properties are then proved to bound
the number of queries to k +2 and determine the power of the last query.

This result complements the results by Pycia and Troyan [28] for binary allo-
cation problems from two perspectives. Firstly, our characterization says that each
agent has two payoff relevant queries in an SOSP mechanism. Under an assump-
tion of rich domains, Pycia and Troyan [28] prove instead that agents only take one
payoff-relevant move in SOSP mechanisms. Thus, our result highlights that for gen-
eral single-dimensional type domains, there can be a second query which affects
the outcome of the queried agent in a very specific and limited way. Secondly, Py-
cia and Troyan [28] consider a notion of k-step dominance, which is very related to
ours, in that agents think about k future self moves when taking a decision. It turns
out that their definition is technically different, with consequences on the bound-
aries between simplicity and implementability. In [28], although agents take into ac-
count their subsequent k moves they do not commit to them but rather follow the
principle of “cross[ing] that bridge when you come to it” (i.e., make choices as they
arise) [30]. It is thus assumed that the agents optimistically complete the “honest”
path of play beyond their planning horizon when taking a decision. To some extent,
our notion formalizes the “look before you leap” (i.e., create a complete contingent
plan for the possible k future decisions one may have) model of decision making

3 This connection is neither an “innate” nor a straightforward property of k-step OSP mech-
anisms, since for larger outcome spaces there may be k-step OSP mechanisms with more
than k +2 queries.

4 D. Ferraioli and C. Ventre

[30]. Agents take a pessimistic perspective by considering the worst possible way in
which they can complete their “honest” path of play beyond their planning hori-
zon. Consequently, our approach is more restrictive but more robust to decisions
made outside the agents’ planning horizons. (Please see Example 1 for an illustra-
tion of the differences between the two notions.) Importantly, within their modeling
of decision making, Pycia and Troyan [28] prove that one future move is enough for
1-step simple mechanisms, for which honesty is one-step dominant, to collapse to
OSP mechanisms. In fact, agents can at each step reconsider whether the plan that
was 1-step dominant at the previous decision point is still the right way to go; intu-
itively, this freedom allows the agents to reconstruct an obviously dominant strategy
step by step. Our notion instead draws a more fine grained boundary between the
mechanisms that can be implemented and the behavioral model of the agents inter-
acting with them.

Example 1 (Ascending price auctions). Consider an ascending auction for a single
good, where at each non-terminal information set, an agent is called to play and has
two actions, Stay In or Drop Out. The payoff of an agent i is equal to the agent’s val-
uation vi minus her payment if the agent is allocated the good and 0 otherwise. The
price for the good weakly increases along each path of play. The auction ends when
there is only one agent who has not dropped out; she wins the good and pays the
price associated to the last time she moved. We remark that the ascending auction is
OSP because the strategy of staying in as long as the current price is below the agent’s
valuation is obviously dominant, as shown in [23].

A one-step dominant strategy at information set I∗ is the following. If p(I∗), the
price at I∗, is not higher than vi , then Stay In and Drop Out at the subsequent infor-
mation set I along a path of play. If the price at I∗ is higher than vi , then Drop Out
at I∗ and the subsequent information set I . This is one-step dominant because in
both cases, the minimum from following the strategy is 0 (dropping out eventually)
which is not worse than other strategies at I∗ which can only guarantee a payoff of 0.
Importantly, in her decision process, agent i is ignoring future paths of play wherein
the agent will not drop out. However, player i must not necessarily drop out at I but
can still stay in if the price at I is not higher than vi . Agent i can thus eventually have
inconsistent plans (cf. Remark 1 in [28]). Moreover, there are paths where i could,
beyond her planning horizon, stay in even for prices higher than vi .

A 1-step obviously dominant strategy instead mimics the aforementioned obvi-
ously dominant strategy but limits it to a planning horizon of two moves. So the agent
would look at both p(I∗) and p(I), prices at I∗ and I , and Stay In (Drop Out, resp.)
at I ′ ∈ {I∗, I } if p(I ′) ≤ vi (p(I ′) > vi , resp.). Incidentally, and differently from above,
our notion leads to consistent strategies since the decision of agent i at I will follow
the same recommendation dictated by the strategy at I∗. This strategy is 1-step obvi-
ously dominant only when the minimum payoff that can be reached by completing it
in any possible way would be better than a deviation. So, for example, if the type do-
main of agent i were $1, $2, $3, $4 and $5, and her type were $4 then, by following the
strategy, agent i would have stayed in for prices $2 and $3 (for her first two moves). To
evaluate the 1-step obvious dominance of the strategy, agent i would then take the
worst possible path of play that her future self could take, e.g., the decision to stay in

An Algorithmic Theory of Simplicity in Mechanism Design 5

for a price of $5 leading to a payoff of −1. The best possible payoff by deviating is 0
(e.g., dropping out).

To further explore the boundary between implementabilty and simplicity, we
study the extent to which the approximation guarantee of OSP deteriorates when fu-
ture self moves are not fully accounted for in decision making. We build on our first
theorem to characterize what social choice functions can be implemented by k-step
OSP mechanisms. Towards this end, we define a version of cycle monotonicity for
k-step OSP; as in the cases of SP and OSP (amongst others) cycle monotonicity is a
useful tool in that it allows to separate the allocation function (whose approximation
guarantee we want to bound) from the payment function. The construction of this
useful toolkit requires some further work to conveniently rewrite k-step OSP con-
straints. We are then able to algorithmically characterize k-step OSP mechanisms,
by relating the cycles of the OSP graph [12] with those of the k-step OSP graph we
define.

Main Theorem 2 (informal). There is a k-step OSP mechanism implementing
binary social choice function f if and only if f is two-way greedy with k-limitable
priority functions.

The algorithmic nature of OSP for binary allocation problems can be explained in
terms of two-way greedy algorithms [13]. These are algorithms that build the even-
tual solution by either greedily including agents with low cost (high valuation, resp.)
– termed forward greedy algorithm – or by greedily excluding agents that have a
high cost (low valuation, resp.) – termed reverse greedy algorithm – for minimiza-
tion (maximization, respectively) problems.4 These algorithms adopt adaptive pri-
ority functions (that is, priority functions that depend on the past choices made by
the algorithm) to define the greedy order in which agents have to be processed. The
restriction from OSP to k-step OSP limits the class of priority functions that can
adopted – it must be the case that each agent i is at the top of the priority list for
no more than k +2 times excluding the instances in which i is consecutively at the
top. These are k-limitable priority functions. Loosely speaking, this means that the
greedy algorithm must be ready to decide whether an agent is included or excluded
from the solution in no more than k +2 steps, thus clearly demarcating the algorith-
mic limitations that k-step OSP imposes.

