
This electronic thesis or dissertation has been

downloaded from the King’s Research Portal at

https://kclpure.kcl.ac.uk/portal/

Take down policy

If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing

details, and we will remove access to the work immediately and investigate your claim.

END USER LICENCE AGREEMENT

Unless another licence is stated on the immediately following page this work is licensed

under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

licence. https://creativecommons.org/licenses/by-nc-nd/4.0/

You are free to copy, distribute and transmit the work

Under the following conditions:

 Attribution: You must attribute the work in the manner specified by the author (but not in any
way that suggests that they endorse you or your use of the work).

 Non Commercial: You may not use this work for commercial purposes.

 No Derivative Works - You may not alter, transform, or build upon this work.

Any of these conditions can be waived if you receive permission from the author. Your fair dealings and

other rights are in no way affected by the above.

The copyright of this thesis rests with the author and no quotation from it or information derived from it

may be published without proper acknowledgement.

Architecting Tacit Information in Conceptual Data Models for Requirements Process
Improvement

Williams, Gbolahan

Awarding institution:
King's College London

Download date: 13. Jan. 2025

This electronic theses or dissertation has been

downloaded from the King’s Research Portal at

https://kclpure.kcl.ac.uk/portal/

 Author: Gbolahan Williams

The copyright of this thesis rests with the author and no quotation from it or

information derived from it may be published without proper acknowledgement.

Take down policy

If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk

providing details, and we will remove access to the work immediately and investigate your claim.

END USER LICENSE AGREEMENT

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0

Unported License. http://creativecommons.org/licenses/by-nc-nd/3.0/

You are free to:

Share: to copy, distribute and transmit the work

Under the following conditions:

Attribution: You must attribute the work in the manner specified by the author (but not in
any way that suggests that they endorse you or your use of the work).

Non Commercial: You may not use this work for commercial purposes.

No Derivative Works - You may not alter, transform, or build upon this work.

Any of these conditions can be waived if you receive permission from the author. Your fair dealings

and other rights are in no way affected by the above.

Title: Architecting Tacit Information in Conceptual Data Models for Requirements Process
Improvement

Architecting Tacit Information in Conceptual Data

Models for Requirements Process Improvement

by

Gbolahan K. Williams

A thesis submitted to King’s College London in partial fulfilment of

the requirements for the the degree of

Doctor of Philosophy

July 2013

Software Modeling and Applied Logic Group

Department of Informatics

Kings College London, University of London

Author

Gbolahan K. Williams, gbolahan.k.williams@gmail.com

Software Modeling and Applied Logic Group

Department of Informatics, King’s College London, Strand WC2R 2LS

Abstract
Despite extensive work in the field of Requirements Engineering, ineffective require-

ments remains a major antecedent to the failure of projects. Requirements Engi-

neering (RE) refers to the body of methods associated with elucidating the needs

of a client, when considering the development of a new system or product. In the

literature, challenges in RE have been mainly attributed to insufficient client input,

incomplete requirements, evolving requirements and lack of understanding of the

domain. Accordingly, this has raised the need for methods of effectively eliciting,

analysing and recording requirements.

In the literature, promising methods have been proposed for using ethnography

to improve methods for elicitation because of its strong qualitative and quantitative

qualities in understanding human activities. There has also been success with the use

of Model Driven Engineering techniques for analysing, recording and communicating

requirements through the use of Conceptual Data Models (CDM), to provide a

shared understanding of the domain of a system. However, there has been little

work that has attempted to integrate these two areas either from an empirical or

theoretical perspective.

In this thesis, we investigate how ethnographic research methods contribute to a

method for data analysis in RE. Specifically, we consider the proposition that a CDM

based on explicit and implicit information derived from ethnographic elicitation, will

lead to design solutions that more closely match the expectations of clients. As a

result of our investigation, this thesis presents the following key contributions: (i) the

introduction of an ethnographic approach to RE for elicitation and verification (ii)

a rich CDM metamodel and modeling language necessary for defining and recording

ethnographic analyses based on implicit and explicit information (iii) a method

for mapping CDM’s to high level architectural abstractions called ecologies. To

compliment this work, an evaluation case study is provided that demonstrates a

real world application of this work.

Keywords: Requirements Analysis, Conceptual Data Models, Data Modeling,

Tacit Contracts, Ecologies, Model Driven Architecture, Ethnography

Acknowledgements

Any endeavour as consuming as the production of a thesis, necessitates the

support and assistance of others. Many people have indirectly been involved

in this work, and very much deserve my thanks and appreciation. I therefore

express my sincere appreciation for their involvement which contributed con-

siderably to this research.

I express my deepest thanks to my supervisors Dr. Iman Poernomo and Profes-

sor Paul Luff for their guidance and encouragement throughout this research.

Their vast knowledge and expertise truly made this work possible and helped

me develop my research skills and interests.

I also very much appreciate the direction and support of my thesis adviser

Dr. Jeroen Keppens for providing the needed guidance during the final stages

of this research. I express my thanks to Professor Christian Heath and Robert

Stone for their interest and research collaboration which made this work pos-

sible.

My sincere thanks go to my committee members for their efforts and con-

tributions which helped to improve this research, and to my colleagues in the

Software Modelling and Applied Logic Group at King’s College London for

their research collaboration. I also extend my thanks to the rest of the De-

partment of Informatics at King’s College London for nurturing an excellent

research environment.

Finally, I would also like to thank my family and friends for their consistent

and valuable support in all my endeavours.

Declaration

This thesis is presented in accordance with regulations for the degree of Doctor

of Philosophy at King’s College London. I verify that I am the sole author of

this thesis, except where explicitly stated to the contrary. The contents of this

thesis are a result of my own work, and it contains nothing that is based on

collaborative research. No part of the work contained in this thesis has been

submitted for any degree or qualification at any other university.

Publications

The following related articles have been published by the author during the

completion of this thesis:

[101]G. K. Williams, I. Poernomo, and P. Luff, Modelling ethnographic

analyses for records via tacit contracts, in Research Challenges in Information

Science, 2011.

[100] G. K. Williams and I. Poernomo, Social Computing Theory and

Practice: Interdisciplinary Approaches, IGI Global, Information Science Ref-

erence, USA/UK, 2011, ch. Social Contexts in an Information Rich Environ-

ment, pp. 68–84.

Contents

Abstract ii

Acknowledgements iii

Declaration iv

Publications v

Contents vi

Abbreviations xi

List Of Figures xii

List Of Tables xiv

I Background & Context 1

1 Introduction 2

1.1 Prerequisites for Requirements Analysis 2

1.2 Bridging the Gap . 4

1.3 Research Goals . 7

1.4 Thesis Outline . 9

2 Background and Related Work 12

2.1 The Importance of Communication in Requirements Analysis . 12

2.2 Multidimensional Communication Needs 14

2.3 Requirements Analysis . 16

2.3.1 Methods for Eliciting and Analysing Requirements . . 17

2.3.2 Methods for Recording Requirements 21

2.3.3 Challenges of Requirements Analysis 22

2.3.4 Discussion . 25

2.4 Ethnography as a Means of Elicitation and Analysis 26

vi

CONTENTS

2.4.1 An Overview of Methods of Ethnography 27

2.4.2 The Principle of Ethnography 27

2.4.3 Ethnography in Software Engineering 28

2.4.4 Challenges of Ethnography 31

2.4.5 Discussion . 32

2.5 Models as a Means of Communication 33

2.5.1 Model Driven Engineering (MDE) 33

2.5.2 Model Driven Architecture (MDA) 34

2.5.3 The Unified Modeling Language (UML) 37

2.5.4 Discussion . 45

2.6 Related Work . 45

2.7 Summary . 48

II A Tacit Requirements Analysis Methodology 50

3 Role of Ethnography in Conceptual Data Modeling 51

3.1 Introduction . 52

3.2 Ethnographic Elicitation . 52

3.2.1 Ethnographic Study Life Cycle (ESLC) 53

3.2.2 The Execution Phase of Ethnography 54

3.2.3 Important concerns of adopting Ethnography in the SDLC 56

3.3 The Software Development Life Cycle (SDLC) 59

3.3.1 SDLC Overview . 59

3.3.2 Categorization of SDLC Activities with respect to

Ethnography . 60

3.3.3 Data Modeling . 64

3.4 Combining Ethnography with SDLC Phases and Categories . 65

3.4.1 The Overlap of Ethnography and Requirements Analysis 66

3.4.2 Bridging The Gap between Ethnography and

Requirements Analysis 68

3.4.3 Ethnographically Inspired SDLC Categories 69

3.5 Ethnography in relation to the SDLC 73

3.6 Summary . 76

vii

CONTENTS

4 Incorporating Tacit Information within Conceptual Data

Models 77

4.1 Introduction . 77

4.2 What is “Tacit Information”? 78

4.3 Transferring Knowledge to Development 79

4.4 Ethnographic Perspectives on Data 81

4.4.1 Knowledge without Conceptual Data Schemas 82

4.4.2 Ethnographic Elicitation for Data 83

4.5 The Medical Records Case Study (Pt. 1) 85

4.5.1 Overview . 85

4.5.2 Ethnographic Analyses 87

4.5.3 Observations . 90

4.5.4 Conclusion . 92

4.6 Summary . 93

5 A Tacit Requirements Metamodel 94

5.1 Tacit Contracts in Requirements Analysis 94

5.2 Towards A Tacit Requirements Metamodel 96

5.3 Constructive Types for Pre-Implementation Ethnography . . . 100

5.4 The Formalism for the CDM 104

5.5 Why Constructive Type Theory? 108

5.6 The Medical Records Case Study (Pt. 2) 110

5.6.1 Naive Conceptual Model (NCM) 111

5.6.2 Tacit Conceptual Model (TCM) 112

5.6.3 Model Comparison . 118

5.7 Discussion . 120

5.8 Summary . 123

III Methodology Application and Conclusions 124

6 A Case Study in Auction House Systems Design 125

6.1 Introduction . 126

6.2 Scope and Purpose of Study 127

viii

CONTENTS

6.3 The Auction Domain . 128

6.3.1 Auctions . 129

6.3.2 Variations to the Bidding Process 131

6.3.3 Summary . 131

6.4 Approach & Development Process 131

6.4.1 Data Analysis and Interpretation 132

6.4.2 Pre-Implementation . 134

6.4.3 Implementation . 165

6.4.4 Post-Implementation 170

6.5 Discussion & Conclusions . 177

6.5.1 Overview of Work . 177

6.5.2 The Role of Tacit Information in the SDLC 177

7 From Conceptual Data Models to Ecologies and Logical Data

Models 183

7.1 What is an Ecology . 184

7.2 Ecologies: A Model Driven Engineering Approach 185

7.3 Data Views in the SDLC . 186

7.4 Components of Ecologies . 188

7.5 An Ecology Metamodel . 189

7.6 A Heuristic for Mapping Conceptual Data Models to Ecologies 190

7.7 Summary . 192

8 Conclusions and Future Work 193

8.1 Overview . 193

8.2 Research Goals . 194

8.3 Thesis Contributions . 195

8.3.1 Bridging the Gap . 195

8.3.2 Investigate an approach to carrying ethnographic insights196

8.3.3 Devise an approach to navigating implementation choices 198

8.4 Future Work . 199

8.5 Concluding Remarks . 200

ix

CONTENTS

References 201

x

Abbreviations

CDM Conceptual Data Model

CIM Computation Independent Model

DDV Design Data View

IDV Implementation Data View

LDM Logical Data Model

MBE Model Based Engineering

MDA Model Driven Architecture

PDM Physical Data Model

PIM Platform Independent Model

PoIE Post-Implementation Ethnography

PrIE Pre-Implementation Ethnography

PSM Platform Specific Model

RA Requirements Analysis

RA Requirements Engineering

RDV Requirements Data View

SDLC Software Development Lifecycle

UML Unified Modelling Language

List of Figures

1.1 Requirements Engineering: Bridging the Gap 4

2.1 Communication Activities between Business and Development

Stakeholders . 15

2.2 Communication Activities between Business, Development Stake-

holders and Ethnographers . 29

2.3 Example of Classes in UML 40

2.4 UML Class Representation showing Inheritance 41

2.5 A Bi-Directional UML Class Association 42

2.6 A Uni-Directional UML Class Association 42

2.7 A Reflexive UML Class Association 42

2.8 UML Class Aggregation . 43

2.9 UML Class Diagram Multiplicity 44

2.10 UML Class Diagram Example 44

3.1 Ethnographic Study Life Cycle (ESLC) 53

3.2 SDLC Categories versus SDLC Phases 62

3.3 SDLC Categories versus SDLC Phases showing Life Cycle Data

Models . 66

3.4 Ethnography / Requirements Intersection 68

3.5 SDLC Categories versus SDLC Phases showing Ethnographic

Phases . 73

3.6 SDLC Categories versus SDLC Phases showing Life Cycle Data

Models and Ethnographic Phases 74

5.1 Metamodel for defining Comprehensive Conceptual Data Models 97

5.2 Metamodel Instance Example of Employment Contract 109

5.3 Initial Model for the Medical Records System 111

5.4 Tacit Conceptual Model (TCM): Medical Records System . . . 114

6.1 SDLC for Auction House Sales Sheet Development 132

6.2 Current Sales Sheet . 136

xii

LIST OF FIGURES

6.3 Use case diagram of Auction House High Level Usecases . . . 141

6.4 Sample Pre-Auction Sales Sheet 142

6.5 Extract from a Pre-Auction Salessheet demonstrating the with-

drawal of a lot . 143

6.6 Sample In-Auction Sales Sheet 144

6.7 Sample Post-Auction Sales Sheet 146

6.8 Sales Sheets Side-by-Side . 147

6.9 Taxonomy for sales in the auction house 149

6.10 Sales Sheet Conceptual Data Model 151

6.11 The Auctioneer’s Sales Sheet 166

6.12 Interface Screenshot . 169

6.13 Images from Ethnographic Film – The Auctioneer 173

6.14 Images from Ethnographic Film – Admin Office 173

7.1 Data Views in the SDLC . 186

7.2 Detailed View of Data Views in the SDLC 187

7.3 Metamodel for defining Ecologies in the CDM 189

xiii

List of Tables

2.1 Software Development Stakeholders Roles & Descriptions . . . 14

2.2 Traditional Requirements Elicitation Methods 19

2.3 Methods for Recording Requirements 22

2.4 Notable MDA Approaches . 36

4.1 A sample of a patient’s Medical Record 88

6.1 Data Analysis and Interpretation Activities 134

6.2 High Level Use Case Description 140

6.3 Taxonomy of Salessheet Solution Domain 163

7.1 Instrument / Feature Score Framework 192

xiv

Part I

Background & Context

1

1
Introduction

We’re entering a new world in which data may be more important

than software.

Tim O’Reilly

1.1 Prerequisites for Requirements Analysis

Ineffective Requirements are an industry wide problem and remain a major an-

tecedent to software failure [91]. Requirements Engineering (RE), also referred

to as Requirements Analysis (RA) refers to the body of methods associated

with understanding the needs of a client when considering the development of

a new product or system. It is a critical phase within the software development

process [91]. A wide array of research has shown that the success or failure

of software projects is closely linked with the effective understanding of client

requirements during the early stages of development, and the correspondence

of those requirements into the software development process [93] [102].

The software development process refers to the cycle of activities that com-

mit to the design, creation and evaluation of software systems. Accordingly,

it outlines a number of prerequisites for the early stages of the software devel-

opment process:

a) elicitation: entails gaining an effective understanding of what the client

needs

2

1.1. PREREQUISITES FOR REQUIREMENTS ANALYSIS

b) analysis : advancing ones understanding of a set of requirements through

close inspection and detailed examinations

c) representation: embodies methods for outlining and presenting the clients

requirements

d) communication: conveying the requirements of the client through the soft-

ware development process

Research Directions

The field of requirements engineering has continued to emerge to meet the

growing demands that complex software systems impose on each of the early

stage software development objectives. Despite extensive work in the field,

challenges specific to the requirements analysis phase of the software develop-

ment process persist. In particular, requirements for records (or data) presents

several challenges, notably problems related to the early software development

objectives. Addressing the underlying causes of each problem is not a trivial

task as requirements analysis is often affected by incomplete and uncertain

information [44]. This raises a number of questions for research into effective

methods for requirements analysis:

i) How do we conduct ‘good’ elicitation?

ii) What constitutes effective analysis?

iii) What are methods of representation are sufficient for structuring require-

ments?

iv) What are the right methods for communicating requirements between

interested parties of the software development process.

These questions have been individually answered in the literature but work

still needs to be done to develop requirements analysis approaches that inte-

grate and address the objectives of each of the prerequisites for early-stage

software development activities.

3

1.2. BRIDGING THE GAP

This thesis aims to advance the field of Requirements Engineering by

proposing a method for analysis and evaluation that is guided by each of the

above questions. To achieve this, we employ Ethnography to address the need

for an effective method for elicitation and analysis of requirements. Ethnog-

raphy is social research method that concerns gaining an understanding of

the activities of people within the context of their environment. To address

the need for an effective method for the representation and communication

of requirements, we employ Model Driven Engineering (MDE). Model Driven

Engineering refers to a technique aimed at reducing the complexity of systems

through the use of models that describe the system at varying levels of detail.

The remainder of this chapter elaborates on the context of this research,

and presents an overview of the work proposed in this thesis. The next section

discusses the notion of reconciling improved elicitation methods with require-

ments analysis methods. It introduces the concepts of Ethnography and Model

Driven Engineering. Following this, we present the research goals and contri-

butions of the thesis. Finally, an overview of the thesis is given.

1.2 Bridging the Gap

In Requirements Engineering, the expression ‘Bridging the Gap’ relates to the

attempts to reconcile the increasing metaphorical gap between understanding

the needs of a client, and prescribing the requirements to be fulfilled when the

software system is delivered.

Figure 1.1: Requirements Engineering: Bridging the Gap

Within the context of software development, the expression is often extended

to relate the adjoining communication activities between requirements analysis

4

1.2. BRIDGING THE GAP

and design, for a more effective understanding and progression of the clients

needs through software development (Figure 1.1).

The problem of bridging the gap between information systems requirements

analysis and software design is well known and still open. Jackson [49] used

the concept of ‘problem frames’ to reason about software and requirements

concerns at an intermediate level of abstraction. Problem frames characterise

classes of problems and are composed of three parts, beginning with the prob-

lem domain which describes the environment which the problem resides; the

requirement, which describes the customers needs; the machine, which relates

to the hardware or software resource that fulfils the requirement.

The approach focuses on software development as the problem to be solved.

However, successful software development is rooted in understanding the con-

cerns of the problem domain. To this end, there has been a progressive move-

ment in the last two decades towards the application of ethnography in the

software development process to understand various aspects of the business

domain [33][46][52][94].

Understanding the Business Domain

It is well known that it is important to have a good understanding of the busi-

ness domain when developing software systems. It is plausible that a good

understanding of the domain will lead to a more precise requirements deliv-

erable. A good requirements deliverable increases the prospects of improved

specifications and better design choices further down the development process

of a system. To the contrary, not understanding the business domain could

lead to ineffectiveness in requirements analysis due to possible omissions of

important details of the business context of the system. This underpins the

need for effective elicitation methods. To this point, it has been argued in the

literature that implicit information is an important aspect of the structure of a

domain model [42]. Implicit information refers to information about a domain

(or context) that is understood and implied but not explicitly stated. Studies

have shown that implicit information does get excluded and misunderstood

usage contexts lead to poor quality systems [42]

5

1.2. BRIDGING THE GAP

Unlike explicit information, which refers to visible, detectable information

about the structure of data in the business context of the system, implicit

information may be difficult to detect. The side effect of not understanding

the implicit information that drives a context could result in poor assump-

tions made about the domain model, misunderstanding of usage contexts and

characteristics of the system.

In this thesis, we investigate a particular grouping of implicit information

that relates to data and we call that information tacit information. We contend

that tacit information is very beneficial at the requirements/design phase of the

software development process. Upfront knowledge of both explicit and tacit

information has the potential to improve software quality. Therefore, tacit

information as well as explicit information should be recognised at an early

stage in the requirements analysis process. However there is the challenge of

identifying tacit information which leads to the proposition of utilising social

research methods for this purpose.

Utilising Social Research Methods for Elicitation and

Business Domain Analysis

Much work in the literature has proven that ethnography is an effective ap-

proach to developing an accurate picture of how users, data and functionality

should naturally integrate within an information system [12][23][45][89]. As

a research method, ethnography is based on the fine grained monitoring of

behavioural patterns, often drawing on direct observation, surveys and in-

terviews, scrutiny of video footage, examination of paper trails, and so on.

Ethnography can thus be a useful way to identify best practices in an envi-

ronment, but there are still open questions regarding the translation of the

results of ethnographic studies into good design, specifically in relation to the

ways in which data is treated in the system [42].

Ethnography presents the description of various views of a system: for ex-

ample how its composite concepts, roles and relationships evolve over business

processes, and how data itself grows as it traces a path from person to person

or between various agents in the system. Importantly, it does not view busi-

6

1.3. RESEARCH GOALS

ness processes as formal workflows, nor data as structured and rigidly defined

but instead, seeks to elicit the implicit and explicit aspects of a business that

might otherwise be ignored using standard elicitation methods.

When considering integrating ethnography as a method for elicitation in

Requirements Engineering, one must understand what types of data it pro-

duces. The principle of ethnography takes a naturalistic view of the environ-

ment being studied. This approach often makes the ethnographic data being

recorded to be eclectic. Thus ethnographic data may contain textual or di-

agrammatic based representations of the research, transcripts of interviews,

audio and video recordings and so on. Ethnography produces a richly de-

scriptive, often anecdotal and accurate report written in a natural language

that stands in contrast to more formal requirements documents that already

begin to abstract away precise specifications of the system1. The question of

how to incorporate ethnographic reports into the software development pro-

cess remains open [19]. Within context, Sutcliffe and Maiden [90] noted the

challenge of transforming informal linguistic statements into more formal ex-

pressions as a problem central to this area. Further to this, there is also the

question of how to purposefully record implicit information at a conceptual

level, when describing the domain of a system. There is also the problem of

requirements being hidden away in ethnographic reports. This makes it un-

suitable for an improved requirements analysis approach. The next section

presents the research goals of this thesis and outlines the direction of work

that aims to mitigate some of these problems.

1.3 Research Goals

The key objective of this thesis is to investigate the proposition that tacit

information is beneficial at the conceptual level in requirements analysis. We

pursue the long debated hypothesis in ethnography and requirements engineer-

ing interdisciplinary research which affirms that incorporating tacit informa-

tion at the requirements level, leads to improved design decisions that result

1Note, we defer a full description of how requirements elicitation might be conducted
according to ethnography to subsequent chapters.

7

1.3. RESEARCH GOALS

in software systems that more closely match the requirements of the client.

The objectives of this thesis can therefore be further broken down into three

core research goals.

This thesis presents a renewed effort to:

i) Bridging the gap between ethnography and requirements analysis.

ii) Investigate an approach to carrying ethnographic insights through the

requirements analysis stage of software development into design.

iii) Devise an approach to navigating implementation choices at the design

level, based on tacit information that has emerged through the above

process.

To approach the first two goals, we consider approaches in the literature for

defining and communicating requirements specifications. It is our submission

that model driven engineering based methods represent the preferred approach

to describing and communicating system requirements. This reflects on our

overall impression of current developments moving towards model driven ap-

proaches to software development. In software development, Model Driven

Engineering (MDE) advocates the use of models as first class entities for the

representation and development of software systems [10]. From a requirements

analysis perspective, this entails describing the specification of the system at

the conceptual level constrained by the semantics of a formal definition. This

formal definition can be specified using a metamodel, which is an MDE con-

cept that serves the purpose of describing the constructs that form the basis

of describing a model.

For this work, this necessitates the development of a requirements analy-

sis approach that is rooted in an understanding of ethnography, and a formal

definition for defining data requirements at a conceptual level. Successful de-

velopments in this area will facilitate the construction of requirements models

based on both explicit and implicit information derived from ethnographic

research.

8

1.4. THESIS OUTLINE

The final goal questions what tacit information tell us about possible imple-

mentation choices. We investigate a formal definition of design level architec-

tures and a heuristic based approach to mapping requirements level models to

design level architectures. Successful developments in this area will facilitate

improved decision making at the design level the approach entails identify-

ing what types of implementation choices are best suited to the tacit insights

emerge from ethnographic research.

The overall body of work of this research is therefore centred around the

intersection of requirements analysis, ethnography and model driven engineer-

ing. It utilises ethnography for eliciting tacit requirements pertaining to the

domain and model driven techniques for requirements representation. The

next section outlines the thesis with an introduction to each of the remaining

chapters.

1.4 Thesis Outline

The work presented in this thesis covers eight chapters, split into three parts:

Part I: Background & Context

Part I states the context and motivation of this research. It also presents a

background of the interdisciplinary fields discussed in the thesis.

Chapter 1 - Introduction

The thesis begins by introducing this research and motivating the problem

domain. A brief overview of the related fields of this research is given, namely

Ethnography, Requirements Analysis and Model Based Engineering.

Chapter 2 - Background and Related Work

In this chapter, the core related areas of this thesis are discussed. The chapter

is intended to give the reader some background on broad field of Requirements

Engineering, Ethnography and Model Driven Engineering.

9

1.4. THESIS OUTLINE

Part II: A Tacit Requirements Analysis Methodology

Part II discusses the main body of work of the thesis. It presents an ex-

tended introduction to ethnography and discusses our approach to modeling

ethnographic requirements. Furthermore, it presents a metamodel and its cor-

responding formal definition for describing implicit and explicit information for

models at a conceptual level based on information derived from ethnographic

elicitation.

Chapter 3 - Role of Ethnography in Conceptual Data Modeling

This chapter is dedicated to explaining ethnographic practices and activities.

Furthermore, it explains the activities in the software development process,

and how ethnography fits in with these activities. Finally, it proposes an

approach to applying ethnography during the early and final stages of devel-

opment.

Chapter 4 - Incorporating Tacit Information within Conceptual Data

Models

This chapter is dedicated to looking at Model Driven Requirements analysis

predominantly from the angle of the concerns of ‘data’. The chapter discusses

the various complexities of transferring ‘knowledge’ to development. Further-

more, it introduces the notions of Tacit Information and Tacit Contracts. The

former being implicit information in a data context, and the latter being a

design obligation used at the conceptual level to distinguish tacit information

from explicit information. Finally, the first part of a two-part case study is

presented that aims to motivate the proposition of incorporating tacit infor-

mation in conceptual models of systems.

Chapter 5 - A Tacit Requirements Metamodel

The fifth chapter elaborates on the concept of tacit contracts, and presents

a requirements metamodel necessary for constructing conceptual models of

systems based on implicit and explicit information. The formal definition of

the model is provided, alongside the second part of the case study presented

in Chapter 4 to demonstrate its application over a real modeling example.

10

1.4. THESIS OUTLINE

Part III: Methodology Application and Conclusions

Part III presents a case study to demonstrate the application of this work in a

real world example. Furthermore, it introduces the concept of Ecologies, and

proposes a method for moving from CDM’s to Ecologies.

Chapter 6 - A Case Study in Auction House Systems Design

The sixth chapter of this thesis is a case study evaluation of this research. The

chapter presents a demonstration of ethnographically inspired Requirements

Analysis in practice – a case study based on the experience of the development

of an auction house system.

Chapter 7 - From Conceptual Data Models to Ecologies and Logical

Data Models

This chapter introduces the notion of Ecologies and Ecology Instruments.

These concepts underpin our proposed approach to mapping requirements level

conceptual models, to design level logical models. For this work, a reference

metamodel is given, alongside heuristics for mapping conceptual models to

logical models.

Chapter 8 - Conclusions and Future Work

The final chapter concludes the thesis. It gives remarks on our findings and

possible directions for future work.

11

2
Background and Related Work

This chapter sets the scene for this research by providing a background to its

related areas. This work is focused on Requirements Engineering, in particular,

an investigation into the communication gap between requirement analysis and

design. The body of work of this research cuts across three major areas: (i)

Requirements Engineering (ii) Ethnography (iii) Model Driven Engineering.

The aim of this chapter is to give a detailed overview of these areas according

to the context of our work. Therefore, the chapter opens with an introductory

perspective on the importance of communication in Requirements Analysis

which underpins this thesis. Following this, a background overview of the

areas mentioned above is given, and a perspective on related works in the

literature. Finally, the chapter highlights the contributions of the thesis.

2.1 The Importance of Communication in

Requirements Analysis

Communication is the exchange of information and shared understanding be-

tween entities and individuals. It thus represents the interaction between

entities in the actions necessary to impart knowledge and meaning. It is a

central component of the contemporary information world and a key activity

in the context of software engineering.

In the software engineering world, communication exists in a number of

forms, and is an interaction that is pertinent between people, between states

12

2.1. THE IMPORTANCE OF COMMUNICATION IN
REQUIREMENTS ANALYSIS

in a system, and between systems across heterogeneous boundaries. With

this perspective, in software development communication can be described

as the exchange of knowledge and information between named entities and

corresponding contexts.

Software development is preceded by a ‘project conception’ phase, where

a project idea (or need) is defined amongst business stakeholders. This hope-

fully provides the foundation for successfully advancing the various stages of

software development when the development process is initiated.

At the outset, the software development process begins with a set of activ-

ities aimed at elucidating the needs of stakeholders and communicating those

needs in an appropriate manner to the various participants of the software

development process. These activities are broadly understood under the term

Requirements Analysis.

The main remit of Requirements Analysis is to bridge the gap between

business stakeholders and development stakeholders. We refer to clients as

business stakeholders, and participants of the software development process as

development stakeholders. Business and development stakeholders comprise a

range of roles and responsibilities. Table 2.1 describes a number of these roles.

Each of the stakeholders mentioned individually have a set of well defined re-

sponsibilities in the software development process. Therefore, communication

styles and needs present a different set of challenges because each individual

holds a different stake in the development process. Information must therefore

be provided to each stakeholder at the right level of complexity and detail. For

example, a Requirements Analyst needs to understand how to scope client ob-

jectives and be able to translate them into a requirements deliverable that can

be leveraged by development stakeholders. On the other hand, designers need

to be able to interpret requirements and transform them into implementation

designs that developers eventually turn into code.

Each of these activities carries significant importance within the remit of

each stakeholders roles and responsibilities. In particular, communication ac-

tivities in the Requirements Engineering phase of the software engineering

process are essential in many aspects to the success of the project as it is the

entry point into the development process. Whether it being communication

13

2.2. MULTIDIMENSIONAL COMMUNICATION NEEDS

Role Description
Requirements Analyst consults with clients to understand business needs.

Requirements analysts may also be referred to as
business analysts.

Designer translates software requirements into technical de-
sign

Developer writes application code to build software and ap-
plications

Test Analyst develops test plans and test cases to ensure soft-
ware conformance to client requirements, and the
quality measures within the organisation

Information Developer develops user documentation for clients such as
user guides and walkthroughs

Client the organisation that is pursuing the development
of a new system. The client may also be referred
to as customer or user.

Table 2.1: Software Development Stakeholders Roles & Descriptions

between stakeholders and requirements analysts to determine system goals

and feature expectations of the system; or between requirements analysts and

information developers who document the requirements that will ultimately

be passed on to a development team for implementation.

2.2 Multidimensional Communication Needs

Software projects have multidimensional communication activities, due to the

several lines of communication activities between business and development

stakeholders (see figure 2.1, page 15). For a software project to be considered

successful, it must fulfil stakeholder requirements and meet the expectations

of the client or customer. The success of each communication activity in the

development process presents a challenge.

There is wide recognition that communication problems hold considerable

weight in the delay and failure of software projects [15]. Despite the importance

of communication activities, there is still a wide array of challenges due to the

growing complexity of software systems and often arduous demands of business

14

2.2. MULTIDIMENSIONAL COMMUNICATION NEEDS

Figure 2.1: Communication Activities between Business and Development
Stakeholders

stakeholders.

The problem of communication is that it is most difficult to manage within

the Requirements Analysis phase due to the numerous communication activi-

ties within the Requirements Analysis process, and the individual importance

of each activity. Al-Rawas and Easterbrook [4] described a field study report-

ing on problems related to this kind. Their study focused on the communica-

tion characteristics of the Requirements Analysis process and investigated the

problems of communication between disparate communities participating in

requirements activities. The study highlighted the following communication

barriers in the Requirements Engineering process:

a) ineffectiveness of the current communication channels;

b) restrictions on expressiveness imposed by notations; and

c) social and organisational barriers.

One of the pressing concerns that Al-Rawas and Easterbrook [4] highlighted

for future research was to investigate communicational weaknesses of current

notations and methods so that those weaknesses can be accommodated for.

In this thesis, the problem of communication does not begin with notation. It

begins with identifying an appropriate and rich notation for recording require-

ments, alongside a good ‘domain understanding’ methodology. Furthermore

15

2.3. REQUIREMENTS ANALYSIS

we focus on the carriage of requirements downstream through the software de-

velopment process as we believe that requirements are vulnerable to some loss

of precision when crossing boundaries in the software development process,

especially between the requirement analysis phase and design phase. Once we

have addressed these requirements, only then can we address the problem of

notation. The next few sections present a deeper background into Require-

ments Analysis.

2.3 Requirements Analysis

The early part of software development that focuses on the decisions that are

made on what to implement in relation to a clients objectives is referred to

as Requirements Analysis. Requirements Analysis involves all the processes

and tasks that go into establishing a clients needs and expectations of a newly

proposed system.

Requirements Engineering typically succeeds project conception and busi-

ness planning, and comprises several techniques and activities that have been

developed over the last two decades [19, 72]. In accordance with this, a number

of core Requirements Engineering activities have been identified [72]: eliciting

requirements; modeling and analysing requirements; communicating require-

ments; agreeing requirements; and evolving requirements. Broadly speaking,

each of these tasks represent a finer-grained set of tasks compared to the more

generally accepted task definitions in field of Requirements Engineering which

consist of eliciting, analysing and recording :

i) Eliciting requirements: It involves communicating with users (clients) and

capturing the objectives of the software system. This is a requirements

gathering activity. It comprises the activities and processes that enable

the gathering and understanding of the goals, objectives, and motives for

building the proposed software system [19].

ii) Analysing requirements: This involves understanding and discerning the

set of elicited requirements and goals, and creating a specification that

defines the customers expectations. This may be done in collaboration

16

2.3. REQUIREMENTS ANALYSIS

with business stakeholders. Analysing may also incorporate modeling

requirements. Modeling consists of a set of a well defined description

of a system which can be used to establish high level goals and system

tasks [72].

iii) Recording requirements: This consists of an explicit description of the

requirements, aim and goals of the software system. It involves creating a

requirements deliverable that will be utilised by business and development

stakeholders.

Each of these activities are well known. Consequently, they each have estab-

lished approaches in the literature. The next two sections present and describe

some of these approaches in relation to the context of our work.

2.3.1 Methods for Eliciting and Analysing Requirements

There are two basic questions in Requirements Engineering:

i) What does the client want?

ii) Which of the clients requirements are most important?

Each of these questions brings with it, its own set of problems. The first

question is one of identification. To address the task of identifying what the

client wants, one must first identify who the client is. This process is described

as stakeholder identification [87]. The second question is one of prioritisation

and necessity. The clients requirements must be interpreted and understood

in order recognise how to engage in the fulfilment of the requirements in the

development phase of the system. This of course begins with good elicitation

and analysis methods. We further explain these points below:

Stakeholder Identification

The IEEE-1471 standard [34] describes a stakeholder as “an individual, team,

or organization (or classes thereof) with interests in, or concerns relative to,

17

2.3. REQUIREMENTS ANALYSIS

a system”. Preiss and Wegmann [82] identified several classifications of stake-

holders. It is well known that there are different groups of business stakehold-

ers and each share different opinions and concerns. Stakeholder identification

therefore ensures that key individuals affected by the project are involved in

the development process of the system. In [69], Mitchell et. al proposed a

way of classifying stakeholders based on stakeholders possessing one or more

of three relationship attributes: power, legitimacy and urgency, each of which

was argued to be of importance to stakeholder theory. Coakes [20] devised a

diagrammatic model for identifying stakeholders called the “stakeholder web”.

The web used a holistic view of classifications and groupings of stakeholders.

Boundaries in the web showed the wider view of the system and its impact.

This allowed the web to be examined where gaps existed, to allow an improve-

ment of representation.

Traditional Elicitation Methods

Requirements Analysis methods have evolved over the years to a level where

we have come to expect certain ‘traditional’ (or foundation) methods of the

practice. Traditional methods for requirements elicitation such as interviews

and focus groups form the basis of practice [58]. Interviews are consultation

meetings between requirements analysts and business stakeholders. Meetings

are aimed at helping the requirements analyst gain an understanding of the

needs of business stakeholders. Requirements analysts usually approach in-

terviews with prepared questions (or themes) that will be discussed with the

stakeholder. However interviews may very well be held in an open-ended for-

mat.

Focus Groups bring together stakeholders to participate in guided discus-

sions about a product. Focus group may also be unguided but organised

around themes of interest to the requirements analyst. This is done to facil-

itate discussions between users about what requirements are most important

to them, and for the requirements analyst to get a sense of prioritization levels

for each requirement.

In addition to these methods, there are other traditional techniques such

18

2.3. REQUIREMENTS ANALYSIS

Method Description
Introspection Amounts to imagining what kind of system one

would want if they were the user of the system.
Questionnaires Uses a set of questions with multiple choice an-

swers (or free text column) to gather specific
themes responses from respondents.

Protocol Analysis Requires participants to engage in a set of tasks
whilst narrating their thought process.

Table 2.2: Traditional Requirements Elicitation Methods

as introspection, protocol analysis and questionnaires. Goguen and Linde [33]

provide an extensive survey of these methods. Each method is summarised in

Table 2.2. For an evaluation of these methods, see Nuseibeh et. al [72].

Analogical Techniques for Elicitation

Analogical techniques for elicitation have seen wide use over the last decade

because of the central focus on discovering requirements through developing

a deep understanding of the user. Analogical techniques for elicitation cover

personas, metaphors and creativity techniques. Each of these techniques aid

the requirements analyst in understanding what requirements are important

to a user.

Personas represent a typical example of a user of a system [22]. According

to [17], a persona is a method for “[providing] an understanding of the system

user in terms of his or her characteristics, needs and goals to be able to design

and implement a usable system”. They are used to position users at the centre

of the design process in the context of the system being built. Personas follow

the idea of Cooper’s [22] methodology for creating personal experiences to cre-

ate personas that represented the users to be designed. Aoyama [7] developed

a persona-scenario based Requirements Analysis methodology to build a rich

contextual model of targeted users. On the other hand, Potts [81] debated

that human language is metaphoric and it is wise to represent requirements

this way. Metaphors make use of representative symbols, actions and abstract

concepts to characterise requirements. They provide a way to develop an un-

derstanding of requirements in an organisation.

