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Abstract 

Around half of oral bacteria have yet to be cultured, and their role in disease 

is therefore unknown. It is hypothesised that bacteria in biofilms have become 

dependent on growing in multi-species communities. TM7 phylum has no cultured 

representatives and some oral TM7 phylotypes have been associated with oral 

diseases such as periodontitis. The aims of this study were therefore to evaluate 

the ability of two model culture systems: Cooked Meat Medium and the Calgary 

Biofilm Device (CBD), to support the growth of mixed oral bacterial communities 

including uncultured bacteria, and to attempt to culture representatives of the TM7 

division.  

The Cooked Meat Medium was used to establish a mixed bacterial community 

from 3 endodontic samples and their composition was analysed by Sanger 

sequencing and 454 pyrosequencing. A diverse bacterial community closely related 

to the original endodontic samples was maintained up to 480 days and included 

some uncultured bacteria present in the original samples. 

A mixed oral biofilm was established on the CBD from saliva. The effect of the 

presence of mucin and glucose in the growth media on community composition 

was evaluated, but no significant differences were seen. The effect of using 

propidium monoazide to remove extracellular DNA was assessed and was found to 

significantly affect the perceived composition of the biofilms. Uncultured taxa 

detected in culture included representatives of deep branches of Bacteroidetes and 

Clostridiales, and TM7 and SR1 phyla. 

TM7 members were detected in both models with specific PCR primers, but 

their proportion never exceeded 1 %. In an attempt to isolate TM7 division 

representatives a saliva microcosm was grown on agar. TM7 representatives were 

detected by colony hybridization and specific PCR and subcultured, producing 

enrichment. Two simple co-cultures of TM7 HOT352 / HOT353 with Slackia exigua 

or Atopobium parvulum were obtained, but were not maintained.  
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 Chapter 1: Introduction 

1.1 Oral microbiome 

The mouths of animals are heavily colonised by a diverse array of 

microorganisms. The oral microbiota is characteristic to the host species and 

specific to individuals within each species, as highlighted by comparison with the 

canine oral microbiota (Dewhirst, Klein et al. 2012). The factors that determine the 

specificity of oral microbiomes remain to be fully described but antimicrobial 

peptides, such as defensins, appear to be important (Linzmeier and Ganz 2005, 

Gomes Pde and Fernandes 2010). The human oral microbiome is also highly 

variable between individuals (Ledder, Gilbert et al. 2006, Lazarevic, Whiteson et al. 

2010, Hsu, Power et al. 2012). 

The infant microbiota may be influenced by the delivery mode. Within the 

first 24 hours of life, newborns were described as presenting undifferentiated 

microbial communities across skin, oral, nasopharyngeal, and gut habitats 

regardless of delivery mode. Vaginally delivered infants would harbour microbiota 

resembling their mothers' vaginal communities, dominated by Lactobacillus, 

Prevotella, or Sneathia species, in all body niches, while C-section delivered infants 

acquire general skin-related bacteria, dominated by Staphylococcus, 

Corynebacterium, and Propionibacterium species (Dominguez-Bello, Costello et al. 

2010). It was also shown that vaginally delivered infants present a significantly 

higher prevalence of health-related oral bacteria, such as Streptococcus salivarius 
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and Lactobacillus species, in the first year of life (Nelun Barfod, Magnusson et al. 

2012). The longer-term effects are still to be investigated. 

Compared to other human-associated microbiomes, the oral microbiota is 

habitat and niche specific; for example very few oral bacterial species are found in 

the colon, and vice versa (Rajilic-Stojanovic, Smidt et al. 2007, Maukonen, Matto et 

al. 2008). 

The oral microbiota includes a wide range of microorganisms including 

bacteria, archaea, fungi, viruses and protozoa. Bacteria are the most numerous, 

with 108 cells per ml of saliva (Richardson and Jones 1958), but other members also 

play an important role in metabolic pathways and interaction with the host. 

1.1.1 Archaea 

Several taxa of Archaea have been found in the human gastro-intestinal tract 

(Karlin, Jones et al. 1982), mouth (Belay, Johnson et al. 1988) and vagina (Belay, 

Mukhopadhyay et al. 1990). All of the Archaea detected by culture and culture-

independent methods in the human oral cavity belong to the division 

Euryarchaeota, mostly Methanobrevibacter, but also representatives of the genera 

Methanobacterium, Methanosarcina and Thermoplasmatales (Lepp, Brinig et al. 

2004, Li, Liu et al. 2009, Matarazzo, Ribeiro et al. 2011). They are thought to 

associate with bacteria, in a cross-feeding manner, for the degradation of volatile 

fatty acids such as acetate, propionate and butyrate, producing methane. The 

thermo-dynamic constraints render this syntrophic behaviour obligatory, with 

direct contact between microorganisms required for interspecies hydrogen transfer 

(Schink 1997, Ishii, Kosaka et al. 2006, Thauer, Kaster et al. 2008). In periodontitis 
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and endodontic infections, methanogenic Archaea could play the role of a terminal 

degrader, lowering the concentration of H2 and favouring fermenting bacteria 

(Matarazzo, Ribeiro et al. 2011, Matarazzo, Ribeiro et al. 2012). 

One species in particular, Methanobrevibacter oralis, has been shown to be 

associated with periodontal disease. It was detected in only a subset of 

periodontitis patients (36 %), but its proportion increased with severity of 

periodontitis up to 18 % of prokaryotic load (Lepp, Brinig et al. 2004). It had been 

thought that M. oralis was only found in periodontal pockets and was not present 

at healthy sites (Yamabe, Maeda et al. 2008, Li, Liu et al. 2009), but a more recent 

study conducted on patients with generalized aggressive periodontitis and healthy 

volunteers found that M. oralis was found in all studied samples, although the 

numbers of copies of the 16S rRNA gene were significantly different between 

periodontitis sites (11.2x104) and healthy gingival crevices (0.6x104) (Matarazzo, 

Ribeiro et al. 2011). A positive correlation has also been demonstrated between the 

numbers of Archaea detected in periodontal pockets and those of P. gingivalis and 

T. forsythia (Matarazzo, Ribeiro et al. 2012). Archaea (M. oralis, Methanococcus 

maripaludis, Methanoplanus endosymbiosus, and Methanospirillum hungatei) were 

also detected in both symptomatic and asymptomatic endodontic infections 

(Vianna, Conrads et al. 2006, Vickerman, Brossard et al. 2007, Jiang, Xia et al. 2009).  

Further evidence supporting a possible pathogenic role for Archaea is that 

they are recognised by the human immune system. IgG antibodies reacting 

specifically with M. oralis have been found in subjects with periodontitis (Yamabe, 

Maeda et al. 2008) and archaeosomes, complexes of archaeal membrane lipids, 
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demonstrate a potent adjuvant activity (Cavicchioli, Curmi et al. 2003, Eckburg, 

Lepp et al. 2003). It is possible, however, that the anaerobic conditions of the 

periodontal pocket or root canal environment simply promote the growth of 

methanotrophic archaea. Whether Archaea are truly pathogenic remains to be 

determined (Cavicchioli, Curmi et al. 2003).  

Archaea are also able to transform heavy metals or metalloids into volatile 

methylated derivatives, which are more toxic than the original compounds, and 

intestinal Archaea have been shown to do this at higher rates than bacteria (Meyer, 

Michalke et al. 2008, Michalke, Schmidt et al. 2008). Such heavy metals are present 

in cosmetics and pharmaceutical products. It is unclear if oral Archaea exhibit this 

activity in vivo, but it could potentially represent a significant risk with crowns, 

bridges, amalgams and composites. 

The presence of Archaea has been historically underestimated because of 

ineffective DNA extraction methods and the cross-reactivity of archaea-specific PCR 

primers with human DNA. Enzymatic treatments for the permeabilization of 

archaeal cell walls have been compared and it has been shown that only 

recombinant pseudomurein endopeptidase treatment allowed the detection of 

Methanobrevibacter species, and that they were not detected when standard 

lysozyme or proteinase K protocols were used (Kubota, Imachi et al. 2008). 

Moreover, in mixed samples where the proportion of archaeal template DNA was 

low, archaea-specific PCR primers, originally designed for environmental studies, 

were found to cross-react with human DNA, which is present in high amounts in all 

oral samples (Horz and Conrads 2011). For this reason, the use of genes specifically 
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found in archaea, such as mcrA, encoding methyl coenzyme M reductase, a 

ubiquitous enzyme in the methane generation pathway, may be preferable, for 

specific detection of members of this domain (Vianna, Conrads et al. 2006).  

Archaea are resistant to most antibiotics targeting RNA synthesis such 

asrifampicin and ofloxacin, and, because they lack peptidoglycan, those inhibiting 

the synthesis or cross-linkage of the peptide subunit of murein, such as penicillin, 

cephalosporin, glycopeptides, and aminoglycosides, but are susceptible to 

antibiotics that inhibit the lipid cycle, such as bacitracin, chloramphenicol, lasalocid, 

and monesin (Dridi, Fardeau et al. 2011). The inclusion of members of the first 

group of antimicrobials in appropriate culture media may provide a method for 

enrichment of archaea.  

1.1.2 Protozoa 

Entamoeba gingivalis and Trichomonas tenax are saprophytic protozoa that 

have been found in the oral cavity. They appear to be associated with poor oral 

hygiene (Bergquist 2009) and periodontitis. In a study using real time PCR to detect 

the presence of E. gingivalis in periodontitis patients and periodontally healthy 

volunteers, 18 out of 26 periodontal pockets were positive for the organism, whilst 

they were not detected in samples from healthy gingival crevices, even in patients 

with periodontitis (Trim, Skinner et al. 2011). Bacteria are taken up by protozoa and 

used for nutrition but some are able to resist digestion (Greub and Raoult 2004). 

Intact bacterial cells have been observed in the vacuoles of E. histolytica and 

vacuoles and cytoplasma of E. dispar (Pimenta, Diamond et al. 2002). This may 
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enable them to "hide" inside the eukaryote and thus evade the immune system and 

the effects of antimicrobial treatment (Trim, Skinner et al. 2011).  

1.1.3 Oral viruses 

1.1.3.1 Pathogenic viruses  

Herpes simplex virus (HSV) infections are very common in humans and cause 

a variety of clinical manifestations, including oral and genital lesions, ocular 

infections, encephalitis and neonatal disease. One of the main features of the HSV 

infection is the capacity of the virus to remain dormant for life in host neurones, 

with no clinical symptoms. In oral infections, HSV can be reactivated following a 

stimulation of the peripheral nerves, such as dental or oral surgery, chemotherapy, 

but also the common cold and even stress (Scott, Coulter et al. 1997). The primary 

HSV infection can lead to gingivostomatitis, affecting the tongue, lips, gingival and 

buccal mucosa and the hard and soft palate, while reactivation of the virus results 

in herpes labialis, or cold sores (Arduino and Porter 2008). 

Other viruses of the herpes family routinely detected in the oral cavity are 

Epstein-Barr virus (EBV) and Human Cytomegalovirus (HCMV). Infecting B-

lymphocytes and epithelial cells, EBV causes infectious mononucleosis in adults. 

HCMV infections are usually benign in healthy individuals, but may present a risk in 

immunocompromised people (for instance HIV-positive patients). Both viruses are 

often detected in saliva, gingival crevices and periodontal lesions, but do not seem 

to be associated with periodontitis per se or endodontic treatment failures 

(Dawson, Wang et al. 2009, Sahin, Saygun et al. 2009, Guilherme, Ferreira et al. 

2011).  
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Human papillloma virus (HPV) causes mostly benign infections in the oral 

cavity, such as papillomas, condylomas and focal epithelial hyperplasia 

(Kumaraswamy and Vidhya 2011). HPV has, however, also been associated with 

malignancy, including cervical (Schiffman, Castle et al. 2007), and with head and 

neck squamous cell carcinomas (HNSCCs) (Chaturvedi 2012). HPV was detected in 

35.6 % of oropharyngeal cancers, 23.5 % of oral cavity cancers and 24 % of laryngeal 

cancers (Kreimer, Clifford et al. 2005). Other studies have shown the integration of 

HPV into the human genome in HNSCC cancerous cells, high viral copy numbers and 

strong expression of HPV oncogenes in tumours (Chaturvedi 2012), supporting a 

possible causal association between HPV and HNSCC. This association was 

confirmed by several case studies, even after correction for other HNSCC risk 

factors. Molecular studies need to be undertaken to clarify the role of HPV in other 

HNSCCs, such as oral cavity and laryngeal cancers (Chaturvedi 2012). 

The hepatitis viruses are a heterogeneous family of viruses (HAV to HEV and 

HGV), causing hepatitis or inflammation of the liver. HBV, a double stranded DNA 

virus, and HCV, a positive single strand RNA virus, are the most common and 

endemic worldwide. Both viruses are present in most body fluids of the infected 

patients, including blood and serum and saliva, which may constitute an infection 

risk during dental procedures, even in symptom-free patients (Ferreiro, Dios et al. 

2005, Heiberg, Hoegh et al. 2010). Viral-induced liver disease can also cause oral 

bleeding, petechiae, and ecchymoses, and high levels of bilirubin can cause a 

jaundice of the oral mucosa (Miller 2002). Extrahepatic manifestations of HBV 

include skin rash, arthritis, arthralgia, glomerulonephritis, polyarteritis nodosa, and 
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papular acrodermatitis (Pyrsopoulos and Reddy 2001), while oral diseases 

associated with HCV include sialadenitis, salivary glands lymphoma and lichen 

planus (Carrozzo 2008, Carrozzo 2008).  

Human immunodeficiency virus (HIV) is a lentivirus that causes acquired 

immunodeficiency syndrome (AIDS). More than 34 million people worldwide live 

with HIV infection. Even if it proves possible to reduce the number of new 

infections, there will remain a substantial number of infected individuals in the 

community as highly active antiretroviral therapy (HAART) increases life expectancy 

(UNAIDS, available at http://www.unaids.org/en/dataanalysis/datatools/aidsinfo). 

The main oral manifestations of HIV are related to the immunocompromised 

state of the infected individuals, resulting from opportunistic infections due to 

other viruses discussed in this chapter and Candida albicans and other fungal 

infections (Johnson 2010, Mendes-Correa and Nunez 2010, Thompson, Patel et al. 

2010, Vitali 2011). Other oral manifestations include linear gingival erythema, which 

is a marginal gingivitis with increased numbers of Candida species, and acute 

necrotizing ulcerative gingivitis (ANUG), which can progress to necrotizing 

stomatitis (Johnson 2010). The effect of HIV infection on periodontitis remains 

controversial, as studies on different cohorts give contradictory results (Barr, Lopez 

et al. 1992, Robinson, Boulter et al. 2000, Ranganathan, Magesh et al. 2007, 

Vernon, Demko et al. 2009).  

1.1.3.2 Bacteriophages 

There are only a few studies investigating the human residential virome, 

which is probably dominated by phages, with the majority of viral diversity 
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uncharacterized. There have been few studies of the range of non-pathogenic 

viruses found in the oral cavity (Pride, Salzman et al. 2012). Pride et al. analysed the 

viromes (double stranded DNA viruses only) of 5 periodontally healthy volunteers 

at three time points over 60 or 90 days periods by 454 pyrosequencing. After 

filtering the samples, they estimated the viral concentration by epifluorescence 

microscopy after SYBR-gold staining and found it to be 108 particles per mL of saliva. 

Considering that some viral particles adherent to cells or forming aggregates did 

not pass the filtering, the numbers could be significantly higher. The vast majority 

(99 to 100 %) of contigs with homology to viral sequences were identified as 

belonging to bacteriophages (Pride, Salzman et al. 2012).  

1.1.4 Fungi 

Candida is the most frequently isolated genus of fungi in the human mouth 

(Aas, Barbuto et al. 2007, Urzua, Hermosilla et al. 2008), as a large proportion of 

healthy adults are carriers. The prevalence of Candida carriage was found to range 

from 2 to 71.3 % in 32 analysed studies, with a weighted mean of 25.5 % (Scully, el-

Kabir et al. 1994). Candida albicans is the species found most frequently in humans, 

both in health and disease, but the importance of other Candida species is being 

increasingly recognised, as non-albicans Candida (NAC) species, such as C. 

parapsilosis, C. tropicalis, C. krusei and C. glabrata, cause 35-65% of all 

candidaemias (Krcmery and Barnes 2002). Candida species are usually considered 

commensal in adults, and a candidosis in an otherwise healthy individual may be a 

marker of undiagonosed systemic disease. Oral Candida infections can be classified 

in four main categories. Pseudomembranous candidosis, or thrush, takes the form 

of creamy-white plaques on the surface of the labial and buccal mucosa, which can 
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be easily rubbed off. Predisposing factors in adults include diabetes mellitus, AIDS, 

leukaemia or other conditions impairing immune response, and the use of steroid 

aerosol inhalers and broad range antibiotics (Akpan and Morgan 2002). Acute 

erythematous candidosis is often related to antibiotic-driven reduction in bacterial 

competition, while chronic erythematous candidosis is mostly associated with 

denture wearing. The latest is probably the most common form of oral candidosis, 

as up to 75 % of denture wearers suffer from the condition (Barbeau, Seguin et al. 

2003). Chronic hyperplastic candidosis is characterised by white plaques on the 

buccal mucosa, tongue surfaces and the angles of the mouth which, unlike in 

pseudomembranous candidosis, cannot be rubbed off. Speckled red-white areas 

sometimes seen in this condition present a higher risk of malignant transformation 

(Renstrup 1970). Candida is also a cause of angular cheilitis, as is Staphylococcus 

aureus, and has been associated with median rhomboid glossitis, although the 

extent of the role Candida plays in this condition remains unclear (van der Wal and 

van der Waal 1986, Smith, Robertson et al. 2003). 

In a study analysing oral fungal populations in 20 healthy volunteers using 

broad range primers targeting universal internal transcribed spacer, 74 culturable 

and 11 unculturable genera were identified, with 101 species found in total, ranging 

from 9 to 23 in each individual (Ghannoum, Jurevic et al. 2010). While some low-

abundance genera may represent environmental contamination, the most 

frequently detected genera: Candida, Cladosporium, Aureobasidium, 

Saccharomycetales, Aspergillus, Fusarium, and Cryptococcus, were detected in at 

least 20 % of samples and are less likely to be contaminants.  
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1.1.5 Bacteria 

One of the predominant members of the oral microbiome, with viruses, are 

bacteria. They also are the most implicated in oral health and disease. The healthy 

bacterial population in oral environment is difficult to define, as it greatly varies 

between sites and individuals and is often defined by the absence of certain species 

associated with disease, such as Porphyromonas gingivalis, Tannerella forsythia, 

and Treponema denticola (Aas, Paster et al. 2005). A study analysing the microbiota 

of 10 healthy volunteers attempted to define a core oral microbiome, by including 

bacterial taxa found in all 10 individuals: Streptococcus, Granulicatella and 

Veillonella (Firmicutes); Prevotella, Capnocytophaga and Bergeyella (Bacteroidetes); 

Rothia, Actinomyces, Corynebacterium and Atopobium (Actinobacteria); Neisseria, 

Cardiobacterium, Haemophilus and Campylobacter (Proteobacteria); Fusobacterium 

(Fusobacteria) and TM7 (Bik, Long et al. 2010). The implications of bacteria in oral 

diseases are discussed in the next section. 

 

1.2 Oral bacterial infections  

The normal oral microbiota is necessary for oral health, primarily because it 

confers colonisation resistance, preventing exogenous pathogens from causing 

infections. But a disturbance of homeostasis by environmental factors can lead to a 

shift in bacterial populations and disease (Marsh 2003).  

Dental-plaque associated diseases, which include gingivitis, periodontitis, 

caries and endodontic infections, are polymicrobial in nature and no single bacterial 
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species can be described as a causative agent. It is therefore not possible to apply 

Koch’s postulates to these heterogeneous, polymicrobial infections. It might be 

possible to modify the postulates to include the community as the aetiological 

agent (Kolenbrander, Palmer et al. 2010). Similar observations have been made for 

other human polymicrobial infections such as bacterial vaginosis and the infected 

lung in cystic fibrosis (Nelson, De Soyza et al. 2012). 

1.2.1 Periodontal disease 

Plaque-induced irritation of the gingiva without loss of connective tissue 

attachment is referred to as gingivitis (Armitage 1995). This condition is reversible. 

It was experimentally induced in healthy volunteers abstaining from oral hygiene 

(Loe, Theilade et al. 1965) and the resumption of a normal oral routine led to the 

disappearance of symptoms. The inflammation increases the flow of gingival 

crevicular fluid, providing new nutrient sources, which accelerate bacterial growth 

in the crevice. If left untreated in susceptible subjects, gingivitis can progress to 

periodontitis, an irreversible condition characterised by loss of connective tissue 

attachment and resorption of alveolar bone due to inflammation. Periodontal 

disease is a polymicrobial inflammatory disorder, resulting from an interaction 

between a polymicrobial biofilm and the host immune system. Periodontitis is 

classified into two main categories, chronic and aggressive, primarily related to the 

speed of progress of the condition (Armitage 1999, Armitage 2010). Approximately 

5 to 20 % of any population is affected by severe generalized periodontitis (Burt 

2005) which may lead to an increased risk of systemic conditions, including 

cardiovascular disease, diabetes, respiratory diseases and adverse outcome in 

pregnancy (Azarpazhooh and Tenenbaum 2012). However not every gingivitis lesion 
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progresses to periodontitis, as some subjects can harbour an abundant plaque 

without periodontal destructive symptoms (Loe, Anerud et al. 1986). The tissue 

damage in periodontitis is partly due to bacterial activity, such as production of 

endotoxins, proteases, lipases, and sialidases (Smalley 1994), and partly to the host 

immune response, such as the production of reactive oxygen species and 

proteolytic enzymes by polymorphonuclear leukocytes (Van Dyke and Serhan 2003, 

Barnes, Teles et al. 2009). 

Differences in periodontal susceptibility have been observed at different sites 

in the same subject, and the presence of certain bacterial species has been 

associated with it. Several studies have shown that some bacterial species were 

found in higher quantity and / or proportion in periodontitis than in health 

(Listgarten and Hellden 1978, Tanner, Haffer et al. 1979, Slots 1986, Dahlen, 

Wikstrom et al. 1996). Following several decades of culture and molecular studies, 

bacteria that are regarded as putative periodontal pathogens include 

Porphyromonas gingivalis, Treponema denticola, Prevotella intermedia, Tannerella 

forsythia, Aggregatibacter actinomycetemcomitans, Fusobacterium nucleatum, 

Capnocytophaga species, and Campylobacter rectus (Paster, Olsen et al. 2006, 

Kesić, Milasin et al. 2008). Three of these species, Treponema denticola, Tannerella 

forsythia and Porphyromonas gingivalis, are members of the so-called red complex, 

associated with chronic periodontitis (Socransky, Haffajee et al. 1998). A more 

recent study using 454 pyrosequencing of two regions of 16S rRNA to compare 

bacterial populations in health and chronic periodontitis found several taxa strongly 

associated with periodontitis, including members of the red complex, but also 
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Filifactor alocis and Lachnospiraceae and Synergistetes species (Griffen, Beall et al. 

2012). In addition, members of the uncultured TM7 Candidate Division, Human Oral 

Taxon (HOT) 356, have been associated with periodontitis (Brinig, Lepp et al. 2003, 

Liu, Faller et al. 2012).  

1.2.2 Caries 

Dental caries is the dissolution of enamel and dentine by acids produced by 

bacteria as a result of the fermentation of dietary carbohydrate. These acids can 

demineralise the enamel and cause tooth structure to be lost. As discussed above, 

no specific pathogenic agent can be identified, but the shift between health and 

disease implicates an increase of the proportion of acidogenic and acid-tolerating 

species such as mutans streptococci and lactobacilli. The Ecological Plaque 

Hypothesis (Marsh 2006) suggests that environmental changes are responsible of 

this shift. The frequent intake of fermentable sugars causes more frequent drops of 

the pH which favour the development of acid-tolerating bacteria (Bradshaw, McKee 

et al. 1989).  

The implication of bacteria in the development of carious lesions has been 

demonstrated in germ-free animals (Orland, Blayney et al. 1954). Streptococcus 

mutans has been historically implicated in caries, as it was found in large numbers 

in carious lesions (Clarke 1924). It is more abundant in the saliva of subjects with 

active caries than of those with no, or treated, caries (Kohler, Pettersson et al. 

1981). Furthermore, in primates, immunisation with a S. mutans surface antigen I/II 

was found to protect against the development of caries (Lehner, Challacombe et al. 

1975, Lehner, Caldwell et al. 1985). Finally, it is highly acidogenic and acidophilic 
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(Loesche 1996). Other acidogenic and acidophilic bacteria, such as some other 

streptococci, Actinomyces, and Bifidobacterium, have been also associated with 

caries (van Houte, Lopman et al. 1996, Van Ruyven, Lingström et al. 2000, Beighton, 

Al-Haboubi et al. 2010) and may contribute to the demineralisation of the tooth. 

Modern culture-independent studies showed that caries-related microbiota is more 

diverse that previously thought, with around 30 species found in each lesion 

(Munson, Banerjee et al. 2004). In addition to the species traditionally thought to 

play a role in caries, other organisms were found to be associated with active sites 

including Propionibacterium acidifaciens, Rothia dentocariosa, and Prevotella 

species. Other studies have detected high proportions of Atopobium species (Aas, 

Griffen et al. 2008). This variety of taxa found in carious lesions can be explained 

from the ecological perspective, as clearly it is function that is of primary 

importance, and several different taxa may play similar functional roles (Marsh 

2006, Peterson, Snesrud et al. 2011).  

1.2.3 Endodontic infection 

Endodontic infections are infections of the pulp, which can spread to the 

surrounding tissues and cause the loss of the tooth and, if untreated, resorption of 

the mandibular bones. The principal cause of endodontic infections is untreated 

carious lesions. The degradation of enamel by acids allows bacteria access to the 

dentine and, subsequently, to the pulp. Dentine is a porous tissue, composed 

largely of tubules of 1 to 4 µm of diameter, large enough to be colonized by 

bacteria (Bender, Seltzer et al. 1959, Love and Jenkinson 2002). As long as the pulp 

is viable, growth of bacteria is limited by the immune system, but some substances 

produced by bacteria, like endotoxin, can provoke an inflammation of the pulp, 
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leading to its necrosis (Nissan, Segal et al. 1995). Necrotic tissue provides nutrients 

for further bacterial growth and the loss of blood supply, hindering the movement 

of leukocytes to the infection site, makes the root canal a favourable place for 

bacterial proliferation.  

During the 1950s and 1960s, microbiological studies of endodontic infections 

used microscopic observation, aerobic culture and biochemical assays to detect and 

identify the associated microbiota (Miller 1890, Brown Jr and Rudolph Jr 1957, 

Hampp 1957). Members of the genus Streptococcus were considered to be 

dominant in endodontic infections, with species such as S. mitis, S. salivarius, S. 

sanguis and S. mutans the most frequently isolated (Morse 1974). In the next 

decade, with the adoption of anaerobic culture methods, it was established that the 

majority of endodontic bacteria were anaerobic (Berg and Nord 1973, Bergenholtz 

1974). In a comprehensive study using the most scrupulous contemporaneous 

techniques, and choosing only teeth with intact crowns to prevent any 

contamination by oral bacteria, Sundqvist (1976) found anaerobes in 90 % of 

lesions. The bacteria most frequently found in this study were pigmented Prevotella 

(previously named Bacteroides melaninogenicus (Shah and Collins 1990)), 

Fusobacterium, Campylobacter, Selenomonas, Veillonella and Peptostreptococcus 

species. These cultivation studies, however, suffered from the limitation of not 

being able to detect non-cultivable organisms. The 1990s saw the development of 

new molecular methods based on 16S rRNA gene amplification, cloning and 

sequencing, which allowed the identification of bacteria without culture (Conrads, 

Gharbia et al. 1997, Munson, Pitt-Ford et al. 2002).  
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Endodontic infections can be classified as chronic, or asymptomatic, and 

acute, symptomatic, infections. While various studies have found associations 

between particular species and different types of endodontic infection, no 

consensus seems to have been reached, which may be due to the great variation in 

the composition of the microbiota in endodontic infections in different individuals. 

Saito et al. (2006) explored the bacterial diversity of asymptomatic endodontic 

infections from seven patients by 16S rRNA cloning and Sanger sequencing and 

reported that 71.7 % of taxa were found only in a single subject. This study was 

limited, however, by the analysis of relatively few sequences per sample and the 

use of an unmodified 27F primer (see section 1.3.2). Indeed, a total of 46 

phylotypes were detected, from two to fourteen per subject, while most studies 

usually report a greater diversity. Thus, using similar methods, Munson et al. (2002) 

reported the detection of 65 taxa for five patients, ranging from 7 to 29 per sample. 

Although the mouth appears to be the source of the bacteria causing 

endodontic infections, only a small proportion of the oral microbiota has been 

detected in the infected pulp. Using the classical Sanger sequencing technique, 14 

phyla were identified in the oral cavity (Paster, Boches et al. 2001, Paster, Falkler Jr 

et al. 2002, de Lillo, Ashley et al. 2006), but only 10 of them were found to be 

present in endodontic infections: Firmicutes, Bacteroidetes, Actinobacteria, 

Fusobacteria and Proteobacteria (Munson, Pitt-Ford et al. 2002), Spirochaetes 

(Baumgartner, Khemaleelakul et al. 2003), TM7 (Siqueira and Rocas 2005), SR1 

(Rocas and Siqueira 2008), Synergistetes (Munson, Pitt-Ford et al. 2002), mis-

classified in Firmicutes or Deferribacteres phyla (Vartoukian, Palmer et al. 2007), 
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and Tenericutes (Serene and Anderson 1967), misclassified in Firmicutes (De Vos 

2009). Gram positive anaerobic bacteria predominate and most taxa belong to the 

Firmicutes phylum. The most frequently detected genera and species are 

Streptococcus species, Fusobacterium nucleatum, Parvimonas micra, 

Porphyromonas endodontalis, Olsenella uli, Prevotella baroniae, Treponema 

denticola and Dialister species (Siqueira and Rocas 2009, Zhang, Hou et al. 2012). 

The use of next generation sequencing techniques have allowed a deeper coverage 

of the endodontic microbiota, with more phyla detected. In a recent study 

analysing the coronal and apical microbiota of 23 teeth with endodontic infection 

by 454 pyrosequencing, 1 archaeal (Euryarchaeota) and 24 bacterial phyla or 

candidate phyla were detected: Acidobacteria, Actinobacteria, Bacteroidetes, BRC1, 

Chlamydiae, Cyanobacteria, Deinococcus-Thermus, Firmicutes, Fusobacteria, 

Nitrospira, OD1, OP11, OP3, OP9, Planctomycetes, Proteobacteria, Spirochaetes, 

Synergistetes, Tenericutes, TG1, Thermomicrobia, TM7, Verrucomicrobia and WS3 

(Ozok, Persoon et al. 2012). As in previous studies, Firmicutes was found to be the 

dominant phylum. Conversely, another study, using a combination of cloning / 

Sanger sequencing and 454 pyrosequencing, found Bacteroidetes to be the 

dominant phylum in 6 of the 7 endodontic infections analysed, by both methods (Li, 

Hsiao et al. 2010). While the authors did not offer an explanation for this 

divergence from previous studies, it may be explained by bias in collection of 

samples in that paper points were used, which have been shown to preferentially 

collect superficial organisms (Sathorn, Parashos et al. 2007), and the DNA extraction 

method used, which was the QIAamp DNA mini kit (Qiagen), shown to perform 
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poorly in extracting DNA from Gram-positive bacteria in mixed samples (Nadkarni, 

Martin et al. 2009). 

As with other polymicrobial infections, no single specific pathogen has been 

identified in endodontic infections. Numerical dominance is sometimes assumed to 

equate to pathogenicity but this may not be a valid assumption. The microbial 

compositions of oral, root canal and periapical abscess samples were compared 

using 454 pyrosequencing and it was found that the dominant species were usually 

found in all three sites, and were not specific to the diseased sites (Hsiao, Li et al. 

2012). By ANOVA tests it was found that the oral taxonomic units (OTUs) associated 

with disease in that study were relatively rare, belonging to the genera Bacteroides, 

Granulicatella, Collinsella, Atopobium, Dialister, Diaphorobacter, Lachnospiraceae 

incertae sedis, Moryella, Prevotella, Streptococcus, Veillonella, unclassified 

Bacteroidales and unclassified Clostridiales, based on mothur assignments by 

alignment with SILVA reference database (Schloss, Westcott et al. 2009).  

One of the species often thought to be associated with endodontic infections 

is Dialister invisus. It was found with a high prevalence in both chronic and acute 

endodontic infections (Munson, Pitt-Ford et al. 2002, Rocas and Siqueira 2005). It is 

possible that D. invisus plays a particular role in tubule invasion, due to its relatively 

small dimensions (0.3–0.4x0.3–0.6µm (Downes, Munson et al. 2003)). Enterococcus 

faecalis appears to be specifically associated with endodontic treatment failure 

(Sundqvist, Figdor et al. 1998, Hancock, Sigurdsson et al. 2001, Pinheiro, Gomes et 

al. 2003). Its ability to resist nutritional deprivation and invade dentinal tubules 
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seems to allow E. faecalis to survive endodontic treatment and cause a persistent 

infection (Stuart, Schwartz et al. 2006). 

Finally, an analysis of the viral populations of HPV and herpesviruses types 1 

to 8 in endodontic infections found the most frequently detected viruses to be 

human herpes viruses HHV-8 and HHV-6, human papilloma virus, varicella zoster 

virus, and Epstein–Barr virus (Ferreira, Rocas et al. 2011). While two thirds of root 

canals contained viral sequences, it is unclear if they play an active role in the 

infection or are just a consequence of bacterially induced disease. If the viruses are 

active they may cause the release of tissue-destructive cytokines, and the resulting 

impairment of the immune response may favour the development of bacteria, as 

suggested for periapical infections (Slots, Sabeti et al. 2003).  

 

1.3 Characterisation methods 

1.3.1 Culture 

After the development of solid culture media, the description of the 

morphological appearance of colonies, Gram staining and use of differential media 

and biochemical tests for phenotypic analyses were the main ways used to classify 

and identify bacteria. These methods require pure cultures of the test bacteria to 

be available, which is not always possible, as a large proportion of bacteria elude 

culture (Amann, Ludwig et al. 1995). Furthermore, such techniques do not allow for 

reliable population analyses as the conditions used in the laboratory will inevitably 

differ from the natural environment and will lead to changes in the community 
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structure. Cultural analysis cannot therefore accurately represent complex bacterial 

communities (Ranjard, Poly et al. 2000).  

1.3.2 Culture-independent methods 

The twin developments of the invention of the Polymerase Chain Reaction 

(PCR) (Mullis, Faloona et al. 1986) and the recognition of the value of the 16S rRNA 

gene as a bacterial phylogenetic marker (Woese 1987), led to the development of 

methods for the culture-independent characterisation of complex bacterial 

communities.  

The 16S rRNA gene, often described as an "evolutionary clock", is a 

housekeeping gene. It includes regions that are highly conserved and others which 

are essentially species-specific, although there are some closely related bacterial 

taxa, classified as different species by whole genome DNA-DNA hybridisation, which 

cannot be distinguished by 16S rRNA gene sequence (Fox, Wisotzkey et al. 1992, 

Hanage, Fraser et al. 2005).  

The PCR allows the amplification of targeted DNA segments in vitro using 

thermostable DNA polymerases. It consists of repeated cycles of denaturation of 

double stranded DNA, annealing of the short oligonucleotide primers and the 

synthesis of the complementary strand by the polymerase. For bacterial population 

analysis, the primers need to be specific for the amplification of the 16S rRNA gene 

but cover all the diversity of these genes in bacteria. The most frequently used 

primer pair for this purpose was, for many years, 27F and 1492R (Lane 1991). The 

forward primer 27F was however shown to not be truly universal (Marchesi, Sato et 

al. 1998), and was modified to include two degenerate nucleotide positions: 5´-
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AGAGTTTGATCCTGGCTCAG-3´ to 5´-AGAGTTTGATYMTGGCTCAG-3´ (27F-YM) which 

were shown to improve coverage (Frank, Reich et al. 2008). 

1.3.2.1 PCR/Cloning/Sequencing 

The “classical” molecular method for analysis of bacterial composition in 

various habitats has been the combination of cloning of PCR amplified 16S rRNA 

genes and subsequent sequencing using the Sanger method. This is based on the 

introduction of dideoxynucleotides (ddNTPs) which terminate the DNA elongation 

process when incorporated. All four ddNTPs are labelled with a different 

fluorescent dye. The resulting products are run through a capillary and separated by 

size. A laser is then used to identify which ddNTP is incorporated in each position, 

resulting in a chromatogram, from which the DNA sequence can be deduced. 

This technique allows high fidelity sequencing and the full length of the 16S 

rRNA gene can be sequenced from the amplicons. The major limitation of the 

method is the need for clone library construction, which is time-consuming and 

limits the number of sequences which can be analysed per sample to levels that 

provide only relatively shallow coverage (Sogin, Morrison et al. 2006, Pedros-Alio 

2012).  

1.3.2.2 High-throughput sequencing 

The recently developed next generation sequencing techniques do not 

require the cloning step, as they use alternative approaches for the separation of 

16S rRNA amplicons. The Illumina platform uses the sequencing by synthesis 

method (Mardis 2008). DNA fragments are attached to a slide and amplified in situ. 



38 
 

Reversible-terminator bases labelled with a fluorescent dye are incorporated into 

the growing DNA strands. As each dNTP is added, fluorescently-labelled terminator 

is imaged and then cleaved, to allow incorporation of the next base. The presence 

of all four reversible terminator-bound dNTPs minimises incorporation bias by 

competition. This method allows for massively parallel sequencing, but the main 

drawback is the short length of the sequences obtained. Because of this, only 

identification to genus level is possible for bacteria, and this level of precision is 

inadequate for the analysis of the oral microbiota, even if such studies were 

undertaken (Lazarevic, Whiteson et al. 2009). This is because many oral bacterial 

genera include species with vastly different metabolisms and functions.  

Another commonly used technique is pyrosequencing using the 454 range of 

sequencing instruments (Roche). Samples are initially amplified by PCR and then 

individual amplicons are separated and further amplified by means of an emulsion 

PCR, with each reaction performed in an oil / water emulsion sphere. After the PCR, 

the micelles are broken, each bead is deposited in a well of a picotiter plate and 

beads containing the sequencing reagents are added. During the pyrosequencing 

reaction, the incorporation of a nucleotide is accompanied by a release of 

pyrophosphate in equimolar amounts to that of the incorporated nucleotide, 

ultimately resulting in the generation of visible light in a downstream 

chemiluminescent reaction. A charge coupled device records a peak in the raw data 

output. Following each insertion reaction, an enzyme degrades any remaining 

unincorporated nucleotides before a new nucleotide is added. The intensity of the 

light signal, and therefore the height of each recorded peak, is proportional to the 
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number of incorporated nucleotides, from which the DNA sequence can be 

deduced (Mardis 2008). In the first studies using this technique to characterise the 

bacterial communities in saliva and plaque, estimates of the total species richness 

were orders of magnitude higher than had been previously described (Keijser, 

Zaura et al. 2008). It was later demonstrated that this increased species richness 

was due to the erroneous base-calling of homopolymers. The problem was 

addressed with a denoising algorithm, PyroNoise (Quince, Lanzen et al. 2009). 

Pyrosequencing currently offers reads of up to 750 bp, sufficient for species-level 

identification in most cases. Some bacterial groups, such as the mitis / oralis 

streptococci, elude precise identification, but for these lineages even full length 16S 

rRNA sequences may be insufficient. Pyrosequencing therefore enables the 

production of large number of sequences from mixed bacterial communities with 

sufficient read length for species-identification. It avoids the biases associated with 

cloning, but will remain subject to PCR-based artefacts.  

Finally, the Ion Torrent Personal Genome Machine Platform, while 

representing a smaller part of the next generation sequencing market, has also 

been used for microbial population analysis. However, it presents a problem similar 

to the Illumina platform as the read length is currently restricted to 200 bp 

(Whiteley, Jenkins et al. 2012). On this platform, sequence composition is 

determined by measuring pH changes due to hydrogen ion liberation as nucleotides 

are incorporated during strand synthesis in picolitre wells (Rothberg, Hinz et al. 