We conclude this work by exploring the power of this class of algorithms. We fo-
cus here on p-systems, a class of problems for which it is known that greedy algo-
rithms can compute a solution with approximation at most p. To what extent can
this result be replicated for k-step OSP mechanisms? The size of the type domain of
the agents and the format of the greedy algorithm play a crucial role. Let d denote
half the size of the agents’ type domain (for simplicity of exposition assume that d is
an integer); we obtain the following tight result.

4 In general, different agents can face different directions; in specific circumstances, it is pos-
sible to move from one direction to the other even for single agents, cf. Section 5.

6 D. Ferraioli and C. Ventre

Main Theorem 3 (informal). There is a p-approximate k-limitable reverse greedy
algorithm for p-systems whenever k ≥ d − 2. There is an instance of a 1-system
(i.e., a weighted matroid) for which no k-limitable two-way (forward, respec-
tively) greedy algorithm has bounded approximation for k < d − 2 (k < 2d − 3,
respectively).

We can then conclude that, in the worst case, there is no gradual degradation of
the performances of k-step OSP mechanisms; as the value of k decreases, there is
a stark dichotomy. Essentially, the two-way greedy algorithm needs to traverse the
domain of each agent to compute good solutions when the types in the domain are
sufficiently far apart, meaning that k must be large enough. It is conceivable to imag-
ine that were it possible to cluster the domain of the agents around k centres without
losing too much granularity, then better results would be possible. Interestingly, re-
verse greedy needs half the number of priority functions of forward greedy. It was
already known that forward greedy is less robust than reverse greedy to economic
desiderata (such as, individual rationality) of OSP mechanisms, due to the charac-
terization of OSP payments in [17]. Our result further shows that reverse greedy is
not only economically but also algorithmically more robust than forward greedy to
imperfect rationality.

Related Work. OSP mechanisms have been extensively studied in various contexts,
including stable matchings and single-peaked domains [6, 32, 5]; settings without
monetary transfers [27]; binary allocation and single-dimensional problems [13, 18];
and, combinatorial auctions and machine scheduling [21, 10]. Extensions and vari-
ants of OSP include monitoring and verification in OSP mechanisms [15, 14]; k-OSP,
interpolating between OSP and classical strategyproofness [16]; and, Non-Obviously
Manipulable (NOM) mechanisms [33, 3]. These studies have provided characteriza-
tions, impossibility results, and approximation bounds for various OSP mechanism
design problems.

2 Preliminaries

Let N be a set of n selfish agents and let S be a set of feasible outcomes. Each agent
i has a type ti ∈ Di , where Di is the domain of i . The type ti is assumed to be private
knowledge of agent i . We let ti (X) ∈ R denote the cost of agent i with type ti for the
outcome X ∈ S . When costs are negative, it means that the agent has a profit from
the solution, called valuation.

We would like to run a mechanism in order to select an outcome and assign op-
portune payments. I.e., the mechanism implements a pair (f , p), where f (termed
social choice function or, simply, algorithm) maps the actions taken by the agents to
a feasible solution in S , and p maps the actions taken by the agents to payments.
Note that payments need not be positive. Each selfish agent i is equipped with a
quasi-linear utility function ui : Di ×S → R: for ti ∈ Di and for an outcome X ∈ S

returned by a mechanism M , ui (ti , X) is the utility that agent i has for the imple-
mentation of outcome X when her type is ti , i.e., ui (ti , X) = pi − ti (X). In this work

An Algorithmic Theory of Simplicity in Mechanism Design 7

we will focus on single-parameter settings, that is, the case in which the private in-
formation of each bidder i is a single real number ti and ti (X) can be expressed as
ti wi (X) for some publicly known function wi .

In order to implement (f , p), we design a game Γ for the agents to play. Specif-
ically, Γ is an imperfect-information, extensive-form game with perfect recall, de-
fined in the standard way: H is a finite collection of partially ordered histories (i.e.,
sequences of moves). At every non-terminal history h ∈H , one agent i ∈ N is called
to play and has a finite set of actions A(h) from which to choose. At some history
h it may be also possible that the mechanism M plays by taking a random choice:
specifically, we denote with ω(h) the realization of the mechanism’s random choice
at history h, and with ω = (ω(h))h∈H : M plays at h the mechanism’s random choices
along the entire game. Each terminal history is associated with an outcome X ∈ S ,
and agents receive utility ui (ti , X). We let h′ ⊆ h denote that h′ is a subhistory of h
(equivalently, h is a continuation history of h′), and write h′ ⊂ h when h′ ⊆ h but
h ̸= h′. When useful, we sometimes write h = (h′, a) to denote the history h that is
reached by starting at history h′ and following the action a ∈ A(h).

An information set I of agent i is a set of histories such that for any h,h′ ∈ I and
any subhistories h̃ ⊆ h and h̃′ ⊆ h′ at which i moves, at least one of the following
conditions holds: (i) there is a history h̃∗ ⊆ h̃ such that h̃∗ and h̃′ are in the same
information set, A(h̃∗) = A(h̃′), and i makes the same move at h̃∗ and h̃′; (ii) there
is a history h̃∗ ⊆ h̃′ such that h̃∗ and h̃ are in the same information set, A(h̃∗) =
A(h̃), and i makes the same move at h̃∗ and h̃. We denote by I (h) the information set
containing history h. Roughly speaking, an information set collects all the histories
that an agent is unable to distinguish.

A strategy for a player i in game Γ is a function Si that specifies an action at each
one of her information sets. When we want to refer to the strategies of different types
ti of agent i , we write Si (ti) for the strategy followed by agent i of type ti ; in partic-
ular, Si (ti)(I) denotes the action chosen by agent i with type ti at information set I .
We use S(t) = (Si (ti))i∈N to denote the strategy profile for all of the agents when the
type profile is t = (ti)i∈N . An extensive-form mechanism is an extensive-form game
together with a profile of strategies S.