19

2.3. REQUIREMENTS ANALYSIS

A different form of elicitation aimed at ‘discovering’ requirements is cre-

ativity because of its capacity for driving innovative requirements [78]. In

the context of creativity, Maiden and Robertson [63] described requirements

as “[...] the key abstraction that encapsulates the results of creative think-

ing about the vision of a system”. Creativity techniques are driven through

activities such as brainstorming and analogical reasoning [62]. Brainstorm-

ing brings stakeholders together to think up ideas and draw up solutions to

problems. Analogical reasoning is much like the idea of metaphors. It is a

method that uses well understood concepts to aid the understanding of new

ideas. Each of these techniques can be used as exploratory means to develop

system requirements.

Analysis Methods

Analysis methods for requirements cover a wide range of methods and tech-

niques. They extend the goal of elicitation techniques to provide a greater

understanding of each elicited stakeholder requirement, hopefully with the

aim of leading to better requirements management. Some methods include

Value Analysis and Requirements Risk Analysis.

Value analysis is the measure of how momentous a system requirement in

comparison to other requirements. The concept of value analysis dates back

several years [66]. It can be looked at as the measure of importance of a

requirement. The problem of value analysis is that it may prove difficult to

make such a judgement due to the existence of complex relations, associations

or dependences between requirements. Requirements Risk Analysis involves

interrogating a set of requirements in order to identify potential risks associ-

ated with combining requirements. It also looks to identify the risk associated

with introducing new requirements or the risks associated with the removal

of requirements. The approach taken by the requirements analyst is to assess

whether any requirement can introduce unwanted risk to the system. Re-

quirements Risk Analysis has seen wide adoption of goal-oriented approaches

to reasoning about requirements level risks [8]. The techniques originate from

Goal-Oriented Requirements Engineering (GORE).

20

2.3. REQUIREMENTS ANALYSIS

GORE is concerned with using high level goals to capture the objectives of

a system. Goals are objectives which the system under consideration should

achieve [92] for it to be considered a success. GORE provides a way to structure

and prioritize requirements. This has an important benefit to the requirements

analyst, in being able to identify and avoid irrelevant requirements. In the

literature taxonomies have been used to represent goal types [90]. In [90],

Sutcliffe and Maiden proposed a process model that used a taxonomy of goal-

types to guide analysis. The approach classified goal levels (policy, domain,

functional level) according to system states (e.g positive, negative, feedback,

alternative, exception repair). Heuristics were used to elaborate or refine the

details of each goal class.

2.3.2 Methods for Recording Requirements

Requirements Analysis leads to a deliverable (or document) that is used to

communicate the aims and objectives of the proposed system to business and

development stakeholders. Ideally, the requirements deliverable will describe

all the aspects about what the proposed system will do. The focus of the

document is distinctively to outline the goals of the newly proposed system

without any concern of the underlying implementation details.

Amongst development stakeholders, the requirements deliverable is most

important to the system designer because role of the designer entails translat-

ing the requirements deliverable into a design deliverable that will be utilised

by developers when implementing the system. Much like with anything, differ-

ent organisations have individual ideas about what the requirements deliver-

able should look like and what it should contain. This is perfectly reasonable,

as each organisation may have different needs and what may work for one

organisation, may not work for another.

The choice of recording requirements is dependent on the kind require-

ment being described, and the audience that will be viewing the requirements

deliverable. Methods for recording requirements include both formal and in-

formal techniques [99]. Some methods include feature lists, user stories, use

cases, process specifications and models. Table 2.3 provides a summary of

21

2.3. REQUIREMENTS ANALYSIS

Method Description
Feature List A documented list of a summary of features that

the system should support.
Use Cases Represents a description of how tasks and actions

in the system will be executed by users. Uses cases
also describe the the roles of users users performing
those tasks and the dependencies between tasks
and actions that are performed.

User Stories Uses descriptive sentences to provide a detailed ac-
count of the behaviour of a system under certain
conditions. It also entails a description of what ac-
tions or operations the user must invoke to satisfy
a particular goal.

Process Specification Defines the specification of a process which in-
cludes actions, constraints procedures and the
treatment of inputs/outputs.

Table 2.3: Methods for Recording Requirements

each of these approaches. An extended discussion on the use of models in

Requirements Analysis is given in Section 2.5. Models provide a structured

approach to Requirements Analysis where the actions, intents and behaviours

of a system are communicated through the use of models1.

2.3.3 Challenges of Requirements Analysis

There are a number of known problems in the diverse field of Requirements

Engineering [19]. Of the many reported problems, there are three recurring

themes that keep coming up in the literature [56, 19]:

A. Lack or insufficient input from the client

B. Incomplete requirements and specifications

C. Evolving requirements

These are a set of related fundamental issues in Requirements Analysis. We

address each problem as Problem A, B and C respectively:

1See Section 2.5: Models as a Means of Communication (Page 33)

22

2.3. REQUIREMENTS ANALYSIS

Problem A: Lack or insufficient input from the client

Human factors such as absence of key stakeholders, infrequent meetings, dis-

tance and language barriers are well known challenges that can limit the input

of a client during the requirements gathering stages of a project. Even in the

absence of these problems, there are a number of nascent reasons why business

stakeholders may not participate sufficiently, or not participate at all during

the requirements gathering stages.

One of the main causes of this problem is due to the clients inability to

explain in sufficient detail, what requirements and objectives need to be spec-

ified in order to build the product. On one hand, the client may only know

what the premise for the product is and not know what options are available.

For example a clients requirement is “Provide a means to move quickly from

place to place in a city”. This basic requirement may be satisfied by either a

bicycle or a car. However which is correct? Even when the options are known

to the client, the client may not be able to explain the intricate details of the

product that is of interest. If it was in fact the car that was more suitable to

the clients needs, what type of car will be suitable for the clients needs.

The other problem is the requirements analysts inability to express the

complex requirements of a system in a way that is easily understood. The

leads to the client not being able to identify with the requirements elicited by

the requirements engineer. Consequently this means that requirements cannot

be verified and validated by the client.

This causes a rippling effect in the software development process because

it may cause the requirements analyst to make assumptions where require-

ments knowledge is absent. It may also mean that the client is unable to

verify requirements and design specifications because the client can’t visualise

the outcome of the project based on the requirements proposed by the re-

quirements analyst. In addition to this, specification and design deliverables

are often expressed in specialised notations and terms leading to the clients

inability to be able to validate them [4].

Each of these problems have the potential to limit the clients input in the

requirements process, thus contributing to the problem of incomplete require-

23

2.3. REQUIREMENTS ANALYSIS

ments and specifications.

Problem B: Incomplete requirements and specifications

The problem of incomplete requirements leaves much room for error. In ad-

dressing the previous issue, lack of user input will no doubt lead to incomplete

requirements and specifications when the requirements analyst is unable to

discover what the client wants. Even when there is sufficient client interac-

tion, there is still the potential for requirements to get missed due to a lack of

understanding of the domain or insufficient attention paid to social factors [32].

Several of the problems that occur in the design and development of soft-

ware systems derive from the inadequacy of attention paid to understanding

the domain. This is especially important when the domain carries contextual

and implicit information. It is not surprising that some groups of researchers

are adamant that all aspects of a context that can affect a system should be

captured [30].

In relation to this, it has been long debated that part of the difficulties of

Requirements Analysis are due to social, cultural and technical factors [23, 33,

88]. For example, organizational and legal boundaries can create hindrances

during Requirements Analysis. Similarly restrictions placed on sensitive data

and key systems in an organisation may lead to incomplete requirements.

Goguen and Linde [33] argued that requirements elicitation cannot be

solved in a purely technological way because implicit social context matter.

There is also the limitation of current design notations in being able to pre-

scribe qualitative requirements. Qualitative requirements often take a narra-

tive form of definition and focus on implicit aspects of a system. This is a

pertinent issue due to the focus on methods for requirements that are explicit.

The problem of incomplete requirements and specifications is clear. Amongst

other reasons, an incomplete set of requirements hints at the possible addition

or removal of requirements in the future, leading to the problem of evolving

requirements.

24

2.3. REQUIREMENTS ANALYSIS

Problem C: Evolving Requirements

As with any change, there is an element of risk associated with it. Evolving

requirements (or dynamic requirements) refers to the problem where business

stakeholders continuously modify or re-prioritise the set of agreed system re-

quirements based on a new set of aims and objectives.

Evolving requirements occur for a number of reasons. New objectives and

priorities in the organisation may create the need for a new set of requirements.

Accordingly, the introduction of new requirements can eliminate the need for

existing requirements. Requirements may also be evolved due to the chal-

lenges in meeting requirements obligations with appropriate design solutions.

Organisational factors may also drive the need to evolve requirements. For

example, time, cost and availability of resources may all be important issues

that the organisation may need to address [72].

The problem of evolving requirements creates the need for requirements

methods that are designed for evolution, and methods that can possibly an-

ticipate ‘upcoming’ requirements.

2.3.4 Discussion

Requirements Analysis is an important part of the software development pro-

cess. It is clear that it is important to fully understand the needs of business

stakeholders before embarking on any kind of design or implementation of a

system. This places a heavy level of importance on how the needs of the stake-

holder are interpreted by requirements analysts and development stakeholders.

This demands the need for methods that can potentially avoid the problems

of limited client input, incomplete requirements and evolving requirements.

There is thus the natural progression to the field of Ethnography. Ethnog-

raphy is one way to address these problems that we would typically face in

Requirements Analysis. The elicitation methods in ethnography mean that

these problems are less likely to occur. Later on in this thesis, we will be using

ethnography with the belief that it is a good methodology that solves some

of these problems. Referring back to the demand for notations and methods

that support the effective communication of client requirements that was high-

25

2.4. ETHNOGRAPHY AS A MEANS OF ELICITATION AND
ANALYSIS

lighted by Al-Rawas et. al [4], we will investigate Model Driven Engineering.

We propose that the combination of ethnography and Model Driven Engineer-

ing methods, will inform a better communications model for disseminating

tacit information. The next two sections will elaborate on each of these areas.

Section 2.4 will discuss ethnography as a means of elicitation and analysis and

section 2.5 will discuss models as a means of communication. Also discussed

are some of the approaches in the literature that purport to address some of

the requirements problems that have been highlighted in this section.

2.4 Ethnography as a Means of Elicitation and

Analysis

According to [30], “a proper elicitation must not only capture the

customers’ requirements, but all the aspects of the context that

can affect the system or its use in some way”.

There is a considerable amount of literature intimating the use of social sci-

entific research methods such as ethnography in the process of elicitation in

Requirements Analysis [59, 24]. Ethnography refers to an approach to social

research that aims to develop a description that reflects the practices, con-

cerns and perspectives of those (subjects) in a setting [75]. Ethnography can

be briefly understood as the study of human activities, with the individual

conducted research activities termed the ‘ethnographic study’.

The concept of ethnography derives from the field of ethnomethodology – a

sociological approach to investigating the concerns on the methods people use

in every day interaction [31]. In the context of software engineering research,

there has been long interest drawn to Ethnography because of its empirical

and qualitative methods [38, 57]. This has made it of particular interest in the

field of Requirements Engineering [59], as a method for gaining insights into

the subject domain.

26

2.4. ETHNOGRAPHY AS A MEANS OF ELICITATION AND
ANALYSIS

2.4.1 An Overview of Methods of Ethnography

From a methods-related perspective, ethnographic research activities bear

some similarities with traditional requirements elicitation activities. Some ex-

amples of activities include focus groups, interviews and introspection2. The

likeness of both requirements elicitation and ethnographic activities offers the

benefit of being able to seamlessly integrate the strengths of ethnography into

Requirements Analysis. This has caused much debate in the literature over the

necessity of adopting ethnography for the purpose of elicitation if it does not

offer anything new, because of the similarities between methods [27]. It has

however been convincingly argued that the distinction between both methods

is one of attitude and perspective [59, 57] – ethnographers study what is going

on from the subjects point of view, while requirements analysts take an ap-

plication point of view in identifying possible improvement directions for the

way development is carried out [83].

Other research activities include ‘observation’ which involves the ethnog-

rapher collecting knowledge about subjects in the field. The term ‘field’ is a

technical term that is used in ethnographic research to describe the site or

location under study. Similarly field notes, is the term used to described data

collected in the field. Therefore when ethnographers are conducting research,

they are said to be ‘working in the field gathering field notes’.

2.4.2 The Principle of Ethnography

Ethnography aims to allow the researcher to understand the existing be-

haviours, interactions, and knowledge in the domain. It does not purport

to identify or propose new forms of behaviours or interactions, or how the

environment can be organised differently. Thus ethnographic field notes may

contain different types of data [40, 86]:

i) diagrammatic based representations e.g. diagrams floor plans

ii) textual representations e.g. summaries of common and infrequent actions

of subjects

2See Traditional Elicitation Methods for Requirements Analysis’ – Page 18

27

2.4. ETHNOGRAPHY AS A MEANS OF ELICITATION AND
ANALYSIS

iii) audio, photos and video recordings etc.

iv) transcripts of interviews

v) statistics based on questionnaires and surveys

Field notes lead to further analysis away from the field, often with some focus

on certain aspects of the data which might be important for the aims of the

study. At the end of the analysis work, the data collected is refined to filter

out relevant from irrelevant data in an effort to effectively showcase important

findings of the study.

2.4.3 Ethnography in Software Engineering

“[...] the working knowledge of the context of use which the user

has is at least as vital to the eventual success (or failure) of any

system as the technical knowledge of the system designer.” Ander-

son [5]

Including ethnography in any software engineering process requires an under-

standing of the scope, methods, applications and challenges in doing so. In

this section, we define the context of use of ethnography according to how

we position ethnography in the structure of communication activities between

business and development stakeholders. Also discussed are methods of con-

ducting ethnography that inform the software design process. An overview of

the applications of ethnography is also given, to give an outline of some usage

contexts that are used in the field of Software Engineering.

We recast the communication activities between development stakehold-

ers and ethnographers to include the ethnographer as shown in Figure 2.2.

The relationship between the ethnographer and the requirements analyst is

much like a partnership. They each have the same objectives, however with a

difference in outlook.

As shown in Figure 2.2, there is communication between the ethnogra-

pher, business stakeholders and the requirements analyst, in the exchange of

knowledge about the newly proposed system. The ethnographer also elicits

28

2.4. ETHNOGRAPHY AS A MEANS OF ELICITATION AND
ANALYSIS

Figure 2.2: Communication Activities between Business, Development Stake-
holders and Ethnographers

knowledge from the domain to advance the overall understanding of the re-

quirements of the system.

Context of Use: An asset not a hinderance

Ethnography needs to be refined to better integrate into the disciplines that

adopt it as a method of research. For this work, we adopt the notion of Applied

ethnography. Applied Ethnography refers to the use of theories, methods and

findings of ethnographic studies to solve human problems. In this thesis, we

are especially interested in applied ethnography, and not ethnography in its

authentic form, which also known as classical ethnography. We highlight two

important differences between software engineering applied ethnography and

classical ethnography [9]:

a) Intensity: Classical ethnographies are notably of high intensity. It is com-

mon for classical ethnographic studies to take several months to a few years.

As software projects are often constrained by time and budget, the inten-

sity of classical ethnography makes it unfeasible in most, if not all cases

for software projects. For pragmatic reasons, applied ethnographic studies

29

2.4. ETHNOGRAPHY AS A MEANS OF ELICITATION AND
ANALYSIS

need to be limited in accordance with the needs of a project.

b) Independence: Classical ethnographers often go into the field with an open

minded approach to inquiry. This open approach may lead to unguided

research directions that are of no use to a software project. In applied

ethnography, a context of research is defined to allow particular research

queries to be address. This can be to test theories or beliefs eg. (i) to

learn about how information is used in the setting (ii) to learn about what

concerns users have when using a system.

The intention is that the intensity and independence will both be driven by

the needs of the project. In the next section, we present a brief overview of

methods for conducting applied ethnography.

Methods for Conducting Applied Ethnographic Studies

Applied ethnography is the best way to discover the difference be-

tween what people say they do and what they really do in their

daily lives.

Sanders [85]

It is intuitive that adopting methods and strategies for gaining a clear under-

standing of a system and how it should work can potentially alleviate some of

the problems that may arise when specifying the requirements of a system at

an early stage in the software developmental process. In light of this, a number

of applied ethnographic approaches have been suggested in the literature. We

begin with 4 approach that inform the design process that were identified by

Hughes et. al [45], followed by visual and video based approaches to applied

ethnography:

i) Concurrent Ethnography: ethnographic studies are conducted alongside

systems development. Concurrent Ethnography is also known as ‘consec-

utive ethnography’.

30

2.4. ETHNOGRAPHY AS A MEANS OF ELICITATION AND
ANALYSIS

ii) Quick and Dirty Ethnography: a method that utilises quick ethnographic

studies to provide a general, yet informed picture of the work setting in a

relatively short time frame.

iii) Evaluative Ethnography: ethnographic studies are conducted with the pur-

pose of examining already established design decisions. As the name ‘eval-

uative ethnography’ suggests, this could be for the purpose of evaluation,

verification/validation.

iv) Re-examination of previous studies: an approach that uses previous ethno-

graphic studies to potentially provide an understanding of the design of

a new system.

v) Visual Ethnography: refers to the gathering of visual examples of a context

(or evidence) as part of ethnographic findings [86]. Such evidence may

include photos, drawings and audio recordings.

vi) Video Ethnography: focuses on the use of video to capture data in the

field. Video Ethnography involves video recording of practitioners and

participants in their natural work setting [40].

2.4.4 Challenges of Ethnography

Along with the benefits that ethnography provides, there are challenges. Eriks-

son et. al [26] provide a review of the problems of ethnography and critiques

that have been mentioned in the literature.

One of the biggest challenges of ethnography is the issue of representation.

The in-depth nature of ethnographic findings presents a serious challenge to

the work of an ethnographer. On one hand, the level of detail of field notes

might be in the form of vast amounts of analytical texts. While on the other

hand, the reports may be difficult to understand. This in turn might make it

difficult for development stakeholders to leverage because there is no context

for interpretation by the designer [77].

In addition to this, there is also the challenge of the misconceptions of the

intended uses of ethnography in elicitation and what it has to offer. The first

31

2.4. ETHNOGRAPHY AS A MEANS OF ELICITATION AND
ANALYSIS

misconception is its suggested use as a replacement of Requirements Analysis.

However, the use of ethnography has been mainly suggested as an addition

to early Requirements Analysis activities. As previously highlighted, the rela-

tionship between the ethnographer and the requirements analyst is intended to

be a partnership that aims to enhance elicitation and requirements knowledge

obtained from business stakeholders and studying the domain.

Secondly, the similarities between ethnographic modes of inquiry such as

interviews, focus group and questionnaires often leave some apprehension over

the distinction between ethnographic methods and Requirements Analysis

methods. Notwithstanding, each of these methods is different in the aims

and objectives taken by the ethnographer and the requirements analyst. Each

one takes a different research perspective during elicitation in order to fulfil

the purpose of their roles [59].

Thirdly, ethnography has been remarked as superficial [27]. Furthermore,

there is confusion over the way ethnographic findings are reported. According

to Anderson [5], there is confusion about the way ethnographic findings are

reported to development stakeholders. Anderson claims that people that are

unfamiliar with ethnography envisage the process as being easy to simply

report back, without further analysis.

2.4.5 Discussion

Applied Ethnography has been discussed in the literature as a method of

understanding and learning the particulars of a domain. Whatever the cost

or cost benefit, or whether applied ethnography or classical ethnography is

used, there is a long standing advocacy for its use in the literature [40, 45, 86].

However the challenges of ethnography have drawn some important critiques.

Much attention has been drawn to the ‘issue of representation’ which must be

overcome before ethnography can be used effectively in Requirements Analysis.

We therefore need a good, software-oriented means of notating and analysing

requirements:

i) A language for recording ethnographic insights

32

2.5. MODELS AS A MEANS OF COMMUNICATION

ii) A method for communicating design obligations into design

Despite the prominence of Ethnography in Requirements Engineering, we are

yet to find any work that proposes its use in a fully model driven context.

To commence this effort, the next section investigates the use of models as a

means of communication in Requirements Engineering.

2.5 Models as a Means of Communication

There has been a steady increase in the use of models to capture and precisely

define the problem domain of software systems in the field of Requirements

Engineering [10]. The concept of model-driven Requirements Analysis refers

to use of models in the Requirements Analysis and specification phases of

the software development process, to communicate the aims and objectives

of a system in a way that can be utilised by development stakeholders in

subsequent phases of development. In this section, we introduce the concept

of Model Driven Engineering, and its related concepts. We also discuss the

modelling notations used throughout the remainder of the thesis.

2.5.1 Model Driven Engineering (MDE)

The use of models as a means of reasoning about systems and specifying sys-

tems has seen an enormous level of growth and adoption over the past decade.

Model Driven Engineering is a methodology that focuses on the creation of

models that represent domain concepts and problem spaces at varying levels

of abstraction. In Model Driven Engineering, models are treated as first class

entities for development. This offers the benefit of simplifying the understand-

ing of complex systems. It also provides a good way of documenting system

functionality and behaviour.

The aim of Model Based Software Engineering is to make models the spe-

cific area of convergence in software development. The focus area of model

driven engineering that advocates the use of models as a means of communi-

cating development artifacts in software engineering is Model Based Software

Engineering (MBSE). Of the many approaches proposed to date, the most well

33

2.5. MODELS AS A MEANS OF COMMUNICATION

known approach to MBSE is Model Driven Architecture (MDA) [98]. The next

section introduces MDA and describes some important abstractions of MDA

that underpin this thesis.

2.5.2 Model Driven Architecture (MDA)

Model Driven Architecture was introduced by the Object Management Group

(OMG) in 2001, as a common approach to specifying and developing software

systems. It has been defined as “an approach to the development, integration

and interoperability of IT (Information Technology) systems” [68]

MDA defines two key concepts, models and transformations. Models rep-

resent the system of discourse. Transformations represent the series of steps

that permit the movement from one model to another. MDA relies on the

specification of a system in an initial model MI called the input model. The

input model then follows a series of transformations through one or more in-

termediate models until it reaches the target model MT .

MI → ... → MT

The basic notion of MDA is abstraction through the use of models and the

use of transformation rules to move from a source model to a target model.

As such MDA begins with MI at a high level of abstraction, and concludes

with MT at a low level. The idea is that further detail is added to each model

in the transformation steps between the input model, the possible intermedi-

ate models and the target model. The next section describes some concrete

abstractions in MDA.

An Overview of MDA Abstractions

There is broad understanding of three MDA abstractions in software engineer-

ing proposed by the Object Management Group:

i) Computation-Independent Model (CIM)

ii) Platform-Independent Model (PIM)

34

2.5. MODELS AS A MEANS OF COMMUNICATION

iii) Platform-Specific Model (PSM)

Computation-Independent Model (CIM)

The Computation Independent Model is the leading model in the transfor-

mation process. It represents a “computation independent viewpoint” of a

system [68]. The CIM is aimed at representing elements of the system that

derive from the domain. This includes domain objects, business functionality,

behaviours, interactions between components, and so on. The concept of the

Computation Independent Model does not prescribe the use of a particular

modeling language. Its role is to provide a high level informational view point

that describes the requirements of the system.

Platform-Independent Model (PIM)

The Platform Independent Model is an intermediate model in the OMG’s

approach to MDA that captures the implementation goals of a system in a

platform agnostic manner. Accordingly the model does not dictate any specific

implementation detail but represents a general structure capable of directing

its transformation towards the specification model of the target platform.

Platform-Specific Model (PSM)

The Platform Specific Model is the final model that describes the specification

details of the system for the target platform. Accordingly, the model captures

implementation goals in a directed manner by elaborating on lower level system

details.

Models in Software Development

Model Driven Development (MDD) is an abstraction of the use of models to

create software. When looking at MDA abstractions from the perspective of

(MDD), each abstraction layer corresponds with a software development con-

cern: Requirements Analysis (CIM), Design (PIM), Implementation (PSM).

Between each model, there is a specialisation of detail of the preceding model.

Requirements Analysis (CIM) → Design (PIM) → Implementation (PSM)

35

2.5. MODELS AS A MEANS OF COMMUNICATION

The idea is that the Computation Independent Model (CIM) is used to abstract

the view of the domain which represents the conceptual requirements of the

system. As such it is often referred to as the domain model. A transformation

of the CIM leads to the Platform Independent Model (PIM) which represents

a non-implementation specific view of the domain. This is the design logic

design detail of the system. And finally the transformation of the PIM leads

to a Platform Specific Model (PSM) which represents the implementation view

of the model.

MDA Approaches

MDA Approach Description
Unified Modeling Language
(UML)

a visual specification language for spec-
ifying, implementing and documenting
systems [14]

Meta-Object Facility (MOF) a standard for specifying the interoper-
ability of model and metadata driven
systems [73].

Common Object Request Broker
Architecture (CORBA)

a modeling language that specifies in-
teroperability between components on
different platforms [36].

Software Engineering Process
Metamodel (SPEM)

A metamodel for describing concrete
software development processes or fam-
ilies of the same. [37]

Enterprise-Distributed Object
Computing (EDOC)

EDOC is a modeling framework for en-
terprise level distributed object com-
puting. [1]

Common Warehouse Metamodel
(CWM)

defines a specification for concerns of
metadata interchange in the data ware-
housing environment [80]

Table 2.4: Notable MDA Approaches

Since its inception, MDA has seen a steady increase in its use in a number

of model-driven approaches to software development. This created the need

for a number of standards in support of representing and describing models.

As a result, the OMG defined a number of standards to address specific do-

36

2.5. MODELS AS A MEANS OF COMMUNICATION

main related concerns. Notable approaches are summarised in Table 2.4. Of

particular interest to the field of Requirements Analysis is the Unified Mod-

eling Language, because of its inherent ability to support modeling any type

of application. In the next section, we present an extended overview of UML,

and discuss some of the diagrams and notations that allow the modeling of

software systems.

2.5.3 The Unified Modeling Language (UML)

The Unified Modeling Language (UML) is an industry standard created by the

Object Management Group (OMG) for documenting visual models of software

systems under design and development. It provides a standardised way to

specify and construct the structural formation (static view) and behavioural

formation (dynamic view) of a system using notational elements to model the

intended specification and design goals of a system.

UML Metamodel Hierarchy: A Four-Layer Specification

The specification of UML is defined using an approach called metamodeling.

The notion of a metamodel refers to a collection of concepts that specify what

can be defined in a model. Metamodels provide the basic set of concepts

that support the inclusion of extensions to satisfy the modeling needs of a

domain. The ability to represent an occurrence of a model that defines entails

the concepts prescribed by a metamodel is referred to as instantiation.

The specification of UML is defined on a four-layer metamodeling hierarchy:

i) The Meta-Metamodeling Layer (M3): This is highest layer and forms the

foundation layer of all metamodels. It defines the concepts that enable

the creation of metamodels. eg. Meta-Object Facility (MOF).

ii) The Metamodel Layer (M2): The M2 layer is a specification that enables

the creation of models. It is an instance of a meta-metamodel. This

means that all elements in metamodels are concepts that are defined in

the meta-metamodel. Metamodels are important because they provide

37

2.5. MODELS AS A MEANS OF COMMUNICATION

a way to specify and define new languages. Importantly, they provide a

way to be clear about the syntax and semantics of a model. eg. Common

Warehouse Metamodel (CWM).

iii) The Model Layer (M1): The M1 layer is a specification language that

enables the creation of domain specific constructs. It is an instance of a

metamodel.

iv) The Meta-Layer (M0): THE M0 layer is the lowest layer and represents

an instance of an M1 model specification.

UML 2.0 Diagrams

UML provides various elements which can be used to model anything from

very basic systems to large complex systems. This is possible through three

building blocks:

i) Model Elements: represent basic entities and objects within the system.

ii) Relationships: used to describe the interactions between model elements.

Some examples include associations, composition, generalizations and de-

pendencies.

iii) Diagrams: used to represent different perspectives of the system and in-

clude various representations of detail.

UML consists of a set of notations to depict software systems and can be

classified into 2 categories, Structural Diagrams and Behavioural Diagrams.

Structural Diagrams

Structural Diagrams are a structural specification mechanisms necessary to

define the static components of a system. This can be anything from architec-

tures to component specifications, to the structure of entities in the system.

They can also be used to model relationships between entities and systems.

As structural diagrams are static, they do not visualise time or sequence de-

pendence. However, they are complete in both static and dynamic elements.

38

2.5. MODELS AS A MEANS OF COMMUNICATION

Structural diagrams in UML serve a number of purposes. They each share a

number of features but provide different levels of detail.

Class Diagrams provide a way to outline the structural composition, sys-

tem interfaces and relationships between entities and classes of objects in the

system. A class represents the structure of an object in a domain. As UML

class diagrams are used throughout the thesis, an extended summary of no-

tations is provided at the end of the chapter. Object Diagrams are used to

show the instance view of a system based on a particular modeling concern.

Component Diagrams provides a way to show the overall architecture of sys-

tem components and how they fit into larger systems. Composite Diagrams

represent the internal structure of components and classes. It is also used to

model the interaction capabilities of system components.

Deployment Diagrams provide a way to show deployment concerns such

as hardware components such as databases and servers and their relationships

with system components. Package Diagrams show the modularisation of sys-

tem components and dependencies between modules. They may be used to

illustrate the intended functionality of the system.

Behavioural Diagrams

Behavioural Diagrams are a behaviour specification mechanism necessary to

visualise the interactions of components in a system. They represent the dy-

namic view of a system and are capable of prescribing models that define time

and sequence based activities. The types of behavioural diagrams available in

UML are summarised below.

Use Case diagrams provide a way to specify system behaviours and inter-

actions between system actors. System actors represent entities in the domain

which can be anything from components, devices, external systems and hu-

mans. A complete set of use cases of the system would define all the intended

operations of the system and the intended participants (entities) of the sys-

tem under consideration. Activity Diagram are diagrams that illustrate the

actions and workflows in a system. Workflows consist of a prescribed sequence

of activities. State Diagrams are used to represent the individual states and

transitions in a system. States represent specific conditions of a system, while

39

2.5. MODELS AS A MEANS OF COMMUNICATION

transitions represent paths between states.

Sequence Diagrams show at a high level how different parts of a system

operate, and in what sequence. They can be used to specify the detail of ac-

tions in a system. Communication Diagrams are used to model the messaging

concerns of components of a system. Communication diagrams can be used

to illustrate the sequence of messages in a system based on actions, states and

interactions. Interaction Overview Diagrams are much like activity diagrams

in that they used to describe the actions, workflows and sequences in a system.

Timing Diagrams are used to describe the behaviours and actions of a system

within a period of time.

UML Class Diagram Notation

This section provides an overview of class diagram notations, which are used

predominantly in this thesis to communicate various aspects of models. The

following concepts will be discussed: (i) Class (ii) Inheritance (iii) Association

(iv) Aggregation & Composition (v) Multiplicity

Class

A class is representation of a structure in UML. This structure may represent

entities or components. Classes are depicted by a rectangular box with three

sections. The first section displays the name of the class. The second section

lists the attributes of the class. And finally, the third section lists the opera-

tions of the class. Figure 2.3 shows some examples of classes: Vehicle, Wheels

and Human. The Vehicle class lists a number of attributes and operations. In

UML notation, only the first section (the class name) is required when model-

ing class. The remaining two sections are are optional, and can be represented

as shown for both the Human and Wheels class.

Figure 2.3: Example of Classes in UML

40

2.5. MODELS AS A MEANS OF COMMUNICATION

Inheritance

Inheritance is the ability of a class (sub-class) to assume (or inherit) the func-

tionality of another class (super-class). The sub-class is referred to as a special-

isation of the super-class, and the super-class is referred to as a generalisation

of its sub-classes. Inheritance represents an “is a” relationship between two

classes, therefore sub-classes are said to extend super-classes. For example

there is an inheritance relationship between a Vehicle (super-class) and a car

(sub-class) – a car “is a” vehicle. In UML this is represented by a line drawn

between the two classes, with a hollow triangle next to the class being inherited

as shown in Figure 2.4.

Figure 2.4: UML Class Representation showing Inheritance

Association

An association in UML allows relationships to be created between classes. It

is represented by a line with two relationship ends that connect to both the

associated classes. In UML associations can be named and association ends

can be assigned role names, multiplicities and other properties. The role name

placed on the association end of a class denotes the purpose of the association

with the other class. If the role name is not present, it is assumed that the role

name is the name of the class. Multiplicities enable us to dictate the number

of instances of a class that relate to another. For example, a multiplicity of

1 placed on the role end of an association dictates that there is only once

instance of the class in the association. We elaborate more on multiplicities in

subsequent sections.

41

2.5. MODELS AS A MEANS OF COMMUNICATION

Referring back to associations, they can be broken down into: (i) Bi-

Directional Associations and (ii) Uni-Directional Associations. In Bi-Directional

Association, two related classes maintain awareness of the relationship. For

example, Figure 2.5 shows an association between two classes: Vehicle and

Person, with the association name owns. The roles can be read as follows:

Person drives Vehicle. Vehicle is drivenBy Person.

Figure 2.5: A Bi-Directional UML Class Association

In Uni-directional associations, two classes are related but only one class knows

about the relationship. Figure 2.6 shows a relationship between Manufacturer

and Vehicle in which Manufacturer knows about Vehicle, but Vehicle does not

know about Manufacturer.

Figure 2.6: A Uni-Directional UML Class Association

Another type of association is the reflexive association. This is a Bi-Directional

or Uni-Directional relationship that goes from a class, to itself. It is also

referred to as a self-loop or self-relationship. Figure 2.7 shows an example of

a Bi-Directional reflexive relationship.

Figure 2.7: A Reflexive UML Class Association

42

2.5. MODELS AS A MEANS OF COMMUNICATION

Aggregation & Composition

Aggregation and Composition are special types of associations between classes.

An aggregation represents an association between classes that have an “is part

of” relationship. Therefore, one class is the whole, and one is the part. For

instance an aggregation relationship between Door and Car – a door is part of

a car. Composition is a type of aggregation with stronger ownership of the

associated class. For example, an aggregation relationship between Human and

Hand. Aggregation is depicted by a line between the associated classes, with

a hollow diamond next to the class that represents the whole. Composition

is depicted in UML as a filled diamond next to the class that represents the

whole. Figure 2.8 illustrates an example of both composition and aggregation.

Figure 2.8: UML Class Aggregation

Multiplicity

A multiplicity defines the range of types or instances of the element described

in an association between two classes. For instance 1..*means at least one, 0..1

means no instance or one instance and so on. By default UML makes provision

of a multiplicity of 1, if there is no multiplicity specified on the relationship

end of the association.

In Figure 2.9, the diagram can be read as follows: Once instance of Lorry has

four to sixWheels instances. Similarly we can also say one instance of Lorry has

two Door instances. Read backwards, we can say one Door instance belongsTo

one Lorry instance.

43

2.5. MODELS AS A MEANS OF COMMUNICATION

Figure 2.9: UML Class Diagram Multiplicity

Example Class Diagram

Finally UML class diagrams enable us to combine the previously mentioned

concepts to create more elaborate models. A modest example is presented in

Figure 2.10.

Figure 2.10: UML Class Diagram Example

44

2.6. RELATED WORK

2.5.4 Discussion

There is much benefit from utilising a model driven approach to development,

and specifically Requirements Analysis. From a pure requirements perspec-

tive, there is significant benefit to using an MDA approach to modeling re-

quirements.

As technology is constantly changing, so are system requirements. As re-

quirements can be presented at a much higher level of abstraction, MDA-based

Requirements Engineering can dampen the impact of changing requirements

by making it more manageable to confront changes to requirements level mod-

els that would otherwise have a severe impact on the system. Even with

the advantages of model based approaches to Requirements Engineering such

as UML, it seems unfeasible to say that it is sufficient for all our modeling

needs [54]. There are still challenges in utilising UML as a means for commu-

nication in Requirements Engineering. Requirements Analysis methods that

utilise UML as a method for representation do not currently consider tacit

information at the modeling level. This creates a problem when considering

conveying requirements of a tacit nature between development stakeholders.

In this thesis, we propose an extension of UML that enables us to address this

problem.

2.6 Related Work

The work done in this thesis presents a renewed effort to bridging the gap

between ethnography and requirements analysis using methods drawn from

ethnography and model driven engineering. Thus it aims to enhance previous

work in the area of requirements modeling and specification in this area. In this

section we discuss key work that has influenced the direction of this research,

and elaborate on the motivation for the research directions of this work.

The value of ethnography in software engineering has been recognised for

quite some time [46]. To date, current ethnographic studies have been used

primarily for informational and insight purposes, to gain an understanding

of the use of systems in various application domains. There have, of course,

45

2.6. RELATED WORK

been a several studies covering a wide range of application areas. Studies

have covered a wide range of application areas including dealing rooms [41],

underground control rooms [43] and air traffic control [39, 11, 47]. Although

the usefulness of ethnography is demonstrated in these studies, there are some

current limitations in the way ethnography is leveraged and thus prohibit

the wider adoption of ethnography with the current work practice of system

designers. Ethnographic insights are notably limited by the methods used to

communicate the insights gained by ethnographers into the design process.

In other areas of software engineering, ethnography has been used in re-

quirements gathering and systems design [95] and systems evaluation [2].

The appeal of using ethnography in Requirements Engineering draws on the

growing acceptance that understanding the social character of “real world,

real time” activities is an important factor in software design and develop-

ment [90, 46]. Previous work, such that of [33] and [45] have attempted to

address communicating information between various participants in the soft-

ware development process. However these works tend to deal more directly

with social issues.

The most significant prior work in the literature related to the central issues

of this thesis is the work of Viller et al. [95] which uses UML use cases and

domain models to document ethnographic insights. Our work is rooted in the

same principles of the usefulness of ethnography to inform the system design

process. Their work investigated a method called Coherence which integrates

social analysis with object oriented analysis into the system design process.

Coherence helps identify essential use cases and associated objects, and

generate use case models by using a viewpoint oriented approach to require-

ments engineering to structure and apply categories of social phenomena that

have been learned in previous studies to new situations. Viewpoint oriented

requirements engineering organise and structure the diverse sources of require-

ments from the different viewpoints of a system. A viewpoint represents the

task-related concerns of a stakeholder of the system [55]. Coherence can be

applied in conjunction with other analysis techniques. The approach utilises

sequence diagrams and class diagrams. The former is used to represent inter-

actions in the workplace, while the latter is used to model structural aspects

46

2.6. RELATED WORK

of the workplace.

