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ABSTRACT 

Inflammation is a response of the immune and vascular systems to the stimuli perceived 

as harmful to the host. Inflammation can be acute or chronic, and the recruitment of 

leukocytes to the affected tissues is a fundamental process during the course of both 

these events. Leukocytes are recruited in a process known as the multi-step adhesion 

cascade, which is a highly co-ordinated series of adhesive events mediated by the cell 

adhesion molecules (CAMs) on both leukocytes and endothelial cells. L-selectin is a 

CAM involved in the initial stages of the cascade, i.e. tethering and rolling, although there 

is a mounting body of evidence that points towards its role at later stages of the cascade, 

such as chemotaxis beyond transendothelial migration (TEM). The work outlined in this 

thesis explores the possibility that L-selectin actively contributes to TEM in monocytes. 

There are two important and measurable properties of L-selectin: (i) its rapid proteolysis 

(or “shedding”) upon cell activation, and (ii) its transition from being monomeric in the 

plasma membrane to being clustered, following ligand binding, which is a hallmark of 

downstream signalling. By expressing C-terminally green fluorescent protein (GFP)-

tagged L-selectin in THP-1 monocytes, it was possible for the first time to monitor and 

analyse the spatio-temporal distribution of L-selectin and its shedding during TEM. In 

addition, co-expressing L-selectin-GFP with L-selectin tagged to red fluorescent protein 

(RFP) enabled measurement of L-selectin clustering during TEM via the use of 

fluorescence lifetime imaging microscopy (FLIM) to monitor Forster resonance energy 

transfer (FRET) between the GFP and RFP-tags. Interestingly, the majority of L-selectin 

was found to be clustered exclusively in pseudopods protruding beneath the endothelial 

monolayer, where L-selectin ligands are known to exist. L-selectin clustering was also 

found to occur following cross-linking of either CD43 or PECAM-1, suggesting inside-out 

signalling is an important factor in modulating L-selectin function. Moreover, both the 

extracellular cleavage domain and two cytoplasmic tail serine residues were involved in 

fundamentally regulating L-selectin clustering. Finally, the sub-cellular distribution of L-

selectin clustering correlated tightly with the dynamics of the pseudopods that protruded 

beneath the endothelial monolayer during TEM. This thesis aims to understand the 

contribution that L-selectin has during the later stages of the adhesion cascade, and will 

re-shape the currently held perspective that this cell adhesion molecule’s role is solely 

restricted to just tethering and rolling. 

 

  



3 
 

CONTENTS 

ABSTRACT .................................................................................... 2 

LIST OF FIGURES ........................................................................ 10 

LIST OF TABLES ......................................................................... 13 

ACKNOWLEDGEMENTS ............................................................. 14 

DECLARATION OF INDEPENDENT WORK ................................ 15 

ABBREVIATIONS ......................................................................... 16 

CHAPTER 1. INTRODUCTION ..................................................... 23 

1.1 INFLAMMATION............................................................................................... 23 

1.1.1 Acute inflammation ................................................................................... 24 

1.1.2 Chronic inflammation ............................................................................... 24 

1.2 THE LEUKOCYTE ADHESION CASCADE ...................................................... 24 

1.2.1. Leukocyte tethering ................................................................................. 26 

1.2.2 Leukocyte rolling ...................................................................................... 27 

1.2.3 Secondary leukocyte capture .................................................................. 28 

1.2.4 Transition from leukocyte rolling to arrest ............................................. 29 

1.2.5 Leukocyte arrest ....................................................................................... 31 

1.2.6 Adhesion stabilisation and leukocyte spreading ................................... 33 

1.2.7 Pre-requisite steps for the leukocyte transendothelial migration ......... 33 

1.2.7.1 Intraluminal crawling ............................................................................. 33 

1.2.7.2 Endothelial adhesive platforms and docking structures ........................ 33 

1.2.8 Leukocyte transendothelial migration ..................................................... 34 

1.2.8.1 The paracellular route ........................................................................... 35 

1.2.8.2 The transcellular route .......................................................................... 36 

1.2.9 Human leukocyte adhesion deficiencies ................................................ 37 

1.3 THE ENDOTHELIUM ........................................................................................ 38 

1.3.1 Tight junctions .......................................................................................... 38 

1.3.2. Gap junctions ........................................................................................... 39 

1.3.3. Adherens junctions ................................................................................. 39 

1.3.4. Discontinuous adherens junctions......................................................... 39 

1.3.5. Focal adhesions ....................................................................................... 39 

1.4 MIGRATION OF LEUKOCYTES BEYOND THE ENDOTHELIUM .................... 40 

1.5 REGULATION OF LEUKOCYTE MIGRATION BY SMALL RHO GTPASES ... 41 

1.6 MIGRATION OF MONOCYTES ........................................................................ 45 

1.6.1 Migration of monocytes in health ............................................................ 45 



4 
 

1.6.2 Migration of monocytes in disease.......................................................... 46 

1.7 THE SELECTINS .............................................................................................. 48 

1.7.1 Selectin structure and function ............................................................... 49 

1.7.2 Common selectin ligands ......................................................................... 51 

1.7.3  P-selectin and its role in the leukocyte adhesion cascade ................... 53 

1.7.4 E-selectin and its role in the leukocyte adhesion cascade .................... 54 

1.7.5 L-selectin ................................................................................................... 55 

1.7.5.1 The role of L-selectin during leukocyte recruitment ............................... 56 

1.7.5.1.1 Roles for L-selectin within the vasculature ..................................... 56 

1.7.5.1.2 Roles for L-selectin outside the vasculature ................................... 58 

1.7.5.2 Current methods used to study L-selectin-dependent phenomena ....... 59 

1.8 LIGANDS FOR L-SELECTIN ............................................................................ 60 

1.8.1 L-selectin ligands on high endothelial venules (HEV) ............................ 60 

1.8.2 Ligands for L-selectin on the endothelium at sites of inflammation ..... 61 

1.8.3  L-selectin ligands in the extravascular tissues ..................................... 63 

1.8.4 Various L-selectin ligands on other cells ................................................ 64 

1.9 REGULATION OF L-SELECTIN EXPRESSION ............................................... 66 

1.9.1 Transcriptional regulation of L-selectin expression .............................. 66 

1.9.2 Regulation of L-selectin expression by proteolytic cleavage (shedding)

 ............................................................................................................................ 67 

1.10 THE CYTOPLASMIC TAIL OF L-SELECTIN .................................................. 69 

1.10.1 Interaction with α-actinin ........................................................................ 70 

1.10.2 Cytoplasmic serine residues and interaction with PKC isoforms ....... 71 

1.10.3 Interaction with the exrin/radixin/moesin (ERM) family members ....... 72 

1.10.4 Interaction with calmodulin (CaM) ......................................................... 73 

1.11 L-SELECTIN OUTSIDE-IN SIGNALLING ....................................................... 74 

1.11.1 Changes in lateral mobility of L-selectin in the plasma membrane .... 75 

1.11.2 Activation and upregulation of the integrins ........................................ 76 

1.11.3 Regulation of chemokine receptor expression and chemotaxis ......... 77 

1.11.4 Activation of protein kinases, Rho GTPases, and production of 

secondary messengers ..................................................................................... 78 

1.12 REGULATION OF L-SELECTIN FUNCTION BY INSIDE-OUT SIGNALLING 83 

1.13 L-SELECTIN AND DISEASE .......................................................................... 84 

1.13.1 L-selectin and atherosclerosis ............................................................... 85 

1.13.2 Therapeutic implications of L-selectin .................................................. 86 

1.14 ORIGINAL HYPOTHESIS ............................................................................... 88 

1.15 AIMS OF THE PROJECT ............................................................................... 88 



5 
 

CHAPTER 2. MATERIALS AND METHODS ................................ 89 

2.1 CELL CULTURE REAGENTS, CHEMICALS, BUFFERS AND SOLUTIONS .. 89 

2.2 ANTIBODIES .................................................................................................... 95 

2.3 CLONING ......................................................................................................... 96 

2.4 POLYMERASE CHAIN REACTION (PCR) ....................................................... 97 

2.5 IN VITRO PCR MUTAGENESIS AND SEQUENCING OF THE MUTANTS ...... 97 

2.6 AGAROSE GEL ELECTROPHORESIS ............................................................ 99 

2.7 TRANSFORMATION OF ESCHERICHIA COLI BL-21 AND PLASMID 

PURIFICATION ....................................................................................................... 99 

2.8 PROTEIN ANALYSIS ..................................................................................... 100 

2.8.1 SDS-Polyacrylamide Gel Electrophoresis (SDS-PAGE) of extracts 

derived from THP-1 cells and HUVEC. ........................................................... 100 

2.8.2 Protein gel staining ................................................................................. 100 

2.8.3 Immunoblotting (Western blotting)........................................................ 100 

2.8.4 GFP-Trap® Immunoprecipitation ........................................................... 101 

2.8.5 Densitometry analysis ............................................................................ 102 

2.9 PURIFICATION OF GST FUSION PROTEINS ............................................... 102 

2.10 RHO GTPASE ACTIVATION ASSAYS ........................................................ 104 

2.11 LENTIVIRAL GENE DELIVERY AND GENERATION OF STABLE CELL 

LINES ................................................................................................................... 104 

2.11.1 Lentiviral production in HEK 293T packaging cell line ...................... 104 

2.11.2 Lentivirus concentration ...................................................................... 105 

2.11.3 Measuring lentiviral titres ..................................................................... 105 

2.11.4 Transduction of THP-1 cells ................................................................. 106 

2.12 CELLS AND CELL CULTURE ...................................................................... 106 

2.12.1 THP-1 cells (Acute Monocytic Leukemia, human) .............................. 106 

2.12.2 HEK 293T cells (Human Epithelial Kidney cells) ................................. 107 

2.12.3 Human umbilical vein endothelial cells (HUVEC) ............................... 107 

2.12.4 Cryopreservation of cells ..................................................................... 107 

2.13 FLOW CYTOMETRY .................................................................................... 108 

2.13.1 Technical equipment ............................................................................ 108 

2.13.2 Antibody labelling procedure ............................................................... 108 

2.14 PARALLEL PLATE FLOW CHAMBER ASSAY ........................................... 108 

2.14.1 Technical equipment ............................................................................ 109 

2.14.2 Cell co-perfusion experiments ............................................................. 110 

2.14.3 Perfusion of cells for confocal microscopy, FLIM/FRET and 

pseudopod dynamics analysis ....................................................................... 111 

2.15 CELL SPREADING AREA ANALYSIS ......................................................... 111 



6 
 

2.16 CONFOCAL MICROSCOPY ......................................................................... 112 

2.16.1 Technical equipment ............................................................................ 112 

2.16.2 Cell labelling procedure ....................................................................... 112 

2.16.3 Three-dimensional (3D) rendering ....................................................... 112 

2.16.4 Analysis of L-selectin-GFP “spots”, “spikes” and “clusters” ........... 112 

2.17 L-SELECTIN SHEDDING ASSAYS .............................................................. 113 

2.17.1 Shedding in response to PMA and TNF-α stimulation ....................... 113 

2.17.2 Shedding during static transmigration assay ..................................... 113 

2.18 FLIM ANALYSIS OF FRET ........................................................................... 114 

2.18.1 Preparation and labelling of cells ........................................................ 114 

2.18.2 Technical equipment and data analysis .............................................. 115 

2.19 ANTIBODY-MEDIATED CROSS-LINKING ASSAYS ................................... 116 

2.20 TRANSWELL MIGRATION ASSAYS ........................................................... 116 

2.21 STATISTICAL EVALUATION ....................................................................... 117 

CHAPTER 3. GENERATION AND CHARACTERISATION OF A 

MONOCYTE CELL LINE STABLY EXPRESSING L-SELECTIN 

TAGGED TO GREEN FLUORESCENT PROTEIN (GFP)........... 118 

3.1 INTRODUCTION ............................................................................................. 118 

3.2 EXPERIMENTAL DESIGN .............................................................................. 119 

3.3 RESULTS ....................................................................................................... 120 

3.3.1 Generation of cell lines stably expressing wild type L-selectin-GFP .. 120 

3.3.1.1 Cloning of human L-selectin cDNA into pHR´SIN-SEW lentiviral 

backbone vector ............................................................................................. 120 

3.3.1.2 Lentiviral particle generation using HEK 293T packaging cell line ...... 122 

3.3.1.3 Lentivirus mediated transduction of THP-1 cells ................................. 125 

3.3.2 Monitoring L-selectin-GFP expression levels during THP-1 cell line 

maintenance in tissue culture ......................................................................... 131 

3.3.3 Characterisation of THP-1 L-selectin-GFP Hi20 stable cell line ........... 132 

3.3.3.1 L-selectin expression .......................................................................... 133 

3.3.3.2 Shedding of L-selectin-GFP in THP-1 cells ......................................... 136 

3.3.3.3 Interaction of endogenous calmodulin with L-selectin-GFP ................ 140 

3.3.3.4 Interaction of L-selectin-GFP on THP-1 cells with physiological ligands 

under flow conditions ..................................................................................... 141 

3.3.3.4.1 L-selectin recognises sialyl Lewis X (sLex) ................................... 141 

3.3.3.4.2 L-selectin mediates interactions of THP-1 cells with TNF-α-activated 

endothelium ................................................................................................ 143 

3.4 DISCUSSION .................................................................................................. 144 



7 
 

3.4.1 Stable expression of L-selectin-GFP in THP-1 cells using lentiviral 

vectors .............................................................................................................. 144 

3.4.2 Tagging of the L-selectin cytoplasmic tail with GFP does not influence 

L-selectin expression, localisation and function ........................................... 146 

CHAPTER 4. MONITORING THE SHEDDING OF L-SELECTIN-

GFP IN THP-1 CELLS ................................................................ 151 

4.1 INTRODUCTION ............................................................................................. 151 

4.2 EXPERIMENTAL DESIGN .............................................................................. 152 

4.3 RESULTS ....................................................................................................... 153 

4.3.1 Shedding of L-selectin-GFP peaks at 20 minutes in THP-1 cells 

undergoing TEM .............................................................................................. 153 

4.3.2. Generation of cell lines expressing non-phosphorylatable serine-to-

alanine mutants of L-selectin-GFP ................................................................. 155 

4.3.3 Double serine mutant within the L-selectin tail reduces TNF-α induced 

shedding .......................................................................................................... 157 

4.3.4 SSAA mutation delays L-selectin shedding when THP-1 cells interact 

with activated HUVEC under static conditions .............................................. 160 

4.3.5 Characterisation of interactions between THP-1 cells and TNF-α 

activated HUVEC under flow ........................................................................... 162 

4.3.6 WT L-selectin-GFP is enriched in “spots” in the protruding pseudopods 

of transmigrating THP-1 cells under flow ...................................................... 166 

4.3.7 Generation of THP-1 cell lines expressing the sheddase-resistant (ΔM-

N) form of L-selectin-GFP ............................................................................... 170 

4.3.8 Characterisation of THP-1 cell lines expressing ΔM-N L-selectin-GFP

 .......................................................................................................................... 171 

4.3.8.1 Analysis of ΔM-N L-selectin-GFP expression levels in THP-1 cells .... 171 

4.3.8.2 Basal and activated L-selectin shedding is abrogated in THP-1 cells 

expressing ΔM-N L-selectin-GFP ................................................................... 173 

4.3.9. Shedding of L-selectin-GFP directly correlates with an accumulation of 

GFP-positive “spots” in the transmigrating pseudopods of THP-1 cells .... 174 

4.3.10 Investigating the fate of the L-selectin “stump” following shedding 

during transendothelial migration of THP-1 cells .......................................... 178 

4.4 DISCUSSION .................................................................................................. 180 

4.4.1 L-selectin shedding is likely to occur during the early stages of TEM 

and is dependent on cytoplasmic serine residues ........................................ 180 

4.4.2 Accumulation of GFP-positive “spots” occurs in the protruding 

pseudopods of transmigrating THP-1 cells and correlates directly with L-

selectin shedding ............................................................................................ 181 

4.4.3 Investigating the fate of L-selectin-GFP “stump” ................................. 182 

CHAPTER 5. CLUSTERING OF L-SELECTIN DURING 

TRANSENDOTHELIAL MIGRATION ......................................... 185 



8 
 

5.1 INTRODUCTION ............................................................................................. 185 

5.2 EXPERIMENTAL DESIGN .............................................................................. 186 

5.3 RESULTS ....................................................................................................... 187 

5.3.1 Generation of a THP-1 cell line stably expressing GFP- and RFP-tagged 

WT L-selectin ................................................................................................... 187 

5.3.2 L-selectin clusters in the pseudopods of transmigrating THP-1 cells 188 

5.3.3. TNF-α activated HUVEC express the L-selectin ligand biglycan ........ 190 

5.3.4 Generation of THP-1 cell lines stably expressing GFP- and RFP-tagged 

ΔM-N L-selectin................................................................................................ 194 

5.3.5 Inhibition of L-selectin shedding completely reverses the subcellular 

distribution of clustered L-selectin in transmigrating cells .......................... 195 

5.3.6 Serine-to-alanine mutagenesis of the L-selectin tail dramatically alters 

the sub-cellular distribution of clustered M-N L-selectin, but not WT L-

selectin, during TEM ........................................................................................ 197 

5.3.7 ΔM-N SSAA L-selectin appears in large “aggregates” in the 

pseudopods of transmigrating THP-1 cells ................................................... 202 

5.3.8 Clustering of L-selectin is promoted by antibody-mediated cross-

linking of either CD43 or PECAM-1................................................................. 206 

5.3.9 Alanine-to-serine mutation of the L-selectin tail is sufficient to block 

PECAM-1, but not CD43, mediated clustering of L-selectin ......................... 211 

5.4 DISCUSSION .................................................................................................. 214 

5.4.1 Two putative models to explain L-selectin clustering during the 

leukocyte adhesion cascade........................................................................... 214 

5.4.2 Cytoplasmic serine residues regulate L-selectin clustering................ 218 

CHAPTER 6. MONITORING CELLULAR RESPONSES TO L-

SELECTIN CLUSTERING AND SHEDDING DURING TEM ....... 220 

6.1 INTRODUCTION ............................................................................................. 220 

6.2 EXPERIMENTAL DESIGN .............................................................................. 221 

6.3 RESULTS ....................................................................................................... 223 

6.3.1 Analysis of pseudopod behaviour during THP-1 monocyte 

transmigration across activated HUVEC under conditions of flow .............. 223 

6.3.1.1 L-selectin expression promotes pseudopod formation during early 

phases of TEM ............................................................................................... 223 

6.3.1.2 Effects of SSAA L-selectin expression on THP-1 cells pseudopod 

dynamics ........................................................................................................ 226 

6.3.1.3 Blocking L-selectin shedding promotes the formation of multiple 

pseudopods during TEM that persist over-time .............................................. 228 

6.3.1.4 Monitoring the effect of Ro-31-9790 treatment on pseudopod formation 

by THP-1 cells expressing GFP alone ............................................................ 232 



9 
 

6.3.1.5 Effects of ΔM-N SSAA L-selectin expression on THP-1 monocyte 

pseudopod dynamics ..................................................................................... 233 

6.3.2 Analysis of cell spreading during THP-1 transmigration across 

activated HUVEC under conditions of flow .................................................... 237 

6.3.3 THP-1 monocytes expressing GFP, WT L-selectin-GFP or ΔM-N L-

selectin-GFP have comparable levels of RhoGTPase activity when in 

suspension culture .......................................................................................... 239 

6.3.4 Generation of THP-1 cell lines expressing Rho GTPase biosensors .. 241 

6.3.5 Monitoring Rho GTPase activity in THP-1 cells following antibody-

mediated cross-linking of L-selectin .............................................................. 245 

6.3.6 Analysis of THP-1 cell chemotaxis ........................................................ 248 

6.4 DISCUSSION .................................................................................................. 252 

6.4.1 L-selectin shedding regulates THP-1 monocyte polarisation during TEM

 .......................................................................................................................... 252 

6.4.2 Serine residues within the L-selectin tail regulate THP-1 cell pseudopod 

dynamics .......................................................................................................... 256 

CHAPTER 7. GENERAL DISCUSSION ...................................... 259 

7.1 WHAT IS CURRENTLY KNOWN ABOUT THE SUBCELLULAR 

DISTRIBUTION OF L-SELECTIN? ....................................................................... 260 

7.1.1 The subcellular distribution of the L-selectin-GFP spots .................... 260 

7.1.2 The subcellular distribution of the L-selectin clustering ..................... 262 

7.2 WHAT COULD BE THE RELATIONSHIP BETWEEN L-SELECTIN 

CLUSTERING AND SHEDDING IN THE TRANSMIGRATING PSEUDOPODS? . 262 

7.3 HOW IMPORTANT IS INSIDE-OUT SIGNALLING FOR CLUSTERING OF L-

SELECTIN? .......................................................................................................... 264 

7.4 WHAT IS THE BIOLOGICAL SIGNIFICANCE OF L-SELECTIN’S ACTIVITY 

DURING TEM? ..................................................................................................... 265 

7.5 A PUTATIVE MODEL FOR THE ROLE OF L-SELECTIN DURING TEM AND 

BEYOND ............................................................................................................... 266 

7.6 HOW DOES THIS WORK FIT WITH THE PREVIOUS OBSERVATIONS MADE 

IN THE IVETIC LABORATORY? .......................................................................... 269 

7.7 ARE THERE ANY OTHER POTENTIAL PLAYERS THAT COULD BE 

INVOLVED IN L-SELECTIN-DEPENDENT SIGNALLING DURING TEM OR 

CHEMOTAXIS? .................................................................................................... 270 

7.8 CONCLUDING REMARKS ............................................................................. 271 

REFERENCES ............................................................................ 272 

 

 

 



10 
 

LIST OF FIGURES 

Figure 1.1 The leukocyte adhesion cascade. .............................................................................. 25 

Figure 1.2 Cell adhesion molecules mediating tethering and rolling. ........................................ 27 

Figure 1.3 Transition from leukocyte rolling to arrest. ............................................................... 31 

Figure 1.4 CAMs involved in leukocyte arrest............................................................................. 32 

Figure 1.5 Paracellular and transcellular transendothelial migration. ....................................... 36 

Figure 1.6 Location of the selectins and their ligands. ............................................................... 48 

Figure 1.7 The protein structure of the selectins. ...................................................................... 49 

Figure 1.8 Presentation of sialyl-Lewisx on O- and N-glycans. .................................................... 52 

Figure 1.9 The role of L-selectin during the leukocyte adhesion cascade. ................................. 56 

Figure 1.10 The cytoplasmic tail of L-selectin. ............................................................................ 70 

Figure 1.11 Models of association between L-selectin and calmodulin. .................................... 74 

Figure 2.1 Determining protein concentration of GST-fused effector domain bound to 

glutathione sepharose beads. ................................................................................................... 103 

Figure 2.2 Parallel plate flow chamber system. ........................................................................ 110 

Figure 3.1 Cloning of L-selectin cDNA into lentiviral expression vector. .................................. 121 

Figure 3.2 Lentiviral transgene delivery system. ...................................................................... 123 

Figure 3.3 Titration of lentiviral particles containing pHR´SIN-SEW vector carrying WT L-

selectin-GFP construct. ............................................................................................................. 124 

Figure 3.4 Generation of THP-1 cell lines expressing L-selectin-GFP. ....................................... 126 

Figure 3.5 Flow cytometry analysis of L-selectin expression in THP-1 cells expressing low or 

high levels of L-selectin-GFP. .................................................................................................... 128 

Figure 3.6 Generation of THP-1 cell line expressing uniform levels of GFP. ............................. 130 

Figure 3.7 Maintanance of THP-1 cells expressing L-selectin-GFP in tissue culture. ................ 132 

Figure 3.8 GFP-tagging does not influence expression of L-selectin by THP-1 cells. ................ 134 

Figure 3.9 The GFP-tag does not interfere with L-selectin’s ability to undergo proteolytic 

cleavage. ................................................................................................................................... 137 

Figure 3.10 L-selectin-GFP is subjected to basal shedding. ...................................................... 139 

Figure 3.11 WT L-selectin-GFP associates with endogenous calmodulin (CaM). ..................... 140 

Figure 3.12 Interaction of THP-1 cells expressing WT L-selectin-GFP with sialyl Lewis X (sLex) 

ligand under conditions of flow. ............................................................................................... 142 

Figure 3.13 Expression of L-selectin augments recruitment of THP-1 monocytes to TNF-α-

activated HUVEC. ...................................................................................................................... 144 

Figure 4.1 Time-course of WT L-selectin shedding when THP-1 cells interact with TNF-α 

activated HUVEC. ...................................................................................................................... 154 

Figure 4.2 Generation and stable expression of L-selectin cytoplasmic tail mutants in THP-1 

cells. .......................................................................................................................................... 156 

Figure 4.3 Both S364 and S367 are required for TNF-α induced shedding. ............................. 159 

Figure 4.4 Serine-to-alanine mutation of the L-selectin tail delays shedding when THP-1 cells 

are incubated with activated HUVEC under static conditions. ................................................. 161 

Figure 4.5 THP-1 cells form pseudopods just a few minutes after adhesion. .......................... 163 

Figure 4.6 THP-1 monocytes expressing L-selectin-GFP initiate transmigration through HUVEC 

by extending pseudopods underneath the endothelial cells. .................................................. 165 

Figure 4.7 A time-dependent accumulation of WT L-selectin-GFP “spots” in the pseudopods of 

THP-1 cells. ................................................................................................................................ 169 



11 
 

Figure 4.8 Quantitative analysis of L-selectin-GFP spots accumulating in the pseudopods of 

THP-1 cells over time. ............................................................................................................... 169 

Figure 4.9 Construction of sheddase resistant (ΔM-N) L-selectin mutant. .............................. 170 

Figure 4.10 Expression of ΔM-N L-selectin-GFP in THP-1 cells. ................................................ 172 

Figure 4.11 No shedding occurs in THP-1 cells expressing ΔM-N L-selectin. ............................ 174 

Figure 4.12 Relationship between shedding and accumulation of L-selectin-GFP spots in the 

protruding pseudopods of THP-1 cells. ..................................................................................... 177 

Figure 4.13 Monitoring the accumulation of spots and spikes in the protruding pseudopods of 

transmigrating THP-1 cells expressing WT, SSAA or ΔM-N L-selectin-GFP. .............................. 177 

Figure 4.14  WT L-selectin-GFP in the pseudopods of transmigrating THP-1 cells does not co-

localise with early endosome marker. ...................................................................................... 179 

Figure 5.1 THP-1 cell line expressing WT L-selectin-GFP and -RFP (THP-1 WT L-selectin 

GFP/RFP). .................................................................................................................................. 188 

Figure 5.2 Clustering of L-selecting during transendothelial migration. .................................. 189 

Figure 5.3 Effect of TNF-α stimulation on HUVEC proteoglycan expression. ........................... 190 

Figure 5.4 Biglycan expression pre- and post-TNF-α stimulation of HUVEC monolayers. ....... 194 

Figure 5.5 Surface WT- and ΔM-N L-selectin-GFP/RFP expression in THP-1 cells. ................... 195 

Figure 5.6 Inhibition of L-selectin shedding reverses the subcellular distribution of L-selectin 

clustering during TEM of THP-1 monocytes. ............................................................................ 196 

Figure 5.7 Surface WT and mutant L-selectin-GFP/RFP expression in THP-1 cells. .................. 199 

Figure 5.8 Differences in the subcellular distribution of clustered WT and mutant forms of L-

selectin. ..................................................................................................................................... 201 

Figure 5.9 Statistical analysis of differences between clustering of WT and mutant forms of L-

selectin during THP-1 cell transmigration. ................................................................................ 202 

Figure 5.10 Quantitation of spots, spikes and “aggregates” of WT, SSAA, ΔM-N and ΔM-N SSAA 

L-selectin-GFP. .......................................................................................................................... 204 

Figure 5.11 Large ΔM-N SSAA L-selectin-GFP aggregates accumulate in the pseudopods of 

transmigrating THP-1 cells. ....................................................................................................... 205 

Figure 5.12 Expression levels of THP-1 CAMs. .......................................................................... 208 

Figure 5.13 Clustering of L-selectin in response to CD43 and PECAM-1 cross-linking. ............ 210 

Figure 5.14 CD43 and PECAM-1 levels are matched in THP-1 cells expressing WT or mutant 

forms of L-selectin-GFP/RFP. .................................................................................................... 211 

Figure 5.15 Clustering of mutant L-selectin in response to CD43 and PECAM1-cross-linking. 214 

Figure 5.16 Schematic of two possible models of L-selectin clustering. .................................. 215 

Figure 6.1 Schematic of CFP/YFP FRET-based Rho GTPase biosensor. ..................................... 222 

Figure 6.2 Pseudopod behaviour in THP-1 cells transmigrating across activated HUVEC. ....... 226 

Figure 6.3 Pseudopod dynamics of SSAA L-selectin expressing THP-1 cells. ............................ 227 

Figure 6.4 Pseudopod formation of cells expressing ΔM-N L-selectin or WT L-selectin treated 

with Ro-31-9790 inhibitor. ........................................................................................................ 229 

Figure 6.5 Effects of blocking L-selectin shedding on THP-1 monocyte pseudopod behaviour.

 .................................................................................................................................................. 231 

Figure 6.6 Pseudopod formation of THP-1 GFP Hi20 cells pre-treated with Ro-31-9790. ....... 233 

Figure 6.7 Pseudopod formation by THP-1 cells expressing ΔM-N SSAA L-selectin. ................ 234 

Figure 6.8 Effects of ΔM-N SSAA L-selectin expression on THP-1 monocyte pseudopod 

dynamics. .................................................................................................................................. 236 



12 
 

Figure 6.9 Measuring the cell spreading area of THP-1 monocytes at early and late phases of 

TEM. .......................................................................................................................................... 238 

Figure 6.10 Monitoring Rho GTPase activity in THP-1 cells expressing GFP, WT L-selectin-GFP or 

ΔM-N L-selectin-GFP. ................................................................................................................ 240 

Figure 6.11 Expression of Rho GTPase biosensors and L-selectin-RFP in THP-1 monocytes. ... 243 

Figure 6.12 Transmigration defect in THP-1 cells expressing RhoGTPase biosensors. ............. 244 

Figure 6.13 L-selectin-dependent signalling to Rho GTPases in THP-1 cells. ............................ 248 

Figure 6.14 CCR2 expression on THP-1 cells. ............................................................................ 249 

Figure 6.15 Chemotaxis of THP-1 cells towards MCP-1. ........................................................... 251 

Figure 6.16 THP-1 monocytes do not migrate towards CXCL-1. ............................................... 252 

Figure 6.17 Model of L-selectin dependent migration. ............................................................ 256 

Figure 7.1 Interaction between L-selectin and calmodulin during THP-1 cell transmigration. 261 

Figure 7.2 Relationship between the ligand type and L-selectin clustering and shedding. ..... 264 

Figure 7.3 Schematic model representing the possible role of L-selectin clustering and shedding 

in TEM and chemotaxis. ............................................................................................................ 268 

Figure 7.4 Clustering of L-selectin prompts interaction between CaM and ERM in cis............ 270 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



13 
 

LIST OF TABLES 

Table 1.1 Role of the Rho GTPases in leukocyte migration. ....................................................... 44 

Table 1.2 L-selectin ligands. ........................................................................................................ 65 

Table 1.3 Inside-out signalling evoked by L-selectin ectodomain ligation. ................................ 82 

Table 2.1 Reagents used during this research project. ............................................................... 94 

Table 2.2 List of primary antibodies used in this thesis. ............................................................. 95 

Table 2.3 List of secondary antibodies used in this thesis. ......................................................... 96 

Table 2.4 Sequences of the mutagenesis primers. ..................................................................... 99 

Table 2.5 Lentivirus titres. ......................................................................................................... 106 

Table 4.1 THP-1 cell lines expressing serine-to-alanine mutant forms of L-selectin-GFP. ....... 157 

Table 6.1 Polyclonal THP-1 cell lines expressing Rho GTPase Raichu probes. .......................... 242 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



14 
 

ACKNOWLEDGEMENTS 

First of all I would like to thank my supervisor Dr Aleksandar Ivetic for the excellent 

guidance he has provided throughout the course of my PhD project. On many occasions 

it was his passion for science, outstanding knowledge and hands-on assistance in the 

lab that have helped me to overcome the hurdles I encountered during this project. 

Secondly, I am grateful to my second supervisor Dr Maddy Parsons, who has helped so 

much with the FRET experiments and has always had a good piece of handy advice.   

I would also like to thank all the friends that I have made during my PhD, for making my 

day-to-day life at the JBC so enjoyable. I would especially like to thank Lauren Jade 

Porter, who has been my lab-mate and flat-mate and whom I shared a lot of ups and 

downs with, both work- and life-related. I also give my special thanks to Rajesh Mistry 

who has always laughed with me at things no one else finds funny. Moreover, I would 

like to thank Thomas Murray, Iain Sawyer, Dan Martin, Gosia Furmanik, Russell 

Simpson, Hannah Tomlins, Dipen Rajgor, Angela Rey-Gallardo, Daniel J Brayson and 

Anne Jacob for all the great times we shared in and out of the lab. 

I must express that I owe my deepest gratitude to my amazing family that has always 

helped me to pursue my dreams. I am so lucky to have their unconditional love and 

support. 

Lastly, I would like to thank my boyfriend Matt Hancock, who has made the toughest 

times so much easier.  

It would have been so much more difficult without all of you. 

Thank you all so very much! 

 

 

 

 

 

 

 

 



15 
 

DECLARATION OF INDEPENDENT WORK 

I, the author of this thesis, declare that the work presented in this thesis was conducted 

by myself, except where indicated in the text.  

 

 

 

………………………... 

Karolina Rzeniewicz 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



16 
 

ABBREVIATIONS 

2D    Two-dimensional 

3D    Three-dimensional 

A    Alanine 

ACLB   Albumin-coated latex beads 

ADAM   A disintegrin and metalloprotease 

AJs   Adherens junctions 

apoE   Apolipoprotein E 

ARDS   Adult respiratory distress syndrome 

ATCC   American tissue culture collection 

ATP   Adenosine triphosphate 

BAEC   Bovine aortic endothelial cells 

BCR   B cell receptor 

BKMGEC  Bovine kidney microvascular glomerular endothelial cells 

BM    Basement membrane 

BMEC   Brain microvascular endothelial cells 

BSA   Bovine serum albumin 

Btk    Burton’s tyrosine kinase 

C-Abl   Abelson murine leukemia viral oncogene homolog-1 

CalDAG-GEF 1 Calcium and diacylglycerol-regulated GEF I 

CaM   Calmodulin 

CAM   Cell adhesion molecule 

CCD   Charge-coupled device 

CCL2   C-C motif chemokine 2 

CCL7   C-C motif chemokine 7 

CCR2   C-C motif chemokine receptor 2 

CCR7   C-C motif chemokine receptor 7 

CD”X”   Cluster of differentiation, where “X” denotes a number 

CD44v   CD44 variant 

Cdc42   Cell division cycle 42 

cDNA   Complementary DNA 

CEA   Carcinoembryonic antigen 

CFP   Cyan fluorescent protein 

CID   Chemically induced dimerization 

CIP   Calf intestinal alkaline phosphatase 

CLS   C-terminal portion of human L-selectin 

CNV   Copy number variations 



17 
 

COX   Cyclooxygenase 

CS    Chondroitin sulfate 

CSPG   Chondroitin sulfate proteoglycan 

C-terminal  Carboxy-terminal 

CVD   Cardiovascular disease 

CX3CR1  C-X3-C motif chemokine receptor 1 

CXCR4  C-X-C motif chemokine receptor type 4 

D    Aspartate 

DCs   Dendritic cells 

ddH20   Double-distilled H2O 

DMSO   Dimethyl-sulphoxide 

DNA   Deoxyribonucleic acid 

DRM   Detergent resistant membrane 

DS    Dermatan sulfate 

DSPG   Dermatan sulgate proteoglycan 

DTT   1,4-dithiolthreitol 

EAPs   Endothelial adhesion platforms 

EC    Endothelial cell 

ECM   Extracellular matrix 

EDTA   Ethylene Diamine-tetraacetic acid 

EEA1   Early endosome antigen 1 

EF-1α   Elongation factor 1α 

EGF   Epidermal growth factor 

eGFP   Enhanced green fluorescent protein 

ELAM-1  Endothelial leukocyte adhesion molecule-1 

ELC   EBV –induced molecule 1 ligand chemokine 

Elf4   Ets-related transcription factor 4 

ERK   Extracellular signal-regulated kinase 

ERM   Ezrin/radixin/moesin 

ESAM   Endothelial cell selective adhesion molecule  

ESL-1   E-selectin ligand 1 

Ets1   E26 Transformation-specific Sequence 1 

F    Phenylalanine 

FA    Focal adhesion 

FACS   Fluorescence activated cell sorting 

F-actin   Filamentous actin 

FCS   Foetal calf serum 

FERM   Band 4.1/ezrin/radixin/moesin 



18 
 

FITC   Fluorescein isothiocyanate 

FLIM   Fluorescence lifetime imaging microscopy 

fMLP   Formyl-methionine-leucine-phenylalanine 

FOXM-1  Forkhead Box M1 

FOXO-1  Forkhead box O1 

FPR   N-formyl peptide receptor 

FRET   Fluorescence resonance energy transfer 

G    Glycine 

Gag   Gene encoding group specific antigen 

GAG   Glycosaminoglycan 

G-CSF   Granulocyte colony stimulating factor 

GDI   GDP dissociation inhibitor 

GDP   Guanosine diphosphate 

GEF   Guanine nucleotide exchange factor 

GFP   Green fluorescent protein 

GlyCAM-1  Glycosylation-dependent cell adhesion molecule-1 

GPCR   G protein-coupled receptor 

Grb2   Growth factor receptor-bound protein 2 

GST   Glutathione S-transferase 

GTP   Guanosine triphosphate 

HBSS   Hank’s buffered saline solution 

HEK 293T  Human embryonic kidney-293 cell line 

HEPES  4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

HEV   High endothelial venule 

HIV   Human immunodeficiency virus 

HMGB-1  High mobility group 1 

HRP   Horseradish peroxidase 

HS    Heparan sulfate 

HSPG   Heparan sulfate proteoglycan 

HUVEC  Human umbilical cord endothelial cells 

ICAM-1  Inter-cellular adhesion molecule 1 

Ig    Immunoglobulin 

IgA    Immunoglobulin with A class heavy chains 

IgE    Immunoglobulin with E class heavy chains 

IgG    Immunoglobulin with G class heavy chains 

IL    Interleukin 

IP    Immuno-precipitation 

IPTG   Isopropyl β-D-1-thiogalactopyranoside 



19 
 

Irf1    Interferon regulatory transcription factor 1 

JAM   Junctional adhesion molecule 

JNK   c-Jun N-terminal kinase 

K    Lysine 

KC    Keratinocyte chemoattractant 

Klf2   Kruppel-like factor 2 

L    Leucine 

LAD   Leukocyte adhesion deficiency 

LAM-1   Leukocyte adhesion molecule -1 

LB    Luria Bertani 

LBRC   Lateral border recycling compartment 

Lck    Leukocyte-specific protein tyrosine kinase 

LDL   Low density lipoprotein 

LECAM-1  Lectin adhesion molecule-1 

LER   Low expression regions 

LFA-1   Lymphocyte function-associated antigen 1 

LPS   Lipopolysaccharide 

M    Methionine 

mAb   Monoclonal antibody 

MAC-1   Macrophage-1 antigen 

MadCAM-1  Mucosal addressin cell adhesion molecule 1 

MAPK   Mitogen activated protein kinase 

mCherryFP  Monomeric cherry fluorescent protein 

MCP-1   Monocyte chemoattractant protein 1 

M-CSF-1  Macrophage colony stimulating factor-1 

MES   2-morpholinoethanesulfonic acid, monohydrate 

MFI   Mean fluorescence intensity 

MI    Myocardial infarction 

MIG   Monokine induced by gamma interferon 

MLN   Mesenteric lymph node 

Moesin   Membrane-organising extension spike protein 

MOI   Multiplicity of infection 

mRNA   Messenger RNA 

MS    Multiple sclerosis 

mTOR   Mammalian target of Rapamycin 

MW   Molecular weight 

Mzf1   Myeloid zinc finger 1 

N    Asparagine 



20 
 

Naf-1   Nef-associated factor 1 

NEB   New England Biolabs 

NK    Natural killer 

NP-40   Nonidet P-40 substitute 

NSAID   Non-steroid anti-inflammatory drugs 

N-terminal  Amino-terminal 

O2
-    Superoxide anion 

oxLDL   Oxidised LDL 

P    Proline 

PAF   Platelet activating factor 

PAGE   Polyacrylamide gel electrophoresis 

PAK-PBD  p21-binding domain of PAK 

PBL   Peripheral blood lymphocyte 

PBMC   Peripheral blood mononuclear cell 

PBS   Phosphate buffer saline 

PC    Phosphatidylcholine 

PCR   Polymerase chain reaction 

PECAM-1  Platelet endothelial cell adhesion molecule 1 

PFA   Paraformaldehyde 

PG    Proteoglycan 

PGE   Prostaglandin 

Phospho-  Phosphorylated 

PI3K   Phosphoinositide 3-kinase 

PKC   Protein kinase C 

PLB   Protein loading buffer 

PLC   Phospholipase C 

PLL   Poly-L-lysine 

PLN   Peripheral lymph node 

PMA   Phorbol-12’-myristate-13’-acetate 

PMN   Polymorphonuclear cells 

PMSF   Phenyl-methyl-sulfonyl-fluoride 

PNAd   Peripheral lymph node addressins 

Pol    Viral polymerase 

PPME   Polyphosphomonoester core polysaccharide 

PS    Phosphatidylserine 

PSGL-1  P-selectin glycoprotein ligand-1 

PVDF   Polyvinylidene fluoride 

R    Arginine 



21 
 

Rac   Ras-related C3 botulinum toxin substrate 

Rev   Regulator of expression of virion proteins 

RFP   Red fluorescent protein 

Rho   Ras homolog 

Rhotekin-C21  Rho-binding domain of Rhotekin 

RNA   Ribonucleic acid 

ROCK   Rho-associated coiled coil-containing protein kinase 

RPE   Red phycoeyrthrin 

rpm   Revolutions per minute 

RPMI-1640  Roswell Park Memorial Institute-1640 

S    Serine 

S.E.M.   Standard error of the mean 

SCR   Sequence consensus repeat 

SDF-1   Stromal cell-derived factor 1 

SDS   Sodium dodecyl sulphate 

SDS-PAGE  Sodium dodecyl sulphate-Polyacrylamide gel electrophoresis 

SEM   Scanning electron microscopy 

SFK   Src family kinases 

SGPG   Sulfoglucuronosyl paragloboside 

SLC   Secondary lymphoid tissue chemokine 

SLE   Systemic Lupus Erythematosus 

sLex   Sialyl Lewis X 

sL-selectin  Soluble L-selectin 

SNP   Small nucleotide polymorphism 

SOS   Son of sevenless 

Sp1   Specificity protein 1 

Src    Sarcoma 

STE   Sodium Chloride-Tris-EDTA 

Syk   Spleen tyrosine kinase 

TACE   TNF-α converting enzyme (also known as ADAM17) 

TAE   Tris-acetate-EDTA 

TBS   Tris-buffered saline 

TCR   T cell receptor 

TEM   Transendothelial migration 

TF    Transcription factor 

TJs    Tight junctions 

TMD   Transmembrane domain 

TNF-α   Tumour necrosis factor α 



22 
 

TRITC   Tetra-methyl-rhodamine-5-(and-6)-isothiocyanate 

U.K.   United Kingdom 

U.S.A.   United States of America 

UUO   Unilateral ureteral obstruction 

VCAM-1  Vascular cell adhesion molecule 1 

VLA-4   Very late antigen 4 

VSV-G   The vesicular stomatitis virus G protein 

VVO   Vesiculo-vacuolar organelle 

WASP-CRIB-C Cdc42/Rac interacting domain of (cassette) of the Wiskott-

Aldrich syndrome protein 

WT    Wild type 

Y    Tyrosine 

YFP   Yellow fluorescent protein 

ZAP-70  Zeta-chain-associated protein kinase 70 

α    Alpha 

β    Beta 

Δ    Delta 

θ    Theta 

    Iota 

 

 

 

 

 

 

 

 

 

 

 



23 
 

CHAPTER 1. INTRODUCTION 

1.1 INFLAMMATION 

Inflammation is believed to have evolved as an adaptive response of the immune system 

to homeostatic imbalance. The most common causes of such imbalances are infections 

and tissue injuries. A pathogen or injury triggers an acute inflammatory response, which 

is a controlled physiological reaction of a healthy organism that serves to protect the 

host. However, inflammation underlies not only physiological, but also a variety of 

pathological processes. The majority of cases where inflammation is detrimental to the 

host are the chronic inflammation states that ensue when the acute phase is not 

resolved.  

Inflammation was first described in the 1st century A.D. by a Roman medical writer 

Celsius, who identified its four cardinal signs: redness, swelling, fever and pain. Two 

hundred years later another accomplished medical researcher of antiquity, Galen of 

Pergamon, added the fifth sign to the list – loss of function. In other words, any 

organ/tissue afflicted with inflammation loses it’s ability to function normally. 

Inflammation of a certain organ/tissue is denoted by the addition of the suffix “-itis” (from 

ancient Greek, initially meaning “pertaining to”, now has come to mean “inflammation 

of”), e.g. inflammation of peritoneum is known as peritonitis, inflammation of the tonsils 

is called tonsillitis, etc. There are two components of an inflammatory response: the 

vascular arm and the cellular arm. The vascular arm is the vascular tissue that reacts 

immediately to the harmful stimuli by vasodilation (widening of the blood vessels) and an 

increase in the vascular permeability. The vascular arm is especially important for acute 

inflammation. The cellular arm is composed of the cells of the immune system – 

leukocytes. There are several subsets of leukocytes: lymphocytes (T cells, B cells, NK 

cells), monocytes, dendritic cells, mast cells and “granulocytes” – neutrophils, basophils 

and eosinophils, (also collectively known as polymorphonuclear leukocytes, PMN). 

Majority of leukocytes originate in the bone marrow, however yolk sac-derived 

macrophages have been recently identified [1], suggesting a greater complexity of 

leukocyte origin than previously anticipated. Leukocytes guard the peripheral tissues 

through circulation in the blood and the lymphatic system. All leukocytes contribute to a 

successful outcome of an inflammatory response through integration of innate and 

adaptive immune responses. In broad terms, innate responses (killing and engulfing of 

the pathogens) are mediated by granulocytes and monocytes, whereas the adaptive 

responses (production of antigen-specific antibodies) depend on lymphocytes.  
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1.1.1 Acute inflammation 

Acute inflammation is initiated by the vascular arm, which also involve the contribution 

of tissue-resident macrophages and mast cells of the cellular arm that respond directly 

to the pathogen/injury. Various inflammatory mediators are responsible for different 

aspects of a successful inflammatory response. Platelet activating factor (PAF), 

prostaglandins (PGEs) as well as vasoactive amines and peptides cause vasodilation 

and increased endothelial permeability of the capillaries. Additionally, PAF and various 

cytokines mediate leukocyte recruitment to the sites of inflammation. As a result 

leukocytes, predominantly neutrophils, extravasate from the blood vessels and in to the 

affected tissues. Hence, vasodilation and leukocyte emigration in to the tissues are 

responsible for heat (because the blood core temperature is brought more readily to the 

skin surface), redness and swelling. Pain is mainly a result of the activity of bradykinin 

and prostaglandin 2 (PGE2), and the latter is also pyrogenic (causes fever) [2, 3]. 

A successful acute inflammatory response results in the elimination of the infectious 

agent and is followed by a tissue healing phase. If the immune system fails to eliminate 

the pathogen, inflammation persists and develops into a “chronic inflammation” (section 

1.1.2). 

1.1.2 Chronic inflammation 

A hallmark of acute-to-chronic inflammation transition is a decrease in infiltrating 

neutrophils and a profound increase in the influx of mononuclear cells (monocytes and 

lymphocytes). Trafficking of monocytes in both acute and chronic inflammation is 

discussed in more detail in section 1.6 of this thesis.   

Apart from persistent pathogens, chronic inflammation can result from other causes of 

tissue damage like undegradable foreign objects, e.g. silica [4] or asbestos [5] particles, 

or autoimmune responses (due to persistence of self-antigens), e.g. multiple sclerosis 

(MS) or systemic lupus erythematosus (SLE). Perhaps the most notorious example of 

chronic inflammation is atherosclerosis, the main driver of cardiovascular disease (CVD). 

CVD includes myocardial infarction, heart failure and stroke, and is a leading cause of 

death worldwide. Monocyte-driven mechanisms underlying atherosclerosis are 

described in more detail in section 1.6.2. The involvement of L-selectin in 

atherosclerosis is discussed in section 1.13.1. 

1.2 THE LEUKOCYTE ADHESION CASCADE 

Migration of leukocytes out of the blood vessels and into the inflamed tissues depends 

on a highly co-ordinated, multistep process termed the “Multi-step leukocyte adhesion 

cascade”. The leukocyte adhesion cascade is also utilised by naïve lymphocytes during 
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their recirculation (homing) to the peripheral lymph nodes (PLNs). This is a dynamic 

process that requires the synchronised activity of various cell adhesion molecules 

(CAMs) on both the leukocyte and the endothelium. In general, leukocyte recruitment is 

initiated by tethering and rolling of leukocytes on inflamed endothelium due to the 

interaction between the selectin family of glycoproteins and their ligands [6] (figure 1.1). 

Next, activation and arrest of leukocytes takes place as a result of chemokine-induced 

integrin activity, which leads to arrest of leukocytes on the endothelium. This step is 

followed by intravascular crawling and transmigration of leukocytes through the 

endothelium, via the paracellular or transcellular route [6]. The stages of the cascade 

and the CAMs involved are discussed more thoroughly in the following sections. 

 

 

Figure 1.1 The leukocyte adhesion cascade. Homing of naïve lymphocytes to LN or recruitment 

of leukocytes to sites of inflammation is a strictly defined and dynamic process, which requires 

the co-ordinated activity of both leukocyte and endothelial cell adhesion molecules. Initially, 

capture of leukocytes (tethering) from free blood flow occurs through interaction between the 

selectins and their ligands, e.g. PSGL-1. Subsequent tethering, rolling and slow rolling is also 

selectin-mediated, however, LFA-1, VLA-4 and α4β7 integrins and their counter-receptors 

contribute to these steps as well. Chemokine-mediated inside-out activation of integrins and 

resultant outside-in integrin signalling leads to leukocyte arrest and firm adhesion onto ECs. Next, 

integrin-mediated adhesion strengthening and leukocyte spreading as well as MAC-1/ICAM-1-

dependent intravascular crawling act collectively as prerequisites to promote transendothelial 

migration (TEM). TEM can occur through a paracellular or a transcellular route. Both transcellular 

and paracellular routes are dependent on PECAM-1, CD99 and JAMs. Additionally, paracellular 

route utilises ESAM and transcellular route employs ICAM-1. For abbreviations used see 

Abbreviations section. Image modified from Ley et al., Nat Rev Immunol, 2007 [6].  
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1.2.1. Leukocyte tethering  

In the absence of inflammation, leukocytes in flowing blood pass over the endothelium. 

The wall shear stress, which is a parallel force applied to the endothelium by the shear 

force of the flowing blood, ensures that no inappropriate contacts between the leukocytes 

and the endothelium can be made. However, vasodilation of blood vessels at sites of 

inflammation (section 1.1.1) slows the blood flow, thereby reducing the shear stress. 

Additionally, the red blood cells that are more flexible and flow faster than the leukocytes, 

displace the leukocytes towards the walls of the venules [7, 8]. Collectively, this allows 

the leukocytes to form contacts with the endothelium. The initial contact between the 

flowing leukocytes and the endothelium is established through the formation of transient 

“tethers”. Tethering (also known as leukocyte capture) is facilitated by the microvilli – thin 

actin-rich projections that protrude from the leukocyte body. A tether is formed when 

parts of microvillar plasma membrane are taken apart from the underlying cytoskeleton 

and are stretched into a less rigid structure [9]. Tethers act like “elastic bands” that help 

to decrease the pulling force of the blood flow imposed on the bonds forming between 

the leukocyte and endothelium [9, 10]. Tethering of leukocytes is mediated by the 

selectins (section 1.7) and their ligands, most important being P-selectin glycoprotein 

ligand 1 (PSGL-1) (figure 1.2). Whilst all members of the selectin family recruit 

leukocytes at sites of inflammation, L-selectin is almost single-handedly responsible for 

the recirculation of naïve lymphocytes to the PLNs [11-13]. Leukocyte α4 integrins, 

namely α4β1 (very late antigen 4, VLA-4) [14] and α4β7 [15], have also been reported to 

mediate tethering (figure 1.2). Leukocyte CAMs involved in the formation of tethers are 

localised to the tips of leukocyte microvilli [15-18]. Microvillar localisation of these CAMs 

provides a spatial advantage over the cell body localisation, and is ideal for the initiation 

of contacts with the endothelium. 

The significance of L-selectin-mediated tethering for leukocyte recruitment in vivo has 

been demonstrated by Stein et al. (1999) [19] and Eriksson et al. (2001) [20]. These 

studies showed that vessel diameter plays a key role in this particular phase of the 

adhesion cascade. Specifically, tethering is important for recruitment of leukocytes in the 

vessels that are larger than 20 μm in diameter, [19]. In contrast, the recruitment of 

leukocytes in venules with diameters less than 20 μM commences by initiation of rolling, 

and tethering is not required [19]. It was postulated that his is because in such narrow 

venules (<20 µm), the leukocytes are already in close contact with the vessel walls, and 

the initial capture is not needed [19]. Additionally, in vessels that have a diameter of more 

than 45 µm, L-selectin plays a prominent role in the initiation of secondary tethers, in the 

process known as “secondary leukocyte capture” (section 1.2.3) [20]. 
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Figure 1.2 Cell adhesion molecules mediating tethering and rolling. The leukocyte adhesion 

cascade is a multistep process that involves synchronised interactions of CAMs on both the 

leukocyte and the endothelium. This schematic depicts CAMs involved in the first two stages of 

the cascade: leukocyte tethering and leukocyte rolling. Full names of the CAMs can be found in 

the Abbreviations section.   

 

1.2.2 Leukocyte rolling 

After the initial tethering is established, if there is sufficient ligand presented on the 

surface of the endothelium, then leukocytes will begin to “roll”. Rolling of lymphocytes on 

non-inflamed high endothelial venules (HEV) in PLN occurs constitutively [11, 21, 22]. 

However, rolling of leukocytes on other vascular beds is only triggered when the 

endothelium becomes inflamed. Rolling of leukocytes from P-, E- and L-selectin null mice 

[11, 23-25] or upon antibody-mediated blocking of selectins [26-31] is dramatically 

reduced. Thus, the selectins are the primary mediators of the leukocyte rolling. 

Additionally, leukocyte integrins VLA-4, lymphocyte function-associated antigen 1 (LFA-

1), macrophage adhesion ligand-1 (Mac-1) and α4β7 integrin have been found to support 
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this process [14, 15, 32-35] (figure 1.2). Integrins that mediate rolling are thought to be 

in their “intermediate” state of activation (intermediate-affinity), which unlike the “high” 

activation state (high-affinity) does not promote adhesion [36, 37].  

Rolling is a continuous movement of the leukocytes along the endothelial cells (ECs) that 

lasts from seconds to minutes, depending on the vascular bed [38-40]. This movement 

depends on the formation and breakage of bonds formed between CAMs and their 

respective ligands on both leukocytes and the endothelial cells. The forces exerted on 

the leukocyte by the flowing blood, collectively known as the hydrodynamic drag, and 

the bonds formed between the selectins and their ligands counter-balance each other 

and result in leukocyte rolling [10, 41-43]. The hydrodynamic drag increases with the 

increasing wall shear stress [41]. In fact, selectin-mediated rolling requires a minimum 

shear stress for the formation of the so-called “catch-slip” bonds, and the cells do not 

adhere below the critical shear stress of 0.1 dynes/cm2 [44-48]. The bonds formed by 

the selectins are called “catch-slip” bonds due to their biphasic responses to the applied 

force [49]. The strength of those bonds increases with the increasing force (catch), but 

then deceases when further force is applied (slip) [49, 50]. During rolling, shear stress 

acting on the rear of the cell is stronger than that acting at its front. Hence, the catch-slip 

bond phenomenon allows formation of new bonds at the front edge and dissociation of 

the preexisting bonds at the rear edge, promoting the cell to roll in the general direction 

of blood flow [48]. 

The three selectins have both overlapping and distinctive functions and each of the 

selectins mediates rolling at an individual velocity [24, 51, 52]. It has been suggested 

that L-selectin is most efficient in capturing leukocytes from flow [53, 54], and mediates 

the fastest type of rolling [52, 55]. P-selectin can both initiate [56] and maintain [27] 

rolling, whereas E-selectin mediates stable rolling that has the lowest velocity [51]. As 

rolling progresses, the strength of the catch bonds increase and the selectins and 

integrins mediate rolling at progressively lower velocities [24, 57]. This “slow rolling” 

enables the leukocytes to sample for chemokines presented by the inflamed endothelium 

[51, 58, 59]. Eventually, the transition from leukocyte rolling to arrest takes place as a 

result of leukocyte activation (section 1.2.4). Therefore, the role of leukocyte rolling 

appears to be to slow the leukocytes down and prolong their passage through the 

venules. This allows the leukocytes to survey the endothelium for chemoattractants and 

gives them time to become activated and employ the integrin-based adhesion 

machinery.    

1.2.3 Secondary leukocyte capture 

Leukocyte tethering and rolling can be augmented by a phenomenon known as 

“secondary capture”. Secondary capture takes place when free flowing leukocytes tether 
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to and roll on the adherent leukocytes and it has been observed both in vitro and in vivo 

[20, 54, 60, 61]. Additionally, adherent leukocyte fragments have been proposed to 

participate in the capture of circulating leukocytes [62]. Secondary leukocyte capture is 

mediated by L-selectin on free-flowing leukocytes [60], and freely available PSGL-1, 

belonging to the leukocytes already interacting with the endothelium [62]. Depending on 

the vessel size and flow rate, the homotypic leukocyte-leukocyte interactions can 

account for 25-70% of the total leukocyte accumulation [20, 54]. This demonstrates the 

importance of the secondary capture for amplification of the leukocyte accumulation at 

sites of inflammation. Leukocytes engage secondary capture mechanisms more as 

vessel size increases, raising the possibility that secondary capture may play a role 

during inflammation of large blood vessels, and in diseases such as atherosclerosis [20].  

It has been reported that secondary capture of leukocytes can be seen as formation of 

characteristic “strings” or grape-shaped “clusters” (both hereafter referred to as strings) 

[20, 53, 54, 63, 64]. The formation of the strings occurs when a newly captured leukocyte 

binds upstream of the already adherent one. However, it has been reported that strings 

can form in the absence of L-selectin – the primary secondary capture mediator [65].  

Additionally, it has also been shown that formation of the strings can occur without the 

initial leukocyte-leukocyte interactions in a process called “hydrodynamic recruitment” 

[66]. Hydrodynamic recruitment theory postulates that the perturbations in the fluid 

surrounding an adherent leukocyte may play a critical role in bringing the apposing 

leukocytes within binding distance [66].  It has been suggested that formation of these 

strings could be a result of a synergistic action of L-selectin-mediated secondary capture 

and random leukocyte collisions resulting from the hydrodynamic recruitment [64].   

1.2.4 Transition from leukocyte rolling to arrest 

The transition from leukocyte rolling to firm adhesion (arrest) is a key element of the 

inflammatory response. During decelerated rolling, when leukocytes are able to survey 

the endothelium for the inflammatory cues [59, 67], the cells need to “decide” whether to 

arrest or to detach and leave the site. This “decision-making” process involves at least 

two main mechanisms: the chemokine-mediated “inside-out” integrin activation and the 

“outside-in” signalling evoked by CAMs binding to their respective ligands during rolling. 

If signalling triggered by the chemokines and CAMs reach a certain threshold, then the 

rolling leukocyte becomes “activated”. Activated leukocytes arrest on the ECs.  

Chemokines are important for both homing of naïve lymphocytes to PLNs and for the 

recruitment of leukocytes to the sites of inflammation. However, specific expression and 

regulation of each chemokine, as well as chemokine receptor expression patterns on the 

leukocytes, create a functional diversity that allows the chemokines to direct different 

leukocyte subsets to different vascular beds. Chemokines bind to seven-pass 
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transmembrane G-protein coupled receptors (GPCRs) on leukocytes, which triggers 

complex signalling pathways inside the cell that eventually lead to integrin activation [59, 

68-74]. This is known as ‘inside-out’ signalling because signals generated intracellularly 

are transmitted out to the extracellular domain of the integrin. Integrin activation occurs 

through their transition from a bent low-affinity form to a high-affinity (extended) form [68, 

75-77]. High-affinity integrins mediate firm leukocyte adhesion through binding to their 

endothelial ligands, such as ICAM-1 and VCAM-1 (section 1.2.5) [75, 78-80]. 

Additionally, chemokines promote lateral mobility of the integrins, which results in 

formation of integrin clusters that enhance the integrin/ligand encounter frequency [80]. 

Irrespective of their ability to activate the integrins, chemokines have also been shown 

to cause microvillar collapse [81]. Loss of microvilli is beneficial during the transition from 

rolling to arrest as it enlarges the region of contact between the leukocyte and the ECs. 

Apart from the chemokines, transition from leukocyte rolling to arrest is also mediated by 

CAMs. Binding to E-selectin [82] or P-selectin [83], or engagement of L-selectin [84-89], 

is known to cause upregulation and activation of leukocyte integrins, and thus promote 

leukocyte adhesion. Additionally, extensive studies of L-selectin-mediated signalling 

have shown that its ligation triggers leukocyte activation resulting in variety of cellular 

responses, including upregulation of chemokine receptors (section 1.11.3) [85, 86, 90]. 

Furthermore, it has been shown that L-selectin cross-linking enhances cytokine- or 

chemokine-induced adhesion through β2 integrins [85, 91], and Spertini et al. (1991) 

showed that activation of lymphocytes with physiological stimuli enhanced L-selectin-

dependent binding to HEV [92]. This suggests that an overlap and/or synergy between 

chemokine-mediated inside-out signalling and CAMs mediated outside-in signalling is 

likely to exist for successful transition from leukocyte rolling to arrest to occur (figure 

1.3). More than one “input” needed to activate and arrest the rolling leukocyte might be 

necessary to provide a few “safety levels” of activation. This would be particularly true 

for neutrophils, the first mediators of an acute inflammatory response, whose 

inappropriate activation in the bloodstream could be detrimental to the host.  
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Figure 1.3 Transition from leukocyte rolling to arrest. To convert reversible rolling interactions 

into stable adhesion, the leukocyte must first become activated. Two main mechanisms contribute 

to leukocyte activation are depicted in this figure. The first one involves inside-out activation of 

the integrins in response to GPCR/chemokine binding. The second mechanism is initiated by 

ligation of selectins and their ligands. This leads to a variety of cellular responses, including 

upregulation, activation and adhesion through integrins as well as expression of chemokine 

receptors (not shown in the figure).   Image adapted from Totani and Evangelista, Arterioscler 

Thromb Vasc Biol, 2010 [93]. 

 

1.2.5 Leukocyte arrest 

Progressively slower leukocyte rolling and leukocyte activation described in the sections 

above result in the firm adhesion of the leukocyte on the endothelium (arrest). Leukocyte 

arrest is a result of a solid attachment through integrins and their ligands (figure 1.4). 

The integrins, therefore, are involved in mediating tethering, rolling (figure 1.2) and firm 

adhesion. This is a result of their ability to exist in multiple affinity states. As mentioned 

before, rolling interactions are mediated by the integrins activated to their intermediate-

affinity states [36]. During leukocyte activation, integrins acquire high-affinity 

conformations and thus can mediate firm adhesion [77, 94]. Activation of the integrins to 

certain affinity states is differently regulated in various leukocyte subsets by cytoplasmic 

proteins talin and kindlins1-3 [95-99]. Mutations in the kindlin-3 gene result in leukocyte 

adhesion deficiency III (LADIII) [96, 100, 101] (section 1.2.9). Integrin deactivation has 

been recently shown to occur as a result of binding of a cytosolic protein SHARPIN [102]. 

Interestingly, activation of integrins was found to be counter-balanced by an anti-

inflammatory cytokine growth differentiation factor (GDF) 15 released by the tissue 

damaged upon MI [103]. GDF15 null mice suffered from increased mortality due to the 
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excessive recruitment of leukocytes to the infarcted area [103]. This suggests that 

regulation of integrin activation plays an important role in the modulation and extent of 

the inflammatory response.  

The most studied β2 integrins are LFA-1 (CD11a/CD18 or αLβ2) and Mac-1 

(CD11b/CD18 or αMβ2). Both LFA-1 and Mac-1 bind to the immunoglobulin (Ig) 

superfamily members ICAMs (inter-cellular adhesion molecules), but whilst LFA-1 binds 

both ICAM-1 [104-106] and ICAM-2 [107], Mac-1 binds ICAM-1 [108]. Additionally, 

binding of Mac-1 to the endothelial receptor for advanced glycation endoproducts 

(RAGE) has also been reported [109]. Apart from β2 integrins, β1 integrin VLA-4 (α4β1) 

mediates adhesion through binding to another Ig superfamily member VCAM-1 [110], 

and α4β7 contributes to leukocyte arrest through its interaction with mucosal addressin 

cell adhesion molecule 1 (MadCAM) [111]. 

 

Figure 1.4 CAMs involved in leukocyte arrest. This diagram shows cell surface receptors on 

both leukocyte and the endothelium that participate in the firm leukocyte adhesion (arrest). The 

leukocyte arrests through its β2 and α4 integrins that bind to their respective ligands on the 

endothelium. Full names of the CAMs can be found in the Abbreviations section.  
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1.2.6 Adhesion stabilisation and leukocyte spreading 

Adhesion stabilisation (strengthening) and leukocyte spreading were designated as 

separate to the adhesion phases of the leukocyte adhesion cascade, as they are driven 

by different mechanisms. Described above, chemokine-mediated inside-out signalling 

leads to integrin activation and firm leukocyte adhesion. Further interaction of the active 

integrins with their ligands generates outside-in signalling that drives adhesion 

stabilisation, strengthening and spreading of the already arrested leukocytes [110, 112, 

113]. Ligand-induced integrin clusters form “signalosomes”, which are clusters of 

signalling molecules that generate intracellular signals [110]. 

Inside-out and outside-in signalling define a dual regulation of the integrins in the 

adhesion of leukocytes. First of all, the integrins are responsible for leukocyte arrest and 

initial adhesion through the chemokine-mediated inside-out signalling. Secondly, they 

are important for adhesion maintenance and leukocyte spreading through the ligand 

engagement and resulting outside-in signalling. 

1.2.7 Pre-requisite steps for the leukocyte transendothelial migration 

1.2.7.1 Intraluminal crawling 

Transendothelial migration (TEM), also known as diapedesis, is the last step in the 

leukocyte adhesion cascade. Upon arrest of the rolling leukocytes, TEM is not initiated 

immediately, but is preceded by the locomotion of leukocytes on the luminal endothelial 

surface. This is known as “intraluminal crawling”, whereby leukocytes crawl on ECs 

seeking optimal transmigration sites [114, 115]. Crawling is dependent on β2 integrins 

and their ligands, and Mac-1/ICAM-1 interaction controls this process in vivo [114, 116], 

and both Mac-1/ICAM-1 and LFA-1/ICAM-2 binding have been shown to mediate 

crawling in vitro [117]. Blockade of β2 integrins results in increased rate of transcellular 

migration [114], reflecting impairment in locomotion to the EC junctions. Efficient 

crawling, TEM and subsequent migration through the ECM is dependent on the correct 

polarisation of leukocytes, which have a leading edge at the front and a single trailing 

end (or uropod) at the rear [118, 119]. Polarisation of leukocytes depends on Rho 

GTPases [118] (section 1.5), and on surface CD44 glycoprotein [120]. Additionally, 

another surface protein, namely inhibitory Ly49Q receptor, has been proposed to 

regulate neutrophil polarization and migration upon inflammation [121].  

1.2.7.2 Endothelial adhesive platforms and docking structures 

The endothelium facilitates leukocyte TEM through formation of specialised clusters 

containing integrin ligands ICAM-1 and VCAM-1. One example of such clusters are the 

endothelial adhesion platforms (EAPs) that contain ICAM-1, VCAM-1, and the 
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tetraspanin members, CD9 and CD151. [122]. EAPs exist in the membranes of the ECs 

as pre-formed pro-adhesive microdomains, thereby promoting leukocyte adhesion and 

TEM [122]. The importance of the tetraspanin-based adhesive platforms for leukocyte 

recruitment is highlighted by a study by Rohlena et al. (2009), who suggest that 

pathologically elevated levels of CD81 tetraspanin facilitate monocyte adhesion and 

promote atherosclerosis in humans [123]. Another form of endothelial pro-transmigratory 

clusters are the “docking structures” or “transmigratory cups” that form only upon 

leukocyte/endothelium engagement, and are actin-rich projections that “embrace” the 

adherent leukocyte [124-126]. These structures are rich in F-actin, actin-binding proteins, 

ICAM-1, VCAM-1, active ezrin/radixin/moesin (ERM) proteins [124, 127], and can be 

observed in vitro and in vivo during both paracellular and transcellular TEM (section 

1.2.8) [125, 128]. The existence and formation of the docking structures is however not 

completely understood, as some reports show the enrichment of ICAM-1 around the 

transmigrating leukocytes without the actin-rich projections [126, 129, 130]. It has been 

suggested that formation of the docking structures in vitro might be seen under certain 

experimental conditions, where levels of integrin activation are high [131].  On the other 

hand, it has been shown that during TEM in vivo the docking structures develop into 

“endothelial domes” that fully encapsulate transmigrating neutrophils preventing 

excessive endothelial permeability [128].   

1.2.8 Leukocyte transendothelial migration  

Leukocytes can cross the endothelium monolayer either through the junctions between 

the adjacent ECs (paracellular route, section 1.2.8.1) or by migrating directly through an 

EC (transcellular route, section 1.2.8.2). Both routes have been documented in vitro and 

in vivo, however the studies yield contradictory results, and transmigration exclusively 

through either the paracellular [132-134] or the transcellular [135-138] route has been 

reported. The contribution of the transcellular route to the total leukocyte transmigration 

ranges from 5-30% in vitro, which is dependent on the type of the ECs used and the 

presence or absence of a chemoattractant [125, 139, 140]. It has been proposed that 

leukocytes choose the route of the least resistance [141], which would differ depending 

on the vascular bed. In majority of cases this would be the “leaky” junctions of the 

permeable endothelium, but for example very tight junctions of brain/blood barrier would 

facilitate transcellular migration at sites of cerebral inflammation [142, 143]. Additionally, 

transcellular migration might be a route of choice when leukocytes are defective in 

locomotion and cannot reach the junctions [114, 144].  Interestingly, it has been shown 

that rendering of the endothelial junctions resistant to permeability through genetic 

replacement of VE-cadherin with the VE-cadherin/α-catenin fusion protein, abolished the 

majority of the neutrophil recruitment to sites of inflammation, but did not affect 
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lymphocyte trafficking to LNs [145]. This suggests that TEM of lymphocytes through HEV 

and leukocytes across the inflamed ECs might be fundamentally different.  

1.2.8.1 The paracellular route 

In the absence of inflammation, endothelial integrity is maintained by various endothelial 

junctional molecules (section 1.3). However, upon inflammatory challenge, this integrity 

is disrupted and the endothelium becomes permeable or “leaky” (section 1.1). 

Leukocytes play an important role in promoting endothelial permeability, and it has been 

shown that leukocyte binding triggers ICAM-1-dependent signalling in the ECs that 

results in phosphorylation of vascular endothelial cell–specific cadherin (VE-cadherin), 

catenin disassociation and junction disruption [146, 147]. A number of endothelial 

junctional and leukocyte CAMs are then engaged to mediate TEM (figure 1.5). 

Endothelial junctional molecules known to actively facilitate TEM include: ICAM-1, ICAM-

2, junction adhesion molecule (JAM)-A, JAM-B, JAM-C, platelet/endothelial cell 

adhesion molecule 1 (PECAM-1, CD31), CD99 and endothelial cell selective adhesion 

molecule (ESAM) [148-152]. These molecules reside at the endothelial junctional 

membrane, however,  PECAM-1 has also been shown to constitutively recycle from the 

membrane network just below the cell border, termed the lateral border recycling 

compartment (LBRC) [153]. During TEM, delivery of PECAM-1 from the LBRC is 

targeted at the sections of the junction at which the diapedesis is occurring [153], which 

is a kinesin-mediated, microtubule-dependent process [154]. The LBRC is believed to 

facilitate TEM by providing a membrane surface area that is rich in the unengaged 

PECAM-1, and that physically displaces zones of VE-cadherin [153, 154]. In addition to 

PECAM-1, JAM-A and CD99, but not VE-cadherin, have also been found in the LBRC 

[139]. During a paracellular TEM event, PECAM-1 and CD99 molecules are engaged in 

homophilic interactions, ICAM-1 and -2 interact with integrins and JAMs either bind 

integrins or are involved in homophilic interactions [148, 155, 156]. The sequence in 

which the endothelial CAMs become engaged during the paracellular TEM event is 

proposed to be as follows: (1) ICAM-2 binds to leukocyte integrins and guide the 

leukocytes in to the junctions (very early penetration step), (2) endothelial JAM-A binds 

ligands on the leukocytes (possibly JAM-A or LFA-1) facilitating further passage, (3) 

endothelial and leukocyte PECAM-1 engage in homophilic interactions mediating 

subsequent leukocyte transit between the ECs [156-159]. Additionally, homophilic 

interaction between endothelial and leukocyte CD99 has been shown to mediate the 

transmigration at a stage distant and subsequent to PECAM-1 [150, 151]. Ligation of 

PECAM-1 during the transmigration leads to expression of the leukocyte α6β1 integrin, 

which facilitate subsequent passage through the basement membrane (BM) [148, 160]. 
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As leukocytes migrate past the endothelial barrier, the homotypic interactions between 

VE-cadherin, JAMs, CD99 and PECAM-1 ensure to re-seal the junction. 