Given an agent i , an information set I is an earliest point of departure between
strategy Si and S′

i in game Γ if I is on the path of play under both Si and S′
i and

both strategies choose the same action at all earlier information sets, but choose a
different action at I . I.e., I is the earliest information set at which these two strategies
diverge. Note that for two strategies, there will in general be multiple earliest points
of departure.

For an agent i with preference ti , strategy Si k-step obviously dominates strat-
egy S′

i in game Γ if, starting at any earliest point of departure I between Si and S′
i ,

the outcome that maximize the utility of i among the ones reachable following S′
i at

I is weakly worse than the outcome that achieves the minimum utility among the
ones reachable by following Si at I , where worst (best, resp.) cases are determined by
considering any future play by other agents (including random choices of the mech-
anism) and any future play of agent i that coincides with strategy Si (S′

i , resp.) in
all information sets I ′ following I such that i plays at most k times between I (ex-

8 D. Ferraioli and C. Ventre

cluded) and I ′ (included). In particular we simply say that Si obviously dominates
S′

i when k =∞, and that it strongly obviously dominates S′
i when k = 0. If a strategy

Si (k-step / strongly) obviously dominates all other S′
i , then we say that Si is (k-step

/ strongly) obviously dominant. If a mechanism implements f by guaranteeing that
each player has a (k-step / strongly) obviously dominant strategy, we say that it is
(k-step / strongly) obviously strategy-proof ((k-step / S) OSP).

Round-Table Mechanisms. Mackenzie [24] proved that for OSP mechanisms, it is
without loss of generality to consider mechanisms M with a specific format, named
round table mechanisms, defined as follows. M is defined by a triple (f , p,T) where,
as above, the pair (f , p) determines the outcome of the mechanism, and T is a tree,
called implementation tree, such that:
– Every leaf ℓ is labeled with a possible outcome of the mechanism (X (ℓ), p(ℓ)),

where X (ℓ) ∈S and p(ℓ) ∈Rn ;
– Each internal node u in the implementation tree T defines the following:

• An agent i = i (u) to whom the mechanism makes some query. Each possible
answer to this query leads to a different child of u.

• A subdomain D(u) = (Di (u),D−i (u)) containing all types profiles that are com-
patible with u (or available at u), i.e., with all the answers to the queries from
the root down to node u. Specifically, the query at node u defines a partition
of the current domain of i , Di (u) into k ≥ 2 subdomains, one for each of the k
children of node u. Thus, the domain of each of these children will have, as for
the domain of i , the subdomain of Di (u) corresponding to a different answer of
i at u, and an unchanged domain for the other agents. We also say that action at
u signals the associated subdomain.

Observe that, according to the definition above, for every type profile b = (bi ∈ Di)i∈N

there is only one leaf ℓ = ℓ(b) such that b belongs to D (ℓ). Similarly, to each leaf ℓ
there is at least a profile b that belongs to D (ℓ). This allows as to simplify the nota-
tion: indeed, we can define M (b) = (X (ℓ), p(ℓ)) for ℓ= ℓ(b). Similarly, we can simply
write f (b) = (f1(b), . . . , fn(b)) = X (ℓ) and p(b) = (p1(b), . . . , pn(b)) ∈ Rn = p(ℓ), and
ui (ti ,M (bi ,b−i)) = pi (bi ,b−i)− ti (f (bi ,b−i)). For the single-parameter setting, con-
sidered in this work, we can further simplify the notation, by setting ti (X) = ti fi (b)
when we want to express the cost of a single-parameter agent i of type ti for the out-
put of social choice function f when the actions taken by the agent lead to the leaf ℓ
associated with bid vector b.

Two type profiles b, b′ are said to diverge (or to be separated) at a node u of T if
this node has two children v, v ′ such that b ∈ D(v), whereas b′ ∈ D(v ′). For every such
node u, we say that i (u) is the divergent agent at u. We sometimes abuse notation and
we say that two types ti and bi of the agent i = i (u) diverge (are separated) at u.

A round-table mechanism M is OSP if for every agent i with real type ti , for every
vertex u such that i = i (u), for every b−i ,b′

−i (with b′
−i not necessarily different from

b−i), and for every bi ∈ Di , with bi ̸= ti , such that (ti ,b−i) and (bi ,b′
−i) are compatible

with u, but diverge at u, it holds that ui (ti ,M (ti ,b−i)) ≥ ui (ti ,M (bi ,b′
−i)). Roughly

speaking, OSP requires that each time agent i is asked to take a decision that depends
on her type, the worst utility that she can get if she henceforth behaves according to
her true type is at least the best utility she can get by deviating.

An Algorithmic Theory of Simplicity in Mechanism Design 9

We will extend this definition as follows. Let us first start with some useful defi-
nitions. For each agent i , and for each vertex u in the implementation tree T such
that i = i (u), and every u′ along the path from u to a leaf, we say that u′ belongs
to the k-step limit Lk (u) of u if u′ is the k-th node along this path (u excluded) in
which i is queried or, if i is queried in less than k nodes along this path, then u′ is
the leaf. Moreover, for each agent i , and for each vertex u in the implementation tree
T such that i = i (u), the k-step neighborhood Nk (u) of u consists of each node of
T that appears in the path between u and some u′ ∈ Lk (u). Then, for each agent
i and for each vertex u in the implementation tree T such that i = i (u), two (not
necessarily different) profiles a and b are said to be k-step unseparated at u if a and
b do not diverge either at u or in every node in the k-step neighborhood of u. Fi-
nally, for each agent i and profile a, and for each vertex u in the implementation tree
T such that i = i (u) and a is available at u, the k-step equivalence class of a at u is
Γk

u(a) = {b : b is k-step unseparated from a at u}.
Then, a round-table mechanism M is k-step OSP if for every agent i with real

type ti , for every vertex u such that i = i (u), for every b−i ,b′
−i ,b′′

−i (with b′
−i ,b′′

−i not
necessarily different from b−i and different from each other), and for every bi ,b′

i ∈ Di

such that (ti ,b−i), (bi ,b′
−i) ∈ Γk

u(ti ,b−i), while (ti ,b−i) and (b′
i ,b′′

−i) diverge at u, it
holds ui (ti ,M (bi ,b′

−i)) ≥ ui (ti ,M (b′
i ,b′′

−i)). Roughly speaking, k-step OSP requires
that, at each time step agent i is asked to take a decision, the worst utility that she
can get if she now behaves according to her true type is at least the best utility she
can get by behaving differently, even if she later (i.e., after the next k queries received
by the mechanism) changes her mind and plays as if her type was an untruthful but
still available one.