The approach is similar to the work presented in this thesis in that it is

based on reporting results of ethnographic field work to the design process

using standard notation (UML). Thus their work also approaches modeling in

a manner that requires the use of elements that are not always ‘explicit’, which

would not normally be found in standard conceptual data models. Therefore

using UML to represent social aspects of work which may involve both implicit

and explicit information. Unlike our approach, Coherence does not lead to a

complete model of the system. It will however produce a number of excerpts

from the model that result from a number of viewpoints in the system. Our

approach takes a different perspective that does not lend itself to modeling

excerpts of the system.

Iqbal et al. [48] proposed an approach called the ‘EthnoModel’. The ap-

proach is based on metamodelling consisting of UML based notations, and

an ethnographic framework consisting of three components - ‘plan and pro-

cedures’, ‘awareness of work’ and ‘distributed coordination’. The approach

attempts to address two specific concerns: one for the capture of requirements

and the second for transforming those requirements into design. A mapping

between ethnography and meta-modelling is proposed for dealing with each of

the components of the ethnographic framework. For ‘plans and procedures’, a

number of models are proposed which include use case models, concept mod-

els, and role-activity models. Use case models are beneficial in providing a

detailed description of how work is carried out in an organisation. This is in

contrast to documented procedures which have the potential to obscure rel-

evant pieces of information. Concept models are tangible representation of

ideas that show the interaction of concepts in a system. Role-activity models

focus on the notion of roles and the interaction between them to form the basis

of the description of the system. For ‘awareness of work’, a mapping to object

models is proposed. Object models provide a structural view of the system. A

glossary of terms can be used to record the terms and vocabulary used in the

system. The final component is distributed coordination which can be mapped

to sequence models which show the interaction between objects in the system.

The overall approach combines an ethnographic approach with different types

47

2.7. SUMMARY

of UML modelling to model requirements. However the approach still requires

further work in being able to transform the ethnographic analyses into the

design of the system.

2.7 Summary

Requirements Analysis plays a key role in bridging the gap between business

stakeholders and development stakeholders. Of the many problems reported

in the literature, communication problems in Requirements Analysis evoked

by lack of client input, incomplete requirements and evolving requirements

remain the most pertinent.

In this chapter, we have presented a number of concerns that exist along

the numerous communication lines between business and development stake-

holders. Key work in the literature have suggested the use of ethnography

as a possible means to enhance the requirements elicitation phase of software

development.

The success of Model Driven Engineering, specifically modeling approaches

such as UML, creates a strong need for techniques and approaches for model-

ing requirements that combine the advantages of ethnographic elicitation and

standard Requirements Analysis practices. However current approaches are

not designed with the flexibility required to convey tacit information which is

important for various modeling concerns. We need a good language for convey-

ing ethnographic insights. In Model Driven Engineering, there are approaches

to defining new languages which allow us to communicate information from

one model to another. UML allows us to formalise new languages and system-

atically think about how models are communicated between different phases

of development. This provides the starting point for: (i) a new language for

representing requirements (ii) a new way of communicating requirements.

We therefore aim to address the problems highlighted by utilising an ethno-

graphic approach to elicitation, and devising a modeling approach that enables

the specification of requirements which considers both explicit and tacit in-

formation. However to begin, we must first understand how ethnography fits

into the whole approach. The following chapter entails a deeper look into

48

2.7. SUMMARY

ethnography and the role it plays in conceptual data modeling. This sets the

scene for an investigation into how ethnographic elicitation contributes to data

analysis.

49

Part II

A Tacit Requirements Analysis

Methodology

50

3
The Role of Ethnography in

Conceptual Data Modeling

“[Ethnography is] a way of understanding the particulars of daily

life in such a way as to increase the success probability of a new

product or service or, more appropriately, to reduce the probability

of failure specifically due to a lack of understanding of the basic

behaviours and frameworks of consumers.” Salvador et. al [84]

This chapter sets the scene for how ethnographic studies contribute to a

method for data analysis with respect to data modeling, both at the con-

ceptual level and at the logical level. It reflects on the roles ethnography can

play when conducted in the early stages and final stages of the Software De-

velopment Life Cycle (SDLC). In the early stages of the SDLC, ethnography

has a role in requirements elicitation. In the final stages of the SDLC, it has a

role in evaluation and requirements verification by looping back into the orig-

inal set of requirements. This has the benefit of producing a more accurate

comparative of the evaluation and a holistic view of the final system. The ap-

proach is focused on data modeling, as it links into the conceptual and logical

models of a system.

51

3.1. INTRODUCTION

3.1 Introduction

In this chapter, we draw out and emphasise the role of ethnography in software

engineering from a data modeling perspective. We investigate the extent to

which ethnographic studies can impact positively on the requirements, design

and development phases of software systems. From a requirements stand-

point, we investigate what useful information ethnographic studies can inform

us about software systems and organisational processes. In addition, we in-

vestigate how lessons learned from these studies can be reflected in various

aspects of the software developmental life cycle, in particular requirements,

design, development, evaluation.

The main goal of this research is directed towards improving models for

data. Consequently, we limit the scope of our discussion to areas where ethnog-

raphy impacts aspects of a system that concern data. Evidently this is of

substantial interest in contexts of data modeling for Conceptual Data Models

(CDM), Logical Data Models (LDM) and Physical Data Models (PDM).

3.2 Ethnographic Elicitation

[...] if field studies could be seen simply as a methodology to gather

a scent of the use situation and the context of use, and not as a

method to generate requirements or implications for design, we

would be able to understand its value for developers in practice

much better. (Eriksson et. al [26])

Ethnography can be viewed as a collection of methods for data collection

about a subject, followed by analyses of the collected data and the presentation

of findings and opinions. Ethnographic Elicitation is guided by intent and

purpose. Though ethnographic studies are conducted in respect of specific

aims and goals, in a pure ethnography sense, the process and choices of inquiry

are motivated by the ethnographer or as Millen [67] puts it:

[...] the researcher must make motivated choices about what to

study, who to observe, what activities to record, and how to analyze

52

3.2. ETHNOGRAPHIC ELICITATION

and integrate the data into valuable insights.

Ethnography has proven to be an important method for understanding

activities and work practices in a number domains. From the perspective of

software development, its popularity and usefulness in the area of requirements

gathering has received due attention in the last decade and has been discussed

extensively in the literature. In this chapter, we propose a way of integrating

ethnographic methods into the software development process. However before

we discuss how ethnography fits into the software development process, we

must first understand the process for conducting ethnographic studies.

3.2.1 Ethnographic Study Life Cycle (ESLC)

Ethnography does not impose a way to find a solution or outcome. It has been

argued in the literature that there is no one method of doing ethnography [47].

However, all ethnographic studies require a well defined context and purpose of

study. It is through the context and purpose that the study can be structured

and initiated. The activities of ethnographic studies typically follow a sequence

of events. We present a simplified model for the purposes of exposition in this

thesis. The model is shown in Figure 3.1. However each activity need not be

done strictly sequentially as is depicted in the figure:

Figure 3.1: Ethnographic Study Life Cycle (ESLC)

i) Outline and Structuring: The process begins with outline and structuring

which involves learning about the problem domain and formulating the

intent and purpose of the study. In a sense, this phase can be viewed as

the Ethnography-Requirements phase.

53

3.2. ETHNOGRAPHIC ELICITATION

ii) Planning: This is the Ethnography-Design phase.The planning phase is

where the scope and action process of the ethnographic study is conceived.

It is also where roles and responsibilities will be assigned and delegated.

Role assignments occur when there are multiple observers.

iii) Execution: This corresponds with all activities that are done by the ob-

servers in the field. The aim is to procure as much relevant information

concerning the problem domain according to the plan developed in the

previous phase. This information is not limited to descriptions on pro-

cesses, organisational behaviours, tacit information and so on.

iv) Analysis & Evaluation: This activity is generally done away from the field.

It is were all the findings of the study are gathered together and collated

for analysis, interpretation and final documentation. In some cases, this

phase may require further investigation of certain topics with key stake-

holders for final judgement and conclusions by the ethnographer(s). The

final product of this phase is the Ethnographic Document. This document

may come in a variety of forms. What is most common, is a documentary

text containing all the relevant findings from the study.

v) Reportage: This is the phase of knowledge transfer and the communica-

tion of the findings from fieldwork. It is where the ethnographer hands

over the findings of the study back to the client or on to the requirements

analysts. It could simply take the form of the ethnographer handing over

the ethnographic document back to the client, or the ethnographer pre-

senting key findings back to the client. Usually the hand over indicates

the end of the study.

3.2.2 The Execution Phase of Ethnography

With a focus on the execution phase of ethnography, there are a number of

common activities and undertakings of ethnographic field studies which are of

particular interest.

54

3.2. ETHNOGRAPHIC ELICITATION

Field Observations (Interactive)

The indirect observation technique that involves ethnographic observers as-

suming a role in the environment whilst maintaining the role of an observer.

The technique is also referred to as ‘Contextual Inquiry’. This dual role of the

ethnographer provides the means for the ethnographer to gain a deep under-

standing of the environment. Interactive Observation is characterized by:

a) Briefing: describing the motivation and focus of the study to participants

b) Inquiry (embedding): the actual investigation with ethnographers and stake-

holders.

c) Debriefing: discussing ethnographic highlights and findings with stakehold-

ers.

Observational sessions can be structured such that they do not obstruct or

interfere with the work setting. Also, if planned correctly, observation sessions

can be sustained over a long period of time. This is in contrast to other

techniques of ethnographic elicitation which may require direct interaction

with participants and stakeholders e.g Participant Interviews

Field Observations (Non-Interactive)

The very nature of classical ethnography involves field work. The emphasis

on doing field work in the ‘natural setting’ of the environment is to enable

the ethnographer to acquaint himself with the material beliefs and principles

of the participants in the environment. This to enable the ethnographer to

understand the environment from the point of view of various stakeholders in

the organisation - clients, managers, end users and so on.

Interactive Observations could be very useful in working out data rela-

tionships between organisational entities internal to the system, and external

entities. It is normally through the close monitoring of how processes are run

(e.g. analysing the workflows, understanding dependencies etc) that one can

truly see the relationships and associations that exist in a system. Actions are

observed and understood in context.

55

3.2. ETHNOGRAPHIC ELICITATION

Key Participant Interviews

Participant Interviews are in-depth interviews with key stakeholders. This

activity involves identifying key stakeholders in advance. This can be done

through consultations with various members of the organisation. It is common

for participant interviews to follow a set of prescribed process in the form of

structured interviews. However there can also be a great deal of improvisation

that comes with it.

The subject and theme of the interviews are defined by the ethnographer

in order to elicit information from participants. Interviews may take place

in person, telephone or videoconferencing. The style and format of the inter-

views need not be strict, and may be structured to go over multiple sessions.

Questionnaires and surveys may also be used as a means of direct feedback on

specific areas of interest.

3.2.3 Important concerns of adopting Ethnography in

the SDLC

As with all rigorous scientific processes, there are a number of concerns that

an organisation adopting an ethnographic approach should be aware of. In

this section, we discuss three important concerns of Ethnography which may

impact directly or indirectly on software development.

Deliverables

The execution phase of an ethnographic study is primarily aimed at data

collection with the intention of post analysis work on ethnographic field notes

after the study.

Field notes may not follow a structured format that may be useful and

understandable for business and software development stakeholders. This cre-

ates an important need for a more formal ethnographic deliverable that serves

both business and development stakeholders. An ethnographic report is a

refined analytical document of an ethnographers notes and context documen-

tation from the field. The purpose of creating an ethnographic report is to

56

3.2. ETHNOGRAPHIC ELICITATION

make ethnographic findings easier to understand and draw information from

by stakeholders. For example interview and Q&A notes being collapsed down

to only divulge the more useful and necessary pieces of information that were

uncovered. It may also be created to fulfil an organisations reporting guidelines

and standards and redact sensitive information that may have been obtained

during the ethnographic study.

Ethnographic findings (or reportage) may be used plainly to gain a sense of

understanding of the system and interactions between key participants. The

view of the ethnographer is intended to remain unbiased, without the intention

of imposing any design obligations to the designer of the system. In agreement,

Jirotka [51] insists that:

“[...] although ethnographic analyses of interactions in the work-

place can highlight systematic and often, robust, features of work

practices, they do not and cannot conclude either that these fea-

tures should be preserved or that they will be preserved when new

technology is introduced.”.

It is the designers task to leverage this information during the design process.

As such, it does not directly lead to implementation decisions. Ethnographic

reportage can be represented in a number of ways. However it is most often

delivered as an analytical report, containing various forms of media including

natural language texts, photographs and diagrams. Audio and video record-

ings may also form part of the deliverable. Multimedia may be included in

the final deliverable to support conclusions outlined in the ethnographic re-

port based on the analysis of data collected. Multimedia may also be used for

illustrative purposes. E.g. to give a visual demonstration of an activity or a

process.

In terms of content, the report is presented starting with an introduction of

the study which is intended to outline the objectives of the study. It gives a de-

scription of the purpose of the study, the anticipated goals and how the study

will be executed. The main body of the report contains a detailed description

of the findings of the study. The document concludes with a summary intended

57

3.2. ETHNOGRAPHIC ELICITATION

to spotlight any particular areas of interest worth reasoning about or inves-

tigating further. It will also include the ethnographers concluding remarks,

final thoughts and recommendations.

Notations

There is no standard notation in the literature for documenting ethnographic

findings in the field. This of course creates differences in opinions regarding

how formal its regular form of notation is – notation in written texts. Accord-

ingly, the notational nature of ethnographic deliverables may be perceived as

structured and formal in some disciplines, however from a software engineering

perspective, it is considered too informal for most situations in the ‘recording’

and ‘representation’ aspects of requirements in software development.

Ethnographic field notes are often informal, containing vast amounts of

documentary texts. Even the final ethnographic deliverable itself is much

considered a lengthy document. This of course makes ethnographic analyses

difficult to present in a form that would be beneficial to system designers and

development teams. Consequently, this creates a knowledge transfer problem

in moving useful findings from ethnographic studies into software development.

This, no doubt, creates a gap between the ethnography deliverable and the

early part of the software development process.

Time in the Field

There are no fixed rules or guidelines on how long ethnographers should spend

in the field, or how long studies should be conducted, to be considered effective.

That said, ethnographic studies are often conducted over long periods of time

because of the quality of data that can be assembled together over extended

periods of time in the field.

However advantageous ethnography appears to be, from a software engi-

neering perspective, this time consuming characteristic that it carries has not

gone unnoticed. In light of this there have been efforts to speed up and refine

ethnographic techniques to reduce the timely cost of the process. This has led

to branches of ethnograrphy like Rapid Ethnography [67].

58

3.3. THE SOFTWARE DEVELOPMENT LIFE CYCLE (SDLC)

Rapid ethnography is based solely on the idea that ethnographic activities

are time consuming. As noted in Eriksson et. al [26], the processes of rapid

ethnography are made more efficient by limiting the focus, scope and research

criteria of the field study. Other methods highlighted by Eriksson included us-

ing key informants, multiple observers and interactive observation techniques

to reduce the time spent in the field. Jeffrey et. al [50] suggested a situa-

tion based selection process to determine the appropriate form of ethnography

that should be used. For this reason, ethnography need not be perceived as

a lengthy process. The question is not so much about ethnography taking a

long time to complete, but whether ethnography is worth the time to do it in

the first place.

3.3 The Software Development Life Cycle (SDLC)

3.3.1 SDLC Overview

The Software Development Life Cycle is the structure of activities and phases

that define the creation, evolution or maintenance of a software system. SDLC

approaches can be employed for the purpose of software development. The vast

majority of SDLC methodologies incorporate the following activities into the

development process:

i) Requirements Analysis

ii) Design

iii) Implementation (or Development)

iv) Evaluation

These activities are invariant phases in the SDLC, as they are always in

one form or the other part of the development process of any system. The

various activities in the Software Development Life Cycle all relate back to

the client / stakeholders needs: From Requirements Analysis, documenting

the clients aims and objectives of the anticipated system; Design, translating

59

3.3. THE SOFTWARE DEVELOPMENT LIFE CYCLE (SDLC)

the requirements into software design models and notations as a deliverable

for the implementation phase; Implementation (or development), fulfilling as

executable code, the requirements objectives set out in the design deliverable;

Evaluation, appraising the system and ensuring that it functions correctly in

relation to the original requirements set out according to the clients idea.

In many ways, the SDLC can be seen as series of transformations from the

original concept/idea, to the deployed executable system. Using a structured

design software development methodology, with the activities described above,

we would expect to see the following transformations from conception of the

idea to deployment:

[Concept]

→ [Requirements Analysis] → [Design] → [Implementation] → [Evaluation] →

[Deployment]

The clients concept is essentially a deliverable to the Requirements Analysis

(RA) phase. This positions RA as a crucial phase of the SDLC, as the conse-

quences of not beginning the SDLC right could result in a poor quality product

and an expensive redesign of the system [91].

3.3.2 Categorization of SDLC Activities with respect to

Ethnography

The software development life cycle (SDLC) is an established process of ac-

tivities for developing, implementing and deprecating software systems. The

process is currently at a very mature stage, gained through decades of expe-

rience and a plethora of software development methodologies. The SDLC is

normally thorough, accounting for all the activities that occur during the pe-

riod of development, until its release. Over the years, a number of frameworks,

methodologies and models have emerged, each with their own strengths and

weaknesses, but broadly focusing on specific kinds of development and man-

agerial goals.

60

3.3. THE SOFTWARE DEVELOPMENT LIFE CYCLE (SDLC)

From small scale to large scale systems, the SDLC may be adopted dif-

ferently and governed with different rules and constraints, however the over-

arching task of implementing software remains the same. While the SDLC

traditionally accounts for wider reaching concerns such as evolution, mainte-

nance and iteration, all SDLC incarnations broadly feature the same set of

activities which can be categorised by activities that typically occur prior to

implementation, during implementation and after implementation. Our view

of the SDLC process is therefore split into three categories which we will now

refer to as the SDLC Categories:

i) Pre-Implementation: tasks and activities that happen before the antici-

pated software is built;

ii) Implementation: all activities that occur during the active development

phase of the system;

iii) Post-Implementation: tasks and activities that occur subsequent to the

development of the system.

We refer to Figure 3.2 which shows a number of these activities divided into

the above mentioned categories:

Pre-Implementation

Pre-Implementation considers all the activities that happen prior to the im-

plementation of the system. This has been split into planning, Requirements

Analysis and design. It is generally accepted that these are common, baseline

activities that occur prior to implementation, regardless of the SDLC method-

ology and what models or frameworks that are used in-house for development.

The software project needs to be planned, requirements need to be captured

from clients and stakeholders and formalised for the requirements analyst to

translate into documents that system designers can utilise in the design phase

of the SDLC. It is commonplace for there to be heavy stakeholder interaction

in the pre-implementation phase, as there is a lot to be understood about how

the system should operate and any contingencies that should be put in place

to mitigate any foreseeable risks to the project.

61

3.3. THE SOFTWARE DEVELOPMENT LIFE CYCLE (SDLC)

Figure 3.2: SDLC Categories versus SDLC Phases

Pre-Implementation activities also include significant interaction between

requirements analysts and systems designers. This may be for the purpose

of clarifying and verifying requirements, or arranging extended feasibility as-

sessments in order to determine if certain requirements can be accomplished

according to their specification.

Implementation

Implementation follows on from Requirements Analysis and design. The phase

encompasses all the activities that go into building the system and accomplish-

ing all the goals of the systems according to the requirements outlined in the

pre-implementation phase. Implementation could of course come in a variety

of forms depending on the software system being developed, the requirements

design set forth in the pre-implementation phase, and the overall approach to

building the system. For example in a Model Driven Engineering approach,

code generation tools might be employed to transform design level system

62

3.3. THE SOFTWARE DEVELOPMENT LIFE CYCLE (SDLC)

models into functional code. This method may be used as an implementation

strategy for (i) generating the code for the full system – where possible (ii)

generating code for specific components and modules in the system and (iii)

generating foundation layer code that the system will be built on top of, which

can include libraries, business objects and interfaces . On the other hand, im-

plementation might be entirely written from the ground up by application

developers. In a completely different light, customizing off the shelf applica-

tions might be viewed as implementation. This would involve configuring the

application using existing software packages and/or building on top of modules

and software components provided by external software vendors. In practice,

it is quite common that implementation involves a mix of the aforementioned

approaches.

Post-Implementation

Post-Implementation involves all follow-up activities that occur in the SDLC

after the end of development. In post-implementation, the system is not neces-

sarily ready for release. Activities such as integration, verification and testing

and evaluation need to be carried out. The task of integration focuses on the

assembling of the various implemented sub-modules and components of the

system into one cohesive system. Verification & testing involves tasks that

ensure that the system is functional and works according to the requirements

set out in Pre-Implementation. This task also involves benchmarking, quality

checking, assurance and debriefing. It is often the case that a system goes

through an Evaluation phase following verification and testing. The function

of the evaluation phase is to provide an appraisal of the system, outlining

things such as (i) any potential quality issues, and (ii) identifying any un-

foreseen issues that were not originally anticipated. Evaluation can also be

seen as a post-implementation form of Requirements Analysis. Does the sys-

tem do everything that was originally intended or are there any outstanding

requirements that need to be fulfilled?: Evaluation not only provides the oppor-

tunity to verify whether requirements at the pre-implementation phase have

been met, it provides the opportunity to determine if these features function

63

3.3. THE SOFTWARE DEVELOPMENT LIFE CYCLE (SDLC)

correctly as described. It also provides an opportunity to document new un-

foreseen usages of the system that were not anticipated during the inception

of the development cycle.

3.3.3 Data Modeling

Data Modeling is the process of creating a model representation of the data

behaviours in a system that are important to an organisation, in order to

highlight the structure of data entities and associations between entities at

varying levels of detail. In the data modeling field, there is agreement on four

main uses for conceptual data models [97]:

i) Supporting communication between analysts/developers and users.

ii) Helping analysts understand a domain and design decisions.

iii) Providing detailed input between SDLC phases.

iv) Documenting requirements for future reference.

Fundamentally data modeling leaves a strong emphasis on a good understand-

ing of the domain. In the SDLC, the data modeling process begins in the Pre-

Implementation phase. The process entails the construction of three models

at varying levels of complexity, with each having its own purpose.

The first of the models is the Conceptual Data Model (CDM) which is

produced at the Requirements Analysis phase. The CDM typically reveals

the entities and associations in the system. It is the highest model abstrac-

tion of the domain and is used to show at a high level, the composition and

organisation of entities that are important to an organisation or business.

The next model is the Logical Data Model (LDM) which focuses on the

design detail of the domain. The LDM is a more detailed specification of the

CDM, including details such as member attributes, details of primary keys and

foreign keys and so on. The LDM is constructed in the design phase of the

SDLC, and is formed following close inspection of the CDM. Data modeling

patterns may be used to apply necessary domain model enhancements to the

64

3.4. COMBINING ETHNOGRAPHY WITH SDLC PHASES AND
CATEGORIES

CDM. Typical enhancements include the removal of duplicate or redundant

elements in the data model, establishing relationships and associations between

entities and assigning identifiers to entities. It is implementation agnostic and

does impose any requirements for technologies used in the subsequent phases

of the SDLC.

The final model is the Physical Data Model (PDM) which takes into ac-

count actual implementation-level considerations. It therefore includes all de-

tails such as constraints and bearings on the data entities represented. It makes

specific how the data will be represented on disk, as a data schema showing

details such as data types, relationships, associations, constraint definitions,

attribute uniqueness requirements, indexing requirements and so on.

The function of software models like the CDM, LDM and PDM is to divulge

different levels of detail about the subject areas of the problem domain to

different development stakeholders. The data models show varying levels of

complexity with the CDM being the most abstracted view of the data entities

in the system, and the PDM being the most detailed. Figure 3.3 is illustrative

of how each of the models is positioned in the SDLC.

3.4 Combining Ethnography with SDLC Phases and

Categories

The types of feedback-information that can normally be obtained through

an ethnographic study is based on data obtained primarily through fieldwork

observations. This information may specialise to the different activities of the

software development life cycle. In order to understand the advantages that

qualify ethnography as a structured and systematic mode of inquiry, we must

understand what ethnography is not. Ethnography is not:

a) a replacement for Requirements Analysis.

b) a rigid process. It can be refined to fit an organisations software develop-

ment model.

65

3.4. COMBINING ETHNOGRAPHY WITH SDLC PHASES AND
CATEGORIES

Figure 3.3: SDLC Categories versus SDLC Phases showing Life Cycle Data
Models

In accordance, ethnography can be adopted and integrated with standard Re-

quirements Analysis activities.

3.4.1 The Overlap of Ethnography and Requirements

Analysis

As Requirements Analysis is the leading activity of the software development

lifecycle, it is an important and necessary part of the SDLC, as it provides the

basis for all further development work that is carried out in the phases that

succeed it. Young [102] defines a requirement as “a necessary attribute in a

system”. Requirements are important because they dictate what the system

must do and the conditions and constraints under which it must do it.

There is a convenient overlap between ethnographic activities and stan-

dard pre requirements analysis tasks. With respect to software engineering,

ethnography can be viewed as requirements analysis in the broadest sense pos-

66

3.4. COMBINING ETHNOGRAPHY WITH SDLC PHASES AND
CATEGORIES

sible. Requirements Analysis is essentially looking at what the client wants,

understanding the wider domain and exploring how things work. This is akin

to ethnography – observing natives, their behaviours and their environments.

Both requirements analysis and ethnography result in deliverables which can

be utilised in subsequent phases of the SDLC.

In Chapter 2, we presented an overview of some of the reported advantages

of ethnography. Despite the reported advantages, particularly of ethnography

being a strong method for analysis, it does not produce a formal concrete item

that can be utilised by system designers and software developers. Though it

can be said that ethnographic deliverables can be translated to formal docu-

ments, to our knowledge there are no guidelines or heuristics for doing so.

For the most part, ethnographic studies lead to an ethnography report. It is

a detailed, informal text-based document that details rather than summarizes

the findings of an ethnographic study. In the context of requirements analysis,

the ethnography report adds an additional layer of information to standard

requirements deliverables. Voss et. al [96] summarise it as follows:

“[...] ethnographic studies of work in various settings have been

instrumental in uncovering the seen-but-unnoticed aspects of work

that have so often escaped attention in requirements-gathering ex-

ercises and have therefore not been supported in the resulting sys-

tems design.”

Requirements Analysis on its own leads to a requirements document which

in summation contains an outline that documents the behaviour of the system.

The process of requirements analysis typically involves constant communica-

tion and interaction with stakeholders and various members of the organisa-

tion. This is illustrated in Figure 3.4, which shows the flow of knowledge and

information gathered during the ethnography and requirements phases. The

flow of knowledge passes through the SDLC. It originates from the problem

domain, and is elicited through ethnography. The knowledge flows through

the requirements analysis phase and further down the SDLC. The bidirectional

arrows show the ongoing interaction between stakeholders and members of the

organisation throughout the SDLC, as there is continuous interaction between

67

3.4. COMBINING ETHNOGRAPHY WITH SDLC PHASES AND
CATEGORIES

stakeholders, the wider organisation and the ethnography and requirements

analysis process.

Figure 3.4: Ethnography / Requirements Intersection

3.4.2 Bridging The Gap between Ethnography and

Requirements Analysis

Ethnography provides the means to facilitate some of the functions of Require-

ments Analysis. As such it can be seen as a pre-requirements task which may

overlap with standard requirements practices. We posit that the main points

of focus cross over. For example field notes from ethnographic observations

are essentially documented use cases and activities. From the point of view of

data analysis, this is what is being done when an ethnographer is looking at

the context of an environment and how data moves around the environment.

Our view is that the findings of an ethnographic study should feed into the

requirements analysis process, and should be incorporated in the requirements

document. What is worth noting however is that ethnography on its own is not

going to replace requirements analysis. It can replace a lot of the overlapping

techniques, but importantly the requirements document that is passed on as

a deliverable from the requirements analysis phase to design cannot be in the

form that ethnography reports are at the moment.

68

3.4. COMBINING ETHNOGRAPHY WITH SDLC PHASES AND
CATEGORIES

3.4.3 Ethnographically Inspired SDLC Categories

In this section, we discuss the SDLC categories in relation to ethnography.

We however limit our discussion to issues relating to ethnography during

the Pre-Implementation and Post-Implementation SDLC categories only. To

more closely align our view of how ethnography should map to the differ-

ent SDLC categories described previously, we introduce the concepts of Pre-

Implementation Ethnography and Post-Implementation Ethnography.

Pre-Implementation Ethnography (PrIE)

PrIE is the application of ethnography techniques to Pre-Implementation soft-

ware development activities, in particular Requirements Analysis. With re-

spect to ethnography, we contend the following points as keys-areas of impor-

tance in requirements analysis:

i) Determining key stakeholders of the system – identifying users, key infor-

mants, project sponsors and so on.

ii) Problem Identification and Analysis – detailed analysis of the problem

and decision criteria for working towards a solution.

iii) Understanding the characteristics of the environment – discerning the

operating conditions of the system.

iv) Recognising potential impact – gaining an understanding of any impacts

that may arise as a result of modifying the system and/or gaining an

understanding of the impact of introducing a brand new system.

In the literature, ethnography has been suggested as a means of identifying

key stakeholders [28]. Stakeholder identification is known to be an important

part of requirements engineering. According to Conger [21], a stakeholder

refers to “the people and organisations affected by the application”.

69

3.4. COMBINING ETHNOGRAPHY WITH SDLC PHASES AND
CATEGORIES

Note

Given its use in this thesis, unless otherwise stated, we look at stakeholders strictly

from the point of view of people within the organisation that are directly affected

by the application - i.e the end-users of the system in question, rather than from

the much broader definition of a stakeholder which covers any individual that can

affect the objectives of the system.

Sharp et. al [87] argue on the importance of identifying the right stakehold-

ers to act as participants of the requirements engineering process. From an

ethnographic perspective, it is vital that the activities of current users of the

system are understood. This is the motivation for contextual inquiry, struc-

tured walkthrough’s and other user-centric research methods that investigate

user behaviour in context. This however does not seem unreasonable when

drawing on the fact that current users are in fact the ‘inhabitants’ of the

environment which they have become accustomed to.

Alongside identifying key stakeholders, developing software systems in-

volves the important step of understanding the characteristics of the envi-

ronment under which the system will be deployed. In this regard, Foucault et.

al [28] described the value of ethnographic fieldwork as indisputable. They also

described it as an especially important tool for guiding development teams to

understand lesser understood domains. Their case study in [28] presented a

series of ethnographically-inspired techniques which allowed key observers to

gather relevant information to guide software development.

Ethnography enables observers to establish points of success and failure

in existing systems. In this sense, it can be used to evaluate the viability of

deploying new technologies. An example of this is the dealing room study by

Heath et. al [41]. The study was done to explore aspects of the organisation of

collaborative work in a real life setting. It assessed the feasibility of proposals

for deploying future technologies for trading dealing rooms.

In summary, Pre-Implementation ethnography provides opportunities for

researchers to study in-depth, the day-to-day activities of the various stake-

holders of a system within an organisation. It can be used as a strategy to

review current practices, analyse problems and speculate on possible directions

70

3.4. COMBINING ETHNOGRAPHY WITH SDLC PHASES AND
CATEGORIES

for improvements. On the other hand, it can be used purely as a method for

analysis and requirements gathering. Ethnography is more to do with docu-

menting findings rather than determining what will lead on from the analysis of

ethnographic reportage. As such, what pre-implementation ethnography will

not tell the designer is what the system will look like after implementation.

Post-Implementation Ethnography (PoIE)

We will use the term PoIE to describe the application of ethnography to Post-

Implementation software development activities, in particular Evaluation. In

the verification and testing phase, PoIE can provide an immediate perspective

on the software system or product following implementation. While this might

seem very broad, it can be tailored to the evaluation methodology being used

by the organisation in question. Post-Implementation Ethnography can also

be used to arrange and extract findings from focus groups and pilot studies.

This may occur during the final stages of development when the software is

released to a small set of users to elicit feedback and suggestions on what works

well and what does not. It can also be used as a means to study the impact

of the system under different conditions and other post-deployment concerns.

There are several areas where Post-Implementation ethnography has proven

useful. For example, a study by Martin et. al [64] explored the organisational

aspects that influence software testing. Their study highlighted the impor-

tance of reasoning about software testing as a socio-technical process, rather

than a technical process.

Post-Implementation Ethnography may continue to occur even after de-

ployment. It may be adopted as a forward looking review strategy for ongoing

monitoring of the system in a production environment. In the case of soft-

ware pilot deployments, ethnographic reportage of ‘pilot’ users can be used

for comparative analyses. Such analyses may be used to verify common Post-

Implementation Review objectives such as:

i) Determining stakeholder satisfactions: looking at the effects on the end

users and verifying whether the end users’ needs have been met.

71

3.4. COMBINING ETHNOGRAPHY WITH SDLC PHASES AND
CATEGORIES

ii) Identifying any key areas of concern: ensuring what was delivered actually

works and potential areas of further development

iii) Cost Validation: Assessing whether the running costs of the project were

as predicted. This also includes cost / benefits analyses.

iv) Evaluating how the project was run: measuring the success of the project.

The Post-Implementation Review is essentially a ‘lessons learned’ docu-

ment, which is often times a deliverable of a completed project. Another ben-

efit is that Post-Implementation Ethnography provides a structured approach

to overseeing user generated feedback data such as questionnaires and user

satisfaction surveys. In the case of software pilot deployments, it can be used

to efficiently identify any critical areas that may delay final organisation-wide

deployment.

The Importance of Ethnography in SDLC Categories

There is considerable empirical evidence suggesting that quantitative and qual-

itative analysis of systems yields solutions that meet stakeholder requirements

more accurately [95].

We have categorised the various roles of ethnography in the SDLC into Pre-

Implementation Ethnography (PrIE) and Post-Implementation Ethnography

(PoIE) as shown in Figure 3.5. This is important because of the different

usage patterns each carries. Adopting a methodology that incorporates pre-

implementation and post-implementation ethnography would offer invaluable

information, right from potentially enhancing the quality of requirements to

providing a way of structuring and analysing system evaluations after imple-

mentation.

Ethnography has significant merits within the software engineering domain.

Ethnographic reportage provides the underpinnings for a comprehensive eval-

uative picture of various deliverables in the life cycle of the software. Under-

standing key requirements elements at an early stage, will go a long way into

determining the shape of the design of the system, and what may or may not

be included-in at a latter stage in the developmental life cycle of the system.

72

3.5. ETHNOGRAPHY IN RELATION TO THE SDLC

Figure 3.5: SDLC Categories versus SDLC Phases showing Ethnographic
Phases

Pre-Implementation Ethnography contributes favourably to the analysis

process by giving an ‘as-is’ view of the current environment without bias. In

this regard, when the ethnography deliverable is passed on to the designer,

what Pre-Implementation ethnography will not conclude, is the designers de-

cision as to what features must be implemented in the final system, or the

final direction of design.

3.5 Ethnography in relation to the SDLC

Based on the merits of Ethnography in being able to facilitate the process of

inquiry and evaluation in an organisation, we propose an approach for data

analysis and validation that leverages ‘ethnographic’ activities in the early

and latter phases of the SDLC. This aligns very well with elicitation activities

in the Pre-Implementation phase and verification/feedback activities in Post-

Implementation.

73

3.5. ETHNOGRAPHY IN RELATION TO THE SDLC

Our approach is aimed at bridging the gap between knowledge in the con-

ceptual domain which is both explicit and implicit, and the introductory body

of the requirements analysis phase of the SDLC. As the approach focuses on

data modeling, it aims to improve on the quality of Conceptual Data Models

constructed in the requirements analysis phase. This will potentially lead to

Logical Data Models and Physical Data Models that are more representative

of the data requirements of the organisation. This has the potential to alle-

viate the communication gap between what the organisation wants, and how

this is delivered downstream into the SDLC.

Figure 3.6: SDLC Categories versus SDLC Phases showing Life Cycle Data
Models and Ethnographic Phases

Consider the illustration of the approach in Figure 3.6 which shows the

SDLC Categories and phases in conjunction with the life cycle data models

and ethnographic phases. It shows the overlap of ethnography in both the

Pre-Implementation and Post-Implementation phases of a structured design

methodology. Also shown, are the expected data model deliverables in the

Pre-Implementation and Implementation Categories.

74

3.5. ETHNOGRAPHY IN RELATION TO THE SDLC

As the very nature of Pre-Implementation Ethnography falls into the area

of responsibility of the requirements elicitation phase, it overlaps conveniently

with the RA phase. This is the basis for the hybrid-overlapping phase between

pre-implementation ethnography and requirements analysis. The idea is that

ethnography will be used to make the following kinds of observations about

the data context:

i) Relationships between implicit and explicit information (not limited to

entities, attributes, roles and associations): An understanding of the be-

haviours and interactions between entities, attributes and so on.

ii) Invariant properties of the domain: A view of static, non-changing char-

acteristics of the data context.

iii) Modes of use: A description of the different data usage scenarios and

usage contexts.

iv) Complex business scenarios and user interactions: An understanding of

how users interact with business entities, and an appreciation of business

principles or constraints imposed by the domain.

These are the kinds of data concerns that fall through the SDLC and create

knowledge ‘gaps’. From a data quality perspective, projecting these kinds of

insights on to the CDM sets a good precedent for appropriately communicating

information requirements to the LDM and subsequently to the PDM. This can

aid in identifying problems or ommitted requirements at an early stage.

In Post-Implementation the hybrid-overlapping phase between evaluation

and post-implementation ethnography combines ethnographic methods and

traditional system evaluation methods. The objective is to stage an open in-

quiry and validation exercise into the quality of the final product. This can be

done by conducting user pilot trials, field observations, interviews with users,

soliciting feedback via questionnaires and so on. Purely from the perspec-

tive of evaluation, it is reasonable to want to identify requirements that have

not been implemented accurately before the final product is deployed. Post-

Implementation Ethnography provides a structured approach for this type of

75

3.6. SUMMARY

investigation. It may also be beneficial to identify not only what has gone

wrong, but what has worked well. This can be helpful in identifying design

patterns within an organisation and building expertise around a particular

problem area.

3.6 Summary

It is important at the start of the software development cycle, that SDLC stake-

holders have an accurate understanding of the problem domain. Furthermore,

the communication of stakeholder requirements in between the SDLC phases

is an important role in the SDLC. In this regard model driven approaches to

software development have been used extensively as a means of communicating

data and information requirements between the different phases of the SDLC.

In this chapter we have explained how ethnography can be positioned in the

software development life cycle, to facilitate a software development approach

that is focused on uncovering detailed requirements that are communicated

throughout the SDLC phases. We believe that ethnography contributes to

both the early and final stages of the SDLC. The terms Pre-Implementation

Ethnography and Post-Implementation Ethnography were introduced to de-

scribe an approach that leverages ethnography during requirements gathering,

and during the system evaluation respectively.