Interestingly, reverse TEM (rTEM) was recently observed during mouse ischemia-

reperfusion injury in vivo, whereby neutrophils were seen crossing the EC junction in an 

abluminal to luminal direction [161]. The process of rTEM is strongly dependent on JAM-

C and is thought to contribute to dissemination of systemic inflammation [161].  

    

 

Figure 1.5 Paracellular and transcellular transendothelial migration. Schematic image of 

leukocytes transmigrating via paracellular or transcelular routes. Leukocyte activated β1- and β2-

integrins bind to their endothelial ligands: ICAMs, VCAM1 or JAMs as well as to the ECM upon 

eventual contact between leukocyte and basement membrane (not shown in the schematic). 

During paracellular migration, engagement of ICAM-1 modifies VE-cadherin function leading to 

catenin disassociation and junction opening. PECAM-1 and CD99 form homophilic interactions 

between extravasating leukocytes and the ECs. PECAM-1, JAM-A and CD99 are recruited to 

sites of transmigration from the LBRC. During transcellular migration endothelial vesicles form 

around the leukocyte creating a transcellular pore and importance of LBRC, VVO and caveolin 1 

has been shown for this process. For the full names of the CAMs see the Abbreviations section. 

Image taken from Nourshargh et al., Nat Rev Mol Cell Biol, 2010 [162].  

. 

1.2.8.2 The transcellular route 

The transcellular route of leukocyte transmigration is still not well understood, however, 

certain mechanisms and main players have been proposed (figure 1.5). Leukocytes are 

believed to commence transcellular migration by using actin-rich protrusions, termed 

“invasive podosomes” to probe the ECs for areas of low resistance [140]. The ECs 

facilitate subsequent transmigration through the accumulation of membrane vesicles 

around the passing leukocyte that form a channel through the EC. A number of vesicle 

types have been shown to surround the transmigrating leukocyte: caveolin 1 containing 

caveolae [129], vesiculo-vacuolar organelle (VVO) [140] and, recently, the LBRC [139]. 
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Apart from the LBRC-derived PECAM-1, CD99 and JAM-A that have the same role in 

mediating leukocyte passage as in the paracellular TEM [139] (section 1.2.8.1), ICAM-

1 has also been shown to actively facilitate transcellular migration [126, 129]. Following 

ligation, ICAM-1 redistributes to the site of transcellular diapedesis and is enriched in the 

vesicles surrounding the leukocyte, where it can interact with its ligands on the passing 

leukocyte [126, 129, 139].      

1.2.9 Human leukocyte adhesion deficiencies 

Three autosomal recessive immunodeficiency disorders have been identified in humans 

that result in defective leukocyte recruitment [163]. These disorders have a collective 

name of leukocyte adhesion deficiencies (LADs) and are hereditary diseases that 

manifest themselves by recurrent infections [163]. Amongst patients with LADs, following 

abnormalities have been described: high blood leukocyte counts, recurrent skin and ear 

infections, severe bleeding, pneumonia, fungal infections and no delayed-type 

hypersensitivity reaction upon skin testing [164-167]. LADs were named LAD-I, LAD-II 

and LAD-III, which represents order in which they were discovered, as well as their 

prevalence [167].  

LAD-I was first reported in 1980 when it was found to be an X-linked disease severely 

affecting neutrophil attachment [165]. It was later identified that LAD-I is a consequence 

of various mutations in the common β2 (CD18) integrin subunit that result in a truncated 

or absent protein [163, 168]. Neutrophils isolated from LAD-I patients roll normally on 

inflamed endothelium suggesting that deficiency exclusively limits the adhesion stage of 

the leukocyte recruitment cascade, and has no influence on initial selectin-mediated 

contacts [169].  

LAD-II was described for the first time in 1992 when neutrophils isolated from two 

patients were found to be unable to interact with E-selectin due to their lack of sialyl 

Lewis X (sLex) moieties [164]. The pathology underlying LAD-II is the loss-of-function 

mutations in SLC35C1 gene, which encodes the Golgi-localised GDP-fucose transporter 

[170, 171]. Thus, LAD-II is sometimes referred to as congenital deficiency of 

glycosylation–IIc (CDG-IIc). GDP-fucose transporter is essential for posttranslational 

fucosylation of glycoproteins. Therefore, its loss affects synthesis of functional selectin 

ligands that are known to require fucosylation for successful selectin binding [172] 

(section 1.7.2). Rolling of neutrophils isolated from LAD-II patients was dramatically 

impaired, further suggesting that selectin/ligand-mediated initial contacts between the 

leukocytes and the endothelium are abolished in this immunodeficiency disorder [169]. 

Most rare of all, LAD-III (also known as LAD-I/variant) was first reported in 1997 [166]. It 

was shown that, whilst normal surface expression of integrins was found on leukocytes 

from LAD-III patients, the integrins were unable to become activated upon cellular 
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activation [166]. This was initially attributed to the loss of CalDAG-GEF1, an upstream 

regulator of small GTPase Rap1 [173, 174]. However, controversies arose, when 

patients with LAD-III were identified that had both normal CalDAG-GEF1 expression and 

Rap1 activation [96, 100]. It has now been discovered that LAD-III is caused by mutations 

in kindlin-3 [96, 100, 101], an adaptor protein that upregulates integrin affinity [95]. 

1.3 THE ENDOTHELIUM 

Endothelial cells play an important role in many vascular functions, e.g. regulation of 

vascular permeability or vascular wall remodelling. However, the nature of the 

endothelium, for example its shape and range of adhesion molecules it expresses, is 

also an important determinant in promoting efficient recruitment of leukocytes to sites of 

inflammation. It is the leukocyte/endothelial interactions that are of special interest for 

this thesis. The vascular endothelium is comprised of a monolayer of ECs, which form a 

barrier between the vessel lumen and the surrounding tissue [175]. Adhesion of adjacent 

ECs is formed by various adhesion molecules that mediate cell-cell junctions of ranging 

affinities [175]. Endothelial junctions are multifaceted arrangements formed by 

transmembrane adhesive molecules attached to a network of cytoplasmic/cytoskeletal 

proteins. There are at least four diverse types of endothelial junctions: tight junctions, 

gap junctions, adherens junctions and discontinuous adherens junctions [176, 177]. 

Endothelial junctions control the passage of various nutrients and macromolecules out 

of the blood flow as well as regulate the extravasation of leukocytes during inflammation 

[175, 177].  

1.3.1 Tight junctions 

Tight junctions (TJs) form a very close contact between neighbouring cells [177]. They 

are the most apical constituent of the junctional complex in vertebrates and are described 

as focal contacts between the plasma membranes of bordering cells in ultrathin section 

electron microscopy [178, 179]. TJs do not form an incessant seal around the cells but 

are made of discontinuities or aqueous pores that are selectively permeable to small 

molecules, such as inorganic ions, with selectivity based on the size and charge [177, 

179]. The main components of TJs as well as permeability regulators are tetraspan 

transmembrane proteins termed claudins, which co-polymerize in individual TJ strands, 

associating between adjacent cells in both a heterotypic and homotypic manner [180-

187]. Other TJ proteins include occludins [188], junctional adhesion molecules (JAMs) 

[189], ESAM [190] and Coxsackievirus and Adenovirus Receptor (CAR) [191]. JAMs are 

the only described TJ proteins active in TEM [148, 192, 193].  



39 
 

1.3.2. Gap junctions 

Gap junctions are essentially transmembrane hydrophilic channels, composed of the 

connexin family of proteins, and they permit direct exchange of ions and small molecules 

between neighbouring cells [194, 195]. Gap junctions allow establishment of homotypic 

(endothehial to endothelial) or heterotypic (e.g. endothelial-smooth muscle cells) 

interactions between cells. In vivo, the occurrence of gap junctions is related to that of 

TJs and, typically, gap junctions and TJs are intercalated [177]. As connexin proteins are 

also found on leukocytes [196-198], it has been proposed that leukocytes and ECs can 

communicate through gap junctions during the inflammatory events (“gap junction 

coupling”) [198]. Leukocyte/endothelium gap junction coupling could serve to prevent 

endothelium leaking during TEM [198].  

1.3.3. Adherens junctions 

Adherens junctions (AJs), also termed zonula adherens, form intercellular connections 

that join cytoskeletal elements, such as intermediate filaments and actin filaments of 

adjacent cells, therefore providing tissue strength [199]. Research on epithelial and ECs 

revealed that adherens junctions use cadherin-catenin complexes in order to connect to 

cortical actin filaments that lie parallel to the cell surface, and they appear linear in 

morphology along the borders between neighbouring cells [148, 176, 200]. In the 

endothelium, the major cadherin is it the vascular endothelial cadherin (VE-cadherin), 

which forms homophilic interactions with VE-cadherin expressed on adjacent EC [201-

203]. VE-cadherin/catenin interaction is disrupted during leukocyte emigration to allow 

endothelial permeability (section 1.2.8.1) [203, 204].  

1.3.4. Discontinuous adherens junctions 

Discontinuous adherens junction is the most recently identified novel type of endothelial 

cell-cell junction [176]. As the name suggests, discontinuous AJs are not linear in sub-

cellular distribution along cell borders, but are localised at the end of stress fibers, at 

points where stress fibers appear to join between adjacent cells to form stellate-like 

arrangements [176]. These have been recently characterised, and their role during the 

inflammatory response was speculated to be the resistance of the mechanical stress 

imposed by the transmigrating leukocytes [176]. 

1.3.5. Focal adhesions 

Focal adhesions (FAs) are specialized points of adhesion produced by different cell types 

grown in culture. FAs are composed of integrins that span the plasma membrane, 

interacting on the outside with constituents of the ECM, and on the inside with the actin 
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cytoskeleton. FAs are made up of many proteins, which have primarily a structural role, 

although some engage in transducing signals [205]. FAs, just like discontinuous AJs, 

anchor stress fibers in ECs, but whereas discontinuous AJs play role in attaching stress 

fibers in confluency – especially after TNF-α stimulation, FA are important for anchoring 

cells to substrate in subconufluency, for example during migration [176]. Note that 

leukocytes do not possess stress fibres, although focal adhesion-like structures have 

been observed [206]. 

1.4 MIGRATION OF LEUKOCYTES BEYOND THE ENDOTHELIUM 

Once the leukocytes cross the endothelium they must overcome the basement 

membrane (BM) and the pericyte sheath, and then migrate through the interstitium 

towards the source of inflammation. BM is an extracellular matrix (ECM)-like material, 

composed of collagens, laminins and heparan sulfate proteoglycans (HSPG) [207]. 

Pericytes are embedded in the BM forming a discontinuous cellular layer within the 

vessel wall [208]. Leukocytes cross the BMs using β1 and β2 integrins that act as 

receptors for BM components [209, 210], e.g. integrin α6β1 is a receptor for BM laminin 

[160, 211, 212]. Additionally, leukocytes utilise proteases to degrade the BMs to aid their 

way through, for example neutrophils use elastase [213-215] and lymphocytes employ 

gelatinases [216]. Furthermore, it is known that BMs contain areas of low resistance, 

termed low expression regions (LER), which contain ≤ 60% protein deposition as 

compared to other BM sites, and are the preferred points of leukocyte emigration [217]. 

It has been shown that whilst neutrophils enlarge the LER size during passage – most 

probably a result of proteolysis - monocytes do not modify LERs, possibly due to their 

higher degree of flexibility that allows them to squeeze through the pre-existing areas 

[218]. Pericytes actively support leukocyte emigration in the process of “abluminal 

crawling”, whereby neutrophils crawl along pericyte processes for relatively long time 

and distance (~30 minutes, ~54 µm), until they reach gaps between adjacent pericytes 

[219]. Abluminal crawling is mediated by interactions between pericyte ICAM-1 and 

neutrophil LFA-1 and Mac-1 [219]. Gaps between pericytes co-localise with LERs, and 

so the leukocytes preferably migrate between the pericytes [220], however, migration 

directly through the pericytes (transcellular route) has also been reported [137].  

Heparan sulfates form a fundamental part of BMs, are deposited within the interstitium, 

are known to bind chemokines, and thus can form stable chemokine gradients that guide 

leukocyte emigration [221, 222]. Migration through the interstitium follows a 

chemoattractant (cytokines, chemokines, hydrogen peroxide) gradient and towards the 

source of the inflammation, and is known as chemotaxis or directed cell migration. 

Chemotaxis requires engagement of chemokine receptors on leukocytes, and 

interestingly, L-selectin ligation has been shown to result in chemokine receptor 
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upregulation and enhanced chemotaxis in vitro (see section 1.11.3). Furthermore, 

establishment of cell polarity (extended leading edge at the cell front and rounded back), 

gradient-sensing and motility are crucial for successful chemotaxis and are mainly 

controlled by small Rho GTPases (for the role of the Rho GTPases in leukocyte migration 

see section 1.5 below). In contrast to migration on two-dimensional (2D) substrates, i.e. 

endothelial monolayers, pericytes or ligand-coated surfaces, leukocyte migration through 

the interstitium or in three-dimensional (3D) composites can occur without integrins [223, 

224]. This opens up the possibility that other cell adhesion molecules (non-integrin 

receptors) may play a role in facilitating leukocyte locomotion in 3D environments. In fact, 

leukocyte chemotaxis in vivo has been shown to be dependent on L-selectin and this is 

discussed in more detail in section 1.7.5.1.2 of this thesis. Leukocytes arrest locally 

when they reach the source of inflammation, which confines their motility to the areas, in 

which their function is needed. It has been reported that the interstitial arrest is an active 

process that depends on specific chemokines and calcium signalling [225, 226]. 

1.5 REGULATION OF LEUKOCYTE MIGRATION BY SMALL RHO GTPASES 

The Rho family of small (~21 kDa) GTPases regulate cytoskeletal dynamics, thereby 

affecting multiple cellular functions including cell shape, polarity and motility [227, 228]. 

The Rho GTPases are GTP hydrolases that act as molecular binary switches that cycle 

between GTP-bound (active) and GDP-bound (inactive) forms [229]. The activity of Rho 

GTPases is modulated by guanine nucleotide exchange factors (GEFs), GTPase 

activating proteins (GAPs) and GDP dissociation inhibitors (GDIs). GEFs catalyse the 

exchange of GDP into GTP, thereby activating the GTPases [230], whereas GAPs 

stimulate intrinsic GTPase activity, which leads to hydrolysis of GTP to GDP and 

inactivation [231]. GDIs maintain the Rho GTPases in a GDP-bound, inactive state [232]. 

The active Rho GTPases interact with a variety of downstream targets to induce cellular 

responses [233]. The most extensively studied family members are RhoA, Rac1, Rac2 

and Cdc42, which have all been shown to control leukocyte migration (see summary in 

table 1.1). Ectopic expression of either dominant negative or dominant constitutively 

active forms of RhoA, Rac1 or Cdc42 have all been found to impair leukocyte polarisation 

and migration [118, 234-239]. This suggests that a tightly regulated, fine balance must 

exist between activation and deactivation of the Rho GTPases for successful leukocyte 

locomotion. 

The significance of RhoA activity for leukocyte migration has been shown by expression 

of dominant constitutively active RhoA or expression of dominant negative RhoA or 

inhibition of RhoA signalling, which affects migration on 2D substrates and across filters, 

crawling on HUVEC, TEM and chemotaxis [118, 234, 236, 240]. RhoA has been shown 

to be responsible for tail retraction in migrating monocytes, neutrophils and lymphocytes 
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[118, 238, 241]. Lack of RhoA activity does not impair gradient sensing but leads to 

formation of multiple competing lamellipodia, whereas expression of its dominant active 

form results in a rounded cell that does not protrude [238, 240, 241]. Hence, it has been 

proposed that RhoA must be actively inhibited at the leading edge to allow lamellipodial 

protrusions but must be active at the rear to confer rounded “backness” [240, 241]. 

However, a recent study by Heasman et al. (2010) has demonstrated that RhoA activity 

is also important at the front of migrating lymphocytes (2D substrates and TEM), where 

it controls both membrane protrusion and retraction, thereby contributing to the formation 

of a leading edge [118]. RhoA exerts its activity through activating RhoA kinase (ROCK) 

[236, 240], and ROCK has been shown to mediate monocyte tail retraction during 

diapedesis through negatively regulating integrin adhesion at the back [241]. 

Additionally, RhoA/ROCK signalling pathway is known to control myosin 

phosphorylation, and myosin-based contractility has previously been implicated in the 

tail retraction of migrating neutrophils [242].     

Ectopic expression of either dominant negative Rac1 or dominant constitutively active 

Rac1 have both been found to impair chemotaxis of mouse macrophage-like cell line 

and both human and mouse neutrophils [234, 238]. This was due to a polarisation defect 

that took the neutrophil migration speed down to basal levels (as seen with no 

chemoattractant present) [234]. In keeping with this, it has been found that Rac1 plays 

an essential role in stimulating actin polymerization at the leading edge, and controls 

pseudopod formation in migrating neutrophils [237]. Interestingly, it has also been 

reported that neutrophils lacking Rac1 activity were still able to develop oriented leading 

edge and sense the chemoattractant gradient, but much like RhoA deficient leukocytes, 

presented with a uropod retraction defect [238]. This was found to be a result of a positive 

role of Rac1 in stimulating uropod-localized Rho activity [238]. Further investigations 

found that migrating neutrophils establish dual communication from front to back with 

Rac1 and/or Rac2 locally inhibiting, and Rac1 globally activating, Rho-mediated 

backness [238]. Rac2 deficiency results in reduced actin polymerisation, impaired cell 

polarisation and overall decrease in chemotaxis in mouse neutrophils and T cells [243, 

244]. Interestingly Rac2 null neutrophils have reduced emigration in to the inflamed 

peritoneum as well as decreased rolling on GlyCAM-1, but not on P-selectin [243]. As 

GlyCAM-1 is a ligand for L-selectin during rolling, this suggests that Rac2 might act 

downstream of L-selectin to facilitate leukocyte emigration. In line with this, activation of 

Rac2 upon L-selectin ligation has been previously reported (section 1.11.4) [245, 246].  

Transmigration of monocytic cell lines across bare filters and HUVEC monolayers is 

impaired when dominant negative or dominant constitutively active Cdc42 constructs are 

expressed [235, 236]. Interestingly, neutrophils expressing dominant negative Cdc42 are 

able to retract their tails and migrate at a speed seen in WT cells [247]. However, the 
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cells do not establish polarity and migrate only short distances in a disorganised, 

vacillating manner [234, 237]. Cdc42 has been shown to control the number, stability 

and directionality of pseudopods but, unlike Rac, is neither necessary nor sufficient for 

actin polymerization [237].  Additionally, Cdc42 was shown to regulate CD11b 

distribution and functioning and it was proposed that in turn CD11b is required for proper 

MLC-based contractility to suppress inappropriate protrusions [247]. Therefore, Cdc42 

is primarily responsible for maintaining proper cell polarity to enable directed cell 

migration.
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Rho 
GTPase 

Leukocyte type Role Citation 

RhoA Monocytes and 
monocytic cell lines, 
lymphocytes and 
lymphocytic cell lines, 
primary human 
neutrophils 

Active mainly at the back but activity at the front has been reported, promotes migration through 
limiting membrane protrusions and retraction of the leukocyte tail (via p160ROCK, during TEM this 
allows to complete diapedesis) 
Constitutively active: promotes TEM (via p160ROCK), impairs chemotaxis 
Constitutively inactive or inhibited:  reduced and slower TEM, responds to chemotactic gradient but 
does not withdraw the tail, accumulation of beta2 integrin in unretracted tails, rounded cell (global 
“backness”)  

[118, 234, 
236, 238, 
240, 241] 

Rac1 Monocytic cell lines, 
neutrophils and 
neutrophil-like cell 
lines  

Controls actin polymerisation at the front, responsible for extension of the protrusions, regulates 
local and global RhoA activity 
Constitutively active: impaired chemotaxis 
Constitutively inactive: able to sense the chemoattractant gradient but decrease in chemotaxis due to 
polarisation defect, fails to retract uropod due to the lack of RhoA stimulation at the back 

[234, 236-
238] 

Rac2 Mouse neutrophils and 
T cells 

Plays a role in actin polymerisation, cell polarisation and chemotaxis 
Deficiency: decreased neutrophil numbers in peritoneal exudate upon peritonitis, reduced tethering 
on GlyCAM-1 under flow, impaired polarisation, loss of directional movement, decreased chemotaxis  

[243, 244] 

Cdc42 Monocytic cell lines, 
neutrophils and 
neutrophil-like cell 
lines 

Controls the stability, number, and directionality of the protrusions, role in regulating CD11b activity 
reported 
Constitutively active: impaired chemotaxis and TEM (across stimulated ECs or towards MCP-1), does 
not stimulate formation of actin-rich filopodia 
Constitutively inactive or inhibited: decreased TEM towards MCP-1, unable to polarise and loss of 
directional migration, hesitant migration for short distances, speed of migration and tail retraction 
unaffected 

[234-237, 
247] 

Table 1.1 Role of the Rho GTPases in leukocyte migration. This table shows summary information about the role of RhoA, Rac1/2 and Cdc42 in the migration of 

leukocytes. The role of each GTPase is accompanied by the information about effects of its inactivation (expression of constitutively inactive construct or GTPase 

inhibition) or over-activation (expression of constitutively active construct). 
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1.6 MIGRATION OF MONOCYTES 

Monocytes are important players in both acute and chronic inflammation as well as in 

immune surveillance. Monocytes originate in bone marrow, where they derive from a 

common myeloid progenitor that they share with granulocytes [248]. Circulating 

monocytes have a half-life of 1 and 3 days in mice and humans, respectively [249, 250], 

comprise from 4% (mice) to 10% (humans) of all circulating leukocytes and can 

differentiate into macrophages or dendritic cells (DCs) once in tissues [251-254]. A large 

reservoir of monocytes have also been discovered in the spleen in mice, and these 

monocytes can be rapidly mobilised upon myocardial infarction (MI) [255].  In broad 

terms, monocyte subsets are known as “classical” (or “inflammatory”) and “non-classical” 

(also known as “patrolling” or “resident”), and the two subsets can be distinguished by 

their cell surface receptors (markers). Classical monocytes in humans express high 

levels of CD14, C-C chemokine receptor 2 (CCR2) and L-selectin (CD62), low levels of 

CX3C chemokine receptor 1 (CX3CR1) and do not express CD16 (CD14HiCD16-

CCR2+CX3CR1LowCD62+); in mice classical monocytes express high levels of 

lymphocyte antigen Ly6C (Ly6C), CCR2 and L-selectin, and low levels of CXC3R1 

(Ly6CHiCCR2+CX3CR1LowCD62+); non-classical monocytes are known as 

CD14DimCD16+CCR2-CX3CR1HiCD62- in humans and Ly6CLowCCR2-CX3CR1HiCD62- in 

mouse [254, 256-259]. Because monocyte subsets are defined by the expression of 

surface markers, it is currently unclear whether they can interconvert [253, 254]. 

However, it is known that classical monocytes specialise in phagocytosis and reactive 

oxygen species (ROS) production, whereas non-classical monocytes are weak 

phagocytes, do not generate ROS and, following activation, produce a different set of 

cytokines to classical monocytes [260]. Both classical and non-classical monocytes 

maintain tissue homeostasis in health (section 1.6.1), but can also drive disease 

(section 1.6.2).  

1.6.1 Migration of monocytes in health 

In a healthy organism, monocytes are important components of an acute inflammatory 

response (section 1.1.1), where their infiltration at sites of inflammation follows that of 

the neutrophils, and can sustain for days. The majority of studies have shown that it is 

the classical monocyte subset that dominates early on during monocyte infiltration, 

however, non-classical monocytes have also been reported to be the first ones to arrive 

at the sites of the tissue insult (see below). Monocyte behaviour, in the context of acute 

inflammation, is best characterised in a model of Listeria monocytogenes infection, and 

elevated numbers of monocytes in tissues of rabbits infected with this pathogen were 

first reported in 1926, hence the current species name “monocytogenes” [261]. During a 
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challenge with L. monocytogenes, infiltration of monocytes is dependent on the CCR2 

receptor and its ligands (C-C motif) ligand 2 (CCL2, also known as MCP-1, monocyte 

chemoattractant protein-1) and CCL7, and absence of either CCR2 or CCL2/7 results in 

profound reduction in the numbers of recruited monocytes and increased bacterial 

burden [262-264]. Monocyte egress from bone marrow during infection is dependent on 

CCR2-mediated signalling [265], and it has been shown that inflammation evoked by L. 

monocytogenes infection specifically promotes monopoiesis in bone marrow to sustain 

delivery of monocytes to peripheral sites of infection [266]. CCR2/CCL2-mediated 

recruitment of monocytes have also been shown to drive monocyte migration to lung 

during Mycobacterium tuberculosis infection [267, 268], to the small intestine during 

Toxoplasma gondii infection [269] and during an acute ischemic-reperfusion injury in 

kidney [270]. Once at the site of inflammation, monocytes differentiate into scavenging 

macrophages or DCs depending on the cytokines present in the local environment [271, 

272], and antigen-loaded monocyte-derived DCs subsequently travel to PLNs via 

afferent lymphatics [273]. Interestingly, direct entry of monocytes through HEV of PLNs 

that drain the local site of inflammation has also been reported to occur in an MCP-1 and 

MIG (monokine induced by gamma interferon, CXCL9) dependent manner [274, 275].  

Non-classical monocytes constitutively migrate into non-inflamed tissues in a CX3CR1-

dependent manner, and give rise to resident tissue macrophages and dendritic cells 

[254]. Non-classical monocytes also scan the resting endothelium in a long-range 

crawling manner in a search of infected or damaged cells, and their activity has been so 

far detected in the skin, mesentery, central nervous system and heart in mice [276-278]. 

Additionally, human non-classical monocytes adoptively transferred into mice were 

shown to crawl in the skin microvasculature in the same manner [260]. Due to their 

patrolling behaviour, these monocytes are also known as “patrolling monocytes” and, 

upon MI or detection of infection or an injury, they can rapidly infiltrate affected tissues, 

well before the arrival of the classical monocytes or even neutrophils [276, 278]. During 

this early infiltration stage, patrolling monocytes produce pro-inflammatory cytokines that 

serve to induce the inflammatory response [254, 276].    

A co-ordination in homeostasis maintenance between the classical and non-classical 

monocytes has been elegantly demonstrated in a study by Nahrendorf et al. (2007), who 

showed that upon MI, sequential recruitment of classical and non-classical monocytes is 

responsible for digestion of damaged tissue and tissue healing phase, respectively [258].  

1.6.2 Migration of monocytes in disease 

Monocyte trafficking in chronic inflammation (section 1.1.2) has been mainly studied in 

atherosclerosis, a chronic inflammatory disease of the arterial wall, characterised by the 

formation of lipid-laden lesions. Heart attack and stroke induced by atherosclerosis 



47 
 

accounts for nearly three quaters of all deaths from CVD worldwide, and hence 

recognition of the detailed pathological processes underlying atherosclerosis is needed 

to improve existing therapeutic strategies. Murine models of atherosclerosis have been 

established, whereby apolipoprotein E (apoE) deficient mice develop atherosclerotic 

lesions when placed on high fat diet. Those mice have an altered plasma lipid profile and 

marked monocytosis [279-282]. The number of circulating monocytes directly correlates 

with the atherosclerotic plaque size in mice and also is thought to be a CVD risk factor 

in humans [281]. Atherosclerotic lesions first develop when low-density lipoprotein (LDL) 

starts to accumulate in the arterial walls. LDL accumulation occurs preferentially in the 

areas of disturbed laminar flow, such as the branching points of the arterial tree [283-

285]. Once trapped in the vessel wall, LDL can undergo oxidation (giving rise to oxidised 

LDL, oxLDL) [286]. It has been shown that exposure of human ECs to oxLDL induces 

them to express a plethora of genes, many of them associated with cell adhesion [287]. 

In line with this, endothelial adhesion molecules P-selectin, VCAM-1 and ICAM-1 have 

been shown to be involved in atherosclerotic lesion development [288-291], and 

leukocyte recruitment in atherosclerosis has been also reported [292, 293]. Interestingly, 

L-selectin has been implicated in the recruitment of leukocytes at sites of atherosclerotic 

lesion formation, and this is discussed in more detail in section 1.13.1. Multiple reports 

have shown that monocytes are involved in the early steps atherosclerogenesis [294-

297]. Monocytes have been mainly observed to be recruited from the arterial lumen [294, 

298], however, infiltration from vasa-vasorum has been reported at later stages of the 

atherosclerotic plaque development [299]. Although the majority of reports describing 

atherosclerosis formation in mice point towards the recruitment of classical monocytes 

[279, 280, 300], recruitment of non-classical monocytes has also been shown to 

contribute to plaque formation [301]. It is possible that the contribution of the two 

monocyte subsets varies accordingly to the anatomical location of the plaque, i.e. arterial 

arch versus arterial sinuses [302]. During the development of atherosclerosis monocytes 

undergo so-called “vicious cycle” of recruitment, whereby monocyte-derived 

macrophages at sites of the lesion produce cytokines and chemokines, which in turn 

serve to recruit more monocytes. Monocyte-derived macrophages can take up LDL, 

oxLDL and other lipids and become lipid-loaded “foam cells” [303-305]. Aggregations of 

foam cells form the atheromatous core and as this process progresses, the 

atheromatous core of the plaque converts into a necrotic one, which consists of lipids, 

cholesterol crystals and cell debris [306]. Plaques having necrotic cores are vulnerable 

and prone to rupture [307]. Ruptured plaques invariably occlude the blood vessels that 

supply oxygen-rich blood to the heart or brain, which ultimately leads to MI or stroke.   
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As this thesis is dedicated to the adhesive and signalling function of L-selectin, the 

following sections are dedicated to molecular details surrounding this cell adhesion 

molecule.      

1.7 THE SELECTINS 

The selectins are a family of cell adhesion molecules that mediate many critical 

interactions within the vasculature. The selectins and their carbohydrate ligands are 

expressed on ECs, platelets and leukocytes (figure 1.6). Therefore, they can facilitate 

the contact between the blood and vascular cells, whenever such contact is needed. The 

family of selectin proteins consists of three members, P-selectin, E-selectin and L-

selectin, which were all discovered in the 1980s. All three members were discovered as 

part of a concerted effort to identify all possible epitopes that existed in the mouse 

circulation through the generation of monoclonal antibodies. The approach was to 

identify all the “clusters of differentiation” recognised by mAbs raised against the 

unknown epitopes on the surface of the leukocytes, and hence the identified epitopes 

were given the CD name followed by a number. P-selectin (CD62P) (section 1.7.3) was 

identified, when in 1986 its expression was found on human activated platelets (hence 

P- for platelet) [308] and human ECs [309]. In resting cells, P-selectin is stored in α-

granules of platelets and Weibel-Palade bodies of ECs, and is translocated to the 

platelet/EC surface upon activation [308-310]. The discovery of E-selectin (CD62E, 

section 1.7.4) followed a year later, where it was identified as a cell surface adhesion 

molecule expressed on activated ECs (hence E- for endothelium) [311]. L-selectin 

(CD62L, section 1.7.5) was first observed in 1983 as a cell surface protein responsible 

for murine lymphocyte (L- for lymphocyte) recirculation to the LNs [12], and is thus also 

known as the “lymphocyte homing receptor”.   

 

Figure 1.6 Location of the selectins and their ligands. The selectin family comprises three 

members: E-selectin, P-selectin and L-selectin. Upon cell activation, P-selectin is translocated to 

the surface of platelets and ECs, and E-selectin is expressed on ECs. L-selectin is constitutively 

expressed on virtually all circulating leukocytes. Selectins recognise carbohydrate ligands 

decorated with sulphated, sialylated and fucosylated moieties.   
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1.7.1 Selectin structure and function 

All selectins are highly related type I, single-pass transmembrane glycoproteins [312]. 

Each selectin is composed of: (i) an amino (N)-terminal calcium-dependent (C-type) 

lectin ectodomain that interacts with carbohydrate motifs presented by selectin counter-

receptors, (ii) a single epidermal growth factor (EGF)-like domain, (iii) two to nine 

sequence consensus repeat (SCR) domains, (iv) a single transmembrane region and (v) 

a C-terminal cytoplasmic tail [16, 313, 314] (figure 1.7).  

 

Figure 1.7 The protein structure of the selectins. The selectin proteins have conserved protein 

structure within their extracellular domain. The common structure is comprised of an N-terminal 

calcium-dependent C-type lectin, which binds to carbohydrate-bearing ligands. Lectin domain is 

followed by the epidermal growth factor (EGF)-like domain and several sequence consensus 

repeats (SCR), that share homology with complement proteins. Nine, six and two SCRs are 

present in P-, E- and L-selectin respectively. SCRs in L-selectin proteins are followed by a 

membrane-proximal extracellular cleavage site, which has not been identified in the other two 

family members.  Each selectin has a single-pass transmembrane domain and a COOH-terminal 

cytoplasmic tail. The tails are not conserved between the selectins, which allows for their unique 

regulation and signalling.   

 

The homology of the lectin domain differs between selectin members within the same 

species is around 52%, however, this increases to around 72% between the same 

selectins from different species [16]. Such high homology represents the importance of 

the lectin domain. The lectin domain possesses two high affinity binding sites for calcium 

ions and interacts with its ligands in a Ca2+-dependent manner [315, 316]. It has been 

shown that upon calcium binding, the L-selectin lectin domain undergoes a 

conformational change, which leads to the exposure of an epitope responsible for 

interacting with the ligand [316]. It is this property that signifies the C-type lectin domain. 

The sequence identity of the EGF-like domains of one selectin between different species 

is around 60% [16]. This sequence conservation suggests a significant role for the EGF-

like domain in the function of the selectins. Indeed, it has been shown that both lectin 
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and EGF-like domains are needed for optimal ligand recognition and binding of P-

selectin [317, 318]. The L-selectin EGF-like domain was also found to regulate binding 

of the lectin domain to its ligand [319, 320]. Resolution of the crystal structures of E- and 

P-selectin lectin and EGF domains co-complexed with their ligands revealed existence 

of extended and bent conformations of the EGF-like domain [321]. It was subsequently 

shown that the region at the junction of the lectin and EGF-like domains of L-selectin 

acts like a hinge allowing closed- and open-angle protein conformations, thereby 

regulating bond formation between the lectin domain and its ligands [47]. Open-angle 

(extended) conformation was further shown to have greater affinity for ligand and 

mediated rolling with increased efficiency [322]. The hinge is likely to explain the “catch-

slip” bond phenomenon that occurs during selectin-dependent rolling (section 1.2.2). 

Additionally, EGF-like domain has been shown to regulate cleavage of L-selectin 

ectodomain in a proteolytic process termed “shedding” (section 1.9.2) [323].  

SCRs show a lower degree of sequence conservation than the lectin and EGF-like 

domains [16].  Human E- and P-selectin contain 6 [324] and 9 [325] SCRs, respectively, 

but their number can vary from 4 to 9 in other species [16]. Human L-selectin has two 

SCRs, the number of which is conserved across species [16]. The variable number of 

SCRs between the selectins may be explained by their different cellular locations. 

Although L-selectin possesses only two SCRs, it is expressed at the tips of the leukocyte 

microvilli [18], therefore its exposure to the potential ligands is relatively high during 

tethering. Nine and six SCRs in P- and E-selectin, respectively suggest that P-selectin 

would be more exposed to the leukocyte ligands than E-selectin. This corresponds to 

the timeline of when these two molecules become engaged during rolling (sections 

1.2.2, 1.7.3 and 1.7.4).    

Unlike E- and P-selectin, SCRs in L-selectin are followed by a membrane proximal 

cleavage site [326]. This site allows L-selectin shedding [327] (see section 1.9.2), which 

is associated with cell activation [328]. Although soluble forms of E- [329] and P-selectin 

[330] have been found in the sera of patients suffering from chronic inflammatory 

diseases, no discernable cleavage site has been identified. 

The transmembrane and cytoplasmic domains of the selectins do not show any 

sequence conservations between family members, although the sequence conservation 

of one selectin member across different species is considerably high [16]. The sequence 

conservation across various species is logical as the selectins are expected to perform 

the same functions in all species. The lack of sequence conservation between the 

selectins of one species is likely to reflect the specific functions each of the selectin has. 

Varied amino acid sequences within the cytoplasmic tails of the selectins are understood 

to provide binding motifs for different cytoplasmic proteins. This in turn would control the 

unique signalling generated downstream of each of the selectins and explain their 
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functional differences. The cytoplasmic tail of L-selectin and its binding partners are 

described in more detail in section 1.10.  

1.7.2 Common selectin ligands  

The selectins recognise ligands that are glycosylated [314, 331-336]. Modifications 

include sulfation, fucosylation and sialylation [337] and a minimal recognition motif for P-

, E- and L-selectin is the sialyl-Lewis X (sLex) tetrasaccharide that is built of sialic acid 

α2-3-linked to galactose, which is further β1-4-connected to N-acetylglucosoamine, and 

α1-3-links to fucose [334, 335, 338] (figure 1.8 A). Glycosylation modifications are 

performed by the enzyme fucosyltransferase VII [339], sialyltransferases such as 

ST3Gal-IV [340, 341], and sulfotransferases such as HEC-GlcNAc6ST [342] or 

GlcNAc6ST-1 [343]. The absolute requirement for glycosylation of selectin ligands is 

demonstrated by the loss of leukocyte rolling in mouse models lacking certain 

glycosylation enzymes, e.g. ST3Gal-IV or HEC-GlcNAc6ST [341, 342], and in LAD-II 

immunodeficiency syndrome in humans, where fucosylation is abolished (section 1.2.9). 

The sulfated/sialylated/fucosylated structures are found on the non-reducing termini of 

both O- and N-linked glycoconjugates [344-347], with an exception of PSGL-1 – a ligand 

for all three selectins – which is sulfated on a tyrosine residue within its protein backbone 

[348]. O-linked glycans are sugar moieties linked to the proteins via oxygen molecule of 

either serine or threonine side chains [349]. N-glycans represent another type of linkage, 

where the sugar moieties are connected to the proteins via a nitrogen atom of the amine 

group in the asparagine side chain [349]. Anchorage mode of the canonical selectin 

ligand sLex to both O- and N-linked glycans is shown in figure 1.8 B.  
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Figure 1.8 Presentation of sialyl-Lewisx on O- and N-glycans. Canonical selectin ligand sLex  

(A) can be presented to the selectins by both O- and N-linked glycans (B). Note that the sulfation 

(red S) on PSGL-1 is not present on the carbohydrate motif but occurs on the tyrosine residue 

within the protein. Meca-79 is a mAb reactive with PNAd L-selectin ligands (section 1.8.1). Image 

in B taken from Hirakawa et al., Journal of Biological Chemistry, 2010 [345]. 

 

Although sLex binds to all three selectins, the affinity of such binding is relatively low and 

it is likely that selectins recognise multiple motifs presented by their ligands [16]. 

Furthermore, differences exist in the requirements for sugar modifications between the 

selectins, for example ligand sulfation is needed for P- and L-selectin, but not E-selectin 

binding [350]. To this date, multiple ligands for the selectins have been identified. P-

selectin can bind to PSGL-1 [351], variant of CD44 (CD44v) [352], endoglycan [353] and 

versican [354].  E-selectin binds to PSGL-1 [351], L-selectin [355], CD43 [356, 357], 

CD44 [358-360], CD44v [361], E-selectin ligand-1 (ESL-1) [362, 363], carcinoembryonic 

antigen (CEA) [361], podocalyxin [364] and endoglycan [353]. L-selectin binds to a 

variety of ligands expressed both inside and outside of the vasculature. L-selectin ligands 

are described in more detail in section 1.8 (see summary in table 1.2). 
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1.7.3  P-selectin and its role in the leukocyte adhesion cascade 

P-selectin (CD62P, GMP-140, PADGEM) is expressed by activated platelets and ECs 

[308, 309]. P-selectin null mice have elevated counts of circulating granulocytes, which 

reflects a defect in leukocyte extravasation [25]. Additionally, baseline leukocyte rolling 

in mouse mesentery microcirculation is completely abolished, and leukocyte recruitment 

is delayed in both trauma and thioglycollate-induced models of inflammation [25, 365]. 

Upon inflammatory challenge, endothelial P-selectin, which is synthesised constitutively 

and stored in intracellular vesicles of endothelial Weibel-Palade bodies, is translocated 

to the plasma membrane, where it can bind to its leukocyte ligand PSGL-1 [310, 366, 

367]. In murine, but not primate ECs, stimulation with TNF-α additionally induces P-

selectin gene expression [368]. Owing to its rapid translocation from the intracellular 

pool, P-selectin mediates most leukocyte rolling during the first phase (<2 hours) after 

the inflammatory challenge [25, 365]. This explains the delays in leukocyte recruitment 

seen in P-selectin deficient mice. It is possible that E-selectin can mediate rolling in the 

absence of P-selectin [369], however E-selectin cannot mediate tethering [24]. On the 

other hand, in the absence of P-selectin, it appears that tethering can be compensated 

for by L-selectin [24]. However, L-selectin mediates much more rapid rolling (above 100 

µm/s) than P-selectin (below 50 µm/s), and also it cannot compensate for the initial (<1 

hour) rolling absent in P-selectin deficient mice during trauma-induced model of 

inflammation [52, 365]. Thus, it seems that P-selectin co-operates with L-selectin to 

maintain the rolling at a speed of 20-70 µm/s [52], however, under certain inflammatory 

conditions (trauma), the very initial rolling is unique to P-selectin [52, 365].   

As described in section 1.2.4, engagement of the selectins leads to the activation of 

integrins, which contributes to leukocyte activation and arrest. In vitro and in vivo 

experiments with mouse and in vitro experiments with human neutrophils as well as 

precipitation studies of transfected HEK 293T cell line revealed that engagement of P-

selectin by PSGL-1 leads to activation of Src kinases which phosphorylate Nef 

associated factor 1 (Naf-1) at Tyr552 [366]. Subsequently, activated Naf-1 recruits 

phosphoinositide 3-kinase (PI3K) (p85-p110δ heterodimer) to this complex, which 

eventually triggers activation of β2 integrins Mac-1 and LFA-1 [366]. 

Apart from its role in the recruitment of leukocytes to the activated endothelium, P-

selectin also mediates certain platelet interactions. Upon activation, platelet P-selectin is 

translocated from the intracellular α-granules to the platelet surface [308], where it 

mediates contacts with leukocytes [370] through interaction with leukocyte PSGL-1 

[371]. Platelet-leukocyte aggregates have been reported to circulate in bloodstream of 

patients with coronary artery disease [372] and Helicobacter pylori infection [373], and 

have been suggested to contribute to atherosclerosis development in a mouse model 
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[374]. Additionally, P-selectin facilitates platelet-platelet interactions and formation of 

platelet aggregates [375]. Formation of platelet aggregates is an important step during 

blood coagulation at the site of an injury.  

1.7.4 E-selectin and its role in the leukocyte adhesion cascade  

E-selectin (CD62E, ELAM-1) expression is induced upon stimulation with TNF-α, LPS or 

interleukin-1β (IL-1β), and is a result of de novo protein production [51, 368, 376, 377]. 

E-selectin expression on the surface of the endothelium can be seen 2 hours after 

stimulation with a pro-inflammatory agent and peaks after 4 hours [378]. Upon its 

expression on the endothelial surface, E-selectin joins P-selectin in mediating leukocyte 

rolling. E-selectin is different to the other two family members in that it is not able to 

mediate tethering [24, 53, 56]. After some time, the co-operation between E- and P-

selectin in rolling maintenance is discontinued and rolling becomes dependent only on 

E-selectin and its ligands [379]. E-selectin is known as a mediator of “slow rolling” (3-5 

µm/s), and its absence significantly increases rolling velocities of leukocytes as well as 

promotes their ‘skipping’ behaviour [51, 379, 380]. Skipping behaviour of leukocytes in 

the absence of E-selectin is characterised by cycles of short steady rolling episodes 

followed by detachment and re-tethering further downstream [379]. This results in sharp 

and transient changes in velocity and leukocytes moving in this manner fail to engage in 

steady rolling [379]. It was established that E-selectin mediates slow and stable rolling 

through interaction with CD44 and ESL-1, respectively [379].  

It should be noted that human L-selectin from neutrophils can interact with E-selectin 

[355, 381]. This is because neutrophil L-selectin is modified with sLex moieties and thus 

becomes a ligand for E-selectin [355]. This is neutrophil specific as L-selectin from 

lymphocytes does not bear sLex epitopes [355]. This represents glycosylation-dependent 

specificity of selectins and their ligands, which in this case allows trafficking of naïve 

lymphocytes to LNs and neutrophils to the sites of inflammation. However, L-selectin 

from mouse neutrophils cannot bind E-selectin [381], revealing a species-specific 

interaction. It should therefore be made clear that much of our current understanding of 

how L-selectin contributes to leukocyte rolling comes from studying murine models, and 

little is known how this may reflect the human system where E-selectin/L-selectin 

interaction can occur.   

Much like P-selectin, binding of E-selectin to its counter-receptors leads to integrin 

activation, which supports transition from leukocyte rolling to arrest (section 1.2.4). Both 

in vitro and in vivo experiments on murine neutrophils revealed that interaction of PSGL-

1 or CD44 with endothelial E-selectin triggers a signalling pathway in leukocytes that 

starts with Src family kinases (SFKs) [382, 383]. This is followed by activation of spleen 

tyrosine kinase (Syk) and Burton’s tyrosine kinase (Btk), which in turn leads, through 
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phospholipase C (PLC) γ2, to the activation of p38 mitogen-activated protein kinase 

(MAPK); this pathway triggers the β2 integrin-mediated slow rolling of leukocytes [382, 

383]. Additionally, Mueller et al. (2010) reports the involvement of PI3K gamma (PI3Kγ) 

in this signalling pathway [383] and Yago et al. (2010) stress the importance of lipid rafts 

for efficient PSGL-1 and CD44 signalling (2010) [382]. The cytoplasmic domain of PSGL-

1 is crucial for signalling to downstream components of this particular signalling pathway 

as deletion of this domain in PSGL-1 prevents phosphorylation of Src family kinases 

(SFKs) and reduces E-selectin-triggered neutrophil slow rolling on immobilised ICAM-1 

[382]. Conversely, Hidalgo et al. (2007) claim that in murine leukocytes transition from 

rolling to arrest in vivo is mediated by E-selectin interacting with CD44 and ESL-1, 

whereas there is no role for PSGL-1 in this process [379]. The controversies described 

could be due to the experimental techniques and/or the inflammatory models used in the 

respective studies. 

1.7.5 L-selectin 

L-selectin (CD62L, TQ1, Leu-8, LAM-1, LECAM-1) is expressed on all circulating 

leukocytes, with an exception of activated T and B cells [384-386] and a subset of 

memory T cells [387]. As mentioned earlier, L-selectin was discovered through screening 

of leukocytes with antibodies raised against unknown antigens. The antigen on mouse 

lymphocytes was recognised by MEL-14 mAb [12] and its human homolog was identified 

in 1990 by raising mAbs against molecules shed from human leukocytes following their 

activation [388]. There were 5 mAbs raised:  DREG-55, -56, -110, -152 and -200, out of 

which DREG-56 showed specific >90% inhibition of binding of human lymphocytes to 

PLN HEV [388]. L-selectin was established to be responsible for the migration of 

lymphocytes to PLN, Peyer's patches (specialised lymph nodes in the gut), mesenteric 

lymph nodes (MLNs) and spleen as well as for leukocyte recruitment to sites of 

inflammation [11, 12, 389-398]. L-selectin was found to play a prominent role in skin 

inflammation, and its absence or blocking results in decreased leukocyte recruitment, 

reduced delayed-type and immediate-type hypersensitivity responses and delayed 

allograft rejection [391, 392, 399-401]. Its predicted molecular weight (MW) is 30 kDa but 

the actual MWs have been reported to be 74 kDa for lymphocytes [402] and 90-120 kDa 

for neutrophils [381]. This increase in the MW is a result of L-selectin protein 

glycosylation, which is thought to occur differently in various leukocyte subsets [313].  
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1.7.5.1 The role of L-selectin during leukocyte recruitment 

1.7.5.1.1 Roles for L-selectin within the vasculature 

Although mainly known for its ability to mediate tethering and rolling, L-selectin takes part 

in other stages of the leukocyte adhesion cascade (figure 1.9).  

 

Figure 1.9 The role of L-selectin during the leukocyte adhesion cascade. L-selectin is best 

known for its ability to mediate leukocyte tethering and rolling. In addition, L-selectin also mediates 

leukocyte activation and transition from rolling to arrest as well as modulates adhesion through β 

integrins. L-selectin has been shown to regulate TEM during lymphocyte homing to PLN, and 

there are some indications pointing at its possible role during TEM at sites of inflammation. For 

abbreviations used see the Abbreviations section.   

 

L-selectin mediates leukocyte recruitment through both its adhesive and signalling 

properties. The adhesive interactions are important for mediating tethering and rolling. 

L-selectin-mediated tethering is facilitated by its microvillar localisation [18, 19, 403] and 

the unique kinetic properties of L-selectin/ligand bonds that allow shear-dependent 

tethering [46, 404, 405]. Out of the three selectins L-selectin mediates the fastest type of 

rolling (>100 µm/s) [52, 405, 406], and is the only selectin that can mediate secondary 

capture of free flowing leukocytes (section 1.2.3). L-selectin co-operates with P-selectin 

in mediating rolling (section 1.7.3), however its distinct contribution can be seen at later 

time-points (>1-2 hours) in cytokine-stimulated venules [365, 398, 407]. L-selectin-

deficient mice have been shown to have a dramatic reduction in lymphocyte rolling 

and/or accumulation on PLN HEV, which resulted in 70-90% decrease of lymphocyte 

numbers in PLNs and corresponding elevated numbers of lymphocytes in circulation and 

spleen [11, 389-391, 395, 408]. L-selectin has also been reported to mediate leukocyte 
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rolling in exteriorised mesenteric [11, 28, 29, 409] and cremasteric muscle venules [52, 

365], and L-selectin deficient mice present with monocytosis (elevated levels of 

circulating monocytes), suggesting impaired monocyte emigration [389]. The importance 

of L-selectin-dependent recruitment at sites of inflammation was demonstrated through 

thioglycollate-induced peritonitis model, where 40-80% reduction of leukocyte 

(lymphocyte, neutrophil and monocyte) emigration in to the inflamed peritoneum was 

seen [11, 392]. L-selectin has also been shown to mediate rolling on activated ECs in 

vitro [410]. Vascular ligands for L-selectin are induced on activated endothelium (section 

1.8.2) and presumably are important for mediating rolling. L-selectin was shown to 

mediate rolling (together with α4 integrin) in rat mesenteric venules 12 days after 

immunisation with Mycobacterium butyricum, suggesting a role for L-selectin in chronic 

inflammation [411]. The role of L-selectin in atherosclerosis, the chronic inflammation of 

the arteries, is discussed in more detail in section 1.13.1. Furthermore, L-selectin was 

shown to mediate neutrophil recruitment in myocardial ischemia/reperfusion model in 

cats, where anti-L-selectin mAb significantly decreased neutrophil accumulation on 

ischemic/reperfused coronary endothelium [412].  

Apart from mediating tethering and rolling through the virtue of its lectin domain and 

catch-slip bond phenomenon, L-selectin generates intracellular signalling that results in 

leukocyte adhesion. As described in section 1.2.4, one of the prominent events driving 

the transition from leukocyte rolling to arrest is outside-in signalling triggered by L-

selectin engagement, which results in integrin activation. Rolling of neutrophils on L-cells 

transfected with E-selectin and ICAM-1 have been shown to induce co-clustering of L-

selectin and PSGL-1, which is necessary for the rolling cells to adhere (arrest) [413]. 

Furthermore, cross-linking of L-selectin has been shown to induce the transition from 

neutrophil rolling to LFA-1- and Mac-1-dependent arrest during perfusion of cells over 

monolayers of E-selectin and ICAM-1 [414]. A number of studies have now established 

the role of outside-in L-selectin signalling in mediating leukocyte adhesion through β1 

and β2 integrins, and these reports are discussed in more detail in section 1.11.2. In 

addition to its direct role in the integrin-mediated arrest, L-selectin engagement has also 

been shown to act in synergy with various chemokines and cytokines to enhance 

adhesion (section 1.2.4). In concert with its role in synergising outside-in signalling and 

chemokine-mediated adhesion, engagement of L-selectin has been shown to regulate 

expression levels of the chemokine receptors present on the leukocyte surface (section 

1.11.3).  

L-selectin, and specifically its shedding, regulates TEM across HEV during lymphocyte 

homing to PLN (section 1.9.2). It is thus possible that L-selectin might also be involved 

in leukocyte TEM at sites of inflammation. This is currently unclear, although stimulation 

through L-selectin was found to enhance leukocyte transmigration to various 
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chemokines (e.g. SDF-1, IL-8, SLC) in vitro [85, 91, 415]. L-selectin has been shown to 

mediate leukocyte chemotaxis in extravascular tissues in vivo (section 1.7.5.1.2), and 

perhaps it is the relationship between L-selectin and certain chemokines that drives 

leukocyte emigration and influence TEM in inflammation.  

1.7.5.1.2 Roles for L-selectin outside the vasculature 

Much of the current literature on L-selectin is centred mainly on its role in tethering and 

rolling during the leukocyte adhesion cascade. Interestingly however, reports can be 

found that point towards a prominent role L-selectin might play in leukocyte migration 

beyond the vasculature both during homing of lymphocytes to PLNs and during 

inflammation. There is a number of reports suggesting that engagement of L-selectin 

enhances leukocyte chemotaxis in vitro (section 1.11.3), and a role for L-selectin in 

directed cell migration in vivo has also been proposed. For example, in L-selectin 

deficient mice defects were seen in the interstitial migration away from the venules, both 

during trafficking of lymphocytes to MLN [415], and during the antigen-induced leukocyte 

recruitment in the cremasteric muscle model of inflammation [416]. Likewise, in a mouse 

model of multiple sclerosis (MS), emigrated L-selectin deficient leukocytes were found 

to be located perivascularly and did not infiltrate the brain tissue, which in turn limited the 

demyelinating pathology [417]. Interestingly, screening with L-selectin-IgG chimera 

showed that L-selectin ligands are present on myelin sheaths of axons [418], suggesting 

L-selectin dependent leukocyte infiltration results in myelin destruction during MS 

progression. In all of the above-described studies, the emigrated leukocytes were not 

able to disseminate in to the surrounding tissues and remained closely associated with 

the venules. This would suggest an impairment in chemotaxis that was caused by L-

selectin knock-out. Interestingly, another report demonstrated that chemotaxis in vivo 

was indeed abolished in L-selectin null mice [398]. Hickey et al. (2000) found that 50% 

of the emigrated leukocytes had a profound decrease in their ability to migrate towards 

a KC (keratinocyte chemokine)-soaked agarose block and remained closely associated 

with the cremasteric microvessels [398]. Similarly, the path length of extravascular 

locomotion was 40-50% decreased in L-selectin null leukocytes as compared to WT ones 

during emigration upon cremaster superfusion with PAF or KC [398]. Interestingly, 

leukocytes from mice expressing a sheddase-resistant form of L-selectin (i.e. a mutant 

resistant to shedding) were also found to have impaired chemotaxis as measured by the 

distance they travelled away from the KC-perfused cremaster microvessel [419]. These 

two different scenarios, first, where L-selectin is lacking and second, where it is 

constitutively expressed in its non-cleavable form on the leukocyte surface, seem to exert 

the same effect on chemotaxis.  Therefore, it can be speculated that the L-selectin’s 

involvement in migration through the ECM may rely on its ability to undergo shedding 
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and subsequent re-expression. Alternatively signalling involving the cleaved L-selectin 

(“stump”) may be possible.  Furthermore, the migration defect of leukocytes expressing 

sheddase-resistant L-selectin was true for KC, but not TNF-α superfusion [419], 

suggesting that L-selectin dependent chemotaxis has preference towards certain 

chemokines and is insensitive to or overridden by others. In keeping with this, it has been 

shown in vitro that engagement of L-selectin on murine T and B cells enhanced their 

chemotaxis to secondary lymphoid tissue chemokine (SLC), but not to SDF-1 or EBV-

induced molecule 1 ligand chemokine (ELC) [415].          

In addition to a defect in chemotaxis, L-selectin-null mice have been shown to have 

greatly (50-60%) reduced total number of emigrated leukocytes at various sites of 

inflammation [11, 392, 398, 420]. Interestingly, Hickey et al. (2000) saw no gross defects 

in leukocyte rolling, suggesting that at least in certain cases reduced emigration was not 

due to a decrease in L-selectin-dependent rolling [398]. As all of these studies were 

performed in vivo, it can be assumed that a great abundance of cytokines and 

chemokines were present to elicit L-selectin-dependent cellular responses. Perhaps it is 

the chemokines and the ECM environment that synergise to drive L-selectin dependent 

migration beyond the vessel lumen. The nature of L-selectin signalling occurring outside 

the vasculature is expected to be different from the signalling that takes place during the 

leukocyte recruitment inside the venules. During tethering and rolling, L-selectin engages 

transiently with its ligands, which is a result of the disruptive forces imposed by blood 

flow. However, it can be assumed that once the leukocyte is in the ECM, much slower 

movement of the cell will prolong L-selectin/ligand interactions and therefore enhance 

and/or modify L-selectin signalling. In line with this, the capability of L-selectin to bind 

components of the ECM has been reported on numerous occasions (section 1.8.3). 

Taken together, L-selectin plays a vital role in leukocyte trafficking both during 

interactions of leukocytes with ECs and during interstitial migration outside the vessel 

wall (and in the absence of shear stress). It is currently unknown how inta- and extra-

vascular activity of L-selectin is linked, although shedding of the extracellular domain is 

likely to play a role (for the physiological relevance of L-selectin shedding see section 

1.9.2). 

1.7.5.2 Current methods used to study L-selectin-dependent phenomena 

Current in vivo and in vitro methods used to study the role of L-selectin in the leukocyte 

adhesion cascade involve intravital microscopy of various tissues and organs, analysis 

of cell exudates following thiglycollate-induced peritonitis, parallel plate flow chamber 

assays and transwell assays. The majority of these studies concentrate on the effects of 

L-selectin on total numbers of recruited leukocytes and do not investigate the sub-cellular 

distribution of L-selectin. In the studies where visualisation of cell-associated L-selectin 
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was performed, the leukocytes were first labelled using an anti-L-selectin mAb, and then 

perfused over immobilised ligand [379, 421]. Such reports ignore the fact that using 

antibodies causes, firstly, L-selectin clustering and signalling in an “outside-in” manner 

(section 1.11), and secondly, blocks the lectin (ligand binding) domain. Hence, treatment 

of leukocytes with anti-L-selectin antibodies prior to the flow experiments might pose 

serious risks to correct data interpretation. Therefore, the current methods of visualising 

L-selectin cannot be classified as “non-invasive”, and other approaches are needed for 

reliable tracking of L-selectin’s fate during the leukocyte adhesion cascade. For example, 

tagging of L-selectin with a fluorescent protein would help to address the aforementioned 

visualisation issues, providing a non-invasive way of monitoring L-selectin by not 

interfering with its function (i.e. provided the tag itself would not affect L-selectin’s form 

and function). 

1.8 LIGANDS FOR L-SELECTIN 

L-selectin was firstly recognised to bind carbohydrate ligands on PLN HEV (section 

1.8.1), however it is now known that many other L-selectin ligands, distinct from the 

“classical” HEV ligands exist. For example, numerous L-selectin ligands have been 

reported at sites of inflammation (section 1.8.2), in the ECM (section 1.8.3) and on a 

variety of other cells and tissues (section 1.8.4). A summary of all L-selectin ligands 

identified to date is shown in table 1.2 and the ligands are discussed in more detail in 

the sections below.   

1.8.1 L-selectin ligands on high endothelial venules (HEV) 

Initial work showed that L-selectin recognises carbohydrate ligands on PLN HEV in a 

calcium dependent manner [11, 422-424]. Early attempts on identifying carbohydrate-

based ligands for L-selectin suggested that sugar moieties were mainly O-linked glycans 

[337], and despite their prevalence, L-selectin-dependent rolling can also occur on N-

linked glycans [346, 347]. L-selectin recognises mucin (glycoprotein with multiple O-

linked glycans) ligands on HEV that have a collective term of peripheral lymph node 

addressins (PNAd) and are reactive with MECA-79 mAb [425]. MECA-79 is routinely 

used to detect L-selectin reactive vessels and it has been shown to block lymphocyte 

tethering and rolling on HEV [426], as well as immunoprecipitate the same set of proteins 

from mouse PLNs and human tonsils as the L-selectin-IgG chimera [427]. The reason 

for this is that MECA-79 mAb recognises an epitope that overlaps with the basic L-

selectin recognition determinant – the 6-sulpho-sLex motif (figure 1.8). Sulfation of the 

sLex moiety is necessary for efficient interaction with L-selectin, as sulfation greatly 

enhances L-selectin binding in cell-free assays and during binding of L-selectin-IgG 

chimera or L-selectin expressing cells to ECs transfected with relevant sulfotransferases 
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[428-431]. A number of 6-sulpho-sLex-bearing PNAd sialomucins have been identified to 

date. The first ones to be recognised were glycosylation-dependent cell adhesion 

molecule 1 (GlyCAM-1) [337, 432, 433], CD34 [434, 435] and a CD34 family member 

podocalyxin-like protein [436]. Subsequent studies identified further L-selectin ligands 

expressed on PLN HEV: sgp200 protein [427], endomucin [437], nepmucin (not 

expressed on Peyer’s patches HEV) [438] and mucosal vascular addressin cell adhesion 

molecule 1 (MadCAM-1) (expressed only on MLN HEV) [439]. Interestingly, CD34 [440] 

or GlyCAM-1 [428] null mice did not present with any abnormalities in lymphocyte homing 

to PLNs, suggesting that HEV mucins might be functionally redundant, and can 

compensate for each other to mediate all rolling. On the other hand, HEC-GlcNAc6ST 

sulfotransferase deficiency resulted in greatly diminished lymphocyte recirculation to LNs 

[342]. It is therefore the specific post-translational modifications of L-selectin ligands 

rather that than the ligand protein backbone that are crucial for L-selectin mediated 

lymphocyte homing. 

Apart from the well-known mucins, non-mucin (as defined be their resistance to O-

sialoglycoprotease treatment) ligands for L-selectin have been identified on HEV in 

human PLN cryosections [441]. These ligands bear sLex and L-selectin ligand activity 

but lack MECA-79 antigen, and are capable of mediating lymphocyte binding [441]. It is 

hard to say whether similar ligands are present on HEV in mice, however it is plausible 

as blocking with MECA-79 mAb was shown to result in significant but not total inhibition 

of lymphocyte homing to PLN [442, 443]. Alternatively, differences in L-selectin HEV 

ligands might exist between species, as it has been shown that e.g. MECA-79 mAb 

weakly stains Peyer’s patches HEV in mice but strongly in sheep, rabbit and pig [443, 

444]. Therefore, the complexity of L-selectin HEV ligands is likely to be higher than 

currently anticipated. Additionally, it is noteworthy that MECA-79-reactive HEV-like 

venules are commonly found at sites of chronic inflammation, implying the role of the 

“classical” L-selectin HEV ligands in inflammation (section 1.8.2).   

1.8.2 Ligands for L-selectin on the endothelium at sites of inflammation 

 As mentioned at the end of the section above, venules resembeling HEV are often found 

at sites of chronic inflammation. MECA-79-reactive HEV-like vessels together with 

dendritic cells and zones of B and T cells populate tissues at sites of persistent 

inflammation in a process known as lymphoid organ neogenesis [445, 446]. PNAd, 

MadCAM and/or CD34 expressing HEV-like venules have been identified in various 

inflammatory diseases (the diseases are listed in table 1.2) [442, 447-453]. Additionally, 

HEV-like structures have also been identified in gastric lymphoma that lacked MECA-79 

reactivity, but nevertheless could bind L-selectin through 6-sulfo-sLex [454]. This 
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suggests that much like in the case of PLN HEV, other ligands than PNAd are involved 

in binding L-selectin at sites of chronic inflammation.  

MECA-79 staining of acutely inflamed vessels has not been reported to date, and the 

existence of other L-selectin ligands at sites of inflammation in vivo is controversial. For 

example, no L-selectin ligand activity during leukocyte recruitment in the exteriorised 

cremaster muscle venules was found by Eriksson (2008) [455]. On the other hand, an 

unidentified ligand has been observed during neutrophil recruitment to the inflamed 

peritoneum and in the cremaster muscle model of inflammation in a different study [456]. 

In vitro, the situation seems to be clearer as several studies found L-selectin ligand 

activity on activated ECs. As mentioned in section 1.7.4, human but not mouse L-

selectin from neutrophils binds E-selectin, as identified by cell-free binding experiments 

and neutrophil recruitment in parallel-plate flow chamber assay [355, 381]. 

Sulfoglucuronosyl paragloboside (SGPG) has been identified as L-selectin ligand during 

interaction of PBL with IL-1β stimulated bovine brain microvascular endothelial cells 

(BMEC) in a static binding assay [457]. Additionally, unidentified ligands were seen 

during leukocyte recruitment to TNF-α activated bovine kidney microvascular glomerular 

endothelial cells (BKMGEC) or human cardiac microvascular ECs (HCMEC) in static and 

non-static (rotation or flow) in vitro [458, 459]. These ligands were synthetized de novo, 

required sialylation or sulfation and mediated interaction for prolonged period of time (24-

48 hours) [458, 459]. Furthermore, inducible L-selectin ligand has been seen on IL-4 

stimulated HUVEC, and this ligand supported L-selectin-mediated monocyte recruitment 

for at least 48 hours under rotating conditions [410]. Given that rolling has been observed 

to be dependent on L-selectin at later time-points (> 1-2 h) [52, 365, 411], it is plausible 

that it is these unidentified ligands, which persist on the endothelium for long periods of 

time that bind L-selectin to support leukocyte rolling at later stages of the recruitment. 

Additionally, it seems that the vascular bed specificity for these ligands exists as 

demonstrated by the study by Zakrzewicz et al. (1997), who observed L-selectin ligands 

on HCMEC but not on the ECs derived from the macrovessels [459]. 

Interestigly, L-selectin ligand(s) were also detected on resting bovine aortic endothelial 

cells (BAEC), and their expression increased after TNF-α stimulation [460]. These 

ligands supported monocyte recruitment to BAEC under rotating conditions [460], 

suggesting a role for L-selectin/ligand binding in the recruitment of monocytes to the 

aortic endothelium and in development of atherosclerosis. The role of monocytes and L-

selectin in the pathogenesis of atherosclerosis is described in sections 1.6.2 and 1 .13.1, 

respectively. 
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1.8.3  L-selectin ligands in the extravascular tissues 

A substantial number of reports have identified components of the extracellular matrix 

(ECM) as ligands for L-selectin. The majority of these ligands belong to the family of 

sulfated proteoglycans (PGs), and binding of heparan sulfate (HS), dermatan sulfate 

(DS) and chondroitin sulfate (CS) PGs derived from rodent and human tissues to L-

selectin has been shown [461-463]. The proteoglycans involved in L-selectin binding 

have been identified as HSPG collagen XVIII, CS/DS PG versican and DSPG biglycan, 

and all bind L-selectin via their sulfated glycosamicoglycan (GAG) chains [221, 354, 463-

466]. PGs are well-known for their involvement in tissue architecture maintenance, 

however emerging body of evidence suggests that they also act as signalling molecules 

actively participating in the inflammatory response [467]. In keeping with this, 

accumulation of versican and biglycan is associated with development of atherosclerotic 

lesions in humans and mice [468-475], and loss of collagen XVIII has been shown to 

promote atherosclerosis in mice [476]. Interestingly, lubricin, a mucin-like protein isolated 

from the synovial fluid of patients with rheumatoid arthritis, has also been shown to bind 

L-selectin via its sialylated and sulfated oligosaccharides [477]. These reports suggest 

that L-selectin and its ECM ligands could mediate leukocyte emigration during chronic 

inflammatory diseases. A role for ECM components in leukocyte tissue infiltration has 

been suggested by Ogawa et al. (2004), who found that monocytes from L-selectin null 

mice and sulfatide null mice display the same extent of emigration defect in murine 

unilateral ureteral obstruction (UUO) model [420]. Sulfatide is an ECM glycolipid, which 

also has been shown to bind L-selectin via its long sulfated sugar chains [478]. Notably, 

distribution of sulfatide and L-selectin ligands in both normal and ureteric obstructed 

kidneys is very similar, and 24 hours after UUO both relocate from distal renal tubules to 

vascular bundles, where subsequent infiltration of monocytes is seen [420, 479]. The 

same staining pattern has been observed for versican, although examination of 

leukocyte emigration was not performed in this study [465]. Interestingly, interstitial 

infiltration of L-selectin-positive cells has been seen in kidney biopsy sections from 

patients with immunoglobulin A (IgA) nephropathy [480], suggesting a role for L-selectin 

in pathogenesis of kidney disease in humans. 

Heparan sulfates are commonly present on the luminal surface of ECs, where they are 

involved in chemokine presentation [481, 482]. Interestingly however it is unlikely that 

these heparan sulfate moieties mediate L-selectin binding. L-selectin has been shown to 

have a pH-dependent preference for its ligands, and whilst 6-sulfo-sLex binding occurs 

at the blood pH of 7.4, binding of HS and CS chains was observed at pH of 5.6 [483]. In 

line with this, L-selectin dependent rolling was seen at the pH range between 6.8 and 

7.4 and no rolling was detected below pH 5.6 [483]. A very recent report found that in 
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acidic conditions, the carbohydrate binding domain of L-selectin becomes protonated 

and shares more bonds with sulfated GAG chains, which increases binding affinity [484]. 

Acidic pH is often found at sites of inflammation [485, 486] and perhaps it is an important 

factor in modulating L-selectin’s affinity for its intra- versus- extravascular ligands.     

1.8.4 Various L-selectin ligands on other cells 

Apart from ECs and ECM components L-selectin can bind variety other cells. The best 

known non-vascular ligand for L-selectin is PSGL-1, which binds L-selectin through a 

sLex moiety and sulfated tyrosine residues within its protein backbone [62]. L-

selectin/PSGL-1 interactions are responsible for secondary capture of leukocytes at sites 

of inflammation (section 1.2.3). Interestingly PSGL-1 has been discovered on the 

endothelium of microvessels induced in advanced atherosclerotic plaques, where it 

supports leukocyte infiltration [299]. This yet again points towards a role for L-selectin in 

atherosclerosis (section 1.13.1).  Another cell surface leukocyte protein endoglycan has 

been reported to bind L-selectin [487]. Like podocalyxin and CD34, endoglycan is a 

member of the CD34 family and is also expressed on the vascular endothelium, smooth 

muscle cells and hematopoietic precursor populations [487]. Despite being a mucin, 

endoglycan shows similarities to PSGL-1 in that it binds L-selectin via sLex and sulfated 

tyrosine residues [487]. However, a relevant contribution of endoglycan to L-selectin-

dependent recruitment has not yet been established. L-selectin has been shown to bind 

a variety of ligands on cancer cells (table 1.2) [352, 361, 488], suggesting a role for L-

selectin in cancer metastasis. Indeed, it has been shown that L-selectin-dependent 

interactions of leukocytes at the sites of tumour cells embolization facilitate initiation of 

tumour cell extravasation [489]. MECA-79 reactive ligands for L-selectin have also been 

found on human endometrium during the window of implantation [490]. In agreement 

with this, a role for L-selectin in trophoblast implantation has been reported [491]. 

