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ABSTRACT 

 

Huntington’s disease (HD) is a late-onset, autosomal, dominant and progressive 

neurodegenerative disorder for which there is no disease-modifying therapy. An abnormal 

trinucleotide CAG repeats expansion (>36 CAG repeats) in exon 1 of the gene coding for the 

Huntingtin (HTT) protein is the causative mutation for the disease. Animal models of HD, such 

as the R6/2 mouse model, already exist. Yet, in order to understand the disease at a molecular 

level, cellular models of HD are also needed. At the beginning of this project, existing models 

had been developed from tumour cell lines using genome-integrating lentiviral delivery system 

carrying a mutated HTT exon 1. This model was not optimal, as the cells will always have non-

innate extra copies of HTT, which expression is driven by exogenous promoter. In order to 

circumvent this, we were aiming to develop two human stem cell models of HD and use them as 

tools in drug discovery and further understanding of molecular mechanisms of the disease.  

The first model is human embryonic stem cells (hESCs) isolated from clinically unsuitable 

embryos, donated by consenting couples. The embryos carrying a mutation in HTT gene, as 

determined by Preimplantation Genetic Diagnosis (PGD), were used to derive HD-specific 

mutation-carrying hESC lines (HD-hESC). Seven HD- hESCs lines were derived at the Assisted 

Conception Unit (ACU) at Guy’s Hospital, King’s College London (KCL).  

The second model is induced pluripotent stem cells (iPSCs) that I would derive from 

keratinocytes obtained from plucked hairs of consenting HD patients. Their greater availability 

means that we would be able to derive lines representing a larger spectrum of HD phenotype 

due to variations in CAG repeats expansion. Reprogramming will be done using a combination 

of modified mRNAs and/or a lentiviral vector encoding the transcription factors needed for 

reprogramming.  

The overall goal of the project was to optimize culture conditions for the HD-hESC and HD-iPS 

cell lines, fully characterise them, and differentiate them in vitro. Epidemiology studies suggest 

that cardiac failure is the second cause of death in HD patients. For this reasons, HD-ESCs 

were differentiated into cardiac cells (cardiomyocytes) in order to define and characterize the 

cardiac HD phenotype.  

Here, I am describing thorough characterization of normal and HD-hESC lines and their 

differentiation into cardiomyocytes. I am also presenting my data on reprogramming of human 

fibroblasts into iPSC using synthetic modified mRNA. Due to time limit and several technical 

issues outlined in the text, I was unable to successfully reprogram cells from keratinocytes 

obtained from plucked hairs of consenting HD patients.  
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Chapter 1 GENERAL INTRODUCTION 

 

1.1 Huntington’s Disease 

1.1.1 Clinical features of HD 

Huntington’s disease (HD) was named after George Huntington, who very accurately described 

the disease in his brief report “On Chorea” in 1872 (Huntington, 1872, Figure 1-1). His precise 

observations are still relevant today and admirably describe the major traits associated with HD. 

They can serve as an introduction to the disease. 

 
Figure 1-1: Picture of G. Huntington aged 22, and of the title page of his article “On 
Chorea” in the Medical and Surgical Reporter, 1872. 
 

i) Chorea is one of the hallmarks of HD. 

“Chorea is essentially a disease of the nervous system. The name "chorea" is given 

to the disease on account of the dancing propensities of those who are affected by 

it, and it is a very appropriate designation. […] The disease commonly begins by 

slight twitchings in the muscles of the face, which gradually increase in violence and 

variety. The eyelids are kept winking, the brows are corrugated, and then elevated, 

the nose is screwed first to the one side and then to the other, and the mouth is 

drawn in various directions, giving the patient the most ludicrous appearance 

imaginable. The upper extremities may be the first affected, or both simultaneously. 

All the voluntary muscles are liable to be affected, those of the face rarely being 

exempted.” 

Chorea, derived from the Greek word !"#$%&, to dance, describes the involuntary movements 

suffered by HD patients. They are associated with the neurodegeneration of the central nervous 
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system (CNS) and will only worsen throughout the duration of the illness. The beginning of 

chorea usually marks the onset of the disease (Margolis and Ross, 2003).  

 

ii) HD is an autosomal, dominantly inherited disease. 

“Of its hereditary nature. When either or both the parents have shown 

manifestations of the disease, and more especially when these manifestations have 

been of a serious nature, one or more of the offspring almost invariably suffer from 

the disease, if they live to adult age. But if by any chance these children go through 

life without it, the thread is broken and the grandchildren and great-grandchildren of 

the original shakers may rest assured that they are free from the disease.” 

G. Huntington was able to describe the autosomal, dominant inheritance pattern of HD thanks 

to long epidemiological studies carried out by himself, his father and his grandfather. Together, 

these three generations of physicians cumulated 78 years of clinical observations. This was 

prior to our current knowledge on genetics and the acceptation of Mendel’s theory of the 

principle of hereditary transmission (Mendel, 1865) 

 

iii) HD patients also suffer from cognitive decline and a tendency to suicide. 

“A tendency to insanity and suicide. […] The tendency to insanity, and sometimes 

that form of insanity which leads to suicide, is marked. I know of several instances 

of suicide of people suffering from this form of chorea, or who belonged to families 

in which the disease existed. As the disease progresses the mind becomes more or 

less impaired, in many amounting to insanity, while in others mind and body both 

gradually fail until death relieves them of their sufferings. At present I know of two 

married men, whose wives are living, and who are constantly making love to some 

young lady, not seeming to be aware that there is any impropriety in it. They are 

suffering from chorea to such an extent that they can hardly walk, and would be 

thought, by a stranger, to be intoxicated. They are men of about 50 years of age, 

but never let an opportunity to flirt with a girl go past unimproved. The effect is 

ridiculous in the extreme.” 

 

Cognitive decline, irritability and depression are common features of HD that can affect up to 

80% of HD patients. They can manifest before the onset of motor-deficits and are usually most 

prominent in the year preceding clinical diagnosis and during the early stages of the 

development of motor symptoms (Epping and Paulsen, 2011; Margolis and Ross, 2003). 

Depression is not a symptom measured relative to disease progression (Epping and Paulsen, 

2011), nevertheless suicide is a significant cause of mortality amongst HD patients (Chiu and 
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Alexander, 1982; Lanska et al., 1988; Sorensen and Fenger, 1992) and patients have to be 

monitored for it to minimise risks. 

 

iv) HD is a late onset, progressive neurodegenerative disorder. 

“I do not know of a single case that has shown any marked signs of chorea before 

the age of thirty or forty years, while those who pass the fortieth year without 

symptoms of the disease, are seldom attacked. It begins as an ordinary chorea 

might begin, by the irregular and spasmodic action of certain muscles, as of the 

face, arms, etc. These movements gradually increase, when muscles hitherto 

unaffected take on the spasmodic action, until every muscle in the body becomes 

affected (excepting the involuntary ones), and the poor patient presents a 

spectacle which is anything but pleasing to witness. I have never known a recovery 

or even an amelioration of symptoms in this form of chorea; when once it begins it 

clings to the bitter end. No treatment seems to be of any avail, and indeed 

nowadays its end is so well-known to the sufferer and his friends, that medical 

advice is seldom sought. It seems at least to be one of the incurables.” 

G. Huntington accurately describes the late-onset and progressive nature of HD. However, a 

juvenile form of the disease (JHD) also exists, with a different clinical manifestation. Age of 

onset of HD is predominantly determined by the size of the mutation of the HD gene, which will 

be discussed in section 1.1.2. JHD patients also suffer from dementia and other cognitive 

deficits. However, their major motor feature manifestation tends to be rigidity rather than chorea 

(Siesling et al., 1997). 

Unfortunately, G. Huntington’s description of the fatal nature of HD with the absence of 

treatment is still factual, despite the discovery of the cause of the disease 20 years ago. 

Intriguingly, epidemiology studies indicate that cardiac failure is the second cause of death 

amongst HD patients (Sorensen and Fenger, 1992; Lanska et al., 1988; Chiu and Alexander, 

1982). The cause for this is yet to be investigated. 

 

1.1.2 Huntingtin 

The HD gene, Huntingtin (HTT), was discovered by The Huntington Disease Collaborative 

Research Group in 1993 (The Huntington Disease Collaborative Research Group, 1993). It is 

located on chromosome 4 and is characterised by an increased polymorphic polyglutamine 

trinucleotide motif (CAG) in its first exon. This causes the translation of an abnormally long 

polyglutamine track within the Huntingtin (HTT) protein. In healthy individuals, the CAG repeat 

number ranges from 11 to 34 while HD-specific repeats are above 36. There is a strong 

negative correlation between the number of CAG repeats and the age of onset / severity of the 

symptoms (The Huntington Disease Collaborative Research Group, 1993; Trottier et al., 1994; 

Squitieri et al., 2001; Figure 1-2). 
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Figure 1-2: Negative correlation between HD age of onset and CAG repeat size. 
“Linear correlation obtained by simple regression analysis plotting the age at onset (y-axis) with 
the CAG repeat expansion (x-axis; n = 464, r2 = 0.54, p = 0.0001)” taken from Squitieri et al., 
(2001) 
 

Individuals who have CAG repeat numbers in the higher abnormal range i.e. above 55 repeats 

tend to develop Juvenile Huntington’s Disease (JHD), a more severe form of the disease, with 

slightly different clinical manifestations that develop in their youth instead of in their third to fifth 

decade. The mutation is unstable, showing both decreases and increases in size (Duyao et al., 

1993; The Huntington Disease Collaborative Research Group, 1993). The largest increases are 

found during spermatogenesis, leading to JHD mainly being the result of anticipation with a bias 

towards paternal inheritance (Telenius et al., 1993; Duyao et al., 1993). HD patients baring 

homozygous mutations do not automatically have a lower age of onset, nevertheless they will 

have a more severe phenotype and faster disease progression (Squitieri et al., 2001). Instability 

of the CAG repeat sizes have also been reported in somatic tissues, with the largest expansion 

being observed in the brain (Telenius et al., 1994; Kennedy et al., 2003). 

The discovery of HTT allowed for the development of predictive testing for individuals at risk, 

including embryos, and the development of in vivo and in vitro models of the disease. 
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1.1.3 Function of Huntingtin 

HTT is a large protein (348 kD) that is ubiquitously expressed, with the highest levels found in 

the brain and testis (The Huntington Disease Collaborative Research Group, 1993; Li, S.H. et 

al., 1993; Strong et al., 1993; Sharp et al., 1995). Its endogenous function is still not completely 

understood as it has very little homology to other known proteins (The Huntington Disease 

Collaborative Research Group, 1993). Nevertheless it has been discovered that HTT is 

essential for development, its double knockout (KO) causes embryonic lethality in mice. 

Apoptotic cell death is observed from embryonic day 6 (E6.0), primarily in the distal region of 

the epiblast. By E11.5, no embryonic tissue could be observed; only extraembryonic tissues 

(mostly yolk sac membrane) could be recovered (Zeitlin et al., 1995). HTT is also important for 

neurodevelopment and fertility. Its KO (by Cre/loxP-mediated inactivation in the forebrain and 

cerebellum using the Camk2a promoter in E.15 or postnatal mice day 5) or knockdown (in Htt-

shRNA-transfected E12.5) in mice resulted in the progressive neurodegeneration and sterility of 

these latter (Dragatsis et al., 2000; Tong et al., 2011). HTT is also involved in cellular trafficking 

as a scaffold protein, interacts with different organelles such as the Golgi apparatus, 

mitochondria and the endoplasmic reticulum, is also involved in the endosome–lysosome 

pathway and plays a role in transcriptional regulation (Landles and Bates, 2004; Harjes and 

Wanker, 2003). When HTT misfolds, it aggregates and forms inclusions pre-dominantly in the 

neural cells of the central nervous system (CNS) and to a lesser extent in peripheral tissue 

cells. WT-HTT is predominantly found in the cytoplasm while aggregates tend to be found in the 

nucleus. The nuclear localisation of mutant HTT can lead to its abnormal binding to different 

transcription factors, subsequently leading to the formation of aggregates and the disruption of 

transcriptional expression (Harjes and Wanker, 2003). This could be described as a WT-HTT 

loss of function, coupled with a mutant HTT gain of function, which could explain the defects, 

mainly neurological, observed in HD (Davies et al., 1997; Scherzinger et al., 1997; Sathasivam 

et al., 1999). 

 

 

1.2 Models of Huntington’s Disease 

In order to study human diseases, researchers have strived to create disease models. These 

range from animals to primary or genetically modified cell types. It is expected for a valid HD 

model to exhibit key features of HD in a progressive and measurable way. For instance, it is 

preferable for murine models to have a mid-to late-life disease onset characterised by motor 

impairment. 

 

1.2.1 In vivo models of HD 

HD does not naturally develop in animals. Therefore, in vivo models were created by the use of 

toxins that mimic the mutation or by the transgenic expression of the mutation. 
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1.2.1.1 Toxin-induced models of Huntington’s Disease 

Prior to the discovery of HTT, HD models were developed by the delivery of toxins to rodent and 

non-human primates to reproduce an HD-like phenotype. Toxins such as quinolinic acid and 3-

Nitropropionic Acid (3-NP), a mitochondrial inhibitor, can cause neuronal cell death. This in turn 

induces symptoms such as cognitive deficit and motor impairment which are also found in HD. 

Drawbacks associated with these models are the lack of progressive cell death and the 

absence of HTT aggregates, two hallmarks of the disease (Ramaswamy et al., 2007). 

 

1.2.1.2 Murine models of HD 

Murine models of HD can be divided into three categories: i) transgenic mice expressing 

fragments of both the promoter and exon 1 of the human HTT gene, ii) transgenic mice 

expressing the full-length human HTT gene and iii) knock-in mice expressing murine HTT with a 

pathogenic CAG repeat expansion. 

i) One of the first murine models of HD was developed in 1996 (Mangiarini et al., 1996). 

They carry a transgene allele of the promoter sequence and the HTT exon 1 N-terminal 

sequences with a CAG expansion of approximately 130 repeats. Of these, the R6/2 strain is the 

best characterised and displays an aggressive phenotype as from 4 weeks of age resulting in 

death between 10 and 13 weeks. Disease progression can be observed by reduced brain 

weight and body weight, chorea-like tremors, motor and cognitive deficits (Mangiarini et al., 

1996), as well as cardiac dysfunction (Mihm et al., 2007). The ability of mutant HTT to form 

intranuclear inclusions or aggregates, particularly in neurons was also discovered thanks to the 

R6/2 model (Davies et al., 1997). It can also be noted that the transgene is expressed in every 

tissue, as expected from the ubiquitous expression of HTT (Mangiarini et al., 1996; Sathasivam 

et al., 1999; Moffitt et al., 2009; Sassone et al., 2009) 

 

ii) Inserting full-length HTT using yeast artificial chromosomes or bacterial artificial 

chromosomes respectively generated the YAC and BAC murine HD models respectively 

(Hodgson et al., 1999; Gray et al., 2008). Unlike the R6/2 models, the YAC murine strains were 

at first generated to study CAG repeat sizes comparable to those present in either adult or 

juvenile HD patients (YAC46 and YAC72 have 46 or 72 CAG repeats respectively) (Hodgson et 

al., 1999). Disease progression in these models is much less aggressive than in the R6/2. 

Particularly in the YAC46, HD behavioral phenotypic characteristics cannot be observed for up 

to 20 months. In order to have a model with a faster disease onset, YAC murine strains with 128 

CAG repeats, the YAC128, were later engineered (Slow et al., 2003). This confirms that there is 

a strong negative correlation between CAG repeats number, age of disease onset and severity 

of HD symptoms (Hodgson et al., 1999). 

 

iii) HD knock-in murine models have been generated by engineering the murine HTT 

homologue (Hdh) to carry a pathogenic CAG repeat number (Levine et al., 1999; Shelbourne et 
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al., 1999; Wheeler et al., 2000). This approach presents the advantage of having HTT 

expressed in an endogenous genomic and proteomic context. Similarly to other full-length HTT 

murine models, the disease phenotype is milder and progression occurs in a longer lifespan 

than the transgenic fragment models (Menalled et al., 2003). This further emphasizes that the 

HTT fragments generated by the expression of exon 1 only are very toxic, and sufficient to 

cause the disease phenotype (Mangiarini et al., 1996; Davies et al., 1997) 

 

There is no doubt that murine models of HD have immensely contributed to the current 

knowledge on HD, especially from a molecular and genetic aspect, as well as pre-clinical 

standpoint. For instance, they led to the discovery of the aggregate phenotype in HD. However 

there are issues associated with these in vivo models. Firstly, they are short lived. In can be 

argued that despite their short lifespan, murine models of HD still recapitulate HD phenotypes 

that can take decades to manifest in humans. Yet, this restricts the study of the disease to very 

short time period, particularly in models such as the R6/2 mice that have a very aggressive 

phenotype manifestation. The size of the HD murine models and consequently the size of their 

brain could also be a limitation associated with these models. Indeed, treatment delivery means 

or doses that are applicable and effective to some extent in murine models cannot necessarily 

be scaled up in humans. It can also be noted that most of the existing HD in vivo models 

manifest a wide-range of symptoms with different timings. For these reasons the need for the 

standardisation of experimental protocols and their statistical analysis has been enounced 

(Hockly et al., 2003). Furthermore, it has been suggested that, prior to being considered for 

clinical trial, a compound of interest should show efficacy in at least two different murine models 

in two different laboratories (Bates and Hockly, 2003). 

 

1.2.1.3 Large animal models of HD 

Large animal models of HD include non-human primates, which were given HD by the 

transgenic expression of HTT exon 1. When expressing exon 1 with 84 CAG repeats the 

monkeys showed motor deficits, chorea and presented HTT neuronal aggregates (Yang, S.H. et 

al., 2008). Compared to murine or non-vertebrate models, non-human primates could offer the 

possibility of a wider range of cognitive tests similar to the ones performed in humans. However, 

the transgenic primates suffered from early deaths (within one day to one month post-natal), 

possibly due to the high expression levels of mutant HTT. HD-specific phenotypes such as 

chorea and apoptotic neurons were also found in HD transgenic pigs expressing a N-terminal 

(208 amino acids) portion of HTT with 105 CAG repeats (Yang et al., 2010). However, like the 

HD monkeys, the pigs suffered from early deaths. This is unlike transgenic HD murine models, 

which can survive longer with even larger CAG repeat sizes. This highlights that the 

endogenous context in which mutant HTT is expressed can influence the resulting phenotype. 

HD transgenic sheep have also been developed (Jacobsen et al., 2010) and survival of up to 

three years has been reported in this model. Unlike the HD monkey, they express the full-length 

human HTT (with 73 CAG repeats), and not only a fragment of exon 1, which seems to be 
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better tolerated. Like monkeys and pigs, sheep have the advantage of having larger brains that 

further resemble those of humans, and advanced cognitive functions (Morton and Avanzo, 

2011). 

 

1.2.1.4 Invertebrate and eukaryotic models of HD 

S.cerevisiae (Mason and Giorgini, 2011), C. elegans (Parker et al., 2001) and D. melanogaster 

(Jackson et al., 1998) are invertebrate species used to model HD, mainly by forced expression 

of HTT exon 1. Their small size and the absence of a blood-brain barrier make them useful for 

high-throughput screening of therapeutic compounds. They also have the advantage of being 

relatively inexpensive, which allows the generation of numerous biological replicates. These 

models have contributed to better understand HTT aggregation and provided further insight into 

the role of HTT, for example by linking HTT interaction with the mitochondria misfunction and 

screen for therapeutics that can later be further validated in other HD models. 