2011). 
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1.4 Uncultured bacteria 

Following the widespread use of culture-independent methods for the 

characterisation of complex bacterial communities and the subsequent 

introduction of high-throughput next generation DNA sequencing techniques, large 

numbers of 16S rRNA gene sequences in the DNA sequence databases do not 

correspond to validly described taxa. Those groups of sequences that represent 

taxa at the phylum level but which do not include cultivated representatives are 

referred to as Candidate Divisions. When a cultivated member of the Division is 

isolated in pure culture and validly described, a new phylum can be created 

(Dunfield, Tamas et al. 2012). 

Currently there are 30 phyla listed in the List of Prokaryotic names with 

Standing in Nomenclature (LPSN) (http://www.bacterio.cict.fr) : Acidobacteria, 

Actinobacteria, Aquificae, Armatimonadetes (formerly Candidate Division OP10), 

Bacteroidetes, Caldiserica (formerly Candidate Division OP5), Chlamydiae, Chlorobi, 

Chloroflexi, Chrysiogenetes, Cyanobacteria, Deferribacteres, Deinococcus-Thermus, 

Dictyoglomi, Elusimicrobia (formerly Candidate Division Termite Group 1), 

Fibrobacteres, Firmicutes, Fusobacteria, Gemmatimonadetes, Lentisphaerae 

(formerly clade VadinBE97), Nitrospira, Planctomycetes, Proteobacteria, 

Spirochaetes, Synergistetes, Tenericutes (formerly class Mollicutes in phylum 

Firmicutes (Krieg, Ludwig et al. 2010)), Thermodesulfobacteria, Thermomicrobia, 

Thermotogae and Verrucomicrobia. 

The SILVA database (Quast, Pruesse et al. 2013), a curated database of 16S 

rRNA prokaryotic sequences, lists 59 phyla, the 29 phyla mentioned above except 
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Thermomicrobia plus 30 Candidate Divisions: BD1-5, BHI80-139, BRC1, CK-1C4-19, 

GAL08, GOUTA4, HDB-SIOH1705, Hyd24-12, JL-ETNP-Z39, Kazan-3B-28, KB1, LD1-

PA38, MVP-21, NPL-UPA2, OC31, OD1, OP3, OP9, OP11, RF3, RsaHF231, S2R-29, 

SM2F11, SR1, TA06, TM6, TM7, WCHB1-60, WS3 and WS6, while the Ribosomal 

Database Project 10 (update 29, 11.06.2012) lists 29 phyla and 6 Candidate 

Divisions (BRC1, OD1, OP11, SR1, TM7, WS3).  

1.4.1 Oral Bacteria 

The Human Oral Microbiome Database (http://www.homd.org, (Chen, Yu et 

al. 2010)) is a curated list of bacteria taxa detected in the human oral cavity. It 

currently includes 687 taxa at species level in 13 phyla: Actinobacteria, 

Bacteroidetes, Chlamydiae, Chloroflexi, Firmicutes, Fusobacteria, GN02, 

Proteobacteria, Spirochaetes, SR1, Synergistetes, Tenericutes and TM7. Un-named 

taxa at species level have been allocated Human Oral Taxon (HOT) numbers. There 

are 221 taxa without cultured representatives, that fall into three groups: rare taxa 

with close culturable relatives, taxa forming deep branches with no culturable 

representatives and taxa belonging to Candidate Divisions, which are, as discussed 

above, phylum level groups with no culturable representatives. 

1.4.1.1 Rarely encountered taxa, closely related to known and culturable species 

Some taxa may not have been cultivated not because of any intrinsic 

unculturability, but simply as a result of their rarity. The total number of oral 

bacterial isolates that have been grown and identified remains low, compared to 

the number of 16S rRNA genes sequenced, particularly since the advent of next 

generation sequencing. If novel taxa are closely related to well known and easily 
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cultivated taxa, they are unlikely to have been targeted by a directed isolation 

attempt. This could be the case for the four uncultured Streptococcus species 

(HOT055, 067, 069 and 487), seen as 1 or 2 clones out of the total of 34879, for 

instance, or Capnocytophaga sp. HOT334 (1 clone) (Chen, Yu et al. 2010, Dewhirst, 

Chen et al. 2010). Alternatively, these sequences may be artifacts, such as chimeras. 

1.4.1.2 Deep uncultured branches within cultured phyla 

The uncultured taxa belonging to well established phyla may cluster in deep 

branches, well represented in culture-independent analyses but not isolated in pure 

culture. A striking example of this is a deep branch formed by Bacteroidetes genera 

G-3, G-4 and G-5, including 9 species, all uncultured. Bacteroidetes [G-3] HOT281 is 

the most commonly detected taxon within this branch, with 54 clones. Other deep 

uncultured branches within Bacteroidetes include Bacteroidetes [G-6], 

Flavobacteriales [G-1] and [G-2], Bergeyella sp., Tannerella sp. HOT286 and 808 and 

Prevotella sp. HOT292, 293, 300 and 305.  

Similar branches are found within the Firmicutes phylum, the Clostridiales F-1 

family, made up of two genera, G-1 and G-2, each represented in the oral 

environment by only one species, HOT093 and 402, respectively, and the 

Clostridiales F-2 family (3 genera, 4 species), which forms another branch together 

with Syntrophomonadaceae [G-1] HOT435, as well as several smaller branches 

within the families Peptostreptococcaceae, Lachnospiraceae and Veillonellaceae.  

The phylum Actinobacteria includes a branch formed by the Actinomyces 

HOT414, 449 and 525. Actinobacteria is one of the phyla with the lowest proportion 

of not-yet-cultured taxa (50.4 %), after Chlamydiae (0 %) and Tenericutes (25 %), 
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which can probably be explained by the underrepresentation of Actinobacteria 

sequences in all molecular studies (Krogius-Kurikka, Kassinen et al. 2009). 

The Tenericutes phylum includes one deeply branching uncultured genus, 

Mollicutes [G-1], with only one species, HOT504.  

The Fusobacteria phylum includes one uncultured branch consisting of 

HOT210 and 220, Fusobacteria [G-1], and one another of Leptotrichia sp. HOT212, 

215, 217 and 392. Most Leptotrichia species are still to be cultured, but other 

branches contain cultivated members. 

The only taxon representing a deep uncultured branch within the phylum 

Proteobacteria is the γ-proteobacterium Bdellovibrio sp. HOT039. Bdellovibrio are 

normally aerobic, predatory bacteria, feeding on other Gram-negative bacteria 

(Dashiff and Kadouri 2011). 

The Spirochaetes and Synergistetes phyla contain a large proportion of not-

yet-cultivated species. Treponema is the only genus representing the Spirochaetes 

phylum in the oral cavity. Over the 49 species, only 14 are cultured, but the biggest 

uncultured branch is formed of 10 HOT (HOT250-256, 508, 517 and 518). Oral 

Synergistetes are comprised of 2 clusters, A and B. Until recently, cluster A had no 

cultivated representatives, but Fretibacterium fastidiosum has recently been 

successfully cultivated using a co-culture technique (Vartoukian, Palmer et al. 2010, 

Vartoukian, Downes et al. 2012); the remaining 7 species still form an uncultured 

branch (Chen, Yu et al. 2010, Dewhirst, Chen et al. 2010). 
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1.4.1.3 Phyla with no cultured representatives 

Three phyla with no cultivated representatives (Candidate Divisions) are listed 

in the HOMD: GN02, TM7 and SR1. The phylum Chloroflexi has no cultivated 

representatives among the oral microbiota, but environmental relatives have been 

cultivated (Yamada and Sekiguchi 2009).  

The Candidate Division GN02, proposed in a study of the Guerrero Negro 

hypersaline microbial mat (Ley, Harris et al. 2006), is represented in the oral cavity 

by three taxa, HOT871, 872 and 873, placed in two classes. Four other taxa were 

identified in the canine oral microbiome (Dewhirst, Klein et al. 2012). This 

Candidate Division does not appear to have been the target of any directed studies, 

thus nothing is known about its morphology or metabolism. 

Candidate Division SR1 sequences were first detected in the sediments from 

Sulphur River in Parker's Cave, and were originally classified in the Candidate 

Division OP11 (Harris, Kelley et al. 2004). They were predominantly detected in 

anaerobic habitats such as deep-sea sediments, various extreme environmental 

sites, the cow rumen and human oral cavity, but have yet to be detected in soil 

(Davis, Youssef et al. 2009). SR1 Candidate Division is phylogenetically separated in 

two subphylum level lineages, BH1 and BD2-14, with the former found only in 

geothermal habitats, while the latter is more widespread. The two lineages are not 

always monophyletic in trees which include sequences from related Candidate 

Divisions such as OP11 or OD1, suggesting that they may be in fact two 

independent phyla. The BD22-14 lineage is made up of 9 subgroups, with all the 

sequences from mammals (human oral cavity and oesophagus, cow rumen, 
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rhinoceros faeces) and termite samples falling into subgroup III. This subgroup does 

not include any environmental sequences. Two distinct morphotypes were 

identified using FISH in environmental samples. One represented filaments of 

variable length (2.7 to 137.5 µm) but constant width (0.7 to 0.8 µm), sometimes 

appearing segmented (Davis, Youssef et al. 2009). This morphotype is strikingly 

similar to the predominant environmental cell type of the TM7 Candidate Division 

bacteria (Hugenholtz, Tyson et al. 2001). The second morphotype consisted of 

bacilli with round ends (2.7 to 5.5 µm in length, 1.8 µm in width), mostly present as 

single cells but sometimes forming chains. More specific probes showed that the 

filamentous morphotype represents subgroup V, while rods belong to subgroup I 

(Davis, Youssef et al. 2009). No similar study was conducted on animal-associated 

SR1, and thus nothing is known about the morphology of subgroup III. It has been 

suggested that members of the SR1 division may be implicated in sulphur cycling in 

the environment (Harris, Kelley et al. 2004), but no metabolic study targeting SR1 

members has been conducted. Three species belonging to the same genus of SR1 

have been detected in the oral cavity (HOT345, 874 and 875). SR1 bacteria are a 

rare member of the oral microbiome, present in the clone pool at 1/5,000 only, 

which would render studies targeting these bacteria in the oral environment 

extremely challenging. Three species-level taxa of SR1 were also identified in the 

canine oral microbiome, but they were only seen when a specific Bacteroidetes-

TM7-SR1 primer was used, further evidence that this phylum makes up only a small 

proportion of the mammalian oral bacterial community (Dewhirst, Klein et al. 

2012). 
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Finally, the TM7 Candidate Division, which will be discussed in more detail in 

Section 1.5 of this Introduction, is represented in the HOMD by 12 species, falling 

within 5 genera and 2 families.  

1.4.2 Reasons for unculturability 

Some bacteria may have no cultivated representatives not because of any 

intrinsic unculturability, but simply as a result of their rarity and slow growth, which 

means that they may be overlooked in cultural studies. Other bacteria, on the other 

hand, present a genuine resistance to in vitro culture. One reason for this 

unculturability can be the lack of substances essential for the growth of these 

bacteria in the media used to attempt their isolation or unsuitable atmosphere 

compositions. Better understanding of the environmental conditions can give clues 

on how to improve these parameters. Thus high scale culture with 350 isolates 

analysed per sample and the use of simple solid media with limited nutrients, plus 

an extended incubation period of 3 months, allowed the isolation of 93 new strains 

of soil oligotrophs, from 20 different not-yet-cultured families (Joseph, Hugenholtz 

et al. 2003).  

While high-volume culture methods such as those described above have 

enabled the culture of previously uncultured organisms, more needs to be done to 

mimic the natural conditions in which bacteria grow. Bacteria living in a biofilm, 

which represents the vast majority of the bacterial ecosystems on Earth, do not all 

live in the same environment. Indeed, each microcolony, and even each bacterial 

cell within the biofilm, is surrounded by very specific concentrations of nutrients, 

signalling molecules and gases, due to the diffusion patterns of these substances 
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and the metabolic activity of neighbouring bacteria (Kolenbrander 2000, Stewart 

and Franklin 2008).  

Oxygen gradient is the most studied example of these micro-conditions and 

its concentration in situ can be measured with micro electrodes (Ramsing, Kuhl et 

al. 1993, de Beer, Stoodley et al. 1994). The micro patterns of oxygen 

concentration, with anaerobic zones, explain the possible growth of strictly 

anaerobic microorganisms in biofilms in contact with oxygenated environments. 

The existence of these zones cannot be explained by physical incapacity of oxygen 

to diffuse through the biofilm, as it should diffuse freely at 60 % of its diffusion rate 

in water (Stewart 2003). Instead, oxygen concentration is actively reduced by 

respiring aerobic bacteria, to the point where it is completely depleted at 175 µm of 

a 220-µm-thick biofilm (Zhang, Fu et al. 1995). In the oral environment, strictly 

anaerobic bacteria actively coexist with oxygen-consuming aerobes and more 

oxygen-tolerant facultative anaerobes (Kolenbrander 2000).  

Similarly, the concentration of all nutrients consumed by the bacteria will 

decrease with depth of the biofilm, while metabolic products of bacteria diffuse in 

an inverse gradient. For most of the substances there is a balance between 

production and consumption, creating as many microenvironments as there are 

bacterial cells in the biofilm. In this context, not-yet-cultured bacterial taxa may be 

in contact with an essential substance provided either by host or other bacteria 

even if this substance is not detected in the biofilm supernatant. For instance, 

Veillonella species depend mostly on lactate, as a carbon source, produced by 

streptococci from carbohydrate fermentation (Marsh 2005).  
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Another important factor of biofilm growth is communication between 

bacteria, both intra- and inter-species. While Gram-positive bacteria communicate 

primarily with small diffusible peptides (Sturme, Kleerebezem et al. 2002) and 

Gram-negative bacteria use acyl homoserine lactones (AHLs) (Whitehead, Barnard 

et al. 2001), the autoinducer-2 (AI-2), the product of the LuxS gene, appears to play 

a role in inter-species communication, as its homologues are expressed by many 

bacterial taxa, leading to it being described as a “Bacterial Esperanto” (Bassler and 

Losick 2006). This communication, of which quorum sensing is one example, 

regulates all functions specific to growth in the biofilm, including competence, 

adhesion, virulence factors secretion and sporulation. It also influences the 

metabolic state of bacteria, promoting growth and division or dormancy, as in 

persister cells. For example, bacterial cytokines, such as Rpf and Sps, are required 

for the resuscitation of Micrococcus luteus from dormancy (Mukamolova, 

Yanopolskaya et al. 1998, Mukamolova, Turapov et al. 2002, Mukamolova, Turapov 

et al. 2002, Shleeva, Bagramyan et al. 2002). Other growth promoting factors are 

required for the growth of many other bacteria (Davies, Parsek et al. 1998, Kell and 

Young 2000, De Kievit, Gillis et al. 2001). 

Most of the factors are soluble, but others can be hydrophobic, such as the 

quinolone signal (2-heptyl-3-hydroxy-4-quinolone) of Pseudomonas aeruginosa. To 

be able to travel to target cells, such molecules are packaged in extracellular 

membrane vesicles (Bassler and Losick 2006). Furthermore, a contact 

communication mechanism allowing the passage of small cytoplasmic molecules, 

proteins, and non-conjugative plasmids, via nanotubes has been described (Dubey 
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and Ben-Yehuda 2011). It seems to act even between different species, for instance 

between Bacillus subtilis and Staphylococcus aureus, and between B. subtilis and 

Escherichia coli.  

1.4.3 Recent culture techniques 

Although the use of culture-independent molecular methods has greatly 

expanded our knowledge of the diversity of the bacterial world, pure culture 

remains essential for the description of the metabolic, physiological and 

pathological properties of individual species. Efforts are currently being directed at 

closing the gap between the number of bacterial taxa known by molecular analysis 

and those available in culture, notably by the Human Microbiome Project (HMP, 

http://www.hmpdacc.org, (Peterson, Garges et al. 2009)), as part of its initiative for 

Microbial Reference Genomes. 

A number of strategies have been used to improve the range of bacteria that 

can be cultured, with the greatest success coming from combining one or more 

approaches. 

1.4.3.1 Provision of appropriate conditions for bacterial growth 

Anaerobic bacteria dominate environmental and animal-associated 

microbiota. Although anaerobic cultivation methods were developed in the 19th 

century (Kursteiner 1907), anaerobic bacteria were not routinely isolated and 

studied until the second half of the 20th century. A major advance in anaerobic 

microbial culture was made by the roll tube method (Hungate 1950). The 

inoculated agar medium in a culture tube is rotated in flowing cold water to solidify 

the medium on the inside surfaces of the tube, creating a space within the tube 

http://www.hmpdacc.org/
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which can be filled with a mix of hydrogen and carbon dioxide. Also important was 

the realisation that rich culture media, typically used to grow pathogenic bacteria, 

are often not suitable for the isolation of bacteria from the environment. The use of 

simpler, low-nutrient, media greatly improved the recovery of isolates from 

environments such as sea, fresh water and soil (Connon and Giovannoni 2002).  

Nucleic acid sequence data, obtained from metagenomic or single-cell 

studies, can be used to help understand the requirements of not-yet-cultured 

bacteria. For example, high-throughput sequencing of RNA transcripts (RNA-seq) 

was used to investigate the metabolism of members of the gut microbiota of the 

leech Hirudo verbana and to use that information to design a medium for their 

culture and isolation (Bomar, Maltz et al. 2011). The most abundant symbiont, an 

uncultured Rikenella-like bacterium, did not grow in a medium commonly used for 

Rikenella microfusus isolation. RNA-seq data predicted that it was using sulfated- 

and sialated-mucin glycans, and a modified medium, containing mucin instead of 

glucose as the main carbon source, enabled its isolation.  

When it is not known which substances are required for the growth of a 

particular organism, a filtered supernatant from the original environment can be 

added. A study successfully cultivating 27 new bacterial genera from the rumen 

used a filtered rumen supernatant as an additive to an adapted medium, with 

modified salt content and low levels of energy sources (Kenters, Henderson et al. 

2011). Of 1000 tubes inoculated with 0.05 to 0.5 viable cells, growth was seen in 

139. Of these, 93 survived subculture and 54 appeared to be a pure culture. 

Together with 6 isolates from a pilot study, their 16S rRNA genes were sequenced 
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and they were placed in 23 genus-level groups (at 93 % of sequence identity). 

Firmicutes made up 87 % of the isolates, with the Clostridiales the most 

represented. Of these 60 isolates, 27 belonged to 14 novel candidate genus-level 

groups, and 3 candidate genera had no sequence identity matches over 93 % with 

the GenBank database.  

The aim of other studies has been to mimic the environmental habitat in the 

laboratory. A diffusion chamber developed by Kaeberlein et al. (2002) enclosed 

bacteria in a membrane, impermeable for whole cells but allowing the diffusion of 

nutrients and quorum sensing molecules from the environment, which was sea 

water in this case. The recovery rate, compared with microscopic counts, was 

improved from 0.05 % on traditional Petri plates to up to 40 % in the diffusion 

chamber. Another study from the same group focused isolation efforts on a novel 

Psychrobacter, designated MSC33, which had been grown in diffusion chambers but 

not on standard solid media (Nichols, Lewis et al. 2008). It was isolated to pure 

culture by passages in diffusion chambers and then paired with several cultivable 

isolates from the same environment, to test their ability to support the growth of 

MSC33 by co-culture. One of the isolates, closely related to Cellulophaga lytica, 

displayed a strong "helper" activity. After several passages in co-culture, a 

domesticated variant of MSC33, MSC33c, was obtained. It grew well on standard 

media, formed macro-colonies and could act as a helper for MSC33 growth. To 

determine the molecular nature of the substance providing the stimulation, 

fractioned MSC33c supernatant was added to growth media. Two fractions 

stimulated the growth of MCS33, but one in particular, which gave a single active 
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peak in HPLC analysis, was identified. After supplemental analysis, a 5-mer peptide 

LQPEV was demonstrated to be the strongest inducer of MSC33 growth, at the 

active concentration of 3.5 nM. This peptide is most probably mimicking a growth-

inducing signal, and the independent growth of the MSC33c variant could be due to 

the production of an increased amount of this factor. Another 23 strains from 

several previous studies were tested for the appearance of domesticated variants 

and 74 % were positive after just one to four passages, providing an encouraging 

perspective for the culture of at least a subset of not-yet-cultivated bacteria.  

Other studies have shown that the use of a helper strain can support the 

growth of a not-yet-cultured bacterium before its isolation and allow the 

identification of the factor promoting its growth. For example D'Onofrio et al. 

(2010) grew sea water sediment bacteria on agar plates in a mixed culture at 

different dilutions. As disproportionally more bacteria grew on the more heavily 

inoculated plates, they attempted the isolation not of single colonies, but of 

random pairs of colonies. Ten percent of plates inoculated in this way showed a 

pattern of growth induction and dependence of one bacterium on another. Several 

of these dependent bacteria were also stimulated by Escherichia coli, and so a panel 

of E. coli mutants were tested in an attempt to find the origin of the helper activity. 

It was discovered that the growth stimulation was due to enterobactin, a 

siderophore. Similar stimulation was obtained with free iron, but the concentration 

required (40 µM) exceeded the typical concentration of iron in sea water by a 

million-fold. Thirteen further isolates were obtained by supplementing the initial 

growth medium with high levels of free iron, three of which represented putative 
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new genera. As the energetic cost to maintain siderophore synthesis seems 

relatively low, authors speculate that not being able to autonomously produce 

siderophores is a strategy used by some bacteria to initiate growth only in suitable 

conditions, using it as a communication factor. 

Another successful technique, using membranes in direct contact with soil 

slurry for the culture of soil bacteria, reported the culture of several not-yet-

cultivated species and a micro-colony belonging to the TM7 Candidate Division 

(Ferrari, Binnerup et al. 2005). Unfortunately, the TM7 colony was not a pure 

culture and could not be passaged further, and was lost. 

1.4.3.2 Reduction of complexity of the mixed population 

One of the early techniques used to target not-yet-cultured bacteria was 

dilution-to-extinction (Button, Schut et al. 1993). The method has been successfully 

used to culture an oligotrophic ultramicrobacterium, Sphingomonas sp. strain 

RB2256 (Schut, Gottschal et al. 1997). The method typically selects for organisms 

that are predominant in samples, and is not useful for the isolation of cells present 

in low numbers. Conversely, fluorescence activated cell sorting (FACS) has allowed 

the recovery of viable target cells, at 70 % purity, originally present at a level of less 

than 1 % in an environmental sample (Porter, Edwards et al. 1993). For this 

application, specific antibodies and fluorescently labelled secondary antibodies 

were used, as they allowed for the recovery of viable cells. The development of the 

specific antibodies would be a limiting step if this technique had to be applied to 

uncultured species. This step can be circumvented if targeted bacteria present a 

physiological peculiarity which can be used for cell sorting. For example, flow 
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cytometery was successfully used to isolate three species of low nucleic acid 

content planktonic bacteria belonging to the Polynucleobacter group, by staining 

stream water cells with the non-specific nucleic acid binding dye SYBR green and 

selecting cells with low nucleic content (Wang, Hammes et al. 2009).  

Another technique useful in the isolation of pure cultures from mixtures 

consists of trapping them in semi-permeable gel microspheres (Manome, Zhang et 

al. 2001). Zengler et al. (2002) used gel microdroplets to encapsulate cells from sea 

water and soil and incubated them in their natural environments or supplemented 

media. One of the principal advantages of this technique is its extremely high 

throughput. Where most "high-scale" techniques use 96-well plates, this study 

screened 107 gel microdroplets, and the technique can be upscaled even further. 

Secondly, in contrast to dilution to extinction techniques, this method does not 

prevent existing bacterial interactions, as all the capsules are incubated together 

and the size of pores allows the circulation of macromolecules. The capsules 

exhibiting the formation of a microcolony, detected by microscopy, were then 

sorted by FACS. Several of the isolated microcolonies were identified as belonging 

to not-yet-cultured taxa, related to the Planctomycetes, Cytophaga–

Flavobacterium–Bacteroides (Bacteroidetes), and the α-Proteobacteria. 

1.4.3.3 Isolation of targeted organisms 

The availability of DNA sequence data for as yet uncultivated bacteria makes 

it possible to design specific oligonucleotide probes which can be used in 

conjunction with fluorescent in situ hybridisation (FISH) to detect and visualise 

uncultured bacteria in mixed communities (Amann, Stromley et al. 1992, Amann, 
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Ludwig et al. 1995). FACS can further allow the separation of bacteria of interest, 

but does not lead to their culture, as it requires the fixation of bacteria, which is 

lethal. It may nevertheless be used to obtain pure DNA for genome sequencing, 

which may lead to useful information regarding metabolic requirements (Yilmaz 

and Singh 2011). As described above, fluorescent antibodies can be used to obtain 

viable cells after sorting, if it is possible to create an antibody with the required 

specificity (Porter, Edwards et al. 1993). 

Single-cell manipulation techniques such as optical tweezers and laser 

microdissection (Frohlich and Konig 2000), have also been used to isolate bacteria, 

such as wood-degrading bacteria belonging to the Cytophaga-Flavobacterium-

Bacteroides (CFB) complex from a mixed community (Nilsson, Björdal et al. 2008). 

The method can allow the separation of targeted live cells when these can be 

discriminated by their morphology, as was done for the hyperthermophilic archaea, 

where their "grape-like" morphology was observed using FISH (Huber, Burggraf et 

al. 1995).  

The Raman technology is a non-destructive and non-invasive way to analyse 

single cells and can be used to identify bacteria, with the Raman spectrum serving 

as a "fingerprint" (Huang, Ward et al. 2009). Cells remain alive after undergoing the 

Raman-directed sorting with a laser trap. Eleven out of 18 yeast cells 

(Saccharomyces cerevisiae) and 7 out of 18 bacterial cells (Pseudomonas 

fluorescens) were viable after sorting (Huang, Ward et al. 2009). The method has 

been used to identify bacteria within dried and intact biofilms (Beier, Quivey et al. 

2012), discriminating between Gram-positive and negative bacteria (Prucek, Ranc et 
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al. 2012) and identifying bacteria up to species and even strain level (Almarashi, 

Kapel et al. 2012). Raman microspectroscopy can also be combined with stable 

isotope probing for detection and separation of cells that can utilise a particular 

substrate, as 13C consumption generates a shift in peaks corresponding to 

phenylalanine and protein bands (Huang, Ward et al. 2009). It has even been 

proposed as a "chair-side" method of identification of microorganisms for rapid 

diagnosis and treatment, allowing 10 oral bacterial species: Streptococcus 

sanguinis, Streptococcus gordonii, Fusobacterium nucleatum ss. polymorphum, 

Propionibacterium acnes II, Actinomyces odontolyticus I, Prevotella intermedia, 

Prevotella melaninogenica, Streptococcus intermedius, Parvimonas micra and 

methicillin-resistant Staphylococcus aureus, to be differentiated in unprocessed 

samples (Howell, Haffajee et al. 2011). 

Colony-hybridisation directed enrichment allows the targeting, enrichment 

and isolation of not-yet-cultivated bacteria (Datta, Moore et al. 1993). Bacteria are 

transferred from plates to membranes, on which the RNA or DNA are fixed. The 

localisation of specific bacteria on plates can be inferred from zones of the 

membrane hybridising with specific probes, allowing the subculture of targeted 

bacteria. The target organisms are therefore subcultured with their neighbouring 

natural helper strains and the culture is progressively simplified and enriched for 

the target. This technique has been successfully used to isolate Lactococcus lactis 

ss. cremoris from environmental samples (Salama, Sandine et al. 1993) and 

Fretibacterium fastidiosum from subgingival plaque in periodontitis (Vartoukian, 

Palmer et al. 2010, Vartoukian, Downes et al. 2012). This technique, although time-
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consuming, is valuable because succeeding passages lead to both an enriched, 

possibly pure, culture and, at the same time, encourages the emergence of 

domesticated variants, less dependent on helper strains. 

 

1.5 TM7 

TM7 Candidate Division presents a striking example of a phylum level group 

of bacteria with implications in human health and no cultivated representatives. 

1.5.1 Discovery of TM7 in the environment 

TM7 is a Candidate Division with no cultivated representatives. It gets its 

name from Torf, Mittlere Schicht, or peat, middle layer, in a German peat bog 

(Rheims, Sproer et al. 1996), where the 16S rRNA sequences belonging to this 

division were first identified. Subsequently, TM7 bacteria have been detected in a 

wide range of environments: waste water and batch reactor sludges (Bond, 

Hugenholtz et al. 1995, Hugenholtz, Tyson et al. 2001), fresh and sea water 

(Connon, Tovanabootr et al. 2005, Newton, Kent et al. 2006, Neulinger, Gartner et 

al. 2009), soil of different origins (Borneman and Triplett 1997, Costello and 

Schmidt 2006, Oline 2006), decayed wood (Valaskova, de Boer et al. 2009), city air 

(Brodie, DeSantis et al. 2007) and composting (Le Goff, Bru-Adan et al. 2010) 

aerosols. 

Three subdivisions were initially identified within the group from an analysis 

of all the sequences available at that time, which had a maximum intradivision 

sequence divergence of 17 % (Hugenholtz, Tyson et al. 2001). Subdivision 1 was 
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composed of 29 sequences of sludge or soil origin, while subdivision 2 consisted of 

4 sequences from sludge. The 24 sequences making up the third subdivision were 

from soil, sludge, seawater, mouse feces and human oral cavity.  

Probes specific for all or part of the TM7 division were designed based on 

comparative analysis of all sequences in the database using the ARB software 

package (Wolfgang, Strunk et al. 2004), and used with samples obtained from 

laboratory-scale activated sludge, which had previously been shown to be positive 

in TM7-specific PCRs (Hugenholtz, Tyson et al. 2001). Probe TM7305, which targets 

most of TM7 subdivision 1, revealed a filament morphotype. Probe TM7905, 

targeting nearly the entire division, was used in combination with TM7305 and 

confirmed that the filament morphotype belonged to the TM7 division. In addition, 

TM7905 hybridized to cocci that may be representatives of TM7 subdivisions 2 

and/or 3. 

The filament morphotype was described as having a morphology closely 

resembling Eikelboom Type 0041 (Eikelboom 1975). Type 0041 is a filamentous 

Gram variable to positive bacterium, forming straight or bowed, but not branched, 

filaments. It is non-motile and can occur free in the water as well as attached to 

flocs. The filament length is variable, with visible septa separating the filament into 

square cells. It is unclear from the description if the filament is one cell, with septa 

being internal structures, or if it is a chain of square cells. The filament is embedded 

within a sheath, which would suggest the former possibility. The diameter of the 

cells ranges between 0.6 and 1.5 μm. Most of the filaments of this morphotype 

exhibit attached bacteria of diverse types, which may play a role in collaborative 
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utilisation of available nutrient sources. The filaments reacting with both specific 

probes in the laboratory scale sludge did not exhibit attached growth, however 

(Hugenholtz, Tyson et al. 2001). The interpretation of the FISH staining was that 

since the majority of the filaments from the sludge gave positive hybridisations with 

both the TM7305 and TM7905 probes, they could be positively identified as 

belonging to the TM7 division. However, not all of the filaments were positive for 

the specific probes and further work has suggested that only a proportion of 

filamentous cells from this habitat are representatives of TM7 (Thomsen, Kjellerup 

et al. 2002).  

Two studies using stable isotope probing have identified members of the TM7 

Candidate Division as main degrader of toluene (Luo, Xie et al. 2009) and as one of 

the main degraders of benzene (Xie, Sun et al. 2011). 

1.5.2 TM7 in animals and humans 

Among invertebrates, TM7 members have been found in the microbiota 

associated with sponges and corals (Ceh, Van Keulen et al. 2011, Webster, Soo et al. 

2011, Webster and Taylor 2011), termites (Nakajima, Hongoh et al. 2005, Nakajima, 

Hongoh et al. 2006, Miyata, Noda et al. 2007) and nematodes (Ladygina, Johansson 

et al. 2009). They have also been detected in a wide range of mammals, from the 

mouse (Salzman, de Jong et al. 2002, Ley, Backhed et al. 2005) the bovine digestive 

tract (Brulc, Antonopoulos et al. 2009, Fernando, Purvis et al. 2010, Kong, Teather 

et al. 2010), dogs (Xenoulis, Palculict et al. 2008), and pigs (Lowe, Marsh et al. 

2012). A study analysing the intestinal microbiota in 60 mammalian species, mostly 

from San Diego Zoo and the San Diego Zoo’s Wild Animal Park animals, detected 
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the presence of TM7 members in elephants, gazelle, bighorn sheep, takin, buffalo, 

bonobo and gorilla (Ley, Hamady et al. 2008). 

In humans, TM7 bacteria have been identified in several habitats, such as the 

intestinal tract (Krogius-Kurikka, Kassinen et al. 2009), skin (Gao, Tseng et al. 2007), 

vaginal fluid (Fredricks, Fiedler et al. 2005) and oral cavity (Paster, Boches et al. 

2001, Kazor, Mitchell et al. 2003, Bik, Long et al. 2010). 

Although TM7 bacteria are frequently found in healthy individuals (Bik, Long 

et al. 2010) and were among 25 OTUs found in all sites and subjects in the human 

digestive tract (Stearns, Lynch et al. 2011), some associations have been found with 

disease. TM7 sequences have been detected in the airways of individuals with 

asthma (Hilty, Burke et al. 2010), bronchoalveolar lavage fluid from cystic fibrosis 

(Harris, De Groote et al. 2007, Guss, Roeselers et al. 2011), bacterial vaginosis 

(Fredricks, Fiedler et al. 2005), oral inflammation (Kumar, Griffen et al. 2003) and 

inflammatory bowel disease (IBD) (Frank, St Amand et al. 2007, Kuehbacher, 

Rehman et al. 2008). In the latter study more phylotypes of TM7 were detected in 

patients with Crohn's disease than in ulcerative colitis and control subjects, but no 

quantitative analysis was carried out. Most of these phylotypes were closely related 

to taxa originally found in the mouth. Surprisingly, some closely related taxa 

(Human HOT356, corresponding to the clone name I025, and HOT437, 

genomospecies P1) showed differing disease associations in IBD. Clones closely 

related to HOT356 were detected only in ulcerative colitis, while those resembling 

HOT437 were detected exclusively in healthy subjects. This finding raises once again 

the need to identify bacteria to species level but this is a particular challenge in this 
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Division, which, due to its lack of cultured representatives, does not have a well-

defined taxonomy. This study also analysed the morphology of TM7 using in-situ 

hybridisation, and revealed a filamentous morphotype. But the choice of the probe 

appears to have been injudicious. Probe TM7-305, as described by Hugenholtz et al. 

(2001), was designed to target the TM7 subdivision 1, which included no sequences 

associated with animals. It has at least one mismatch with all human oral sequences 

except for HOT347, and up to 4 mismatches for HOT355. When its specificity is 

determined with the RDP Probe Match program, it shows 100 % identity to 1452 

bacterial 16S rRNA gene sequences, only 671 of which belong to the TM7 division 

(of the total of 3307 TM7 sequences). When one mismatch is allowed, it matches 

181318 sequences (including 135464 Proteobacteria sequences) of which 1512 are 

TM7.  

 Members of the TM7 Candidate Division are typically found to constitute 

only a small proportion of the microbiota of any habitat, usually under 1 %. This 

may explain the lack of consistency in their detection in related samples, as, until 

recently, most of the molecular analysis of bacterial populations was performed by 

the cloning of 16S rRNA genes and Sanger sequencing, with usually no more than 

96 clones analysed per sample. The advance that has come with the adoption of 

next generation sequencing, which allows a far greater depth of analysis, is likely to 

confirm the ubiquity of TM7 bacteria. 

1.5.3 Oral TM7 in health and disease  

The presence of members of the TM7 division in human oral samples was first 

reported by Paster et al. (2001). Analysing 2522 clones from the subgingival plaque 
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of healthy subjects and patients with acute necrotizing ulcerative gingivitis and 

different forms of periodontitis, they identified 34 sequences belonging to this 

division, falling into five phylotypes closely related (> 99 % identity) to HOT346, 347, 

349, 355 and 356. HOT346 and 356 were predominant, as they were detected in 

more than 4 subjects, with 20 and 6 clones respectively. HOT346 was the only one 

found in health, although it was the most frequently detected phylotype overall and 

relatively few clones in the study came from healthy subjects (268 of 2522 clones, 

10.6 %). Nevertheless, HOT356 (represented by clone I025) was described as 

associated with periodontitis, as it was detected in at least 4 diseased subjects, but 

not in healthy ones; no statistical test was performed to confirm the association. 

Quantitative real-time PCR and FISH has been used to detect TM7 in samples 

from healthy and diseased sites of 42 subjects with different degrees of chronic 

periodontitis and from 4 healthy subjects (Brinig, Lepp et al. 2003). Among 85 TM7 

clones from 4 healthy and 3 diseased sites, 6 phylotypes were identified: HOT346 

and 356, previously detected by Paster et al. (2001), and 4 phylotypes defined as 

new by the study, SBG1, 2, 3 and 6. SBG1 is 99.6 % identical to HOT437 and 99.5 % 

identical to HOT356, SBG2 is 99.5 % identical to HOT350, SBG3 is 98.8 % identical to 

HOT348 and SBG6 is 99.1 % identical to HOT346. It is unclear why sequences named 

SBG1 and SBG6 were not included in the previously defined taxa HOT356 and 

HOT346, respectively. HOT346 was again found to be the most frequently detected, 

with 62 clones, found at all seven sites. TM7 bacteria were detected in 96 % of 

samples, including all healthy sites tested. The proportion of TM7 compared to the 

total number of bacteria was greater in mild periodontitis (0.54 %) than in healthy 
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sites (0.21 %, p<0.01) or severe periodontitis (0.29 %, p<0.05). A difference was also 

found between subjects from different ethnic origins, with smaller proportions of 

TM7 being found in Caucasian subjects (0.22 %) compared to Asian (0.49 %, 

p<0.008) and black patients (0.37 %, p<0.05), but no differences were found in 

subjects for gender, smoking status or age. The TM7 cells detected by FISH were 

described as filaments from 4 to 30 µm long and 1 to 1.5 µm thick. The "long 

filaments", however, appeared to be composed of multiple cells, each 3 to 4 µm 

long. The I025-136 probe hybridised exclusively to long filaments. There were no 

significant differences in morphology or numbers of TM7 between healthy and 

diseased sites, as detected by FISH. This study confirms the association between the 

I025 subgroup (HOT356) and periodontitis, as it was detected in only 1 in 18 healthy 

subjects, compared to 38 of 58 diseased sites.  

Specific probes for TM7, TM7-905, targeting the entire TM7 division 

(Hugenholtz, Tyson et al. 2001), and I025-136 (Brinig, Lepp et al. 2003), directed 

against the I025 TM7 clone (HOT356) were designed and validated by means of 

cloned artificial targets for FISH (catFISH) (Ouverney, Armitage et al. 2003). TM7 

bacteria were detected in healthy and periodontally diseased sites using the TM7-

905 probe (4 out of 9 and 12 out of 12, respectively) and I025-specfic probe (5 and 

10 respectively), with higher numbers detected in periodontitis than in health (3 

times more for TM7-905 and 2.5 for I025-136). It is not clear why cells that 

hybridised with the I025-specfic probe did not react with TM7-905 in one of the 

healthy subjects, as the latter has a broader specificity and covers all oral taxa 

detected to date. The TM7-905 probe reacted with a variety of morphotypes, from 
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cocci (1.0 to 0.45 µm) to filaments (3.0-75.0 by 0.6-1.0 µm), with an average of 

three segments per filament. The length of the filaments was four times greater in 

disease than in health for I025 subgroup, while it did not vary significantly for the 

rest of the TM7 bacteria. Intriguingly, not all segments of the filament hybridised 

with TM7-specific probes, indicating possible metabolic inactivity.  

Specific PCR primers were used by Kumar et al. (2003) to detect HOT356, 

among other "novel" bacteria, in health and chronic periodontitis. TM7 HOT356 

was detected with a prevalence of 71 % in health and 91 % in disease, and was 

considered to be associated with periodontitis with a p value of 0.004 (not 

significant, when the correction for multiple comparisons was applied).  

TM7 have also been detected in non-specific surveys of oral samples. For 

example, a study analysing the microbiota in halitosis, identified 3 phylotypes of 

TM7 bacteria (Kazor, Mitchell et al. 2003). One of them, HOT352, first identified in 

this study, was associated with halitosis, as it was detected in 4 out of 6 halitosis 

subjects and not at all in health. The other two, HOT351 and HOTA56, were 

detected in only one subject each. Similarly, TM7 HOT346, 356 and 437 were 

detected in larger proportions in refractory periodontitis than in good responders 

or healthy controls (P <0.05; χ2 test) in a study using the Human Oral Microbe 

Identification Microarray (HOMIM) (Colombo, Boches et al. 2009). 

