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ABSTRACT 

 

Copy number variations (CNV) are important in the aetiology of neurodevelopmental 

disorders and show broad phenotypic manifestations. We compared the presence of small 

CNVs disrupting the ELP4-PAX6 locus in 4,092 U.K. individuals with a range of 

neurodevelopmental conditions, clinically referred for array comparative genomic 

hybridisation (aCGH), with WTCCC controls (n=4,783). The phenotypic analysis was then 

extended using the DECIPHER database. We followed up association using an autism patient 

cohort (n=3,143) compared with six additional control groups (n=6,469). In the clinical 

discovery series we identified eight cases with ELP4 deletions, and one with a partial 

duplication of ELP4 and PAX6. These cases were referred for neurological phenotypes 

including language impairment, developmental delay, autism and epilepsy. Six further cases 

with a primary diagnosis of ASD and similar secondary phenotypes were identified with 

ELP4 deletions, as well as another six (out of 9) with neurodevelopmental phenotypes from 

DECIPHER. CNVs at ELP4 were only present in 1/11,252 controls. We found a significant 

excess of CNVs in discovery cases compared with controls, p=7.5x10
-3
; as well as for autism, 

p=2.7x10
-3
. Our results suggest ELP4 deletions are highly likely to be pathogenic, 

predisposing to a range of neurodevelopmental phenotypes from ASD to language 

impairment and epilepsy. 

 

Key Words: Copy Number Variation (CNV), Epilepsy and seizures, Developmental, 

Neurology 
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INTRODUCTION 

 

Copy number variation (CNV) plays an important role in the aetiology of neurodevelopmental 

and psychiatric disorders. Both recurrent de novo and rare segregating CNVs have begun to 

explain the overlap of diverse phenotypes in individual cases and families (Cooper, et al., 

2011; Malhotra and Sebat, 2012). Copy number variation is a strong risk factor in both focal 

and generalized epilepsies, and they are also found in 8% of patients with epileptic 

encephalopathies (Mefford, et al., 2010; Mefford, et al., 2011). Recent findings in the rare 

epileptic encephalopathies illustrate the connection between epilepsy, language impairment 

and autism spectrum disorder (ASD) through overrepresentation of novel CNVs containing 

cell adhesion genes, (e.g. cadherins and contactins) (Lesca, et al., 2012). However, there are 

also differences between disorders: for example, specific language impairment cases, whilst 

having an increased burden of CNVs, do not in general show enrichment for novel or de novo 

events (Simpson, et al., 2015), whereas rare copy number variation is an important source of 

risk in ASD (Pinto, et al., 2014).  

 

The examples above indicate that a given genomic alteration can sustain broad susceptibility 

to several phenotypes depending on the genetic background of the subject. So called ‘hotspot’ 

CNVs also manifest this phenotypic variability. The recurrent 15q13.3 microduplication 

increases the risk for intellectual disability, idiopathic generalised epilepsy, ASD and 

schizophrenia and (Helbig, et al., 2009; Poot, et al., 2011), and deletions at 16p13.11 

contribute to a diverse spectrum of epilepsy disorders (Heinzen, et al., 2010). The 16p11.2 

hotspot is also pleiotropic; deletions are common in ASD and developmental delay, 

(Marshall, et al., 2008) and duplications have been associated with seizures and speech delay 

(Shinawi, et al., 2010).  Other notable examples of pleiotropy are CNVs of the CNTNAP2 
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gene, which are implicated in ASD, Gilles de la Tourette syndrome, schizophrenia and 

epilepsy, and AUTS2 with ASD and mental retardation. Interestingly AUTS2 and CNTNAP2 

may interact with each other on a molecular level, (Poot, et al., 2011), indicating emerging 

convergent pathways for neurodevelopment. A recent report of a deletion of the ELP4 gene at 

11p13, and adjacent 3’ PAX6 enhancer elements has been described in a case with aniridia, 

autism and mental retardation. This case differs from the ‘classical’ PAX6 gene deletions 

causing aniridia alone, as only the 3’ enhancer elements are deleted in this case and ELP4 is 

included (Davis, et al., 2008). ELP4 has previously been associated with the 

electroencephalographic (EEG) signature of the common childhood epilepsy Rolandic 

epilepsy (RE) (Strug, et al., 2009), and such EEG abnormalities as well as epilepsy are well 

established in autism spectrum disorder (ASD) and language impairments, (Nasr, et al., 2001; 

Parmeggiani, et al., 2010).  These examples illustrate again that genomic alterations can show 

broad phenotypic manifestations during neurodevelopment, as well as incomplete penetrance. 