 

1.2.2 In vitro models of Huntington’s Disease 

To complement HD in vivo models, HD in vitro models have also been developed from mouse, 

rat and human cells. Cellular models of HD, such as the transgenic ones presented in Table 

1-1, recapitulate some of the hallmarks features of HD, notably increased cell death and the 

formation of aggregates. They can then be used as a screening platform for therapeutic agents 

that will prevent or delay aggregate formation and / or cell death. 
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Cell line Species 
origin Cell type Phenotype CAG (Q) 

repeat size Reference 

NG108-15 Mouse / 
Rat cell 
hybrid 

Neuroblastoma 
/ Glioma 

Presence of 
aggregates 
and 
increased 
apoptotic 
cell death 

FL (15Q, 73Q, 
116Q), N502 
(15Q, 73Q, 
116Q), N80 
(15Q, 73Q, 
116Q)  

 

Lunkes 
and 
Mandel 
(1998) 

X57 Mouse 
cell 
hybrid 

E18 Strial 
primordial / 
Neuroblastoma 

Presence of 
aggregate 

FL (18Q, 46Q, 
100Q), N3221 
(18Q, 100Q) 

Kim, M. et 
al. (1999) 

Exon 1 (16Q, 
60Q, 150Q) 

Wang, 
G.H. et 
al.(1999), 
Yamamoto 
et al. 
(2006) 

Neuro2A 
(N2A) 

Mouse Neuroblastoma 

Presence of 
aggregates 
and 
increased 
apoptotic 
cell death 

Exon 1 (25Q, 
65Q and 
103Q) 103Q) 

Yamamoto 
et al. 
(2006) 

FL (23Q, 82Q), 
N548(15Q, 
120Q), N63 
(18Q, 82Q),  

 

Rigamonti 
et al., 
(2000), 
Legleiter 
et al. 
(2010) 

ST14A 

Rat 
Striatal 
primordial 
(E14) 

Increased 
apoptotic 
cell death 

Exon 1 (20Q, 
35Q, 46Q, 
53Q) 

Legleiter 
et al., 
(2010) 

StHdhQ11
1 

Mouse Striatal 
primordial 
(E14) 

Disrupted 
cellular 
pathway 

Conditional 
immortalisation 
from knock-in 
mice (111Q) 

Trettel et 
al., (2000) 

293 Human Embryonic 
kidney 

Presence of 
aggregate 
and 
increased 
cell toxicity 

Exon 1 (20Q, 
51Q, 83Q) 

Waelter et 
al., (2001) 

HD43 Rat ST14A 
derivative 

Transcription 
abnormality 

N548 (26Q, 
67Q, 105Q, 
118Q) 

 

Sipione et 
al., (2002), 
Bari et al. 
(2013) 
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Table 1-1 continued 

Cell line Species 
origin Cell type Phenotype CAG (Q) 

repeat size Reference 

PC12 Rat Adrenal gland 
tumour 

Aggregate 
formation 

N17, Exon 1 or 
N584 with 
CAG/CAA 25-
300Q. 

Apostol et 
al., (2003), 
Arrasate et 
al. (2004), 
Sahl et al. 
(2012) 

M213 Rat 
Striatal 
primordial 
(E14) 

Reduced 
BDNF 
expression, 
formation of 
aggregates 

Exon 1 (47Q, 
72Q and 103Q 

Canals et 
al. (2004) 

Htt14A2.6 Rat Adrenal gland 
tumour 

Presence of 
aggregates 

N17 (103Q) Fox et al. 
(2004) 

HeLa Human Cervical 
cancer 

Presence of 
aggregates 
and 
increased 
apoptotic 
cell death 

Exon 1 (25Q, 
65Q and 103Q 

Yamamoto 
et al. 
(2006) 

A1 Human 
Cerebral-
neuroblastoma 
hybrid 

Presence of 
aggregates 

N3221 (18Q, 
and 100Q 

Lim et al. 
(2008) 

HN10 Mouse 

Hippocampal 
(E18-21) and 
N18TG2 
neuroblastoma
l somatic cell 
hybrid 

Presence of 
aggregates, 
transcription 
abnormality 
and 
increased 
apoptotic 
cell death 

Exon 1 and 
N857 (25Q 
and 72Q 

Weiss et 
al. (2009) 

HdhCAG Mouse Embryonic 
stem cells 

Large CAG 
repeat sizes 
increase 
neurogenesi
s 

Derived from 
Hdh knock-in 
mice (7Q, 77Q 
and 150Q) 

Lorincz 
and 
Zawistows
ki (2009) 

TrES1 Monkey Pluripotent 
stem cells 

Presence of 
aggregates 

Exon 1 (84Q) Laowtamm
athron et 
al. (2010) 

Table 1-1: Summary of transgenic cellular models of HD.  
FL: Full-length; N: N-terminal, Q: glutamine. Adapted and completed from Sipione and Cattaneo 
(2001) 
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As can be seen from Table 1-1, many transgenic HD cell lines have been developed. The vast 

majority of them features HD-specific phenotypes, notably with the formation of aggregates and 

increased apoptotic cell death. The same phenotypes have been found in primary cell models 

such as non-immortalised striatal neurons (Saudou et al., 1998; Jovicic et al., 2013; Sontag et 

al., 2012), myoblasts (Ciammola et al., 2006) or organotypic brain slice cultures (Smith and 

Bates, 2004). They have been used as a screening platform for therapeutic agents that can 

prevent or delay aggregate formation and or cell death. These cellular models present the 

important advantage of having isogenic controls. However, apart from the HdhCAG and the 

TrES1 models, which were derived from embryonic stem cells (ESCs), all the other models are 

committed to one cell lineage, mainly neuronal. This restricts the in vitro study of HD. 

Furthermore; these models will always have non-innate extra copies of HTT, whose expression 

is driven by the exogenous promoter. On possibility to circumvent this is to develop human 

embryonic stem cell (hESC) models of HD. HD-hESCs have the great advantage of baring the 

endogenous mutation, can be differentiated into multiple cell lineages and can be kept in culture 

ad infinitum, circumventing the limitations associated with primary cell culture. 

 

 

1.3 Pluripotent stem cells as disease models 

1.3.1 Human Embryonic Stem Cells 

1.3.1.1 Human Embryonic Stem Cell derivation 

hESCs were first derived by Thomson (Thomson et al., 1998) from the inner cell mass (ICM) of 

preimplantation blastocysts (day 5-7 post in vitro fertilization, IVF). hESCs are pluripotent. They 

can self-renew ad infinitum, provided that they are maintained in the right culture conditions. 

They also have the ability to differentiate into the three embryonic germ layers i.e. endoderm, 

mesoderm and ectoderm. 

 

1.3.1.2 PGD and disease-baring hESCs 

Preimplantation Genetic Diagnosis (PGD) is a prenatal genetic diagnostic procedure performed 

on a single blastomere biopsied from in vitro fertilisation (IVF) embryos at risk of inheritable 

single-gene disorders, provided that the mutated gene has been identified, prior to the embryo’s 

implantation in the at risk patient. PGD has been rendered possible by the polymerase chain 

reaction (PCR), a technique that allows the amplification of specific DNA sequences (Mullis et 

al., 1986), and has been successfully used as a diagnostic tool on human IVF embryos since 

the early 1990s (Handyside et al., 1990). As a result of the discovery of the HTT gene by the 

Huntington Disease Collaborative Research Group in 1993 (The Huntington Disease 

Collaborative Research Group, 1993), it is possible to offer PGD services to patients at risk of 

transmitting HD (Schulman et al., 1996). Non-mutation carrying embryos can then be implanted 
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while mutated ones will be discarded or, if the couple consents, can be given to research such 

as the derivation of HD-hESCs. Due to its autosomal dominant nature, HD-hESC lines are 

amongst the most numerous (20 out of 187; 10.7%) disease-bearing hESC lines to have been 

derived between 2005 and 2012. A summary of the 187 diseased-bearing hESC lines is 

presented in Table 1-2. 
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DISEASE Number 
of lines 

Adrenoleukodystrophy 1 

Albinism Ocular, Type1 2 

Alpha-Thalassaemia 2 

Alport Syndrome 2 

Beta thalassemia  6 

Beta thalassemia carrier 3 

Breast cancer  2 

Breast cancer and endocrine neoplasia  1 

Charcot-Marie Tooth Disease, Type 1A 3 

Charcot-Marie Tooth Disease, Type 1B 1 

Cystic fibrosis 22 

Cystic fibrosis carrier 1 

Epidermolysis Bullosa 1 

Fabry Syndrome 1 

Fanconi Anemia – A carrier 1 

Fragile Site Mental Retardation 1, carrier 1 

Fragile X Syndrome 6 

Fragile X Syndrome, carrier 5 

Gaucher Disease 1 

Hemoglobin Alpha Locus 1 

Hemoglobin Beta Locus mutation 3 

Hemophilia A 1 
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Table 1-2. continued 

DISEASE Number 
of lines 

Huntington's Disease 20 

Huntington's Disease & Marfan Syndrome 1 

Hypochondroplasia 1 

Incontinentia Pigmenti 1 

Infantile Neuroaxonal Dystrophy 1 

Juvenile Retinoschisis 1 

Marfan Syndrome 3 

Merosin-Deficient Congenital Muscular Dystrophy, Type 1A 1 

Multiple Endocrine Neoplasia, Type 1 1 

Multiple Endocrine Neoplasia, Type 2 3 

Muscular Dystrophy, Becker 1 

Muscular Dystrophy, Becker, carrier 1 

Muscular Dystrophy, Duchenne 5 

Muscular Dystrophy, Duchenne, carrier 1 

Muscular Dystrophy, Emery-Dreifuss 1 

Muscular Dystrophy, Emery-Dreifuss, carrier  3 

Muscular Dystrophy, Facioscapulohumeral 9 

Muscular Dystrophy, Facioscapulohumeral and Turner syndrome 1 

Muscular Dystrophy, Facioscapulohumeral, putative 2 

Myotonic Dystrophy 6 

Myotonic Dystrophy, type 1 4 

Myotonic Dystrophy, type 2 1 
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Table 1-2. continued 

DISEASE Number 
of lines 

Nemaline Myopathy 2 2 

NEMO Deficiency 2 

Neurofibromatosis, Type I 9 

Osteogenesis Imperfecta, Type 1 1 

Patau Syndrome 1 

Pelizaeus-Merzbacher Disease 1 

Popliteal Pterygium Syndrome 1 

Saethre-Chotzen Syndrome 1 

Sandhoff Disease 1 

Sickle Cell Anemia 2 

Spinal Muscular Atrophy, Type I 3 

Spinocerebellar Ataxia, Type 2 1 

Spinocerebellar Ataxia, Type 7 1 

Torsion Dystonia 1 

Torsion Dystonia 1 4 

Translocation, 7:12 1 

Translocation, 7:17 1 

Translocation, 11:22 1 

Treacher Collins-Francescetti Syndrome 2 

Tuberous Sclerosis, Type 1 3 

Turner Syndrome, mosaic cell line 1 

Vitelliform Macular Dystrophy 2 
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Table 1-2. continued 

 

1.3.1.3 hESCs culture conditions 

The first hESCs were derived and maintained for long-term culture on a feeder layer of mouse 

embryonic fibroblasts (MEF), combined with a culture medium containing foetal bovine serum 

(FBS) (Thomson et al., 1998). Many laboratories continued to use these culture conditions for 

the derivation of new lines and their long-term maintenance. However, despite the efficiency of 

feeder-based culture, it is not optimal as it is not a fully defined condition and it requires manual 

hESC passaging, which is very labour intensive, time consuming and limits the scalability of the 

hESCs cultures. This can prevent downstream applications such as hESC differentiation. 

Indeed, some differentiation protocols can require large amounts of hESCs as a starting point 

(Laflamme et al., 2007). Furthermore, experiments are limited as there is a risk that obtained 

data could be a hindered or altered due to presence of feeders. For these reasons, feeder-free 

culture systems that support the long-term, undifferentiated and pluripotent growth of hESCs 

have been developed. 

One of the most commonly used feeder-free matrix is Matrigel (Xu et al., 2001). Matrigel is a 

gelatinous substance secreted by Engelbreth-Holm-Swarm (EHS) mouse sarcoma cells, 

composed of a complex mixture of laminin, collagen IV and heparan sulfate proteoglycan (Xu et 

al., 2001;Kleinman et al., 1982). It supports the long-term (# 130 population doublings) feeder-

free culture of undifferentiated, karyotypically normal hESCs. Moreover, it allows the hESCs to 

maintain their capacity to differentiate into the three germ layers (Xu et al., 2001). Along with the 

development of feeder-free matrices, fully defined media have been developed. One of the most 

reliable media to be used in conjunction with Matrigel is mTeSR1 (Ludwig and J, 2007; Akopian 

et al., 2010). mTeSR1 is a fully defined and serum-free culture medium. It mainly maintains 

DISEASE Number 
of lines 

Von Hippel-Lindau Disease 5 

Wilms’ Tumour 1 

Wiskott-Aldrich Syndrome, Cystic Fibrosis carrier 1 

X-linked Myotubular Myopathy 2 

Zellweger Syndrome 1 

Table 1-2: Specific mutation-carrying hESC lines reported by May 17, 2012.  
(Loser et al., 2010;Strulovici et al., 2007); University of Massachusetts Medical School, 
International Stem Cell Registry http://www.umassmed.edu/iscr/GeneticDisorders.aspx; 
http://www.stemride.com/ accessed on May 17, 2012, including those derived at Assisted 
Conception Unit at Guy’s Hospital as of May 17, 2012, sorted by disease type. To be 
published in Stephenson et al. (2014). 
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hESCs pluripotency by having high concentrations of basic Fibroblast Growth Factor (bFGF) 

and transforming growth factor-$ (TGF-$). 

Feeder-free hESC culture present many advantages such as the absence of feeder-cells 

contamination and the facility of hESC culture upscaling. Furthermore, it gives the possibility to 

have a fully defined, xeno-free culture system, which is an advantage to generate hESCs for 

therapeutic uses (Stephenson et al, 2012). However, it cannot be dismissed that feeder-free 

culture maintenance may promote karyotype abnormalities and can prevent downstream cell 

differentiation. 

In the work presented in this thesis, it could be observed that, in our hands, the pluripotency 

maintenance medium of the hESCs had a direct influence on cardiac differentiation outcome 

and efficiency. This will be further discussed in Chapter 5. 

 

1.3.1.4 Limitations of hESCs 

Disease modelling with hESCs is limited by embryo availability and whether or not the disease 

is due to a unique genetic mutation that can be screened by PGD. Furthermore, the destruction 

of the embryo associated with hESC line derivation poses some ethical concerns and has 

limited hESC research in countries such as the USA or France. This gap was breached in 2006 

by the generation of a new type of pluripotent stem cells (PSCs) (Takahashi and Yamanaka, 

2006). 

 

1.3.2 Human Induced Pluripotent Stem Cells 

Human induced Pluripotent Stem Cells (iPSCs) are pluripotent stem cells derived from the 

reprogramming of adult somatic cells. This can be achieved by the forced expression of 

pluripotency genes now known as the “Yamanaka factors”, OCT3/4, SOX2, KLF4 and c-MYC 

(Takahashi et al., 2007; Takahashi and Yamanaka, 2006). Less ethical issues are associated 

with iPSC work than with hESCs generation, as it does not require the destruction of an 

embryo. Once reprogrammed, iPSCs have the same morphology, pluripotency and 

differentiation potential as hESCs. However, iPSCs generation is not an easy task and 

efficiencies were as low as 0.01% when the technique was first developed (Takahashi et al., 

2007; Takahashi and Yamanaka, 2006). As for hESCs, disease-specific iPSC can be 

generated. However, iPSCs are not limited to single gene disorders and can be derived from 

complex diseases such as Alzheimer’s disease (Yagi et al., 2011; Israel et al., 2012). Like 

hESCs, they can then be differentiated into specific tissues affected by the disease in order to 

gain further insight into the molecular mechanisms of the disease. Disease-baring PSCs can 

allow the identification of in vitro phenotypic assay that can help identify therapeutic targets. 

Since iPSCs were first derived, different reprogramming approaches have been developed in 

order to improve efficiency. Variability between protocols includes i) the source of somatic cells 

to be reprogrammed, ii) the vector used for forced ectopic expression of “pluripotency-genes” 
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and iii) the combination of genes used for reprogramming. A summary of the different methods 

used for reprogramming somatic cells into iPSCs is presented in Table 1-3. 
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Transposon  

Inducible 
lentiviral 

Lentiviral 

R
etroviral 

Vector 

E
xcisable 

Integrating 

Integrating 

Integrating 

Vector 
type 

Fibroblasts 

Fibroblasts, 
$ cells, 
keratinocytes
, blood cells 
and 
m

elanocytes 

Fibroblasts 
and 
keratinocytes 

Fibroblasts, 
neural stem

 
cells, 
stom

ach 
cells, liver 
cells, 
keratinocytes
, am

niotic 
cells, blood 
cells and 
adipose cells  
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ell type 

O
S

K
M

 

O
S

K
M

 or 
O

S
K

M
N
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S

K
M

 or 
m
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#0.1 

#0.1-2 

#0.1-1.1 

#0.001-1 

Efficiency 
(%

) 

R
easonably 

efficient and 
no genom

ic 
integration  

R
easonably 

efficient and 
allow

s 
controlled 
expression of 
factors 

R
easonably 

efficient and 
transduces 
dividing and 
non-dividing 
cells 

R
easonably 

efficient 

A
dvantage 

Labour-intensive 
screening of 
excised lines  

G
enom

ic 
integration and 
requirem

ent for 
transactivator 
expression 

G
enom

ic 
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incom
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proviral silencing 

G
enom

ic 
integration, 
incom

plete 
proviral silencing 
and slow

 kinetics  

D
isadvantage 

W
oltjen et al. 

(2009) 

S
tadtfeld et al. 

(2008a), 
M

aherali et al. 
(2008) 

Y
u, J. et al. 

(2007) 
S

tadtfeld et 
al., (2008b), 
S

om
m

er et al. 
(2009), 
A

nokye-
D

anso et al. 
(2011) 

Takahashi et 
al. (2007), 
Takahashi 
and 
Y

am
anaka 

(2006), Low
ry 

et al. (2008), 
H

uangfu et al. 
(2008) 

R
eference 
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Table 1-3 continued 

S
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P
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#0.1-1 

Efficiency 
(%

) 

N
o genom

ic 
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occasional 
genom

ic 
integration  

N
o genom

ic 
integration  

R
easonably 

efficient and 
no genom

ic 
integration  

A
dvantage 

S
equence-

sensitive R
N

A
 

replicase, and 
difficulty in 
purging cells of 
replicating virus  

Low
 efficiency 

and occasional 
vector genom

ic 
integration  

Low
 efficiency 

Labour-
intensive 
screening of 
excised lines, 
and loxP

 sites 
retained in the 
genom

e  

D
isadvantage 

Fusaki et al. 
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Tayeb et al. 
(2010) 
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. 

and Freed, 
(2009), 
S

tadtfeld et 
al. (2008c) 

S
om

ers et 
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R
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Table 1-3 continued 
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E
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m
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lentiviral or 
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transcription 
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N
o genom

ic 
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antiviral 
response, faster 
reprogram

m
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(2011) 

W
arren et al. 
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K
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H
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R
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Table 1-3: Summary of the methods for reprogramming somatic cells to iPSCs.  
Table taken from Robinton and Daley, (2012). OSKM and similar factor names represent 
combinations of reprogramming factors: O, OCT4; S, SOX2; K, KLF4; M, c-MYC and VPA, 
valproic acid. 
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It can be seen from Table 1-3 that since the development of iPSCs in 2006 (Takahashi and 

Yamanaka, 2006), a wide range of somatic cell types can be reprogrammed, using different 

delivery vectors and reprogramming gene combinations. The somatic cell type to be 

reprogrammed can be chosen based on its availability. For instance fibroblasts are a commonly 

used somatic cell type as they can efficiently be derived from a skin biopsy and are easy and 

robust to culture. Keratinocytes, on the other hand, can be chosen for their greater 

reprogramming efficiency. Compared to fibroblasts, reprogramming keratinocytes can be up to 

100-folds more efficient and twofold faster (Aasen et al., 2008). It is worth noting however that it 

has been established that despite reprogramming, iPSCs retain an “epigenetic memory” from 

their somatic source (Kim, K. et al., 2011), which influences their downstream differentiation 

potential. In this way, cord-blood-derived iPSCs will more readily differentiate into hematopoietic 

colonies than iPSCs derived from keratinocytes (Kim, K. et al., 2011). 

 

 

1.4 Pluripotent stem cells disease-modelling. 

PSC disease modelling requires three major steps: i) PSC generation, ii) PSC differentiation 

into a relevant cell type, iii) disease-specific phenotype identification (summarised in Figure 

1-3). 
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Figure 1-3: Disease modelling, therapeutic screen and clinical development using 
pluripotent stem cells (PSCs).  
PSC can be derived from i) patient-derived somatic cells reprogrammed using the “Yamanaka 
factors” or ii) the inner cell mass (ICM) isolated from an embryo. Upon derivation, PSCs are 
characterised and expanded. They can then be differentiated into mature cells to study disease-
specific phenotypes and develop assays. These assays can be used for high-throughput 
therapeutic screening and clinical development to reverse the disease phenotype and benefit 
the patient. Figure realised using the biomedical PPT toolkit by motifolio. 
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i) Disease PSC generation 

Together, hESCs and iPSCs are great complimentary tools for in vitro disease modelling. 

hESCs present the advantage of higher line derivation success. With a well-established 

protocol, hESC line derivation can reach efficiencies as high as 50%-60% (Stephenson et al., 

2012). However, hESC-disease modelling is limited to single single-gene disorders (Verlinsky et 

al., 2005). Despite their lower rate of derivation (0.01% with retroviruses and the four Yamanaka 

factors, (Takahashi et al., 2007; Takahashi and Yamanaka, 2006), iPSCs confer the advantage 

of enabling the derivation of PSCs baring multifactorial diseases, without the limited life-span 

usually associated with primary cell cultures. iPSC generation will be further discussed in 

chapter 4. 