Taken together L-selectin has the ability to bind a variety of ligands, in both health and 

disease. This in turn opens up multiple possibilities for L-selectin-dependent therapies 

(section 1.13.2). 
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Localisation L-selectin ligand Notes Citation 

PLN HEV  GlyCAM-1 

 CD34 

 Podocalyxin-likeprotein1 

 Sgp200 

 Endomucin 

 Nepmucin2 

 MadCAM-13 

 Unidentified4 

1Belongs to CD43 family 
2Not expressed in PP HEV 
3Not expressed in PLN  
(Mesenteric LN only) 
4O-glycoprotease resistant (non-mucin) 

[337, 427, 
432-439, 
441] 

ECs 
at sites of 

inflammation 

 MECA-79  reactive antigens1 

 E-selectin2 

 Unidentified, seen in vivo 

 Unidentified, induced on HUVEC by IL-4 

 Sulfoglucuronosyl paragloboside (SGPG), induced on BMEC 
by IL-1β 

 Unidentified, induced by TNF-α on HCMEC3, BKMGEC4 and 
BAEC 

1Expressed on HEV-like vessels induced in certain chronic 
inflammatory diseases: ulcerative colitis, Crohn’s disease, asthma, 
diabetis, cutaneous inflammation and lymphoma, Grave’s disease, 
rheumatoid arthritis 
2On human, but not mouse neutrophils 
3Sulfation but not  sialylation required 
4 Sialylated, de novo synthesised 

[381, 410, 
442, 447-
453, 456-
460] 

ECM  Versican (CS/DS PG)1 

 Biglycan(DSPG)1 

 Collagen VXIII(HSPG)1 

 Sulfatide (sulphated glycolipid)2 

 Lubricin (mucin-like glycoprotein)1  

1Bind L-selectin through long sulfatated GAGs 
2Binds L-selectin via cluster of sialylated and sulphated sugars 

 [221, 
354, 420, 
461-466, 
477, 479] 

Various  PSGL-11 

 Endoglycan1  

 Podocalyxin-like protein (Non-MECA-79 reactive)2 

 MECA-79 reactive3 

 Carcinoembryonic antigen (CEA)4 

 CD445 and CD44v6 

 Human complement factor H 

 Nucleolin 

1Binding through sLex and Tyr-SO3 
2On colon carcinoma cells 
3On human endometrium during the window of implantation 
4Expressed by CLS174T colon carcinoma cell line 
5Expressed by hematopoietic-progenitor cells 
6Various isoforms Isolated from CLS174T colon carcinoma 

[62, 352, 
361, 487, 
488, 490, 
492-494] 

Table 1.2 L-selectin ligands. This is a current list of identified L-selectin ligands. This table shows known L-selectin ligands alongside the details about the location 

of their expression and ligand nature. Note that the list may not be exhaustive. For the abbreviations used see Abbreviations section.

PNAd mucins 
(MECA-79 reactive) 
Bind L-selectin through 6-sulfo-sLex 
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1.9 REGULATION OF L-SELECTIN EXPRESSION 

L-selectin levels on circulating leukocytes are fairly constant, however, under certain cell 

activating conditions, cell surface L-selectin is rapidly downregulated in a process known 

as “shedding” (section 1.9.2) [495, 496]. Additionally, upon T cell activation, L-selectin 

shedding is accompanied by modulations in L-selectin messenger RNA (mRNA) levels 

and stability [386, 497]. Certain T cell subsets (central memory T cells) subsequently 

upregulate surface L-selectin expression, which enables recirculation to PLN [387, 498]. 

Furthermore, human leukemic cells freshly isolated from patients were shown to sustain 

high L-selectin mRNA levels, which was associated with increased leukocyte infiltration 

into various organs [499]. Thus, L-selectin expression levels can be actively regulated 

both transcriptionally (section 1.9.1) and post-translationally (through shedding), and 

deviations in these balances are often seen in disease. 

1.9.1 Transcriptional regulation of L-selectin expression 

Human L-selectin from all leukocyte subsets is encoded by the lam-1 gene 

(Chromosome 1) containing at least 10 exons that produce single L-selectin mRNA, and 

9 of these exons are translated in to L-selectin protein [313]. Post-translational 

glycosylation accounts for differences in L-selectin MW seen between the leukocyte 

subsets [381, 402]. No reports exist about alternative L-selectin protein variants, 

however, three different L-selectin isoforms were discovered in mice (L-selectin-v1-3) 

[500]. Mouse L-selectin-v1-3 comprise only 3-5% of the total L-selectin protein [500], and 

it is currently unclear how these splice variants may affect L-selectin-dependent 

recruitment.   

The positioning of the L-selectin gene promoter is located immediately upstream (-288/-

1 bp) of the START codon, and can be activated by a number of transcription factors 

(TFs), e.g. Krupper-like factor 2(Klf2), Forkhead box protein O1 (FOXO-1), E-twenty six 

(Ets1), myeloid zinc finger 1 (Mzf1), specificity protein 1 (Sp1), and to a lesser extent, 

interferon regulatory TF (Irf1) [501-504]. It has been shown that FOXO-1 and another TF 

– Elf4 (Ets-related transcription factor) – regulate the expression of Klf2 [505-507]. 

Therefore, FOXO-1 appears to regulate L-selectin expression by at least two 

mechanisms: by activating Klf2 and by directly binding to the FOXO-1 motif identified 

within the L-selectin promoter region [503]. Deficiency in FOXO-1, Klf2 or Elf1 result in 

decreased L-selectin expression, reduced lymphocyte homing to PLNs and increased T 

cell accumulation in non-lymphoid tissues [504-510]. In line with this, Klf2 over-

expression leads to increased L-selectin expression and augments lymphocyte 

recruitment to PLN [501]. It has been shown that upon T cell receptor (TCR) ligation, Klf2 

mRNA levels are reduced, which results in decreased L-selectin gene transcription [511]. 
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Klf2 expression was shown to be downregulated by the phosphatidylinositol-3-OH kinase 

(PI(3)K) that mediated its effects through the mammalian target of Rapamycin (mTOR) 

[511]. This signalling pathway is not active in naïve T cells and thus L-selectin 

transcription is maintained on T cells that home to PLN and becomes quenched in 

activated T cells [511]. Interestingly, another TF, Forkhead Box M1 (FOXM-1) was 

recently shown to control L-selectin levels on monocytes but not neutrophils [512]. 

FOXM-1 deficient mice showed impaired accumulation of monocytes during acute liver 

injury [512], implying a role for this TF in the L-selectin-dependent monocyte homing to 

sites of inflammation. Hence, it seems that transcriptional regulation of L-selectin 

expression depends on both leukocyte subset and the cell activation status. Interestingly, 

genetic variations in the proximal 5´ flanking region of the L-selectin promoter have been 

identified in Chinese and Japanese populations, and have been proposed to be the risk 

factors for Grave’s autoimmune disease and the immunoglobulin A nephropathy  [480, 

513]. One of the variations (–642A>G substitution) was subsequently shown to impair 

the transcription efficiency of the L-selectin gene [514]. 

1.9.2 Regulation of L-selectin expression by proteolytic cleavage (shedding) 

Endoproteolytic cleavage of L-selectin, termed “shedding”, occurs at an extracellular site 

proximal to the cell membrane (figure 1.7) and results in the formation of a 68 kDa 

soluble form of L-selectin (sL-selectin) and retention of a 6 kDa transmembrane fragment 

(and will be referred to interchangably as “stump”) [326, 515]. The proteolytic activity is 

membrane-associated [516, 517] and can be inhibited by hydroxamic acid-based 

metalloprotease inhibitors, which are often employed to study L-selectin shedding [313, 

517-520].  Upon cell activation, L-selectin is cleaved between lysine-283 and serine-284 

by A Disintegrin and Metalproteinase 17 (ADAM17) (also known as TNF-α converting 

enzyme, TACE) [326, 521-523]. Additionally, ADAM8 and ADAM10 have been reported 

to have the ability to shed L-selectin [524, 525]. ADAM10 is most closely related to 

ADAM17 [526], and in vitro studies showed that it can be activated to cleave L-selectin, 

when ADAM17 is chronically absent [525]. Notably, emigrated ADAM17 null neutrophils 

were shown to be able to shed their L-selectin in the model of murine peritonitis [527]. It 

is possible that this was due to ADAM8 activity, as ADAM8 has been shown to be 

upregulated on human neutrophils upon adhesion to ECs [524]. Additionally, ADAM8 

has also been implicated in L-selectin cleavage during chronic inflammatory disease, i.e. 

rheumatoid arthritis [524]. Interestingly, neither point mutations nor mutations of multiple 

conserved amino acids within the cleavage site were found to affect L-selectin shedding 

[522, 528]. However, deletions of several amino acids within the L-selectin cleavage 

domain – which brought the cleavage site closer to the plasma membrane – abolished 

L-selectin shedding [323, 522, 528]. Therefore, metalloproteases that cleave L-selectin 
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seem to target a “relaxed” sequence specificity, but are more sensitive to the physical 

distance of the cleavage site from the plasma membrane, and possibly other structural 

features of the cleavage site.  

L-selectin is shed upon stimulation with various cell activating factors, e.g. phorbol 12-

myristate 13-acetate (PMA), N-formyl-methionyl-leucyl-phenylalanine (fMLP), thrombin, 

IgE receptor agonists, a peptide component of complement activation (C5a), IL-8, 

lipopolysaccharide (LPS), TNF-α, PAF, H2O2, phosphatase inhibitors, as a result of 

mechanical force imposed during rolling, upon B- or T cell receptor (BCR and TCR, 

respectively) engagement, or upon ectodomain cross-linking [419, 421, 495, 496, 529-

538]. Protein kinase C (PKC) and various mitogen activated protein kinases (MAPK) 

have been implicated in mediating L-selectin shedding [495, 496, 511, 531, 539-541]. 

The interaction between PKC, L-selectin, and contribution of sequences within the tail to 

shedding are discussed in more detail in section 1.10.2.  

The shed extracellular domain of L-selectin remains functionally active and can prevent 

leukocyte attachment to ECs in vitro [542] and in vivo [543], possibly acting like an 

“adhesion buffer” limiting excess leukocyte recruitment at sites of inflammation. In 

addition to cell-activation induced shedding, L-selectin is constitutively cleaved from the 

cell surface, which is known as “basal shedding” [521, 544]. The plasma of healthy 

humans contains 1.6±0.8 µg/mL of sL-selectin [542, 545], and such high concentration 

suggests that basal shedding is a physiologically relevant process. In keeping with this, 

plasma sL-selectin levels are affected in certain inflammatory diseases, e.g. elevated sL-

selectin is seen in patients with SLE [546, 547] or type I diabetes [548], and low levels 

were observed in patients suffering from adult respiratory distress syndrome (ARDS) 

[549]. Not much is currently known about basal shedding. It is dependent on 

metalloprotease activity and utilizes the same cleavage site as the activation-induced 

shedding, however the exact metalloprotease has not been identified [521, 544]. 

ADAM17 null mice have been reported to produce sL-selectin and “stump”, implying that 

other than ADAM17 metalloprotease mediates basal shedding [521, 544]. At the same 

time, increased surface levels of L-selectin were seen on neutrophils from ADAM17 null 

mice, suggesting that this enzyme does control L-selectin surface density under resting 

conditions [521, 527]. It is possible that two mechanisms of basal L-selectin turnover 

exist, one that is independent and the other that is dependent on ADAM17. The first one 

controls homeostatic sL-selectin plasma levels and the latter controls L-selectin surface 

density. Interestingly, in 1996 it was shown that a protease-independent mechanism of 

L-selectin shedding could also occur [529]. Seven years later, generation of mice 

expressing sheddase-resistant mutant of L-selectin showed that very low (<5% of wild 

type) sL-selectin levels were present in plasma of these mice, suggesting that the 

protease-independent mechanism could contribute to basal L-selectin shedding [22]. Of 
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note, L-selectin shedding during neutrophil apoptosis has been shown to be dependent 

and independent on ADAM17 at early and later stages, respectively [550]. 

Although the physiological significance of L-selectin shedding is not entirely understood, 

a few definite and putative roles have been identified. As mentioned above, shedding 

maintains physiological sL-selectin levels in plasma. Several studies using hydroxamic 

acid-based metalloprotease inhibitors or mice expressing sheddase-resistant L-selectin 

suggested a role of shedding at various stages of the leukocyte adhesion cascade. Some 

reports implicate shedding as a mechanism limiting leukocyte rolling at sites of 

inflammation [519, 551, 552], however others find no influence of L-selectin cleavage on 

leukocyte rolling velocity or flux [419, 520]. Shedding was found to play an important role 

during T cell recirculation to PLN. It has been shown that during TEM across PLN HEV 

naïve T cells downregulate their surface L-selectin to 30% of the blood levels, and then 

re-express the protein upon the exit [553]. In line with this, blocking L-selectin shedding 

results in reduced TEM of naïve T cells across HEV [22, 518]. Furthermore, L-selectin 

shedding occurs in activated T lymphocytes and this prevents them from re-entering the 

PLNs [22, 419]. Shedding is also thought to occur during TEM at sites of inflammation 

as surface levels of L-selectin on emigrated leukocytes are low compared to “resting” 

levels seen on cells in the circulation or in culture [520, 554-556]. However, the exact 

timing or spatial distribution of L-selectin shedding on transmigrating leukocytes has not 

been investigated so far. Interestingly, L-selectin shedding has also been proposed to 

be important in leukocyte migration beyond vessel walls and possibly controls 

chemotaxis in vivo (section 1.7.5.1.2) [419]. Finally, it is likely that L-selectin shedding 

is regulated differently depending on the leukocyte subset. ADAM17 null mice showed 

increased adhesion and early emigration of neutrophils but not monocytes at sites of 

inflammation [527]. Additionally, ADAM17 null neutrophils did, and monocytes did not 

shed their L-selectin upon emigration in the thioglycollate-induced peritonitis mouse 

model of inflammation [527]. 

1.10 THE CYTOPLASMIC TAIL OF L-SELECTIN 

The cytoplasmic tail of L-selectin is only 17 amino acid-long, however it is known to 

interact with a number of cytoplasmic proteins. These interactions are important for L-

selectin function, sub-cellular distribution and signalling [90, 496, 515, 557-561]. The 

main players involved in the interactions at the tail of L-selectin are the actin binding 

proteins α-actinin and the ERM proteins, ezrin and moesin, as well as the calcium-

sensing protein calmodulin. Another important feature of the L-selectin tail are the two 

serine residues, of which phosphorylation is likely to regulate L-selectin shedding 

amongst other aspects of L-selectin [495, 496]. Figure 1.10 shows a schematic summary 

of the interactions between the L-selectin tail and its main cytosolic binding partners, and 
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these interactions are described in more detail in the following sections. Of note, L-

selectin has also been shown to bind the p56Lck kinase, SOS/Grb2 [245], c-Abl [562] and 

high mobility group 1 (HMG1) [563]. No information is currently available about the 

functional implications of L-selectin interaction with HMG1. The involvement of p56Lck 

and c-Abl is described in the subsequent sections with respect to signalling downstream 

of the L-selectin tail (section 1.11.4).    

 

Figure 1.10 The cytoplasmic tail of L-selectin. The short, 17 amino acid cytoplasmic tail of L-

selectin interacts simultaneously with CaM (L358 and K359), ERM proteins (R357 and K362) and 

α-actinin (K363 to Y372). Phosphorylation of the L-selectin tail occurs at S364 and S367. The 

outcomes of each of the interaction as well as the results of the phosphorylation are depicted on 

the diagram and discussed in the text. For abbreviations used see Abbreviations section. Image 

adapted from Ivetic and Ridley, Biochem. Soc. Trans., 2004 [564]. 

1.10.1 Interaction with α-actinin 

The first molecule identified to bind to the cytoplasmic tail of L-selectin was the 

cytoplasmic actin-binding protein α-actinin [565]. L-selectin/α-actinin interaction was 

shown through a solid-phase binding assay and co-immunoprecipitation studies in L-

selectin transfectants and Jurkat T lymphocytes [565, 566]. Interaction with α-actinin is 

mediated by the 11 amino acid COOH-terminal domain of the L-selectin tail [565] (figure 

1.10). Deletion of this sequence was earlier reported to abolish in vitro binding of 

lymphocytes to HEV in frozen LN sections as well as in vivo rolling of leukocytes in 

exteriorized rat mesenteric venules [557]. Therefore, α-actinin-mediated linkage of L-

selectin to the actin cytoskeleton is critical for the L-selectin-dependent adhesion of 

leukocytes to the endothelium. On the other hand, L-selectin lacking the 11 terminal 

amino acids correctly localised to microvilli, suggesting that α-actinin is not important for 
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• Signalling? 
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L-selectin microvillar positioning [565]. Two other cytoskeletal proteins, vinculin and talin, 

are also thought to associate with the L-selectin/α-actinin complex [565]. 

1.10.2 Cytoplasmic serine residues and interaction with PKC isoforms 

Two serine residues at position 364 (S364) and 367 (S367) of L-selectin have been 

shown to be important for ectodomain shedding (figure 1.10). Phosphorylation of S364 

and S367 within the L-selectin cytoplasmic tail mediates PKC-dependent shedding in 

response to PMA, IL-8, thrombin, IgE agonists, C5a, PAF and fMLP [495]. In line with 

this, mutation of S364 or S367 into non-phosphorylatable alanines desensitizes L-

selectin to PKC-dependent shedding, and mutation of S367 into a phospho-mimicking 

aspartate sensitizes shedding [534]. Strangely, mutation of S364 into aspartate was 

found to reduce rather that promote shedding [496]. It is possible that this substitution is 

not a successful phosphomimic or perhaps a complex relationship between the two 

serines exist, where S364 needs not to be phosphorylated to drive S367 phosphorylation 

and shedding. Studies by Kilian et al. (2004) showed that PKC isozymes θ and  

transiently interact with the cytoplasmic tail of L-selectin and are involved in the 

phosphorylation of S364 and S367, with a preference to the former [567]. Once 

phosphorylated, the cytoplasmic domain of L-selectin increases binding of PKCθ and 

promotes binding of PKCα [567]. This suggests that serine phosphorylation and L-

selectin shedding could promote formation of a signalling complex at the tail of L-selectin. 

However, it is currently unknown which event occurs first, serine phosphorylation or 

shedding, and it is possible that the PKC isoforms could bind the L-selectin “stump”. 

Shedding is linked to the disassociation of calmodulin (CaM, section 1.10.4) from the L-

selectin tail, and CaM does not co-immunoprecipitate with the “stump” [559]. Perhaps a 

change-over of binding partners – from CaM to PKC isoenzymes – is involved in 

signalling downstream of L-selectin tail upon PKC-mediated shedding. In support of this 

theory, L-selectin is a well-known signalling molecule and phosphorylation of its single 

cytoplasmic tyrosine residue has been associated with intracellular signalling events 

(section 1.11.4). On the other hand, shedding induced by the phosphatase inhibitors 

(cantharidin and calyculin A, the PP2A-type phosphatase inhibitors) is independent of 

both PKC and phosphorylation of the L-selectin serine residues, but is driven by p38 

MAPK, phosphorylation of ADAM17 cytoplasmic tail and upregulation of surface 

ADAM17 levels [496]. Further differences between PKC- and p38 MAPK-dependent 

shedding is demonstrated by the fact that the PKC-mediated shedding requires 

interaction of the L-selectin tail with the ERM proteins, whereas p38 MAPK-mediated 

shedding occurs independently of the ERMs  (section 1.10.3) [496]. In conclusion, 

protease-sensitive site-dependent L-selectin shedding can be regulated by PKC, ERM 



72 
 

and modulation of L-selectin cytoplasmic tail, or by p38 MAPK and regulation of ADAM17 

phosphorylation and surface expression.  

1.10.3 Interaction with the exrin/radixin/moesin (ERM) family members 

The family of ERM proteins consists of three members, exrin, radixin and moesin, which 

have an approximate MW of 75-82 kDa. Inactive ERM proteins reside in the cytosol in 

an auto-inhibited conformation, where N- and C-termini interact with each other [568]. 

Upon activation, the ERM proteins switch into an extended form, where the N-terminal 

FERM (band Four point one Ezrin Radixin Moesin) domain binds the integral 

transmembrane proteins and the C-terminal domain binds F-actin [569, 570]. Thus, the 

active ERM proteins serve to link the transmembrane proteins to the actin cytoskeleton. 

Apart from their structural purpose, the ERM proteins can modulate leukocyte function, 

and especially motility, by acting both upstream and downstream of the Rho GTPases 

[571]. In murine lymphocytes, the cytoplasmic tail of L-selectin was shown to bind ezrin 

and moesin as radixin expression is absent in leukocytes [563]. L-selectin arginine-357 

(R357) and lysine-362 (K362) were shown to contribute to binding ERM (R357 having a 

predominant role), and both are located within a 6 amino acid, membrane proximal 

cytoplasmic tail domain [558] (figure 1.10). Cell lines expressing alanine swap mutations 

of L-selectin at positions R357 or K362, which abrogate ERM binding, showed impaired 

microvillar positioning, reduced PMA-induced shedding, as well as decreased tethering 

efficiency [496, 558]. Interestingly, L-selectin/ERM interaction was shown to be 

dispensable for the phosphatase inhibitor-mediated shedding [496]. Thus, L-

selectin/ERM interaction is important for PKC-mediated shedding and localisation of L-

selectin to leukocyte microvilli, which in turn is likely to positively influence tethering. Both 

R357 and K362 are juxtaposed to L358 and K359, which are amino acid residues 

responsible for calmodulin (CaM) binding (section 1.10.4) [559]. A detailed study by 

Killock et al. (2009), involving molecular modelling, in vitro binding assays and in vivo 

protein-protein interaction studies showed that, despite close proximity of their putative 

binding sites, CaM and ERM interact with the L-selectin tail in a non-competitive way 

[572]. Moreover, the same report predicted that ERM, L-selectin and CaM can form a 

1:1:1 ternary complex in resting leukocytes, which was confirmed by other recent studies 

(see section 1.10.4 below) [573, 574]. Additionally, it has been proposed that CaM and 

ERM derived from adjacent L-selectin molecules interact in cis upon L-selectin 

clustering, which is likely to promote intracellular signalling, possibly involving Rap1A 

mobilisation via Ras/SOS pathway [496]. Signalling triggered by ligation of L-selectin 

domain is discussed in more detail in section 1.11 of this thesis. 
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1.10.4 Interaction with calmodulin (CaM) 

Calmodulin (CaM) is an ubiquitous 17 kDa calcium regulatory protein that associates 

with the tail of L-selectin in resting transfected cell lines and primary leukocytes [515, 

559, 572]. The amino acid residues in the L-selectin cytoplasmic tail that contribute to 

interaction with CaM are leucine-358 (L358) and lysine-359 (K359) (figure 1.10) [515, 

559]. Inhibition of CaM promotes protease-dependent shedding of the L-selectin 

ectodomain (section 1.9.2) in human neutrophils, and significantly reduces adhesion of 

pre-B lymphocytic cells to HEV as well as their rolling on MECA-79 antigen [515]. Direct 

proof for the involvement of CaM in the ectodomain shedding was provided by Matala et 

al. (2001) who showed, through L-selectin tail mutational analysis, that disassociation of 

CaM from L-selectin increases shedding [559]. Through biophysical studies it has been 

suggested that CaM binds L-selectin via interaction with both its cytoplasmic tail and the 

transmembrane domain (TMD) [575]. A mechanism was proposed, whereby CaM, in a 

compact conformation, wraps around L-selectin tail and reaches into the TMD [575]. This 

in turn pulls the L-selectin molecule down, thereby burying the extracellular cleavage site 

in the plasma membrane [575] (figure 1.11 A). However, it is hard to envisage the 

hydrophilic amino acids of the L-selectin membrane proximal cleavage site being 

inserted in to the hydrophobic plasma membrane. Interestingly, recent studies using CLS 

(C-terminal portion of human L-selectin, comprising the entire tail and TMD) reconstituted 

in liposomes showed that CaM assumes an extended conformation when binding to the 

L-selectin tail, where only single lobe of CaM is involved in this interaction [574, 576] 

(figure 1.11 B). When the liposomes contain negatively charged lipids (i.e. 

phosphatidylserine, PS) that mimic the inner leaflet of the plasma membrane, this 

interaction is abolished [576]. This is because the basic-rich L-selectin tail interacts with 

the anionic lipid bilayer instead [576] (figure 1.11 C). Most interestingly, the FERM 

domain of moesin was shown to desorb the L-selectin tail from the anionic membrane 

surface and facilitate L-selectin/CaM interaction [573] (figure 1.11 D). These results are 

in agreement with a ternary model of L-selectin/CaM/ERM binding proposed earlier by 

Killock et al. (2009) [572], and suggest that plasma membrane environment is crucial for 

the interaction of L-selectin with its cytosolic binding partners.   
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Figure 1.11 Models of association between L-selectin and calmodulin. Schematic illustration 

of L-selectin/CaM interaction modes that have been proposed most recently. A) CaM has a 

compact conformation and wraps around L-selectin tail and TMD, pulling the L-selectin molecule 

down, thereby burying the extracellular cleavage site in the plasma membrane. B) CaM has an 

extended conformation, where only one lobe interacts with the L-selectin tail (in neutral charge 

liposome environment). C) In the presence of PS, L-selectin tail has a preference for the inner 

leaflet of the plasma membrane and does not bind CaM. D) FERM domain of moesin desorbs the 

L-selectin tail from the negatively charged membrane and facilitates CaM binding. This leads to 

the formation of a ternary L-selectin/ERM/CaM complex. For abbreviations used see the 

Abbreviations section. Image adapted from Deng et al. , PLoS One, 2013 [574]. 

 

Since in many proteins phosphorylation of critical serine residues can abolish CaM 

binding [577, 578], it was proposed that serine phosphorylation of  L-selectin would 

disrupt L-selectin/CaM interaction, leading to L-selectin shedding [515]. As described 

earlier, the cytoplasmic tail of L-selectin was found to associate with protein kinase C 

(PKC) isoforms [567], and serine phosphorylation shown to be involved in the PKC-

mediated shedding of L-selectin [495, 496]. It is thus plausible that upon cell activation 

sequential changes in binding of CaM, ERM and PKC isoforms as well as modulation of 

the plasma membrane composition regulate L-selectin phosphorylation and shedding.   

1.11 L-SELECTIN OUTSIDE-IN SIGNALLING 

Outside-in signalling downstream of L-selectin has been studied through ligation of the 

ectodomain with various compounds, from primary anti-L-selectin mAb, through primary 

mAbs followed by secondary antibodies (cross-linking) to physiological and synthetic L-

selectin ligands. Various cellular responses resulting from L-selectin ectodomain ligation 

are summarised in table 1.3, and are discussed in more detail in the sections below. 

Phosphatidylserine
(negative charge)

Phosphatidylcholine
(no net charge)CaM (compact) CaM (extended)

Moesin
FERM

CLS
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1.11.1 Changes in lateral mobility of L-selectin in the plasma membrane 

Through the generation of CLS L-selectin it has been shown that L-selectin is monomeric 

in the dodecylphosphocholine detergent micelles [579]. In other words, in resting state 

the cytoplasmic and transmembrane domains of L-selectin do not have the ability to self-

assemble, and no spontaneous oligomerisation can occur [579]. This finding has been 

confirmed in a very recent report, where the micropipette adhesion frequency assay was 

used to show that L-selectin is monomeric in the neutrophil membrane [580].  In contrast, 

PSGL-1 and P-selectin, two other CAMs actively mediating leukocyte recruitment, have 

been shown to exist in plasma membranes as homodimers [581, 582]. Expression of 

transgenic PSGL-1 and P-selectin that existed as monomers resulted in destabilised 

neutrophil rolling [583], suggesting that receptor oligomerisation is a functionally 

important process for successful leukocyte recruitment. Interestingly, dimerization of L-

selectin molecules by labelling with mAb (LAM1-118, non-function blocking antibody) 

increased L-selectin’s avidity for its ligands and enhanced tether formation under flow 

[584]. Similarly, chemically induced dimerization (CID), where two adjacent L-selectin 

molecules are artificially brought together without ectodomain engagement, resulted in 

enhanced ligand binding as well as increased rolling flux and decreased rolling velocity 

of 300.19 cells on transformed HUVEC that expressed L-selectin ligands [585]. This 

implies that upon stimulation, adjacent monomeric L-selectin molecules do come 

together, which leads to signal propagation and results in the cellular responses. An 

obvious stimulus that could elicit L-selectin oligomerisation (hereafter referred to as 

“clustering”) would be the engagement of ectodomain that could physically bring the 

adjacent molecules together. Indeed, L-selectin “patching” (a distinct strong 

immunofluorescence signal belonging to the fluorescently-conjugated secondary 

antibody used for cross-linking) has been observed upon L-selectin cross-linking or 

binding of E-selectin-IgG chimera [87, 91, 586]. In these experiments L-selectin 

clustering coincided with upregulation of and adhesion through Mac-1 (for L-selectin 

mediated integrin-dependent adhesion see section 1.11.2). In U937 monocytic cells 

triple-expressing L-selectin, ezrin-GFP and CaM-mCherry, labelling of L-selectin with 

mAb has been shown to induce CaM/ERM interaction in cis (as measured by FRET 

between ezrin-GFP and CaM-mCherry), which was potentiated after cross-linking with 

secondary antibody [572]. This suggests that a degree of L-selectin clustering regulates 

the lateral mobility of its cytosolic binding partners and could lead to the assembly of 

signalling platforms associated with two adjacent L-selectin tails [572]. Additionally, L-

selectin cross-linking, sequential stimulation of L-selectin with two mAb or ligation of L-

selectin ectodomain with GlyCAM-1 has been shown to redistribute L-selectin into 

cholesterol-rich detergent resistant membranes (DRM) [560, 587]. Movement to DRM 
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was dependent on the 11 terminal amino acids of L-selectin tail, as mutant L-selectin 

lacking this sequence failed to translocate to DRM [560]. Cholesterol-rich membrane 

microdomains, termed lipid rafts, are known to mediate immune cell signalling [382, 588], 

and hence it is plausible that upon ligand binding L-selectin clusters and translocates to 

DRMs, where it can interact with its signling partners.        

1.11.2 Activation and upregulation of the integrins 

As described in sections 1.2.4 and 1.7.5.1.1 outside-in signalling triggered by L-selectin 

ectodomain ligation is vital for the arrest of the rolling leukocytes. Antibody-mediated 

cross-linking of L-selectin, ligation with GlyCAM-1 or E-selectin-IgG chimera result in 

leukocyte adhesion through β1 and β2 integrins [86, 88, 589, 590]. Interestingly, binding 

of soluble fibronectin – which is a β1 integrin dependant process – occurred in naïve, but 

not memory, T cells upon ligation with fucoidan (a known polyvalent mimic of natural 

occurring L-selectin ligands, it is found in brown sea weed) [88]. Similarly, L-selectin 

cross-linking or GlyCAM-1 binding led to increased adhesion through or activation of β2 

integrins, respectively, that occurred in naïve but not memory T cells [86]. This suggests 

that L-selectin on certain lymphocyte subsets might transduce signalling in a functionally 

different manner to promote adhesion. Stimulation with primary antibodies was shown to 

increase activity, as measured by the expression levels of active epitopes, of β1 and β2 

integrins on neutrophil surface in the absence of increased integrin expression [591]. 

However, upregulation of Mac-1 (CD11bCD18) integrin levels on neutrophils are seen 

upon L-selectin cross-linking as well as upon simultaneous stimulation of L-selectin with 

two primary antibodies [87, 89, 91]. Perhaps L-selectin-mediated regulation of integrin-

dependent adhesion is governed by the magnitude of clustering, where initial 

engagement (i.e. elicited by single primary antibodies) causes activation of cell surface 

integrins, and further clustering (i.e. cross-linking or stimulation with two antibodies at 

once) leads to expression of new integrin molecules on the cell surface. As far as the 

signalling pathways are concerned, it has been reported that L-selectin-dependent 

adhesion through Mac-1 is a result of p38 and p42/44 MAPK (ERK1/2) phosphorylation 

[413, 589]. Interestingly, phosphorylation of p38 MAPK was seen as soon as 1 minute 

upon cross-linking, it then dropped at 2 minutes and then rose again at 3-5 minutes upon 

L-selectin cross-linking [589]. Phosphorylation of ERK1/2 had delayed kinetics with 

phosphorylation peaking at 3-5 minutes, suggesting that p38 MAPK might be the primary 

kinase responsible for L-selectin mediated Mac-1-dependent adhesion [589]. In fact, 

inhibition of p38 MAPK completely abolished L-selectin-dependent neutrophil adhesion 

to the albumin-coated latex beads (ACLB, used to test for Mac-1 dependent 

adhesiveness) [589]. However, the influence of ERK1/2 inhibitor on ACLB binding was 

not tested in this study [589], and hence the relative ERK1/2 contribution to Mac-1-
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dependent L-selectin-mediated adhesion in this system is not known. Another report has 

shown that inhibition of ERK1/2 blocks 80% of β2 integrin upregulation induced by L-

selectin cross-linking, highlighting the importance of this kinase [91].  Whether L-selectin 

signals to the integrins through co-clustering in specific membrane domains is currently 

unclear. Co-localisation of L-selectin and CD18 integrin has been reported upon L-

selectin cross-linking [87], however, such an event might be ligand-specific, as no co-

localisation was found after L-selectin/E-selectin-IgG binding [413].  

1.11.3 Regulation of chemokine receptor expression and chemotaxis 

L-selectin cross-linking or ligation with sulfatides or fucoidan have been shown to 

upregulate CXCR4 receptor on the surface of human peripheral blood lymphocytes 

(PBL), granulocytes and monocytes, murine T cells and K562 myeloid  cell line 

transfected with L-selectin [85, 90]. Notably, sulfatide-triggered CXCR4 upregulation 

occurred in CD4+, but not CD8+ T cells or B cells [90], suggesting that L-selectin 

signalling might be specific to leukocyte subtype. Enhanced surface CXCR4 expression 

was a result of pre-formed intracellular stores mobilisation, as verified by flow cytometry 

and measurement of total protein content in permeabilized cells [85]. Furthermore, L-

selectin dependent CXCR4 upregulation was selective and specific, as no enhanced 

expression of other CCR receptors, CCR5 and CCR7, was seen upon ligation with 

fucoidan or sulfatides [85]. L-selectin cytoplasmic tail was found to be important for signal 

transduction leading to CXCR4 expression, as K562 cells expressing truncated L-

selectin mutant (lacking 16 of total 17 cytoplasmic amino-acids) failed to upregulate the 

receptor as seen with L-selectin null cells [90]. Additionally, L-selectin-induced CXCR4 

upregulation was shown to be dependent on tyrosine phosphorylation, as pre-treatment 

of T cells with tyrosine kinase inhibitors prior to sulfatide stimulation resulted in 

decreased receptor expression [90]. Kinase shown to play a predominant role in CXCR4 

upregulation were shown to be the Src family kinases [90], and activation of Src kinases 

downstream of L-selectin has been repeatedly reported (section 1.11.4).  

CXCR4 is a receptor for stromal-derived factor 1 (SDF-1), a potent leukocyte 

chemoattractant and this receptor/ligand pair is known to be crucial for lymphocyte 

homing as well as recruitment to the inflammatory sites [592-595]. It is interesting that in 

addition to induction of CXCR4 surface expression, L-selectin ligation selectively 

inhibited CXCR4 internalisation induced by SDF-1, and this persistent CXCR4 

expression resulted in enhanced F-actin polymerisation  [85].  CXCR4/SDF-1 binding 

leads to firm adhesion of rolling leukocytes [59, 80], which is in keeping with a role for L-

selectin inside the vasculature during the transition from leukocyte rolling to arrest 

(sections 1.2.4 and 1.5.7.1.1). It therefore makes sense that stimulation via L-selectin 

was shown to enhance SDF-1 induced adhesion to HUVEC monolayers [85]. However, 
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it has to be noted that CXCR4 upregulation occurred two [90] or even ten [85] minutes 

after stimulation with ligands, and leukocytes arrest in seconds in vivo. This suggests 

that L-selectin-dependent CXCR4 signalling might be required in the later stages of the 

recruitment, i.e. TEM or chemotaxis. Indeed, L-selectin cross-linking or sulfatide binding 

has been shown to enhance PBL migration towards SDF-1 across both naked filters and 

HUVEC monolayers [85, 90]. L-selectin has been also shown to mediate leukocyte 

chemotaxis in vivo (see section 1.7.5.1.2). Interestingly, when primary mAb alone (no 

cross-linking) was used to cluster L-selectin, slightly decreased chemotaxis towards 

SDF-1 was observed as compared to baseline [85]. This suggests that the magnitude of 

L-selectin clustering is an important factor affecting signalling downstream of the L-

selectin tail. Furthermore, L-selectin ligation with mAb or EC-expressed ligand enhanced 

mouse T and B chemotaxis towards SLC [415]. This was not associated with CCR7 (SLC 

receptor) upregulation, but was strongly dependent on L-selectin expression levels and 

was mediated by PKC, MAPK, and Syk family kinases [415]. This suggests that L-

selectin-mediated chemotaxis occurs through more than one signalling pathway, 

dependent on the ligand, magnitude of L-selectin clustering and the type of chemokine 

involved. 

1.11.4 Activation of protein kinases, Rho GTPases, and production of secondary 

messengers 

Protein phosphorylation is a reversible post-translational modification of proteins that 

occurs through phosphate group addition by a protein kinase. The human genome 

contains 518 putative protein kinase genes, and kinases mediate majority of cellular 

signalling in eukaryotic cells by altering the activity of their substrates [596].  Mitogen-

activated protein kinases (MAPK) are serine-threonine protein kinases that become 

activated by various stimuli, and the best studied MAPKs are the p38 MAPK, extracellular 

signal-regulated kinases (ERK) and c-Jun N-terminal kinase (JNK) [597, 598]. Another 

well-known kinases are the Src family kinases (SFK) [599] and the c-Abl (Abelson murine 

leukemia viral oncogene homolog-1) kinases [600] that phosphorylate tyrosine residues 

within proteins. 

Active MAPK is itself tyrosine phosphorylated, and such phosphorylation was seen in 

human neutrophils, PBL and Jurkat T cells upon stimulation of L-selectin with sulfatides, 

fucoidan, sLex, E-selectin-IgG chimera, mAb or Fab fragments or after L-selectin cross-

linking [88, 245, 413, 589, 601]. Additionally, some of these studies found that 

ectodomain ligation resulted in tyrosine phosphorylation of L-selectin itself [88, 245]. 

Interestingly, MAP kinases (p38 and ERK) have been shown to mediate L-selectin 

shedding [511, 531, 539-541]. In the light of the fact that L-selectin ligation leads to MAPK 

activation, it can be speculated that engagement of the L-selectin ectodomain regulates 
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its own shedding through a signalling pathway involving MAPK. In support of this theory, 

multiple studies have shown that L-selectin cross-linking induces shedding [529, 533-

536]. Both MAPK and L-selectin tyrosine phosphorylation is dependent on p56lck, which 

is a member of the Src family kinases [88, 245, 598]. The involvement of MAPK, Src and 

other kinases in L-selectin-mediated integrin-dependent adhesion and chemokine 

receptor expression and chemotaxis were discussed in more detail in sections 1.11.2 

and 1.11.3 of this thesis, respectively. The kinase p56lck has been found to become 

activated (tyrosine phosphorylated) upon L-selectin stimulation in Jurkat T cells [245, 

602], and has been shown to directly associate with L-selectin tail upon stimulation with 

sulfatides, where it forms a signalling complex involving c-Abl and ZAP-70 kinases [602]. 

It has also been shown that p56lck-dependent tyrosine phosphorylation of L-selectin tail 

upon mAb binding was associated with formation of L-selectin/Grb2/SOS complex and 

activation of Rac2 activity via Ras in Jurkat T cells [245]. That the two groups found 

different p56lck-dependent signalling complexes associated with L-selectin tail suggests 

either that the signalling pathways downstream of L-selectin tail are ligand-dependent 

(i.e. mAb versus sulfatides), or that ligation can activate multiple signalling pathways 

simultaneously. Furthermore, p56lck-dependent Ras activation was also found after L-

selectin ligation with sLex or fucoidan [88, 245, 246], and L-selectin-mediated activation 

of Ras and Rac2 results in actin polymerisation [246]. In Jurkat T lymphocytes, L-selectin 

clustering with mAb or fucoidan leads to marked increase in the activity of another protein 

kinase – JNK – and this is dependent on p56lck and Rac1 [603]. Upregulation of Rac1 

activity upon L-selectin/fucoidan ligation was independently shown in another report, 

where active Rac1 was seen as soon as 1 minute after binding [566].  

Oxidative burst (superoxide, O2
-, synthesis) or potentiation of TNF-α- or fMLP-induced 

oxidative burst was shown following cross-linking of L-selectin [89, 604] or upon mAb 

binding [245]. Superoxide is not the only secondary messenger produced upon ligation 

of L-selectin ectodomain. Increase in “calcium flux”, a transient increase in free cytosolic 

Ca2+, which is known to elicit various cellular responses has also been reported. 

Specifically, L-selectin cross-linking has been shown to induce calcium flux in human 

primary neutrophils [89, 601, 604], however, binding of sulfatides also lead to transient 

increase in free Ca2+ in murine CD4+ T cells [90]. Both O2
- synthesis and calcium flux 

required activation of tyrosine kinases or MAPK [245, 601], which is in agreement with 

the above-described L-selectin-mediated signalling pathways. However, a distinct 

tyrosine/MAP kinase-independent signalling pathway has also been shown to be 

triggered downstream of L-selectin. Cross-linking of L-selectin has been observed to 

activate neutral  sphingomyelinase in Jurkat T cells, which resulted in hydrolysis of  

cellular sphingomyelin and in release of ceramide [605]. Ceramide is a known secondary 

messenger regulating various cellular functions, including inflammatory responses [606, 
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607]. This demonstrates that signalling downstream of L-selectin is a complex process 

that branches out into multiple signalling pathways both dependent and independent on 

tyrosine kinase or MAPK activity. 

In addition to the effects L-selectin outside-in signalling has on the leukocytes on which 

it is expressed, signalling through L-selectin might be involved in mediating the 

inflammatory response in a much broader manner. Induced expression of mRNA for IL-

8 and TNF-α has been seen in human neutrophils upon sulfatide binding [88], and an 

increase in c-Abl-dependent expression of macrophage colony stimulating factor (M-

CSF)-1 was observed upon stimulation of L-selectin with mAb in Jurkat T cells and 

neutrophils [608]. It is thus plausible that secretion of these cytokines could augment the 

inflammatory response via the autocrine and paracrine signalling to the secreting and 

adjacent cells, respectively.
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Ligand Cell type Consequence of binding Notes Citation 
X-linking Human neutrophils, 

PBL, 
Jurkat T lymphocytes, 
300.19 pre-B cells, 
U937 monocytic cell 
line 
 
 

 Patching  

 Redistribution of L-selectin to DRM that was dependent on L-
selectin tail 

 Calcium flux, oxidative burst (O2- generation), potentiation of 
oxidative burst caused by fMLP and TNF-α , 

 Increased adhesion through β2 integrins1 

 Co-localisation with active CD18  

 Upregulation of Mac-1, adhesion via MAC-1 that was dependant 
on MAPK phosphorylation2   

 Potentiation of IL-8 or PAF induced Mac-1 dependant adhesion 

 Potentiation of SDF-1-induced adhesion to HUVEC 

 Increased transmigration through cytokine stimulated HUVEC, 
and towards SDF-1 

 Activation of neutral sphingomyelinase resulting in consumption of 
sphingomyelin and production of ceramide 

 Upregulation of CXCR4 

 CaM/ERM interaction in cis 

 L-selectin shedding 

1Occured in 
neutrophils and 
naïve, but not 
memory T cells 
2Phosphorylation of 
p38 increased at 1 
minute and 3 
minutes, 
phosphorylation of 
p42/44 MAPK 
increased at 1 
minute but 
decreased at 3 
minutes after X-
linking  
 

[85-87, 
89, 91, 
413, 529, 
533-536, 
560, 572, 
587, 589, 
604, 605, 
609] 
 

GlyCAM-1 Human neutrophils, 
PBL, 
Jurkat T lymphocytes 

 Redistribution of L-selectin to DRM (dependent on L-selectin tail)  

 Adhesion through β1 integrins 

 Activation of β2 integrins1 

1Naïve, but not 
memory T cells 

[86, 88, 
560] 

Primary 
antibody 

Human neutrophils, 
Jurkat T lymphocytes, 
Human leukemic CEM 
cells, 
Jurkat T lymphocytes, 
Murine lymphocytes 
U937 monocytic cell 
line 
 

 MAPK phosphorylation1 

 p56lck dependent tyrosine phosphorylation of L-selectin tail and 
MAPK, formation of L-selectin/Grb2/SOS complex and activation 
of Rac2 and O2

- synthesis via Ras 

 Actin filament polymerisation that was dependent on activation of 
Ras and Rac2 

 Upregulation of JNK activity that was dependent on p56lck and 
Rac1 

 Expression of M-CSF-1 that was dependent on c-Abl kinase 

 CaM/ERM interaction in cis2 

1Also Fab fragments 
to a lesser extent 
2As measured by 
FRET efficiency 
between ezrin-GFP 
and CaM-mChery, 
this interaction was 
weaker than that 
observed for cross-
linking 

[245, 246, 
415, 572, 
601, 603, 
608] 
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 Enhanced chemotaxis towards SLC that was dependent on L-
selectin levels and was mediated by PKC, MAPK and Syk family 
kinases3 

3Also observed upon 
engagement with EC 
ligands 

Two 
primary 

antibodies  

Human neutrophils, 
300.19 pre-B cells 

 Upregulation of Mac-1 

 Association with cytoskeleton in DRM 

 [87, 587] 

E-selectin Human neutrophils  Patching  

 MAPK-dependent rapid co-localization and capping of L-selectin 
and PSGL-1 on neutrophils in suspension which was critical for 
boosting CD11b/CD18 activity1  

 Co-clustering of L-selectin and PSGL-1 results in transition from 
rolling to arrest 

1CD18 clustering did 
not co-localise with 
areas of L-selectin 
clustering 
 

[413, 586] 

Sulfatides Human neutrophils, 
Murine CD4+  
T cells, K562 myeloid 
cell line, human 
monocytes, 
granulocytes and PBL, 
Jurkat T lymphocytes 

 MAPK phosphorylation,  

 Calcium flux dependent on tyrosine kinases and MAPK 

 Enhanced expression of mRNAs for IL-8 and TNF-α 

 Upregulation of CXCR41  

 Tyrosine phosphorylation of p56lck itself and p56lck dependent 
tyrosine phosphorylation of L-selectin tail, formation of L-
selectin/ZAP-70/c-Abl complex  

1Murine CXCR4 
upregulation was not 
L-selectin dependent 
in CD8+  T  cells and 
B cells 

[85, 88, 
90, 601, 
602] 

sLex Jurkat T lymphocytes, 
PBL 

 Tyrosine phosphorylation of L-selectin and MAPK and activation 
of Ras that was p56lck dependent 

 [245] 

Fucoidan Jurkat T lymphocytes,  
PBL 
 

 p56lck dependent tyrosine phosphorylation of L-selectin and MAPK 
and activation of Ras 

 Soluble fibronectin binding1 

 Upregulation of JNK  

 Upregulation of CXCR4 

 Upregulation of Rac1 

1Soluble fibronectin 
was bound by Jurkat 
T lymphocytes and 
naïve T cells but not 
memory T cells 
 

[85, 88, 
566, 603] 

Table 1.3 Inside-out signalling evoked by L-selectin ectodomain ligation. Ligation of L-selectin ectodomain triggers clustering and signalling downstream of L-

selectin tail. Clustering can be caused by antibodies or ligands. L-selectin-dependent signalling has been shown to affect multiple cellular functions. Consequences of 

L-selectin ligation are summarised in this table alongside the factors used for the ectodomain engagement “X-linking” indicates treatment with anti-L-selectin 

monoclonal antibody followed by cross-linking with secondary antibody. “Patching” indicates formation of large L-selectin clusters at the cell surface. For abbreviations 

used see Abbreviations section. 
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1.12 REGULATION OF L-SELECTIN FUNCTION BY INSIDE-OUT SIGNALLING 

Although the majority of the current literature describes the outside-in signalling that 

follows the ligation of L-selectin ectodomain (section 1.11 above), reports can be found 

where L-selectin’s activity is modified by signals generated intracellularly (inside-out 

signalling). At this point, it has to be made clear that this section addresses changes in 

L-selectin activity other than ectodomain shedding (section 1.9.2), which occurs upon 

cell activation and is a result of intracellular signalling events. Neutrophil activation with 

granulocyte colony stimulating factor (G-CSF) or macrophage CSF (M-CSF) or T cell 

activation through CD2 or CD3 markedly enhanced the ability of these cells to bind 

PPME (polyphosphomonoester core derived from yeast, a known physiological L-

selectin ligand mimic) [92]. The stimuli did not alter surface L-selectin levels as measured 

by flow cytometry [92], suggesting that the observed effects were due to modification of 

L-selectin’s affinity for ligand. Additionally, pre-incubation of lymphocytes with lineage 

specific stimuli resulted in increased adhesion to HEV, which occurred in an L-selectin 

dependent manner [92]. Furthermore, it has been shown that exposure of PBL and 

300.19 cells expressing L-selectin to fever-range hyperthermia (40°C) caused a 

significant increase in the association of L-selectin with DRM as measured by flow 

cytometry [560]. Additionally heat-treated PBL showed 1.6- to 2-fold increase in the L-

selectin-dependent adhesion to HEV in PLN cryosections in vitro and in homing to PLN 

and Peyer’s patches in vivo [560, 610].  The hyperthermia-induced L-selectin-mediated 

effects were dependent on the cytoplasmic tail as the LDcyto L-selectin mutant (lacking 

11 terminal amino acids) did not translocate to DRM and 300.19 cells expressing LDcyto 

did not have increased adhesion to HEV in vitro [560]. Increased adhesion was 

subsequently attributed to the soluble factors secreted by heat-treated leukocytes, as 

when PBLs maintained at 37°C were incubated with supernatants from PBLs cultured at 

40°C, similar extent of increased adhesion was observed [610]. The possible 

mechanisms by which these factors could increase adhesion in L-selectin dependent 

manner were not investigated, and the factors themselves are unknown. Interestingly, 

febrile temperatures did not alter total L-selectin protein levels or surface levels, as 

analysed by Western blotting or flow cytometry, respectively, and did not increase L-

selectin’s affinity for carbohydrate ligands as measured by PPME binding [610]. 

However, PBLs cultured in 40°C showed increased immunogold labelling of L-selectin 

molecules on microvilli, without any changes in overall microvilli morphology or number 

[610]. This raises the possibility that fever-range hyperthermia causes alterations in L-

selectin’s conformation that expose epitopes for gold-labelled mAbs [610]. As high 
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temperatures are known to increase membrane fluidity [611], this could be a pre-requisite 

to or a result of L-selectin translocation to DRM.  

The studies discussed above demonstrate that, much like outside-in signalling, inside-in 

signalling can modify L-selectin function in a number of ways. Hence, L-selectin outside-

in and inside-out signalling together are likely to form a multifaceted signalling network 

that regulate numerous cellular functions during the leukocyte adhesion cascade.  

1.13 L-SELECTIN AND DISEASE 

Genetic variations are known to cause or contribute to many diseases and a number of 

genetic variations in the L-selectin gene have been identified. They are defined as single-

nucleotide polymorphisms (SNPs), where differences in single nucleotides result in the 

existence of two alternate alleles. Allele frequency, and hence genotype distribution, 

often differ between patients and controls, implying that certain alleles associate with 

disease susceptibility. SNPs within the coding sequence of L-selectin result in amino 

acid substitution and have been identified as T49S (threonine or serine at position 49 

within the lectin domain), F206L (phenyloalanine or leucine at position 206 within the 

EGF domain), P213S (proline or serine at position 213 within the SCR domain) and 

S238P (serine or proline at position 238, SCR domain). No SNPs have been found in 

the transmembrane or cytosolic domains, and T49S has not been linked to any disease 

so far. An increase in the allele frequencies of F206L SNP of the L-selectin gene, and 

the associated F/L genotype was observed in Tunisian patients with inflammatory bowel 

disease as compared to controls [612]. Additionally, the L allele in F206L SNP was linked 

to higher risk for development of brucellosis in patients of Iranian Caucasian origin [613], 

but proved protective in development of Type 1 diabetes in subjects of Polish Caucasian 

origin [614]. P213S polymorphism is thought to contribute to susceptibility to Type 2 

diabetes (T2D), insulin resistance, Grave’s disease and coronary artery disease in the 

Chinese population, and the P allele appears to be the risk factor [513, 615-617]. 

Genotype 213PP is also a genetic risk factor for the development of nephropathy during 

T2D in Japanese patients [618]. No association between P213S polymorphism and T2D 

has been found in the study on Romanian population [619], suggesting that L-selectin 

gene polymorphism is influenced by ethnicity. Interestingly, in European and North 

American white population the P213S donor-recipient incompatibility could possibly be 

associated with kidney transplant survival [620]. Generation of L-selectin constructs 

harbouring the relevant SNPs could help to understand the described above pathological 

and protective mechanisms, which in turn could fuel new therapeutic approaches. One 

such study was indeed performed, where cells transfected with 238S variant of L-selectin 

showed marked reduction in rolling on and adhesion to IL-1β-stimulated HUVEC in vitro 

[514]. The reduction in L-selectin-dependent adhesion was proposed to play a role in the 
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pathogenesis of immunoglobulin A nephropathy in patients with S238P SNP, observed 

earlier by the same group [480]. Of note, recent availability in genome wide sequencing 

resulted in great number of Ensembl (on-line genome database for vertebrates and other 

eukaryotic species) submissions, reporting other variations found in lam-1 gene. 

Identified variations include copy-number variations (CNV), duplications, inversions, 

insertions and deletions [621]. Although links between these variations and disease have 

not been identified yet, it can be expected that some, if not all, of these alterations would 

have a profound effect on L-selectin protein function. For example, CNV and duplications 

could result in elevation of L-selectin protein levels, altered leukocyte trafficking and 

disease. 

From the L-selectin SNP/disease associations and various reports mentioned in this 

chapter, it can be seen that L-selectin plays a role in the pathogenesis of the chronic 

inflammatory diseases. The most notorious of all chronic inflammatory diseases is 

atherosclerosis – the main cause of CVD and death worldwide. Recruitment of L-

selectin-positive classical monocytes during atherosclerosis progression (section 1.6.2) 

[279, 280, 300], as well as the accumulation of L-selectin ligands in the atherosclerotic 

plaques (section 1.8.3) [468-476] suggest the involvement of L-selectin in the pathology 

of this disease. In keeping with this, a role for L-selectin in atherosclerosis has been 

reported. These studies are descried in more detail in section 1.13.1 below. 

1.13.1 L-selectin and atherosclerosis 

The first report to imply L-selectin’s involvement in pathogenesis of atherosclerosis was 

published by Eriksson et al. (2001), who showed that L-selectin-mediated secondary 

capture accounts for 20-50% of all leukocyte capture on atherosclerotic lesions [20]. 

Subsequently, existence of MECA-79-nonreactive ligands on the aortic ECs and L-

selectin-dependent primary capture in atherosclerosis was proposed by Galikna et al. 

(2006) [622].  These ligands were thought to mediate 50-57% of total T and B cell homing 

to the aortic endothelium before and during development of atherosclerosis as 

established through studies on L-selectin deficient mice [622]. In line with this hypothesis, 

MECA-79-nonreactive L-selectin ligands were found on both resting and cytokine-

stimulated aortic endothelium, and supported monocyte adhesion in vitro [460]. 

Interestingly, a recent study stresses the importance of neovessels for leukocyte 

recruitment during later stages of atherosclerosis [299]. Eriksson (2011) showed that a 

network of microvessels that penetrate the advanced plaques serve as entry points for 

extravasating leukocytes [299]. Surprisingly, PSGL-1, a known leukocyte CAM, was 

found to be expressed by microvessel endothelium [299]. Primary interactions between 

the endothelial PSGL-1 and leukocyte L-selectin were established to mediate virtually all 

leukocyte recruitment that occurred via the microvessels [299]. Hence, it appears that L-
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selectin plays a dual role in the leukocyte recruitment during atherosclerosis 

development. L-selectin recruits leukocytes to the aortic ECs through both primary and 

secondary capture mechanisms, and facilitates leukocyte entry to the advanced lesions 

from the microvessels through direct binding of endothelial PSGL-1. On the other hand, 

a contradictory report showed that L-selectin null mice had a two-fold increase in the 

plaque area during the early stages of atherosclerosis progression [623]. The same 

report found no differences in the atherosclerotic burden between L-selectin null and WT 

mice during later stages of the disease, and no changes in the plaque cellular 

composition between the two mouse strains at neither of the stages [623]. This report 

suggests that L-selectin does not promote atherosclerosis, but rather has a protective 

role in the early development stages. However, this study investigated lesion formation 

through the assessment of plaques in the descending aorta, but the cellular composition 

was examined in the plaques derived from aortic sinuses [623]. Therefore it cannot be 

excluded that L-selectin-dependent recruitment contributed to the formation of lesions in 

the descending aorta. Taken together, a strong link between L-selectin and 

atherosclerosis exists, however more research is required to explain current 

controversies. For example, the generation of transgenic mice expressing L-selectin-

GFP chimera could help to directly visualise trafficking and distribution of L-selectin-

positive leukocytes during development of atherosclerosis.   

1.13.2 Therapeutic implications of L-selectin 

Due to its prominent role in mediating the inflammatory response in both acute and 

chronic inflammation, as well as its association with many chronic diseases, L-selectin 

is an attractive target for therapy. L-selectin has been shown to be modulated by non-

steroidal anti-inflammatory drugs (NSAIDs). NSAIDs are commonly known to exert their 

action through inhibition of cyclooxygenase (COX), however it now becomes clear that 

a group of NSAID also stimulate cell surface NADPH-oxidase to generate superoxide 

anion, which in turns activate ADAM17 on neutrophils [624]. This causes L-selectin 

shedding and thus prevents neutrophil attachment to ECs in vitro [624-626]. Anti-L-

selectin compounds are continually being tested at various stages of pre-clinical and 

clinical trials. For example, aselizumab, a humanised anti-L-selectin antibody, was tested 

for its ability to decrease posttraumatic inflammatory response in the multiple injured 

patients [627]. However, despite being well tolerated by the study subjects, it did not 

outperform the placebo [627]. Some hopes are presently attached with the L- and P-

selectin ligand PSGL-1-IgG chimera (drug name YSPSL) that has shown no adverse 

effects in Phase II trial, and is currently undergoing further tests in trials on renal allograft 

rejection [628].  
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Academic research plays a central role in discoveries that drive novel therapeutic ideas. 

An exciting report, published last year by Bernal et al. (2012), demonstrates that transient 

transfection of cardiac mesoangioblasts with L-selectin greatly improves the ability of 

these cells to home to the damaged heart tissue in a mouse model of myocardial 

infarction [629]. Cardiac mesoangioblasts are mesenchymal stem cells that can 

differentiate into cardiomyocytes [630]. Augmented recruitment of L-selectin 

transfectants resulted in much better heart tissue regeneration as compared to 

unmodified cardiac mesoangioblasts [629]. This report opens up a new opportunity for 

L-selectin-based stem cell therapy in the cardiovascular disease.       
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1.14 ORIGINAL HYPOTHESIS 

The role of L-selectin in leukocyte tissue infiltration has been currently allocated mainly 

to mediating leukocyte tethering and rolling as well as to the activation of integrin-

dependent adhesion. However, an emerging body of evidence suggests that L-selectin 

plays a prominent role during migration of leukocytes beyond the vessel wall. The event 

of transendothelial migration links intra- and extra-vascular locomotion of leukocytes. It 

is therefore proposed that L-selectin might be directly involved in the exit of leukocytes 

from the vasculature and in to the surrounding space. Furthermore, it is postulated that 

shedding of L-selectin is likely to play a role in regulating TEM. L-selectin-dependent 

migration of monocytes is of particular interest given the strong association of both L-

selectin and monocytes with chronic inflammatory disease. Hence, the ultimate goal of 

this PhD project is to establish the role that L-selectin and its shedding may play during 

monocyte TEM. 

1.15 AIMS OF THE PROJECT  

To test the hypothesis produced in section 1.14, a number of aims were established for 

this project: 

1. To generate and characterise monocytic cell line expressing WT L-selectin-GFP 

to visualise the sub-cellular distribution of L-selectin without the use of 

monoclonal antibody. 

2. With the use of sheddase-resistant and cytoplasmic serine mutants of L-selectin, 

determine its spatio-temporal distribution during TEM, which would provide clues 

to: 

a) When and where in the cell shedding of L-selectin occurs. 

b) What the relative contribution of the intracellular and extracellular 

domains are in this process. 

3. To investigate whether other molecules known to act during the adhesion 

cascade have an effect on L-selectin clustering, which would give insight in to 

outside-in and inside-out signalling mechanisms.  

4. To determine how L-selectin shedding and clustering may influence monocyte 

responses, with particular consideration to cell morphology and chemotaxis. 
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CHAPTER 2. MATERIALS AND METHODS 

2.1 CELL CULTURE REAGENTS, CHEMICALS, BUFFERS AND SOLUTIONS 

Tabulated list of cell culture media, reagents, buffers and solutions used in this thesis is presented in table 2.1. 

 Product/Material Supplier Ingredients (Recipe)/Stock Storage 

Cell 
Culture 

RPMI (Roswell Park Memorial 
Institute)-1640 + 5 mM L-glutamine 

Gibco® Invitrogen, U.K. Manufacturers Recipe +4°C 

Foetal Calf Serum Gibco® Invitrogen, U.K. N/A -20°C 

EGM-2 Media BulletKit Lonza Walkersville Endothelial Growth 
Medium supplemented with hEGF, 
Hydrocortisone, FBS (Fetal Bovine 
Serum), GA-1000 (Gentamicin, 
Amphotericin-B),VEGF, hFGF-B, R3-
IGF-1, Ascorbic Acid, Heparin 

+4°C 

Fibronectin Sigma-Aldrich®, Germany 1 mg/mL  

HBSS (Hank’s Buffered Saline 
Solution)  

Gibco® Invitrogen, U.K. 1.26 mM Calcium-, 0.493 mM 
magnesium-, 5.33 mM potassium- and 
137.93 mM sodim chloride, 0.407 mM 
magnesium sulfate, 0.441 mM 
potassium phosphate monobasic, 4.17 
mM sodium bicarbonate, 0.338 mM 
sodium phosphate dibasic (Na2HPO4) 
anhydrous, 5.56 mM D-Glucose, 0.026 
mM phenol red 

+4°C 

OPTIMEM® Gibco® Invitrogen, U.K. Manufacturers Recipe (complete 
formulation is confidential) 

+4°C 

Penicillin/Streptomycin Sigma-Aldrich®, Germany 10,000 Unit penicillin and 10,000 μg/mL 
streptomycin 

-20°C 
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Luria Bertani (LB) media Sigma-Aldrich®, Germany 20 g in 1 litre ddH20 RT 

LB Agar Sigma-Aldrich®, Germany 35 g in 1 litre ddH20 RT (plates at 
+4°C) 

Buffers 
and 
Solutions 

Cytobuster™ Protein Extraction 
Reagent 

Novagen®, Germany N/A RT 

Poly-L-lysine (PLL) Sigma-Aldrich®, Germany 0.1% (w/v) manufacturers solution +4°C 

STE buffer Made in house 10 mM Tris-HCl, pH 8.0, 150 mM NaCl, 
1 mM 
EDTA 

On ice upon 
preparation 

GFP-Trap® Wash/Dilution Buffer Made in house 10 mM Tris/Cl pH 7.5, 150 mM NaCl, 
o.5 mM EDTA, 25 nM calyculin A, 5 µM 
bisindolylmaleimide 

On ice upon 
preparation 

GFP-Trap® Lysis Buffer Made in house 10 mM Tris/Cl pH 7.5, 150 mM NaCl, 
o.5 mM EDTA, 0,5% NP-40, 25 nM 
calyculin A, 5 µM bisindolylmaleimide 

On ice upon 
preparation 

HEPES (4-(2-hydroxyethyl)-1- 
piperazineethanesulfonic acid) 

Sigma-Aldrich®, Germany 1M +4°C 

PBS (Phosphate Buffered Saline), pH 
7.4 

Severn Biotech® Ltd, U.K. 0.8% sodium chloride (w/v), <0.1 % 
potassium chloride (w/v), <0.2% 
monosodium phosphate (w/v), <0.1% 
potassium phosphate (w/v), 0.1% 
sodium azide (w/v)  

RT 

Coomassie Blue R350 Staining 
Solution 

Fluka®, Sigma-Aldrich, Germany 0.25 g of powder in 500 mL, 50% 
methanol, 40% ddH20, 10% acetic acid 
(v/v) 

RT 

Coomassie Blue De-stain solution Made in house 50% methanol, 40% ddH20, 10% acetic 
acid (v/v) 

RT 

GelCode™ Blue Stain reagent Thermo Scientific, U.K. N/A RT 

6x DNA loading buffer Made in house 30% glycerol (v/v), 0.25% (w/v) 
bromophenol blue (w/v), 0.25% xylene 
cyanol FF (w/v) 

RT 
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4x Protein Loading Buffer Made in house 200 mM Tris-HCl pH 6.8, 8 % SDS 
(v/v), 20%  glycerol (v/v), 0.4 
bromphenol-blue % (w/v), 3.6% β-
mercaptoethanol (v/v) 

RT 

2x Protein Loading Buffer Made in house 100 mM Tris-HCl pH 6.8, 4 % SDS 
(v/v), 10%  glycerol (v/v), 0.2 
bromphenol-blue % (w/v), 1.8% β-
mercaptoethanol (v/v) 

RT 

30% bovine serum albumin (BSA) 
(sterile 
filtered) 

Sigma-Aldrich®, Germany N/A  +4°C 

Tris-buffered saline (TBS) solution Made in house 150 mM NaCl/15 mM Tris-HCl, pH 7.4 
in ddH20 

RT 

10x TAE (400 mM Tris-Acetate and 
10 mM EDTA) buffer 

Invitrogen®, U.K. N/A RT 

20x MES (2-morpholinoethanesulfonic 
acid, 
monohydrate)-SDS Buffer (Running 
Buffer) 

Invitrogen®, U.K. N/A RT 

20x Novex® NuPAGE® transfer buffer Invitrogen®, U.K. N/A RT 

Novex® NuPAGE® Sharp® Ladder 
protein standard solution 

Invitrogen®, U.K. N/A -20°C 

1 kB DNA standard solution New England Biolabs® 500 µg/mL -20°C 

Western Lightning™ 
Chemiluminescence 
Reagent 

Perkin-Elmer LAS, inc. U.S.A. N/A +4°C 

Milk buffer High Street Supermarket 5% dry milk powder, w/v in TBS with 
0.1% NP-40 substitute 

+4°C 

Western blotting “stripping buffer” Made in house 62.5 mM Tris-HCl pH 6.7, 2% SDS 
(v/v), 100 mM β-mercaptoethanol 

RT 

Chemicals QIAprep® Miniprep DNA isolation kit Qiagen, U.K. As per manufacturer’s instructions RT, upon 
RNAse A 
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addition 
Buffer P1 at 
+4°C 

QIAprep® Maxiprep DNA isolation kit Qiagen, U.K. As per manufacturer’s instructions RT, upon 
RNAse A 
addition 
Buffer P1 at 
+4°C 

QIAquick Gel Extraction Kit Qiagen, U.K. As per manufacturer’s instructions RT 

Ampicillin Sigma-Aldrich®, Germany 100 mg/mL -20°C 

Methanol Fisher Scientific, U.S.A. N/A RT 

Isopropanol Fisher Scientific, U.S.A. N/A RT 

Glutaraldehyde GPR™ N/A +4°C 

β-mercaptoethanol Sigma-Aldrich®, Germany N/A RT 

Di-methyl-sulphoxide 
(DMSO; cell culture 
tested) 

Sigma-Aldrich®, Germany N/A RT 

TRIZMA® base Sigma-Aldrich®, Germany Used to make 1 M Tris.HCl (pH 6.8, 7.4 
or 8,0) in ddH20 

RT 

Sodium Chloride (NaCl) Sigma-Aldrich®, Germany 1 M in ddH20 RT 

Glycerol Sigma-Aldrich®, Germany N/A RT 

Triton-X100 Sigma-Aldrich®, Germany N/A RT 

Nonidet P-40 substitute (NP-40) Fluka®, Sigma-Aldrich, Germany N/A RT 

Tween-20 Sigma-Aldrich®, Germany N/A RT 

SDS Sigma-Aldrich®, Germany 20% in H2O manufacturer’s solution RT 

Glutathione Sepharose 
4B® beads 

GE Healthcare®, U.K. 50% ethanol/beads slurry +4°C 

GFP-Trap®  A Chromotek, Germany Small GFP-binding protein coupled 
to agarose beads (Manufacturers 
composition) 

+4°C 

Ethylene Diamine-tetraacetic acid 
(EDTA) 

Sigma-Aldrich®, Germany 0.5 M, pH 8.0, in ddH20 RT 
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Solution 

Magnesium Chloride (MgCl2) Sigma-Aldrich®, Germany 0.1M, in ddH20 RT 

Isopropyl-ß-Dthiogalactopyranosid 
(IPTG) 

Sigma- 
Aldrich®, Germany 

0.1 M in ddH20  -20°C 

Phenyl-methyl-sulfonylfluoride 
(PMSF) 

BioChemica, Germany 200 mM in methanol -20°C 

1,4-Dithio-DL-threitol (DTT) Sigma- 
Aldrich®, Germany 

0.1 M in ddH20 Used upon 
preparation 

Lysozyme Sigma- 
Aldrich®, Germany 

powder -20°C 

Calyculin A Sigma- 
Aldrich®, Germany 

20 μM in DMSO -80°C 

Bisindolylmaleimide Calbiochem® 1mM -20°C 

Protease Inhibitor Cocktail Sigma- 
Aldrich®, Germany 

N/A -20°C 

Novex® NuPAGE® Bis-Tris 4-12 % 
gradient gels, 10 wells, thickness: 1.0 
or 1.5 mm 

Invitrogen®, U.K. Manufacturers composition RT 

Phorbol-12’-myristate-13’-acetate 
(PMA) 

Sigma- 
Aldrich®, Germany 

32.5 μM in ethanol -20°C 

Sodium Fluoride (NaF) Sigma- 
Aldrich®, Germany 

powder RT 

Sodium ortho-vanadate (Na3VO4) Sigma- 
Aldrich®, Germany 

0.5 M in ddH20 RT 

Recombinant Human Tumor Necrosis 
Factor alpha (TNF-α) 

R&D systems 100 µg/mL -80°C 

Recombinant Human Monocyte 
Chemoattractant protein 1 (MCP-
1)/CCL2/JE 

R&D systems 100 µg/mL -20°C 

Recombinant Human CXCL1/GRO 
alpha 

R&D systems 100 µg/mL -20°C 

Ro-31-9790 Kind Gift from Ann Ager, 30 mM in DMSO -20°C 
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University of Cardiff, Cardiff, U.K. 

LY-374973, N-[N-(3,5-
Difluorophenacetyl)-L-alanyl]-S-
phenylglycine t-butyl ester (DAPT) 

Sigma- 
Aldrich®, Germany 

18 mg/mL in DMSO -20°C 

Ro-31-8220 Calbiochem®, Merck KGaA, 
Germany 

500 μM in ddH20 -20°C 

Paraformaldehyde (PFA) BDH Laboratory 
Supplies, U.K. 

8% in PBS (w/v) -20°C 

Tetra-methyl-rhodamine-5-(and-6)-
isothiocyanate (TRITC)-conjugated 
phalloidin 

Sigma-Aldrich®, 
Germany 

0.2 mg/mL in methanol -20°C 

Table 2.1 Reagents used during this research project. Other chemical/reagents used may be noted in the text, and the supplier was Sigma-Aldrich®, 

Germany, unless otherwise stated. See Abbreviations section for abbreviations used. 
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2.2 ANTIBODIES 

Tabulated list of primary antibodies used in this thesis is presented in table 2.2., and 

secondary antibodies in table 2.3. 

Antibody Antigen Origin Mono/ 
Polyclonal 

Isotope Stock 
conc. 
(µg/mL) 

Source 

DREG56 L-selectin Mouse Monoclonal IgG1 200 ATCC (HB- 300 
hybridoma) 

Anti-GFP 
(FL) 

GFP Rabbit Polyclonal IgG 200 Santa Cruz 
Biotechnology 

Anti-CaM Calmodulin Mouse Monoclonal IgG1 1000 Upstate/ 
Millipore 

Anti-
biglycan 

Biglycan Rabbit Polyclonal IgG 400 Abcam 

Anti-
collagen 
XVIII 

Collagen 
XVIII 

Rat Monoclonal IgG2B 100 Santa Cruz 
Biotechnology 

Anti-CD43 CD43 Mouse Monoclonal IgG1 200 Santa Cruz 
Biotechnology 

Anti-CD44 CD44 Rabbit Polyclonal IgG 200 Santa Cruz 
Biotechnology 

Anti- 
JAM-A 

JAM-A Mouse Monoclonal IgG1 200 Santa Cruz 
Biotechnology 

Anti-
PSGL-1 

PSGL-1 Mouse Monoclonal IgG1 200 Santa Cruz 
Biotechnology 

Anti-
PECAM-1 

PECAM-1 Mouse Monoclonal IgG1 205 Dako 

Anti-EEA1 EEA1 Mouse Monoclonal IgG1 250 BD 
Transduction 
Laboratories™ 

Anti-ERM ERM Rabbit Polyclonal ? ? Cell Signaling 
Technology® 

Anti-
phospho-
ERM 

Phospho-
ERM (Thr 
567 (E), 
564 (R) and 
558 (M) 

Rabbit Polyclonal ? ? Cell Signaling 
Technology® 

Anti-RhoA RhoA Mouse Monoclonal IgG1 200 Santa Cruz 
Biotechnology 

Anti-Rac1 Rac1 Mouse Monoclonal IgG2b 1000 Merck Millipore 

Anti-
Cdc42 

Cdc42 Mouse Monoclonal IgG1 1000 Abcam 

Anti-actin Beta-actin Goat Polyclonal IgG 200 Santa Cruz 
Biotechnology 

Anti-CCR2 CCR2 Rabbit Monoclonal IgG 1000 Abcam 

IgG1 N/A Mouse Monoclonal IgG1 200 Santa Cruz 
Biotechnology 

IgG N/A Rabbit Polyclonal IgG 200 Abcam 

Table 2.2 List of primary antibodies used in this thesis. Dilutions at which the antibodies 

were used are described in specific sections of “Materials and Methods” or within 

results chapters. All antibodies were purchased from the indicated supplier, apart from 

DREG56, which was purified from hybridomas in house. ‘?’ indicates unavailable 

information. See Abbreviations section for description of abbreviations. 
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Antibody Antigen Origin Stock 
conc. 
(µg/mL) 

Source 

Rabbit anti-
mouse-FITC 

Mouse Immunoglobulins Rabbit 970 Dako 

Goat anti-
mouse-RPE 

Mouse Immunoglobulins Goat 1000 Dako 

Goat anti-
mouse-HRP 

Mouse Immunoglobulins Goat 1000 Dako 

Goat anti- 
rabbit-HRP 

Rabbit Immunoglobulins Goat 250 Dako 

Rabbit anti- 
goat-HRP 

Goat Immunoglobulins Rabbit 650 Dako 

Goat anti-
mouse-
AlexaFluor®633 

Mouse Immunoglobulins Goat 2000 Moleccular 
Probes® 
Invitrogen® 

Goat anti-rabbit-
AlexaFluor®633 

Rabbit Immunoglobulins Goat 2000 Moleccular 
Probes® 
Invitrogen® 

Donkey anti-
goat-
AlexaFluor®633 

Goat Immunoglobulins Donkey 2000 Moleccular 
Probes® 
Invitrogen® 

Table 2.3 List of secondary antibodies used in this thesis. Dilutions at which the antibodies 

were used are described in specific sections of “Materials and Methods” or within 

results chapters. See Abbreviations section for description of abbreviations. 