Mackenzie [24] proved that if there is an OSP mechanism implementing a social
choice function f , then this can be also implemented by an OSP round-table mecha-
nism. We show that this is true also for k-step OSP. We will thus focus on round-table
mechanisms in this paper.

Theorem 1. There is a k-step OSP mechanism implementing a social choice f if and
only if f can be also implemented by a k-step OSP round-table mechanism.

3 Characterizing the Implementation Tree

M = (f , ·,T) is said to be almost-ordered, if for every agent i , every node u of T such
that i = i (u), and every pair of profiles a and b separated at u such that fi (a) > fi (b)
we have that ci < di where ci = max{xi | ∃x−i : (xi ,x−i) ∈ Γk

u(a)} and di = min{xi |
∃x−i : (xi ,x−i) ∈ Γk

u(b)}. Roughly speaking, M is almost ordered if for every pair L
and R of the subsets in which Di (u) is partitioned at u, either M assigns the same
outcome to all types in L ∪R or these two sets are ordered (i.e., the types in one set
are all smaller than the types in the other). Due to page limit, proofs are deferred to
full version.

Lemma 1. An extensive-form mechanism M = (f , p) with implementation tree T is
k-step OSP if and only if for all i , all vertices u of T such that i = i (u), and every pair

10 D. Ferraioli and C. Ventre

of profiles a and b separated at u, the following k-step OSP constraint holds for all
(ci ,c−i) ∈ Γk

u(a):

pi (bi ,b−i)−pi (ai ,a−i) ≤ ci
(

fi (bi ,b−i)− fi (ai ,a−i)
)

. (1)

Theorem 2. A k-step OSP mechanism M implementing social function f with im-
plementation tree T is almost-ordered.

Let us focus on settings with binary outcomes, i.e., S = {0,1}n and consider a
mechanism M implementing (f , p) with implementation tree T . We next provide
some useful definitions.

Definition 1 (Suffix/Prefix of Type Domains). Given a node u ∈T and agent i = i (u)
we say that the domain Di (u) is prefix if max{t ∈ Di (u)} < min{t ∈ Di \ Di (u)}, i.e., it
only contains the smaller types in the domain of u (with larger types already removed
in the queries preceding u). Similarly, we say that Di (u) is suffix if min{t ∈ Di (u)} >
max{t ∈ Di \ Di (u)}.

Definition 2 (Revelation, Extremal and (In)Effective Queries). Given a node u ∈T

and a type t ∈ Di (u), i = i (u), we say that the query at this node is a(n)
Revelation query if agent i is asked to reveal her type.
Extremal query if agent i is asked to separate one extreme (i.e., the minimum or max-

imum type) from the rest of her current domain Di (u).
Ineffective query if for every x−i available at u, and every t ′, t ′′ ∈ Di (u), fi (t ′,x−i) =

fi (t ′′,x−i) and pi (t ′,x−i) = pi (t ′′,x−i). In words, regardless of how types are parti-
tioned by this query, i receives the same outcome and payment for every given profile
x−i .

Strongly Ineffective query if for all x−i ,x′−i ∈ D−i (u) and all t ′, t ′′ ∈ Di (u), we have
fi (t ′,x−i) = fi (t ′′,x′−i) and pi (t ′,x−i) = pi (t ′′,x′−i). In words, in such a query agent
i receives the same outcome and payment for each possible profile available at that
history.

Only-t effective query if for each x−i available at u and every t ′, t ′′ ∈ Di (u) with
t ′, t ′′ ̸= t , fi (t ′,x−i) = fi (t ′′,x−i) and pi (t ′,x−i) = pi (t ′′,x−i), and there is y−i avail-
able at u such that fi (t ,y−i) ̸= fi (t ′,y−i). In words, for each profile of other agents’
actions, the outcome and payment received by i is the same except for the type t .

Strongly only-t effective query if for each x−i ,x′−i available at u and every t ′, t ′′ ∈
Di (u) such that t ′, t ′′ ̸= t , fi (t ′,x−i) = fi (t ′′,x′−i) and pi (t ′,x−i) = pi (t ′′,x′−i), and
there is y−i available at u such that fi (t ,y−i) ̸= fi (t ′,y−i). That is, i receives exactly
the same outcome and payment in each profile available at u, except for the ones in
which she has type t .

We concentrate on (strongly) only-maximum (minimum, resp.) effective queries, that
is, the (strongly) only-t queries for which t = max{t ∈ Di (u)} (t = min{t ∈ Di (u)}, resp.).

Definition 3 (k-limited mechanism). A mechanism M implemented by a tree T is
k-limited if for each agent i , and for every path P from the root of T to a leaf, one of
the following holds:

– i is queried at most k +1 times along P;

An Algorithmic Theory of Simplicity in Mechanism Design 11

– i is queried at most k + 2 times along P and at the node u corresponding to the
(k +2)-th query: (i) either |Di (u)| = 2 or Di (u) is prefix; and (ii) the query at u is
either a strongly ineffective revelation query, or a strongly only-maximum effective
revelation query or an only-maximum effective extremal query that separates the
maximum type in Di (u) from the rest of the domain;

– i is queried at most k + 2 times along P and at the node u corresponding to the
(k +2)-th query we have that: (i) Di (u) is suffix; and (ii) the query at u is either a
strongly ineffective revelation query, a strongly only-minimum effective revelation
query or it is an only-minimum effective extremal query that separates the mini-
mum type in Di (u) from the rest of the domain.

Theorem 3. If there is a k-step OSP mechanism M that implements (f , p) with im-
plementation tree T , then there is a k-limited k-step OSP mechanism M ′ implement-
ing (f , p).

The rest of this section proves Theorem 3. We first prove some preliminary properties
of a k-step OSP mechanism M , which amount to a version of the taxation principle
for k-step OSP.

