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Abstract Very different neurocognitive processes appear to

be involved in cognitive abilities such as verbal and non-verbal

ability as compared to learning abilities taught in schools such

as reading and mathematics. However, twin studies that

compare similarity for monozygotic and dizygotic twins sug-

gest that the same genes are largely responsible for genetic

influence on these diverse aspects of cognitive function. It is

now possible to test this evidence for strong pleiotropy using

DNA alone from samples of unrelated individuals. Here we

used this new method with 1.7 million DNA markers for a

sample of 2,500 unrelated children at age 12 to investigate for

the first time the extent of pleiotropy between general cognitive

ability (aka intelligence) and learning abilities (reading,

mathematics and language skills). We also compared these

DNA results to results from twin analyses using the same

sample and measures. The DNA-based method revealed strong

genome-wide pleiotropy: Genetic correlations were greater

than 0.70 between general cognitive ability and language,

reading, and mathematics, results that were highly similar to

twin study estimates of genetic correlations. These results

indicate that genes related to diverse neurocognitive processes

have general rather than specific effects.

Keywords Pleiotropy � Intelligence � Learning abilities �
Mathematics � Language � GCTA � Twins � Heritability �
Cognition

Introduction

Very different neurocognitive processes appear to be

involved in cognitive abilities such as reasoning and

mathematics (Deary 2000) However, quantitative genetic

research, largely based on twin studies, consistently indi-

cates that genes that affect individual differences in per-

formance in one domain are largely the same genes that

affect performance in other domains, leading to the Gen-

eralist Genes Hypothesis (Plomin and Kovas 2005).

It is now possible to use DNA itself to estimate genetic

influence in any sample of unrelated individuals rather than

relying on comparisons between monozygotic and dizy-

gotic twins. The method, implemented in a tool called

Genome-wide Complex Trait Analysis (GCTA; Yang et al.

2011a) does not attempt to identify specific genes associ-

ated with traits. Instead, it correlates genomic similarity

across hundreds of thousands of single nucleotide poly-

morphisms (SNPs) with phenotypic similarity in a large

sample of unrelated individuals (Yang et al. 2010). This

population-based approach does not rely on the strong

assumptions made in classical twin studies.

Univariate Linear Mixed Model (LMM) implemented in

the GCTA package has been used to estimate genetic
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influence for height and body mass index (Yang et al. 2010,

2011b), psychiatric and medical disorders (Lee et al. 2011),

personality (Vinkhuyzen et al. 2012), and cognitive abilities

(Davies et al. 2011; Plomin et al. 2013b). In contrast to

univariate genetic analysis, bivariate genetic analysis focu-

ses on the genetic correlation, the correlation between

genetic influences on different traits, called pleiotropy

(Plomin et al. 2013a). High genetic correlations between

phenotypes are often interpreted as an indication that the

same genes affect the phenotypes. Genetic correlations

between diverse cognitive abilities as estimated through twin

studies are typically greater than 0.60, indicating that cog-

nition-related genes largely have general pleiotropic effects

(Calvin et al. 2012; Plomin and Kovas 2005). However, the

genetic correlation estimated from twin studies could be

biased due to misspecification of the model of twin similarity

for genetic and non-genetic effects. In this study, we use the

GCTA package to estimate the genetic correlation between

traits in conventionally unrelated individuals based on DNA

evidence alone; this estimate is free of bias if we assume that

the sole reason for phenotypic similarity between conven-

tionally unrelated individuals is shared additive genetic

factors. For brevity, we refer to LMM used in the GCTA

package simply as GCTA.

Here we use bivariate GCTA (Lee et al. 2012; Yang

et al. 2011a) to test the Generalist Genes Hypothesis by

estimating genetic correlations between general cognitive

ability (‘g’, aka intelligence) and language, reading, and

mathematics. We compare these genetic correlation esti-

mates from GCTA to those obtained from the twin design

using the same sample assessed at the same age with the

same measures. We also analyze the variables of height

and weight for purposes of comparison.