 

2.3 CLONING 

Human L-selectin cDNA was amplified by PCR (see section 2.4) from pCMV6-AC-GFP 

vector (OriGene). PCR primers were designed with BamHI and XhoI restriction sites 

engineered at 5’ and 3’ ends, respectively (forward primer: 5’-

GAGAGAGGATCCGGTACCGAGGAGA-3’; reverse primer 5’-

GAGAGACTCGAGATATGGGTCATTCATACTTCTC-3’). PCR products amplified by 

Pfu DNA polymerase (Stratagene) were excised from 0.8 % agarose gels and purified 

using QIAquick Gel Extraction kit (Qiagen) according to manufacturer’s protocol. The 

pHR’SIN-SEW  lentiviral backbone vectors were provided by Prof. Adrian Thrasher 

(Institute of Child Health, UCL) and were carrying either enhanced green fluorescent 

protein (eGFP, from now on referred to as GFP) or red fluorescent protein (RFP) C-

terminal tags. The vectors were named pHR’SIN-SEW-GFP or pHR’SIN-SEW-RFP 

according to the fluorescent tag they were bearing.  The vectors were linearised by 

double digestion with BamHI and XhoI restriction enzymes (New England Biolabs, NEB) 

according to manufacturer’s protocol (NEB). Digests were resolved on a 0.8% agarose 

gel and the vector was purified with a QIAquick Gel Extraction kit according to 

manufacturer’s protocol. Purified vectors were dephosphorylated with calf intestinal 

alkaline phosphatase (CIP, from NEB) for 1 hour at 37ºC and cleaned from the reaction 

mixture using QIAquick Gel Extraction Kit according to manufacturer’s protocol.  The 
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vectors were then ligated with the insert with a molar vector to insert ratio of 1:3. Ligation 

was performed by T4 DNA ligase (Promega) in a 10 µL reaction at 4ºC overnight prior to 

transformation (see section 2.7). Colonies were selected and grown overnight to 

generate plasmid preps using a QIAprep® Miniprep DNA isolation kit (Qiagen, U.K.) and 

following manufacturer’s protocol. The open reading frames were subsequently 

sequenced by Geneservice using primers targeting sequences approximately 100 bp 

upstream of the L-selectin start codon (primer Frd1: 5’- 

GCGCTTCTGCTTCCCGAGCTCTAT-3’), approximately 300 bp into the ORF (primer 

Frd2: 5’- GACGTGGGTGGGAACCAACAAATCT-3’) and approximately 700 bp into the 

ORF (primer Frd3: 5’ CCACCTGTGGACCATTTGGAAACTG-3’). Collectively, the design 

of these primers ensured that the entire open reading frame was sequenced. 

2.4 POLYMERASE CHAIN REACTION (PCR) 

PCR amplifications were performed using 1 μL (10 μM) of each primer (synthetized by 

Sigma-Aldrich) and 100 ng of DNA template.  PCR reactions were performed in a 50 μL 

reaction volume, using thin walled PCR tubes in a thermo cycler (Perkin Elmer, 

GeneAmp PCR System 2400) using the following conditions:  hot-start denaturation 

95C 5 min, denaturation 95C 30 seconds*, annealing 55C 40 seconds*, elongation 

72C (30 seconds per 500 bp)*, end 72C 2 min.   (*Repeated for 25 cycles). 

PCR reactions were mixed with 6x DNA loading buffer (table 2.1) and separated by gel 

electrophoresis on agarose gels supplemented with ethidium bromide or SafeView™ dye 

as described in section 2.6.  PCR products were visualized using UV detection of before 

being purified, cloned and dispatched for sequencing. 

2.5 IN VITRO PCR MUTAGENESIS AND SEQUENCING OF THE MUTANTS 

The pHR’SIN-SEW plasmid containing the cDNA of human WT L-selectin fused with 

GFP or RFP (pHR’SIN-SEW-L-selectinWT-GFP or pHR’SIN-SEW-L-selectinWT-RFP (for 

cloning method see section 2.3) was used as a template for generating mutations.  A 

QuickChange™ (Stratagene) PCR in vitro mutagenesis protocol was employed in order 

to generate the S364A, S367A, SSAA, ΔM-N, ΔM-N SSAA S364D, S367D, SSDD and 

R357A mutants (single amino acid names for Serine [S], Aspartate [D] and Arginine [R]) 

using the pHR’SIN-SEW-L-selectinWT-GFP plasmid and SSAA, ΔM-N and ΔM-N SSAA 

using the pHR’SIN-SEW-L-selectinWT-RFP plasmid. Briefly, polymerase chain reaction 

(PCR) mutagenesis reaction was followed by 1 hour digestion with DpnI restriction 

enzyme (NEB). This step involves the cleavage of methylated, but not unmethylated 

DNA. Note that methylated DNA is derived from bacterially synthesised DNA, and not 

PCR synthesised DNA (where the mutation has been generated). DpnI restriction 

enzyme (1 µL) was added to 50 µL PCR mutagenesis reaction at 37ºC, and then 1 µL of 
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the mixture was used to transform competent bacteria (section 2.7). The open reading 

frames of all the mutants were subsequently sequenced by Geneservice using primer 

Frd3 (see section 2.3) to ensure insertion of the desired mutations into the L-selectin tail 

and once this was confirmed, the ORFs were sequenced with primers Frd1 and Frd2 to 

ensure no spontaneous mutations appeared within the insert during the mutagenesis 

procedure.  Two-step mutagenesis was applied when obtaining ΔM-N mutant as deletion 

of eight amino acid codons in single PCR reaction was not considered likely. Therefore 

two sets of primers were designed: ΔMIKE and ΔMIKEGDYN. Once the ΔMIKE pair of 

primers was successfully used – as confirmed by sequencing – to delete MIKE amino 

acid sequence, ΔMIKEGDYN pair of primers was used to further delete GDYN amino 

acid sequence. When generating ΔM-N SSAA mutants, pHR’SIN-SEW-L-selectinΔM-N-

GFP/RFP plasmid was used as a template for the SSAA primers.  All the primers used 

for in vitro PCR mutagenesis during this thesis are shown in table 2.4.  

Mutation Primer Sequence 

S364A Frd GATTAAAAAAAGGCAAGAAAGCCAAGAGAAGTATGAATGA

CC 

 Rev GGTCATTCATACTTCTCTTGGCTTTCTTGCCTTTTTTTAATC 

S367A Frd GGCAAGAAATCCAAGAGAGCTATGAATGACCCATATCAC 

 Rev GTGATATGGGTCATTCATAGCTCTCTTGGATTTCTTGCC 

SSAA Frd GGCAAGAAAGCCAAGAGAGCTATGAATGACCCATATCAC 

 Rev GTGATATGGGTCATTCATAGCTCTCTTGGCTTTCTTGCC 

ΔMIKE Frd CAAAAGTTTCTCACCCCTCTTCATTC 

 Rev GAATGAAGAGGGGTGAGAAACTTTTG 

ΔMIKEGDYN Frd GACAAAAGTTTCTCAGGTGATTATAACCCC 

 Rev GGGGTTATAATCACCTGAGAAACTTTTGTC 

S364D Frd GGCAAGGAGATTAAAAAAAGGCAAGAAAGACAAGAGAAGT

ATGAATGACCCATATCAC 

 Rev GTGATATGGGTCATTCATACTTCTCTTGTCTTTCTTGCCTTT

TTTTAATCTCCTTGCC 

S367D Frd GGCAAGAAATCCAAGAGAGATATGAATGACCCATATCAC 

 Rev GTGATATGGGTCATTCATATCTCTCTTGGATTTCTTGCC 

SSDD Frd GGCAAGAAAGACAAGAGAGATATGAATGACCCATATCAC 

 Rev GTGATATGGGTCATTCATATCTCTCTTGTCTTTCTTGCC 

R357A Frd GGCATTTATCATTTGGCTGGCAAGGGCATTAAAAAAAGGCA

AGAAATCCAAG 

 Rev CTTGGATTTCTTGCCTTTTTTTAATGCCCTTGCCAGCCAAAT

GATAAATGCC 
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Table 2.4 Sequences of the mutagenesis primers. This table outlines all the mutagenesis 

primers that were used during this project. The primers are all written in the direction of 

5’ to 3’.Frd, forward primer; Rev, reverse primer.   

 

2.6 AGAROSE GEL ELECTROPHORESIS 

PCR products were mixed with 6x gel loading buffer (table 2.1) and resolved by 

electrophoresis on a 0.8% 1x tris-acetate-EDTA (TAE) (Invitrogen) agarose gels with 

ethidium bromide (1:10 000) or SafeView™ (1:500).  Gels were resolved at 120V until 

the bands had been adequately separated (normally, when the dye front had reached 

the bottom of the gel.  Gels were visualized by UV transillumination and digital images 

were acquired.  Product sizes were determined by using DNA ladders (GeneRuler™ or 

NEB).   

2.7 TRANSFORMATION OF ESCHERICHIA COLI BL-21 AND PLASMID 

PURIFICATION 

For every transformation, 50 l of competent BL-21 Escherichia coli (E. coli) (kindly 

provided by Alison Brewer) were slowly thawed on ice and allowed to mix with 200-1000 

ng of plasmid or 1 l of PCR mutagenesis reaction for 1 hour on ice. Alternatively, 2 l 

of ligation reaction were added to 50 l One Shot® TOP10 Chemically Competent E. coli 

(Invitrogen). The genotype of TOP10 cell is similar to DH10B™ strain.  Following 30 

minute-long incubation on ice, bacteria were heat-shocked by submerging tubes into a 

water bath pre-heated at 42C for 45 seconds, and then rapidly cooled on ice for a further 

10 minutes.  LB (200 l) was added to each transformation reaction and incubated 

shaking in a 37C for 1 hour. The transformation (200 µL) was plated out onto a pre-

warmed appropriate antibiotic treated LB agar plates and allowed to culture at 37C 

overnight for colony formation.  The following morning colonies were picked and cultured 

in 3 mL of LB supplemented with the appropriate antibiotic for around 8 hours. Bacteria 

were subsequently harvested for plasmid isolation using QIAprep® Miniprep DNA 

isolation kit (Qiagen, U.K.) according to manufacturer’s protocol (see below). 

Alternatively 1 mL was inoculated in to 100 mL of LB supplemented with the appropriate 

antibiotic and bacteria were cultured overnight. Following day bacteria were harvested 

by centrifugation at 4,000 rpm (SORVALL® Legend RT, U.K.) for 45 minutes at 4°C and 

plasmid isolation was performed using QIAprep® Maxiprep DNA isolation kit (Qiagen, 

U.K.) according to manufacturer’s protocol. Briefly, both QIAprep® Mini- and Maxiprep 

DNA isolation kits are based on alkaline lysis of bacterial cells. The lysis if followed lysate 

preparation, clearing and immobilisation of liberated DNA onto silica membranes within 

a spin column under high salt conditions. The DNA pellets obtained after washing and 
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elution from the spin column were dissolved in ddH2O and the concentration determined 

by measuring the OD260 using NanoDrop spectrophotometer (Thermo Scientific, U.K.). 

The quality of the DNA was assessed by monitoring OD260/OD280 ratio and was 

deemed acceptable if determined to be close to the value of 1.8 absorbance units.  

2.8 PROTEIN ANALYSIS 

2.8.1 SDS-Polyacrylamide Gel Electrophoresis (SDS-PAGE) of extracts derived 

from THP-1 cells and HUVEC. 

Cells were harvested by centrifugation at 1200 rpm (SORVALL® Legend RT, U.K.), 

samples were lysed in appropriate volume of CytoBuster™ Protein Extraction Reagent 

(Novagen, U.K.) supplemented with 1x protease inhibitor cocktail (Sigma-Aldrich®, 

Germany) and four times concentrated protein loading buffer (PLB) was added. Samples 

were incubated at 95 ºC for 5 minutes and the denatured proteins were then resolved by 

polyacrylamide gel electrophoresis on pre-cast Novex® NuPAGE® 4-12% Bis-Tris 

gradient gels (Invitrogen®, U.K.) in MES-SDS buffer at constant 100-200 V until the dye 

front left the gel. Novex® sharp pre-stained protein standard molecular weight markers 

(Invitrogen) were used for all gels. 

2.8.2 Protein gel staining  

Proteins resolved on polyacrylamide gels as described in section 2.8.1 were often 

directly stained using Coomassie Blue R350® staining solution or GelCode® Blue Safe 

Protein Stain (Thermo Scientific, US) (table 2.1). For the Coomassie Blue staining, the 

gels were incubated with 20-30 mL of Coomassie staining solution for 15-30 min in a 

plastic 14-cm diameter dish. Gels were subsequently incubated with Coomassie destain 

solution (table 2.1) (until the protein bands were clearly visible over the background 

staining. For GelCode® staining, the gels were first prefixed with a 50% methanol (v/v) 

and 7% acetic acid (v/v) solution for 15 minutes at room temperature (RT) and then 

washed three times for five minutes with approximately 100 ml of ultrapure water.  

Further incubation with ultrapure water was continued until the protein bands became 

clearly visible. Gels were stored in sterile water at 4 °C and scanned in with a 

commercially available scanner (LI-COR®). 

2.8.3 Immunoblotting (Western blotting) 

Polyacrylamide gels were transferred to polyvinylidene fluoride (PVDF) Immobilon-P® 

(Millipore®, U.K.) transfer membranes that had been pre-wetted with 100% methanol 

and then equilibrated in transfer buffer, using the NuPAGE® transfer module (Invitrogen, 

U.K.). Transfer was carried out at 25 V for two hours. Subsequently, membranes were 
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blocked in 5% milk in TBS (Tris-buffered saline) supplemented with 0.1% NP40 (TBSN) 

for 1 h at RT. Immunodetection of proteins of interest was performed with the use of 

appropriate primary antibody at a dilution of 1:500 in blocking solution at 4ºC with 

continuous agitation overnight. The next day, membranes were washed in TBS for five 

minutes, then in TBSN for ten minutes, then in TBS for 5 minutes and finally blocked in 

5% milk in TBSN for 60 min at RT. Subsequently, horseradish peroxidase (HRP)-

conjugated secondary antibody was added at a dilution of 1:3,000 for another hour and 

then membranes were washed again as described above. For detection of CaM, the 

PVDF membranes were rinsed with PBS once for 5 minutes, incubated for 15 minutes 

at RT in 20 mL of 0.25% glutaraldehyde in PBS and washed with TBS before the first 

blocking step. The TBS wash step serves to quench any excess reactive glutaraldehyde 

carried over from the initial fixation step. Treatment with glutaraldehyde prevented CaM 

protein from being washed from the membrane during the labelling procedure. After 

thorough washing in TBS, the membrane was blocked, and labelled as described above. 

Protein detection was performed using Western Lightning™ chemiluminescent reagent 

(Perkin Elmer®, U.S.A) as directed by manufacturer, followed by exposure of 

membranes to SuperRX X-ray films (Fuji®, Japan). Films were developed using a 

Compact X4 automatic X-ray film developer (X-ograph imaging Systems, U.K.). When 

detectin MCP-1 whose molecular weight was similar to the MW of beta-actin used as a 

loading control, the primary and secondary antibodies used to detect MCP-1 were 

removed and membrane re-probed with anti-actin antibody. This was achieved by 

incubation of the membrane with “stripping buffer” (Table 2.1) at 60°C for 30 minutes.  

The membrane was then washed in TBSN for 10 min at RT and probed with the 

secondary antibody to confirm the removal of the previous signal. Once this was verified, 

the membrane was blocked with 5% milk in TBSN for 60 min at RT and detection of actin 

was performed according to the protocol described above. 

2.8.4 GFP-Trap® Immunoprecipitation 

Immunoprecipitation of wild type and mutant forms of L-selectin-GFP fusion protein and 

GFP protein were performed using commercially available GFP-binding protein 

covalently conjugated to agarose beads (GFP-Trap®_A, Chromotek, Germany).In brief, 

GFP-Trap® is a high quality GFP-binding protein coupled to agarose beads.  The 

manufacturer’s protocol was used with minor adjustments. Briefly, 30 million THP-1 cells 

expressing wild type or mutant forms of L-selectin-GFP fusion protein or just GFP protein 

were harvested and washed with 10 mL PBS (to remove any traces of albumin from 

tissue culture). Each cell pellet was then resuspended in 200 µL of lysis buffer (10 mM 

Tris/Cl pH 7.5, 150 mM NaCl, 0.5 mM EDTA, 0.5% NP40, 25 nM calyculin A, 5 µM 

bisindolylmaleimide) supplemented with 1x protease inhibitor cocktail (Sigma-Aldrich®, 
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Germany) and the samples were incubated on ice for 30 minutes with extensive pipetting 

performed every 10 minutes. Phosphatase inhibitor calyculin A and kinase inhibitor 

bisindolylmaleimide were added to ensure that protein phosphorylation status was 

preserved in the immunoprecipitation assay. The lysates were centrifuged at 20,000 x g 

(eppendorf centrifuge 5417R, Eppendorf®, Hannover, Germany) for 10 minutes at 4 °C 

and obtained supernatant was transferred to a fresh pre-cooled eppendorf tube and 550 

µL of dilution/wash buffer (10 mM Tris/Cl pH 7.5, 150 mM NaCl, 0.5 mM EDTA, 25 nM 

calyculin A, 5 µM bisindolylmaleimide) was added per sample. The lysate (50 µL) was 

then mixed with 50 µL of 2x protein loading buffer (PLB) and the samples were boiled at 

95 °C for 5 min. These were later used to determine the total levels of protein within a 

given cell lysate (input). The remaining cell lysate was then added to 25 µL of GFP-

Trap® beads that had been pre-equilibrated with the dilution/wash buffer (three washes), 

and beads/lysate mixture was incubated overnight at 4 °C under rotation. The bead 

pellets were subsequently washed three times with dilution/wash buffer and then 100 µL 

2x PLB was added per sample. Finally, the resuspended beads were boiled at 95 °C for 

10 min in order to free the immunocomplexes from the beads. The beads were collected 

by centrifugation at 2,700 x g (eppendorf centrifuge 5417R, Eppendorf®, Hannover, 

Germany) for 2 minutes at 4 °C, and the supernatant loaded and resolved on 

polyacrylamide gels (see section 2.8.1). 

2.8.5 Densitometry analysis 

Conventional scanner (EPSON® Perfection 2400) was used to scan developed X-ray 

films. Scanned images were quantified by using ImageJ® software version 1.43 

(National Institutes of Health, U.S.A.). Fold-changes were determined on the basis of the 

signal intensities amongst all the selected bands. These intensities were then normalised 

against the signal intensity of a protein deemed as “loading control”, for example, actin. 

The results were expressed as a “fold change” against the control in any given 

experiment. 

2.9 PURIFICATION OF GST FUSION PROTEINS  

Glutathione-S-transferase (GST)-fusion proteins of Rho GTPase effector domains were 

kindly provided by John G. Collard, Netherlands Cancer Institute, Amsterdam, the 

Netherlands. Three different GST-fusion proteins were used: p21-binding domain of PAK 

(PAK-PBD), Cdc42/Rac interacting domain (cassette) of the Wiskott-Aldrich syndrome 

protein (WASP-CRIB-C) and the Rho-binding domain of Rhotekin (Rhotekin-C21). All 

GST-fusion proteins were expressed in E. coli BL-21, which were grown in LB-medium 

containing 0.1 mg/mL ampicillin over night at 37 °C under aerobic agitation. On the 

following day, cultures were diluted 1:20 in fresh LB-medium and incubated at 37 °C 
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under agitation.  Once the approximate OD600 of 0.8 was reached, expression of GST-

fusion proteins was induced with 0.5 mM IPTG (table 2.1) for 2.5 hours at 30 °C. Cultures 

were subsequently centrifuged for 45 min at 3,000 rpm at 4 °C (SORVALL® Legend RT, 

U.K.) and the bacterial cell pellets frozen at -80 °C. The frozen pellet from a 150-mL-

culture was thawed on ice and resuspended in 2.25 mL of ice-cold STE buffer (10 mM 

Tris-HCl, pH 8.0, 150 mM NaCl, 1 mM EDTA) supplemented with 1 mM PMSF (table 

2.1). The suspension was then homogenised finally with a 19G hyperdermic needle 

(Kendall, U.K.). Subsequently, 100 μg/mL of lysozyme (Sigma-Aldrich®, Germany) was 

added to the suspension and the mixture incubated on ice for 15 minutes. Consequent 

addition of 5 mM DTT, 1% Tween-20 (v/v) and 0.03% SDS (v/v) led to a change in 

viscosity upon mixing, which indicated that lysis of the bacteria had occurred. The lysate 

was then centrifuged (eppendorf centrifuge 5417R, Eppendorf®, Hannover, Germany) 

for 20 min at 14,000 rpm at 4 °C. The supernatant was then added to 100 μL of 

glutathione Sepharose 4B® beads (GE Healthcare®, U.K.), which had been pre-

equilibrated in STE buffer (three washes), and incubated for 1 h at 4 °C under rotating 

conditions. After the binding of the purified GST-proteins to the beads had occurred, 

beads were centrifuged and washed three times with STE buffer for three minutes at 

1,200 rpm (eppendorf centrifuge 5417R, Eppendorf®, Hannover, Germany) at 4 °C. The 

yield was determined by comparison to a linear BSA calibration standard by protein 

electrophoresis. Representative Commassie-stained gel is shown in figure 2.1. Beads 

were best used within 24 h of production. 

 

Figure 2.1 Determining protein concentration of GST-fused effector domain bound to 
glutathione sepharose beads.  Increasing amounts of BSA (3, 12, 18, 24, 27 and 30 μg) are 

resolved in the first six lanes of the polyacrylamide gel. The concentration range normally loaded 

is between 3- and 30-μg BSA. M = molecular weight standards (from bottom to top: 10, 15, 20, 

30, 40, 50, 60, 80, 110, 160 and 260 kDa). B = 5 μL of glutathione beads boiled and loaded onto 

the last lane of the gel. Coomassie staining of the polyacrylamide gel reveals that 5 μL of beads 

3-30 μg BSA M B

260

10
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prepared in this example carries the equivalent of approximately 10 μg of protein. This particular 

example shows yield of PAK-PBD. 

 

2.10 RHO GTPASE ACTIVATION ASSAYS 

Ten million THP-1 cells expressing wild type or mutant forms of L-selectin-GFP or just 

GFP were harvested from cell suspension, washed with 5 mL PBS and resuspended in 

1 mL of ice cold lysis buffer (10 mM MgCl2, 1 mM EDTA, pH 8.0, 25 mM HEPES pH 7.0, 

150 mM NaCl, 2% glycerol (v/v), 1% Triton X-100 (v/v), 1 mM Na3VO4, 50 nM NaF, 25 

nM calyculin A) supplemented with 1x protease inhibitor cocktail (Sigma-Aldrich®, 

Germany). Immediately after resuspension, the samples were span down at 14,000 rpm 

(eppendorf centrifuge 5417R, Eppendorf®, Hannover, Germany) for 10 min, which 

incorporated both lysis and centrifugation. The lysate (50 µL) was then mixed with 50 µL 

of 2x protein loading buffer (PLB) and the samples were boiled at 95 °C for 5 min. These 

were later used to determine the total levels of RhoGTPase within a given cell lysate. 

The remaining part of the lysate was mixed with approximately 40 µg of GST-fusion 

RhoGTPase bait protein conjugated to the glutathione sepharose beads (see section 

2.9) and the beads/lysate mixture was incubated for 1 hour at 4 °C under rotation. After 

the incubation step was completed, the beads were washed three times with 1 mL of the 

cell lysis buffer and then 20 µL of 2x PLB was added per sample. The samples were 

boiled at 95 °C for 10 min and allowed to cool down. Finally, the samples were loaded 

and resolved on polyacrylamide gels (see section 2.8.1). 

2.11 LENTIVIRAL GENE DELIVERY AND GENERATION OF STABLE CELL LINES 

2.11.1 Lentiviral production in HEK 293T packaging cell line 

Lentiviral particles carrying C-terminally GFP- or RFP-tagged L-selectin were produced 

using HEK 293T packaging cell line and pCMVΔR8.91 or psPAX2 (envelope) and 

pMD.G (packaging) helper vectors. HEK 293T cells were plated one day prior to 

transfection at a density of 10 - 15 x 106 cells per dish (diameter of 14 cm). On the day 

of transfection 30 µg pCMVΔR8.91 or psPAX2, 10 µg pMD and 40 µg pHR’SIN-SEW-L-

selectin-GFP (or –RFP) or pLenti CMV Puro DEST (w118-1) carrying sequences for Rho 

GTPase Raichu probes, were added to 4 mL OPTIMEM (GIBCO®, Invitrogen) in one 

tube and 1 µL of 10 mM polyethylene imine (PEI) was added to 4 mL of OPTIMEM in a 

second tube (the amounts of DNA and volumes of OPTIMEM and PEI described were 

for 1 dish of HEK 293T cells, and if more dishes were used, the reagents were adjusted 

accordingly). The tubes were mixed together and incubated in RT for 15 minutes. Culture 

media was aspirated off HEK 293T cells and the transfection mixture was added onto 
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the packaging cells in a dropwise manner (8 mL per dish). After 4 hours of incubation 

transfection media was aspirated and fresh media was added. Cell supernatants 

containing lentivirus particles were collected 48 hours after transfection (1st harvest), 

new media was added and then supernatant was collected again after 72 hours post-

transfection (2nd harvest). Supernatants form both harvests were pooled and 

subsequently filtered with 0.45 µm filter (MILLEX® GP) and either frozen in -80ºC or 

concentrated by ultracentrifugation. 

2.11.2 Lentivirus concentration 

Lentiviral particles produced as described in section 2.11.1 were concentrated by 

ultracentrifugation. Ultracentrifugation was performed in 11.5 mL tubes in TH641 rotor at 

50, 000 xg (SORVALL® Discovery ultracentrifuge) for two hours at 4ºC. After 

ultracentrifugation, supernatant was decanted and 50 µL of RPMI (supplemented with 

10% FCS (v/v) and 1% penicillin/streptomycin (v/v)) was added to a small yellowish pellet 

residing at the bottom of each tube and incubated on ice for 40 minutes. The pellets were 

then resuspended in the added volume, the volumes pooled together, aliquoted in 50 µL 

and stored in -80ºC until used. Concentrated virus was subsequently titrated before 

transduction of THP-1 cells took place. 

2.11.3 Measuring lentiviral titres 

In order to establish lentiviral titres, HEK 293T cells were plated in 24-well plates, at a 

density of 1 x 105 cells/well (day 0). On the day of transduction, HEK 293T cells were 

counted and serial dilutions of the concentrated lentivirus (10-6 to 10-1) were added onto 

the cells (day 1). On day 2, media was changed and on the day 4 media was removed, 

cells taken off with trypsin/EDTA, resuspended in PBS and analysed in duplicates by 

flow cytometry. When lentiviral particles carrying L-selectin-GFP or Raichu CFP/YFP 

construct were titrated, percentage of positive cells was determined by obtaining direct 

FACS data of either GFP or YFP expression levels, respectively. When lentiviral particles 

carrying L-selectin-RFP were titrated, cells were first stained with mouse anti-L-selectin 

DREG56 antibody and then α-mouse secondary RPE-conjugated antibody and L-

selectin expression was determined by obtaining flow cytometry data of the RPE 

fluorescence. Virus titre was established from cells that were ideally 1-30% transduced 

to ensure that multiple integrations were avoided and calculations were done within the 

linear range. Titres were calculated according to the following equation: T= PxN/DxV, 

where T = titre, P = GFP/YFP/RFP positive cells, D  = dilution and V = volume. Titres for 

all the lentiviral particles generated throughout this project are shown in Table 2.5.        

Lentiviral vector plasmid Gene of interest Titre (x 108 i.u./mL) 
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pHR´SIN-SEW WT L-selectin-GFP 2.128 

pHR´SIN-SEW GFP 2.56 

pHR´SIN-SEW S364A L-selectin-GFP 2.18 

pHR´SIN-SEW S367A L-selectin-GFP 2.56 

pHR´SIN-SEW SSAA L-selectin-GFP 6.3 

pHR´SIN-SEW ΔM-N L-selectin-GFP 2.84 

pHR´SIN-SEW ΔM-N SSAA L-selectin-
GFP 

13.3 

pHR´SIN-SEW WT L-selectin-RFP 12.56 

pHR´SIN-SEW SSAA L-selectin-RFP 2.71 

pHR´SIN-SEW ΔM-N L-selectin-RFP 1.87 

pHR´SIN-SEW ΔM-N SSAA L-selectin-
RFP 

4.4 

pLenti CMV Puro DEST 
(w118-1) 

CFP/YFP RhoA Raichu 
probe 

10.56 

pLenti CMV Puro DEST 
(w118-1) 

CFP/YFP Rac1 Raichu 
probe 

9.2 

pLenti CMV Puro DEST 
(w118-1) 

CFP/YFP Cdc42 Raichu 
probe 

9.1 

Table 2.5 Lentivirus titres. The table shows titres in infection units (i.u.) per mL of all 

concentrated lentivirus suspensions generated throughout this research project. See 

Abbreviations section for abbreviations used. 

 

2.11.4 Transduction of THP-1 cells 

THP-1 cells were resuspended at the density of 0.4 x 106 cells/mL on a day prior to the 

transductions. The next day, 1 x 106 cells were harvested, centrifuged and resuspended 

in fresh media into which lentivirus suspension was added (total volume of media and 

lentivirus suspension was 1 mL). Volume of concentrated virus that was added per 

transduction was found on the basis of the titre and desired multiplicity of infection (MOI) 

accordingly to the following equation: (Number of cells transduced) x (MOI)/(Titre) = (mL 

of virus). The MOIs used were that of 5, 7 or 20. The cells were then placed in the CO2 

incubator at 37 °C and fed fresh media two days after the transduction. Four days after 

the transduction the entire media was replaced with fresh media.  

2.12 CELLS AND CELL CULTURE 

All cells were cultured in a 5% CO2 incubator at 37°C. 

2.12.1 THP-1 cells (Acute Monocytic Leukemia, human) 

THP-1 cell line was purchased from American Type Culture Collection (ATCC). Cells 

were maintained in RPMI-1640 (GIBCO®, Invitrogen) medium supplemented with 10% 

FCS, 1% antibiotics (penicillin/streptomycin) and 0.05 mM β-mercaptoethanol (BME), 

referred to as “THP-1 media”. For cell line maintenance, cells were seeded at a density 
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of 0.3-0.5 x 106 cells/mL and split every 2-3 days when the density reached 0.7-0.9 x 

10x6 cells/mL. Cells were seeded at 0.4 x 106 cells/mL one day prior to any given 

experiment.  

2.12.2 HEK 293T cells (Human Epithelial Kidney cells) 

HEK 293T cells were a kind gift from Dr Yolanda Calle (Cancer Division, King’s College 

London). Cells were maintained in RPMI-1640 medium supplemented with 10% FCS 

and 1% antibiotics (penicillin/streptomycin). Medium was renewed every 2-3 days and 

cells were passaged with a subcultivation ratio of 1:3 to 1:6.  

2.12.3 Human umbilical vein endothelial cells (HUVEC) 

HUVEC were purchased from Lonza and were maintained in EGM-2 growth media 

supplemented with appropriate growth factors (Lonza) (Table 2.1), 10% FCS and 1% 

antibiotics (penicillin/streptomycin) in fibronectin-coated (10 µg/mL) tissue culture dishes 

(14 cm diameter). Cells were initially expanded for 6 passages. For passaging, media 

was aspirated and cells washed once with sterile PBS. Two millilitres of trypsin-EDTA 

(Sigma-Aldrich®, Germany) was added on to cells and the cells were incubated in a 5% 

CO2 incubator at 37°C until all HUVEC cells detached from the plates. EGM-2 media 

was then added (8 mL) to neutralise the action of trypsin and the cells were centrifuged 

(SORVALL® Legend RT, U.K.) for 5 minutes at RT. Cell pellets were then resuspended 

in fresh EGM-2 media and seeded in to plastic tissue culture dishes. After 6 passages, 

HUVEC were cryopreserved (section 2.12.4) and were again re-cultured prior to the 

experiments. Media was changed in to fresh every second day,  and cultures were used 

for experiments when reached confluence (3–5 days).   

2.12.4 Cryopreservation of cells 

Cells destined for cryopreservation were grown in log phase for a couple of days before 

freezing. Approximately 10 million cells were harvested, and the cell pellet was 

resuspended in 10% DMSO and 90% FCS (v/v) and placed in a single pre-cooled 

Corning® freezing vial. The vials were immediately placed on ice and transferred to -80 

°C freezer. After 24 hours, vials were transferred to liquid nitrogen for long-term storage. 

For re-culturing, frozen cells were rapidly thawed in a water-bath at 37 °C and thawed 

suspension added to 9 mL of fresh cultivation media. After 5 minutes of centrifugation 

(SORVALL® Legend RT, U.K.), the cell pellets were resuspended in fresh media, placed 

into tissue culture flasks and flasks placed in the incubator for culturing.  
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2.13 FLOW CYTOMETRY 

2.13.1 Technical equipment 

All samples were analysed on a FACSCalibur flow cytometer (BD Biosciences). All 

fluorophores were excited at λ 488 nm and GFP and FITC fluorescence was detected at 

λ 530 nm (FL-1 channel) and RPE fluorescence was detected at λ 588 nm (FL-2 

channel). Direct detection of RFP was not possible as the available flow cytometer was 

not equipped a laser capable of exciting RFP. Therefore, L-selectin-RFP-expressing 

cells were analysed by labelling with mouse anti-L-selectin DREG56 and then anti-

mouse-FITC conjugated secondary antibody. Data were acquired and analysed with 

CellQuest™Pro Version 4.0.2 (BD Biosciences) acquisition and analysis software.  

2.13.2 Antibody labelling procedure 

All cells were labelled on ice in 96-well plates. Primary and secondary antibody 

incubations were 30 and 15 minutes in duration, respectively. All centrifugation was 

performed at 4°C and at 1200 rpm (SORVALL® Legend RT, U.K.) for 1 minute. All 

washes were performed using 10% FCS in HBSS (GIBCO®, Invitrogen) or THP-1 media 

(RPMI-1640 medium supplemented with 10% FCS, 1% penicillin/streptomycin and 0.05 

mM BME) supplemented with 25mM HEPES to ensure Fc receptors blockage by FCS. 

After approximately 100,000 cells per sample were harvested, the cells were 

centrifugated, supernatant discarded, and cells were washed. THP-1 cells were 

subsequently labelled with either primary antibodies or appropriate IgG isotype control 

antibodies, all at 1:80 dilution in 50 μL. The cells were then washed three times and 

incubated with anti-mouse-RPE/FITC-conjugated secondary antibodies at 1:20 dilution 

in a 50 μL volume. After incubation with secondary antibodies, cells were washed three 

times, each sample resuspended in 150 μL of washing buffer/media and then added to 

200 μL of PBS that had been pre-added to glass FACS tubes (BD Falcon™). The 

samples prepared in this way were subsequently analysed by flow cytometry. Analysis 

of cells were performed exclusively on the “live gate”. These were determined based on 

their distinctive scatter pattern. A minimum of 10,000 cells were counted for each sample 

in every experiment and samples were performed in triplicate. Data from shedding 

experiments are represented as percentage of L-selectin surface expression relative to 

untreated cells after adjustment for background fluorescence with control isotype-

matched antibody-stained cells. 

2.14 PARALLEL PLATE FLOW CHAMBER ASSAY 

All cells were resuspended in THP-1 media (RPMI-1640 medium with 10% FCS, 1% 

penicillin/streptomycin and 0.05 mM BME)  supplemented with 25 nM HEPES buffer prior 
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to the perfusion assays, referred to as “perfusion media”. HEPES is a CO2-independent 

buffering system and its addition ensured that media pH was maintained at physiological 

levels during the perfusion assays where no CO2 supply was present. 

When interaction of THP-1 cells with HUVEC was analysed, HUVEC monolayer was 

grown to confluency and stimulated with 10 ng/mL TNF-α overnight. 

2.14.1 Technical equipment 

All experiments were performed in 37°C, 5% CO2 incubator (SolentScientific) and 

visualized using Olympus IX81 time-lapse inverted fluorescence microscope connected 

to a Hamamatsu C10600 ORCA-R2 digital video camera. A Harvard syringe pump 

(Harvard Apparatus®, U.S.A) was used to generate a flow rate of 0.25 mL/min 

(corresponding to 1.24 dyn/cm2, which is a physiological shear stress of the blood flow). 

Images were acquired into a video file (Volocity® Imaging software, Perkin Eelmer). 

Schematic of the parallel plate flow chamber as well as a photograph of assembled 

chamber can be seen in figure 2.2. 
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Figure 2.2 Parallel plate flow chamber system. A) Three steps of parallel plate flow assembly. 

Step 1: top part of the chamber containing inlet/outlet ports as well as a vacuum port was attached 

to the silicon gasket. Step 2: inlet, outlet and vacuum tubes were attached to their respective 

ports. Step 3: Vacuum force was applied and the apparatus was “sucked” onto a glass coverslip 

on which HUVEC cells were grown. B) Diagram illustrating the complete system used for the 

parallel plate flow chamber assay. In brief, the assembled chamber was placed over the objective 

of an inverted microscope in an environmental chamber heated to 37°C. A syringe pump applied 

suction force that drew the cell suspension through the chamber with a set flow rate (set by a 

syringe refill rate). The flow through waste was collected in the syringe. Video footage of the 

microscope image was recorded by a CCD (charge-coupled device) camera with video recorder 

connected to the computer acquired with Volocity visualisation and analysis software.   

 

2.14.2 Cell co-perfusion experiments 

Experiments were performed as co-perfusions where two THP-1 cell lines were co-

perfused at 1:1 ratio.  Prior to the flow chamber assays, one of the cell lines was labelled 

with 10 nM Cell Tracker® Green (Molecular Probes®, Invitrogen®, Paisley, U.K.) and 

the other with  Cell Tracker® Orange (Molecular Probes®, Invitrogen®, Paisley, U.K.) in 
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HBSS (without serum) for 10 minutes in 37 °C. The cells were then harvested by 

centrifugation (SORVALL® Legend RT, U.K.), washed and resuspended in perfusion 

media at total density of 0.5 x 106 cells/mL. The cells were perfused over TNF-α activated 

HUVEC, grown in 6-well plastic dishes, for ten minutes. The footage was recorded from 

the moment the pump was switched on using a x4 objective, and four separate fields of 

view were acquired per experiment. Three frame-views per minute were acquired for the 

phase contrast, the GFP channel (to visualise Cell Tracker® Green) and the RFP 

channel (to visualise Cell Tracker® Orange).  The footage was analysed using Volocity 

software (PerkinElemer, U.S.A). Number of recruited cells was counted manually.   

2.14.3 Perfusion of cells for confocal microscopy, FLIM/FRET and pseudopod 

dynamics analysis 

For these experiments HUVEC were grown on 35 mm diameter sterile glass coverslips 

(ThermoScientific, Germany) that were pre-coated with 10 µg/mL fibronectin. Cells in the 

perfusion media were perfused over TNF-α activated HUVEC at a density of 0.25 x 106 

cells/mL and the footage was acquired for 15 minutes for three separate fields of view 

using x10 objective. Four frame-views per minute were acquired for the phase contrast 

and the GFP channel. In experiments where cells were pre-incubated with R0-31-9790 

metalloprotease inhibitor, the inhibitor was added at a working concentration of 30 µM 

30 minutes prior to the assay. After recording was completed, the coverslips were fixed 

with 4% paraformaldehyde (PFA) (w/v) for 20 minutes at room temperature, washed 

three times with PBS and processed either for analysis using confocal microscopy 

(section 2.16) or for FLIM analysis of FRET (section 2.18). The acquired footage was 

analysed using Volocity software (PerkinElemer, U.S.A). Analysis included manual 

counting of cells having one, two or multiple pseudopods. Additionally, still images were 

exported for the purpose of cell spreading area analysis using ImageJ® software 

(section 2.15).      

2.15 CELL SPREADING AREA ANALYSIS 

Video footage from time-lapse parallel-plate flow chamber experiments (section 2.14.3) 

was used to generate still images using Volocity software (PerkinElemer, U.S.A). Two 

stills were generated per field of view, corresponding to early and late time point of 

perfusion, respectively. Three fields of view were acquired per experiment and all 

experiments were repeated on three independent occasions. The images were loaded 

in to ImageJ® software (N.I.H., U.S.A.) and the scale was adjusted. At least 30 cells per 

one still image were analysed. Analysis was performed by outlining the cell shape with 

a drawing tool cursor, and the cell area measurements (in µm2) were automatically 

generated by the ImageJ® software.  
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2.16 CONFOCAL MICROSCOPY 

2.16.1 Technical equipment 

Leica TCS SP5 confocal microscope (Leica Microsystems, Germany) was used to 

acquire all images.  GFP was excited at λ = 488 nm with an Argon laser, whereas TRITC-

phalloidin and Alexafluor®633 were excited with Helium-Neon lasers at λ = 543/568 and 

633 nm, respectively. Images were acquired as single Z-planes or as series of Z-stacks.   

2.16.2 Cell labelling procedure 

For L-selectin-GFP visualisation, cells were perfused over TNF-α activated HUVEC as 

described in section 2.14.3. For biglycan visualisation HUVEC were grown to confluence 

and stimulated with TNF-α or left untreated. Cells were then fixed with 4% PFA in PBS 

(w/v) for 10 minutes at RT and washed 3 times with PBS. Nonident P-40 (NP40) (Fluka 

BioChemika) was then added at a concentration of 0.1% in PBS (v/v) for no more than 

3 minutes in order to permeabilise the cells. Cells were subsequently washed three times 

in PBS and blocked with 5% BSA in PBS (v/v) for 40 minutes at room temperature. For 

early endosome antigen 1 (EEA1) and biglycan staining, samples were incubated with 

anti-EEA1 or anti-biglycan antibody in the blocking solution at 1:500 or 1:300 dilution, 

respectively, for 1 hour at room temperature. Samples were subsequently washed three 

times with PBS and TRITC-phalloidin (1:300 dilution) and appropriate Alexafluor®633-

conjugated secondary antibodies (1:250 dilution) were added in a blocking solution. 

When no additional staining was performed, TRITC-phalloidin (1:300 in blocking 

solution) was added straight after the blocking step. Coverslips were stained at 4°C 

overnight.  Following day, coverslips were washed three times with PBS and mounted 

on a microscopic slide with a use of fluorescent mounting media (DAKO).  

2.16.3 Three-dimensional (3D) rendering 

Z-stacks were acquired with Leica TCS SP5 confocal microscope with the scan speed 

of 200 Hz and 3 line averages per scan. Acquired z-stacks were saved as series of TIFF 

files and imported into Imaris imaging software (Bitplane AG, Switzerland). Three-

dimensional (3D) reconstruction was performed manually using “Volume rendering” task 

for both green and red channels, which corresponded to L-selectin-GFP and TRITC-

phalloidin-stained actin, respectively. Snapshot of the generated 3D image was taken 

and saved as a JPG photograph.   

2.16.4 Analysis of L-selectin-GFP “spots”, “spikes” and “clusters” 

THP-1 cells expressing either wild type or mutant L-selectin-GFP were perfused over 

TNF-α activated HUVEC as described in section 2.14.3. TRITC-phalloidin labelling 
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enabled visualisation of HUVEC actin cables and THP-1 cell protrusions positioned 

underneath the endothelial cells could therefore be identified. Single z-plane images 

were acquired with Leica TCS SP5 confocal microscope. To improve image quality, 

clarity, and accuracy and to reduce noise for single z-plane scans, the scan speed was 

reduced to 100 Hz and line averages were increased to 4 as compared to microscope 

settings used for z-stacks acquisition (section 2.16.3). One image per cell was acquired 

in order to obtain maximal possible magnification. Darkfield images of the GFP channel 

were loaded in to Volocity imaging software and only the protrusions were selected for 

analysis. Analysis was performed using “Find Spots” task, where manual adjustment of 

local fluorescence intensity minima were applied for each image. Clusters were identified 

as large bright L-selectin-GFP agglomerations. Spikes were counted manually. Fifteen 

cells were analysed per experiment and experiments were repeated three times for each 

cell line.     

2.17 L-SELECTIN SHEDDING ASSAYS 

2.17.1 Shedding in response to PMA and TNF-α stimulation 

Cell stimulation with either PMA or TNF-α was followed by analysis of cell surface 

expression of L-selectin. In each case, approximately 100,000 cells were treated in 200 

μL of medium. The medium used was either 10% FCS (v/v) in HBSS or the THP-1 media 

(RPMI-1640 medium supplemented with 10% FCS, 1% penicillin/streptomycin and 0.05 

mM BME), and medium was supplemented with 25 mM HEPES. The stimulation was 

performed at 37ºC and 5% CO2 for 30 minutes (PMA) or 1 hour (TNF-α ). Levels of cell 

surface L-selectin were subsequently determined by flow cytometry as described in 

section 2.13. Experiments were performed in triplicate on at least three independent 

occasions.  

2.17.2 Shedding during static transmigration assay 

HUVEC monolayers were grown to confluence in 6-well plastic dishes and stimulated 

with 10 ng/mL TNF-α overnight. (2 x 105) were added in 1 mL of media per one well of 

HUVEC and incubated for 0, 5, 10, 20, 30 or 60 minutes. The supernatant (unbound 

THP-1 fraction) and HUVEC fraction (bound THP-1 fraction) were then harvested, 

washed once with PBS and lysed in appropriate volume of Cytobuster™ Protein 

Extraction Reagent supplemented with protease inhibitors cocktail (Sigma-Aldrich®, 

Germany). After x4 protein loading buffer addition and sample boiling at 95 °C (5 

minutes), the samples were resolved on polyacrylamide gels as described in section 

2.8.1 and L-selectin-GFP was detected by Western blotting using anti–GFP antibody as 

described in section 2.8.3. 
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2.18 FLIM ANALYSIS OF FRET 

2.18.1 Preparation and labelling of cells  

In order to study clustering of L-selectin, THP-1 cells were double transduced with 

lentivirus carrying WT or mutant L-selectin-GFP followed by the lentivirus carrying WT 

or corresponding mutant L-selectin-RFP. These cells were referred to as GFP/RFP. GFP 

is an excellent donor molecule for FLIM is it exhibits mono-exponential decay kinetics. 

RFP acts as suitable acceptor for GFP as the excitation spectra overlaps with the 

emission spectra of GFP. When investigating clustering of L-selectin during TEM, 

HUVEC were seeded on to 35 mm diameter fibronectin-coated glass coverslips 

(ThermoScientific, Germany) and grown to confluency. Once confluent HUVEC were 

stimulated with 10 ng/mL TNF-α overnight. The GFP/RFP “double expressors” were 

perfused over TNF-α activated HUVECs for 15 minutes (for parallel flow chamber assays 

protocol see section 2.14.3) and then fixed with 4% PFA for 20 minutes at RT. For 

antibody-mediated “Inside-out” L-selectin clustering assays (see section 2.19), poly-L-

lysine (PLL)-coated coverslips were prepared by applying neat PLL to the coverslip (100 

μL) for 20 minutes at room temperature. Excess PLL was aspirated and the coverslips 

were left to dry overnight at room temperature. After antibody labelling, GFP/RFP cells 

were resuspended in PBS and plated on PLL-coated glass coverslips. Binding of cells to 

PLL were performed at RT for 5 minutes. Cells were then fixed with 4% PFA for 20 

minutes at RT. After PFA fixation, the cells were washed 3 times with PBS. Subsequent 

permeabilisation of cells was perfomed with 0.1% NP40 in PBS (v/v) for no more than 3 

minutes the cells were then washed three times with PBS. Sample was subsequently 

treated with 1 mg/mL of sodium boryhydride for 10 minutes. Sodium boryhydride is a 

reducing agent that decreases the background fluorescence, minimising “noise” during 

detection. Samples were subsequently blocked with 5% BSA (v/v) in PBS for 40 minutes 

at room temperature. For experiments investigating L-selectin clustering during TEM, 

Alexafluor®633-phalloidin in at 1:300 dilution in the blocking solution was added. Actin 

staining with Alexafluor®633-phalloidin enabled visualisation of HUVEC actin cables. 

This allowed identification of the z-planes at which THP-1 cells were positioned in respect 

to the endothelial cells (i.e. on top or underneath the HUVEC monolayer). For 

experiments investigating “Inside-out” L-selectin clustering, donkey anti-goat 

Alexafluor®633-conjugated tertiary antibody was added in blocking solution at 1:100 

dilution. Samples were stained at 4°C overnight. The glass coverslips were washed three 

times with PBS and then mounted on the microscopic slides (ThermoScientific, 

Germany) with a use of fluorescent mounting medium (DAKO). Mounted slides were 

dried at 37°C for one hour and then placed in a dark box and stored at +4ºC until analysis 

of protein interactions by fluorescence lifetime imaging microscopy (FLIM) measurement 
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of FRET was performed. All image collection and data analysis were performed by Dr 

Maddy Parsons (Randall Division of Cell and Molecular Biophysics, King's College 

London). 

2.18.2 Technical equipment and data analysis  

FLIM measurement of FRET was performed with a multi photon microscope system as 

described previously [153, 402]. A Nikon TE2000E inverted microscope combined with 

an in-house scanner and Chameleon Ti:Sapphire ultrafast pulsed multiphoton laser 

(Coherent) was used for excitation of GFP (at 890nm).  Fluorescence lifetime imaging 

capability was provided by time-correlated single photon counting electronics (Becker & 

Hickl, SPC 700). A 40x objective was used throughout (Nikon, CFI60 Plan Fluor N.A. 

1.3) and data were acquired at 500 ± 20 nm through a bandpass filter (Coherent Inc. 35-

5040). Acquisition times of the order of 300 s at low excitation power were used to 

achieve sufficient photon statistics for fitting, while avoiding either pulse pile-up or 

significant photobleaching. Data were analysed as previously described [153, 402]. The 

FRET efficiency is related to the molecular separation of donor and acceptor and the 

fluorescence lifetime of the interacting fraction by:  

 

ȠFRET = (R0
6/(R0

6 + r6)) = 1 - 
τFRET

τd
 

 

Where ȠFRET is the FRET efficiency, R0 is the Förster radius, r the molecular separation, 

τFRET is the lifetime of the interacting fraction and τd the lifetime of the donor in the 

absence of acceptor. The donor only control is used as the reference against which all 

other lifetimes are calculated in each experiment. τFRET and τd can also be taken to be 

the lifetime of the interacting fraction and non-interacting fraction, respectively. 

Quantification was made from all pixels within each cell was analysed. All image 

collection and data analysis was performed by Dr Maddy Parsons (Randall Division of 

Cell and Molecular Biophysics, King's College London) using TRI2 software (developed 

by Dr Paul Barber, Gray Cancer Institute, London, U.K.). Cell line generation, staining 

and slide preparation was performed by me, Karolina Rzeniewicz. FLIM data presented 

in this thesis is shown as histograms showing mean FRET efficiency from the stated n 

number of cells from 3 independent experiments, +/- standard error of the mean (S.E.M). 

Statistical differences between various populations were calculated by One-way 

ANOVA. 
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2.19 ANTIBODY-MEDIATED CROSS-LINKING ASSAYS 

For investigation of “inside-out” signalling leading to L-selectin clustering, THP-1 cells (1 

x 105) double expressing wild type or mutant forms of L-selectin-GFP/RFP were used. 

For analysis of Rho GTPase biosensor activity 1 x 105 THP-1 cells expressing WT or 

ΔM-N L-selectin-RFP and/or CFP/YFP RhoA, Rac1 or Cdc42 biosensors were used.   

Cells washed once with wash media (THP-1 media – RPMI-1640 medium with 10% FCS, 

1% penicillin/streptomycin and 0.05 mM BME –   supplemented with 25 nM HEPES) and 

incubated with antibodies against extracellular epitopes of L-selectin, PSGL-1, JAM-1, 

CD43, CD44 or PECAM-1 (1:50 dilutions in THP-1 media (v/v) supplemented with 25mM 

HEPES). All antibodies were of the same stock concentration (table 2.2). Alternatively, 

the cells were incubated with just THP-1 media. After 30 minutes at 4°C, the cells were 

washed three times with wash media and incubated with appropriate secondary 

antibodies conjugated to Alexafluor®633. After further 30 minutes incubation at 4°C, the 

cells were resuspended in 100 μL PBS and added on to glass coverslips (diameter of 13 

mm, thickness No. 0, VWR International, U.K.) pre-coated with poly-L-Lysine (PLL). PLL-

coated coverslips were prepared by applying neat PLL to the coverslip (100 μL) for 20 

minutes at room temperature. Excess PLL was aspirated and the coverslips were left to 

dry overnight at room temperature. After 5 minutes of incubation at room temperature, 

the excess cells were aspirated off the coverslips and coverslips were fixed with 4% PFA 

(w/v) and labelled for FLIM analysis of FRET as described in section 2.18.1.       

2.20 TRANSWELL MIGRATION ASSAYS 

Transwell chambers (6.5 mm with 5.0µm Pore Polycarbonate Membrane Insert, Corning) 

were used in all assays. When investigating transmigration through HUVEC, the filters 

were coated with 10 µg/mL fibronectin (FN) for 1 hour at 37°C, then excess FN was 

aspirated and 2.5 x 104 HUVEC cells were seeded per filter. HUVEC were grown to 

confluence and stimulated with 10 ng/mL TNF-α on an evening prior to the experiment. 

Appropriate concentrations of chemoattractants were prepared in 0.1% BSA in RPMI 

(v/v). Either 0.1% BSA in RPMI (v/v), 50 ng/mL MCP-1 or increasing (0,1, 3 ,50 ,100) 

ng/mL CXCL-1 chemoattractants (600 µm) were added to the lower compartments of the 

transwell. THP-1 cells were harvested and resuspended in 0.1% BSA in RPMI (v/v) at 1 

x 106 cells/mL. When investigating migration towards MCP-1, in some experiments the 

cells were resuspended in 0.1% BSA in RPMI (v/v) supplemented with 50 ng/mL MCP-

1. This created environment each in MCP-1 but devoid of gradient and was used to 

investigate if cell migration was due to cell chemokinesis (directional movement) or 

chemotaxis (random movement). This technique is known as checkboard analysis. 

Prepared cell suspension (300 µL) was mixed with 300 µL of THP-1 media (RPMI-1640 
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medium supplemented with 10% FCS, 1% penicillin/streptomycin and 0.05 mM BME) 

and kept in 37°C, 5% CO2 until the migration assay was completed. These were referred 

to as “input”. Next, the rest of the prepared cell suspension was added to the upper 

compartments (300 µL per each well)  of the transwell chamber and allowed to 

transmigrate for 2 hours and 15 minutes at 37°C, 5% CO2, and were subsequently 

analysed by flow cytometry. Briefly, 600 µL of 0.1% BSA in RPMI (v/v) (with or without 

chemoattractant), containing transmigrated cells were harvested from each lower 

compartment. Number of events was recorded for one minute and the acquired value 

divided by the value obtained for “input”. This allowed determination of the percentage 

of transmigrated cells. All the experiments were performed in triplicates on three 

independent occasions.   

2.21 STATISTICAL EVALUATION 

All quantified data were collected and processed in Microsoft® EXCEL 2007 (or higher) 

(Microsoft Corporation, U.S.A). Statistical evaluation was performed using GraphPad 

Prism® version 5.02b (or higher) for Windows (GraphPad Software, U.S.A.) with which 

bar and line graph plots were also generated. Statistical tests used to determine 

significant differences were unpaired, two-tailed t-tests and one-way ANOVA (followed 

by Dunnett’s or Tukey’s post-tests), where mentioned in text. Differences were 

considered significant when p < 0.05. 
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CHAPTER 3. GENERATION AND CHARACTERISATION OF A 

MONOCYTE CELL LINE STABLY EXPRESSING L-SELECTIN 

TAGGED TO GREEN FLUORESCENT PROTEIN (GFP) 

3.1 INTRODUCTION 

Monocytes are cells of crucial importance in the outcome of both acute and chronic 

inflammation (section 1.6). L-selectin has been reported to play a role in monocyte 

recruitment to the inflamed venules at the site of infection [631], to the HEV of secondary 

lymphoid organs during an inflammatory response [56], to  the activated endothelium in 

vitro [410, 460] and to atherosclerotic lesions in vivo [299]. However, the molecular 

mechanisms by which L-selectin exerts its function(s) during the adhesion cascade, 

particularly in respect of signalling, remain poorly understood. The fact that L-selectin 

expression has been observed in emigrated monocytes, but not neutrophils, in a 

thioglycollate-induced model of peritonitis, strobly suggests that this cell adhesion 

molecule retains the capacity to function and signal during TEM [527]. 

As described in section 1.7.5.2, the current methods used to visualise the cellular 

distribution of L-selectin rely on labelling of L-selectin with fluorescently conjugated 

mAbs. This approach poses a serious risk to proper data interpretation as engagement 

of L-selectin with mAbs has been shown to trigger L-selectin signalling and lead to 

various cellular responses (section 1.11 and table 1.3). It was therefore decided that 

tagging L-selectin with green fluorescent protein would help address the aforementioned 

issue. In other words, it would provide a “non-invasive” method to monitor the spatio-

temporal distribution of L-selectin during the adhesion cascade.  

Two monocytic cell lines were considered for this study: THP-1 and U937. Both cell lines 

are immortalized human monocyte cell lines that are commonly utilised in leukocyte 

research. Interestingly, U937 cells have been previously used to stably express L-

selectin but the study was limited to investigating the adhesion to endothelial monolayers 

under flow conditions and transendothelial migration was not investigated [410]. It could 

be suggested that, more importantly, the U937 cell line is a monoblast leukemia cell line 

and as a result exhibits a less mature monocytic phenotype than the THP-1 cell line, 

which is a monocytic leukemia cell line [632]. As a result THP-1 cells were chosen to 

serve as a model cell line for the studies presented in this thesis. In order to express 

fluorescently tagged L-selectin in THP-1 cells, a lentiviral transgene delivery system was 

chosen and stable cell lines were generated. 

The cytoplasmic tail of L-selectin is only 17 amino acid long, and green fluorescent 

protein (GFP) is relatively large having 238 amino acids [633]. It was therefore of high 

importance to establish if GFP-tagging of L-selectin tail caused any adverse effects on 
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L-selectin expression, form and function. Hence, the hypothetical influence of the GFP 

tag on the behaviour of L-selectin was rigorously tested.  

This chapter describes the successful generation of monocyte THP-1 cell lines stably 

expressing GFP-tagged to the C-terminus of L-selectin and control THP-1 cell line 

expressing GFP alone. The results outlined in the latter sections of this chapter show 

that L-selectin-GFP chimera stably expressed by THP-1 monocytes exhibited correct 

localisation, and no overt alterations in physiological characteristics as compared with 

wild type L-selectin. 

3.2 EXPERIMENTAL DESIGN 

As described in section 3.1, in order to analyse the subcellular distribution of L-selectin 

in monocytes during the leukocyte adhesion cascade, it was decided that the THP-1 

monocyte cell line would be used to express fluorescently tagged L-selectin. THP-1 cells 

were purchased from the American Type Culture Collection (ATCC) to guarantee the 

true identity of the cell line. When choosing tags to be linked to the protein of interest, 

two options are available: C- and N-terminal tags. L-selectin is a type I transmembrane 

protein, which means N-terminal tagging would ligate GFP to the extracellular domain 

and C-terminal tagging would ligate GFP to the cytosolic tail. As described in section 

1.7.1, the very N-terminal part of L-selectin comprises the ligand-binding lectin domain 

and thus fusing a tag on this side would likely interfere with L-selectin functionality, as 

well as appropriate delivery to the plasma membrane (as the very N-terminus contains 

the pro-domain and leader sequence for membrane targeting). In conclusion, the 

favoured position for tagging L-selectin with a fluorescent tag was at the C-terminal 

cytoplasmic tail.  

Two ways of protein expression can be achieved in cells: transient and stable. The 

obvious advantage of the latter method is a long-term protein expression. The stable 

expression also prevents any adverse effects that might be caused by transiently 

transfecting cells. In addition, transient transfection is highly ‘stressful” for the cell and 

requires subjection to high voltage. Stressed cells often shed their L-selectin. Therefore 

it was decided to achieve stable expression of fluorescently tagged L-selectin in THP-1 

monocytes.       

Lentiviruses are known to infect leukocytic cell lines with high efficiency and were chosen 

as a transgene delivery method for stable cell line generation. Human L-selectin cDNA 

was cloned into the lentiviral backbone plasmid carrying open reading frames (ORF) of 

enhanced GFP (eGFP, hereafter referred to as GFP) or red fluorescent protein (RFP), 

and lentiviral particles were produced in HEK 293T cells. Transduction and subsequent 

fluorescence-associated cell sorting (FACS) of THP-1 cells were used to generate 

uniform monocytic cell lines stably expressing fluorescently-tagged L-selectin.  



120 
 

In order to test the potential influence of the GFP tag on L-selectin expression and 

biological activity, a series of experiments was designed. L-selectin-GFP expression and 

cellular localisation were tested by fluorescence microscopy, flow cytometry analysis, 

scanning electron microscopy and Western blotting. Upon cell activation, L-selectin 

undergoes proteolytic ectodomain cleavage (commonly termed “shedding”, section 

1.9.2) [326, 419, 495, 496, 515, 521, 529], and this property was tested using a number 

of known shedding activators, both artificial and physiological. The sheddase inhibitor 

was also used to assess basal L-selectin-GFP turnover that is known to occur 

physiologically under resting conditions [521, 544]. Furthermore, the interaction of the L-

selectin cytoplasmic tail with its binding partner calmodulin was analysed in “pull-down” 

assays. Finally, the ability of L-selectin-GFP to mediate interaction with its ligands under 

flow was tested in parallel-plate flow chamber assays. The tetrasaccharide, slialyl Lewis 

X (sLex), is a physiological L-selectin ligand and therefore the ability of THP-1 cells stably 

expressing L-selectin-GFP to interact with immobilised sLex under flow was examined.  

Importantly, U937 monocytic cell line and human primary monocytes are known to 

interact with cytokine-activated human umbilical endothelial cells (HUVEC) in L-selectin-

dependent manner [410]. HUVEC are used routinely in the Ivetic laboratory as a model 

to study primary vascular endothelial cells. Hence, the interaction of THP-1 cells 

expressing L-selectin-GFP with cytokine-activated HUVEC was also analysed. Overall, 

the experimental design ensured that the functionality of L-selectin-GFP fusion protein 

was thoroughly analysed.       

3.3 RESULTS 

3.3.1 Generation of cell lines stably expressing wild type L-selectin-GFP 

3.3.1.1 Cloning of human L-selectin cDNA into pHR´SIN-SEW lentiviral backbone 

vector 

Human wild type (WT) L-selectin cDNA was amplified by PCR from pCMV6-AC-GFP 

vector (OriGene) (figure 3.1 A). PCR primers were designed with BamHI and XhoI 

restriction sites engineered at 5´ and 3´ ends, respectively. Insertion of the WT L-selectin 

cDNA was obtained with pHR´SIN-SEW-GFP or pHR´SIN-SEW-RFP  lentiviral vectors 

that were acquired as a kind gift from Professor Adrian Thrasher (Institute of Child’s 

Health, UCL) (figure 3.1 B). The ORFs of generated pHR´SIN-SEW-L-selectin-GFP and 

pHR´SIN-SEW-L-selectin-RFP lentiviral vectors were subsequently sequenced (figure 

3.1 C) and the vectors were named pHR´SIN-SEW-L-selectinWT-GFP and pHR´SIN-

SEW-L-selectinWT-RFP, respectively (for the details of the cloning procedure see section 

2.3). At this stage pHR´SIN-SEW-L-selectinWT-RFP plasmid was frozen for future 
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experiments and pHR´SIN-SEW-L-selectinWT-GFP plasmid was used to generate the 

lentiviruses.  

 

 

 

Figure 3.1 Cloning of L-selectin cDNA into lentiviral expression vector. A) Plasmid map of 

pCMV6-AC-GFP vector, supplied by OriGene. L-selectin ORF (ORF size: 1119 bp) is present 

between SgfI and MluI cloning sites. L-selectin cDNA was amplified from pCMV6-AC-GFP vector 

using PCR primers designed with BamHI and XhoI restriction sites engineered at 5´ and 3´ends, 

respectively. Image taken from from OriGene (OriGene Technologies, I. pCMV6-AC-GFP. Vol. 

2010./ http://www.origene.com/destination_vector/PS100010.aspx). B) Map of pHR´SIN-SEW 

lentiviral vector carrying GFP C-terminal tag (pHR´SIN-SEW-GFP). Vector was double digested 

with BamHI and XhoI restriction enzymes (cleavage sites shown by red stars) and ligated with 

the PCR product amplified as described in A). Vector map was created using SnapGene® 

software on the basis of the sequence provided by Professor Adrian Thrasher (Institute of Child’s 

Health, UCL). C) Multiple cloning site of pHR´SIN-SEW vector carrying WT L-selectin-GFP. The 

sequence shows wild type L-selectin (17 amino acid C-terminal tail of L-selectin is shown in blue) 

successfully cloned into the pHR´SIN-SEW-GFP vector (termed pHR´SIN-SEW-L-selectinWT-

GFP). Sequence shown in red represents the linker between L-selectin and GFP. Sequence 

shown in green represents GFP. XhoI restriction site used for cloning is highlighted in yellow and 

KpnI and MluI restriction sites present within the linker are highlighted in blue and purple, 

respectively. An identical cloning strategy was used to insert L-selectin gene into the pHR´SIN-

SEW-RFP vector yielding pHR´SIN-SEW-L-selectin-RFP construct. 
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3.3.1.2 Lentiviral particle generation using HEK 293T packaging cell line 

The lentiviral transgene delivery system is well known for producing stable cell lines with 

high efficiency of transduction. The main advantages of this system are long-term 

transgene expression that results from stable integration to the host genome, and little 

or no toxicity. Long-term expression enables re-using of generated cell lines and 

therefore ensures reproducibility between experiments. As a comparison, transient 

transfections of cells have generally low reproducibility and could also cause adverse 

effects. When deciding on lentiviral transgene delivery system, one needs to be aware 

of the associated risks. These are the potential of production of replication-competent 

viruses and oncogenesis. To address those health and safety issues, multiple plasmids 

are commonly used when generating lentiviruses. The very packaging system used in 

this thesis is known as a second generation packaging system. In this system the 

“transfer” vector carries the gene of interest and contains the sequences that will 

incorporate into the host genome.  Viral genes necessary for assembly of functional 

viruses are split between two “helper plasmids”. The viral particles assembled in this way 

carry only the sequences encoded by the transfer plasmid and are incapable of 

replication. This ensures that, upon transduction, the host cells are unable to produce 

functional viruses as the genes encoded by the helper plasmids are no longer present. 

Although this approach greatly improves the safety of lentivirus generation, critical care 

should still be taken when working with these vectors. A simple schematic, describing 

the steps of lentivirus generation, is shown in figure 3.2, and the method is described in 

detail in section 2.11.1 of this thesis. In brief, HEK 293T packaging cells were 

transfected with transfer pHR’SIN-SEW-L-selectinWT-GFP lentivirus backbone vector 

and two helper plasmids:  “envelope” pMD2.G (carrying genes encoding envelope 

protein VSV G) and “packaging” psPAX2 (carrying HIV gag, pol, rev, and tat genes) 

(figure 3.2 step 1). The assembled lentiviral particles released in to the supernatant of 

293T HEK cells were harvested 48 hours and then again 72 hours post-transfection 

(figure 3.2 step 2), pooled, and the concentrated lentivirus of a known titre was used to 

transduce target THP-1 cells (figure 3.2 step 3). A detailed protocol describing lentivirus 

concentration can be found in section 2.11.2 of this thesis. 
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Figure 3.2 Lentiviral transgene delivery system. Lentiviral vectors were generated by 

cotransfection of a packaging cell line (HEK 293T) with the  pHR´SIN-SEW transfer plasmid 

carrying L-selectin-GFP or –RFP transgene, and  two helper  plasmids (1). Helper plasmids 

psPAX2 and pMD2.G encode structural and envelope proteins, respectively. Genome of a 

lentiviral particle produced by HEK 293T cells encoded sequences from the pHR´SIN-SEW 

transfer plasmid only. After the incubation period (48 and 72 hours), the lentiviral particles 

released into HEK 293T cells supernatant were harvested (2), concentrated by ultracetrifugation 

and used to transduce target THP-1 cells (3). VSV-G, the vesicular stomatitis virus G protein; HIV, 

human immunodeficiency virus, Gag, gene encoding group specific antigen; Pol, viral 

polymerase; Rev, regulator of expression of virion proteins.   

 

The lentivirus titre, defined as the number of infectious units per mL (i.u./mL), was 

established by serial dilution (0, 10-6, 10-5, 10-4, 10-3, 10-2, 10-1) of the concentrated lentivirus 

stock to infect a given number of HEK 293T cells. The titre was determined by analysis 

of GFP-tag expression by flow cytometry. Figure 3.3 shows the steps that were 

undertaken to calculate the lentivirus titre and the titration method is described in more 

detail in section 2.11.3. Firstly, the percentage of GFP positive (GFP+) cells versus the 
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dilution of the lentivirus stock was plotted (figure 3.3 i). This was then used to determine 

the dilutions resulting in no more than 30% of transduction efficiency, and those dilutions 

were further used to determine the linear range of transduction (figure 3.3 ii). Using the 

dilutions placed within the linear range assured that multiple lentiviral integrations were 

avoided when calculating the titre. Equation 1 (figure 3.3 iii) was used to calculate the 

titre of the lentivirus carrying WT L-selectin-GFP transgene, which was established to be 

2.128 x 108 i.u./mL.   

 

Figure 3.3 Titration of lentiviral particles containing pHR´SIN-SEW vector carrying WT L-
selectin-GFP construct. (i) HEK 293T cells were transduced with serial dilutions (0, 10-6, 10-5, 

10-4, 10-3, 10-2, 10-1) of the concentrated lentivirus suspension and the percentage of GFP positive 

(GFP+) cells was established by flow cytometry. (ii) Lower-end dilutions were used to determine 

linear range in order to avoid multiple integrations. (iii) Lentiviral titre was calculated using the 

Equation 1 for all the linear range dilutions. 
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ii. Linear range.

iii. Titer calculation.
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T Titer (infection units per millilitre, i.u./mL)
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3.3.1.3 Lentivirus mediated transduction of THP-1 cells 

In order to achieve reproducible levels of protein expression, the “multiplicity of infection” 

(MOI) is used as a quantitative unit of measure when transducing cells with lentiviral 

particles. MOI defines the number of infectious units (lentiviral particles) delivered per 

target cell. It was decided that 5 and 20 would be used to represent low and high, 

respectively, MOIs when transducing THP-1 cells with lentiviral particles carrying the WT 

L-selectin-GFP transgene.  

To achieve MOI of 5 and MOI of 20, volumes of lentivirus stock were calculated according 

to the Equation 2 (figure 3.4) where 1 x 106 THP-1 cells were inoculated with the 

lentivirus stock of a titre of 2.128 x 108 i.u./mL (as calculated in section 3.3.1.2.). The 

detailed method of THP-1 cell transduction is described in section 2.11.4. 

Transduced THP-1 cells were termed low expressor “THP-1 WT L-selectin-GFP MOI 5” 

and high expressor “THP-1 WT L-selectin-GFP MOI 20”. Generated cell lines were 

maintained in culture until a sufficient number had expanded which allowed sorting of 

the cells into uniform-expressing populations. This was performed to enrich the cell 

populations expressing the transgene, and also to ensure consistency and reproducibility 

of future experiments.  Unsorted parental cell populations would exhibit variations in the 

percentage of L-selectin positive cells and unmatched expression levels. This could 

severely impair interpretation of any future results as L-selectin expression levels is an 

important factor for its adhesiveness [634]. Thus, unsorted low and high expressors were 

taken to a core-funded FACS sorting facility, and were sorted in to uniform populations 

termed THP-1 WT L-selectin-GFP Lo5 and THP-1 WT L-selectin-GFP Hi20, respectively. 