 

In the present study we report the presence of a number of deletions of ELP4 and the 

regulatory elements of PAX6 in the U.K. database of individuals with a childhood onset 

developmental condition referred for clinical genetic testing (BB-GRE). We test the 

hypothesis that the burden of ELP4 CNVs is increased in those with neurodevelopmental 

conditions compared to controls. This phenotypic analysis is then extended using the 

DECIPHER database of chromosomal imbalances in over 10,000 cases of developmental 

disorders. Using a CNV-led approach we then further expand the phenotype associated with 

ELP4 microdeletions to cases with ASD and varying comorbidities, and carry out a second 

case-control analysis of frequency. This data supports our hypothesis that disruption of ELP4 

and the regulatory regions of PAX6 contained within its introns, lead to a range of 

neurodevelopmental conditions.
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METHODS 

 

Study Design 

We used a three-stage design; first testing the hypothesis of CNV enrichment at ELP4 in a 

clinical discovery sample of developmental disorders (Brain and Body Genetics Research 

Exchange (BBGRE, https://bbgre.iop.kcl.ac.uk) and control dataset (WTCCC), both from the 

U.K.; second, extending the phenotypic analysis to a larger dataset of developmental 

disorders (DECIPHER) and finally, replicating the association to neurodevelopmental 

disorders in ASD cases (Autism Genome Project and two Canadian ASD cohorts) compared 

to a large multi-centre control sample set.  

 

Samples 

U.K. Clinical Dataset – BB-GRE 

4092 children referred to Guy's and St Thomas NHS Foundation Trust, southeastern UK from 

paediatricians and regional hospitals, https://bbgre.iop.kcl.ac.uk. Individuals referred for 

array-CGH testing for a range of developmental problems including developmental delay 

(DD), ASD, speech or language delay or congenital defects. Individuals had clinical 

diagnoses made prior to genetic testing, which was part of standard clinical care. Genomic 

data and referral phenotype information were anonymised and recorded in a clinical database, 

(63% males; August 2014). 

 

Global Clinical Dataset - DECIPHER  

We performed a search in the DECIPHER database (Firth, et al., 2009) in order to identify 

additional cases with small CNVs which included and/or disrupted ELP4. DECIPHER 

(Database of Chromosomal Imbalance and Phenotype in Humans Using Ensembl Resources, 
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http://decipher.sanger.ac.uk) is an interactive web-based database of over 10,000 cases which 

enables clinical scientists to maintain records of phenotype and chromosome rearrangement, 

to aid patient diagnosis by linking to other bioinformatics resources and interactive tools, and 

to share this information with the clinical research community. 

 

Canadian ASD Samples  

The cohort contained 349 probands previously published (Lionel, et al., 2011) and 350 

additional patients diagnosed with ASD from Canada described below, totaling 699. 

Individuals were recruited from four different Canadian sites: The Hospital for Sick Children, 

Toronto; McMaster University, Hamilton; Memorial University, St. John's, Newfoundland 

and University of Alberta, Edmonton. All had a clinical diagnosis of ASD, using the Autism 

Diagnostic Interview-Revised (ADI-R) and/or Autism Diagnostic Observation Schedule 

(ADOS).  

 

Autism Genome Project (AGP) Samples  

2,147 European ASD cases were genotyped as part of a study by the AGP Consortium for 

rare CNVs affecting autism and are formally described in the following reference, (Pinto, et 

al., 2014). All cases had a clinical diagnosis of autism rated using the ADI-R and/or the 

ADOS.  

 

Control Populations 

A total sample of 11,252 controls from six different datasets were included this study. Group 

1 was compared with the BBGRE cases, and groups 2-6 with the AGP cases: (1) WTCCC, 

Wellcome Trust Case Control Consortium controls - 4,783 population controls from the UK 

(Consortium, et al., 2010) (2) Ottawa Heart Institute (OHI) controls - A cohort of 1,234 
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control individuals collected as part of a large case control GWA study (Stewart, et al., 2009); 

(3) German POPGEN controls – a sample of 1,123 individuals of northern German origin 

(Schleswig-Holstein) (Krawczak, et al., 2006); (4) Ontario Population Genomics Platform 

(OPGP) controls – a Canadian sample of 416 control individuals of European ancestry 

(http://www.tcag.ca/facilities/cyto_population_control_DNA.html); (5) HapMap3 controls - a 

sample of 1,056 individuals from populations from around the world from the International 

HapMap Project (http://www.hapmap.org/); (6) Controls from the AGP project –consisting of 

2,640 of European ancestry assembled from three studies in which subjects had no obvious 

psychiatric history: 'Study of Addiction Genetics and Environment (SAGE)', 'Ontario 

Colorectal Cancer case-control study (OC)', and the 'Health, Aging, and Body Composition 

(HABC)’. 