 

ii) Disease PSC differentiation 

PSCs have the ability to differentiated into the endoderm, mesoderm and ectoderm germ layers. 

Part of their pluripotency characterisation consists of spontaneously differentiating them in vivo 

to generate teratomas, which comprise derivatives of the three germ layers (Thomson et al., 

1998). For this project, we were interested in differentiating the HD-PSCs into cardiomyocytes. 

PSC differentiation into cardiomyocytes needs to replicate 4 major developmental steps: i) the 

commitment of the PSCs to the mesoendoderm germ layer, ii) cardiomesoderm commitment, iii) 

cardiac progenitor formation and iv) cardiomyocyte maturation. Several strategies exist in order 

to achieve this. One popular approach to generate PSC-derived cardiomyocytes relies on the 

characteristic that PSCs can be spontaneously differentiated in vitro by forming aggregates in 

suspension called embryoid bodies (EBs) (Itskovitz-Eldor et al., 2000) in the absence of bFGF. 

The EBs become cystic and form derivatives of the three germ layers. Although EB-based 

differentiation is not specific, it has been demonstrated that when plated on gelatin after 7-10 

days in suspension, EBs can reproducibly (8.1%) give rise to cardiomyocytes (Kehat et al., 

2001). Another strategy to differentiate PSCs into a specific lineage consists of PSC co-culture 

with another cell type. For instance, PSCs can be differentiated into cardiomyocytes by co-

culture with the END-2 visceral endoderm-like cells (Mummery et al., 2003). Similarly, PSCs can 

be differentiated into the hematopoietic lineage by co-culture with the S17 mouse bone marrow 

stromal cell line or the C166 mouse yolk-sac endothelial cell line (Kaufman et al., 2001). A third 

method, to generate PSC-derived cardiomyocytes consists of directed differentiation by 

temporal cytokine treatment. In this method, which was chosen for this study, Activin A 

treatment is used to trigger mesoendoerm formation and exposure to Bone Morphogenic 

Protein 4 (BMP4) then further commit the cells to cardiac differentiation (Laflamme et al., 2007). 

Table 1-4 summarises key PSC cardiac differentiation protocol. Cardiac differentiation of HD-

hESCs will also be further discussed in Chapter 5. 

 



Chapter 1 GENERAL INTRODUCTION 

- 45 - 

Cardiac differentiation 

method 

 

Protocol outline Reference 

Embryoid Body (EB) based differentiation 

Spontaneous EB 

differentiation with FBS 

containing medium 

Formation of embryoid bodies 

(EBs), suspension aggregates, 

in the absence of bFGF. The 

EBs become cystic and form 

derivatives of the three germ 

layers. After 7-10 days of culture 

in suspension, EBs are plated 

on gelatin and give rise to 

cardiomyocytes (8.1%).  

Kehat et al., 2001 

Forced aggregation EB 

based differentiation in 

chemically defined medium. 

Use of force aggregation for EB 

formation and exposure to PVA, 

Insulin, 1-thioglycerol, BMP4, 

bFGF, and Y-27632.  Very high 

and rapid efficiency (#95% 

cardiomyocytes in 9 days) 

reproducible across multiple cell 

lines. 

Burridge et al., 2011 

Directed EB based 

differentiation 

Successive exposure to 

combinations of BMP4, bFGF, 

Activin A, VEGF and DKK1. Up 

to 40% differentiation efficiency. 

When used on a cell monolayer, 

this protocol gives rise to up to 

50% cardiomyocyte 

differentiation  

Yang et al., 2008 

Controlled size EBs  Generation of EBs containing 

1,000 cells by forced 

aggregation in micro-wells. The 

cells were then exposed to the 

Yang et al. differentiation 

protocol. Yields up to 75% 

cardiomyocytes 

Bauwens et al., 2011 
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Table 1-4 continued 

Cardiac differentiation 

method 

 

Protocol outline Reference 

END-2 co-culture differentiation 

END-2 co-culture PSC differentiation into 

cardiomyocytes by co-culture 

with the END-2 visceral 

endoderm-like cell line. Up to 

35% of the culture wells 

contained beating 

cardiomyocytes. 

Mummery et al., 2003 

END-2 conditioned medium  PSC differentiation by exposure 

to END-2 cell conditioned 

medium and SB203580, a p38 

MAPK inhibitor. Up to 20% 

efficiency. 

Graichen et al., 2008 

Monolayer based differentiation 

Cell monolayer High density PSC monolayer 

culture with high concentrations 

of Activin A and BMP4. Up to 

30% cardiomyocytes 

Laflamme et al., 2007 

The matrix sandwich differentiation 

Cell monolayer overlayed 

by Matrigel  

High density PSC monolayer 

culture overlayed by a fine layer 

of Matrigel and exposure to high 

concentrations of Activin A 

followed by BMP4 and bFGF. 

Gives rise to high purity of 

cardiomyocytes (98%) 

Zhang et al., 2012 

Table 1-4: Key pluripotent stem cell cardiac differentiation methods 



Chapter 1 GENERAL INTRODUCTION 

- 47 - 

 

iii) Disease-specific phenotype identification 

Disease-baring PSCs are complementary tools to animal models. As discussed previously, HD 

in vivo models have successfully recapitulated HD-specific phenotypes. However, this is also 

tampered by the fact that the mutated protein is not expressed in an endogenous context, and 

not in a range usually seen in patients. The advantage of HD-PSCs and other disease-baring 

PSC lies in their expression of the endogenous mutation in the right context, and in their 

pluripotency and ability to differentiation into an array of somatic cell types. Despite HD being a 

late onset disorder HD-PSCs have been differentiated into neural cells (Camnasio et al., 2012; 

Niclis et al., 2009; An et al., 2012; Zhang, N. et al., 2010;The HD iPSC Consortium, 2012), 

which in some cases replicated HD-specific phenotypes in vitro (Table 1-5). Yet, HD in vitro 

study is not limited to PSC-derived neural cells and we have chosen to differentiated HD-hESCs 

into cardiomyocytes in order to study the HD cardiac phenotype. This holds great promise for 

the development of disease-specific phenotypic assays and the screening of HD therapeutic 

compounds. In this way, Timothy syndrome (TS)-iPSCs were differentiated in to both 

cardiomyocytes (Yazawa et al., 2011) and neural cells (Pasca et al., 2011). TS-iPSCs 

recplicated in vitro TS-specific phenotypes (Table 1-5) in both somatic cell types, giving a better 

insight into the disease mechanism. More importantly, they are helping to validate potential 

therapeutic targets. In this example, Roscovitine (Ros), a cycline-dependent kinase inhibitor, or 

Ros related drugs could help rescue the phenotype in both TS-cardiomyocytes and TS-neuronal 

cells (Yazawa et al., 2011; Pasca et al., 2011). Therapeutic compound identification was also 

facilitated using Gaucher’s disease (GD)-iPSCs (Tiscornia et al., 2013). GD-iPSCs were 

differentiated into dopaminergic neurons and macrophages. Both cell type presented with acid-

$-glucosidase expression deficiency, a common phenotype of the disease. Using the cells as a 

screening platform, they identified two nojirimycin analogues that could rescue the GD-specific 

phenotype. 

One limitation, but potentially an advantage, that could be associated with PSC disease 

modelling is the modelling of non-cell autonomous conditions. HD is primarily a neurological 

disorder. However, cardiac failure is a common cause of death amongst HD patients (Sorensen 

and Fenger, 1992; Lanska et al., 1988; Chiu and Alexander, 1982). As described previously, 

PSC-derived cardiomyocytes are able to replicate cardiac disease-specific phenotypes in vitro. 

Since HTT is ubiquitously expressed, by studying PSC-derived HD-cardiomyocytes in vitro, this 

will give us further insight on whether cardiac defects in HD are caused by a cell autonomous or 

a non-cell autonomous process.  
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Disease Mutation In vitro 
phenotype 

Cell type Reference 

Increased 
lysosomal 
activity 

Undifferentiated 
iPSCs 

Camnasio et 
al. (2012) 

Increased 
caspase activity 

iPSC-derived 
neural cells 

Zhang, N. et 
al. (2010) 

Differential gene 
expression  

 

Undifferentiated 
iPSCs 

Increased 
TUNEL and 
caspase activity 

iPSC-derived 
neural stem 
cells 

An et al. 
(2012) 

Differential gene 
expression  

 

iPSC-derived 
neural stem 
cells 

 

Huntington’s 
Disease 

 

Extended CAG 
repeats in exon 
1 of HTT 

Change in the 
actin 
cytoskeleton, 
decreased cell 
adhesion, 
compromised 
energy 
metabolism, 
aberrant 
electrophysiology 
and increased 
cell death.  

iPSC-derived 
neural cells 

The HD 
iPSC 
Consortium 
(2012) 

Rett’s 
syndrome 

Mutation in 
MECP2 

Defect in 
neuronal 
maturation 

iPSC-derived 
neural cells 

Kim, K.Y. et 
al. (2011) 

Alzheimer's 
disease 

APP duplication Increased levels 
of amyloid-$ (1–
40), phospho-tau 
(Thr!231) and 
active glycogen 
synthase kinase-
3$ (aGSK-3$). 

iPSC-derived 
neural cells 

Israel et al. 
(2012) 
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Table 1-5. continued. 

Disease Mutation In vitro 
phenotype 

Cell type Reference 

Dyskeratosis 
Congenita 

Mutations in 
TERT (P704S 
and R979W), 
TCAB1 
(H376Y/G435R) 
and DKC1 
(DKC1_L54V 
and %L37) 

 

Reduction of 
TCAB1 
accumulation in 
Cajal bodies 
and reduction 
of telomerase 
activity 

Undifferentiated 
iPSCs 

Batista et al., 
(2011) 

Electrical 
defects 
(irregular 
cardiomyocyte 
contractions, 
longer action 
potential) 

iPSC-derived 
cardiomyocytes 

Yazawa et al., 
(2011) 

Timothy 
syndrome 

Mutation in 
CACNA1C 

Increased 
norepinephrine 
and dopamine 
production, and 
defective 
calcium 
signaling. 

iPSC-derived 
neural cells 

Pasca et al., 
(2011) 

Table 1-5: Examples of iPSC-modelled disease with an in vitro phenotype. 

 

 

1.5 Aims of the project 

The aim of the work presented in this thesis was to develop, characterise and differentiate PSC 

models of HD. To achieve this, this work is divided in three parts: 

i) Characterisation of five HD-hESC lines derived at the Assisted Conception Unit (ACU), 

King’s College London, and their adaptation to feeder-free culture conditions 

required for downstream differentiations. 

 

ii) The generation of iPSC lines. The final aim was to generate HD-iPSCs from HD-HF-

keratinocytes. To achieve this, HF-keratinocyte derivation protocols and iPSC 

generation using synthetic modified mRNA were optimised. 
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iii) hESC differentiation into cardiomyocytes in order to study the effect of the HD mutation 

in this somatic cell type and determine whether or not the cardiac failure suffered by 

HD patients is a cell autonomous or non-cell autonomous process. 
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Chapter 2 
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Chapter 2 EXPERIMENTAL PROCEDURES 

 

2.1 Human Embryonic Stem Cells 

The hESC used in this study are summarised in Table 2-1. 

WT-hESC HD-hESC 

KCL020 KCL012_HD

3 

KCL031 KCL013_HD

4 

KCL034 KCL027_HD

5 

KCL040 KCL028_HD

6 

 KCL036_HD

7 

Table 2-1: Summary of the Wild Type (WT) and HD-hESCs used in this study 
 

Unless specified differently, all cells were cultured at 37°C, 5% O2 and 6% CO2 in a HERAcell 

240 incubator (Heraeus) or a benchtop MINC incubators (Cook). All tissue culture procedures 

were conducted aseptically in a class II biological safety cabinet. 

 

2.1.1 Preparation of Human Foreskin Fibroblast (HFF)-feeders 

The hESC lines were derived and cultured on Human Foreskin Fibroblast (HFF)-feeders 

(Forticell). Frozen stocks had previously been inactivated by &-irradiation at 5,000 rad (50 Gy) 

with a caesium-source irradiator (Nordion International, GammaCell 1000 Elite). Feeder-cells 

were plated in CELLstart (CS) (Gibco, Invitrogen)-coated 4-well plates (Nunc) in M199 (72% 

Dulbecco's Modified Eagle Medium (DMEM, Invitrogen) supplemented with 18% medium 199 

(Invitrogen) and 10% FBS, (Hyclone). CS coating was performed 2 h before HFF plating by 

diluting CS 1:75 in Dulbecco’s Phosphate Buffered Saline with calcium and magnesium 

(DPBSCa2+/Mg2+, Lonza). A volume of 250 'L of diluted CS was added to each well of a 4-well 

dish and the dish placed at 37°C for 2 h. After the incubation, CS was removed and 2.25 x 104 

cells/cm2 inactivated HFF in 500µL of M199 were plated in each well. The HFF-feeders were 
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then returned to the incubator, the medium was changed every two to three days and the cells 

used within two weeks or discarded. 

 

2.1.2 Human ESCs derivation 

Human ESC lines used in this study were derived at the Assisted Conception Unit, Guy's 

Hospital (London, UK). hESCs were derived under the Human Fertilisation and Embryology 

Authority (HFEA; research license number R0133) and local ethical approval (UK National 

Health Service Research Ethics Committee Reference 06/Q0702/90) from healthy 

cryopreserved In Vitro Fertilisation (IVF) embryos and fresh embryos diagnosed with HD 

following Preimplantation Genetic Diagnosis (PGD). Informed consent was obtained from all 

patients and the experiments were compliant with the WMA Declaration of Helsinki and the NIH 

Belmont Report principles. No financial inducements were offered for donation. A sample of 

each line that is derived is deposited in the UK Stem Cell Bank for distribution to academic and 

research centres internationally. 

 

2.1.3 hESCs maintenance on HFF-feeders 

All hESC lines were initially grown and maintained as colonies on an HFF-feeder layer prepared 

as described in 2.1.1. The KOSR-XF complete medium used in this study consisted of 

KnockOut Dulbecco’s Modified Eagle Medium (KO-DMEM) supplemented with 15% KnockOut 

Serum Replacement Xeno-Free (KOSR-XF), 2 mM GlutaMax-1, 2% KOSR Growth Factor 

Cocktail and 0.1 mM $-Mercaptoethanol ($-ME) (all from Gibco, Invitrogen). The medium was 

filtered through a 0.22 'm Polyethersulfone (PES) membrane filter system (Corning), stored at 

4°C and used within 10 days. Cells were fed every two to three days with medium 

supplemented with 24 ng/mL of bFGF (R&D Systems) and pre-equilibrated at 37°C for a 

minimum of 30 min prior to use.  

hESCs were manually passaged once or twice per week. M199 medium was removed from the 

HFF-feeders, the wells rinsed three times with Phosphate Buffer Saline (PBS, Gibco) and 

replaced with 500 µL of KOSR-XF complete medium supplemented with 24 ng/mL of bFGF. 

The HFF-feeders were then returned to the incubator for 30 min prior to use. Colonies were first 

dissected under a Nikon SMZ1000 Stereomicroscope, and pieces were detached using a 

hooked disposable Pasteur Pipette (Volac Cole-Parmer). The seeding of 6-10 pieces onto a 

pre-conditioned fresh cell culture dish marked a single passage. Undifferentiated hESCs form 

tightly packed colonies with well-defined edges and are clear from differentiated cells. Prior to 

passaging, colony regions that presented sign of differentiation were discarded (illustrated in 

Figure 2-1). 
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Figure 2-1: hESC colony presenting signs of differentiation.  
KCL012_HD3 p8. Black arrow indicates differentiated area that needs removal prior to 
passaging. Image was taken at 40x magnification. 
 

 

2.1.4 hESCs maintained on HFF-feeders cryopreservation and thawing  

2.1.4.1 Vitrification 

hESCs cultured on HFF-feeders were cryopreserved by vitrification. All cryopreservation 

solutions (Table 2-2) were prepared fresh, stored at 4°C and used within one week. 
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ES-HEPES solution Volume (mL) Manufacturer 

DMEM/F-12 15.6 Invitrogen 

KOSR-XF 4.0 Invitrogen 

1M HEPES 0.4 Invitrogen 

1M Sucrose Volume (mL) Manufacturer 

Sucrose 3.42g Sigma 

ES-HEPES solution 8.0 Made as above 

KOSR-XF 2.0 Invitrogen 

10% Vitrification Volume (mL) Manufacturer 

ES-HEPES solution 2.0 Made as above 

Ethylene Glycol 0.25 Sigma 

DMSO 0.25 VWR 

20% Vitrification Volume (mL) Manufacturer 

ES-HEPES solution 0.75 Made as above 

1M Sucrose 0.75 Made as above 

Ethylene Glycol 0.5 Sigma 

DMSO 0.5 VWR 

Table 2-2: hESCs vitrification media formulations.  
DMEM/F-12: DMEM/Nutrient Mix F-12; KOSR-XF: Knock Out Serum Replacement Xeno-Free 

 

Prior to starting vitrification, all the cryopreservation solutions were pre-warmed in the incubator 

for a minimum of 30 min. The hESC culture medium of the cells to vitrify was replaced by pre-

warmed KO-DMEM. Colonies were scored and cut into pieces approximately twice the size as 

those generated for subculture. They were then placed in a well of ES-HEPES solution. 

Microdrops of 10% and 20% vitrification solutions were disposed in an inverted culture dish lid 

as illustrated in Figure 2-2. 
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Figure 2-2: Schematic of an inverted lid with microdrops of 10% and 20% vitrification 
solution for the freezing of human embryonic stem cells cultured on feeders. 

 

Six to ten colony pieces at a time were pipetted from the ES-HEPES solution and incubated for 

1 min in the 10% vitrification solution microdrop before being transferred to a 20% vitrification 

solution microdrop for 25 s. Using capillary action, the colony pieces were aspirated into a 

labelled open pulled vitrification straw (MTR), quickly held horizontally with sterile forceps and 

plunged into liquid nitrogen (LN2). Still in LN2, the straw was then placed into a 5 mL labelled 

cryovial (Nunc). This process was repeated for the remaining colony pieces. Each cryovial held 

a maximum of 12 frozen straws. 

 

2.1.4.2 Thawing 

Prior to thawing the cells, the M199 medium in one HFF-feeder plate per cell line was removed, 

cells were washed three times with PBS, and 500 'L of KOSR-XF complete medium 

supplemented with 24 ng/mL bFGF was added per well. Additionally, one thaw plate per cell 

line was prepared by adding complete KOSR-XF medium (without bFGF) to two empty wells of 

a 4-well plate. The HFF-feeder and the thaw plates were left to pre-equilibrate for at least 30 

min at 37°C prior to use. 

A straw of the desired hESC line was removed from LN2 and its tip immediately placed into the 

first well of the thaw dish. In case the medium and colony pieces would not expel immediately, 

the process was aided by inserting the tip of a 100-µL Gilson tip on the opposite side of the 

straw to lightly expel the content. The colony pieces were rapidly moved to the second well of 

the thaw dish to ensure complete removal of any cryopreservation reagents and thoroughly 

wash the cells, left to incubate for 5 min, and transferred to the pre-equilibrated feeder dish. 
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2.1.5 hESCs adaptation to feeder-free culture 

In order to adapt the cells to feeder-free culture, two substrates, Growth Factor Reduced (GFR)-

Matrigel (BD) and extracellular matrix (ECM) from decellularised feeder layer were tested, as 

well as two media, complete KOSR-XF and mTeSR1 (STEMCELL Technologies). 

 

2.1.5.1 GFR-Matrigel preparation 

GFR-Matrigel was thawed overnight on ice at 4°C, and checked for the presence of any gel 

formation. If there were no visible clumps, GFR-Matrigel stock was diluted to a final 

concentration of 0.34 mg/mL in DMEM/Nutrient Mix F-12 (DMEM/F-12, Invitrogen). Four-well 

plates or 6-well plate were coated with 250 'L/well or 1 mL/well of the solution respectively and 

placed in the incubator at 37°C for 2 h. GFR-Matrigel was then removed and replaced with the 

appropriate medium before use. 

 

2.1.5.2 Decellularised feeder preparation  

In order to prepare the decellularised feeder matrix, HFF-feeders were cultured and plated in 4-

well plates as described in 2.1.1. Two protocols using different detergents, either sodium 

deoxycholate (DOC) or Triton X-100 (both from Sigma), were tested for the quality of cell 

monolayer extraction and ECM structure preservation. Both protocols were tried on one to three 

weeks old HFF-feeders monolayer. 