Four cell lines: low expressors: unsorted THP-1 WT L-selectin-GFP MOI 5 and sorted 

THP-1 WT L-selectin-GFP Lo5, and high expressors: unsorted THP-1 WT L-selectin-

GFP MOI 20 and sorted THP-1 WT L-selectin-GFP Hi20, were then examined by 

fluorescence microscopy to assess L-selectin-GFP expression. Images of both phase 

contrast and GFP channel were acquired and representative images of each cell type 

are shown in figure 3.4. No GFP signal could be detected in control untransduced THP-

1 cells (figure 3.4 A), suggesting THP-1 cells have negligible autofluorescence in the 

FL1 channel (that detects GFP). In transduced cells, the average percentage of green 

cells per field of view was determined by analysing images acquired for five different 

fields of view per cell line. As expected, transduction with MOI of 20 resulted in higher 

average percentage (67%) of green cells (figure 3.4 D) than transduction with MOI of 5 

(38%) (figure 3.4 B).  
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Figure 3.4 Generation of THP-1 cell lines expressing L-selectin-GFP.  Equation 2 was used 

to calculate volume of lentivirus suspension that would transduce 1 x 106 THP-1 cells. Low and 

high multiplicities of infection (MOI), MOI 5 and MOI 20, respectively, were used to transduce 

THP-1 cells with lentiviral particles carrying pHR´SIN-SEW-L-selectinWT-GFP. THP-1 WT L-

selectin-GFP MOI 5 and THP-1 WT L-selectin GFP MOI 20 cell lines were obtained as low and 

high L-selectin-GFP expressors, and FACS was used to sort them into uniform populations 

termed THP-1 WT L-selectin-GFP Lo5 and THP-1 WT L-selectin-GFP Hi20 , respectively.  

Fluorescence microscopy was used to detect GFP and establish the extent of transduction as a 

percentage of GFP positive (GFP+) cells. A) No GFP signal in untransduced THP-1 cells. B) 

Unsorted low expressor cell line where average 38% GFP+ cells were detected. C) Sorted, 

uniform low expressor cell line having average 97% GFP+ cells. D) Unsorted high expressor cell 

line with average 67% GFP+ cells. E) Sorted, uniform high expressor cell line where average 96% 

GFP+ cells were detected. Percentage of GFP+ cells was calculated as an average obtained from 

five different fields of view. Arrows in B-E show localisation of L-selectin to the plasma membrane. 

Scale bar 30 µm.  
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Enrichment in the green cell populations was seen in sorted cell populations to average 

97% for THP-1 WT L-selectin-GFP Lo5 (figure 3.4 C) and 96% for WT L-selectin-GFP 

Hi20 (figure 3.4 E).  

Furthermore, fluorescence microscopy also revealed peripheral localisation of L-

selectin-GFP (figure 3.4 B-E arrows), which served as the initial indication that GFP 

tagging of L-selectin was not interfering with its traffic through the “secretory pathway” 

towards the plasma membrane.  

To further determine L-selectin-GFP expression levels, the generated THP-1 cell lines 

were subjected to flow cytometry analysis. This approach enabled examination of many 

more cells (approximately 10,000) than fluorescence microscopy. Five cell lines were 

analysed: control untransduced THP-1 cells, low expressors: unsorted THP-1 WT L-

selectin-GFP MOI 5 and sorted, uniform THP-1 WT L-selectin-GFP Lo5 and high 

expressors: unsorted THP-1 WT L-selectin-GFP MOI 20 and sorted, uniform THP-1 WT 

L-selectin-GFP Hi 20. Two methods of analysis were employed: analysis of GFP levels 

and analysis of surface L-selectin levels. GFP levels were analysed by simply measuring 

the GFP fluorescence and analysis of surface L-selectin levels was by labelling THP-1 

cells with mouse anti-L-selectin DREG56 antibody, followed by anti-mouse secondary 

antibody conjugated to fluorescent dye R-phycoerythrin (RPE). DREG56 is an antibody 

that recognises an extracellular N-terminal epitope of L-selectin [635], and as a result all 

the RPE signal specifically corresponded to surface-expressed L-selectin. Viable and 

single cell population was selected for analysis (figure 3.5 A, Gate R1). Histograms were 

generated for GFP (figure 3.5 B and C, left panels) and RPE fluorescence intensities 

(figure 3.5 B and C, right panels) and the percentage of GFP or RPE positive cells within 

fluorescent positive gate M1 (shown on the histograms) was determined. Sorting of THP-

1 WT L-selectin-GFP MOI 5 cells into THP-1 WT L-selectin-GFP Lo5 uniform cell 

population resulted in the enrichment of GFP positive cells from 42.04% to 95.89% 

(figure 3.5 B, left panel) and in the enrichment of surface L-selectin positive cells (as 

measured by RPE signal) from 47.8% to 94.78% (figure 3.5 B, right panel). This was 

also true when analysing GFP and RPE levels of THP-1 WT L-selectin-GFP MOI 20 and 

THP-1 WT L-selectin-GFP Hi 20 cells, where the percentage of GFP positive cells rose 

from 77.84% to 98%, respectively, (figure 3.5 C, left panel) and the percentage of RPE 

positive cells increased from 80.85% to 96.6%, respectively (figure 3.5 C, right panel). 

These values were in line with those obtained by utilisation of the fluorescence 

microscopy (figure 3.4), and DREG56/RPE labelling confirmed that L-selectin was 

expressed at the cell surface. 
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Figure 3.5 Flow cytometry analysis of L-selectin expression in THP-1 cells expressing low 
or high levels of L-selectin-GFP.  THP-1 cells were transduced with pHR’SIN-SEW-L-

selectinWT-GFP carrying lentivirus and sorted into uniform populations of low (Lo5) and high 

expressors (Hi20) as described in figure 3.4. Cells were stained with either mouse anti-L-selectin 

DREG56 or mouse IgG isotype control antibodies followed by α-mouse secondary antibody 

conjugated to RPE fluorescent dye and compared to their unsorted parental cell lines. The 

DREG56 antibody recognises the extracellular epitope of L-selectin and is an indicator of surface 

L-selectin expression. Dot plot (A) shows the gate used to analyse singe and viable cells only. In 
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case of both Lo5 (B) and Hi20 (C) cell lines, enrichment in both GFP (left histograms) and RPE 

(right histograms) gated cells (gate M1) was observed within sorted populations as compared to 

unsorted populations (Lo5:MOI5 = 95.89%:42.04% for GFP signal and 94.78 %:47.8% for RPE 

signal; Hi20:MOI20 = 98%:77.84% for GFP signal and 96.6%:80.85% for RPE signal). Bar graphs 

in D) show significantly higher mean fluorescence intensities (MFIs) of both GFP (left graph) and 

RPE (right graph) of Hi20 cell line as compared to Lo5 cell line. Analysis was performed in 

duplicates on three independent occasions. Data represent mean ± S.E.M. Statistical analysis: 

two tailed unpaired t-test. **= p<0.01. MFI, mean fluorescence intensity. 

 

Importantly, flow cytometry analysis additionally showed that THP-1 cells did not express 

endogenous L-selectin (figure 3.5 B and D, right panel, compare dotted line – IgG isotype 

control and black line - untransduced cells stained with Dreg56). This would mean that 

any potential L-selectin-dependent effects would be a direct result of the ectopic L-

selectin-GFP chimera expression, which would be most useful should any mutated L-

selectin-GFP was to be introduced to the THP-1 cells in the further studies. Of note, 

ATCC-obtained THP-1 cells have been shown previously not to express endogenous L-

selectin [636], however L-selectin-positive THP-1 cells have also been reported [637]. 

This discrepancy highlights the importance of accurate cell line characterisation before 

any experiments are commenced. 

At this stage the parental unsorted THP-1 WT L-selectin-GFP MOI 5 cells and THP-1 

WT L-selectin-GFP MOI 20 cells were excluded from any further analysis and 

experiments, and only sorted, uniform populations of THP-1 WT L-selectin-GFP Lo5 and 

THP-1 WT L-selectin-GFP Hi20 cells were taken forward. Bar graphs of the mean 

fluorescence intensities (MFIs) shown in figure 3.5 D depict the increase in surface L-

selectin levels and a corresponding increase in GFP levels of THP-1 WT L-selectin-GFP 

Hi20 cells as compared to THP-1 WT L-selectin-GFP Lo5 cells. Due to their high levels 

of both GFP and surface L-selectin, the THP-1 WT L-selectin-GFP Hi20 cells were 

chosen for further characterisation and experimentation. If the high L-selectin-GFP 

expression levels proved to cause adverse effects on THP-1 monocyte cell biology, low 

expressors would be tested. 

Having generated THP-1 cells stably expressing L-selectin tagged to GFP protein, it was 

deemed necessary to generate a control THP-1 cell line expressing just GFP alone. 

Since THP-1 WT L-selectin-GFP Hi20 cells were chosen for further studies, it was 

considered appropriate to generate THP-1 cells expressing matching levels of GFP. To 

this end, lentiviral particles were generated as described in section 3.3.1.2, using 

original pHR´SIN-SEW-GFP lentiviral backbone vector. The titre of this virus was 

established as described in section 3.3.1.2, and was calculated to be of 2.56 x 108 

i.u./mL. THP-1 cells were transduced with MOI 20 and seven days post-infection, GFP 

expression in those cells, termed THP-1 GFP MOI 20, was monitored by fluorescence 



130 
 

microscopy and compared to untransduced cells (figure 3.6 A and B). Scoring of GFP 

positive cells per field of view (five fields of view analysed) was used to establish the 

average number of cells expressing GFP, which was 62%. To obtain uniform GFP-

expressing cell lines, THP-1 GFP MOI 20 cells were sorted with a use of FACS sorting 

facility, and the uniform cell population was termed THP-1 GFP Hi20 (figure  3.6 C). WT 

L-selectin-GFP Hi20 cells were used as a reference population to set the GFP gate 

during cell sorting. This allowed GFP levels to be a close match to L-selectin-GFP levels. 

As analysed by flow cytometry, the sorting enriched the GFP positive cells from 57,92% 

in THP-1 GFP MOI 20 to 96,87% in THP-1 GFP Hi20 (figure 3.6 D). 

 

Figure 3.6 Generation of THP-1 cell line expressing uniform levels of GFP.  THP-1 cells (A) 

were transduced with lentivirus carrying GFP protein transgene using a MOI of 20 (B) and 
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subsequently sorted into a uniform population termed THP-1 GFP Hi20 (C).  D) Sorting led to an 

increase in the percentage of GFP positive cells from 57.92% to 96.87% (right histogram) as 

analysed by flow cytometry. Dot plot on the left shows gate used to analyse singe and viable cells 

only. Scale bar in A, B and C: 30 µm. 

 

3.3.2 Monitoring L-selectin-GFP expression levels during THP-1 cell line 

maintenance in tissue culture 

Previous work in the Ivetic laboratory, performed by David Killock (a then PhD student in 

the Ivetic lab), revealed a strong correlation between cell density and L-selectin shedding 

in the 300.19 murine pre-B cell line. This has also been reported by others in the field 

[638, 639]. Therefore, THP-1 WT L-selectin-GFP Hi20 cells were monitored over a period 

of days to establish any potential changes in L-selectin expression. As presented in 

figure 3.7, L-selectin surface expression was inversely proportional to the cell culture 

density as measured by flow cytometry. On day one, cell culture density and both GFP 

and surface L-selectin levels of a 3-day culture were noted and cells were split to 0.4 x 

106 cells/mL. On the following day (day two) levels of both surface L-selectin and GFP 

were recorded and those were treated as 100% expression. This allowed for back-

calculation that the levels of GFP and surface L-selectin were 83% and 89%, respectively 

in the initial 3-day culture. On day three a decrease in GFP and surface L-selectin levels 

to 87% and 88%, respectively, was seen. On day four L-selectin surface levels further 

decreased to 86%, whereas GFP-tag levels started to climb up reaching 90% of the 

levels observed on day two. When the cells were left unpassaged on the day 1, the levels 

of GFP and surface L-selectin reached 58% and 50%, respectively, on day four of the 

experiment. This corresponded to an overgrown 7-day culture. Having established a 

significant effect of cell culture density on L-selectin-GFP levels it was considered 

necessary to maintain stable cell densities during cell culture. Therefore, the cells were 

split every two or three days when in culture, and seeded overnight at a density of 0.4 x 

106 cells/mL before each experiment. This was thought to ensure that cells had matched 

L-selectin-GFP levels between experiments. 
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Figure 3.7 Maintanance of THP-1 cells expressing L-selectin-GFP in tissue culture.  THP-1 

cells expressing WT L-selectin-GFP Hi20 were monitored for their surface L-selectin expression 

and GFP levels across 4 days, with respect to cell culture density. Cells were split (arrow) on day 

one to 0.4 x 106 cells/mL (black line) or were left unpassaged (green line). A) Graph showing cell 

culture density on the monitored days. Flow cytometry was used to assess GFP (B) and surface 

L-selectin (C) expression. Acquired MFI values were used to calculate average percentages of 

expression. GFP and surface L-selectin levels on day two (first measurement after splitting) were 

treated as 100%. Experiment was performed on three independent occasions. Error bars 

represent standard error. MFI, mean fluorescence intensity. 

 

3.3.3 Characterisation of THP-1 L-selectin-GFP Hi20 stable cell line 

As explained in sections 3.1. and 3.2., it was considered crucial to establish whether 

tagging of the short cytoplasmic tail of L-selectin with a bulky GFP protein of a molecular 

weight of 27 kDa had any effect on L-selectin expression and L-selectin function. A 
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number of experiments were performed in order to establish that fluorescently tagged L-

selectin is correctly localised and functions properly in THP-1 monocytes. The 

experiments were performed on THP-1 WT L-selectin-GFP Hi20 cells and included 

monitoring of L-selectin expression at the plasma membrane, its localisation to microvilli, 

ability to undergo proteolytic cleavage, its interaction with endogenous calmodulin, its 

ability to recognise its physiological ligand under flow and to tether and adhere to 

endothelial cells under flow. 

3.3.3.1 L-selectin expression 

L-selectin is a single-pass type I transmembrane protein and is known to localise to the 

tips of leukocyte microvilli [16]. Labelling of cells with DREG56, and subsequent flow 

cytometry used when generating stable cell lines revealed that L-selectin-GFP was 

expressed at the plasma membrane (figure 3.5). This proved that addition of the GFP-

tag was not affecting L-selectin traffic from the endoplasmic reticulum to the plasma 

membrane. Additionally, L-selectin-GFP localisation to the plasma membrane of THP-1 

monocytes was confirmed by fluorescence microscopy. Initial peripheral localisation of 

L-selectin-GFP was noted during cell line generation (figure 3.4 B-E). This was now 

further confirmed using an objective of higher magnification and THP-1 cells expressing 

GFP alone as a control.  A distinct membrane staining could be seen in THP-1 WT L-

selectin-GFP Hi20, but not in THP-1 GFP Hi20 cells (figure 3.8 A arrows). Additionally, 

in each cell a high-intensity GFP fluorescence signal was seen, which was likely to 

represent the Golgi apparatus, where L-selectin-GFP expression was also expected to 

be high due to the ongoing glycosylation of newly translated proteins (figure 3.8 A stars). 

Next, immunogold labelling of DREG56-decorated THP-1 cells, performed by Dr 

Aleksandar Ivetic, and scanning electron microscopy (SEM) revealed that L-selectin-

GFP was localised to the microvilli of the THP-1 cells (figure 3.8 B).  

Commercially available anti-GFP antibody was then used to examine L-selectin-GFP 

expression by Western blotting. The results presented in figure 3.8 C show that the 

antibody was indeed GFP specific as it recognised 27 kDa protein derived from THP-1 

GFP Hi20 cells (middle lane) but did not detect any signal in the lane corresponding to 

untransduced THP-1 cells (first lane). Furthermore, three different bands were detected 

that were L-selectin-specific (last lane), as they did not appear in the lanes corresponding 

to the untransduced THP-1 cells and THP-1 GFP Hi20 cells. The heaviest form, 

migrating at 90-110 kDa was considered to be the full-length surface form of L-selectin. 

After subtraction of 27 kDa (the MW of GFP) the obtained MW for L-selectin would be 

60-90 kDa, which is in accordance with the reported molecular weights. The predicted 

molecular weight (MW) of L-selectin is approximately 30 kDa, but the actual MW varies 

between 74 kDa in lymphocytes [402] and 90-120 kDa in neutrophils [381]. This is 
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thought to be the result of extensive glygosylation modifications [313]. In keeping with 

this, the fuzzy appearance of the band suggested that the protein was highly 

glycosylated, which is seen in primary leukocytes. 

 

Figure 3.8 GFP-tagging does not influence expression of L-selectin by THP-1 cells. A) 

Upper panel: L-selectin-GFP is successfully localised to the plasma membrane (arrows) of THP-

1 cells. Distinctive high-intensity fluorescence signal (stars) is thought to represent Golgi 

apparatus compartment where L-selectin-GFP undergoes glycosylation.  Bottom panel: Diffused 

distribution and lack of distinctive membrane localisation of the GFP protein in control THP-1 cells. 

Scale bar: 10 µm. B) Scanning electron microscopy (SEM) images of THP-1 cells expressing L-
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selectin-GFP show that microvilli (MV, arrows) were formed in THP-1 monocytes expressing L-

selectin-GFP (i). Scale bar: 2 µm. Immunogold staining of L-selectin further demonstrated that L-

selectin-GFP (white arrows) was mainly localised to the microvilli (appearing as phase dark) and 

not to the cell body (appearing as phase light) (ii). Scale bar: 325 nm. C) Biochemical 

characterisation of L-selectin-GFP expression in stably transduced THP-1 cells. THP-1 cells were 

grown under resting conditions, harvested prior to the experiment and analysed by Western 

blotting as described in section 2.8.3. Representative Western blotting showing three forms of L-

selectin-GFP present in the lysates of THP-1 cells expressing wild type L-selectin-GFP Hi 20.  

Anti-GFP antibody was used to detect GFP-tag in the lysates from cells expressing L-selectin-

GFP (WT) and GFP protein in control cells expressing GFP alone (GFP). Fuzzy 90-110 kilo Dalton 

(kDa) band (blue arrow) corresponds to the surface fully-glycosylated L-selectin-GFP, 80 kDa 

band is thought to be the non-glycosylated intracellular form of L-selectin-GFP (associated with 

Golgi apparatus and endoplasmic reticulum, green arrow) and the two bands detected at around 

35 kDa are thought to be forms of L-selectin-GFP cleavage product (“stump”, yellow arrow), which 

is formed upon L-selectin extracellular domain cleavage. Specificity of the anti-GFP antibody is 

shown when analysing lysates from untransduced THP-1 cells (THP-1), where no bands can be 

detected. D) Further characterisation of L-selectin-GFP and GFP expression. Lysates from THP-

1 cells expressing GFP Hi20 alone (GFP) or wild type L-selectin-GFP Hi20 (WT) were used to 

perform GFP-Trap® immunoprecipitation (IP) as described in section 2.8.4. Left panel shows 

representative GelCode staining of the total protein present in the cell lysates. Surface (blue 

arrow), intracellular (green arrow) and “stump” (red arrow) forms of L-selectin-GFP as well as 

GFP protein (yellow arrow) can be seen in the GelCode staining of the pull-down fraction (middle 

panel). Representative anti-GFP Western blotting (WB) performed on the pulled-down protein 

shows expression of all of the proteins (right panel). Note: Immunogold labelling of L-selectin-

GFP shown in B was performed by Dr Aleksandar Ivetic.  

 

The second largest molecular weight species of L-selectin, migrating at 80 kDa was 

thought to be an intracellular L-selectin-GFP form, localised to the trans Golgi network. 

This form of L-selectin was thought not to have undergone the full complement of 

glycosylation events, hence the lack of fuzzy band appearance. Partial glycosylation was 

thought to occur as the form was still larger than the predicted MW of the non-

glycosylated L-selectin-GFP. Third and the smallest form migrated at approximately 33-

35 kDa in the form of two bands. Subtraction of the molecular weight of GFP left MW 

that corresponded to the L-selectin cleavage product (“stump”) that is generated upon L-

selectin ectodomain cleavage and has been reported to migrate at around 6 kDa [326, 

515]. Further confirmation of L-selectin-GFP expression was performed using GFP-

Trap® immunoprecipitation beads (figure 3.8 D). GFP-Trap® is a commercially available 

pull-down system, where a GFP-binding protein (which is also able to detect eGFP) is 

covalently linked to the sepharose beads and is therefore a very useful method for 

detecting GFP-fused proteins. The beads were incubated with cell lysates from THP-1 

cells expressing either GFP Hi20 or WT L-selectin-GFP Hi20, which allowed for pull-

down of either GFP or the L-selectin-GFP chimera. The three L-selectin-GFP forms could 

already be seen in the pull-down fractions of the protein gels stained with GelCode 

protein gel stain, and were even more prominent when Western blotting using an anti-

GFP antibody was performed on the pulled-down protein. This additionally confirmed 
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that L-selectin-GFP was successfully expressed in THP-1 cells, and also formulated a 

ground for future co-precipitation experiments as an easy and clean method for L-

selectin-GFP pull-down was established. 

3.3.3.2 Shedding of L-selectin-GFP in THP-1 cells  

Numerous stimuli have been used to promote the rapid endoproteolytic cleavage of L-

selectin, or L-selectin shedding, which results in production of soluble L-selectin (sL-

selectin) and a cleavage product (“stump”) (section 1.9.2) [326, 515]. Examples of cell-

activating stimuli include the potent leukocyte activator phorbol 12-myristate 13-acetate 

(PMA) [495, 496, 529, 640], TNF-α [496] and the phosphatase inhibitor Calyculin A [496]. 

Sequences within the tail of L-selectin are known to influence L-selectin shedding [323, 

558], and therefore it was crucial to establish whether the fusion of GFP protein to the 

tail of L-selectin had any adverse effects on L-selectin shedding. THP-1 WT L-selectin-

GFP Hi20 cells were stimulated with Calyculin A, TNF-α or PMA and processing of L-

selectin-GFP was analysed by Western blotting of whole cell lysates. As shown in figure 

3.9, treatment with all three stimuli resulted in a significant loss of full-length surface-

expressed L-selectin-GFP, and Calyculin A and PMA triggered ectodomain shedding to 

a much higher extent than TNF-α (figure 3.9 A and B). Moreover, the L-selectin “stump” 

was detected in the extracts from non-stimulated cells (figure 3.9 A control lane), 

suggesting that constitutive L-selectin-GFP shedding was occurring in the THP-1 WT L-

selectin-GFP Hi20 cell line. Although no statistical difference could be seen when 

analysing changes in the levels of L-selectin cleavage product, a clear trend could be 

seen, where the “stump” levels increased following stimulation with all three stimuli 

(figure 3.9 A and C). This indicated that GFP-tagging of the cytoplasmic tail of L-selectin 

did not hinder the ability of the ectodomain to undergo proteolytic cleavage. Additionally, 

no loss of the 80 kDa form of L-selectin-GFP was observed upon cell activation (figure 

3.9 A), which further confirmed this form was an intracellular L-selectin-GFP form.  
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Figure 3.9 The GFP-tag does not interfere with L-selectin’s ability to undergo proteolytic 
cleavage.  THP-1 cells expressing WT L-selectin-GFP Hi20 were stimulated with PMA, caliculin 

A, TNF-α, left untreated (control) or treated with vehicle control (DMSO control), and subjected to 

Western blotting analysis as described in section 2.8.3. A) Representative Western blotting 

showing that loss of the fully-glycosylated surface L-selectin-GFP (red arrow) can be seen with 

all three stimuli. B) Fold-change in the surface L-selectin expression following all three treatments, 

where TNF-α-caused downregulation of surface L-selectin was not as severe as with the other 

two stimuli. C) Fold-change in the “stump” L-selectin levels following cell-activation. No significant 

changes were found by statistical analysis however, a trend can be seen, where cell activation 

leads to upregulation of the L-selectin cleavage product. No influence of DMSO control was seen 

on L-selectin shedding. Fold-change data was obtained by densitometric analysis (section 2.8.5) 

of the bands corresponding to full length L-selectin or L-selectin “stump”, and normalised against 

actin. The experiment was repeated on three independent occasions. Data represent mean ± 

standard error. Statistical analysis: One-way ANOVA followed by Tukey’s post-test. * = p < 0.05, 

*** = p < 0.001.  

 

The ADAM17 metalloprotease is known to cleave L-selectin from the leukocyte surface 

upon cell activation (section 1.9.2) and can be inhibited by Ro-31-9790 compound. Ro-
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31-9790 is a hydroxamate-based broad-spectrum zinc-metalloprotease inhibitor and has 

been shown to inhibit L-selectin shedding under various cell-activating conditions [520, 

641]. Flow cytometry analysis revealed that the profound loss of surface L-selectin-GFP 

seen following PMA stimulation was blocked by pre-incubating the cells with Ro-31-9790 

(figure 3.10 A). Additionally, incubation of the cells with Ro-31-9790 alone resulted in 

the upregulation of surface L-selectin-GFP levels above the levels exhibited by non-

treated cells (figure 3.10 A), suggesting that metalloproteases are involved in basal 

turnover of L-selectin-GFP that occurs under resting conditions. This further confirmed 

that GFP did not influence normal L-selectin function as basal turnover of L-selectin is 

known to occur physiologically and is dependent on metalloprotease activity [521, 544]. 

Interestingly, although not statistically significant, a trend could be seen in the GFP 

levels, which followed that of surface L-selectin levels (figure 3.10 B). A slight decrease 

in GFP-tag expression was seen following PMA stimulation and this was rescued when 

unstimulated cells were pre-incubated with Ro-31-9790. Treatment with Ro-31-9790 

alone resulted in slight increase in GFP-tag levels, which again paralleled with changes 

to surface L-selectin. These results suggest a very dynamic turnover of WT L-selectin-

GFP chimera at the plasma membrane of unstimulated THP-1 cells, and this process is 

greatly potentiated by PMA-mediated cell activation.      
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Figure 3.10 L-selectin-GFP is subjected to basal shedding.  THP-1 WT L-selectin-GFP Hi20 

cells were stimulated with PMA, ADAM17 inhibitor Ro-31-9790 or both and analysed for both 

GFP-tag and surface L-selectin levels by flow cytometry (section 2.13). A) Surface L-selectin 

levels measured by using mouse anti-L-selectin DREG56 antibody and following anti-mouse-RPE 

conjugated secondary antibody. L-selectin expression was downregulated following PMA 

stimulation, which could be prevented by pre-incubation with Ro-31-9790. Inhibition of basal 

metalloprotease activity by Ro-31-9790 treatment led to increased surface L-selectin expression.  

M1 on the histogram shows gate for RPE positive THP-1 cell population. B) GFP-tag levels, where 

M1 (histogram) shows gate for GFP positive cells, followed pattern observed with surface L-

selectin but changes in MFI values were not significant. C) Gate R1 in the dot plot contains 

population of viable THP-1 cells and was applied to all samples.  Histograms in A, B and C 

represent the changes seen in a typical experiment  and fold-changes of L-selectin surface levels 

shown on corresponding graphs were established on the basis of MFI values acquired in 

triplicates for 3 independent experiments. Data represent mean ± S.E.M. and significance was 

determined by One-way ANOVA and Dunnett’s post-test against “No treatment”, ** = p < 0.01. 
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3.3.3.3 Interaction of endogenous calmodulin with L-selectin-GFP 

The cytoplasmic calcium-sensing protein calmodulin (CaM) is known to interact with the 

L-selectin tail (section 1.10.4). Importantly, calmodulin is known to negatively regulate 

L-selectin shedding [559]. In vitro, calmodulin inhibitors severely decrease binding of 

lymphocytes to HEV and rolling of neutrophils on MECA-79 antigen, a physiological L-

selectin ligand [515]. Thus, it was important to establish whether tagging of GFP to the 

cytoplasmic tail of L-selectin had any detrimental effects on CaM binding. 

Immunoprecipitation has been used in the past to detect L-selectin-CaM interaction 

[515]. GFP-Trap® was successfully used to pull-down L-selectin-GFP (figure 3.8 D), 

and it was now employed to test whether CaM co-precipitated with L-selectin-GFP. To 

this end, resting THP-1 WT L-selectin-GFP Hi20 cells and control THP-1 GFP Hi20 cells 

were harvested and lysates were added to GFP-Trap® beads slurry. The data presented 

in figure 3.11 A and C show significant increase of pulled-down CaM when L-selectin-

GFP interacted with the GFP-Trap® as compared to just GFP. Binding of CaM to GFP 

alone was thought to be a result of non-specific binding caused by a great abundance of 

GFP (figure 3.11 B). This suggested that L-selectin indeed had the ability to interact with 

endogenous calmodulin, eliminating the possibility of detrimental effects of the GFP-tag 

on L-selectin/CaM interaction. 

 

 

Figure 3.11 WT L-selectin-GFP associates with endogenous calmodulin (CaM). GFP-

Trap®  (section 2.8.4)/Western blotting (WB, section 2.8.3) analysis of interaction between L-

selectin-GFP and CaM in resting THP-1 WT L-selectin-GFP Hi20 cells. A) Representative 

Western blotting showing CaM signal detected upon GFP-Trap® IP. Enrichment of CaM protein 
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in the pull-down fraction can be seen when L-selectin-GFP is used as compared to just GFP. 

Protein input lysate is shown on the bottom blot. B)  Representative anti-GFP Western blotting 

showing immunoprecipitating L-selectin-GFP and GFP proteins. C) Densitometric analysis of 

three independent Western blottings shown in A. Mean values ± standard error are shown. 

Statistical analysis: two-tailed, unpaired Student’s t-test. *= P<0.05.   

 

L-selectin tail is also known to interact with ezrin/radixin/moesin (ERM) proteins (section 

1.10.3) and the attempts were made to investigate this interaction in THP-1 cells 

expressing WT L-selectin-GFP. Unfortunately however, attempts to immunoprecipitate 

ERM proteins using GFP-Trap® proved unsuccessful.  

3.3.3.4 Interaction of L-selectin-GFP on THP-1 cells with physiological ligands under 

flow conditions 

3.3.3.4.1 L-selectin recognises sialyl Lewis X (sLex) 

In order to determine whether L-selectin-GFP expressing THP-1 cells were capable of 

rolling on L-selectin ligands, THP-1 WT L-selectin-GFP Hi20 cells were perfused over 

immobilised sialyl Lewis X (sLex). Sialyl Lewis X tetrasaccharide was chosen as it is a 

known physiological L-selectin ligand (section 1.7.2) and has been reported to mediate 

L-selectin-dependent rolling of leukocytes under flow in the parallel plate flow chamber 

assays [642].  

The experiments were performed by Dr Aleksandar Ivetic and Mr Ahmed Ahmed (during 

his MSc research project in the Ivetic lab), using the aforementioned THP-1 WT L-

selectin-GFP Hi20 cells. Briefly, excess sLex-biotin (1 µg/mL) was added to increasing 

amounts of immobilised neutravidin, which approach achieved increasing concentration 

of sLex available for L-selectin binding (figure 3.12 A). The cells were subsequently 

perfused over the immobilised ligand under a shear stress parallel to the physiological 

stress of a blood flow (shear stress defined as a force imparted by the flow parallel to the 

vessel wall), and analysed for rolling. The mean rolling velocity of cells perfused over 2 

µg/mL of neutravidin co-immobilised with sLex was 43.6 µm/s (figure 3.12 B). This 

velocity decreased to 34.9 µm/s when 3 µg/mL of neutravidin was used, and no further 

decrease was seen with 4 µg/mL (mean cell velocity was recorded as 35.2 µm/s) (figure 

3.12 B), suggesting that the L-selectin/sLex interaction per monocyte reached saturation. 

Analysis of the rolling flux (figure 3.12 C) revealed that the flux was directly proportional 

to the concentration of neutravidin immobilised, and therefore to the amount of sLex 

available for L-selectin binding. These results indicate that transgenic L-selectin-GFP 

chimera was able to recognise its ligand and mediate cell rolling, and that the rolling flux 

increased in a dose-dependent manner. 
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Figure 3.12 Interaction of THP-1 cells expressing WT L-selectin-GFP with sialyl Lewis X 
(sLex) ligand under conditions of flow.  THP-1 cells expressing L-selectin-GFP were subjected 

to a parallel-plate flow chamber assay where the interaction with L-selectin physiological ligand, 

sLex tetrasaccharide was monitored. A) Schematic describing immobilisation of sLex ligand. 

Surface of the plastic well dishes was coated with poly-L-lysine and then increasing amounts of 

neutravidin were immobilised on to plastic wells. This was followed by the addition of an excess 

amount of biotinylated sLex. Binding of biotin on sLex to neutravidin achieved an increasing 

surface density of sLex. B) Slight decrease in the mean rolling velocity was observed with 3 µg/mL 

and 4 µg/mL neutravidin concentration. C) Increased rolling flux was observed to be directly 

proportional to the amount of neutravidin immobilised. Error bars represent S.E.M. All flow assays 

were performed at a shear stress of 2.5 dynes per cm2.Unpublished data obtained by Dr 

Aleksandar Ivetic and Mr Ahmend Ahmed, an MSc student in the Ivetic laboratory. 
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3.3.3.4.2 L-selectin mediates interactions of THP-1 cells with TNF-α-activated 

endothelium 

Initial attachment of primary human monocytes to interleukin 4 (IL-4) or TNF-α activated 

HUVEC was shown to be dependent on L-selectin [410, 575]. In addition, stable 

expression of L-selectin in the U937 monocytic cell line grants the ability to roll on and 

attach to IL-4 activated HUVEC under flow, which is thought to be a result of direct 

binding of L-selectin to its endothelial-expressed ligands [410]. To establish whether 

expression of L-selectin-GFP by THP-1 monocytic cells conferred the ability to attach to 

TNF-α activated HUVEC, a set of co-perfusion experiments was performed using the 

parallel plate flow chamber assay. The chamber that was used throughout this thesis is 

described in section 2.14.1, and the detailed method of the co-perfusion experiments is 

outlined in section 2.14.2. Firstly, THP-1 WT L-selectin-GFP Hi20 cells were compared 

against untransduced THP-1 cells to analyse the effect the ectopic expression of L-

selectin-GFP on the interactions between the THP-1 monocytes and the HUVEC 

monolayer (figure 3.13 A). Next, THP-1 WT L-selectin-GFP Hi20 were compared 

against THP-1 GFP Hi 20 cells to examine the influence of the GFP expression on THP-

1 cell recruitment in the absence of L-selectin (figure 3.13 B). Finally, untransduced 

THP-1 cells and THP-1 GFP Hi 20 cells were compared against each other to assess 

the influence of the lentiviral gene delivery on THP-1 cell recruitment (figure 3.13 C). All 

the perfusions were performed as co-perfusions, comparing one cell line directly against 

another, over a 10 minute period. Orange and Green Cell Tracker® dyes were used to 

differentially label each cell line under investigation. Additionally, the dyes were swapped 

between the experiments to exclude any effects the dyes could have had on the 

behaviour of the cells.  Panels A and B in figure 3.13 show that an average of 10% 

increase in the number of recruited cells occurred when THP-1 cells were expressing L-

selectin-GFP as compared to control (L-selectin negative) cells. No difference in the 

recruitment numbers was found between untransduced THP-1 cells and cells expressing 

GFP alone (figure 3.13 C), further confirming that the augmented recruitment was a 

result of L-selectin expression and not an unspecific effect of lentiviral transduction or 

GFP expression. 
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Figure 3.13 Expression of L-selectin augments recruitment of THP-1 monocytes to TNF-α-
activated HUVEC. Confluent HUVEC monolayers were stimulated overnight with 10 ng/mL TNF-

α and THP-1 cells expressing WT L-selectin-GFP (WT), GFP alone (GFP) or THP-1 cells that 

had not been transduced (UT, untransduced) were perfused over the monolayer in the parallel-

plate flow chamber as described in section 2.14.2. The experiments were performed as co-

perfusions, where two types of cells at ratio 1:1 were perfused at the same time for 10 minutes. 

Prior to perfusion, cells were labelled with cell tracker dyes (one cell line with Cell Tracker® Green 

and one with Cell Tracker® Orange). The dyes were swapped between the experiments to ensure 

the results were not influenced by the dyes themselves. A) Significantly more WT THP-1 cells 

bound to TNF-α activated HUVEC than UT THP-1 cells. B) Significantly more WT THP-1 cells 

bound to TNF-α activated HUVEC than GFP THP-1 cells. C) No difference in recruitment numbers 

was seen when UT and GFP THP-1 cells were co-perfused.  Three independent co-perfusions 

were performed for each pair of cell lines. Error bars represent S.E.M. Statistical analysis: two-

tailed, unpaired Student’s t-test. ***= p<0.001.   

 

3.4 DISCUSSION 

3.4.1 Stable expression of L-selectin-GFP in THP-1 cells using lentiviral vectors 

The ultimate aim of the studies presented in this thesis is to gain new insights into the 

role of monocyte L-selectin during the leukocyte adhesion cascade and particularly its 

contribution to TEM. Using cell lines is generally considered advantageous due to the 

convenient supply of a large number of cells without dependency on a donor [643]. What 

is more, cell lines provide a simplified model of the biology of a certain cell type, which 
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is extremely important when studying novel cellular processes. Furthermore, cell lines 

are in principle uniform and immortal, which again provides a simple and convenient 

model for the study of basic cellular processes. Additionally, a recent review suggests 

that THP-1 monocytic cell line is specifically well suited for studying function of 

monocytes in the vascular system, as the interaction between THP-1 cells and 

endothelial cells is comparable to that of human primary monocytes and endothelial cells 

[644].   

Lentiviral vectors are commonly employed tools for gene delivery and have successfully 

been used to express proteins of interest in various cell types of hematopoietic origin 

[645-650]. More specifically, human monocytic cell lines, including THP-1 cells, have 

been reported to become stably transduced using lentiviral vectors [651-654]. It was 

therefore decided to create lentiviral particles carrying the L-selectin transgene fused to 

fluorescent tags and use the viruses to transduce THP-1 cells. Human L-selectin cDNA 

was successfully cloned into C-terminal GFP- and RFP-tagging lentiviral backbone 

vectors, pHR´SIN-SEW-GFP and pHR´SIN-SEW-RFP, respectively (section 3.3.1.1, 

figure 3.1). At this stage pHR´SIN-SEW-L-selectinWT-RFP vector was frozen for future 

experiments and pHR´SIN-SEW-L-selectinWT-GFP was used to generate the lentiviral 

particles (figure 3.2). Two MOIs were used to overexpress L-selectin in THP-1 cells: low 

(MOI 5) and high (MOI 20). Obtaining high levels of L-selectin-GFP expression would be 

more desirable, however it could potentially have some adverse effects on cell function. 

If this was the case, it was hoped that the low expressors could be used to overcome 

this issue. Both MOIs were able to transduce THP-1 cells as confirmed by fluorescence 

microscopy of GFP channel and flow cytometry analysis of both GFP-tag and surface L-

selectin expression; however, as expected, a MOI of 20 resulted in higher transduction 

efficiency than a MOI of 5 (figure 3.4 and figure 3.5). The THP-1 WT L-selectin-GFP 

MOI 5 and THP-1 WT L-selectin-GFP MOI 20 were then FACS sorted into uniform 

populations, low expressor THP-1 WT L-selectin-GFP Lo5 and high expressor THP-1 

WT L-selectin-GFP Hi20, respectively. In sorted, uniform populations, each cell within a 

population was expressing matched levels of L-selectin-GFP. This was an important to 

ensure consistency and repeatability for future experiments as the parental unsorted cell 

populations included L-selectin-negative cells and cells of variable L-selectin expression 

levels. Flow cytometric analysis of uniform cell lines showed that THP-1 WT L-selectin-

GFP Hi20 cells had significantly higher levels of both GFP-tag and surface L-selectin 

levels than THP-1 WT L-selectin-GFP Lo5 cells as determined by MFI values (figure 

3.5), and this cell line was chosen for further characterisation. If any adverse effects of 

high L-selectin-GFP expression were found, low expressor THP-1 WT L-selectin-GFP 

Lo5 cells would be then tested. 
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In order to control for any effects lentiviral transduction might have had on the THP-1 

cells, a cell line was generated, where GFP protein was expressed on its own. To this 

end, the original pHR´SIN-SEW-SEW-GFP vector was used to produce lentiviral 

particles that were subsequently employed to transduce THP-1 cells with the MOI of 20. 

The THP-1 GFP MOI 20 cell line was subjected to FACS sorting in order to achieve 

uniform cell population (figure 3.6), where GFP levels would resemble those of GFP tag 

levels in THP-1 WT L-selectin-GFP Hi20 cells as closely as possible. 

Additionally, it was established that the levels of L-selectin-GFP expression in the THP-

1 cells was highly dependent on the cell culture density (figure 3.7), and it was decided 

that prior to the experiments, the cells would be seeded overnight at a strictly defined 

density of 0.4 x 106 cells/mL. This would ensure that the L-selectin-GFP levels would be 

matched between experiments.   

In conclusion, lentiviral gene delivery was successfully used to stably express L-selectin-

GFP in THP-1 monocytic cells. Two sorted, uniformly-expressing cell lines, low and high 

L-selectin-GFP expressors were created. High L-selectin expressor THP-1 WT L-

selectin-GFP Hi20 was chosen for further characterisation alongside control high GFP 

expressor THP-1 GFP Hi20. 

3.4.2 Tagging of the L-selectin cytoplasmic tail with GFP does not influence L-

selectin expression, localisation and function 

Fusing of proteins of interest to fluorescent tags is a well-known method used in cellular 

biology that enables non-invasive monitoring of protein localisation over time. Although 

generally considered useful, this approach has been reported to cause some adverse 

effects on the biology of the target protein under investigation [655, 656]. In this particular 

study, where a relatively large, 27 kDa protein (GFP) was fused to a short 17 amino acid 

L-selectin cytoplasmic tail, the possibility of the tag negatively affecting L-selectin 

function had to be taken in to consideration. A set of experiments was therefore designed 

that would test for characteristic features of L-selectin, including its expression at the cell 

plasma membrane, its localisation to microvilli, its ability to undergo shedding in 

response to cell stimulation, its capacity to interact with endogenous cytosolic binding 

partners and its ability to recognise its ligands under flow. 

Biochemical analysis of L-selectin expression revealed three separate protein forms of 

approximately 90-110, 80 and 35 kDa (figure 3.8 C and D). After substraction of 27 kDa 

belonging to the GFP, the obtained MWs (60-90, 53 and 5-8 kDa) correspond to those 

reported for endogenous L-selectin [381, 402, 515], suggesting that successful 

production of L-selectin-GFP chimera in the THP-1 cells had occurred. The fuzzy 

appearance of the heaviest band (90-110 kDa) suggested the full-length protein was 

heavily glycosylated, which was a further indicative of its mature form. The smallest form 
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(35 kDa) was identified as L-selectin cleavage product that is retained upon shedding 

(“stump”). The L-selectin-GFP “stump” appeared as a doublet, which was not entirely 

clear but it was thought that further cleavage might occur in the cell after L-selectin 

ectodomain was shed. The 80 kDa band was recognised as the intracellular form of L-

selectin that was associated with endoplasmic reticulum and Golgi apparatus structures. 

The evidence for intracellular L-selectin-GFP was also found when analysing 

fluorescence microscopy data, where distinct high-fluorescence L-selectin-GFP signal 

was seen within each cell (figure 3.8 A). The abundance of such form was expected as 

the lentiviral gene delivery system is based on the constitutively active promoter, and 

hence constitutive protein production was understood to take place.   

The initial evidence for L-selectin-GFP fusion protein expression at the cell surface was 

obtained by flow cytometry analysis during the cell line generation process (figure 3.5). 

Further investigation using fluorescence microscope revealed a distinct plasma 

membrane localisation of L-selectin-GFP chimera that could not be seen when only GFP 

was expressed in THP-1 cells (figure 3.8 A). More specifically, L-selectin is known to be 

localised to microvilli, and immunogold labelling followed by scanning electron 

microscopy (SEM) has been used before to assess this property in monocytes [18]. A 

study by Bruehl et al. [18] found that an average 72% of surface L-selectin is localised 

to the tips of monocyte microvilli and the rest of the protein is found on the cell body. 

Although quantification of the gold particles was not executed in the study performed in 

our laboratory, the SEM photographs clearly show that the majority of L-selectin-GFP 

was localised to the microvilli of the THP-1 monocytes (figure 3.8 B). 

ADAM17 is known to be the main metalloprotease that cleaves L-selectin following cell 

activation (section 1.9.2), and it has been reported that two distinct ways of ADAM17 

activation exist depending on the nature of the stimulus [496]. Killock and Ivetic (2010) 

showed that PKC-dependent L-selectin cleavage occurs upon stimulation with potent 

cell activator PMA, whereas p38-dependent shedding occurs after treatment with 

phosphatase inhibitors [496]. Examination of shedding in response to stimulation with 

PMA and protease inhibitor calyculin A would help to assess whether these two modes 

of L-selectin cleavage were functioning properly in the THP-1 WT L-selectin-GFP Hi20 

cells. Additionally, TNF-α, which was reported to cause L-selectin shedding in monocytes 

in a mechanism similar to that of protease inhibitors [496], was also used as a 

physiological stimulus. All three stimuli caused shedding of L-selectin as examined by 

Western blotting (figure 3.9), and shedding in response to PMA stimulation was 

addiotionally confirmed by flow cytometry (figure 3.10 A blue bar). While analysing the 

Westrn blottings, an inversely proportional relationship between surface L-selectin and 

“stump” levels was observed (figure 3.9 A and C). This was expected, as it is known 

that cleavage of L-selectin ectodomain leads to accumulation of the “stump” [657]. The 



148 
 

fact that the increase in the “stump” levels was not statistically significant could be due 

to its rapid turnover following the cleavage. Furthermore, pre-treatment of the cells with 

metalloprotease inhibitor Ro-31-9790 prevented PMA-induced shedding of L-selectin, 

indicating that cleavage was mediated by a metalloprotease (figure 3.10 A). 

Treatment with metalloprotease inhibitor on its own (in the absence of shedding stimulus) 

resulted in increased surface L-selectin expression (figure 3.10 A). This suggested that 

L-selectin was being constitutively cleaved in resting THP-1 WT L-selectin-GFP Hi20 

cells, a phenomenon known as basal L-selectin shedding (section 1.9.2). In keeping 

with this, Western blotting analysis revealed that L-selectin-GFP “stump” could be 

detected under resting conditions (figure 3.9 A control lane and figure 3.8 C and D). 

Little is currently known about the mechanism regulating basal shedding of L-selectin, 

but it has been reported that it occurs in both primary cells [521] and cell lines [544]. 

Although the same cleavage site seems to be involved as in the activation-induced 

shedding, the metalloprotease that cleaves L-selectin under resting conditions is not 

known [544]. ADAM17-dependent and ADAM17-independent basal L-selectin turnover 

has been shown [521, 544], and thus it appears that more than one mechanism 

regulating basal L-selectin shedding exists. It is possible that other metalloproteases like 

ADAM8 [524] or ADAM10 [525], which are known to have the ability to cleave L-selectin, 

can take part in basal L-selectin turnover. Since Ro-31-9790 is a broad-spectrum 

metalloprotease inhibitor, it is capable of inhibiting not only ADAM17, but also other 

metalloproteases. Therefore, it could not be discerned from this experiment which 

metalloprotease was responsible for basal L-selectin turnover in this particular system. 

Nevertheless, the ability of L-selectin-GFP to undergo cleavage under both cell-

activating and basal conditions was confirmed.  

Shedding of L-selectin is modified by calmodulin and ERM, which are cytosolic proteins 

that bind to the L-selectin tail (sections 1.10.3 and 1.10.4) [496, 558, 559]. Interactions 

between cytosolic proteins and the L-selectin tail have also been shown to be important 

for L-selectin adhesiveness and surface expression [515, 557, 558], as well as in the 

signalling induced downstream of L-selectin clustering [245, 562]. Even though no issues 

with L-selectin-GFP shedding were found in the THP-1 cells, this data did not provide 

any direct evidence as to L-selectin/CaM or L-selectin/ERM interaction. Direct proof for 

L-selectin/CaM interaction was obtained using GFP-Trap®/Western blotting analysis 

(figure 3.11), and this suggested that the GFP-tag did not impair the ability of the L-

selectin tail to bind CaM. GFP-Trap® was also used to attempt co-precipitation of L-

selectin-GFP and ERM proteins, unfortunately however, this proved unsuccessful. This 

is not thought to be a result of a lack of actual interaction, since ERM-dependent 

localisation of L-selectin-GFP to the microvilli [558] has been confirmed for these cells 

(figure 3.8 B). Furthermore, L-selectin, CaM and ERM were proposed to exist as a 1:1:1 
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ternary complex [572], and a very recent research performed by Deng et al. (2013) 

suggests sequential ERM and CaM binding to L-selectin tail [573]. In this model, moesin 

desorbs L-selectin from the anionic lipids within the inner leaflet of the plasma 

membrane, which is a prerequisite for subsequent CaM association (section 1.10.4 and 

figure 1.11) [573]. Since L-selectin-CaM interaction was detected for THP-1 WT L-

selectin-GFP Hi20 cells (figure 3.11), it strongly implies that ERM interaction had also 

occurred. Additionally, no apparent cell shape alterations could be observed, which 

would most probably be the case if the ERM proteins failed to link L-selectin-GFP 

cytoplasmic tail to the cytoskeletal network.  Previous work in the Ivetic laboratory came 

across similar ERM immunoprecipitation problems, however L-selectin-ERM interaction 

has been seen using other approaches (Dr Aleksandar Ivetic and Dr Maddy Parsons, 

King’s College London, personal communication).   

Functional L-selectin mediates leukocyte rolling (sections 1.2.2 and 1.7.5.1) [11, 52, 

365, 407], and so rolling of the THP-1 WT L-selectin-GFP Hi20 cells on immobilised sLex 

was examined (Dr Aleksandar Ivetic and Mr Ahmed Ahmed during his MSc research 

project in the Ivetic laboratory). An increase in the amount of immobilised sLex caused a 

reduction in the mean rolling velocity of L-selectin-GFP expressing cells (figure 3.12 B), 

suggesting that the cells started to roll slower when more tethers between L-selectin and 

sLex were formed. This was thought to be an indication of L-selectin-GFP successfully 

recognising its ligand. The increase of rolling flux that was directly proportional to the 

increase in the immobilised sLex (figure 3.12 C), further served to prove that L-selectin-

GFP mediated rolling of the THP-1 monocytes. In order to fully control for the L-selectin-

GFP interaction with sLex, these experiments should be complimented with appropriate 

controls. For example, analysis of mean rolling velocities and rolling flux of untransduced 

THP-1 cells or cells expressing GFP alone could be performed. Nevertheless, changes 

in the rolling behaviour of the cells that corresponded directly to the amount of sLex 

available, suggested that tagging of the L-selectin cytoplasmic tail with GFP did not 

hamper the functionality of the ligand-binding lectin domain of L-selectin. Finally, 

expression of L-selectin-GFP in THP-1 cells increased the recruitment of these cells to 

TNF-α-activated HUVEC as compared to untransduced THP-1 cells and THP-1 

monocytes expressing GFP alone by an average 10% (figure 3.13). L-selectin stably 

expressed by U937 monocytic cells (U937-LAM1) was also found to mediate attachment 

of those cells to IL-4 activated HUVEC; however, in this study attachment of L-selectin 

null U937 cells or U937-LAM1 cells pre-treated with anti-L-selectin antibodies was 

completely abolished [410]. The difference in the extent of L-selectin contribution 

between the study presented in this thesis (around 10%) and the study by Luscinskas et 

al (1994) (100%) [410], may lie in the monocytic cell type. Alternatively, the difference 

could be caused by the cytokine used to activate HUVEC (i.e. IL-4 versus TNF-α). Unlike 
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TNF-α, IL-4 does not induce E-selectin expression [658], and thus the observed 

contribution to recruitment in U937 cells could have been caused by L-selectin-

dependent secondary tethering and rolling (section 1.2.3). Additionally, the authors 

suggest that the inducible L-selectin ligand is present on the IL-4 activated HUVEC [410], 

and it is not known whether the same ligand is induced by TNF-α. On the other hand 

TNF-α has been shown to induce yet unidentified ligands for L-selectin on various ECs 

in vitro (section 1.8.2, summarised in table 1.2) [457-459], opening up a possibility that 

ligands for L-selectin (other than E-selectin) exist also on the TNF-α stimulated HUVEC. 

Thus, the observed L-selectin-GFP-dependent increase in recruitment of THP-1 cells to 

the TNF-α-stimulated HUVEC monolayers could be a result of secondary L-selectin 

tethering, direct L-selectin endothelial ligand binding or both. Analysis of leukocyte 

strings – formation of which is thought to be indicative of secondary leukocyte capture 

(section 1.2.3) – could prove useful in identification of L-selectin-depedent secondary 

capture, however such analysis was not formally performed in this study. 

Taken together, data presented in this section indicate that generated THP-1 WT L-

selectin GFP Hi20 cells expressed functional L-selectin-GFP chimera that exhibited 

correct localisation to plasma membrane and monocyte microvilli. High expression levels 

of L-selectin were not found to have any adverse effects and, therefore, it was concluded 

that those cells could be effectively used in further studies designed to investigate the 

fate of monocyte L-selectin during leukocyte adhesion cascade.  
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CHAPTER 4. MONITORING THE SHEDDING OF L-SELECTIN-

GFP IN THP-1 CELLS  

4.1 INTRODUCTION 

The physiological significance of L-selectin shedding has been studied using two main 

approaches, the synthetic inhibitors of L-selectin shedding or mice expressing 

“sheddase-resistant” L-selectin. Certain studies showed that shedding of L-selectin 

regulate leukocyte rolling and suggested that shedding might limit leukocyte 

accumulation at sites of inflammation [519, 551, 552]. Importantly, reduced 

transendothelial migration of naive lymphocytes across PLN HEV was seen when 

shedding of L-selectin was blocked [22, 518]. Shedding was also shown to prevent 

activated T cells from re-entering the lymph nodes [22, 419]. Furthermore, impaired 

chemotaxis at sites of inflammation was observed amongst leukocytes expressing 

sheddase-resistant L-selectin [419]. These reports establish the importance of L-selectin 

shedding for the successful recruitment of leukocytes. However, just when and where 

during the leukocyte adhesion cascade the shedding occurs remains elusive. 

Transmigrated leukocytes have lost the majority of their surface L-selectin [520, 554-

556], suggesting that shedding occurs during the transendothelial migration step of the 

cascade. However, in the examples listed, studies were performed as end-point analysis 

assays. In other words, the studies monitored L-selectin expression after the 

transmigration had already occurred. For example L-selectin expression was analysed 

on neutrophils recovered from the bottom compartment of a transwell chamber [520], or 

transmigrated monocytes recovered from the abluminal side of HUVEC monolayers 

[554]. Another report measured L-selectin levels on emigrated leukocytes isolated from 

cantharidin-induced skin blisters [555, 556]. In all of these end-point assays, no 

information could be gleaned with respect to understanding the spatio-temporal 

distribution of L-selectin shedding during TEM. 

The cytoplasmic tail of L-selectin has been shown to control L-selectin shedding [323]. 

Specifically, the serine residues within the L-selectin tail were found to affect shedding 

in response to cell activating stimuli [496]. It is currently unknown whether these residues 

are also involved in L-selectin shedding during the leukocyte adhesion cascade, namely 

TEM. It is possible that those serines can modify the extent and/or timing of L-selectin 

shedding, thereby affecting leukocyte TEM. 

This chapter addresses the question of the spatio-temporal distribution of L-selectin 

shedding during monocyte TEM. The biochemistry and cell biology experiments 

performed in this chapter suggest that L-selectin shedding occurs during the early stages 
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of monocyte TEM, and that the serine residues within the L-selectin cytoplasmic tail are 

involved in regulating of this process.  

4.2 EXPERIMENTAL DESIGN 

Both full-length and cleaved (occasionally referred to as the “stump”) forms of L-selectin-

GFP can be detected on Western blots using anti-GFP antibody with high specificity 

(figures 3.8 and 3.9). This property allowed us to design a simple and reproducible 

method to detect L-selectin shedding over-time. The L-selectin-GFP expressing THP-1 

cells and activated HUVEC monolayers were co-cultured over increasing periods of time. 

Changes in full-length L-selectin and “stump” levels were assessed by Western blotting. 

The rationale behind this approach was to pin-point the time at which shedding was 

occurring during TEM. The assay was carried out under static conditions, as performing 

biochemistry studies on flowing cells is experimentally challenging, if not impossible.  

Serine residues within the cytoplasmic tail of L-selectin are important for L-selectin 

shedding [496]. This was established by generating murine pre-B 300.19 cells stably 

expressing non-phosphorylatable mutants of L-selectin [496]. Analogically, THP-1 cells 

were now used to create cell lines stably expressing serine-to-alanine cytoplasmic 

mutants of L-selectin-GFP. A lentiviral gene delivery system described in Chapter 3 was 

used to achieve mutant L-selectin expression in THP-1 monocytes. Flow cytometry was 

used to examine the surface expression to ensure that all generated cells expressed 

equivalent levels of L-selectin-GFP as compared to the THP-1 WT L-selectin-GFP Hi20 

cells described in Chapter 3. Shedding of WT and non-phosphorylatable mutants of L-

selectin in response to PMA and TNF-α was assessed by FACS. Any cells that showed 

an interesting phenotype were further analysed in co-culture assays as described in 

section 2.17.2. This would allow insights in to the role of the cytoplasmic serines in L-

selectin shedding during TEM.  

Once the static transmigration assays to monitor shedding were completed, in vitro 

parallel plate flow chamber assays were then employed. The results of the static 

transmigration assays were used to decide on the perfusion length. This was to ensure 

the cells were being monitored over a time at which shedding of L-selectin-GFP was 

occurring. THP-1 cells stably expressing “sheddase-resistant” L-selectin-GFP were 

generated to investigate whether the lack of shedding influenced the sub-cellular 

distribution of L-selectin-GFP during TEM. The cells were generated using the lentiviral 

transgene delivery system presented throughout this thesis. Flow cytometric analysis 

ensured that expression of the sheddase-resistant L-selectin-GFP matched that of WT 

L-selectin-GFP. Confocal microscopy was used to analyse L-selectin-GFP spatio-

temporal distribution in the various cell lines that were fixed at the end of the flow assays.       
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4.3 RESULTS 

4.3.1 Shedding of L-selectin-GFP peaks at 20 minutes in THP-1 cells undergoing 

TEM 

As described in section 4.1, transmigrated leukocytes are known to have shed L-selectin 

from the cell surface, but the exact point in time at which this occurs is not known. It is 

practically not possible to perform biochemistry on flowing cells, therefore a “static” 

transmigration assay was designed that allowed examination of L-selectin-GFP 

shedding in THP-1 cells when co-cultured with activated HUVEC (section 2.17.2). THP-

1 WT L-selectin-GFP Hi20 cells were added to TNF-α stimulated HUVEC grown on 

fibronectin-coated 6-well plastic dishes for 1, 5, 10, 20, 30 and 60 minutes. Unbound 

(supernatant) and HUVEC-bound fractions were collected, cells were lysed and 

analysed by Western blotting. Anti-GFP antibody was used to detect full-length and 

cleaved forms of L-selectin-GFP at each time point for both supernatant and HUVEC-

bound fractions. The antibody does not recognise any epitopes derived from TNF-α-

activated HUVEC (figure 4.1 A), which allows for the detection of L-selectin with great 

specificity. Figure 4.1 B shows that almost all THP-1 cells firmly bound to HUVEC by 5 

minutes as no L-selectin-GFP can be detected in the supernatant fraction at later time-

points. It was thus assumed that the 5 minute time-point represented 100% of surface L-

selectin. A decrease in surface L-selectin-GFP was seen in 10, 20, 30 and 60 minute 

time-points as compared to the 5 minute time-point. The reduction in surface L-selectin-

GFP was accompanied by an increase in cleaved L-selectin-GFP (“stump”), which 

suggested that shedding was occurring. Densitometric analysis of surface L-selectin-

GFP revealed that maximum shedding occurred at 20 minute time-point, where 44.08% 

of surface L-selectin was retained (figure 4.2 C). Although less dramatic, a further 

decrease was observed at later time points, namely 39.5% of surface L-selectin was 

present at 30 minutes and 32.12% was retained at 60 minutes (figure 4.2 C). This 

suggested that the first 20 minutes of rapid shedding was likely to be a result of THP-1 

cell activation by contact with activated HUVEC. A subsequent and gradual decline in 

the levels, seen at 30 and 60 minute time-points, could represent the ongoing basal L-

selectin shedding that continued beyond the first 20 minutes of activation induced 

shedding. The level of L-selectin-GFP “stump” increased almost two-fold at 10 minutes 

and persisted up to the 30 minute time-point (figure 4.2 D). Due to the variations between 

the experiments the changes were not significantly different. However, it could be 

suggested that the observed increase in the ”stump” levels reflected its generation during 

the proteolytic cleavage of the L-selectin-GFP ectodomain. Interestingly, at the 60 

minute-time point, the “stump” levels matched the levels observed at the 5 minute time-

point (figure 4.2 D). This suggested that between 30 and 60 minute time-points the 



154 
 

“stump” had been cleared from the cell membrane and degraded. Furthermore, it can be 

speculated that it takes around one hour for the “stump” to be turned-over after shedding 

is initiated when THP-1 cells are co-cultured with HUVEC. Overall, this data suggests 

that when THP-1 monocytes interact with TNF-α activated HUVEC under static 

conditions, L-selectin shedding starts to occur at 10 minutes (as indicated by “stump” 

generation) and peaks at 20 minutes.  

 

Figure 4.1 Time-course of WT L-selectin shedding when THP-1 cells interact with TNF-α 
activated HUVEC.  A) Specificity of the anti-GFP antibody. Cell lysates of TNF-α stimulated THP-

1 WT L-selectin-GFP Hi20 (left lane) and HUVEC cells (right lane) were analysed by Western 

blotting using anti-GFP antibody. No unspecific bands can be seen in the HUVEC lane.   B) 

Representative Western blotting showing L-selectin-GFP shedding in response to THP-1 cells 

interacting with TNF-α-activated HUVEC.  THP-1 WT L-selectin-GFP Hi20 cells were added on 

top of activated HUVECs for 1, 5, 10, 20, 30 and 60 minutes. Supernatant and HUVEC-bound 

fractions were then collected, lysed and analysed for L-selectin protein by Western blotting using 

anti-GFP antibody. C) Densitometric analysis of surface L-selectin protein derived from three 

independent Western blots shown in B. Data is represented as a percentage of L-selectin 

remaining on the surface.  As depicted by the graph, shedding of the 110 kDa form of surface L-

selectin peaks at 20 minutes, after which only a minor decrease can be observed. D) 

Densitometric analysis of L-selectin-GFP “stump” derived from three independent Western blots 

shown in B. Data is represented as a fold-change of the levels observed at 5 minute time-point. 

The error bars represent standard error. Statistical analysis: One-way ANOVA followed by 
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Tukey’s post-test. No differences were detected in D due to the variability between the 

experiments. *=p < 0.05, **=p < 0.01.      

 

4.3.2. Generation of cell lines expressing non-phosphorylatable serine-to-alanine 

mutants of L-selectin-GFP 

By mutating the two serine residues within the cytoplasmic tail of human L-selectin into 

non-phosphorylatable alanines, Killock and Ivetic (2010) had previously shown that 

those amino acids regulate L-selectin shedding in lymphocytes. To investigate whether 

the cytoplasmic serines also affect L-selectin shedding in monocytes during TEM, it was 

decided to generate THP-1 cells expressing serine-to-alanine mutant forms of L-selectin-

GFP. THP-1 cell line is L-selectin negative (figure 3.5), hence the lack of endogenous 

L-selectin would allow direct comparisons with WT and mutant cell lines.  

The lentiviral vector pHR´SIN-SEW-L-selectinWT-GFP was used to generate various 

mutant L-selectin-GFP constructs by site-directed in vitro PCR mutagenesis as 

described in section 2.5. This allowed the generation of mutant L-selectin constructs 

with serine-364 and/or serine-367 mutated to alanine (figure 4.2 A), termed S364A, 

S367A and SSAA. All constructs were sequenced to ensure that the desired mutations 

had been achieved and no spontaneous mutations had occurred in L-selectin-GFP ORF. 

The lentivirus backbone vectors carrying mutant forms of L-selectin were then used to 

generate lentiviral particles as described in section 3.3.1.2 and section 2.12. The titres 

of the obtained concentrated lentivirus suspensions are presented in table 2.5.  
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Figure 4.2 Generation and stable expression of L-selectin cytoplasmic tail mutants in THP-
1 cells.   A) Site directed PCR mutagenesis was performed to substitute serines at position 364 

or 367 of human WT L-selectin with non-phosphorylatable alanines. Constructs were also made 

in which both serines were replaced with alanines. THP-1 cells expressing matched levels of: 

WT-, S364A-, S367A- or SSAA-GFP L-selectin Hi20 were subjected to flow cytometry analysis 

(section 2.13) of both GFP tag levels (B) and surface L-selectin levels (C) on four different dates 

across a period of two months. MFI values show closely matched expression levels of WT and all 

mutant forms of L-selectin as One-way ANOVA detected no significant differences in the L-

selectin or GFP expression between the cell lines. Error bars represent S.E.M.  

 

Following the described method of THP-1 cell transduction outlined in section 3.3.1.3, 

THP-1 cells were transduced with lentiviruses at MOI 5 or MOI 20. As soon as a large 

enough polyclonal population of cells were established, the cells were then sorted by 

FACS into uniform-expressing populations. Table 4.1 shows all the serine-to-alanine 

mutant L-selectin-GFP expressing THP-1 cell lines that were generated in this process. 

Mutation Expressor 
Unsorted /sorted 
(uniform) Cell line name 

S364A low unsorted THP-1 S364A L-selectin-GFP MOI 5 

S364A low sorted THP-1 S364A L-selectin-GFP Lo5 

S364A high unsorted THP-1 S364A L-selectin-GFP MOI 20 

S364A high sorted THP-1 S364A L-selectin-GFP Hi20 

S367A low unsorted THP-1 S367A L-selectin-GFP MOI 5 

S367A low sorted THP-1 S367A L-selectin-GFP Lo5 
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S367A high unsorted THP-1 S367A L-selectin-GFP MOI 20 

S367A high sorted THP-1 S367A L-selectin-GFP Hi20 

SSAA low unsorted THP-1 SSAA L-selectin-GFP MOI 5 

SSAA low sorted THP-1 SSAA L-selectin-GFP Lo5 

SSAA high unsorted THP-1 SSAA L-selectin-GFP MOI 20 

SSAA high sorted THP-1 SSAA L-selectin-GFP Hi20 
Table 4.1 THP-1 cell lines expressing serine-to-alanine mutant forms of L-selectin-GFP.  

This table shows THP-1 cell lines expressing mutant forms of L-selectin-GFP where serine-364, 

serine-367 or both were substituted with non-phosphorylatable alanines rendering respective 

mutants: S364A, S367A and SSAA. 

 

Once sorted, THP-1 cells expressing S364A, S367A and SSAA L-selectin-GFP Hi20 

were monitored for surface L-selectin and GFP tag expression and compared to levels 

from WT L-selectin-GFP Hi20 cells. Comparable levels of both GFP tag (figure 4.2 B) 

and surface L-selectin (figure 4.2 C) were found between the cell lines as analysed by 

flow cytometry. Closely matched WT, S364A, S367A and SSAA L-selectin-GFP levels in 

THP-1 Hi20 cells ensured that any differences between the cell lines that could be 

identified during the shedding assays, would be a direct result of the introduced 

mutations and not differences in L-selectin expression.  

4.3.3 Double serine mutant within the L-selectin tail reduces TNF-α induced 

shedding 

Phosphorylation of serine residues in the L-selectin tail have been previously found to 

play a central role in regulating PMA- but not phosphatase inhibitor-induced shedding in 

murine pre-B 300.19 cells stably expressing human L-selectin [496]. Serine-to-alanine 

mutations of serine-364 (S364A) and serine-367 (S367A) resulted in decreased L-

selectin shedding at 10 nM and higher concentrations of PMA [496]. Additionally, double 

serine mutation (SSAA) resulted in reduced shedding at 100 nM and higher PMA 

concentrations (David Killock, unpublished data). To test the effect of PMA-induced 

shedding of L-selectin-GFP on THP-1 cells, WT and mutant cell lines were subjected to 

increasing doses of PMA, and surface L-selectin levels was monitored by flow cytometry. 

Treatment with 10 nM PMA resulted in almost complete loss of surface L-selectin, with 

an average of 5% of cell surface expression of WT or mutant forms of L-selectin-GFP 

(figure 4.3 A). This was rather unexpected as the study by Killock and Ivetic (2010) 

revealed that incubation with 10 nM PMA resulted in retention of 60% of surface WT L-

selectin and 20% WT L-selectin was still present on the surface when 1000 nM PMA was 

used [496]. This could be simply due to the difference in cell type (i.e. comparing murine 

pre-B cells with a human monocyte cell line). To test whether lower concentrations of 

PMA would reveal any difference in L-selectin shedding between WT and the mutants, 
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5 and 7 nM concentrations of PMA were used. Again, no differences were observed  the 

cell expressing WT or mutant forms of L-selectin-GFP (figure 4.3 A). Having found no 

effect of serine phosphorylation on PMA induced shedding of L-selectin-GFP, the effect 

of TNF-α on the shedding of WT and mutant L-selectin was next explored. Killock and 

Ivetic (2010) found that, unlike PKC-driven (i.e. PMA-induced) shedding, TNF-α- and 

phosphatase inhibitor-induced shedding are both mediated by p38 MAPK [496]. This 

means that PMA- and TNF-α-induced shedding of L-selectin are mechanistically different 

[496]. Thus, perhaps the serine residues were important for TNF-α induced L-selectin 

shedding from THP-1 monocytes. THP-1 WT, S364A, S367A or SSAA L-selectin-GFP 

Hi20 cells were therefore subjected to increasing amounts of TNF-α, and surface L-

selectin levels was again monitored by flow cytometry. As shown in figure 4.3 B, a 

decrease in shedding was seen with the double serine-to-alanine mutant SSAA at 10 

and 20 ng/mL of TNF-α. A similar trend in the loss of S364A and S367A L-selectin-GFP 

expression in response to 10 and 20 ng/mL concentration of TNF-α was observed, but 

this was not statistically significant. This suggests that both serine residues could play a 

role in TNF-α induced L-selectin-GFP shedding. No significant differences between WT 

and mutant L-selectin-GFP expressing cell lines were observed at 50 ng/mL TNF-α. 
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Figure 4.3 Both S364 and S367 are required for TNF-α induced shedding. THP-1 WT, S364A, 

S367A or SSAA L-selectin-GFP Hi20 were challenged with increasing doses of either PMA (A) 

or TNF-α (B) for 30 or 60 minutes, respectively, at 37º C. L-selectin surface levels were 

subsequently monitored by flow cytometry. PMA concentrations used were 0, 5, 7 and 10 nM and 

TNF-α concentrations used were 0, 10, 20 or 50 ng/mL. All the experiments were performed at 

least three times in triplicate. Data represent mean values ± SEM. Statistical difference was 

calculated for each concentration using One-way ANOVA followed by Dunnet’s test against WT. 

*=p < 0.05.    

 

Although the results seem to contradict those of Killock and Ivetic (2010), this could 

potentially be explained by the fact that different cell lines were used for the studies. Cells 

used by Killock and Ivetic (2010) were murine pre-B lymphocytes that were stably 

expressing human L-selectin and the cells used in this study were human monocytes 

expressing human L-selectin.  The fact that 10nM PMA concentration caused around 

95% loss of surface L-selectin in THP-1 cells but only 40% loss in 300.19 cells suggests 

that monocytes are much more sensitive to this stimulus than lymphocytes. As a result, 

it cannot be excluded that at concentrations lower that 5 nM, differences in PMA-

shedding could be seen between WT and mutant forms of L-selectin-GFP. Nevertheless, 
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these results show that phosphorylation of both serine-364 and serine-367 within the 

cytoplasmic tail of L-selectin is important for TNF-α induced shedding of L-selectin-GFP 

from THP-1 monocytes.  

4.3.4 SSAA mutation delays L-selectin shedding when THP-1 cells interact with 

activated HUVEC under static conditions 

Western blotting of static transmigration assays showed that WT L-selectin-GFP is shed 

when THP-1 cells are added on to activated HUVEC (figure 4.1). The data presented in 

figure 4.3 shows a reduction in TNF-α induced shedding of L-selectin-GFP when both 

cytoplasmic serine residues are mutated to non phosphorylatable alanines when cells 

are in suspension. To test whether the SSAA mutation also had an effect on L-selectin 

shedding during the static transmigration assays, THP-1 SSAA L-selectin-GFP Hi20 

cells were subjected to the assays and Western blotting analysis of the bound fraction 

as described in section 4.3.3. Western blotting showed that a loss of surface SSAA L-

selectin-GFP peaked at 30 minutes, where 44.6% of SSAA L-selectin-GFP remained cell 

associated (figure 4.4 A and B). No further decrease was seen at later time-points 

(figure 4.4 A and B). The L-selectin-GFP “stump” was first generated at the 10 minute 

time-point as seen by a 1.7 fold-increase as compared to the 5 minute time-point (figure 

4.4 A and C). The elevated “stump” levels persisted for up to 30 minutes into the assay, 

and then decreased to levels slightly above those observed at 5 minutes (1.18 fold 

change) (figure 4.4 A and C). Results were quantified and compared to the 

corresponding values obtained for WT L-selectin-GFP (presented earlier in figure 4.1). 

