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From Modeling to Measurement: Developmental Trends
in Genetic Influence on Adiposity in Childhood
C.H. Llewellyn1,2, M. Trzaskowski2, R. Plomin2 and J. Wardle1

Objective: Evidence of increasing heritability of BMI over childhood can seem paradoxical given longer

exposure to environmental influences. Genomic data were used to provide direct evidence of develop-

mental increases in genetic influence.

Methods: BMI standard deviation scores (BMI-SDS) at ages 4 and 10 were calculated for 2,556 twin

pairs in the Twins Early Development Study. Twin analyses estimated heritability of BMI-SDS at each age

and the longitudinal genetic correlation. One randomly selected twin per pair was genotyped. Genome-

wide complex trait analysis (GCTA) determined DNA-based heritability at each age and the longitudinal

genomic correlation. Associations with a polygenic obesity risk score (PRS) using 28 obesity-related sin-

gle nucleotide polymorphisms (SNPs) were assessed at each age, with bootstrapping to test the signifi-

cance of the increase in variance explained.

Results: Twin-estimated heritability increased from age 4 (0.43; 95% CI: 0.35-0.53) to 10 (0.82; 0.74-

0.88). GCTA-estimated heritability went from non-significant at 4 (0.20; 20.21 to 0.61) to significant at 10

(0.29; 0.01-0.57). Longitudinal genetic correlations derived from twins (0.58) and GCTA (0.66) were similar.

The same PRS explained more variance at 10 than 4 years (R2 D:0.024; 0.002-0.078).

Conclusions: GCTA and PRS findings confirm twin-based results suggesting increasing genetic influence

on adiposity during childhood despite substantial genetic stability.

Obesity (2014) 22, 1756–1761. doi:10.1002/oby.20756

Introduction
Body mass index (BMI) is a heritable trait; with moderate-to-high

estimates (47–90%) reported from twin studies (1, 2). A recent meta-

regression showed that heritability was higher in children than in

adults (1), and several studies have shown increasing heritability of

BMI from early to late childhood (3-5). Using longitudinal data from

the Twins Early Development Study (TEDS), we showed that the her-

itability of BMI increased substantially from 4 to 10 years (49–82%)

(5), consistent with findings from the Danish Twin Registry (48–87%)

(3). This may appear paradoxical given that increasing duration of

children’s exposure to environmental influences could be expected to

increase the environmental effect. However, developmental increases

in heritability have been demonstrated for other phenotypes (6), and it

would be consistent with a model of gene expression depending on

environmental exposure (7). Twin data also show high genetic correla-

tions over time for BMI (5, 8-10), suggesting that many of the same

genes continue to influence BMI at different ages. However, because

twin analyses are inferential, it is important to demonstrate the same

pattern of results using genomic data.

Genome-wide association studies (GWAS) have now identified

more than 32 common single nucleotide polymorphisms (SNPs)

associated with BMI in adults and children (11, 12). These can be

combined into a polygenic obesity risk score (PRS) to quantify

genomic influence on BMI. A PRS created from a subset of these

SNPs explained increasing variance in BMI from early to late child-

hood in the Avon Longitudinal Study of Parents and Children

(ALSPAC) (13), with a similar result in the 1946 British Birth
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Cohort Study (14). Although these studies did not directly compare

quantitative and molecular genetic results, they support the view

that increases in twin-estimated heritability can be explained by

increasing phenotypic effects of the same genes, because the genetic

correlation is constrained to 1 using the same PRS.

On the basis of obesity-related SNPs identified to date, the total var-

iance explained is still well below the twin-estimated heritability (15).

However, a novel quantitative method called Genome-wide Complex

Trait Analysis (GCTA) (16) uses whole genome arrays to estimate the

total additive genetic influence due to all common SNPs simultaneously.

Like twin data, GCTA can be used to explore developmental increases

in genetic association insofar as it provides age-specific estimates of the

additive effects of all common SNPs tagged by the commercially avail-

able genetic chips, and an estimate of the longitudinal genetic correla-

tion. SNP-derived heritability will be lower than twin-derived heritability

if SNPs other than those tagged by the additive effects of common

SNPs are important (such as rare variants), or if non-additive effects are

important (gene–gene or gene–environment interactions).