We contend that there is significant value in utilising implicit information

in a model driven approach. The next chapter investigates how implicit infor-

mation may be derived from an ethnographic study and the premise of utilising

it in the conceptual data model of a system.

76

4
Incorporating Tacit Information within

Conceptual Data Models

“[Conceptual Data Models are] the blue-prints for representing

specific data views related to a particular problem domain”. El-

Ghalayini et. al [25].

There is a growing appreciation in the literature concerning the value of in-

corporating tacit information in Conceptual Data Models (CDM). Conceptual

Data Models illustrate from a high level, the data entities within a system, in-

cluding any relationships and associations that exist between these entities. In

this chapter, we investigate the proposition that conceptual data models based

on both explicit and tacit (or implicit) information lead to design solutions that

more closely match the requirements and expectations of stakeholders. Also

discussed in this chapter, are the methods for requirements elicitation that

highlight and draw out tacit information in an organisation.

4.1 Introduction

Within the field of knowledge management there are two types of information,

implicit information and explicit information. Implicit information is data

that is unspoken but understood and inferred by stakeholders about a data

context. Explicit Information is information that can be readily identified in

a data context.

77

4.2. WHAT IS “TACIT INFORMATION”?

Traditional data modeling tasks have focused primarily on the representa-

tion of explicit data attributes in CDM’s. This affords the tendency to con-

struct CDM’s solely on explicit information and defer implicit information to

use case descriptions, user stories etc. It is questionable whether a ‘blueprint’

of a system lacking meaningful implicit information can be regarded as com-

plete and accurate, and whether or not these facets of information should be

expressed in the CDM.

The notion of incorporating implicit information in data models draws on

the belief that there is another dimension that needs to be explored which

involves knowledge that is implicit, embodied and not articulated [53]. It

is this information that is most commonly referred to as tacit information.

However, in the context of software modeling, the terms tacit information and

implicit information are used interchangeably in the literature.

The embodiment of tacit information in conceptual data models has the

primary goal of communicating a clearer picture of the data model through an

arguably richer description of the CDM. This is done by including all relevant

implicit and explicit Forms of Data in the data model of the system. This pro-

cess falls at the intersection between ethnographic elicitation and requirements

analysis, in the Pre-Implementation phase, where conceptual data modeling is

aligned.

4.2 What is “Tacit Information”?

Tacit information is any form of information that is not explicit, but inher-

ently understood by the users and stakeholders of the system. The word tacit

itself as defined in the Oxford English Dictionary means “understood or im-

plied without being stated” [74]. The notion of tacit information originates

from the concept of tacit knowledge which was introduced by the Hungarian

philosopher-chemist Michael Polanyi in his much quoted book ‘The Tacit Di-

mension’ [79]. Polanyi contested that all knowledge embodies tacit elements

to the extent that knowledge cannot be entirely explicit. He worked under

the assumption that “we can know more than we can tell”. It is this residing

knowledge that is termed tacit knowledge.

78

4.3. TRANSFERRING KNOWLEDGE TO DEVELOPMENT

There is a personal quality in tacit knowledge that makes it hard to for-

malise and communicate [70]. Nonaka [70] insists that there is a firm con-

nection in an individuals tacit knowledge that is deeply embedded in their

actions, commitment and involvement in a context. This idea can be ex-

panded when considering the perspectives that entail individual and shared

experiences when looking at requirements for software systems. Individual and

shared experiences create a personal perspective of the system. Understand-

ing these experiences enables the development of a common perspective of the

knowledge that is understood by different stakeholders of the system.

This is of course in contrast to explicit knowledge, which is defined by

Nonaka et. al [71] as knowledge that “[...] can be expressed in formal and

systematic language and can be shared in the form of data, scientific formulae,

specifications, manuals, and so forth”. This represents any precise knowledge

conscious to the minds of stakeholders.

At the highest level of abstraction and data representation there is much

benefit in creating conceptual data models that embody both implicit and

explicit information. There is the benefit of a formal communication line

between the requirements analyst and the designer. This facilitates granular

level reporting of requirements details to the design phase via the CDM. The

advantage here is that upfront knowledge of implicit information about the

system may ultimately lead to more informed design decisions. We contend

that these design decisions will tie-in more closely to the intended goals and

objectives of the stakeholders of the system.

4.3 Transferring Knowledge to Development

There is a division in terms of the way knowledge is represented at the require-

ments level and at subsequent phases of the software development process. Be-

tween each level, from requirements to design, through into implementation,

there is a complexity shift in representation, with each phase adding more

specific implementation detail to the conceptual information that was initially

conceived and passed-in at the requirements phase.

Established approaches for transferring knowledge of a data context to

79

4.3. TRANSFERRING KNOWLEDGE TO DEVELOPMENT

development include Entity Relationship Diagrams (ERD) [18], Unified Mod-

eling Language (UML) [14], and derivative works of these approaches. Con-

ceptually, these approaches are intended to document the data centric features

of a system that are important to stakeholders.

Entity Relationship Diagrams show the logical representation and struc-

ture of an organisations data. The main components of ERDs are Entities,

Attributes and Relationships. Entities represent important categories of con-

cern of a system that data will be stored. Attributes are the properties and

characteristics of entities, however entities themselves may be characteristics

of other entities. As such, they can also be attributes. Relationships represent

the organisational associations between entities of the system. Though there

are several modeling notations used in requirements engineering, ERDs are

seen as the typical CDM deliverable.

UML shows both the structural and behavioural characteristics of a system

in order to understand how data is navigated within a system. At the core of

UML, are a set of notations and diagrams each with different intents and pur-

poses. UML draws on techniques from data modeling, thus making it largely

sufficient as a form of notation for laying out CDM’s. Class Diagrams are

arguably the most used type of UML diagrams for representing data models.

They are useful for illustrating requirements to stakeholders at varying levels

of detail. They can also be used for laying out very detailed design guidelines

for developers.

The highlights of conceptual modeling are clear in the literature [3]: they

enable more efficient communication of data requirements which enables a

shared understanding amongst business and development stakeholders. Even

as the model evolves into other forms, as it traverses different stages of the

SDLC, beginning with a more accurate model should alleviate potential issues

with miscommunicated or error prone requirements. CDM’s also provide a

blueprint of the business domain that serves as a valuable resource to stake-

holders that are new to the domain. e.g. designers, developers and project

managers. In addition, they serve as a form of documentation of data require-

ments.

Given these highlights, what is clear that ERD’s and Class Diagrams do

80

4.4. ETHNOGRAPHIC PERSPECTIVES ON DATA

well is convey explicit information about relationships and associations be-

tween data entities of the systems they describe. However, what they do not

do well, and what is less often seen in conceptual models is the embodiment

of tacit information. Looking at how data models are moved downstream to

subsequent phases in the SDLC, a conceptual data model that does not de-

scribe implicit associations and attributes will lead to logical data models that

are either incomplete, or LDM’s that deviate from the original requirements

completely. This would also create problems when the PDM is being layed

out.

The topic of transferring knowledge to development thus has its problems

in the formal documentation of tacit information in high level system models

(or conceptual data models). From the perspective of data, the knowledge cap-

tured by ethnographic studies is ultimately lacking in CDM’s. This captured

knowledge is tacit information and should be equally pertinent in Conceptual

Models of systems alongside explicit information.

4.4 Ethnographic Perspectives on Data

Jeffrey and Troman [50] define ethnography as “[...] research taking place over

time to allow a fuller range of empirical situations to be observed and analysed

to allow for the emergence of contradictory behaviour and perspectives. Time

in the field, alongside time for analysis and interpretation allows continuous

reflections concerning the complexity of human contexts”. Concerning data,

there are many questions that can be drawn from this. In particular, why and

how ethnography will help with defining software models at the requirements

analysis level, specifically with conceptual data models.

One of the most common advantages of ethnography that has been high-

lighted in the literature is its potential to act as an open-ended strategy to

both requirements elicitation and requirements verification. The next few sec-

tions provide key information on these areas, and highlight some of the most

salient aspects of software engineering-based ethnography.

81

4.4. ETHNOGRAPHIC PERSPECTIVES ON DATA

4.4.1 Knowledge without Conceptual Data Schemas

Since ethnographic studies produce a vast amount of reportage on the prob-

lem domain, it is important to analyse the data and make it relevant as a

fit-for-purpose deliverable to the requirements/design phases of the software

development process. Current forms of ethnographic reportage do not fit this

criteria, thus creating a need for methods to communicate results of studies

to designers in a form that is more well understood [46]:

Hughes et. al [46] argued on the need to develop techniques to present

ethnographic findings to designers as a prerequisite to including ethnography

in the requirements engineering process. The very nature of ethnographic

deliverables makes this a challenging task. This is due to the predominant

use of natural language text, supplemented by drawings and other forms of

multimedia such as audio and video recordings.

Despite the possibility of ethnographic reportage producing structured in-

formation and key pieces of data, ethnography itself is not data modeling.

Ethnographic studies do not produce data models or schemas. At least, not in

the software engineering sense - hence the title, knowledge without conceptual

data schemas. Data modeling may be a task that might be included as part

of a particular ethnographic software development methodology. However tra-

ditionally, ethnographic reportage is often produced as an unbiased analytical

document of the findings and observations of an environment.

Conceptual Data In An Organisation: Understanding Tacit Aspects

The various strands of information that contribute to the structure of data

entities and relationships in an organisation can be referred to as ‘conceptual

data’.

Understanding the conceptual data within an organisation draws on the

understanding of the tacit aspects of the domain. Tacit aspects of an organ-

isation can be any type of information or domain knowledge about business

data or entities in an organisation. Tacit information is hard to identify and

convey and is often the reason why it is missed when conceptual data models

are being formalised.

82

4.4. ETHNOGRAPHIC PERSPECTIVES ON DATA

In addition, the very nature of tacit information makes it hard to formalise.

There are several formal notations that are good at capturing process activities

and representing the architectures of systems. In comparison to ethnographic

reportage, there are things that current notations will not pick up that ethno-

graphic report would be able to because of the benefit of documentation in

free text without the restrictions of a formal language or notation.

The purposeful planning of ethnographers to identify tacit aspects of an

organisation reduces the potential of omitting this information in the require-

ments analysis phase when conceptual data models are being developed. The

fact that observers are sent out into the field of study makes them prime

candidates to become acquainted with the tacit constructs of an organisation.

Observers would be able to uncover organisational behaviours that would often

be missed during the standard types of meetings that developers and require-

ments analysts have with stakeholders.

4.4.2 Ethnographic Elicitation for Data

Ethnographic reports have some interesting characteristics from the perspec-

tive of data modeling. Ethnographic reports provide an alternative way of doc-

umenting usage. They contain fuzzy use-cases and are very detailed and pre-

cise. This may be particularly useful in determining how entities and records

are used within the system, and the relationships and associations between

them.

From a data analysis perspective, the main function of ethnography as a

mode of inquiry is to understand Forms of Data. This refers to the composi-

tion, characterisation and context of use of data. The composition of data is

not limited to its explicit attributes and its general constitution. It also in-

cludes any implicit properties and attributes that are either inherited through

association with other Forms of Data, or inherited via semantic or domain-

centric relationships.

If we were trying to assess the proficiency of UML in being able to transfer

data modeling requirements to development, by determining what can and

can’t be modelled in UML, one place to look at is form of data. It is one of the

83

4.4. ETHNOGRAPHIC PERSPECTIVES ON DATA

areas in which UML is used extensively - class diagrams, data transformation

using state charts etc.

Methods

In this section, we discuss two main methods of data collection in the execution

phase of the Ethnographic Study Life Cycle (ESLC) that aid in understanding

Forms of Data in a domain.

• Field Observations: This is a very common data collection method. For

data analysis, the process begins with developing a set of objective re-

search questions:

– What are the implicit and explicit data entities, and relationships

between these entities?

– What is the context of use of data in the domain?

– What are the boundaries of data?

Answers to these questions can be gleaned from observing what pieces

of information users interact with and how data flows through the or-

ganisation. Furthermore, looking at the types of information exchanged

between business users can reveal what the data entities in the environ-

ment are and what the boundaries of data are. Finally, analysing storage

mediums and stored records will enable the ethnographer to develop an

understanding of what the entities, attributes and relationships in the

organisation are.

• Key Participant Interviews: This is a widely used part of field research.

It involves planned meetings with business stakeholders to gather infor-

mation to meet the data collection objectives of fieldwork. Key partici-

pant interviews may either be (i) structured or (ii) unstructured.

Structured interviews are formal, and often involve using a set of pre-

planned questions and material which may be reused and presented to

other participant interviewees. Structured interviews are important for

gathering consensus amongst a group of key stakeholders.

84

4.5. THE MEDICAL RECORDS CASE STUDY (PT. 1)

Unlike structured interviews, unstructured interviews are quite informal

and casual. However, they are still guided by the aims and objectives of

the study. They are important for open ended investigations of particular

areas of interest to the ethnographer.

4.5 The Medical Records Case Study (Pt. 1)

Central to our work is the question of whether tacit information about data

obtained from ethnographic studies facilitates or undermines the quality of in-

formation represented in conceptual data models built at a requirements level.

In this section, we investigate what types of information can be understood

about a data context when utilising ethnographic observations. The medi-

cal records case study by Heath and Luff [42] will be used as the problem

statement in this section to motivate the viewpoint of ethnographic software

requirements analysis. As such, the case study will take an ethnographic per-

spective.

The study investigated the work practice in primary health care within

the United Kingdom and probed the inclination of practitioners using paper

records in spite of the ‘Value-Added Medical Products’ (VAMP) computerised

records system already provisioned to replace traditional paper medical record

cards. The findings of the case study highlighted some flaws in the design

choices of the provisioned system due to the ways in which various design

elements were embodied in the new system. The authors concluded a flawed

design. There were considerable misgivings due to the way in which the system

constrained the examination and entry of data by practitioners.

4.5.1 Overview

As outlined in the study, the traditional paper medical record consisted of an

A5 envelope comprising a number of cards and pieces of paper, including but

not limited to referral and discharge letters, doctors notes, medical test results

etc. On the envelope itself, the patients personal details were written. These

details included the patients name, address, date of birth and their National

85

4.5. THE MEDICAL RECORDS CASE STUDY (PT. 1)

Health Service (NHS) number.

The information stored in a patients’ medical record mainly consisted of

consultation notes with every new consultation requiring a new consultation

note entered into the patients medical record card. Below is an example of a

consultation note, taken from the case study.

3/12/86 c. Dog bite
Rf (.......)
Tetanus Toxoid 0.5 ml

The information recorded in the consultation note consisted of a date, the

location of the consultation, a record of the complaints and illnesses reported

by the patient and the GP’s diagnosis. The information recorded in a typical

consultation note consisted of a number of elements. Heath and Luff classified

these into elements relating to: (i) the occasion of the consultation - corre-

sponding with the date and location (c. for consultation being held in the

surgery, v. for a home visit); (ii) the complaint or illness - corresponding with

the patients symptoms or the doctors diagnosis; (iii) the management of the

complaint - corresponding with the doctors treatment, referrals and so on.

Important background notes

i) The patients medical record was stored at the patients registered general

practice.

ii) The medical record followed the patient. All patients were required to

have a single medical record that was not duplicated or fragmented be-

tween multiple medical practices.

iii) On the topic of information sharing, it was not immediately clear how

the cards were shared between GPs from different medical practices - for

example, in the case of a medical referral or relocation of the patient

between medical practices. However it was been noted in the study that

the medical record card was made available to doctors whenever there was

a consultation with a patient.

86

4.5. THE MEDICAL RECORDS CASE STUDY (PT. 1)

iv) Only the death of a patient could result in the deletion of the patients

medical record. However, the record may have continued to persist for

up to six months after the patients death, should any contingencies or

enquiries about the patient arise.

From a data analysis perspective, it is clear that a patients medical card

is an important source of data, for accessing information pertaining to the

patients health, as it provided a medical history which includes an account

of the patients previous consultations, illnesses, diagnoses, treatments and

referrals. It is therefore a vital piece of information that requires good accuracy

and accessibility.

4.5.2 Ethnographic Analyses

The analysis of the VAMP system highlighted a number of flaws in the design

choices of the designers of the medical records system due to the ways in

which various design elements were captured and embodied in the system.

Drilling down into the ethnographic report presented in the case study makes

it more apparent as to why a data model based on explicit information will

not be appropriate for the VAMP system. Our understanding of requirements

analysis for data at this level stems from our notion of ‘Forms of Data’.

One important observation that was made was the use of inference in the

medical record to derive information. For example the proximity of dates

between two consultation notes inferring a relationship between both consul-

tation entries. This could either be through a symptom relationship, diagnosis

relationship or treatment relationship. The presence of ‘proximity’ informa-

tion on a CDM through one of the relationships described previously, may form

the basis for deciding to choose a particular kind of user interface for viewing

identical or homogeneous pieces of information over an interface for viewing

unconnected information. To elaborate on our discussion on this topic, we

draw some extracts showing various patient records from the case study, as

shown in Table 4.1

The records in Table 4.1 may appear brief and unsystematic, however the

expertise of the medical practitioners allowed them to use the information

87

4.5. THE MEDICAL RECORDS CASE STUDY (PT. 1)

24.2.95 a. all tests normal
feeling low tearful fragile
start prozac
see 10d for inj R tennis elbow

11.8.95 c. Not good- irritable
Pain better, but drowsy in morning
restart diary

28/9/85 c. Vomited x2 in night
Maxalon 10bd (300m)

22.9.95 a. Diary OK for 1 wk
R elbow pain
-less tender
ˆ Doth to 150

12/1/86 v. Died 12.30am
3/12/86 c. Dog bite

Rf (.......)
Tetanus Toxoid 0.5 ml

22/4/86 c. cold
also rheumatism
cert 1/52 Paracetamol

Table 4.1: A sample of a patient’s Medical Record

proficiently to carry on their practice. As the extract shows, a single entry

can contain various kinds of information linking both the patients diagnosis,

prognosis and treatment. It is not immediately clear which record attributes

are required to be recorded besides the date and the location of the consul-

tation. It would seem that it is determined by what the GP deems necessary

to be logged in the medical record and not necessarily in conformation to any

rules regarding the documentation of medical texts. There is also no particular

order in which symptoms, treatments and diagnoses are recorded.

From a data analysis perspective, it is worth considering how various key com-

ponents of a medical record should be defined, and any possible relationships

88

4.5. THE MEDICAL RECORDS CASE STUDY (PT. 1)

or associations between the attributes that it is composed of. With that in

mind, we look at some key elements of medical records:

i) Consultations: consist of a meeting between one or more medical prac-

titioners and a patient to discuss a medical complaint. At every consul-

tation, a new consultation note is created to document the details of the

consultation. This implies a many-to-one relationship between a patients

consultation records and the same patients medical record. Consultation

notes go into the patients medical record, to log the patients medical his-

tory of: (i) cases dealt with (ii) referrals (iii) treatments and so on. As

it is possible for multiple cases to be discussed during the same meeting,

multiple diagnoses, prognoses and treatments can be issued within the

same meeting as is the case with the following example:

22/4/86 c. cold
also rheumatism
cert 1/52 Paracetamol

ii) Diagnosis: A medical diagnosis is the identification of a medical condition

or problem determined by known symptoms in a patient. For documen-

tation, diagnoses were recorded in the patients consultation notes during

each consultation. In the case study, it showed that not all consultations

notes contained diagnoses explicitly recorded within them. However, this

did not imply that a condition was not diagnosed. What was observed

were deductions and inferences made by practitioners based on the pres-

ence or absence of the diagnosis attribute. This highlighted the use of

tacit information, in the skill of the medical practitioner being able to

deduce key pieces of information even when there was an omission of the

data. As an example, to a competent medical practitioner, the follow-

ing consultation note showing the symptom and treatment might imply a

digestive disorder in the patient. However the diagnosis is not explicitly

recorded:

iii) Treatment: This is a remedy to an illness that has been diagnosed during

a medical consultation. As with the example from the previous point,

89

4.5. THE MEDICAL RECORDS CASE STUDY (PT. 1)

28/9/85 c. Vomited x2 in night
Maxalon 10bd (300m)

the treatment prescribed for the associated symptoms is ‘Maxalon 10bd

(300m)’. The flexibility of the medical records system did not prevent a

record of treatment from being deferred to a later date. For example ‘pre-

scribe painkillers if pain continues’. It was also possible that treatments

were not recorded explicitly and may link to treatments from previous

consultations as is the case in the following example:

11.8.95 c. Not good- irritable
Pain better, but drowsy in morning
restart diary

The phrase restart diary indicates that the patient should follow the same

course of treatment prescribed during the preceeding consultation. This

creates a tacit relationship with the preceding consultation note.

Heath and Luff argued that “the various items which constitute entries there

do not have a fixed and determinate sense”. This was true for a number of

behaviours of some of the sample consultation note extracts. Each of the ex-

tracts above has shown occasions where information in the notes was omitted.

However practitioners were still able to derive various pieces of information

about data that was not included in the consultation note based on informa-

tion that was present. This was possible through an understanding of the tacit

knowledge of the domain. In the next section, we outline some of the tacit

observations of the system that one might consider when modeling the system.

4.5.3 Observations

The case study outlined a number implicit associations and relationships be-

tween records. Observations of consultation notes showed patterns of inference

through which preceding consultation notes in a patients medical record might

be relevant to the current consultation at hand. We define these ‘relevancy’

relationships through occurrence relationships and relationships pertaining to

the consultation attributes - symptom, treatment and diagnosis.

90

4.5. THE MEDICAL RECORDS CASE STUDY (PT. 1)

The ‘applicability’ of the preceding notes is understood to be important

from the perspective that their symptoms, diagnoses and treatments have some

relevance to the current consultation note. These relationships are described

below:

i) Date Relationship: A date relationship exists between consultation entries

in a patients medical record when the consultation entries fall within a

time window of a few days to a week. This time window may be adjusted

on demand by the medical practitioner. The occurrence of records that

have this relationship commonly fall within last few consultation notes

from the current consultation at hand.

Domain Implication: The domain implication of this relationship implies

that the current problem(s) or illness(es) being reported by a patient may

have some connection with previous problems reported during previous

consultations within the specified time window (or at least, the last few

consultation entries).

ii) Symptom Relationship: A symptom relationship exists between consulta-

tion notes where the ‘symptom’ attribute between two consultation entries

contains identical or closely similar data. The similarity of the attributes

between consultation notes is one that is understood through the expertise

of the medical practitioner.

Domain Implication: This relationship implies that consultation entries

with identical or similar symptoms often relate to the same issue or prob-

lem reported by the patient. Therefore, the diagnosis and treatments of

the problem may be similar. A symptom relationship combined with a

date relationship on a pair of consultation entries, may imply the persis-

tence or progression of a medical problem.

iii) Diagnosis Relationship: A diagnosis relationship exists where the ‘diag-

nosis’ attributes between two consultation entries are identical or closely

similar. This similarity is also understood by the expertise of the medical

practitioner.

91

4.5. THE MEDICAL RECORDS CASE STUDY (PT. 1)

Domain Implication: A diagnosis relationship between consultation notes

implies a connection between medical symptoms reported, and may infer

suggestions for treatment.

iv) Treatment Relationship: Similar to the symptom relationship and diag-

nosis relationship, the treatment relationship exists where the ‘treatment’

attribute between two consultation notes is identical or similar.

Domain Implication: A treatment relationship may imply that the diag-

nosis between each note was the same. The understanding is that the

prescribed treatment may relate to a problem reported by the patient on

a previous occasion.

4.5.4 Conclusion

Based on our observations and analysis of the case study, we have identified

tacit information that was not found in the VAMP system. We posit that

if ethnographic techniques are utilized during requirements analysis, then in

addition to explicit information, two aspects of records will be elicited which

are important to the notion of a record:

a) a set of observations detailing implicit forms of information encoded within

a record.

b) a set of observations detailing the mode and context of use of information

Each of these aspects of records were visibly overlooked in the VAMP system.

According to observations, the VAMP System did not incorporate tacit infor-

mation that considered relationships between consultation notes attributes, in

particular symptom, diagnosis and treatment. As such, important requirements

guidelines were not communicated to the design phase of the system. Conse-

quently, this led to a software deliverable that was inadequate. Specifically,

UI design choices were were not optimal for use by medical practitioners.

92

4.6. SUMMARY

4.6 Summary

The problem of notation in requirement analysis is well known [4]. This is

especially problematic when considering tacit information and how tacit infor-

mation should be communicated within the SDLC. There is an understanding

that tacit information is an important dimension of data in an organisation.

Accordingly, in this chapter, we have discussed how ethnography can be used

to uncover tacit information. The aim of identifying tacit information draws

on the knowledge that gaining a better understanding of the domain, will lead

to a more effective set of requirements, which will hopefully lead to design

decisions that produce a product that meets the clients requirements. This

however, all begins with modeling tacit information in the domain at the con-

ceptual level.

The medical records case study by Heath and Luff [42] was used as a

motivating case study to illustrate how both tacit information and explicit

information are divulged in a data context. Also discussed was why tacit

information may be a relevant dimension of data to consider when designing

systems.

The next chapter takes the position that tacit information should be made

explicit in the conceptual data model of a system, as it provides a more ac-

curate model of domain. We pursue our contention that this will lead to a

software deliverable that more closely meets the requirements of stakeholders.

As companion, we investigate how tacit information can be formally incorpo-

rated into the SDLC of software systems from a Model Driven Development

(MDD) perspective. We therefore utilise Model Driven Engineering (MDE)

techniques to build a language for this purpose.

93

5
A Tacit Requirements Metamodel

“A significant factor behind the difficulty of developing complex

software is the wide conceptual gap between the problem and the

implementation domains of discourse” France et. al [29].

Conceptual Data Models (CDM) provide a shared understanding of the busi-

ness domain of a system. In this chapter, we propose a rich CDM metamodel

that is able to impart both explicit and implicit information obtained via

Pre-Implementation Ethnography in view of bridging the communication gap

between requirements and design. The chapter begins by introducing the no-

tion of a Tacit Contract, which is a design level obligation aimed at enhancing

requirements-level data schemas by highlighting implicit information in a CDM

that a designer must consult in the subsequent phases of the SDLC. A CDM

metamodel is proposed for this purpose. Finally, we present a formalisation

of the CDM metamodel alongside a case study as a motivating real world

example that uses our modeling language to construct its CDM.

5.1 Tacit Contracts in Requirements Analysis

The primary aim of data modeling is to identify entities in the problem domain

and possible relationships and associations amongst these entities. A large and

increasingly growing body of research continues to support model and data-

driven approaches to software development. The process of data modeling

94

5.1. TACIT CONTRACTS IN REQUIREMENTS ANALYSIS

fulfils a number of purposes in software engineering: from visualising high-

level conceptual models to detailing with high complexity, the structure of the

storage data schemas via physical data models.

The beginning of a typical data modeling task starts with conceptual data

modeling in the requirements analysis phase of the SDLC. There are no con-

straints or limits on the expressiveness of Conceptual Data Models in the field

of data modeling. For this reason, there are several possibilities in terms of

scope when looking purely at what a CDM captures. From the perspective of

describing the structure of a domain, it would be beneficial for a rich CDM to

capture all the dimensions of data that characterize a domain.

Indeed, at the requirements level, tacit information can be maintained

adequately through comments and annotations on a data model. However,

such an approach, on its own, offers no guarantee that key forms of tacit

information will be carried across into design.

While a rich CDM that contains both explicit and implicit information may

be beneficial at the design phase of the SDLC because of its comprehensive

nature, the level of detail may be overwhelming to even the most experienced

data analysts. In addition, there is the challenge of correctly discriminating

between implicit and explicit information in the model. For this reason, it may

be useful to provide a way of communicating what aspects of the CDM concern

explicit properties of the model, and aspects that concern implicit properties

which must be acknowledged when moving from the Conceptual Model to the

Logical Model.

We introduce the notion of a Tacit Contract, to specify the categories of

information in a CDM that are an implicit nature. More formally, a Tacit

Contract is a design element that is found in a requirements deliverable such

as a Conceptual Data Model that distinguishes elements of a CDM that are of

an implicit kind, from explicit elements. By ‘design elements’, we are referring

to components of the CDM which include entities, attributes, relationships

and so on.

The purpose of a Tacit Contract is not just to make the distinction be-

tween different kinds of information in the CDM, it is also intended to be used

to communicate the importance of design elements that are not explicit, and

95

5.2. TOWARDS A TACIT REQUIREMENTS METAMODEL

add meaning to explicit elements. What this does between the requirements

and design phase, is communicate a correct representation of the model across

the phases by creating a design obligation between the requirements analyst

and the designer. For example, it may be important to visually express time

sensitivity in a model between entities by incorporating a temporal relation-

ship in the CDM. This convention creates design obligations for the designer

and ensures a consistent understanding that implicit elements in a CDM are

understood to be tacit.

5.2 Towards A Tacit Requirements Metamodel

While requirements stage data schemas represented as CDM’s, can be cap-

tured adequately with a classifactory notation such as UML class diagrams,

UML alone (or comparative notions such as E-R diagrams) are not suitable

to capture tacit forms of information. This is due to the fact that UML, E-R

diagrams and so on, are not directly intended to be used to represent implicit

information. What would normally happen is schemas will be represented in

classifactory notations, and tacit information would normally be represented

by use cases or extra notations. The problem with such a method is that these

extra notations are not guaranteed to be carried across to design.

In this section, we propose a tacit requirements metamodel that is used to

construct CDM’s that permit both implicit and explicit forms of data. This

is done via Tacit Entities, Attributes and Relationships. The abstract syntax

of the metamodel is presented using the class diagram shown in Figure 5.11.

1Figure 5.1: Metamodel for defining Comprehensive Conceptual Data Models (Page 97)

96

5
.2
.

T
O
W
A
R
D
S
A

T
A
C
IT

R
E
Q
U
IR

E
M
E
N
T
S
M
E
T
A
M
O
D
E
L

Figure 5.1: Metamodel for defining Comprehensive Conceptual Data Models

9
7

5.2. TOWARDS A TACIT REQUIREMENTS METAMODEL

Schema is the root element in the metamodel. An instance of Schema contains

0..* Entity instances. The Entity metaclass allows us to define data concepts

within the schema. Data concepts in the model can either be explicit or tacit.

Explicit data types are instances of Entity which is super-class of TacitEntity.

The TacitEntity metaclass allows us to create entities based on implicit infor-

mation. The composition relationship between TacitEntity and Entity allows

the creation of more complex structures.

RelationshipEnd and Relationship allow us to define associations between

Entity instances. They also allow us to define associations between Attribute

instances. Relationship is a super-class of TacitRelationship which is a generali-

sation of a number of tacit relationships: (i) SpatialRelationship, relating to the

space between Entity or Attribute instances (ii) TemporalRelationship, relating

to ‘time’ based relationships between Entity instances; and (iii) AffinityRela-

tionship, relating to the likeness between Entity instances.

Moving back to the Entity metaclass, the metamodel permits entities, and

relationships to each have attributes. Therefore there is a has relationship

between Entity and Attribute, and the same between Relationship and Attribute.

Each of these associations also hold a multiplicity of 0..* on the relationship

end of the Attribute metaclass.

The Attribute metaclass is a super-class of TacitAttribute. TacitAttribute has

a composition relationship with the Attribute. TacitAttribute is a generalisation

of a number of tacit attributes in our model: OptionalAttribute, PartialAttribute

and ImmutableAttribute. AttributeAssociationEnd and AttributeAssociation allow

for defining relationships between Attribute types and TacitAttribute types.

The model is generic in that it does not strictly specify components in the

CDM. If a new domain specific CDM component is needed, the appropriate

metaclass can be extended.

Model Notation

UML notations are important. They enable models to communicate the se-

mantics of the domain. UML Notations can be adapted to fit the context

of a particular domain through various extensibility mechanisms. Different

98

5.2. TOWARDS A TACIT REQUIREMENTS METAMODEL

notations are used to serve different purposes. For example, Class Notation:

used to define the structure of domain objects in a system; Object Notation:

used to represent actual instances or implementations of domain objects; Use

Case Notation: used to capture system behaviours and actions of entities in

the domain, and so on.

We propose a syntax for the modeling language that will be used to mark

up and communicate the tacit semantics of the domain in the CDM. This

is done by using one of the extensibility mechanisms of UML which permits

extending the visual syntax of UML class diagrams.

The visual syntax of UML class diagrams can be extended via a specializa-

tion profile, consisting of “stereotypes” [14]. A stereotype is an element that

provides a way of refining the meaning of an element in a UML model. Any

visual element of UML can be equipped with a refined, specialized semantics

by means of a stereotype annotation.

We utilise a profile of UML that enables us to explicitly identify implicit

information within our model. Model elements annotated with the tacit stereo-

type enable us to distinguish tacit information from the explicit data schema

itself. We prescribe any visual element of the UML class model, in particular

classes, attributes, associations and so on, with the tacit stereotype, which is

our specialization semantics. The stereotype is written as follows:

<< tacit >>

The convention is that the requirements model is annotated with this

stereotype, where the model holds identifiable elements that are tacit and

distinguishable from elements in the model that refer to constructs of the ex-

plicit data schema. In the next section, we describe a formal semantics of the

metamodel.

99

5.3. CONSTRUCTIVE TYPES FOR PRE-IMPLEMENTATION
ETHNOGRAPHY

5.3 Constructive Types for Pre-Implementation

Ethnography

“One of the things which the discussion of ethnography might be

instrumental in starting, perhaps, is an examination of the dogma

of formalism and the proper scope of design sensibilities” Ander-

son [5]

Given the openness of the metamodel to be able to prescribe models that incor-

porate multiple dimensions of information, in particular explicit and implicit

information, there is an important requirement for the choice of formalism for

defining the ‘open’ semantics of the metamodel. The formalism must be capa-

ble of representing the naturalistic view of Pre-Implementation ethnographic

findings. For this reason, we employ Constructive Type Theory (CTT) as the

formalism for defining our model semantics.

Constructive Type Theory is an open approach to constructing rich type

systems [65] [60]. It is most often used as a means of describing system func-

tionality, specifying logical properties of systems, reasoning about systems and

tracing their execution. Constructive type theory can also be employed as a

framework for defining logics, with each new logic defined by its own set of

rules, behaviours and semantics. The approach is based on Martin-Lof’s idea

of formal type theories for mathematics [65]. Martin-Lof envisaged mathemat-

ics as a kind of ‘open system’; like a game in which the mathematician defining

the system is free to invent new rules that establish new ways of doing maths.

For example, a mathematician might have a set of rules for dealing with nat-

ural numbers. When a new rule is required to work with other numbers, for

instance rational numbers, a new set of rules is added.

Background & Notations

Constructive Type Theory is understood through the reasoning of the notion

of types. The notion of a type extends that of the theory of sets in constructive

mathematics. Types are formed by specifying the criteria for their construc-

100

5.3. CONSTRUCTIVE TYPES FOR PRE-IMPLEMENTATION
ETHNOGRAPHY

tion. Constructive Type Theory is based on Constructive Mathematics where

a proposition P is determined by the type of its proof p. This can be written

as follows:

p ∈ P

The statement reads ‘p is a proof of the proposition P’, or ‘p is an inhabitant or

term of P’ etc. The concept of a proof being an ‘inhabitant’ of its proposition

allows for possibility of multiple proofs of the proposition. For instance, let

K = {p, q, r} be a set of proofs of the proposition P. Any of the proofs p, q

or r are considered ‘inhabitants’ of P. Therefore the following statements are

valid: p ∈ P, q ∈ P, r ∈ P.

In Martin-Lof’s philosophy of type theory, we can prove P, by creating an

object of type P. This follows the principle of mathematical constructivism,

which asserts that the proof of an object is in its ability to be instantiated.

Martin-Lof’s notation p : P is different but it shares the same behaviour as p

∈ P in meaning that p is a proof of the proposition P.

The expressiveness of CTT creates the possibility to be specific about cer-

tain properties and traits of a system through the formulation of axioms and

rules of the system. From a requirements engineering perspective, this can

enable a systems analyst to write structured rules about the specification of

an information system, and specifically for data modeling concerns. CTT is

a richer and more expressive language than other logics. We are able rea-

son about systems, given a sets of use cases or systems rules that need to be

formalised.

Reasoning about Systems

In the formalism that we are employing, when reasoning about systems, there

is no “objective” truth. Objective truth is a set of statements that are inde-

pendent of perception or theory. In this formalism, we say that a truth of a

‘thing’ is verified by a logical statement about it. For example, we write:

World |= φ(F)

101

5.3. CONSTRUCTIVE TYPES FOR PRE-IMPLEMENTATION
ETHNOGRAPHY

This statement reads: ‘World verifies the logical statement F’. As is illustrated

in the statement description, |= means verifies (or checks), F is some logical

statement, World is a description of some context (for example, the classical

truth for a system). As an example, let S represent a system and Fs represent

the specification of the system. This statement can be written as follows:

S |= φFs

This is the same as saying the system S conforms to its specification Fs (use-

cases, design models and so on).

In Martin-Lof’s notion of logical calculus and his concept of what it means

to judge a truth, every judgement in S consists of a term t and a proposition

P, such that t : P. The t allows us to navigate the way in which the current

proposition has become true. The term t should be thought of as a trace

which gives us an audit trail of how that fact has come to be. This is of course

determined by the rules of the system that permit the term to be instantiated.

In general, the term t will encompass a sequence of functions (f0, f1, f2,

..., fn) that operate over basic business entities and data types that are rep-

resented in the model. This enables us to create rules over entities that are

implicit or explicit.

Using terms and functions, and being able to operate over business entities

and data types, we are equipped with the flexibility and control needed to

define use cases that involve:

a) Relationships between both explicit and implicit data types

b) Modes of use, and context of use

Rules

We consider a number of necessary concepts that will enable us to define the

rules of a system:

102

5.3. CONSTRUCTIVE TYPES FOR PRE-IMPLEMENTATION
ETHNOGRAPHY

a) Introduction rules allow us to define conditions under which a new proposi-

tion holds from an old set of circumstances

b) Elimination rules allow us to use current knowledge to form new knowledge

of a different kind.

In addition to these rules, there are also general rules for the “entities” and

data types employed in a system specification. This is more like standard

Martin-Lof type theory, or even defining classes in Java. For example:

Person is a type
(Formation Rule)

n:string p:string a:int

Person{ name = n; postcode = p; age = a} : Person
(Constructor)

103

5.4. THE FORMALISM FOR THE CDM

5.4 The Formalism for the CDM

In this section, we present the formalism of the tacit requirements metamodel2.

In the formalism description, we will refer to the metamodel with the symbol

M. The formalism consists of a list of elements where E is a metaclass type

and e1, e2, ..., eN are elements in the metamodel M.