Statistical analysis showed that significantly more full-length SSAA L-selectin was found 

at the 20 minute time-point than WT L-selectin (74.36% versus 44.08%, respectively) 

(figure 4.4 D). Additionally, more full-length L-selectin-GFP was detected in the SSAA 

mutant (91.02%) than WT (64.8%) at 10 minutes, although this was not statistically 

significant. No differences in full-length L-selectin levels were detected at 30 minute and 

60 minute time-points, suggesting that SSAA mutation did not affect shedding at later 

time-points. Thus, it could be proposed that abrogating phosphorylation of L-selectin 

cytoplasmic serine residues leads to an approximately 10 minute delay in shedding of L-

selectin during the initial stages of monocyte TEM under static conditions. Additionally, 

analysis of the SSAA L-selectin-GFP “stump” levels showed an increase in the fold-

change at 20 minutes when compared to the WT L-selectin-GFP “stump” levels. A lack 

of statistical significance was likely due to variability between the experiments.  
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Figure 4.4 Serine-to-alanine mutation of the L-selectin tail delays shedding when THP-1 
cells are incubated with activated HUVEC under static conditions. THP-1 cells expressing 

SSAA L-selectin-GFP Hi20 were added on top of activated HUVEC for 1 to 60 minutes. Bound 

fractions were then collected, lysed and analysed for L-selectin protein by Western blotting using 

anti-GFP antibody. A) Representative Western blotting showing shedding of surface SSAA-L-

selectin-GFP when THP-1 cells interact with TNF-α-activated HUVEC over one hour period of 

time. Three independent Western blots were used to perform densitometric analysis of surface 

SSAA L-selectin-GFP (B) and L-selectin-GFP “stump” (C). D) Comparison of densitometric 

results of full-length WT- and SSAA-L-selectin-GFP levels on THP-1 cells interacting with TNF-α-

activated HUVEC monolayers. Significantly more surface L-selectin was found at 20 minute time-

point for SSAA mutant as compared to WT L-selectin-GFP expressing THP-1 cells. E) 

Comparison of changes in L-selectin-GFP “stump” levels between WT and SSAA mutant. 

Statistical analysis in B and C: One-way ANOVA followed by Tukey’s post-test. No differences 

were detected in C. Statistical analysis in D and E: Two-tailed, unpaired Student’s t-test for each 

time point. Error bars represent standard error. *=p<0.05. 
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4.3.5 Characterisation of interactions between THP-1 cells and TNF-α activated 

HUVEC under flow 

The results shown above indicate that, when subjected to the static transmigration assay, 

THP-1 cells bind to TNF-α-activated HUVEC within the first 5 minutes and L-selectin 

shedding peaks at 20 minutes (figure 4.1). During the optimisation phase of the in vitro 

parallel plate flow chamber experiments, it was noticed that it took two minutes for the 

first THP-1 cells to arrive from the cells reservoir, and the cells were rapidly attaching to 

the activated HUVEC monolayer. A parallel plate flow chamber assay was hence 

designed, where cells were perfused over a monolayer of TNF-α activated HUVEC over 

a 15 minute period of time. This was thought to represent the time at which L-selectin 

shedding was occurring, and it was hence important to establish what type of interactions 

were formed between THP-1 cells and activated HUVEC cells during this period. A 

detailed method of the in vitro parallel plate flow chamber assay used in these 

experiments is described in section 2.14. Few cells could be identified as “fully 

transmigrated” when the experiment was stopped after 15 minutes of flow. 

Transmigrated leukocytes can be easily identified by their phase-dark appearance [659-

662], and extremely rarely such cells could be seen (approximately 1 cell per experiment 

where three fields of view were acquired).  However, the cells appeared to have 

commenced transmigration by forming membrane extensions, termed pseudopods, 

which were thought to extend beneath the HUVEC monolayer.  Still images from a 

recorded movie clearly show that the cells started to form pseudopods as early as 3 

minutes after attachment, and that these pseudopods were very dynamic (figure 4.5, 

compare minute 3 to minute 9).  
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Figure 4.5 THP-1 cells form pseudopods just a few minutes after adhesion.   THP-1 WT L-

selectin-GFP Hi20 cells were perfused over TNF-α activated HUVEC monolayer (see section 

2.14.3) and the acquired footage was used to generate time-lapse stills.  Just a few minutes after 

adhesion (time point=0 min), THP-1 cells send processes (pseudopods) underneath the HUVEC 

monolayer. Scale bar: 30 µm.  

 

Although the phase dark appearance of the pseudopods suggested their subendothelial 

localisation, this had to be validated to ensure that THP-1 cells were indeed undergoing 

transmigration. In order to analyse this, the experiment was repeated, flow was stopped 

after 7 minutes and the cells were fixed with 4% PFA. The seven minute perfusion meant 

that the cells had been interacting with HUVEC for 5 minutes after attachment and as a 

result the fixed sample was a representative of 5 minutes, as shown in figure 4.5. Fixed 

cells were permeabilised and stained with TRITC-phalloidin and prepared for confocal 

microscopy as described in section 2.16.2. TRITC-phalloidin staining enabled 

visualisation of actin cables belonging to HUVEC and hence it was possible to identify 

the z-positions of THP-1 cells. The monocyte cell body was attached to the apical 

HUVEC surface (figure 4.6 A “Top”), and this z-plane is hereafter referred to as “Top”. 

The pseudopods were positioned underneath the HUVEC monolayer (figure 4.6 A 

“Bottom”) and this z-plane is hereafter referred to as “Bottom”.  Z-stacks of the cells were 

acquired and used to generate 3D images of the THP-1 and HUVEC cells (section 
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2.16.3). Phalloidin staining of the actin-based cytoskeleton was used as a guide to what 

was above and beneath the endothelium. Three-dimensional reconstruction of thin 

optical sections (0.75 m) obtained from laser scanning confocal microscopy revealed 

that the pseudopods of THP-1 cells were positioned underneath the actin cables 

belonging to HUVEC cells (figure 4.6 B). To test whether the pseudopods remained 

underneath the endothelium at the end of the flow experiments, 3D reconstruction was 

repeated with cells fixed after 15 minutes of perfusion. Again, it was discovered that the 

pseudopods were positioned underneath the HUVEC monolayer (figure 4.6 C). These 

results demonstrated that THP-1 WT L-selectin-GFP Hi20 cells initiated transmigration 

through TNF-α activated HUVEC by extending dynamic membrane pseudopods 

underneath the endothelial cells, and such cells are hereafter referred to as 

“transmigrating cells”. Unfortunately, the cells did not fully transmigrate underneath the 

endothelium. This was thought to be a result of the sheer size of the cell, or its nucleus; 

THP-1 cells are large and are physically unable to undergo full TEM. The drawback of 

this is that the process of complete TEM cannot be studied in our model. However, the 

advantage of this is that we can more closely interrogate the initial phases of TEM.  
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Figure 4.6 THP-1 monocytes expressing L-selectin-GFP initiate transmigration through 
HUVEC by extending pseudopods underneath the endothelial cells.  THP-1 WT L-selectin-

GFP Hi20 cells were perfused over TNF-α activated HUVEC for 7 or 15 minutes (section 2.14.3), 

fixed with 4% PFA and stained with TRITC-phalloidin (section 2.16.2). Series of z-stacks were 

acquired by confocal microscope and Imaris software was used to compile the stacks, followed 

by “volume rendering” (section 2.16.3). The GFP channel was used to render THP-1 cells volume 

(shown in green) and TRITC-phalloidin was used to render actin volume (shown in red).  A) 

Schematic showing typical appearance of a THP-1 monocyte interacting with HUVEC under flow. 

Cell body is attached to the apical surface of the endothelial cells (“Top”) and the pseudopods 

extend beneath the HUVEC monolayer (“Bottom”). B) Top and Bottom view showing a 

representative 3D reconstruction of a THP-1 cell transmigrating through a monolayer of HUVEC 
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at 7 minute time-point. Pseudopods (blue stars) extend underneath the actin cables of endothelial 

cells (arrows). Scale bar: 10 µm. C) Representative 3D reconstruction of THP-1 cell 

transmigration at 15 minutes. In this particular example, the monocyte pseudopod (blue star) is 

positioned directly underneath the nucleus of the endothelial cell. The endothelial cell can be 

identified by characteristic actin cables (arrows). The nucleus can be detected by typical oval 

shape where phalloidin staining is absent. The large gap where the nucleus is positioned, and 

neither GFP nor actin volume is present, allows a “see-through” mode, and thus both Top and 

Bottom views can be seen in a single view. Scale bar: 5 µm.   

 

4.3.6 WT L-selectin-GFP is enriched in “spots” in the protruding pseudopods of 

transmigrating THP-1 cells under flow 

Data presented in the section above show that during 15 minute perfusion over activated 

HUVEC, THP-1 cells form dynamic pseudopods that protrude underneath the endothelial 

monolayer. This represents early transmigration stage of the leukocyte adhesion 

cascade. Additionally, based on the results obtained during static transmigration assays 

(figure 4.1), shedding of L-selectin is understood to occur during this time. It was hoped 

that detailed, high magnification images of transmigrating THP-1 monocytes could 

provide information as to the spatial distribution of L-selectin-GFP during the 15 minutes 

of perfusion. This in turn could provide clues as to where L-selectin shedding was 

occurring in any given cell. To this end, flow experiments were stopped after 7 or 15 

minutes of perfusion and the cells were fixed with 4% PFA. The seven minute time-point 

was thought to represent the time of minimal L-selectin-GFP shedding, and the 15 minute 

time-point was thought to be a representative of the time at which shedding was nearly 

at its maximum. Fixed cells were prepared for confocal microscopy (section 2.16.2), and 

confocal images were acquired of single z-planes representing Top and Bottom views 

(Top and Bottom views were as shown in figure 4.7 A). Control THP-1 GFP Hi20 cells 

exhibited a uniform, diffuse GFP distribution at 7 minutes, which did not change over 

time (figure 4.7 A). Although not abundant, high intensity GFP “spots” were found to be 

localised in the pseudopods of transmigrating THP-1 WT L-selectin-GFP Hi20 cells at 7 

minute time-point (figure 4.7 B). Interestingly, these GFP-positive spots appeared to 

accumulate more with time as seen in the images from the 15 minute time-point (figure 

4.7 C). A lack of GFP-positive spots in the control cells suggested that there were specific 

accumulations of L-selectin-GFP, and not GFP protein alone. For quantification of L-

selectin-GFP spots, only the pseudopods were selected. This was because L-selectin-

GFP was previously found to be abundant in the intracellular compartments (figure 3.8). 

It was hence assumed that the L-selectin-GFP spots present in the cell body could be 

easily confused for protein localised to the endoplasmic reticulum or the trans Golgi 

network. By excluding the cell body from the analysis one could ensure that only L-

selectin-GFP spots present in protruding and transmigrated regions of the cell were 
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being assessed. The method for analysing L-selectin-GFP spots is described in more 

detail in section 2.16.4. As shown in figure 4.8, an average 26 L-selectin-GFP spots per 

cell were seen in the pseudopods at the 7 minute time-point, and average of 62 spots 

per cell were present in the pseudopods after 15 minutes. This indicated a time-

dependent increase in the formation of these spots. No spots were seen in the 

pseudopods of the control THP-1 GFP Hi20 cells across the two time-points analysed, 

further suggesting that the spots represented L-selectin-GFP.  
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Figure 4.7 A time-dependent accumulation of WT L-selectin-GFP “spots” in the 
pseudopods of THP-1 cells.  GFP or WT L-selectin-GFP expressing THP-1 cells were perfused 

over TNF-α activated HUVEC monolayer for 7 or 15 minutes, fixed with 4% PFA and stained with 

TRITC-phalloidin. Figures A-C show representative single z-plane (0.75 m thickness) confocal 

images of the fixed cells, where the pseudopods are outlined with dashed lines. Top and Bottom 

z-planes are as shown in figure 4.6 A. Images of the GFP channel include magnified sections of 

the areas outlined in red. For perfusion of cells in the parallel plate flow chamber assay see 

section 2.14.3. Preparation of cells for confocal microscopy and z-stack acquisition are described 

in sections 2.16.2 and 2.16.3, respectively. A) A diffuse distribution of GFP in the control THP-1 

GFP Hi20 cells at 15 minutes. Similar images for the 7 minute time-point exist, but are not shown 

in the figure. Scale bar: 5 µm. B) Low numbers of WT L-selectin-GFP spots (blue arrows) in the 

pseudopods of THP-1 WT L-selectin-GFP Hi20 cells at 7 minute time-point. Scale bar: 10 µm. C) 

At the 15 minute time-point, WT L-selectin-GFP “spots” (blue arrows) can be seen in the 

pseudopods of THP-1 WT L-selectin-GFP Hi20 cells. Scale bar: 10 µm. 

 

Figure 4.8 Quantitative analysis of L-selectin-GFP spots accumulating in the pseudopods 
of THP-1 cells over time.  The GFP-positive spots shown in figure 4.3 were scored using the 

“Find spots” feature on Volocity image analysis software (section 2.16.4). The graph shows the 

average number of spots per cell. No spots can be seen accumulating in THP-1 GFP Hi20 cells. 

At 7 minutes, an average of 26 spots are present in THP WT L-selectin-GFP Hi20 cells (WT L-

selectin-GFP), which increases to an average of 62 spots at 15 minute time-point. Fifteen cells 

were analysed per experiment and experiments were repeated three times for each cell line. 

Mean values are shown for each bar. Error bars represent S.E.M. Statistical analysis: Two-tailed, 

unpaired Student’s t-test. **=p<0.01. 

 

The results demonstrated that when THP-1 cells initiated TEM by sending pseudopods 

underneath the HUVEC monolayer, L-selectin-GFP accumulated in those pseudopods 

over-time. Yet, the nature of the L-selectin-GFP spots was unclear at this point. Since 

the scoring was performed on the GFP-tag, the spots could represent full-length L-

selectin-GFP, L-selectin-GFP “stump” or a mix of the two. It was hypothesised that, if the 

spots represented L-selectin “stump”, their accumulation could indicate L-selectin 
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shedding. On the other hand, accumulation of full-length L-selectin-GFP could mean that 

the spots represented clustered L-selectin. 

4.3.7 Generation of THP-1 cell lines expressing the sheddase-resistant (ΔM-N) 

form of L-selectin-GFP  

A sheddase-resistant form of L-selectin has been used in the past to study the role of 

shedding [22, 419, 529]. It was thus decided to generate THP-1 cell line expressing 

sheddase resistant L-selectin-GFP to further investigate the role of L-selectin shedding 

during the initial stages of TEM. L-selectin is cleaved in the extracellular region between 

lysine-321 and serine-322, which is close to the plasma membrane [326], and deletions 

within this region are known to abrogate L-selectin shedding [528]. A two-step site-

directed in vitro PCR mutagenesis was performed on wild type L-selectin cDNA in the 

lentivirus backbone vector pHR´SIN-SEW-L-selectinWT-GFP (section 2.5). Deletion of 

an 8 amino acid sequence (MIKEGDYN) within the membrane proximal site rendered L-

selectin sheddase- resistant, and this form from hereon will be termed ΔM-N L-selectin 

(figure 4.9). The ΔM-N mutant has been characterized previously and was demonstrated 

to effectively inhibit PMA-induced shedding [522]. The resulting construct, termed 

pHR´SIN-SEW-L-selectinΔM-N-GFP was sequenced to ensure that the desired deletion 

had been achieved and no spontaneous mutations had occurred within the L-selectin 

ORF. The lentiviral backbone vector carrying ΔM-N L-selectin-GFP was then used to 

generate lentiviral particles as described in section 3.3.1.2 and section 2.11. The titre 

of the concentrated lentivirus suspension is presented in table 2.5. 

   

Figure 4.9 Construction of sheddase resistant (ΔM-N) L-selectin mutant.  Amino acid 

sequence of the C-terminal portion of human L-selectin, including the entire cytoplasmic, 

transmembrane and membrane proximal (shown in red) sites. A two-step site-directed in vitro 

PCR mutagenesis (section 2.5) was used to delete sequence of eight amino acids within 

membrane proximal site to render L-selectin shedding resistant (ΔM-N). The cleavage site is 

shown with the blue arrow. SCR, sequence consensus repeats. 
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Following the established method of THP-1 cell transduction, originally outlined in 

section 3.3.1.3, THP-1 cells were infected with MOI or 5 and 20 with lentivirus carrying 

the ΔM-N L-selectin-GFP transgene. A detailed method of THP-1 cell transduction is 

described in section 2.11.4. The resultant polyclonal cell lines, termed THP-1 ΔM-N L-

selectin-GFP MOI 5 (indicating a low expressor cell line) and ΔM-N L-selectin-GFP MOI 

20 (indicating a high expressor cell line), were FACS-sorted into uniform cell populations 

expressing matched levels of L-selectin. The sorted cell lines were named THP-1 ΔM-N 

L-selectin-GFP Lo5 (low expressor) and THP-1 ΔM-N L-selectin-GFP Hi20 (high 

expressor).   

4.3.8 Characterisation of THP-1 cell lines expressing ΔM-N L-selectin-GFP  

4.3.8.1 Analysis of ΔM-N L-selectin-GFP expression levels in THP-1 cells 

The expression levels of WT and serine-to-alanine mutant forms of L-selectin-GFP have 

so far all been matched. Matched L-selectin expression was seen with high expressor 

cell lines (Hi20) (figure 4.6). However, it was the low expressor THP-1 ΔM-N L-selectin-

GFP Lo5 cells that had matched L-selectin expression levels to those of THP-1 WT L-

selectin-GFP Hi20 cells (figure 3.10 A and B). THP-1 ΔM-N L-selectin-GFP Hi20 had 

significantly higher levels of both GFP-tag and surface L-selectin than THP-1 WT L-

selectin-GFP Hi20 (figure 4.10 A and B). This was hypothesised to be due to the lack 

of basal shedding in ΔM-N L-selectin-GFP. When Ro-31-9790 is used to inhibit basal 

shedding in THP-1 WT L-selectin-GFP Hi20 cells, surface L-selectin levels increase 

significantly (figure 3.10). Therefore L-selectin expression on THP-1 ΔM-N L-selectin-

GFP Hi20 cells could mimic an outcome seen in Ro-31-9790-treated WT L-selectin-GFP 

Hi20cells. As a result, in order to ensure matched L-selectin levels between the cell lines, 

THP-1 ΔM-N L-selectin-GFP Lo5 cell line was chosen for further studies. It was noticed 

that, even though RPE MFI values, representing surface L-selectin levels, between THP-

1 WT L-selectin-GFP Hi20 and THP-1 ΔM-N L-selectin-GFP Lo5 were matched, the flow 

cytometric profiles showed slightly different distribution of the cell populations (figure 

4.10 C). The ΔM-N histogram appeared as a sharp peak at the higher end of the 

fluorescence intensity scale, whereas the WT histogram was shorter and broader 

suggesting a much broader distribution of surface L-selectin expression between the 

cells within the population (figure 4.10 C right histogram). No differences were seen in 

the histograms representing GFP-tag levels (figure 4.10 C left histogram). The reason 

for this was not clear but it was hypothesised that a lack of basal shedding in THP-1 ΔM-

N L-selectin-GFP Lo5 cells resulted in an accumulation of L-selectin at the plasma 

membrane. As such, there would be little variability in the surface L-selectin expression 

between the cells within the population. Conversely, WT L-selectin-GFP was subjected 
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to constitutive turnover (figure 3.10), and hence a slight variability in surface L-selectin 

expression within the population was likely to occur. As expected, Western blotting 

analysis revealed that THP-1 ΔM-N L-selectin-GFP Lo5 cells did not produce a L-selectin 

“stump”, suggesting that basal shedding was abolished in this cell line. This is explored 

further in the section 4.3.8.2 below. Furthermore, the intracellular (~80 kDa) band in the 

lysates from THP-1 ΔM-N L-selectin-GFP Lo5 cells was less abundant than in the lysates 

derived from the THP-1 WT L-selectin-GFP Hi20 cells (figure 4.10 D). This made sense 

given the different MOIs used (5 versus 20).  

 

Figure 4.10 Expression of ΔM-N L-selectin-GFP in THP-1 cells.  THP-1 cells expressing low 

(Lo5) or high (Hi20) levels of ΔM-N L-selectin-GFP were compared to THP-1 cells expressing WT 

L-selectin-GFP Hi20. Flow cytometry analysis (section 2.13) was performed to compare MFI 

values of both GFP-tag (A) and surface L-selectin (B). Experiments were performed in triplicates 

on three independent occasions. Error bars represent S.E.M. C) Representative histograms 

comparing GFP-tag (left histogram) and surface L-selectin (right histogram) levels of THP-1 WT 

L-selectin-GFP Hi20 and ΔM-N L-selectin-GFP Lo5. D) Representative Western blotting showing 

lack of L-selectin-GFP “stump” and decrease in L-selectin-GFP intracellular form in the extracts 
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from THP-1 ΔM-N L-selectin-GFP Lo5 cells as compared to the THP-1 WT L-selectin-GFP Hi20 

cells.  Statistical analysis in A and B: One-way ANOVA and Dunnett’s post-test against “WT Hi20”. 

***=p<0.001. MFI, Mean Fluorescence Intensity. 

              

4.3.8.2 Basal and activated L-selectin shedding is abrogated in THP-1 cells expressing 

ΔM-N L-selectin-GFP 

To formally test the hypothesis that ΔM-N L-selectin-GFP could not be turned over in 

THP-1 cells, the cells were treated with Ro-31-9790 metalloprotease inhibitor that can 

inhibit ADAM17 enzyme. The metalloprotease inhibitor Ro-31-9790 did not cause any 

additional increase in the surface expression of ΔM-N L-selectin-GFP (figure 4.11 A red 

bar), confirming that ΔM-N mutation abrogates basal shedding of L-selectin in THP-1 

cells. As expected, PMA stimulation did not promote shedding in this cell line (figure 

4.11 A blue bar). Interestingly, surface levels of ΔM-N L-selectin increased slightly upon 

PMA stimulation, although this was not statistically significant. Whether this finding was 

a coincidence or whether there was an actual influence of PMA stimulation on surface 

ΔM-N L-selectin levels was not clear. It may be that PMA stimulation increased trafficking 

of ΔM-N L-selectin-GFP to the plasma membrane via activation of the secretory pathway. 

PMA has been shown previously to stimulate secretory pathways [663] and elevate cell 

surface protein levels [664]. No change in GFP-tag levels upon PMA stimulation (figure 

4.11 B blue bar) would support this hypothesis. The GFP-tag would provide the same 

flow cytometric read-out irrespective of its intracellular or surface localisation.  
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Figure 4.11 No shedding occurs in THP-1 cells expressing ΔM-N L-selectin.   THP-1 cells 

expressing ΔM-N L-selectin-GFP Lo 5 were stimulated with PMA, ADAM17 inhibitor Ro-31-9790 

or both and analysed for both GFP-tag and surface L-selectin levels as described in figure 3.10. 

A) Surface L-selectin expression was not modified by any of the stimuli used. Slight increase in 

the expression was seen in MFI values upon PMA stimulation but this was not statistically 

significant. M1 on the histogram shows gate for RPE positive THP-1 cell population. B) GFP-tag 

levels, where M1 (histogram) shows gate for GFP positive cells did not change upon treatment 

with any of the stimuli. C) Gate R1 in the scatter profile contains population of viable THP-1 cells 

and was applied to all samples.  Histograms in A, B and C represent the changes seen in a typical 

experiment and fold-changes of L-selectin surface levels shown on corresponding graphs were 

established on the basis of MFI values acquired  for 3 independent experiments. Data represent 

mean ± SEM and no significance were found by One-way ANOVA. 

 

4.3.9. Shedding of L-selectin-GFP directly correlates with an accumulation of GFP-

positive “spots” in the transmigrating pseudopods of THP-1 cells 

As described in section 4.3.5 and 4.3.6, mutating both serines in the L-selectin tail to 

alanines would decrease the extent of shedding in response to TNF-α (figure 4.3 B). In 
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addition, a corresponding delay in shedding of L-selectin-GFP was observed in the static 

transmigration assays (figure 4.4). Following the hypothesis that accumulation of WT L-

selectin-GFP spots in the pseudopods of transmigrating THP-1 cells could indicate 

shedding (section 4.3.2), it would be of interest to determine if the accumulation of SSAA 

L-selectin-GFP spots was also decreased. Additionally, analysis of the ΔM-N L-selectin-

GFP accumulation could directly answer the question whether shedding and GFP-

positive spots accumulation were linked. Flow cytometric analysis revealed that THP-1 

SSAA L-selectin-GFP Hi20 and ΔM-N L-selectin-GFP Lo5 cells had matched L-selectin-

GFP expression to that of THP-1 WT L-selectin-GFP Hi20 cells (figure 4.2 and figure 

4.10). These cell lines were therefore employed in this study. Accumulation of WT L-

selectin-GFP spots was observed after 15 minutes of flow (figure 4.8), and this time-

point corresponds to the period just before the peak of shedding is seen in the static 

transmigration assays (figure 4.1). It was hence anticipated that if any differences were 

to be seen between WT, SSAA and ΔM-N L-selectin-GFP accumulation, this would be 

most prominent after 15 minutes of perfusion. The cells were therefore subjected to a 15 

minute-long flow assay and then numbers of spots were compared to THP-1 WT L-

selectin-GFP Hi20 cells. Figure 4.12 shows that after 15 minute perfusion, both SSAA 

L-selectin-GFP and ΔM-N L-selectin-GFP appeared to accumulate less spots than WT 

L-selectin-GFP. Additionally, very prominent long and thin membrane extensions, 

termed spikes, were seen extending from some of the cells. To analyse possible 

differences between the cell lines against WT L-selectin-GFP, spots were analysed as 

described earlier in section 4.3.2. Spikes were manually counted for each cell, and 

average number per cell was calculated (see section 2.16.4). As shown in figure 4.13 

A, the average number of SSAA L-selectin-GFP spots was significantly lower than that 

observed for WT L-selectin-GFP (35 versus 62). The ΔM-N L-selectin-GFP spots 

accumulated even less, as the average number of spots per cell was calculated to be 

only 17. This was below the number of WT L-selectin-GFP spots seen accumulating at 

7 minutes (average 26 spots per cell) (figure 4.8). Hence, it appeared that ΔM-N L-

selectin-GFP spots did not accumulate at all. Although an increase in spikes was seen 

in THP-1 cells expressing SSAA L-selectin-GFP, it was not considered to be statistically 

significant (figure 4.13 B). Additionally, a great variability of number of spikes was seen 

between cells within any given cell line. 
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Figure 4.12 Relationship between shedding and accumulation of L-selectin-GFP spots in 
the protruding pseudopods of THP-1 cells.  THP-1 cells expressing SSAA or ΔM-N L-selectin 

were perfused over TNF-α activated HUVEC for 15 minutes, fixed with 4% PFA, stained with 

TRITC-phalloidin and analysed by confocal microscopy. For detailed methods describing parallel 

plate flow chamber assay and the confocal microscopy analysis see sections 2.14.3 and 2.16, 

respectively. Representative single z-plane confocal images of Top and Bottom views (see figure 

4.6 A) of transmigrating THP-1 cells at a 15 minute time-point are shown. L-selectin-GFP spots 

are shown with blue arrows. Magnified sections of selected areas are shown in red. Spikes 

extending from the pseudopods are indicated with red arrows. The dashed lines encircle the 

protruded areas that were analysed to measure spots. A) WT L-selectin-GFP accumulates in the 

pseudopods of THP-1 cells. This particular cell does not have any spikes. Scale bar: 10 µm. B) 

SSAA L-selectin-GFP accumulates in the pseudopods, although less spots seem to be formed. 

This particular cell presents with a high number of spikes. Scale bar: 7.5 µm. C) ΔM-N L-selectin-

GFP spots does not accumulate in the pseudopods. A few spikes can be seen in this example 

cell. Scale bar: 10 µm. 

     

 

 

Figure 4.13 Monitoring the accumulation of spots and spikes in the protruding pseudopods 
of transmigrating THP-1 cells expressing WT, SSAA or ΔM-N L-selectin-GFP.  L-selectin-

GFP spots and spikes shown in the representative images in figure 4.12 were quantified. Each 

bar in the histogram shows the average number of GFP-positive spots per cell. A) Spots were 
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analysed as described in figure 4.8.  Accumulation of ΔM-N L-selectin-GFP spots did not occur 

and accumulation of SSAA L-selectin-GFP spots was less than that of WT L-selectin-GFP. B) 

Spikes were counted manually. Fifteen cells were analysed per experiment and experiments were 

repeated three times for each cell line. Mean values are shown for each bar. Error bars represent 

S.E.M. Statistical analysis: One-way ANOVA followed by Tukey’s post-test. *=p<0.05 **=p<0.01, 

***=p<0.001. 

  

Since ΔM-N L-selectin-GFP does not undergo shedding and SSAA L-selectin-GFP 

sheds much slower that WT L-selectin-GFP in the static transmigration assays (figure 

4.4), these results suggested a correlation existed between L-selectin shedding and the 

accumulation of spots. Although this work has not fully concluded that the spots signify 

shed L-selectin, it remains a strong possibility.  

4.3.10 Investigating the fate of the L-selectin “stump” following shedding during 

transendothelial migration of THP-1 cells  

Examination of the L-selectin-GFP spots in the pseudopods of transmigrating THP-1 

monocytes suggested that WT L-selectin-GFP might be shed and accumulation of 

“stump” might occur in the pseudopods (section 4.3.6 and 4.3.9). When analysing L-

selectin-GFP by confocal microscopy, it is not possible to distinguish between full-length 

L-selectin-GFP and L-selectin-GFP “stump” as both of the forms are attached to GFP. 

One way to address this issue would be to stain the fixed cells with DREG56 antibody 

and perform co-localisation analysis between GFP and DREG56. Unfortunately, 

DREG56 antibody does not recognise L-selectin from fixed specimens and this approach 

was not feasible.  

The fate of the cleaved L-selectin is currently not known. It has been proposed that once 

the L-selectin ectodomain is shed, the “stump” is internalised and degraded [563]. When 

lymphocytes are stimulated with PMA over 60 minute period of time, Western blotting 

analysis shows that “stump” levels peak at 15 minutes and then gradually decrease 

[323]. Static transmigration assay used in this study showed that WT L-selectin-GFP 

“stump” is rapidly generated at 10 minutes and the levels persist up to 30 minutes after 

which “stump” is also being cleared (figure 4.1 D). Cells internalise membrane proteins 

by endocytosis and hence the observed clearance of the “stump” could be a result of 

endosomal uptake. If this was the case, L-selectin-GFP spots observed in the 

pseudopods after 15 minutes of flow could represent L-selectin-GFP “stump”-loaded 

endosomes. Two endosomal markers, early endosomal antigen 1 (EEA1) and late 

endosomal-lysosomal marker CD63 antigen are commonly used to detect early and late 

endosomes, respectively [665, 666]. Early endosomes can recycle back to the plasma 

membrane or mature into late endosomes [667]. Late endosomes proceed down the 

lysosomal route of protein degradation [667].  To test whether L-selectin-GFP spots co-
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localised with any of the endosomal markers, THP-1 WT L-selectin-GFP cells were 

subjected to a 15 minute-long parallel plate flow chamber assay, fixed with 4% PFA and 

prepared for confocal microscopy as described in section 2.16.2. No co-localisation of 

WT L-selectin-GFP with CD63 was found (Dr A. Ivetic, unpublished data) suggesting that 

L-selectin-GFP “stump” did not undergo degradation through this pathway. Similarly, no 

co-localisation was found between WT L-selectin-GFP spots and EEA1 (figure 4.14). 

However, this result is hard to interpret as the EEA1 staining was clearly seen in the 

HUVEC cells suggesting that antibody did not recognise its antigen in THP-1 cells. 

Although EEA1 has been used previously to detect early endosomes in THP-1 cells, the 

staining was performed after three days of PMA treatment [665]. It is thus possible that 

undifferentiated THP-1 cells have a relatively low capacity to phagocytose and on that 

basis, it is possible that they express low levels of EEA1. It has also been observed that 

primary smooth muscle cells lose EEA1 expression upon immortalisation (Aleksander 

Kapustin, King’s College London, personal communication) and perhaps THP-1 cell line 

does not express EEA1 antigen.  

 

Figure 4.14  WT L-selectin-GFP in the pseudopods of transmigrating THP-1 cells does not 
co-localise with early endosome marker.  THP-1 cells expressing WT L-selectin-GFP Hi20 

were perfused over TNF-α activated HUVEC for 15 minutes (section 2.14.3), fixed with 4% PFA, 

stained with TRITC-phalloidin and early endosomes marker EEA1 and analysed by confocal 

microscopy (section 2.16). Images were acquired in the “Bottom” z-planes as shown in figure 

WT L-selectin-GFP TRITC-phalloidin

EEA1 Merge



180 
 

4.6 A. Representative image shows L-selectin-GFP spots (blue arrows) in THP-1 cells and EEA1 

staining (yellow arrows) in the HUVEC cells. No co-localisation between the two could be 

detected. Scale bar: 7.5 µm.       

 

4.4 DISCUSSION 

Leukocytes have been observed to shed their L-selectin during transendothelial 

migration [554-556], and blocking shedding results in abnormal emigration in to the 

surrounding tissue [22, 419, 518, 668]. This chapter attempts to determine the spatio-

temporal resolution of L-selectin shedding during TEM and whether the serine residues 

in the cytoplasmic tail are involved in this regulation. Finally, this chapter embarked on 

experiments that were set out to explore the fate of the L-selectin “stump” following 

shedding. 

4.4.1 L-selectin shedding is likely to occur during the early stages of TEM and is 

dependent on cytoplasmic serine residues 

The results presented in this chapter demonstrate that when THP-1 cells are perfused 

over TNF-α activated HUVEC, the cells form dynamic pseudopods (figure 4.5). The 

pseudopods extend underneath the endothelial monolayer as early as 7 minutes in to 

the flow experiment and remain underneath the endothelium for the duration of the 15 

minute-long flow assay (figure 4.6). However, THP-1 cells never fully complete 

transmigration across the HUVEC monolayer, which has been described by others [153, 

643]. As a result this model of transendothelial migration is used to monitor L-selectin as 

cells are undergoing transmigration – in other words the early stages of TEM (see 

diagram in figure 4.6 A). Western blotting analysis of surface L-selectin revealed that 

shedding peaks at 20 minutes in the static transmigration assays (figure 4.1). Although 

this data did not provide any information as to the part of the cell at which shedding 

occurred, it clearly demonstrated that interaction of THP-1 cells with TNF-α activated 

HUVEC triggers L-selectin ectodomain shedding. This, alongside the results discussed 

above, suggests that L-selectin shedding and pseudopods extension could occur 

concomitantly. However, it is difficult to directly relate these events as the timing of TEM 

in static assays might not be an exact match of the timing seen under flow conditions. It 

should be noted that the static assay is devoid of flow and this may in itself influence the 

outcome of the observations.   

To test the function played by L-selectin tail serine phosphorylation, non-

phosphorylatable mutants of L-selectin were created. Stable cell lines expressing each 

serine mutant were generated successfully in THP-1 cells. The fact that all serine mutant 

constructs could be expressed to similar levels in these cells suggests that tail 
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phosphorylation is neither required for nor detrimental to, L-selectin-GFP expression and 

does not affect basal L-selectin shedding as assessed by flow cytometry (figure 4.2). 

However, it can be hypothesised that phosphorylation of the serines plays a role in TNF-

α induced shedding of L-selectin from THP-1 monocytes, as introduction of the SSAA 

mutation resulted in reduced shedding (figure 4.3). Thus it could be suggested that the 

above described shedding of L-selectin-GFP induced by interaction of THP-1 monocytes 

with TNF-α activated HUVEC monolayers, could also be influenced by the 

phosphorylation of the serine residues. To test this possibility, THP-1 SSAA L-selectin-

GFP Hi20 cells were subjected to the static transmigration assays and the changes in 

surface L-selectin-GFP occurring over time were compared to that of WT L-selectin-GFP. 

Figure 4.4 shows that significantly more SSAA than WT L-selectin-GFP was retained at 

the cell surface at 20 minutes, and a similar trend was observed at a 10 minute time-

point. No changes were seen at later time-points, suggesting that the SSAA mutation 

caused a delay in L-selectin ectodomain cleavage during the static transmigration assay. 

Hence, it is tempting to speculate that phosphorylation of the tail serines plays a role in 

L-selectin shedding during THP-1 monocyte TEM. Interestingly, Tsubota et al. (2013) 

showed that treatment of monocytes with a broad spectrum metalloprotease inhibitor 

GM6001 caused a delay in their transmigration through HUVEC monolayers under both 

static and flow conditions [669]. Although the authors attributed this result to inhibition of 

Mac-1 integrin cleavage, GM6001 – within the concentration range employed by Tsubota 

et al., 2013 [669] – is also used to prevent L-selectin shedding [670-673], and thus it 

seems that the contribution of L-selectin to the observed effect cannot be formally 

excluded. Surprisingly, however, this was not at all investigated in this study [669]. Since 

THP-1 cells do not fully transmigrate in the system used in this thesis, it was not possible 

to compare the number of transmigrated cells between THP-1 WT and SSAA L-selectin-

GFP Hi20 cell lines. A modified system is currently being developed in the Ivetic 

laboratory, where HUVEC monolayers are grown on a mixture of collagen/matrigel 

substrates, and it is hoped that this will generate sufficient subendothelial space for THP-

1 cells to undergo full transmigration under both static and flow conditions. In light of the 

results discussed above, it would be interesting to see whether delayed shedding of the 

SSAA mutant will also delay THP-1 transmigration. If this was the case, additional 

studies could be designed to analyse relative contribution of Mac-1 – which is expressed 

by THP-1 cell line [674] – and L-selectin cleavage to monocyte TEM.    

4.4.2 Accumulation of GFP-positive “spots” occurs in the protruding pseudopods 

of transmigrating THP-1 cells and correlates directly with L-selectin shedding 

The main reason for tagging L-selectin with GFP was to “non-invasively” monitor its 

spatio-temporal distribution during transendothelial migration. The results presented in 
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section 4.3.6 show that WT L-selectin-GFP accumulate over time in the pseudopods of 

transmigrating THP-1 cells. This is seen as the appearance of characteristic GFP-

positive “spots” that are not observed in control cells expressing matched levels of GFP 

protein (figure 4.7). However, the caveat of this analysis lies in the fact that by following 

the GFP-tag it is not possible to distinguish between full-length surface L-selectin-GFP 

and L-selectin-GFP “stump”. It was hoped that by analysing the mutant forms of L-

selectin-GFP some insights could be gained pertaining to the nature of the spots. As 

discussed above SSAA mutation results in delayed shedding of L-selectin-GFP when 

THP-1 cells interact with TNF-α activated HUVEC. Additionally, a “severe” shedding 

mutant, namely ΔM-N L-selectin-GFP, was generated and stably expressed in THP-1 

cells (section 4.3.7). Apart from activation-induced, basal shedding is also abrogated in 

the ΔM-N L-selectin mutant (figure 4.11). A lack of basal shedding was thought to be a 

reason behind the extremely high surface L-selectin-GFP levels in THP-1 ΔM-N L-

selectin-GFP Hi20 cells that were exceeding those of THP-1 WT L-selectin-GFP Hi20 

cells (figure 4.10). As a result, low expressor THP-1 ΔM-N L-selectin-GFP Lo5 was a 

closer match to the THP-1 WT L-selectin-GFP Hi20 cells and was employed in all further 

studies. Examination of WT SSAA and ΔM-N L-selectin-GFP spots formed in the 

pseudopods of the respective cell lines after 15 minutes of flow revealed interesting 

differences. Both SSAA and ΔM-N L-selectin-GFP presented fewer GFP-positive spots 

when compared to WT L-selectin-GFP (figure 4.13). These results demonstrate a strong 

correlation with the extent of shedding and the formation of the GFP-positive spots in 

transmigrating monocytes. It is tempting to speculate that the GFP-positive spots 

represent the L-selectin-GFP “stump” accumulating in the pseudopods of THP-1 cells 

during TEM. However, the nature of the spots still remains unclear and accumulation of 

full length L-selectin-GFP cannot be formally excluded. For example, spots could 

represent aggregates of full-length L-selectin that form as pre-requisite for shedding. 

Additionally, L-selectin is known to cluster upon ligand binding and extracellular matrix 

L-selectin ligands have been identified (section 1.8.3). Therefore, it is possible that full 

length L-selectin-GFP clusters in the pseudopods of transmigrating THP-1 cells upon 

binding of ECM ligand(s) deposited by TNF-α activated HUVEC. Pre-treating THP-1 cells 

expressing WT L-selectin-GFP with Ro31-9790 may result in a reduction of spots, 

lending further weight to the possibility that the spots are due to shedding.  

4.4.3 Investigating the fate of L-selectin-GFP “stump”      

The fate of the L-selectin “stump” is currently unknown.  Zhao et al. (2001) showed that 

a gradual decrease in the L-selectin cleavage product generated upon PMA treatment 

starts 15 minutes after stimulation, and it is entirely cleared from the membrane by 60 

minutes [323]. Likewise, results showed in this chapter demonstrate that WT L-selectin-
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GFP “stump” generated during static transmigration assays is turned-over within a 1 hour 

period (figure 4.1). When investigating the influence of cytoplasmic serine residues on 

shedding of L-selectin-GFP during TEM, it was noticed that the SSAA L-selectin-GFP 

“stump” was more abundant than WT L-selectin-GFP “stump” at 20 minutes (figure 4.4). 

A statistical test did not find this change significant and this result could just be a 

coincidence. However, it can be speculated that rapid protein turnover is hard to measure 

by Western blotting where time-points are at least 5 minutes apart and saturation of the 

bands can be an issue when quantifying the results. Perhaps using antibodies directly 

labelled with near-infrared dyes that do not reach saturation upon development would 

prove more informative in future. 

The clearance of the L-selectin-GFP “stump” from the membrane could be a result of its 

internalisation. It was proposed that L-selectin-GFP spots accumulating in the 

pseudopods of transmigrating THP-1 cells could represent vesicles containing the 

internalised “stump”. Attempts were made to investigate whether the L-selectin-GFP 

spots co-localised with the endosomal markers CD63 and EEA1. No co-localisation 

between the GFP-positive spots and CD63 was seen (Dr A. Ivetic, unpublished data), 

suggesting that the “stump” was not targeted for degradation through the 

endosomal/lysosomal pathway. Investigation of co-localisation of the GFP-positive spots 

and EEA1 staining proved unsuccessful. Further optimisation of the method would be 

needed to analyse possible association of L-selectin-GFP spots with the early endosome 

compartments. Alternatively, the small GTPase Rab5 is another known early endosome 

marker [675], and it would be of interest to determine if Rab5 can be detected in THP-1 

cells, and if so, if it would co-localise with the L-selectin-GFP spots. 

It has been suggested that L-selectin “stump” can be further cleaved by a gamma-

secretase complex (Ann Ager, Cardiff University, personal communication). Indeed, 

membrane secretases have been proposed to have the ability to cleave any surface 

protein that lack a bulky membrane-proximal globular domain [676]. Two bands migrating 

at the molecular weight of the L-selectin-GFP “stump” have been detected in Western 

blots (figure 3.8), suggesting that further cleavage of “stump” might indeed occur in THP-

1 WT L-selectin-GFP Hi20 cells. Interestingly, the ADAM17 substrate, Notch receptor, is 

known to be internalised and further cleaved by gamma-secretase complex [677]. 

Gamma-secretase dependent cleavage depends on monoubiquitination and clathrin-

dependent endocytosis of cleaved Notch product [677]. Additionally, is was suggested 

that Notch receptor monoubiquitination  occurs on a juxtamembrane lysine residue [677]. 

L-selectin tail contains five lysine residues (K359, K360, K362, K363 and K365) and 

therefore it is highly likely that ubiquitination could occur on one of them. It is hence 

possible that ADAM17 induced L-selectin cleavage is followed by endocytosis and 
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further cleavage in a manner similar to that of the Notch receptor. Finally, clathrin-

mediated internalisation of the stump would be interesting to explore in future studies. 
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CHAPTER 5. CLUSTERING OF L-SELECTIN DURING 

TRANSENDOTHELIAL MIGRATION 

5.1 INTRODUCTION 

Previous studies have suggested that L-selectin might play a role beyond the vasculature 

[221, 354, 398, 416, 419, 420, 465, 479]. Specifically, L-selectin null leukocytes have 

been shown to have reduced infiltration into the tissue interstitium at various sites of 

inflammation [11, 392, 398, 420], and impaired locomotion away from the venule and 

towards the inflammatory source [398, 416]. Additionally, aberrant chemotaxis in vivo 

has also been reported for leukocytes expressing the sheddase-resistant L-selectin 

[419].  However, this area has never been researched at the molecular level, and no 

mechanism for L-selectin-dependent TEM or interstitial migration has been suggested. 

It is likely that L-selectin-dependent emigration may vary between the leukocyte subsets, 

as it has been shown that L-selectin levels on murine neutrophils and monocytes are 

regulated differently upon emigration into the inflamed peritoneum [527]. The results 

presented in Chapter 4 of this thesis show that L-selectin-GFP spots accumulate in the 

pseudopods of transmigrating THP-1 monocytes (figure 4.4), and this appears to be 

dependent on cytoplasmic serine residues as well as L-selectin’s ability to be shed 

(figure 4.13). In the previous chapter, the spots of L-selectin-GFP were hypothesised to 

be internalised vesicles containing the “stump” of L-selectin-GFP but this was never 

formally addressed. However, biochemical assessment using anti-GFP Western blotting 

of the whole cell lysates derived from THP-1 cells stably expressing either WT or M-N-

L-selectin, revealed the only difference between these cell lines to be the stump. This 

would strongly support the theory that the observed GFP-positive spots were the 

“stump”. One other possibility is that the accumulation of L-selectin-GFP spots could 

represent clusters of full-length L-selectin-GFP that form as pre-requisite to shedding. 

Indeed, a recent paper has shown that high-density sulphated ligands (such as those 

derived from the ECM) can drive L-selectin clustering and subsequent shedding [678]. 

Additionally, a number of ECM ligands for L-selectin have now been described (section 

1.8.3, summarised in table 1.2), and binding of L-selectin with a subendothelial ligand 

could serve to drive L-selectin clustering.  

When considering clustering, there are two types of clustering that can occur: “outside-

in” and “inside-out”. Outside-in refers to direct clustering of L-selectin as a consequence 

of ligand binding, and inside-out refers to a mechanism that is driven by a pathway 

independent of L-selectin. L-selectin clustering has been reported to coincide with L-

selectin dependent signalling (section 1.11). It is possible that L-selectin clustering 

occurs during TEM, which plays a role in leukocyte exit from the vasculature. 
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This chapter explores the theory that L-selectin is clustered in the pseudopods of 

transmigrating THP-1 cells.  

5.2 EXPERIMENTAL DESIGN 

Clustering is a term that describes a situation where a given set of receptors localise 

together at high densities. Adjacent receptors are brought so close together that they 

can physically interact. Physical protein-protein interactions in vivo can be detected by 

fluorescence lifetime measurement (FLIM) of fluorescence resonance energy transfer 

(FRET) efficiency between GFP- and RFP-tags that are attached to the proteins of 

interest. This technique measures the fluorescence lifetime of a donor fluorophore, in 

this case GFP, after excitation. The donor fluorophore’s lifetime is decreased when it is 

located within 10 nm (100 Å) of an acceptor fluorophore, such as RFP, due to absorption 

of energy by this acceptor, hence the term fluorescence resonance energy transfer (or 

FRET).  Data presented in Chapter 3 describe the generation of THP-1 cell lines stably 

expressing WT L-selectin-GFP. Co-expression of WT L-selectin-RFP in the same cell 

line would allow detection of an interaction between adjacent L-selectin molecules by 

measuring FLIM of FRET between GFP and RFP tags. This would allow detection of L-

selectin clustering during TEM. When generating biosystems for FLIM measurement of 

FRET, the acceptor is commonly present in excess to saturate donor binding. It was 

therefore decided that low expressor THP-1 WT L-selectin-GFP Lo5 would be used so 

that lentivirus particles carrying L-selectin-RFP could be transduced at a higher MOI. 

This resulted in the generation of a “double expressor” THP-1 cell line, termed THP-1 

WT L-selectin-GFP/RFP. Once the cell line was generated, clustering of L-selectin during 

TEM was measured by FLIM analysis and the extent of clustering was expressed as the 

FRET efficiency. Briefly, THP-1 cells were perfused over TNF-α activated HUVEC for 15 

minutes, after which time the cells were fixed with 4% PFA and prepared for FLIM/FRET 

analysis. The fifteen minute time-point was chosen as this was the period at which L-

selectin-GFP spots were seen accumulating in the pseudopods of transmigrating THP-

1 cells (figures 4.7 and 4.8). The FLIM analysis and FRET efficiencies were performed 

and calculated by Dr Maddy Parsons of the Randall Division of Cell and Molecular 

Biophysics at King’s College London. 

Extracellular matrix proteoglycans are known to bind L-selectin [221, 354, 463-466], and 

could potentially cause L-selectin clustering in THP-1 monocyte pseudopods that 

protrude underneath the HUVEC monolayer. Initial data suggesting expression of 

biglycan (dermatan sulphate proteoglycan) by activated HUVEC cells was obtained by 

Dr Aleksandar Ivetic. To further analyse the subcellular distribution of biglycan, 

immunofluorescence experiments were performed. This was to assess whether biglycan 

expression could be specifically detected beneath the HUVEC monolayer.   
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Extracellular and intracellular mutants of L-selectin were also used to address the 

individual and combined roles of the cleavage domain and cytoplasmic serines in 

regulating L-selectin clustering. All newly generated mutant double expressor cell lines 

were FACS sorted to match their total GFP- and RFP-tagged L-selectin levels to that of 

THP-1 WT L-selectin-GFP/RFP cells. Once matched L-selectin expression was ensured, 

all the double expressor cell lines were subjected to 15 minute-long parallel plate flow 

chamber assay and FLIM/FRET analysis of L-selectin clustering during TEM was 

performed.  

The double expressor cell lines were further used to test whether ligation of other 

endogenous CAMs could promote L-selectin clustering in the manner of “inside-out” 

signalling. To this end, an assay was designed where antibodies against extracellular 

domains of PSGL-1, JAM-A, CD43, CD44 and PECAM-1 – which are all known to be 

expressed by THP-1 cells [153, 679-682] – were used to cross-link those CAMs on the 

surface of WT or mutant L-selectin-GFP/RFP expressing THP-1 cells. L-selectin 

clustering was subsequently tested by FLIM measurement of FRET. 

5.3 RESULTS 

5.3.1 Generation of a THP-1 cell line stably expressing GFP- and RFP-tagged WT 

L-selectin 

The pHR´SIN-SEW-L-selectinWT-RFP vector was used to generate lentiviral particles 

carrying WT L-selectin-RFP and is described in more detail in section 3.3.1.1. 

Lentiviruses were generated and titrated as described in sections 3.3.1.2 and 2.11, and 

the obtained titre was 12.56 x 108 i.u./mL (table 2.5). For reasons explained in section 

5.2, low expressor THP-1 WT L-selectin-GFP Lo5 cells were used for transduction. In 

Chapter 3, rigorous biochemical and cell biological testing of THP-1 L-selectin-GFP Hi20 

cells presented with no obvious defects. Although the THP-1 L-selectin-GFP Lo5 were 

not subjected to similar testing, it was reasoned that as they expressed fewer L-selectin 

molecules on the surface, it was unlikely that they would present with any defective 

phenotype. To achieve excess acceptor (RFP-tag) to donor (GFP-tag) ratio, an MOI of 

10 was used to transduce THP-1 L-selectin-GFP Lo5 cells with lentivirus carrying the L-

selectin-RFP transgene. The THP-1 cell transduction method is described in more detail 

in section 2.11.4. The resultant double expressors were subjected to FACS sorting to 

obtain uniform surface expression levels. Fluorescence of both GFP- and RFP-tags was 

used to select cells of low uniform GFP and high uniform RFP expression (figure 5.1). 

As before, the cells displayed characteristic L-selectin membrane localisation seen in 

both GFP and RFP channels. Membrane localisation of L-selectin-RFP suggested that 
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the RFP-tag did not affect L-selectin expression and trafficking to the membrane. Hence, 

the cells were deemed suitable for FLIM/FRET experiments.   

 

Figure 5.1 THP-1 cell line expressing WT L-selectin-GFP and -RFP (THP-1 WT L-selectin 
GFP/RFP).  Representative image showing THP-1 WT L-selectin GFP/RFP cells. Both L-selectin-

GFP and -RFP localise to the cell membrane (arrows). Scale bar: 10 µm.   

 

5.3.2 L-selectin clusters in the pseudopods of transmigrating THP-1 cells 

To investigate if L-selectin clustered during monocyte transendothelial migration, THP-1 

WT L-selectin-GFP/RFP cells were perfused over the TNF-α activated HUVEC 

monolayer in a parallel-plate flow chamber assay (section 2.14.3). Data presented in 

Chapter 4 shows that this type of experiment captures cells in the initial stages of TEM, 

where THP-1 cells extend pseudopods underneath the endothelium (figure 4.6). After 

15 minutes of flow, when L-selectin-GFP spots are known to accumulate (figures 4.7 

and 4.8), the cells were fixed and samples were prepared for FLIM/FRET analysis as 

described in section 2.18.1. The experiment was repeated with THP-1 cells expressing 

L-selectin-GFP only to measure lifetime of the donor in the absence of acceptor. This 

was required to calculate FRET efficiency (ȠFRET). A detailed method of FLIM/FRET data 

analysis is described in section 2.18 of this thesis. Staining with phalloidin-Alexa633 

enabled visualisation of HUVEC actin cables and allowed recognition of non-

transmigrated and transmigrated parts of the same cell, referred to as Top and Bottom 

z-planes, respectively (figure 5.2 A). Analysis revealed that the FRET efficiency was 

highest in the pseudopods of transmigrating THP-1 cells and very little FRET was 

detected in the non-transmigrated parts of the cells (figure 5.2 B). The areas in which 

FRET occurs, as determined by a decreased fluorescence lifetime of GFP, are shown 

Phase GFP

RFP Merge
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using a pseudo-colour scale with green through yellow to red, indicating areas of 

progressively shorter lifetime and, therefore, increasing FRET (figure 5.2 B). Blue areas 

represent long lifetimes and no FRET. Calculation of FRET efficiency showed that 

average 4.033% ȠFRET was present in the non-transmigrated parts of the cells, whereas 

ȠFRET in the pseudopods totalled average 9.873% (figure 5.2 C). This suggested that L-

selectin clustered in the pseudopods of transmigrating THP-1 monocytes, and not in the 

non-transmigrated parts. 

 

Figure 5.2 Clustering of L-selecting during transendothelial migration.  THP-1 cells were 

perfused over TNF-α activated HUVEC for 15 minutes (section 2.14.3), fixed with 4% PFA and 

prepared for FLIM/FRET analysis as described in section 2.18.1. FLIM measurement of FRET 

was used to assess the interaction between adjacent L-selectin molecules to determine if L-

selectin clustering had occurred. A)  Left panel: schematic showing typical appearance of a THP-

1 monocyte interacting with HUVEC under flow. Non-transmigrated and transmigrated parts of 

the cells are shown as Top (blue dot) and Bottom (pseudopods, red dots) z-planes, respectively. 

Right panel: Representative wide-field CCD camera image of phalloidin-Alexa633 staining. 

Arrows point out HUVEC actin cables. Blue and red dots indicate z-planes as shown in the 

schematic on the left. Scale bar: 10 µm. B) Representative images showing Top and Bottom z-

planes of a transmigrating THP-1 monocyte. Left panels show images of L-selectin-GFP and the 

right panels show corresponding GFP multi-photon intensity images. Lifetime of fluorescence is 

shown as a pseudo-colour scale of blue (high lifetime) to red (low lifetime). The lower the lifetime 

of fluorescence, the closer the association between the two tagged proteins (more detailed 

explanation of FLIM/FRET measurement and analysis is described in section 2.18). C) 

Quantitation of FRET efficiency between L-selectin-GFP and L-selectin-RFP. Analysis was 
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performed on a total of 15 cells derived from three independent experiments. Mean values are 

shown for each bar. Error bars represent S.E.M. Statistical analysis: Two-tailed, unpaired 

Student’s t-test. ***=p<0.001. 

 

5.3.3. TNF-α activated HUVEC express the L-selectin ligand biglycan 

The above presented results show that L-selectin clusters in the pseudopods of 

transmigrating THP-1 monocytes. L-selectin is known to cluster upon ligand binding 

(section 1.11) and it was hypothesised that discovered L-selectin clustering during TEM 

might be indicative of subendothelial ligand binding. A number of ECM ligands for L-

selectin have now been recognised (section 1.8.3, see summary in table 1.2). The 

majority of such ECM ligands are highly sulphated proteoglycans, and collagen XVIII, 

versican and biglycan are most frequently reported [221, 354, 463, 465, 466]. 

Proteoglycans are commonly produced by endothelial cells, suggesting that the 

observed clustering of L-selectin during TEM could be the result of a proteoglycan 

binding event. Additionally, both collagen XVIII and biglycan have been reported to be 

expressed by the HUVEC monolayer [663, 683]. To investigate whether proteoglycans 

were present in our model, and to assess the effect of TNF-α stimulation on their potential 

expression, Western blotting analysis was performed by Dr Aleksandar Ivetic. The 

results showed that both collagen XVIII and biglycan can be detected in the extracts from 

unstimulated HUVEC (figure 5.3). Collagen XVIII has a molecular weight (MW) of 180-

200 kDa and a faint band was detected migrating at this weight, whereas an abundant 

45 kDa band was detected for biglycan core protein (figure 5.3).  Interestingly, upon 10 

ng/mL TNF-α stimulation – which was a concentration used to stimulate HUVEC for 

parallel-plate flow chamber experiments – collagen XVIII could no longer be detected 

and biglycan expression decreased (figure 5.3).     

 

Figure 5.3 Effect of TNF-α stimulation on HUVEC proteoglycan expression.  Confluent 

HUVEC monolayers were stimulated overnight with 10 ng/mL TNF-α or were left untreated. 

Representative Western blots of proteoglycans detected with anti-collagen XVIII and anti-biglycan 

antibodies. Collagen XVIII migrated at its predicted molecular weight of 180-200 (red arrow), and 

could no longer be detected upon 10 ng/mL TNF-α stimulation. Biglycan core protein migrating at 
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45 kDa was detected in extracts from both stimulated and non-stimulated HUVEC, however TNF-

α treatment decreased its expression. The experiment was performed by Dr Aleksandar Ivetic.    

 

As detection of biglycan core protein was still visible after TNF-α stimulation, it was likely 

that its glycosylated form was secreted by HUVEC and could still have the capacity to 

cluster L-selectin during TEM. A recent report by Yin et al (2013) found that biglycan is 

constitutively secreted by HUVEC, and secretion is greatly potentiated by PMA 

stimulation [663]. Secretion was assumed to take place into the ECM deposited by 

HUVEC but to formally investigate what effect TNF-α stimulation had on the sub-cellular 

distribution of biglycan in HUVEC culture, immunofluorescence analysis was performed. 

Confluent HUVEC cells were stimulated with 10 ng/mL TNF-α overnight or were left 

untreated. Upon fixation with 4% PFA, cells were prepared for confocal microscopy as 

described in section 2.16.2. After z-stack acquisition, Top and Bottom z-planes, as 

shown on a diagram in figure 5.4 A, were compared. Control staining with fluorescently-

conjugated secondary antibody and no anti-biglycan antibody showed minimal 

background staining (figure 5.4 Bottom panel). It has to be noted though that in order to 

fully control for this experiment, additional control, where isotype-matched control 

primary antibody was used, should be performed. Unstimulated cells presented with 

disseminated biglycan staining as well as areas of intense fluorescent signal (figure 5.4 

B Top panel). The areas where the fluorescent signal was most concentrated could 

represent intracellular stores, although this was not formally tested. The majority of 

biglycan was seen as diffuse staining in the Bottom z-plane suggesting that biglycan was 

likely deposited in subendothelial regions (i.e. between the basal surface of the HUVEC 

monolayer and the glass coverslip). After TNF-α stimulation the intense fluorescent 

signal areas were no longer seen (figure 5.4 B Middle panel). If the concentrated signal 

was indeed representing biglycan intracellular stores, it is possible that TNF-α caused 

biglycan secretion, much like what had previously been observed with PMA stimulation 

[663]. The biglycan staining in the Bottom z-plane persisted after TNF-α stimulation, 

however, it was difficult to assess whether the amount of subendothelial biglycan 

decreased, increased or was maintained at the same levels as without treatment. The 

overall biglycan expression was likely to be decreased by TNF-α stimulation as seen by 

Western blotting and lack of the areas of the intense fluorescent signal. Nonetheless, the 

confocal microscopy results indicated that after TNF-α stimulation, biglycan was still 

present in the Bottom z-plane. Altogether the Western blotting and immunostaining 

results suggest that biglycan could be present underneath the HUVEC monolayer during 

the parallel-plate flow chamber experiments. This in turn open the possibility that L-

selectin/biglycan binding could occur during TEM, which could lead to L-selectin 
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clustering in the pseudopods of transmigrating THP-1 cells. Given time, it would have 

been interesting to perform similar Western blotting and immunofluorescence analysis 

for versican expression.     
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Figure 5.4 Biglycan expression pre- and post-TNF-α stimulation of HUVEC monolayers.  

HUVEC were grown to confluence and stimulated with 10 ng/mL TNF-α overnight or left 

untreated. Cells were then fixed with 4% PFA and prepared for confocal microscopy as described 

in section 2.16.2. A) Schematic showing z-planes in which biglycan expression was analysed. 

B) Representative images of biglycan expression in Top and Bottom z-planes of unstimulated 

HUVEC (Top panel), TNF-α stimulated HUVEC (Middle panel), and unstimulated HUVEC stained 

with secondary antibody (2°ry) only (Bottom panel). Stars indicate areas of concentrated 

fluorescent signal (potential intracellular biglycan “stores”). Scale bar: 25 µm.   

 

5.3.4 Generation of THP-1 cell lines stably expressing GFP- and RFP-tagged ΔM-

N L-selectin 

THP-1 cells expressing shedding resistant (ΔM-N) L-selectin-GFP presented with a 

strikingly different phenotype to WT L-selectin, in that little to no GFP-positive spots were 

observed in the pseudopods of transmigrating cells (figure 4.13). To determine if the 

absence of subendothelial spots in ΔM-N L-selectin could be correlated with a lack of 

subendothelial clustering, a suitable THP-1 cell line, expressing both GFP- and RFP-

tagged forms of ΔM-N L-selectin, was generated. A two-step in vitro site-directed 

mutagenesis – described in section 4.3.7 for pHR´SIN-SEW-L-selectinWT-GFP vector – 

was performed on the pHR´SIN-SEW-L-selectinWT-RFP template vector (for WT L-

selectin cloning into the pHR´SIN-SEW-RFP vector see sections 3.3.1.1 and 2.3). Refer 

to section 2.5 for a detailed method of the site-directed PCR mutagenesis protocol. The 

resultant vector, termed pHR´SIN-SEW-L-selectinΔM-N-RFP, was used to generate 

lentiviral particles as described in sections 3.3.1.2 and 2.11. The lentiviral titre was 

calculated to be 1.87 x 108 i.u./mL (table 2.5). A MOI of 10 was used to transduce THP-

1 ΔM-N L-selectin-GFP Lo5 cell line (described in section 4.3.8) with newly generated 

lentiviral particles carrying the ΔM-N L-selectin-RFP transgene. Double expressors were 

subsequently FACS sorted in to a uniform cell line, named THP-1 ΔM-N L-selectin-

GFP/RFP. When sorting the cells, THP-1 WT L-selectin-GFP/RFP cells were taken to 

the sorting facility and used as a reference population to set both GFP and RFP gates. 

This was to select matching lower-end ΔM-N L-selectin-GFP/RFP expressors, as it had 

been established that transduction with the same MOIs results in higher ΔM-N L-selectin 

than WT L-selectin surface expression (see section 4.3.8.1). In order to measure the 

total surface L-selectin levels upon sorting, cells were labelled with DREG56 anti-L-

selectin antibody followed by RPE-conjugated secondary antibody. The flow cytometer 

used was not equipped to excite or detect fluorescence emitted from RFP, and therefore 

RPE fluorescence intensity was an indication of total (both GFP- and RFP-tagged) L-

selectin levels. Figure 5.5 shows that surface L-selectin expression profiles of THP-1 

WT- and ΔM-N L-selectin-GFP/RFP cells were a close match. A slight shift to the right 

can be seen in the ΔM-N L-selectin histogram as compared to WT L-selectin histogram. 
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This was most probably a result of basal shedding occurring in WT, but not in ΔM-N L-

selectin. 

 

Figure 5.5 Surface WT- and ΔM-N L-selectin-GFP/RFP expression in THP-1 cells.  Flow 

cytometry analysis (section 2.13) of L-selectin expression. THP-1 WT L-selectin-GFP/RFP and 

THP-1 ΔM-N L-selectin-GFP/RFP cells were labelled with anti-L-selectin DREG56 antibody and 

then secondary antibody conjugated to RPE. Representative histograms are shown. A) Dot plot 

showing the population of viable and single THP-1 cells analysed (gate R1). B) The histogram 

depicting total (GFP- and RFP-tagged) surface L-selectin expression in THP-1 cells as measured 

by RPE fluorescence. Gate M1 indicates L-selectin positive cells.  

  

5.3.5 Inhibition of L-selectin shedding completely reverses the subcellular 

distribution of clustered L-selectin in transmigrating cells 

THP-1 ΔM-N L-selectin-GFP/RFP cells were subjected to 15 minute-long parallel plate 

flow chamber assay, fixed and prepared for FLIM/FRET analysis as described in section 

5.3.2. Interestingly, ΔM-N L-selectin clustered in a spatially opposite way to WT L-

selectin. A shown in figure 5.6 A, no appreciable FRET efficiency was detected in the 

pseudopods of transmigrating THP-1monocytes. In contrast, “hot-spots” of FRET were 

seen it the Top z-plane (Top and Bottom z-planes as shown in figure 5.2 A), 

corresponding to the non-transmigrated part of the cells. To further investigate whether 

this reversed phenotype was a result of a lack of L-selectin shedding, THP-1 WT L-

selectin-GFP/RFP cells were pre-incubated with the sheddase inhibitor, Ro-30-9790. 

This inhibitor was previously shown to abrogate 
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Figure 5.6 Inhibition of L-selectin shedding reverses the subcellular distribution of L-
selectin clustering during TEM of THP-1 monocytes.   THP-1 cells stably expressing WT or 

ΔM-N L-selectin-GFP/RFP were pretreated with or without Ro-31-9790 (30 minutes at 37°C and 

5% CO2) and perfused over TNF-α activated HUVEC for 15 minutes as described in section 

2.14.3. Specimens were subsequently fixed in 4% PFA and prepared for FLIM/FRET analysis as 

described in section 2.18.1. Relative positions of the Top and Bottom z-planes shown previously 

in a schematic, represented in figure 5.2 A. A) Representative images showing Top and Bottom 

z-planes of transmigrating THP-1 cells. Images show L-selectin-GFP and the corresponding GFP 

multi-photon intensity images. Pseudo-colour scale of blue (high lifetime) to red (low lifetime) is 

used to show lifetime fluorescence. L-selectin clustering occurs where low lifetimes are seen 

(orange to red), whereas high lifetimes indicate areas free of L-selectin clustering (blue). B) 

Quantitation of FRET efficiency between L-selectin-GFP and L-selectin-RFP. Analysis was 

performed on a following number of THP-1 cells: 22 of WT L-selectin-GFP/RFP, 22 of WT L-

selectin-GFP/RFP + Ro-31-9790 and 15 ΔM-N L-selectin-GFP/RFP. Cells were derived from 

three independent experiments. Mean values are shown for each bar. Error bars represent S.E.M. 
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Statistical analysis: Two-tailed unpaired Student’s t-test was used to calculate differences 

between Top and Bottom for each cell line. ***=p<0.001. One-way ANOVA followed by Tukey’s 

post-test was used to calculate differences between cell lines in Top (coloured red) and Bottom 

(coloured blue) z -planes. ***=p<0.001  

 

shedding of WT L-selectin from THP-1 cells (figure 3.10). As anticipated, no FRET was 

found in THP-1 cell pseudopods, but L-selectin clustering occurred in the non-

transmigrated parts of the cells (figure 5.6 A). Analysis of FRET efficiency showed that 

significant differences between Top and Bottom z-planes occurred in all cells (figure 5.6 

B). However, when FRET efficiency of WT L-selectin was low at the Top (4.418%) and 

high at the Bottom (11.44%), the FRET efficiency of ΔM-N L-selectin and L-selectin from 

monocytes treated with Ro-30-9790 inhibitor was high at the Top (9.205% and 12.56%, 

respectively) and low at the Bottom (4.405% and 2.3% respectively) (figure 5.6 B). This 

suggested that spatial regulation of L-selectin clustering during TEM was dictated by the 

ability of the ectodomain to undergo shedding. Although ΔM-N L-selectin and WT L-

selectin from THP-1 cells treated with Ro-30-9790 showed the same clustering 

phenotype (high FRET efficiency on Top and low FRET efficiency at the Bottom), ΔM-N 

L-selectin exhibited a more severe phenotype as shown by significantly higher FRET 

efficiency at the Top (figure 5.6 B). This could represent short- versus long-term 

outcome of inhibiting L-selectin shedding (i.e. more ΔM-N L-selectin molecules have 

accumulated at the cell surface than WT L-selectin from monocytes pre-treated with the 

sheddase inhibitor). 

From these results, the most plausible conclusion would be that ectodomain shedding 

regulates the sub-cellular distribution of clustered L-selectin. However, one cannot 

formally exclude the possibility that the intracellular domain plays an active role in this 

process. For example, it is also highly likely that the prolonged presence of L-selectin at 

the cell surface could lead to post-translational modification of the serine residues on the 

L-selectin tail. The next section explores this issue in more detail.  

5.3.6 Serine-to-alanine mutagenesis of the L-selectin tail dramatically alters the 

sub-cellular distribution of clustered M-N L-selectin, but not WT L-selectin, 

during TEM 

As suggested at the end of the section above, it was possible that persistent presence 

of ΔM-N L-selectin at the cell surface could induce modifications to the serine residues 

within the L-selectin tail. Cell activating stimuli are known to cause phosphorylation of 

the L-selectin tail [495, 567] as well as L-selectin shedding [495, 496, 529]. Therefore, 

the link between tail phosphorylation and L-selectin shedding is well recognised, but 

whether phosphorylation occurs before, during or just after shedding is currently not 
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known. If phosphorylation was to occur first, interaction of THP-1 monocytes with TNF-

α activated HUVEC would be likely to cause cell activation and phosphorylation of ΔM-

N L-selectin tail. Hence, it is possible that lack of shedding would maintain this state and 

more ΔM-N L-selectin molecules would become serine-phosphorylated with time. This 

could potentially result in overall “hyperphosphorylation” of L-selectin tail. It could be 

speculated that the movement of clustered L-selectin from the non-transmigrated part of 

the cell to the pseudopods requires linkage to the actin cytoskeleton, for example through 

the ERM proteins that are known to bind to the L-selectin tail [563, 572]. If this was the 

case, perhaps this interaction could become disrupted in the ΔM-N mutant due to the 

hyperphosphorylation. As a result ΔM-N L-selectin clustering in the transmigrated 

pseudopods would be abolished, and clustering would be seen only in the Top z-plane. 

If this was the case, mutating the serines in the cytoplasmic tail of ΔM-N L-selectin into 

non-phosphorylatable alanines could reverse ΔM-N L-selectin clustering phenotype back 

to that seen in WT L-selectin. 

To test this hypothesis constructs were generated, where in vitro PCR site-directed 

mutagenesis was used to introduce two alanine residues in the place of the serine 

residues of the ΔM-N L-selectin cDNA in both pHR´SIN-SEW-L-selectinΔM-N-GFP and 

pHR´SIN-SEW-L-selectinΔM-N-RFP lentiviral vectors. The obtained constructs were 

named pHR´SIN-SEW-L-selectinΔM-NSSAA-GFP and pHR´SIN-SEW-L-selectinΔM-NSSAA-

RFP, respectively. Additionally, to test L-selectin clustering of the SSAA mutant, both 

serine residues in pHR´SIN-SEW-L-selectinWT-RFP construct were replaced with 

alanines, and the construct was termed pHR´SIN-SEW-L-selectinSSAA-RFP. For a 

detailed method describing in vitro PCR site-directed mutagenesis see section 2.5. 

Lentiviruses carrying ΔM-N SSAA L-selectin-GFP or -RFP or SSAA L-selectin-RFP were 

generated and titrated as described in sections 3.3.1.2 and 2.11, and the obtained titres 

are shown in table 2.5. To create double expressor ΔM-N SSAA L-selectin-GFP/RFP or 

SSAA L-selectin-GFP/RFP cells, the same transduction procedure was used as before 

for the WT L-selectin-GFP/RFP cells (section 5.3.1). For detailed method of THP-1 cell 

transduction see section 2.11.4. Once large numbers of newly generated cells were 

obtained, the cells were sorted into uniform populations with the aid of FACS sorter. 