In this study, we used GCTA, PRS, and twin analysis, in the same

sample of children to test the hypotheses that twin-based evidence

of increases in heritability of BMI from early to late childhood is

supported by genomic results (GCTA and PRS), and that genomic

and twin analyses both suggest that many of the same genes influ-

ence adiposity at both ages.

Methods
Sample
The sample for this study was from TEDS, a population-based cohort of

>11,000 British twins (17). Informed consent for each part of the study

was provided by the parents prior to data collection. Ethical approval was

provided by King’s College London’s Ethics Committee.

Genotyping
In 2010, genome-wide genotyping was carried out for one randomly

selected member of each twin pair in 3,665 TEDS families as part of

the Wellcome Trust Case Control Consortium 2 (WTCCC2) project

(18). DNA was extracted from buccal cheek swabs. The Affymetrix

6.0 GeneChip was used to genotype about 1,000,000 SNPs using

standard experimental protocols (19). IMPUTE version 2 software (20)

was used to impute approximately 2.5 million additional SNPs. After

stringent quality control was carried out as part of WTCCC2 (20), the

sample was reduced to about 1.7 million SNPs and 3,152 children.

Creating a polygenic obesity risk score
A PRS indexing genetic predisposition to obesity was calculated using

28 known obesity-related SNPs from a total of 34 identified in two

published meta-analyses in adults (12) and children (11). The SNPs

included are described in the Supporting Information (“Supplementary

methods: creating a polygenic obesity risk score”). A PRS was cre-

ated by calculating a mean score for each individual from the 28

SNPs, yielding a possible score ranging from 0 to 56 with higher

scores indicating greater genetic predisposition to obesity. A weighted

mean score was calculated to take account of relative effect sizes by

multiplying each SNP by its beta coefficient in the published meta-

analyses from which the SNPs were identified (11, 12).

Measurement of BMI-SDS at age 4 and 10 years
Anthropometric data were collected in 1999 and 2005, when the

children were 4 and 10 years old, respectively. Questionnaires and

2-meter tape measures were mailed to the families; parents were

provided with detailed instructions regarding how to measure their

children’s height (to the nearest centimeter) and weight (to the near-

est pound or tenth of a kilogram), and they were asked to record the

date of each measurement. Correspondence between parent- and

researcher-measured height and weight were 0.90 and 0.83 in a sam-

ple of 228 families (21).

BMI was calculated from height and weight (weight (kg)/height

(m)2) and converted to Standard Deviation Scores (BMI-SDS) which

take into account the child’s age and sex, using 1990 UK growth

reference data (22) with the program ImsGrowth (23). BMI-SDS

were residualized for age- and sex-effects using a regression proce-

dure, prior to analyses. To aid model optimization and cross-method

comparison, we standardized BMI-SDS such that the variance was

equal to one and the mean equal to zero.

Exclusions
About 2,556 children of the sample with genotyping data

(n 5 3,152) had height and weight data for at least one of the two

ages, and their exact age at the time of measurement. As the GWAS

sample was already screened for medical and other general exclu-

sions, there were no further exclusions (for details on that sample,

see ref. 19).

Statistical analyses
Twin analyses of the heritability of BMI-SDS at ages 4 and

10 years. To provide twin-based heritability of BMI-SDS at ages

4 and 10 for comparison, data from genotyped twins and their co-

twins were modeled using a longitudinal Cholesky Decomposition

Model in OpenMx (24). This method models variance and covari-

ance for pairs of monozygotic (MZ) twins who are 100% genetically

identical, and dizygotic (DZ) twins who share on average 50% of

their segregating alleles. Differences between intraclass correlations

for MZ and DZ pairs are used to partition the variance into genetic

and environmental effects. Variance is attributed to: additive genetic

influence (A), to the extent that MZ correlations are higher than

those for DZ twins; shared or common (C) environmental influen-

ces, which is residual MZ twin resemblance not explained by genet-

ics; and nonshared or unique environmental influences (E), which is

the extent to which MZ twins differ, and includes measurement

error. A longitudinal genetic correlation is derived by partitioning

covariance between BMI-SDS at 4 and 10 years, for MZs and DZs.