2.1.5.2.1 DOC protocol  

Cell monolayer extraction was performed as described by Klimanskaya et al. (2005). Briefly, 

cells were rinsed twice with PBS before being incubated at 4°C for 30 min with the cell 

extraction buffer (0.5% DOC in 10 mmol/L tris(hydroxymethyl)aminomethane-Hydrochloric acid 

(Tris-HCl), pH 8.0). The decellularised feeder matrices were then gently rinsed five times with 

PBS. The appropriate pre-equilibrated medium could then be added for immediate use or they 

could be stored at 4°C in PBS for up to one week. 

2.1.5.2.2 Triton x-100 protocol  

Cell lysis using Triton X-100 was adapted from the published protocols by Beacham et al. 

(2007) and Vlodavsky (2001). Briefly, cells were rinsed twice with PBS before being incubated 

at 37°C for 3-5 min with the cell extraction buffer (0.5% v/v Triton X-100 and 20 mM NH4OH in 

PBS). The decellularised feeder matrices were then gently rinsed five times with PBS. The 

appropriate medium could then be added for immediate use or they could be stored at 4°C in 

PBS for up to one week. 
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2.1.5.2.3 Decellularised feeder matrix immunostaining 

To confirm the ECM integrity, samples were immunostained for fibronectin. To do so, PBS was 

removed from the decellularised feeder matrices and they were fixed with 3.7% 

paraformaldehyde (PFA; Sigma) for 20 min at room temperature (RT) and then washed three 

times with DPBSCa2+/Mg2+. DPBSCa2+/Mg2+ was chosen over PBS as it helps to keep the cells fixed 

to the dish. Fixed cells were kept at 4°C in DPBSCa2+/Mg2+ for up five days if they were not 

processed immediately. The anti-human fibronectin antibody (Sigma, F3648), developed in 

rabbit, was diluted in DPBSCa2+/Mg2+ to a final concentration of 5 µg/mL. A final volume of 

250'L/well was added to the cells overnight at 4°C. The solution was then removed and cells 

washed three times for 5 min with DPBSCa2+/Mg2+ before adding 15 µg/mL of Donkey anti-rabbit 

IgG, Rhodamine RedTM- X-conjugated (Jackson ImmunoResearch, 711-295-152) diluted in 

DPBSCa2+/Mg2+ for 40 min at RT, shielded from light. Cells were then washed three times for 5 

min in DPBSCa2+/Mg2+, mounted in Vectashield mounting medium containing 4',6-diamidino-2-

phenylindole (DAPI, Vector Laboratories), and covered with a coverslip. Samples were 

assessed using Eclipse 50i upright epifluorescence microscope (Nikon). Images were captured 

with cooled CCD camera Infinity 3 

2.1.6 hESCs adaptation to enzymatic passaging 

hESCs were first adapted to feeder-free culture conditions in 4-well plates and were manually 

passaged as described in 2.1.3. hESCs cultures were then manually expanded to tissue culture 

treated 6-well plates (Corning). Once adapted to 6-well plate feeder-free culture, the cells were 

enzymatically passaged with 1 mg/mL dispase (STEMCELL Technologies). Briefly, 

differentiated cells were manually removed and discarded. The well was then rinsed with pre-

warmed DMEM. Dispase (1 mL/well of a 6-well plate) was then applied and left to incubate at 

37!C for 7 min or until the edges of the colonies began to curl up. Once the colonies edges were 

slightly curled, the dispase was removed and two DMEM washes were performed. 1 mL of 

mTeSR1 was then added to each well before the cells could be scraped off into little clumps. 

The clumps were then seeded at a 1:6 to 1:12 ratio in freshly GFR-Matrigel-coated dishes 

containing 2 mL of mTeSR1. Enzymatic passaging took place once or twice a week. 

 

2.1.7 hESCs maintained in feeder-free conditions cryopreservation and thawing  

Unlike hESCs cultured on feeders, hESCs cultured feeder-free were not cryopreserved by 

vitrification (refer to 2.1.4) but by slow freezing. Only high quality hESCs colonies (less than 

20% of the cells being differentiated based on the assessment of morphology criteria described 

in 2.1.3) were cryopreserved when the confluency in the well reached approximately 70%. Any 

differentiated cells were manually removed prior to the procedure. The colonies were passaged 

as described in 2.1.6, generating cell clumps bigger than for usual subculture. Following, the 

second DMEM wash, the cell suspension was resuspended in 5 mL of DMEM, transferred to a 

15-mL centrifugation tube and centrifuged for 5 min at 1,000 x g. The supernatant was 
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discarded and the cell pellet resuspended in RT-pre-warmed mFreSR (1 mL per well of a 6-well 

plate, STEMCELL Technologies) using a 5-mL pipette, taking care not to generate small 

clumps. The hESCs suspension was aliquoted 1 mL per labelled cryovial and stored overnight 

at -80°C into a Mr. Frosty isopropanol cryovessel (Nalgene). Mr. Frosty allows the cells to have 

a cooling rate of –1°C per minute. The following day, the cryovials were transferred into a dewar 

and stored in the LN2 vapor phase. 

To recover hESCs from LN2, cryovials were quickly thawed in a 37°C heating block until only a 

small frozen chunk remained. The contents were transferred into a 15-mL centrifuge tube 

(Falcon) using a 5 mL pipette in order to prevent the generation of very small clumps. Pre-

warmed mTeSR1 (5 mL) was added to the tube dropwise to avoid a sudden change in 

osmolality. The cells were centrifuged 5 min at 1,000 x g. The supernatant was discarded and 

the pellet resuspended in 2 mL of mTeSR1 containing 10 µM of Rho-associated kinase (ROCK) 

I inhibitor Y-27632 (Source Bioscience), still taking care not to disaggregate the clumps further. 

ROCK I inhibitor prevents apoptosis and enhance survival of dissociated hESCs (Watanabe et 

al., 2007). The cells were then seeded in GFR-Matrigel pre-coated 6-well plates (refer to 2.1.5.1 

for GFR-Matrigel preparation). Generally, hESCs cryopreserved from 1 well of a 6-well plate 

were thawed back into 1 well of a 6-well plate. The cells were placed back in the incubator. 

 

2.1.8 hESCs pluripotency characterisation  

2.1.8.1 In vitro spontaneous differentiation 

hESCs were cultured for a minimum of three weeks in KOSR-XF medium supplemented with 

5% FBS and without bFGF. Medium was changed every two to three days. 

 

2.1.8.2 Immunofluorescence  

The presence of pluripotency or germ layer markers was assessed by immunofluorescence. To 

do so, medium was removed from the cells prior to washing them once with DPBSCa2+/Mg2+. 

They were then fixed with 3.7% PFA for 20 min at RT and then washed three times with 

DPBSCa2+/Mg2+. Fixed cells were kept at 4°C in DPBSCa2+/Mg2+ for up five days if they were not 

processed immediately. Permeabilisation was effectuated with 0.5% Triton X-100/DPBSCa2+/Mg2+ 

for 5 min at RT when staining for pluripotency markers; or with cold 90% acetone (Alfa Aesar) 

for 10 min at 4°C when staining for germ layers markers. In both cases, cells were then washed 

three times with DPBSCa2+/Mg2+. The appropriate primary antibody (Table 2-3) was diluted in 

DPBSCa2+/Mg2+ and added to the cells overnight at 4°C. The solution was then removed and cells 

washed three times for 5 min with DPBSCa2+/Mg2+ before adding the appropriate secondary 

antibody (Table 2-4) diluted in DPBSCa2+/Mg2+ for 40 min at RT, shielded from light. Cells were 

then washed three times for 5 min in DPBSCa2+/Mg2+ mounted in Vectashield mounting medium 

containing DAPI, and covered with a coverslip. Samples were assessed using Eclipse 50i 
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upright epifluorescence microscope. Images were captured with cooled CCD camera Infinity 3 

utilising Infinity Capture software and processed in Adobe Photoshop CS5. 

 

Primary antibody Final Dilution Manufacturer 

Antibodies for pluripotency staining 

 

Anti-TRA-1-60 mouse 

IgM 
10 µg/mL  

Chemicon Millipore 

(MAB4360) 

Anti-TRA-1-81 mouse 

IgM 
10 µg/mL 

Chemicon Millipore 

(MAB4381) 

Anti-human Nanog goat 

IgG 
1 µg/mL 

R&D Systems 

(AF1997) 

Anti-human Oct3/4 rabbit 

IgG 
2 µg/mL 

Sata Cruz Biotechnology  

(sc-9081) 

Antibodies for differentiation staining 

 

Anti-(-fetoprotein mouse 

IgG Clone C3 
50 µg/mL 

Sigma-Aldrich 

(A 8452) 

Anti- (-smooth muscle 

actin mouse IgG Clone 

1A4 

20 µg/mL 
Sigma-Aldrich 

(A 5228) 

Anti-$-tubulin isotype III 

mouse IgG Clone 

SDL.3D10 

20 µg/mL 
Sigma-Aldrich 

(T 5076) 

Table 2-3 Primary antibodies used for pluripotency and germ layer immunodetection of 
human embryonic stem cells 
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Secondary antibody Final Dilution Manufacturer 

Donkey anti-mouse IgM, 
DyLight  488-conjugated 15 µg/mL  

Jackson 
ImmunoResearch 

(715-485-140) 

Donkey anti-goat IgG, 
FITC-conjugated 15 µg/mL 

Jackson 
ImmunoResearch 

(705-095-147) 

Donkey anti-goat IgG, 
Rhodamine Red-X-

conjugated 
15 µg/mL 

Jackson 
ImmunoResearch 

(705-295-147) 

Donkey anti-rabbit IgG, 
FITC-conjugated 15 µg/mL 

Jackson 
ImmunoResearch 

(711-095-152) 

Donkey anti-rabbit IgG, 
Rhodamine Red- X-

conjugated 
15 µg/mL 

Jackson 
ImmunoResearch 

(711-295-152) 

Table 2-4 Secondary antibodies used for pluripotency and germ layer immunodetection 
of human embryonic stem cells 

 

2.1.8.3 Alkaline phosphatase activity detection  

Endogenous Alkaline Phosphatase (AP) activity was detected in hESCs using ELF 

Phosphatase Detection Kit (ATCC) according to manufacturer’s protocol. Briefly, cells were 

rinsed twice with PBS before being fixed with a 10% Formalin solution (4% formaldehyde w/v; 

Sigma). Cell membranes were permeabilized with 0.2% Tween 20 (Sigma) in DPBSCa2+/Mg2 for 

10 min at RT. After several rinses in DPBSCa2+/Mg2 the provided ELF phosphate substrate was 

diluted 1:20 in the kit detection buffer before being added to each well for 5 min at RT. Next, the 

cells were washed once for 15 min in wash buffer (DPBSCa2+/Mg2 with 25 mM EDTA and 5 mM 

Levamisole, pH 8.0, both Sigma-Aldrich) and twice for 15 min with rhodamine phalloidin (Gibco 

Invitrogen) diluted 1:250 in the wash buffer at RT protected from light. Finally, cells were rinsed 

twice with wash buffer, mounted in a drop of the provided mounting medium, and covered with a 

coverslip. Samples were assessed using Eclipse 50i upright epifluorescence microscope. 

Images were captured with cooled CCD camera Infinity 3 utilising Infinity Capture software and 

processed in Adobe Photoshop CS5.  
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2.1.8.4 Teratoma assay 

2.1.8.4.1 Cell preparation and mice injection 

hESCs cultures were expanded feeder-free in 6-well plates as described in section 2.1.6. 

Approximately 6 x 106 cells from (one confluent 6-well plate) were used per one injection into 

female, beige, non-obese diabetic severe immunodeficiency (NOD-SCID) mice (Charles River). 

The day prior to hESCs harvesting, an aliquot of GFR-Matrigel was thawed overnight at 4°C. To 

harvest the cells, each well of a 6-well plate was washed with 1 mL of PBS before adding 1 mL 

of accutase (STEMCELL Technologies) per well. The plate was incubated at 37°C, 5% O2, for 

approximately 3 min. Human ESCs were observed under the phase contrast microscope 

(Nikon) to confirm the formation of a single cell suspension. If needed, the cells were returned to 

the incubator for an extra 2 min. If not, the single cell suspension was added to a 15-mL 

centrifuge tube containing 7 mL of DMEM/F-12. Using 1 mL of DMEM/F-12 per well, each well 

was further rinsed to collect any remaining cells. The cells were then"centrifuged at 1,000 x g for 

5 min, after which the supernatant was discarded. The cell pellet was resuspended in a final 

volume of 240 'L 1:3 GFR-Matrigel:DMEM/F-12. The cell suspension was kept on ice until the 

time of injection in order to prevent the GFR-Matrigel from polymerizing. Just prior to injection, it 

was loaded in a 1-mL syringe (Terumo) fitted with a 30-gauge needle (BD Microlance). Air was 

expelled from the syringe and cells were injected subcutaneously in the right or left flank of the 

NOD-SCID mouse. A total of two to three NOD-SCID mice per hESCs line were injected. They 

were observed on a weekly basis and palpated for tumour formation detection. Typically the 

tumours would be observed 6-12 weeks post injection. When sufficient tumour growth was 

achieved (at least 1cm3) and before their discomfort had become too acute, the mice were 

sacrificed using a Schedule 2 method. Mice were cared for and sacrificed in accordance with 

the Home Office license guidelines# 

 

2.1.8.4.2 Teratoma harvesting and preparation for immunohistochemistry analysis 

The mice were sacrificed and the tumours removed. After rinsing with PBS, the tumours were 

placed in 4% PFA to fix the tissue. To ensure rapid, even fixation, the specimens were placed 

on a Rotator at RT, fixed for 2 h, bisected longitudinally and then fixed for a further 48 h. If the 

tumours could not be immediately processed, they were stored at 4°C in PBS containing 0.1% 

azide (Sigma) to prevent microbial and fungal contamination. 

The teratomas preparation, histological staining, immunohistochemistry staining and sample 

analysis were done at the Wolfson CARD Histology laboratory at King's College London.  

Briefly, the teratomas were placed into individual, coded, processing cassettes and processed 

to Paraffin wax (VWR), using a Leica 2010 Processing machine. Upon completion of 

processing, the teratomas were embedded into heated moulds containing molten wax. The 

moulds were then cooled at 4°C until the wax had solidified. The wax-embedded teratomas 

were sectioned in 6 'm serial slices using a rotary microtome, and allowed to float on the 

surface of 45°C heated water to softens the wax and allow the tissues to flatten out. Sections 
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were then mounted onto Superfrost Plus Microscope slide (Fisher Scientific). These slides have 

a special pre-treatment that allows the tissue sections to electrostatically adhere to the glass. 

Section–mounted slides were then placed into a 60°C oven for 1 h to ensure maximum 

adhesion. Slides were then stored at RT until required. 

 

2.1.8.4.3 Histological staining and analysis 

It is essential to de-wax the samples prior to histology as wax is hydrophobic and would repel 

the aqueous solution used for histological staining. To do so, two 10 min xylene (SLS) washes 

under agitation at RT were performed to de-solubilize the wax. This was followed by rehydration 

in four short absolute alcohol baths and a final wash in water. Sections were then sequentially 

stained using Mayer’s Haematoxylin (for nuclei) (VWR) and Eosin (for cytoplasmic and all 

extracellular structures) (Sigma). 

 

2.1.8.4.4 Immunohistochemical staining and analysis 

As recognisable tissue structures from each germ layer could not always be readily identified by  

Haematoxylin & Eosin (H&E) examination, additional immunohistochemical staining and 

analysis of the teratomas was performed. Immunohistochemistry using germ layer-specific 

markers allowed confirmation of hESC differentiation into endoderm, mesoderm and ectoderm 

tissues.  

As for histological staining (section 2.1.8.4.3), the teratoma sections required de-waxing prior to 

immunohistochemical staining after which sections were taken to water and blocked for 

endogenous peroxidases using 3% hydrogen peroxide aqueous solution for 10 min at RT 

(Sigma). This step deactivates the samples’ endogenous peroxidase activity, which is essential 

as the detection system is based on a peroxidase activity (Horseradish peroxidase). 

Next, Heat Induced Epitope Retrieval (HIER) was performed on the sections: this is necessary 

as Formalin-fixation and then paraffin wax processing (alcohol dehydration and the 62°C heat of 

the wax) can either destroy or mask antigenic sites (epitopes) of proteins. The precise 

mechanism whereby HIER unmasks hidden epitopes is not known but it appears to be either by 

calcium removal or Heat-inducing conformational changes to the protein, or both, allowing the 

epitopes to be revealed. 

Once completed, slides were rinsed well in tap water before applying blocking solution (1 % 

bovine serum albumin in 1x Tris Buffered Saline (TBS) and 0.1 % azide, pH 7.6) for at least 5 

min to quench (by ionic attraction) non-specific attachment of antibodies.  

After blocking, primary antibodies specific for differentiated germ layers were diluted in blocking 

solution and left for 2 h at RT. The dilutions at which the antibodies were used are indicated in 

Table 2-5. After the primary antibody incubation, the slides were gently rinsed in 1X TBS and 

then washed in 500 mL 1X TBS, with stirring, for 10 min. Excess buffer solution was then flicked 
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off the slides before incubating them for 60 min at RT with the biotinylated secondary antibody 

(Table 2-6), also diluted in blocking solution. 

 

 Primary antibody Manufacturer Final concentration 

Human specific 
Anti-MTCO2 

Mouse IgG 

Abcam 

(110258) 
4 'g/mL  

Anti-(-fetoprotein Mouse IgG 
Sigma 

(A8452) 
12.5 'g/mL 

Endoderm 
Anti-GATA4 

Goat IgG 

R&D  

(AF2606) 
1.3 'g/mL 

Anti-Desmin 

Mouse IgG 

Sigma 

(D-1033) 1:1500* 

Mesoderm 
Anti-Tenascin C 

Rabbit IgG 

Abcam 

(ab108930) 1:250** 

Anti-$-tubulin isotype III 

Mouse IgG 

Abcam 

(ab7751) 
2 'g/mL 

Ectoderm 
Anti-GFAP 

Rabbit IgG 

Abcam 

(ab7260) 1:2500** 

Table 2-5: Primary antibodies used for germ layer immunodetection on teratomas.  
*Anti-Desmin is an ascites fluid and the final antibody concentration has not been determined. 
**Anti-Tenascin C and anti-GFAP are whole anti-sera and the final antibody concentration has 
not been determined. 
 

 

Secondary biotinylated 
antibody Manufacturer Final concentration 

Goat anti-rabbit IgG Vectorlab BA-1000 3 'g/mL 

Goat anti-mouse IgG Vectorlab BA-9200 3 'g/mL 

Table 2-6: Secondary Biotinylated antibodies used for germ layer immunodetection on 
teratomas 

 

After incubation with the biotinylated secondary antibodies, the slides were rinsed once briefly in 

1X TBS followed by a 10 min wash with stirring in 1X TBS. This was immediately followed by a 

30 min incubation at RT with the StreptABC-HRP complex (VectorLabs), which was made in 1X 

Tris Buffer. The slides were then washed in 1X TBS as above.  

The samples were then developed for 10 min in diaminobenzidin solution (DAB) (VectorLabs) 

prepared following the manufacturer’s instruction, under gentle agitation. Following this, the 



Chapter 2 EXPERIMENTAL PROCEDURES 

- 65 - 

sections were washed under running tap water for 5 min, counterstained in Mayer’s 

Haematoxylin for 2 min in order to be able to visualise the cells’ nuclei, and washed again under 

tap water it latter was running clear. Before being mounted on the coverslip, the sections had to 

be dehydrated. For this, they were washed in four successive 2 min alcohol baths of 100% 

Industrial Methylated Spirit (IMS) followed by two 5 min Xylene washes to render the section 

hydrophobic. The slides were then ready to be mounted with Di-n-butyl phthalate (DPX, VWR). 

Controls procedures with the omission of either the primary or secondary antibody were 

performed to check the specificity of the antigen:antibody interactions. 

Images were taken with an Axiocam MR colour camera (medium resolution, Zeiss) mounted on 

an axioscope upright microscope (Zeiss) and processed with Photoshop CS5. 

 

2.1.9 CAG repeat number determination 

2.1.9.1 Total DNA extraction 

Total DNA was extracted from trypsinised and pelleted cells using the DNeasy kit (Qiagen) 

according to manufacturer’s protocol. Briefly, cell lysis was performed by the resuspension of 

the pellet in 200 µL of PBS supplemented with 12 mAU/mL proteinase K, followed by the 

addition of 200 µL of buffer AL (with ethanol added), vortexing and a 10 min incubation at 56°C. 