 

Genotyping and CNV Analysis 

Array CGH analysis of BB-GRE Samples 

Array CGH testing was carried out at the Guys and St Thomas’ Services cytogenetics CPA 

accredited laboratory. We have previously described the protocols, analysis and interpretation 

using an Agilent oligonucleotide array 60K platform (AMAID 028469 and 017457) and a 

patient vs. patient hybridization strategy and 3-probe minimum aberration call in (Ahn, et al., 

2013; Ahn, et al., 2010). The average probe density over ELP4 is 8.5Kb, giving a limit of 

around 25Kb for detection. CNVs in this population are available by application to BB-GRE; 

https://bbgre.iop.kcl.ac.uk/. 

 

Canadian ASD and Control Groups 1-5  

Canadian ASD cases, and control populations 1-5, were genotyped using the Affymetrix 

Genome-Wide Human SNP Array 6.0 with standard protocols. Arrays meeting Affymetrix 
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quality control guidelines of Contrast QC > 0.4 were further analysed.  Raw data analysis was 

carried out using a multiple-algorithm approach to maximize sensitivity and specificity of 

CNV calling, as described previously (Lionel, et al., 2011; Silversides, et al., 2012). Briefly, 

arrays were analyzed for CNVs with Birdsuite (Korn, et al., 2008) iPattern (Pinto, et al., 

2011) and Affymetrix Genotyping Console and merged into a single dataset. A CNV call was 

considered high confidence if it was detected by at least two of the calling algorithms and 

spanned at least 10kb and >5 consecutive array probes. Average probe density over ELP4 was 

2.0Kb, giving a limit of around 10Kb for detection. 

 

Autism Genome Project Samples and Control Group 6 

2,147 ASD cases and 2,640 controls were genotyped with the Illumina Infinium 1M SNP 

microarray. CNV calling was performed using a multi-algorithm approach incorporating 

PennCNV, iPattern and QuantiSNP (Pinto, et al., 2010). Subsequent analyses focused on 

those CNVs spanning five or more array probes and detected by at least two algorithms. The 

analysis is formally described in (Pinto, et al., 2014). The average probe density over ELP4 

was 2.1Kb, giving a limit of around 10Kb for detection. 

 

Association analysis 

A two-tailed Fishers exact test was used to compare frequencies of ELP4 CNVs in the 4,092 

cases in BB-GRE with the 4,783 controls from the WTCCC. Subsequently another two-tailed 

Fishers exact test was used to compare the frequency in 2,845 unrelated ASD cases compared 

to 6,469 controls from control sets 2-6 combined. 

 

Limitations 
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A limitation of this study is that the CNVs were not identified on the same platform or by the 

same analysis method between the sample sets. Therefore there is a chance of false CNV 

enrichment related to probe density, data quality and analysis methods. However, all 

platforms are high-density, with probe coverage shown in Figure 1. This ensures ELP4 and 

the surrounding region is well covered, and indeed the control data is generated on higher 

density platforms than the BBGRE cases, resulting in a higher CNV detection power for 

controls. We have also ensured that all reported CNVs can be called using all three 

methodologies. The Canadian ASD cases and control groups 1-5, also use the same platform 

and analysis methods as each other. Cases and controls from the AGP study also used the 

same array and analysis methods as each other. To reduce the chance of error, all of the CNV 

calling methods from each data set employ published, rigorous quality control measures as 

detailed above, ensuring that CNVs called are highly unlikely to be false positives. All of the 

ASD CNVs have also been validated by orthogonal methods such as qPCR. By also using 

data sets with different platforms, we have shown that our results are consistent even between 

the different methods used. 
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RESULTS   

 

Copy Number Variation of ELP4 in the BB-GRE Database 

Out of 4092 individuals referred for neurodevelopmental disorders, we identified nine patients 

with small (<1Mb) CNVs disrupting ELP4 that could also have be detected by the other array 

methods.  Eight CNVs were deletions, Figure 1 and Table 1, varying in size from 26Kb to 

101Kb. The ninth CNV was a 232Kb duplication of the first 7 exons of ELP4 and the PAX6 

gene. This patient also carried a ‘hotspot’ deletion of 1.2Mb at 16p13.11, which is also 

implicated in several neuropsychiatric disorders (Heinzen, et al., 2010). One deletion 