Lemma 2 (Taxation Principle for k-step OSP). Let M be a k-step OSP mechanism
that implements (f , p) with implementation tree T . For all i and for each vertex u in
T such that i = i (u), take any three profiles a = (ai ,a−i), c = (ci ,a−i), and d = (di ,a−i)
such that (i) ai < ci < di , (ii) a,c,d ∈ Γk

u(a), and (iii) there is u′ ∉ Nk (u) such that
i = i (u′), a,c, and d are available at u′, and two among a, c, and d are separated at u′.
We have that:
1. if there are b and b′ separated from a,c,d by i along the path from u to u′ such

that bi > di and b′
i < ai , then fi (a) = fi (c) = fi (d) and pi (a) = pi (c) = pi (d) (Outer-

sandwich separations);
2. if there is b separated from a,c,d by i along the path from u to u′ such that ai <

bi < di , then fi (a) = fi (c) = fi (d) and pi (a) = pi (c) = pi (d) (Inner-sandwich sepa-
ration);

3. if there is b separated from a,c,d by i along the path from u to u′ such that bi > di

then fi (a) = fi (c) and pi (a) = pi (c) (Top separation);
4. if there is b separated from a,c,d by i along the path from u to u′ such that bi < ai

then fi (c) = fi (d) and pi (c) = pi (d) (Bottom separation).

Mechanism M with implementation tree T is almost k-limited if T is such that
for each agent i and every path P from the root of T to a leaf, the following condi-
tions are satisfied:
– for u ∈ P corresponding to the (k+2)-th query to i , if we denote with ai and di the

minimum and the maximum of the types of i available at u respectively, we must
have that
• if Di (u) contains at least three types and it is neither prefix nor suffix (i.e., in the

previous k +1 queries to i , either i separated from Di (u) types bi and b′
i such

that bi > di and b′
i < ai , or i separated from Di (u) type bi such that ai < bi < di),

then the (k +2)-th query is ineffective;

12 D. Ferraioli and C. Ventre

• if Di (u) contains at most two types or it is prefix (i.e., in the previous k+1 queries
to i , i separated from Di (u) only types bi such that bi > di), then the (k +2)-th
query is either ineffective or it is only-maximum effective;

• if Di (u) contains at least three types and it is suffix (i.e., in the previous k + 1
queries to i , i separated from the domain only types bi such that bi < ai), then
the (k +2)-th query is either ineffective or it is only-minimum effective.

– every u ∈ P corresponding to the q-th query to i with q ≥ k +3 are ineffective.
Considering the first query along a path P , Lemma 2 restricts the (k+2)-th query

on P as in the first bullet point (the three cases corresponding to sandwich, top,
and bottom separations, respectively). Moreover, given these properties, the subse-
quent queries must be ineffective (as requested by the second condition of almost
k-limited mechanisms). Thus, Lemma 2 can be restated as follows.

Corollary 1. If a mechanism M that implements (f , p) with implementation tree T

is k-step OSP, then T is almost k-limited.

We further limit the effectiveness of the (k+2)-th and following queries: if a query
is ineffective for a pair of separated types then it is strongly ineffective for those types.

Lemma 3 (Strong Ineffectiveness upon Separation). If a mechanism M that im-
plements (f , p) with implementation tree T is k-step OSP, then for every i , and ev-
ery path P of T , every node u ∈ P such that i (u) = i , if there are t , t ′ ∈ Di (u) such
that for every x−i available at u we have that fi (t ,x−i) = fi (t ′,x−i), and t , t ′ are sepa-
rated at u, then for every x−i ,x′−i available at u we have that fi (t ,x−i) = fi (t ′,x′−i) and
pi (t ,x−i) = pi (t ′,x′−i).

Lemma 3 states that if in path P of T the (k +2)-th query to i is ineffective, then it
must be strongly ineffective. Similarly, if in some path P of T the (k + 2)-th query
to i is only-maximum (only-minimum, resp.) effective, and the types of i different
from the maximum (minimum, resp.) are separated at the (k + 2)-th or successive
query, then the (k + 2)-th query is strongly only-maximum (only-minimum, resp.)
effective. In order to stress that in T this property must be satisfied, we say that the
corresponding mechanism is strongly almost k-limited. Note that the (k+2)-th query
of a strongly almost k-limited mechanism can still be extremal if this is the last query.

Lemmas 2 and 3 imply that a k-step OSP mechanism must be strongly almost
k-limited. However, in such a mechanism we are still allowed to query agent i more
than k +2 times, or to have a (k +2)-th query that is neither a revelation nor an ex-
tremal query. However we can show that it is possible to transform T in order to
achieve the desired reduction to a k-limited mechanism. In particular, we will see
that we can always guarantee that the (k+2)-th is a revelation query. Theorem 3 then
follows from the repeated application of these transformations, since for each path,
agent i is either queried at most k + 1 times, or she is queried k + 2 times, the last
being a revelation or an extremal query.

4 Cycle-Monotonicity for k-step OSP

For each i , for each path P from the root of T to the node u corresponding to the
(k +2)-th query to i , if it exists, or to a leaf otherwise, we partition the domain Di of

An Algorithmic Theory of Simplicity in Mechanism Design 13

types of i in classes D1
i ,P , . . . ,Dℓ

i ,P , where ℓ= min{k+2, q+1}, q denoting the number

of queries to i along this path; D j
i ,P , for j < ℓ contains all types of i available at the

j -th query at i , but not at the (j +1)-th query to i along P , and Dℓ
i ,P = Di \

⋃ℓ−1
j=1 D j

i ,P .

Suppose that, along the path P , i is queried at least k +2 times, and let u be the

node corresponding to the (k +2)-th query at i . Let Dk+2,E
i ,P be a maximal set of types

of i available at u that receive the same outcome for each possible fixed profile of

the remaining agents available at u, i.e., Dk+2,E
i ,P ⊆ Dk+2

i ,P such that for every t , t ′ ∈
Dk+2,E

i ,P and every x−i available at u we have that fi (t ,x−i) = f (t ′,x−i), and for every

t ∈ Dk+2,E
i ,P and every t ′′ ∈ Dk+2,E

i ,P = Dk+2
i ,P \ Dk+2,E

i ,P there is y−i available at u for which

fi (t ,y−i) ̸= fi (t ′′,y−i). Note that if the (k+2)-th query is (strongly) ineffective, we have

that Dk+2,E
i ,P = Dk+2

i ,P . Moreover, if the (k +2)-th query is (strongly) only-maximum or

only-minimum effective, then Dk+2,E
i ,P contains only the one extremal type for which

the (k +2)-th query is effective.
Given this partition of the type domain of agent i , we then partition the profiles

in equivalence classes as follows: for each agent i , for each path P from the root of T

to a node u corresponding to the (k+2)-th query to i , if it exists, or to a leaf otherwise,

we define the equivalence classes Λ j
i ,P (b) = {(xi ,x−i) | xi ∈ D j

i ,P , x−i available at u,
fi (xi ,x−i) = b}, for b ∈ {0,1} and j = q + 1 if in P agent i is queried at most q ≤ k +
1 times, and j ∈ {(k + 2,E), (k + 2,E)} otherwise. Let Λi be the set that contains all
the equivalence classes defined for agent i . Moreover, we abuse notation and we set

fi (Λ j
i ,P (0)) = 0 and fi (Λ j

i ,P (1)) = 1.