1.5.4 TM7 culture and genome sequencing 

Microcolonies of TM7 visible to the naked eye were detected on low-nutrient 

solid media after 50 days incubation (Hugenholtz 2002). This report, however, did 

not give specific details of this apparently successful isolation and no subsequent 
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work has been published to date, suggesting that either the colonies may have not 

been pure or did not survive subculture.  

A soil substrate membrane system was successfully used to grow 

microcolonies of TM7 from soil (Ferrari, Binnerup et al. 2005). Several morphotypes 

were detected after 7 days of incubation using FISH (TM7-905 probe), which 

comprised 6.7 % of the total of growing bacteria. The two dominant types were a 

fast-growing short rod, forming microcolonies of several hundred cells, and a slow-

growing long rod (15 µm) with colonies of less than 50 cells. No pure culture of TM7 

was obtained, however. The same method was used in an attempt to grow TM7 

bacteria from waste water by Abrams et al. (2012), who reported the formation of 

microcolonies of 15 to 30 µm after 2 weeks of incubation, with the main 

morphotypes being cocci, diplococci and short rods. All of the colonies appeared to 

be mixed, as they included cells that were detected by the universal probe, but not 

with a TM7-specific probe. The co-growing bacteria included Proteobacteria, mostly 

β-Proteobacteria, Actinobacteria, Planctomycetes, Bacteroidetes and Chloroflexi.  

Sequencing of the TM7 genome from single cells has been attempted. Podar 

et al. (2007) used FACS and the TM7-905 probe with soil samples to obtain pools of 

TM7 cells. Most of the largest pools (containing 100 cells) contained several TM7 

lineages and also non-TM7 cells, due to the broad spectrum of the probe. It was 

determined experimentally that the best conditions for effective genome 

amplification and best purity were obtained for 5 cells. The genome from one pool 

was amplified with multiple displacement amplification. The affiliation of isolated 

cells was analysed by sequencing of the 16S rRNA genes and 61 out of 69 
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sequenced clones belonged to the TM7 phylum (89 % identity). These sequences 

presented some polymorphism but were considered as belonging to the same 

"species", named TM7_GTL1 (90 % identity to any oral TM7 sequences). The other 

sequences presented 99.5 % identity to the Pseudomonas sp. isolates, such as 

Pseudomonas rhodesiae. During the genome analysis, authors detected some 

contigs showing 90 % identity to known Pseudomonas genes. These sequences 

presented also a relatively high GC content, > 53 %, compared to the majority of 

sequences (< 50 %). As these sequences were removed from further analysis, it is 

possible that some genuine TM7 sequences were removed. The coverage depths of 

this partial genome sequencing varied extensively, exceeding 50-fold for some 

contigs, but were low for others. The final data included 132 contigs made up of 

679,515 nucleotides, and encoded 670 predicted proteins, six tRNAs, a full-length 

SSU rRNA gene (that allowed a second structure prediction), and a partial large-

subunit rRNA gene. The average GC content was of 48.5 %.  

A more complete genome was obtained by Marcy et al. (2007), who used a 

microfluidic device, designed for the purpose, to isolate 35 rod-shaped bacteria 

from the human subgingival crevice. On-chip whole genome amplification from 

isolated cells yielded 50 ng of DNA. It was followed by a second off-chip 

amplification to obtain sufficient DNA for sequencing. Of the 35 isolated cells, 4 

belonged to the TM7 phylum. Three were closely related to the SBG3 clone from 

the Brinig et al. (2003) study (> 99.6 % identity). The fourth was a more distant 

relative (97.3 %) of TM7 HOT353. Genomes of three TM7 cells related to the SBG3 

were sequenced by 454 pyrosequencing. The coverage, once again, was low and 
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some regions could not be assembled. The whole assembly of the genome of one of 

the cells, referred to as TM7a, was achieved with ‘‘metagenomic assumptions’’ but 

low-coverage regions (error-prone) were excluded from analysis. The total genome 

size was not estimated due to the bias intrinsic to the single-cell genome 

amplification technique. Genomes of TM7b and TM7c were less complete and 

served mostly to confirm the assembly of theTM7a genome. A stringent analysis of 

the data from TM7a including only genes from large contigs identified 1,474 genes 

on 288 scaffolds, 43 % of which were assigned a predictive function. The G+C 

content of the sequenced genome was 34.3 %. Some contaminant DNA from 

Leptotrichia species was found but made up less than 10 % of the sequence.  

Most of the TM7 genes sequenced were found to have low homology with 

related genes from other phyla, as 80 % of the predicted TM7 proteins had less 

than 60 % sequence identity to proteins from other sequenced organisms, and 33 % 

had less than 30 % identity. Nevertheless, some genes presented more than 60 % 

identity to those from Bacilli, Clostridia, and Fusobacteria by BLAST. It should be 

borne in mind, however, that most of the closest relatives of TM7 bacteria, such as 

Chloroflexi and SR1, are still largely uncultured, and therefore the sequences of 

their metabolic genes are hugely underrepresented in databases. It is possible that 

DNA from other organisms contaminated the TM7 preparations or were bound to 

the membrane of TM7 cells, but these genes do not cluster together by organism. 

This finding could also result from horizontal gene transfer. Some evidence for gene 

transfer was seen by Podar et al. (2007) as a second operon of ATPases had high 

homology to similar genes from Chlorobi.  
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Genes implicated in several metabolic processes were identified, such as 

glycolysis (3-phosphoglycerate kinase, phosphoglycerate mutase triosephosphate 

isomerase, and pyruvate kinase), the tricarboxylic acid cycle (succinyl-CoA 

synthetase), nucleotide biosynthesis, and amino acid biosynthesis. Potential 

substrates include oligosaccharides, arginine and possibly other amino acids. Genes 

encoding putative virulence factors were also seen. The presence of genes 

implicated in type IV pili biosynthesis was reported in both studies. Genetic 

evidence of a novel sortase, predicted to add an atypical amino acid to the growing 

peptidoglycan chain was found, that has been implicated in chronic granulomatous 

inflammation (Marcy, Ouverney et al. 2007). Type II and Type IV secretion systems, 

as well as a putative autoinducer 2 exporter (AI-2E), implicated in quorum sensing, 

were also seen (Podar, Abulencia et al. 2007). 

One of the primary aims of a genomic analysis of an uncultured bacterium is 

to obtain clues related to its metabolism that could allow its culture, but 

unfortunately no such clues were identified in these studies. Furthermore, both 

studies presented some bias and both were contaminated with non-TM7 DNA. 

Further work is needed to generate genomic data of value in improving cultural 

techniques for members of the TM7 division.  
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1.6 Aims of research 

The overall aims of the research described in this thesis were: 

1. To evaluate the ability of two model culture systems: Cooked Meat Medium and 

the Calgary Biofilm Device, to support the growth of mixed oral bacterial 

communities. 

2. To determine if such in-vitro communities can support the growth of previously 

uncultured oral bacteria. 

3. To attempt to culture representatives of phylum-level Division TM7, as a pure 

culture or as a member of a simple bacterial community.  
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 Chapter 2. Cooked meat medium culture of endodontic 

infections 

2.1 Introduction 

There have been numerous attempts at recreating the oral habitat in vitro, 

primarily for the assessment of metabolic activity or antibiotic resistance of mixed 

biofilms. Such systems would also be useful for the study of as yet uncultured 

bacteria, if these microorganisms could be established as part of a mixed culture. 

These culture systems may allow phenotype and metabolic capacities of uncultured 

taxa to be studied, and provide a source of cells for other analyses. Probably the 

first model oral microcosm was described by Miller (1890) who incubated extracted 

human teeth in water and bread mixture and observed lesions identical to naturally 

observed caries. Artificial mouth systems reproducing the oral environment have 

been used in many studies mainly focused on plaque development and caries 

(Pigman, Elliott et al. 1952, Sidaway, Marsland et al. 1964, Russell and Coulter 1975, 

Sissons, Cutress et al. 1991). Attempts to closely mimic the in-vivo environment, 

however, frequently result in complex systems which reduce the practicality of 

repeated sampling and lead to a lack of reproducibility. Liquid continuous cultures 

have also been used to grow oral microcosms, but they fail to reproduce the 

bacterial interactions found in a natural biofilm. Plaque bacteria grow naturally in 

biofilms and it was noticed that biofilms formed on walls of liquid culture vessels 

(Marsh, Hunter et al. 1983). Keevil et al. (1987) developed a continuous culture 

chemostat where dental plaque biofilm was grown for up to 21 d on acrylic tiles in 

slightly modified basal medium without glucose (Shah, Williams et al. 1976, Keevil, 
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Bradshaw et al. 1987). Growth rates were found to be comparable to those 

observed in the natural environment and a biofilm formed which appeared to be 

very similar to natural plaque in its appearance when viewed by scanning electron 

microscopy. Similar models were subsequently used to establish oral microcosms 

on different types of surface, such as glass, polycarbonate, silicon, hydroxyapatite 

(HA), nitrocellulose, enamel or dentin. A variety of culture media were used in 

these models, including modified basal medium with or without mucin, a peptone 

yeast extract-based medium supplemented with mucin (Sissons, Cutress et al. 1991, 

Sissons, Wong et al. 1995), defined medium mucin (Wong and Sissons 2001) and a 

chemically defined saliva analogue with mucin (Sissons, Wong et al. 1995).  

A number of models have been specifically designed to mimic the root canal 

habitat. Such systems have usually been used to test the efficacy of biofilm removal 

by different techniques (Shen, Qian et al. 2009). Some use entire teeth with 

naturally or experimentally infected root canals (Villette, Manek et al. 2008, Xie, 

Johnson et al. 2012), or flow cells (Chavez de Paz, Bergenholtz et al. 2010, Chavez 

de Paz 2012). A weakness of these models, particularly those using extracted teeth, 

is that they are complex, can be difficult to sample and are frequently prone to 

contamination. 

Cooked Meat Medium (CMM) was developed for the culture of anaerobic 

bacteria from wounds (Robertson 1915). Cooked meat was used because sulfhydryl 

groups, desirable for their reducing properties, are more available in denatured 

proteins and meat granules and the reducing properties are greatly lessened if the 

meat particles are removed by filtering. Both anaerobic and aerobic bacteria can be 
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grown in the medium, if it is incubated in aerobic conditions with the cap loose. 

This creates a redox gradient providing conditions suitable for organisms with a 

variety of atmospheric requirements. The primary source of energy in the medium 

is proteinaceous. The carbohydrate concentration is low at around 1 % and is 

primarily muscle glycogen converted to glucose and isomaltose. It has been shown 

that a bacteriotoxic factor is formed when glucose and phosphate are present 

during heat sterilization (Finkelstein and Lankford 1957), so a low level of glucose 

should prevent this. The meat particles are also able to buffer medium acidification 

by acids produced by bacteria. CMM is known to be able to support bacterial 

growth from a small inoculum and to maintain the viability of cultures over a long 

period. Mixed cultures of bacteria survive in CMM without the loss of slower-

growing organisms. CMM was successfully used to reisolate bacteria after 

prolonged incubation times of six to ten months with only few exceptions (Holman 

1919). The medium also enabled the successful growth of Actinomyces species and 

Propionibacterium acnes and a range of other oral bacteria previously uncultivated 

at that time (Holman 1919). Finally, the presence of solid meat particles provides a 

substrate for biofilm formation. The maintenance of the culture can be achieved by 

serial batch culture, transferring an aliquot of developed CMM culture to a new 

tube containing fresh CMM. Compared to models for biofilm with continuous 

growth, CMM has the advantages of simplicity of use and reduced risk of 

contamination of the culture.  

It was long assumed that oral bacteria used the host diet for their nutrition. 

But a simple study by Keene et al. (Keene, Coykendall et al. 1966) showed that 



74 
 

sugars were rapidly cleared from saliva following ingestion. Comparing caries-active 

and caries-resistant volunteers they determined that after an oral rinse with a 20 % 

corn syrup solution glucose was cleared from saliva in about 12 min, with no regard 

to the caries status. Another study showed that the recolonisation of teeth by 

streptococci after scaling was similar in feeding and fasting monkeys (Beighton and 

Hayday 1986). Therefore, bacteria would need to rely on the substances produced 

and secreted by the host, primarily saliva and gingival crevicular fluid. The principal 

protein-containing constituents of saliva are mucins, heavily glycosylated proteins 

of high molecular weight (millions of Da), representing up to 26 % of salivary 

proteins. Two cell-bound mucins are found in the oral cavity: MUC1 and MUC4 

(Swallow, Gendler et al. 1987, Nollet, Moniaux et al. 1998), and two secreted 

mucins can be detected in saliva: high-molecular-weight mucin, MUC5B (MG1), and 

low-molecular-weight mucin, MUC7 (MG2). They are secreted by the 

submandibular and sublingual glands, as well as minor salivary glands (Derrien, van 

Passel et al. 2010). Mucins consist of a protein backbone, called apomucin, with a 

large amount of O-linked glycans, representing up to 90 % of the molecular weight. 

Oral bacteria can use both the glycans and the protein core as energy and carbon 

sources (Beighton, Smith et al. 1988, Glenister, Salamon et al. 1988). The 

degradation of glycans is sequential and requires a number of species to work 

together. Wickstrom et al. (2008) used a range of glycosidase substrates to 

determine the glycosidic activity of natural dental plaque. Among the enzymes 

found to be synthesised by oral bacteria to degrade mucins were sialidase 

(neuraminidase), β-galactosidase, β-N-acetylglucosaminidases and α-L-fucosidase. 

Apart from their nutritional role, mucins can also play a structural role in adhering 



75 
 

to oral surfaces and promoting attachment of bacteria. Bovine salivary mucin has 

been primarily used in oral bacterial culture models. But Glenister et al. (1988) 

showed that hog gastric mucin supplemented basal medium performed better in 

supporting the growth of Actinomyces, Bacteroides and Treponema species, 

forming a mixed community resembling subgingival plaque. Hog mucin is 

considered to be chemically more similar to human mucin than the bovine form, as 

well as being cheaper to produce and Glenister et al. developed a crude method of 

purification which is still used today. 

Other supplements incorporated into culture media for oral bacteria include 

haemin and vitamin K1. Haemin is an iron-containing porphyrin, a source of the X 

factor. Vitamin K1 can be used by bacteria in electron transfer as a part of anaerobic 

respiration. Both haemin and vitamin K have been reported as necessary for the 

growth of some Prevotella and Porphyromonas species (Shah, Williams et al. 1976). 

Blood, of horse or sheep origin, and horse serum (ter Steeg, Van der Hoeven et al. 

1987) are often used as broad range supplements providing a range of vitamins and 

growth stimulating factors. Nicotinamide adenine dinucleotide plays an essential 

role in metabolism as a coenzyme in redox reactions and can additionally function 

as a substrate for bacterial DNA ligases (Wilkinson, Day et al. 2001). Finally, some 

media also incorporate arginine and urea, to provide a natural buffering effect 

because some bacteria metabolise these substrates to ammonia, which increases 

the pH (Wijeyeweera and Kleinberg 1989), and formate and fumarate (Tanner 

1987), which are required by some Campylobacter species for growth. 
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2.2 Aim 

The aim of the work described in this chapter was to evaluate the ability of 

Cooked Meat Medium to support the growth of a mixed bacterial community of 

endodontic origin that would include not-yet-cultured members of the microbiota. 

The composition of the microbiota of the endodontic samples and the CMM 

cultures derived from them was determined by culture and molecular methods and 

compared. 

 

2.3 Methods 

2.3.1 Validation of the batch co-culture using CMM 

2.3.1.1 Bacterial strains and culture 

The bacterial strains used in this study are listed in Table 1. The strains were 

taken from the departmental collection and cultured on Fastidious Anaerobe Agar 

(LabM), supplemented with 5 % horse blood (TCS) (FAAB), under anaerobic 

conditions (Don Whitley MACS MG1000 anaerobic workstation, 80 % N2, 10 % H2, 

10 % CO2) at 37 °C. Their identity was verified by partial sequencing of the 16S rRNA 

gene. For viable count determination, strains were grown in Brain Heart Infusion 

broth (BHI, LabM), under the same conditions.  

 

 

 



77 
 

Table 1. Bacterial strains used in the study, with the American Type Culture 

Collection (ATCC) number. 

Species Strain number 
Fusobacterium nucleatum ss. nucleatum ATCC 25586 

Parvimonas micra  ATCC 33270 
Porphyromonas endodontalis ATCC 35406 
Prevotella buccae ATCC 33574 
Propionibacterium acnes ATCC 6919 
Streptococcus intermedius ATCC 27335 
 

2.3.1.2 Viable count determination 

The optical density (OD) of cultures was measured at a wavelength of 600 nm. 

Doubling dilutions were prepared to assess the OD in the linear range of the 

spectrophotometer. FAAB plates were inoculated, in triplicate, with 100 μL of serial 

dilutions of the broth culture and incubated under anaerobic conditions for up to 5 

d. After incubation, plates with between 30 and 300 colonies were counted, and 

the calibration curve constructed by plotting OD600nm against log of CFU/ml (colony 

forming units per mL).  

2.3.1.3 Cooked Meat medium co-culture 

1 x 105 CFU of each bacterial strain were added to a glass universal bottle 

containing Cooked Meat medium (CMM, Oxoid). The mixed bacterial culture was 

incubated in anaerobic conditions at 37 °C for 7 d after which a 500 µl aliquot was 

transferred to a new vial and the composition of the culture analysed. Similar 

analyses were performed at one week intervals for 11 weeks. After 6 weeks, the 

CMM was supplemented with 20 % defibrinated horse serum (TCS) and after 7 

weeks, with serum, 5 μg/ml haemin and 0.5 μg/ml vitamin K. 
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2.3.1.4 Culture analysis of bacterial composition of mixed culture 

One hundred µl of supernatant were collected 5 mm from the bottom of the 

vial, in the mass of meat particles. Ten-fold dilutions of the supernatant in pre-

reduced Phosphate Buffered Saline (PBS, Oxoid) were prepared and 100 µl of 

dilutions 10-4 to 10-6 were spread on FAAB plates in triplicate and incubated under 

anaerobic conditions at 37 °C for 5 d. Colonies of each bacterial strain were counted 

on plates containing between 30 and 300 colonies. Colonies were identified by 

phenotypic observation and Gram stain appearance. The identification of colonies 

was facilitated by the fact that the chosen strains had very different colony 

morphologies. The three plates of the chosen dilution were counted and a mean 

value was calculated. The data were expressed in CFU/ml of CMM.  

2.3.2 Endodontic sample analysis and CMM culture 

2.3.2.1 Sample collection 

The study protocol was approved by Joint RNOH/IOMS Research Ethics 

Committee (REC reference number 09/H0724/12) and informed consent was 

obtained from the patients. 

Samples were collected from three patients presenting clinical signs of 

chronic apical periodontitis with radiological evidence of bone destruction. Two 

affected teeth were sampled from one patient and one tooth from each of the 

other two. None of the patients received any systemic antibiotic treatment within 

the preceding 3 months. The teeth were isolated with a rubber dam and cleaned 

with sodium hypochlorite. Access cavities were made into the pulp chamber by 
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means of a sterile bur. A 100-µl quantity of sterile saline was introduced to the root 

canal with a needle and the canal was gently irrigated to disturb the biofilm.  

The saline was then aspirated and added to 250 µl of reduced transport 

medium (RTM) in a screw-cap 2 ml tube. RTM (1 % w/v tryptone, 0.5 % w/v yeast 

extract, 0.1 % w/v L-cysteine, 0.1 % w/v D+ glucose, 2 % v/v horse serum in water, 

pH 7.5) was prepared, filter sterilised and pre-reduced in the anaerobic workstation 

overnight in preparation of sample collection. Samples in RTM were taken 

immediately to the laboratory, within 3 min of collection. They were placed inside 

an anaerobic workstation, with cap unscrewed, for 30 s, to replace the head space 

with anaerobic gas, taken out to be homogenized by vortexing for 30 s, and finally 

returned to the anaerobic workstation.  

2.3.2.2 Sample processing 

A vial containing 20 ml of CMM supplemented with 20 % of horse serum, 5 

μg/ml haemin and 0.5 μg/ml vitamin K was inoculated with 100 µL of cell 

suspension. Another 100 µl of the sample A1 were used to prepare tenfold dilutions 

up to 10-4 in RTM which were spread on FAAB in triplicate. Plates were incubated in 

an anaerobic workstation at 37 °C for 10 d. In addition, dilutions 10-2 and 10-3 were 

spread on Blood Agar (LabM) plates supplemented with 5 % horse blood and 

incubated aerobically in hermetic jars with 5 % CO2 (CO2Gen, Oxoid) for 4 d. DNA 

was extracted from the remainder of the sample for molecular analysis of the 

bacterial composition of the endodontic sample.  
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2.3.2.3 In-vitro culture of endodontic sample 

The mixed microbiota present in the sample was cultivated in serial batch 

culture in CMM supplemented with 20 % defibrinated horse serum, 5 μg/ml  

haemin and 0.5 μg/ml vitamin K with passages every 10 d. The mixed bacterial 

culture was incubated under anaerobic conditions at 37 °C. The first batch was 

inoculated with 100 µl of endodontic sample; all subsequent batches were 

inoculated with 500 µl of the previous culture, taken 5 mm from the bottom of the 

vial. At the end of each 10-d period, bacterial composition was analysed by 

molecular methods. Similar analyses were performed at 10 d intervals up to 480 d 

for samples A1 and A2 and 140 d for sample C.  

2.3.2.4 Analysis of cultivable bacteria 

Ten-fold dilutions of sample A1 in RTM were prepared and 100 µl  of the 

dilutions 10-4 to 10-6 were plated on FAAB in triplicate. After 10 d of anaerobic 

incubation, plates with between 30 and 300 colonies were counted. Ninety six 

randomly selected colonies were isolated on FAAB plates with a streak of the 

feeder strain, Propionibacterium acnes, and identified.  

2.3.2.5 Analysis of endodontic samples and subsequent CMM culture composition 

2.3.2.5.1 DNA extraction 

DNA was extracted from 100 µl of the endodontic sample, 1 ml of the CMM 

culture and pure culture isolates growing on FAAB, with the Genelute bacterial 

genomic DNA extraction kit (Sigma Aldrich) according to the manufacturer’s 

instructions and following the modification recommended for Gram-positive 

bacteria. Cells were harvested by centrifuging at 13 000 g for 2 min, the pellet 
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resuspended in 200 µl 45 mg/ml lysozyme solution and incubated at 37 °C for 30 

min. RNase A solution was added (20 µl) and incubated at room temperature for 2 

min, after which 20 µl Proteinase K and 200 µl Lysis solution C were added. The 

suspension was vortexed and incubated at 55 °C for 10 min. Columns were 

prepared with 500 µl Column Preparation Solution. Following incubation at 55 °C, 

200 µl 99.6 % ethanol was added to the lysate and mixed by inversion. The 

complete lysate was transferred to the binding column and centrifuged at 13 000 g 

for 1 min. The column was then washed with Wash Solution 1 and Wash Solution 

concentrate (diluted with the appropriate amount of ethanol). The column was 

centrifuged to dry and DNA eluted in a fresh collection tube with 200 µl of the 

Elution Solution after a 5-min incubation at room temperature. An aliquot was 

stored at 4 °C for short term use, while the remainder was stored at -70 °C. DNA 

and subsequent PCR products were detected and quantified by visual comparison 

with known amounts of lambda phage DNA (New England Biolabs) on 0.8 % agarose 

(Bioline) gel in 0.5x Tris-Borate EDTA (Sigma-Aldrich), containing 0.1 µg/mL of 

GelRed (Biotium). 

2.3.2.5.2 PCR amplification of 16S rRNA genes 

16S rRNA genes from pure or mixed cultures were amplified using universal 

primers 27F-YM and 1492R (Table 2) (Nercessian, Fouquet et al. 2005) (Frank, Reich 

et al. 2008). The reactions contained 22.5 µl of Thermoprime Taq polymerase 

master mix (Abgene), 1 µl of template, 1 µl each (0.4 µM final concentration) of 

27F-YM and 1492R primers. Initial denaturation, 95 °C for 5 min, was followed by 25 

cycles of denaturation at 95 °C for 45 s, annealing at 56 °C for 45 s and extension at 
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72 °C for 90 s, with a final period of extension at 72 °C for 5 min. A touch PCR was 

used to amplify 16S rRNA genes from isolates, as follows. Isolated colonies were 

touched with a sterile pipette tip viewed under a dissection microscope and the 

cells suspended directly in the PCR reaction mix. The amplification cycle was as 

described above, with the exception of 1 μl of water added to the reaction mix (to 

compensate for the template volume) and the length of the initial denaturation 

step was increased to 15 minutes.  

Table 2. Primers used for 16S rRNA gene amplification and sequencing (1(Lane 
1991), 2 (Amann, Stromley et al. 1992) 3 TOPO-TA Cloning kit, Invitrogen, 4 (Fierer, 
Hamady et al. 2008), IUPAC notation of degenerate bases: M = A or C; Y = C or T; R 
= A or G; W = A or T, S = G or C, N = any base) 

Primer  Primer sequence (5'-3') 

27F-YM AGAGTTTGATYMTGGCTCAG1 
342R CTGCTGCSYCCCGTAG1 
357F CTCCTACGGGAGGCAGCAG1 
519R GWATTACCGCGGCKGCTG1 
907R CCGTCAATTCCTTTRAGTTT2 
926F GGTTAAAACTYAAAKGAATTGACGG1 
1100R GGGTTGCGCTCGTTG1 
1114F GCAACGAGCGCAACCC1 
1392R ACGGGCGGTGTGTRC1 
1492R TACGGYTACCTTGTTACGACTT1 
M13F GTAAAACGACGGCCAG3 
M13R CAGGAAACAGCTATGAC3 

27F-YM-A 
CCATCTCATCCCTGCGTGTCTCCGACTCAGNNNNNNNNNNNNAGAGT 
TTGATYMTGGCTCAG4 

519R-B CCTATCCCCTGTGTGCCTTGGCAGTCTCAGGWATTACCGCGGCKGCTG4 

 

2.3.2.5.3 Cloning of amplified 16S rRNA genes 

For the mixed cultures, 16S rRNA genes products amplified with the Taq 

polymerase were cloned using the TOPO TA Cloning kit (Invitrogene, UK), according 

to the manufacturer’s instructions. Two µl of PCR product were combined with 1 µl 

salt solution (Invitrogen), 2 µl dH2O (Sigma-Aldrich) and 1 µl of the TOPO-TA cloning 
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vector (Invitrogen). The solution was incubated for 30 minutes at room 

temperature, placed on ice and 2 µl of the cloning solution added to TOP-10 

chemically competent cells and after gentle mixing, incubated for 10 min on ice. 

Cells were heat shocked at 42 °C for 30 sec on a heating block and immediately 

placed on ice. Aliquots of 250 µl SOC medium (Invitrogen) were added and the cells 

incubated for 1 h at 37 °C, while shaking at 250 rpm in a Forma scientific orbital 

shaker. Finally, the cell suspension was spread in 50 µl and 100 µl aliquots on pre-

warmed Luria Bertani (LB) agar supplemented with 50 µg/ml kanamycin 

(Gibco/Invitrogen) and incubated aerobically at 37 °C over night.  

Clone colonies were touched with a sterile pipette tip and the cells suspended 

in 50 μl of sterile water. One µl of the suspension was used as the template in a PCR 

reaction using Thermoprime Taq polymerase, as described above, using the primer 

set M13F/M13R (Table 2). Initial denaturation step was run at 95 °C for 15 min. This 

was followed by 30 cycles of denaturation at 95 °C for 45 sec, annealing at 55 °C for 

45 sec and extension at 72 °C for 90 sec, with a final period of extension at 72 °C for 

5 min. 

2.3.2.5.4 Sanger Sequencing 

2.3.2.5.4.1 Purification of amplicons 

Prior to sequencing, the PCR products were purified using ExoSAP-IT (USB). 

The method was modified from the manufacturer’s instructions in that 1 µl of 

product, plus 1 µl of water, were added to 5 µl of PCR product, instead of 2 µl of 

ExoSAP-IT. It was then incubated in a Thermo cycler for 15 min at 37 °C followed by 

heat inactivation of the enzymes at 80 °C for 15 min. 
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2.3.2.5.4.2 Sequencing reaction 

Clones and isolates were partially sequenced using the universal primer 519R 

(Table 2). The reaction mixture was composed of 0.5 µl Big Dye, 1.75 µl of 5X 

sequencing buffer (400 mM Tris Base pH 9.0, 10 mM MgCl2), 5.45 µl sterile UHQ 

distilled water, 0.3 µl of primer (0.3 µM) and 2 µl of PCR product. The cycle, 

repeated 30 times, consisted of a denaturation step, 96 °C for 10 s, an annealing 

step, 50 °C for 5 s, and an elongation step, 60 °C for 2 min.  

For some clones and isolates, full length sequencing was performed with 9 

additional primers (27F-YM, 342R, 357F, 907R, 926F, 1100R, 1114F, 1392R and 

1492R, Table 2).  

2.3.2.5.4.3 Sequencing product clean up 

Ten µl of water was added to all wells of the 96-well sequencing plate, 

followed by 50 µl of precipitation mix (sodium acetate 57 mM, EDTA 4 nM, 91 % 

ethanol). The plate was vortexed and incubated at RT for 20 min. The plate was 

then centrifuged for 25 min at 4000 rpm, the supernatant was discarded and the 

plate spun upside-down at 300 rpm for 10 s. One hundred µl of chilled 70 % ethanol 

were then added to each well and the plate was centrifuged for 10 min at 4000 

rpm. The ethanol was discarded and the plate spun inverted at 300 rpm for 15 s. 

The plate was dried and 10 µl of 0.1 TE buffer (1mM Tris, 0.1 mM EDTA, pH8.0) 

were added to each well.  
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2.3.2.5.4.4 Sequencing facility 

Sequencing was performed using an automated sequencer ABI 3730x 

(Applied Biosystems). Data quality was analysed with Sequence Scanner Software 

(Applied Biosystems). 

2.3.2.5.5 454 pyrosequencing 

For amplicon library construction, 16S rRNA genes of the extracted DNA from 

the initial endodontic samples and from selected points of CMM culture were 

amplified using the broad range 16S rRNA gene specific primers 27F-YM and 519R 

along with unique 12-mer Golay ‘barcode’ sequences on the forward primer and 

the Roche GS-FLX-454 Titanium series adaptor sequences (A + B) for the Lib-L kit 

emPCR method. These primers were named 27F-YM-A and 519R-B (Table 2), where 

the Ns in the 27F-YM-A primer represent the barcode sequence, different for each 

multiplexed sample. 

Three replicate amplification reactions were set up for each sample. 

Reactions were prepared containing 12.5 µl Extensor PCR mastermix (High fidelity 

Taq polymerase) (Thermo Scientific), 2 µl of template, 0.5 µl of each primer (10 µM) 

and 9.5 µl sterile water. Initial denaturation was at 95 °C for 5 min, followed by 25 

cycles of denaturation at 95 °C for 45 s, annealing at 53 °C for 45 s, extension at 72 

°C for 90 s and a final extension at 72 °C for 15 s. A negative no template reaction 

was set up for every primer set. 
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PCR amplicons were pooled and purified using the QIAquick PCR purification 

kit (Qiagen) following the manufacturer’s instructions to remove un-used primers 

and nucleotides. Purified product was eluted in 30 µl 0.1 x TE buffer  

The size, amount and purity of purified amplicons were evaluated using the 

Agilent 2100 Bioanalyzer along with the Agilent DNA 1000 kit (Agilent Technologies, 

Inc.). DNA samples were accepted for further analysis if they had an OD 260/280 

ratio of 1.8 or above and were at a concentration of 5 ng/μl or greater. 

Accurate quantitation of the amplicons with the Quant-iT-Picogreen 

fluorescent nucleic acid stain (Invitrogen), a fluorometric assay, was performed to 

determine the concentration (ng/µl) of each amplicon. This was converted to 

molecules per µl and subsequently amplicons for each library were pooled in 

equimolar concentrations (1 x 109 molecules /µl). 

The samples were amplified clonally by emulsion-PCR using the GS emPCR 

Lib-L Kit. The GS PicoTiterPlate Kit was then used to sequence individual clonally 

amplified molecules on a Roche 454 GS-FLX Titanium sequencer. 

2.3.2.5.6 Data analysis 

2.3.2.5.6.1 Sanger sequencing 

Sequences were handled and aligned using the BioEdit Sequence Alignment 

Editor (BIOEDIT) software (Hall 1999). They were provisionally identified by means 

of the BLAST (Basic Local Alignment Search Tool) tool available with the Human Oral 

Microbiome Database (HOMD, www.homd.org). Sequences showing homology of 

less than 98.5 % to databases reference sequences were subjected to full length 
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sequencing of the 16S rRNA gene. Sequences were assembled using the Contig 

Assembly Program (Huang and Madan 1999), and identified. The closest possible 

identification was then obtained by BLASTN 2.2.22 interrogation of the GenBank 

database (http://blast.ncbi.nlm.nih.gov (Zhang, Schwartz et al. 2000)) and by means 

of the Seqmatch tool available from The Ribosomal Database Project II, (RDP) 

(http://rdp.cme.msu.edu/index.jsp).  

2.3.2.5.6.2 454 pyrosequencing 

The sequences were subjected to the mothur (Schloss, Westcott et al. 2009) 

shhh.flows command to de-noise the data. The trim.flows command was used to 

remove the primer sequences and barcodes, sequences shorter than 350 bp, and 

sequences with mismatches in barcode and primersequences.  

The data was de-replicated using unique.seqs and aligned to the silva.bacteria 

16S rRNA reference file by means of align.seqs (Pruesse, Quast et al. 2007). 

Sequences that had more than two ambiguous bases, that did not start by position 

1044 (97.5 % - tile) or end by position 7000 (2.5 % - tile) were removed using the 

screen.seqs command. Any columns with a '-' in every sequence were removed 

using filter.seqs and any further redundant sequences were removed using 

unique.seqs again. Pre.cluster was used to merge sequences that were within 1 bp 

per 100 bp of total sequence length of a more abundant sequence with that 

sequence. 

Chimerae were detected using chimera.uchime and removed using 

remove.seqs. The classify.seqs command was used to classify sequences using the 

HOMD version 10 reference sequence and taxonomy databases. The dist.seqs 
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program calculated uncorrected pairwise distances between aligned DNA 

sequences and the cluster command was used to assign sequences to OTUs. 

Following this, a table was created indicating the number of times an OTU was 

present in each sample using the make.shared command. A randomised 

normalisation to the same sample size was performed using the command 

sub.sample where appropriate. The classify.otu command was used to obtain a 

consensus taxonomy for each OTU at a value of 98.5 % (or 0.015) using the HOMD 

version 10 reference sequence and taxonomy databases.  

2.3.2.5.6.3 Statistical analysis 

The α and β diversity of samples was estimated in mothur for datasets from 

both Sanger and pyrosequencing. The collect.single command was used to calculate 

the Chao1 richness and the inverse Simpson diversity index, while the 

rarefaction.single command was used to compile rarefaction curve data. A table 

containing the number of sequences, sample coverage, number of observed OTUs 

and the Inverse Simpson diversity estimate was compiled using the summary.single 

command. Uncorrected pairwise distances between aligned DNA sequences were 

calculated using dist.seqs and were used to compare the community membership 

and structure by Jaccard index and theta YC metric, respectively. The obtained 

matrices were visualised by the principal coordinate analysis (PCoA). The corr.axes 

command listed correlation coefficient for each OTU to the axes displayed in a PCoA 

file, with corresponding p value. The phylogenetic comparison of communities was 

also performed by weighted and unweighted UniFrac analysis. Finally, the amova 

command was used to analyse nonparametric analog of traditional variance 

(Excoffier, Smouse et al. 1992). 
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To complement the analyses implemented in mothur, Wilcoxon signed-rank 

test with cut-off p value of 0.05 was used for statistical comparison of α and β-

diversity (Wilcoxon 1946). Differences in relative abundances of individual OTUs 

were determined with LEfSe (Segata, Izard et al. 2011). 

2.4 Results 

2.4.1 Validation of the co-culture experiment 

A combination of five bacterial species - Streptococcus intermedius, 

Parvimonas micra, Fusobacterium nucleatum ss nucleatum, Prevotella buccae and 

Porphyromonas endodontalis - was used to assess the ability of Cooked Meat 

Medium (CMM) to sustain a mixed community for 11 weeks (Figure 1).  

 
Figure 1. Bacterial counts in a defined member community in Cooked Meat 
medium.  

P. endodontalis was not detected at any sampling time. P. buccae was not 

detected at 7 d of mixed culture, but was detected from 14 d. The other three 
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40 d), the number of CFU/mL of these 4 species slightly decreased, by a factor 

between 1.2 and 5.0 (P. buccae and F. nucleatum). P. micra was the most 

numerous, with a mean count of 1.6x108 CFU/mL, followed by F. nucleatum 

(9.2x107), S. intermedius (3.3 x107) and finally P. buccae (6.2 x106, on the period 14 

to 40 d). In the second phase, after supplementation with horse serum, haemin and 

vitamin K, the number of CFU/ml of all four species increased, by factors varying 

from 3.0 for P. buccae to 7.2 for P. micra, with no change in their relative 

proportions. There was no significant difference for any species when cultures 

before supplementation (7-40 d) were compared to supplemented cultures (49-77 

d) (Wilcoxon signed rank test). 

 The successful establishment of a simple mixed community in this validation 

experiment suggested that CMM was a suitable medium for in-vitro growth of a 

complex microbial community and that its supplementation with horse serum, 

haemin and vitamin K would improve the recovery rate of initial inoculum. 

2.4.2 Samples from endodontic infections 

Two endodontic samples, A1 and A2, were collected from two infected teeth 

in a 55 year-old male patient. A third sample, B (male, 64), was heavily 

contaminated with blood and the DNA extracted from this sample could not be 

amplified by PCR, even after purification by phenol/chloroform method or on 

columns. After one week of growth in CMM, the appearance of the culture was 

unusual in that the supernatant remained clear but hundreds of small white 

aggregates, 0.5 to 1.5 mm in diameter, were visible on the surface of the meat 

particles (Figure 2). The composition of the CMM culture derived from sample B 
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was analysed by cloning and sequencing and 70 % of clones were identified as 

Actinomyces israelii. The other species detected were: Parvimonas micra 17 %, 

Mogibacterium diversum 6 %, Eubacterium infirmum 2 %, Olsenella uli 2 % and 

Peptostreptococcus stomatis, Pseudoramibacter alactolyticus and Streptococcus 

constellatus at 1 %. Given the dominance of A. israelii, it was considered that this 

was a case of actinomycosis and not a typical endodontic infection. Analysis of 

sample B was therefore discontinued. A fourth sample, C, was obtained from a 54 

year-old male. 

 

Figure 2. Bacterial growth in CMM. The vial on the right contains a typical multi-
microbial community (Sample A1) while the vial in the centre contains white 
aggregates typical of Actinomyces growth (Sample B). An uninoculated vial is shown 
on the left.  
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The bacterial composition of samples A1, A2 and C was analysed by PCR / 

cloning / Sanger sequencing and by direct 454 pyrosequencing. In addition, the 

composition of sample A1 was also analysed by anaerobic and aerobic culture.  

2.4.2.1 Analysis of 16S rRNA profile data 

 A summary of the -diversity of the endodontic samples analysed by cloning 

and Sanger sequencing and pyrosequencing is shown in Table 3. Ninety clones were 

analysed per sample and 6078 sequences were obtained in total from the 

pyrosequencing analysis after de-noising and trimming. Two chimeric sequences 

were detected by uchime among the pyrosequence data, both of which were from 

sample A2. No chimeric sequences were detected in other samples. Of the 

remaining 6076 sequences, 1580 belong to sample A1, 3366 to A2 and 1127 to C. 

The pyrosequence data were normalised by random sub-sampling to 1127 

sequences per sample, although phylogenetic analysis was carried out on the 

complete dataset.  

The -diversity analysis of datasets obtained by Sanger or pyrosequencing is 

presented in Table 3. The pyrosequencing analysis detected 3 to 4 times more 

observed OTUs than the clonal analysis, but the Good's coverage values are very 

similar, with all coverage estimates over 90 %. In contrast, the CatchAll estimator 

calculated coverage is lower than the Good's coverage value for samples A1 and A2, 

but not for sample C, which is less OTU-rich than the others and the estimate of 

OTU richness is the same as the observed value. For samples A1 and A2, the 

CatchAll estimates are substantially higher for the pyrosequencing data. The Chao1 

estimate of richness gives estimates of a similar order to those obtained by CatchAll 
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except that the value for the pyrosequencing data for sample C is substantially 

higher at 117 compared to 33 from CatchAll.  