(117374) is intronic, but does however disrupt regulatory enhancers of PAX6 and so is 

included in our analysis. Four of the deletions were maternally inherited and two were 

paternally inherited, one arose de-novo and one had unknown inheritance. The inheritance 

pattern of the duplication was also unknown. Clinical information was not available for the 

parents as it is not collected for BBGRE and referring clinicians cannot be contacted. Three of 

the deletion patients carried a second CNV, Table 1, none of which are predicted to affect the 

phenotype; 119460 had a deletion of unknown inheritance of 77.6Kb at 5q21 with no genes 

present in the region, and 112601 had a maternally inherited 226Kb duplication at 5q15 

disrupting FAM172A, a potential tumor suppressor. Patient 130693 carried a maternally 

inherited duplication of 23Kb at 6p22.2, disrupting the MHC-associated genes BTN3A3 and 

BTN2A1.  

 

All cases were diagnosed with a neurodevelopmental phenotype; five had speech and 

language delay or disorder, with one also diagnosed with epilepsy, two had social 

communication difficulties and two had a diagnosis of autism, with one further case showing 

emerging autistic traits. Six of the patients also had a range of cognitive delays, Table 1. 
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Unfortunately we do not know the age at last neurological assessment for BBGRE cases; only 

age at aCGH testing is recorded. Therefore some cases may be too young for some 

phenotypes to manifest and be reported, e.g. 117003. 

 

Only one CNV involving ELP4 was found in the WTCCC control set; a 221Kb 

microdeletion, Supplementary Information Table 1. On comparison of the U.K. BB-GRE 

samples with the WTCCC controls, the difference in CNV frequency disrupting ELP4 was 

significant; p-value=7.5x10
-3
.  

 

Microdeletions of ELP4 in the DECIPHER Database 

We identified nine individuals with a small (< 1Mb) CNV encompassing ELP4 in the 

DECIPHER database (https://decipher.sanger.ac.uk) (Firth, et al., 2009). All were deletions, 

Table 2, with at least one breakpoint within the gene.  Detailed phenotypic information was 

available for eight of the nine patients; six individuals were diagnosed with developmental 

delay or intellectual disability. Several cases had speech delay; two had behavioral disorders, 

one was diagnosed with a pervasive developmental disorder (PDD), most likely ASD, and 

one further case had ASD. Another case was also diagnosed with ADHD and epilepsy 

(257614). Three cases were too young at the age of last clinical visit (263619, 265704 and 

287341) for a full assessment of neurodevelopmental phenotypes such as ASD. 

 

Two cases, 289275 and 270752, had deletions that disrupted PAX6 exons. Most likely due to 

PAX6 enhancer or exon disruption, these two cases, as well as 265704 and 263741, also have 

aniridia, an abnormality of the iris. Two others cases, 257614 and 249728, have congenital 

eye malformations but deletion breakpoints much further from PAX6. The remaining three 
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cases, whilst having breakpoints very similar to those with aniridia, do not share that 

phenotype, indicating a complex genotype-phenotype relationship.  

 

Two cases carried a second CNV: 289275 had an intronic duplication of ZNF674 at Xp11.3, 

and 261471 a 245Kb deletion at 10p11.21, disrupting CUL2, CREM and CCNY, genes not 

involved in neuronal development. 

 

Microdeletions of ELP4 in Autism Cases 

Given that several individuals from BB-GRE and DECIPHER have ASD, PDD or social 

communication difficulties, we decided to investigate the prevalence of ELP4 CNVs in two 

autism cohorts.  Out of 2,446 cases from the Autism Genome Project, AGP, (Pinto, et al., 

2014) three had microdeletions of ELP4, Table 2. All three fulfilled the criteria for a strict 

definition of autism, and were verbal (verbal IQ >70), but experienced language delay of first 

words and phrases. None of the cases had a history of seizures or epilepsy. Case 8596_201 

also carried a 500Kb maternally inherited duplication disrupting the collagen gene COL27A1 

that is highly unlikely to contribute to the neurological phenotype. 

 

Three out of 699 individuals from the Canadian autism study also carried ELP4 deletions, 

Table 3.  An affected sister pair both had a 112Kb deletion of half of the gene, and a male 

case carried a 130Kb deletion of the 3’ (but proximal due to reverse gene orientation) part of 

ELP4 and neighboring IMMP1L. Again, all three had speech and language delay and the 

sister-pair had mild developmental delay. Interestingly, the sisters also both carried a deletion 

of one copy of exon 2 of TMLHE, an enzyme involved in carnitine biosynthesis, on Xq28.  
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A case-control analysis of the frequency of ELP4 CNVs from unrelated individuals in these 

2,845 ASD cases compared with 6,469 control individuals from groups 2-6, where no ELP4 