This estimates the extent to which common genetic effects underlie

BMI-SDS at both ages, ranging from 0 (no common genetic effects)

to 1 (all of the same genes are involved). Importantly, twin heritabil-

ity captures genetic influence from the whole genome, and may

include non-additive genetic influences. A detailed description of

the twin method and related issues can be found elsewhere (25).

The fit of the model was not of primary interest in this study; how-

ever, to assure a “good fit,” we used the full model with all parame-

ters, including A, C, and E for each age, and allowed longitudinal

covariation among all of these parameters. Because previous analy-

sis on the same sample did not indicate sex differences we modeled

both sexes together.
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Genome-wide Complex Trait Analysis at ages 4 and 10 years.
GCTA was used to estimate DNA-based heritability at ages 4 and

10 years, and the longitudinal genomic correlation, for the 2,556

unrelated children with genotyping and anthropometric data. GCTA

takes advantage of GWAS data to estimate the total amount of var-

iance in a phenotype that can be explained by the additive effects of

all common SNPs measured on commercial chips or in high linkage

disequilibrium with them. The method adapts a linear mixed model

(LMM) framework fitting genetic influence as a random polygenic

effect. GCTA estimates the amount of genetic influence by associat-

ing mean genetic similarity calculated from all genetic loci to the

phenotypic similarity between all pairs of unrelated individuals in

the sample (26). Using a random effects model to estimate genetic

influence means that this estimate is “unbiased” if all individuals in

the sample are truly unrelated. For that reason, if any pairwise com-

parison returns genetic relatedness> 0.025, one of the pair is

removed; on this basis five individuals were removed from the

GCTA analysis. Given that GCTA is a genome-wide method, it is

affected by population structure (27); therefore we used eight eigen

vectors previously used on the same sample in our GWAS (19). To

compare age-related differences in the amount of variance in BMI-

SDS explained, and to estimate the longitudinal genetic correlation,

we used a bivariate GCTA model (28); this differs from a univariate

model in that it focuses on the covariance between two ages.

Associations between polygenic risk score and BMI-SDS at

ages 4 and 10 years. Linear regression analyses were used to

establish the association between the PRS with age- and sex-

adjusted BMI-SDS at 4 and 10 years of age for the 2,556 unrelated

children with genotyping and anthropometric data. Bootstrapping

analyses were carried out to provide 95% confidence intervals for

the R2 estimates derived from the linear regression analyses, and to

test for differences between the R2 estimated at age 4 and age 10.

To provide a more accurate test for bootstrapping the difference in

R2 between the two ages, we sampled from individuals who had

data points at both ages. The linear regression and bootstrapping

analyses were performed in R version 2.15.0 (29).

Results
Sample characteristics
The distribution of dizygotic (n 5 1,535; 60%) and monozygotic

(n 5 1,021; 40%) twin pairs was approximately as expected; the

sample included slightly more girls (n 5 1,368; 54%) than boys

(n 5 1,188; 46%). The number of obesity risk-increasing alleles was

normally distributed in the sample and ranged from 11 to 30 (mean-

5 12.48; SD 5 2.85) (Figure 1). Anthropometric characteristics are

shown in Table 1 for ages 4 and 10 years. At each age, the mean

BMI-SDS was less than 0, indicating that the average relative body

weight of the sample was slightly less than the UK reference values.

In keeping with this, the sample had lower rates of overweight and

obesity at each age than observed in national UK statistics. BMI-

SDS at ages 4 and 10 were positively correlated (r 5 0.40,

P< 0.001).

Twin analyses of the heritability of BMI-SDS at
ages 4 and 10 years
As reported previously (5), heritability increased significantly from

0.43 (95% confidence interval (CI): 0.35-0.53) at age 4 to 0.82

(95% CI: 0.74-0.88) at age 10 (Table 2, Figure 2). The genetic

Figure 1 Regression of mean age- and sex-adjusted BMI-SDS values at ages 4 and
10 years across the risk-allele scores. The histogram shows that the number of
weighted obesity risk alleles was normally distributed in the sample. The solid black
triangles show the mean age- and sex-adjusted BMI-SDS values at age 4 across
the weighted risk-allele scores; the black diamonds show the mean age- and sex-
adjusted BMI-SDS values at age 10 across the weighted risk-allele scores. The solid
black line shows the regression line for age- and sex-adjusted BMI-SDS at age 4
predicted from the PRS (R2 5 0.010; 95% CI: 4.3 e209 to 0.042; P 5 0.002). The
dashed line shows the regression line for age- and sex-adjusted BMI-SDS at age 10
predicted from the PRS (R2 5 0.034; 95% CI: 0.009-0.093; P< 0.001).