The sample was homogenised by the addition of 200 µL of 100% ethanol and vortexing before 

being pipetted into a QIAgen DNeasy mini spin column and centrifuged at 6,000 x g for 1 min. 

The flow through was discarded and the column was washed with the addition of 500 µL of 

buffers AW1 and AW2 followed by a 6,000 x g for 1 min and a 20,000 x g for 3 min 

centrifugations respectively. To elute the DNA, 200 µL of buffer AE or water was pipetted to the 

column, left to incubate for 1 min at RT and centrifuged for 1 min at 6,000 x g into a DNAse-free 

1.5-mL microcentrifuge tube. DNA concentration was determined using a Nanodrop ND1000 

UV-Vis Spectrophotometer (Labtech Int). The DNA concentration was adjusted to 50 ng/µL 

before proceeding to the repeat sizing polymerase chain reaction (PCR). 

 

2.1.9.2 Repeat sizing PCR 

Determination of the CAG repeat sizing of the different hESC lines was carried out by PCR. The 

10 µL PCR reaction set up is described in Table 2-7 and thermocycling conditions used on the 

Bio-rad MyCycler Thermal Cycler are described in Table 2-8. 
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Component Volume 

DNA (50 ng/'L) 2 'L 

dNTPs (2mM) 1 'L 

DMSO 1 'L 

AM Buffer (2mM) with $-mercaptoethanol 1 'L 

Forward Primer (10 pmol/'L) 

GAGTCCCTCAAGTCCTTCCAGCA 

0.8 'L 

Reverse primer (10 pmol/'L) 

GCC CAAACTCACGGTCGGT 

0.8 'L 

AmpiTaq (5 U/'L) 0.1 'L 

RNAse/DNAse free dH20 3.3 'L 

Table 2-7: PCR reaction set up for CAG repeat sizing.  
dNTPs are from Invitrogen and Ampitaq polymerase is from Applied Biosystem. All the other 
components are from Sigma. 
 

 

 

 

 

 

Step Temperature Time 

Enzyme 
activation  

94ºC 

 

90 s 

Denaturation 94ºC 

 

30 s 

Annealing 65ºC 

 

30 s 

Elongation 72ºC 

 

90 s 

Final elongation 72ºC 

 

10 min 

Table 2-8: Repeat sizing PCR thermocycling conditions 

  X 35 
cycles 
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After the PCR, for each sample, 1 'L of PCR product was mixed with 9 'L of HiDi Formamide 

(Applied Biosystems) and 0.03 'L l MegaBACE ET900-R Size standards (GE Healthcare) and 

denatured at 95ºC for 5 min. The PCR reaction was stopped by immediately putting the 

samples on ice.  

 

2.1.9.3 CAG repeat size determination 

The samples were then run on an ABI 3730xl PCR machine at GSTS Pathology, Guy’s 

Hospital, London. 

Using the GeneMapper software (Applied Biosystem), the standards’ size were checked first. If 

they were correct, the amplicon’s size could then be established. To determine the actual CAG 

repeat size, the following formula was used: 

CAG Repeat size  = (amplicon size in base pairs – 185)/3 

where 185 corresponds to the products amplified in the 5’ and 3’ sequence of the uninterrupted 

CAG repeat tract. 

 

2.1.10 Array Comparative Genomic Hybridisation karyotyping 

Array Comparative Genomic Hybridisation (aCGH) was performed on each hESC line in order 

to monitor the karyotype and the genomic copy number variation of each cell line by the 

Cytogenetics laboratory (GSTS Pathology, Guy’s Hospital, London). DNA extractions were 

performed on cell pellets of each line using a Chemagen DNA extraction robot according to the 

manufacturer’s instructions. The DNA concentrations were measured using a NanoDrop and 

DNA integrity was confirmed by agarose gel electrophoresis. Following the manufacturer’s 

instructions, 1 µg of DNA was labelled using a CGH labelling kit (Enzo Life Sciences) before 

being purified using the QIAquick PCR purification kit (Qiagen) and run on an Agilent 4 x 44 K 

platform using either Wessex NGRL design 017457 or design 028469. Hybridization, washing 

and scanning of the arrays were all performed according to the manufacturer’s protocols. 

Analysis of the results and interpretation of the data was performed by the Cytogenetics team 

using feature extraction and DNA analytics software packages (Agilent). Only lines with a 

normal karyotype were used in this study. 

 

2.1.11 DNA Fingerprinting 

DNA fingerprinting was performed on each newly derived hESC line by the Cytogenetics 

laboratory (GSTS Pathology, Guy’s Hospital, London). DNA was extracted and quantified as 

described in section 2.1.10. DNA was amplified using two PCR multiplexes (Heath et al., 2000). 

The first one targeted 17 polymorphic microsatellite markers on chromosomes 13, 18 and 21. 

The second targeted 14 markers on the X and Y chromosomes. The various PCR products 
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were separated using an ABI PRISM 3100 Genetic Analyzer, and results were analysed using 

the ABI Genotyper software and interpreted by recording the allele sizes for each marker in 

order to give a unique fingerprint of each cell line by the Cytogenetics laboratory team. 

 

1.1.1 Human Leukocyte Antigen (HLA) typing 

HLA typing was performed and analysed by the Cytogenetics Department and the Clinical 

Transplantation Laboratory, Guy's Hospital, London as per the method described in Jacquet et 

al. (2013). 

 

 

2.2 Reprograming of somatic cells into iPSCs using synthetic 

modified mRNA  
 

The generation of iPSCs using modified synthetic mRNA as a reprogramming vector was first 

successful in 2010 (Warren et al., 2010). This technique was then modified and commercialised 

by Stemgent. We further improved the protocol and the final protocol that gave rise to iPSCs will 

be described in this section. Key modifications and differences between the original protocol, 

Stemgent’s and mine will be discussed in Chapter 4. 

 

2.2.1 BJ cell culture 

The commercially available neonatal foreskin BJ fibroblasts (CRL-2522, ATCC) were used as a 

positive control. The purchased cryovial containing 6.7 x 105 cells was recovered for culture by 

being quickly transferred from LN2 to a 37°C heating block until most of the cell suspension was 

thawed. The cells were then transferred to a 15-mL centrifuge tube containing 4 mL of pre-

warmed complete BJ medium consisting of Eagle’s Minimum Essential Medium (ATCC) 

supplemented with 10% FBS (Sigma). The cells were centrifuged for 5 min at 1,000 x g and 

were resuspended in 10 mL of complete BJ medium after removal of the supernatant. BJs were 

plated in a T75 flask (Corning) and were fed every 2-3 days.  

Cells were passaged when they reached 80 to 90% confluency. To do so, the cells were 

washed once with PBS and incubated 5 min with 3 mL of TrypLE Select (Invitrogen). The cell 

suspension was then collected in 7 mL of complete BJ medium and centrifuged at 1,000 x g for 

5 min. Once the supernatant was discarded, the cells were resuspended in complete BJ 

medium and subcultured at a 1:6 to 1:10 ratio. In order to store the bank of cells generated, a 

cell pellet was generated as previously described. This latter was resuspended in complete BJ 

medium containing 5% DMSO (VWR), placed in cryovials and put at -80°C in a Mr. Frosty 

isopropanol cryovessel before being transferred to LN2 24 h later. 
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2.2.2 Newborn foreskin fibroblast (NuFF) donor 11  

Gamma-irradiated NuFF donor 11 were purchased from Global Stem (GSC-3001G) and 

recovered as described in 2.2.1 in NuFF culture medium (DMEM, 10% FBS, 1% Glutamax and 

1% Penicillin/Streptomycin). Each vial contains 4-5 x 106 cells. 

 

2.2.2.1 Feeders preparation 

Four wells of a 6-well plate were coated with 0.2% gelatin (Millipore) for a minimum of 30 min 

before evenly plating 2.5 x 105 NuFF per well in 2.5 ml of NuFF medium. 

2.2.2.2 Medium conditioning 

The 3-4 x 106 inactivated NuFFs cells unused for feeders preparation were plated in one T75, in 

10 mL of NuFF culture medium, and left to attach overnight in a 37°C, 20% O2 and 5% CO2 

incubator (Nuaire). The following day, the NuFF culture medium was removed from the T75, the 

cells washed once with PBS and medium replaced with 25 mL of Pluriton (Stemgent) 

supplemented with 4 ng/mL of bFGF and left to incubate overnight. For a total of six days after 

each 24 h incubation the NuFF-conditioned Pluriton was collected, frozen at -20°C and replaced 

by 25 mL of fresh Pluriton supplemented with 4 ng/mL bFGF.  

On the sixth day of conditioned-medium collection, all the previously collected aliquots of NuFF-

conditioned Pluriton Medium were thawed at 4°C. They were all pooled with the final collection 

and filtered using a 0.22 µm pore size, low protein-binding filter (Corning). The filtered NuFF-

conditioned Pluriton medium was re-aliquoted (40 mL aliquots) and re-frozen at -20°C until used 

in the reprogramming protocol or for up to three months. 

 

2.2.3 Hair-follicle derived keratinocyte culture 

The hair-follicle (HF)-keratinocyte derivation protocol used in this study was modified from 

previously published work Aasen and Belmonte (2010). 

2.2.3.1 Patients samples collection  

Sample collection for optimisation of the keratinocyte derivation technique was done under 

study REC Ref: 10/H0716/90 lnduced Pluripotent Stem Cells from Keratinocytes: A neuronal 

model of Huntington's disease, a neurodegenerative disorder (K-iPS cells HD). Patient 

consenting and sample collection to be used for iPSCs generation was done by Dr. S. Haider. A 

repertory of the samples collected is presented in Chapter 4, Table 4-3. 

2.2.3.2 Hair plucking 

After explaining the procedure to the patient and taking consent, a small scalp area of the 

temporal or the occipital part of the head was washed with a 70% ethanol wipe. A few hairs 

were then plucked using single forceps. Hairs in the anagene phase with a visible outer root 
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sheath (ORS, Figure 2-3) were placed into RT DMEM supplemented with 1X of 

antibiotic/antimycotic (Sigma). Hairs with no visible ORS were discarded. 

 
Figure 2-3: Hair follicle in the anagene phase. Arrow indicates the Outer Root Sheath 
(ORS) 
 

2.2.3.3 Hair plating 

Hair plating was adapted from Aasen and Belmonte (2010). Briefly, plucked hairs were single-

plated into wells of a 6-well plates pre-coated with GFR-Matrigel (prepared as in 2.1.5.1). A 22-

mm coverslip (SLS) was then placed onto the hair before 1 mL of mTeSR1 medium 

supplemented with 1X antibiotic/antimycotic mixture was added to each well. Unless otherwise 

indicated, hairs and derived keratinocytes were cultured at 37°C, 20% O2 and 5% CO2 (Nuaire 

incubator). Hair cultures were not disturbed for 72 h to ensure good attachment. Coverslips 

were removed after 72 h. In the event that the hair had attached to the coverslip and not to the 

GFR-Matrigel, the coverslip was just flipped over. 

 

2.2.3.4 Keratinocyte derivation and maintenance  

The mTeSR1 medium was replaced every two days until an outgrowth was observed. At this 

stage, keratinocytes were fed every two to three days with Epilife medium supplemented with 

Human Keratinocyte Growth Supplement (HKGS) (both from Invitrogen) until cells were 

confluent enough to be passaged.  

Prior to passaging, wells of a 6-well plate were coated with recombinant human collagen I in 

order to improve keratinocyte attachment and growth. To do so, the Coating Matrix Kit 

(Invitrogen) was used where recombinant human collagen I was diluted with the provided 

Dilution Medium to a final concentration of 15 µg/mL and added to the wells. The 6-well plate 

was rocked back and forth briskly to ensure even distribution of the Coating Matrix in the well 

and left to incubate at RT for 30 min. Excess coating matrix was removed prior to cell plating.  
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To passage the cells, 1 mL of Tryple Select (Invitrogen) was put in each well before the cells 

were returned to the incubator for 7-10 min. To stop the reaction, 1 mg/mL of trypsin inhibitor 

(Sigma) was used. Cells were collected and centrifuged at 1,200 x g for 5 min. The pellet was 

then resuspended in Epilife and cells split at a 1:3 ratio. Hairs that did not present any outgrowth 

after 10 days were discarded. 

 

2.2.3.5 Keratinocyte cryopreservation and thaw 

As for hESCs, HF-keratinocyte cryopreservation was done when the cells reached 70-80% 

confluency to ensure the cells were actively dividing. Cells were passaged as described in 

2.2.3.4. After the 5 min centrifugation at 1,000 x g, the supernatant was discarded and the cell 

pellet resuspended pre-chilled FBS supplemented with 10% DMSO. Approximately 1 x 106 cells 

were aliquoted in 1 mL per labelled cryovial and stored overnight at -80°C into a Mr. Frosty 

isopropanol cryovessel. They were transferred into a LN2 vapor tank the following day. To 

recover the keratinocytes from liquid nitrogen, cryovials were quickly thawed in a 37°C heating 

block until only a small frozen chunk remained. The contents were transferred into a 15-mL 

centrifuge tube using a 5-mL pipette in order to prevent the generation of very small clumps. 

Pre-warmed Epilife (5 mL) was added to the tube drop wise and the cells were centrifuged 5 

min at 1,000 x g. The supernatant was discarded and the pellet resuspended in 2 mL of Epilife 

before plating the cells in a well of a 6-well plate pre-coated with Coating Matrix (refer to 

2.2.3.4). 

 

2.2.4 Target cell plating 

Primary somatic cells, BJs and HF-keratinocytes, to be reprogrammed into iPSCs are also 

referred to as target cells. The day prior to the beginning of the reprogramming protocol, BJs or 

HF-keratinocytes were passaged as described in 2.2.1 and 2.2.3.4 respectively, counted and 

plated in their culture medium at a density of 7 x 103 or 6 x 104 cells respectively on the NuFF 

feeders prepared as in 2.2.2.1. 

 

2.2.5 Modified mRNA synthesis 

The intronless coding sequences (CDS) of OCT4, SOX2, KLF4, c-MYC and LIN28 were 

retrieved from NCBI (see appendix II). As published by Warren et al. (2010), a KOZAK 

translational initiation signal was added in 5’ UTR and the 3’ UTR terminated with an alpha-

globin driven oligo(dT) sequence for templated addition of a polyA tail. 

The CDS were then codon optimised with the GeneOptimizer expert software by Geneart/Life 

Technologies. Codon optimisation allows more efficient transcription, by avoiding RNA 

secondary structures, adjusting GC content and removing splice-sites for an overall increased 
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protein yield (Fath et al., 2011). The codon optimised CDSs were synthesized and subcloned 

into a pTNT plasmid (Promega) to allow mRNA synthesis (see appendix II). 

Amsbio synthesized the modified mRNA. To do so, PCR templates were generated from the 

linearized plasmids using the same upstream primers for all 6 constructs with six different gene-

specific downstream T120-heeled reverse primers for the addition of the poly(A) tail. The 

templates were transcribed with T7 polymerase and further modified according to Warren et al. 

(2010). Modifications include the complete substitution of 5-methylcytidine (5mC) for cytidine 

and the substitution of pseudouridine (psi) for uridine to increase mRNA viability and ectopic 

protein expression. Furthermore, to promote efficient translation and increase mRNA half-life a 

synthetic 5’ guanine cap was added and 5’-triphosphates were eliminated by phosphatase 

treatment. A “mRNA cocktail” containing OCT4, SOX2, KLF4, C-MYC, LIN28 and d2eGFP in 

molar ratios of (3:1:1:1:1:1) at a final concentration of 100ng/mL was prepared, aliquoted in 

single-use 50 'l aliquots and stored at -80˚C. 

 

2.2.6 mRNA transfection 

On day 0 of the protocol, fresh Pluriton medium was equilibrated at 37°C and low O2 tension for 

a minimum of 2 h prior to use. 1X Pluriton supplement and 300ng/mL B18R (ebioscience) was 

added to Pluriton medium. 

The mRNA transfection complex (for 4 wells of a 6-well plate) was prepared using RNAse-free 

material and working on RNAZAP (Life Technologies) treated surfaces. To do so, a single-use 

50 µL aliquot of the mRNA cocktail (prepared prior to the beginning of the reprogramming) was 

thawed on ice. It was then mixed with 200 µL of Opti-MEM (Invitrogen) and mixed by gentle 

pipetting. In a separate tube, 25 µL of RNAiMAX (Sigma), a lipofectamine transfection reagent, 

was diluted in 225 µL of Opti-MEM and mixed by gentle pipetting. The diluted lipofectamine was 

then carefully added to the diluted mRNA cocktail with gentle pipetting to generate the mRNA 

transfection complex. The complex was incubated at RT for 15 min before 120 µL was in a 

dropwise fashion to each of the 4 wells to be transfected. To ensure uniform distribution of the 

mRNA transfection complex, the 6-well plate was gently rocked from side to side and front to 

back before being incubated for 4 h at 37°C and 5% O2. 

During this time, more Pluriton medium was equilibrated. Just prior to exchanging the 

transfection medium, the equilibrated Pluriton was supplemented with 1X Pluriton supplement 

as well as 300 ng/mL B18R. The cells were returned to incubate overnight at 37°C and 5% O2. 

 

2.2.7 Somatic cell reprogramming with synthetic modified mRNA 

A summary of the mRNA reprogramming protocol adapted from Warren et al. (2010) is 

presented in Table 2-9. The impact of the different modification on the success of the protocol 

will be discussed in Chapter 4. 
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Step Day Adapted mRNA reprogramming protocol 

Feeder cell plating -2 
Plating of NuFF cells donor 11 cells, 2.5 x 
105 cells/well of a 6-well plate and the 
remainder into a T75 flask 

Target cell plating -1 
Plating of target cells at a density of 7 x 103 
cells/well (BJ) or 6 x 104 cells/well (HF-
keratinocytes) 

mRNA transfection 0 

B18R Pre-treatment (300 ng/mL), cell 
transfection with mRNA cocktail in Pluriton 
medium supplemented with 300 ng/mL 
B18R and 1X Pluriton supplement 

Optional 2 to 17 Optional 1 'M Pithilthrin-( treatment 

mRNA transfection 1 to 17  
Cell transfection with mRNA cocktail in 
Pluriton medium supplemented with 300 
ng/mL B18R and 1X Pluriton supplement 

Use of conditioned medium 6 to 17 

Day -1 to Day 6 NuFF-conditioned Pluriton 
medium is pooled together, filtered, 
supplemented with 0.5 mM sodium butyrate 
and used from Day 6 onwards. 

Colony identification 18 to 20  Potential colonies are left to expand and fed 
daily with Pluriton medium 

Colony picking 21 
Manual picking of primary iPSC colonies 
and passaging on to HFF in KOSR-XF 
medium 

iPSC line expansion, freezing, 
maintenance and adaptation to 
feeder-free culture conditions 

22+  

Daily refeeding. Maintenance and 
expansion of the culture on HFF-feeder in 
KOSR-XF complete medium and adaptation 
to Matrigel/Nutristem feeder-free conditions 

Table 2-9:Summary of mRNA reprogramming protocol adapted from Warren et al (2010) 

!

2.2.8 iPSCs freezing 

iPSCs cultured on feeders were vitrified and thawed similarly to hESCs (described in section 

2.1.4) while iPSCs cultured feeder-free were cryopreserved and thawed similarly to hESCs  

(described in section 2.1.7.) 
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2.2.9 iPSCs characterisation 

2.2.9.1 iPSCs pluripotency characterisation 

iPSCs pluripotency characterisation was identical to hESC characterisation (described in 

section 2.1.8). 

 

2.2.9.2 Array CGH karyotyping 

The protocol for iPSCS karyotyping is identical to the protocol for hESC karyotyping (described 

in section 2.1.10). 

 

2.2.9.3 DNA Fingerprinting 

The protocol for iPSC DNA fingerprinting is identical to the protocol for hESC DNA fingerprinting 

(described in section 2.1.11). 

 

 

2.3 Human Pluripotent Stem Cells (hPSCs) differentiation 

2.3.1 Human pluripotent stem cell culture 

In order to ensure good cardiac differentiation, cells were cultured for at least three passages on 

GFR-Matrigel (refer to 2.1.5.1) with Nutristem medium (Stemgent). Enzymatic passaging was 

performed using dispase (refer to 2.1.6).  

 

2.3.2 Directed cardiac differentiation 

Directed cardiac differentiation was based on the work published by (Laflamme et al., 2007). 