CNVs were found, yielded a highly significant p value of 2.7x10
-3
.
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DISCUSSION 

 

In this study we have found a strong and consistent pleiotropic association between CNVs 

disrupting ELP4 and neurodevelopmental conditions over several experimental platforms. We 

have described CNVs that can be captured and called from all three high density 

platforms/methods. We have also addressed the potential problem of enrichment bias of 

CNVs in cases, as all control data is generated on higher density platforms than the BBGRE 

cases, or the same as ASD/DECIPHER cases, resulting in a higher CNV detection power for 

controls. CNVs disrupting ELP4 appear to be rare in the general population given that we 

found only one CNV in the six control groups studied (total n = 11,252), and that there are no 

regions of segmental duplication around the gene (UCSC Segmental Duplication track, 

(Bailey, et al., 2002)). ELP4 now joins the growing list of genes such as CNTNAP2, SHANK3 

and NRXN1, where heterozygous copy number are repeatedly associated with a wide range of 

neuropsychiatric disorders (Gregor, et al., 2011; Lesca, et al., 2012; Poot, et al., 2011).  

 

We have extended the phenotype associated with disruptions of ELP4 from the EEG signature 

of Rolandic epilepsy and speech sound disorder (Pal, et al., 2010; Strug, et al., 2009) to ASD, 

social communication difficulties, developmental delay, and epilepsy. This corroborates the 

findings of Davis et al, who found a deletion of ELP4 and PAX6 enhancer elements in a 

patient with autism, aniridia and mental retardation that was inherited from an affected mother 

(Davis, et al., 2008). The ELP4 locus may influence the development of language function, as 

a frequent trait across almost half of the 24 patients described here are speech and language 

difficulties. There appears to be a genetic crossroads between childhood epilepsy, autism, and 

speech and language disorders. Several genes and pathways provide a common link such as 

the cell adhesion genes cadherins and catenins, glutamate receptors GRIN2A and 2B, brain-
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expressed nuclear proteins such as AUTS2, and the transcription factor FOXP2 (Graham and 

Fisher, 2012; Lesca, et al., 2013; Lesca, et al., 2012; Poot, et al., 2011).  

 

ELP4 is one of six subunits (ELP1-6) of the Elongator complex, which plays a role in 

transcriptional elongation (Wittschieben, et al., 1999), tRNA modification and polarized 

exocytosis (Huang, et al., 2005). This complex also regulates the migration of multiple cell 

types; e.g. ELP1 co-localises with filamin A in membrane ruffles, and when depleted creates 

a disorganised actin cytoskeleton, contributing to motility defects (Johansen, et al., 2008). 

Impairment of Elongator may be involved in several different neurological disorders 

(Nguyen, et al., 2009) e.g. variants within ELP3 are associated with cases of sporadic ALS, a 

progressive motor-neuron disease (Simpson, et al., 2009).  Furthermore, mutations of ELP1 

cause familial dysautonomia (Slaugenhaupt, et al., 2001), a neurodevelopmental and 

neurodegenerative disorder with EEG abnormalities and seizures, characterized by defects in 

neironal development and survival. Elongator also underlies the migration and branching of 

cortical projection neurons during development and memory consolidation (Creppe, et al., 

2009). Thus there are several mechanisms through which disruption of ELP4 could result in 

altered neuronal development and migration, as well as the balance of neuronal excitatory and 

inhibitory circuits. These changes may disrupt Elongator function in a temporal and regional 

manner depending on cellular context and the different array of Elongator targets available.  

 

It is of note that the large intronic regions between exons 9 and 12 of ELP4 are 

ultraconserved. They contain long-range cis-regulatory enhancers for downstream PAX6, 

which are tissue- or developmental stage specific in their expression (McBride, et al., 2011). 

PAX6 is a transcription factor crucial for the correct development of the eyes, spinal cord, 

several brain regions and other organs. Deletions of PAX6 with WT1 cause Wilms tumor, 
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aniridia, genital anomalies, and intellectual disability (WAGR syndrome). Loss-of-function 

mutations in PAX6 also cause aniridia. A rare case of duplication of PAX6 and the last two 

exons/introns of ELP4 has been reported with frontotemporal neonatal seizures, 

developmental delay, microcephaly and minor ocular findings, (Aradhya, et al., 2011). 