Materials and methods

Sample and genotyping

The sample was drawn from the Twins Early Development

Study (TEDS), which is a multivariate longitudinal study

that recruited over 11,000 twin pairs born in England and

Wales in 1994, 1995 and 1996 (Haworth et al. 2012; Oliver

and Plomin 2007). TEDS has been shown to be represen-

tative of the UK population (Kovas et al. 2007). The pro-

ject received approval from the Institute of Psychiatry

ethics committee (05/Q0706/228) and parental consent was

obtained prior to data collection.

Cognitive and DNA data were available for 3,747 11-

and 12-year-old children whose first language was English

and had no major medical or psychiatric problems. From

that sample, 3,665 DNA samples were successfully

hybridized to Affymetrix GeneChip 6.0 SNP genotyping

arrays using standard experimental protocols as part of the

WTCCC2 project (for details see Trzaskowski et al. 2013).

In addition to nearly 700,000 genotyped SNPs, more than

one million other SNPs were imputed from HapMap 2, 3

and WTCCC controls using IMPUTE v.2 software (Howie

et al. 2009). 3,152 DNA samples (1,446 males and 1,706

females) survived quality control criteria for ancestry,

heterozygosity, relatedness, and hybridization intensity

outliers. To control for ancestral stratification, we per-

formed principal component analyses on a subset of

100,000 quality-controlled SNPs after removing SNPs in

linkage disequilibrium (r2 [ 0.2) (Fellay et al. 2007).

Using the Tracy–Widom test (Patterson et al. 2006), we

identified 8 axes with p \ 0.05, which were used as

covariates in GCTA analyses.

The mean age of the sample was 11.5 years (SD = 0.66).

The sample sizes for the GCTA results shown in Table 1 are

2,325 for ‘g’ and language, 2,238 for ‘g’ and mathematics,

2,250 for ‘g’ and reading, and 2,296 for height and weight.

For the twin analyses, cognitive data were available for 5,434

twin pairs (Davis et al. 2009); however, the twin analyses

presented here were based only on twins included in the

GCTA analyses in order to provide a more precise compar-

ison between GCTA and twin-study results. The numbers of

twin pairs were 2,205, 2,095, 2,104 and 2,162, respectively.

Measures

Cognitive data were collected online via the Internet using,

where possible, adaptive branching, which enabled measure-

ment of the full range of ability using a relatively small number

of items. Details about the following measures, including

references, are available elsewhere (Kovas et al. 2007).

General cognitive ability (g)

‘g’ was assessed from two verbal tests and two non-verbal

tests. The verbal tests included WISC-III-PI Multiple

Choice Information (General Knowledge) and Vocabulary

Table 1 Genome-wide Complex Trait Analysis (GCTA) and twin

study estimates of genetic correlations. Standard errors (SE) are

shown in parentheses. ‘g’ refers to general cognitive ability

Genetic correlation

Bivariate comparison GCTA (SE) Twin (SE)

‘g’ vs language 0.81 (0.15) 0.80 (0.06)

‘g’ vs mathematics 0.74 (0.15) 0.73 (0.03)

‘g’ vs reading 0.89 (0.26) 0.66 (0.05)

‘g’ vs height -0.13 (0.30) -0.03 (0.06)

‘g’ vs weight -0.04 (0.25) -0.06 (0.06)

Height vs weight 0.76 (0.13) 0.65 (0.02)
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Multiple Choice subtest. The two non-verbal reasoning

tests were WISC-III-UK Picture Completion and Raven’s

Standard and Advanced Progressive Matrices.

Language

Three components of language were assessed: syntax,

semantics and pragmatics. Syntax was measured using the

Listening Grammar subtest of the Test of Adolescent and

Adult Language. Semantics was assessed using Level 2 of the

Figurative Language subtest of the Test of Language Com-

petence. Pragmatics was assessed using Level 2 of the Making

Inferences subtest of the Test of Language Competence.