Briefly, undifferentiated hESCs (KCL020, KCL027_HD5, KCL028_HD6, KCL031, KCL034, 

KCL036_HD7 and KCL040) were dissociated into a single-cell suspension by a 3-5 min 

incubation with accutase. Cells were then centrifuged, resuspended, counted and seeded in 

Nutristem onto GFR-Matrigel coated 24-well plates at a density of 2 x 105 cells/cm2, with the 

addition of 10 µM Y-27632 to ensure good cell attachment. This marked day -5 of the 

differentiation protocol. Until day 0, cells were fed daily with 2 mL/well of Nutristem. At day 0, 

cardiac differentiation was induced by feeding the cells with 0.5 mL/well Roswell Park Memorial 

Institute medium (RPMI)-B27 medium (Invitrogen) supplemented with 100 ng/mL of human 

recombinant Activin A (Miltenyi). The following day, the medium was replaced by 1.5 mL/well 

RPMI-B27 supplemented with 10 ng/ml human recombinant BMP4, (Miltenyi) and left 

unchanged for four days. The medium was then exchanged for unsupplemented RPMI-B27 



Chapter 2 EXPERIMENTAL PROCEDURES 

- 75 - 

every two days for up to 30 days. Figure 2-4 summarises the directed cardiac differentiation 

protocol. 

 
Figure 2-4: Timeline of the directed cardiac differentiation protocol 
 

2.3.3 Cardiomyocytes immunofluorescence 

For immunofluoresence analysis cardiomyocytes were plated on GFR-Matrigel (refer to 2.1.5.1 

for GFR-Matrigel preparation) pre-coated glass-bottomed dishes (MatTek Corporation). The 

medium was removed from the cardiomyocytes monolayers, the cells were rinsed once with 

DPBSCa2+/Mg2+ and then inbubated with 1 mL accutase for 10-15 min at 37˚C. The cells were 

then washed with DMEM, centrifuged at 1,000 x g for 5 min and resuspended in 200 µL/dish of 

RPMI-B27 supplemented with 10 µM Y-27632. They were then fixed with 3.7% PFA for 20 min 

at RT and washed three times with DPBSCa2+/Mg2+. Fixed cells were kept at 4°C in DPBSCa2+/Mg2+ 

for up five days if not processed immediately. Permeabilisation was effectuated with 0.1% Triton 

X-100/DPBSCa2+/Mg2+ for 10 min at RT, followed by three DPBSCa2+/Mg2+ washes. The samples 

were then blocked in PBS with 4% FBS for 2 h at RT. Without rinsing, the anti-Cardiac Troponin 

T antibody (Abcam, ab45932), developed in rabbit, was diluted in DPBSCa2+/Mg2+ to a final 

concentration of 5 µg/mL and added to the cells for 1 h at RT. The solution was then removed 

and cells washed 3 times for 5 min with DPBSCa2+/Mg2+ before adding Donkey anti-rabbit IgG, 

FITC-conjugated secondary (Jackson ImmunoResearch, 711-095-152) at 15 µg/mL in 

DPBSCa2+/Mg2+ for 40 min at RT, shilded from light. Cells were then washed three times for 5 min 

in DPBSCa2+/Mg2+, mounted in Vectashield mounting medium containing DAPI, and covered with 

a coverslip. Samples were assessed using Eclipse 50i upright epifluorescence microscope. 

Images were captured with cooled CCD camera Infinity 3 utilising Infinity Capture software and 

processed in Adobe Photoshop CS5. 

 

2.3.4 Quantitative PCR (qPCR) 

2.3.4.1 Total RNA preparation 

Total RNA was extracted using the RNeasy kit (Qiagen). The cell monolayer was rinsed once 

with PBS before the addition of 350 µL or 600 µL of buffer RLT (for < 5 x 106 or 5 x 106 – 1 x 107 
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cells respectively), supplemented with 10 µL/mL of $-ME to protect the sample from 

endogenous RNases (Frenkel et al., 1987). Samples were homogenised by vortexing for 1 min 

or by going through a QIAshredder spin column for 2 min at 8,000 x g. Equal volumes of 70% 

ethanol were added to the homogenised lysates before loading the samples in an RNeasy spin 

column placed in a collection tube. The columns were centrifuged at 8,000 x g for 15 s and the 

flow-through discarded. 350 µL of buffer RW1 was added and centrifuged at 8,000 x g for 15 s 

to wash the column. After discarding the flow-through, the samples were incubated for 15 min at 

RT with DNase I (27 Kunitz units final) in order to eliminate genomic DNA. Another 350 µL RW1 

wash and centrifugation for 15 s at 8,000 x g stopped the digestion, followed by two 500 µL 

RPE washes with 15 s and 2 min centrifugations at 16,000 x g. In order to prevent ethanol 

carryover, another centrifugation was performed for 1 min at 16,000 x g using an empty 

collection tube. To elute the purified total RNA, 30 µL of RNase-free water was added to the 

column and left to incubate for 1 min before a final 1 min centrifugation at 8,000 x g. RNA 

concentration and purity were determined using a Nanodrop ND1000 UV-Vis 

Spectrophotometer. RNA has a maximal absorbance (A) of 260 nm while proteins have a 

maximal A of 280 nm. Only samples with an A260/A280 ration between 1.8 and 2.1 were used 

for complementary DNA (cDNA) formation. Samples that were not used immediately were 

stored at -80°C. 

 

2.3.4.2 Complementary DNA (cDNA) preparation 

cDNA was prepared from 50 ng of total RNA using the Precision nanoScript Reverse 

Transcription kit (Primer design). Briefly, 0.5 µg of total RNA was mixed with 1 µL oligo-dT and 

brought to a final volume of 10 µL with RNase free water. The samples were heated at 65°C for 

5 min to denature any RNA secondary structures and then directly transferred on to ice to allow 

primer annealing. A 10 µL mastermix consisting of nanoscript 10x buffer, 0.5 mM 

deoxyribonucleotide triphosphate (dNTPs), 10 mM Dithiothreitol, water and 0.7 U/µL final"
reverse transcriptase was added to the samples before incubating them at 55°C for 20 min 

followed by a 15 min inactivation step at 75°C using a MyCycler Thermal Cycler (Bio-rad). 

cDNA samples were stored at -20°C until use. 

 

2.3.4.3 Primer design 

The primer sequences of the target genes used to characterise hESC-derived cardiomyocytes 

are presented in Table 2-10. Information concerning the housekeeping genes used to 

characterise hESC-derived cardiomyocytes are presented in Table 2-11. 
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Gene Accession 
number Sense Primer Anti-sense primer 

OTC3/4 NM_002701 GCCGTGAAGCTGGAGAAG GTGTATATCCCAGGGTGATC
C 

NANOG NM_024865 ATGTCTTCTGCTGAGATGCC GTTGTTTGCCTTTGGGACTG 

TNNT2 NM_000364 CAAAGCCCAGGTCGTTCAT GCAACTCATTCAGGTCCCTT
CT 

NKX2.5 NM_004387 GCACCCACCCGTATTTATGT GGGTCAACGCACTCTCTTTA
A 

HTT NM_002111 TCTGGGCATCGCTATGGAAC ATTTCTGAGGCCGAACCAGG 

Table 2-10: Sense and Antisense primers of target genes used for hESC-derived 
cardiomyocytes characterisation.  
Primers in blue were designed by PrimerDesign Ltd.  

 

Gene Accession 
number 

Anchor 
nucleotide: 

Amplicon length 

EIF4A2 NM_001967 900 113 

SDHA NM_004168 1032 120 

Table 2-11 Housekeeping genes designed and synthesized by PrimerDesign Ltd used for 
hESC-derived cardiomyocyte characterisation amplicon context.  
The primer sequences are commercially sensitive information but the details provided in this 
table are MIQE compliant (Bustin et al., 2011) 

 

2.3.4.4 qPCR 

qPCR was performed using the Precision 2X qPCR SYBR green-based Mastermix 

(PrimerDesign). As the cDNA is being amplified, SYBR green proportionally intercalates its 

fluorescent dyes in to the double stranded DNA, emitting fluorescence at the 522 nm 

wavelength. This can be measured by the apparatus and used to quantify gene expression. 

According to the manufacturer’s instruction, cDNA prepared as described in section 2.3.4.2 was 

diluted 1:10 in DNAse/RNAse free water prior to use. The components described in Table 2-12 

were added for each 20 µL qPCR reaction. 
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Components Per reaction 

Precision 2X qPCR Mastermix  10 µL 

Forward and Reverse Primers mix (6 mM stock) 1 µL 

Template cDNA (1:10 diluted) 5 µL 

DNAse/RNAse free water  4 µL 

Table 2-12: Components of each 20 µL qPCR reaction using the Precision 2x Mastermix 
from PrimerDesign Ltd. 

 

All samples were run in technical triplicates in 96-well hard shell white PCR plates (Bio-rad). No 

positive template controls were included. DNAse/RNAse free water was used instead of 

template cDNA as a negative control (refer to Table 2-12). The plate was sealed with a 

microseal adhesive sealer film (Bio-rad). The Bio-Rad CFX96 thermal cycler and accompanying 

software were used to run the qPCRs. Thermocycling conditions are described in  

Table 2-13. 

 

 

Table 2-13 Cycling conditions used for qPCR reactions using the Bio-Rad CFX96 thermal  

 

Considering that SYBR green can bind to non-specific product amplicons or primer-dimers, a 

dissociation melt curves step was added to the thermocycling programme to ensure the 

accuracy of the PCR products analysed. Each PCR product has a particular temperature at 

which it becomes single-stranded and loses the SYBR green fluorescence, corresponding to a 

single peak in the melt-curve analysis.  

Once specific PCR amplification was insured, mRNA quantification could be done using the 

2%%Ct relative quantification method. In this method the difference in Ct (threshold cycle) value of 

genes of interest (GOI) and of housekeeping (HK) genes is first calculated to generate the %Ct 

value. Next, the control-condition %Ct (undifferentiated hESCs) is subtracted from the 

experimental-condition %Ct (differentiated hESCs) to yield the %%Ct value. The negative value 

of this subtraction, the )%%Ct, is then used as the exponent of 2 to calculate the “corrected” 

expression level of the samples. The newly calculated expression value of the control-condition 

Step Temperature Time 

Enzyme activation - HotStart 95ºC 10 
min 

Denaturation 95ºC 15 s 

Data collection 60ºC 30 s 
Melt Curve 59ºC to 95ºC with 0.5ºC increment 10 s 

   
X 40  
cycles 
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was set to 1, and the experimental-conditions’ expression levels were normalised by dividing 

the mean 2%%Ct value by the control-condition mean 2-%%Ct value. 

2.3.4.5 Cardiomyocyte-specific biomarker gene expression 

The Human Cardiomyocyte Differentiation qBiomarker PCR Array (IPHS-102, Qiagen) was 

used to determine the gene expression of cardiomyocyte-specific biomarkers. For this, cDNA 

was synthesized using the RT2 First Strand Kit (Qiagen). The kit includes a genomic DNA 

elimination step (GE). This was performed by mixing 0.5 µg of total RNA with 2 µL of buffer GE 

and water to a final volume of 10 µL. The GE mix was incubated at 42ºC for 5 min after which it 

was immediately put on ice for at least 1 min. The reverse transcription mix was prepared as 

described in Table 2-14 and added to the GE mix. 

 

Component Volume 

BC3 (5X buffer 3) 4 µL 

P2 (primer and external control mix) 1 µL 

RE3 (RT enzyme mix 3) 2 µL 

H2O 3 µL 

Final volume 10 µL 

Table 2-14: Qiagen RT2 First Strand Kit reverse transcription mix (one reaction). 

 

The reverse transcription synthesis was performed by incubating the mix at 42ºC for 15 min, 

immediately followed by an incubation at 95ºC for 5 min. The cDNA was diluted 1:5, mixed with 

RT2 Real Time SYBR® Green/ROXTM qPCR Master Mix (Qiagen) and added to the Human 

Cardiomyocyte Differentiation qBiomarker PCR Array. The array was then loaded in a 7900HT 

Fast Real-Time PCR System (Applied Biosystem). Results were analysed using the web-based 

Qiagen qBiomarker iPSC Data Analysis Software. 

 



 

- 80 - 

 

 

 

 

 

 

Chapter 3 

hESC Pluripotency Characterisation



Chapter 3 hESC PLURIPOTENCY CHARACTERISATION 

- 81 - 

Chapter 3  hESC Pluripotency Characterisation 

 

Pluripotent hESCs have distinct characteristics. When undifferentiated, they grow as uniform, 

tightly packed colonies with defined edges. They present a large nucleus and a high nucleus to 

cytoplasm ratio. hESCs have the ability to self-renew into the same cell type, provided that they 

are maintained in the correct culture conditions. They also express an array of specific 

“pluripotency markers” and importantly, have the ability to differentiate into any of the three 

germ layers: endoderm, mesoderm and ectoderm (Thomson et al., 1998). The cell lines used in 

this study were characterised using a set of seven criteria as we previously published 

(Stephenson et al., 2012; methods described in section 2.1.8). An “identification card” could 

then be generated for each hESC line. Once the hESC lines were characterised, they could be 

adapted to feeder-free culture conditions for downstream applications.  

 

 

3.1 hESC Pluripotency Characterisation 

Most of the hESC lines used in this study were characterised following seven criteria. A 

representative characterisation set of five out of seven criteria is presented in Figure 3-1. 
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Figure 3-1: Representative hESC characterisation.  
The characterisation set of HD-hESC KCL012_HD3 is presented in this figure. a) Morphological 
criteria. Initial outgrowth (left), KCL012_HD3 cell colony on HFF (middle) and feeder-free 
condition (right). b) Pluripotency markers: alkaline phosphatase (AP) activity, OCT4, NANOG, 
TRA-1–60 and TRA-1–81. c) Genotyping: microsatellite markers specific for chromosomes 13, 
18, 21, X and Y were amplified. The allele sizes in base pair for markers on chromosomes 13, 
18, and 21 are listed in the table. Array comparative genomic hybridization (CGH) did not detect 
any copy number changes using Promega female G1521 as a standard. d) In vitro 
differentiation markers for the three germ layers: smooth muscle actin (mesoderm), $-III tubulin 
(ectoderm) and (-fetoprotein (endoderm). e) In vivo differentiation. Teratoma sections were 
counterstained with hematoxylin and eosin and specific stains are either light blue (Alcian blue) 
or brown (all immunohistochemistry). Mesoderm germ layer markers: Alcian blue– and periodic 
acid–Schiff (PAS)-stained cartilage and desmin. Ectoderm germ layer markers: $-III tubulin and 
glial fibrillary acidic protein (GFAP). Endoderm germ layer marker: GATA4 and (-fetoprotein. 
Positive immunostaining for complex IV type II marker confirms the human origin of the tumour 
(adjacent section of the one stained for desmin). Images were taken at 40x magnification. 
 

1) Morphological criteria: Undifferentiated hESCs form tightly packed colonies with well-

defined edges and are clear from differentiated cells, as represented in Panel a. hESCs were 

considered to be adapted to a new culture condition when they could be propagated 

undifferentiated under said culture condition for a minimum of three passages. 
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2) Detection of pluripotency marker: Pluripotency was evaluated by immunofluorescence 

detection of two pluripotency transcription factors, NANOG and OCT3/4, and two pluripotency 

surface markers, TRA-1-60 and TRA-1-81; as well as by AP enzymatic activity as showed in 

Panel b. 

3) Differentiation into three germ layers in vitro:  hESCs colonies were differentiated in vitro 

for a period of three weeks before performing immunofluorescence to detect markers 

representative of the three germ layers such as (-fetoprotein and/or GATA4 for endoderm, 

smooth muscle actin and/or Brachyury T for mesoderm and $-III tubulin and/or PAX6 for 

ectoderm as showed in Panel d. 

4) Differentiation into three germ layers in vivo: hESCs were injected subcutaneously into 

NOD/SCID mice and tumours were harvested 6–12 weeks post injection. Tumour sections were 

stained with hematoxylin and eosin (H&E) as well as stained by immunohistochemistry to 

confirm the presence of the three germ layers and its human specificity as showed in Panel e. 

5) Genotyping: Each cell line was identified at the molecular level after derivation. For this, 

DNA Fingerprinting by the amplification 17 polymorphic microsatellite markers on chromosomes 

13, 18 and 21 was used. A result example is presented in Panel c. 

6) Determination of genomic stability: Genomic stability was confirmed by the absence of 

chromosomal abnormalities such as deletion or duplications as well as abnormal karyotyping. 

This was assessed at the time of derivation and after 10-20 passages by array-comparative 

genomic hybridization. KCL040 presented a microdeletion at q13.2 of chromosome 5 at 

passage 4 and KCL027_HD5 showed a microdeletion in the long arm of chromosome 2 at 

passage 18. However these were considered as not significant as they are normal population 

polymorphisms. However, KCL013_HD4 showed the addition of a whole chromosome 12 at 

passage 12 and was dismissed from the rest of this study.  

7) Human leukocyte antigen (HLA) typing: HLA typing was performed for HLA-A, -B, -C, and 

DRB1. Results were entered into the MatchView1 database (Be the Match Registry, 

http://marrow.org/Patient/Transplant_Process/Search_Process/View_Potential_Matches/View_

Potential_Matches.aspx, Accessed 17 May 2012) to determine the match level frequency in the 

population. 

In addition to these seven characterisation criteria, the HD-hESCs had their CAG repeat 

number determined. The representative repeat sizing of KCL012_HD3 is presented in Figure 

3-2. 
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Figure 3-2: CAG repeat sizing of KCL012_HD3.  
Repeat sizes were of 17 and 46 CAGs. 
 

A summary of the remaining hESC lines’ characterisation is presented in Table 3-1 and 

additional figures are in appendix I. 
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Table 3-1: Summary of the hESC characterisation.  
+: Positive result, -; negative result, ND: non-determined. 
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3.2 Adaptation of hESCs to feeder-free culture 

Feeder cells such as mitotically-inactivated HFF are commonly used to support the derivation 

and long-term maintenance of pluripotent stem cells. The hESCs lines used in this study are no 

exception. HFF-feeders maintain the pluripotent state of hESCs by notably secreting bFGF 

(Park et al., 2011) as well as other unknown growth factors and cytokines. Feeders also 

assemble ECM, a required physical support for hESCs to attach and grow. One goal when 

using hESCs as disease-in-a-dish models is to differentiate them into a specific somatic cell 

type, such as cardiomyocytes, that is affected by the disease. There are a variety of protocols 

describing hESCs differentiation. However, in order to obtain a sufficient yield of differentiated 

cells, large-scale hESCs culture is needed to start with. This is not achievable when cultured on 

feeders, as manual passaging is required. Furthermore, as much as feeder-free culture is 

required in order to obtain enough hESCs for differentiation purposes, it is absolutely essential 

when it comes to the study of a disease-specific phenotype. Indeed, the presence of feeder 

cells could cloud the apparent effects of drugs, small molecules and genetic modifications 

specific to a disease. For these reasons, all the hESCs lines used in this study were adapted to 

feeder-free culture conditions. Two different matrices were tested for this purpose: i) A 

commercially available matrix, GFR-Matrigel (refer to section 2.1.5.1 for preparation) and ii) 

custom made ECM from decellularised feeders from two different protocols (refer to section 

2.1.5.2 for preparation). 

Matrigel is a gelatinous substance secreted by Engelbreth-Holm-Swarm (EHS) mouse sarcoma 

cells. It is composed of a complex mixture of laminin, collagen IV and heparan sulfate 

proteoglycan (Xu et al., 2001; Kleinman et al., 1982). When diluted and allowed to polymerize, it 

can form a matrix that allows the long-term (# 130 population doublings) feeder-free culture of 

undifferentiated, karyotypically normal, hESCs. Moreover, it allows the hESCs to maintain their 

capacity to differentiate into the three germ layers (Xu et al., 2001). Matrigel also has the 

advantage of being commercially available and very rapid to prepare (#1 h). However, matrices 

generated with Matrigel contain animal products and could lack the endogenous 3 dimensional 

(3D) structure provided by HFF-feeders. For this reason, we also trialed custom made ECM 

from decellularised human fibroblasts. Several decellularisation protocols exist (Beacham et al., 

2007; Vlodavsky, 2001; Klimanskaya et al., 2005) and such decellularised feeder matrices have 

already been successfully used for hESC derivation and culture (Klimanskaya et al., 2005). 

 

3.2.1 Comparison of two protocols for generating decellularised feeders 

In order to obtain an ECM assembled by HFF with optimally preserved 3D structures, two 

protocols were compared in an initial set of experiments. One protocol contained an anionic 

detergent, DOC, and the other one Triton X-100, which is a non-ionic detergent.  

Figure 3-3 demonstrates the presence of fibronectin as an ECM component secreted by 

fibroblasts. To confirm that the cell removal process preserved intact ECM, the decellularised 

feeder matrices were immunostained for fibronectin (Figure 3-4). The staining revealed that 
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both protocols are equivalent in terms of decellularisation as no cell nuclei can be observed 

(negative DAPI staining). However, the DOC protocol left intact mostly high molecular weight 

fibronectin aggregates (arrowheads), whereas the Triton X-100 protocol was gentler and both 

high molecular weight fibronectin aggregates as well as numerous fine fibronectin fibrils 

(arrows) could be seen. According to these results, it was decided that future decellularised 

feeders matrix would only be prepared according to the Triton X-100 protocol as it keeps a 

better integrity of the ECM and from now on, the term decellularised feeder matrix will only refer 

to ECM prepared as such. 