Definition 4. (k-step OSP-graph) Let f be a social choice function and T be an im-
plementation tree. We define for every agent i , the k-step OSP-graph Ok

i , f ,T with Λi

as the set of vertices, and an edge e between Λ,Λ′ ∈ Λi exists if there are x ∈ Λ and
x′ ∈ Λ′ such that x and x′ have been separated in T by i . Moreover, we set w(e) =
minxi |∃x−i : (xi ,x−i)∈Λ xi (fi (Λ′)− fi (Λ)).

We say that the k-step OSP cycle monotonicity (k-step OSP CMON) property
holds if, for all i , the graph Ok

i , f ,T does not have negative weight cycles.

Theorem 4. A mechanism M with implementation tree T is k-step OSP for a social
function f on finite domains if and only if it is k-limited and k-step OSP CMON holds.

5 Algorithmic Characterization

We start by recalling the characterization for k =∞ [13]: there is an OSP mechanism
implementing f if and only f is two-way greedy implementable. Let us define this no-
tion. Agent i is revealable at node u under social choice function f if either fi (x) = 1
for every x such that xi ∈ Di (u) and xi < maxDi (u), and x−i is compatible with u,
or fi (x) = 0 for every x such that xi ∈ Di (u) and xi > minDi (u), and x−i is compati-
ble with u. Algorithm f : ×n

i=1 Di → S is two-way greedy implementable if it can be
implemented by a round-table mechanism with implementation tree T such that:

14 D. Ferraioli and C. Ventre

– at each node u the agent i = i (u) separates her domain Di (u) in two ordered sub-
sets Li (u) and Ri (u), i.e., maxLi (u) < minRi (u), such that at least one of the two is
a singleton, i.e., it contains a single type, being the minimum in Di (u) (if Li (u) is a
singleton) or the maximum (if Ri (u) is a singleton). If Li (u) is a singleton, then the
agent i receives outcome 1 in every profile compatible with Li (u)×D−i (u), and we
say that i interacts with the mechanism in a greedy fashion. If Ri (u) is a singleton,
then i receives outcome 0 in every profile compatible with Ri (u)×D−i (u), and we
say that i interacts with the mechanism in a reverse greedy fashion;

– each agent i is not allowed to interleave interaction in a greedy fashion with in-
teraction in a reverse greedy fashion until she is revealable. Specifically, agent i at
node u is either revealable, or can interact with the mechanism in a greedy fash-
ion if and only if she i interacted with the mechanism in a greedy fashion at every
node u′ along the path between the root of T and u such that i = i (u′).

While the definition of two-way greedy implementable mechanism appears to
be quite involved, it establishes a very strong relationship between two-way greedy
implementable algorithms and greedy algorithms [13]. Essentially every greedy al-
gorithm and every reverse greedy algorithm (a.k.a., deferred-acceptance algorithm)
is two-way greedy, and hence can be turned in an OSP mechanism. This continues
to hold if the algorithm is allowed to greedily insert into the solutions some compo-
nents (i.e., interact greedily with some agents) and reverse greedily remove from the
solutions other components (i.e., interact reverse greedily with other agents). We will
finally observe that whenever an agent is revealable at some node u, we can ask the
agent to reveal her type without affecting the OSPness of the mechanism.

We can prove there is a useful relation between negative cycles in the k-step OSP-
graph, and negative cycles in the ∞-step OSP-graph: there is no negative cycle in
Ok

i , f ,T if and only if there is no negative cycle in O∞
i , f ,T . However, two-way greedy

implementation of f assumes that the implementation tree T is binary and makes
only extremal queries. Clearly, each implementation tree T ′ for which there are no
negative cycles in O∞

i , f ,T ′ , regardless of the kind of queries that are performed in T ′,
can be transformed in an implementation tree T with binary extremal queries that
still has no negative cycle through a serialization procedure (see [13, Observation 3
and Theorem 4]). Similarly, a binary implementation tree T with extremal queries
and no negative cycle in O∞

i , f ,T can be transformed in an implementation tree T ′

with generic queries but still no negative cycle through a simple compression proce-
dure: every two consecutive nodes u and u′ such that i = i (u) = i (u′) can be merged
in a single node U with outgoing edges leading to v1, . . . , vx , and to v ′

1, . . . , v ′
y , where

v1, . . . , vx are the children of u different from u′, and v ′
1, . . . , v ′

y are the children of
u′. However, these serialization/compression operations will change the number of
queries done to each agent. While this does not matter for ∞-step OSPness, it turns
out to be very relevant for k-step OSPness. Hence, we will introduce a way to keep
the number of queries to a given agent unchanged after the operations of serial-
ization/compression. Specifically, we say that a binary implementation tree T with
extremal queries is k-limitable if and only if the implementation tree T ′ achieved
through the compression procedure described above is k-limited. (For convenience

An Algorithmic Theory of Simplicity in Mechanism Design 15

we are abusing a bit our terminology by calling k-limited the implementation tree
T ′ rather than the mechanism M using T ′.)

Theorem 5. There is a k-step OSP mechanism implementing f iff f is two-way greedy
implementable and the corresponding implementation tree T is k-limitable.

Essentially, Theorem 5 states that the OSP characterization in term of greedy al-
gorithms continues to hold even for k-step OSPness. However, we here further re-
quire a constraint to be satisfied, i.e., that the implementation tree is k-limited (in
its compressed version) or k-limitable (in the serialized version). The effect of this
limitation is very heavy in the case of SOSP mechanisms.

6 Approximation Guarantee of k-step OSP Mechanisms

In this section we apply our characterization to quantify the restriction that k-step
OSP imposes on the quality of the algorithmic solution that can be implemented.
We will focus on maximization problems; agents’ types will thus be a non-negative
valuation (i.e., a non-positive cost) for each algorithmic allocation received.