Mathematics

Assessment of mathematics targeted three components of

mathematics: Understanding Number, Non-numerical

Processes, and Computation and Knowledge. The items for

these three scales were based on the National Foundation

of Educational Research 5–14 Mathematics Series.

Reading

Four measures of reading were employed. Two measures

assessed reading comprehension: the reading comprehen-

sion subtest of the Peabody Individual Achievement Test

and the GOAL Formative Assessment in Literacy for Key

Stage 3. Reading fluency was assessed by an adaptation of

the Woodcock–Johnson III Reading Fluency Test and by

the Test of Word Reading Efficiency, which was admin-

istered by telephone.

Composite measures for ‘g’, language, mathematics, and

reading. For each cognitive measure, outliers above or below

3 SD from the mean were excluded. Scores were regressed on

sex and age, and standardized residuals were derived and

quantile normalized (Lehmann 1975; van der Waerden

1975). Composite measures for ‘g’, language, mathematics,

and reading were created as unit-weighted means requiring

complete data for at least 3 of the 4 tests for ‘g’ and reading

and 2 of 3 tests for language and mathematics. All procedures

were executed using R (www.r-project.org; R Development

Core Team 2011). The phenotypic correlations among the

composite measures were 0.63 for ‘g’ and language, 0.63 for

‘g’ and mathematics, and 0.57 for ‘g’ and reading.

Height and weight

Height and weight were assessed on the same sample (age

12) via self-report. Similar to the cognitive measures,

outliers (± 3SD) were removed and scores were controlled

for age and sex. The phenotypic correlation between height

and weight was 0.63.

Statistical analyses

GCTA

Conceptually, the amount of phenotypic variance, or

covariance, explained by genetic factors is estimated by a

comparison of a matrix of pairwise genomic similarity to

a matrix of pairwise phenotypic similarity (Yang et al.

2010). Before the variance or covariance can be decom-

posed into genetic and residual components, we need to

calculate pairwise genomic similarity between all pairs of

individuals in the sample using all genetic markers gen-

otyped on the SNP array. Because the GCTA package

uses a random effects model to estimate genetic effects

from a sample of unrelated individuals in the population,

any pair whose genetic similarity is equal to or greater

than a fourth cousin is removed (estimate of pairwise

relatedness [0.025). In univariate analysis, the variance of

a trait can be partitioned using residual maximum likeli-

hood into genetic and residual components. Detailed

description of this method can be found in GCTA publi-

cations (Yang et al. 2010, 2011a, b). The bivariate method

extends the univariate model by relating the pairwise

genetic similarity matrix to a phenotypic covariance

matrix between traits 1 and 2 (Lee et al. 2012). The eight

principal components described earlier were used as

covariates in our bivariate GCTA analyses; as mentioned

in the previous section, all phenotypes were age- and sex-

regressed prior to analysis.

Twin modelling. The twin design and model-fitting is

discussed elsewhere (Plomin et al. 2013a). We fit a

bivariate Cholesky decomposition using OpenMx (Boker

et al. 2011), which provided a direct comparison with the

bivariate GCTA. The correlated factor solution is the least

restricted model allowing variables to correlate with one

another via genetic, shared environment, and non-shared

environment. Because previous analyses of these data

indicated nonsignificant differences in model-fitting results

between males and females (Kovas et al. 2007), we com-

bined same-sex and opposite-sex DZ twin pairs in order to

increase the power of the analyses.

Results

Table 1 shows GCTA-estimated genetic correlations (and

standard errors, SE) between ‘g’ and learning abilities for

more than 2,238 12-year-old UK twins (randomly selecting

only one member of each twin pair to control for potential

confounds, such as birth order) based on 1.7 million SNPs

measured from the Affymetrix 6.0 GeneChip or imputed

from HapMap 2,3 and WTCCC controls (Trzaskowski

et al. 2013). Genetic correlations are significant and

Behav Genet (2013) 43:267–273 269
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substantial for all three comparisons—between ‘g’ and

language (0.81), mathematics (0.74), and reading (0.89).