We first define the atomic propositional structure of the formalism over model

elements. This is expressed as follows:

Rel(e1, e2, ..., eN)

Definitions:

i) Rel is a predicate over the elements e1, e2, ..., eN in the metamodel M.

ii) Rel can be a relationship in the metamodel operating over a set of elements

of the model such as entities or attributes.

iii) The language contains a set of logical operators: ∨, ∧, ⇒, ¬.

For each of the logical operators, we have a number of introduction rules :

∨ Rule

The ∨ rule states that if we have a proof of A or a proof of B, we can introduce

A ∨ B, which reads ‘A or B’.

∨ Introduction Rule

a : A
inl(a) : (A ∨ B)

(I1 ∨) ✞

✝

☎

✆5.1

b : B
inr(b) : (A ∨ B)

(I2 ∨) ✞

✝

☎

✆5.2

2Refer to Figure 5.1 on Page 97 for the metamodel

104

5.4. THE FORMALISM FOR THE CDM

∨ Elimination Rule

a : (A ∨ B)

fst(a) : A
(E1 ∨) ✞

✝

☎

✆5.3

b : (A ∨ B)

snd(b) : B
(E2 ∨) ✞

✝

☎

✆5.4

∧ Rule

The ∧ rule states that given a proof of A and a proof of B, we can introduce

A ∧ B, which reads ‘A and B’.

∧ Introduction Rule

a : A b : B

pair(a,b) : (A ∧ B)
(I ∧) ✞

✝

☎

✆5.5

where pair(a,b) is a function defined over the terms a and b.

∧ Elimination Rule

a : A b : B

fst(a) : A
(E1 ∧) ✞

✝

☎

✆5.6

a : A b : B

snd(b) : B
(E2 ∧) ✞

✝

☎

✆5.7

105

5.4. THE FORMALISM FOR THE CDM

⇒ Rule

The ⇒ rule states that if we have a proof of B which has A amongst its set of

assumptions, we can introduce A ⇒ B, which reads ‘A implies B’.

⇒ Introduction Rule

a : A....
b : B

f⇒(a,b) : (A ⇒ B)
(I ⇒) ✞

✝

☎

✆5.8

⇒ Elimination Rule

a : A p : (A ⇒ B)

b : B
(E2 ∧) ✞

✝

☎

✆5.9

¬ Rule

The ¬ rule (or not rule) states that if we have a proof of A and ¬A, this leads

to a contradiction or absurdity.

a : A b : ¬A

absurdity(a) : B
(¬) ✞

✝

☎

✆5.10

where B is anything. This means that we have a contradiction. Our inference

system can conclude anything, as if it is corrupted.

Application Rule

The application rule states that terms can be combined to form new rules.

b : E1 a : (E
1
⇒ E2)

app(a,b) : E2

(E ⇒) ✞

✝

☎

✆5.11

106

5.4. THE FORMALISM FOR THE CDM

Metamodel Schema Template

The formalism for the metamodel can be expressed via the following rule:

e1 : E1 e2 : E2 ... eN : EN

f(e
1
, e2, ..., eN) : R(E

1
, E2, ..., EN)

✞

✝

☎

✆5.12

The metamodel schema template reads as follows: given the set of proofs and

their types e1:E1, e2:E2, ..., eN :EN , the following statement can be concluded:

f(e1, e2, ..., eN) : R(E1, E2, ..., EN).

The function f(e1, e2, ..., eN) (hereafter, we refer to this as F) is a function

over the terms and R(E1, E2, ..., EN) (hereafter, we refer to this as R) is a

relation over the types in the pre-condition. F corresponds to a use case of

the system and R corresponds to explicit or implicit relationships or formulaes

over the Types of the terms provided. This can be read by saying that use

cases are terms of data relationships in the system.

We follow Martin-Lof’s theory which permits new rules to be defined, to

tell us when combinations are valid. Let e : E denote that e is a term of E

where E is metaclass instance of the metamodel M.

For example, take E to be a metaclass instance and R to be an instance of

TacitRelationship. The proof of R is a function over the proofs E.

e1 : E e2 : E

f(e
1
e2) : R(E)

✞

✝

☎

✆5.13

Looking more broadly, elements E in the model M, may represent any concep-

tual type according to the metamodel (Figure 5.13). For example, an arbitrary

conceptual type EN can be an instance of: Entity, Attribute, Relationship. Im-

plicit types may also be represented using the Tacit specialisations of their

explicit counterparts: TacitEntity, TacitAttribute and TacitRelationship.

This modeling approach is intended to be employed by an analyst whose

3see page 97

107

5.5. WHY CONSTRUCTIVE TYPE THEORY?

task is to model observations derived from Pre-Implementation Ethnography

leading to the establishment of a set of rules. If an unusual situation is ob-

served, the analyst is free to add new introduction, elimination and formation

rules to accommodate it. As the system evolves, rules may be modified as

required.

5.5 Why Constructive Type Theory?

There is the question over the use of Constructive Type Theory, and not

the more widely used means of specifying requirements and rules such as use

cases. Type theory gives us all the benefits of an open and extensible formal

system. Rules can be added and deleted on demand. This extensibility feature

is unusual for a formal system, and semantically we are allowed to do this in

CTT.

From a requirements point of view, the rule system can mirror system re-

quirements even through evolutionary phases. For instance, when stakeholders

introduce new requirements or when existing requirements are modified. In

addition to this, CTT permits the literal definition of rules and facts. It allows

the analyst to correctly specify use cases, usage scenarios and data relation-

ships between entities.

Consider the following statement about an employment contact policy: ‘An

employee has an employment contract with their employer’. In this statement,

Employee, Employment Contract and Employer represent entity types. For sim-

plicity we will model Employer as the type Company, and Employee as the the

type Person. The rule can thus be written as follows:

Let Employs(A,B) be the predicate over two terms A and B of type Company

and Person respectively, denoting that A employs B.

c : Company p : Person e : Employs(c,p)

q : EmploymentContract(c,p)
✞

✝

☎

✆5.14

108

5.5. WHY CONSTRUCTIVE TYPE THEORY?

The term q is the proof term of the type EmploymentContract(c,p). An addi-

tional rule can be added to say that, if a person has an employment contract

with an employer, that person is employed.. Let IsEmployed(A) denote that

the A is employed, where A is of type Person.

q : EmploymentContract(c,p)

e : IsEmployed(p)
✞

✝

☎

✆5.15

Through logical inference, rules 5.14 and 5.15 allow the following derivation:

‘A person is considered to be employed if they have an employer’.

c : Company p : Person e : Employs(c,p)

t : IsEmployed(p)
✞

✝

☎

✆5.16

This can also be written as shown in rule 5.17 and illustrated in the metamodel

instance in Figure 5.2.

(c : Company) ∧ (p : Person) ∧ (e : Employs(c,p)) ⇒ IsEmployed(p)
✞

✝

☎

✆5.17

Figure 5.2: Metamodel Instance Example of Employment Contract

Formalising Rules

The formalisation step focuses on extracting a particular set of requirements

of the form typically found in requirements analysis methods: specifying the

109

5.6. THE MEDICAL RECORDS CASE STUDY (PT. 2)

main use cases, identifying business objects, entity relationships and so on.

These tasks are typical of most RE methods. We gain significant advantage

from using CTT as the means of representing these requirements:

a) Openness and extensibility: The meaning of any symbol (or object) is given

by the rules of its construction – how it forms a concept, or how it forms

data. Every particular system (mathematical or otherwise) is determined

by a set of rules that are open to addition/deletion. Our method allows us

to create a new logical system (a new logic) for every information system,

rather than using a pre-defined logic to do so. This alleviates some of

the issues encountered where a particular system is constrained to using

existing logics that may have been generalised to solve particular types of

modeling problems.

b) Tracability: This is a novel notion of data in which an information system is

seen to be a means of manipulating concepts and information – the seman-

tics comes through the traces. Traces are created when we build application

rules over terms in the system. A concept is a logical specification of how

things stand currently and can include predicates over values. A concept’s

value or validity is given by its contextual history, that is, by a trace of how

information has been processed to “construct” or “support” that concept.

Concepts are seen as retaining an individual persistence, but their support

or construction is mutable over time. Essentially, it enables us to audit and

determine how we arrived at a given fact by means of functions over basic

entities as types. These functions correspond to applications of use cases.

Therefore it provides a trace over use cases.

5.6 The Medical Records Case Study (Pt. 2)

As a motivating example of formalising the rules of a system using CTT, we

revisit the Medical Records Case Study by Heath and Luff [42] that was in-

troduced in Chapter 44. This section begins by introducing what we view as

4Medical Records Case Study Pt. 1: Chapter 4, Section 4.5, page 85

110

5.6. THE MEDICAL RECORDS CASE STUDY (PT. 2)

a ‘Naive Conceptual Model’ (NCM) which is a model of a domain that is con-

structed solely on explicit information. Following this, a more comprehensive

‘Tacit Conceptual Model’ (TCM) is introduced alongside a formalisation of its

rules in Constructive Type Theory. Finally, a comparison of both the NCM

and TCM is given to highlight the main differences between each model, and

the advantages of the TCM.

5.6.1 Naive Conceptual Model (NCM)

We will be using class diagrams in the Unified Modeling Language (UML) to

construct the conceptual data model of the medical records system. If the

data model of the medical records system is constructed solely on explicit

information, we argue that a software designer will arrive at the UML class

diagram very similar to the one shown in Figure 5.3.

This is of course one possible solution in the UML class structure amongst

several alternatives. However, what all the solutions will have in common will

be a data schema based on each of the explicit attributes that each record is

composed of.

Figure 5.3: Initial Model for the Medical Records System

The schema begins with the MedicalRecord class, which describes the main

structure of attributes of a patients record in the VAMP system. The Med-

icalRecord class consists of the patients personal details and medical record

number. The attributes of the class have been modeled based on the infor-

mation that was recorded on the A5 envelope that makes up each patients

medical record.

111

5.6. THE MEDICAL RECORDS CASE STUDY (PT. 2)

The schema shows a relationship between MedicalRecord and Consultation-

Note with a multiplicity of 0..∗. This denotes that an instance of Medical-

Record can 0 or more instances of ConsultationNote associated with it. The

ConsultationNote is the type structure that represents the data collected during

a medical consultation visit. The attributes of the ConsultationNote correspond

with the attributes that were implied in the case study to be recorded during

medical consultations.

In addition, as there was the possibility for the medical practitioner to add

additional types of information to each consultation note, the option to add

such information is facilitated through the 0..* relationship between Consulta-

tionNote and Artifact. The structure of the Artifact class is such that it can

represent any kind of data that can be added to a consultation note. Each

ConsultationNote instance may be associated with a number of Artifact in-

stances which may be one of the enumerated types of ConsultationNoteObject.

This is intended to be used to model any kind of additional data that is not

encoded as an attribute of a consultation note, but is part of a consultation

note by composition or association. Examples include: medical referral notes,

discharge letters, doctors notes and so on.

5.6.2 Tacit Conceptual Model (TCM)

Introduction

In this section, we present a tacit conceptual model of the VAMP system, in

view of the ethnographic findings presented in the case study by Heath and

Luff. We begin with a summary of what is known about both the implicit and

explicit relationships in the model.

Model

The TCM will be modelled based on both the explicit and implicit data that

was presented in The Medical Records Case Study (Pt. 1)5:

i) A set of attributes:

5Section 4.5, page 85

112

5.6. THE MEDICAL RECORDS CASE STUDY (PT. 2)

a) The required attributes recorded in each consultation note include:

date and location (hereafter, we classify these as process attributes).

b) The key medical concepts recorded during a medical consultation ‘op-

tionally’ include: symptom, diagnosis, prognosis, treatment (hereafter,

we classify these as model attributes).

ii) A set of relationships: From the analysis of the findings of the case study,

we know that a number of relationships may exist between the consul-

tation note records in a patients medical record – persistence of illness,

continuation of treatment and so on. In addition, we know that the ‘pres-

ence’ or ‘arrangement’ of attributes can infer meaning through attribute

relationships in the data.

iii) Openness: As was highlighted in the case study, the production of a

consultation note does not involve applying a set of rules that ascertain

what must be included in it.

Given the brief overview of the relationships and associations of the model

elements in the system, we propose an improved requirements-level model for

the medical records system, as shown in Figure 5.4 6.

6Figure 5.4: Tacit Conceptual Model (TCM): Medical Records System (Page 114)

113

5
.6
.

T
H
E

M
E
D
IC

A
L
R
E
C
O
R
D
S
C
A
S
E

S
T
U
D
Y

(P
T
.
2
)

Figure 5.4: Tacit Conceptual Model (TCM): Medical Records System1
1
4

5.6. THE MEDICAL RECORDS CASE STUDY (PT. 2)

The model begins with the MedicalRecord class which encapsulates the

structural attributes of its paper counterpart. These attributes were modelled

based on the data recorded on the A5 envelope. MedicalRecord has a has

relationship with ConsultationNote. This reflects the requirement of 0 or more

ConsultationNote instances belonging to a MedicalRecord instance, as shown by

the 0..* multiplicity on the relationship end of ConsultationNote

ConsultationNote is composed of two attributes. It has a has relationship

with ModelAttribute. ModelAttribute is a generalisation of attributes of Con-

sultationNote that are medical oriented. That is - Diagnosis, Symptom and

Treatment. Each of these attributes form part of a ConsultationNote instance.

The filled diamond on the relationship end of consultation demonstrates this

aggregation – a ModelAttribute instance is part of a ConsultationNote instance.

On the relationship end of ModelAttribute, the relationship is constrained by

a 1..3 multiplicity, denoting a minimum of one ModelAttribute instance in the

relationship, and a maximum of three.

In order to denote the characteristic of position pertaining to instances of

ModelAttribute, a composition relationship exists between ModelAttribute and

SpatialAttribute. SpatialAttribute is a tacit entity in the model, which has a

position attribute to record the position of the ModelAttribute instance.

ConsultationNote comprises a number of reflexive associations. These asso-

ciations are tacit relationships between ConsultationNote instances that sup-

port the implicit relationships between themselves. The relationships include:

DateRelationship, DiagnosisRelationship, TreatmentRelationship, SymptomRela-

tionship. An association class on the DateRelationship association allows us to

model the behaviour and extra constraints of the association that a standard

association cannot describe. The DataRelationshipAttribute is used to add a

TimeWindow instance via a composition aggregation, in order to constrain the

set of ConsultationNote instances that hold this relationship.

Finally, as consultation notes may contain auxiliary information such as

medical referral notes, discharge letters, doctors notes and so on, a relation-

ship exists between ConsultationNote and Artifact. An instance of Consulta-

tionNote may contain 0..∗ Artifact instances. Each Artifact may be one of the

enumerated types of ConsultationNoteObject

115

5.6. THE MEDICAL RECORDS CASE STUDY (PT. 2)

As the model shows, there are entities and relationships annotated with

the <<tacit>> stereotype to distinguish them from explicit elements in the

CDM. Each of the tacit elements in the model are instances of elements defined

in the CDMMetamodel7. For example DateRelationship, SymptomRelationship,

TreatmentRelationship and DiagnosisRelationship are all specialisations of Tac-

itRelationship. In the next section, we extend the semantics of the model by

describing the rules that formalise the tacit information in the model.

Rules

We look at the date relationship (hereafter, DateRelUseCase) from the medical

records case study as an example of expressing data rules using this formalism.

Therefore, given DateRelUseCase, let:

• C represent the ConsultationNote class.

• DateRelationship(X,Y) will denote the predicate “there is a date relation-

ship between X and Y”, where X:C and Y:C.

Therefore:

c1 : C c2 : C α : DateRelationship(c
1
,c2)

DateRelUseCase(c
1
,c2,α) : β

✞

✝

☎

✆5.18

The expression combines C as an explicit type and a date relationship to

express the property.

7Metamodel for defining Comprehensive Conceptual Data Models: Figure 5.1, Page 97

116

5.6. THE MEDICAL RECORDS CASE STUDY (PT. 2)

Medical knowledge β is a set of medical truths over set of tuples of type

symptom, diagnosis, treatment. Let MedicalRel(A,B) denote that there is a

medical relationship between A and B, where A and B can each be a symptom,

diagnosis or treatment.

β ≡ MedicalRel(c1.diagnosis,c2.diagnosis)
∨

MedicalRel(c1.diagnosis,c2.treatment)
∨

MedicalRel(c1.diagnosis,c2.symptom)

✞

✝

☎

✆5.19

Diagnosis Relationship - DiagRel:

Let DiagRel(A,B) denote that there is a diagnosis relationship between A and

B, where A and B are instances of ConsultationNote.

d1 : DiagRel(c
1
,c2) d2 : DiagRel(c

2
,c3)

DiagnosisInference(d
1
, d2) : DiagRel(c1,c3)

✞

✝

☎

✆5.20

We can say this because of the transitive property. If DiagRel(c1,c2) and

DiagRel(c2,c3) then by the transitive property over the 3 elements, we can say

DiagRel(c1,c3). Therefore:

DiagRel(c
1
,c2) ∧ DiagRel(c

2
,c3) ⇒ DiagRel(c

1
,c3)

✞

✝

☎

✆5.21

Symptom Relationship - SymRel:

Let SymRel(A,B) denote that there is a symptom relationship between A and

B, where A and B are instances of ConsultationNote.

s1 : SymRel(c
1
,c2) s2 : SymRel(c

2
,c3)

SymptomInference(s
1
, s2) : SymRel(c

1
,c3)

✞

✝

☎

✆5.22

117

5.6. THE MEDICAL RECORDS CASE STUDY (PT. 2)

SymRel(c
1
,c2) ∧ SymRel(c

2
,c3) ⇒ SymRel(c

1
,c3)

✞

✝

☎

✆5.23

Treatment Relationship - TreatRel:

Let TreatRel(A,B) denote that there is a treatment relationship between A and

B, where A and B are instances of ConsultationNote.

t1 : TreatRel(c
1
,c2) t2 : TreatRel(c

2
,c3)

TreatmentInference(t
1
, t2) : TreatRel(c1,c3)

✞

✝

☎

✆5.24

TreatRel(c
1
,c2) ∧ TreatRel(c

2
,c3) ⇒ TreatRel(c

1
,c3)

✞

✝

☎

✆5.25

As can be seen all tacit relationships become predicates and the semantics for

predicate is linked up to a trace over the record. This becomes a use case. The

next section makes a comparison the Naive Conceptual Model and the Tacit

Conceptual Model.

5.6.3 Model Comparison

In this section, we take a look at how the Naive Conceptual Model8 compares

with the Tacit Conceptual Model9. From the onset, a few observations can be

made about the two models.

Firstly, aspects of the design that pertain to explicit data and functionality

(e.g. ER diagrams, UML Diagrams and so on) are invariant, thus remaining

the same. That is, the kind of data schema that will be inferred from any

kind of UML analysis of both of our models will more or less be the same.

8Naive Conceptual Model: Figure 5.3, page 111
9Tacit Conceptual Model: Figure 5.4, page 114

118

5.6. THE MEDICAL RECORDS CASE STUDY (PT. 2)

Secondly, with regards to design, the core schema types are invariant. The

following invariant classes (or entities) exist in both diagrams:

i) MedicalRecord

ii) ConsultationNote

iii) Artifact

The NCM and TCM are both valid conceptual data models, each show-

ing a different level of detail representing the structure of the requirements

schemas. As is shown in the NCM, the data schema of the medical records

system can be captured adequately using a classificatory notation such as UML

class diagrams. However the UML alone (or comparative notations such E-R

diagrams) is not suitable to capture tacit forms of information. This is be-

cause, by definition, such diagrams are employed as a means of defining design

models, and not for implicit actions, relationships and associations between

entities. In practice, such forms of data would be represented by use cases,

extra annotations, comments on the model or user stories.

The Tacit Conceptual Model provides a range of requirements feature im-

provements over the original schema:

a) Tacit Information:

The TCM highlights various forms of data that are otherwise hidden in

the NCM such as the tacit elements and relationships. The TCM might

differ slightly in comparison to the naive conceptual model, but there now

we have extra relationships to denote the tacit information and attributes

of the data in the system. For example, relationships between consulta-

tion notes based on symptom similarity via a SymptomRelationship on the

ConsultationNote class.

Association classes on tacit elements in the TCM designate additional forms

of data on elements in the model. The TCM shows an example of represent-

ing data about a tacit relationship through the use of association classes.

DateRelationshipAttribute is an association class in the schema that holds

119

5.7. DISCUSSION

fields to support the data requirements of a date relationship between two

consultation notes. By marking up classes in this way, the analyst will be

communicating how an aspect of data in the model should be addressed. In

this case, the model shows the need of the eventual design of consultation

notes to be addressed in a way that the time window is taken into account.

b) Detailed Representation:

A good conceptual model is a good form of documentation of the data

requirements of a system. As CDM’s are typically the source models of

LDM’s, getting the level of detail right at the start of the process can have

a positively significant impact on development. In light of this, the first

step of the modeling process is to determine what dimensions of data need

to be captured. Constructing a TCM based on a metamodel that permits

both implicit and explicit data will provide the right features for coverage

of loose and fine grained detail.

A metamodel that allows the construction of tacit elements provides the

flexibility of giving a more accurate representation of the structure of con-

cepts and the attributes they embody through CDM’s that instantiate

them. In contrast, constructing a CDM based on explicit data alone may

not be clear enough in the design phase. For example, in the naive con-

ceptual model, symptom, treatment and diagnosis were all direct instance

fields of ConsultationNote. This structure does not express the relation-

ship between ConsultationNote instances based on these attributes. In the

tacit conceptual model, an association was made between ConsultationNote

and a new ModelAttribute class with a multiplicity of 1..3 to express the

optionality of symptom, treatment and diagnosis through a generalization

relationship with these classes.

5.7 Discussion

When tacit information is expressed in a conceptual data model, it takes the

physical form of an explicit member element. From a data modelling per-

spective, this can be seen as tacit information making the transition from

120

5.7. DISCUSSION

implicit knowledge to explicit knowledge. Tacit Contracts are offered as prac-

tical proposals for communicating design obligations to a designer. The literal

understanding of tacit information in a data model should be understood from

the perspective of providing an additional facet of information to aid in the

understanding of explicit information in the domain. While such elements are

explicit in the model, they must still maintain their inherent implicit meaning.

As such, this meaning is preserved by a stereotype which provides the distinc-

tion between elements that should be considered as explicit, and elements that

should be viewed as implicit.

The contention of our work has been that highlighting tacit aspects of

records in conceptual models plays a key part in improving the RE process

by allowing the designer to come up with a design level solution that better

fits the domain. Looking at traditional data modeling, associations and clas-

sifactory relationships are normally made between explicit entities and data

members. The fact that the TCM encapsulates tacit information which may

not be implemented explicitly in a subsequent model, for instance the LDM,

shows the type of complexity that can be obtained not only through using our

metamodel, but also from the fact that its formalisation supports this feature.

Even from a storage perspective, although the schema shape of the TCM

changed to accommodate some new features (in comparison to the NCM), at

a database level this can be represented in a completely different way. Re-

finements can still be made in the succeeding Logical Model when the TCM

moves to the next phase of the SDLC. The emphasis is on the CDM being a

blueprint [25], a real characterisation of the structure of the business domain.

We note 3 important highlights:

Systematic Inquiry

The need to develop a comprehensive CDM incites the obligation to conduct a

systematic inquiry of the main structure and outlook of the business domain.

This thesis has highlighted Pre-Implementation Ethnography as a means of

executing elicitation activities in the requirements gathering phase. Ethno-

121

5.7. DISCUSSION

graphic reportage can impact the requirements model in a number of ways.

Ethnography invokes an exploratory mode of inquiry. It is through an open

research method like this that tacit information in a business context can be

uncovered.

Tacit information itself can be complicated. While ethnography can be

broad, the scope of an ethnographic study can be confined to elucidating the

role of entities in a business context to understand usage contexts. As is shown

in the case study, a number of new relationships were added to the model after

an extended analysis of the usage contexts of the records.

Stakeholder Communication

Communication is an important aspect of software development and main-

tenance. As such, it is important to convey the right information to the

stakeholders of a software project. It is also important that needs of business

stakeholders are understood by developers and communicated appropriately

between other participants of the SDLC. Conceptual Data Models play a key

part in uncovering mismatches of both expectations. Concerning this, we con-

sider Tacit Contracts as an important contribution.

Tacit Contracts are a means of contractually binding the designer to ad-

dress key aspects of a record’s implicit and explicit information profile obtained

from Pre-Implementation Ethnography. Tacit Contracts demand that the de-

signer provides a solution based on the profile of the CDM. Notwithstanding

this condition, the actual way each requirement is addressed is deferred to

the design phase of the SDLC. We contend that the correspondence of tacit

requirements in the model may very well entail a radically different design to

match the data requirements. We do note however that in the design phases,

the CDM will be used in conjunction with other requirements deliverables to

outline various aspects of system design (platforms, interfaces, architecture

and so on).

122

5.8. SUMMARY

Dimensions of Data

It is important to understand the complexity of incorporating different dimen-

sions of data in a model. We argue that the relationships between entities in a

model based solely on explicit information such as the NCM, are not as diverse

as those that may be found in a TCM. Explicit relationships between data el-

ements (entities, attributes etc) are not as cross cutting as tacit relationships.

Looking back at the case study, it showed that relationships may exist between

attributes due to properties that pertain to space, time, dimension etc. The

nature of tacit based elements (attributes, entities, relationships etc) purports

to be one of a complex form which may not have a straight forward transla-

tion or mapping to models at the Logical Level (the LDM) and models at the

physical level (the PDM). Tacit based elements are more complicated as they

embody a lot of information about the records they describe.

5.8 Summary

This chapter has taken the position that tacit information should be made ex-

plicit in the conceptual data model of a system, as it provides a clearer picture

of the business domain model. We introduced the notion of Tacit Contracts

as design level obligations that communicate important implicit features of

a business context to a designer. In order to support Tacit Contracts as a

design level obligation, a metamodel was proposed for defining Conceptual

Data Models capable of supporting both implicit and explicit information.

The metamodel was accompanied by its formalisation in Constructive Type

Theory. As a demonstration of a real world application of our modeling lan-

guage, the medical records case study was revisited showing how an analyst

might approach constructing a conceptual data model based on ethnographic

reportage elicited in the Pre-Implementation phase. In the next chapter, we

demonstrate our approach on a larger case study problem on the development

and trial of an auction house sales sheet system.

123

Part III

Methodology Application and

Conclusions

124

6
A Case Study in Auction House

Systems Design

This chapter presents a case study on the development and trial of a sales sheet

system that was conducted at a U.K auction house. The study is aimed at

demonstrating the movement of analysis models from requirements gathered

through ethnographic field observations, into design and implementation. The

case study utilises Pre-Implementation Ethnography techniques as a mode of

inquiry and elicitation. Furthermore, Post-Implementation Ethnography is

used as a method of evaluation and review of the final system.

The chapter begins with an overview of the case study, including the mo-

tivation for selecting the auction domain. This is followed by an outline of the

problem setting which sets out the aims and objectives of the case study. The

chapter then gives some background on the auction domain, in order to provide

some context to the study. This is followed by an overview of the approach

and development process that covers each of the activities and methods within

Pre-Implementation, Implementation and Post-Implementation. Finally, the

evaluation and discussion present the findings and conclusions of the case

study.

125

6.1. INTRODUCTION

6.1 Introduction

This chapter presents a case study that applies the main concepts of ethno-

graphic requirements analysis and model driven engineering in software de-

velopment. It was beneficial to conduct a case study, as it allowed further

investigation into a real world situation that adopted the model driven ap-

proach to requirements analysis that has been presented in this thesis. It was

also beneficial in being able to better understand the the merits and limitations

of this work.

The case study centres around the software development approach de-

scribed in this thesis, which utilises methods drawn from ethnography in the

early and final phases of software development for elicitation and evaluation

respectively. The approach is ‘model-driven’, as it relies on the use of models

to express system elements of the problem domain in requirements, design and

implementation models.

The application domain of the case study is auctions. Specifically, we

investigate the usage problems of a sales sheet system used in the sales room

of an auction house. Selecting the auction domain as the problem setting

offered some key advantages. It allowed us to illustrate several notions:

i) Modeling Relatively Complex Data Scenarios:

The auction house salesroom is an interestingly complex setting. It pre-

sented a number of data modeling challenges on account of the tacit in-

formation derived from social and behavioural factors.

ii) Implications of Multi-party Interaction on Design:

Unlike the medical records study presented in previous chapters, the sales

sheet problem moves from a two to three party interaction scenario to

multi party interaction, involving several participants. This ultimately

created the need for further consideration of the data management needs

of the system.

iii) Conceptual Modeling & Design Level Guidance:

We show how tacit requirements obtained from observational analysis of

126

6.2. SCOPE AND PURPOSE OF STUDY

the problem setting can be used as a basis for conceptual design at the

requirements level, and interface design guidance at the design level.

iv) Technical Solution Guidance:

The proposed system pointed to a number of possible technical solutions

that each satisfied the system requirements. We show how tacit informa-

tion in the constructed conceptual data model is able to inform the choice

of design and implementation directions in a system.

In addition, there were a number of practical reasons for selecting the auction

domain. There was a significant amount of interest from a nearby auction

house in trialling a new sales sheet system. This had the added advantage that

the auction house permitted open access for research, which was beneficial to

any form of evaluative trials or studies that needed to be planned. The next

section, describes the purpose and scope of the case study.

6.2 Scope and Purpose of Study

The subject of our analysis work was to investigate the use a Sales Sheet Sys-

tem at Peter Wilson Fine Art Auctioneer, and a trial of a possible replacement

system. Peter Wilson Fine Art Auctioneer is an established Auction House in

the U.K that specialises in auctions of fine art and antiques.

The particular focus of the study was to understand the use of the sales

sheet system between the auction sales room and the admin office, and conduct

a trial with a newly developed system that replaces the old system. This piece

of work involved:

i) studying the existing system

ii) eliciting requirements for a new system

iii) developing a new system

iv) evaluating the new system.

127

6.3. THE AUCTION DOMAIN

It is important to have some background of the auction domain to aid in

understanding of the context in which we present our analysis work. As such,

in the next section, we present a broad overview of the auction domain.

6.3 The Auction Domain

An auction is a market mechanism which facilitates the buying and selling

of goods (lots) governed by a set of rules and constraints between market

participants, both buyers (bidders) and sellers (vendors), and any specific rules

implemented by the auction house. The rules of an auction determine how lots

are traded, and how lots are allocated, including price variations. According

to McAfee and McMillian (1997), an auction is:

[...] a market institution with an explicit set of rules determining

resource allocation and prices on the basis of bids from the market

participants.

Given the open nature of auctions, in that rules can be bespoke to any

particular type of auction system, there are several variations to auction sys-

tems. In this case study, we restrict our discussion exclusively English Auctions,

otherwise known as ‘open ascending price auctions’.

The English Auction

The English auction is a well understood auction system and is one of the most

commonly known auction formats. It is an auction system where bidders com-

pete against each other for the purchase of lots by proposing a purchase price

(also called bid price), with each bid price between bidders increasing from

the last maximum bid price that was proposed by another bidder. The action

of a bidder proposing a bid price is called a bid. A bidder is said to outbid

another bidder, when he/she proposes a bid price that is higher than the last

proposed bid. During the sale of each lot, the maximum bid price is recorded

by an official host of the auction house, called the auctioneer. A winning bid-

der (also referred to as maximum bidder) is declared by the auctioneer when

128

6.3. THE AUCTION DOMAIN

a bidder proposes a bid price that no other bidder is willing to outbid. This

follows with the obligation that the maximum bidder purchases the lot, at the

winning bid price.

Auctions involve a number of participants: (i) Auctioneers (ii) Market Partic-

ipants (iii) Vendors.

i) Auctioneers: Auctioneers act as brokers or intermediary between bidders

and vendors. The Auctioneers role is to conduct an auction and ensure

that it is governed according to house rules of the auction system in use

eg. English Auction. Part of this responsibility is to accept bids for lots

being sold on behalf of vendors, and to declare lots sold when there is a

winning bid price on a lot.

ii) Market Participants: The visitors of the auction, make up the ‘market

participants’. We find it necessary to categorise market participants into

bidders (or prospective buyers) and spectators. Bidders are market par-

ticipants that are interested in buying goods at the auction. On the other

hand, spectators have no intention of buying goods and thus do not par-

ticipate in the bidding process. In this chapter, we restrict our view of

market participants to bidders, and we refer to them as such.

iii) Vendors: Vendors refer to the actual owners of the lots being sold. The

vendor assigns a collection of goods to the auctioneer or the auction house

to sell on his behalf. This process may accost a commission to be paid

by the vendor to the auction house, as a fee for finding potential bidders

who may purchase the lot.

With the preceding overview serving as a background, we describe the organi-

sation of auctions and bidding process in more detail in the next two sections.

6.3.1 Auctions

Auctions begin with the auctioneer reviewing a list of lots that have been

selected to be sold in the auction. The auctioneer does this to gain some

129

6.3. THE AUCTION DOMAIN

familiarity with the entire catalogue that is for sale, and to take note of any

high profile lots that may attract a significant number of bids.

The organisation of the auction sale process is such that lots are sold in lot-

number order. This ordering is contingent upon the conventional sales process

being done without any problems e.g. (i) the withdrawal of a lot by a vendor

(ii) late entry of a very sought after lot (iii) an invalid sale occurring due to

bidding by an unregistered participant.

At the start of the auction, the auctioneer introduces each lot by announc-

ing the details of lots that are up for sale according to the sales catalogue for

the current auction. The details announced by the auctioneer may include the

items catalogue number, a description of the item and a starting price which

bidders must bid against. With respect to the starting price, special rules of

the auction system may permit the vendor of the lot to set a minimum price

at which the lot can be sold for and nothing less. This minimum sale price is

called the reserve price. As such, a lot with a reserve price can only be sold

at the auction if winning bid price for the lot is at least equal to the reserve

price set by the vendor. The auctioneer must take this into account when

conducting bids between market participants, and so the starting bid price of

the lot may be adjusted based on the reserve. If the maximum bid does not

meet this price, the good will remain unsold in that auction.

Following the auctioneers introduction of a lot, the auctioneer invites com-

petitive bids from market participants. Participation in the bidding process

requires bidders to be registered to do so. During bidder registration, each

prospective bidder is assigned a unique buyer ID, which they must submit to

the auctioneer at the close of every sale that they are appointed ‘winning bid-

der’. If the lot has a reserve price, the auctioneer must first verify that the

highest bid price at least meets the reserve before announcing the lot as sold.

If the reserve price is not met, the auctioneer may record the maximum price

that the lot attracted, but the lot will remain unsold. Also, in situations where

an auction item receives no bids from market participants the good will also

remain unsold at the auction and may be auctioned again at a later date. The

process continues until the auctioneer has introduced the last lot for sale for

the session.

130

6.4. APPROACH & DEVELOPMENT PROCESS

6.3.2 Variations to the Bidding Process

While the most predominant activity of an auction is bidding, there are several

variations to the form which may be implemented differently across auction

houses: (i) restrictions on how bids are offered by bidders (ii) restrictions on

what types of participants may take part in the auction (ii) limits on the

maximum and minimum bids for lots (iv) affordances that concern the way

bids can be made e.g. ‘remote bidding’ which permits bidders to place bids

away from the auction house via telephone dial-in, the internet, email and

and so on. In addition to this, some English auction houses permit ‘absentee

bidding’. This permits a bidder to place a bid prior to the auction. In this

case, the bidder submits their maximum bid price for a lot that will be for sale

at the auction. The auctioneer then bids on behalf of the bidder during the

auction according to the bidders requirements. Bids of this kind are referred

to as commission bids.

6.3.3 Summary

This section presented an overview of the auction domain, specifically in rela-

tion to English Auctions, to give some context to the domain of the case study

conducted at Peter Wilson Fine Art Auctioneers. The next section presents

the details of the case study which apply our approach to software develop-

ment that use ethnographic and model driven engineering techniques to (i)

review an existing sales sheet system at an auction house (ii) develop a new

sales sheet system (iii) evaluate the newly developed system.

6.4 Approach & Development Process

In this section, we describe the development approach of sales sheet system at

Peter Wilson Fine Art Auctioneers. The section is split into four subsections.

The first subsection presents an overview of the methods used for data analysis

and interpretation in the case study. This is followed by three subsections that

capture the activities used in the case study, in each of the SDLC categories

131

6.4. APPROACH & DEVELOPMENT PROCESS

as presented below and illustrated in Figure 6.1:

i) Pre-Implementation

ii) Implementation

iii) Post-Implementation

Figure 6.1: SDLC for Auction House Sales Sheet Development

6.4.1 Data Analysis and Interpretation

The approach used for data analysis and interpretation involved using obser-

vational techniques and interviews to gain an understanding of the setting to

uncover the different roles and responsibilities of the users of the system. It

also involved an assessment of the needs of each of the users based on the ex-

perience of the system that was already in use. Therefore sample sales sheets

were collected in order to build an understanding of the data model of the

system and understand how the data was used in the different contexts of the

132

6.4. APPROACH & DEVELOPMENT PROCESS

sales flow. Before we expand our discussion on this, we present a set of key

interests and the principal activities that guided the analysis work:

i) Understand the Domain: Our approach was to begin by developing a deep

understanding of the work practices of staff at the auction house with

respect to their use of the already deployed paper based sales sheet system.

ii) Client Interaction: The purpose of the study was made clear to the staff

at the auction house and was designed to be as unobtrusive as possible.

Details regarding potential areas of interest within the auction house for

data collection were highlighted. In addition to this, all critical informa-

tion regarding access and the use of the data were answered and agreed

upon upfront.

Data collection was a formal part of our overall approach and guided by a set

of data collection activities. The activities were divided by the three SDLC

categories as presented in Table 6.1. It was important that the physical setting

was understood, and was thus necessary to obtain useful information about

the existing system from key stakeholders. For this work, data collection

was carried out by multiple observers. This provided the benefit of having

several perspectives on the subject. It also reduced the time appointed for

‘ethnographic inquiry’ at the auction house.

For Pre-Implementation, data collection was primarily done through in-

terviews and participant observation. Initial interviews were initially unstruc-

tured, which to an extent allowed a broad exploration of how each of the

stakeholders believed the auction house was conducted. Furthermore, a num-

ber of semi-structured interviews were carried out at a later date in order to

investigate potential areas of interest that arose from the initial set of un-

structured interviews. Pre-Implementation Field notes included a broad de-

scription of the different entities in the auction house, and their activities and

interactions. Diagrams and photographs were also used to capture dynamic

behaviours in the field.