Table 3. -diversity and richness of endodontic sequence data for samples A1, A1 
and C, analysed by Sanger sequencing (Sanger) or 454 pyrosequencing (py). 
Detailing number of sequences for each subject (Nseqs), observed OTUs (Sobs), 
Good’s coverage, CatchAll richness estimate, coverage estimate based on CatchAll 
value, Chao1 richness estimator and the Inverse Simpson diversity index.  

Sample N seqs Sobs 
Good's 

coverage 
CatchAll 
estimate 

CatchAll  
cov. % 

Chao1 invsimpson 

A1 py 1127 60 0.98 114.3 52.49 88.88 16.49 

A1 Sanger 90 16 0.98 19.5 82.05 16.2 9.89 

A2 py 1127 62 0.98 109.9 56.41 120.50 12.84 

A2 Sanger 90 19 0.91 24.1 78.84 26 9.96 

C py 1127 33 0.98 33 100 117.33 2.90 

C Sanger 90 9 0.98 9 100 9.5 4.51 

 

Finally, the Inverse Simpson diversity index is higher for the pyrosequencing 

data compared to clonal analysis for samples A1 and A2, but smaller for sample C. 

Because of the small number of samples analysed, it was not appropriate to 

perform statistical analysis on these -diversity estimates. 

Rarefaction curves for the three endodontic samples analysed by cloning and 

Sanger sequencing are shown in Figure 3. Samples A1 and A2 exhibit similar initial 

curves but the curve for A1 flattens earlier. The curve for the sample C has a 

shallower initial slope and lower plateau, reflecting the lower number of OTUs 

detected. 
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Rarefaction curves for the pyrosequencing data are shown in Figure 4. The 

curves for samples A1 and A2 are very similar, while the curve for sample C is again 

different, reflecting the lower richness of this sample. None of the curves level out 

completely, suggesting that additional sequencing effort would reveal greater 

richness. 

 

Figure 3. Rarefaction curves for endodontic samples A1, A2 and C analysed by 
cloning / sequencing. 

 

 

Figure 4. Rarefaction curves for endodontic samples A1, A2 and C analysed by 454 
pyrosequencing. 
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2.4.2.2 Cultural analysis of the sample A1 

A total of 90 isolates from anaerobic incubation of FAAB were identified by 

16S rRNA gene sequence analysis. The number of observed OTUs was of 18, higher 

than the corresponding value for the cloning / sequencing method. The estimated 

Catchall richness was 24.1, with an estimated coverage of 75 %, while the Good's 

coverage value was of 0.92. The Chao1 value was higher than that of the cloning / 

sequencing method (23.3 to 16.2), but the diversity index by Inverse Simpson was 

lower (7.7 to 9.89). No colonies were observed on plates incubated in aerobic 

conditions. 

One of the isolates was identified as not-yet-cultured Prevotella sp. HOT300. 

Its growth was dependent on the presence of helper strain P. acnes (Figure 5). The 

full length sequence of the 16S rRNA gene showed 99.2 % identity to that of the 

HOMD reference sequence for Prevotella sp. HOT300. This isolate was submitted to 

HOMD for genome sequencing as it was the first cultivated strain for this taxon. 

 

 

Figure 5. The growth of Prevotella sp. HOT300 was dependant on the presence of 
helper strain. 

 

P. acnes Prevotella HOT300 
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2.4.2.3 Phylogenetic assignment 

The phylogenetic identification of the sequences is shown in Table 4 and 

Figure 6. All samples were dominated by the phylum Firmicutes, which comprised 

61 % of the sequences. Representatives of the phyla Bacteroidetes, Fusobacteria, 

Actinobacteria, Spirochetes, Synergistetes, Proteobacteria, Tenericutes and TM7 

were also detected. Of these, only Firmicutes, Actinobacteria, Bacteroidetes and 

Tenericutes were detected by culture of sample A1, with Actinobacteria 

overrepresented compared to the molecular methods.  

 

Figure 6. Bacterial composition of endodontic samples at phylum level, analysed 
by 454 pyrosequencing, cloning and Sanger sequencing, and isolation. 
 

The composition of each sample is shown in the phylogenetic trees in Figure 7 

to Figure 11. The cut-off used for species identification was 99 %. Where there were 

several hits of over 99 %, all are listed, separated by slash symbols.  
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Table 4. Number of taxa detected and the percentage of the sequences for each 
phylum in endodontic samples A1, A2 and C, analysed by pyrosequencing (py), 
cloning and Sanger sequencing (Sanger), and isolation (I).  

                 Samples 
Phylum 

A1 
py 

A1 
Sanger 

A1  
I 

A2  
py 

A2 
Sanger 

C  
py 

C  
Sanger 

Total/ 
mean 

Firmicutes 
20 9 10 22 9 10 4 33 

60.4 69.9 62.1 53.0 57.8 74.1  48.9 60.9 

 
       

 

Bacteroidetes 
18 4 4 12 5 6 1 22 

34.1 26.7 13.3 33.6 37.7 1.5 14.6 23.1 

 
       

 

Fusobacteria 
2 

  
3 1 3 2 4 

2.6 
  

5.1 1.1 14.5 26.0 7.0 

 
       

 

Actinobacteria 
3 1 3 4 1 2 

 

7 

1.1 2.2 24.4 4.0 1.1 0.3 
 

4.7 

 
       

 

Spirochetes 
2 

  
4 

 
2 2 6 

0.3 
  

0.6 
 

9.2 10.4 2.9 

 
       

 

Synergistetes 
2 1 

 
2 1 1 

 

2 

0.5 1.1 
 

2.2 2.2 0.2 
 

0.9 

 
       

 

Proteobacteria 
5 

  
8 

 
1 

 

9 

0.8 
  

1.5 
 

0.2 
 

0.4 

 
       

 

Tenericutes 
1 

 
1 

    

1 

0.3 
 

1.1 
    

0.2 

 
       

 

TM7 
     

1 
 

1 

     
0.1 

 

0.01 

 
        Total 53 15 18 55 17 26 9 

 
 

The most frequently detected species in sample A1 was Dialister invisus / 

HOTA97. It made up around 20 % of all identified sequences by both 

pyrosequencing and Sanger sequencing. The proportion recovered by culture was 

lower at 4.4 %. Peptostreptococcus stomatis / HOTE46 and Pseudoramibacter 

alactolyticus were the next most frequently seen, with approximately 7 % of 
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pyrosequencing and 15.6 and 13.3 % of Sanger-identified sequences, respectively. 

Parvimonas micra / HOT393 made up 7 % of pyrosequencing sequences and 22.2 % 

of identified isolates, but only 5.6 % of Sanger sequences. Prevotella nigrescens, oris 

and sp. HOT526 were the predominant Bacteroidetes species, with more than 20 % 

of total sequences for both culture-independent methods, but only P. nigrescens 

was detected by culture. Olsenella uli made up 20 % of identified isolates, but only 

2.2 % of clones and was not detected by pyrosequencing. 

Sample A2 was dominated by Prevotella nigrescens, with around 20 % of 

sequences for both Sanger and pyrosequencing methods. Another well represented 

Bacteroidetes taxon was Bacteroidetes sp. HOT365 / HOTG44 / HOT281, a member 

of a deep branch with no cultivated representatives. For the Firmicutes phylum, the 

dominating taxa were Filifactor alocis, Pseudoramibacter alactolyticus and 

Peptostreptococcus stomatis / HOTE46. 

Peptostreptococcus stomatis / HOTE46 made up a substantial proportion of 

Sample C with 56.25 % of pyrosequencing and 35.4 % of Sanger sequences. The 

next commonest taxa were Fusobacterium nucleatum ss. animalis, with 13.5 and 25 

%, and Eubacterium yurii / Peptostreptococcaceae sp. HOT106 (13.8 and 6.3 %). 

Treponema species (T. maltophilum and T. vincentii) were also well represented and 

made up 10 % of sequences obtained by Sanger sequencing and just under that for 

pyrosequencing. 

No representatives of the Proteobacteria phylum or Veillonella or 

Streptococcus genera were detected in any of the samples by the traditional cloning 

and sequencing method or culture. They were detected only by pyrosequencing.  
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Mogibacterium diversum / vescum / neglectum, Peptostreptococcus stomatis 

/ HOTE46, some of the Prevotella species, Fusobacterium nucleatum ss. animalis 

and Fretibacterium fastidiosum were among species detected in all three samples. 

Dialister species, Lactobacillus catenaformis, Solobacterium moorei, Eubacterium 

infirmum (and closely related Peptostreptococcaceae species), Eubacterium 

nodatum / HOTG32, Pseudoramibacter alactolyticus, Atopobium rimae and 

Olsenella species, Fretibacterium sp. HOT360 / HOT453 and Campylobacter gracilis 

were among species detected in both samples A but not in sample C. On the other 

hand, Veillonella dispar / parvula / HOTG30, Capnocytophaga species, Actinomyces 

species, Fusobacterium naviforme, Treponema vincentii and TM7 phylum 

representatives were detected only in sample C.  

 

Figure 7 (page 100). The phylogenetic tree of taxa belonging to the phylum 
Firmicutes detected in endodontic samples. Numbers represent the percentage of 
sequences belonging to the corresponding taxon for each detection method. 

Figure 8 (page 101). The phylogenetic tree of taxa belonging to the phylum 
Firmicutes detected in endodontic samples (continued).  

Figure 9 (page 102). The phylogenetic tree of taxa belonging to the phylum 
Bacteroidetes detected in endodontic samples. 

Figure 10 (page 103). The phylogenetic tree of taxa belonging to the phylum 
Actinobacteria, Fusobacteria, TM7 and Synergistetes detected in endodontic 
samples. 

Figure 11 (page 104). The phylogenetic tree of taxa belonging to the phylum 

Proteobacteria, Spirochetes and Tenericutes detected in endodontic samples. 
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Firmicutes 1 

A1 
py 

A1 
Sanger 

A1 
cult 

A2  
py 

A2 
Sanger 

C  
py 

C 
Sanger 

 

2.72 3.3 2.2 4.21 1.1   

19.30 21.1 4.4 8.52 5.6   

     0.09  

0.76       

0.32   0.03    

0.19   0.36    

     0.09  

     0.27  

0.06       
     0.09  

   0.03    

     0.09  

   0.03    

0.06       

0.06       

3.80   0.92    

4.43  3.3 3.68    

   0.03    

       

 Dialister pneumosintes/HOTD97/HOT502 

 Dialister invisus/HOTA97 

 Anaeroglobus geminatus 

 Veillonellaceae sp. HOT155 

 Veillonellaceae sp. HOT132/HOT129/HOTB19 

 Selenomonas sputigena/HOT134/HOTC23 

 Selenomonas sp. HOTF21 

 Veillonella dispar/parvula/G30 

 Veillonella rogosae 

 Streptococcus anginosus 

 Streptococcus constellatus/intermedius/HOTE12 

 Streptococcus gordonii/HOTH24 

 Streptococcus sp. HOT058 

 Streptococcus infantis/HOT065 

 Streptococcus mitis bv 2/HOTC56 

 Lactobacillus catenaformis 

 Solobacterium moorei 

 Mucilaginibacter sp. 

0.05 
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Firmicutes 2 A1 
py 

A1 
Sanger 

A1 
 cult 

A2 
py 

A2 
Sanger 

C  
py 

C 
Sanger 

 

2.03 4.4 4.4 0.21    
0.25       

   0.21    

3.10 3.3 6.7 4.46 8.9 3.19 6.3 

1.39 2.2 1.1 0.68    

6.90 15.6 6.7 7.81 10.0 56.25 35.4 

     13.84 6.3 

   10.12 12.2 0.09  

7.03 13.3 7.8 7.78 15.6   

   0.03    

7.09 5.6 22.2 3.39 2.2  1.0 

0.06       

0.76  3.3 0.47 1.1   

     0.09  

0.13 1.1  0.03 1.1   

       

 Eubacterium infirmum 

 Peptostreptococcaceae sp.HOT369/HOT103 

 Peptostreptococcaceae sp. HOTB61 

 Mogibacterium diversum / vescum / neglectum 

 Eubacterium nodatum / HOTG32 

 Peptostreptococcus stomatis / HOTE46 

 Eubacterium yurii / Peptostreptococcaceae  
                                             sp. HOT106 

 Filifactor alocis 

 Pseudoramibacter alactolyticus 

 Clostridiales sp. HOT093 

 Parvimonas micra / HOT393 

 Catonella morbi 

 Shuttleworthia satelles / HOTG69 

 Oribacterium sinus 

 Oribacterium sp. HOT372/HOT078/HOTA41 

0.05 
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Bacteroidetes A1  
py 

A1 
Sanger 

A1  
cult 

A2  
py 

A2 
Sanger 

C 
 py 

C 
Sanger 

 

0.06       

0.06       
0.13  1.1 0.47 1.1 0.09  

0.06       

9.50 5.6 7.8 19.12 21.1   

1.65  2.2 0.65  0.09  

0.06       

6.84 8.9  0.27  0.09  

0.06       
4.43 10.0  0.42 1.1   

0.25   0.27    
0.06       

1.90  2.2 0.06  0.09  

0.51   0.06    
3.80       

   0.50    
0.19   0.06    
4.11 2.2  2.85 2.2   

     0.09 14.6 

     1.06  
0.38       

   8.85 12.2   

       

 Prevotella histicola 

 Prevotella melaninogenica/HOT313/HOTE10 

 Prevotella denticola/HOTG57/HOTG70 

 Prevotella pallens 

 Prevotella nigrescens 

 Prevotella sp. HOT300/292 

 Prevotella salivae/HOTE13 

 Prevotella oris 

 Prevotella sp. unclassified 1 

 Prevotella sp. HOT526 

 Prevotella sp. HOT315 

 Prevotella marshii 

 Prevotella oralis 

 Prevotella pleuritidis/HOT296 

 Prevotella enoeca 

 Alloprevotella rava 

 Alloprevotella tannerae 

 Porphyromonas endodontalis/HOTG50 

 Capnocytophaga sp. unclassified 

 Capnocytophaga sp. HOT380/HOTE54 

 Tannerella forsythia 

 Bacteroidetes sp. HOT365/HOTG44/HOT281 

0.05 



103 
 

Actinobacteria – Fusobacteria – TM7 – Synergistetes A1  
 py 

A1 
Sanger 

A1  
cult 

A2  
 py 

A2 
Sanger 

C  
 py 

C 
Sanger 

 

     0.18  

     0.09  

0.63  2.2 0.15    
   0.03    

0.38   3.83 1.1   

 
2.2 20.0 0.03 

   

0.06       

     0.71  
   0.03    

   0.03  0.27 1.0 

2.59   5.05 1.1 13.49 25.0 
     

0.09 

 

0.32 1.1  0.33  0.18 
 

0.13   1.90 2.2   

       

 Actinomyces israelii 

 Actinomyces sp. HOTB78/HOTE33/HOTF78/                              
           HOT169  

 Atopobium rimae 

 Olsenella profusa 

 Olsenella sp. HOT809 

 Olsenella uli  

 Rothia mucilaginosa 

 Fusobacterium naviforme 

 Fusobacterium nucleatum ss. polymorphum 

 Fusobacterium nucleatum ss. vincentii 

 Fusobacterium nucleatum ss. animalis 

 TM7 sp. clone TSS007 

 Fretibacterium fastidiosum 

 Fretibacterium sp. HOT360/HOT453 

0.05 

A
c

ti
n

o
b

a
c

te
ri

a
 

Fusobacteria 

Synergistetes 

TM7 
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Proteobacteria – Spirochetes – Tenericutes A1  
py 

A1 
Sanger 

A1 
cult 

A2  
py 

A2 
Sanger 

C  
 py 

C 
Sanger 

 

0.38   1.01    

   0.03    

   0.03    

   0.03  0.18  

0.13   0.03    

0.06   0.06    

   0.06    

0.06   0.03    

0.19   0.18    

0.25  1.1     
0.13   0.21    

0.19       

   0.06    

   0.24  6.03 2.1 

   0.06    

     3.19 8.3 

       

 Campylobacter gracilis 

 Novosphingobium capsulatum/sp. NG35/MG37/MG39/MG40/MG43/MG44 

 Hafnia/Aranicola/Serratia 

 Proteus mirabilis 

 Leptothrix sp. HOT025 

 Comamonadaceae sp. unclassified 1 

 Burkholderiales sp. HOTA57 

 Ralstonia pickettii/HOTB67/HOT406 

 Sphingobacteriales sp. unclassified 

 Mycoplasma salivarium 

 Treponema socranskii ss socranskii/ss 04 

 Treponema socranskii ss buccale 

 Treponema lecithinolyticum 

 Treponema maltophilum 

 Treponema denticola 

 Treponema vincentii 

0.05 

S
p

ir
o

c
h

e
te

s
 

Tenericutes 

P
ro

te
o

b
a

c
te

ri
a
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The number of OTUs shared between samples, as analysed by mothur, is 

represented in Figure 12. The number of shared OTUs appears smaller than the 

number of shared taxa, as different samples might contain different variants, 

identified as separated OTUs by mothur.  

 

 

 

Figure 12. Venn diagram for Samples A1, A2 and C, analysed by 454 
pyrosequencing. Numbers represent OTUs per sample and OTUs shared between 
samples. 
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The Jaccard index was calculated to compare the community membership for 

endodontic samples. The resulting distances between communities were visualised 

by hierarchical clustering in a dendrogram (Figure 13). For each sample, 

communities analysed by Sanger and pyrosequencing clustered together. 

Furthermore, Samples A1 and A2, obtained from the same patient, were more 

closely related between them than with the sample C. However, parsimony 

unweighted UniFrac analyses showed no significant differences between the 

samples or between patients (samples A1 and A2 versus sample C). The principal 

coordinate analysis (PCoA) of the Jaccard index distance matrix gave a similar 

clustering pattern (Figure 14). The genetic distance between the patients (A vs C) 

was found to be significant by Amova analysis (p<0.001).  

 

 

Figure 13. Dendrogram representing distances between endodontic samples 
communities calculated by the Jaccard index. 

 

 C0 454

 C0

 A20 454

 A20

 A10 454

 A10

0.1



107 
 

 

Figure 14. PCoA of the Jaccard index-calculated distances between the endodontic 
samples analysed by Sanger sequencing or 454 pyrosequencing. 

 

The corr.axes command in mothur allows the calculation of the correlation 

coefficient between each OTU and the axes displayed in a PCoA file. It reveals the 

OTUs which drive the differences between certain samples. Peptostreptococcus 

stomatis and Porphyromonas endodontalis were the taxa responsible for driving the 

points coordinates in the positive and negative directions on the axis 1, 

respectively, with p values of 0 and 0.001. This would suggest that these OTUs are 

primarily responsible for the differences between patients A and C, with P. stomatis 

representative of the patient C and P. endodontalis of the patient A. Twenty one 

other OTUs, belonging to 5 phyla, however, had a p value less than 0.05 for axis 1. 

On axis 2 only M. diversum / vescum / neglectum had a p value of <0.03, driving the 

position in negative direction. Four other OTUs had a p value <0.05, all tending in 

the negative direction. Two were identified as Filifactor alocis, one as Bacteroidetes 

sp. HOT365 and one as unclassified Flavobacteriales. This would suggest that these 
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OTUs were associated with sample A2. The LEfSe analysis, however, found no OTUs 

significantly different between samples or patients. 

The comparison of the community structure of samples was calculated with 

the theta YC metric. The dendrogram and PCoA obtained from this analysis were 

very similar to those obtained from the Jaccard index. The Amova analysis indicated 

significant difference not only between patients, but also between all three samples 

(p<0.001). 

Samples were also compared based on their phylogenetic similarity by 

weighted and unweighted UniFrac analysis. The unweighted UniFrac analysis, 

comparing the community membership, showed a significant difference between 

patients (Amova p<0.001) but not between samples A1 and A2 (p=0.344). The 

weighted UniFrac analysis, comparing community structures by taking into account 

relative abundances of taxa, presented a significant difference between all patients 

and samples.  

2.4.3 CMM culture of the endodontic samples 

Samples A1 and A2 were cultured in CMM supplemented with serum, vitamin 

K and haemin, with passages every 10 d, up to 120 d of cumulative culture. At this 

point the interval between passages was increased to 30 d up to 210 d, after which 

it was reduced to 10 d, up to 480 d. 

Sample C was cultured in CMM supplement with serum, vitamin K and 

haemin, with passages every 10 d up to 60 d, at which point two new vials were 

inoculated, one in the same conditions as before and one supplemented with 



109 
 

mucin. From this point onwards cultures of the sample C with and without mucin 

were analysed.  

2.4.3.1 Statistical analysis for cloning / sequencing and 454 pyrosequencing 

At 120 d, 1525 and 1094 sequences were obtained by pyrosequencing from 

samples A1 and A2, respectively. For sample C at 50 and 140 d, with and without 

mucin, 1369, 1678 and 840 sequences were analysed. The datasets were 

subsampled to 840 sequences for statistical analysis, but the phylogenetic analysis 

was performed on all sequences. Ninety sequences were obtained for each sample 

by the clone / Sanger analysis. Some time points from the CMM culture of the 

sample C had a lower number of sequences identified by Sanger sequencing and 

were subsampled to 46 sequences for statistical analysis. 

The -diversity analysis of datasets obtained by Sanger or pyrosequencing for 

endodontic samples and corresponding CMM cultures is presented in Table 5. For 

all samples the richness and the diversity of CMM cultures were lower than that of 

the endodontic samples from which they originated, with one exception discussed 

further. In all samples a further progressive loss of richness in culture was observed, 

with a reduction in the number of observed taxa, as well as a decrease of the 

CatchAll estimate, Chao1 and Inverse Simpson diversity index values. For samples 

A1 and A2 the largest reduction was observed between 120 and 150 d, 

corresponding to the increased incubation time. The subsequent reduction of the 

incubation time failed to re-establish the initial diversity. The inclusion of mucin in 

the sample C culture, however, increased the richness seen. At 110 and 140 d of 

culture with mucin the number of observed taxa (13 and 16), the diversity 
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estimated by CatchAll (15.3 and 19.5) and the Inverse Simpson diversity index (6.31 

and 8.73) were higher than in the endodontic sample C (9 taxa, 9 and 4.51, 

respectively). It was also higher when compared to the corresponding samples 

without mucin, as the number of observed taxa were 8 at 110 and 140 d in this 

case, the same as CatchAll estimates; the Inverse Simpson diversity index was 2.51 

at 110 d and 1.92 at 140 d.  

The pyrosequencing data set of the culture of the sample C presents a 

different picture, with higher diversity observed at 140 d of culture, both with and 

without the addition of mucin, than in the original endodontic sample. 

The Wilcoxon signed-rank test showed that values for all α-diversity indexes 

were significantly different between A1 and C CMM cultures, but only when values 

for C culture with mucin were not taken into account. All other compared sets 

returned no significant p values.  

The rarefaction curves for Sanger analysis of the CMM cultures are 

represented in . Some of the curves, referring to cultures derived from samples A1 

and A2, at 480 d and culture C at 30, 50 and 70 d, leveled out completely, 

suggesting that all the diversity was sampled. The rarefaction curves for the 

pyrosequencing analysed data, subsampled at 840 sequences, are represented in 

Figure 18. The curve for sample C CMM 50 d is the only curve to level out.  
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Table 5. α-diversity and richness of the endodontic infections A1, A2 and C and 
corresponding CMM cultures. 

Samples and 
time points (d) 

N 
seqs 

Sobs 
Good's 

coverage 
CatchAll 
estimate 

CatchAll 
cov. % 

Chao1 invsimpson 

Pyrosequencing data 

A1 
0 840 54 0.98 114.3 52.49 75.86 16.69 

120 840 26 0.99 36.2 71.82 38 7.55 

         

A2 
0 840 57 0.97 109.9 56.41 120.25 14.05 

120 840 39 0.98 86.9 44.88 115.5 5.44 

         

C 

0 840 29 0.98 33 100 124 3.06 

50 840 17 0.99 22.8 74.56 22 4.37 

140 840 35 0.98 92.6 37.80 92 6.40 

140, 
mucin 

840 33 0.98 77.1 42.80 52.5 10.22 

Sanger data 
       

A1 
 

0 90 16 0.98 19.5 82.05 16.2 9.89 

10 90 14 0.96 18.6 75.27 16 6.29 

20 90 14 0.94 17.3 80.92 16.5 6.62 

120 90 13 0.98 16.1 80.75 13.3 5.92 

150 90 9 0.96 9 100 12 3.35 

310 90 11 0.97 12.5 88.00 12.5 3.84 

480 90 5 1.00 ND ND 5 1.55 

         

A2 

0 90 19 0.91 24.1 78.84 26 9.96 

10 90 18 0.91 24.6 73.17 32 6.68 

120 90 16 0.96 21.6 74.07 17.2 7.60 

150 90 13 0.94 15.6 83.33 23 6.42 

310 90 7 0.98 7 100 8 2.93 

480 90 5 0.99 5 100 5 1.50 

         

C 

0 90 9 0.98 9 100 9.5 4.51 

10 46 7 0.96 7 100 8 4.11 

20 46 7 1.00 7 100 7 4.28 

30 90 5 0.98 5 100 6 2.07 

50 46 5 0.98 5 100 5 2.39 

70 46 6 0.98 6 100 6 3.47 

70, 
mucin 

46 5 1.00 5 100 5 4.04 

110 90 8 0.98 8 100 8.3 2.51 

110, 
mucin 

90 13 0.95 15.3 84.97 19 6.31 

140 90 8 0.98 8 100 8.3 1.92 

140, 
mucin 

90 16 0.93 19.5 82.05 21 8.73 
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Figure 15. Rarefaction curves for the endodontic sample A1 and derived CMM 
cultures analysed by cloning / sequencing. 

 

 

Figure 16. Rarefaction curves for the endodontic sample A2 and derived CMM 
cultures analysed by cloning / sequencing. 
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Figure 17. Rarefaction curves for the endodontic sample C and derived CMM 
cultures analysed by cloning / sequencing. 

 

 

Figure 18. Rarefaction curves for the endodontic samples A1, A2 and C and 
derived CMM cultures analysed by pyrosequencing. 
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2.4.3.2 Phylogenetic analysis  

The composition of the CMM culture samples over time is presented in 

Appendix 1.  

2.4.3.2.1 CMM cultures of the samples A1 and A2 

At 10 d culture A1 was analysed by Sanger analysis only. It was dominated by 

Eubacterium nodatum, with 30.0 % of sequences, followed by Parvimonas micra / 

HOT393 (22.2 %), Pseudoramibacter alactolyticus (11.1 %), Mogibacterium species 

(not distinguishable by 16S rRNA gene sequencing, 7.8 %), and Peptostreptococcus 

stomatis (5.6 %).  

At 20 d, the numbers of P. micra remained high at 25.6 %, but those of E. 

nodatum were reduced to 12.2 %. Two other taxa increased in numbers at this time 

point, Anaeroglobus geminatus, at 18.9 %, and Prevotella oralis (17.8 %).  

At 120 d, culture A1 was still dominated by A. geminatus and P. oralis, 

analysed by both Sanger and pyrosequencing. Other taxa found in significant 

numbers were Dialister invisus / HOTA97 (13.0 and 10 %), Campylobacter gracilis 

(9.0 and 2.2 %) and Eubacterium infirmum (8.0 and 10.0 %).  

None of the taxa mentioned above were detected when the incubation time 

was increased to 30 d, at the 150 d time point, apart from E. infirmum, at 1.1 %. The 

predominant species were similar to those seen at 10 d of culture: Mogibacterium 

species (43.3 %) followed by P. micra (24.4 %) and E. nodatum (20.0 %). A similar 

distribution was also seen at 310 d, although the incubation time was reduced to 10 

d. At 480 d P. micra made up 82.2 % of the total, with only 4 other species present: 
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Pseudoramibacter alactolyticus (6.7 %), Eubacterium infirmum (5.6 %), Olsenella sp. 

HOT809 (3.3 %) and Mogibacterium sp. (2.2 %).  

The CMM culture derived from sample A2, at 10 d, was predominantly 

composed of Mogibacterium species (31.1 %), Streptococcus constellatus / 

intermedius / HOTE12 (15.6 %), P. micra (12.2 %), Filifactor alocis (12.2 %), 

Pseudoramibacter alactolyticus (6.7 %) and Olsenella HOT809 (6.7 %). After 120 d, 

the most frequently detected species were Fusobacterium nucleatum ss. animalis 

(33.4 % by pyrosequencing, 15.6 % by Sanger), Anaeroglobus geminatus (17.7 and 

21.1 %, respectively), S. constellatus (9.9 and 22.2 %) and P. micra (6.21 and 12.2 

%). The numbers of Mogibacterium sp. were reduced to 1 % of sequences by both 

methods at 120 d, but the proportions increased after the change to 30 d between 

passages, with 25.6 % at 150 d. Other species which also increased in numbers were 

F. alocis (23.3 %), P. micra (20.0 %) and E. nodatum (15.6 %). Reverting to 10 d 

incubation did not restore the bacterial composition to the equivalent of earlier 

stages. The diversity was further reduced to 5 species and dominated by S. 

constellatus (52.2 %) and P. micra (26.7 %). As with the A1 sample, at 480 d P. micra 

dominated, making up 80 % of sequences. 

2.4.3.2.2 CMM cultures of the sample C 

 The culture derived from sample C was dominated by Veillonella dispar / 

parvula / HOTG30 species. Detected at less than 1 % in the original sample, it 

represented between 43.1 and 92.4 % of all sequences up to 110 d. At 50 d it made 

up 90.0 % of Sanger-analysed clones, but only 43.1 % of pyrosequencing sequences. 

Other species constituting a significant proportion of the culture were Eubacterium 



116 
 

yurii / HOT106 (23.2 and 16.9 %) and F. nucleatum ss. animalis (20.3 and 9.2 %) at 

10 d and 20 d, respectively and Streptococcus sp. HOT058 (5.4 %) at 30 d. At 50 d, 

the composition was analysed both by pyrosequencing and Sanger sequencing. 

Only 3 other species were detected by Sanger sequencing apart from V. dispar: 

Streptococcus sp. HOT058 (5.7 %), F. nucleatum ss. vincentii (2.9 %) and 

Peptostreptococcus stomatis (1.4 %). V. dispar made up 43.1 % of pyrosequencing-

analysed sequences, followed by F. nucleatum ss. animalis (22.3 %), Streptococcus 

sp. HOT058 (13.7 %), E. yurii (8.4 %) and P. stomatis (7.6 %). In CMM culture 

without the addition of mucin V. dispar dominated the culture up to 110 d, with 

Streptococcus sp. HOT058, E. yurii and F. nucleatum ss. animalis also present. At 

140 d, however, the dominant species was P. micra (40.4 % of pyrosequencing 

sequences and 72.6 % of Sanger sequences). Other species detected by 

pyrosequencing mainly included E. yurii (19.3 %), P. alactolyticus (16.7 %) and 

Clostridiales sp. HOTC47 (13.1 %), while in the Sanger analysis the only other 

species above 10 % was Peptoniphilus indolicus (14.7 %).  

After 60 d of culture a subsample was inoculated in CMM supplemented 

additionally with mucin. At 70 d only 3 taxa were identified in the mucin-

supplemented culture: V. dispar (47.7 %), E. yurii (38.6 %) and Streptococcus sp. 

HOT058 (13.6 %). At 110 d, 11 species were identified, including Peptostreptococcus 

stomatis and Streptococcus gordonii. At 140 d the microbiome was dominated by 

Clostridiales sp. HOTC47 (25.5 % by pyro- and 23.3 % by Sanger sequencing) and V. 

dispar (22.3 and 24.4 %), with 11 other species detected. Compared to non-mucin 

CMM culture, at 140 d mucin-supplemented CMM presented no P. micra and P. 
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alactolyticus species but large numbers of V. dispar and F. nucleatum ss. animalis, 

absent in the former.  

The Jaccard index analysis visualised by PCoA shows that samples A1 and A2 

and cultures derived from them are indistinguishable, but well separated from the 

sample C (Figure 19). The addition of mucin to the CMM culture of sample C had 

only a minor effect on the composition of the community. The parsimony analysis 

and unweighted UniFrac confirmed the significance separation by patient (both 

with p=0.001) and the absence of significant separation between sets A1 and A2 

when samples and CMM culture data were combined or between endodontic 

samples and corresponding CMM culture. Finally, the Amova test showed that 

endodontic samples were not significantly different from the corresponding CMM 

cultures (A1 p=0.055, A2 p=0.209, C p=0.438), but were significantly different from 

any other CMM culture (p<0.001). When the same time points were considered for 

CMM culture of sample C with and without the addition of mucin, the difference 

was not statistically significant (p= 0.453). 

OTUs responsible for the increased values on the axis 1 (p<0.001) were 

Parvimonas micra, Pseudoramibacter alactolyticus, Mogibacterium sp., 

Eubacterium infirmum, Olsenella sp. HOT809 and Granulicatella adiacens. Those 

responsible for a negative x value were V. dispar / parvula and Streptococcus sp. 

HOT058. This separation corresponds to the species representative of samples A1 

and A2 and corresponding CMM cultures, for the first group, and for the sample C 

and the corresponding CMM culture for the second group. However no OTUs were 

found to differ significantly between samples by LEfSe analysis.  
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The analysis of the structure of the communities by theta YC showed a 

significant difference between patients (parsimony p=0.027, unweighted UniFrac 

p=0.034), but not between sets A1 and A2 when samples and CMM culture data 

were combined or between endodontic samples and their corresponding CMM 

culture. 

When samples were compared based on their phylogenetic similarity by 

weighted and unweighted UniFrac the significance of separation between samples 

was confirmed (p<0.001), but not for any other compared sets. 

 
Figure 19. PCoA of the Jaccard index for endodontic samples and derived CMM 
cultures. 

-0.5 

-0.4 

-0.3 

-0.2 

-0.1 

0 

0.1 

0.2 

0.3 

0.4 

-0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 

ax
is

 2
 

axis 1 

A1 sample Sanger A1 sample pyrosequencing 

A1 CMM culture A2 sample Sanger 

A2 sample pyrosequencing A2 CMM culture 

C sample Sanger C sample pyrosequencing 

C CMM culture C CMM + mucin culture 

480 d 

480 d 
150 d 

150 d 
310 d 

310 d 

10 d 
20 d 10 d 

120 d 

10 d 

120 d 

120 d 
pyrosequencing 

120 d 
pyrosequencing 

30 d 
50 d 

50 d pyrosequencing 

140 d 
20 d 

110 d 

70 d 
70 d 

140 d pyrosequencing 140 d pyrosequencing 

140 d 

110 d 



119 
 

2.4.4 Uncultured bacteria in CMM culture 

Several taxa of not-yet-cultured bacteria detected in the endodontic samples 

analysed in this study are described in Table 6. The table is separated in two parts, 

with the first including validated HOTs, well represented in molecular analyses but 

not cultivated. They are part of the main database of HOMD. The second part 

contains taxa that were detected in oral samples by other studies and are candidate 

HOTs, members of the extended set on HOMD. This section also includes taxa with 

only low similarity to any sequences in the database.  

Some of these taxa persisted in the CMM culture, such as Bacteroidetes sp. 

HOT365 / HOTG44 / HOT281, detected at 120 d of CMM culture of sample A2 by 

pyrosequencing, at 0.20 %. Peptostreptococcaceae sp. HOT369 / HOT103 taxon was 

detected at 10 d of culture of sample A1 (2.2 %, Sanger) and at 120 d of culture of 

A2 (0.1 %, pyrosequencing) and Actinomyces sp. HOTB78 / HOTE33 / HOTF78 / 

HOT169 was detected at 120 d of A2 (0.1 %, pyrosequencing). Prevotella sp. 

HOT300 / HOT292 was also detected in the cultures of both A1 and A2, but it is not 

a genuine "uncultured" species, as an isolate identified as Prevotella sp. HOT300 by 

full-length 16S rRNA sequencing was isolated from the A1 endodontic sample in this 

study.  

Some "uncultured" taxa were detected in CMM culture but not in the 

corresponding endodontic samples, such as Actinomyces sp. HOT172 and 

Peptococcus sp. HOTD92, both detected exclusively at 120 d of culture of the A2 

sample (0.1 % of pyrosequencing sequences, both). In culture derived from sample 

C, some uncultured species made up a significant part of the microbiota. For 
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instance, in the pyrosequencing analysis, Clostridiales sp. HOTC47, Finegoldia sp. 

HOTD24 and Treponema sp. HOT258 were 25.46 %, 5.97 % and 4.63 % of the total, 

respectively.  

Table 6. Uncultured species in the endodontic samples and their proportion of the 
total number of bacteria (%). *An isolate was identified during culture analysis of 
the A1 endodontic sample. 

 
A1  A2 C  

Uncultured phylotypes py Sanger py Sanger py 

Bacteroidetes sp. HOT365 / HOTG44 / HOT281 
  

8.85 12.2 
 Clostridiales sp. HOT093 

  
0.03 

  Fretibacterium sp. HOT360 / HOT453 0.13 
 

1.90 2.2 
 Leptothrix sp. HOT025 0.13 

 
0.03 

  Peptostreptococcaceae sp. HOT369 / HOT103 0.25 
    Prevotella sp. HOT300 / HOT292* 1.65 
 

0.65 
 

0.09 

Prevotella sp. HOT315 0.25 
 

0.27 
  Prevotella sp. HOT526 4.43 10.0 0.42 1.1 

 TM7 sp. clone TSS007 
    

0.09 

      Actinomyces sp. HOTB78 / HOTE33 / HOTF78 / 
HOT169 

    

0.09 

Burkholderiales sp. HOTA57 
  

0.06 
  Capnocytophaga sp. HOT380 / HOTE54 

    
1.06 

Mucilaginibacter sp.  
  

0.03 
  Peptostreptococcaceae sp. HOTB61 

  
0.21 

  Ralstonia sp. HOTB67 0.06 
 

0.03 
  Selenomonas sp. HOTF21 

    
0.09 
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2.5 Discussion 

Culture-independent molecular methods offer a reliable way to detect the 

majority of bacteria present in different environments. But the potential biases 

associated with these methods cannot be disregarded. These can be related to DNA 

extraction, PCR amplification and sequencing itself. For DNA extraction, for 

example, the amount of DNA obtained from Gram-positive and Gram-negative 

strains could differ depending on the method used. Inadequate cell lysis could 

cause reduced representation of Gram-positive bacteria, while over rigorous 

disruption may lead to highly fragmented nucleic acids from Gram-negative 

bacteria, which in turn could be a source of artifacts during PCR amplification, such 

as chimera formation (Paabo, Irwin et al. 1990). The proportion of chimeric 

sequences was as high as 8.6 % during investigation of a subgingival plaque sample 

(Choi, Paster et al. 1994). Chimeric sequences can be eliminated before analysis 

using programs such as Chimera_Check on RDPII (Maidak, Cole et al. 2001), Mallard 

(Ashelford, Chuzhanova et al. 2006) or Uchime (Edgar, Haas et al. 2011). In this 

study a total of 45 sequences were found to be chimerae in the pyrosequencing 

derived datasets, of the total 12654 sequences, or 0.36 %. The frequency of such 

recombinants seems to be directly related to the number of PCR cycles, the length 

of extension period and the sequence similarity of mixed templates (Wang and 

Wang 1996). It could be partially explained by low number of cycles (25) and long 

extension step (90 s) during the PCR reaction, as well as quality of template DNA. It 

could also be related to lack of detection of such chimeric sequences, but the 

method used, uchime, is well documented and has been extensively used in studies 

analysing bacterial populations. For instance, a comparison of different chimerae 
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detection tools, found that for sequences between 100 and 600 nucleotides of 

length, uchime and Decipher performed the best (Wright, Yilmaz et al. 2012). 

Furthermore, when studying a complex microbiota, the profile obtained will 

reflect the real relative abundance of species only if the amplification efficiency is 

the same for all sequences, which requires some assumptions. Firstly, all molecules 

should be equally accessible to primer hybridization. But DNA molecules with high 

G+C content are more difficult to denature during the PCR and could be 

underrepresented in the final amplicon mixture (Suzuki and Giovannoni 1996). In 

the present study, the phylum Actinobacteria was detected at a higher rate by 

culture than by the molecular methods, confirming earlier findings with oral 

samples (Munson, Banerjee et al. 2004, de Lillo, Ashley et al. 2006). Most members 

of this phylum have DNA of high G+C content, such as Slackia exigua, with 60 % 

G+C, and Olsenella uli, with 64.7 %. 