Once again, THP-1 WT L-selectin-GFP/RFP cells were used as a reference population 

on which both GFP and RFP gates were set. Once sorted, the uniform cell lines were 

named THP-1 ΔM-N SSAA L-selectin-GFP/RFP and THP-1 SSAA L-selectin-GFP/RFP. 

Surface expression of both GFP- and RFP-tagged L-selectin was analysed by flow 

cytometry on all newly generated cells. DREG56 staining was used to label all surface 

L-selectin and expression was compared to that of THP-1 WT- and ΔM-N L-selectin-

GFP/RFP cells. As expected, a slight shift towards higher fluorescence was seen in cells 

expressing sheddase resistant forms of L-selectin (ΔM-N and ΔM-N SSAA L-selectin). 
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Additionally, the peak corresponding to SSAA L-selectin was marginally shorter than that 

for WT L-selectin, indicating that there could be slightly less SSAA L-selectin molecules 

at the cell surface. Overall, however, all cell lines were considered to have matched 

surface L-selectin levels (figure 5.7). 

    

 

Figure 5.7 Surface WT and mutant L-selectin-GFP/RFP expression in THP-1 cells.  Flow 

cytometry analysis of L-selectin expression. THP-1 WT and mutant (ΔM-N, ΔM-N SSAA or SSAA) 

L-selectin-GFP/RFP cells were labelled with anti-L-selectin DREG56 antibody and then 

secondary antibody conjugated to RPE. Representative histograms are shown. A) Dot plot 

depicting the population of viable, single THP-1 cells analysed (gate R1). B) Histogram showing 

total (GFP- and RFP-tagged) surface L-selectin expression in THP-1 cells as measured by RPE 

fluorescence. Gate M1 indicates L-selectin positive cells.  

 

Newly generated double expressor cells were subjected to 15 minute-long parallel plate 

flow chamber assay, fixed and prepared for FLIM/FRET analysis as described in section 

5.3.2. FRET results were compared to those obtained earlier for WT L-selectin, ΔM-N L-

selectin and WT L-selectin from THP-1 monocytes pre-treated with Ro-31-9790 

(hereafter referred to as WT Ro-31-9790 L-selectin). Figures 5.8 and 5.9 consolidate all 

the FRET data acquired for all the cell lines.  SSAA L-selectin clustering phenotype 

resembled that of WT L-selectin with high FRET seen at the Bottom and low FRET at 

the Top (figure 5.8 A), but with lower FRET efficiencies (figure 5.8 B). Interestingly, ΔM-

N SSAA L-selectin FRET was seen both at the Top and Bottom suggesting that this 
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mutant did not entirely reverse the clustering phenotype to WT as anticipated, but rather 

served as an “intermediate” mutant (figure 5.8 A). Analysis of FRET efficiencies showed 

that in all the cell lines significant differences between Top and Bottom occurred, but the 

least difference was found for ΔM-N SSAA L-selectin. This again suggested that the 

clustering phenotype of this mutant placed it half way between two extremes: WT and 

ΔM-N L-selectin (figure 5.8 B).  
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Figure 5.8 Differences in the subcellular distribution of clustered WT and mutant forms of 
L-selectin.  Summary of L-selectin clustering phenotypes observed during transmigration of THP-

1 cells expressing WT and mutant (ΔM-N, ΔM-N SSAA or SSAA) forms of L-selectin-GFP/RFP. 

THP-1 WT L-selectin-GFP/RFP cells were either untreated or pre-treated with Ro-31-9790 

metalloprotease inhibitor. All cell lines were perfused over TNF-α activated HUVEC in a 15 

minute-long parallel plate flow chamber assy as described in section 2.14.3. The cells were then 

fixed and prepared for FLIM/FRET analysis (see section 2.18.1). Top and Bottom z-planes 

correspond to the planes indicated in schematic in figure 5.2 A. A) Representative images 

showing Top and Bottom z-planes of transmigrating THP-1 cells. Images of L-selectin GFP and 

corresponding GFP multi-photon intensity images are shown in all panels. GFP lifetime is shown 

as a pseudocolour scale of blue (high lifetime) to red (low lifetime). L-selectin clustering occurs 

where low lifetimes are seen (orange to red), whereas no clustering occur where high lifetimes 

are seen (blue). B) Quantitation of FRET efficiency between L-selectin-GFP and L-selectin-RFP. 

Analysis was performed on a following number of THP-1 cells: 22 of WT L-selectin-GFP/RFP, 22 

of WT Ro-31-9790 L-selectin-GFP/RFP, 15 ΔM-N L-selectin-GFP/RFP, 18 ΔM-N SSAA L-

selectin-GFP/RFP and 15 SSAA L-selectin-GFP/RFP. Three independent experiments were 

performed for each cell line. Mean values are shown for each bar. Error bars represent S.E.M. 

Statistical analysis: Two-tailed, unpaired Student’s t-test was used to calculate differences 

between Top and Bottom for each cell line. *=p<0.05, ***=p<0.001.  

 

In order to analyse more closely the impact that the various mutations had on L-selectin 

clustering, the FRET efficiencies at the Top (figure 5.9 A) and Bottom (figure 5.9 B) of 

transmigrating cells were collectively subjected to statistical analysis. Analysis of FRET 

efficiencies in the Top z-plane (figure 5.9 A) revealed low ȠFRET values for WT and SSAA 

L-selectin. Since these were the only cell lines where shedding could occur, it suggested 

that L-selectin clustering at the Top, as seen by high ȠFRET of ΔM-N, ΔM-N SSAA and 

WT Ro-31-9790 L-selectin could be a result of lack of shedding. Because ȠFRET of ΔM-

N L-selectin was 12.56% and ȠFRET of ΔM-N SSAA L-selectin was 7.536%, it could be 

speculated that it was the SSAA mutation that decreased ΔM-N L-selectin clustering at 

the Top. Although not statistically significant, slightly lower ȠFRET value of SSAA L-

selectin (2.67%) than WT L-selectin (4.418%) could correspond to a minor difference in 

the peak height seen on the flow cytometry histogram of L-selectin surface expression 

(figure 5.7).  

Analysis of the FRET efficiencies in the pseudopods of transmigrating THP-1 cells 

(Bottom z-plane) (figure 5.9 B) showed that ΔM-N L-selectin and WT Ro-31-9790 L-

selectin had significantly lower ȠFRET values that those calculated for WT, ΔM-N SSAA 

and SSAA L-selectin. Interestingly, the FRET efficiency of ΔM-N SSAA L-selectin – a 

form that also could not undergo shedding – was high and no different to WT L-selectin 

ȠFRET. This suggested that lack of clustering in the pseudopods seen with ΔM-N L-

selectin and WT Ro-31-9790 L-selectin could not be due to lack of shedding. In fact, a 

vast difference in ȠFRET values between ΔM-N and ΔM-N SSAA L-selectin (2.3% versus 

10.3%, respectively), strongly suggests that clustering in the pseudopods is negatively 

regulated by serine phosphorylation. Data from Dr Angela Rey Gallardo (a postdoctoral 
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scientist in Dr Ivetic’s lab) reveals that mutating both serines in the L-selectin tail to 

phospho-mimicking aspartates results in the accumulation of clustered L-selectin 

exclusively to the non-transmigrated part of the cell. This would further support the 

hypothesis that the cytoplasmic serine residues in M-N L-selectin are 

hyperphosphorylated. Interestingly ȠFRET of ΔM-N SSAA L-selectin was not different to 

neither WT nor SSAA L-selectin, but statistical analysis detected difference between WT 

and SSAA L-selectin. One explanation for this could be a delay in FRET of SSAA L-

selectin that would correspond to delay in shedding seen in static transmigration assays 

(figure 4.4). Aleternatively, the difference could be a result of slightly lower surface 

expression of SSAA L-selectin as compared to WT L-selectin (figure 5.7).   

                  

 

Figure 5.9 Statistical analysis of differences between clustering of WT and mutant forms 
of L-selectin during THP-1 cell transmigration.  The graphs display FRET efficiencies as 

shown in figure 5.9 B, but data for Top (A) and Bottom (B) z-planes are dissected into two 

separate panels. Mean values are shown for each bar. Error bars represent S.E.M. Statistical 

analysis: One-way ANOVA followed by Tukey’s post-test was used to calculate differences 

between cell lines in each graph (z-plane). *=p<0.05, **=p<0.001, ***=p<0.0001    

 

5.3.7 ΔM-N SSAA L-selectin appears in large “aggregates” in the pseudopods of 

transmigrating THP-1 cells       

Taken together, it appears that there is a correlation with the spots that are seen in the 

protruding pseudopods and the increase in FRET efficiency (figures 4.12, 4.13, 5.8 and 
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5.9). For example, both WT L-selectin-GFP spots (as observed using laser scanning 

confocal microscopy) and WT L-selectin-GFP/RFP clusters (as seen with FRET/FLIM 

analysis) accumulate in the pseudopods of transmigrating THP-1 cells. Similarly, the 

subcellular distribution of SSAA L-selectin-GFP was also seen to accumulate in the 

protruding pseudopods, however, the number of GFP-positive spots counted and the 

relative FRET efficiency are both less than the values obtained for WT L-selectin-GFP. 

As shown before, neither GFP spots nor clustering was seen in the protruding 

pseudopods of THP-1 cells stably expressing ΔM-N L-selectin-GFP. The previous 

section revealed that the SSAA ΔM-N L-selectin clustered both in the transmigrated and 

non-transmigrated parts of the cell. Laser scanning confocal microscopy was used to 

further understand whether ΔM-N SSAA L-selectin-GFP also accumulated in the 

protruding pseudopod. THP-1 ΔM-N SSAA L-selectin-GFP/RFP cells were perfused 

over TNF-α activated HUVEC for 15 minutes, fixed and prepared for confocal microscopy 

as described in sections 2.14.3 and 2.16.2, respectively. Single images of Top and 

Bottom z-planes were acquired for GFP and TRITC-phalloidin channels as described in 

section 2.16.4. THP-1 ΔM-N SSAA L-selectin-GFP/RFP cells appeared to have a high 

number of spikes, and hence both spots and spikes were scored as described in 

sections 4.3.9 and 2.16.4. Quantified spots and spikes were compared to corresponding 

values obtained earlier for THP-1 WT, SSAA and ΔM-N-GFP cells (section 4.3.9). 

Cumulative results are presented in figure 5.10. Analysis revealed that ΔM-N SSAA L-

selectin-GFP spots did not accumulate in the pseudopods of transmigrating THP-1 cells 

as average number of spots did not exceed that observed for ΔM-N L-selectin (figure 

5.10 A). Additionally, no significant differences were seen in spikes formation between 

the cell lines, although trend was seen where cells expressing L-selectin whose serines 

were mutated to alanines had slightly more spikes (figure 5.10 B). Interestingly, a new 

form of L-selectin-GFP accumulation was identified in the pseudopods of THP-1 ΔM-N 

SSAA L-selectin-GFP/RFP cells, termed “aggregates”, which were much larger than 

spots (figure 5.11). At this point images of transmigrating THP-1 WT, SSAA and ΔM-N 

L-selectin-GFP cells were re-analysed for the presence of the aggregates. Interestingly, 

very rarely aggregates could be seen in those cells, which explains why they were not 

spotted before. Scoring of the aggregates revealed that, on average, 7 out of 10 cells 

would present with a ΔM-N SSAA L-selectin-GFP aggregate in the pseudopods. On 

average, only 1 out of 10 cells would present with WT, SSAA or ΔM-N L-selectin-GFP 

aggregate (figure 5.10 C), suggesting that relationship between the aggregates and 

FRET is not likely.    
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Figure 5.10 Quantitation of spots, spikes and “aggregates” of WT, SSAA, ΔM-N and ΔM-N 
SSAA L-selectin-GFP.  THP-1 ΔM-N SSAA L-selectin-GFP/RFP cells were perfused over TNF-

α activated HUVEC for 15 minutes, fixed with 4% PFA and prepared for confocal analysis 

(sections 2.14.3 and 2.16.2). Spots and aggregates of L-selectin-GFP were analysed in the 

pseudopods of transmigrating THP-1 cells. Spikes were quantified using Volocity software and 

aggregates were counted manually. Spikes were counted manually. Analysis of spots and spikes 

of THP-1 WT, SSAA and ΔM-N L-selectin-GFP was performed earlier (figure 4.13) and the 

images were now re-analysed for the presence of aggregates. Graphs presented in this figure 

show consolidated data of spots (A), spikes (B) and aggregates (C) quantitation. For detailed 

method of spots, spikes and aggregates analysis see section 2.16.4. Error bars represent S.E.M. 

Statistical analysis: One-way ANOVA followed by Tukey’s post-test. *=p<0.05 **=p<0.01, 

***=p<0.001. 
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Figure 5.11 Large ΔM-N SSAA L-selectin-GFP aggregates accumulate in the pseudopods 
of transmigrating THP-1 cells.  THP-1 cells expressing ΔM-N SSAA L-selectin-GFP/RFP were 

perfused over TNF-α activated HUVEC for 15 minutes, fixed with 4% PFA, stained with TRITC-

phalloidin and analysed by confocal microscopy (sections 2.14.3 and 2.16). Representative 

single z-plane confocal images of Top and Bottom z-planes (Top and Bottom as depicted in 

schematic in figure 4.2 A) are shown. L-selectin-GFP spots and aggregates are shown with blue 

and yellow arrows, respectively. Spikes extending from the pseudopods are indicated with red 

arrows. The dashed lines encircle the protruded areas that were analysed. Scale bar: 10 µm.    
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This data shows that even though the ΔM-N SSAA L-selectin-GFP did not accumulate 

in the form of spots, another form of accumulation – big L-selectin-GFP formations 

termed aggregates – were seen in the pseudopods of transmigrating THP-1 cells. The 

nature of these aggregates is not known. Since little aggregates were seen formed by 

WT and SSAA L-selectin that cluster in the transmigrating pseudopods (figure 5.8), it is 

not likely that they correspond to ΔM-N SSAA L-selectin-GFP/RFP clustering that was 

detected in the pseudopods by FRET (figure 5.8). It has to be acknowledged that whilst 

analysis of WT, SSAA and ΔM-N L-selectin-GFP accumulation in the pseudopods of 

transmigrating THP-1 monocytes was performed on cells expressing only GFP-tagged 

L-selectin, accumulation of ΔM-N SSAA L-selectin was performed in the double 

expressor (GFP/RFP) THP-1 cells. As a result it was possible that total levels of ΔM-N 

SSAA L-selectin were not an exact match to the corresponding “single expressors”. 

However, L-selectin-GFP spots and aggregates were analysed using images of the GFP 

channel only. MOI of 5 was used to transduce THP-1 cells with lentiviral particles carrying 

ΔM-N SSAA L-selectin-GFP transgene. Hence, levels of ΔM-N SSAA L-selectin-GFP 

were most probably similar to those on THP-1 ΔM-N L-selectin-GFP Lo5 cells, and thus 

to all the other single expressor cell lines. Therefore, it is believed that analysis of spots 

and aggregates should not be influenced by the fact that additional ΔM-N SSAA L-

selectin-RFP form was also present in the cells. As for examination of spikes, the 

possibly unmatched total ΔM-N SSAA L-selectin levels could skew the analysis. 

Although not statistically significant differences were found between the cell lines, THP-

1 ΔM-N SSAA L-selectin-GFP/RFP cells showed a trend where more spikes were 

present. This could be a result of higher total ΔM-N SSAA L-selectin levels. Notably, a 

trend was also seen where THP-1 SSAA L-selectin-GFP Hi20 cells formed slightly more 

spikes that both THP-1 WT L-selectin-GFP Hi20 and ΔM-N L-selectin-GFP Lo5 cells. 

Thus, it is more likely that the trend was due to SSAA mutation rather than total L-selectin 

levels.  

5.3.8 Clustering of L-selectin is promoted by antibody-mediated cross-linking of 

either CD43 or PECAM-1 

Data presented in the sections above shows that L-selectin clustering occurs during the 

initial stages of TEM, when THP-1 monocytes send pseudopods underneath the HUVEC 

monolayer. L-selectin clustering in the pseudopods could be the result of ECM ligand 

binding, i.e. binding to HUVEC-expressed biglycan (figures 5.3 and 5.4). At the same 

time, other mechanisms of L-selectin clustering could also be in action. One possibility 

is that engagement of other CAMs that are present on the surface of THP-1 monocytes, 

generates intracellular signals that in turn result in clustering of L-selectin. Signals 

generated intracellularly are known to cause upregulation and increase in affinity of 
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leukocyte integrins, and this phenomenon is known as “inside-out” signalling (section 

1.2.4). To test this hypothesis cell adhesion molecules were selected to represent 

proteins that were involved in various stages of the multi-step adhesion cascade: PSGL-

1, JAM-A, CD43, CD44 and PECAM-1. All of these CAMs are known to be expressed in 

THP-1 cells [153, 679-682], and flow cytometry was used to analyse their endogenous 

expression on THP-1 WT L-selectin-GFP/RFP cells. Figure 5.12 shows that although all 

the CAMs were expressed on the THP-1 cells, the expression levels varied between the 

CAMs tested. For example expression of CD43 and CD44 were in the same log scale 

range as L-selectin (around 104), but the expression levels of PSGL-1, PECAM-1 and 

JAM-A were much lower (around 102). 
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Figure 5.12 Expression levels of THP-1 CAMs.  THP-1 WT L-selectin-GFP/RFP cells were 

labelled with anti-L-selectin, -CD43, -CD4, -PSGL-1, -PECAM-1, -JAM-A or appropriate IgG 

isotype control antibodies and then RPE-conjugated secondary antibodies, and analysed by flow 

cytometry as described in section 2.13. Dot plot in the upper left corner shows gate R1 that was 

used to select single and viable cells only. Histograms show expression levels of indicated CAMs. 

All used antibodies were of the same stock concentration and the same dilution was used for all 

samples.   
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To test whether clustering of any of the CAMs would in turn induce L-selectin clustering 

in a manner of inside-out signalling, the cells were subjected to the cross-linking assay 

described in section 2.19. Briefly, monoclonal antibody was used to specifically label 

PSGL-1, JAM-A, CD43, CD44 or PECAM-1 on the surface of WT L-selectin-GFP/RFP, 

the molecules were cross-linked with relevant secondary antibodies and cells were 

seeded on to ploy-L-lysine (PLL)-coated coverslips. The extent of L-selectin clustering 

was measured by FLIM/FRET. In the control experiments L-selectin was labelled with or 

without DREG56 and cross-linking was promoted with a secondary antibody. All stock 

concentrations of the primary antibodies were matched (table 2.2) and 1:50 dilution was 

used to treat all cells. As expected, cross-linking L-selectin resulted in a dramatic 

increase in FRET efficiency, whereas no FRET was detected in untreated cells (figure 

5.13 A). Remarkably, whilst no FRET was seen when PSGL-1, JAM-A and CD44 were 

cross-linked, cross-linking CD43 or PECAM-1 caused significant clustering of L-selectin 

(figure 5.13 A). Analysis of FRET efficiencies showed that direct L-selectin cross-liking 

resulted in maximal L-selectin clustering. As expected, no clustering was seen in the 

control cells where cross-linking was not performed, implying that the action of seeding 

cells on to PLL did not influence the clustering of L-selectin. Cross-linking of CD43 and 

PECAM-1 caused the same extent of L-selectin clustering as no statistically significant 

differences in ȠFRET values were seen between the two (figure 5.13 B). Interestingly, 

localisation of L-selectin FRET signal and PECAM-1 staining appeared as an exact 

match. CD43 staining was seen in the same areas as L-selectin FRET, but also in other 

areas where L-selectin did not cluster (figure 5.13 A). This could suggest possible 

differences in the way PECAM-1 and CD43 relay their signals to cluster L-selectin. 

The fact that cross-linking CD43 or PECAM-1 did and PSGL-1, CD44 and JAM-A  did 

not cause L-selectin clustering, suggested that the potential of these molecules to cluster 

L-selectin was not necessarily dependent on their relative abundance (figure 5.12). On 

the other hand it had to be appreciated that the relative affinities of the antibodies for 

their ligands were not known. It is possible that this could also have an effect on 

downstream signalling and L-selectin clustering. Although this does not question the fact 

that CD43 and PECAM-1 caused L-selectin clustering, it does not formally exclude the 

possibility that CD44, JAM-A and PSGL-1 could also cluster L-selectin under different 

experimental conditions.  
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Figure 5.13 Clustering of L-selectin in response to CD43 and PECAM-1 cross-linking.  THP-

1 WT L-selectin-GFP/RFP cells were labelled with primary antibodies against indicated CAMs 

and, and subsequently cross-linked with relevant Alexa633-conjugated secondary antibodies. 

Alternatively, the cells were incubated with just media (“No X-linking”), and cells were seeded on 

to PLL pre-coated coverslips (for method details see section 2.19). After 5 minutes of binding, 

cells were fixed with 4% PFA and prepared for FLIM/FRET analysis as described in section 

2.18.1. A) In all panels images show L-selectin-GFP (left columns), the GFP multi-photon intensity 

(middle columns) and relevant Alexa633 fluorescent images (right columns). Lifetime of GFP 

fluorescence is shown as a pseudocolour scale of blue (high lifetime) to red (low lifetime = FRET). 

L-Selectin-GFP Lifetime

No X-linking
L-Selectin-GFP Lifetime

L-selectin

L-Selectin-GFP Lifetime
CD43 JAM-A

L-Selectin-GFP Lifetime

PECAM-1
L-Selectin-GFP Lifetime L-Selectin-GFP

Lifetime

CD44

L-Selectin-GFP Lifetime

PSGL-1

PSGL-1-Cy5

DREG56-Alexa633

PECAM-1-Alexa633

1.65     (ns)       2.35

Lifetime

CD43-Alexa633

CD44-Alexa633

PSGL-1-Alexa633

A

B

No X-link.L-selectin CD43 JAM-A PECAM-1 CD44 PSGL-1
0

5

10

15
†††

†††
†††

F
R

E
T

 e
ff

ic
ie

n
c
y
 (

%
)

***
***

L-selectin clustering



211 
 

No Alexa633 image corresponding to JAM-A staining was available. B) Quantified data showing 

FRET efficiency between L-selectin-GFP and L-selectin-RFP. Average 15 cells were analysed for 

each condition per cell line and cells were derived from 3 independent experiments. Error bars 

represent S.E.M.  Statistical analysis: One-way ANOVA followed by Tukey’s post-test. “†” 

represent difference against “No X-link.”, “*” represent indicated differences between cross-linked 

samples. † † †=p<0.001, ***=p<0.001.   

 

5.3.9 Alanine-to-serine mutation of the L-selectin tail is sufficient to block PECAM-

1, but not CD43, mediated clustering of L-selectin  

As described in section 5.3.9 above, cross-linking of both CD43 and PECAM-1 resulted 

in L-selectin clustering. To investigate whether this was dependent on cytoplasmic 

serines and/or L-selectin extracellular cleavage site, it was decided that that THP-1 ΔM-

N, ΔM-N SSAA and SSAA L-selectin-GFP/RFP cells were to be subjected to the same 

cross-linking assay. Expression levels of CD43 and PECAM-1 in WT and mutant L-

selectin double expressing cells were first analysed by flow cytometry. No detectable 

changes in the expression levels of CD43 or PECAM-1 expression were found in any of 

the cell lines tested (figure 5.14).  

 

Figure 5.14 CD43 and PECAM-1 levels are matched in THP-1 cells expressing WT or mutant 
forms of L-selectin-GFP/RFP.  THP-1 cells expressing WT, ΔM-N, ΔM-N SSAA or SSAA L-

selectin-GFP/RFP were labelled with anti-CD43, anti-PECAM-1 or IgG isotype control antibodies. 

Cells were subsequently labelled with RPE-conjugated secondary antibody and analysed by flow 

cytometry (section 2.13). Dot plot in the top panel shows single and viable THP-1 cells (Gate R1) 

selected for analysis. Histograms in the bottom panel show CD43 (left histogram) and PECAM-1 

(right histogram) expression.    
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CD43 or PECAM-1 molecules on THP-1 ΔM-N, ΔM-N SSAA or SSAA L-selectin-

GFP/RFP cells were cross-linked as described in section 5.3.8 (for detailed description 

of the assay see section 2.19), and the cells were prepared for FLIM/FRET analysis 

(section 2.18.1). All results were compared to the previous results obtained for WT L-

selectin (figure 5.12) and cumulative data is represented in figure 5.15. FRET analysis 

showed that all mutants clustered in response to cross-linking with DREG56 antibody. 

Interestingly, the only L-selectin mutant that did not undergo clustering in response to 

either PECAM-1 or CD43 cross-linking was ΔM-N L-selectin. This could be due to the 

possibility that the cytoplasmic tail of ΔM-N is modified in some way (such as 

hyperphosphorylation). In support of this, both ΔM-N SSAA and SSAA L-selectin 

underwent clustering in response to CD43 cross-linking, suggesting that 

hyperphosphorylation of the L-selectin tail may well be the reason for blocking the 

response in ΔM-N L-selectin. The fact that rendering serine residues of ΔM-N L-selectin 

non-phosphorylatable restored L-selectin clustering, would suggest that blocking serine 

phosphorylation is indeed an important requirement for CD43-mediated L-selectin 

clustering. None of the L-selectin mutants clustered in response to PECAM-1 cross-

linking. This result was surprising because of the data obtained for CD43-mediated L-

selectin clustering. Yet, as suggested at the end of section 5.3.8, it is possible that CD43 

and PECAM-1 employ distinct signalling pathways to trigger L-selectin clustering. 

Perhaps PECAM-1-mediated pathway requires both intact L-selectin extracellular 

cleavage site as well as wild type serine residues that can undergo dynamic 

phosphorylation/dephosphorylation events. 
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Figure 5.15 Clustering of mutant L-selectin in response to CD43 and PECAM1-cross-
linking.  L-selectin, CD43 or PECAM-1 on THP-1 ΔM-N, ΔM-N SSAA or SSAA L-selectin-

GFP/RFP were cross-liked or cells were left untreated, and cells were allowed to bind to PLL-

coated coverslips for 5 minutes at RT (section 2.19). After 4% PFA fixation, cells were prepared 

for FLIM/FRET analysis as described in section 2.18.1. A) In all panels images show L-selectin-

GFP (left columns), the GFP multi-photon intensity (middle columns) and relevant Alexa633 

fluorescent images (right columns). Pseudo-colour scale of blue (high lifetime) to red (low lifetime) 

is used to show lifetime fluorescence.  B) Quantified data showing FRET efficiency between L-

selectin-GFP and L-selectin-RFP. Average 15 cells were analysed for each condition per cell line 

and cells were derived from 3 independent experiments. Error bars represent S.E.M. Statistical 

analysis: One-way ANOVA followed by Dunnett’s post-test against “No X-link.” was performed for 

each cell line. ***=p<0.001.   

  

5.4 DISCUSSION 

5.4.1 Two putative models to explain L-selectin clustering during the leukocyte 

adhesion cascade 

The results presented in this chapter show two major findings: (i) WT L-selectin clusters 

in the pseudopods of transmigrating THP-1 cells (figure 5.2), and (ii) L-selectin clusters 

following antibody-mediated cross-linking of either CD43 or PECAM-1 (figure 5.13). 

Whether there is a relationship between these two events is currently unknown. 

However, given the current knowledge about the role of CD43 and PECAM-1 in the 

leukocyte adhesion cascade, two models for L-selectin clustering can be proposed. The 

first model postulates that engagement of CD43 during rolling drives L-selectin clustering 

and enhances leukocyte recruitment. The second model proposes that PECAM-1 plays 

a role in L-selectin clustering during TEM, which could facilitate binding of ECM ligand 

and/or L-selectin shedding. A schematic summary of the two models is shown in figure 

5.16, and each model is discussed in more detail below. 
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Figure 5.16 Schematic of two possible models of L-selectin clustering.The findings 

described in this chapter have been used to create two putative models for L-selectin clustering 

during the leukocyte adhesion cascade. I) Engagement of CD43 with endothelial ligand (e.g. E-

selectin) (1) leads to L-selectin clustering (2). This initiates signalling downstream of L-selectin 

tail (3), which promotes leukocyte recruitment. II) Leukocyte PECAM-1 engages with its 

endothelial counterpart (1). This causes or enhances L-selectin clustering and serves to 

translocate clustered L-selectin to the transmigrated pseudopods (2). Clustered L-selectin has 

high affinity for the ECM ligand(s) and binding occurs (3). This triggers signalling downstream of 

L-selectin tail (4), one possible outcome being L-selectin shedding.  

 

Model I 

The role of CD43 during the adhesion cascade is somewhat controversial. It has been 

reported that CD43 is a negative regulator of monocyte, neutrophil and ex vivo (naïve) 

lymphocyte rolling due to its highly negative charge that forms a functional barrier in an 

electrochemically repulsive manner [684, 685].  On the other hand, Mody et al. (2007) 

reported that CD43 has a positive effect on the trafficking of central memory, but not 

naïve, T cells to the LNs [686].  Homing of lymphocytes to LNs is exclusively dependent 

on L-selectin [11, 389-392, 687], and it was possible that CD43 deficiency negatively 

regulated L-selectin expression in the central memory T cells. However, the group did 

not find any changes in L-selectin expression on CD43 null T cells, yet the cells showed 
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marked reduction in their ability to home to the LNs [686]. In the light of results presented 

in this chapter (figure 5.13), it can be hence proposed that during lymphocyte rolling on 

HEV, CD43 acts upstream of L-selectin to enhance recruitment. Since no positive effect 

of CD43 on naïve T cell recruitment has been reported [684, 686], this mechanism might 

be employed solely by the central memory T cells. Upon activation naïve T cells lose 

their L-selectin [386], which prevents them from re-entering the LNs and prompt them to 

home to the sites of inflammation. Upon resolution of the inflammatory response, majority 

of activated T cells undergo apoptosis [688], but some develop into effector memory T 

cells and some into central memory T cells [498]. It is the central memory T cells that re-

express L-selectin and can home to LNs, where they can rapidly respond to re-

stimulation with antigen [387, 498]. Notably, it has been reported that ligation of L-

selectin leads to increased adhesion through β1 and β2 integrins in naïve, but not 

memory T cells [86, 88]. Perhaps central memory T cells acquire different to naïve T 

cells functional requirements, where engagement of CD43 is firstly needed to cluster L-

selectin and initiate signals that promote recruitment to the LNs. It would be of interest 

to perform adoptive transfer experiments in vivo, where the influence of CD43 cross-

linking could be evaluated on naïve versus central memory T cell trafficking.  

Interestingly, it has also been reported that neutrophil and monocyte infiltration into the 

inflamed peritoneum and transmigration across platelet activating factor (PAF)-perfused 

venules of the cremasteric muscle was significantly impaired in CD43 deficient mice 

[685]. This suggests that CD43 might also play a role in leukocyte recruitment to sites of 

inflammation. CD43 is known to bind E-selectin during leukocyte rolling [689-691], and 

hence it is likely that engagement of CD43 clusters L-selectin to increase avidity, reduce 

rolling velocity and aid better recruitment. This could be particularly true in mouse, where, 

unlike in humans, neutrophil L-selectin cannot bind to E-selectin [381]. In such case, 

where direct activation of L-selectin by E-selectin is not possible, CD43 might play a role 

to transduce signalling from E-selectin to L-selectin. For example, it has been shown that 

rolling of human neutrophils on E-selectin and ICAM-1 causes co-clustering of L-selectin 

and PSGL-1, which leads to β2 integrin activation and transition from rolling to arrest 

[413]. Perhaps in mouse it is the binding of CD43 to E-selectin that clusters L-selectin, 

which in turns leads to integrin activation.  

 

Model II 

Leukocyte PECAM-1 is known to mediate transendothelial migration [692], and hence it 

is easy to envisage a mechanism, where engagement of PECAM-1 triggers intracellular 

signals resulting in L-selectin clustering. Leukocyte PECAM-1 is known to rapidly 

redistribute to detergent resistant membranes (DRM) during transmigration [155]. 

GlyCAM-1 binding and antibody-mediated cross-linking of L-selectin have also been 
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shown to drive translocation to DRM [560, 587]. Through casual observations, it seems 

as though PECAM-1 clustering was super-imposed with L-selectin clustering (figure 

5.13). During TEM, leukocyte PECAM-1 makes like-for-like interactions with endothelial 

PECAM-1. As this process ensues, one can imagine that clustering of 

leukocyte/endothelial PECAM-1 at endothelial junctions could potentially serve to 

translocate L-selectin from the non-transmigrated part of the cell to the transmigrating 

pseudopod (figure 5.2). It is therefore possible that once monocyte initiates 

transmigration, PECAM-1 and L-selectin co-localise in cholesterol-rich membrane 

domains, e.g. lipid rafts, where PECAM-1 mediated signalling cause L-selectin 

clustering. Additionally, clustering of L-selectin via PECAM-1 could bring about a 

conformational change that aids binding of multiple sulphated polysaccharide chains 

belonging to an ECM ligand. Clustering of membrane receptors has been proposed as 

a mechanism that modulate the affinity of these receptors for their ligands [693], and lipid 

rafts are known platforms mediating immune cells signalling [588].  Extracellular matrix 

proteoglycans bearing long sulphated polysaccharide chains, i.e. collagen XVIII, 

biglycan and versican, have been shown to bind to L-selectin [221, 354, 463-466]. As 

shown in figures 5.3 and 5.4, biglycan is expressed by TNF-α activated HUVEC and is 

a likely candidate for a subendothelial L-selectin ligand. Remarkably, no research has 

been devoted to investigate the potential signalling triggered by binding of L-selectin to 

sulphated proteoglycans and/or glycolipids. It is likely that this signalling would be of a 

completely different nature to the one evoked by “classic” sLex-epitope bearing ligands. 

Multiple long polysaccharide chains that exhibit a high degree of sulfation could bind L-

selectin in a structurally different way to that of the relatively small sLex  moieties. This 

could in turn result in activation of a distinct signalling pathway downstream of L-selectin 

tail. Notably, Liu and Kiick (2011) analysed the influence of ligand architecture and 

sulphation on L-selectin binding and shedding, and the authors state that sulphation and 

certain ligand density – or spacing between the ligands – needs to be present for the 

binding to induce shedding [678]. It is interesting to note that amid the multitude of cellular 

responses triggered by L-selectin cross-linking, shedding has been reported the most 

frequently [91, 529, 533-536]. Perhaps very densely spaced ligands, such as sulphated 

polysaccharide chains, induce L-selectin clustering in a specific conformation, which 

over time results in L-selectin shedding. It is noteworthy that engagement of PECAM-1 

on human neutrophils has been shown to induce shedding of L-selectin [694]. 

Additionally, ADAM17, a protease that cleaves L-selectin upon cell activation, has been 

reported to cleave its substrates in lipid rafts [695, 696]. Perhaps a certain membrane 

lipid raft environment, where PECAM-1, L-selectin and ADAM-17 co-cluster is formed 

during TEM, which – upon ECM ligand binding – results in L-selectin shedding 

exclusively in the transmigrating pseudopods. Understanding the timing of pseudopod 
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protrusion, its influence from L-selectin-dependent adhesion (with ECM-derived ligands) 

and signalling, and shedding of L-selectin will be important areas of research to explore. 

5.4.2 Cytoplasmic serine residues regulate L-selectin clustering 

Based on long (over 30 minutes to 1 hour) end-point assays, emigrated leukocytes are 

known to have shed their L-selectin [520, 554-556]. Data presented in Chapter 4 shows 

that L-selectin-GFP shedding occurs in the first 20 minutes of TEM under static 

conditions (figure 4.1), which is delayed when the cytoplasmic serine residues are 

mutated into non-phosphorylatable alanines (figure 4.4). Additionally, a correlation was 

identified between L-selectin shedding and accumulation of L-selectin-GFP spots in the 

pseudopods of transmigrating THP-1 cells after 15 minutes of flow (section 4.3.9, figure 

4.13). The results presented within this chapter show that L-selectin clusters in the 

pseudopods of transmigrating THP-1 monocytes after 15 minutes of perfusion (figure 

5.2). A question therefore arose as to a possible relationship between cytoplasmic serine 

phosphorylation, L-selectin shedding and L-selectin clustering during TEM. Interestingly, 

both WT and SSAA L-selectin clustered in protruding pseudopods (figure 5.8), 

suggesting that rendering of the cytoplasmic serine residues non-phosphorylatable does 

not affect L-selectin clustering during monocyte TEM. A decrease in FRET efficiency was 

seen in the SSAA mutant as compared to WT L-selectin, which could correspond to the 

observed delay in shedding seen in the static transmigration assay (figure 4.4).  Most 

interestingly, ΔM-N L-selectin as well as L-selectin from monocytes treated with Ro-31-

9790 metalloprotease inhibitor did not cluster in the pseudopods of transmigrating THP-

1 monocytes (figure 5.6). In fact, a reverse subcellular distribution of clustered L-selectin 

was seen, where L-selectin clustered exclusively in the non-transmigrated parts of the 

cells (Top z-plane) (figure 5.6). This could be interpreted in one of two ways. One 

explanation would be that shedding is required for clustering, and the clustered form is 

L-selectin cleavage product (“stump”). However, this hypothesis does not explain why 

ΔM-N L-selectin clustering was seen in the Top z-plane of the transmigrating cells. Cell 

activating stimuli are known to cause phosphorylation of L-selectin tail as well as induce 

L-selectin shedding [495, 496, 567], but whether those events occur simultaneously or 

one precedes the other is unclear. If tail phosphorylation precedes shedding, both ΔM-

N L-selectin and L-selectin from monocytes treated with Ro-31-9790 might become 

hyperphosphorylated when the cells become activated upon contact with the TNF-α 

activated HUVEC monolayer. Attempts were made to detect phosphorylated serines on 

immunoprecipitated ΔM-N L-selectin, however the antibody used proved unsuccessful. 

Further optimisation of the technique would be needed to address this question. 

However, a hypothesis was formulated where hyperphosphorylation of ΔM-N L-selectin 

uncoupled it from cytoskeleton – perhaps via abrogating interaction with ERM proteins – 
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and caused physical aggregation of L-selectin molecules in the non-transmigrated parts 

of the cells, seen as clustering in the Top z-plane. To test the hypothesis that excessive 

tail phosphorylation prevents L-selectin clustering in monocyte pseudopods during TEM, 

ΔM-N SSAA L-selectin mutant was generated. As expected ΔM-N SSAA clustered in the 

pseudopods of transmigrating THP-1 cells (figure 5.8), suggesting that rendering the 

cytoplasmic serines of ΔM-N L-selectin non-phosphorylatable can restore L-selectin 

clustering in the pseudopods to that seen with WT L-selectin. This also suggests that 

FRET in the pseudopods is a result of full-length, and not “stump” L-selectin clustering. 

Furthermore, it could be proposed that for L-selectin to cluster in the transmigrated 

pseudopods of THP-1 cells, the cytoplasmic serine residues must not be phosphorylated. 

Supportive of this data are results of experiments conducted in the Ivetic laboratory with 

ΔM-N L-selectin mutant whose serine residues were mutated to phospho-mimicking 

aspartates (ΔM-N SSDD). This mutant presented with the same clustering phenotype as 

ΔM-N L-selectin, where no L-selectin clustering was observed in the transmigrated 

pseudopods of THP-1 cells, yet L-selectin FRET was detected in the Top z-plane (Dr 

Angela Rey-Gallardo, unpublished data). Additionally, it can be proposed that the 

clustering in the non-transmigrated parts of the cell, as seen with the sheddase-resistant 

L-selectin mutants, namely ΔM-N, ΔM-N SSAA and ΔM-N SSDD, is non-specific (i.e. 

independent of the serine residues), and could be a result of random interactions 

between L-selectin molecules that are forced to accumulate together at the plasma 

membrane due to lack of shedding.  

WT, SSAA and ΔM-N SSAA L-selectin, but not ΔM-N L-selectin, underwent clustering in 

response to CD43 cross-linking. This suggests that blocking L-selectin phosphorylation 

is needed for CD43-mediated clustering of L-selectin (figure 5.15). Both CD43 and L-

selectin are known to bind ERM proteins [563, 572, 697, 698]. Interestingly, it has been 

shown that mutating serine-76 within cytoplasmic domain of CD43 into a phospho-

mimicking aspartate abolishes binding of CD43 to ezrin [698]. Phosphorylation of the 

same serine residue is thought to mediate CD43 signalling [698]. Perhaps 

phosphorylation of serine-76 on CD43 uncouples the ERM proteins, which can then bind 

to adjacent non-phosphorylated L-selectin tail, and this in turn induces L-selectin 

clustering. This could represent a potential mechanism by which CD43 regulates L-

selectin-mediated trafficking of central memory T cells to the LNs.  Further 

experimentation would be required to formally test this hypothesis. 

That none of the L-selectin mutants underwent clustering in response to PECAM-1 cross-

linking is puzzling (figure 5.15). However, it can be speculated that both extracellular 

cleavage site and intact cytoplasmic serines are required for successful L-selectin 

clustering in response to PECAM-1 cross-linking.  
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CHAPTER 6. MONITORING CELLULAR RESPONSES TO L-

SELECTIN CLUSTERING AND SHEDDING DURING TEM 

6.1 INTRODUCTION 

The leukocyte adhesion cascade is a sequence of highly co-ordinated adhesion and 

activation events that lead to extravasation of the leukocytes into the inflamed tissue 

(section 1.2) [6]. During this process the spherical shape of a circulating leukocyte 

undergoes a series of dramatic changes. Through changes in F-actin reorganisation, 

activated leukocyte acquires anterior-posterior polarity with an extended leading edge 

(the front of the cell) and a rounded back (uropod) [699, 700]. The importance of this 

process is emphasised by the fact that loss of cell polarity abolishes successful 

locomotion of the leukocytes [234, 240, 701]. During the TEM event, leukocytes extend 

their leading edge (i.e. the pseudopods) underneath the endothelium [702, 703]. 

Leukocytes project multiple pseudopods that dynamically protrude and retract [36]. This 

is thought to be a way of “path finding” and exploring of the subendothelial environment. 

Once emigrated, leukocytes migrate through the interstitial ECM, and towards the source 

of inflammation [6, 398, 419, 704]. This process is known as directed cell migration or 

chemotaxis. Chemotaxis is highly dependent on cell polarity, and numerous chemokines 

regulate polarisation [705, 706]. Interestingly, it has been reported that L-selectin null as 

well as “sheddase-resistant” L-selectin murine leukocytes are both able to exit inflamed 

venules but are incapable to migrate through the interstitium towards the 

chemoattractant source [398, 419]. This paradoxical observation suggests that L-selectin 

may have to be shed and then re-expressed on the cell surface for correct chemotaxis 

in to the surrounding tissue. Alternatively the L-selectin “stump” generated upon L-

selectin cleavage may be important for downstream signal propagation resulting in 

successful chemotaxis (as the stump is both absent in the L-selectin knock-out model 

and the sheddase-resistant model). Whether the observed L-selectin-dependent 

chemotaxis defect was due to the compromised leukocyte polarity is not known.   

The Rho family of small GTPases are highly conserved molecular switches that control 

actin cytoskeleton dynamics, thereby affecting cell shape and motility. The Rho GTPases 

are involved in a number of cellular responses during the leukocyte adhesion cascade 

(section 1.5, see summary in table 1.1). The most widely studied members of the family 

are RhoA, Rac1/2 and Cdc42. Expression of dominant active or inactive forms of those 

Rho GTPases, or inhibition of their downstream effectors, severely impair leukocyte 

TEM, polarisation and chemotaxis [118, 234-238, 240, 241, 704]. The Rho GTPases are, 

therefore, the “first suspects” where an altered cell shape is observed. The Rho GTPase 

proteins cycle between an inactive GDP-bound and an active GTP-bound forms, and 



221 
 

various methods have been developed to detect the active form. For example, Rho 

GTPase “pull-down assays” are commonly used to quantify the activation of the Rho 

GTPases in cell extracts [707-710].  Additionally, FRET based probes (i.e. the Rho 

GTPase biosensors or the Raichu probes) can be used to monitor the spatio-temporal 

activation of the Rho GTPases in living cells [118, 711-713]. 

The data presented in Chapters 4 and 5 of this thesis describes the results of the 

experiments designed to investigate shedding and clustering of L-selectin during TEM. 

The aim of the work contributing to this chapter is to establish whether L-selectin 

regulates THP-1 monocyte morphology during TEM and if it plays a role in chemotaxis. 

By studying THP-1 cell shape, it is believed that L-selectin plays a role in monocyte 

polarisation during TEM. Additionally, the serine residues within the L-selectin tail are 

shown to be involved in directing THP-1 cell morphology during TEM. The role of the 

serines is still not clear in this process, however the results presented in this chapter 

suggest that preventing their phosphorylation could render the cells less “invasive” during 

TEM.            

6.2 EXPERIMENTAL DESIGN 

Chapter 5 describes the parallel plate flow chamber assays that were used to investigate 

WT and mutant L-selectin clustering during TEM. L-selectin mutants were either 

sheddase-resistant (ΔM-N), had non-phosphorylatable cytoplasmic serines (SSAA), or 

both (ΔM-N SSAA). Those mutants were generated to help understand what role the 

extracellular cleavage site and the cytoplasmic serine residues play in L-selectin 

shedding and clustering during TEM. The assays lasted 15 minutes, which captured cells 

at a moment before L-selectin shedding had reached its peak. All the perfusions were 

recorded with the use of the time-lapse inverted fluorescence microscope, where images 

of the phase contrast and the GFP channel (representing GFP or L-selectin-GFP) were 

acquired into digital video file. The video footages were now re-analysed to examine 

THP-1 cell morphology during the perfusion. The aim of this task was to overlay data for 

THP-1 cell shape change with the existing data acquired for L-selectin shedding and 

clustering during TEM. Pseudopod formation and cell spreading area of THP-1 

monocytes were thus analysed to evaluate the impact of L-selectin expression (and its 

mutants) on cell shape changes during TEM.     

Analysis of the video footage showed striking differences in the cell morphology between 

the cells expressing WT and ΔM-N L-selectin. The Rho family of the small GTPase 

proteins control cytoskeletal dynamics and hence regulate cell shape to aid migration. It 

was shown previously that ligation of L-selectin can activate Rac1 and Rac2 proteins 

[245, 246, 603]. This suggests that morphology of the THP-1 cells during TEM could be 

driven by L-selectin-mediated activation of Rho GTPases. Our laboratory has reported 
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an efficient method for monitoring of the Rho GTPase activation in leukocytes [714].This 

method was employed to investigate the basal levels of Rho GTPases activation in 

resting THP-1 monocytes. This was to investigate whether expression of L-selectin or its 

shedding altered the basal activity of the Rho GTPases.  

FRET-based probes that can visualize local changes in Rho GTPase activity in living 

cells can be used for investigation of the spatio-temporal regulation of these proteins. 

The Rho GTPase biosensors were first reported by Pertz et al. (2006), and were 

designed to monitor RhoA activity during fibroblast migration [711]. The Rho GTPase 

biosensors are built of four domains: the FRET donor (CFP), the FRET acceptor (YFP), 

a Rho GTPase and its “affinity reagent” (binding partner) (figure 6.1). In a non-active 

state, the separation between YFP and CFP results in low FRET efficiency. Upon 

activation, binding of Rho GTPase to its affinity reagent brings CFP into a close proximity 

(<10 nm) of YFP, which increases FRET efficiency. For an explanation of FRET 

phenomenon and FLIM measurement of FRET efficiency see sections 2.18 and 5.2.  

 

Figure 6.1 Schematic of CFP/YFP FRET-based Rho GTPase biosensor.  The Rho GTPase 

biosensor contains the YFP and CFP fluorescent proteins inserted between the Rho GTPase and 

the Rho GTPase “affinity reagent”. When inactive, the probe is in its relaxed form (left diagram), 

where CFP and YFP are wide apart and low FRET efficiency is seen. On stimulation, the GDP 

on Rho GTPase is exchanged for GTP, the active Rho GTPase binds the affinity reagent, and 

high FRET efficiency is detected (right diagram).  Image adapted from Hodgson et al., Methods 

in Cell Biology, 2008 [715]. 

 

RhoA, Rac1 and Cdc42 biosensors in lentiviral vectors were constructed and kindly 

provided by Oliver Pertz (University of Basel, Switzerland). The lentiviral gene delivery 

system that has been used throughout this thesis was again employed to introduce the 

biosensors in to the THP-1 monocytes. Excitation wavelength (λex) of CFP is 433 nm and 

its emission wavelength (λem) is 475 nm. For YFP, λex and λem are 525 nm and 573 nm, 

respectively. Since λex and λem of GFP are 488 and 507, the CFP/YFP biosensors could 

not be introduced in to the described in Chapters 3 and 4 L-selectin-GFP expressing 

cell lines. This was because the GFP-tag would interfere with the FRET signal due to a 
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spectral overlap. The probes had to be therefore co-expressed with RFP-tagged L-

selectin. RFP has λex of 584 nm and λem of 607 nm, and hence would not interfere with 

CFP/YFP FRET detection. Generated in Chapter 5 lentiviral particles carrying RFP-

tagged WT or ΔM-N L-selectin were used for transduction. THP-1 cell lines expressing 

CFP/YFP Rho GTPase biosensors and L-selectin-RFP were subjected to the parallel 

plate flow chamber assays. Additionally, grounds were set for a new static assay, where 

WT or ΔM-N L-selectin-RFP was cross-linked and RhoGTPase activation was 

measured. FLIM analysis of FRET between CFP and YFP was performed with the 

collaboration of Dr Maddy Parsons (Randall Division of Cell and Molecular Biophysics, 

King’s College London). 

Analysis of the video footage showed that WT and ΔM-N L-selectin expressing cells had 

different morphology during TEM. A polarisation defect was hypothesised to occur in the 

cells expressing ΔM-N L-selectin. A theory was formed that this could lead to defects in 

subsequent directed cell migration (chemotaxis) of the cells towards a chemoattractant 

source. Transwell assays are commonly used to evaluate chemotaxis of cells, and so 

the transwell chambers were used to monitor THP-1 cell migration. Migration of cells 

across porous filters as well as activated HUVEC monolayers was assessed.   

6.3 RESULTS 

6.3.1 Analysis of pseudopod behaviour during THP-1 monocyte transmigration 

across activated HUVEC under conditions of flow 

6.3.1.1 L-selectin expression promotes pseudopod formation during early phases of 

TEM 

Analysis of the time-lapse video recordings (GFP channel) of THP-1 WT L-selectin-

GFP/RFP cells perfused over TNF-α activated HUVEC showed that the protruding cells 

presented with one, two or multiple (three or more) pseudopods (figure 6.2 A). To 

assess whether the number of protruding pseudopods increased over time, the cells 

were scored half-way through the flow assay (7 minutes), and at the end of the assay 

(15 minutes). The behaviour of the pseudopods over-time is hereafter referred to as 

“pseudopod dynamics”. The scoring assessed the percentage of cells presenting with a 

certain number of pseudopods (one, two or multiple) at the given time-points. The 

percentage was calculated from the total number of cells recruited at any given time-

point (both protruding and non-protruding). The same analysis was performed on THP-

1 GFP Hi20 cells that were subjected to the same 15 minute-long parallel-plate flow 

chamber assay. This was to investigate whether differences existed in pseudopods 

formation between cells expressing fluorescently tagged L-selectin and cells expressing 

GFP protein alone. Using high GFP expressor cell line (Hi20) ensured that any possible 
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differences could be interpreted as resulting from L-selectin expression and not from any 

effects that could be caused by lentiviral gene delivery. The results presented in figure 

6.2 B show that at 7 minutes 41% of L-selectin expressing cells were protruding, 

compared to only 28% for THP-1 cells expressing GFP alone. This analysis broadly 

assessed the total number of protruding cells, irrespective of the number of pseudopods 

they had. When the total numbers of protruding cells were analysed at 15 minutes, no 

differences were seen between the cell lines. Interestingly, the number of the total 

protruding L-selectin expressors did not increase, remaining at 40%, but rather the GFP 

expressing cells reached a similar level of 42% (figure 6.2 B). Next, the number of 

pseudopods the cells were making was analysed. At 7 minutes, the percentages of cells 

having two or multiple pseudopods were significantly increased amongst L-selectin 

expressing cells compared to GFP-expressing cells (figure 6.2 C). This difference 

diminished with time as similar percentages of cells expressing L-selectin and cells 

expressing GFP presented with one, two or multiple pseudopods at 15 minutes (figure 

6.2 D). The pseudopod dynamics was found to be different between the two cell lines. 

The percentage of cells having only one pseudopod increased significantly with time in 

both of the cell lines (13% to 20% for WT L-selectin and 14% to 24% for GFP) (figure 

6.2 E and F). The percentage of cells having two pseudopods did not change much with 

time in either cell line, however, the percentage of L-selectin expressing cells that initially 

had multiple pseudopods decreased significantly with time from 12% to 7% (figure 6.2 

E and F). The fraction of GFP-expressing cells that had multiple pseudopods did not 

change over time. These results suggest that L-selectin overexpression initially renders 

THP-1 monocytes more “invasive”, which manifested in increased percentage of total 

protruding cells and a greater number of cells having more than one pseudopod. This 

effect reduced over time, which presented as a decrease in the number of cells having 

multiple pseudopods and a corresponding increase in the number of cells having a single 

pseudopod at 15 minutes.    
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Figure 6.2 Pseudopod behaviour in THP-1 cells transmigrating across activated HUVEC.  

THP-1 cells expressing wild type L-selectin-GFP/RFP (WT) or GFP alone (GFP) were perfused 

over TNF-α activated HUVEC for 15 minutes (section 2.14.3). The video of the GFP channel was 

used to score the number of pseudopods the cells were making at two different time-points (7 and 

15 minutes). Percentages of cells with a specific number of pseudopods were calculated against 

the total number of cells (protruding and non-protruding) recruited at that given time-point.  A) 

Representative images of cells having one (i), two (ii) or multiple (iii) pseudopods. Scale bar: 10 

µm. B) Total number of protruding cells (irrespective of pseudopod number) were scored at the 7 

and 15 minutes. C) Percentage of cells with one, two or multiple pseudopods at the 7 minutes. D) 

Percentage of cells with one, two or multiple pseudopods at the 15 minutes. E) Time-dependent 

change (dynamics) in the number of THP-1 WT L-selectin-GFP/RFP cells forming one, two or 

multiple pseudopods. F) Pseudopod dynamics of THP-1 GFP Hi20 cells. The video footage was 

derived from three independent experiments. Each experiment was performed in triplicate and 

three separate fields of view were analysed for each replicate. Total 672 THP-1 GFP Hi20 and 

1368 THP-1 WT L-selectin-GFP/RFP cells were analysed. Data represent mean ± S.E.M. 

Statistical analysis: two-tailed, unpaired Student’s t-test. *=p<0.05, ***=p,0.001, ns, not 

statistically significant. 

 

6.3.1.2 Effects of SSAA L-selectin expression on THP-1 cells pseudopod dynamics 

Substitution of the cytoplasmic serines with alanines caused a delay in L-selectin 

shedding in static transmigration assays (figure 4.4), and resulted in decreased L-

selectin clustering in pseudopods of transmigrating THP-1 cells (figures 5.8 and 5.9). 

Analysis of the time-lapse footage of THP-1 SSAA L-selectin-GFP/RFP cells 

transmigrating through TNF-activated HUVEC, showed that those cells had 31% of total 

protruding cells compared to 41% of THP-1 WT L-selectin-GFP/RFP cells (figure 6.3 A). 

This was, however, not statistically significant, most probably due to the variability in the 

number of protruding cells between the experiments. Unlike with the WT L-selectin-

expressing cells (figure 6.2 E), the percentage of SSAA L-selectin-expressing 

monocytes with a given number of pseudopods did not change with time (figure 6.3 B). 

At 7 minutes, the highest number of cells with one pseudopod (16%), moderate number 

of cells with two pseudopods (10%) and low number of cells with one pseudopod (6%) 

were observed, which corresponded to 13%, 8% and 6% at 15 minutes, respectively 

(figure 6.3 B). No differences were detected in the pseudopod formation between SSAA 

L-selectin expressing cells and WT L-selectin expressing cells when the percentages of 

cells with any given pseudopod number was compared. However, a trend was seen 

where THP-1 SSAA L-selectin-GFP/RFP cells had fewer cells with multiple pseudopods 

at 7 minutes (6% versus 12% for WT L-selectin) (figure 6.3 C). Additionally lower fraction 

of SSAA L-selectin expressing cells with one pseudopod was seen at 15 minutes (13% 

versus 20% for WT L-selectin), which was just below statistical significance (p=0.052) 

(figure 6.3 D). This could be a result of a decreased trend in the number of total 
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protruding cells (figure 6.3 A). Overall, these results suggest that rendering of the 

cytoplasmic serines non-phosphorylatable does not have a significant effect on L-

selectin-dependent protrusion dynamics. However, a subtle effect can be seen, where 

SSAA L-selectin expressing cells protrude less that WT L-selectin expressing cells. 

Additionally, the pseudopods seem less dynamic – as seen by lack of time-dependant 

change in the percentages of cells having one, two or multiple pseudopods.      

 

Figure 6.3 Pseudopod dynamics of SSAA L-selectin expressing THP-1 cells.  Time-lapse 

videos of THP-1 SSAA L-selectin-GFP/RFP cells perfused over TNF- activated HUVEC were 

analysed for pseudopod formation as described in figure 6.1. Pseudopod formation was 

compared to that of THP-1 WT L-selectin-GFP/RFP cells. A) Total number of protruding cells at 

7 and 15 minutes. B) Pseudopod dynamics of THP-1 SSAA L-selectin-GFP/RFP cells. 

Percentage of cells having one, two or multiple pseudopods were compared across the two time-

points. C) Comparison of pseudopod formation between WT and SSAA L-selectin expressing 

cells at 7 minutes. D) Corresponding comparison at 15 minutes. The video footage was derived 

from three independent experiments and three separate fields of view were analysed for each 

experiment. Total 2200 THP-1 SSAA L-selectin-GFP/RFP and 1368 THP-1 WT L-selectin-

GFP/RFP cells were analysed. Data represent mean ± S.E.M. Statistical analysis: two-tailed, 

unpaired Student’s t-test. 
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6.3.1.3 Blocking L-selectin shedding promotes the formation of multiple pseudopods 

during TEM that persist over-time 

Blocking L-selectin shedding by rendering the extracellular cleavage site “sheddase-

resistant” (ΔM-N L-selectin), or by treating WT L-selectin expressing cells with Ro-31-

9790 metalloprotease inhibitor abolished L-selectin clustering in the pseudopods of 

transmigrating THP-1 monocytes (figure 5.6). It was hence of interest to investigate 

whether the lack of L-selectin clustering had any effects on THP-1 cells pseudopod 

dynamics. Time-lapse video recordings of the 15 minute-long parallel plate flow chamber 

assays were analysed as described in the sections above. At 7 minutes, the percentage 

of total protruding cells was 33% for the cells expressing ΔM-N L-selectin and 34% for 

the cells expressing WT L-selectin treated with Ro-31-9790 inhibitor, referred to as WT 

Ro-31-9790 L-selectin, which was slightly less compared to to the cells expressing WT 

L-selectin (41%) (figure 6.4 A). This disappeared with time as equal numbers of WT, 

ΔM-N and WT Ro-31-9790 L-selectin expressing cells protruded at 15 minutes (figure 

6.4 A). Strikingly, at 7 minutes not many ΔM-N L-selectin expressing cells formed one 

(7%) or two (6%) pseudopods, but a large number of cells sent multiple pseudopods 

instead (18%) (figure 6.4 B). This phenotype become more severe with time, as at 15 

minutes only 5% and 4% of cells had one and two pseudopods, respectively, whereas 

35% of the cells had multiple pseudopods (figure 6.4 B). Ro-31-9790 treated WT L-

selectin-expressing cells presented with the same pseudopod dynamics, where cells 

with multiple pseudopods prevailed at both 7 and 15 minutes (figure 6.4 C).     
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Figure 6.4 Pseudopod formation of cells expressing ΔM-N L-selectin or WT L-selectin 
treated with Ro-31-9790 inhibitor.  Time-lapse videos of THP-1 ΔM-N L-selectin-GFP/RFP cells 

or THP-1 WT L-selectin-GFP/RFP cells pre-treated with Ro-31-9790 metalloprotease inhibitor 

(WT + Ro-31-9790) perfused over TNF-α activated HUVEC were scored for pseudopod formation 

as described in figure 6.1. A) Total number of protruding cells at 7 and 15 minutes. The 

percentage is calculated from the total number of cells recruited to the endothelium at given time-

point (protruding and non-protruding). Total number of protruding THP-1 WT L-selectin-GFP/RFP 
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cells is shown for comparison. B) Pseudopod dynamics of THP-1 ΔM-N L-selectin-GFP/RFP 

cells. The graph shows percentage of cells with one, two or multiple pseudopods at 7 and 15 

minutes.  C) Corresponding analysis as in B, but performed on THP-1 WT L-selectin-GFP/RFP 

cells treated with Ro-3197-90. The video footage was derived from three independent 

experiments and three separate fields of view were analysed for each experiment. Total 1826 

THP-1 ΔM-N L-selectin-GFP/RFP cells, 1368 THP-1 WT L-selectin-GFP/RFP cells and 2515 

THP-1 WT L-selectin-GFP/RFP cells pre-treated with Ro-31-9790 were analysed.  Data represent 

mean ± S.E.M. Statistical analysis in A: One-way ANOVA followed by Tukey’s post-test. No 

differences were detected. Statistical analysis in B and C: two-tailed, unpaired Student’s t-test for 

each pair of the time-points. 

 

To more thoroughly analyse the effects of blocking L-selectin shedding on pseudopod 

dynamics, each cell morphotype – morphotype defined by a number of pseudopods – 

was analysed separately at both 7 and 15 minutes. The analysis included cells 

expressing WT, ΔM-N and WT Ro-31-9790 L-selectin and the cumulative data is 

presented in figure 6.5. At 7 minutes, the percentages of WT L-selectin expressing cells 

having one (figure 6.5 A) or two (figure 6.5 B) pseudopods were significantly higher 

than the corresponding percentages of ΔM-N and WT Ro-31-9790 L-selectin expressing 

cells. As for cells having multiple pseudopods, ΔM-N and WT Ro-31-9790 L-selectin 

expressing cells had slightly higher percentages than those cells as compared to WT L-

selectin-expressing cells, but no statistical significant differences were found (figure 6.5 

C). At 15 minutes a high percentage of cells with one pseudopod was found amongst 

WT L-selectin expressing cells, whereas low percentages of such cells were seen for 

both ΔM-N and WT Ro-31-9790 L-selectin expressing cells (figure 6.5 D). When cells 

with two pseudopods were scored, the highest percentage of such cells was found 

amongst WT L-selectin expressing cells and lowest amongst ΔM-N L-selectin expressing 

cells (figure 6.5 E). WT Ro-31-9790 L-selectin-expressing cells had more two-

pseudopod cells than ΔM-N L-selectin cells but less than WT L-selectin expressing cells 

(figure 6.5 E). At 15 minutes, cells sending multiple pseudopods were most abundant 

amongst ΔM-N L-selectin expressing cells, and the lowest percentage of such cells was 

found amongst WT L-selectin-expressing cells (figure 6.5 F). THP-1 monocytes 

expressing WT L-selectin that were pre-treated with Ro-31-9790 had also an increased 

percentage of cells with multiple pseudopods as compared to non-treated cells, but this 

number was not as high as that calculated for cells expressing ΔM-N L-selectin (figure 

6.5 F).      

These results show that, over-time, cells expressing WT L-selectin minimise the fraction 

of cells having multiple pseudopods and maximise the number of cells that have one 

pseudopod. Conversely, the percentage of cells with multiple pseudopods increased 

profoundly with time amongst ΔM-N L-selectin expressing cells and WT Ro-31-9790 L-

selectin cells. Overall, these data suggest that blocking L-selectin shedding promotes 
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multiple pseudopod formation during TEM of THP-1 cells. It is possible that shedding of 

L-selectin is required to retract multiple pseudopods to ultimately consolidate them in to 

a single (or fewer) pseudopod(s).  

 

Figure 6.5 Effects of blocking L-selectin shedding on THP-1 monocyte pseudopod 
behaviour.  THP-1 WT L-selectin-GFP/RFP cells pre-treated with (WT + Ro-31-9790) or without 

Ro-31-9790 metalloprotease inhibitor (WT) or THP-1 ΔM-N L-selectin-GFP/RFP cells were 

perfused over TNF-α activated HUVEC and video recordings of the microscope images were 

analysed for pseudopod formation as described in figure 6.1. Pseudopod formation at 7 minutes 

(A-C) and 15 minutes (D-F) was analysed. Comparison of the number of cells having one 

pseudopod is shown in A and D, two pseudopods in B and E, and multiple pseudopods in C and 

F. The video footage was derived from three independent experiments and three separate fields 

of view were analysed for each experiment. Total 1826 THP-1 ΔM-N L-selectin-GFP/RFP cells, 

1368 THP-1 WT L-selectin-GFP/RFP cells and 2515 THP-1 WT L-selectin-GFP/RFP cells pre-
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treated with Ro-31-9790 were analysed. Data represent mean ± S.E.M. Statistical analysis: One-

way ANOVA followed by Tukey’s post-test for each graph. *=p<0.05, **=p<0.01, ***=p<0.001. 

 

6.3.1.4 Monitoring the effect of Ro-31-9790 treatment on pseudopod formation by THP-

1 cells expressing GFP alone 

THP-1 monocytes expressing ΔM-N L-selectin and WT Ro-31-9790 L-selectin presented 

with the same pseudopod dynamics. This suggests that WT Ro-31-9790 L-selectin cells 

formed multiple pseudopods as a result of lack of L-selectin shedding. However, Ro-31-

9790 is a broad spectrum metalloprotease inhibitor, and thus it could not be formally 

excluded that blocking of other molecules present on the surface of THP-1 monocytes 

contributed to the observed effect. For example, cleavage of integrins is also known to 

occur during monocyte TEM, which can be blocked by pre-incubation of cells with broad-

spectrum metalloprotease inhibitors [669], such as Ro-31-9790. To investigate whether 

Ro-31-9790 treatment affected pseudopod formation in the absence of L-selectin, THP-

1 GFP Hi20 cells were pre-treaded with Ro-31-9790 and subjected to the 15 minute-long 

parallel plate flow chamber assay. Pseudopods were scored as described above and 

compared to the corresponding values obtained earlier for THP-1 GFP Hi20 cells. Figure 

6.6 shows that no effect of Ro-31-9790 treatment was found on THP-1 cells that were 

expressing just GFP protein. Ro-31-9790 treated and non-treated cells had the same 

number of total protruding cells at 7 minutes (30±2%), and in both cases this number 

increased with time to 42.5±0.5% (figure 6.6 A). Both types of cells presented with the 

same percentage of cells having one, two or multiple pseudopods at both 7 minutes and 

at 15 minutes (figure 6.6 B). This data shows that formation of multiple pseudopods by 

THP-1 WT L-selectin-GFP/RFP cells pre-treated with Ro-31-9790 metalloprotease 

inhibitor is highly likely due to the blockade of L-selectin shedding.    
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Figure 6.6 Pseudopod formation of THP-1 GFP Hi20 cells pre-treated with Ro-31-9790.  

Time-lapse movies of Ro-31-9790 treated THP-1 GFP Hi20 cells (GFP + Ro-31-9790) perfused 

over TNF-α activated HUVEC were analysed for pseudopod formation as described in figure 6.1. 

Obtained percentages were compared to the corresponding ones calculated earlier for THP-1 

GFP Hi20 cells that were perfused without inhibitor. A) Total number of protruding cells at 7 and 

15 minutes. B) Percentage of cells with one, two or multiple pseudopods at 7 minutes (left panel) 

and 15 minutes (right panel). The video footage was derived from three independent experiments 

and three separate fields of view were analysed for each experiment. Total 672 THP-1 GFP Hi20 

and 830 THP-1 GFP Hi20 cells pre-treated with Ro-31-9790 were analysed. Data represent mean 

± S.E.M. Statistical analysis: two-tailed, unpaired Student’s t-test detected no differences. 

  

6.3.1.5 Effects of ΔM-N SSAA L-selectin expression on THP-1 monocyte pseudopod 

dynamics      

Rendering cytoplasmic serines of ΔM-N L-selectin non-phosphorylatable (ΔM-N SSAA 

L-selectin), promoted L-selectin clustering in the pseudopods of transmigrating THP-1, 

which was not seen in the ΔM-N L-selectin cells (figure 5.8). Analysis of time-lapse 
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videos was now performed to investigate whether introducing the SSAA mutation in to 

ΔM-N L-selectin altered pseudopod dynamics. Interestingly, at 7 minutes, THP-1 

monocytes expressing ΔM-N SSAA L-selectin had a similar percentage of total 

protruding cells to that of cells expressing WT L-selectin (43% and 41%, respectively), 

which was slightly higher but not statistically significant than that of cells expressing ΔM-

N L-selectin (33%) (figure 6.7 A). This slight difference was no longer seen at 15 

minutes, where all cell lines had 42.5±2.5% of total protruding cells (figure 6.7 A). At 7 

minutes, amongst the cells expressing ΔM-N SSAA L-selectin, high percentages of cells 

with one pseudopod (16%) and multiple pseudopods (19%) were seen, and a relatively 

low number of cells having two pseudopods was present (8%) (figure 6.7 B). This did 

not change much with time, as the calculated percentages were 19%, 10% and 16% for 

cells having one, two or multiple pseudopods, respectively (figure 6.7 B).   

 

Figure 6.7 Pseudopod formation by THP-1 cells expressing ΔM-N SSAA L-selectin.  Time-

lapse videos of THP-1 ΔM-N SSAA L-selectin-GFP/RFP cells perfused over TNF-α activated 

HUVEC were analysed for pseudopod formation as described in figure 6.1. A) Total number of 

protruding cells at 7 and 15 minutes. Total numbers of protruding cells expressing WT L-selectin 

or ΔM-N L-selectin are shown for comparison. B) Pseudopod dynamics of THP-1 ΔM-N SSAA L-

selectin-GFP/RFP cells. The video footage was derived from three independent experiments and 

three separate fields of view were analysed for each experiment. Total 1826 THP-1 ΔM-N L-

selectin-GFP/RFP cells, 1368 THP-1 WT L-selectin-GFP/RFP cells and 1422 THP-1 ΔM-N SSAA 

L-selectin-GFP/RFP cells were analysed. Data represent mean ± S.E.M. Statistical analysis in A: 

One-way ANOVA followed by Tukey’s post-test. No differences were detected. Statistical analysis 

in B and C: two-tailed, unpaired Student’s t-test for each pair of time-points. No differences were 

detected. 

 

Cells expressing ΔM-N SSAA L-selectin had a relatively high percentage of cells with 

one pseudopod, but also relatively high percentage of cells with multiple pseudopods. 