For Post-Implementation, the main source of data collection was through

field observations and video ethnography. Our approach to video data collec-

tion was influenced by the extensive guide for video analysis written by Heath

133

6.4. APPROACH & DEVELOPMENT PROCESS

SDLC Category Principal Activities

Pre-Implementation • Observation

• Unstructured and Structured Interviews

• Needs Assessment

• Stakeholder Consultation

Implementation • Iterative Review

• Rapid Development

Post-Implementation • Video Ethnography

• Interactive Observation

• Structured Interviews

• Evaluation

Table 6.1: Data Analysis and Interpretation Activities

et. al [40]. The initial step was to identify the right data subjects to film, and

what locations were best to film.

6.4.2 Pre-Implementation

Pre-Implementation ethnography can be instrumental in gaining an under-

standing of a domain. It brings together a number of research and analysis

activities that occur before any kind of formal requirements analysis phase.

In this section, we describe the use of Pre-Implementation Ethnography in

the early stages of the software development process of the sales sheet sys-

tem for Peter Wilson Fine Art Auctioneers. We show how both explicit and

implicit requirements were informed through (i) interviewing key participants

(ii) analysing the current sales sheet system (iii) observing the environment in

its normal working condition. Final remarks are given concerning key findings

and particular points of interest for the design phase.

134

6.4. APPROACH & DEVELOPMENT PROCESS

Needs Assessment

Needs assessment is the task of working out what is expected (or required)

from a newly proposed system. This can be done based on the experience of an

already deployed system. This form of exploratory research may be arranged

between researchers and key stakeholders, or it may occur away from the field

after sufficient data has been collected. In both cases, it is done to ensure that

the proposed system captures what is needed by the client.

For this purpose, a number of interviews were arranged with the auction

staff and a number of domain experts in order to further understand the oper-

ations of the auction house. The discussions were aimed at developing a clear

understanding of the use of the sales sheet and its different usage contexts and

gaining an understanding of how contingencies and exceptions are dealt with.

This was necessary for understanding the current sales sheet system user roles,

actions and processes of each stakeholder in the sales process of the auction

house. Before elaborating on each of these points, we provide an overview of

the current sales sheet system.

The Current Sales Sheet System

The sales sheet system used at the auction house took the form of a paper doc-

ument (Figure 6.2, page 136) which had a number of usage contexts depending

on the member of staff using it.

The sales sheet held all the information about lots that were going to be

be sold at the auction. This information included a list of each lot, containing

details such as: lot number, lot description, price estimate and vendor infor-

mation. The sales sheet served a number of uses to the auctioneer. It was used

(i) as a guide for the auctioneer to use to commence bidding (ii) a reference

guide on how to handle bidding (iii) a record of what was sold, and not sold

during the auction (iv) a proof of sale. For this reason, it had a number of

hand written annotations on it to record extra pieces of information that were

necessary for each usage context, which we discuss in subsequent sections.

Figure 6.2 shows an example of a newly printed sales sheet without any

handwritten annotations on it. For privacy reasons, the vendor information

135

6.4. APPROACH & DEVELOPMENT PROCESS

Figure 6.2: Current Sales Sheet

has been obscured.

The sales sheet consists of a number of well defined fields:

i) Lot No: represents a unique identifier for a lot being sold in the auction.

This identifier is only unique for the current auction.

ii) Article and Description: represents all the information that describes the

136

6.4. APPROACH & DEVELOPMENT PROCESS

lot. Though it is not explicitly labelled on the sales sheet, the data can

be broken down into a number of fields:

a) Vendor ID: a unique identifier that is assigned to a registered vendor.

It allows the auction house to identify the respective owners of lots.

b) Vendor Name: represents the given name of the registered vendor that

is identified by the vendor ID.

c) Vendor Address: the contact address of the vendor that is identified

by the vendor ID.

d) Price Estimate: a guide price as to what the lot might sell for. The

lower range of the price estimate is the reserve.

e) Description: a visual description of the lot, including any notices re-

garding the condition of the lot. eg. defects

iii) Reserve: represents the minimum asking price for a lot. It is specified by

the vendor of the lots and is used exclusively at the auctioneers discretion.

Generally, this information is not shared with market participants. This is

an optional field on the sales sheet and can either be ‘Fixed’ or ‘Discretion’

as shown above the reserve in the example sales sheet.

iv) Buyer: The buyer field is intended to be used to record the winning bidders

ID. This ID is provided to a bidder by the auction house at point of

registration prior to the start of the auction.

v) Price Sold: The price field is intended to be used to record the price offered

by the maximum bidder. There is a close association between the price

and buyer fields. Both fields are required for the sale of an item during

the auction and proper processing of the sale post-auction.

Roles, Actions and Processes of the Sales Sheet Users

The sales sheet was used by multiple staff at the auction house for the purposes

of recording data and passing on information between staff. In particular staff

‘users’ included auctioneers, clerks/admin staff and bookkeepers. Usage of the

137

6.4. APPROACH & DEVELOPMENT PROCESS

sales sheet began with the clerk whose task was to create the sales sheet by

collating all the data that was relevant to the sale. In particular data on lots

being auctioned in the sale, vendor information and relevant reserve prices

and commission bid information. Following the creation of the sales sheet, the

clerk would proceed to print the sales sheet.

From the point of print, up to the start of the auction, the sales sheet is

handled by clerks and admin staff in the back office. Once it is printed, it

becomes the working copy for that auction. Admin staff are also required to

maintain the working copy up to the point of auction. They have the respon-

sibility of keeping the sales sheet up to date and recording any information

about the lots that may require any updates before the the start of the auction

– for example: the addition or amendment of a reserve price of a lot, or the

addition of an extended notice of the condition of a listed lot.

Clerks may also need to record absentee bids (or commission bids) when

buyers contact the auction house. Commission Bids are registered via an Ab-

sentee Bidding Form. The details collected on the form include the buyers

permanent bidding number, the date of the sale and the buyers personal con-

tact details which include: name, address and telephone. The lot number and

the maximum bid price are taken. This data is also recorded on the sales sheet

against the relevant lots.

Prior to the start of an auction, the auctioneer is required to collect the

working copy of the sales sheet for the auction from the admin office. Through-

out the auction, the auctioneer is disposed to utilise the sales sheet as his main

resource for information on the lots that are being sold in that session. After

each sale, the auctioneer must record the price and buyer data into the desig-

nated columns on the sales sheet, or a note to indicate that the lot was not

sold.

Part of the process of the auction is dealing with post-sale activities which

includes recording sales information on to the ledger system, receiving pay-

ments from winning bidders and so on. However these activities can only

begin once the sales information on the sales sheet reaches the admin office.

In effect, this means that the sales sheet needs to be transferred from the

salesroom back to the admin office.

138

6.4. APPROACH & DEVELOPMENT PROCESS

In order to reduce delays finalising sales and accepting payments for lots

won by bidders, rather than waiting for the entire auction sale to close, the

sales sheets are transferred back to the admin office over a number of intervals

until the end of the auction. The fact that lots are listed 5-per-page (see

Figure 6.2, page 136) allows the auctioneer to release a completed sales sheet

for collection by an envoy who delivers it to the book keeper in the admin office.

The auctioneer initiates this action by dropping a completed sales sheet behind

his seated position on the rostrum. It is only then that an envoy can pick-up

the sheet and deliver it to the admin office.

At some point, the book keeper will receive the sales sheet. It is only then

that he will begin to enrol the winning bid price and winning bidders id for each

lot on to the accounts ledger system. The book keeper also processes any tasks

or special instructions from the auctioneer that may have been handwritten

as a note on the sales sheet.

Based on the process description given, a number of high level use cases

that capture the essential aspects of the working process of the current sales

sheet system have been composed. Table 6.21 shows an illustration of the

use case vocabulary description of the system. Use case names have been

assigned to each of the process actions that were described in this section.

Also provided, is a summary of the description and the principal actors of

each process action. In subsequent sections, we refer to these use cases as

HL-Usecases. Figure 6.32 is a use case diagram which illustrates the system

entities (or actors) of the sales sheet system, as well as the behaviours (use

cases) that are associated with the role of each entity. Actors are represented

by stick figures with a role name, and use cases are represented by ovals with

a use case name. Associations between actors and use cases are indicated by

a line drawn between the actor and the use case.

In the next section, we look at the role of the sales sheet in the operation

of the auction house. We elaborate on some of its usage contexts and usage

contingencies which were elicited from interviews arranged with the auction

staff.

1Table 6.2: High Level Use Case Description (Page 140)
2Figure 6.3: Use case diagram of Auction House High Level Usecases (Page 141)

139

6.4. APPROACH & DEVELOPMENT PROCESS

Action Use Case Name Principal Actor Summary

create Create Sales Sheet clerk The action taken to col-
late the lots related ven-
dor information of lots
that will be auctioned in
the sale.

print Print Sales Sheet clerk The action taken to pro-
duce the working copy of
the sales sheet.

maintain Update Sales Sheet clerk The action taken to keep
the information on the
sales sheet up to date.

collect Collect Sales Sheet auctioneer Moving the sales sheet
from the admin office to
the salesroom.

utilise Use Sales Sheet auctioneer Usage actions of the sales
sheet during an auction.
Eg. reading, scanning.

record Record Sales Data auctioneer The process of recording
price and buyer data on
the sales sheet after a
sale.

release Release Sales Sheet auctioneer Dropping the sales sheet
at the collection point.

pick-up Pick Up Sales Sheet envoy Retrieving the sales sheet
from the collection point.

deliver Deliver Sales Sheet envoy Dropping the sales sheet
in the admin office.

receive Receive Sales Sheet bookkeeper Retrieving the sales sheet
from the collection point
in the sales office.

enrol Enrol Sales Data bookkeeper Inputting sales data from
the sales sheet on to the
ledger system.

Table 6.2: High Level Use Case Description

140

6.4. APPROACH & DEVELOPMENT PROCESS

Figure 6.3: Use case diagram of Auction House High Level Usecases

Analysis of the Sales Sheet

The sales sheet plays a crucial role in the working process of an auction sale.

Analyses of several examples of both complete and incomplete working copies

of sales sheets were instrumental in understanding the behaviour of the dif-

ferent actors in the system. Use of the sales sheet occurred in 3 main usage

contexts:

i) Pre-Auction

ii) In-Auction

141

6.4. APPROACH & DEVELOPMENT PROCESS

iii) Post-Auction

Pre-Auction

In contrast to a newly printed sales sheet3, a Pre-Auction sales sheet has a

number of annotations. The sales sheet is handled by the admin clerk and is

located in the admin office. Figure 6.4 is an image of a Pre-Auction sales sheet

as it might appear right before an auction.

Figure 6.4: Sample Pre-Auction Sales Sheet

The handwritten data refers to commission bids. Commission bids are

recorded against the lots that their respective bidders are bidding against.

The data is recorded in the article and description column on the sales sheet,

on the right side of the vendor information.

3Current Sales Sheet - Figure 6.2, Page 136

142

6.4. APPROACH & DEVELOPMENT PROCESS

As is shown in the figure, the commission bids data is not labelled. How-

ever, the users of the sales sheet are able to cope with this kind of tacit

information as a result of the format being consistent across all auction sheets

used in the auction house. Each commission bid entry takes the form of an

ordered pair (bidder id, price). The bidder ID of the absentee bidder appears

first, followed by a hyphen to separate the maximum bid price which follows

after.

Up to the point at which the auction starts, as new commission bids arrive,

they are recorded against the lots that their respective bidders have bidded

against. Also if any information about the lots requires any alterations (e.g. lot

description, reserve etc), the changes will be made directly on the sheet (and

duplicated on any back office systems where the data needs to be replicated).

Figure 6.5 shows an example of a section of a sales sheet where a note has

been written to indicate the withdrawal of a lot from the sale. This is done

to ensure that the working copy has the right information at the start of the

auction.

Figure 6.5: Extract from a Pre-Auction Salessheet demonstrating the with-
drawal of a lot

Prior to the start of the auction, the auctioneer collects the set of sales sheets

for the auction from the admin office and proceeds to take them to the sales

room where the auction will take place. This process transitions the Sales

Sheet from Pre-Auction to In-Auction.

In-Auction

The sales sheet in the In-Auction environment is handled by the auctioneer.

Figure 6.6 shows an image of a sample sales sheet as it might appear during

an auction after sales data has been recorded on it by the auctioneer.

The sales sheet shows a number of interesting handwritten fields and anno-

tations. We refer to the way in which sales data is recorded: Lots 587, 588 and

143

6.4. APPROACH & DEVELOPMENT PROCESS

Figure 6.6: Sample In-Auction Sales Sheet

589 are examples of the sale of a lot going to a bidder that is not a commission

bidder. As is shown in the figure, the data is recorded as an ordered pair

(bidder ID, price). The winning bidders bidder ID is recorded first, followed by

a hyphen and then the price the lot was sold at. It is worth noting that this

is the same arrangement of fields that is used by the clerk, when recording

commission bids.

In the event that the winning bid comes from a commission bid, the winning

price is recorded in the price sold column, just as it is done in the standard

case (Lots 587, 588, 590). However the buyers id is not recorded in the buyer

column. Instead a circle is drawn around the maximum price specified in the

commission bid entry of the winning bidder, and a line is drawn between the

maximum bid price and the price recorded in the ‘price sold’ column. Lot 591

in Figure 6.6 demonstrates this example.

144

6.4. APPROACH & DEVELOPMENT PROCESS

In the example shown, a price of 160 is written in the price sold column. A

circle is drawn around the maximum price field in the commission bid entry

of the winning bidder – in this case it is drawn around the price of 200. A line

is drawn between the circled maximum price of 200, and the price of 160 that

was recorded in the price sold column. This creates an association between

the commission bids entry and the price recorded in the price sold column,

indicating that the bidder that issued the commission bid is the winning bidder.

We identify this ‘association’ as tacit. In this particular example, the winning

bidder is the bidder identified by bidder ID 1110.

The sales sheet is transitioned from the In-Auction environment to the

Post-Auction environment by an envoy who collects the set of completed sales

sheets from the sales room at regular intervals, and delivers them to the back

office for book keeping.

Post-Auction

In the Post-Auction environment, the sales sheet is handled by the book

keeper. Figure 6.7 shows an image of a sales sheet as it might appear fol-

lowing the entry of sales data on to the ledger system.

As is shown in Figure 6.7, the post-auction sales sheet contains a number

of additional annotations created by the book keeper. For example, the total

price of all the lots on the current sheet is written towards the bottom left

region of the sales sheet. At the bottom right region, the running price total

of all sheets up to and including the current sheet is recorded. The book keeper

uses this information for data validation when inputting data on to the ledger

system. As the book keeper types in the price and buyer information for each

lot into the ledger system, he ticks off the relevant lot on the sheet. Ticks can

be seen for each lot in the example sales sheet shown in Figure 6.7.

During data entry, if the book keeper enters an incorrect price on to the

ledger system, there will be a mismatch in the total price recorded on the

sales sheet and the total price computed by the ledger system. If a mismatch

is found, the book keeper will be able to trace the error more much more easily

using the totals recorded on the sales sheet.

145

6.4. APPROACH & DEVELOPMENT PROCESS

Figure 6.7: Sample Post-Auction Sales Sheet

Preliminary Observations

1. Open Canvas

As a result of the sales sheet being paper based, it is effectively an open canvas

which allows its users to annotate freely on it with very little restriction. This

may very well have its advantages. For example, notes may be recorded on

the sheets in exceptional cases and new ‘tacit’ data fields may be introduced

arbitrarily. The fact that it is open allows the auctioneer for example to

swap back and forth between records while writing. Though this may be

advantageous in certain circumstances (e.g. a late bid being offered), it has

the disadvantage that it is prone to error – the auctioneer is easily able to

record the price and buyer information for a sale on the wrong lot.

146

6.4. APPROACH & DEVELOPMENT PROCESS

2. Snowballing Data

Looking at the images side by side (as is shown in Figure 6.8), it shows how

how conceptually, the sales sheet transforms between its various usage envi-

ronments, from pre-auction into in-auction and finally into post-auction.

Figure 6.8: Sales Sheets Side-by-Side

The path of the sales data between these environments and how it is snow-

balled (or transformed) is typical of the movement of data between data bound-

aries in software systems. For example, moving data between components,

data enrichment between processes and so on. For this reason, and due to the

social nature and organisation of the setting, care must be taken so that tacit

requirements are not lost when drawing up the requirements for the system.

In order to support new fields, rather than redesigning the layout, the

open space on the sheet was used to record various items of data regarding

particular lots and in some cases, instructions for other users of the sales sheet

to action. For example, notes to the auctioneer were seen to be recorded by the

admin staff for the auctioneer to use during the auction. On a similar account,

notes to the book keeper were seen to be be recorded by the auctioneer. The

book keeper also annotated the sales sheet with some useful markers, including

‘ticks’ to indicate which lots had been processed on the accounts system. To

the untrained eye, the sales sheet may be hard to comprehend. However it

maintained a useful record of information that was well understood by its

147

6.4. APPROACH & DEVELOPMENT PROCESS

users.

3. A One Handed Sales Sheet System

An important observation of the current salessheet system was the auctioneers’

one handed use for form completion. Each auctioneer held the gavel with one

hand, and the pen they used to record sales information with the other hand.

Occasionally the pen would be dropped on the surface of the rostrum while

hand gestures were made to interact with bidders in the room. But what was

most common amongst the auctioneers was that the gavel was held in the

other hand and hardly placed down. Annotations on the sales sheet were done

solely with one hand.

4. Process Bottleneck

A typical auction at Peter Wilson’s Auctioneers consists of upwards of 400 lots.

This number can increase significantly depending on the type of auction and

the expected turn out of auction participants. However in this discussion, we

will use 400 lots as the average measure. At 5 lots per sheet (as shown in the

example sales sheet in Figure 6.2, page 136), a typical auction will result in 80

sales sheet. The repeated task of transferring sheets from the salesroom to the

admin office undoubtedly creates a bottleneck in process. In addition to this,

the current practice of handwritten record management creates a bottleneck

in the workflow of the paper based sales sheet system. Looking at it from

the perspective of bidders, a number of problems are also evident. The fact

that the sales sheets are dropped behind the auctioneer in anticipation of

collection by the envoy slows down the process of getting sales data on to the

ledger system. This results in slower finalising of sales, impacting both on the

payment and collection times for winning bidders. Due to this, goods cannot

be paid for or redeemed until the relevant sales information has been enrolled

on to the ledger system by the book keeper.

Domain Models

In this section, we discuss the design of the system from the perspective of

data and the conceptual models of the system. Through the analysis of the

148

6.4. APPROACH & DEVELOPMENT PROCESS

sales process in the auction house and the understanding of what the bidding

process entails, we arrived at the Taxonomy of Sales presented below.

Taxonomy of Sales

In order to outline the very specific details of the different possibilities or

outcomes of a sale, we present a taxonomy of the categories of sales within

the auction house. This taxonomy is presented in Figure 6.9. The auction

sales taxonomy begins with the Sale class which is the highest generalisation

of possible auction sale categories at the auction house. It specialises to two

classes of sales represented by BiddedSale and UnbiddedSale. As the names

suggest, an instance of UnbiddedSale relates to auction sales that have not

attracted any bids from bidders. On the other hand, an instance of BiddedSale

relates to auction sales that have attracted at least one bid.

Figure 6.9: Taxonomy for sales in the auction house

However as the description of the problem domain points out, a BiddedSale

can both result in the sale of a lot if the reserve is met, and no sale if none of

the bids that were submitted met the reserve price of the lot. For this reason,

BiddedSale has two specialisation classes: (i) AcceptedSale - this is a legitimate

sale according to English Auctions. This is where there is a maximum bidder,

and the bid price has at least met the reserve price of the lot. (ii) RejectedSale

- this type of sale occurs when a particular lot has attracted bids from market

participants but the highest bid offered for the lot has not met the reserve

price of the lot. Given this taxonomy, we note that the only instantiable sales

149

6.4. APPROACH & DEVELOPMENT PROCESS

classes of the system are AcceptedSale, RejectedSale and UnbiddedSale. As such,

the system will need to be able to process each of these types of sales. The

next section introduces the data model of the sales sheet which is formulated

around this taxonomy.

The Sales Sheet Conceptual Model

As with any conceptual data model, the Auction House Salesheet CDM pro-

vides a visual case in point for reference of the domain. The model describes

the domain “entities” and “attributes”, both explicit and tacit, that have been

informed through Pre-Implementation Ethnography. The CDM of the sales

sheet system is presented via the class diagram shown in Figure 6.104. The

CDM is formed of abstract and concrete syntax of the domain, and static

semantics. It shows the domain concepts, and relationship between domain

concepts via association relationships. It also includes a number of tacit at-

tributes and relationships.

4Figure 6.10: Sales Sheet Conceptual Data Model (Page 151)

150

6
.4
.

A
P
P
R
O
A
C
H

&
D
E
V
E
L
O
P
M
E
N
T

P
R
O
C
E
S
S

Figure 6.10: Sales Sheet Conceptual Data Model

1
5
1

6.4. APPROACH & DEVELOPMENT PROCESS

The CDM begins with the Auction class which represents a physical auction.

An instance of Auction consists of at least one SalesSheet instance. This is de-

noted by the 1..* multiplicity on the relationship end of SalesSheet. As Auction

instances have multiple SalesSheet instances, we use the CollectionRelationship

to define the relationship between all the SalesSheet instances that belong to

an auction.

As actions in the back office can affect auction data, in particular sales sheet

data, there is CascadeRelationship between Auction and BackOfficeSystem and

also between SalesSheet and BackOfficeSystem. CascadeRelationship is a tacit

relationship that represents data actions between explicit entities and tacit

entities. For instance, deleting a lot on the back office system would require

crossing out a lot on the sales sheet, as demonstrated through the analysis of

sample sales sheets. BackOfficeSystem is a tacit entity. Though it also has a

data model of its own, we are able to represent it as an entity in the model to

show its effect on explicit entities in the CDM.

Referring back to the SalesSheet instance, SalesSheet has a ‘contains’ rela-

tionship with Lot. A multiplicity of 1..5 constrains the minimum and maxi-

mum number of lots on each sheet within these values. SalesSheet also has a

tacit relationship with Lot that is of type Crossable. This relationship mod-

els the behaviour of physically crossing out a lot, which in principle is the

same as ‘deleting the lot. Lot contains a number of attributes id, lot number,

price estimate, description. Both Vendor and Reserve have been extracted into

classes. A Lot instance is owned by 1 Vendor. A Vendor owns none or more Lot

instances. Vendors can be individuals or companies. Reserve is a generalisation

of the two specialised types of reserves: FixedReserve and DiscretionReserve. A

Lot instance has none or 1 Reserve instance.

Referring back to the Lot class, it has an association with the Commis-

sionBid class. As a lot may or may not have commission bids booked against

it, there is a multiplicity of 0..* to constrain the number of bid instances.

Each CommissionBid instance also has respective associations with CBidder

and CPrice which each hold the bidder and price attributes of the commission

bid respectively. PairRelationship associates both CBidder and CPrice indicating

that they are dependent on each other.

152

6.4. APPROACH & DEVELOPMENT PROCESS

Looking back at the Lot class again, it also has an association with the

Sale. A Lot instance is sold in a Sale instance. The Sale instance also has a

Tickable tacit relationship with the SaleSheet. This relationship has a multi-

plicity of 5 on the relationship end side of Sale. Tickable defines the action of

verifying and validating lots recorded on the sales sheet in the Post-Auction

environment. The Sale class assumes the same taxonomical family of entities

and relationships shown in Figure 6.9, but with some additional semantics

defined over new relationships with entities.

As the auctioneer may optionally append a note to a sale, there is a none

or 1 multiplicity on the relationship end of the has relationship between Sale

and Note. Sale also has a Discretion tacit relationship with the Auctioneer

class. This defines the role of the Auctioneer in a sale that falls under the

discretionary terms, as discussed in the overview of ethnographic findings.

Every sale that attracts a bid requires that the highest price raised from the

audience is recorded. If the highest bid falls within the terms for a valid sale,

therefore the amount bid is at least the value of the reserve, then the bidder

id is recorded. These behaviours are modelled via the relationship between

the Price class and BiddedSale class, where the Price instance represents the

bid price of the sale. PairRelationship is a tacit relationship which models the

dependence between both the Bidder and Price classes.

Annotation is a tacit entity that defines actions of physically writing there-

fore it has a Handwriting relationship with the explicit data entities in the

model that were identified during analysis as handwritten entity types. These

entities include: CommissionBid, Note and BiddedSale.

In order to provide a complete model for the auction house sales sheet

system, we will provide the syntax that describes the rules and semantics of

the tacit information in the model. The next section elaborates on these rules.

System Rules

In this section, we specify a number of rules using our modeling language to

define the semantics of the range of tacit information specified in the concep-

tual model of the auction house that was presented in Figure 6.10. We define

153

6.4. APPROACH & DEVELOPMENT PROCESS

the following predicates which are used in the rules specified in this section.

i) Discretion(a,b): denotes the auctioneers authority to confirm or reject a

sale, where a:AcceptedSale and b:Auctioneer.

ii) PairRelationship(x,y): denotes if x and y have a pair relationship, where x

is a bidder id and y is a bid price.

iii) Dependent(x,y): denotes the mutual dependence between x and y, where

x is a bidder id and y is a bid price.

iv) Crossable(p,q): denotes if q is crossable by p, q:Lot and p:SalesSheet.

AuctionSale Use Case:

A sale is accepted if the bid price is at least the reserve price.

a:AcceptedSale b:Auctioneer

auctionSale(a,b) : a.price.amount ≥ a.Lot.Reserve.price
✞

✝

☎

✆6.1

AuctionSale with Discretion Use Case:

A sale is accepted if the bid price is less than the discretionary reserve, and

the auctioneer applies discretion.

a:AcceptedSale b:Auctioneer d:Discretion(a,b)

auctionSale(a,b,d) : (a.Price.amount < a.Lot.DiscretionReserve.price)
✞

✝

☎

✆6.2

Unbidded Sale Use Case:

If a lot has not attracted any bids, skip the lot.

u:UnbiddedSale b:Auctioneer l:Lot

skipLotUseCase(u,b,l) : UnbiddedSale(l)
✞

✝

☎

✆6.3

154

6.4. APPROACH & DEVELOPMENT PROCESS

Rejected Sale Use Case:

Reject a sale if the bid price is less than the fixed reserve price.

r:RejectedSale b:Auctioneer

rejectSaleUseCase(r,b) : r.Price.amount < r.Lot.FixedReserve.price
✞

✝

☎

✆6.4

Valid Bid Use Case:

A bid is valid if it has a bidder id and a price.

q:AcceptedSale l:Lot

validBidUseCase(q,l):PairRelationship(q.Bidder.id,q.Price.amount)
✞

✝

☎

✆6.5

Accepted Sale Pair Relationship Use Case:

An accepted sale has a pair: bidder and price, which are dependent attributes.

a:AcceptedSale p : PairRelationship(a.Bidder,a.Price)

requiredPair(c,p) : dependent(a.Bidder.id,a.Price.amount)
✞

✝

☎

✆6.6

Rejected Sale Annotation Use Case:

A rejected sale is verifiable, valid and tickable.

s:SaleSheet q:RejectedSale

verificationUseCase(s,q):verifiable(q) ∧ valid(q) ∧ tickable(q)
✞

✝

☎

✆6.7

155

6.4. APPROACH & DEVELOPMENT PROCESS

Unbidded Sale Annotation Use Case:

An unbidded sale is verifiable, valid and tickable.

s:SaleSheet q:UnbiddedSale

verificationUseCase(s,q):verifiable(q) ∧ valid(q) ∧ tickable(q)
✞

✝

☎

✆6.8

Accepted Sale Annotation Use Case:

An accepted sale is verifiable, valid and tickable.

s:SaleSheet q:AcceptedSale

verificationUseCase(s,q):verifiable(q) ∧ valid(q) ∧ tickable(q)
✞

✝

☎

✆6.9

Sales Sheet Collection Relationship Use Case:

There is a collection relationship over sales sheets that belong to the same

auction.

a:Auction s:SalesSheet

collectUseCase(a,s):CollectionRelationship(a,s)
✞

✝

☎

✆6.10

Sale Sheet Crossable Use Case:

A lot is deletable if a crossable relationship exists between itself and a sales

sheet.

s:SalesSheet l:Lot c:Crossable(s,l)

deletable(s,l,c) : ¬ contains(l,s)
✞

✝

☎

✆6.11

156

6.4. APPROACH & DEVELOPMENT PROCESS

Sales Sheet Referential Integrity Use Case:

There is a referential integrity use case if a lot on a sales sheet has a crossable

relationship. This implies a cascading behaviour in which actions (modifica-

tions, additions, deletes etc) in the back office system affect the data on the

sheet.

s:SalesSheet l:Lot c:Crossable(s,l) q:BackOfficeSystem

ReferentialIntegrityUseCase(s,l,c) : cascade(q)
✞

✝

☎

✆6.12

Note Annotation Use Case:

Represents the handwriting use case of a written note.

a:Annotation n:Note

handwritingUseCase(a,n) : handwriting(a,n)
✞

✝

☎

✆6.13

Unbidded Sale Annotation Use Case:

Represents the handwriting use case of an unbidded sale.

a:Annotation u:UnbiddedSale

handwritingUseCase(a,u) : handwriting(a,u)
✞

✝

☎

✆6.14

Accepted Sale Annotation Use Case:

Represents the handwriting use case of an accepted sale.

a:Annotation b:AcceptedSale

handwritingUseCase(a,b) : handwriting(a,b)
✞

✝

☎

✆6.15

157

6.4. APPROACH & DEVELOPMENT PROCESS

Rejected Sale Annotation Use Case:

Represents the handwriting use case of a rejected sale.

a:Annotation r:RejectedSale

handwritingUseCase(a,r) : handwriting(a,r)
✞

✝

☎

✆6.16

Commission Bid Annotation Use Case:

Represents the handwriting use case of a commission bid.

a:Annotation c:CommissionBid

handwritingUseCase(a,c) : handwriting(a,c)
✞

✝

☎

✆6.17

Valid Commission Bid Use Case:

Represents a valid commission bid, which has a pair relationship between

bidder and price.

c:CommissionBid l:Lot

validCommissionBidUseCase(c,l) : PairRelationship(c.CBidder,c.CPrice)
✞

✝

☎

✆6.18

Commission Bid Pair Relationship Use Case:

A commission bid has a pair relationship between bidder and price that are

dependent attributes.

c:CommissionBid p : PairRelationship(c.CBidder,c.CPrice)

requiredPair(c,p) : dependent(c.CBidder.id,c.CPrice.amount)
✞

✝

☎

✆6.19

158

6.4. APPROACH & DEVELOPMENT PROCESS

Rationalising Design Decisions

For a designer to understand the direction of a potential implementation solu-

tion, the designer must first fully understand the requirements of the system,

and be able to visualise an implementation solution that meets those require-

ments. As such, selecting implementation choices that match the needs of a

client is an important aspect of design. We therefore consider a number of

important usage contexts.

The original sales sheet system was made of a single salessheet that was

shared by a number of users. As was shown in Figure 6.35, the sales sheet

had a different set of functional use cases for each of its principal users. From

the clerks’ point of view, the use case was one purely of record management.

The salessheet was used to ensure that the right information for each sale was

available on the sales sheet in advance of the auction. From the auctioneers

point of view, the sales sheet was a system used for recording undertakings in

the auction sales room. The envoys role was one of data transfer, in moving

the sales sheets from the sales room to the admin office. Finally the book

keepers’ role was one of record entry into a ledger system.

A number of component features were produced based on the analysis of

tacit information in the CDM, and informed by the system rules defined in the

previous section. Important observations suggested the following key features:

i) Data Validation: Ticks on the salessheet informed by the tickable tacit

feature in the CDM suggest the need for verification and validation of

data input by users of the salessheet. Informed by Key Rules: [6.1], [6.2],

[6.3], [6.4], [6.5], [6.6], [6.16], [6.14], [6.15], [6.18], [6.19]

ii) Referential Integrity: The characteristic of synchronising data across be-

tween two sources (for example database tables), such that if records are

modified or deleted in one source, changes are reflected in the second

source. This is implied by the need to delete a lot on the back office

system, and then explicitly cross out the lot on the sales sheet. (This

5Figure 6.3: Use case diagram of Auction House High Level Usecases (Page 141)

159

6.4. APPROACH & DEVELOPMENT PROCESS

is suggested by the tacit relationship between crossable and SalesSheet.

Informed by Key Rules: [6.11], [6.12]

iii) Record Management (Storing): The ability to store new content on the

salessheet. For example, writing commission bids. This requirement is in-

formed by the tacit relationship of type Handwriting which exists between

CommissionBid and Annotation. Informed by Key Rules: [6.1], [6.2], [6.3],

[6.4], [6.5]

iv) Record Management (Updating): Crossed out lot entries informed by the

crossable tacit feature in the CDM suggest the need for being able to

update salessheet data i.e modifying or deleting stored data. Informed by

Key Rules: [6.1], [6.2], [6.3], [6.4], [6.5]

v) Flexibility: The various relationships with Annotation suggest that free

and unrestricted forms of data can be created. This means that new

attributes can be created ‘on the fly’. For example, if the auctioneer has a

special instruction for the bookkeeper, it can be writen on the salessheet

and read by the bookkeeper when it is picked up. Informed by Key Rules:

[6.13], [6.14], [6.15], [6.16], [6.17]

vi) Movable: The movable nature of the paper based system implies transfer-

ability of data between locations. This is implied by the CascadeRelation-

ship between SalesSheet and BackOfficeSystem, as data is modelled to flow

between both data locations. This would imply the need for a solution

that supports the same. For example in a digital solution, a means for

data to be transferred electronically between physical mediums. Informed

by Key Rules: [6.10], [6.11], [6.12]

Given all these usages, a number of implementation approaches were consid-

ered based on the structure of the CDM and the needs of the auction house.

We elaborate on these approaches in the next section.

Possible Implementation Approaches

There is the question of what types of benefits an improved CDM can provide

over its equivalent naive counterpart model, when determining what types of

160

6.4. APPROACH & DEVELOPMENT PROCESS

implementation choices to choose from. To pursue this question, while fulfilling

the requirement of delivering an improved salessheet system, a rationalisation

of implementation approaches was carried out systematically to accommodate

the inquisition of what conceptual data models can tell us about the solu-

tions domain. In doing this, two solutions were selected amongst a number

of possible choices, that conceptually did not deviate substantially from the

original system to support the forms of behaviour and interaction that are

currently prominent in the domain. By simply looking at the CDM it is easily

apparent that handwritten annotations are a prominent feature of the exist-

ing system. Approaches that supported handwritten based interactions were

therefore considered:

i) Anoto Pen and Paper Technology (Anoto):

The anoto technology uses a unique printed pattern that is printable on

paper to enable a compatible pen equipped with a camera to locate its

position on the the pattern [6]. Used in conjunction with a computer,

it would allow the seamless interaction and transfer of data between a

specially printed sheet with digital media on a computer. For example, a

typical salessheets printed on anoto pattern could allow the auctioneers

handwritten entries to be transferred to a nearby computer. As such, this

solution would require a customised application on the computer that is

able to interprete the pattern data that is transmitted to it from the pen.

ii) Touchscreen Tablet PC and Stylus (Tablet):

Touchscreen stylus-enabled device that enables intrinsic digital interac-

tions. This would require a customized application written to support

the requirements of the salessheet system. This solution would require an

electronic salessheet that would enable the auctioneer to write directly on

it to store salesroom data eg. winning bid prices and bidder id’s etc.

Each solution reveals a gradual progression from the original system towards

a completely electronic solution. The spectrum of choices could have of course

been much larger: e.g from the original pen and paper system, which does not

do much, up to a fully video and voice based recognition system that is able

to automatically detect and transcribe sales and bidding data from live bids in

161

6.4. APPROACH & DEVELOPMENT PROCESS

the salesroom. However, for analysis purposes, the Anoto and Tablet options

provided reasonably clear and workable solutions that were sufficient for our

objective to interrogate the CDM. In addition, practicalities and constraints

of our research were also a consideration: (i) With the aim of advancing the

system, it was important to assess the impact of making a small technology

shift first and possibly a bigger shift in future empirical exercises. (ii) Time

constraints required short development sprints which demanded solutions that

could be scoped within the time period of this research (iii) Development

expertise with both anoto and tablet platforms made the choices feasible for

the sample selection.

Selecting Implementation Approaches

When confronted with a wide array of possible implementation choices to

satisfy a set of requirements, it can be a challenging decision making process

when planning designs for implementation. In this work, we argue that tacit

requirements in a requirements level conceptual data model facilitate a better

understanding of possible directions for implementation. Accordingly, tacit

contracts directly inform of the need of various characteristics and behaviours

of the subsequent system. One approach is to select implementation solutions

by applying design affordances and tacit knowledge from the antecedent system

to the subsequent system - moving from the old to the new.

Our approach looks at the solutions domain and questions how well tacit

contracts and formal rules of the domain feed into the understanding of how

each implementation choice addresses the requirements of the problem do-

main. By doing this, we are able to utilise the ‘best’ judgement of choices as

the basis for the selection. Therefore, for this work, we propose a taxonomic

feature based matrix for selecting implementation approaches for design based

on a predefined set of component features. Component features can be use

cases, rules, characteristics, behaviours or actions of the system. For the pur-

pose of this work, we demonstrate this selection approach based on the two

implementation choices that were proposed for the salessheet system in the

previous section. In practice, there may very well be a more significant num-

ber of choices available to make a selection from.

162

6.4. APPROACH & DEVELOPMENT PROCESS

A Feature based Taxonomy of Sales Sheet Approaches

Looking at the CDM and formal rules of the salesheet system, the following

taxonomy of collective support for features and use cases of both systems can

be projected on to the feature matrix presented in Table 6.3. The original pa-

per based interface is also included for illustration purposes. Considerations

were made following the preliminary observations to find solutions that specif-

ically addressed (i) single handed use, (ii) handwritten notations (iii) freeform

text. This fact is reflected in Table 6.3 as both Anoto and Tablet solutions

fully support these features.

Component Feature Paper Anoto Tablet

Single Hand Use X X X

Handwritten Annotations X X X

Freeform Text X X X

Data Validation × ⋄ X

Referential Integrity × ⋄ X

Record Management (Storing) × ⋄ X

Record Management (Updating) × × X

Flexibility (Create new attributes) X X ⋄
Movable X X ⋄

Table 6.3: Taxonomy of Salessheet Solution Domain

X Full support for component feature
⋄ Partial-Full support for component feature
× Limited-No support for component feature

The taxonomy provides a concise representation of how each of the implemen-

tation choices satisfy the component feature requirements of the salessheet

system. This is done through the analysis and assessment of each of the com-

ponent features to assess how well each implementation choice satisfies the set

of system requirements, a process which is referred to as feature analysis [76].