Secondly, the PCR primers should bind to all target sequences with the same 

efficiency; the use of degenerate “universal” primers should enable this (Frank, 

Reich et al. 2008).  

Moreover, the number of rRNA operons varies from one bacterium to 

another, affecting the proportions of amplicons obtained from components of a 

mixture (Farrelly, Rainey et al. 1995). The number of rRNA operons present in 

different species is not known even for all cultivated species, and is obviously 

unknown for not-yet-cultivated bacteria. This bias is therefore difficult to address. 

Nevertheless, it has been suggested that slow-growing bacteria have fewer copies 

than more rapidly growing organisms, although whether this is universally true has 
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yet to be confirmed (Krawiec and Riley 1990). This would have implications for this 

study, since the targets are predominantly slow-growing not-yet-cultivated 

bacteria. Furthermore, a single bacterial cell can harbour several copies of the 

genome. The case of Epulopiscium sp., with tens of thousands of copies of genome 

(Mendell, Clements et al. 2008), is extreme, but other species have been shown to 

contain more than one copy of their genome even when not undergoing cell 

division and DNA replication. For instance, Deinococcus radiodurans has been 

shown to possess four complete chromosomes during exponential growth and up 

to 16 genomes within the stationary phase (Levin-Zaidman, Englander et al. 2003). 

The pathogenic Neisseria species N. gonorrhoeae and N. meningitidis have also 

been shown to be polyploid, although, interestingly, the commensal N. lactamica 

was not (Tobiason and Seifert 2010).  

Finally, Suzuki and Giovannoni (1996) have shown that the final concentration of 

amplicons in a mixed template PCR tended toward an equimolar ratio, 

independently of original concentration of gene sequences. In contrast to the rRNA 

operon number bias, this phenomenon would favour the detection of low 

represented taxa. 

All these biases make it difficult to evaluate how close to reality is the predicted 

community structure. However, as all biases act equally on different datasets, the 

comparison of populations should be possible. Furthermore, for not-yet-cultivated 

bacteria, the detection of their 16S rRNA sequence should reflect the presence of 

the taxon in the community. The exception would be the persistence of 

extracellular DNA from dead cells, but in a batch culture model it should be quickly 
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diluted below detection levels. It could however be maintained if it was bound to 

other cells in the biofilm (Brundin, Figdor et al. 2010).  

Cooked Meat Medium is a well established medium for the cultivation of 

anaerobic and aerobic organisms (Robertson 1916). Forgan-Smith et al. (1974) 

described some limitations of cooked meat medium for the recovery of anaerobic 

bacteria from small blood inocula, compared to some other commonly used media, 

as no bacteria were recovered by subculture after 1 d of CMM culture after 

inoculation with blood at 10-6 dilution, as opposed to 7 taxa recovered from USP 

thioglycollate medium. However, for longer incubation periods (7 d), CMM was 

more competitive and was surpassed only by fresh, home-made cooked meat 

medium; 9 taxa were recovered in CMM, 12 in the home-made medium and only 5 

in USP thioglycollate medium. CMM seemed thus well suited to the objective of this 

study, namely, the establishment of a mixed batch culture with extended 

incubation times. 

Haemin and vitamin K have been shown to enhance the growth of some 

anaerobic bacteria, including the black pigmented species of the genera 

Porphyromonas and Prevotella, previously classified as subspecies of Bacteroides 

melaninogenicus (Gibbons and Macdonald 1960), and including P. endodontalis 

(van Winkelhoff, van Steenbergen et al. 1985, Zerr, Drake et al. 2001). Despite the 

inclusion of these supplements, P. endodontalis was not detected in the mixed 

culture in CMM. P. endodontalis seems to be difficult to grow in mixed culture and 

its growth was shown to be inhibited by the presence of P. micra and F. nucleatum 

(Zerr, Cox et al. 1998). In a medium not supplemented with blood, the level of P. 
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endodontalis was reduced after 24 hours of culture and was not detected after 96 

hours. In this study, P. endodontalis was detected by molecular methods in 

endodontic samples A1 and A2, but not in the corresponding CMM cultures, 

confirming the findings of the pilot study. The inclusion of these supplements in 

CMM seemed to increase the recovery rate for all bacterial species in the pilot 

study, but this difference was not statistically significant. 

The aim of this experiment was firstly to establish an in-vitro culture from 

endodontic infection. There was no significant difference between the composition 

of the CMM cultures and the endodontic samples from which they were derived, 

confirming the usefulness and relevance of this culture medium.  

Two of the studied endodontic infection samples originated from the same 

patient. These samples, A1 and A2, were more closely related than either were with 

sample C. This confirms recent data from the Human Microbiome Project showing 

that the individual host is the primary influence on microbiome composition 

(Segata et al. 2012). Nevertheless, when community structure was considered, 

taking into account relative abundance of taxa, statistically significant differences 

were observed between samples A1 and A2, presumably reflecting the different 

microhabitats present in the different teeth. 

The A1 and A2 CMM cultures at 480 d were relatively simple as only 5 OTUs 

were observed for both samples and the community was well sampled. For the 

culture of sample C, middle-term points (up to 70 d) appeared similarly simple, but 

later points developed a richer community, even more so in the presence of mucin. 

The effect of mucin supplementation was not statistically significant in this study, 
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but too few samples were analysed and a better experimental design is needed to 

test the hypothesis that the inclusion of mucin would lead to an increase in species 

richness.  

Several taxa of not-yet-cultivated bacteria were detected in endodontic 

samples, and some of them persisted in corresponding CMM cultures. For instance, 

Bacteroidetes sp. HOT365 / HOT281 / HOTG44, belonging to a deep branch with no 

cultivated representatives, was detected in CMM culture A2 up to 120 d. However, 

most of the uncultured taxa detected in endodontic samples, such as 

representatives of the Candidate Division TM7, were not detected in CMM cultures.  

One taxon considered as uncultured in the HOMD database, Prevotella sp. 

HOT300, was isolated during culture analysis of the sample A1. Its growth was 

dependent on the presence of the "helper" strain, P. acnes, and would have been 

overlooked by culture studies not using helper strains.  

The in-vitro communities established in CMM were maintained over an 

extensive period of time (up to 480 d) and were closely related to the 

corresponding endodontic infections. Several not-yet-cultured taxa were detected 

in CMM cultures even after long incubation. CMM seems to represent a suitable 

model for long-term in-vitro culture of oral bacterial communities. 
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Main findings: 

1. Bacteria from endodontic infections were successfully established in 

long-term culture in CMM; 

2. Bacterial compositions of endodontic samples from the same 

individual and derived CMM cultures presented a closer resemblance 

when compared to the unrelated sample; 

3. CMM cultures were closely related to the endodontic samples from 

which they originated; 

4. CMM cultures included several not-yet-cultured bacteria, such as 

Bacteroidetes sp. HOT365 / HOT281 / HOTG44, Peptostreptococcaceae 

sp. HOT369 / HOT103 and Actinomyces sp. HOTB78 / HOTE33 / 

HOTF78 / HOT169, up to 120 d; 

5. During culture analysis, a previously uncultured bacterium Prevotella 

sp. HOT300 / HOT292 was isolated. 
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 Chapter 3. Calgary Biofilm Device as a model for oral 

biofilms 

3.1 Introduction 

Although, as discussed in the previous chapter, Cooked Meat medium is 

undoubtedly a useful medium for the culture of mixed communities that include 

anaerobic bacteria, it also suffers from some disadvantages. When used in a serial 

batch system, only a portion of the microbiota is transmitted to the new batch, 

which disrupts the stoichiometric dynamic, as in all batch system cultures. Thus it is 

likely that some of the slowest growing bacteria, often of interest in studies 

targeting not-yet-cultured taxa, will be lost. A possible way to overcome this 

problem is to use a continuous culture biofilm model. One of the simplest of these 

models consist of biofilms growing on a solid substrate, that are replenished with 

fresh growth media at intervals.  

The Calgary biofilm device (CBD) was originally described by Ceri et al. (1999). 

It consists of a lid with 96 pegs that fits over a standard 96-well microtitre plate. It 

was primarily designed for antibiotic testing, which gave the device its alternative 

name, MBEC, for minimal biofilm eradication concentration. The CBD has been 

used to grow single species bacterial (Harrison, Ceri et al. 2005, Tomlin, Malott et 

al. 2005, Arias-Moliz, Ferrer-Luque et al. 2009) and yeast biofilms (Harrison, Rabiei 

et al. 2006), and mixed bacterial biofilms (Olson, Ceri et al. 2002). 

The initial attachment of bacteria to the substrate is a key stage in biofilm 

formation. Hydroxyapatite (HA) has been extensively used as a material to 
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reproduce biofilm formation on enamel, as it is the principal inorganic component. 

It has been used in the form of discs for multispecies biofilm growth (Alvarez, 

Gonzalez et al. 2013) and for establishing a mixed biofilm from plaque (Shen, Qian 

et al. 2009). CBD pegs used in this study were coated with HA. 

An important issue in the analysis of long term biofilm growth is the 

persistence of extracellular DNA from dead cells. This limitation can be addressed 

by the use of propidium monoazide (PMA)(Nocker, Sossa-Fernandez et al. 2007). 

This DNA intercalating agent, similar to ethidium bromide, cannot cross intact 

cellular membranes. It thus will only interact with DNA in the biofilm matrix or 

within damaged (and dead) cells. The application of a strong light source renders 

this interaction irreversible and the DNA crosslinked by PMA is rendered 

unreactive, and so will not be amplified by PCR.  

Finally, one of the aims of this work was to assess the effect of presence of 

glucose in the medium on the oral biofilm formation. The presence of glucose might 

be predicted to favour the growth of fast-growing saccharolytic bacteria, to the 

possible detriment of slow-growing not-yet-cultivated bacteria. Some oral 

environments, such as the periodontal pocket and infected root canals, have low 

levels of carbohydrates, with proteins forming the main source of nutrients for 

bacteria.  
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3.2 Aim of the experiment 

The aim of the experiments described in this chapter was to assess the 

suitability of HA coated pegs for the growth of a long term mixed oral biofilm and to 

evaluate different growth media for their capacity to sustain a mixed community 

with previously uncultured members.  

The first experiment consisted of a longitudinal analysis of the biofilm 

composition every 8 days up to 88 days. The effect of mucin addition to the growth 

medium was also investigated.  

In the second part, different growth media were compared after 24 days of 

growth, by 454 pyrosequencing. 
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3.3 Methods 

3.3.1 Calgary biofilm device or MBEC 

The HA coated MBEC (for "minimal biofilm eradication concentration") High-

Throughput culture system (Innovotech Inc, Edmonton, Alberta, Canada) was used 

(Figure 20). 

 

Figure 20. Calgary Biofilm Device with developing biofilm. 

 

3.3.2 Longitudinal analysis of the biofilm composition on pegs 

Unstimulated saliva was obtained from a periodontally healthy 27-year old 

female volunteer at least 2 hours after the last meal. Pegs were incubated in 200 μL 

of saliva overnight at 37 °C, anaerobically. The lid was then transferred to a new 

base plate containing 200 μL of growth medium per well. The medium was Brain 

Heart Infusion broth (BHI, Fluka), supplemented with vitamin K (0.5 μg/ml) and 

haemin (5 μg/ml), with or without pig gastric mucin (2.5 %, Type III, Sigma). In 

addition, a medium described for salivary bacteria recovery containing sheep blood, 
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SHI, was also used (Tian, He et al. 2010). The distribution of media on the plate is 

shown in Figure 21.  

 

Figure 21. Schematic representation of the CBD anaerobic experiment. 

 

The plate was incubated anaerobically at 37 °C and the media changed every 

48 hours. The composition of the biofilm was analysed every 8 days by cloning and 

Sanger sequencing. Pegs were snapped off the plate with forceps and washed three 

times in PBS by dipping. Biofilms from 3 pegs were then carefully removed by 

scraping and placed in 500 μL of PBS in a 1.5 mL tube. DNA was extracted and 16S 

rRNA genes amplified, cloned and sequenced as described in section 2.3.2.5. At 24 

days, the composition of the biofilms was also analysed by 454 pyrosequencing 

(section 2.3.2.5.5). In addition, a cultural analysis was performed at 48 days, with 39 

isolates identified for BHI without mucin and 50 for BHI with mucin, on FAAB.  
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3.3.3 Validation of peg biofilm culture as a model for oral microbiota 

The experiment was carried out in triplicate. Peg cultures were set up from a 

saliva inoculum as described in 3.3.2. Three different media were used: BHI with 2 

% glucose, BHI without glucose and BMM (media composition described in page 

135). The distribution of pegs to media is shown in Figure 22. 

The plate was incubated in air + 5 % CO2 at 37 °C and the medium changed 

every 48 hours. After 24 days of culture, biofilms from 6 pegs per medium were 

used for DNA extraction. Half of each sample was treated with PMA (3.3.5). Total 

DNA was extracted with the Genelute Bacterial Genomic DNA kit (Sigma), using the 

protocol for Gram positive bacteria, from PMA-treated and untreated cells, as 

described in section 2.3.2.5. The bacterial composition of the samples was 

determined by 454 pyrosequencing as described in section 2.3.2.5.5 and analysed 

as described in section 2.3.2.5.6. 

 

Figure 22. Schematic representation of the CBD aerobic experiment. 
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3.3.4 Media used in peg biofilm culture. 

In the first experiment, pegs were incubated with commercially available BHI 

broth (Fluka), supplemented with vitamin K (0.5 μg/ml),  haemin (5 μg/ml) and, for 

half of the pegs, with porcine stomach mucin (2.5 %, Type III, Sigma). The SHI 

medium composition for 1 L was as follows (Tian, He et al. 2010):  

Proteose peptone 10 g 

Trypticase peptone 5.0 g 

Yeast extract 5.0 g 

KCl 2.5 g  

Sucrose 5 g 

Haemin 5 mg 

Vitamin K 1 mg 

Urea 0.06 g 

Arginine 0.174 g 

Pig gastric mucin 2.5 g 

Sheep blood 5 % 

N-acetylmuramic acid 10 mg 

 

The commercial BHI broth used in the first experiment contained 2 % glucose. 

For the second experiment, in order to assess the effect of glucose on biofilm 

composition, homemade BHI broth with and without glucose was prepared as 

follows: 

BHI powder 17.5 g 

Proteose peptone 10 g 

NaCl 5 g 

Na2HPO4 2.5 g 

Vitamin K 0.5 mg 

Haemin 5 mg 

Pig gastric mucin 2.5 g 
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For the medium with glucose, 20 g of glucose (Merck) per L were added (2 %).  

The BMM medium was prepared as described by Glenister et al. (1988): 

Proteose peptone 10.0 g 

Trypticase peptone 5.0 g 

Yeast extract 5.0 g 

KCl 2.5 g 

Haemin 5 mg 

Arginine 1 mmol 

Vitamin K 1 mg 

Urea 1 mmol 

Pig gastric mucin 2.5 g 

 

3.3.5 PMA treatment 

Biofilm removed from pegs was resuspended in 500 μL PBS. Half (250 µL) was 

transferred to a new eppendorf and diluted to 500 µL. PMA, resuspended in 20 % 

dimethyl sulfoxide at 20 mM, was added to the cell suspension (1.25 μL, final 

concentration 50 μM). The tube was incubated in the dark with occasional shaking 

for 5 min and then exposed to the light source (500 W halogen lamp, 20 cm from 

the tube) for 5 min. During this time the tube was placed on ice to avoid excessive 

heating and shaken occasionally. The cell suspension was subsequently used for 

DNA extraction.  
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3.4 Results  

3.4.1 Longitudinal analysis of the peg biofilm composition 

The aims of this experiment were to assess the ability of the CBD system to 

support the growth of a mixed bacterial biofilm, and to monitor the changes in 

biofilm composition over time. The biofilm grown on pegs with BHI, BHI with mucin 

(BHIm) and SHI media, as described above, was visible to the naked eye as early as 

2 d after inoculation. The SHI medium revealed itself impractical to use with this 

model because of its high viscosity, and the biofilm grown in this medium was 

found to be less taxon-rich than biofilms grown with BHI and BHIm. The analysis of 

the SHI biofilm was therefore not continued after 8 d. 

3.4.1.1  Analysis of the α-diversity of the CBD anaerobic biofilms 

Table 7 presents different measures of α-diversity and richness coverage for 

biofilms incubated with BHI, BHIm, and SHI, at different time points. The number of 

sequences identified by cloning and sequencing for each time point was randomly 

subsampled to 80 sequences for both statistical and phylogenetic analysis. Two 

samples, at 24 d of incubation, were analysed by pyrosequencing, producing 1465 

sequences for BHI and 1211 for BHIm. The pyrosequencing data were randomly 

subsampled to 1211 sequences for each of the samples for statistical analysis, but 

the phylogenetic analysis was performed on the complete dataset. No chimeric 

sequences were identified by uchime executable for any dataset in this experiment.  
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Table 7. α-diversity of the anaerobic CBD biofilms incubated with BHI, BHIm and 
SHI, analysed at different time-points by Sanger or pyrosequencing (py). 

 

The number of observed OTUs for Sanger analysed datasets ranged from 12 

for the 8-d biofilm incubated with SHI to 26 for the 40-d biofilm with BHIm. There 

were no significant differences between the biofilms incubated with BHI and BHIm 

and between early (8-24 d) and late (32-48 d) stages of the biofilm incubation, as 

observed by Wilcoxon signed rank test using a cutoff of p<0.05. The sample 

incubated with SHI medium exhibited the lowest number of observed OTUs, and 

CatchAll and Chao1 estimates, but as only one time-point was analysed, no 

statistical test could be performed. 

The Good's coverage values for all media and all time points range between 

0.98 and 0.80, with an average of 0.91. These values were lower than those 

observed for the CMM culture (0.97), while the number of observed OTUs was 

Medium Time (d) N seqs Sobs Good's 
coverage 

CatchAll 
estimate 

CatchAll 
cov. % 

Chao1 invsimpson 

BHI 8 80 23 0.86 36.8 62.50 36.8 11.92 

 

16 80 14 0.94 23.3 60.09 16.0 5.56 

 

24 80 19 0.91 29.7 63.97 24.3 10.26 

 

32 80 17 0.93 20 85.00 20.0 3.09 

 

40 80 13 0.94 17.5 74.29 16.3 4.12 

 

48 80 20 0.89 26.7 74.91 27.2 9.84 

BHIm 8 80 16 0.96 20 80.00 16.4 9.69 

 

16 80 17 0.95 23.1 73.59 18.5 8.19 

 

24 80 20 0.88 38.3 52.22 31.3 9.66 

 

32 80 20 0.90 29.5 67.80 29.3 11.49 

 

40 80 26 0.80 57.1 45.53 66.0 9.81 

 

48 80 24 0.81 57.3 41.88 59.0 10.36 

 

88 80 14 0.91 23 60.87 24.5 4.52 

SHI 8 80 12 0.98 14.1 85.11 12.3 4.76 

BHI py 24 1211 86 0.97 178.8 48.10 203.1 13.12 

BHIm py 24 1211 95 0.96 287.2 33.08 189.0 12.62 
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higher (27.3 vs 13.7), which indicates a higher α-diversity, confirmed by higher 

values for all other indicators. Student's t-test confirmed that the differences 

observed with CMM cultures were significant for the number of observed OTUs, 

Good's coverage and CatchAll, but not significant for Chao1 and the Inverse 

Simpson index (at the cut off of p=0.05). 

Biofilms grown in BHI with and without mucin and sampled at 24 d were 

analysed by both Sanger and pyrosequencing. The number of OTUs observed by 

pyrosequencing was more than 4.5 times higher than for Sanger, which was 

reflected by a higher coverage value, increasing from 91 % to 97 % for BHI and from 

88 % to 96 % for BHIm. Even larger numbers were observed for pyrosequencing 

CatchAll estimate values, 6 and 7.5 times larger than for Sanger sequencing. 

The rarefaction curves for Sanger sequencing-generated datasets are 

presented in Figure 23.  
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Figure 23. Rarefaction curves for anaerobic CBD biofilms. 

 

3.4.1.2 Analysis of the β-diversity of the CBD anaerobic biofilms 

3.4.1.2.1 OTU-based approach 

The Jaccard index, which allows the comparison of community membership 

was calculated for the Sanger sequencing-obtained datasets. The distances 

obtained were plotted using PCoA (Figure 24). No visual difference could be seen 

between biofilms incubated with or without mucin. The only sample visually 

separated from others corresponded to the biofilm incubated with SHI. The 

parsimony and unweighted UniFrac values were not significant when biofilms were 

compared by culture medium. The visual evaluation was confirmed by the Amova 

which showed no significant difference between the BHI-based media, with all time 

points aggregated, but showed that the BHI media were significantly different to 
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the SHI-grown biofilm at the 8 d time-point (Table 8). The theta YC metric did not 

show any significant differences. Finally, the pyrosequencing analysis of the BHI and 

BHIm biofilms were found to be significantly different at 24 d (Amova, p <0.001).  

  

Figure 24. PCoA plot of Jaccard index distances for Sager analysis of anaerobic 
CBD biofilm samples. 

 

Table 8. Amova analysis between media sets for anaerobic CBD experiment 

Set of media compared p value 

BHI-BHIm 0.563 

BHI-SHI  0.002 

BHIm-SHI  <0.001 
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3.4.1.2.2 Phylogeny-based analysis 

The UniFrac analysis was used to compare communities by their phylogenetic 

similarities. The comparison of the unweighted UniFrac distances for biofilms grown 

with BHI and BHIm gave statistically significant values by parsimony (p=0.013), 

unweighted UniFrac (p=0.018) and Amova (p=0.025). The weighted UniFrac test 

showed no significant differences. 

3.4.1.3 Culture analysis of the bacterial composition of the biofilms incubated 

with BHI and BHIm 

The bacterial composition of the biofilms incubated with BHI and BHIm was 

analysed by anaerobic culture after 48 d of growth. In total, 39 isolates were 

identified for the biofilm grown with BHI and 50 for that with BHIm. Isolates 

belonging to 5 phyla were identified : Actinobacteria, identified only from the BHIm 

biofilm, Bacteroidetes, Firmicutes, Fusobacteria and Proteobacteria. The 

communities isolated from both media were dominated by members of the 

Firmicutes, with 79.0 % for BHI and 72.9 % for BHIm. The most frequently detected 

species were Streptococcus constellatus / intermedius, Anaeroglobus geminatus 

and Veillonella dispar / parvula / HOTG30.  

3.4.1.4 Taxonomic assignment of Sanger sequencing and pyrosequencing 

sequences 

The evolution of the composition of the biofilms at phylum level is 

represented in Figure 25 and Table 9. In Figure 25 each circle corresponds to a time 

point, from the inner circle at 8 d of culture to the external one at 48 d. The final 

time point of 88 d for BHIm is not shown to keep the figures comparable. While 
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both cultures were dominated by the Firmicutes phylum, other phyla represented a 

higher proportion in the biofilm grown in presence of mucin than in BHI without 

mucin, totaling 53.8 % at 48 d. The most remarkable difference is probably the 

proportion of the sequences belonging to the Synergistetes phylum, making up 16.3 

% of the total number of sequences in the BHIm biofilm at 48 d and totally absent 

from the BHI biofilm after 24 d.  

A table representing all taxa identified, with corresponding proportions, can 

be found in the Appendix 2. The SHI-grown biofilm was the least taxon-rich, with 

only 8 taxa belonging to two phyla identified at 8 d. Firmicutes (66.3 %) were 

primarily represented by Streptococcus sp. HOTC56, with 41.3 % of the total 

number of sequences. The second phylum, Spirochetes (33.8 %), was dominated by 

Treponema maltophilum, with 32.5 % of all sequences. 

In contrast, 20 taxa were identified in the BHI-grown biofilm and 10 for BHIm-

grown biofilm at the same time point (8 d). At 48 d, 18 and 21 taxa were detected, 

respectively, while the pyrosequencing analysis at 24 d detected 50 and 59 taxa.  
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Figure 25. Evolution of biofilm composition for BHI without (left) and with (right) 
mucin, at phylum level. Each circle corresponds to a different time point of 
sampling, from 8 to 48 d. 

 

After the first week of incubation, the biofilm in BHI was dominated by the 

Veillonella dispar / parvula / HOTG30 taxon, at 26.3 %, and Streptococcus sp. 

HOT058, at 17.5 %. Streptococcus sp. HOT058 was not detected at any later 

sampling point. V. dispar / parvula, with addition of Anaeroglobus geminatus, F. 

nucleatum ss. animalis and Streptococcus constellatus / intermedius, dominated the 

mixed population up to 48 d. Interestingly, F. nucleatum ss. animalis made up the 

highest proportion of the community at 24 d (20.0 % by Sanger and 17.5 % by 

pyrosequencing), when S. constellatus was at its lowest (7.5 and 6.7 %, 

respectively). 
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Table 9. Number of taxa detected and the percentage of the sequences for each phylum in CBD anaerobic biofilms at different time points. 

               Samples    
Phyla 

BHI BHI mucin SHI 
Total/ 
mean 

8 d 16 d 24 d 24 d 
py 

32 d 40 d 48 d 8 d 16 d 24 d 24 d 
py 

32 d 40 d 48 d 88 d 8 d 

 
Actinobacteria 

1 1 1 2 
  

1 
 

1 1 2 1 2 2 
  

6 

2.5 5 1.3 0.2 
  

1.3 
 

1.3 1.3 0.2 1.3 2.6 3.8 
  

1.30 

                  
Bacteroidetes  

2 2 7 1 1 3 1 2 5 14 4 4 5 1 
 

17 

 
5 10 11.6 5 1.3 23.8 1.3 3.8 23.8 23 12.5 10 23.8 1.3 

 
9.76 

                  
Firmicutes 

18 11 11 30 12 10 11 8 10 16 32 13 10 10 7 6 49 

96.3 85 65 62.5 91.3 93.8 63.8 92.5 88.8 63.8 61.9 71.3 58.8 46.3 45 66.3 72.03 

                  
Fusobacteria 

1 1 1 4 1 
 

1 
 

2 1 3 1 1 1 1 
 

5 

1.3 3.8 20 19.1 3.8 
 

7.5 
 

3.8 11.3 12.2 7.5 12.5 7.5 2.5 
 

7.05 

                  
Proteobacteria  

1 1 4 
 

1 1 
 

1 
 

3 0 1 1 2 
 

5 

 
1.3 1.3 5.6 

 
5 2.5 

 
2.5 

 
0.5 0 1.3 1.3 18.8 

 
2.51 

                  
Spirochaetes   

1 1 
  

1 
   

2 1 2 1 1 2 3 

  
1.3 0.4 

  
1.3 

   
0.4 1.3 3.8 1.3 32.5 33.8 4.76 

                  
SR1           

1 
     

1 

          
0.1 

     
0.01 

                  
Synergistetes   

1 1 
   

1 
  

1 1 1 1 
  

1 

  
1.3 0.7 

   
6.3 

  
1.6 6.3 11.3 16.3 

  
2.74 

                  
TM7    

1 
      

1 
     

1 

   
0.3 

      
0.2 

     
0.03 

                  Total 20 16 18 50 14 12 18 10 16 23 59 21 21 21 12 8 
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The bacterial composition of the BHIm biofilm after 8 d of incubation was 

dominated by S. constellatus / intermedius, at 41.3 %, and A. geminatus, at 30 %. 

These species remained among the principal members of the community up to 48 

d, with Veillonella dispar / parvula / HOTG30, Prevotella oralis, Streptococcus sp. 

HOT058, Fusobacterium nucleatum ss. animalis, and Fretibacterium fastidiosum. 

The BHIm culture was not sampled between 48 and 88 days of incubation and 

its composition changed dramatically during this time. At 88 d It was dominated by 

four species: Treponema lecithinolyticum (32.5 %), Peptostreptococcaceae sp. 

HOTE46 (21.3 %), Campylobacter rectus / HOTG43 (16.3 %) and Streptococcus 

salivarius (11.3 %). The three former taxa were detected only in reduced numbers, 

under 3 %, in earlier stages of the biofilm, while the latter was not detected at all 

before this time point.  

3.4.1.5 Linear discriminant analysis (LDA) with LEfSe 

The LEfSe analysis identified 6 taxa differentially abundant between the BHI 

and BHIm biofilms (Figure 26). The OTUs most prevalent in BHI biofilms were 

Campylobacter showae (OTU037) and Parvimonas sp. HOTC63 (OTU010), while 

those most abundant in BHIm were Peptostreptococcus stomatis (OTU041), 

Prevotella baroniae (OTU043), Peptostreptococcaceae sp. HOT369 / HOT103 

(OTU040) and Prevotella sp. HOTB62 (OTU052) (in decreasing LDA score).  

When all three media were compared, four OTUs were found to be 

statistically more abundant in the SHI biofilms: Streptococcus sp. HOTC65, 

Lactobacillus oris, Streptococcus salivarius and Lactobacillus sp. HOT461. 
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Figure 26. Linear Discriminant Analysis of anaerobic CBD biofilm communities 
grown with BHI and BHIm media. 

 

3.4.2 Evaluation of the ability of CBD system to support the development of 

mixed oral biofilm and the role of glucose 

To further assess the ability of the CBD system to support the growth of a 

complex natural biofilm, the second part of the experiment used pegs inoculated 

with the saliva of a healthy volunteer and incubated aerobically with 5 % CO2, in 

order to replicate natural oral conditions. Three media were tested: BHI (without 

glucose), BHIG (with glucose) and BMM. For each sample, half of the sample was 

treated with PMA before DNA extraction (labelled as -P, e.g., BHI-P for sample 

treated with PMA, and BHI for non-treated). 

3.4.2.1 Analysis of the α-diversity of the aerobic CBD biofilms 

A total of 63698 sequences were obtained from the pyrosequencing analysis 

after de-noising and trimming. The uchime program detected 683 chimeric 

sequences (1.07 %), which were removed. The pyrosequence data were normalised 

by random sub-sampling to 9166 sequences per sample, although phylogenetic 

analysis was carried out on the complete dataset. 
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A summary of the -diversity of the biofilm samples analysed by 

pyrosequencing is shown in Table 10. The number of observed OTUs ranged from 

145, for the biofilm incubated with BHI without glucose and not treated with PMA, 

to 421, for the biofilm incubated with BMM and treated with PMA. The Good's 

coverage values were all above 98 %, suggesting that the community was well 

sampled in each case. Nevertheless, the CatchAll estimate suggests a much higher 

richness than the number of species observed (Wilcoxon signed-rank test p<0.001) 

or those predicted with the Chao1 estimator (p<0.001). When samples were 

compared regarding PMA treatment, the only statistical difference observed was 

for the Inverse Simpson index (Student's t-test p=0.02). 

Table 10. α-diversity of the aerobic CBD biofilms. Biofilm samples are named by 
incubation medium (BHI, BHIG and BMM) and the possible PMA treatment is 
indicated by -P.  

Sample N seqs Sobs 
Good's 

coverage 
CatchAll 
estimate 

CatchAll 
Chao1 invsimpson 

cov. % 

BHI 9166 145 0.99 332.5 43.61 240.4 8.95 

BHI-P 9166 219 0.99 577.9 37.90 364.3 8.11 

BHIG 9166 208 0.99 457.4 45.47 322.2 9.69 

BHIG-P 9166 170 0.99 375.0 45.33 267.7 6.75 

BMM 9166 212 0.99 469.3 45.17 350.1 10.50 

BMM-P 9166 421 0.98 899.6 46.80 744.9 6.23 

 

The rarefaction curves for aerobic CBD biofilms are presented in Figure 27. All 

curves, with the exception of the one corresponding to the BMM-P sample, seem to 

follow a similar pattern.  
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Figure 27. Rarefaction curves for aerobic CBD biofilms analysed by 
pyrosequencing. 

 

3.4.2.1.1 OTU-based approach 

No significant differences were seen in the composition of the biofilm 

samples when compared using parsimony and unweighted UniFrac analyses of a 

dendrogram constructed using the Jaccard index (data not shown). The community 

structures were then compared with the theta YC metric, which takes into account 

the relative abundances of OTUs. The dendrogram obtained is shown in Figure 28. 

The clustering pattern observed between PMA treated and untreated samples was 

found to be significant by Amova (p<0.001) but not by parsimony (p=0.069) or 

unweighted UniFrac (p=0.102).  
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3.4.2.1.1 Phylogeny-based analysis 

Biofilm communities were also compared based on their phylogenetic 

similarities by weighted and unweighted UniFrac analysis. No significant differences 

were found by the unweighted UniFrac test, but the weighted counterpart 

presented a statistically supported clustering of PMA treated samples (Figure 29), 

resembling the clustering obtained in Figure 28 (Amova p<0.001). 

 

Figure 29. PCoA plot of weighted UniFrac distance for aerobic CBD biofilms. 
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biofilms. 
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3.4.2.2 Linear discriminant analysis with LEfSe 

No significant difference in OTU abundance was found between biofilms 

incubated with BHI with or without glucose. Two OTUs were found to be enriched 

in BMM medium: Streptococcus sp. HOT071 and Clostridiales sp. HOT085, with LDA 

scores between 2.5 and 3.  

When PMA treated and untreated samples were compared, 25 OTUs showed 

a differential abundance (Figure 30). Nine were more abundant in untreated 

biofilms while 16 were higher in PMA treated samples (Table 11). The 

Flavobacteriales sp. found to be the most correlated with PMA treatment seem to 

represent a new taxon. The closest match on the HOMD was for Flavobacteriales 

sp. HOT321, with 86.2 % over 450 bp. No hit presenting over 98 % identity was 

found by NCBI BLASTN. This taxon was found in biofilms grown with all media and 

in all independent replicates. 
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Figure 30. Linear Discriminant Analysis of aerobic CBD biofilm communities 
treated or not with PMA. 
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Table 11. OTUs differentially abundant in PMA treated and untreated aerobic CBD 
biofilms, by decreasing absolute LDA values. 

PMA treated samples Untreated samples 

Flavobacteriales sp. uncultured 

Neisseria elongata 

Aggregatibacter paraphrophilus / 
aphrophilus 

Peptostreptococcus stomatis / HOTE46 

Eubacterium yurii 

Prevotella sp. HOT781 

Porphyromonas catoniae / HOT279 

Parvimonas sp. HOTC63 

Selenomonas noxia / HOTG67 

Solobacterium moorei 

Lautropia mirabilis  

Bacteroidetes sp. HOT274  

Actinomyces odontolyticus / meyeri 

Actinomyces sp. HOTB78 / HOTE33 / 
HOTF78 / HOT169 

Prevotella oris  

Tannerella forsythia 

Lactobacillus oris 

Staphylococcus sp. NBRC 13889 

Neisseria flava / mucosa / pharyngis / sicca 

Fusobacterium nucleatum ss. polymorphum 

Parvimonas sp. HOT110 

Fusobacterium periodonticum 

Oribacterium sinus 

Streptococcus sp. HOTC04 

Porphyromonas endodontalis / HOT395 / 
HOTG50 

 

3.4.2.3 Phylogenetic analysis of aerobic CBD biofilms 

All biofilm communities analysed in this experiment were dominated by the 

Firmicutes phylum (mean proportion 61.3 %), followed by Proteobacteria (25.3 %), 

Bacteroidetes (8.2 %) and Fusobacteria (4.18 %). Other phyla detected were 

Actinobacteria (0.6 %), TM7 (0.15 %), Spirochetes (0.05 %) and SR1 (0.01 %). 

A total of 267 taxa were identified in all aerobic CBD biofilms (Appendix 2), 

but only 11 represented over 5 % in any of the samples (Table 12).Two Lactobacillus 

species were the most numerous: Lactobacillus paracasei and Lactobacillus oris, 
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making up a mean of 13.6 and 9.8 % of all sequences for all biofilms, respectively. 

Campylobacter showae / HOTE65 taxon represented a mean of 7.5 % through all 

samples. 

The biofilms grown in BHI without glucose were dominated by Neisseria flava 

/ mucosa / pharyngis / sicca (18.4 %) and Lactobacillus oris (15.3 %) for PMA 

untreated samples and by Lactobacillus paracasei (18.8 %), Flavobacteriales sp. 

uncultured (15.6 %) and Neisseria elongata (10.5 %) for PMA-treated samples. For 

the biofilms incubated in presence of glucose, Staphylococcus sp. NBRC 13889 (19.4 

%), Lactobacillus paracasei (17.0 %) and Lactobacillus oris (13.5 %) were the most 

represented species in untreated samples and Lactobacillus paracasei (26.5 %) was 

the only species making over 10 % in PMA treated samples. Finally, the BMM 

biofilms were dominated by Lactobacillus oris (25.9 %) in untreated biofilms, but 

this taxon made up only 0.2 % of treated biofilms. There was no taxon with relative 

abundance over 10 % in the PMA-treated BMM biofilms. The most numerous taxa 

were Campylobacter showae / E65 (9.7 %), Streptococcus constellatus / intermedius 

/ HOTE12 (8.4 %), Lactobacillus paracasei (8.2 %) and Neisseria elongata (8.0 %). 
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Table 12. The most abundant taxa identified in aerobic CBD biofilms, treated with 
PMA or untreated (NT), with corresponding relative abundance (%). 

                                                     Samples BHIG BHI BMM 

Taxa NT PMA NT PMA NT PMA 
Lactobacillus paracasei 16.98 26.53 9.63 18.84 1.18 8.17 

Lactobacillus oris 13.51 3.45 15.33 0.10 25.88 0.24 

Campylobacter showae / HOTE65 4.72 4.86 8.41 9.98 7.55 9.71 

Neisseria flava / mucosa / pharyngis / sicca 9.60 1.43 18.37 2.11 9.71 2.10 

Neisseria elongata  1.60 9.86 3.17 10.45 4.47 8.04 

Flavobacteriales sp. uncultured 0.50 6.78 1.16 15.61 2.95 6.37 

Parvimonas micra 2.80 5.75 6.20 4.51 8.35 3.44 

Gemella morbillorum / haemolysans  2.24 1.93 3.87 1.77 1.57 5.78 

Staphylococcus sp. NBRC 13889 19.37 0.11 8.07 0.10 0.82 0.07 

Streptococcus constellatus / intermedius / 
HOTE12 

2.64 5.53 3.25 3.58 4.35 8.39 

Veillonella atypica / dispar / parvula / 
HOTE53 / HOTG30 

3.23 6.06 3.29 2.50 4.70 5.53 

 

3.4.2.4 Uncultured bacteria in CBD anaerobic and aerobic biofilms. 

Several uncultured phylotypes, as defined in the HOMD database, were 

detected in both aerobic and anaerobic CBD experiments (Table 13). In the 

anaerobic CBD biofilm 16 not-yet-cultivated taxa were detected, belonging to the 

Firmicutes (10 taxa), Bacteroidetes (3), Proteobacteria, SR1 and TM7 (1 for each) 

phyla. The aerobically incubated CBD biofilms included at least 94 not-yet-

cultivated taxa between them. The distribution between phyla was as follows : 

Firmicutes 42, Bacteroidetes 14, TM7 12, Fusobacteria 9, Proteobacteria 8, 

Actinobacteria 6, SR1 2 and Spirochetes 1. 

For biofilms incubated in BHI with and without glucose addition, more uncultured 

taxa were detected in the absence of glucose, 38 against 26. In BMM 82 uncultured 

taxa were detected. 
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Table 13. Uncultured taxa detected in CBD biofilms. 