The GCTA-estimated genetic correlations between ‘g’ and

learning abilities are similar in magnitude to the GCTA-

estimated genetic correlation between height and weight

(0.76). In addition, Table 1 includes bivariate results for ‘g’

versus height and ‘g’ versus weight as ‘negative controls’;

their phenotypic correlations are both 0.07. As expected,

these comparisons yielded negligible and nonsignificant

genetic correlations (-0.03 and -0.06, respectively).

Table 1 also includes analogous genetic correlations

from twin model-fitting analyses, as estimated from the

same twin sample but including the co-twins (more than

2,095 pairs of twins). The GCTA-estimated genetic cor-

relations are highly similar to the twin study estimates and

do not differ significantly, as indicated by their overlapping

standard errors. The similarity of GCTA and twin estimates

of genetic correlations extend to the comparison between

height and weight as well as the negative control com-

parisons of ‘g’ and height and ‘g’ and weight.

Tables 2 and 3 show full results from the bivariate

GCTA and twin analyses, respectively.

Discussion

Using DNA evidence alone, these high genetic correlations

estimated from GCTA support the Generalist Genes

Hypothesis in showing strong pleiotropy between ‘g’ and

learning abilities, especially because we show that these

GCTA-estimated genetic correlations are as high as genetic

correlations estimated from the twin design.

Although GCTA does not identify specific genes associ-

ated with these traits, it addresses a critical issue in genome-

wide association studies: the extent to which common SNPs

used on commercially available SNP arrays can account for

the heritability of quantitative traits (Yang et al. 2011b). We

have shown in univariate GCTA analyses that, if samples

were sufficiently large, common SNPs could account for

more than two-thirds of the heritability of cognitive abilities

estimated in twin studies (Yang et al. 2011b; see also

Table 2). Why are univariate GCTA heritability estimates

less than the twin study estimates of heritability? As dis-

cussed elsewhere (e.g. Yang et al. 2010), the main problem is

imperfect tagging. The common SNPs used on all available

commercial arrays only capture what is in LD with them.

Rare variants, which have lower minor allele frequency, will

thus not be ‘tagged’ and their influence will be missed. In

addition, GCTA estimates additive genetic influence only, so

that non-additive effects (gene–gene and gene-environment

interaction) are not captured either.

A more novel question, and central to the present paper,

is why, as we have shown here, bivariate geneticT
a

b
le

3
B

iv
ar

ia
te

tw
in

m
o

d
el

-fi
tt

in
g

re
su

lt
s

(w
it

h
st

an
d

ar
d

er
ro

rs
)

fo
r

g
en

er
al

co
g

n
it

iv
e

ab
il

it
y

(‘
g

’)
v

er
su

s
la

n
g

u
ag

e,
m

at
h

em
at

ic
s,

an
d

re
ad

in
g

,
as

w
el

l
as

co
m

p
ar

is
o

n
d

at
a

fo
r:

g
an

d
h

ei
g

h
t,

g

an
d

w
ei

g
h

t,
an

d
h

ei
g

h
t

an
d

w
ei

g
h

t

V
ar

ia
b

le
s

A
C

E
n

/p
ai

rs

V
(G

)_
tr

1
V

(G
)_

tr
2

C
(G

)_
tr

1
2

r G
V

(c
)_

tr
1

V
(c

)_
tr

2
C

(c
)_

tr
1

2
r C

V
(e

)_
tr

1
V

(e
)_

tr
2

C
(e

)_
tr

1
2

r E

‘g
’

v
s

la
n

g
u

ag
e

0
.4

7
(0

.0
5

)
0

.4
1

(0
.0

5
)

0
.3

6
(0

.0
4

)
0

.8
0

(0
.0

6
)

0
.2

1
(0

.0
5

)
0

.2
2

(0
.0

4
)

0
.1

9
(0

.0
3

)
0

.9
0

(0
.1

0
)

0
.3

3
(0

.0
2

)
0

.3
7

(0
.0

2
)