While feature analysis is useful in being able to analyse implementation

choices, the issue of weighting subjectivity must be recognised. For example,

in the taxonomy of the sales sheet solutions, it is debatable whether the assess-

ment of each of the feature scores is subjective, as a different evaluator may

163

6.4. APPROACH & DEVELOPMENT PROCESS

very well assess the features of each implementation choice differently. One

method of overcoming this issue, is to use multiple evaluators and utilise an

average of the individual assessments provided by all the evaluators.

For this work, feature analysis is used to give an indication of how well

each component feature is supported by the solution choices: Paper, Anoto

and Tablet. Each component feature in this case carried the same level of

importance. However, it is acceptable that some features and use cases will

be more important than others, so considerations should be made for such in-

stances. In addition, certain compromises may be made which might constrain

decision making. For example cost of implementation, expertise, preference

and so on. We look at some notable features of the CDM and their mappings

to behaviours in the solution space.

Using the taxonomy as a point of reference and observing how each imple-

mentation choice captures the set of defined component features, there is much

to be said in favour of the tablet solution in comparison to the anoto based

approach. As the anoto based solution is also paper based, it carries some

of the drawbacks of the previous system albeit with slight improvements over

the original paper system. However in comparison to the tablet approach, the

anoto based solution does not provide the features to enforce data validation

of handwritten to data on the printed sheet.

The anoto based approach did not provide the features to support referen-

tial integrity. If the record of a lot was deleted from the main inventory system,

it would have to be crossed out from the sheet which does not represent an

improvement from the old system. With the tablet PC approach, a record

deleted in the main inventory system would have the deletion reflected on the

tablet system. In addition storing and updating records via the anoto based

approach would require interacting with the sales sheet directly which presents

the same difficulties the original system presented. For example, if a new com-

mission bid is submitted while the auction is in session, the sheet would require

manual handwritten updates while on a tablet pc based approach, the new bid

can be submitted to the tablet electronically and displayed on the screen for

the auctioneer. Based on the merits of the tablet approach, it was selected as

the implementation approach for the system.

164

6.4. APPROACH & DEVELOPMENT PROCESS

In the next section, we describe the implemented system and reflect on

some of the design decisions made during the development process.

6.4.3 Implementation

The functionality of the system was encapsulated over a range of front end

applications for the various users in the system. It was intended that the

system should be able to present relevant information to the different types of

users in the system. Separate applications were implemented for the auctioneer

and the book keeper as their individuals needs were different. In this section,

we describe the implemented applications used by both the auctioneer and

book keeper. The applications are named as follows:

i) The Auctioneer’s Sales Sheet Application (E-SalesSheet)

ii) The Book Keeper’s Sales Sheet Application

The Auctioneer’s Sales Sheet Application

We refer to Figure 6.11 which shows an interface screenshot of the auction-

eers tablet application. The screenshot is shown as it might appear in the

In-Auction usage context environment, after the auctioneer has recorded the

winning bidders id, and the winning price of a lot. In comparison with the

original paper based sales sheet6, there are a number of key similarities and

differences.

The application took a minimalist design approach, without sacrificing core

functionality or impeding usability. Just as with the original sales sheet, the

E-SalesSheet only presents data on the categories of importance: lot number,

article and description, reserve, buyer, price sold, commission bids. The inter-

face is composed of a number of visual elements. The description of the visual

elements is given with respect to the lot currently in view in the screenshot:

i) an image of the lot.

6Figure 6.6: Sample In-Auction Sales Sheet (Page 144)

165

6.4. APPROACH & DEVELOPMENT PROCESS

Figure 6.11: The Auctioneer’s Sales Sheet

ii) a panel containing the lot details – lot number, price estimate, reserve,

description.

iii) a panel containing the vendor details – Vendor ID, name, address.

iv) a panel that presents the commission bids for the lot shown in the main

display – this is shown via a table presenting the bidder ID and price for

each commission bid entry.

v) a set of ink panels for recording In-Auction sales data – bidder ID, price

sold and an optional note. These fields are shown in the application as

Buyer, Price and Note respectively.

vi) a complete sale button which must be clicked after a sale is complete, after

all sales data has been entered.

166

6.4. APPROACH & DEVELOPMENT PROCESS

vii) a panel displaying a view of the next three ‘upcoming’ lots in the sale.

The idea is that the auctioneer will treat the data entry process the same way

as the original paper based system. During a sale the buyer and price details

would be recorded in the relevant ink panels. Instructions may be added in

the ‘note’ ink panel if necessary, and the lot and vendor detail panels will

be used in conjunction with the commission bids panel to facilitate the sales

process. Finally, at the bottom of the screen the next three upcoming lots

are displayed to give the auctioneer upfront notice on lots that might gather

elevated interest.

Overview of design choices

In contrast to the paper based sales sheet, the image of the lot was introduced.

It was introduced as a need to present the lot data in a single view on the

screen. On the existing system, the textual data was available to the auctioneer

on the sales sheet, while the image of the lot was available to the auctioneer

via a micro-monitor on the rostrum. Consolidating the data in one screen

would allow the auctioneer to glance at the lot image, while in view of the lot

description adjacent to it rather than having to glance at the sales sheet and

look up at the micro monitor.

Another interesting difference between the new system and the existing

sales sheet in terms of layout is the presentation of the article and description

data. In the E-SalesSheet system, the lot data and the vendor data was

separated and placed in different panels, but in close proximity. The vendor

data was deemed to be optional but ‘needed’ information which the auctioneer

may choose to refer to. However it was not a critical field that would prevent

a lot from being sold. The reserve field was placed in close proximity to the

price estimate field of the lot. This was done in anticipation of enabling the

auctioneer to make an easy comparison between both fields, as was indicated

by Pre-Implementation Ethnography observations.

Furthermore, the new system provided a better presentation of commission

bids. The pair-relationship between the bidder id and price was preserved

with bidder ID occurring on the left side of its associated price attribute. The

placement of the commission bids table was also an informed decision. It

167

6.4. APPROACH & DEVELOPMENT PROCESS

was spatially placed in a position that would enable the auctioneer to make

a quick comparison between the best commission price and the reserve. In

addition to this, the commission bids table implemented a smart ordering of

the commission bid entries. The ordering was done both by price in descending

order and time of booking in ascending order. This meant that the auctioneer

could immediately have a view of the most competitive commission bid by

looking at the entry at the top of the table. In the paper based system, it

would have been necessary to scan all the commission bid entries on the sales

sheet that corresponded with the lot, to identify the bid with the highest price.

Ink panels were provided to record handwritten data on (i) price (ii) bidder

ID and (iii) an optional note for occasions where the auctioneer may want to

record additional data against a sale. The sizes of the inkpanels for each field

was just big enough to record the amount of data that was typical for each

field. It was necessary to add the complete sale button to enable the auctioneer

to explicitly regulate the flow of sales information stored by the application.

At the point of clicking complete sale there was an electronic submission of

the data recorded in the ink panes to a centralised database. Located at the

bottom of the application was a panel that showed up to the ‘next three’

upcoming lots in the auction. During Pre-Implementation Ethnography the

auctioneer was observed glancing at the next few lots several times during

normal use of the paper based system. This data was purposeful in keeping

the auctioneer informed of any lots of significance that may be following up

shortly. This is the type of data that typical requirements analysis methods

will not capture, and therefore will not be included as part of the design of

the proposed system.

The Book Keepers’ Sales Sheet Application

The design of the book keepers’ application broadly shared most of the same

characteristics with the original paper based sales sheet. It was designed as

minimalistic as possible to meet the main usage requirements of the book

keeper which was primarily for data capture. The function of the salessheet

was to present post-auction data to the book keeper so that it could be trans-

168

6.4. APPROACH & DEVELOPMENT PROCESS

ferred on to the ledger system. To reflect these usage needs, the data presen-

tation features on the book keepers sales sheet was designed to be read-only.

Figure 6.12 shows an interface screenshot with sales data, as it may appear

in the Post-Auction usage context environment. The image shares a close

resemblance with the paper based version7.

Figure 6.12: Interface Screenshot

As the image demonstrates, the application preserves a number of visual

characteristics from the existing sales sheet system. There is much resemblance

in the arrangement of fields in comparison to the paper based sales sheet.

The application also presented 5 lots on-screen which corresponded with the

number of lots that the paper based system presented. A pager with left

and right arrows was available at the bottom of the screen to allow the book

keeper to browse between sheets to display any of the sheets within the current

auction.

7Figure 6.7. Sample Post-Auction Sales Sheet (Page 146)

169

6.4. APPROACH & DEVELOPMENT PROCESS

6.4.4 Post-Implementation

Part of the criteria for the evaluation of the system was to assess whether

there will be any barriers to its full adoption. Furthermore, it was necessary

to explore whether further requirements had remained unseen in the domain

and whether any further changes needed to be made to the system. Video

recordings were used to capture the trial system in use by both the auctioneer

and the book keeper. Using video recordings allowed for the possibility of

further analysis of subjects away from the field. The next section elaborates

on the data collection and evaluation process.

Subjects for Post-Implementation Ethnography Data Collection

As the primary focus of the PoIE evaluative study was to scrutinize the newly

introduced system, the two subjects for analysis were: (i) the auctioneer (ii)

the bookkeeper.

i) The Auctioneer: Given that the auctioneers tablet was of central impor-

tance to the workflow of the system, it was important to collect relevant

and rich enough information to analyse and appraise his use of the new

technology. This required two viewpoints for videography. One of the

aims of the evaluation was to assess the auctioneer’s interaction with the

system and the quality of use of the application. For this reason, a close-

up camera view of the auctioneer using the tablet was necessary. In this

view, the auctioneers interaction with the tablet and hand gestures could

be captured. Secondly, it was important to understand if there was any

impact on the auctioneers general behaviour when using the tablet sys-

tem. Thus, a second camera view was focused on the auctioneer. This

camera view was taken from the view of the market participants in the

sales room.

ii) The Bookkeeper: As the bookkeeper’s responsibility was solely to vali-

date and transfer sales information from the new system to the existing

accounts system, one viewpoint of the book keeper was used.

170

6.4. APPROACH & DEVELOPMENT PROCESS

Note

Video is one of the richest persistent forms of data collection. Unlike other forms

of data collection methods, video provides both visual and audio features which

enables the analysis from both dimensions. It also has the advantage of collab-

orative review away from the field, and the ability to be recalled several times if

needed.

Therefore in total, 3 fixed cameras were used for video recording during the

auction trial:

i) 1 camera trained to the auctioneers tablet: useful for gaining insights on

the usage of the device.

ii) 1 camera trained to the auctioneer from a distance: useful for analysing

any change in behaviour of the auctioneer.

iii) 1 camera trained to the bookkeeper in the admin office in full view of the

bookkeeper’s use of the new salessheet system: important for evaluation

purposes.

The decision on the placement of each of the cameras was made in consul-

tation with the participants involved in the study. All three cameras were

microphone-enabled for the purpose of capturing audio for analysis. To avoid

any complications with obtaining informed consent from market participants,

all cameras used in the data collection process, were focused solely on key staff

that were part of the trial.

Procedure

The trial was setup to take place during a live auction on a sample selection

of lots. The auction consisted of a catalogue of 245 lots for sale in the fine-art

category. The catalogue was split into two for the purpose of the trial. The

first 200 lots were setup to be sold using the existing paper based salessheet

system, and the final 45 lots were setup to be sold using the new sales sheet

system. To add redundancy to the trial and limit the potential for data loss

due to technology failure, a backup auctioneer was asked to stand in and record

171

6.4. APPROACH & DEVELOPMENT PROCESS

the sales data on the existing paper sales sheet alongside the main auctioneer

who used the new sales sheet system. Both the auctioneer and book keeper

were given training that familiarised them with the new system.

Evaluation

The evaluation of the system consisted of two perspectives which enabled

structured analyses on all key parties during and after the trial. We adopt

Bhola et. al’s Formative and Summative Evaluation techniques [13] for this

process:

i) Formative Evaluation: carries a specific focus on the process of an activity

while it is in session.

ii) Summative Evaluation: focuses on the value of an activity after it has

concluded.

As part of the Formative evaluation of the system, it was necessary to assess

the conditions of the trial environment during the sale of the first 200 in the

auction. Therefore the first phase of the evaluation process was to observe the

existing system in use directly before the trial. This phase was carried out by

multiple observers during the first part of the trial. It was beneficial for the

purpose of analysis to see how the existing system worked under the direct

conditions of the trial.

The second phase was important for evaluating the use of the new system.

This presented the opportunity to assess the extent to which the requirements

of the system had been met. It also provided the opportunity to determine if

the new system created new tacit behaviours. Video recordings were used in

this phase because it allowed for repeated review for analysis work away from

the field. Figure 6.13 shows the camera angles that were used to record the

auctioneer in practice. The left side of the image shows the camera angle of

the auctioneer which was filmed from a distance. The right side of the image

shows a close up view of the technology. As both cameras were microphone

enabled, analysis could be done on the auctioneers’ commentary during the

auction.

172

6.4. APPROACH & DEVELOPMENT PROCESS

Figure 6.13: Images from Ethnographic Film – The Auctioneer

In the admin office, a camera was trained on the bookkeeper and the com-

puter screens in use. Figure 6.14 shows an image of the bookkeeper viewing

information from the salessheet system. Following the sale of each new lot

in the auction room, the sale information which included the buyer and price

information would appear on the screen to the right of the bookkeepers’ desk.

The bookkeeper would then transfer this information to ledger system. This

differs from the bookkeeper having to wait for the paper based sales sheet to

be delivered from the sales room by other members of staff.

Figure 6.14: Images from Ethnographic Film – Admin Office

The final phase of evaluation was the analysis of the video data collected

from the trial. The data collected included video recordings, field notes and

173

6.4. APPROACH & DEVELOPMENT PROCESS

feedback from the staff in the auction house that engaged in the trial. Before

we provide a summative evaluation of the study, we first outline a number of

limitations of the trial that a fully developed version of the system would not

have outside the constraints of this work.

Trial Limitations and Caveats

Executing the trial required a number of practical workarounds and compro-

mises to manage some of the constraints of trial particularly (i) lack of full

integration with the back office systems (ii) limited development time (iii)

untestable scenarios (eg. the withdrawal of a bid).

Lack of full integration with the existing information systems at the auction

house which included the accounts, inventory and ledger systems, and full

flexibility to install the necessary hardware in real-world deployable format,

created a number of issues which are worth highlighting. As the system was not

fully integrated with the existing auction house infrastructure, the auctioneer

was required to use both the new sales sheet system, and the micro monitor

switch to display the image of the lot on the public display in the sales room.

A fully integrated sales sheet system would also control the public display

image to keep the image shown in synchronisation with the current lot that

is up for sale on the tablet screen. Secondly the book keeper was confined to

using two different systems for input. Requiring to view the sales information

that came in on the screen of the new system, and typing the sales data into

the accounts and ledger system, on another screen. A fully integrated system

would send the sales data directly to the accounts and ledger system.

Development time was constrained, therefore not all features that would be

expected to be implemented in the final deployed system were completed. For

instance, the auctioneers salessheet provided the ability to record sales data

and submit the sales information by clicking the ‘complete sale’, however once

the button was clicked there was no way to go back to previously submitted

lots. Similarly, there was no way to look ahead at upcoming lots beyond the

next 3 upcoming lots. Although these feature were not directly needed during

the trial, they were highlighted as key features for the system.

174

6.4. APPROACH & DEVELOPMENT PROCESS

Finally, some conditions were not testable under the trial as they did not

arise during the trial. For instance (i) lot withdrawals while the auction was

in session (ii) submission of commission bids while the auction was in session.

Testing these scenarios would have been important to cover all behavioural

possibilities of the system.

Field Observations and Video Ethnography Evaluation

In this section, we summarise the highlights of the observations and analysis

of the auctioneer’s sales sheet system obtained through field observations and

video ethnography.

From the outset of the trial, there were no visible problems or reports

from the auctioneer with regards to the technology itself. There were no

problems with writing with the stylus on the ink panes, and no specific issues

with retrieving or submitting lot data. The trial demonstrated a number of

improvements over the existing sales process. Utilising the new system enabled

auction sales information to be immediately available in the accounts office

after the sale was complete and the data was submitted by the auctioneer.

This eliminated the need for an envoy, and enabled buyers to immediately

pay for lots in the admin office once the sale of the lot was complete. This

was of course in contrast to buyers having to wait for sales sheets to be to

be completed by the auctioneer and picked up and transferred to the book

keeper to enrol on the ledger system. The new system also had the potential

to enable vendors to be notified instantly when lots that they owned had been

sold.

Looking at the new system from the perspective of the auctioneer, there

were a number of interesting observations. Though the auctioneer started off

apprehensively when the auction started with the new system, once the layout

and category positions where correctly identified and familiarised, there was a

noticeable increase in speed and confidence in the use of the system. In com-

parison to the paper based system, the auctioneer’s sales sheet incorporated a

number of additional elements to improve the sales process. For instance the

introduction of lot images on the auctioneer’s sales sheet eliminated the need

for the auctioneer to glance at a separate screen located on the rostrum, which

175

6.4. APPROACH & DEVELOPMENT PROCESS

was the case with the previous system.

From a design perspective, the sales sheet borrowed several visual details

from the paper based sales sheet. Much of these ‘re-used’ visual elements were

feasible design choices to carry over to the new system. This is similar to the

concepts of bridge attributes which are design affordances that exist in both the

old and new experience of a system [16]. Cass [16] discusses how highlighting

so called “bridge” attributes can be used to facilitate an understanding of how

technology can be applied to perform tasks. They are used to orient a user to

a new system by allowing them to recognise and interpret a new experience

through recognisable affordances or metaphors of the old system. Conceptual

metaphors such as bridge attributes (also referred to as skeumorphs) widely

reduce the barrier of entry of users to new systems because of their familiarity

of the old system, and the already recognisable features in the new experience.

Field notes acquired during the field observation exercise provided insights into

which attributes could be leveraged. For instance handwritten fields, layout

positioning and so on. This drove part of the decision making when considering

the sample of implementation choices of the system.

While bridge attributes were included in the project, there were some ad-

ditional feature improvements and design choices that demonstrated benefits

through video analysis. The separation of the upcoming lots from the current

lot being sold, allowed the auctioneer to easily return focus on the details of

the current lot if he glanced away. The fact that the auctioneer’s sales sheet

had only one lot in view at any one time also prevented the problem of being

able to record the sales information against the wrong lot, which was the case

with the paper based sales sheet.

In addition to what was expected, there were a number of exceptional

conditions which the system was presented with. In one example, the winning

bidder for a lot was unregistered and thus did not have a bidder ID to present

to the auctioneer after the sale was appointed to him. The auctioneer was

able to write the buyers surname in the buyer field and instruct the winning

bidder to make his way to the admin office to register and pay for the winning

lot. The auctioneer also included the note “buyer on his way” in the note ink

pane on the sales sheet prior to clicking on complete sale. This information

176

6.5. DISCUSSION & CONCLUSIONS

was presented to the book keeper, who was able to resolve the matter. This

would not have been immediately possible with the paper based sales sheet as

the sales sheet would have had to remain behind the rostrum up to the point

of collection by the envoy.

6.5 Discussion & Conclusions

This section discusses the findings of the case study and outlines a number of

research implications.

6.5.1 Overview of Work

We begin by recalling the objectives of the case study. The objective of the

auction house study was not just about developing a replacement system for

an auction sales sheet system, it was about investigating our proposed de-

velopment approach, which concerns early phase and final phase SDLC ac-

tivities when considering the development of a system. Importantly, in Pre-

Implementation it was about: (i) looking at the process of developing a tacit

conceptual model of a system, (ii) analysing what the model is able to tell

us about the domain (iii) investigating what additional informational benefits

it provides in comparison to a naive model (iv) observing how the important

structures, entities, relationships and behaviours have been represented and

preserved in the model (v) and finally seeing how these concerns contribute to

the direction of implementation designs. Concerning the latter phase of the

SDLC, Post-Implementation concerns were applicable to (i) looking at how the

details captured in the CDM resulted in the final system (ii) analysing facets

of information that may have been ‘lost’ in the conceptual model if a naive

model was used (iii) and finally seeing what worked well and what did not.

6.5.2 The Role of Tacit Information in the SDLC

Conceptually the activities of requirements analysis bear much consideration

for the concerns of the problem domain and should overlook that of the solu-

tions domain. It is conceivable that a deep understanding of tacit information

177

6.5. DISCUSSION & CONCLUSIONS

in the problem domain has the potential to improve the design process. Ac-

cordingly, concerns of the design phase of the SDLC may form part of the

requirements analysis effort. This end-to-end approach is one of several per-

spectives of the concept of bridging the gap. In this context, bridging the gap

refers to adjoining the gathering of client requirements and directing the gath-

ering process based on what information might be important at the design

level. At the conceptual data modeling level, this presents a need for tacit

information alongside explicit information.

From a data modeling perspective, this requires much understanding of: (i)

tacit information in the problem domain: this facilitates the creation of rich

conceptual data models that reflect the conceptual structure of the domain

(ii) how tacit information carries over to the solutions domain: this drives the

requirements gathering process to elicit requirements that can tell us more

about design directions when considering choices in the solutions domain.

To address the first point, ethnography provides a deep level of understand-

ing of the domain to enable the construction of detailed requirements models.

On the second point, there is much to be understood about how upfront in-

sight of the solutions domain impacts the requirements and design process and

vice versa. It is however curious to observe whether a conceptual data model

can tell us something modest, or something more radical about design. In this

work, the case study enabled us to look at each of these areas. Our work has

presented a different perspective on how tacit information can be used in the

SDLC. We have therefore demonstrated two notions:

i) Modeling Ethnographic Requirements

ii) Mapping Ethnographic Requirements to Design Models

Modeling Ethnographic Requirements

The case study demonstrated a number of advantages of using ethnography

for elicitation. The characteristic of ethnography in supporting awareness of

context, enabled a deep understanding of the different usage scenarios of the

sales sheet. This led to a number of requirements which required representation

as conceptual structures.

178

6.5. DISCUSSION & CONCLUSIONS

Current requirements models would suggest the construction of explicit

data concerns of a system using for example, structural diagrams such as Class

Diagrams, and implicit data concerns of a system using behavioural diagrams

such as Use Case diagrams. For instance, the auctioneer’s interaction with

the sales sheet to record the price and bidder information of a sale would be

recorded in a behavioural diagram like a Use Case diagram rather than in a

structural diagram like a class diagram.

However there are drawbacks with completely separating behavioural and

structural information in requirements models when there are modes of in-

teraction between both types of information. In addition, utilising a naive

conceptual model and a use case diagram would also require an additional

step of having to reconcile a gap in the understanding of how explicit elements

relate to behavioural and tacit concerns of the system. This problem of having

to reconcile the usage contexts of data across both behavioural and structural

models increases the level of complexity of analysis in design. To this point,

both models may elaborate on different levels of information. For instance,

if we utilised the auction house Use Case diagram presented in Figure 6.38

and a ‘naive conceptual model’ of the sales sheet system which did not em-

body tacit information, there would be no detail to show tacit behaviours and

relationships, for example CascadeRelationship between BackOfficeSystem and

SalesSheet, and Discretion between Auctioneer and Sale, as shown in the tacit

conceptual model9. This information is of course present if there are use case

descriptions to support the Use Case diagram. However this approach is not

convenient or suitable for formal analysis or model driven development. If we

even assumed that written use cases descriptions and other behavioural dia-

grams descriptions were sufficient, there is the challenge of ambiguity, due to

written texts not being good for clarity and consistency.

If we consider that data has structure and behaviour that is tacit, then pro-

jecting both concerns in the same model can provide a better understanding

of the system simply from direct observation of the model. It would also lead

to processes for model driven development, as tacit elements can be treated as

8Figure 6.3: Use case diagram of Auction House High Level Usecases (Page 141)
9Figure 6.10: Sales Sheet Conceptual Data Model (Page 151)

179

6.5. DISCUSSION & CONCLUSIONS

first class entities of the system. Ultimately, the problem we are addressing in

this work is not so much on the separation of structural and behavioural dia-

grams. It is about representing the right level of detail in a tacit requirements

model that shows the interactions between elements of an explicit and implicit

kind. Thus we have, a tacit requirements metamodel that enables us to create

models that inform us on both structural, behavioural and tacit concerns of a

system.

We do not propose that behavioural modeling using use cases for example,

goes away. We are proposing that elements that are thought of as purely

behavioural correspond with relationships and with data entities, and this

information should be encoded as tacit information. Whilst, we are bringing

behavioural concerns into the data model. These concerns are part of the forms

of data described, and they are still static relationships. They are simply data

relationships and attributes. Similar to how Entity Relationship Diagrams

compose relationships between entities, our model does the same but with

tacit and explicit elements. Notably, tacit elements will not appear in the

physical model, and therefore will not be part of the implementation data

schema. However, at the conceptual level, they still qualify as things that we

will model in the expanded notion of a data model.

In modeling the sales sheet system, our tacit requirements metamodel

demonstrated the flexibility required to model these types of concerns. We

were able to preserve tacit information. This is unusual for standard class di-

agrams and Entity Relationship (E.R) Diagrams. Looking at traditional E.R

diagrams, they will only show explicit information and not relationships like

those highlighted in the auction house conceptual model, like the pair rela-

tionship between bidder and price. This is the same result with traditional

class diagrams. They both share the drawback of only describing data that is

needed – explicit data.

With a tacit requirements model, the model shows some understanding

of the usage functions and relationships of data entities. Importantly, the

outcome of this is a deliverable to the design phase that conveys this level of

information. This is peculiar of our approach which utilises ethnography to

‘gather the details’ and the combination of an improved CDM and a modeling

180

6.5. DISCUSSION & CONCLUSIONS

language to ‘record the details’. In moving from Conceptual Data Models

to Logical Data Models, we find that complex data requirements need to be

modelled outside the standard mapping to data schemas. We therefore need

an additional type of design model that enables us to specify and implement

choices.

Mapping Ethnographic Requirements to Design Models

In this work, we have argued that tacit information has an impact on the

implementation choices made at the design level. The auction house study

allowed us to look at the modeling process of creating a conceptual data model

of a system, and how it subsequently turns into a physical system. We make

two important observations about the role of the conceptual data model:

i) Diverging design level models

ii) Mapping Conceptual Data Models to Implementation Choices

Looking at the conceptual model of the sales sheet system, it not only informs

the construction of the logical data model, it provides details necessary to iden-

tify possible implementation choices which may include architectures, devices,

and so on. This characteristic is created by the ability of the model to commu-

nicate use cases and behaviours. For example, a model which predominantly

carries ‘annotation’ attributes and relationships, might inform the use of tech-

nologies that support annotations when considering possible implementation

approaches.

The case study also showed how one data model was used to define the

data requirements required to support applications in a number of different

usage contexts. The CDM provided the requirements detail to communicate

usage behaviours concerning the auctioneer’s salessheet system and the book

keepers salesheet system, with each application specialising on its own specific

use cases. The approach is not constraining as it allows the designer to decide

what aspects of the design process adhere to the CDM, and whether they are

influenced by it or not. The fact that implementation choices are dependent on

181

6.5. DISCUSSION & CONCLUSIONS

the data model and ethnography indirectly informs us of what design concerns

to focus on, presents a different way of thinking of development.

Concerning mapping CDMs to implementation choices, we investigated an

approach that enabled us to represent implementation choices as a taxonomy

of component features represented in the CDM. We utilised a method that

allowed us to indicate whether each implementation choice had full, limited or

no support for a particular component feature. This information was useful

in selecting which implementation choice was an appropriate approach for the

system. It might however be useful to scale this approach further. What

might be more interesting is to devise a way of appropriately indicating the

extent to which each device fulfils a specified component feature using a wider

measurement range, and working out a selection approach.

If we think about the relationship between requirements analysis, design

and implementation more holistically, our choices of implementation architec-

tures, devices and platforms are all informed by usage profiles. Tacit contracts

in our CDM allow us to communicate usage profiles, and usage profiles allow

us to select implementation choices. This is how requirements elicited us-

ing ethnography are modelled at the requirements level, and feed into various

design level concerns.

Our work looked at how tacit information benefits the design process of a

new system. Consequently this has set up the need to formally investigate a

heuristic for mapping CDM’s to implementation choices. This motivates us to

propose the notion of an Infrastructure Ecology which summatively represents

implementation level architectures, or so called implementation choices. As a

first introduction to the concept, the next chapter will elaborate further on the

point and specifically discuss the notion of mapping conceptual data models

to infrastructure ecologies.

182

7
From Conceptual Data Models to

Ecologies and Logical Data Models

“A problem-implementation gap exists when a developer imple-

ments software solutions to problems using abstractions that are

at a lower level than those used to express the problem.” France

et. al [29].

We are yet to see any work that specifies at a high level of abstraction, how

system requirements map to feasible implementable solutions. The previous

chapter demonstrated how conceptual data models can suggest directions for

implementation. In this chapter, we introduce a reference methodology for

moving from conceptual data models to infrastructure ecologies and Logical

Data Models. We consider possible data views in the Software Development

Life Cycle (SDLC) that may be affected by our approach. Furthermore, we

present how the selection of infrastructure ecologies can be achieved given a

particular set of requirements modelled in the Conceptual Data Model (CDM).

Finally, we propose a metamodel for describing infrastructure ecologies and a

CDM-LDM transformation. The metamodel is a reference architecture that

describes the components that need to be assembled when considering ecolo-

gies.

183

7.1. WHAT IS AN ECOLOGY

7.1 What is an Ecology

Previous notions of ecologies refer to cooperative devices and digital ecosys-

tems as “social” devices. Under this view, social devices have awareness of

each other, and are capable of communicating with one another. It is also said

that there is an understanding between devices. This includes governance on

device coordination and collaboration, and also how inter-device interaction

should be managed. In the literature, this type of ecology has been described

as a device ecology by Loke [61]. In this thesis, we present a different perspec-

tive on ecologies known as ‘infrastructure ecologies’ (IE), hereafter we will use

this term interchangeably with ‘ecologies’.

An infrastructure ecology is a solution-instance or a possible implementa-

tion of a systems requirements: one of possibly many solutions. Infrastructure

Ecologies bring together devices which could be more generally understood as

ecology instruments. These instruments may be hardware, software, external

entities and so on. The assemblage of these instruments creates an encapsu-

lated view of how the requirements of the system can be satisfied - the ecology.

The focus of ecologies leans towards the architecture and organisation of

the infrastructure required to satisfy requirements rather than on the social

and synergistic behaviours which Loke’s notion of device ecologies focuses on.

If e is a way of satisfying a set of requirements R, then e is an

ecology of R.

For example, under this notion, a spreadsheet can be regarded as an ecol-

ogy of a requirement to represent data in an arrangement of rows and columns.

This example can be scaled up to include the hardware devices that are re-

quired to run the spreadsheet software and so on.

Although ecologies refer to the final implementation choice, they are still

design considerations that require some consideration in the design phase. An

understanding of which ecologies are good for meeting which requirements can

contribute to bridging the gap between the problem domain and the imple-

mentation domain. The work done in this chapter attempts to address the

problem of moving from requirements models to logical models and ecologies.

184

7.2. ECOLOGIES: A MODEL DRIVEN ENGINEERING APPROACH

7.2 Ecologies: A Model Driven Engineering

Approach

The underlying motivation of Model Driven Engineering in software develop-

ment is to simplify the process of mapping a system specification expressed

as a model, to a model that targets the deployment platform of the system.

There is an increased level of complexity when considering mapping require-

ments models to implementation designs and architectures. This problem is

more pronounced when looking at multiple possible implementation choices in

the absence of guidelines to aid a systems designer in discriminating between

each possible choice - one problem with many possible solutions.

The problem statement is defined as follows:

Presented with a set of stakeholder requirements R = {r1, r2, ..., rN}, and a

set of possible ecologies (or implementation designs) E = {e1, e2, ..., eT } that

each satisfy the requirements expressed in R, identify the ecology eα that is

the optimal ecology for R. As R is expressed as a CDM, the simplified problem

statement is thus to find a model transformation for translating the CDM to

eα. The assumption is that the set of ecologies that satisfy the stakeholders

requirements is known. As a result, the transformation is purely to facilitate

the selection of the ecology.

With a rich CDM, there is enough requirements detail to enable compar-

isons between ecologies when investigating possible implementation choices.

Later in this chapter, we show how we are able to specify what features each

ecology supports and the selection method. In order to understand this ap-

proach, one must first understand the concept of data views in the SDLC

and where CDM’s, LDM’s and ecologies fit into the larger picture. The next

section elaborates on these points.

185

7.3. DATA VIEWS IN THE SDLC

7.3 Data Views in the SDLC

In MDA, a view is a group of models that represent a particular concern of

a system. In [35], a view is defined as a representation of a system from the

perspective of a related set of concerns.

A Data View is a broad representation of the wider concerns of a system

with respect to forms of data. Data Views can be seen as projections of the

activities and development responsibilities within various levels of the SDLC.

Our assumption is that data is treated in 3 different forms during the

software development cycle. Each form is confined to a Data View with a

related set of concerns as shown in Figure 7.1. The broadest view is a series

of transformations between the SDLC phases. In each of the individual stages

of the tranformation, there are a number of models and activities.

Figure 7.1: Data Views in the SDLC

It is important to note that these data views form part of a larger sys-

tem. However we confine the discussion to activities and responsibilities in

each data view that concern data. With this approach, there is some corre-

spondence with model engineering concepts. We see correspondence between

the Computation Independent Model (CIM) and Requirements Data View

(RDV), Platform Independent Model (PIM) and Design Data View (DDV),

and finally the Platform Specific Model (PSM) and Implementation Data View

(IDV). Therefore:

RDV (CIM) ⇒ DDV (PIM) ⇒ IDV (PSM)

These three views can be seen as contributing to the three forms of modeling in

MDA and can thus be related to the CIM, PIM and PSM - from requirements

to design to implementation. We describe these below:

186

7.3. DATA VIEWS IN THE SDLC

Figure 7.2: Detailed View of Data Views in the SDLC

Each view adds a layer of understanding of the wider concerns of the system

for each of the SDLC phases:

i) Requirements Data View (RDV): This is the presentation of requirements

centric client facing information which includes both functional and non-

functional requirements, and a representation of tacit information per-

taining to the information attributes and data relationships of the system.

The RDV does not specifically describe system structure or hardware and

software features and constructs. Therefore the CIM should not take into

account devices, platforms and middleware. What is more important at

this stage of system modeling, is the depiction of a detailed hybrid model

that incorporates elements that derive from domain knowledge, standard

requirements analysis and ethnography.

ii) Design Data View (DDV): refers to all design models of the system. It

involves developing a schema that can be implemented for representation

and storage of all the data members of the system, elicited from the RDV.

Data concerns in the DDV include ecologies, logical data models and

system architectures.

iii) Implementation Data View (IDV): This refers to all implementation-ready

design specifications such as the physical data model, device architectures,

and HCI Design. The implementation data model implements all explicit

data members and relationships that have been conveyed from the design

data model.

187

7.4. COMPONENTS OF ECOLOGIES

looking at the requirements data view, it maps to a range of models. The

logical data model represents pure schemas without implementation consider-

ations. From a storage / data representation point of view, the LDM is not

optimised for storage. It also does not have tacit information, as this informa-

tion is shifted into abstract system architectures and ecologies. The Physical

Data Model (PDM) on the other hand is optimised for data, and thus relates

directly to the implementation of storage schemas.

7.4 Components of Ecologies

We have defined ecologies as implementation designs that satisfy stakeholder

requirements. As with device ecologies which we introduced previously, hu-

mans play an important role in an ecology model as they are the users of the

system. This is because, amongst other reasons, the choice of software archi-

tectures is largely dependent on factors such as the volume of users, types of

users and tacit user requirements etc that contribute to the decisions on what

types of architectures and ecologies to use.

For the purpose of expressing the definition of infrastructure ecologies,

we use the notions of Instruments and Instrument Containers. The ecology

model defines a set of relationships and interactions between instruments and

instrument containers. These relationships and interactions are governed by a

number of key elements which we discuss later in this chapter. To begin with,

we look at these concepts in a little bit more detail.

Instrument containers are physical containments made up of ecology In-

struments such as hardware, software and/or concepts. These define the phys-

ical limitations of the embodied instruments and any constraints and rules that

the ecology may hold. An instrument represents hardware and software within

an ecology. It may also relate to architectural concepts within an Instrument

Container or anything that can be ‘part-of’ the configuration of the architec-

ture of a system. We refer to the following components of ecologies:

i) Instruments: represents the elements of the ecology

188

7.5. AN ECOLOGY METAMODEL

ii) Instrument Containers: represents the physical boundaries of the ecology

constrained by a set of containment requirements.

iii) Associations: Represents relationships between instruments and instru-

ment containers

iv) Features: Represents the capabilities of instruments and instrument con-

tainers

The next section proposes a metamodel that captures each of the components

listed above.

7.5 An Ecology Metamodel

In this section we propose an ecology reference metamodel, which is an integral

part of the CDM transformation. The metaclasses that comprise the ecology

reference metamodel are depicted in Figure 7.3. The metamodel begins with

the Instrument metaclass as the root. Instrument objects are named instances

within the ecology and thus hold a name attribute. An Instrument object

may define additional attributes relating its characteristics. The metamodel

supports this via a one-to-many relationship between the Instrument class and

the Attribute class.

Figure 7.3: Metamodel for defining Ecologies in the CDM

Alongside Attribute objects, an Instrument object can specify a number of

features (or characteristics) relating to its capabilities within the ecology. This

189

7.6. A HEURISTIC FOR MAPPING CONCEPTUAL DATA MODELS
TO ECOLOGIES

is enabled via a one-to-many relationship between the Instrument and Feature

metaclass. Feature instances are an important part of the metamodel as they

relate to tacit attributes and relationships in the CDM.

InstrumentContainer is a composition of Instrument objects to permit con-

tainment of ecology Instrument objects. The InstrumentRelationship models

relationships that may exist between Instrument objects contained in an In-

strumentContainer or between several InstrumentContainer objects contained in

a larger InstrumentContainer object.

7.6 A Heuristic for Mapping Conceptual Data

Models to Ecologies

The transformation is a mapping from the CDM in the RDV to the LDM and

Ecology in the DDV. The process relies on a detailed CDM that contains tacit

and explicit information. The main heuristic rule allows for a mapping between

tacit information in the CDM and the features that characterise an ecology.

This illustrates the importance and impact of the CDM in the overall picture,

as the presence of tacit information in the CDM may entail the selection of a

particular kind of ecology.