                               CBD conditions  Anaerobic  Aerobic 

Uncultured taxa BHI BHIm  BHIG BHI BMM +PMA -PMA 

Actinobacteria   
 

     
Actinomyces sp. HOTC25   

 
 

x x x 
 

Actinomyces sp. HOTD50   
 

  
x x 

 
Actinomyces sp. HOTE63   

 
  

x x x 

Actinomyces sp. HOTE91   
 x 

 
x x x 

Atopobium sp. HOT416   
 

 
x x x 

 
Propionibacterium sp. HOT194   

 
  

x x 
 

Bacteroidetes   
 

     
Bacteroidetes sp. HOT365 / 
HOT281 / HOTG44  

x 
 

 
x x x x 

Bacteroidetes sp. HOT511   
 

 
x x x 

 
Bergeyella sp. HOT322    

 
 

x x x 
 

Capnocytophaga sp. HOTB79   
 

  
x x 

 
Capnocytophaga sp. HOTH18   

 
  

x x 
 

Flavobacteriales sp. uncultured   
 x x x x x 

Porphyromonas sp. HOT275 / 
HOT278 / HOTB43 

 
 

 
x x x x x 

Prevotella sp. clone BL216   
 

  
x 

 
x 

Prevotella sp. HOT300/HOT292 x x  
  

x x 
 

Prevotella sp. HOT526  
x  

  
x x 

 
Prevotella sp. uncultured 1   

 
  

x x 
 

Prevotella sp. uncultured 2   
 

 
x x x 

 
Tannerella sp. HOT286   

 
 

x x x x 

Tannerella sp. uncultured   
 

  
x x 

 
Firmicutes   

 
     

Burkholderiales sp. HOTA57 x x  
     

Catonella sp. HOT451   
 

  
x x 

 
Centipeda sp. HOTB01   

 
 

x 
  

x 

Clostridiales sp. HOT075    
 

  
x x 

 
Clostridiales sp. HOT085   

 
  

x x x 

Clostridiales sp. HOT093  
x  

  
x x 

 
Corynebacterium sp. HOTA16   

 x 
   

x 

Erysipelothrichaceae sp. HOTA18  
x  

     
Erysipelotrichales sp. HOTC62  

x  
     

Eubacterium sp. uncultured 1   
 x x x x x 

Eubacterium sp. uncultured 2   
 x 

 
x x x 

Lachnospiraceae sp. HOT083   
 

 
x 

 
x 

 
Lachnospiraceae sp. HOT100   

 x 
 

x x 
 

Lachnospiraceae sp. HOTA61 / 
HOTE59 

x 
 

 
x x x x x 

Lachnospiraceae sp. HOTB32   
 

  
x x 

 
Lachnospiraceae sp. uncultured 1   

 x x x x x 

Mitsuokella sp. HOT521   
 

  
x x 
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                               CBD conditions  Anaerobic  Aerobic 

Uncultured taxa BHI BHIm  BHIG BHI BMM +PMA -PMA 

Mobiluncus sp. uncultured   
 x x x x x 

Moraxella sp. HOTB07    
 

  
x x 

 
Parvimonas sp. HOTC63   

 x x x x x 

Peptostreptococcaceae sp. 
HOT081 

x x 
 

x x x x x 

Peptostreptococcaceae sp. 
HOT091  

x x 
 

     
Peptostreptococcaceae sp. 
HOT369 / HOT103 

x x 
 

x 
 

x x x 

Peptostreptococcaceae sp. 
HOTE46  

x 
 

     

Selenomonas sp. HOT126   
 

 
x x 

 
x 

Selenomonas sp. HOTE20   
 

  
x x 

 
Selenomonas sp. HOTE39   

 
 

x x x 
 

Selenomonas sp. HOTF30   
 x x x x x 

Selenomonas sp. HOTF82   
 x 

 
x x x 

Selenomonas sp. 
HOTF83/HOTH63   

 
 

x x x x 

Selenomonas sp. HOTF85   
 

  
x x 

 
Selenomonas sp. HOTF87   

 x x x x x 

Selenomonas sp. HOTF96   
 x 

 
x x x 

Selenomonas sp. HOTG51   
 

  
x x 

 
Selenomonas sp. HOTG55   

 
 

x x x x 

Selenomonas sp. HOTH23   
 

 
x x x x 

Selenomonas sp. HOTH30   
 

  
x x x 

Selenomonas sp. HOTH32   
 x 

 
x x x 

Selenomonas sp. HOTH66   
 

  
x x 

 
Solobacterium sp. HOTA05   

 x x x x x 

Streptococcus sp. 
HOT064/HOTE41   

 
x x x x x 

Streptococcus sp. HOTB66   
 

  
x 

 
x 

Streptococcus sp. HOTC04   
 x x x x x 

Streptococcus sp. HOTC14   
 

  
x x 

 
Streptococcus sp. HOTC56 x x  

     
Streptococcus sp. uncultured   

 x 
   

x 

Veillonellaceae sp. HOT150    
 x 

 
x x 

 
Xanthomonadaceae sp. uncultured   

 
 

x 
  

x 

Fusobacteria   
 

     
Fusobacteria sp. HOTA71   

 
  

x x 
 

Fusobacterium sp. HOTH27   
 

  
x x 

 
Leptotrichia sp. HOT212   

 x 
 

x x x 

Leptotrichia sp. HOT215   
 

  
x x 

 
Leptotrichia sp. HOT392/HOT217   

 
 

x x x 
 

Leptotrichia sp. HOT417   
 

  
x x 

 
Leptotrichia sp. HOTA45   

 
  

x x 
 

Leptotrichia sp. oral clone 19-33   
 

  
x x 
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                               CBD conditions  Anaerobic  Aerobic 

Uncultured taxa BHI BHIm  BHIG BHI BMM +PMA -PMA 

Leptotrichia sp. uncultured   
 

 
x 

 
x 

 
Proteobacteria   

 
     

Aggregatibacter sp. HOTG01   
 

  
x x 

 
Haemophilus sp. HOTD10 / 
HOT035   

 
  

x x 
 

Johnsonella sp. HOT166    
 

  
x x 

 
Kingella sp. HOT012   

 
  

x x 
 

Kingella sp. HOTD49   
 

  
x x 

 
Lautropia sp. HOTA94    

 
 

x x x x 

Leptothrix sp. HOT025  x x  
     

Neisseria sp. HOT018   
 

  
x x 

 
Neisseria sp. HOTD61   

 
 

x 
 

x 
 

Spirochetes   
 

     
Treponema sp. HOT237   

 
  

x x 
 

SR1   
 

     
SR1 sp. HOT345   

x  
 

x 
 

x 
 

SR1 sp. uncultured 1   
 

 
x 

 
x 

 
TM7   

 
     

TM7 phylum sp. oral clone 13-10   
 

  
x x 

 
TM7 sp. HOT346   

 
  

x x 
 

TM7 sp. HOT348   
 

  
x x 

 
TM7 sp. HOT349   

 
  

x x 
 

TM7 sp. HOT350   
 

 
x 

 
x 

 
TM7 sp. HOT351   

 
  

x x 
 

TM7 sp. HOT352 / HOT353   
 x 

   
x 

TM7 sp. HOT355  x x  x x x x x 

TM7 sp. HOT437 / HOT356   
 

 
x x x x 

TM7 sp. uncultured 1   
 

 
x 

 
x 

 
TM7 sp. uncultured 2   

 
  

x x 
 

TM7 sp. uncultured 3   
 

  
x x 

 
Total 9 15  26 38 82 86 40 
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3.5 Discussion 

In this chapter, mixed bacterial communities were successfully established on 

HA-coated pegs of the Calgary Biofilm Device from an inoculum of human saliva. A 

diverse community of oral bacteria was maintained in the model biofilms up to 88 

days. Although there were trends apparent in the change of the composition of the 

biofilms over time, these were not statistically significant. This work has shown that 

this model is a convenient way of generating large numbers of oral biofilms of a 

composition of in-vivo relevance. The use of 454 pyrosequencing resulted in 

significantly higher estimates of species richness than the conventional cloning and 

Sanger sequencing analysis, showing the value of next generation sequencing for 

deep coverage analysis of complex bacterial communities.  

The CBD biofilms from saliva were dominated by Lactobacillus and Veillonella 

species, genera associated with dental caries (Loesche and Syed, 1973). Lactobacilli, 

in particular, are typically found in late-stage caries, due to their preference for a 

low pH habitat (Gross et al. 2010). Bacteria interacting in a complex environment 

form sometimes mutually profitable relationships. One such cooperation was 

described between Streptococcus and Veillonella species (Mikx and Van der Hoeven 

1975). Streptococci, early colonizers of tooth surface, produce lactic acid, which can 

be used by Veillonella species, who therefore might help to maintain a neutral pH, 

and be beneficial to oral health (Kumar, Griffen et al. 2005). Lactobacilli are also 

lactate producers, and it is possible that a similar interaction was in play in the CBD 

biofilms (Hojo, Nagaoka et al. 2009). Whether Veillonella does play a protective role 

in caries is questionable, however; Veillonella numbers have been shown to be 
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correlated with caries activity and their presence may indicated active lactic acid 

production but they may not be able to effecting a clinically-relevant environmental 

raising of pH (Gross, Beall et al. 2012).  

 Although the biofilm cultivated on the CBD was in some ways typical of a 

caries-associated plaque, many of the components have previously been shown to 

be health-associated. Lactobacilli themselves have been shown to be antagonistic 

to S. mutans and Gram-negative species associated with periodontal disease and to 

have anti-inflammatory properties, and have thus been proposed for use as oral 

probiotics (Staab, Eick et al. 2009, Soderling, Marttinen et al. 2011, Teanpaisan, 

Piwat et al. 2011). Other bacteria associated with health are members of the 

Proteobacteria phylum, such as Neisseria flavescens (Crielaard, Zaura et al. 2011). 

Proteobacteria made up a relatively high proportion of CBD biofilms, with 25.3 % of 

all sequences. The CBD biofilms also included many of the putative periodontal 

pathogens, but in low proportions; they were typically detected at less than 1 % of 

the total number of sequences. The important oral genus Fusobacterium 

represented only 4 % of the biofilm population, but were quite diverse, with 23 taxa 

detected. Fusobacterium species coaggregate with a wide range of other species 

enabling them to play an important bridging role in oral biofilm development 

(Bolstad, Jensen et al. 1996). In addition, they contribute to the establishment of 

anaerobic conditions in the biofilm, relevant to those experiments here which were 

performed aerobically (Bradshaw, Marsh et al. 1998).  

One of the aims of these experiments was to evaluate the importance of 

mucin for the establishment of an oral biofilm, its richness, and the presence of 
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uncultured bacteria. No statistical difference was observed regarding α-diversity of 

biofilms established in BHI with or without mucin. The compositions of 

communities analysed by phylogeny taking into account only membership, 

however, presented a statistically significant difference. The taxa differentially 

present in mucin supplemented biofilms were Peptostreptococcus stomatis, 

Prevotella baroniae, Peptostreptococcaceae sp. HOT369 / HOT103 and Prevotella 

sp. HOTB62. Furthermore, Fretibacterium fastidiosum, the only representative of 

the Synergistetes phylum, was not detected after 24 days in BHI biofilms, while it 

was still largely present in BHIm biofilms up to 48 d. All of these species are obligate 

anaerobes, which are typically nutritionally demanding, confirming previous 

findings that mucin contributes to the formation of a multi-species biofilm which is 

conducive to the growth of fastidious anaerobes (Bradshaw, Homer et al. 1994). 

The SHI medium was developed to support a mixed saliva-derived bacterial 

community in vitro (Tian, He et al. 2010). It was reported that SHI was superior to 

commonly used media, including BHI, BMM and chopped meat medium. The 

culture was analysed only 24 h after inoculation, however, which appears 

insufficient to allow the establishment of a fully developed community. The authors 

also suggested that SHI could be used to study previously uncultured species, such 

as TM7. In practice, however, TM7 made up 6.48 % of the salivary microbiota but 

represented only 0.03 % in SHI culture. 

In the present study, biofilms grown in SHI were statistically different from 

those established in BHI-based media, with a simpler composition and higher 

proportions of Streptococcus, Treponema and Lactobacillus species identified at 8 d 
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of culture. The use of this medium was however discontinued because the high 

viscosity of the medium, probably due to the inclusion of blood, made the handling 

and the removal of biofilms difficult. While several agar media include blood as a 

nutrient supplement, no commonly used broth media contain blood. This could be 

related to the difficulty of visualising and quantifying bacterial growth in the 

resulting opaque medium, but could also be related to viscosity-associated handling 

problems. 

Glucose is included as a major energy and carbon source in most currently 

used bacterial culture media. However, the availability of glucose in many oral 

habitats, such as periodontal pockets and endodontic infections, is low. The 

inclusion of glucose in growth media trying to replicate these conditions is 

therefore questionable. Indeed, glucose has been shown to inhibit some metabolic 

pathways, the phenomenon known as catabolic repression (Gorke and Stulke 

2008). It has been shown to inhibit some inducible enzymes in E. coli (Jirešová, 

Janeček et al. 1981) and bioluminescence in marine luminous bacterium 

Photobacterium fischeri (Nealson, Eberhard et al. 1972), for instance. Bacteria that 

are able to use both glucose and an alternative carbon source will typically favour 

glucose utilisation. In this case, the metabolites associated with the use of the 

alternative source are lost to the community, while some other species may rely on 

them in the natural environment. As mentioned above, the mixed community 

successfully grown using the CBD was dominated by members of the genera 

Lactobacillus and Veillonella. Both of these genera are associated with sugar 

metabolism, with Lactobacillus forming lactic acid from sugars and Veillonella then 
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using lactate as an energy source. It would appear then, the biofilm created was 

typical of a sugar-rich environment, and while this might be relevant to caries-

associated biofilms, it would be of less relevance to the periodontal pocket or 

endodontic infections. For this reason, a version of BHI was formulated with 

reduced glucose to see if this would influence the composition of the community 

derived from saliva. 

No difference in α-diversity was observed in biofilms grown in the presence or 

absence of glucose in this study, and no OTUs were found to statistically differ 

between BHI with and without glucose. However, representatives of the SR1 

phylum were found only in BHI without glucose, as well as representatives of the 

Bacteroidetes HOT365 / HOT281 / HOTG44 and HOT511, uncultured Prevotella and 

Tannerella species and Clostridiales sp. HOT075, HOT085 and HOT093. Generally, 

only 26 taxa of uncultured bacteria were detected in BHI with glucose, versus 38 for 

BHI without glucose. So while reducing glucose did not appear to have a significant 

influence on the overall composition of the community, the growth of a number of 

anaerobic species was enhanced. Although glucose itself was specifically excluded 

from the medium, there were likely to have been significant residual sugar in the 

medium. Complex bacterial growth media are crude extracts of animal or plant 

tissues, and, in this case, BHI will have contained free glucose and glycogen from 

the constituent brains and hearts. The fermentable carbohydrate content in growth 

media for the modeling of the growth of oral bacterial communities is an important 

consideration. 
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The composition and structure of biofilms incubated with BMM medium were 

not significantly different from those incubated with the BHI-based media, although 

two OTUs were found to be enriched in BMM medium: Streptococcus sp. HOT071 

and Clostridiales sp. HOT085. The significance of this finding is unclear.  

PMA treatment was the factor which most influenced the perceived biofilm 

composition in this study, with 25 OTUs presenting a differential abundance. The 

species whose detection was lower in PMA treated biofilms included Lactobacillus 

oris, Staphylococcus sp. NBRC 13889 and Neisseria sp. This difference could be 

explained by the rapid growth of these taxa in the early stages of biofilm 

development, with a subsequent reduction in proportions. DNA from dead cells 

may not have been degraded but become integrated as a constituent of the biofilm. 

Another possible origin of extracellular DNA may be its active production by some 

species, which has been shown to play a role in the adhesion of bacteria to surfaces 

(Das, Sharma et al. 2010), micro-colony formation (Dominiak, Nielsen et al. 2011) 

and the spatial organisation of the biofilm (Bockelmann, Janke et al. 2006).  
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Main findings: 

1. Bacteria from saliva samples were successfully established in long-

term culture on HA-coated CBD pegs; 

2. No statistical difference was observed regarding α-diversity of biofilms 

established in BHI with or without mucin and glucose; 

3. PMA treatment, allowing to remove extracellular DNA, was the most 

influential factor regarding the perceived composition of the CBD 

biofilms; 

4. Several uncultured taxa were detected in CBD biofilms, 16 taxa for 

anaerobically and 94 taxa for aerobically incubated biofilms; 

5. Among uncultured bacteria were detected 2 taxa of SR1 and 12 taxa of 

TM7 Candidate Divisions. 
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 Chapter 4: In-vitro culture of the TM7 Candidate Division 

4.1 Introduction 

Among oral bacteria at least 34 % of taxa are as yet uncultured (Dewhirst, 

Chen et al. 2010). Despite the advances of metagenomic and metatranscriptomic 

analyses, which are contributing to a new understanding of the functional potential 

of microbiomes, in-vitro culture remains essential for the assessment of the 

function of individual species, and their role in human health and disease. Oral 

uncultivable bacteria include both relatives of readily cultivable species and 

complete branches of the phylogenetic tree including the phyla TM7, SR1 and 

GN02.  

As has been discussed in Chapter 1, there are numerous reasons as to why 

individual species cannot be cultured in the laboratory, but a common theme for 

species which naturally form part of a multi-species community appears to be 

dependence on interactions with other community members. Vartoukian et al. 

(2010) were able to culture a previously uncultivated member of the phylum 

Synergistetes by hybridisation-directed enrichment in co-culture. The strain 

represents a species, now named Fretibacterium fastidiosum (Vartoukian, Downes 

et al. 2012), the members of which are unable to grow independently, but can grow 

in co-culture with a range of other oral bacterial species including Fusobacterium 

nucleatum and Parvimonas micra. 

Attempts have been made to culture a representative of the phylum TM7 

which is widely distributed in the environment and forms part of mammalian 
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microbiomes. Only limited success has been achieved with cultures being short-

lived or viable only as micro-colonies (Hugenholtz 2002, Ferrari, Binnerup et al. 

2005, Abrams, Barton et al. 2012). No TM7 cultures have been deposited with the 

culture collections, but the partial success previously reported suggests that the 

cultivation of a representative of this group should be achievable. Possible culture 

techniques could include the use of antibiotics as selective agents, as it has been 

predicted that TM7 bacteria are resistant to streptomycin due to an uracil residue 

in position 911 of their 16S rRNA, highly uncommon in Bacteria but responsible for 

streptomycin resistance in Archaea (Hugenholtz, Tyson et al. 2001). Furthermore, 

although the most frequently described TM7 morphotype in wastewater were rod-

shaped cells forming long chains, with cell diameter and length ranging from 0.3 to 

0.5 and 0.6 to 1.7 µm, respectively (Hugenholtz, Tyson et al. 2001), an analysis of 

rhizosphere microbiota passed through 0.45 µm filter was found to be enriched in 

TM7 cells, suggesting that the dominant morphotype in this environment consisted 

of cells smaller than 0.45 µm (Tabei and Ueno 2010). Both strategies, streptomycin 

inclusion and filtration of the substract, were tested in this study.  
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4.2 Aims 

1. To design and validate specific oligonucleotide probes and primers 

for Division TM7. 

2. To use specific primers designed for the Division TM7 to detect these 

organisms in samples from endodontic infections and saliva, and Cooked Meat 

Medium, Calgary Biofilm Device and Fastidious Anaerobe Agar cultures. 

3. To use colony hybridisation enrichment to attempt to obtain pure 

cultures of representatives of the TM7 phylum. 
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4.3 Methods 

4.3.1 Detection of TM7 bacteria by PCR 

4.3.1.1 Design of TM7-specific primers  

All sequences identified as belonging to the TM7 phylum by the Ribosomal 

Database project - II (rdp, (Maidak, Cole et al. 2001)) were used to obtain an 

alignment with representatives of oral genera for primers design. Sequences were 

filtered for length (minimum 500 bp) and aligned using BioEdit software (Hall 1999). 

A phylogenetic tree was constructed with the MEGA4 program (Tamura, Dudley et 

al. 2007). The tree was used to further reduce the number of sequences, by keeping 

one representative of each major cluster and keeping all unique sequences 

detected in human-related samples, where this information was available. For each 

cluster, the longest sequence with the fewest ambiguities was chosen. The edited 

alignment included 280 sequences (Appendix 3). The alignment was then 

augmented with representatives of all of the genera listed in HOMD (62 sequences) 

and realigned. The combined alignment was manually inspected for TM7-specific 

regions. Seven potential primers were selected on the basis of having one or less 

mismatch to the TM7 phylum members and at least 3 mismatches to the 

representatives of other oral genera (Table 16). Due to the extreme diversity of the 

TM7 16S rRNA genes, 3 of the primers had to include one degenerated nucleotide. 

For the same reason, it was difficult to apply strict G + C content criteria and the G + 

C content of the primers ranged from 45 to 67 %. The primers were checked for 

self-complementarity using Oligo Calc (Kibbe 2007). The primers were synthesised 

by Eurofins MWG Operon (ecom.mwgdna.com).  
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4.3.1.2 Validation of designed primers 

The specificity of selected primers was confirmed in silico by submitting 

primers sequences to the rdp probe match program with 0 mismatches allowed.  

As there are no cultivable relatives for the TM7 phylum, a broad-spectrum 

validation panel was used, which included bacteria from the five predominant phyla 

of the oral microbiota (Actinobacteria, Bacteroidetes, Firmicutes, Fusobacteria and 

Proteobacteria (Paster, Olsen et al. 2006)) and Synergistetes. The strains were 

cultured as described in 2.3.1.1. DNA was extracted using Genelute bacterial 

genomic DNA extraction kit (Sigma Aldrich) as described in 2.3.2.5.1.  

Plasmid DNA from a cloned 16S rRNA gene from TM7 HOT352 was used as a 

positive control and DNA from a dental caries lesion, previously shown to contain 

TM7 oral taxa, was used to test the sensitivity of the primers. Both the plasmid DNA 

and caries lesion DNA were graciously donated Kathrin Schulze-Schweifing. 

The DNA extracted from reference strains, positive plasmid DNA and mixed 

DNA from carious lesion were amplified using TM7-specific primers in conjunction 

with appropriate (forward or reverse) universal primers (27F-YM and 1492R, Table 

2).  

The PCR reaction consisted of 23 µl of Thermoprime Taq polymerase master 

mix (Abgene), 1 µl of template, and 0.5 µl (0.2 µM final concentration) of each 

primer. Initial denaturation, 95 °C for 5 min, was followed by 35 cycles of 

denaturation at 95 °C for 1 min, annealing for 1 min at annealing temperature (see 

below) and extension at 72 °C for 2 min, with a final period of extension at 72 °C for 
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5 min. Annealing temperatures from 55 to 62 °C were tested (see result section 

4.4.1.1). 

Reference strains used for testing specificity of the TM7 primers: 

Actinobacteria 

Actinomyces naeslundii (NCTC 10301) 

Atopobium rimae (ATCC 49626) 

Slackia exigua (ATCC 700122) 

Bacteroidetes 

Tannerella forsythia (FDC 338) 

Porphyromonas gingivalis (ATCC 33277) 

Prevotella denticola (ATCC 35308) 

Prevotella oris (ATCC 33573) 

Firmicutes 

Parvimonas micra (ATCC33270) 

Streptococcus mutans (NCTC10449) 

Lactobacillus casei (ATCC393) 

Eubacterium minutum (ATCC700079) 

Shuttleworthia satelles (DSM 14600) 

Bulleidia extructa (DSM 13220) 

Proteobacteria 

Aggregatibacter actinomycetemcomitans (ATCC 33384) 

Campylobacter rectus (ATCC 33238) 

Neisseria mucosa (NCTC 10777)  

Fusobacteria 

Fusobacterium nucleatum ss nucleatum (ATCC 25586) 

Synergistetes 

Pyramidobacter piscolens (DSM 21147) 
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4.3.1.3 Validation of previously described TM7 primers 

In addition to primers designed in this study, two previously described TM7-

specific primers were tested: TM7-580F (Hugenholtz, Tyson et al. 2001) and TM7-

1177R (Brinig, Lepp et al. 2003) (Table 19).  

TM7-580F primer, in conjunction with universal primer 1492R, was tested in 

two sets of conditions, those (a) described by Hugenholtz et al. (2001) and those (b) 

adapted by Kuehbacher et al. (2008). PCR conditions (a) consisted of a denaturation 

step at 96 °C for 10 min, followed by 30 cycles of 1 min denaturation at 94 °C, 1 min 

annealing step at 60 °C and 2 min elongation at 72 °C. A final elongation step at 72 

°C for 5 min was performed. In PCR conditions (b) the initial denaturation step of 5 

min at 95 °C was followed by 35 cycles of 1 min denaturation at 95 °C, 1 min 

annealing at 50 °C and 2 min extension at 72 °C, before the final elongation step at 

72 °C for 5 min.  

Primer TM7-1177R was tested using the conditions described by Brinig et al. 

(2003), consisting of an initial denaturation at 96 °C for 5 min, 35 cycles of 1 min 

denaturation at 94 °C, 1 min annealing at 64 °C and 2 min elongation at 72 °C, 

finishing with a final elongation step of 3 min at 72 °C. 

Primer sensitivity was tested with TM7 16S rDNA carried by a plasmid and 

DNA from a carious lesion which contained TM7 representatives (4.4.1.2). The 

specificity was tested against the bacterial panel previously described (4.3.1.2) and 

confirmed by the sequencing of the amplified product, as previously described 

(2.3.2.5.4). 
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4.3.1.4 Detection of uncultured bacteria with specific PCR 

The presence of targeted not-yet-cultured species was assessed by PCR 

amplification with TM7-specific primer set TM7-580F/1492R and PCR conditions (b). 

Template DNAs tested were: a saliva sample from a healthy volunteer (sample S-

TM7-1), endodontic samples A1, A2 and C and CMM cultures derived from these 

samples at all time points, aerobic CBD biofilms at all time points and anaerobic 

CBD biofilms (24 d). 

Products generated by PCR were cloned and sequenced (as described in 

sections 2.3.2.5.3 and 2.3.2.5.4) for saliva and endodontic samples, CMM cultures 

A1 and A2 at 120 d and C at 50 d, for aerobic and anaerobic CBD biofilms at 24 d. 

4.3.2 FISH  

4.3.2.1 Design of TM7-specific probes 

Oligonucleotide probes targeting oral TM7 were designed by visual inspection 

of the alignment described in section 4.3.1.1. The criteria for probe development 

included an exact match to HOT352 / HOT353, at least 2 mismatches to all non-TM7 

groups in the alignment and a brightness class I to III as described by Fuchs et al. 

(1998). The brightness class was evaluated by comparing the position of potential 

probes on the TM7 16S rRNA putative secondary structure (Podar, Abulencia et al. 

2007) to that of E. coli. Two potential probes and their exact specificity to oral TM7 

taxa are described in Table 22. For HOT346 and HOT350, however, the reference 

sequences were too short to determine the specificity of the TM7-1431 probe. 
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4.3.2.2 Validation of newly and previously designed probes 

 TM7 targeting probes described in Table 22 were evaluated against a panel 

of oral bacteria (see result section 4.4.2.1): 

Actinobacteria 

Actinomyces naeslundii (NCTC 10301) 

Slackia exigua (ATCC 700122) 

Bacteroidetes 

Tannerella forsythia (FDC 338) 

Prevotella oris (ATCC 33573) 

Firmicutes 

Parvimonas micra (ATCC33270) 

Streptococcus mutans (NCTC10449) 

Lactobacillus casei (ATCC393) 

Bulleidia extructa (DSM 13220) 

Proteobacteria 

Campylobacter rectus (ATCC 33238) 

Neisseria mucosa (NCTC 10777)  

Fusobacteria 

Fusobacterium nucleatum ss nucleatum (ATCC 25586) 

 

4.3.2.3 FISH microscopy 

For FISH detection, 10 µL of bacterial suspension in PBS was applied to each 6 

mm-diameter well of a 0.075 % gelatine-coated Shandon Multi-Spot microscope 

slide (Thermo Electron Corporation). Cells were allowed to dry and were fixed by 

incubation with 30 µL of 1:1 PBS / 100 % ethanol for 2 h at 4 °C in a humid chamber. 

Slides were washed with PBS and dehydrated by successive immersions in 50 %, 80 

% and 96 % ethanol for 3 min each. The hybridisation was carried out at 50 °C for 2 
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h in the dark in a humid chamber. The hybridisation buffer included 18 % v/v 5M 

NaCl, 2 % v/v 1M Tris-HCl (pH=8.0), 0.1 % v/v of 10 % SDS and formamide (0 to 40 

%). The hybridisation mix included 8 µL of pre-heated hybridisation buffer and 0.5 

µL of each probe (16 µM) per well. The slide was then washed twice in post-

hybridisation buffer, composed of 4.2 % v/v 5M NaCl, 2 % v/v 1M Tris-HCl, 1 % v/v 

0.5M EDTA and 0.1 % v/v of 10 % SDS, for 15 min at 52 °C. Slides were rinsed in PBS 

and allowed to dry, before being covered with Vectashield mounting medium 

(Vector Laboratories Inc.) and sealed with a coverslip and varnish. 

The detection of fluorescently-labelled cells was undertaken using a Leica SP2 

confocal laser scanning system (Leica microsystems) fitted with argon/argon-

krypton laser (operating at 488 nm), krypton laser (568 nm) and helio-neon laser 

(633 nm), with a Leica DMIRE2 inverted microscope (x100 objective).  

4.3.3 Colony hybridisation 

Colony-hybridisation was performed using digoxigenin (DIG) labelled 

oligonucleotide probes targeting 16S rRNA from bacterial cells transferred to nylon 

membrane (Table 14). The detection of the hybridised probe was undertaken by an 

anti-DIG antibody conjugated to alkaline phosphatase and subsequent chromogenic 

reaction (Table 15). 
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Table 14. Colony Hybridisation protocol, part I - colony lift, rRNA fixation and 
hybridisation of the DIG-labelled probes  

 

Stage Conditions Time 

Preparation of colony lift 

1. Positively-charged nylon membrane disc 
placed carefully on agar plate culture avoiding air 
bubbles1 

In anaerobic 
cabinet 

1 min 

2. 3 orientating pin-holes made through 
membrane on plate prior to removal of membrane 

  

3. 1 μl of each positive control applied to 
membrane (DIG-labelled DNA (DIG Nucleic acid 
detection kit, 100x) and 16S rRNA PCR product of the 
target, denatured)  

  

4. Membrane baked for cell lysis and RNA 
fixation (Braun-Howland, Vescio et al. 1993) 

80 °C 40 min 

Membrane pre-hybridisation 

5. Membrane moistened in 2x saline sodium 
citrate (SSC) solution and placed in 125 ml roller 
bottle2 

  

6. Pre-hybridised with 10 ml pre-heated DIG Easy 
Hyb hybridisation buffer3 

In hybridisation 
oven at hyb. T 

1 h 

Membrane hybridisation 

7. Hybridised with 10 ml pre-heated DIG Easy 
Hyb hybridisation buffer with 20 nM of probe 

As for pre-
hybridisation 

2 h 

Post-hybridisation  

8. Washed twice with 25 ml Low Stringency Wash 
Buffer: 2x SSC + 0.1% SDS 

At RT, with 
agitation 

2x 5 min 

9. Washed twice with 25 ml pre-warmed High 
Stringency Wash Buffer: 0.1x SSC + 0.1% SDS 

At post-hyb. T, 
with agitation 

2x 15 min 

 

1 80 mm diameter, 0.45 μm pore size (Amersham Hybond, GE healthcare Ltd), 
presterilised by autoclaving between filter paper sheets 

2 Thermo Hybaid 

3 Roche Diagnostics 
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Table 15. Colony Hybridisation protocol, part II - detection of hybridised probe by 
chromogenic reaction. 

Stage Conditions Time 

Immunological reaction between DIG and anti-DIG 

10. Washed with 15 ml Washing Buffer At RT, with agitation 5 min 

11. Blocked with 30 ml Blocking Solution At RT, with agitation 30 min 

12. Antibody solution (3 μl Anti-DIG-Alkaline 
Phosphatase conjugate in 15 ml Blocking Solution) 
applied to membrane 

At RT, with agitation 30 min 

13. Washed twice with 30 ml Washing Buffer At RT, with agitation 
2x 15 
min 

14. Equilibrated with 15 ml Detection Buffer At RT, with agitation 5 min 

Detection of DIG/ anti-DIG conjugates 

15. Membrane covered with NBT/BCIP solution: 80 
μl NBT/BCIP stock solution in 4 ml Detection Buffer 

RT, in the dark, 

 no agitation 
16 h 

16. Reaction stopped with 10 ml 1x TE buffer  NA 

 

 

 

The criteria for the selection of hybridisation conditions were: hybridisation of 

1431-DIG probe with positive controls and lack of hybridisation between the non-

sense NON338-DIG probe and any templates, and the 1431-DIG probe and the 

strains in the validation panel (4.3.2.2). The positive controls were (i) DIG-labelled 

control DNA, pBR328, 1 µL (DIG Nucleic Acid Detection kit, Roche Diagnostics) at 50 

pg/ µL and (ii) heat-denatured (5 min, 95 °C) amplicon of the full length 16S rDNA of 

TM7 HOT352 / HOT353. The optimum conditions were a temperature of 33 °C for 

hybridisation and 38 °C for post-hybridisation steps. 
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4.3.4 Targeted enrichment of TM7 

4.3.4.1 Growth conditions 

To assess optimal growth conditions plates were inoculated with saliva from a 

healthy volunteer (samples S-TM7-3). 

The experimental conditions were:  

(i) FAAB plates inoculated with 100 µL of whole saliva, anaerobic 

incubation; 

(ii) BA plates inoculated with 100 µL of whole saliva, aerobic incubation 

with 5 % CO2;  

(iii) FAAB plates with streptomycin (10 µg/mL) inoculated with 100 µL of 

whole saliva, anaerobic incubation;  

(iv) FAAB plates inoculated with 100 µL of saliva passed through 0.45 µm 

filter, anaerobic incubation.  

The presence of TM7 was detected by PCR with TM7-580F/1492R primers 

(section 4.3.1.3) using DNA extracted from a 1/4 of the culture plate after 10 d 

incubation. 
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4.3.4.2 TM7 culture 

Five series of TM7-targeted culture were performed. 100 µL of saliva samples 

obtained from the same volunteer on different occasions (S-TM7-4 to S-TM7-8) 

were inoculated on FAAB plates and incubated anaerobically for 12 d, after which 

colony hybridisation was performed as described in section 4.3.3. The following day 

the region(s) corresponding to positive detection of TM7 were harvested and 

resuspended in 250 µL of pre-reduced RTM (2.3.2.1). 100 µL of the suspension was 

used for DNA extraction and assessment of the presence of TM7 by PCR with 

primers TM7-580F/1492R; 50 µL was fixed on slides for FISH detection of TM7 and 

100 µL was used to inoculate fresh culture plates. After passage 4 new plates 

received a streak of helper strains Propionibacterium acnes and Staphylococcus 

aureus. 
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4.4 Results 

4.4.1 PCR-detection of TM7 bacteria 

4.4.1.1 Design and evaluation of TM7-specific oligonucleotides 

A total of 1435 16S rRNA gene sequences, designated as belonging to the 

Division TM7 in the Ribosomal Database Project database were aligned and used to 

construct a phylogenetic tree. Using the tree as a guide, the number of sequences 

in the alignment was reduced to 281, to include representatives of all major 

clusters seen in the larger tree (Appendix 3). The phylogenetic tree showed two 

main subdivisions, and most of human and animal related sequences fall into 

subdivision 2. Two sequences make a figure of exception, GQ263527 and 

GQ097299. Both were detected in human skin samples, in the same study (Grice, 

Kong et al. 2009).  

The alignment was then augmented with representatives of all of the genera 

listed in HOMD and realigned. The combined alignment was manually inspected for 

TM7-specific regions using the primer selection criteria listed in Section 4.3.1.1. 

Three forward and four reverse primers were selected in this way and are shown in 

Table 16. 
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Table 16. Potential TM7-specific primers, numbered according to the Escherichia coli 16S rRNA (Brosius, Palmer et al. 1978) (IUPAC notation 
of degenerate bases: M = A or C; Y = C or T; R = A or G; W = A or T). 

TM7 primers Sequence (5'-3') Length (G + C) % Tm (°C) Ref. 

TM7-207F TGAGGRATAACTGCCCGAAAGGG 23 52 to 57 60 This work 

TM7-233F TAATRCCGCATATGGTCTTCGG 22 45 to 50 55.8 This work 

TM7-560F CCGGAGTGACTGGGCGTAAAGA 22 59 60.9 This work 

TM7-1158R  CCTTCCTCNCCGTTACCG 18 61 to 67 56.7 This work 

TM7-1174R ATACTGACCTGACATCATCCCCTCC 25 52 59.6 This work 

TM7-1405R CTTCGGGTGTTGGTCACTTTCATGG 25 52 60.3 This work 

TM7-1417R ACGAATCGGACTTCGGGTGTTGG 23 57 61.3 This work 

TM7-580F AYTGGGCGTAAAGAGTTGC 19 47 to 53 58.0 (Hugenholtz, Tyson et al. 2001) 

TM7-1177R GACCTGACATCATCCCCTCCTTCC 24 58 60.4 (Brinig, Lepp et al. 2003) 
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The primers were used in combination with the universal primers 27F-YM and 

1492R and initially tested using plasmid DNA from a cloned 16S rRNA gene from 

TM7 HOT 352, and a sample from a dental caries lesion, previously shown to 

contain TM7 oral taxa. Using an annealing temperature of 58 °C, all primers 

produced a PCR product from the cloned DNA template (Table 17), and primers 

pairs TM7-560F / 1492R and 27F-YM / TM7-1405R gave product from the clinical 

sample. The primers negative at this annealing temperature were re-tested at 55 

°C, but either a product of the incorrect size or multiple size products were seen. 

 

Table 17. Sensitivity assessment of the TM7-specific primers. 

Annealing T Ta = 58 °C Ta = 55 °C 

TM7 primers TM7 DNA mixed DNA TM7 DNA mixed DNA 

TM7-207F + 
 

+ multiple bands 

TM7-233F + 
 

+ multiple bands 

TM7-560F + + NA NA 

TM7-1158R  + incorrect size + incorrect size 

TM7-1174R + incorrect size + incorrect size 

TM7-1405R + + NA NA 

TM7-1417R + 
 

+ multiple bands 

 

The primers were then tested in various combinations with template DNA 

obtained from a variety of oral bacteria (Table 18). All primer combinations gave 

product with one or more of the panel bacteria. At 58 °C, 27FYM / TM7-1405R was 

particularly cross-reactive, giving product with 15 of the 19 species tested. Raising 
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the annealing temperature to 60 °C and 62 °C did not completely inhibit the cross-

reactivity and at 62 °C, the TM7-positive sample no longer gave a product. Primers 

TM7-560F / 1492R gave product with the A. naeslundii template only, so an 

alternative annealing protocol of 5 cycles at 65 °C, followed by 30 cycles at 60 °C 

was tested but a product was still obtained. 

None of the designed primers was found to be specific and sensitive enough 

to specifically amplify TM7 16S rRNA sequences from a mixed template. 
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Table 18. Assessment of the specificity of the TM7-specific primers. Positive (+) and negative (-) reactions are reported. 

PCR conditions 58 °C  60 °C  62 °C 

Template 
TM7-560F 

/1492R 
TM7-1405R 

/1492R 
 TM7-560F 

/1492R 
27F-YM 

/TM7-1405R  
 TM7-560F 

/1492R 
TM7-560F 

/TM7-1158R 
TM7-560F 

/TM7-1174R 
TM7-560F 

/TM7-1405R 
TM7-207F 

/TM7-1405R 
Parvimonas micra - +  - -  - - - - - 
Prevotella denticola - +  - +  - - - - - 
Streptococcus mutans + +  - +  - - - - - 
Prevotella oris - +  - -  - - - - + 
Lactobacillus casei - +  - -  - - - - + 
Actinomyces naeslundii + -  + -  + - + + - 
Eubacterium minutum - +  - +  - - - - - 
Atopobium rimae + -  - -  - - - - - 
Shuttleworthia satelles - +  - -  - - - - - 
Slackia exigua + -  - -  - + + - - 
Bulleidia extructa + +  - +  - + + + - 
Aggregatibacter 
actinomycetemcomitans 

- +  - -  - - - - - 
Tannerella forsythia - +  - -  - - - - + 
Campylobacter rectus - +  - +  - - - - - 
Porphyromonas gingivalis - +  - +  - - - - - 
Neisseria mucosa - +  - +  - - - - - 
Fusobacterium nucleatum 
ss nucleatum 

- -  - -  - - - - + 
Pyramidobacter piscolens - +  - -  - - - - - 
16S rDNA + +  + +  + + + + + 
Carious lesion DNA + +  + +  - - - - - 
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4.4.1.2 Evaluation of previously described TM7 primers 

Two primers specific for the TM7 phylum previously described in literature 

were assessed (Table 19).  

Table 19. Previously described TM7-specific primers. 

Primers Sequence (5'-3') Tm (°C) Reference 

TM7-580F AYTGGGCGTAAAGAGTTGC 58.0 
(Hugenholtz, Tyson et al. 