Recently PAX6 has also been proposed as the foremost transcription factor governing 

glutamatergic neuronal differentiation (Kim, et al., 2014), linking it with the major idiopathic 

focal epilepsy gene glutamate receptor GRIN2A. Therefore disruption of PAX6 and/or its 

regulatory elements within ELP4 and its link via the glutamatergic neurotransmission system 

described above also make it a prime candidate for involvement in the neurodevelopmental 

disorders described in some cases here. However, whilst it is difficult to untangle which gene 

is causing which penotype in a few cases, for the majority, PAX6 is not disrupted, indicating 

the phenotypic consequences of ELP4 disruption alone. 

 

The genetic model of disease described here is clearly not monogenic: in 14/24 patients the 

ELP4 CNVs were inherited (13 unrelated events due to the ASD sister pair); four occurred de 

novo and six were of unknown inheritance. The phenotypic status of most parents is unknown 

and therefore a precise estimation of penetrance will require further segregation studies. 

However, presuming that the majority of the parents are unaffected, these inherited CNVs are 

unlikely to cause a phenotype by reduced expression from haploinsufficiency alone. It is most 

likely that an interacting model of disease is in action and screening of the second allele of 

ELP4 and its regulatory regions can rule out the unmasking of recessive mutations. We note 

that sequencing of ELP4 exons has failed to find mutations within RE patients (Reinthaler, et 

al., 2014) and postulate that disruption of the regulatory elements of ELP4 and/or of PAX6 

within its introns could be causal in the developmental disorders described here. 
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A two-hit hypothesis can explain CNVs that are non-syndromic, i.e. those that are associated 

with variable phenotypes and not always inherited, such as the deletions described here, 

(Girirajan and Eichler, 2010). One hit may reach a threshold to induce some sub-clinical 

features and create a sensitized background, onto which the second hit (mutation or second 

CNV) occurs producing a more severe phenotype. If we assume that these disorders share 

common neurodevelopmental pathways, the final disease outcome will then differ depending 

on the combination of genes affected. Interestingly, a sister pair with ASD in our study who 

shared the same ELP4 microdeletion, also shared a microdeletion of exon 2 of the carnitine 

biosynthesis enzyme gene TMLHE, on Xq28. Deletions of TMLHE are important in non-

dysmorphic autism in male-male multiplex families, although with low penetrance (Celestino-

Soper, et al., 2012). However the significance in females is unclear.  It is possible that 

deletion of the only copy of TMLHE is enough of a risk factor for some males to develop 

ASD, but for females (who normally have two copies of TMLHE), further ‘hits’ are 

necessary, such as the loss of ELP4 in these sisters. Several other patients also carry a second 

CNV, as described earlier, but it is unlikely that these specific CNVs contribute to the 

neurological phenotype. Exome sequencing of the patients without a second causal CNV may 

uncover coding mutations that would contribute to the developmental burden of ELP4 loss. 

 

The predominance in our datasets of deletions verses duplications is unlikely to be a platform 

bias as both aCGH and SNP arrays were used. Deletion enrichment could be a consequence of 

undiagnosed duplications, but as this study was not driven by a particular diagnosis this is 

unlikely. When CNVs are generated by non-allelic homologous recombination (NAHR) 

between low-copy repeats, a deletion and reciprocal duplication are generated (Malhotra and 

Sebat, 2012).  A possibility is that the duplications could be selected against due to negative 

genetic selection, i.e. a lower viability or fecundity of carriers. However, since the breakpoints 
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for ELP4 CNVs differ between cases and there are no low-copy repeats that could explain the 

generation of CNVs, this mechanism is also unlikely. Instead, there is more in common with 

deletions seen at NRXN1, which may occur by a mechanism involving inverted repeats of 

variable sizes, or a significantly higher AT nucleotide content at the breakpoints, generating a 

rearrangement hotspot of genome instability. These non-recurrent breakpoints could be 

generated by a non-homologous end joining mechanism of double strand breaks or by 

replication errors and may be influenced by the genomic architecture of a region in particular 

people, (Enggaard Hoeffding, et al., 2014).  

 

Examination of the data from the copy number variation morbidity map of developmental 

delay (Cooper, et al., 2011) shows four microdeletions (<1Mb) with breakpoints within ELP4 

(n=15,767), and five microduplications, Supplementary Information Table 1. All duplication 

cases had neurological deficits, and two deletion cases and one duplication had ASD.  

However, seven microdeletions of ELP4 were also found in the 8,329 control individuals, one 

of which is the WTCCC sample reported here. This increase in frequency of smaller CNVs 

among controls compared to all of the other control datasets used in our study, indicates that 

they may be due to an artifact from the less dense Illumina arrays used by Cooper et al, 

compared to the more rigorous platform and methods used to analyse their cases. Indeed, the 

authors commented that their detection power is substantially higher for cases, the reverse of 

our study, and will manifest itself as false positive enrichment for CNVs in controls. 