0
.0

9
(0

.0
1

)
0

.2
7

(0
.0

3
)

2
2

0
5

‘g
’

v
s

m
at

h
s

0
.4

6
(0

.0
5

)
0

.4
8

(0
.0

4
)

0
.3

6
(0

.0
3

)
0

.7
3

(0
.0

3
)

0
.2

1
(0

.0
4

)
0

.2
0

(0
.0

4
)

0
.1

9
(0

.0
3

)
1

.0
(0

.1
0

)
0

.3
3

(0
.0

2
)

0
.3

2
(0

.0
2

)
0

.0
7

(0
.0

1
)

0
.2

3
(0

.0
3

)
2

0
9

5

‘g
’

v
s

re
ad

in
g

0
.4

6
(0

.0
5

)
0

.5
9

(0
.0

4
)

0
.3

4
(0

.0
3

)
0

.6
6

(0
.0

5
)

0
.2

1
(0

.0
4

)
0

.1
7

(0
.0

4
)

0
.1

5
(0

.0
3

)
0

.8
5

(0
.1

2
)

0
.3

3
(0

.0
2

)
0

.2
4

(0
.0

1
)

0
.0

6
(0

.0
1

)
0

.2
0

(0
.0

4
)

2
1

0
4

‘g
’

v
s

h
ei

g
h

t
0

.4
8

(0
.0

5
)

0
.8

0
(0

.0
4

)
-

0
.0

2
(0

.0
3

)
-

0
.0

3
(0

.0
6

)
0

.1
9

(0
.0

4
)

0
.1

0
(0

.0
4

)
0

.0
8

(0
.0

3
)

0
.5

4
(0

.2
3

)
0

.3
3

(0
.0

2
)

0
.1

0
(0

.0
1

)
0

.0
1

(0
.0

1
)

0
.0

7
(0

.0
4

)
1

7
1

6

‘g
’

v
s

w
ei

g
h

t
0

.4
8

(0
.0

5
)

0
.8

3
(0

.0
3

)
-

0
.0

4
(0

.0
4

)
-

0
.0

6
(0

.0
6

)
0

.1
9

(0
.0

4
)

0
.0

5
(0

.0
3

)
0

.0
3

(0
.0

3
)

0
.3

2
(0

.5
1

)
0

.3
3

(0
.0

2
)

0
.1

2
(0

.0
1

)
0

.0
3

(0
.0

1
)

0
.1

3
(0

.0
4

)
1

7
1

6

H
ei

g
h

t
v

s
w

ei
g

h
t

0
.8

1
(0

.0
4

)
0

.8
5

(0
.0

4
)

0
.5

4
(0

.0
3

)
0

.6
5

(0
.0

2
)

0
.0

9
(0

.0
4

)
0

.0
4

(0
.0

2
)

0
.0

6
(0

.0
3

)
1

.0
(0

.0
0

)
0

.1
0

(0
.0

1
)

0
.1

1
(0

.0
1

)
0

.0
6

(0
.0

1
)

0
.4

1
(0

.0
3

)
2

1
6

2

O
p

en
M

x
tw

in
m

o
d

el
-fi

tt
in

g
in

co
rp

o
ra

te
s

fu
ll

-i
n

fo
rm

at
io

n
m

ax
im

u
m

li
k

el
ih

o
o

d
th

at
u

se
s

th
e

fu
ll

sa
m

p
le

o
f

m
o

re
th

an
2

,0
0

0
p

ai
rs

o
f

tw
in

s
w

it
h

d
at

a
o

n
tr

ai
t

1
o

r
tr

ai
t

2
.