2001) 

TM7-1177R GACCTGACATCATCCCCTCCTTCC 60.4 (Brinig, Lepp et al. 2003) 

 

The primer TM7-1177R was first tested using the previously described 

conditions with a 64 °C annealing temperature (Brinig, Lepp et al. 2003), but no 

product was obtained even from TM7 rDNA. A range of annealing temperatures (56 

to 64 °C, 1 °C increments) was then tested with TM7 rDNA and TM7-positive mixed 

DNA. A product for mixed template DNA was observed at the maximal temperature 

of 62 °C. When these conditions were tested against the panel bacteria, a faint 

product was observed for Eubacterium minutum. When this primer set was used to 

amplify TM7 from endodontic samples A1 and A2, described in Chapter 2, a positive 

product was observed. It was cloned and sequenced, with 48 clones per sample. 

The sequencing revealed, however, that the product was mixed (Table 20) and TM7 

sequences were obtained only for the A2 sample. TM7 taxa detected with this 

primer were TM7 sp. HOT349 and HOT437. This primer was not used further. 
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Table 20. Taxa detected in endodontic samples A1 and A2 with TM7-specific 
primer TM7-1177R (48 clones) 

Taxa                                       Samples A1 A2 

Eubacterium infirmum 3 4 
Eubacterium nodatum 1 

 
Filifactor alocis 

 
7 

Mogibacterium diversum / vescum / 
neglectum 

3 7 

Mogibacterium pumilum 3 
 

Peptostreptococcaceae sp. HOTD17 6 2 
Peptostreptococcus stomatis 6 

 
Solobacterium moorei 6 16 
TM7 sp. HOT349 

 
1 

TM7 sp. HOT437  
 

4 
Treponema socranskii ss 04  

 
4 

Treponema socranskii ss buccale  
 

3 
Treponema sp. HOT268  1 

 
 

The TM7-580F primer, described by Hugenholtz et al. (2001), was tested using 

PCR conditions originally described and validated for TM7 detection in waste water, 

and in the conditions modified by Kuehbacher et al. (2008) for the detection of the 

division among the intestinal microbiota. At an annealing temperature of 60 °C, 

TM7-580F / 1492R gave a product with the plasmid TM7 DNA but not from the 

TM7-positive caries sample. Product was obtained from the templates, however, at 

an annealing temperature of 50 °C, although the caries sample gave rise to extra 

bands in addition to the one of the correct size. TM7-580F / 1492R was then tested 

with the panel of oral bacteria and the band of the correct size was not seen for any 

strain.  

When tested with endodontic samples, exclusively TM7 sequences were 

detected (4.4.1.3). This primer was used to assess the presence of TM7 bacteria for 

the remainder of the study. 
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4.4.1.3 Detection of TM7 in saliva, endodontic, CMM and CBD samples 

Primer set TM7-580F / 1492R was used to detect TM7 in endodontic samples 

A1, A2 and C and derived CMM cultures, as well as in saliva sample S-TM7-1 and 

CBD biofilms. The range of TM7 phylotypes detected in these samples and their 

proportions are shown in Table 21 and Figure 31. 

Six TM7 taxa were detected in the saliva of a healthy volunteer: HOT346, 

HOT348, HOT349, HOT352 / HOT353, HOT356 / HOT437 and HOTA56. 

Six TM7 taxa were detected in endodontic samples. Sample A1 was the most 

diverse, with all 6 taxa detected, while only 2 taxa were detected in sample C. The 

TM7 taxa detected in CMM cultures resembled those found in the endodontic 

infection samples with which the cultures were inoculated. The only taxon detected 

in CMM culture which was not seen in the endodontic samples was TM7 sp. 

HOT355. Conversely, TM7 sp. HOT488 was found in samples A1 and A2 but was not 

detected in CMM cultures. Samples A1 and A2, as well as corresponding CMM 

cultures, were dominated by the taxa HOT356 / HOT437 and HOT352 / HOT353. 

Sample C and derived CMM culture were dominated by taxa HOT352 / HOT353 and 

HOT348. 

In the CBD biofilms, 12 TM7 taxa were detected, including 3 potentially novel 

taxa. The dominant phylotype was HOT355. The most diverse was the TM7 

population in biofilms grown in BMM, with 8 taxa including 2 potential novel taxa. 

Only biofilms incubated with BHI containing glucose included HOT351 and HOT352 

/ HOT353 taxa. The CBD biofilm in BHI without mucin was dominated by HOT355, 
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but also presented a phylotype closely related (99 % identity) to the canine oral 

taxon 363 (COT363). 

 

 

Figure 31. Phylogenetic tree of TM7 taxa detected in this study with reference 
sequences.
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Table 21. TM7 taxa detected with TM7-580F primer, with number of clones (out of 48) identified. 

Samples Endodontic samples CMM culture 
Saliva 

Anaerobic CBD biofilms Aerobic CBD biofilms 

TM7 taxa A1 A2 C A1 A2 C BHI BHIm BHIG BHI BMM 

HOT346 
      

10 
    

4 

HOT348 6 
 

21 
  

10 8 
    

6 

HOT349 5 
  

12 
  

5 
    

13 

HOT350 
          

5 1 

HOT351 
        

5 9 
 

2 

HOT352 / HOT353 7 9 27 11 23 38 13 
 

16 9 
  

HOT355 
   

3 
   

45 27 30 37 12 

HOT356 / HOT437 23 33 
 

21 25 
 

7 
   

6 
 

HOT488 3 6 
          

uncultured 1 
          

5 
 

uncultured 2 
           

6 

uncultured 3 
           

2 

oral clone 13-10 
           

2 

HOTA56 
      

5 
     

novel_A1_02 4 
  

1 
        

COT363 
       

3 
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4.4.2 FISH detection of TM7 bacteria 

4.4.2.1 Design and validation of TM7-specific probes. 

Using the alignment described in 4.3.1.1, 2 new oligonucleotides were 

designed to be used as fluorescently labeled probes for FISH (Table 22), using the 

criteria described in 4.3.2.1. Furthermore, a previously described probe, TM7-905 

(Hugenholtz, Tyson et al. 2001), was also tested. 

The TM7-specific probes were then evaluated against a panel of oral bacteria 

(Section 4.3.2.2). First, the hybridisation was performed in the conditions described 

for TM7-905, i.e. hybridisation temperature of 46 °C and 20 % formamide. Non-

specific hybridisation to several members of the panel were however observed in 

these conditions (Table 23). When the temperature was raised to 50 °C, TM7-1431 

did not hybridise with any of the bacteria in the panel. TM7-905 and TM7-892, on 

the other hand, still exhibited non-specific binding. Increasing the formamide 

concentration to 40 % did not eliminate non-specific binding. However, the addition 

of a pre-hybridisation step, 15 min incubation with hybridisation buffer in 

hybridisation conditions but without the addition of the probes, abrogated non-

specific binding for TM7-905 but not for TM7-892. 
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Table 22. TM7 FISH probes. (Hybridisation temperature 50 °C, * pre-hybridisation step required) 

Probe Sequences (5'-3') 5' fluorophore Length G+C % 

Brightness 
class (Fuchs, 
Wallner et al. 

1998) 

Targeted taxa 
Formamide 

% 
Reference 

TM7-892 AGCCTTGCGGCCGCACTCCACA Cy5 and Cy3 22 68 III 
TM7 HOT347, 348, 349, 
353/353, 356/437, 488 

NA This study 

TM7-1431 CCCACCTTAGGCCGACGAATCGG Cy5 and Cy3 23 65 III 
TM7 HOT347, 348, 349, 

352/353, 355, 488, 
20 This study 

TM7-905 CCGTCAATTCCTTTATGTTTTA Cy5 and Cy3 22 32 IV TM7 universal 20* 
(Hugenholtz, 
Tyson et al. 

2001) 

EUB338 GCTGCCTCCCGTAGGAGT Cy5 and Cy3 18 67 III universal 0 - 40 
(Amann, Binder 

et al. 1990) 

NON338 TGAGGATGCCCTCCGTCG FITC 18 67 - - - 
Reverse 

sequence of 
EUB338 
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Table 23. Summary of results of hybridisation conditions optimisation for TM7 probes. B.e. = Bulleidia extructa, A.n. = Actinomyces 
naeslundii, S.e. = Slackia exigua, F.n. = Fusobacterium nucleatum ss. nucleatum, P.m. = Parvimonas micra, L.c. = Lactobacillus casei, C.r. = 
Campylobacter rectus. 

  

Hybridisation conditions 

Probe Sequence 
46 °C,  

20 % formamide 
 

50 °C,  
20 % formamide 

 

50 °C,  
40 % formamide 

 

50 °C,  
20 % formamide 
pre-hybridisation 

TM7-905 5'-CCGTCAATTCCTTTATGTTTTA-3' 
non specific 

B.e., A.n., S.e. 

non specific 

B.e., A.n., S.e. 

non specific 

B.e., A.n., S.e. 
specific 

TM7-1431 5'-CCCACCTTAGGCCGACGAATC GG-3' 
non specific 

F.n., P.m. 
specific specific specific 

TM7-892 5'-AGCCTTGCGGCCGCACTCCACA-3' 

non specific 

P.m., L.c., A.n., B.e., 
C.r. 

non specific 

P.m., A.n., B.e. 

non specific 

P.m., A.n., B.e. 

non spec 

P.m., A.n., B.e. 
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Some artifacts were seen after FISH staining. In some preparations, even 

when the hybridisation between panel bacteria and TM7-specific probes was clearly 

negative, some structures, not related in shape to the bacteria tested, gave a 

positive signal. When the NON338 probe was added, it also hybridised to these 

structures (Figure 35). The structures, which were probably PTFE coating particles, 

were mostly coccoid in shape and could potentially have been mistaken for 

bacterial cells. For this reason, a NON338 control probe was included in every 

experimental run.  

TM7 cells were detected in saliva of a healthy volunteer (sample S-TM7-1) 

with TM7-1431 and TM7-905 probes. All cells hybridising with TM7-1431 and most 

of those reacting with TM7-905 presented were coccal cells, ranging in diameter 

from 0.6 to 1.2 µm (Figure 32, panels A and B). However, some different shaped 

cells hybridised with TM7-905 probe, including short rods present as single cells or 

forming chains (Figure 32, panels C and D).  
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Figure 32. FISH micrograph of TM7 cells in saliva presenting an overlay of total 
bacteria in green (Cy5-EUB338 probe), non specific hybridisation in blue (FITC-
NON338 probe) and TM7 cells in red (A, Cy3-TM7-1431 probe, B, C and D, Cy3-
TM7-905 probe).  

 

 

A B 

C D 
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4.4.3 TM7 bacteria culture from saliva 

4.4.3.1 Culture medium and conditions for TM7 culture 

In this experiment, saliva was used to inoculate agar plates in an attempt to 

culture TM7 under the four conditions described in the methods section: untreated 

saliva on FAAB incubated anaerobically and FAAB supplemented with 10 µg/ml 

streptomycin, saliva passed through a 0.45 µm filter on FAAB and BA incubated in 

air + 5 % CO2. 

After incubation for 10 d, bacterial growth harvested from the plates was 

tested for the presence of TM7 by PCR with primers TM7-580F/1492R. A strong PCR 

product of the correct size was seen for the unfiltered saliva grown on FAAB and a 

weak band from the growth on FAAB with streptomycin. No products were seen 

from the filtered saliva plates or those incubated aerobically. The PCR product from 

the FAAB plate was cloned as described in section 2.3.2.5.3 and 24 clones partially 

sequenced and identified. All clones were identified as TM7 HOT352 / HOT353. 

Cloning was attempted for the weak product obtained from the streptomycin plate, 

but failed. Anaerobically incubated FAAB was therefore chosen as the method to 

attempt TM7 isolation. 

4.4.3.2 Colony hybridisation enrichment for TM7 

Saliva was cultured on FAAB anaerobically for 12 d, after which the plate was 

blotted and hybridised with the TM7-1431 probe. After blotting, one colony gave a 

positive hybridisation signal. The corresponding region on the original plate was 

harvested and used to inoculate an FAAB plate. After 10 days of growth, colony 

hybridisation was performed and two positive signals were seen.  
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This procedure was repeated 8 times. After each incubation, the growth was 

tested for the presence of TM7 by PCR and found to be positive up until the final 

passage when TM7 could not be detected. 

After passage 4, the growth was examined for the presence of TM7 by FISH 

using probes TM7-905 and TM7-1431. Both probes hybridised to coccal cells (Figure 

33), which made up less than 1 % of the total cells seen with the universal EUB-338 

probe. A clone library was also prepared from the TM7-specific PCR product 

obtained from this growth. All clones sequenced were found to be TM7 HOT352 / 

HOT353.  

From passage 4, the plates were streaked with P. acnes and S. aureus. Colony 

hybridisation showed TM7-positive signals in a region corresponding to the edge of 

the S. aureus streak (Figure 34). 

Following passage 6, micro colonies were visible around the S. aureus streak 

and these were collected and used as the inoculum for passage 7. All of the 

resulting colonies had a similar morphology and gave a positive product in TM7-

specific PCR. 48 clones were sequenced from a library prepared from this product 

and all were identified as TM7 HOT352 / HOT353. In addition a library was prepared 

with universal primers 27F-YM/1492R and all 48 clones sequenced from this library 

were identified as Slackia exigua. After passage 8, the TM7 colony hybridisation 

gave no positive signals. 
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Figure 33. Confocal FISH micrographs of mixed population from FAAB plates 
containing TM7 bacteria. Overlay showing total bacteria in green (probe Cy5-
EUB338) and TM7 cells in red (A probe Cy3-TM7-905, B probe Cy3-TM7-1431). 

 

 

Figure 34. Photographs of A - FAAB plate at CH passage 5, and B - correspondent 
membrane hybridised with TM7-1431-DIG probe. The arrow indicates positive 
region around S. aureus streak. 

 

 

A B 

B A 
P. acnes 

S. aureus 
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The complete experiment was repeated on four further occasions. On three 

occasions TM7 was detected by colony hybridisation up to three, three and four 

passages respectively.  

On the fourth occasion, the first blotting revealed two positive colonies and 

each was passaged to a new FAAB plate. One of the subsequent plates did not show 

a positive hybridisation signal after 12 d of incubation. On the second plate, a 

number of positive signals were seen and the most intense was selected for 

passaging. This procedure was repeated and after the third passage, a S. aureus 

streak was added to the newly inoculated plate. This time however no hybridisation 

at the edges of the streak was observed, but a number of signal-positive colonies 

were seen. A library was created with universal primers 27F-YM/1492R and all 72 

clones were identified as Atopobium parvulum. A library created with TM7-specific 

primers was also created from the same material and all clones were identified as 

TM7 HOT352 / HOT353. FISH performed with TM7-905, EUB338 and NON338 

probes revealed clusters of cells positive with TM7-905 probe (Figure 35). After the 

fifth passage, however, this culture was lost following a failure of the anaerobic 

workstation. 
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Figure 35. FISH micrograph of cell clusters observed after 4 passages. Overlay of 
total bacteria in green (Cy5-EUB338 probe), TM7 cells in red (Cy3-TM7-905 probe) 
and non specific hybridisation in blue (FITC-NON338 probe). The arrow shows a 
spherical shape hybridising with NON338 probe, probably coating particle. 
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4.5 Discussion 

The development of specific oligonucleotides for TM7 was difficult, for a 

number of reasons. Firstly, the V1 hypervariable region of 16S rDNA of some 

phylotypes of TM7 included an insertion of variable length up to 190 bp, between E. 

coli positions 92 and 93, making automated alignments unreliable. Secondly, the 

high sequence variability among members of the division made it hard to find 

division-specific regions of homology, suitable for primer design. The intra-phylum 

sequence variability was evaluated at 17 % by Hugenholtz et al. (2001), which is an 

underestimate following the incorporation of new taxa within the division. Finally, 

the validation of primers and probes targeting uncultivated taxa is challenging. 

While some studies have used techniques such as catFISH to validate probes at a 

single nucleotide discrimination (Ouverney, Armitage et al. 2003), for some others 

validation was rather perfunctory (Brinig, Lepp et al. 2003). In this study, the 

validation of FISH probes was complicated by the non-specific reaction with the 

PTFE coating of the wells on the microscopy slides. 

The phylogenetic tree of TM7 sequences presented in Appendix 3 shows two 

main subdivisions, as has been reported previously (Dinis, Barton et al. 2011). All 

human and animal related sequences were found to cluster together in the 

subdivision 2, while the subdivision 1 included exclusively sequences from 

environmental origin, with the exception of two sequences related to skin samples, 

originating from the same study. The subdivision 2 included also some sequences of 

environmental origin, and attempts were made to target an environmental TM7 

bacterium which would be closely related to human-associated TM7 (Dinis, Barton 
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et al. 2011). One such bacterium, with 16S rRNA sequence 98.6 % similar to the 

human oral taxon 348, was found in high proportion in wastewater samples. 

However, the high 16S rRNA similarity does not guarantee metabolic similarity in 

bacteria, as sometimes even different strains of the same species, whilst 

undistinguishable by their 16S sequences, can present dissimilar behaviour. Finally, 

the separation of the all sequences in two subdivisions suggests that Candidate 

Division TM7 may represent more than one phylum.  

A total of 16 TM7 phylotypes were identified in this study. The taxon HOT346, 

largely found in healthy subjects (Paster, Boches et al. 2001, Brinig, Lepp et al. 

2003), was detected only in saliva and CBD biofilms grown with BMM. The taxon 

dominating endodontic infections A1 and A2 in this study was HOT356 / HOT437, 

and it was maintained in high proportions in derived CMM cultures. It was also 

detected in saliva, but not in the sample from endodontic infection C. This taxon 

was found to be associated with periodontitis (Paster, Boches et al. 2001), but was 

also found in health with 71 % prevalence (Kumar, Griffen et al. 2003). TM7 HOT352 

/ HOT353 was first identified as being associated with halitosis (Kazor, Mitchell et 

al. 2003). In this study, however, it was found in all endodontic samples, CMM 

cultures derived from them, saliva, and most CBD biofilms. It was however not 

found in CBD biofilms grown without mucin or without glucose, suggesting a 

requirement for these substrates. This taxon was also the only one identified from 

communities grown on agar plates. The CBD biofilms incubated with BHI-based 

media were dominated by TM7 HOT355 taxon. It comprised up to 93.8 % of the 

TM7 population in anaerobic CBD biofilm without mucin. Finally, the BMM CBD 
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biofilm included the most rich TM7 community, with 9 taxa, including 2 possible 

novel. No representatives of the human oral taxon 347 were detected in this study.  

 The predominant morphology of TM7 cells observed in this study differed 

from what has been previously described, as only a limited number of cells 

observed presented the morphotype often described as a "filament", but which in 

fact were chain-forming rods in a sheath. The most frequently detected 

morphotype was coccoid cells between 0.6 and 1.2 µm of diameter. This finding 

could be explained by the fact that TM7-1431 probe did not target the totality of 

the TM7 diversity, as cocci were the only morphotype detected with this probe. But 

even when the TM7-905 probe, targeting the whole TM7 division, was used, cocci 

were predominantly detected. It may be related to the fact that only one subject 

was used to provide saliva samples and the TM7 diversity in the studied subject was 

more rich in TM7 representatives of this morphotype. But it is also possible that 

since the "filament" morphotype is easier to identify, some previous studies may 

have disregarded the coccoid morphotypes. One HOT identified as presenting the 

"filament" morphotype, HOT356 (Ouverney, Armitage et al. 2003), was detected in 

the saliva sample representing 14.6 % of TM7 clones. 

On two occasions, a simple community containing only one other species 

other than TM7, was established, but lost. The two simple cultures were obtained 

with Slackia exigua and Atopobium parvulum, both members of the Actinobacteria 

phylum and the Coriobacteriaceae family. A more detailed study of the genomes of 

these species, as well as a metabolic analysis of the mixed cultures, may reveal 

clues as to the exact mechanism of the interaction in place. Surprisingly, 
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Staphylococcus aureus also seemed able to support the growth of TM7 bacteria. In 

this case a comparative analysis of metabolic pathways of S. exigua and A. 

parvulum on the one hand and S. aureus on the other may be useful. But another 

possible explanation is that S. aureus was in fact supporting and stimulating S. 

exigua growth. Indeed, S. exigua is known to be a fastidious and slow growing 

organism, and a recent study reported that S. exigua found in wounds was never 

found as a sole present species (Kim, Rowlinson et al. 2010). If S. aureus was indeed 

stimulating S. exigua, and not TM7 cells directly, it could explain the fact that no 

similar interaction was observed when TM7 growth was supported by A. parvulum. 

When aerobic culture was tested for growth of a mixed population supporting 

TM7 bacteria, no TM7 growth was detected. This could suggest a strict requirement 

for anaerobic conditions for oral TM7 bacteria, but not necessarily so. Indeed, if the 

TM7-supporting species are anaerobic and did not survive in the test conditions, 

TM7 cells, while able to survive the presence of oxygen, would not grow. S. exigua 

and A. parvulum, for instance, are both strict anaerobes. The predicted 

streptomycin resistance of TM7 did not provide a useful tool for community 

simplification for the oral microbiota samples tested. Indeed, streptomycin 

resistance appears to be relatively common among oral bacteria, and a single point 

mutation may be sufficient to confer resistance.  

When the plate-grown community included only 2 species, only single colony 

types were seen, suggesting that TM7 cells were intimately mixed with the other 

species in the co-culture. The proportion of TM7 cells to the main cell type was low, 

under or at 1 %, and no TM7 sequences were detected when 27F-YM/1492 
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amplified 16S rRNA was sequenced. If a simple community could be obtained in 

future experiments, a deeper analysis of the diversity, by next generation 

sequencing techniques such as 454 pyrosequencing, for instance, may reveal the 

presence and the proportion of TM7 bacteria. This type of simple community may 

also be analysed by proteomic analysis (VerBerkmoes, Denef et al. 2009, Schneider 

and Riedel 2010, Cantarel, Erickson et al. 2011), or a whole transcriptome shotgun 

sequencing, for example using RNA-seq technology (Giannoukos, Ciulla et al. 2012), 

to reveal the molecular basis of the observed support of the TM7 growth. 
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Main findings: 

1. Specific primers and probes targeting TM7 sp. HOT352 / HOT353 were 

desiged and validated; 

2. TM7 sp. HOT352 / HOT353 was detected in all three models of in-vitro 

culture assessed (CMM, CBD biofilms and agar plates); 

3. The colony hybridisation technique allowed the establishment of a 

simple community including TM7 bacteria with members of the 

Coriobacteriaceae family on two occasions. 

4. A closer metabolic analysis of these simple co-cultures may yield clues 

to the mechanisms of this relationship and provide keys to the pure 

culture of TM7. 
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 Chapter 5: General discussion 

The overall aim of the work described in this thesis was to attempt to culture 

previously uncultivated oral bacterial taxa in vitro. Two laboratory models were 

used: Cooked Meat Medium and the Calgary Biofilm Device. The use of both 

models resulted in the successful establishment and maintenance of diverse oral 

bacterial microbial communities, whose composition was not significantly different 

from the original samples from which they were derived. The CBD biofilms 

resembled those formed using the hydroxyapatite (HA) disc model (Madhwani and 

McBain 2011). The latter model is commonly analysed after up to 10 days of growth 

as they are often used to study the early stages of dental plaque biofilms or can be 

sampled and used as a secondary inoculum (Shaddox, Alfant et al. 2010), which was 

not attempted in this study with the CBD biofilm. Rudney et al. (2012) used a 

biofilm reactor to establish biofilms on HA discs from saliva and plaque inocula. The 

design of their study had some similarities to the work performed in this study, 

although the biofilm was grown in BMM aerobically, without the addition of CO2; 

and the biofilms were analysed after only 48 h of growth. Replicate inocula were 

obtained from the same subjects at different times, and it was reported that the 

bacterial composition of the inocula and the biofilms derived from them were 

stable, although the composition of the communities obtained from saliva and 

subgingival plaque samples were significantly different. In this study only saliva 

samples were used to inoculate the CBD biofilm model, and the use of supra- and 

sub-gingival samples may extend the clinical relevance of the model.  
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In addition, Rudney et al. (2012), analysed the composition of the biofilms by 

means of the Human Oral Microbial Identification Microarray (HOMIM) system 

(Colombo, Boches et al. 2009) and not by sequencing the 16S rRNA gene. The use of 

HOMIM was recently compared to the 454 pyrosequencing analysis of oral wash 

samples (Ahn, Yang et al. 2011). The results obtained by both methods highly 

correlated at phylum and genus levels, particularly for dominant members of the 

community. The correlation was weaker for rarer genera. Thus the use of HOMIM 

could significantly speed up the process of analysing the composition of inocula and 

in-vitro biofilms. It is however less suited for the detection of uncultured bacteria, 

which are frequently present in low numbers, and, if novel, will not have a 

detection probe on the array. 

One limitation of the experimental design used in these studies was that 

complex media were used, which by their very nature are not chemically defined. 

The use of defined media would allow for a more precise analysis of the effect of 

different constituents, but few are available even for individual oral bacterial 

species, let alone mixtures, because of their nutritionally fastidious nature. Wong et 

al. (2001) have described a defined medium with mucin which they found to allow 

growth of plaque biofilms at a similar rate and composition to BMM. The use of this 

medium could possibly have allowed for a better control over carbohydrates level, 

as it was reported that sucrose pulses had more substantial effects in this medium 

than in BMM (Sissons, Anderson et al. 2007). An alternative is to attempt to mimic 

the natural habitat of the target organisms. One such attempt resulted in the 

creation of the SHI medium (Tian, He et al. 2010). When used with CBD biofilms in 
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this study, SHI however did not outperform other media, a finding confirmed by 

Rudney et al. (2012).  

To improve media and culture conditions, an improved understanding of the 

natural environments is required. Proteomics could be used to analyse the proteins 

present in an environment and related bacterial activity at the same time. A recent 

study of the human salivary supernatant from six healthy subjects combined 

protein dynamic range compression, multidimensional peptide fractionation, and 

high-mass accuracy MS/MS with a novel two-step peptide identification method 

(Jagtap, McGowan et al. 2012). The study compared the results to a database of 

human proteins and those translated from bacterial genomes. Twenty pathways, as 

described in Kyoto Encyclopedia of Genes and Genomes, were identified, with 

carbohydrate metabolism, amino acid metabolism, energy metabolism, translation, 

membrane transport, and signal transduction predominant. A combination of 

metagenomics and metaproteomics can provide valuable insights into the 

community structure and physiology of different phylogenetic groups present in a 

specific environment. It has been applied to the gut environment (Verberkmoes, 

Russell et al. 2009), and allowed for identification of novel pathways for microbial 

metabolism and human immune response. Proteomic analyses have also been 

performed on oral habitat samples, such as the acquired pellicle (Siqueira, Custodio 

et al. 2012) and human oral epithelial cells (Ghosh, Yohannes et al. 2012). These 

studies may allow a better understanding of the natural environment of oral 

bacteria and help to recreate it in laboratory conditions. To better understand 
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which metabolic pathways are in action in a specific community would enable those 

nutrients implicated to be supplied in artificial culture media. 

The growth rate of uncultured bacteria may be another crucial point in 

obtaining a community including uncultivated species. Some success in the culture 

of novel species has resulted from the use of extended incubation times. Thus a 

mesophilic representative of the Thermotogales order was isolated for the first 

time after a 2-month incubation (Ben Hania, Ghodbane et al. 2011). Unlike its use 

for single species growth (Holman 1919), CMM does not seem to be adapted to 

extremely long incubation times of mixed cultures. In this study, the standard 

incubation time between passages was of ten days, but it was speculated that if the 

target species did not attain a certain proportion within the 10 days of incubation, it 

would be lost to the subsequent batch. The incubation time was thus increased to 

30 days, in an attempt to enrich for slower-growing organisms. Unfortunately, the 

composition of the community changed dramatically and previously persistent not-

yet-cultivated species were lost. This may have been due to a lack of nutrients or 

the accumulation of toxic by-products produced by the community. In the CBD, on 

the other hand, there was no need to subsample the community at every change of 

media and the slowest growing representatives were not lost over time. 

The depth of the biofilm was not controlled in the CBD model used in these 

studies, which can lead to heterogeneity between biofilms. Although in this study 

the pooling of biofilms from several pegs was used to alleviate the problem, 

another solution would be the use of the constant-depth film fermenter (CDFF) 

model (Hope and Wilson 2003). Recently, the CDFF was used to recreate in-vitro 
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dental plaque (Zaura, Buijs et al. 2011) and saliva (Hope, Bakht et al. 2012) 

microcosms. In the latter study the variability between independent experiments in 

the CDFF was evaluated, and it was concluded that experimental variation could be 

minimised by running experiments in parallel in two independent CDFFs. The 

advantage of the CBD device is that different conditions can be tested on the same 

plate, reducing inter-experiment variation. 

The CBD device establishes a bacterial community as a biofilm, in which 

extracellular DNA has been reported to play an important structural role (Branda, 

Vik et al. 2005). The presence of DNA presents a problem for molecular analyses 

however, because it will be amplified by universal PCR-based assays and thus give a 

misleading impression of community structure. One way to overcome this is to use 

RNA as the starting point for the analysis in place of DNA, because of its 

substantially shorter half-life (Arraiano, Yancey et al. 1988, Keer and Birch 2003). 

The development and validation of protocols using PMA to degrade free DNA have 

greatly simplified molecular assays and allowed the discrimination of DNA from live 

cells and that in cells with compromised membranes or extracellular DNA (Nocker, 

Sossa-Fernandez et al. 2007). The protocol has also been validated for use with 454 

pyrosequencing (Nocker, Richter-Heitmann et al. 2010) and multispecies biofilms 

(Alvarez, Gonzalez et al. 2013). It has also been adapted to be used on filter 

membranes and to use 460 nm LEDs rather than high-wattage halogen lamps, 

which would prevent damage to previously intact cells (Hellein, Kennedy et al. 

2012). Ethidium monoazide can also be used in a similar manner (Nogva, Dromtorp 

et al. 2003), but was reported to be able to penetrate intact membranes of some 
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bacterial species (Nocker, Cheung et al. 2006). In this study PMA treatment had a 

statistically significant effect on community composition, and more uncultured 

species were revealed, probably by removing the DNA from dead cells of fast-

growing species. 

The inclusion of several taxa of uncultured bacteria in in-vitro cultures shows 

the success of mixed communities in supporting the growth of their uncultured 

members. Diverse mixed communities, however, are not easy to analyse and it can 

be difficult to determine the role of individual species in the mixed community. 

Several models have attempted to isolate bacteria in pure culture while at the same 

time keeping them in interaction with the source community using semi-permeable 

membranes (Zengler, Toledo et al. 2002, Ferrari, Binnerup et al. 2005). For example, 

a multi-chamber set-up yielded successful isolation of several previously uncultured 

marine organisms (Kaeberlein, Lewis et al. 2002). Microfluidic confinement was also 

shown to allow isolated cells to display normal quorum sensing behaviour 

(Boedicker, Vincent et al. 2009). Several new lineages remotely related to 

previously cultivated strains, with one lineage in particular presenting less than 84 

% identity to any published sequences (Zengler, Toledo et al. 2002) were isolated 

using high-throughput cultivation of cells isolated in gel micro-droplets, with 107 

droplets analysed, and sea-water and soil as inocula. This type of high-throughput 

culture study seems to be particularly adapted to poorly-sampled environments, 

such as sea and fresh water and some soil communities, but its utility in relatively 

well described habitats, such as the oral cavity, is less clear. A high-throughput 

study combining different techniques to grow previously uncultured oral bacteria 
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resulted in the successful cultivation of three new genera and several new species 

(Sizova, Hohmann et al. 2012). However, the new species, as described in the study, 

were often closely related to previously published or unpublished isolates, 

sometimes with 16S rRNA identity over 99 %. The new genera all fell into the 

Firmicutes phylum, the most represented oral phylum. While this work is valuable 

in isolating representatives of previously uncultured taxa within otherwise well 

cultured phyla, these methods may be unlikely to lead to the culture of 

representatives of deep uncultured branches or phyla. 

It is for this reason that the last part of this work was focused on the targeted 

culture of representatives of the TM7 phylum. From five attempts, two simple co-

cultures were obtained on agar plates. While these cultures were lost, these results 

were encouraging. If another simple co-culture can be obtained, several recently 

developed techniques could be applied to better understand the nature of 

interactions in place, such as metatranscriptomic analysis (Frias-Lopez and Duran-

Pinedo 2012). Metagenomics, or whole metagenome shotgun analyses (Riesenfeld, 

Schloss et al. 2004, Chen and Pachter 2005), can now be performed to a depth 

sufficient to analyse such a community, even if the TM7 representative is present in 

small numbers compared to the helper strain, thanks to the development of next 

generation techniques, such as Illumina MiSeq paired end sequencing. This 

approach would allow the sequencing and assembly of the genome of a 

representative of the TM7 division. While several TM7 genome sequences are 

deposited in the databases (Marcy, Ouverney et al. 2007, Podar, Abulencia et al. 

2007), the quality and coverage of these remain low. 
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The culture of previously uncultured bacteria remains a high priority for the 

understanding of the role of complex bacterial communities in health and disease. 

The further development and refinement of the approaches developed in the work 

described in this thesis, augmented by the technological advances of the “omics” 

era should enable the culture of a wide range of currently poorly characterised 

organisms. 
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Main findings: 

1. CMM batch culture and CBD biofilm were successfully used to 

established a long-term mixed bacterial communities in vitro, but best 

results were obtained with CBD model; 

2. Both models included not-yet-cultivated bacteria as part of the mixed 

communities; 

3. PMA treatment represents an advantageous tool for discrimination 

between live and dead cells in molecular analyses; 

4. The colony hybridisation technique allowed the establishment of a 

simple community including TM7 bacteria with members of the 

Coriobacteriaceae family on two occasions. 
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Table 24. Composition of the endodontic sample A1 and derived CMM culture. 

                                                                     Samples A1 sample A1 CMM culture 
 py Sanger Isolates 10d 20d 120d- 

py 
120d-
Sanger 

150d 310d 480d 

Actinobacteria 
        

 
 Actinomyces sp.HOTB78 / HOTE33 / HOTF78 / 

HOT169 
  

2.2 
     

 

 Atopobium rimae 0.63 
 

2.2 3.3 
 

0.16 
  

 
 Bifidobacterium dentium 

    
1.1 0.32 

 
1.1  

 Olsenella sp. HOT809 0.38 
  

3.3 1.1 1.51 2.2 5.6  3.3 

Olsenella uli  
 

2.2 20.0 
    

1.1  
 Rothia mucilaginosa 0.06 

       

 

 Bacteroidetes 
        

 
 Alloprevotella tannerae  0.19 

       
 

 Porphyromonas endodontalis 4.11 2.2 
      

 
 Prevotella denticola /HOTG57 / HOTG70  0.13 

 
1.1 

     
 

 Prevotella enoeca 3.80 
       

 
 Prevotella histicola 0.06 

       
 

 Prevotella marshii 0.06 
       

 
 Prevotella melaninogenica / HOT313 / HOTE10 0.06 

       
 

 Prevotella nigrescens 9.50 5.6 7.8 
     

 

 Prevotella oralis 1.90 
 

2.2 
 

17.8 16.02 13.3 
 

4.4 

 Prevotella oris 6.84 8.9 
  

2.2 5.42 4.4 
 

1.1 

 Prevotella pallens 0.06 
       

 
 Prevotella pleuritidis  0.51 
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                                                                     Samples A1 sample A1 CMM culture 
 py Sanger Isolates 10d 20d 120d- 

py 
120d-
Sanger 

150d 310d 480d 

Prevotella salivae / HOTE13 0.06 
       

 
 Prevotella sp. HOT300 / HOT292 1.65 

 
2.2 

  
0.40 1.1 

 

 

 Prevotella sp. HOT315 0.25 
       

 
 Prevotella sp. HOT526 4.43 10.0 

      
 

 Prevotella sp. unclassified 0.06 
       

 
 Tannerella forsythia 0.38 

       
 

 Firmicutes 
        

 
 Anaeroglobus geminatus  

    
18.9 23.51 36.7 

 
 

 Catonella morbi  0.06 
    

0.08 
  

 
 Dialister invisus / HOTA97 19.30 21.1 4.4 3.3 2.2 12.99 10.0 

 
1.1 

 Dialister pneumosintes / HOT D97 / HOT 502 2.72 3.3 2.2 
  

3.19 4.4 
 

 

 Eubacterium infirmum  2.03 4.4 4.4 4.4 1.1 7.97 10.0 1.1 12.2 5.6 

Eubacterium nodatum / HOTG32 1.39 2.2 1.1 30.0 12.2 0.56 
 

20.0 1.1 

 Lactobacillus catenaformis  3.80 
    

0.40 
  

 

 Mogibacterium diversum / vescum / neglectum  3.10 3.3 6.7 7.8 8.9 2.15 3.3 43.3 26.7 2.2 

Oribacterium sp. HOT372 / HOT078 / HOTA41 0.13 1.1 
 

3.3 
    

 

 Parvimonas micra / HOT393 7.09 5.6 22.2 22.2 25.6 4.70 4.4 24.4 44.4 82.2 

Peptostreptococcaceae sp. HOT369 / HOT103 0.25 
  

2.2 
    

 

 Peptostreptococcus stomatis 6.90 15.6 6.7 5.6 1.1 0.32 
 

2.2 6.7 

 Pseudoramibacter alactolyticus  7.03 13.3 7.8 11.1 6.7 3.67 6.7 
 

2.2 6.7 

Selenomonas sputigena / HOT134 / HOTC23 0.19 
       

 
 Shuttleworthia satelles / HOTG69 0.76 

 
3.3 2.2 1.1 0.72 

 
1.1  

 Solobacterium moorei  4.43 
 

3.3 
  

1.27 
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                                                                     Samples A1 sample A1 CMM culture 
 py Sanger Isolates 10d 20d 120d- 

py 
120d-
Sanger 

150d 310d 480d 

Streptococcus infantis / HOT065 0.06 
       

 
 Streptococcus mitis bv 2 / HOTC56 0.06 

       

 

 Veillonella rogosae 0.06 
       

 

 Veillonellaceae sp. HOT155 0.76 
       

 
 Veillonellaceae sp. HOT132 / HOT129 / HOTB19 0.32 

       
 

 Fusobacteria 
        

 
 Fusobacterium nucleatum ss. animalis 2.59 

  
1.1 

 
4.86 1.1 

 

 

 Proteobacteria 
        

 
 Campylobacter gracilis  0.38 

    
9.00 2.2 

 
 

 Comamonadaceae sp. unclassified  0.06 
       

 

 Leptothrix sp. HOT025 0.13 
       

 
 Ralstonia sp. HOTB67 0.06 

       
 

 Sphingobacteriales sp. unclassified 0.19 
       

 
 Spirochetes 

        
 

 Treponema socranskii ss. buccale 0.19 
       

 
 Treponema socranskii ss. socranskii / ss 04 0.13 

    
0.48 

  
 

 Synergistetes 
        

 
 Fretibacterium sp. HOT360 / HOT453 0.13 

       

 

 Fretibacterium fastidiosum 0.32 1.1 
   

0.32 
  

 
 Tenericutes 

        
 

 Mycoplasma salivarium  0.25 
 

1.1 
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Table 25. Composition of the endodontic sample A2 and derived CMM culture. 