However, more information (not publicly available) is needed about the specific arrays used 

for each control with an ELP4 deletion, their LRR and BAF images and probe coverage over 

ELP4 to draw further conclusions about potential false positives and array bias in their 

investigation. 
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Future work will focus on the functional consequences of the ELP4 deletions by investigation 

of expression levels of the gene in these cases. Work with cellular and animal models with 

ELP4 deletions will help to cement the role of ELP4 in neurodevelopment through 

identification of altered interaction networks and developmental pathways such as neuronal 

migration, branching and survival. 
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FIGURE LEGEND 

 

Figure 1 Deletions (red) and a duplication (blue) identified over the ELP4-PAX6 locus on 

11p13 in 9 patients from the BB-GRE clinical genetic database with neurodevelopmental 

phenotypes, 6 patients with autism from the AGP and Canadian ASD resource, and 9 patients 

with neurodevelopmental phenotypes from the DECIPHER database. Hg19 

(http://genome.ucsc.edu/). Tracks showing positions of probes genotyped from the Illumina 

1M Single Array, the Affymetrix GenomeWide Human SNP6 Array and the Custom Agilent 

oligonucleotide array used for BBGRE patients are above the UCSC gene tracks. 

Alternatively spliced gene transcripts are shown. 
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Table 1.  Microdeletions and a microduplication of ELP4 on Chr11 identified in 9 patients from the BB-GRE clinical genetic database, 

(http://bbgre-dev.iop.kcl.ac.uk).  AgeAtTest indicates age at arrayCGH testing. 

ID Sex AgeAtTest Phenotype hg19Start hg19Stop Size bp Inheritance CNV Other CNV 

129016 F 3 years 

Developmental delay 

(progressing), microcephaly, 

poor balance 31,573,422 31,674,789 101,368 Unknown X1  

119460 M 2 years 

Social communication 

difficulties, speech and 

language delay 31,561,220 31,625,448 64,229 Maternal x1 

Deletion 

Chr5:97,302,377-

97,380,022. No 

genes. 

116589 M 3 years 

PDD: Social interaction 

difficulties, language disorder, 

behaviour problems. 31,584,329 31,642,325 57,997 Maternal x1  

108970 M 5 years 

Severe cognitive delay (IQ 20-

34) speech & language disorder, 

reading & spelling development 

disorder, autism spectrum 

disorder, epilepsy >24 months 

at age of onset 31,495,260 31,546,276 51,017 Paternal x1  

117374 M 20 years 

 

Autism, learning difficulties 31,705,076 31,747,631 42,556 Maternal x1  

112601 F 1 year 

Developmental delay, speech & 

language disorder, 

microcephaly (<5th centile), 

mild cognitive delay, motor 

skills development disorder 31,691,270 31,722,740 31,471 Paternal x1 

Duplication 

Chr5: 

93,197,999-

93,424,468. 

Disrupts 

FAM172A. 
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117003 M 8 months 

Developmental delay, 

hypotonia, ventriculomegaly 31,601,768 31,632,347 30,580 Maternal x1  

130693 M 5 years 

Moderate developmental delay 

mainly affecting language, 

emerging autistic traits 31,760,904 31,786,914 26,010 De novo x1 

Deletion Chr6: 

26,440,746-

26,463,502. 

Disrupts BTN3A3 

and BTN2A1. 

112031 F 12 years 

Developmental delay, 

hypotonia 31,616,889 31,849,574 232,686 Unknown x3 

Deletion Chr16: 

15,048,750-

16,305,736 

16p13.11 

hotspot. 
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Table 2.  Microdeletions of ELP4 on Chr11 identified in 9 individuals from the DECIPHER database. Age indicates age at last clinical 

assessment. 

ID Sex Age Phenotype hg19Start hg19Stop Size bp Inheritance CNV Other CNV 

265704 M <1yr 

Aniridia. No further 

information. 31,172,410 31,775,457 603,047 De novo x1 

 

249728 F 24yrs Rieger anomaly.  31,118,027 31,710,576 592,549 De novo x1 
 

257614 M 7yrs 

Epilepsy – partial complex 

seizures with secondary 

generalization due to cortical 

dysplasia, mild developmental 

delay, ADHD, neurinomas, 

congenital malformation in left 

eye, fine motor dyspraxia. 30,991,456 31,564,708 573,252 Parent x1 

 

292869 F 15yrs 

Severe  intellectual disability, 

muscle hypotrophy with severe 

hypotonia and absent gross 

motor and fine adaptive motor 

development; no language; 

severe dysphagia requiring tube 

feeding; craniofacial 

abnormalities. 31,597,322 31,802,120 204,798 De novo x1 

 