TABLE 1 Summary statistics of anthropometrics for the
analysis sample at ages 4 and 10 years (n 5 2,556 childrena)

Mean (sd) or n (%)

Age 4 Age 10

Age at measurement (years) 4.00 (0.11) 9.90 (0.85)

Weight (kg) 16.53 (2.40) 33.46 (7.78)

Height (m) 1.02 (0.05) 1.39 (0.08)

BMIb (kg/m2) 15.79 (2.10) 17.03 (2.57)

BMI-SDSc 20.12 (1.59) 20.02 (1.12)

Weight statusd

Healthy weight 1241 (87.3) 1995 (87.8)

Overweight 94 (6.6) 197 (8.7)

Obese 87 (6.1) 81 (3.5)

aThe sample characteristics presented are for the 2,556 unrelated children with
genotyping and BMI-SDS data for at least one age point; 1,422 unrelated children
had genotyping and BMI-SDS data at age 4; 2,273 children had genotyping and
BMI-SDS data at age 10.
bBMI, body mass index.
cBMI-SDS, BMI standard deviation score: BMI adjusted for age and sex using UK
1990 reference data (22).
dWeight status calculated from BMI-SDS using UK 1990 reference data: healthy
weight, BMI-SDS <91st centile; overweight, BMI-SDS � 91st centile, and <98th
centile; obese, BMI-SDS � 98th centile (22).
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correlation between BMI-SDS at the two ages was 0.58 (95% CI:

0.48-0.68). The shared environment effect showed the opposite

trend—it was considerable and significant at age 4 (0.41; 95% CI:

0.32-0.49), but very small and not significant by age 10 (0.06; 95%

CI: 0.00-0.14). Full results from the twin analysis are available in

Supporting Information Table S1.

GCTA estimates of the heritability of BMI-SDS at
ages 4 and 10 years
GCTA estimated heritability increased from a non-significant 0.20

(95% CI: 20.21 to 0.61) at age 4 to a significant 0.29 (95% CI:

0.01-0.57) at age 10 (Table 2, Figure 2). However, the change in

point estimates was not significant, indicated by the overlapping

95% confidence intervals. The point-estimate for the GCTA-derived

genetic correlation was high, although because of the large standard

error, was not significant (r 5 0.66; 95% CI: 20.28 to 1.60). Full

GCTA results are available in Supporting Information Table S2.

Associations between the obesity-related PRS
and BMI-SDS at ages 4 and 10 years
In multiple linear regression analyses, the PRS was significantly

associated with BMI-SDS at both ages, with the size of the association

increasing from age 4 (R2 5 0.010; 95% CI: 4.3 e209 to 0.042;

P 5 0.002) to age 10 (R2 5 0.034; 95% CI: 0.009-0.093; P< 0.001)

(Table 2, Figures 1 and 2). Bootstrapping analyses confirmed that the

association was significantly higher at age 10 than at age 4 (R2D 5 0.024;

bootstrapped 95% CI 5 0.002-0.078) (Supporting Information Figure S1).

Discussion
In this study, we used genome-wide genotyping data to create an

obesity-related polygenic risk score (PRS) and for a GCTA analysis,

to test the hypotheses that developmental increases in the twin esti-

mates of the heritability of BMI-SDS are supported by genomic

data, and that GCTA and twin analyses confirm that many of the

same genes are influencing BMI-SDS at both ages. In line with pre-

vious estimates from TEDS, twin-estimated heritability of BMI-SDS

increased significantly from 4 to 10 years (h2D 5 35%) (5); in keep-

ing with other studies that have explored developmental increases in

heritability of BMI in this age group (3, 4). Although the trend of

increasing heritability in the GCTA analysis was in the same direc-

tion as the twin results, the analyses lacked power to detect whether

this change was significant. The point estimate of the GCTA bivari-

ate longitudinal genetic correlation was very similar to the bivariate

longitudinal twin correlation (0.58 and 0.66, respectively); providing

DNA-based support for the inferential twin-based statistic, and indi-

cating that the increasing heritability is driven to a large extent by

many of the same weight-related genes exerting progressively

greater effects on weight.