 

A2 sample A2 CMM culture 

py Sanger 10d 120d- py 
120d-
Sanger 150d 310d 480d 

Actinobacteria 
        Actinomyces sp. HOT172 
   

0.10 
    Actinomyces sp. HOTB78 / HOTE33 / HOTF78 / 

HOT169 
   

0.10 
    Atopobium rimae 0.15 

       Bifidobacterium dentium 
  

1.1 0.70 
    Olsenella profusa 0.03 

       Olsenella sp. HOT809 3.83 1.1 6.7 0.50 
  

1.1 2.2 

Olsenella uli  0.03 
    

2.2 
  Bacteroidetes 

        Alloprevotella rava 0.50 
       Alloprevotella tannerae  0.06 
       Bacteroidetes sp. HOT365 / HOTG44 / HOT281 8.85 12.2 

 
0.20 

    Porphyromonas endodontalis 2.85 2.2 
      Prevotella denticola / HOTG57 / HOTG70  0.47 1.1 
      Prevotella melaninogenica / HOT313 / HOTE10 

   
0.10 

    Prevotella nigrescens 19.12 21.1 
      Prevotella oralis 0.06 

  
6.11 3.3 

   Prevotella oris 0.27 
  

0.60 1.1 
   Prevotella pleuritidis  0.06 

       Prevotella sp. HOT300 /HOT292 0.65 
   

2.2 
   Prevotella sp. HOT315 0.27 
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A2 sample A2 CMM culture 

py Sanger 10d 120d- py 
120d-
Sanger 150d 310d 480d 

Prevotella sp. HOT526 0.42 1.1 
      Firmicutes 

        Anaeroglobus geminatus  
  

2.2 17.74 21.1 
   Clostridiales sp. HOT093 0.03 

       Dialister invisus / HOTA97 8.52 5.6 
 

6.01 4.4 1.1 
  Dialister pneumosintes / HOT D97 / HOT 502 4.21 1.1 

 
2.40 

    Eubacterium infirmum  0.21 
 

3.3 2.20 2.2 
  

6.6 
Eubacterium nodatum / HOTG32 0.68 

  
0.30 

 
15.6 3.3 

 Filifactor alocis 10.12 12.2 12.2 2.30 3.3 23.3 
  Granulicatella adiacens 

   
0.10 

    Lactobacillus catenaformis  0.92 
  

1.00 
    Mogibacterium diversum / vescum / neglectum  4.46 8.9 31.1 1.00 1.1 25.6 5.6 

 Mucilaginibacter sp. unclassified  0.03 
       Oribacterium sp. HOT372 / HOT078 / HOTA41 0.03 1.1 1.1 0.20 

 
2.2 

  Parvimonas micra / HOT393 3.39 2.2 12.2 6.21 12.2 20.0 26.7 80.0 

Peptococcus sp. HOTD92 
   

0.10 
    Peptostreptococcaceae sp. HOT369 / HOT103 

   
0.10 

    Peptostreptococcaceae sp. HOTB61 0.21 
       Peptostreptococcus stomatis 7.81 10.0 1.1 1.60 1.1 3.3 1.1 

 Pseudoramibacter alactolyticus  7.78 15.6 6.7 2.71 6.7 4.4 10.0 2.2 

Selenomonas sp. HOT136 
   

0.10 
    Selenomonas sputigena / HOT134 / HOTC23 0.36 

       Shuttleworthia satelles / HOTG69 0.47 1.1 4.4 0.40 
 

1.1 
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A2 sample A2 CMM culture 

py Sanger 10d 120d- py 
120d-
Sanger 150d 310d 480d 

Solobacterium moorei  3.68 
 

1.1 0.30 
    Streptococcus constellatus / intermedius / HOT E12 0.03 

 
15.6 9.92 22.2 1.1 52.2 8.9 

Streptococcus mitis bv 2 / HOTC56 
   

0.10 
    Streptococcus sp. HOT058 0.03 

       Veillonella dispar / parvula / HOTG30 
  

1.1 
     Veillonellaceae sp. HOT132 / HOT129 / HOTB19 0.03 

       Fusobacteria 
        Fusobacterium nucleatum ss. animalis 5.05 1.1 

 
33.37 15.6 

   Fusobacterium nucleatum ss. polymorphum 0.03 
       Fusobacterium nucleatum ss. vincentii 0.03 
       Proteobacteria 

        Burkholderiales sp. HOTA57 0.06 
       Campylobacter gracilis  1.01 
  

3.11 3.3 
   Comamonadaceae sp. unclassified  0.06 

       Hafnia / Aranicola / Serratia 0.03 
       Leptothrix sp. HOT025 0.03 
       Neisseria pharyngis 

   
0.10 

    Novosphingobium capsulatum / sp. NG35 / MG37 / 
MG39 / MG40 / MG43 / MG44 0.03 

       Proteus mirabilis 0.03 
       Ralstonia sp. HOTB67 0.03 
       Sphingobacteriales sp. unclassified 0.18 
       Spirochetes 
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A2 sample A2 CMM culture 

py Sanger 10d 120d- py 
120d-
Sanger 150d 310d 480d 

Treponema denticola 0.06 
       Treponema lecithinolyticum 0.06 
       Treponema maltophilum 0.24 
       Treponema socranskii ss. socranskii / ss 04 0.21 
  

0.10 
    Synergistetes 

        Fretibacterium sp. HOT360 / HOT453 1.90 2.2 
      Fretibacterium fastidiosum 0.34 
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Table 26. Composition of the endodontic sample C and derived CMM culture. 

 

C sample C CMM culture 

py Sanger 10d 20d 30d 
50d- 
py 

50d-
Sanger 

70d 
70d-

mucin 
110d 

110d-
mucin 

140d- 
py 

140d-
Sanger 

140d-
mucin- 

py 

140d-
mucin-
Sanger 

Actinobacteria 
               Actinomyces israelii 0.18 

              Actinomyces 
naeslundii  

     
0.12 

         Actinomyces neuii ss. 
anitratus 

          
3.4 

   
2.2 

Actinomyces 
odontolyticus 

   
4.6 

 
0.12 

   
1.1 

     Actinomyces sp. 
HOT170 

     
0.23 

       
0.24 

 Actinomyces sp. 
HOT175 

  
1.4 

            Actinomyces sp. 
HOTB78 / HOTE33 / 
HOTF78 / HOT169 0.09 

              Olsenella sp. HOT809 
           

3.09 
   Bacteroidetes 

               Capnocytophaga sp. 
HOT380 / HOTE54 1.06 

              Capnocytophaga sp. 
unclassified 0.09 14.6 
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C sample C CMM culture 

py Sanger 10d 20d 30d 
50d- 
py 

50d-
Sanger 

70d 
70d-

mucin 
110d 

110d-
mucin 

140d- 
py 

140d-
Sanger 

140d-
mucin- 

py 

140d-
mucin-
Sanger 

Prevotella denticola / 
HOTG57 / HOTG70  0.09 

              Prevotella oralis 0.09 
          

0.36 
   Prevotella oris 0.09 

              Prevotella sp. HOT300 
/HOT292 

0.09 
              Firmicutes 

               Anaeroglobus 
geminatus  0.09 

              Clostridiales sp. 
HOTC47 

          
5.7 13.09 

 
25.46 23.3 

Eubacterium infirmum  
            

6.32 
  Eubacterium yurii 

/HOT106 
13.84 6.3 23.2 16.9 1.1 8.41 

 
12.5 38.6 5.4 5.7 19.27 

 
10.60 10.0 

Filifactor alocis 0.09 
              Finegoldia sp. HOTD24 

          
3.4 

  
5.97 3.3 

Granulicatella 
adiacens 

  
1.4 3.1 

 
0.35 

 
2.1 0.0 

 
1.1 0.18 2.11 1.71 1.1 

Mogibacterium 
diversum / vescum / 
neglectum  

3.19 6.3 
   

0.70 
   

2.2 1.1 1.27 
 

1.46 1.1 

Oribacterium sinus 0.09 
              Parvimonas micra / 

HOT393 
 

1.0 
         

40.36 72.63 
  Peptoniphilus 

indolicus 
           

1.27 14.74 1.22 22.2 
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C sample C CMM culture 

py Sanger 10d 20d 30d 
50d- 
py 

50d-
Sanger 

70d 
70d-

mucin 
110d 

110d-
mucin 

140d- 
py 

140d-
Sanger 

140d-
mucin- 

py 

140d-
mucin-
Sanger 

Peptostreptococcus 
stomatis 56.25 35.4 5.8 6.2 1.1 7.59 1.4 

  
1.1 11.5 2.36 1.05 4.51 1.1 

Pseudoramibacter 
alactolyticus  

           
16.73 1.05 

  Selenomonas sp. 
HOTF21 0.09 

              Streptococcus 
anginosus 0.09 

              Streptococcus 
gordonii /HOTH24 0.09 

         
8.0 

 
2.11 2.19 2.2 

Streptococcus mitis bv 
2 / HOTC56 

           
0.18 

   Streptococcus 
sanguinis 

     
1.64 

     
0.18 

   Streptococcus sp. 
HOT058 

   
6.2 5.4 13.67 5.7 16.7 13.6 2.2 6.9 0.18 

 
1.10 1.1 

Streptococcus sp. 
HOT064 

  
1.4 

            Streptococcus sp. 
HOT431 

           
0.18 

   Veillonella dispar / 
parvula / HOTG30 0.27 

 
46.4 53.8 92.4 43.11 90.0 64.6 47.7 77.2 51.7 

  
22.29 24.4 
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C sample C CMM culture 

py Sanger 10d 20d 30d 
50d- 
py 

50d-
Sanger 

70d 
70d-

mucin 
110d 

110d-
mucin 

140d- 
py 

140d-
Sanger 

140d-
mucin- 

py 

140d-
mucin-
Sanger 

Fusobacteria 
               Fusobacterium 

naviforme 0.71 
    

0.70 
         Fusobacterium 

nucleatum ss. animalis 13.49 25.0 20.3 9.2 
 

22.31 
   

10.9 1.1 
  

18.64 6.7 
Fusobacterium 
nucleatum ss. 
vincentii 0.27 1.0 

   
0.23 2.9 4.2 

       Proteobacteria 
               Proteus mirabilis 0.18 

              Spirochetes 
               Treponema 

maltophilum 6.03 2.1 
            

1.1 
Treponema sp. 
HOT258 

     
0.82 

     
1.27 

 
4.63 

 Treponema vincentii 3.19 8.3 
             Synergistetes 

               Fretibacterium 
fastidiosum 0.18 

              TM7 
               TM7 sp. clone TSS007 0.09 
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Table 27. Composition of anaerobic CBD biofilms. 

  BHI BHI mucin SHI 

                              Samples 
Species 

8 d 16 d 24 d 24 d py 32 d 40 d 48 d 8 d 16 d 24 d 24 d py 32 d 40 d 48 d 88 d 8 d 

Actinobacteria 2.50 5.0 1.3 0.2 
  

1.3 
 

1.3 1.3 0.2 1.3 2.6 3.8 
  

Actinomyces sp. HOT169 
   

0.1 
            

Actinomyces sp. HOT172 
           

1.3 
    

Atopobium rimae 
            

1.3 1.3 
  

Bifidobacterium dentium 
            

1.3 2.5 
  

Olsenella uli 2.5 
         

0.1 
     

Rothia mucilaginosa 
 

5.0 1.3 0.1 
  

1.3 
 

1.3 1.3 0.1 
     

Bacteroidetes 
 

5.0 10.0 11.6 5.0 1.3 23.8 1.3 3.8 23.8 23.0 12.5 10.0 23.8 1.3 
 

Alloprevotella rava 
          

0.8 
     

Bacteroidetes sp. HOT365 / 
HOTG44           

0.1 2.5 
    

Capnocytophaga leadbetteri 
          

0.1 
     

Porphyromonas 
endodontalis       

1.3 
  

2.5 1.0 
 

3.8 1.3 
  

Prevotella buccae 
   

0.1 
      

0.2 
     

Prevotella dentalis 
          

0.1 
     

Prevotella oralis 
 

3.8 5.0 7.4 5.0 1.3 17.5 
 

2.5 16.3 15.9 5.0 2.5 13.8 
  

Prevotella oris 
 

1.3 
 

0.7 
     

1.3 0.9 
  

5.0 
  

Prevotella oulorum 
          

0.4 
     

Prevotella pleuritidis 
  

5.0 2.3 
      

0.2 1.3 
    

Prevotella saccharolytica 
   

0.1 
      

0.5 
     

Prevotella sp. HOT292/300 
   

0.9 
  

5.0 
  

1.3 0.2 
 

2.5 2.5 1.3 
 

Prevotella sp. HOT306 
          

0.1 
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  BHI BHI mucin SHI 

                              Samples 
Species 

8 d 16 d 24 d 24 d py 32 d 40 d 48 d 8 d 16 d 24 d 24 d py 32 d 40 d 48 d 88 d 8 d 

Prevotella sp. HOT315 
            

1.3 
   

Prevotella sp. HOT526 
        

1.3 2.5 2.7 3.8 
 

1.3 
  

Prevotella tannerae  
       

1.3 
        

Tannerella forsythia 
   

0.1 
            

Firmicutes 96.3 85.0 65.0 62.5 91.3 93.8 63.8 92.5 88.8 63.8 61.9 71.3 58.8 46.3 45.0 66.3 

Anaeroglobus geminatus  3.8 20.0 16.3 17.4 1.3 8.8 18.8 30.0 
 

6.3 8.2 18.8 25.0 17.5 
 

2.5 

Burkholderiales sp. HOTA57 1.3 
        

1.3 0.1 
     

Catonella morbi  6.3 1.3 
 

2.5 1.3 1.3 
  

5.0 1.3 3.0 1.3 
  

2.5 
 

Centipeda periodontii 
   

0.4 
            

Clostridiales sp. HOT093 
          

0.1 
   

1.3 
 

Dialister invisus / HOTA97 
  

1.3 1.7 
 

1.3 3.8 2.5 
 

3.8 2.1 1.3 
 

1.3 
  

Dialister pneumosintes 
   

0.1 1.3 3.8 2.5 5.0 
 

3.8 4.0 1.3 1.3 
   

Erysipelothrichaceae sp. 
HOTA18           

0.1 
     

Erysipelotrichales sp. 
HOTC62           

0.1 
     

Eubacterium nodatum  1.3 
    

5.0 
          

Eubacterium saburreum  
   

0.1 
            

Eubacterium yurii  
   

0.1 
            

Filifactor alocis 
 

3.8 2.5 2.1 5.0 
 

1.3 2.5 
  

1.1 
 

5.0 3.8 
  

Granulicatella adiacens 1.3 
 

2.5 
    

2.5 3.8 1.3 0.2 
   

2.5 10.0 

Lachnospiraceae sp. HOTA61 
   

0.1 
            

Lactobacillus paracasei 
   

0.1 
            

Megasphaera 
micronuciformis            

0.1 
     



261 
 

  BHI BHI mucin SHI 

                              Samples 
Species 

8 d 16 d 24 d 24 d py 32 d 40 d 48 d 8 d 16 d 24 d 24 d py 32 d 40 d 48 d 88 d 8 d 

Mogibacterium diversum / 
neglectum / vescum 

1.3 
  

0.1 3.8 
 

1.3 
   

0.9 1.3 1.3 1.3 
  

Parvimonas micra  3.8 
 

6.3 1.2 5.0 12.5 
 

7.5 
 

3.8 0.8 
     

Peptostreptococcaceae sp. 
HOT081    

0.7 
      

1.6 
     

Peptostreptococcaceae sp. 
HOT091     

0.1 
      

0.2 
     

Peptostreptococcaceae sp. 
HOT369 / HOT103 

3.8 1.3 
 

0.7 
    

2.5 1.3 0.2 1.3 1.3 1.3 
  

Peptostreptococcaceae sp. 
HOTE46          

1.3 0.1 2.5 1.3 
 

21.3 
 

Peptostreptococcus stomatis 
        

7.5 
 

1.4 6.3 2.5 
   

Selenomonas dianae  
   

0.9 
      

0.4 
     

Selenomonas infelix 
   

1.5 
      

0.8 
     

Selenomonas sp. HOT136 1.3 
   

2.5 
 

2.5 
    

1.3 
    

Selenomonas sp. HOT146 
   

0.2 
            

Selenomonas sp. HOT149 
          

0.2 
     

Selenomonas sp. HOT479 
   

0.1 
            

Selenomonas sp. HOTB30 
   

0.1 
            

Selenomonas sp. HOTF21 
   

1.5 
      

0.4 
     

Selenomonas sp. HOTF72 1.3 
  

0.4 
            

Shuttleworthia satelles 
             

1.3 
  

Solobacterium moorei  
   

0.4 3.8 2.5 
   

1.3 0.3 
     

Sphingomonas sp. HOT003 
  

3.8 
   

1.3 1.3 
     

2.5 2.5 
 

Streptococcus constellatus / 
intermedius 

8.8 10.0 7.5 6.7 53.8 45.0 12.5 41.3 8.8 3.8 4.4 15.0 10.0 8.8 
 

2.5 



262 
 

  BHI BHI mucin SHI 

                              Samples 
Species 

8 d 16 d 24 d 24 d py 32 d 40 d 48 d 8 d 16 d 24 d 24 d py 32 d 40 d 48 d 88 d 8 d 

Streptococcus gordonii  
   

2.4 
      

0.1 
     

Streptococcus mitis 
  

1.3 1.1 
     

1.3 0.1 
    

5.0 

Streptococcus salivarius 
              

11.3 
 

Streptococcus sp. HOT058 17.5 
       

25.0 11.3 
 

3.8 2.5 
 

3.8 5.0 

Streptococcus sp. HOT070 
        

3.8 2.5 6.4 
     

Streptococcus sp. HOT071 
         

1.3 1.7 
     

Streptococcus sp. HOTC56 2.5 2.5 
  

2.5 
      

1.3 
 

1.3 
 

41.3 

Veillonella atypica 3.8 5.0 
        

0.2 
     

Veillonella dispar / parvula / 
HOTG30 

26.3 25.0 18.8 19.3 6.3 11.3 13.8 
 

25.0 18.8 22.4 16.3 8.8 7.5 
  

Veillonella rogosae  6.3 7.5 3.8 0.2 5.0 2.5 5.0 
 

3.8 
 

0.3 
     

Veillonella sp. HOTG30 2.5 2.5 
 

0.2 
            

Veillonellaceae sp. HOT155 3.8 6.3 1.3 0.2 
  

1.3 
 

3.8 
 

0.4 
     

Fusobacteria 1.3 3.8 20.0 19.1 3.8 0.0 7.5 0.0 3.8 11.3 12.2 7.5 12.5 7.5 2.5 0.0 

Fusobacterium nucleatum 
ss. animalis 

1.3 3.8 20.0 17.5 3.8 
 

7.5 
 

2.5 11.3 12.1 7.5 12.5 7.5 
  

Fusobacterium nucleatum 
ss. polymorphum    

0.2 
      

0.1 
     

Fusobacterium nucleatum 
ss. vincentii     

1.3 
            

Fusobacterium 
periodonticum    

0.1 
    

1.3 
     

2.5 
 

Leptotrichia shahii  
          

0.1 
     

Proteobacteria 0.0 1.3 1.3 5.6 0.0 5.0 2.5 0.0 2.5 0.0 0.5 0.0 1.3 1.3 18.8 0.0 

Campylobacter curvus 
   

0.1 
      

0.2 
     

Campylobacter gracilis  
        

2.5 
 

0.1 
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  BHI BHI mucin SHI 

                              Samples 
Species 

8 d 16 d 24 d 24 d py 32 d 40 d 48 d 8 d 16 d 24 d 24 d py 32 d 40 d 48 d 88 d 8 d 

Campylobacter rectus / 
HOTG43   

1.3 5.3 
 

5.0 2.5 
   

0.2 
 

1.3 1.3 16.3 
 

Campylobacter showae 
   

0.1 
            

Leptothrix sp. HOT025  
 

1.3 
 

0.3 
          

2.5 
 

Spirochetes 
  

1.3 0.4 
  

1.3 
   

0.4 1.3 3.8 1.3 32.5 33.8 

Treponema denticola / 
HOT246   

1.3 0.4 
  

1.3 
   

0.2 
 

2.5 1.3 
  

Treponema lecithinolyticum 
          

0.2 1.3 1.3 
 

32.5 1.3 

Treponema maltophilum 
               

32.5 

SR1 
          

0.1 
     

SR1 sp. HOT345  
          

0.1 
     

Synergistetes 
  

1.3 0.7 
   

6.3 
  

1.6 6.3 11.3 16.3 
  

Fretibacterium fastidiosum 
  

1.3 0.7 
   

6.3 
  

1.6 6.3 11.3 16.3 
  

TM7 
   

0.3 
      

0.2 
     

TM7 sp. HOT355  
   

0.3 
      

0.2 
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Table 28. Composition of aerobic CBD biofilms. 

Samples   BHIG BHI BMM 

Taxa 
 

PMA 
 

PMA 
 

PMA 

Actinobacteria 
      Actinobaculum sp. HOT183  
     

0.04 

Actinomyces dentalis / HOT449  0.01 
     Actinomyces gerencseriae 

     
0.04 

Actinomyces israelii 
     

0.04 

Actinomyces massiliensis  
     

0.06 

Actinomyces naeslundii / HOT171 0.05 
 

0.01 0.01 0.03 0.18 

Actinomyces odontolyticus / meyeri 0.01 0.05 
 

0.11 0.04 0.07 

Actinomyces sp. HOT170 
     

0.04 

Actinomyces sp. HOT175 0.01 
 

0.02 0.01 
 

0.06 

Actinomyces sp. HOT180 
   

0.03 
  Actinomyces sp. HOT181 0.06 0.04 

  
0.03 0.03 

Actinomyces sp. HOT448 
     

0.04 

Actinomyces sp. HOTC25 
   

0.01 
 

0.01 

Actinomyces sp. HOTD50 
     

0.04 

Actinomyces sp. HOTE63 
    

0.01 0.01 

Actinomyces sp. HOTE91 0.02 
    

0.01 

Actinomyces sp. HOTB78 / HOTE33 / 
HOTF78 / HOT169 0.03 0.15 0.01 0.26 0.05 0.18 

Atopobium parvulum 
 

0.03 0.05 0.03 0.06 0.12 

Atopobium rimae 0.40 
   

0.05 
 Atopobium sp. HOT416 

   
0.05 

 
0.02 

Olsenella uli  
     

0.01 

Propionibacterium acidifaciens  0.01 
 

0.01 0.01 
 

0.02 

Propionibacterium acnes 0.01 
     Propionibacterium propionicum  

   
0.06 

 
0.02 

Propionibacterium sp. HOT194 
     

0.02 

Rothia dentiocariosa 
 

0.01 0.01 0.26 0.01 0.22 

Rothia sp. HOT188 0.01 
  

0.06 
 

0.09 

Bacteroidetes 
      Bacteroidetes sp. HOT272  
     

0.01 

Bacteroidetes sp. HOT274  
 

0.04 
 

0.06 
 

0.25 

Bacteroidetes sp. HOT365 / HOT281 / 
HOTG44 

  
0.01 

  
0.01 

Bacteroidetes sp. HOT511 
   

0.05 
 

0.04 

Bergeyella sp. HOT322  
   

0.01 
 

0.02 

Capnocytophaga gingivalis / granulosa 0.03 
  

0.02 
 

0.33 

Capnocytophaga sp. HOT326 
   

0.02 
 

0.04 

Capnocytophaga sp. HOT329 
   

0.01 
 

0.04 

Capnocytophaga sp. HOT332 
     

0.02 

Capnocytophaga sp. HOT335 / HOT412 / 
HOT323 0.01 

  
0.01 

 
0.06 
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Samples   BHIG BHI BMM 

Taxa 
 

PMA 
 

PMA 
 

PMA 

Capnocytophaga sp. HOT380 / HOTE54 
     

0.04 

Capnocytophaga sp. HOTB79 
     

0.01 

Capnocytophaga sp. HOTH18 
     

0.01 

Capnocytophaga sputigena / HOTG66 
   

0.08 
 

0.12 

Flavobacteriales sp. uncultured 0.50 6.78 1.16 15.61 2.95 6.37 

Porphyromonas catoniae / HOT279 0.22 0.45 0.42 0.47 0.13 1.96 

Porphyromonas endodontalis / HOT395 / 
HOTG50 0.56 0.28 0.29 0.12 0.44 0.27 

Porphyromonas gingivalis / HOTF92 0.02 
  

0.13 0.02 0.05 

Porphyromonas sp. HOT275 / HOT278 / 
HOTB43  0.03 

 
0.03 0.04 0.03 0.10 

Porphyromonas sp. HOT279 / HOT284 
  

0.01 0.02 0.02 0.07 

Prevotella baroniae 
     

0.02 

Prevotella buccae 0.27 0.26 0.14 0.07 0.59 0.18 

Prevotella denticola / HOTG57 / HOTG64 / 
HOTG70 0.03 

 
0.02 

  
0.10 

Prevotella intermedia 0.05 
  

0.13 0.01 0.37 

Prevotella loescheii / HOT317 0.01 0.12 
 

0.16 0.18 0.35 

Prevotella marshii  0.01 
     Prevotella melaninogenica / HOT314 / 

HOTE10 
     

0.07 

Prevotella micans  
     

0.04 

Prevotella multisaccharivorax  
     

0.03 

Prevotella nigrescens / HOTG56 0.05 
  

0.02 0.01 0.20 

Prevotella oralis  
 

0.12 
 

0.26 0.32 0.17 

Prevotella oris  
 

0.05 
 

0.01 
 

0.11 

Prevotella oulorum / HOTD69 / HOTG60 0.03 
  

0.08 
 

0.20 

Prevotella pallens 
     

0.07 

Prevotella pleuriditis / HOT296 
     

0.06 

Prevotella salivae / HOTE13 
     

0.02 

Prevotella shahii  
    

0.01 0.01 

Prevotella sp. clone BL216 
    

0.01 
 Prevotella sp. HOT300 / HOT292 

     
0.07 

Prevotella sp. HOT302 
     

0.01 

Prevotella sp. HOT306 
    

0.02 
 Prevotella sp. HOT472 

   
0.02 

 
0.09 

Prevotella sp. HOT473 
   

0.07 
 

0.05 

Prevotella sp. HOT475 
     

0.01 

Prevotella sp. HOT526 
     

0.01 

Prevotella sp. HOT781 0.02 0.28 0.04 0.99 0.02 0.58 

Prevotella sp. unclutured 1 
     

0.01 

Prevotella sp. unclutured 2 
   

0.09 
 

0.05 

Prevotella tannerae  0.03 0.03 
  

0.06 0.09 

Prevotella veroralis  
     

0.15 
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Samples   BHIG BHI BMM 

Taxa 
 

PMA 
 

PMA 
 

PMA 

Tannerella forsythia 
 

0.01 
 

0.05 
 

0.15 

Tannerella sp. HOT286 
  

0.05 
  

0.05 

Tannerella sp. unclutured 
     

0.01 

Firmicutes 
      Abiotrophia defectiva / HOTB44 0.37 0.64 0.40 0.43 0.64 0.87 

Anaeroglobus geminatus  
 

0.05 0.01 
 

0.03 
 Camomonadaceae sp. HOTF47  

     
0.01 

Catonella morbi  0.66 0.08 0.41 0.55 0.74 0.43 

Catonella sp. HOT451 
     

0.01 

Centipeda periodontii / Selenomonas sp. 
HOT478 / HOT136 0.23 0.33 0.18 0.40 0.42 0.45 

Centipeda sp. HOTB01 
  

0.01 
   Centipeda sp. HOTD18 / HOT479 / HOT149 / 

HOTE50 0.10 0.08 0.15 0.12 0.12 0.10 

Clostridiales sp. HOT085 
    

0.01 0.05 

Clostridiales sp. HOT075  
     

0.01 

Clostridiales sp. HOT093 
     

0.01 

Corynebacterium durum / HOTA22 
   

0.01 
 

0.20 

Corynebacterium matruchotii / HOTA46 / 
HOTB00 

   
0.01 0.01 0.31 

Corynebacterium sp. HOTA16 0.05 
     Dialister invisus / HOTA97 0.40 0.10 0.08 0.23 0.29 0.07 

Dialister pneumosintes / HOT502 / HOTD97 
     

0.01 

Eikenella corrodens 0.47 0.40 0.46 0.28 0.29 0.69 

Eubacterium infirmum  
 

0.01 
 

0.08 0.01 0.07 

Eubacterium saburreum  0.01 0.02 0.02 
 

0.01 0.07 

Eubacterium sp. unclutured 1 0.07 0.07 0.04 0.08 0.27 0.22 

Eubacterium sp. unclutured 2 0.01 
   

0.02 0.02 

Eubacterium sulci  
     

0.03 

Eubacterium yurii  0.09 1.59 0.66 0.68 0.35 1.77 

Filifactor alocis 0.54 0.32 0.24 0.54 0.21 0.02 

Gemella bergeriae  0.19 
     Gemella morbillorum / haemolysans  2.24 1.93 3.87 1.77 1.57 5.78 

Gemella sanguinis / HOTC54 0.17 0.29 0.19 0.06 0.05 0.21 

Granulicatella adiacens / para-adiacens / 
HOTC27 0.99 1.61 0.64 0.87 1.48 1.41 

Lachnospiraceae sp. HOT082 / HOT107 0.03 0.01 
  

0.04 0.15 

Lachnospiraceae sp. HOT083 
   

0.01 
  Lachnospiraceae sp. HOT100 

 
0.02 

   
0.02 

Lachnospiraceae sp. HOT419 
    

0.01 
 Lachnospiraceae sp. HOTA61 / HOTE59 0.31 0.66 0.22 0.46 0.83 0.78 

Lachnospiraceae sp. HOTB32 
     

0.10 

Lachnospiraceae sp. unclutured  0.12 0.11 0.22 0.36 0.22 0.14 

Lactobacillus casei / rhamnosus  0.70 1.70 0.48 1.46 
 

0.51 
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Samples   BHIG BHI BMM 

Taxa 
 

PMA 
 

PMA 
 

PMA 

Lactobacillus crispatus 0.01 
    

0.02 

Lactobacillus gasseri  0.13 0.10 
 

0.01 0.02 0.14 

Lactobacillus helveticus 
 

0.05 
    Lactobacillus nagelii / ghanensis 0.01 

    
0.01 

Lactobacillus oris 13.51 3.45 15.33 0.10 25.88 0.24 

Lactobacillus paracasei 16.98 26.53 9.63 18.84 1.18 8.17 

Lactobacillus sp. HOT461 0.40 0.05 0.31 
  

0.01 

Lactobacillus vaginalis 
 

0.05 
  

0.02 0.05 

Megasphaera micronuciformis  0.27 0.17 0.09 
 

0.07 0.01 

Mitsuokella sp. HOT521 
     

0.01 

Mobiluncus sp. unclutured 0.02 
 

0.04 0.02 0.03 
 Mogibacterium diversum / vescum / 

neglectum 1.02 0.22 0.22 0.15 0.56 0.05 

Mogibacterium timidum 
     

0.01 

Moraxella sp. HOTB07  
     

0.02 

Moryella sp. unclutured 
   

0.01 
  Oribacterium sinus  0.01 

 
0.04 

 
0.01 

 Oribacterium sp. HOT108  0.03 
     Oribacterium sp. HOT372 / HOT078 

     
0.01 

Parvimonas micra 2.80 5.75 6.20 4.51 8.35 3.44 

Parvimonas sp. HOT110 1.19 0.86 1.72 0.22 1.16 0.28 

Parvimonas sp. HOTC63 0.07 0.60 0.13 0.51 0.31 0.83 

Peptococcus sp. HOT167 
     

0.01 

Peptostreptococcaceae sp. HOT081 1.57 3.96 1.62 2.43 2.63 3.86 

Peptostreptococcaceae sp. HOT369 / 
HOT103 

 
0.01 

  
0.02 0.01 

Peptostreptococcus stomatis / HOTE46 0.04 0.76 0.03 1.48 0.07 1.25 

Pseudomonas fluorescens  
 

0.05 
    Pseudomonas stutzeri  0.01 

     Pseudoramibacter alactolyticus  0.09 
  

0.07 0.04 0.05 

Selenomonas artemidis / HOT137 
     

0.06 

Selenomonas dianae / infelix / HOT138 / 
HOT146 / HOTE44 / HOTF29 0.79 1.48 0.64 1.29 2.77 1.94 

Selenomonas noxia / HOTG67 
 

0.85 0.01 0.16 0.07 0.46 

Selenomonas sp. HOT126 
  

0.01 
 

0.02 
 Selenomonas sp. HOT140 / HOTE39 

     
0.15 

Selenomonas sp. HOT481 0.06 0.03 0.08 0.14 0.04 0.04 

Selenomonas sp. HOTE20 
     

0.01 

Selenomonas sp. HOTE39 
   

0.03 
 

0.05 

Selenomonas sp. HOTF30 0.02 0.03 
 

0.04 0.04 0.14 

Selenomonas sp. HOTF82 0.01 
   

0.02 0.06 

Selenomonas sp. HOTF83 / HOTH63 
   

0.01 0.04 0.06 

Selenomonas sp. HOTF85 
     

0.01 

Selenomonas sp. HOTF87 0.02 0.01 
 

0.13 0.09 0.01 
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Samples   BHIG BHI BMM 

Taxa 
 

PMA 
 

PMA 
 

PMA 

Selenomonas sp. HOTF96 
 

0.01 
  

0.06 
 Selenomonas sp. HOTG51 

     
0.02 

Selenomonas sp. HOTG55 
   

0.02 0.04 0.02 

Selenomonas sp. HOTH23 
   

0.01 0.02 
 Selenomonas sp. HOTH30 

    
0.01 0.02 

Selenomonas sp. HOTH32 
 

0.02 
  

0.04 
 Selenomonas sp. HOTH66 

     
0.09 

Selenomonas sputigena / HOTE80 / HOTF22 0.16 0.04 0.06 0.18 0.23 0.13 

Solobacterium moorei  0.29 0.46 0.07 0.99 0.37 0.51 

Solobacterium sp. HOTA05 0.09 
 

0.10 0.12 0.03 0.04 

Staphylococcus sp. NBRC 13889 19.37 0.11 8.07 0.10 0.82 0.07 

Streptococcus anginosus 
     

0.11 

Streptococcus constellatus / intermedius / 
HOTE12 2.64 5.53 3.25 3.58 4.35 8.39 

Streptococcus cristatus 0.19 0.04 0.26 0.07 0.03 0.21 

Streptococcus gordonii / HOTH21 / HOTH24 0.69 0.63 0.46 0.09 0.38 0.30 

Streptococcus infantis 0.02 
     Streptococcus mitis bv 2 0.05 0.03 

 
0.01 

 
0.11 

Streptococcus mitis / HOTA95 0.07 
 

0.04 0.08 
 

0.27 

Streptococcus mutans  0.01 0.10 0.01 
 

0.02 0.06 

Streptococcus oralis 
     

0.01 

Streptococcus parasanguinis II  0.01 
     Streptococcus salivarius / vestibuaris / 

HOTC65 0.02 
    

0.01 

Streptococcus sanguinis  0.26 0.01 0.43 
  

0.79 

Streptococcus sp. HOT058 0.06 
 

0.02 0.07 
 

0.05 

Streptococcus sp. HOT064 / HOTE41 1.51 0.10 0.44 0.11 0.03 0.10 

Streptococcus sp. HOT066 / HOT061 0.01 
 

0.06 
 

0.02 0.05 

Streptococcus sp. HOT070 0.08 0.03 0.01 0.06 
 

0.09 

Streptococcus sp. HOT071 
  

0.04 
 

0.04 0.15 

Streptococcus sp. HOTB66 
    

0.05 
 Streptococcus sp. HOTC04 0.19 

 
0.12 0.01 0.03 

 Streptococcus sp. HOTC14 
     

0.07 

Streptococcus sp. unclutured 0.01 
     Veillonella atypica / dispar / parvula / 

HOTE53 / HOTG30 3.23 6.06 3.29 2.50 4.70 5.53 

Veillonella sp. HOT158  
     

0.03 

Veillonellaceae sp. HOT155 
 

0.01 
  

0.12 0.02 

Veillonellaceae sp. HOT150  
 

0.05 
   

0.05 

Xanthomonadaceae sp. unclutured 
  

0.02 
   Fusobacteria 

      Fusobacteria sp. HOT210 0.01 
     Fusobacteria sp. HOTA71 

     
0.01 

Fusobacterium nucleatum ss. animalis 0.09 0.31 0.12 0.72 0.80 0.41 
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Samples   BHIG BHI BMM 

Taxa 
 

PMA 
 

PMA 
 

PMA 
Fusobacterium nucleatum ss. nucleatum 
/HOT203/HOTA11 0.26 0.12 0.11 0.30 0.32 0.11 

Fusobacterium nucleatum ss. polymorphum 2.28 0.55 2.66 0.87 2.49 2.22 

Fusobacterium nucleatum ss. vincentii / 
naviforme / HOT210 / HOT220 / HOT370 / 
HOTD95 0.36 0.69 1.33 0.56 0.96 1.15 

Fusobacterium periodonticum 0.97 0.12 0.72 0.09 1.26 0.36 

Fusobacterium sp. HOTH27 
     

0.04 

Leptotrichia buccalis / HOT225 
  

0.01 0.22 
 

0.33 

Leptotrichia hofstadii  
     

0.23 

Leptotrichia sp. HOT212 0.01 
    

0.01 

Leptotrichia sp. HOT213 
   

0.07 
 

0.04 

Leptotrichia sp. HOT215 
     

0.17 

Leptotrichia sp. HOT392/HOT217 
   

0.02 
 

0.11 

Leptotrichia sp. HOT417 
     

0.05 

Leptotrichia sp. HOT498 
     

0.04 

Leptotrichia sp. HOT847 
     

0.02 

Leptotrichia sp. HOTA45 
     

0.03 

Leptotrichia sp. oral clone 19-33 
     

0.04 

Leptotrichia sp. unclutured 
   

0.04 
  Leptotrichia trevisanii 

     
0.01 

Leptotrichia wadei  
   

0.09 
 

0.12 

Proteobacteria 
      Acinetobacter baumannii / HOTC57  
   

0.12 0.02 0.58 

Aggregatibacter paraphrophilus / 
aphrophilus 0.02 0.61 0.27 1.60 0.55 1.81 

Aggregatibacter segnis / HOT458 / HOT512 
/ HOT513 / HOT762 / HOTG24 0.09 0.49 0.12 2.08 0.75 0.66 

Aggregatibacter sp. HOTG01 
     

0.01 

Campylobacter concisus 
    

0.02 0.01 

Campylobacter curvus 
     

0.05 

Campylobacter gracilis / HOTE67 / HOTG35 0.03 
  

0.01 
 

0.11 

Campylobacter rectus / HOTG43 0.07 1.27 0.69 1.22 2.11 0.95 

Campylobacter showae / E65 4.72 4.86 8.41 9.98 7.55 9.71 

Cardiobacterium hominis 
    

0.01 0.14 

Cardiobacterium valvulum  
     

0.04 

Haemophilus parainfluenzae 0.17 0.20 0.04 0.16 0.04 0.04 

Haemophilus pittmaniae 0.02 0.28 0.04 0.01 0.18 0.19 

Haemophilus sp. HOT036 0.02 
     Haemophilus sp. HOTD10 / 035 

     
0.01 

Johnsonella ignava 
   

0.04 
 

0.01 

Johnsonella sp. HOT166  
     

0.01 

Kingella denitrificans / HOTD55 / HOTE51 
   

0.05 
 

0.04 

Kingella oralis 
     

0.16 
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Samples   BHIG BHI BMM 

Taxa 
 

PMA 
 

PMA 
 

PMA 

Kingella sp. HOT012 
     

0.01 

Kingella sp. HOTD49 
     

0.06 

Lautropia mirabilis 0.01 0.11 
 

0.41 0.08 0.51 

Lautropia sp. HOTA94  
   

0.09 0.01 0.14 

Neisseria bacilliformis 0.01 0.01 
 

0.02 
 

0.05 

Neisseria elongata  1.60 9.86 3.17 10.45 4.47 8.04 

Neisseria flava / mucosa / pharyngis / sicca 9.60 1.43 18.37 2.11 9.71 2.10 

Neisseria flavescens / subflava 1.27 1.64 0.30 1.46 0.36 0.68 

Neisseria sp. HOT009 / HOT014 / HOT015 / 
HOT016 / HOTD56 0.01 

  
0.08 0.06 0.05 

Neisseria sp. HOT018 
     

0.04 

Neisseria sp. HOTD61 
   

0.04 
  Spirochetes 

      Treponema denticola / HOTG47 
 

0.08 
 

0.01 0.04 0.06 

Treponema socranskii ss 04 / buccale 
     

0.02 

Treponema sp. HOT237 
     

0.01 

Treponema sp. HOT769 
     

0.05 

Treponema sp. HOTG39 / HOT254 
     

0.01 

SR1 
      SR1 sp. HOT345  
   

0.02 
  SR1 sp. unclutured  

   
0.02 

  Synergistetes 
      Fretibacterium fastidiosum 
 

0.35 0.17 0.57 0.41 
 TM7 

      TM7 phylum sp. oral clone 13-10 
     

0.01 

TM7 sp. HOT346 
     

0.01 

TM7 sp. HOT348 
     

0.02 

TM7 sp. HOT349 
     

0.05 

TM7 sp. HOT350 
   

0.01 
  TM7 sp. HOT351 

     
0.01 

TM7 sp. HOT352 0.01 
     TM7 sp. HOT355  0.05 0.05 0.05 0.25 0.10 0.04 

TM7 sp. HOT437 / HOT356 
   

0.01 0.03 0.02 

TM7 sp. unclutured 1 
   

0.09 
  TM7 sp. unclutured 2 

     
0.04 

TM7 sp. unclutured 3 
     

0.01 

 



271 
 

 

 

 

 

 

Appendix 3. Phylogenetic tree of the TM7 

Candidate Division 
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Figure 36. Phylogenetic tree of the TM7 Candidate Division. 

 

 