287341 M 2yrs 

Partial aniridia. Currently no 

signs of neurological 

impairment. 31,605,859 31,783,590 177,731 Maternal x1 

 

258970 M 4 yrs 

Developmental delay, 

behavioral disturbances, 

regression of language at 18mo 

to absent at age 4, pervasive 

developmental disorder 31,605,859 31,775,457 169,598 Unknown x1 
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261471 M 4yrs 

Behavioral and speech 

disorders, mild mental 

retardation. 31,625,389 31,775,457 150,068 Parent x1 

Deletion 

Chr10:35360169-

35605506 

disrupting CUL2, 

CREM, CCNY. 

289275 M 24yrs 

Aniridia, global developmental 

delay, autistic behaviour.  31,742,075 31,870,603 128,528 Unknown x1 

Duplication 

ChrX:46389227-

46396390 

disrupting intron 

of ZNF674. 

270752 F 9yrs 

Aniridia, congenital cataract. 

Mild developmental delay due 

to processing speed deficiencies 

largely due to visual 

impairment. 31,735,689 31,825,698 90,009 Paternal x1 
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Table 3.  Microdeletions of ELP4 on Chr11 identified in 3 patients from the Autism Genome Project and 3 from a Canadian study of 

autism. * sibling sister pair. 

Autism Study ID Sex Phenotype hg19Start hg19Stop Size bp Inheritance CNV Other CNV 

3617_3 M 

Strict autism; no seizures, verbal, 

language delay; delayed first 

words (at 24 mo), delayed first 

phrases (at 36 mo); verbal IQ 

>70. 31460506 31655108 194,602 Paternal x1 

 

NA0285 M 

Autism, language delay; delayed 

first words (at 32 mo), no seizures 31518924 31649475 130,551 Maternal x1 

 

8596_201 M 

Strict autism, high functioning; no 

seizures, verbal, language delay; 

delayed first words (at 25 mo), 

typical first phrases (at 25 mo); 

verbal IQ >70. 31488890 31607986 119,096 Maternal x1 

Duplication, 

chr9:115994263-

116495631 

disrupting COL27A1 

MM1259-003* F 

Autism, language delay; delayed 

first words (at 21 mo), mild 

developmental delay, motor 

delay, no seizures 31652219 31764393 112,174 Unknown x1 

Deletion 

chrX:154772341-

154775951 

disrupting TMHLE 

MM1259-004* F 

Autism, language delay; delayed 

first words (at 18 mo), delayed 

first phrases (at 36 mo), 

expressive language problems, 

mild developmental delay, motor 

delay, no seizures 31652219 31764393 112,174 Unknown x1 

Deletion 

chrX:154772341-

154775951 

disrupting TMHLE 

20130_6005001 M 

Strict autism; no seizures, verbal, 

language delay; delayed first 

words (at 36 mo), delayed first 

phrases (at 48 mo); verbal IQ 

>70, coordination problems 31576768 31653568 76,800 Maternal x1 

 

 

Page 33 of 33

John Wiley & Sons, Inc.

Human Mutation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Supplementary Table 1 Microdeletions and duplications disrupting ELP4 reported in cases and controls from the copy number variation 

morbidity map of developmental delay (Cooper et al., 2011). 

  

Sample ID Variant ID hg19Start hg19Stop Size bp CNV 

Cases:      

9890931 nsv540979 31,118,026 31,790,388 672,363 x3 

9882508 nsv540980 31,152,003 31,751,699 599,697 x1 

9896715 nsv540981 31,401,095 31,656,511 255,417 x1 

9908285 nsv540986 31,747,371 32,063,394 315,979 x3 

9883063 nsv540987 31,775,599 31,804,354 28,756 x1 

9882119 nsv540982 31,602,061 31,875,238 273,178 x3 

9899815 nsv540983 31,656,450 31,857,797 201,348 x3 

9883029 nsv540984 31,703,100 31,751,699 48,600 x1 

9889844 nsv540985 31,703,100 31,929,503 226,404 x3 

Controls:      

WTCCC nsv553949 31,317,835 31,539,587 221,753 x1 

 nsv553989 31,727,232 31,796,560 69,329 x1 

HGDP00106 nsv5553987 31,488,890 31,696,336 207,447 x1 

 nsv553986 31,488,890 31,679,048 190,159 x1 

 nsv553988 31,535,355 31,651,189 115,835 x1 

 nsv553984 31,454,975 31,654,406 199,432 x1 

 nsv553985 31,488,890 31,654,406 165,517 x1 
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