To introduce our questions of interest, we start by discussing single-item auc-
tions: n agents have a valuation vi ∈ Di for the item, and we are willing to sell the
item to the agent with the highest valuation. Note that in order to fully define the
social function f for this problem, we need to specify how ties are broken. We will
assume that ties are broken in favor of the agent with the smallest index. We will also
assume for simplicity that every agent i has a domain Di = D . The ascending price
auction discussed in Example 1 is an OSP mechanism that solves this problem op-
timally. We can rephrase it in terms of two-way greedy implementation as follows:
mark all agents as available; for t from the smallest type to the second largest type
in D or until there is only one available agent, ask each available agent i in order
of their index whether her type is t , and in case of positive answer, mark the agent
as unavailable; assign the item to the agent with smallest index among the available
ones. Actually, this is not the unique OSP auction implementing the social function
of interest (e.g., we can query agents from the largest to the second smallest type and
allocate the item upon a positive answer).

Our question is then: can we implement single-item auctions with a k-step OSP
mechanism? If not, how large can be the price of limited foresight? To answer these
questions, observe that the English auction described above queries agents |D| −
1 times, the last query being a revelation strongly only-minimum effective query.
Hence, this mechanism is k-limitable, and, by Theorem 5, k-step OSP for k ≥ |D|−3.

However, the mechanism fails to be (|D|−4)-limited. Indeed, after the (|D|−3)-th
query to agent i , her domain contains the three largest types, and for each action of
other agents compatible with the (|D|−3)-th query, the outcome of this agent should
be the same when agent i has the smallest and the second smallest type. But the
ascending price auction described above does not provide such a guarantee. Can
there be another k-step OSP mechanism implementing the social choice function f ?
Or some social function f ′ differing from f only in the tie-breaking rule (and hence,
still returning an allocation that maximizes the social welfare)? We next address these
questions in a more general setting than single-item auctions.

16 D. Ferraioli and C. Ventre

p-systems. We will now focus on the class of problems that satisfy the downward
closed property. In these problems we are given a set E of elements, a weight w(e) ∈R
for each ei nE , and a set F , containing subsets S ⊆ E , named feasible solutions, that
enjoy the following property: if S ∈ F , then T ∈ F for every T ⊆ S, and we aim to
select the feasible solution of maximum total weight, i.e. S∗ = argmaxS∈F

∑
e∈S w(e).

Specifically, we focus on p-systems: these are special problems for which it is
known that the greedy algorithm, that processes elements e in decreasing order of
their weight, and includes them in the current solution S unless S ∪ {e} ∉ F , and
the reverse greedy algorithm, that processes elements e in increasing order of their
weight, and remove any solution S containing e from the set O of maximal feasible
solutions unless this empties O , have approximation p. It is easy to check that the
problem of social-welfare single-item auction is an example of 1-system (a.k.a., ma-
troid). (For a formal definition of p-systems, we refer the reader to [19].) This, in turn,
means that for all these problems, it is possible to design an OSP mechanism that is
able to return a p-approximate feasible solution for the problem [13].

We defer to the full version the proof that it is always possible to implement the
reverse greedy algorithm defined above as a k-limitable two-way greedy algorithm

when k ≥
⌈ |D|

2

⌉
−2, and thus, by Theorem 5, that a k-step OSP algorithm exists that

returns a p-approximate solution for every p-system. We also show that, if no con-
straint is given on the values in D , then no k-step OSP mechanism exists that is able

to return a bounded approximation of the optimal solution, whenever k <
⌈ |D|

2

⌉
−2.

Theorem 6. There is a two-way greedy algorithm, which (i) is k-limitable for k ≥⌈ |D|
2

⌉
−2; and, (ii) returns a p-approximation of the feasible set of maximum weight

for every p-system. Conversely, for every ρ > 0, every d = |D| ≥ 5, and every k < d
2 −2

(k < d −3, resp.), there is a p-system (E ,F) such that no k-limitable two-way greedy
(greedy, resp.) algorithm returns a feasible solution of total weight not larger than a 1

ρ

fraction of the total weight of the optimal feasible solution.

7 Conclusions

In this work, we have studied the algorithmic robustness of OSP to agents that are not
able to perform contingent reasoning and think about their future actions. Specifi-
cally, we introduce a novel notion, termed k-step OSP, that smoothens the notions
of OSP (where absence of contingent reasoning is the only cognitive limitation) and
SOSP (where in addition agents are unable to think about any of their future actions)
by maintaining the assumption that agents are not able to think contingently but
allowing them a foresight of k self moves ahead. We provide an algorithmic charac-
terization of these mechanisms for single-dimensional agents and binary outcomes,
via the introduction of a new cycle monotonicity toolkit. We apply our characteriza-
tion to downward-closed maximization problems and prove that the performance of
OSP can deteriorate when k is small in comparison to the type space of the agents.
En route, we prove that reverse greedy algorithms are more robust than greedy algo-
rithms to this worsening of the performances.

An Algorithmic Theory of Simplicity in Mechanism Design 17

A natural open problems left by this work is to understand the extent to which the
findings above hold for non-binary allocation problems, and quantify the limitations
of limited planning horizons for other optimization problems, such as scheduling
related machines that is now fully understood for OSP [18]. We highlight that our
framework can also be adopted for non-binary allocation problems to prove that
queries from the (k + 2)-th onward must be limited, but this does not necessarily
lead to mechanisms with only k + 2 queries since the Taxation Principle for k-step
OSP would be less clean as the relative weight of types and outcomes would matter.

Acknowledgements. Diodato Ferraioli is supported by the PNRR project FAIR – Fu-
ture AI Research (PE00000013) under the NRRP MUR program funded by NextGen-
erationEU. Carmine Ventre acknowledges funding from the UKRI Trustworthy Au-
tonomous Systems Hub (EP/V00784X/1).