This suggested that this cell line had pseudopod dynamics that was intermediate 

between those displayed by THP-1 WT L-selectin-GFP/RFP (figure 6.1) and THP-1 ΔM-

N L-selectin-GFP/RFP cells (figure 6.3). To verify this hypothesis, the percentage of 
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cells having one, two or multiple pseudopods were analysed separately at each time-

point. Analysis included cells expressing WT L-selectin, and cells expressing ΔM-N L-

selectin. At 7 minutes there were more cells with one pseudopod amongst cells 

expressing ΔM-N SSAA or WT L-selectin as compared to the cells expressing ΔM-N L-

selectin (figure 6.8 A). Surprisingly, the percentage of cells having two pseudopods was 

similar between cells expressing ΔM-N SSAA (8%) and ΔM-N L-selectin (6%), and this 

was lower than the corresponding percentage calculated for cells expressing WT L-

selectin (15%) (figure 6.8 B). Similar percentage of cells with multiple pseudopods was 

seen amongst all the cell lines at 7 minutes, however cells expressing “sheddase-

resistant” (ΔM-N or ΔM-N SSAA) L-selectin forms had a slightly higher fraction of those 

cells than cells expressing WT L-selectin (18% for ΔM-N, 16% for ΔM-N SSAA and 13% 

for WT L-selectin)  (figure 6.8 C). At 15 minutes, cells expressing ΔM-N SSAA L-selectin 

or WT L-selectin a had much higher proportion of cells with one pseudopod than the cells 

expressing ΔM-N L-selectin (figure 6.8 D). The same was true when cells having two 

pseudopods were analysed (figure 6.8 E). When cells with multiple pseudopods were 

scored, the highest percentage of such cells was found amongst ΔM-N expressing cells, 

and the lowest amongst WT L-selectin expressing cells (figure 6.8 F). Percentage of 

multiple pseudopod-cells amongst cells expressing ΔM-N SSAA L-selectin was higher 

than those amongst WT L-selectin expressing cells but lower than those amongst ΔM-N 

L-selectin expressing cells (figure 6.8 F). These results suggest that rendering 

cytoplasmic serines of ΔM-N L-selectin non-phosphorylatable has a profound effect on 

the number of pseudopods THP-1 cells make during early TEM. The typical multiple 

pseudopod phenotype caused by ΔM-N L-selectin is no longer seen. THP-1 cells 

expressing ΔM-N SSAA L-selectin do have higher fraction of cells with multiple 

pseudopods than the cells expressing WT L-selectin. However, they also have a similar 

number of cells presenting a single pseudopod as cells expressing WT L-selectin. This 

suggests that rendering cytoplasmic serines of ΔM-N L-selectin non-phosphorylatable 

can partially revert the ΔM-N phenotype towards something that resembles a WT 

phenotype.   
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Figure 6.8 Effects of ΔM-N SSAA L-selectin expression on THP-1 monocyte pseudopod 
dynamics.  THP-1 ΔM-N SAA L-selectin-GFP/RFP cells were perfused over TNF-α activated 

HUVEC and video recordings of the microscope images were analysed for pseudopod formation 

as described in figure 6.1. Calculated values were compared for corresponding ones acquired 

earlier for cells expressing WT L-selectin and cells expressing ΔM-N L-selectin. Pseudopod 

formation at 7 minutes (A-C) and 15 minutes (D-F) is shown. Comparison of number of cells 

having one pseudopod is shown in A and D, two pseudopods in B and E, and multiple 

pseudopods in C and F. The video footage was derived from three independent experiments and 

three separate fields of view were analysed for each experiment. Total 1826 THP-1 ΔM-N L-

selectin-GFP/RFP cells, 1368 THP-1 WT L-selectin-GFP/RFP cells and 1422 THP-1 ΔM-N SSAA 

L-selectin-GFP/RFP cells were analysed. Data represent mean ± S.E.M. Statistical analysis: One-

way ANOVA followed by Tukey’s post-test for each graph. *=p<0.05, **=p<0.01, ***=p<0.001. 
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6.3.2 Analysis of cell spreading during THP-1 transmigration across activated 

HUVEC under conditions of flow 

Time-lapse video recordings analysed in section 6.3.1 for pseudopod formation, were 

also used to determine the cell spreading area of transmigrating THP-1 monocytes. Still 

images of 7 minutes and then 15 minutes of perfusion were loaded in to ImageJ software 

and cell spreading area was measured as described in section 2.15. As shown in figure 

6.9 A, expression of L-selectin did not influence the cell spreading area as compared to 

overexpression of GFP only. However, cells expressing SSAA L-selectin had a smaller 

spread area than the cells expressing WT L-selectin, which was consistent at both time-

points (figure 6.9 B). This suggested that the SSAA mutation limited cell spreading, but 

whether this was a direct or an indirect effect of L-selectin was not determined.  Blocking 

L-selectin shedding increased THP-1 cell spreading area as compared to WT L-selectin 

expressing cells (figure 6.9 C). A larger spread area was seen in cells expressing ΔM-

N L-selectin at both early (7 minutes) and late (15 minutes) time-points, whereas 

treatment of WT L-selectin expressing cells with Ro-31-9790 resulted in increased cell 

spreading area only at 15 minutes (figure 6.9 C). The increased spread area promoted 

by Ro-31-9790 treatment appeared to be because of a direct effect on blocking L-selectin 

shedding, as no effect on cell spreading was seen when THP-1 GFP Hi20 cells were 

pre-incubated with this inhibitor (figure 6.9 D). Interestingly, when serine residues within 

ΔM-N L-selectin tail were rendered non-phosphorylatable, the cells decreased their 

spreading area to that seen with WT L-selectin expressing cells (figure 6.9 E). These 

results suggested that blocking L-selectin shedding prompted the cells to increase their 

spread area, whilst substituting the cytoplasmic serine residues with non-

phosphorylatable alanines had an opposite effect. The fact that there is a small spreading 

area (figure 6.9 B) as well as decreased shedding in the SSAA L-selectin expressing 

cells (figures 4.3 and 4.4) suggests that the serine residues might play a dominant role 

in regulating cell spreading area.   
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Figure 6.9 Measuring the cell spreading area of THP-1 monocytes at early and late phases 
of TEM.  Cell spreading areas of THP-1 cells perfused over TNF-α activated HUVEC were 

analysed as described in section 2.15. Analysis was performed at early time-point (7 minutes) 

and late time-point (15 minutes). Following THP-1 cells were analysed: WT L-selectin-GFP/RFP 

expressors pre-treated with or without Ro-319790 metalloprotease inhibitor; GFP Hi20 

expressors pre-treated with or without Ro-319790 metalloprotease inhibitor; SSAA L-selectin-

GFP/RFP expressors, ΔM-N L-selectin-GFP/RFP expressors, ΔM-N SSAA L-selectin-GFP/RFP 

expressors. A) Comparison of cell spreading areas between GFP expressors and WT L-selectin 

expressors. B) The influence of SSAA mutation on the cell spreading area of L-selectin 

expressing cells. C) Effect of blocking L-selectin shedding on cell spreading area. Blocking of L-

selectin shedding was analysed by using “sheddase resistant” (ΔM-N) L-selectin or by treating 
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WT L-selectin expressing cells with Ro-31-9790 metalloprotease inhibitor. D) The effect of Ro-

31-9790 metalloprotease inhibitor on spreading area of GFP expressing cells. E) Comparison of 

cell spreading areas between cells expressing WT, ΔM-N and ΔM-N SSAA L-selectin. At least 

270 cells per time-point were analysed for each cell line/condition. Analysed cells were derived 

from three independent experiments. Data represent mean ± S.E.M. Statistical analysis: Two-

way ANOVA followed by Bonferroni post-test. *=p<0.05, **=p<0.01. 

 

6.3.3 THP-1 monocytes expressing GFP, WT L-selectin-GFP or ΔM-N L-selectin-

GFP have comparable levels of RhoGTPase activity when in suspension culture 

The canonical Rho family of small GTPases; RhoA, Rac1 and Cdc42 play a critical role 

in driving leukocyte polarity and motility during various stages of the leukocyte adhesion 

cascade (section 1.5) [118, 234, 237, 238, 240, 241]. The results presented in the 

sections above show that during early phases of TEM, THP-1 monocytes expressing WT 

L-selectin and those expressing ΔM-N L-selectin present with strikingly different 

phenotypes. Whilst cells expressing WT L-selectin tend to polarise with time, as seen by 

majority of cells projecting one or two pseudopods at 15 minutes, ΔM-N L-selectin 

expressing cells project multiple pseudopods that do not retract with time (figures 6.2 

and 6.4 and 6.5). The difference between the two cell lines is further demonstrated by 

an enlarged spread area promoted by ΔM-N L-selectin (figure 6.9 C). These results 

would strongly suggest that the activity of RhoGTPases – the main drivers of cell shape 

change – could be different between the two cell lines. It was possible that expression of 

ΔM-N L-selectin altered the basal activity of Rho GTPases, which could explain, in part, 

the pseudopod retraction defect. To test this hypothesis the activity of RhoA, Rac1 and 

Cdc42 was monitored in resting THP-1 WT L-selectin-GFP Hi20 and THP-1 ΔM-N L-

selectin Lo5 cells using classic pull-down assays. It is noteworthy to mention that all cell 

lines had matched L-selectin expression levels (figure 4.10). To control for the L-

selectin-expressing cell lines, RhoA, Rac1 and Cdc42 activity was monitored in THP-1 

GFP Hi20 cells. This was particularly important as analysis of pseudopod dynamics 

during parallel plate flow chamber assays showed that cells expressing WT L-selectin 

were more “invasive” than cells expressing GFP protein during the first half of the assay 

(7 minutes) (figure 6.1). To analyse the activity of RhoGTPases in resting THP-1 cells, 

glutathione-S-transferase (GST)-fusion GTPase bait proteins were conjugated to 

glutathione sepharose beads, and beads were used in pull-down assays. The bait 

proteins used were of Rho GTPase effector domains and were kindly provided by John 

G. Collard (Netherlands Cancer Institute, Amsterdam, the Netherlands). The following 

bait proteins were used: for RhoA – the Rho-binding domain of Rhotekin (Rhotekin-C21), 

for Rac1 – p21-binding domain of PAK (PAK-PBD) and for Cdc42 – the Cdc42/Rac 

interacting domain (cassette) of the Wiskott-Aldrich syndrome protein (WASP-CRIB-C). 



240 
 

The detailed methods of GST-fusion proteins purification and Rho GTPase activation 

assays are described in sections 2.9 and 2.10 of this thesis. As shown in figure 6.10, 

no differences in RhoGTPase activity were found between the tested cell lines. This 

suggested that changes seen in THP-1 monocyte morphology during TEM were not pre-

disposed by altered basal Rho GTPase activity. It was hypothesised that Rho GTPases 

in GFP, WT L-selectin or ΔM-N L-selectin expressing cells could become regulated 

differently upon monocyte activation during parallel plate flow chamber assays.   

   

    

Figure 6.10 Monitoring Rho GTPase activity in THP-1 cells expressing GFP, WT L-selectin-
GFP or ΔM-N L-selectin-GFP.  Activity of RhoA, Rac1 and Cdc42 in the cells expressing GFP, 
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WT L-selectin-GFP or ΔM-N L-selectin-GFP was assessed by the pull down assays using the 

Rhotekin-C21 binding domain for RhoA, the PAK-PBD binding domain for Rac1 or the WASP-

CRIB-C binding domain for Cdc42. The method is described in detail in section 2.10. 

Representative Western blots of RhoA (A), Rac1 (B) and Cdc42 (C) are shown. In each panel, 

the diagrams on the right illustrate the corresponding densitometric analysis of the relative 

activities of RhoA, Rac1, and Cdc42. This is shown as a ratio of GTP-bound GTPase (active) to 

total Rho GTPase protein. Total RhoGTPase levels were normalised against actin. Densitometric 

analysis was performed on Western blottings from three independent experiments. Data 

represent mean ± standard error. One-way ANOVA did not detect any differences in Rho GTPAse 

activity between the cell lines.  

 

6.3.4 Generation of THP-1 cell lines expressing Rho GTPase biosensors 

The Rho GTPase biosensors (figure 6.1) are used to monitor the spatio-temporal activity 

of Rho GTPases in living cells (section 6.2). It was hoped that utilizing such biosensors 

would allow insights in to Rho GTPase activity in THP-1 monocytes undergoing TEM. 

Lentiviral vectors (pLenti CMV Puro DEST (w118-1)) carrying CFP/YFP-based RhoA, 

Rac1 and Cdc42 biosensor constructs were kindly provided by Oliver Pertz (Universty of 

Basel, Switzerland). The vectors were used to produce lentiviral particles as described 

in section 2.11. The titres of generated lentiviruses are presented in table 2.5 of this 

thesis. Moderate MOI of 7 was used to transduce THP-1 cells with lentiviruses carrying 

RhoA, Rac1 or Cdc42 biosensors, yielding polyclonal cell lines, named THP-1 RhoA, 

THP-1 Rac1 or THP-1 Cdc42, respectively. These cell lines were left in culture or were 

further used for transduction with lentiviruses carrying WT L-selectin-RFP or ΔM-N L-

selectin-RFP described in sections 5.3.1 and 5.3.4, respectively. MOI of 20 was used 

for lentiviruses carrying WT L-selectin-RFP and MOI of 5 for lentiviruses carrying ΔM-N 

L-selectin-RFP. These MOIs were previously found to produce matching L-selectin 

levels between the two cell lines (section 4.10).  The method of THP-1 cell transduction 

is described in section 2.11.4. In total, nine polyclonal cell lines were generated. The 

cell lines are outlined in table 6.1. 

CFP/YFP 

Rho GTPase biosensor 
L-selectin-RFP Cell line name 

RhoA - THP-1 RhoA 

RhoA WT THP-1 WT L-selectin-RFP RhoA 

RhoA ΔM-N THP-1 ΔM-N L-selectin-RFP RhoA 

Rac1 - THP-1 Rac1 

Rac1 WT THP-1 WT L-selectin-RFP Rac1 

Rac1 ΔM-N THP-1 ΔM-N L-selectin-RFP Rac1 

Cdc42 - THP-1 Cdc42 

Cdc42 WT THP-1 WT L-selectin-RFP Cdc42 
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Cdc42 ΔM-N THP-1 ΔM-N L-selectin-RFP Cdc42 

Table 6.1 Polyclonal THP-1 cell lines expressing Rho GTPase Raichu probes. THP-1 cells 

were transduced with lentiviruses carrying RhoA, Rac1 or Cdc42 CFP/YFP biosensors. Those 

cell lines were further infected with lentiviruses carrying WT L-selectin-RFP or ΔM-N L-selectin-

RFP. Overall, nine different cell lines were generated and are displayed in this table.  

 

Once generated, the cell lines were analysed by fluorescence microscopy for YFP and 

RFP expression that were indicative of Rho GTPase biosensor and L-selectin 

expression, respectively. All cell lines showed uniform YFP distribution and peripheral 

RFP localisation. This suggested the transgenes were expressed correctly as Rho 

GTPases display general diffuse distribution pattern [716], and L-selectin localises to the 

plasma membrane. Varied expression levels of L-selectin and Rho GTPase biosensors 

were readily observed, which was expected for a polyclonal stable cell lines. 

Representative images of THP-1 WT L-selectin-RFP RhoA cells are shown in figure 

6.11 A. Unfortunately, preliminary parallel-plate flow chamber experiments showed that 

none of the nine cell lines had undergone TEM across activated HUVEC during the 15 

minute period of parallel plate flow chamber assay (data not shown). In other words, the 

adhered cells did not extend pseudopods that were seen to protrude underneath the 

HUVEC. Occasionally, very small pseudopods were formed, that were extending on top 

of the endothelium (as seen by phase-bright appearance). Lentiviruses carrying 

pHR´SIN-SEW-GFP/RFP constructs had been used successfully to deliver transgenes 

throughout this thesis. It was hence hypothesised that it was the pLenti CMV Puro DEST 

(w118-1) construct that had adverse effects, seen as loss of THP-1 transmigratory 

capacity. Alternatively, it was possible that simultaneous expression of the Rho GTPase 

biosensors and the RFP-tagged L-selectin resulted in an overall negative effect on THP-

1 cell behaviour. It is possible that expression of three fluorescent proteins (CFP, YFP 

and RFP) at once was stressful to THP-1 cell function. An attempt was made to select 

for low Rho GTPase biosensor expressors amongst the cell lines, in the hope that the 

low expressors would not be affected by such adverse effects. All nine cell lines were 

subjected to FACS sorting in order to eliminate cells with high Rho GTPase biosensor 

expression. On this occasion, L-selectin expression between cells expressing WT L-

selectin-RFP and cells expressing ΔM-N L-selectin-RFP was monitored to ensure 

continued matched expression. Untransduced THP-1 cells and cells expressing L-

selectin-RFP were used as control populations on which both the YFP and RFP gates 

were set. Representative histograms in figure 6.11 B show THP-1 RhoA cell line pre- 

and post-sorting. The same levels of Rho GTPase biosensor expression was achieved 

in the remaining eight cell lines.     
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Figure 6.11 Expression of Rho GTPase biosensors and L-selectin-RFP in THP-1 
monocytes.  A) Representative images of THP-1 L-selectin-RFP RhoA cells. YFP image shows 

diffuse distribution of RhoA biosensor. The RFP channel shows L-selectin-RFP that localises to 

the plasma membrane (arrows). Scale bar: 10 µm. B) Flow cytometry profiles of unsorted (left 

histogram) and sorted low RhoA biosensor expressors (right histogram) THP-1 RhoA cells. 

Similar histograms exist for THP-1 Rac1, Cdc42, WT L-selectin-RFP RhoA, WT L-selectin-RFP 

Rac1, WT L-selectin-RFP Cdc42, ΔM-N L-selectin-RFP RhoA, ΔM-N L-selectin-RFP Rac1 and 

ΔM-N L-selectin-RFP Cdc42 cells. 

 

Sorted cell lines were subjected to the parallel plate flow chamber assays in the hope 

that the reduced Rho GTPase expression would allow the THP-1 monocytes to form 

pseudopods. Unfortunately, no transmigrating cells were seen after 15 minutes of flow 

in any of the nine sorted cell lines. It was postulated that the cells might be delayed in 

their transmigration ability and so the experiments were repeated where flow was applied 

for 30 minutes. As shown on the representative still images of sorted THP-1 RhoA, THP-

1 WT L-selectin-RFP RhoA or THP-1 ΔM-N L-selectin-RFP RhoA cells, no cells were 

seen undergoing TEM after 30 minutes of flow (figure 6.12 A-C). Again small protrusions 

were sometimes generated, but none of them were transmigrating (figure 6.12 C red 
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stars). Figure 6.12 D shows typical appearance of transmigrating THP-1 cells, where 

large pseudopods can be seen for comparison. This was also true for sorted cell lines 

expressing Rac1 or Cdc42 biosensors. These results show that, unfortunately, the stable 

cell lines were not suitable for investigating of RhoGTPase activity in THP-1 cells 

undergoing TEM. 

 

Figure 6.12 Transmigration defect in THP-1 cells expressing RhoGTPase biosensors.  

Sorted populations of THP-1 RhoA (A) THP-1 WT L-selectin-RFP Rho A (B) or THP-1 ΔM-N L-

selectin-RFP RhoA (C) cells were perfused over TNF-α activated HUVEC for 30 minutes. Time-

lapse footage of the YFP channel and phase contrast was used to generate still images 

corresponding to 15 and 30 minutes of flow. All the cells bound to the endothelial monolayer but 

no protruding pseudopods were formed. Very small pseudopods could be seen forming, but none 

were actually protruding beneath the endothelial monolayer (red stars). Corresponding footage 

exists for the sorted cell lines expressing Rac1 or Cdc42 biosensors, where also no transmigrating 

cells can be seen. D) Transmigrating THP-1 WT L-selectin-GFP Hi20 cells are shown for 

comparison. Prominent pseudopods can be seen extending from the cell bodies. Scale bar: 

30µm.    
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6.3.5 Monitoring Rho GTPase activity in THP-1 cells following antibody-mediated 

cross-linking of L-selectin 

As described above, the THP-1 cell lines could not be used to monitor the spatio-

temporal distribution of Rho GTPase activity as the cells failed to undergo TEM. As a 

final attempt, the Rho GTPase activity in cells expressing WT and ΔM-N L-selectin could 

be monitored following cross-linking of L-selectin with monoclonal antibody. If signalling 

downstream of the L-selectin tail regulates Rho GTPases differently between WT and 

ΔM-N L-selectin, this was likely to be seen upon cross-linking. Previous FRET/FLIM 

experiments have clearly shown that L-selectin is monomeric in the plasma membrane 

and can be clustered following cross-linking with the DREG56 monoclonal antibody 

(figure 5.13).L-selectin null cells were left untreated (incubation with media alone) and 

L-selectin on THP-1 cells expressing WT or ΔM-N L-selectin-RFP and RhoA, Rac1 or 

Cdc42 biosensors were labelled with DREG56 antibody and then cross-linked with 

secondary antibody. Alternatively the cells were incubated with just media. The cells 

were subsequently plated on to poly-L-lysine (PLL) coated coverslips, fixed and prepared 

for FRET/FLIM analysis. A detailed description of the assay can be found in section 2.19 

of this thesis. The basal levels of RhoA activity (no antibodies used) seemed comparable 

between the cells, although cells expressing WT L-selectin had slightly more active RhoA 

than the other two cell lines (figure 6.13 A Upper panel and B). Interestingly, a decrease 

in RhoA biosensor FRET efficiency could be seen following WT but not ΔM-N L-selectin 

cross-linking (figure 6.13 B). The basal activity of Rac1 appeared lowest in THP-1 cells 

lacking L-selectin, moderate in THP-1 cells expressing WT L-selectin and highest in cells 

expressing ΔM-N L-selectin (figure 6.13 A Middle panel and B). The same pattern was 

seen in basal Cdc42 activity (figure 6.13 A Lower panel and B). Notably, whilst L-selectin 

cross-linking did not alter Cdc42 activity, decreased Rac1 biosensor FRET efficiency 

was seen upon clustering of ΔM-N but not WT L-selectin (figure 6.13 B). Due to the time 

constraints of this PhD project, the experiment was performed only once. This however 

can serve as a foundation for future investigations of the RhoGTPase activity in L-

selectin expressing cells in our laboratory. At this point however, it has to be appreciated 

that the Rho GTPase biosensor expressing cell lines used in this study were shown to 

fail to extend pseudopods underneath the HUVEC under flow (figure 6.12). To what 

extent the cells were compromised is unknown, and hence the relevance of the results 

obtained in the cross-linking experiments is questionable. It is interesting though that 

previous work in the Ivetic laboratory showed that cross-linking of WT L-selectin on 

300.19 pre-B cells had no effect on Rac1 activity, but led to the downregulation of RhoA 

activity, as measured by active RhoA pull-down assays (Marouan Zarrouk, unpublished 

data). This would suggest that the decreased FRET of RhoA biosensor and no change 



246 
 

in FRET of Rac1 biosensor seen upon WT L-selectin cross-linking could be a meaningful 

result, as the Rho GTPase activation pattern followed that seen previously in the pull-

down assays. Perhaps, despite their transmigration defect, the generated cell lines are 

still suitable for monitoring of Rho GTPase activity in simple antibody-mediated cross-

linking assays. 

 

. 
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Figure 6.13 L-selectin-dependent signalling to Rho GTPases in THP-1 cells.  THP-1 cells 

expressing WT or ΔM-N L-selectin-RFP and/or RhoA, Rac1 or Cdc42 biosensors were labelled 

with DREG56 antibody (D56) and cross-liked with secondary antibody. Alternatively, the cells 

were incubated with just media (No. X-link.). For assay details see section 2.19. Cells were plated 

on PLL for 5 minutes before fixation and then prepared for FLIM/FRET analysis as described in 

section 2.18.1. A) The panels show YFP images corresponding to the Rho GTPase biosensors 

(left columns), multiphoton FLIM images of the FRET between CFP and YFP in the Rho GTPase 

biosensor (middle columns) and RFP images corresponding to L-selectin (right columns). 

Additionally Alexa633 images of DREG56 antibody staining are shown where relevant. Pseudo-

colour scale of blue (high lifetime,) to red (low lifetime,) is used to show lifetime fluorescence. 

High lifetime indicates no FRET and non-active Rho GTPase biosensors. Low lifetime indicates 

FRET and the active biosensors. Upper panel: Activity of RhoA, Middle panel: activity of Rac1, 

Lower panel: activity of Cdc42. B) Quantified data showing FRET efficiency between CFP and 

YFP. Average 5 cells were analysed for each condition and the cells were derived from one 

experiment only.   

 

6.3.6 Analysis of THP-1 cell chemotaxis 

L-selectin null leukocytes as well as leukocytes expressing “sheddase-resistant” L-

selectin have been shown to have impaired chemotaxis in vivo [398, 419]. The data 

presented in section 6.3.1 of this chapter show that, during TEM, cells expressing WT 

L-selectin promote a reduction in pseudopods over-time, whereas cells expressing ΔM-

N L-selectin seemed to sustain a multi-pseudopod phenotype (figures 6.2, 6.4 and 6.5). 

It was hence hypothesised that this multi-pseudopod phenotype could result in defective 

chemotaxis. To investigate chemotaxis of L-selectin expressing cells versus L-selectin 

null cells, untransduced THP-1 cells and THP-1 GFP Hi20 cells were chosen. By 

comparing GFP-expressing cells and untransduced cells, one could assess the effect of 

lentiviral transduction and ectopic protein expression on THP-1 cell directed migration. 

Transwell assays are used commonly for studying chemotaxis. Transwell chambers are 

composed of upper and lower compartments that are separated by a porous filter. 

Chemoattractant is added to a lower compartment and the cells are placed in the upper 

compartment, from where they migrate towards the chemotactic source. Monocyte 

chemoattractant protein-1 (MCP-1) is a potent chemotaxis mediator of mononuclear 

cells, capable of causing migration of THP-1 cells in transwell assays [717, 718]. MCP-

1 binds to the C-C chemokine receptor type 2 (CCR2) on the surface of the leukocytes. 

Before transwell assays were perforemed, it was first analysed whether ectopic 

expression of WT or ΔM-N L-selectin had any effects on CCR2 receptor levels. As shown 

in figure 6.14, no such effects were found as all cells had the same levels of CCR2 

expression. 
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Figure 6.14 CCR2 expression on THP-1 cells.  Expression of CCR2 on untransduced THP-1 

cells (UT), THP-1 GFP Hi20 (GFP), THP-1 WT L-selectin-GFP Hi20 (WT L-selectin) and THP-1 

ΔM-N L-selectin Lo5 (ΔM-N L-selectin) cells was monitored by flow cytometry as described in 

section 2.13. Representative histograms are shown. A) Dot plot showing the population of single 

and viable cells that were analysed (gate is shown with the blue line). B) Histogram showing 

CCR2 expression on tested THP-1 cells. 

 

Before transmigration of the cells towards the MCP-1 could be assessed, a technique 

called “checkboard analysis” was used to prove that cell migration is a result of 

chemotaxis and not chemokinesis. Unlike directional chemotaxis, chemokinesis is a 

random, non-directional movement of cells that results from the presence of a stimulant 

in the surrounding environment. Checkboard analysis was performed by adding MCP-1 

(50 ng/mL) to either the bottom compartment, or to both the top and the bottom 

compartments. The first creates a gradient of MCP-1, whereas the second generates 

uniform MCP-1 distribution and hence tests for chemokinesis. For a detailed description 

of the transwell assays see section 2.20.  Checkerboard analysis revealed that THP-1 

cell migration depended on the presence of a MCP-1 gradient across the filter, 

suggesting MCP-1 induced chemotaxis and not chemokinesis (figure 6.15 A). However, 

no differences in the transmigration across the filter was seen between the tested cell 

lines (figure 6.15 A). This suggested that transduction of THP-1 cells with lentiviral 

particles does not influence directed cell migration of those cells. This has also 

suggested that overexpression of L-selectin does not influence THP-1 chemotaxis 

across the filter up the MCP-1 gradient. Furthermore, shedding of L-selectin did not play 

a role in this process either as the same percentage of cells expressing ΔM-N L-selectin 

and cells expressing WT L-selectin had transmigrated. This was rather surprising as 

impaired polarisation of ΔM-N L-selectin expressing cells during TEM (section 6.3.1.3) 

implied that chemotaxis of those cells could be affected. However, a single time point 

was analysed in these studies and it cannot be excluded that any differences in 

transmigration could have been overlooked. Preliminary experiments where 100 or 200 

ng/mL MCP-1 were used resulted in similar percentages of transmigrated THP-1 cells 
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(data not shown) suggesting that no differences in chemotaxis were likely to occur using 

a higher MCP-1 concentration. However, it could be argued that migration across the 

“naked” filter of the transwell chamber was not representative of transmigration of 

leukocytes crossing an activated endothelial monolayer. The work outlined in this thesis 

so far would postulated that it is the interaction of the THP-1 monocytes with the activated 

HUVECs that triggered L-selectin-dependent pseudopod formation. If this was the case, 

differences in chemotaxis across the activated HUVEC monolayer could be seen 

between WT and ΔM-N L-selectin expressing cells. To test this hypothesis confluent 

HUVEC monolayers were grown on top of the fibronectin-coated transwell filters and 

were activated with TNF-α. Transmigration of untransduced THP-1 cells and cells 

expressing GFP, WT L-selectin-GFP or ΔM-N L-selectin-GFP was analysed. As shown 

in figure 6.15 B, again no differences in the number of transmigrated cells were seen. 

This was unexpected but a possible explanation of this result could be proposed. First of 

all, it was possible that differences could be seen at other time-points that were not tested 

in this study. Secondly, following the rationale that transmigration across the naked filter 

does not resemble TEM across HUVEC, emigrated leukocytes in the lower compartment 

of the transwell assay would not be representative of leukocytes emigrating into the 

interstitial space in vivo. In the transwell chamber, transmigrated leukocytes simply “free 

fall” in the medium of the lower compartment, whereas in vivo they found themselves in 

the thick 3D ECM matrix, which they have to move through to reach the chemoattractant 

source. Therefore, polarity would not play any role in case of the cells that had 

transmigrated into the media, but would be crucial for the cells that emigrated into the 

thick and complex ECM. It is therefore possible that differences could be seen in the 

directed cell migration of GFP, WT and ΔM-N L-selectin expressing cells under different 

experimental conditions. Generation of collagen/matrigel composites is currently being 

optimised in the Ivetic laboratory. Those composites mimic ECM environment and could 

be used to develop more suited chemotaxis assays. For example, an interesting assay 

for studying THP-1 directed cell migration was reported by Cain et al. (2010) [719].  In 

brief, collagen gels were polymerized in transwell filters and HUVEC were grown on top 

of the gels. MCP-1 was added to the lower compartment and THP-1 cells were added 

on top of the activated HUVEC monolayer [719]. After indicated amounts of time the 

samples were fixed and processed by confocal microscopy [719]. Acquired z-stacks 

showed leukocytes migrating in the thick collagen block before reaching the pores of the 

filter and the lower transwell compartment [719].   
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Figure 6.15 Chemotaxis of THP-1 cells towards MCP-1.  Untransduced THP-1 cells (UT) and 

cells expressing GFP (GFP), WT L-selectin-GFP (WT) or ΔM-N L-selectin-GFP (ΔM-N) were 

subjected to the transwell assays. All cells were added to the upper compartment. At the end of 

the assay (2 hours and 15 minutes), the transmigrated cells in the bottom compartment were 

collected and the percentage of transmigrated cells was calculated against the input number as 

described in section 2.20. A) Checkboard analysis of THP-1 migration. No MCP-1 was added to 

neither of the compartments in the control experiments (no MCP-1). For analysis of chemokinesis 

MCP-1 (50 ng/mL) was added to both upper and lower compartments (no gradient). For 

chemotaxis analysis MCP-1 was added to the bottom compartment only (gradient).  B) 

Chemotaxis of THP-1 cells across TNF-α activated HUVEC monolayer and towards 50 ng/mL 

MCP-1. Experiments were repeated in triplicates on three independent occasions. Data represent 

mean ± S.E.M. Statistical analysis in A: One-way ANOVA followed by Dunnett’s post-test against 

“No MCP-1” for each cell line and One-way ANOVA followed by Tukey’s post-test for “MCP-1 

gradient” across all cell lines (no difference detected) *=p<0.05, **=p<0.01. Statistical analysis in 

B: One-way ANOVA followed by Tukey’s post-test (no differences detected). 

 

A possibility also existed that effect of MCP-1 could override any effects seen by L-

selectin. In other words that changes in polarity seen between WT and ΔM-N L-selectin 

expressing cells were overridden by the MCP-1 induced chemotaxis. It was possible that 

differences between WT and ΔM-N L-selectin expressing cells could be seen when other 

chemoattractants were used. The in vivo research that identified that L-selectin 
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expression as well as its shedding is important for leukocyte directed migration utilised 

murine keratinocyte chemoattractant (KC) chemokine [398, 419]. Thus, it was possible 

that chemotaxis towards KC could reveal differences in migration of GFP, WT L-selectin 

and ΔM-N L-selectin expressing cells. Although KC is generally considered to be a 

neutrophil chemoattractant, migration of monocytes towards KC, or its human equivalent 

CXCL-1, has been reported [720]. Chemotaxis towards increasing concentration of 

CXCL-1 was thus analysed using the transwell assays. Unfortunately, none of the THP-

1 cell lines responded to CXCL-1 (figure 6.16).  

 

Figure 6.16 THP-1 monocytes do not migrate towards CXCL-1. Untransduced THP-1 cells 

(UT) and cells expressing GFP (GFP), WT L-selectin-GFP (WT) or ΔM-N L-selectin-GFP (ΔM-N) 

were subjected to the transwell assays as described in section 2.20. Indicated concentrations of 

CXCL-1 were used. After a 3-hour long assay, cells that migrated from the upper to lower 

compartments were collected and analysed against the input cells by flow cytometry. Experiments 

were repeated in triplicates on three independent occasions. Data represent mean ± S.E.M.   

  

6.4 DISCUSSION 

6.4.1 L-selectin shedding regulates THP-1 monocyte polarisation during TEM 

The results presented in this chapter show that ectopic expression of L-selectin primes 

the THP-1 cells to be more “invasive” during the first 7 min of flow. When compared to 

cells expressing GFP alone, WT L-selectin-expressing THP-1 cells have a higher fraction 

of total protruding cells, and higher fractions of cells with two or multiple pseudopods 

(figure 6.2). This clearly changes at 15 min, when the pseudopod numbers become 

similar between GFP- and WT L-selectin-expressing cells (figure 6.2). The transition 

from multiple pseudopods to single could be an indicator that shedding of WT L-selectin 

has occurred. Indeed, it is known that blocking L-selectin shedding (either with Ro-31-

9790, or through mutating the cleavage site) dramatically increases pseudopod number 

by the 15 min time point (figure 6.4 and 6.5). It is noteworthy that the peak activity of L-
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selectin shedding during TEM was observed to be 20 min in static TEM assays (figure 

4.1), so, although not formally tested, shedding of L-selectin may be hastened under flow 

conditions. Perhaps a role for L-selectin during monocyte TEM could be to augment the 

initial invasion across the endothelial monolayer. In fact, a role for L-selectin in regulating 

the invasion of trophoblasts during embryo implantation has been speculated before 

[721].  

Interestingly, the spread area of the WT L-selectin-expressing THP-1 cells does not 

decrease over time, but is in fact sustained (figure 6.9). This suggests that multiple 

pseudopods are retracting, but not to an extent that would cause the cells to “round-up”. 

Instead, it would appear that the cells are consolidating their multiple protrusions in to 

one or two pseudopods with a continued commitment towards establishing polarity. 

Again, as suggested above, this may be driven by the actual event of L-selectin 

shedding. When L-selectin shedding is blocked, THP-1 cells form multiple pseudopods 

that do not retract with time (figure 6.4). Additionally, the spread area in THP-1 cells 

expressing ΔM-N L-selectin is much larger than in those cells with an intact cleavage 

site (figure 6.9). This is thought to reflect the area gained by continuous pseudopod 

extension and a lack of multi-pseudopod retraction. These results suggest that L-selectin 

shedding must occur for the THP-1 monocyte to establish polarity during TEM. These 

observations may help understand why ΔM-N L-selectin clusters at the non-

transmigrated part of the cell, which is the total opposite to the WT L-selectin (figure 

5.6). In section 5.3.6 it was hypothesised that the cytoplasmic tail of ΔM-N L-selectin 

could be hyperphosphorylated and that this could block its movement from the non-

transmigrated part of the cell to the transmigrated pseudopod. As ΔM-N L-selectin is 

seen to cluster at the top of the cell (figure 5.6), it is possible that as the pseudopods 

expand beneath the monolayer, more membrane is dedicated to the transmigrated part 

of the cell than the non-transmigrated part. This would create a very limited membrane 

microenvironment for ΔM-N L-selectin to move around in. Furthermore, if indeed ΔM-N 

L-selectin is hyperphosphorylated, it could increase random interactions with other L-

selectin molecules (as they may not be “tethered” to the cortical actin cytoskeleton by 

the interaction with the ERM proteins). This hypothesis is also supported by the 

observations made through mutating the serines to non-phosphorylatable alanines (see 

section 6.4.2) 

The establishment and maintenance of cell polarity is important for successful migration 

of cells, including leukocytes. Leukocytes that have lost their polarity present with 

impaired chemotaxis [234, 237, 238, 243, 247, 710, 722]. Furthermore, leukocytes 

expressing a “sheddase-resistant” form of L-selectin cannot undergo chemotaxis in vivo 

[419]. It was hence hypothesised that the loss of polarity in the THP-1 monocytes 

expressing ΔM-N L-selectin could lead to a defect in chemotaxis. Transwell chambers 



254 
 

were used where transmigration of THP-1 cells across HUVEC monolayers towards a 

gradient of MCP-1 was assessed. The assays revealed no differences in transmigration 

between WT and ΔM-N L-selectin expressing cells (figure 6.15). This challenged our 

hypothesis, however it is possible that differences in chemotaxis could be seen at 

different time-points. Additionally, it could be argued that a modified experimental system 

is needed to study the contribution of L-selectin and its shedding to chemotaxis of THP-

1 monocytes. An alternative experiment that was not executed during the course of this 

PhD (due to lack of time) would include a relatively thick ECM-mimicking composite (i.e. 

matrigel and/or collagen block) in which cells could migrate upon transmigration. 

Perhaps L-selectin-driven polarity does not influence transmigration of leukocytes per-

se, but rather prime the cells for subsequent directed cell migration through the ECM. 

Furthermore, it is possible that for L-selectin-dependent chemotaxis to occur, leukocytes 

must be first recruited from flow. L-selectin mediates leukocyte tethering and rolling and 

its outside-in signalling contributes to leukocyte arrest (sections 1.2.4, 1.7.5.1.1 and 

1.11.2). Perhaps it is these early interactions of L-selectin with the endothelium that are 

required for L-selectin to then drive chemotaxis. In support of this theory, transwell 

experiments have shown that L-selectin enhances lymphocyte chemotaxis across 

activated HUVEC only if L-selectin is cross-linked prior to the assay [85, 91].  

Cell motility and polarity is affected by the family of Rho GTPases that regulate 

cytoskeletal dynamics (section 1.5). The initial idea for Rho GTPase-mediated 

polarisation of leukocytes was that the activity of Rac1 and Cdc42 at the leading edge 

promote the formation of the protrusions, whereas protrusions at the back are 

suppressed by high RhoA activity in this area [237, 238, 240, 241]. However, with an 

advent of FRET-based probes that monitor spatio-temporal distribution of Rho GTPase 

activity in real-time, this “black-and-white” model of Rho GTPase function has been 

revised. For example, it has been reported that RhoA is also active at the front of 

transmigrating lymphocytes, where it governs both membrane protrusion and retraction, 

which allows for successful formation of the leading edge [118]. RhoA activity was also 

detected in lymphocyte filopodia extending beneath the HUVEC monolayer [118]. 

Similarly, in migrating epithelial cells and fibroblasts RhoA undergoes cyclic activation 

and deactivation at the leading edge [712, 713]. Specifically, highly localised RhoA 

activation increases and decreases in synchrony with protrusion and retraction, 

respectively [712, 713]. The data regarding L-selectin clustering and Rho GTPase 

activity was obtained in the closing phases of this PhD project and as n=1 only. 

Therefore, only a purely hypothetical model incorporating Rho GTPases and L-selectin-

dependant polarity during TEM can be proposed. According to this model, it could be 

speculated that clustering of L-selectin in the transmigrated pseudopods (figure 5.2) 

could lead to a localised decrease in RhoA activity (figure 6.13), resulting in the possible 
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retraction of some of the projecting pseudopods. The result of this is the extension of a 

single pseudopod (figure 6.2), and correct establishment of a leading edge. The lack of 

such clustering in the pseudopods of cells expressing ΔM-N L-selectin (figure 5.6) leads 

to uncontrolled protrusion of multiple pseudopods (figure 6.4) and loss of polarity. 

Interestingly, the ΔM-N L-selectin only clusters in the non-transmigrated part of the cell, 

so its effects on pseudopod dynamics are likely to be very indirect. The decrease in Rac1 

activity following ΔM-N clustering would suggest that perhaps another Rho GTPase is 

active downstream of ΔM-N L-selectin clustering to promote extensive pseudopod 

formation following clustering of ΔM-N L-selectin (figure 6.13). In short, the results are 

too preliminary to draw any major conclusions and clearly an alternative biosensor is 

required to assess the spatio-temporal resolution of Rho GTPases during TEM. 

The results presented in this chapter and in figures 5.2 and 5.6 (Chapter 5) were used 

to generate a theoretical model that proposes how L-selectin might regulate monocyte 

TEM (figure 6.16). Many migrating cells extend and collapse protrusions at the leading 

edge, which is a way of “path finding” [713]. It is proposed that L-selectin may take part 

in this process.  According to this model L-selectin clusters at the leading edge 

(pseudopods) of the transmigrating cells, which results in local deactivation of RhoA. The 

combined effect of many local RhoA inactivity points results in retraction of some of the 

pseudopods. The overall effect is a transmigrated monocyte that is polarised and is able 

to migrate through the extracellular matrix and towards a chemoattractant source. When 

shedding is blocked, clustering of L-selectin occurs in the non-transmigrated parts and 

no clustering in the pseudopods occurs. As a result, high local RhoA activity at the 

leading edge persists and retraction of the excess pseudopods fails to occur. The 

emigrated monocyte loses its polarity. Such “confused” monocytes are then unable to 

proceed through the ECM and up the chemoattractant gradient. When involvement of L-

selectin shedding in driving monocyte polarity during TEM seems highly likely, the 

proposed involvement of RhoA is purely hypothetical and further experiments would be 

required to verify this working model. 
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Figure 6.17 Model of L-selectin dependent migration.  Clustering of WT L-selectin occurs at 

the leading edge (pseudopods) of the transmigrating cells, which results in local deactivation of 

RhoA. This leads to retraction of excess pseudopods and contributes to cell polarity. Upon 

transmigration, the polarised monocyte successfully migrates through the extracellular matrix and 

towards the chemoattractant source. “Sheddase-resistant” L-selectin (ΔM-N L-selectin), clusters 

in the non-transmigrated parts of the monocyte, and not in the transmigrating pseudopods. As a 

result RhoA activity and extension of multiple pseudopods is maintained and the emigrated 

monocyte loses its polarity. Lack of polarity prevents the monocyte to successfully respond to the 

chemoattractant gradient and directed migration through the ECM is abolished.    

  

6.4.2 Serine residues within the L-selectin tail regulate THP-1 cell pseudopod 

dynamics 

Mutation of the cytoplasmic serine residues within the L-selectin tail into non-

phosphorylatable alanines (SSAA L-selectin) resulted in a slight decrease in the 

percentage of total protruding cells when compared to the WT L-selectin expressing cells 

(figure 6.3). This was accompanied by decreased dynamics of the pseudopods (figure 

6.3) and reduced cell spreading area (figure 6.9). Therefore, it appears that rendering 

of the L-selectin cytoplasmic serines non-phosphorylatable results in decreased 
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“invasiveness” of the THP-1 monocytes. Perhaps phosphorylation of the tail serines is 

needed for initial dynamic pseudopod extension. This would support the hypothesis that 

the tail of ΔM-N L-selectin might be hyperphosphorylated. The hypothesis, initially 

produced in Chapter 5, assumes that when THP-1 cells become activated upon contact 

with the activated HUVEC monolayer, the L-selectin tail becomes phosphorylated. Lack 

of shedding prevents any further tail modifications and as a result ΔM-N L-selectin 

remains in a hyperphosphorylated state. If tail phosphorylation was driving initial 

pseudopod extension, cells expressing hyperphosphorylated ΔM-N L-selectin would 

become “locked” in this initial phase. This could be seen as increased cell spreading 

area and formation of multiple pseudopods that do not retract with time (figure 6.4 and 

6.9). Future experiments using SSDD mutants may best serve to further unfold this 

mystery. 

The cells that express ΔM-N SSAA L-selectin have the same cell spreading area to that 

of the cells expressing WT L-selectin (figure 6.9). However, the pseudopod dynamics of 

ΔM-N SSAA L-selectin expressing cells lie in between those found in the cells expressing 

WT L-selectin and those found in the cells expressing ΔM-N L-selectin (figure 6.8). On 

one side, the percentage of the polarised cells that form one pseudopod only is similar 

to that amongst the WT L-selectin expressing cells. On the other hand though, the 

percentage of cells with multiple pseudopods does not decrease with time and overall 

more cells with multiple pseudopods are seen at the end of the assay as compared to 

the WT L-selectin expressing cells. The fact that the ΔM-N SSAA L-selectin expressing 

cells show similarities to either WT L-selectin or to the ΔM-N L-selectin expressing cells, 

but not to SSAA L-selectin expressing cells, questions the fact that tail serine 

phosphorylation is important for the initial pseudopod extension. The difference between 

cells expressing SSAA L-selectin and those expressing ΔM-N SSAA L-selectin is that 

the former accumulate L-selectin cleavage product (“stump”) during shedding. Perhaps 

it is the presence of the non-phosphorylatable “stump” at the plasma membrane of SSAA 

L-selectin expressing cells that limits the “invasiveness” of these cells. It is possible that 

a negative feedback loop exists where the dephosphorylated “stump” – that would 

normally be generated later on during the transmigration – affects the extension and the 

dynamics of the pseudopods. Possible future experiments may rest with engineering AD 

and DA mutants to specifically pseudophosphorylate one serine residue and not the 

other. This may help determine the contribution of each serine when phosphorylated. 

The outcome of these results will heavily depend of whether the mutations will radically 

affect the overall structure of the L-selectin tail. 

Although it is difficult to propose the complete theory on how the cytoplasmic serine 

residues within the L-selectin tail influence THP-1 pseudopod dynamics, it can be 

speculated that modification of the L-selectin tail by cyclic 
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phosphotylation/dephosphorylation events are likely to occur. Those modifications are 

proposed to regulate L-selectin ectodomain shedding and L-selectin clustering. This in 

turn regulates signalling downstream of L-selectin and affects formation and dynamics 

of the pseudopods during transendothelial migration.            
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CHAPTER 7. GENERAL DISCUSSION 

The experiments described in the Chapters 3-6 of this thesis were designed to 

investigate the role that L-selectin and its shedding may play during monocyte TEM. To 

this end, THP-1 monocytic cell lines were generated that were expressing WT or 

cytoplasmic/extracellular domain mutants of L-selectin tagged to GFP and/or RFP. The 

first set of experiments to be performed was a rigorous analysis of the expression, 

localisation and function of the GFP-tagged L-selectin, which showed that the fluorescent 

tag did not have any adverse effects on the L-selectin protein behaviour (Chapter 3). 

Thus, a powerful tool was gained that allowed the investigation of the spatio-temporal 

distribution of the L-selectin localisation, shedding and clustering during TEM. More 

importantly, this approach required no monoclonal antibody to visualise L-selectin, which 

could potentially interfere with its function and particularly with respect to clustering. 

Utilisation of such cell lines in a number of carefully designed assays yielded 4 major 

findings: (i) that shedding of L-selectin peaks at 20 minutes when THP-1 monocytes are 

co-cultured with activated HUVEC (Chapter 4); (ii) that prior to the peak of shedding 

activity, L-selectin clusters in the pseudopods of transmigrating monocytes (Chapter 5); 

(iii) that engagement of either endogenous CD43 or PECAM-1 on THP-1 cells may serve 

to drive L-selectin clustering – either independently or in concert with ligand-induced 

clustering (Chapter 5); and (iv) that shedding of L-selectin regulates  monocyte cell 

spreading area and polarisation during TEM (Chapter 6). Furthermore, in all of the 

findings described (i-iv), the L-selectin extracellular cleavage site, the cytoplasmic serine 

residues (S364 and S367), or both, have been identified to play a prominent role in the 

regulation of L-selectin function.    

L-selectin plays a pivotal role during leukocyte tethering, rolling and β1/2 integrin-

mediated adhesion. There is a mounting body of evidence that defines a novel role for 

L-selectin, which is the interstitial locomotion of the emigrated leukocytes (chemotaxis) 

[398, 415-417]. Chemotaxis in vivo has been shown to be dependent on L-selectin 

shedding [419], and emigrated leukocytes have been reported to have shed the majority 

of their L-selectin both in vitro and in vivo [520, 554-556]. Therefore it appears that the 

intraluminal and interstitial activity of L-selectin may be linked through the ectodomain 

shedding that occurs during the TEM event. Due to the limitations of the transmigration 

system used in this study, only the early transmigration stage was examined, whereby 

THP-1 cells extend probing pseudopods underneath the HUVEC monolayer but never 

fully transmigrate. In this experimental system it was found that shedding of L-selectin 

peaks at 20 minutes into the assay (figure 4.1). Monocytes take 10-20 minutes to 

complete transmigration in vitro [56, 669, 723], suggesting that L-selectin shedding is 

likely to occur throughout the whole TEM event. This implies that L-selectin shedding 



260 
 

might play a regulatory function during TEM. Additionally, this thesis is the first to show 

that shedding of L-selectin during TEM is dependent on the cytoplasmic serine residues, 

the phosphorylation of which is likely to promote/accelerate shedding (figure 4.4). 

7.1 WHAT IS CURRENTLY KNOWN ABOUT THE SUBCELLULAR DISTRIBUTION 

OF L-SELECTIN? 

The experiments undertaken in this thesis were designed to explore two main aspects 

concerning the subcellular distribution of L-selectin during TEM. The first one is the GFP-

signal, throughout this thesis referred to as the "L-selectin GFP-positive spots”, which 

could be detected using the confocal microscopy. The second one is the distribution of 

L-selectin clustering, which could be seen through FLIM analysis of FRET between L-

selectin-GFP and L-selectin-RFP. 

7.1.1 The subcellular distribution of the L-selectin-GFP spots 

Analysis of the spatio-temporal distribution of the L-selectin-GFP spots during TEM 

revealed that the spots accumulate with time in the transmigrating pseudopods. This is 

reduced in the SSAA L-selectin mutant and is abolished when ΔM-N L-selectin is 

expressed (figures 4.12 and 4.13), suggesting that the observed L-selectin-GFP spots 

accumulation is the L-selectin-GFP “stump” generated during shedding. However, to 

formally test this hypothesis it would be crucial to perform further experiments that could 

verify that the spots lacked the extracellular domain. Simple examination of the GFP 

localisation is not conclusive enough as the GFP-signal could correspond to both full-

length and cleaved L-selectin-GFP. One approach would be to stain the fixed samples 

with LAM1-14 mAb that has now arrived in our laboratory and, unlike DREG56, has the 

ability to recognise L-selectin extracellular domain on fixed samples. Furthermore, it is 

possible that the GFP-positive spots represent internalised L-selectin, whether full-length 

or the “stump”. Unfortunately the approach undertaken in this thesis (EEA1 endosomal 

marker staining) did not prove successful in answering of this question, however other 

experiments can be envisioned for the future. For example, P-selectin is known to cluster 

in clathrin-coated pits before it is internalised [724], and so it would be interesting to 

perform co-localisation studies between L-selectin-GFP and clathrin. Additional staining 

with LAM1-14 could serve to further distinguish between the full-length versus the L-

selectin “stump”.   

Accumulation of the L-selectin-GFP “stump” would mean that shedding of L-selectin 

occurs in the transmigrating pseudopods. This hypothesis is in line with data obtained 

by Miss Abigail Newe, a PhD student in the Ivetic laboratory, who discovered that L-

selectin/CaM interaction can be detected in the pseudopods of transmigrating THP-1 

cells after 7 minutes of perfusion, but the interaction no longer exists after 25 minutes, 
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suggesting that CaM disassociates from L-selectin over time (A. Newe, unpublished 

data, figure 7.1). At the same time, L-selectin/CaM interaction in the non-transmigrated 

parts of the THP-1 monocytes was readily detected at both 7 and 25 minute time-points 

(A. Newe, unpublished data, figure 7.1). As CaM negatively regulates L-selectin 

shedding [559], this could indicate that shedding of L-selectin occurs exclusively in the 

transmigrating pseudopods. The implications of such localised shedding could be 

numerous. For example full-length and cleaved L-selectin could bind different cytosolic 

proteins and could support the assembly of distinct signalling platforms at the L-selectin 

tail. L-selectin is known to mediate intracellular signalling and several different signalling 

complexes have been reported/hypothesised to be associated with the L-selectin tail 

upon stimulation through the extracellular domain [245, 572, 602]. Perhaps the change-

over of the binding partners that occurs just before, during, or shortly after shedding could 

trigger signalling downstream of the L-selectin tail that would be spatially limited to the 

transmigrating pseudopods. On the other hand, L-selectin/CaM interaction and the lack 

of shedding in the non-transmigrated parts of the cell could serve to preserve full-length 

L-selectin at the uropod to support secondary capture of the flowing leukocytes, or for 

any other role it may later play during chemotaxis.  

 

Figure 7.1 Interaction between L-selectin and calmodulin during THP-1 cell transmigration.  
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Wild type RFP-tagged calmodulin (CaM-RFP) was introduced into THP-1 WT L-selectin-GFP Lo5 

cell line and cells were perfused over TNF-α activated HUVEC monolayer (for the method of the 

parallel plate flow chamber experiments see section 2.14.3). The samples were fixed and 

prepared for FLIM/FRET analysis as described in section 2.18.1. FLIM measurement of FRET 

was used to assess the interaction between L-selectin-GFP and CaM-RFP in the Top and Bottom 

z-planes (Top and Bottom are as shown in figure 5.2 A). The figure shows representative images 

of a transmigrating THP-1 monocytes after 7 (A) or 25 (B) minutes of perfusion. Left panels: 

images of L-selectin-GFP. Middle panels: corresponding GFP multi-photon intensity images. 

Lifetime of fluorescence is shown as a pseudo-colour scale of blue (high lifetime) to red (low 

lifetime). The lower the lifetime of fluorescence, the closer the association between L-selectin-

GFP and CaM-RFP. Right panels: Representative wide-field CCD camera image of CaM-RFP. 

C) Quantitation of FRET efficiency between L-selectin-GFP and CaM-RFP. Analysis was 

performed on a total of 15 cells derived from three independent experiments. Mean values are 

shown for each bar. Error bars represent S.E.M. Statistical analysis: Two-tailed unpaired 

Student’s t-test. **=p<0.01. These unpublished experiments were conducted by Miss Abigail 

Newe (Cardiovascular Division, KCL) and FLIM/FRET analysis was performed by Dr Maddy 

Parsons (the Randall Division of Cell and Molecular Biophysics, KCL).  

 

 

7.1.2 The subcellular distribution of the L-selectin clustering  

In keeping with the hypothesis that L-selectin signalling could be triggered in the 

pseudopods of transmigrating THP-1 cells, this thesis is the first to show that L-selectin 

clusters in the monocyte pseudopods during TEM (figure 5.2). L-selectin is monomeric 

in membranes [579, 580], and clustering is associated with ligand binding and signalling 

downstream of the tail and subsequent cellular responses (table 1.3). Clustering of L-

selectin in the transmigrating pseudopods is abolished when shedding cannot occur 

(figure 5.6), highlighting the importance of shedding for L-selectin-dependent signalling 

during TEM. Interestingly, modification of the cytoplasmic serine residues into non-

phosphorylatable alanines can restore clustering of the sheddase-resistant L-selectin in 

the transmigrating pseudopods (figure 5.8). This suggests that the cytoplasmic serine 

residues have a dominant role over the extracellular cleavage site as far as the clustering 

is concerned. It also implies that the serine residues are likely to be hyperphosphorylated 

in the ΔM-N L-selectin, which in turn prevents clustering. Interestingly, clustering of N-

formyl peptide receptor (FPR) occurs in the absence of receptor phosphorylation, which 

is a pre-requisite for subsequent phosphorylation and FPR internalisation [725]. Although 

FPR and L-selectin are functionally distinct, it is possible that they might share a similar 

clustering mechanism, whereby clustering in the absence of phosphorylation is a 

requirement for subsequent phosphorylation-dependent signalling processes.  

7.2 WHAT COULD BE THE RELATIONSHIP BETWEEN L-SELECTIN CLUSTERING 

AND SHEDDING IN THE TRANSMIGRATING PSEUDOPODS?  

One possibility is that shedding and clustering of L-selectin in the pseudopods are two 

independent events. Perhaps a population of L-selectin molecules clusters in response 
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to the ECM ligand binding, and another population undergoes shedding as a result of 

cellular activation. Proceeding down one of the routes could depend on the membrane 

microenvironment a given L-selectin molecule would be surrounded by. In support of this 

theory, the membrane environment has been shown to regulate L-selectin/CaM/ERM 

interaction [573, 576], and 51±7% of the neutrophil surface L-selectin has been reported 

to reside in lipid rafts under resting conditions, suggesting a pre-existing dichotomy in L-

selectin plasma membrane distribution [726]. Another possibility is that clustering and 

shedding are two consequent stages of the same event. There are several lines of 

evidence to support this hypothesis. First of all, L-selectin cross-linking, and thus 

clustering, has been repeatedly shown to cause L-selectin shedding [529, 533-536]. 

Furthermore, densely-spaced sulfated ligands, the nature of which resembles those of 

the ECM sulfated proteoglycans that bind to L-selectin, have been shown to cause L-

selectin clustering and, ultimately, shedding (figure 7.2) [678, 727]. Expression of 

biglycan (L-selectin ECM ligand) by the TNF-α activated HUVEC monolayers has been 

detected in the experimental set-up employed throughout this study (figures 5.3 and 

5.4). This hypothesis can potentially explain why the ΔM-N SSAA mutant clusters in the 

transmigrating pseudopods, however no accumulation of GFP-positive spots can be 

seen (figures 5.9 and 5.11). If clustering is a pre-requisite for shedding and is dependent 

on the lack of the serine phosphorylation, the ΔM-N SSAA L-selectin can therefore be 

effectively clustered. A lack of the extracellular cleavage site prevents shedding, and 

hence no GFP-positive spots can be seen accumulating. To test whether ECM 

components have the ability to cause L-selectin shedding, THP-1 cells expressing GFP-

tagged L-selectin could be incubated with purified biglycan, versican or collagen XVIII 

and the cell supernatants could be tested for sL-selectin using ELISA. Utilisation of the 

serine mutants in such assays would provide clues as to the role of serine 

phosphorylation in ligand-induced L-selectin shedding. Additionally, cross-linking of 

CD43 or PECAM-1 prior to the assays could help to understand if these molecules play 

a role in the modulation of the extent of the L-selectin shedding. Other experiments to 

consider would be to seed the L-selectin-GFP/RFP double expressor THP-1 cells on to 

purified immobilised ECM ligands (such as biglycan) and determine if L-selectin 

clustering is directly influenced, as assessed by FRET and compared to cells plated on 

to PLL.     
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Figure 7.2 Relationship between the ligand type and L-selectin clustering and shedding.  

A) Distribution of L-selectin at the plasma membrane when no ligand is bound. B) Engagement 

with densely spaced sulfated ligand causes clustering, conformational changes and shedding of 

L-selectin. C) Engagement with loosely spaced sulfated ligands does not induce conformational 

changes in L-selectin, and as a result shedding does not occur. Image adapted from Liu and Kiick, 

Polym. Chem., 2011 [678].    

 

7.3 HOW IMPORTANT IS INSIDE-OUT SIGNALLING FOR CLUSTERING OF L-

SELECTIN? 

This thesis is the first to report that the engagement of endogenous CD43 or PECAM-1 

causes L-selectin clustering. This discovery sets the foundations for a novel avenue of 

investigation, which would involve: (1) dissecting the signalling pathways between 

CD43/PECAM-1 and L-selectin and (2) analysing the physiological relevance of these 

interactions for leukocyte recruitment. The current study identified that CD43-mediated 

L-selectin clustering occurs in the absence of cytoplasmic tail serine phosphorylation, 

whereas it is hypothesised that PECAM-1-mediated clustering is likely to require dynamic 

phosphorylation/dephosphorylation events on the L-selectin serine residues. This in turn 

suggests that CD43 and PECAM-1 signal to L-selectin at distinct stages during the 

recruitment, which makes sense, given the spatio-temporal difference in the engagement 

of CD43 and PECAM-1 during the leukocyte adhesion cascade (the putative models 

explaining CD43 or PECAM-1-mediated L-selectin clustering during the leukocyte 

adhesion cascade were discussed in more detail in section 5.4.1). As mentioned above, 

a role of CD43/PECAM-1-induced L-selectin clustering in L-selectin shedding could be 

explored, however it would be also interesting to investigate what proteins bind to the L-

selectin tail in response to CD43/PECAM-1 signalling. A possible experiment could 

involve cross-linking of CD43/PECAM-1 and subjecting the cell lysates to the affinity 
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chromatography, using the 17 C-terminal amino acids of the L-selectin tail as “bait”. Such 

column has been successfully used in the past for the identification of the L-selectin 

binding partners in the lysates from the PMA-stimulated lymphocytes [563]. Once 

identified, the binding partners could be tagged to RFP and introduced to the L-selectin-

GFP expressing THP-1 cell lines and FRET between the two could be measured during 

TEM over a series of time points.   

7.4 WHAT IS THE BIOLOGICAL SIGNIFICANCE OF L-SELECTIN’S ACTIVITY 

DURING TEM? 

Chapter 6 of this thesis is the first to demonstrate that L-selectin influences monocyte 

morphology and pseudopod dynamics during TEM. The data presented suggest that 

expression of L-selectin renders the cells more invasive in the very early stages of TEM 

as compared to monocytes expressing GFP alone (figure 6.1). This finding could have 

potentially important therapeutic implications, given the prominent role of monocyte 

recruitment in chronic inflammatory diseases such as atherosclerosis. With time this pro-

invasive advantage is lost, a phenomenon that could be potentially explained by L-

selectin shedding occurring in the pseudopods. In keeping with this, transmigrating 

monocytes expressing WT L-selectin consolidate their multiple “invasive” pseudopods 

into one or two as the time progresses, which is thought to occur by “channelling” of the 

available membrane area into the dominant pseudopods without overall reduction in the 

cell spreading area (figure 6.9). This allows the monocytes to acquire a polarised 

phenotype. In the absence of L-selectin shedding no pseudopod rearrangement seems 

to occur, multiple pseudopods are maintained and the cell loses polarity (figures 6.4 and 

6.5). Interestingly, pseudopod dynamics and polarity appears to be also regulated by the 

cytoplasmic serine residues, as the SSAA mutation of the ΔM-N L-selectin tail can 

partially restore the dynamics seen with WT L-selectin (figure 6.8). This highlights the 

importance of the non-phosphorylated state of the serines required for L-selectin 

clustering in the pseudopods (Chapter 5), and suggests a link between clustering, 

shedding and monocyte polarisation. If the two-step model of L-selectin shedding in the 

pseudopods is true, then it is possible that the serine residues regulate L-selectin 

clustering and induce signalling necessary for the shedding response.  

Although the morphology of fully transmigrated cells could not be analysed in this study, 

it is tempting to speculate that emigrated monocytes would present with a polarised 

appearance, where the cell front would be devoid of full-length L-selectin. In support of 

this theory, preliminary experiments from the Ivetic laboratory show that when PBMCs 

are labelled with fluorescently tagged LAM1-14 mAb and subsequently perfused over 

activated endothelial cells, around 30-50% of them retain L-selectin expression at the 

uropod following TEM (Dr A. Ivetic, unpublished data). Why the remaining population 
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lose their L-selectin is unknown, and also it is not known whether the THP-1 cells studied 

in this project truly represent the monocytes that retain their L-selectin expression 

following TEM. One way to investigate this question in the THP-1 cell model would be to 

grow HUVEC on the thick collagen/matrigel substrates, allow the monocytes to 

transmigrate fully and monitor their fate beyond the endothelial barrier and in to the ECM. 

Yet again, the non-function blocking anti-L-selectin antibody LAM1-14 would prove 

useful, to label L-selectin prior to the assay or in the fixed samples. Such experiments 

are currently underway in the Ivetic laboratory in a new PhD project.  

7.5 A PUTATIVE MODEL FOR THE ROLE OF L-SELECTIN DURING TEM AND 

BEYOND   

The above has described four major findings of this PhD project were used to generate 

a hypothetical model explaining the involvement and implications of L-selectin’s activity 

during TEM. The graphical summary of the model is presented in figure 7.3, and the 

model is discussed in more detail below. It is proposed that during the resting state and 

the early stages of the leukocyte adhesion cascade, the tail of L-selectin is cyclically 

phosphorylated/dephosphorylated. This might involve stages, where only one of the 

serines (S364 or S367) is phosphorylated, two serines are phosphorylated or none is 

phosphorylated. Such regulation is likely to be very dynamic and allow for regulation of 

L-selectin function, e.g. modulation of the tail interaction with CaM, ERM and the inner 

leaflet of the plasma membrane, regulation of basal L-selectin shedding, ligand binding 

during tethering and rolling or clustering in response to CD43 engagement. Based on 

the data presented in this thesis, it is likely that the serines may play a redundant role, 

which is why mutating both serines will lead to an observed phenotype. During 

transmigration, L-selectin is exposed to the ECM environment, where it can bind to its 

sulfated ligands. It is proposed that the cytoplasmic serine residues must not be 

phosphorylated for ligand-induced clustering to occur. Furthermore, the binding could be 

facilitated by the CD43/PECAM-1-mediated L-selectin clustering. CD43/PECAM-1-

induced clustering of L-selectin could bring about a conformational change that would 

increase the avidity of L-selectin for the ECM ligand. Inside-out signalling evoked by 

stimulation of leukocytes with lineage specific stimuli has been reported to improve the 

affinity of L-selectin for PPME ligand mimetic before [728]. Additionally, due to its 

prominent role in TEM and leukocyte/EC junction interaction, PECAM-1 could serve to 

translocate clustered L-selectin from the non-transmigrated to transmigrated 

(pseudopod) part of the cell. Alternatively, L-selectin/ligand binding could occur first, and 

CD43/PECAM-1-induced inside-out signalling could modulate the avidity of this complex. 

It is further hypothesised that specific conformation of clustered L-selectin, induced by 

ECM ligand binding and/or inside-out CD43/PECAM-1-mediated signalling triggers 
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shedding of L-selectin. This event is thought to be limited to the transmigrating 

pseudopods only. Shedding of L-selectin has been reported to be mediated by p38 

MAPK [496, 531], and activation of p38 MAPK downstream of L-selectin clustering has 

been reported [589]. This opens up a possibility that engagement of L-selectin 

ectodomain could lead to L-selectin shedding in a p38 MAPK-dependent manner. 

Interestingly, p38 MAPK inhibitors have been shown to have no influence on leukocyte 

rolling or adhesion but caused chemotaxis defects parallel to those seen in L-selectin 

deficient mice [729]. This could imply a role for p38 MAPK-mediated shedding of L-

selectin during TEM as a pre-requisite for chemotaxis. It is further postulated that 

clustering and shedding of L-selectin are important for the establishment of cell polarity 

during TEM. It is proposed that signalling downstream of clustered or cleaved (“stump”) 

L-selectin could drive the retraction of competing pseudopods and could stimulate 

extension of the dominant pseudopod. It is tempting to speculate that the signalling 

pathway involves activation/deactivation of certain Rho GTPases, although the data 

presented in this thesis is currently too preliminary to draw any meaningful conclusions. 

It is hypothesised that due to L-selectin clustering and shedding, emigrated leukocytes 

would have an established polarity and would therefore be primed for directional 

migration in the extravascular space. It is also possible that the L-selectin “stump” could 

play a further role in the chemotaxis event itself.  
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Figure 7.3 Schematic model representing the possible role of L-selectin clustering and 
shedding in TEM and chemotaxis.  This model was produced based on the four major findings 

of this PhD thesis and currently available literature. It is proposed that the L-selectin tail is 

cyclically modified by phosphorylation/dephosphorylation events that regulate basal shedding, 

ligand binding during tethering and rolling, as well as the interaction of L-selectin with CaM, ERM 

and the plasma membrane (1). During TEM, L-selectin clusters upon ECM ligand binding, which 

could be modulated by CD43/PECAM-1-mediated inside-out signaling (2). Clustering is likely to 

involve CaM/ERM interaction in cis, binding of K-Ras to SOS (not shown on the schematic, see 

text below and figure 7.4) (2). Clustering results in L-selectin shedding (3). Pseudopod-specific 

clustering and shedding of L-selectin leads to retraction of multiple pseudopods, dedication of the 

plasma membrane towards one or two dominant pseudopods and leukocyte polarisation (4). 

Transmigrated leukocyte is polarised with full-length L-selectin at the uropod and L-selectin 

“stump” localised to the leading edge (5). Polarisation of the cell results in successful chemotaxis 

(5).  
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7.6 HOW DOES THIS WORK FIT WITH THE PREVIOUS OBSERVATIONS MADE IN 

THE IVETIC LABORATORY? 

Not much is currently known about the molecular players that could be involved in the 

initiation of the signalling postulated in this thesis. However, Killock et al. (2009) has 

proposed that under resting conditions each L-selectin molecule forms an independent 

1:1:1 heterotrimeric complex with CaM and ERM, where CaM associates with K-Ras and 

ERM associates with SOS (son of sevenless, GEF for Ras) (figure 7.4) [572]. Clustering 

of L-selectin was proposed to bring CaM, ERM, as well as their respective binding 

partners, from the adjacent L-selectin tails close together, which allows K-Ras to SOS 

binding (figure 7.4) [572]. This in turn could create a signalling platform capable of signal 

initiation downstream of the L-selectin tail [572]. Interestingly both K-Ras and SOS have 

been shown to activate p38 MAPK [730, 731], and engagement of L-selectin ectodomain 

stimulates the Ras pathway through SOS [245]. Additionally, Ras has been shown to 

mediate lamellipodia extension during cancer cell migration [732] and SOS has been 

seen accumulating at the leading edge of the migrating fibroblasts and COS cells [733]. 

It is hence possible that L-selectin clustering in the pseudopods results in CaM/ERM 

interaction in cis, association of K-Ras and SOS and recruitment of p38 MAPK to the 

complex. The SOS/K-Ras interaction could drive membrane extension, which could be 

subsequently modulated by p38 MAPK-induced shedding of L-selectin. It would be 

interesting to generate cell lines where L-selectin-GFP would be complimented with 

SOS-RFP or Ras-RFP and FRET could be measured between these molecules during 

TEM. Alternatively, as a more simple approach, L-selectin could be cross-linked and 

techniques like immunoprecipitation or affinity chromatography could be used to 

investigate proteins that associate with clustered L-selectin. Additionally, mutations of 

the serine residues within the L-selectin tail could help to understand if these amino acids 

are also involved in regulating the assembly of the putative signalling platforms upon 

clustering.  
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Figure 7.4 Clustering of L-selectin prompts interaction between CaM and ERM in cis.  In 

resting cells, L-selectin, ERM and CaM form a heterotrimeric complex. Within the complex, ERM 

and CaM hold proteins involved in initiation of signalling, such as SOS and K-Ras, sufficiently far 

apart to prevent signal propagation. Clustering of L-selectin (as might occur in the transmigrating 

pseudopods) brings ERM and CaM together in cis, leading to binding of SOS to K-Ras, and 

subsequent signalling. Image was generated by Dr D. Killock as an adaptation from Killock et al., 

J. Biol. Chem., 2009 [572].  

 

7.7 ARE THERE ANY OTHER POTENTIAL PLAYERS THAT COULD BE INVOLVED 

IN L-SELECTIN-DEPENDENT SIGNALLING DURING TEM OR CHEMOTAXIS? 

L-selectin clustering through ligand binding has been shown to upregulate CXCR4 

chemokine receptor and maintain receptor expression at the cell surface [85, 90]. This 

was dependent on the activation of the Src kinases [90], and another report has shown 

that the Src kinase family member p56lck becomes activated downstream of L-selectin 

clustering in lymphocytes [245, 602]. It would be interesting to establish whether Src 

kinases are activated downstream of L-selectin in THP-1 cells, as the Src kinases have 

been reported to play a role in monocyte chemotaxis [734]. It would be especially 

interesting to investigate whether the Src kinases could bind to the full-length L-selectin 

or to the L-selectin “stump” generated during shedding. 

Interestingly, infiltration of monocytes to the synovium of patients with rheumatoid 

arthritis was found to be dependent on Src/Ras/p38 MAPK pathway [734]. Even more 

interestingly, the chemoattractant in this case was found to be the soluble E-selectin 

[734], which is an L-selectin ligand for human neutrophils [381]. This highlights the 

importance of the signalling through Src kinases, p38 MAPK and Ras for monocyte 

chemotaxis, and further supports the hypothesis that these signalling molecules could 

be involved in the regulation of L-selectin-dependent signalling pathways during TEM 

and chemotaxis. It would be of interest to investigate if L-selectin from human monocytes 

can bind E-selectin, or if CD43/E-selectin binding on would lead to L-selectin clustering 

and/or shedding. 

Although the work presented in this thesis goes some way to advance our understanding 

of the role of L-selectin in the leukocyte recruitment, a number of questions still remains 

to be answered and also new questions arise, what with the discoveries made in this 

thesis. It will be important to understand where L-selectin fits between other CAMs that 

can also be clustered, can transmit signalling and can be shed. It is now clear that L-

selectin functions not only during leukocyte tethering and rolling, but also plays a role in 

leukocyte polarisation during TEM (this thesis) and mediates chemotaxis (sections 

1.7.5.1.2 and 1.11.3). To understand how L-selectin can perform its multiple functions 

would be crucial in the design of novel anti-inflammatory drugs and therapies. It is 

plausible that interference with L-selectin shedding, modulation of the L-selectin tail 
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phosphorylation by specific kinase inhibitors or blocking of upstream or downstream L-

selectin effectors could prove to be effective strategies for treatment of some of the 

chronic inflammatory diseases. Understanding what signalling platforms are being 

assembled at the L-selectin tail and how and when shifts in L-selectin signalling occur, 

would prove useful to interfere with specific stages of the leukocyte adhesion cascade 

without disruption of the others.            

7.8 CONCLUDING REMARKS 

In summary, this research project has identified a possible role for L-selectin during 

monocyte TEM. The results presented in this thesis suggest that L-selectin clusters and 

is most probably shed exclusively in the transmigrating pseudopods. This in turn results 

in the establishment of cell polarity, which is understood to play a crucial role in the 

interstitial migration of leukocytes. Hence, this thesis contributes to the current 

understanding of L-selectin’s function by possibly bridging the gap between the role of 

L-selectin inside the vasculature and the role of L-selectin outside the vasculature. This 

could have potentially powerful therapeutic implications, especially with regard to chronic 

inflammatory diseases that are mediated by monocytes. However, more research is 

needed to fully understand the mechanisms involved in the clustering, shedding and 

signalling of L-selectin during TEM as well as L-selectin’s relationship with other CAMs 

involved in the leukocyte adhesion cascade. Further assessment of full length versus 

cleaved L-selectin with respect to interstitial migration would be of great importance in 

the near future. Finally, this work has been entirely dedicated to monocytes. An important 

future aim would be to determine if these observations are specific to monocytes, or 

common to all leukocytes expressing L-selectin. 
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