The twin-estimated genetic correlation was virtually the same as that

reported in the Netherlands Twin Registry for BMI between age 4

and age 10 (0.52) (10). There was also a significant increase in the

association between the PRS and BMI-SDS from age 4 to 10

(R2D 5 0.024), which suggests that many of the same BMI-related

genes exert a greater effect as children get older. However, it is also

possible that the influence of some loci in the PRS is age-

dependent, such that different or additional loci come into effect at

age 10. This would explain why the genetic correlations are not 1.

Previous findings using variants in the FTO and MC4R genes sup-

port the idea that the same genes have increasing effect as children

get older. A meta-analysis of eight cohorts of European ancestry

TABLE 2 Comparison of twin-, genome-wide complex trait analysis (GCTA)-, and polygenic risk score (PRS)-estimates of
heritability at 4 and 10 years

Twin study estimate

of heritability (95% CI)a
GCTA estimate of genetic

influence (95% CI)

Association (R2) between

PRS and BMI-SDS (95% CI)b,c

BMI-SDS age 4 0.43 (0.35-0.53) 0.20 (20.21 to 0.61) 0.010 (4.3 e209 to 0.042)

BMI-SDS age 10 0.82 (0.74-0.88) 0.29 (0.01 to 0.57) 0.034 (0.009-0.093)

aTwin-estimated heritability was significantly higher at age 10 compared to age 4.
bBootstrapping was used to test the difference in the association (R2D) between the PRS and age- and sex-adjusted BMI-SDS at 4 and 10 years.
cR2 estimate at age 10 was significantly greater than at age 4 (R2D50.024, 95% CI 5 0.002–0.078).

Figure 2 Comparison of twin- (solid black line), GCTA- (dashed line), and PRS-
estimated (dotted line) heritability of BMI-SDS at age 4 and age 10. The variance
explained by genetic effects increased from age 4 to age 10, using all three meth-
ods. The age-related increase in variance explained was significant for twin-
estimated heritability and for the PRS; the GCTA-estimated heritability went from
non-significant at age 4 to significant at age 10.
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showed that the primary obesity-related common genetic variant in

the FTO gene increased its effect on BMI progressively from 0.7%

at 5–7 years, to 1.0% at 7–9 years, and 1.3% at 9–11 years (30).

Analyses of an obesity-associated variant in the MC4R gene showed

a similar pattern in the 1946 British Birth Cohort; associations with

age- and sex-adjusted weight increased during childhood and adoles-

cence by 0.005 units per year.

Our findings are also consistent with previous studies that have

explored developmental increases in associations between adiposity

and an obesity-related PRS. In ALSPAC, a PRS comprising eight

obesity-related SNPs showed a weak association with BMI-SDS up

to 3.5 years, but a rapid increase in the size of the association from

3.5 to 11 years (13). Lifecourse analyses for a 29-SNP PRS in the

Dunedin Study (31), and an 11-SNP PRS in the 1946 Birth Cohort

(14); both showed that the association with BMI increased year on

year. Using comparable age data, the present findings in TEDS were

almost identical to the Dunedin cohort which used a comparable

PRS; and slightly higher than ALSPAC which utilized fewer SNPs

(TEDS at 4 years: 0.8%; Dunedin at 3 years: 0.6%; ALSPAC at 3.5

years: 0.2%; TEDS at 10 years: 3.4%; Dunedin at 9 years: 3.2%;

ALSPAC at 10 years: 1.6%). This study adds to the evidence base

that genetic influences on weight increase from early to late

childhood.