H
o

w
ev

er
,

th
e

v
ar

ia
n

ce

es
ti

m
at

es
fo

r
ea

ch
tr

ai
t

ar
e

b
as

ed
o

n
in

d
iv

id
u

al
s

w
it

h
d

at
a

fo
r

th
at

tr
ai

t.
T

h
e

co
v

ar
ia

n
ce

es
ti

m
at

es
ar

e
b

as
ed

o
n

tw
in

p
ai

rs
w

it
h

d
at

a
fo

r
b

o
th

tr
ai

ts
,
w

h
ic

h
is

th
e

co
n

se
rv

at
iv

e
sa

m
p

le
si

ze
sh

o
w

n
in

th
e

la
st

co
lu

m
n

V
(G

)
p

ro
p

o
rt

io
n

o
f

th
e

v
ar

ia
n

ce
ex

p
la

in
ed

b
y

g
en

et
ic

fa
ct

o
rs

fo
r

tr
ai

t
1

an
d

tr
ai

t
2

(t
r1

,
tr

2
),

C
(G

)
p

ro
p

o
rt

io
n

o
f

th
e

co
v

ar
ia

n
ce

b
et

w
ee

n
tr

ai
t

1
an

d
2

ex
p

la
in

ed
b

y
g

en
et

ic
fa

ct
o

rs
;

V
(c

)
p

ro
p

o
rt

io
n

o
f

th
e

v
ar

ia
n

ce
ex

p
la

in
ed

b
y

sh
ar

ed
en

v
ir

o
n

m
en

t
fo

r
tr

ai
t

1
an

d
tr

ai
t

2
(t

r1
,

tr
2

),
C

(c
)

p
ro

p
o

rt
io

n
o

f
th

e
co

v
ar

ia
n

ce
b

et
w

ee
n

tr
ai

t
1

an
d

2
ex

p
la

in
ed

b
y

sh
ar

ed
en

v
ir

o
n

m
en

t,
V

(e
)

p
ro

p
o

rt
io

n
o

f
th

e

v
ar

ia
n

ce
ex

p
la

in
ed

b
y

n
o

n
-s

h
ar

ed
en

v
ir

o
n

m
en

t
fo

r
tr

ai
t

1
an

d
tr

ai
t

2
(t

r1
,

tr
2

),
C

(e
)

p
ro

p
o

rt
io

n
o

f
th

e
co

v
ar

ia
n

ce
b

et
w

ee
n

tr
ai

t
1

an
d

2
ex

p
la

in
ed

b
y

n
o

n
-s

h
ar

ed
en

v
ir

o
n

m
en

t,
rG

g
en

et
ic

co
rr

el
at

io
n

;
rC

co
rr

el
at

io
n

o
f

sh
ar

ed
en

v
ir

o
n

m
en

ta
l

fa
ct

o
rs

;
rE

co
rr

el
at

io
n

o
f

n
o

n
-s

h
ar

ed
en

v
ir

o
n

m
en

ta
l

fa
ct

o
rs

,
n

n
u

m
b

er
o

f
tw

in
p

ai
rs

w
it

h
d

at
a

fo
r

b
o

th
tr

ai
t

1
an

d
tr

ai
t

2
;

v
al

u
es

in
p

ar
en

th
es

es

ar
e

st
an

d
ar

d
er

ro
rs

Behav Genet (2013) 43:267–273 271

123



correlations estimated by GCTA are as great as twin study

estimates. The likely reason is that attenuation of the

estimated additive genetic variance due to imperfect link-

age disequilibrium between causal variants and genotyped

SNPs applies to both the additive genetic variance of the

two traits and to their additive genetic covariance by the

same proportion. Thus, the GCTA estimate of the genetic

correlation is unbiased because it is derived from the ratio

between genetic covariance and the genetic variances of

the two traits.

Are generalist genes all in the mind (cognition) or are

they in the brain as well? That is, genetic correlations

between cognitive and learning abilities might be epiphe-

nomenal in the sense that multiple genetically independent

brain mechanisms could affect each ability, creating

genetic correlations among abilities. However, the genetic

principles of pleiotropy (each gene affects many traits) and

polygenicity (many genes affect each trait) lead us to

predict that generalist genes have their effects further

upstream, creating genetic correlations among brain

structures and functions, a prediction that supports a net-

work view of brain structure and function.
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