We propose some guidelines on how this can be done in a model driven ap-

proach. A CDM to LDM model transformation will do two things:

a) In the first instance, it will map the CDM data schema to a traditional

LDM data schema, generally omitting tacit information. The LDM data

schema will be used as the basis upon which to determine storage schemas

in the Physical Data Model.

b) Secondly, it will map the CDM data schema to a larger architectural model,

that takes into account the tacit information to develop an ecology solution

that is suited to maintaining data in a way that preserves tacit require-

ments.

The first aspect of the transformation is a straightforward lossy mapping. The

second aspect of the transformation involves a fitness function that computes a

190

7.6. A HEURISTIC FOR MAPPING CONCEPTUAL DATA MODELS
TO ECOLOGIES

score that summarises the extent to which an ecology satisfies the specification

of the CDM. This enables a system designer to assess as a general heuristic

guide, what ecology might be the best implementation approach to meet a set

of requirements. The problem statement is defined as follows:

Presented with:

- a conceptual data model Q

- the set of tacit elements in Q:

where T is the set of tacit elements and T = {t1, t2, t3, ..., tr}

- an Ecology E

- the set of instruments in E:

where I is the set of ecology instruments and I = {i1, i2, i3, ..., is}

Define a fitness function f that computes a ‘fitness’ score of the Ecology E,

that gives an indication of the extent to which E captures the set of tacit

requirements T, defined in model Q.

CDM Ecology Fitness Function:

Given a CDM Q, we compute the fitness score of an Ecology E as follows:

f(E) =
∑

i∈I

∑

t∈T

Val(i, t)

p ∗ |i|
∗

FeatureSum(Q, t)

q ∗ FeatureTotal(Q)

✞

✝

☎

✆7.1

where:

- FeatureSum(Q,t) is the number of occurrences of feature t in model Q.

- FeatureTotal(Q) is the number of occurrences of features in model Q.

- Val(i,t) is the feature score of instrument i, given t as the feature

- |i| is the number of instruments in E.

- p and q are both constants with a value of 1, and can be changed depending

on what part of the formula needs to be emphasised.

191

7.7. SUMMARY

The feature score, Val(i,t), is the capability of for instrument i at feature t.

The function gives weighting to an instrument according to the tacit feature

expressed by t. Consider the comparison matrix of instruments against feature

shown in Table 7.1.

Instrument Feature t1 Feature t2 ... Feature tr
i1 i1t1 i1t2 ... i1tr
i2 i2t1 i2t2 ... i2tr
...
is ist1 ist2 ... istr

Table 7.1: Instrument / Feature Score Framework

We can proceed with the function Val(i,t) on any instrument i and feature t

eg. Val(i1,t2) ≡ i1t2. The instrument / feature score framework functions as a

feature comparison chart that can be used to compare ecologies based on tacit

features highlighted in the CDM.

7.7 Summary

In this chapter, we introduced the notion of implementation design choices

known singularly as an Ecology. An early reference approach to a model driven

software development was proposed, for moving from conceptual data models

in the requirements phases of the SDLC, to design level logical data models

and ecologies. Also presented was a metamodel for constructing ecologies, and

a heuristic guide for mapping CDM’s to ecology instances. We envisage this

work developing along a number of lines, to extended to a fully model driven

approach to navigate tacit CDM’s into LDM’s and Architectures.

192

8
Conclusions

Given the increasing complexity of software systems, it is becoming more and

more challenging to effectively capture and communicate stakeholder require-

ments throughout the software development process. With the problem of

ineffective requirements being regarded as the main antecedent to software

failure, it is necessary to investigate improved approaches for capturing, com-

municating and representing requirements, which aim to address the problem

at the root cause. In requirements analysis, when considering models at a con-

ceptual level, it has been noted that there is a divide between what knowledge

is represented in the domain and the representation of domain knowledge at

the conceptual level. In this regard, this thesis has investigated the proposi-

tion that tacit information (or implicit domain knowledge) is beneficial at the

conceptual level of requirements analysis, to the passage of important contex-

tual information to design. This chapter presents a summing-up of work done

in this thesis beginning with a recap of the thesis objectives and an outline

of the research directions. Following this, we discuss the thesis contributions

and we propose some directions for extensions of this work.

8.1 Overview

Interdisciplinary research in requirements analysis and ethnography has greatly

improved the understanding of analysis methods for elicitation and evaluation.

The same body of research proposes that when you consider data from an

193

8.2. RESEARCH GOALS

ethnographic perspective, there will always be tacit information essential to

the nature of the data, but which is not part of its explicit or literal definition.

With the increasing presence of tacit information in the business domain, this

raises the importance of identifying knowledge of this dimension during the

requirements analysis phase of software development.

It has been posited that when we follow traditional methods for require-

ments analysis, tacit information is inevitably lost or omitted in the elicitation

phase. This is because traditional elicitation methods focus on explicit enti-

ties, relationships and usage behaviours in the system, rather than implicit

kinds of information. Consequently, this can lead to problems like incomplete

requirements, lack of understanding of the domain and so on. Despite this

recognition, there has not been much movement of work in this area of recent.

We have therefore pursued this hypothesis as the overarching theme of this

thesis, hence the thesis title ‘Architecting Tacit Information in Conceptual

Data Models for Requirements Process Improvement’.

8.2 Research Goals

In this section, we reassert the objectives of this thesis. This research began

with the objective to investigate the proposition that tacit information is ben-

eficial at the requirements level. This objective incorporated a number of goals

which directed the thesis to present a renewed effort to:

i) Bridging the gap between ethnography and requirements analysis.

ii) Investigate an approach to carrying ethnographic insights through the re-

quirements analysis stage of software development into design.

iii) Devise an approach to navigating implementation choices at the design level,

based on tacit information that has emerged through elicitation.

The next section presents the contributions of the thesis, structured in agree-

ment with the set of proposed objectives.

194

8.3. THESIS CONTRIBUTIONS

8.3 Thesis Contributions

This work advances the field of requirements engineering by proposing a method

that aims to address problems in elicitation, analysis, representation and com-

munication of requirements in the SDLC. The following questions guided the

investigation of methods for performing effective requirements: (i) How do

we conduct ‘good’ elicitation? (ii) What constitutes effective analysis? (iii)

What methods of representation are sufficient for structuring requirements?

(iv) What are the right methods for communicating requirements between

interested parties of the software development process?

We have investigated ethnographic methods for elicitation and analysis,

and Model Driven Engineering methods for representation and communication

to develop an approach for requirements engineering that aims to address

each of the research goals of the thesis. In the process, we make important

contributions to the field, and identify possible directions for future work which

we elaborate on in the subsections that follow.

8.3.1 Bridging the Gap

The notion of “bridging the gap” relates to adjoining communication activities

in the early phases of the SDLC. This encompasses gaining an understanding

of the clients needs and effectively communicating the clients needs into the

design phase of the SDLC.

An approach to ethnographic elicitation and evaluation

In chapter 3, we investigated the role of ethnography in conceptual data modeling,

to submit the idea that ethnography is beneficial for requirements elicitation.

The chapter thus sets the scene for how ethnographic studies contribute to

a method for data analysis in RE. Contributing to the body of research on

interdisciplinary methods, the chapter outlines an approach that incorporates

ethnography during the early and final phases of the SDLC under the respec-

tive notions of Pre-Implementation Ethnography and Post-Implementation

Ethnography. Pre-Implementation Ethnography is aimed at elicitation activi-

195

8.3. THESIS CONTRIBUTIONS

ties at the beginning of development, while Post-Implementation Ethnography

is aimed at evaluation activities at the end of development.

This feeds into the proposition that tacit information is beneficial at the

design level. The aim was to understand what ethnography offers from a

requirements level. And what types of information it provides. Chapter 4

elaborated on this theme by investigating the potential benefits of incorpo-

rating tacit information in conceptual data models. The chapter demonstrated

through a case study, how Pre-Implementation Ethnography works during the

elicitation phase, and what information might get lost when not considering

the ethnographic perspective. It also demonstrated how a data context can be

scrutinized when trying to work out tacit knowledge.

Summary

In our approach we have bridged the gap by outlining an approach that (i)

guides the elicitation of requirements during the early stages of the SDLC, and

(ii) evaluates the final system in the final stages of the SDLC. However the

approach would not be complete without a method for carrying ethnographic

insights into design and a formalisation of the same. This forms the foundation

for the next contribution of the thesis.

8.3.2 Investigate an approach to carrying ethnographic

insights

Tacit Contracts

On the importance of bridging the gap, it was necessary to devise a method for

carrying ethnographic insights into design. Chapter 5 led with the introduction

of Tacit Contracts in Requirements Analysis aimed at formalising communica-

tion between requirements analysis and design in the SDLC. Tacit Contracts

are design level obligations that ensure the passage of tacit information identi-

fied during Pre-Implementation Ethnography, through into design. The aim of

tacit contracts is to make implicit knowledge in the problem domain visible in

the design phase. Meanwhile, it is important that tacit information is distin-

196

8.3. THESIS CONTRIBUTIONS

guishable from knowledge of the explicit kind. In this way, the quality of the

requirements model will be enhanced with domain knowledge which may lead

to enhanced design and implementation choices in subsequent SDLC phases.

An Improved Metamodel for Defining Conceptual Data Models

To formalise the notion of tacit contracts, in Chapter 5 we proposed a for-

mal definition for defining semantically rich conceptual data models – a tacit

requirements metamodel. The metamodel was proposed to permit the con-

struction of CDM’s that incorporated both tacit information and explicit in-

formation: a multidimensional model for data. To support the requirement

for distinguishable information types in the model, a UML stereotype was cre-

ated to identify tacit information in the model. Models elements annotated

with the << tacit >> stereotype enable tacit / implicit elements to be

distinguished from explicit elements.

A Modeling Language for Describing Tacit Requirements

The formal semantics of the tacit requirements metamodel was defined us-

ing Constructive Type Theory (CTT). CTT provides the benefits of an open

extensible formal system. It allows the freedom of adjusting, adding or re-

moving rules as needed. To this end, we developed the formalism for creating

rules and constraints over elements in a CDM. The language is intended to be

used in the requirements analysis phase to model observations derived from

Pre-Implementation Ethnography, leading to a set of rules of the system.

Summary

In our investigation of approaches to carrying ethnographic insights into de-

sign, we introduced the notion of tacit contracts that create design obliga-

tions between requirements and design. Furthermore, we introduced a rich

CDM metamodel that enables both implicit and explicit information to be

constructed on conceptual models. This paves the way for work aimed at

improving implementation ecology selection at the design level.

197

8.3. THESIS CONTRIBUTIONS

8.3.3 Devise an approach to navigating implementation

choices

With the development of a metamodel that permits the construction of en-

hanced Conceptual Data Models, more detailed analysis can be performed as

part of the design phase to improve the design process. Such analysis may

include more specialised examinations of tacit and explicit information in the

CDM, which may lead to better decision making during the selection of pos-

sible implementation choices. The idea is that with the introduction of tacit

information in the CDM can delineate possible directions for implementations.

Infrastructure Ecologies

In chapter 7 we introduced the concept of Ecologies to describe the implemen-

tation choices of a system that satisfy a set of requirements. A metamodel was

proposed as the formal definition of Ecologies which enables the creation of

design models that concern the solution domain. Promising results suggested

possible mappings from conceptual models to ecologies and logical data mod-

els. To this end, an early reference architecture to a model driven development

approach was proposed to map CDM’s to ecology instances. This provides a

necessary first step for effectively linking CDM’s with models at the design

level.

Summary

In our aim to devise an approach to navigating implementation choices at

the design level, we introduced the concept of Ecologies aimed at describing

instances of the solution domain that meet a particular set of requirements

in the problem domain. A formal definition of ecologies was defined via the

means of a UML metamodel. Furthermore a method of ecology selection

was proposed. Suggested directions for future work are to extend the work

to a fully model driven approach to navigate Tacit CDM’s into LDM’s and

Architectures.

198

8.4. FUTURE WORK

8.4 Future Work

This thesis has made a number of contributions aimed at advancing methods in

Requirements Analysis. Given the merits of the contributions, there are some

limitations that necessitate future extensions. These extensions are suggested

below.

i) Futher refinement of our approach to conceptual modeling. At the concep-

tual modeling phase, it is unfeasible to include all bodies of tacit informa-

tion in the problem domain as prospective requirements level candidates

to aid the design process. It would be of interest to establish further

understanding of how to identify what types of tacit information are ‘im-

portant’ and ‘relevant’ for the the design phase, so as not to overwhelm the

conceptual model with a colossal amount of information from the problem

domain.

ii) The work done in this thesis has taken a view on requirements process

improvement for data. However the approach is agnostic and can be

applied in other domains. Further work is suggested to carry this approach

into other application domains outside data modeling.

iii) The insight obtained from this work shows that there is potential in the

work on mapping Conceptual Data Models to Ecologies. An initial de-

scription of a method is presented in this work which generally defines the

approach. Further work is suggested to expand this approach especially in

the unexplored area of investigating the effect of ecology selection on the

logical data model and subsequent concerns of the physical data model.

iv) Finally, it would be of interest to further investigate this approach as a

fully automated model driven method that takes in a conceptual data

model and subsequently transforms it into its corresponding logical and

physical concerns.

199

8.5. CONCLUDING REMARKS

8.5 Concluding Remarks

As software systems become increasingly complex, there will continue to be a

need to advance methods for understanding the problem domain and effective

methods to communicate our understanding of the problem domain to the so-

lution domain. In this thesis, we have demonstrated the concept of architecting

tacit information in conceptual data models for requirements process improvement.

To approach this concept, we investigated the role of ethnography in concep-

tual modeling1. This enabled us to pursue the hypothesis of the advantages to

be gained from incorporating tacit information within conceptual data models2.

Promising results from preliminary empirical work directed the creation of a

tacit requirements metamodel3 which paved the way for a larger evaluation of

our work via a case study in auction house systems design4. Results suggested

possible mappings of design concerns from conceptual models to ecologies and

logical data models5. Our approach is successful in that it has considered per-

sistent problems rooted in RE, and while we do not claim to solve them all,

our work presents a first step in a seemingly alternative, but actually relevant

and complementary direction for requirements process improvement.

1Chapter 3: Role of Ethnography in Conceptual Data Modeling, 51–76
2Chapter 4: Incorporating Tacit Information within Conceptual Data

Models, 77–93
3Chapter 5: A Tacit Requirements Metamodel, 94–123
4Chapter 6: A Case Study in Auction House Systems Design, 125–182
5Chapter 7: From Conceptual Data Models to Ecologies and Logical Data Models, 183–

192

200

References

[1] 1st international enterprise distributed object computing conference (edoc

’97), 24-26 october 1997, gold coast, australia, proceedings, in EDOC,

IEEE Computer Society, 1997.

[2] M. Adato, Integrating survey and ethnographic methods to evaluate

conditional cash transfer programs:, IFPRI discussion papers 810, Inter-

national Food Policy Research Institute (IFPRI), 2008.

[3] M. I. Aguirre-Urreta and G. M. Marakas, Comparing concep-

tual modeling techniques: a critical review of the EER vs. OO empirical

literature, SIGMIS Database, 39 (2008), pp. 9–32.

[4] A. Al-Rawas and S. Easterbrook, Communication problems in

requirements engineering: A field study, in Proc. of Conf. on Prof. on

Awareness in Software Engineering, 1996, pp. 47–60.

[5] R. J. Anderson, Representations and requirements: the value of

ethnography in system design, Hum.-Comput. Interact., 9 (1994),

pp. 151–182.

[6] Anoto Group AB, Anoto Digital Pen Technology,

http://www.anoto.com, 2012. Last Accesssed September 2012.

[7] M. Aoyama, Persona-and-scenario based requirements engineering for

software embedded in digital consumer products, in Proceedings of the

13th IEEE International Conference on Requirements Engineering, RE

’05, Washington, DC, USA, 2005, IEEE Computer Society, pp. 85–94.

[8] Y. Asnar, P. Giorgini, and J. Mylopoulos, Goal-driven risk as-

sessment in requirements engineering, Requir. Eng., 16 (2011), pp. 101–

116.

[9] L. J. Ball and T. C. Ormerod, Applying ethnography in the analysis

and support of expertise in engineering design, Design Studies, 21 (2000),

pp. 403 – 421.

201

http://www.anoto.com

REFERENCES

[10] B. Baudry, C. Nebut, and Y. Le Traon, Model-driven engineer-

ing for requirements analysis, in Enterprise Distributed Object Comput-

ing Conference, 2007. EDOC 2007. 11th IEEE International, Oct. 2007,

p. 459.

[11] R. Bentley, J. A. Hughes, D. Randall, T. Rodden, P. Sawyer,

D. Shapiro, and I. Sommerville, Ethnographically-informed systems

design for air traffic control, in Proceedings of the 1992 ACM conference

on Computer-supported cooperative work, CSCW ’92, New York, NY,

USA, 1992, ACM, pp. 123–129.

[12] P. Beynon-Davies, Ethnography and information systems develop-

ment: Ethnography of, for and within is development, Inf. Softw. Tech-

nol., 39 (1997), pp. 531–540.

[13] H. S. Bhola, Evaluating ”literacy for development” projects, programs

and campaigns: Evaluation planning, design and implementation, and

utilization of evaluation results, tech. rep., UNESCO Institute for Educa-

tion; DSE [German Foundation for International Developement], Ham-

burg, Germany, 1990.

[14] G. Booch, J. Rumbaugh, and I. Jacobson, The Unified Modeling

Language user guide, Addison Wesley Longman Publishing Co., Inc.,

Redwood City, CA, USA, 1999.

[15] A. Brady, M. Seigel, T. Vosecky, and C. Wallace, Addressing

communication issues in software development: A case study approach,

in Software Engineering Education Training, 2007. CSEET ’07. 20th

Conference on, 2007, pp. 301–308.

[16] K. Cass, A bridge to the third age: fashioning technological concepts

for novice over-seventy home-system users, in Proceedings of the 2006

ACM SIGMIS CPR conference on computer personnel research: Forty

four years of computer personnel research: achievements, challenges &

the future, SIGMIS CPR ’06, New York, NY, USA, 2006, ACM, pp. 20–

24.

202

REFERENCES

[17] J. Castro, S. Acua, and N. Juristo, Integrating the personas tech-

nique into the requirements analysis activity, in Computer Science, 2008.

ENC ’08. Mexican International Conference on, oct. 2008, pp. 104 –112.

[18] P. P.-S. Chen, The entity-relationship modeltoward a unified view of

data, ACM Trans. Database Syst., 1 (1976), pp. 9–36.

[19] B. H. C. Cheng and J. M. Atlee, Research directions in require-

ments engineering, in FOSE ’07: 2007 Future of Software Engineering,

Washington, DC, USA, 2007, IEEE Computer Society, pp. 285–303.

[20] E. Coakes and T. Elliman, Focus issue on legacy information sys-

tems and business process engineering: the role of stakeholders in man-

aging change, Commun. AIS, 2 (1999).

[21] S. A. Conger, The New Software Engineering, Course Technology

Press, Boston, MA, United States, 1st ed., 1993.

[22] A. Cooper, The Inmates Are Running the Asylum, Macmillan Pub-

lishing Co., Inc., Indianapolis, IN, USA, 1999.

[23] R. Damaeviius, On the human, organizational, and technical aspects

of software development and analysis, in Information Systems Develop-

ment, Springer US, 2009, pp. 11–19.

[24] P. Dourish, Implications for design, in Proc. ACM Conf. Human Fac-

tors in Computing Systems CHI 2006, ACM Press, 2006, pp. 541–550.

[25] H. El-Ghalayini, M. Odeh, and R. McClatchey, Developing

ontology-driven conceptual data models, in Proceedings of the 1st In-

ternational Conference on Intelligent Semantic Web-Services and Appli-

cations, ISWSA ’10, New York, NY, USA, 2010, ACM, pp. 4:1–4:6.

[26] E. Eriksson, Å. Cajander, and J. Gulliksen, Hello world! - ex-

periencing usability methods without usability expertise, in INTERACT

(2), 2009, pp. 550–565.

203

REFERENCES

[27] D. E. Forsythe, It’s Just a Matter of Common Sense: Ethnography

as Invisible Work, Computer Supported Cooperative Work (CSCW), 8

(1999), pp. 127–145.

[28] B. E. Foucault, Techniques for researching and designing global prod-

ucts in an unstable world: A case study. human factors and computer

systems. conference (4th 2004). proceedings of the chi conference on hu-

man factors in computing systems, in University of Greenwich, ACM

Press, 2004, pp. 1481–1484.

[29] R. France and B. Rumpe, Model-driven development of complex

software: A research roadmap, in 2007 Future of Software Engineer-

ing, FOSE ’07, Washington, DC, USA, 2007, IEEE Computer Society,

pp. 37–54.

[30] R. Fuentes-Fernndez, J. Gmez-Sanz, and J. Pavn, Understand-

ing the human context in requirements elicitation, Requirements Engi-

neering, 15 (2010), pp. 267–283. 10.1007/s00766-009-0087-7.

[31] H. Garfinkel, Studies in Ethnomethodology, Prentice Hall, Englewood

Cliffs, NJ, 1967.

[32] J. Goguen, Social issues in requirements engineering, in Requirements

Engineering, 1993., Proceedings of IEEE International Symposium on,

Jan 1993, pp. 194–195.

[33] J. Goguen and C. Linde, Techniques for requirements elicitation, in

IEEE International Symposium on Requirements Engineering San Diego,

CA, Academic Press, 1993, pp. 152–164.

[34] I. A. W. Group, Ieee std 1471-2000, recommended practice for ar-

chitectural description of software-intensive systems, tech. rep., IEEE,

2000.

[35] I. A. W. Group, Ieee std 1471-2000, recommended practice for ar-

chitectural description of software-intensive systems, tech. rep., IEEE,

2000.

204

REFERENCES

[36] O. M. Group, Corba component model 4.0 specification, Specification

Version 4.0, Object Management Group, April 2006.

[37] O. M. Group, Software Process Engineering Metamodel (SPEM), Jan.

2007.

[38] M. Hammersley and P. Atkinson, Ethnography. Principles in prac-

tice, Tavistock Publications, London, 1983.

[39] R. R. Harper, J. A. Hughes, and D. Z. Shapiro, Harmonious

working and CSCW: computer technology and air traffic control, North-

Holland Publishing Co., Amsterdam, The Netherlands, The Nether-

lands, 1991, pp. 225–234.

[40] C. Heath, J. Hindmarsh, and P. Luff, Video Analysis and Quali-

tative Research, SAGE, 2010.

[41] C. Heath, M. Jirotka, P. Luff, and J. Hindmarsh, Unpacking

collaboration: the interactional organisation of trading in a city deal-

ing room, Computer Supported Cooperative Work (CSCW), 3 (1994),

pp. 147–165. 10.1007/BF00773445.

[42] C. Heath and P. Luff, Documents and professional practice:

b̈adörganisational reasons for g̈oodc̈linical records, in Proceedings of the

1996 ACM conference on Computer supported cooperative work, CSCW

’96, New York, NY, USA, 1996, ACM, pp. 354–363.

[43] C. Heath, P. Luff, and G. Cambridge, Collaboration and control:

Crisis management and multimedia technology in london underground

line control rooms, Computer Supported Cooperative Work, 1 (1992),

pp. 69–94.

[44] A. Herrmann and B. Paech, Practical challenges of requirements pri-

oritization based on risk estimation, Empirical Softw. Engg., 14 (2009),

pp. 644–684.

205

REFERENCES

[45] J. Hughes, V. King, T. Rodden, and H. Andersen, Moving out

from the control room: ethnography in system design, in CSCW ’94:

Proceedings of the 1994 ACM conference on Computer supported coop-

erative work, New York, NY, USA, 1994, ACM, pp. 429–439.

[46] J. Hughes, J. O’Brien, T. Rodden, M. Rouncefield, and

I. Sommerville, Presenting ethnography in the requirements process,

in Proceedings of the Second IEEE International Symposium on Re-

quirements Engineering, RE ’95, Washington, DC, USA, 1995, IEEE

Computer Society, pp. 27–.

[47] J. A. Hughes, D. Randall, and D. Shapiro, Faltering from

ethnography to design, in Proceedings of the 1992 ACM conference

on Computer-supported cooperative work, CSCW ’92, New York, NY,

USA, 1992, ACM, pp. 115–122.

[48] R. Iqbal, R. Gatward, and A. James, A general approach to ethno-

graphic analysis for systems design, in Proceedings of the 23rd annual

international conference on Design of communication: documenting &

designing for pervasive information, SIGDOC ’05, New York, NY, USA,

2005, ACM, pp. 34–40.

[49] M. Jackson, Problem frames: analyzing and structuring software de-

velopment problems, Addison-Wesley Longman Publishing Co., Inc.,

Boston, MA, USA, 2001.

[50] B. Jeffrey, P. Bradshaw, P. Twining, and C. Walsh, Ethnog-

raphy, education and on-line research, in European Conference of Edu-

cational Research, August 2010.

[51] M. Jirotka, N. Gilbert, and P. Luff, On the social organisation

of organisations, Computer Supported Cooperative Work (CSCW), 1

(1992), pp. 95–118. 10.1007/BF00752452.

[52] M. Jirotka, P. Luff, and C. Heath, Requirements for technology

in complex environments: tasks and interaction in a city dealing room,

ACM SIGOIS Bulletin, 14 (1993), pp. 17–23.

206

REFERENCES

[53] B. Jordan, Ethnographic workplace studies and computer supported co-

operative work, in in Interdisciplinary Workshop on Informatics and Psy-

chology, D. Shapiro, M. Tauber, and R. Traunmueller, eds., The design

of computer-supported cooperative work and groupware systems, Ams-

terdam: North Holland/Elsevier, 1993, pp. 17–42.

[54] E. Kindler, Model-based software engineering: the challenges of mod-

elling behaviour, in Proceedings of the Second International Workshop

on Behaviour Modelling: Foundation and Applications, BM-FA ’10, New

York, NY, USA, 2010, ACM, pp. 4:1–4:8.

[55] G. Kotonya and I. Sommerville, Viewpoints for requirements defi-

nition, Software Engineering Journal, 7 (1992), pp. 375–387.

[56] D. Leffingwell and D. Widrig, Managing software requirements:

a unified approach, Addison-Wesley Longman Publishing Co., Inc.,

Boston, MA, USA, 2000.

[57] T. C. Lethbridge, S. E. Sim, and J. Singer, Software anthropology:

Performing field, in Lingua, 2004, pp. 281–319.

[58] S. L. Lim and A. Finkelstein, Stakerare: Using social networks

and collaborative filtering for large-scale requirements elicitation, IEEE

Transactions on Software Engineering, 38 (2012), pp. 707–735.

[59] O. Lindeberg, What are software practice studies good for?, in in Em-

pirical Software Research, workshop at the 22 nd ICSE conference, 2000.

[60] P. M. Löf, Constructive Mathematics and Computer Programming, in

6-th International Congress for Logic, Methodology and Philosophy of

Science, 1979, North–Holland, 1982, pp. 153–175.

[61] S. Loke, Service-oriented device ecology workflows, in Service-Oriented

Computing - ICSOC 2003, M. Orlowska, S. Weerawarana, M. Papa-

zoglou, and J. Yang, eds., vol. 2910 of Lecture Notes in Computer Sci-

ence, Springer Berlin / Heidelberg, 2003, pp. 559–574.

207

REFERENCES

[62] N. Maiden and A. Gizikis, Where do requirements come from?, Soft-

ware, IEEE, 18 (2001), pp. 10 –12.

[63] N. A. M. Maiden and S. Robertson, Integrating creativity into

requirements processes: Experiences with an air traffic management sys-

tem, in RE, 2005, pp. 105–116.

[64] D. Martin, J. Rooksby, M. Rouncefield, and I. Sommerville,

’good’ organisational reasons for ’bad’ software testing: An ethnographic

study of testing in a small software company, in Proceedings of the 29th

international conference on Software Engineering, ICSE ’07, Washing-

ton, DC, USA, 2007, IEEE Computer Society, pp. 602–611.

[65] P. Martin-Löf, Intuitionistic Type Theory. Notes by Giovanni Sambin

of a series of lectures given in Padua, June 1980, Bibliopolis, Napoli,

1984.

[66] L. D. Miles, Techniques of value analysis, (1951).

[67] D. R. Millen, Rapid ethnography: time deepening strategies for hci

field research, Proceedings of the conference on Designing interactive

systems processes practices methods and techniques DIS 00, 280-286htt

(2000), pp. 280–286.

[68] J. Miller and J. Mukerji, Mda guide version 1.0.1, Tech. Rep.

omg/03-06-01, Object Management Group (OMG), June 2003.

[69] R. K. Mitchell, B. R. Agle, and D. J. Wood, Toward a theory

of stakeholder identification and salience: Defining the principle of who

and what really counts, Oct. 1997.

[70] I. Nonaka, A Dynamic Theory of Organizational Knowledge Creation,

Organization Science, 5 (1994), pp. 14–37.

[71] I. Nonaka, R. Toyama, and P. Byosire, A theory of organiza-

tional knowledge creation: understanding the dynamic process of creating

knowledge, Oxford Univ. Press, Oxford, 2001, p. 491517.

208

REFERENCES

[72] B. Nuseibeh and S. Easterbrook, Requirements engineering: a

roadmap, in ICSE ’00: Proceedings of the Conference on The Future

of Software Engineering, New York, NY, USA, 2000, ACM, pp. 35–46.

[73] Object Management Group, Meta Object Facility (MOF) Specifi-

cation — Version 1.4, April 2002.

[74] Oxford Dictionaries, tacit. Oxford Dictionaries,

http://oxforddictionaries.com/definition/tacit. Last Ac-

cesssed April 2011.

[75] C. Pettinari, C. C. Heath, P. Luff, and J. M., Notes toward an

applied ethnography, tech. rep., Work Interaction Technology, 1998.

[76] S. Pfleeger and J. Atlee, Software Engineering: Theory and Prac-

tice, Pearson Prentice Hall, 2006.

[77] L. Plowman, Y. Rogers, and M. Ramage, What are workplace

studies for?, in Proceedings of the fourth conference on European Con-

ference on Computer-Supported Cooperative Work, Norwell, MA, USA,

1995, Kluwer Academic Publishers, pp. 309–324.

[78] K. Pohl, Requirements Engineering - Fundamentals, Principles, and

Techniques, Springer, 2010.

[79] M. Polanyi, The tacit dimension, Anchor Books, Garden City, 1967.

[80] J. Poole and D. Mellor, Common Warehouse Metamodel: An In-

troduction to the Standard for Data Warehouse Integration, John Wiley

& Sons, Inc., New York, NY, USA, 2001.

[81] C. Potts, Metaphors of intent, in Requirements Engineering, 2001.

Proceedings. Fifth IEEE International Symposium on, 2001, pp. 31 –38.

[82] O. Preiss and A. Wegmann, Stakeholder discovery and classification

based on systems science principles, in Proceedings of the Second Asia-

Pacific Conference on Quality Software, APAQS ’01, Washington, DC,

USA, 2001, IEEE Computer Society, pp. 194–.

209

http://oxforddictionaries.com/definition/tacit

REFERENCES

[83] K. Rönkkö, O. Lindeberg, and Y. Dittrich, ’bad practice’ or ’bad

methods’ ” are software engineering and ethnographic discourses incom-

patible?, in ISESE ’02: Proceedings of the 2002 International Symposium

on Empirical Software Engineering, Washington, DC, USA, 2002, IEEE

Computer Society, p. 204.

[84] T. Salvador, G. Bell, and K. Anderson, Design ethnography,

Design Management Journal (Former Series), 10 (1999), pp. 35–41.

[85] E. Sanders, Ethnography in npd research-how applied ethnography can

improve your npd research process, 2002.

[86] D. Schwartz, Visual ethnography: Using photography in qual-

itative research, Qualitative Sociology, 12 (1989), pp. 119–154.

10.1007/BF00988995.

[87] H. Sharp, A. Finkelstein, and G. Galal, Stakeholder identifi-

cation in the requirements engineering process, Database and Expert

Systems Applications, International Workshop on, 0 (1999), p. 387.

[88] B. Solemon, S. Sahibuddin, and A. A. A. Ghani, Requirements

engineering problems and practices in software companies: An industrial

survey, in Advances in Software Engineering, D. lzak, T.-h. Kim, A. Ki-

umi, T. Jiang, J. Verner, and S. Abraho, eds., vol. 59 of Communications

in Computer and Information Science, Springer Berlin Heidelberg, 2009,

pp. 70–77.

[89] I. Sommerville, T. Rodden, P. Sawyer, R. Bentley, and

M. Twidale, Integrating ethnography into the requirements engineering

process, 1993.

[90] A. G. Sutcliffe and N. A. M. Maiden, Bridging the requirements

gap: policies, goals and domains, in Proceedings of the 7th international

workshop on Software specification and design, IWSSD ’93, Los Alami-

tos, CA, USA, 1993, IEEE Computer Society Press, pp. 52–55.

210

REFERENCES

[91] A. Taylor, IT projects sink or swim, British Computer Society,

http://archive.bcs.org/bulletin/jan00/article1.htm, 2000. Last

Accesssed December 2010.

[92] A. Van Lamsweerde, Goal-oriented requirements engineering: A

guided tour, in Proceedings of the Fifth IEEE International Symposium

on Requirements Engineering, RE ’01, Washington, DC, USA, 2001,

IEEE Computer Society, pp. 249–.

[93] J. Verner, K. Cox, S. Bleistein, and N. Cerpa, Requirements

engineering and software project success: An industrial survey in aus-

tralia and the u.s., Australia Journal of Information Systems, 13 (2004),

pp. 225–238.

[94] S. Viller and I. Sommerville, Social analysis in the requirements

engineering process: From ethnography to method, Requirements Engi-

neering, IEEE International Conference on, 0 (1999), p. 6.

[95] S. Viller and I. Sommerville, Ethnographically informed analysis

for software engineers, International Journal of Human-Computer Stud-

ies, 53 (2000), pp. 169 – 196.

[96] A. Voss, R. Procter, R. Slack, M. Hartswood, and

M. Rouncefield, Design as and for collaboration: Making sense of

and supporting practical action, in Configuring User-Designer Relations,

M. s, R. Slack, M. Rouncefield, R. Procter, M. Hartswood, and A. Voss,

eds., Computer Supported Cooperative Work, Springer London, 2009,

pp. 1–28.

[97] Y. Wand and R. Weber, Research commentary: Information sys-

tems and conceptual modeling–a research agenda, Info. Sys. Research,

13 (2002), pp. 363–376.

[98] J. Warmer, A. Kleppe, and W. Bast, MDA Explained: The Model

Driven Architecture–Practice and Promise, Object Technology Series,

Addison Wesley, 1st edition ed., 2003.

211

http://archive.bcs.org/bulletin/jan00/article1.htm

REFERENCES

[99] R. J. Wieringa, Requirements engineering: frameworks for under-

standing, John Wiley & Sons, Inc., New York, NY, USA, 1996.

[100] G. K. Williams and I. Poernomo, Social Computing Theory and

Practice: Interdisciplinary Approaches, IGI Global, Information Science

Reference, USA/UK, 2011, ch. Social Contexts in an Information Rich

Environment, pp. 68–84.

[101] G. K. Williams, I. Poernomo, and P. Luff, Modelling ethno-

graphic analyses for records via tacit contracts, in RCIS, 2011.

[102] R. R. Young, The requirements engineering handbook, Artech House

technology management and professional development library, Artech

House, Norwood, MA, 2004.

212

	Abstract
	Acknowledgements
	Declaration
	Publications
	Contents
	Abbreviations
	List Of Figures
	List Of Tables
	I Background & Context
	Introduction
	Prerequisites for Requirements Analysis
	Bridging the Gap
	Research Goals
	Thesis Outline

	Background and Related Work
	The Importance of Communication in Requirements Analysis
	Multidimensional Communication Needs
	Requirements Analysis
	Methods for Eliciting and Analysing Requirements
	Methods for Recording Requirements
	Challenges of Requirements Analysis
	Discussion

	Ethnography as a Means of Elicitation and Analysis
	An Overview of Methods of Ethnography
	The Principle of Ethnography
	Ethnography in Software Engineering
	Challenges of Ethnography
	Discussion

	Models as a Means of Communication
	Model Driven Engineering (MDE)
	Model Driven Architecture (MDA)
	The Unified Modeling Language (UML)
	Discussion

	Related Work
	Summary

	II A Tacit Requirements Analysis Methodology
	Role of Ethnography in Conceptual Data Modeling
	Introduction
	Ethnographic Elicitation
	Ethnographic Study Life Cycle (ESLC)
	The Execution Phase of Ethnography
	Important concerns of adopting Ethnography in the SDLC

	The Software Development Life Cycle (SDLC)
	SDLC Overview
	Categorization of SDLC Activities with respect to Ethnography
	Data Modeling

	Combining Ethnography with SDLC Phases and Categories
	The Overlap of Ethnography and Requirements Analysis
	Bridging The Gap between Ethnography and Requirements Analysis
	Ethnographically Inspired SDLC Categories

	Ethnography in relation to the SDLC
	Summary

	Incorporating Tacit Information within Conceptual Data Models
	Introduction
	What is ``Tacit Information''?
	Transferring Knowledge to Development
	Ethnographic Perspectives on Data
	Knowledge without Conceptual Data Schemas
	Ethnographic Elicitation for Data

	The Medical Records Case Study (Pt. 1)
	Overview
	Ethnographic Analyses
	Observations
	Conclusion

	Summary

	A Tacit Requirements Metamodel
	Tacit Contracts in Requirements Analysis
	Towards A Tacit Requirements Metamodel
	Constructive Types for Pre-Implementation Ethnography
	The Formalism for the CDM
	Why Constructive Type Theory?
	The Medical Records Case Study (Pt. 2)
	Naive Conceptual Model (NCM)
	Tacit Conceptual Model (TCM)
	Model Comparison

	Discussion
	Summary

	III Methodology Application and Conclusions
	A Case Study in Auction House Systems Design
	Introduction
	Scope and Purpose of Study
	The Auction Domain
	Auctions
	Variations to the Bidding Process
	Summary

	Approach & Development Process
	Data Analysis and Interpretation
	Pre-Implementation
	Implementation
	Post-Implementation

	Discussion & Conclusions
	Overview of Work
	The Role of Tacit Information in the SDLC

	From Conceptual Data Models to Ecologies and Logical Data Models
	What is an Ecology
	Ecologies: A Model Driven Engineering Approach
	Data Views in the SDLC
	Components of Ecologies
	An Ecology Metamodel
	A Heuristic for Mapping Conceptual Data Models to Ecologies
	Summary

	Conclusions and Future Work
	Overview
	Research Goals
	Thesis Contributions
	Bridging the Gap
	Investigate an approach to carrying ethnographic insights
	Devise an approach to navigating implementation choices

	Future Work
	Concluding Remarks

	References