 
Figure 3-3: HFF-generated ECM immunostaining prior to decellularisation.  
Fibronectin (red) and DAPI staining (blue). Images were taken at 40x magnification (Previously 
published in (Ilic et al., 2012) 
 
 
 
 
 

 
Figure 3-4: Decellularised feeder fibronectin immunostaining.  
Decellularised feeder matrices made using DOC (left) and Triton X-100 (right) were 
immunostained for fibronectin (red). Images were taken at 100x magnification. In the insets, 
arrowheads indicate high molecular weight fibronectin aggregates and arrows indicate fine 
fibronectin fibrils. DAPI negative result indicates complete decellularisation. 
 

Intact HFF 
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3.2.2 Comparison of two defined media for hESCs feeder-free culture 

We trialled two defined hESC culture media, complete KOSR-XF medium and mTeSR1, in 

combination with GFR-Matrigel or decellularised feeder matrices for hESC feeder-free culture, 

making a total of four feeder-free culture condition to test. They are summarised in Table 3-2. 

 

Medium Complete KOSR-XF mTeSR1 

Decellularised feeder matrix Decellularised feeder matrix Matrix 

GFR-Matrigel GFR-Matrigel 

Table 3-2: Summary of the feeder-free culture conditions tested on the hESCs 

 

As mentioned in section 3.1, we considered that a hESC line is adapted to a new culture 

condition when propagated undifferentiated for over three passages under said condition. 

Maintenance hESC pluripotency was assessed by the following morphological criteria: i) well-

defined colony edges; ii) tightly packed colonies and iii) absence of differentiated cells. The 

results are presented in Table 3-3. 

 

Complete KOSR-XF mTeSR1  

Pluripotency criteria Decellularised 
feeder matrix 

GFR-
Matrigel 

Decellularised 
feeder matrix 

GFR-
Matrigel 

Propagation for >3 

passages in a 
culture condition 

- - + + 

Well defined colony 
edges 

+/- +/- + + 

Tightly packed 
colony 

+/- +/- + + 

Absence of 
differentiated cells 

+/- +/- + + 

Table 3-3: Comparison of hESCs culture on different feeder-free conditions.  
+ = positive ; - = negative ; +/- = intermediate. 
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Complete KOSR-XF medium did not support the propagation of hESCs for over three passages 

on decellularised feeder matrix or on GFR-Matrigel. On the contrary, mTeSR1 allowed hESCs 

feeder-free propagation on both matrices for over three passages. hESC colonies remained 

positive for morphological criteria characteristic of undifferentiated hESCs (Figure 3-5). They 

were also positive for pluripotency markers as illustrated by immunostaining in Figure 3-6 and 

Figure 3-7. 

 
Figure 3-5: Undifferentiated KCL012_HD3 P14 cultured for five passages on GFR-Matrigel 
with mTeSR1 medium.  
The image was taken at 40x magnification. 
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Figure 3-6 KCL012_HD3 P13 pluripotency on GFR-Matrigel in mTeSR1 medium.  
All images were taken at 100x magnification. 
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Figure 3-7: KCL012_HD3 P14 pluripotency on decellularised feeder matrix in mTeSR1 
medium.  
All images were taken at 100x magnification. 
 

Once cultured feeder-free, enzymatic passaging of the hESCs with dispase was attempted. 

Only the mTeSR1/GFR-Matrigel feeder-free culture condition allowed enzymatic passaging. 

Subsequently, hESCs were only cultured in mTeSR1/Matrigel and passaged with dispase. 

 

 

3.3 Discussion 

In this set of experiments, we investigated whether KCL012_HD3, KCL020, KCL031, KCL034, 

KCL027_HD5, KCL028_HD6, KCL036_HD7 and KCL040, the eight hESCs lines derived at the 

ACU, King’s College London used in this study would fulfil the two main hESC characteristics: i) 

indefinite self-renewal and ii) differentiation in all three germ layers. In order to demonstrate this, 

the hESCs lines, were first tested for the presence of pluripotency markers in undifferentiated 

hESCs and then subjected to differentiation in vitro and in vivo. All eight hESC lines used in this 

study fulfilled these criteria. 
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We also followed genomic stability of each cell lines over an extended period of culture. They all 

presented a normal karyotype upon derivation. However, KCL013_HD4 acquired an extra 

chromosome 12 over time and was thus removed from the study to prevent any biased future 

observation. Genomic instability in pluripotent stem cell culture, especially feeder-free, has been 

extensively discussed (Maitra et al., 2005; Amps et al., 2011; Lefort et al., 2008). Chromosome 

12 aneuploidy in particular has been suggested to provide a selective growth advantage 

(Catalina et al., 2008; Mayshar et al., 2010; Lefort et al., 2008; Draper et al., 2004). 

Prior to any differentiation work, the eight hESCs lines used in this study had to be adapted to 

feeder-free culture conditions as well as enzymatic passaging. Indeed, a differentiation protocol 

such as Laflamme’s cardiogenesis one, requires high undifferentiated hESCs cell numbers to 

begin with (2-4 x 105 cells / cm2) (Laflamme et al., 2007). A feeder-free culture condition with 

enzymatic passaging allows reaching such numbers in a considerably shorter-time. For this, two 

matrices, HFF-feeder-derived ECM from decellularised feeders and GFR-Matrigel, as well as 

two media, complete KOSR-XF medium and mTeSR1, were tested. It was first determined by 

morphological assessment that in our hands, mTeSR1 was the best medium for feeder-free 

culture with either matrix. 

In addition to the ones tested in this study, there are many other feeder-free matrices available 

for hESC feeder-free culture. Human serum matrix has been shown to support undifferentiated 

hESC culture for over three months when used in combination with medium conditioned by 

hESC-derived fibroblast-like cells (Stojkovic et al., 2005). ECM from human placenta, rich in 

collagen IV, laminin and fibronectin, has also been used for feeder-free hESC culture (Wang, Q. 

et al., 2012). ). Many ECM components of GFR-Matrigel and decellularised feeders e.g. laminin, 

fibronectin and vitronectin, can be used as individual ECM proteins to support feeder-free hESC 

culture. These are attractive as they are fully defined and can offer less batch-to-batch 

variability. Laminin can be used as a matrix when used in combination with high concentrations 

of bFGF (Li, Y. et al., 2005). Amit et al. (2004) cultured hESCs on 2D layers of fibronectin for 

over 50 passages when used with a medium containing KOSR, bFGF, TGF-$ and leukemia 

inhibitory factor LIF. Cells interact with their matrices via integrins. Vitronectin (Braam et al., 

2008; Kim, H.T. et al., 2013), E-cadherin (Nagaoka et al., 2010) and collagen I (Furue et al., 

2008) are also matrices supporting long-term feeder-free culture. Some groups have now 

moved on from biological components to fully chemically defined synthetic matrices (Irwin et al., 

2011; Melkoumian et al., 2010), which could in the long term be cheaper and better for up-

scaling hESC cultures. Another alternative is to completely bypass a 2D or 3D adherent cell 

culture system and culture the hESCs in suspension. Using mTeSR1 medium supplemented 

with Y-27632, Rho-associated kinase (ROCK) I inhibitor, hESC suspension culture has been 

shown to be efficient for long-term (over 20 passages) hESC feeder-free maintenance (Olmer et 

al., 2010). The cells retained pluripotency and their ability to differentiate into the three germ 

layers. Interestingly, the hESCs cultured in suspension had a higher proliferation rate than cells 

cultured on feeder or on 2D-feeder-free matrices. This is attractive for the upscaling required by 

some differentiation protocols. 
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The eight hESC lines used in this study all had satisfactory undifferentiated morphologies when 

cultured in mTeSR1 with either GFR-Matrigel or decellularised feeder matrix. The pluripotency 

of the hESCs was nevertheless further confirmed by immunostaining for NANOG, OCT3/4, 

TRA-1-60 and TRA-1-81 (Figure 3-6 and Figure 3-7). The results were positive and support a 

previous comparative study that demonstrated that hESCs cultured feeder-free have a similar 

global gene expression pattern as hESCs cultured on feeders (Yoon et al., 2010). In our hand, 

enzymatic passaging with dispase was only possible with the mTeSR1/GFR-Matrigel culture 

condition. This latter feeder-free culture condition was therefore used for the rest of this study. 

This is consistent with the International Stem Cell Initiative Consortium’s results of a multicentre 

study that concluded that mTeSR1 used with Matrigel as a matrix and dispase for enzymatic 

passaging is one of the best combinations to support maintenance of most undifferentiated 

hESC lines (Akopian et al., 2010). 

This set of experiments confirms that the hESCs used in this study, whether wild-type of HD-

specific, are i) pluripotent and ii) can be maintained in feeder-free culture conditions with 

enzymatic passaging, which is essential for up-scaling to obtain the large numbers of cells 

required for lineage specific differentiation. 
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Chapter 4 Induced Pluripotent Stem Cell Generation 

 

The use of synthetic modified mRNA for fibroblast cell reprogramming resulted in a twice as 

fast, 36-fold higher reprogramming efficiency than retroviral reprogramming (Warren et al., 

2010). This method also presents the advantage of being non-integrative, meaning that the 

cells’ genome will not be altered. 

In this chapter are presented the repetition of the original Warren protocol (Warren et al., 2010) 

on fibroblasts and HF-keratinocytes. When using retroviral vectors, HF-keratinocytes have been 

showed to reprogram 100 fold more efficiently and twofold faster than fibroblasts (Aasen et al., 

2008). It was hypothesized that combining HF-keratinocytes as a somatic cell source and 

synthetic modified mRNA as a delivery vector would result in a very efficient and rapid iPSC 

generation protocol. Furthermore, HF-keratinocytes are an easily accessible source of somatic 

cells. Hair plucking is a non-invasive and non-painful procedure, two important aspects when 

collecting patient samples. The original mRNA reprogramming protocol could not generate 

iPSCs in either cell type. It was later modified and allowed the successful reprogramming of the 

BJ fibroblast cells. 

 

 

4.1 Fibroblast reprogramming with synthetic modified mRNA 

4.1.1 Original mRNA reprogramming protocol (Warren et al., 2010) 

We first tested fibroblast reprogramming with synthetic modified mRNA on HFFs, which will be 

referred to as target cells. To do so, we plated 0.5 x 105 target cells on a layer of 1 x 105 HFF-

feeders and transfected daily with mRNA reprogramming cocktail using RNAimax, a 

lipofectamine transfection reagent. The mRNA cocktail contains low-stability GFP (d2eGFP) 

mRNA, rendered nuclear with a 3’ nuclear localisation sequence, for monitoring transfection 

efficiency. As indicated in the original mRNA reprogramming protocol (Warren et al., 2010). 

Nutristem, a reprogramming medium, and 200 ng/mL of B18R, an interferon inhibitor, were 

included in the protocol. These conditions, however, did not support HFF reprogramming in our 

hands. Despite good transfection efficiency shown by uniform d2eGFP expression (data not 

shown), no mesenchymal-epithelial transition (MET) was observed. The experiment was 

terminated at day 15, as the cells survival was too low. It is worth noticing that even the cells 

that endured a 15 days mock transfection regimen (all the reagents but the mRNA) also had 

high cell death by day 15 (Figure 4-1). Lipofectamine had previously been reported to be of high 

efficiency and low toxicity. However, this was when used for two consecutive transfections, not 

17 as required by this protocol (Zhao, M. et al., 2008). 
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Figure 4-1: Human Foreskin Fibroblast at day 1 and 15 of the Warren (2010) mRNA 
reprogramming protocol.  
On the far right are presented fibroblasts after 15 mock transfections (no mRNA). Images were 
taken at 40x magnification. 
 

In this first experiment, we used three-times less HFF-feeders than in the original publication, 

which could be a factor contributing to the high cell death observed. In the second round of 

experiments, the number of feeders was increased to 3 x 105 cells/well of a 6-well dish, as 

outlined in the original protocol. Furthermore, different target cell densities ranging from 0.5-1.5 

x 105 cells/well were evaluated. Reprogramming was still unsuccessful due to great cell death. 

Valproic Acid (VPA), a Histone Deacetylase (HDAC) inhibitor, was reported to greatly increase 

fibroblast reprogramming (Huangfu et al., 2008). Therefore, on our subsequent mRNA 

reprogramming experiment, we supplemented the reprogramming medium with 1 mM of VPA 

as from day five of the reprogramming protocol. In our hands, VPA did not improve 

reprogramming efficiency. No MET could be observed and the protocol had to be discontinued 

due to high cell death within 15 days of reprogramming. Even though VPA has been 

demonstrated to improve fibroblast reprogramming (Huangfu et al., 2008), possibly by 

increasing protein production (Wulhfard et al., 2010), VPA can also inhibit clonal cell 

proliferation and increase apoptosis even when used at doses lower than the one used in this 

protocol (Takai et al., 2004; Fujiki et al., 2013; Fortson et al., 2011). 

These results are in agreement with Warren’s who trialled adding VPA to the mRNA 

reprogramming regimen and did not observe an increased reprogramming efficiency either. 

 

4.1.2 Modified mRNA reprogramming protocol 

During the course of this study, Stemgent started commercialising an mRNA reprogramming kit 

with a protocol that contained substantial modifications to the original published one. 

Modifications included: i) a lower target cells plating density, ii) a new reprogramming medium, 

iii) the use of conditioned-medium as from day 6 of the reprogramming protocol, iv) a different 

source and density of feeder cells and v) the elimination of the passaging step during the 

reprogramming protocol. 
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We took these changes into account in the next round of mRNA reprogramming protocol 

optimisation. Therefore, the target cell density was decreased from 0.5 x 105 cells / well of a 6-

well plate to 7 x 103 per well of a 6-well plate. NuFF feeders from donor 11 were used instead of 

our regular HFF-feeders. Pluriton cell culture medium was used instead of Nutristem and NuFF-

conditioned Pluriton was used from day 6 of the reprogramming protocol. Due to the high cell 

loss experienced previously, B18R concentration was increased from 200 ng/mL to 300 ng/mL. 

This was to further suppress the innate immune response triggered by the exogenous mRNA 

cocktail, which in turn would be beneficial for the cells to resist the consecutive transfections 

required by our protocol (Angel and Yanik, 2010). Furthermore, the cells were incubated with 

the B18R 4 h prior to the first transfection in order to condition the cells. Our last variation to the 

protocol was to add 0.5 mM final of Sodium Butyrate (NaBu) as from day 6 of the mRNA 

reprogramming protocol, with or without 1 µM of pifithrin-( (PTA-() from day 2 of the mRNA 

reprogramming protocol. NaBu is an HDAC inhibitor which when used at 0.5 mM, can not only 

improve cell reprogramming, but do so at a greater efficiency than VPA (Zhang, Z. et al., 2011). 

p53 negatively regulates somatic cell reprogramming, notably by its pro-apoptotic role. 

Transiently inhibiting it with an inhibitor such as PTA-( can increase iPSC generation by up to 

four folds (Hong et al., 2009; Kawamura et al., 2009; Zhao, Y. et al., 2008; Marion et al., 2009). 

A summary of the modifications is presented in Table 4-1. 

Procedure Warren et al.(2010) Modified protocol 

Feeder cell density 
3 x 105 cells/well of 6-well 

dish 
2.5 x 105 cells/well 

Target cell density 5-30 x 104 cells/well 7 x 103 cells/well 

Reprogramming medium 
Nutristem with 

100 ng/mL bFGF 

Pluriton with 1X Pluriton 
supplement 

Use of conditioned 
medium 

No Yes, as from day 6 

B18R concentration 200 ng/mL 300 ng/mL 

Sodium butyrate (NaBu) 
concentration 

0 0.5 mM 

Pifithrin-( (PTA-() 
concentration 

0 1 µM from day 2 (optional) 

Table 4-1: Summary of the differences between the original Warren et al. (2010) mRNA 
reprogramming protocol and our modified one. 

 

The modified protocol allowed the reprogramming of BJ fibroblasts into iPSCs using mRNA 

reprogramming cocktail. The cells were monitored daily for morphological changes and d2eGFP 

expression. The reprogramming experiments are presented in Figure 4-2 and Figure 4-3. 



Chapter 4 INDUCED PLURIPOTENT STEM CELL GENERATION 

- 98 - 

 

 
Figure 4-2: Representative morphology of BJ fibroblasts plated on NuFF-feeders 
undergoing mRNA reprogramming with daily transfections and NaBu treatment. 
Images were taken at 40x magnification. Day 1: Healthy cells after the first transfection. Day 3: 
Cell loss and cell rounding, a pre-apoptotic sign (arrows) can be observed. Day 5: Cells start 
undergoing MET and adopt an epithelial morphology (arrows) Day 7 and 9: Increase in cell 
death. Surviving cells are transitioning. Day 11: First sign of compaction and colony formation 
(arrow). Day 13: Increased compaction. Cells become smaller and more hESC-like (arrow). Day 
15. Increase in colony size (arrow). Day 17: Last transfection. Note that only reprogrammed 
cells survived all 17 transfections and keep increasing in colony size. Day 19: Cells are fed with 
NuFF-conditioned Pluriton. Colony center (arrow) keeps compacting as cells continue to 
reprogram and adopt a stem cell morphology. Day 20: The colony center is ready for picking 
and being plated on HFF-feeders in complete KOSR medium. 2 days after plating: All the 
colonies plated have attached and can be left to expand. 
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Figure 4-3: Representative morphology of BJ fibroblasts plated on NuFF-feeders 
undergoing mRNA reprogramming with daily transfections and NaBu and PTA-! 
treatment.  
Images were taken at 40x magnification. Day 1: Healthy cells after the first transfection. Day 3: 
Cell loss and cell rounding, a pre-apoptotic sign (arrow) can be observed. Day 5: Cells start 
undergoing MET and adopt an epithelial morphology (arrows) Day 7 and 9: Increase in cell 
death. Surviving cells are transitioning. Day 11: First sign of compaction and colony formation 
(arrow). Day 13: Increased compaction. Cells become smaller and more hESC-like (arrows). 
Day 15. Increase in colony size (arrows). Day 17: Last transfection. Colonies are compact and 
increase in size. Day 19: Cells are fed with NuFF-conditioned Pluriton. Colony center (arrow) 
keeps compacting as cells continue to reprogram and adopt a hESC-like morphology. Day 20: 
Colonies are very big with defined edges (white arrow heads). Colony center (asterix) is ready 
for picking and being plated on HFF-feeders in complete KOSR medium. 2 days after plating: 
All the colonies plated have attached and can be left to expand (arrow). 
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The modified mRNA reprogramming protocol successfully gave rise to iPSC colonies. Good 

d2eGFP, representing good transfection efficiency, could be observed throughout the 

reprogramming experiments (data not shown). Less cell death was observed in the presence of 

PTA-( (Figure 4-2), and the emerging colonies were more compact and easier to pick. 

Reprogramming efficiency was greater in the presence of 1 'M PTA-( (0.86% vs. 0.66%, 

illustrated in Figure 4-4). Nevertheless, this was still lower than the 4% efficiency reported by 

Warren et al. (2010). 

 

 

Figure 4-4 Trypan blue staining of colonies formed in the presence or absence of 1 "M 
PTA-α in one well of 6-well plate and an average reprogramming efficiency from two 
independent experiments. 

Good d2eGFP could be observed throughout the reprogramming experiments (data not shown). 

Less cell death was observed in the presence of PTA-(, and the emerging colonies were more 

compact and easier to pick. Reprogramming efficiency seemed greater in the presence of PTA-

(. However, by day 20 of the reprogramming protocols, the iPSC colonies were big and merged 

together. A final number of iPSC colonies could not be determined. Regardless, iPSC colonies 

from both treatment groups could successfully be plated in our regular hESCs culture conditions 

(i.e. on HFF-feeders in complete KOSR medium). The cells attached and expanded well. Upon 

passaging on HFF-feeders, they maintained typical undifferentiated hESC morphology and 

presented with typical hESC morphology (Figure 4-5). 

 
Figure 4-5: iKCL004 and iKCL011 colonies cultured in complete KOSR medium on HFF-
feeders.  



Chapter 4 INDUCED PLURIPOTENT STEM CELL GENERATION 

- 101 - 

iKCL004 P2 (left) and iKCL011 P2 (right). The cells have typical hESC morphology. Images 
were taken at 40x magnification. 
 