One previous study of cognitive abilities directly compared longitu-

dinal GCTA correlations with twin-based estimates, and found

increasing heritability in both types of analysis, and similarly high

genetic correlations with each method (32). We had a small sample

size relative to the point estimate for our BMI analyses at age 4

(n 5 1,419), rendering the current study underpowered to detect a

significant genetic correlation. The findings therefore need to be

replicated using a larger sample.

One explanation put forward for age-related increases in heritability

for a variety of phenotypes (e.g., externalizing behaviors, anxiety

symptoms, and depressive symptoms) is that active gene–environment

correlations increase as children get older and gain independence (6).

Early childhood environments are largely controlled by parents, but

as children grow older they can select out environments that

“indulge” their genetic propensities. We have hypothesized that

obesity-related genes influence weight via appetite (33); FTO’s effects

on childhood BMI have been shown to be mediated via satiety sensi-

tivity (34, 35). FTO is unlikely to be expressed fully unless the indi-

vidual has the freedom to consume to satiety—a privilege that comes

with age, when children are able to make decisions about when and

how much to eat. Other obesity-related SNPs are also hypothesized to

influence weight via appetite (36); making gene–environment correla-

tion a plausible explanation for the rising genetic influence.

Increasing genetic effect on BMI from early to late childhood may

also reflect processes that began even earlier in life. The Dunedin

Study showed that early life growth from birth to 3 years mediated

some of the genetic risk of obesity in adolescence (31). It is also

possible that new loci come into effect at age 10; however, the

twin- and GCTA-derived genetic correlations indicate that many of

the same genes are involved at both ages.

Although analyzing heritability as the relative influence of genetics

is standard in the literature, we also analyzed the absolute rather

than relative variance explained by genetics at the two ages in an

attempt to find out more about the increase in heritability. Heritabil-

ity increased from 4 to 10 years not because the absolute amount of

genetic variance increased but because the absolute amount of envi-

ronmental variance (and thus total variance) decreased from 4 to 10

years. Nonetheless, it remains the case that of the phenotypic var-

iance at each age, the proportion due to genetic variance (i.e., herit-

ability) increases, as does the variance explained by GCTA and

PRS.

These findings have public health implications. If genetic predisposi-

tion to obesity is expressed increasingly from infancy, the early

school years provide an important intervention window for initia-

tives aimed at reducing or preventing the development of childhood

obesity. Recent data from the National Childhood Obesity Center in

Sweden showed that the efficacy of long-term behavioral treatment

for severely obese children was considerably higher in 6–9 year olds

than older children (10–13 years) or adolescents (14–16 years) (37).

The findings from the current study also have methodological impli-

cations; they show that the genetic architecture underlying develop-

mental increases captured by twin data can be replicated using DNA

alone, providing strong support for the reliability of inferential sta-

tistics derived from the twin method. Given the time and expense

incurred collecting DNA in large population-based cohorts, twins

offer a convenient and affordable alternative to describing the

genetic architecture of complex traits.

This study has several limitations. The sample used in this analysis

only included children with genotyping and BMI data at 4 or 10

years (n 5 2,556). This excluded a substantial proportion of the total

TEDS sample. It is possible that parents of overweight and obese

children were less willing to report weights, limiting the generaliz-

ability of the results. In relation to this, the sample was leaner than

the 1990 reference value at age 4 (BMI-SDS, 20.12) but approxi-

mated the reference value at age 10 (BMI-SDS, 20.02), which may

reflect the fact that although twins are born smaller than singletons,

singleton-twin differences in body size decrease as twins get older

and catch up (38). This may render the age 10 findings more gener-

alizable than the findings at age 4. In addition, rates of overweight

and obesity were relatively low at both ages, indicating that the

sample was somewhat leaner than current UK children of the same

age. Finally, the sample size limits the conclusions that can be

drawn from the longitudinal GCTA analysis.

In conclusion, in this study we used GCTA and PRS analyses to

show that twin-based evidence of increases in the heritability of

BMI-SDS from early to later childhood are supported by genomic

data; and twin and GCTA analyses suggest that many of the same

genes are influencing adiposity at both ages. These findings under-

line the importance of intervening early in life for the prevention of

childhood obesity.O

VC 2014 The Authors Obesity published by Wiley Periodicals, Inc. on
behalf of The Obesity Society (TOS)
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