References

1. Archbold, T., De Keijzer, B., Ventre, C.: Non-obvious manipulability for single-parameter
agents and bilateral trade. In: Proceedings of the 22nd International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS 2023) (2023)

2. Archbold, T., De Keijzer, B., Ventre, C.: Non-obvious manipulability in extensive-form
mechanisms: the revelation principle for single-parameter agents. In: Proceedings of the
32nd International Joint Conference on Artificial Intelligence (IJCAI 2023) (2023)

3. Archbold, T., De Keijzer, B., Ventre, C.: Willy wonka mechanisms. In: Proceedings of the
23rd International Conference on Autonomous Agents and Multiagent Systems (AAMAS
2024) (2024)

4. Arribillaga, R., Massó, J., Neme, A.: On obvious strategy-proofness and single-peakedness.
JET (2020)

5. Arribillaga, R.P., Massó, J., Neme, A.: All sequential allotment rules are obviously strategy-
proof. Theoretical Economics 18(3), 1023–1061 (2023)

6. Ashlagi, I., Gonczarowski, Y.A.: Stable matching mechanisms are not obviously strategy-
proof. Journal of Economic Theory 177, 405–425 (2018)

7. Ausubel, L.M.: An efficient ascending-bid auction for multiple objects. American Eco-
nomic Review 94(5), 1452–1475 (2004)

8. Bade, S., Gonczarowski, Y.A.: Gibbard-satterthwaite success stories and obvious strate-
gyproofness. In: Proceedings of the 2017 ACM Conference on Economics and Computa-
tion. p. 565. EC ’17, Association for Computing Machinery, New York, NY, USA (2017)

9. Ferraioli, D., Meier, A., Penna, P., Ventre, C.: Automated optimal OSP mechanisms for set
systems - the case of small domains. In: Web and Internet Economics - 15th International
Conference, WINE 2019, New York, NY, USA, December 10-12, 2019, Proceedings. pp. 171–
185 (2019)

10. Ferraioli, D., Meier, A., Penna, P., Ventre, C.: Obviously strategyproof mechanisms for ma-
chine scheduling. In: Bender, M.A., Svensson, O., Herman, G. (eds.) 27th Annual European
Symposium on Algorithms, ESA 2019. vol. 144, pp. 46:1–46:15 (2019)

11. Ferraioli, D., Meier, A., Penna, P., Ventre, C.: Obviously strategyproof mechanisms for
machine scheduling. In: 27th Annual European Symposium on Algorithms, ESA 2019,
September 9-11, 2019, Munich/Garching, Germany. pp. 46:1–46:15 (2019)

12. Ferraioli, D., Meier, A., Penna, P., Ventre, C.: New constructions of obviously strategyproof
mechanisms. Math. Oper. Res. 48(1), 332–362 (2023)

18 D. Ferraioli and C. Ventre

13. Ferraioli, D., Penna, P., Ventre, C.: Two-way greedy: Algorithms for imperfect rationality.
In: Web and Internet Economics - 17th International Conference, WINE 2021, Potsdam,
Germany, December 14-17, 2021, Proceedings. Lecture Notes in Computer Science, vol.
13112, pp. 3–21. Springer (2021)

14. Ferraioli, D., Ventre, C.: Probabilistic verification for obviously strategyproof mechanisms.
In: Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelli-
gence, IJCAI-18. pp. 240–246 (2018)

15. Ferraioli, D., Ventre, C.: Approximation guarantee of OSP mechanisms: The case of ma-
chine scheduling and facility location. Algorithmica 83(2), 695–725 (2021)

16. Ferraioli, D., Ventre, C.: Obvious strategyproofness, bounded rationality and approxima-
tion. Theory Comput. Syst. 66(3), 696–720 (2022)

17. Ferraioli, D., Ventre, C.: Explicit payments for obviously strategyproof mechanisms. In:
Proceedings of the 2023 International Conference on Autonomous Agents and Multiagent
Systems, AAMAS 2023, London, United Kingdom, 29 May 2023 - 2 June 2023. pp. 21257–
21336. ACM (2023)

18. Ferraioli, D., Ventre, C.: On the connection between greedy algorithms and imperfect ra-
tionality. In: Leyton-Brown, K., Hartline, J.D., Samuelson, L. (eds.) Proceedings of the 24th
ACM Conference on Economics and Computation, EC 2023, London, United Kingdom,
July 9-12, 2023. pp. 657–677. ACM (2023)

19. Hausmann, D., Korte, B., Jenkyns, T.A.: Worst case analysis of greedy type algorithms for
independence systems. Combinatorial Optimization pp. 120–131 (1980)

20. Kagel, J.H., Harstad, R.M., Levin, D.: Information impact and allocation rules in auctions
with affiliated private values: A laboratory study. Econometrica 55(6), 1275–1304 (1987)

21. de Keijzer, B., Kyropoulou, M., Ventre, C.: Obviously strategyproof single-minded combi-
natorial auctions. In: ICALP. pp. 71:1–71:17 (2020)

22. Kyropoulou, M., Ventre, C.: Obviously strategyproof mechanisms without money for
scheduling. In: Proceedings of the 18th International Conference on Autonomous Agents
and MultiAgent Systems. pp. 1574–1581 (2019)

23. Li, S.: Obviously strategy-proof mechanisms. American Economic Review 107(11), 3257–
87 (November 2017)

24. Mackenzie, A.: A revelation principle for obviously strategy-proof implementation. Games
and Economic Behavior 124, 512–533 (2020)

25. Mandal, P., Roy, S.: On obviously strategy-proof implementation of fixed priority top trad-
ing cycles with outside options. Economics Letters 211, 110239 (2022)

26. Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V. (eds.): Algorithmic Game Theory (2017)
27. Pycia, M., Troyan, P.: Obvious dominance and random priority. In: Proceedings of the 2019

ACM Conference on Economics and Computation. p. 1. EC ’19, Association for Computing
Machinery, New York, NY, USA (2019)

28. Pycia, M., Troyan, P.: A theory of simplicity in games and mechanism design. Economet-
rica 91(4), 1495–1526 (2023)

29. Ron, S.: Impossibilities for obviously strategy-proof mechanisms. In: Proceedings of ACM-
SIAM Symposium on Discrete Algorithms (SODA) (2024)

30. Savage, L.: Foundations of Statistics. John Wiley and Sons (1954)
31. Thomas, C.: Classification of priorities such that deferred acceptance is osp imple-

mentable. In: EC. pp. 860–860 (2021)
32. Troyan, P.: Obviously strategy-proof implementation of top trading cycles. International

Economic Review 60(3), 1249–1261 (2019)
33. Troyan, P., Morrill, T.: Obvious manipulations. Journal of Economic Theory 185, 104970

(2020)