 

4.2 Adaptation of iPSCs to feeder-free culture conditions. 

Two iPSC lines with similar population doublings were selected for characterisation, iKCL004 

and iKCL011. The former was reprogrammed with NaBu treatment only and the latter was 

reprogrammed with both NaBu and PTA-( treatments. Both iPSC lines were successfully 

adapted to feeder-free culture conditions (GFR-Matrigel / mTeSR1) as illustrated in Figure 4-6. 

No differences in morphology or proliferation rate could be observed between the cell lines. 

 
Figure 4-6: iKCL004 P11 and iKCL011 P11 iPSCs lines cultured feeder-free on GFR-
Matrigel with mTeSR1 medium.  
Both lines have morphologies characteristic of undifferentiated iPSCs. Images were taken at 
40x magnification. 
 

 

4.3 iPSCs characterisation 

4.3.1 Pluripotency characterisation 

The two chosen iPSC lines, iKCL004 and iKCL011, were characterised by following the 

methods described in section 2.1.9 according to five criteria: i) morphological criteria, ii) 

detection of pluripotency markers: alkaline phosphatase activity, OCT4, NANOG, TRA-1-60 and 

TRA-1-8, iii) differentiation into three germ layers in vivo, iv) genotyping, v) determination of 

genomic stability. HLA typing was omitted since the cell lines will be used for research only and 

not clinically. The morphological criteria were met for both lines as the cells presented with an 

hESC-like undifferentiated morphology (Figure 4-5 and Figure 4-6). The pluripotency 

characterisation and teratoma formation results for iKCL004 are presented in Figure 4-7 and 

Figure 4-8 respectively and the pluripotency characterisation and teratoma formation results for 
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iKCL011 are presented in Figure 4-9 and Figure 4-10 respectively. The positive results confirm 

that the iPSCs derived from the BJ cell line using the modified mRNA reprogramming protocol. 

iPSCs generated with or without p53 inhibition are equally pluripotent and express the same in 

vitro pluripotency markers as the hESCs used in this study. Similarly to our hESC lines, both 

iPSC lines also have the ability to differentiate in vivo into the three germ layers. 

 

 
Figure 4-7: iKCL004 cultured on GFR-Matrigel with mTeSR1 pluripotency 
characterisation.  
All images were taken at 40x magnification. 
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Figure 4-8: iKCL004 Teratoma characterisation  
Histological images were taken at 40x magnification. 

 
 
Figure 4-9: iKCL011 cultured on GFR-Matrigel with mTeSR1 pluripotency 
characterisation.  
All images were taken at 40x magnification. 
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Figure 4-10: iKCL011 teratoma characterisation.  
Histological images were taken at 40x magnification. 
 

4.3.2 DNA Fingerprinting 

We confirmed that the two preferred iPSC lines, iKCL004 and iKCL011 were derived from the 

BJ somatic donor cells with DNA fingerprinting. Results are presented in Table 4-2. 
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Table 4-2: DNA fingerprinting results for the BJ somatic fibroblast cell line and the 
iKCL004 and iKCL011 iPSC lines derived from it.  
The occasional 1bp size difference is due to the size differentiation by capillary electrophoresis. 

 

 

4.4 Keratinocyte-derived iPSCs generation using synthetic modified 
mRNA 
4.4.1 Keratinocytes derivation and culture 

As mentioned previously, the target HD somatic cells for iPSC reprogramming were HF-

keratinocytes. Firstly, HF-keratinocytes derivation and culture were optimised from the Aasen 

protocol (Aasen et al., 2008) on samples from healthy donors. After taking patient consent, hairs 

were plucked and only hair follicles with a visible ORS, and indication of being in the 

proliferative anagene phase (Alonso and Fuchs, 2006), were kept. The adapted protocol 

(described in 2.2.3) allowed good HF-keratinocyte derivation and culture. Positive 

immunostaining for Keratin 14 (K14), a basal epithelial keratinocyte marker. confirmed that the 

cells migrating out of the ORS are keratinocytes (Figure 4-11). 
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Figure 4-11: Keratinocyte keratin 14 immunostaining.  
Keratin 14 (red) and Hoechst (blue) staining of hair follicle-derived keratinocytes. Image was 
taken at 40x magnification. Inset image is 400x magnification. 
 

 

4.4.2 HD Patients keratinocyte sample collection 

Patient hair sample collection was performed in the same way as for healthy individuals. 

However, there was a great variability in the quality of the samples collected and the 

subsequent good isolation and culture of the HF-keratinocytes. No HD-patient HF-keratinocytes 

culture could be expanded in sufficient number to allow mRNA reprogramming (Table 4-3). 
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Table 4-1 Repertory of the patient samples collected for this study.  
CAG corresponds to the CAG repeat number of HTT. 
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4.4.3 Keratinocytes reprogramming with synthetic modified mRNA 

4.4.3.1 Original Warren et al. (2010) mRNA reprogramming protocol 

Even though it was not possible to attempt reprogramming HD keratinocytes due to insufficient 

cell number derivation (Table 4-3) we tried the original Warren protocol on HF-keratinocytes 

isolated from healthy individuals. To do so, 0.6–1 x 105 HF-keratinocytes were plated on 3 x 105 

HFF-feeders/well of a 6-well dish and the cells were transfected daily with the mRNA 

reprogramming cocktail. As for the fibroblasts, excessive cell loss rapidly occurred no colony 

formation was observed. The experiments were terminated at day 15, without generating iPSCs 

(Figure 4-12). 

 
Figure 4-12: Representative morphology of healthy HF-keratinocytes plated on HFF-
feeders undergoing mRNA reprogramming with daily transfections.  
Images were taken at 40x magnification. After cell plating: Healthy HF-keratinocytes (black 
arrow) on an HFF-feeder layer. Day 1: Healthy HF-keratinocytes after the first transfection 
(black arrow). Day 3: Cell rounding, a pre-apoptotic sign (white arrows) can be observed. Day 
5: Overall cell loss is observed. Day 7: Excessive cell loss observed. Areas indicated by the 
white asterisks are completely depleted from cells. Day 9: No improvement and no signs of 
cells starting to reprogram. Day 11: Only a few HF-keratinocytes (black arrow) can be observed 
in culture. Their morphology indicates that they are not reprogramming. Day 13: No more 
healthy cells left in culture. The experiment was terminated at day 15. 
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4.4.3.2 Modified mRNA reprogramming protocol 

The modified mRNA reprogramming protocol using Pluriton medium was experimented on the 

HF-keratinocytes. Unlike with the fibroblasts, it did not improve mRNA reprogramming and did 

not give rise to iPSCs. After two days in Pluriton medium, the HF-keratinocytes differentiated 

and adopted a stratified morphology (Figure 4-13). Keratinocytes are sensitive to calcium-

induced differentiation, which can be triggered by extracellular calcium concentrations greater 

than 0.06 mM (Aasen and Belmonte, 2010). Pluriton’s calcium concentration is a proprietary 

information and we cannot confirm whether it is the cause for the keratinocyte differentiation we 

observed. The differentiated keratinocytes could not be transfected by our mRNA cocktails, as 

observed by the negative d2eGFP expression (data not shown). 

 

 

Figure 4-13: Keratinocytes cultured in Epilife (keratinocyte medium) and Pluriton (mRNA 
reprogramming medium) for 48h.  
Keratinocytes differentiated and exhibited a stratified morphology after exposure to Pluriton. 
Images were taken at 100x magnification. 

 

 

4.5 Discussion 

We trialled the mRNA reprogramming protocol originally published by Warren et al. (2010) on 

fibroblasts but could not be reproduce it due to high cell death. We optimised the mRNA 

reprogramming protocol, notably by increasing the concentration of B18R and using NaBu with 

or without PTA-(. Both treatment groups successfully gave rise to iPSCs. One iPSC line from 

each treatment group (iKCL004 and iKCL011 respectively) was adapted to feeder-free culture 

before being characterised. Both iPSC lines equally maintained hESC-like morphology and 

tested positive for the presence of pluripotency markers. The lines were also differentiated in 

vivo and tested positive for the presence of the three germ layers. Finally, DNA fingerprinting 
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confirmed that the iKCL004 and iKCL011 iPSCs lines were derived from the same BJ fibroblast 

somatic donor line. 

Other groups have demonstrated transient inactivation of p53 during reprogramming is 

beneficial and leads to an increased reprogramming efficiency (Hong et al., 2009; Kawamura et 

al., 2009; Zhao, Y. et al., 2008; Marion et al., 2009). We observed an overall decreased cell 

death and more compact iPSC colonies in cells treated with PTA-(. We observed a 30% 

increase in iPSC colony numbers upon PTA-( treatment. Basic characterisation of iKCL004 and 

iKCL011 does not suggest any obvious differences between the lines. p53 mainly ensures 

fidelity of DNA replication and maintenance of cellular epigenetic stability, by inducing apoptosis 

in cells undergoing undesirable changes in order to prevent their proliferation (Jackson-Grusby 

et al., 2001; Leonova et al., 2013; Marion et al., 2009). Even though p53 activation during iPSC 

generation is partly responsible for poor reprogramming efficiency, it could also to some extent 

be seen as beneficial as it prevents the reprogramming of cells with DNA damages. In the 

absence of p53, interferon I-mediated cell death can take over to prevent the proliferation of 

cells with a disturbed epigenetic state (Leonova et al., 2013). Yet, our mRNA reprogramming 

protocol includes B18R, an interferon I inhibitor required to suppress the native immune 

response triggered by the multiple exogenous mRNA transfections required by our 

reprogramming protocol (Angel and Yanik, 2010; Warren et al., 2010). B18R treatment could 

prevent interferon-mediated cell death to take place in the absence of p53. Transient p53 

inactivation coupled with interferon I inhibition could lead to the generation of iPSC lines with 

higher DNA damage rates. Therefore, further complementary characterisation of iKCL004 and 

iKCL011 is necessary. It would include pairwise comparison of the iPSC lines for whole-genome 

DNA methylation and whole-exome sequencing. We are anticipating DNA demethylation of 

pluripotency-associated genes in both iPSCs lines compared to the BJ somatic donor line (Reik, 

2007; Guenther et al., 2010). When comparing to one of our hESC lines, we are likely to 

observe some differences as iPSCs have a distinct gene signature from hESCs, partly because 

of the persistence of some of the donor somatic cell’s gene expression even after 

reprogramming (Ghosh et al., 2010; Streckfuss-Bomeke et al., 2012; Ruiz et al., 2012; Chin et 

al., 2009). Yet, regardless of the donor cell type, iPSCs can have up to nearly 3% of 

differentially methylated CpG site, mainly due to de novo hypermethylations acquired during 

reprogramming. These epigenetic differences can then in turn be associated with changes in 

gene expression (Ruiz et al., 2012). It would be interesting to see if such differences are more 

prominent in iKCL011, our PTA-(-treated iPSC line. For complementary information, whole-

exome sequencing could be performed on our iPSCs. It would allow us to determine if PTA-( 

treatment induced any somatic mutations or rare genetic variants (Ng, S.B. et al., 2009). 

HF-keratinocytes was the ultimate somatic cell type to be reprogrammed using mRNA. For this, 

we derived HF-keratinocytes from anagen-phase hair follicles. This was achieved by 

successfully adapting the Aasen et al. (2008) protocol on hair follicles plucked from healthy 

donors. Keratin 14 positive keratinocytes cultures could be isolated and expanded. As for the 

fibroblasts, the original Warren et al. (2010) mRNA reprogramming protocol was tried on the 

HF-keratinocytes. No iPSCs could be derived due to high cell death. The protocol modifications 
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that led to a successful fibroblast mRNA reprogramming protocol could not be applied to the 

HF-keratinocytes. Indeed, the new reprogramming medium, Pluriton, led to HF-keratinocytes 

differentiation and cell cycle arrest. HF-keratinocytes are an attractive source of somatic cells for 

iPSC generation due to their higher efficiency and rapidity to reprogram compared to fibroblasts 

(Aasen et al., 2008). Several groups reprogrammed keratinocytes from various origins with 

retroviral or lentiviral vectors (Linta et al., 2012; Kim, K. et al., 2011; Zhu et al., 2010; Novak et 

al., 2010; Petit et al., 2012). However, it seems that in our hands HF-keratinocytes are not as 

robust as fibroblasts to survive the 18 consecutive mRNA transfections required by the Warren 

protocol. Furthermore, the Pluriton medium used in the optimised protocol induced 

differentiation of the HF-keratinocytes, which in turn prevented them from being transfected. 

The other constraint associated with HF-keratinocytes encountered in this project was the high 

variability in HF-keratinocytes derivation success. No HD HF-keratinocytes could be derived in 

sufficient number for reprogramming. Patients were in their mid 40s to 50s and age could 

explain less efficient HF-keratinocyte derivation. It was observed that HF-keratinocytes could 

not be derived from white hairs for instance. Other environmental factors could also be 

responsible for poor HF-keratinocytes derivation. Patient 6 was notably taking Methotrexate, a 

chemotherapy drug that can affect hair growth (Table 4-3). 

At the time of writing, no other group published iPSC lines generated using the original Warren 

et al. (2010) protocol. It has been acknowledged in recent publications by the authors that 

Pluriton medium is more robust and better to use with this protocol than Nutristem (Warren et 

al., 2012; Mandal and Rossi, 2013). One option to improve HF-keratinocytes mRNA 

reprogramming would be to progressively switch them from the HF-keratinocyte culture medium 

to the iPSC reprogramming medium in order to prevent calcium-induced HF-keratinocytes 

differentiation. Furthermore, the addition of 10 µM of Y-27632 during HF-keratinocytes 

reprogramming could be beneficial as ROCK inhibitor blocks keratinocyte terminal 

differentiation, increases cell proliferation and prevents apoptosis (Mcmullan et al., 2003; 

Chapman et al., 2010). 

It should also be highlighted that the NuFF-feeder cells play a crucial role on the favourable 

outcome of the reprogramming protocol. Indeed, even when using Pluriton medium, the protocol 

cannot be reproduced when using HFF-feeders other than NuFF cells from donor 11. It is not 

known how exactly these specific cells support better mRNA reprogramming but their central 

role in the protocol could explain why Warren had to further modify the synthetic mRNA in order 

to develop a feeder-free mRNA protocol (Warren et al., 2012). 

On top of the labour-intensity of the protocol, another significant limitation associated with 

mRNA reprogramming is its very high cost, which restricted the number of experimental 

conditions that could be tested. 

 

All in all, modified synthetic mRNA was, in our hands, not the right reprogramming vector for 

HF-keratinocytes. Multiple reprogramming method exist and choosing one depends i) on the 
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starting cell population e.g. keratinocytes, fibroblasts or adipocytes and ii) the purpose of 

reprogramming e.g. disease modeling or cell therapy. Fibroblasts are still the “go to” cells to be 

reprogrammed, as they are very easy to culture and robust to various reprogramming method. 

In our case, they survived the daily transfections required by synthetic modified mRNA 

reprogramming. Moreover, for the purpose of disease modeling, cell repositories such as Coriell 

bank disease fibroblasts, making it an easily available source of samples for scientists. Another 

source of patient sample that can be readily accessible to researcher are peripheral blood 

mononuclear cells (PBMCs). PBMCs can be reprogrammed to iPSCs with efficiencies 

comparable to fibroblasts (Loh et al, 2010). Keratinocytes are also a great source of patient 

samples, and their isolation via hair follicle collection is a non-invasive, non-painful procedure. 

Keratinocytes have been shown to reprogram up to 100-folds more efficiently and twofold faster 

than fibroblasts, probably due to their endogenous levels of KLF4 and c-MYC (Aasen et al., 

2008). Although not readily available, neural stem cells are also a competent source of cells for 

reprogramming due to their endogenous levels of reprogramming factors, leading them to being 

reprogrammed in the absence of SOX2 or c-MYC or with OCT4 alone (Kim, J. B. et al.,2008; 

Kim, J. B. et al.,2009). Though not applicable to any cell type, non-integrative reprogramming 

strategies such as synthetic modified mRNA reprogramming are attractive not only by their 

kinetics, but also by the great advantage of leaving no permanent genetic mutation, due to 

random viral transgene insertion, in the derived-iPSCS. This would reduce genetic 

heterogeneity amongst the generated iPSC lines. 

There are still many options to generate iPSCs derivation strategies. They still mainly depend 

on the available source of sample, purpose of reprogramming, reprogramming vector availability 

as well as time and budget limitations. 



 

- 113 - 

 

 

 

 

 

 

 

Chapter 5 

hESC differentiation into 
cardiomyocytes 



Chapter 5 hESC DIFFERENTIATION INTO CARDIOMYOCYTES 

- 114 - 

5 Chapter 5 HESC DIFFERENTIATION INTO CARDIOMYOCYTES 

 

5.1 Cardiac failure and Huntington’s Disease 

HTT is ubiquitously expressed and despite neurodegeneration being the main phenotype of HD, 

non-CNS HD-associated pathologies have been reported (Van Der Burg et al., 2009; Sassone 

et al., 2009; Sathasivam et al., 1999). Epidemiology studies suggest that cardiac failure is the 

second cause of death amongst HD patients (Sorensen and Fenger, 1992; Lanska et al., 1988; 

Chiu and Alexander, 1982). Cardiac defects, including atrophy, have previously been described 

In HD murine models (Sathasivam et al., 1999; Mihm et al., 2007; Wood, 2012; Kiriazis et al., 

2012). HD-iPSCs have proven to be good in vitro models by replicating some HD-neuronal 

phenotypes (Zhang, N. et al., 2010; An et al., 2012; Camnasio et al., 2012;The HD iPSC 

Consortium, 2012). However, the HD cardiac phenotype is yet to be studied in vitro in order to 

determine whether the cardiac defects observed in HD murine models are due to a cell 

autonomous or a non-cell autonomous process. Therefore, here we differentiate the hESCs 

previously characterised in Chapter 3 into cardiomyocytes in order to address this and 

investigate possible HD-specific cardiac phenotypes. To our knowledge, this work is the first 

human cardiac HD in vitro model. 

 

 

5.2 hESCs cardiac differentiation 

This hESC cardiac differentiation work was first undertaken in collaboration with Prof. Harding’s 

groups (Imperial College London). The Harding group has successfully differentiated the H7 

hESCs line into hESC-derived cardiomyocytes (hESC-CM) (Thomson et al., 1998; Foldes et al., 

2011). This collaboration enabled us to use the H7 line as a positive control for the 

differentiation conditions. The observation of beating cell clusters no later than 30 days post-

initiation of differentiation was used as a cut-off point to determine the success of a 

differentiation protocol and the generation of functional cardiomyocytes. 

 

5.2.1 hESCs cultured in mTeSR1 

As described in Chapter 3, the eight hESC lines used in this study were successfully adapted to 

feeder-free culture conditions by culturing them in mTeSR1 medium in combination with GFR-

Matrigel coating matrix. The H7 hESC line was thus adapted to the latter and was maintained in 

it for at least three passages prior to cardiac differentiation induction. 
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5.2.1.1 Spontaneous cardiac differentiation of hESCs cultured in mTeSR1  

As described in Chapter 3, hESCs have the ability to spontaneously differentiate into all three 

germ layers in the presence of FBS and absence of bFGF. We explored to which extent they 

spontaneously differentiate into the mesoderm vs. other two germ layers (endoderm and 

ectoderm) when cultured under these conditions. This property was exploited to differentiate 

hESCs into cardiomyocytes. 

One commonly used method for cardiac differentiation relies on the formation of spherical 

aggregates known as EBs, which enable the hESCs to differentiate into derivatives of the three 

germ layers, including cardiomyocytes (Germanguz et al., 2011; Dolnikov et al., 2006; Ma et al., 

2012; Gherghiceanu et al., 2011; Xu et al., 2001; Kehat et al., 2001). To form EBs, H7 hESCs 

colonies were manually broken following dispase treatment as described in 2.1.6. Cell clusters 

were placed into low adherence dishes and fed daily with KOSR medium supplemented with 

20% FBS and without bFGF. After four days of culture in suspension, the EBs were plated onto 

0.5% gelatin-coated dishes, fed every two or three days and monitored for the formation of 

spontaneously beating areas. Although inefficient due to the cells also differentiating into 

endoderm and ectoderm derivatives (Xu et al., 2001), it is expected that approximately 8.1% of 

the plated EBs will give rise to contractile foci within 30 days of differentiation (Kehat et al., 

2001). The observation of spontaneously beating areas within 30 days of differentiation was 

considered as our endpoint to determine whether or not the hESCs had successfully 

differentiated into functional cardiomyocytes. No beating was observed within 30 days of plating 

for the H7 hESCs. 

The endocrine and chemical composition of FBS varies from batch-to-batch (Honn et al., 1975). 

One possibility to explain our negative outcome is that the batch of FBS used in this study was 

not supportive of cardiac differentiation. Another drawback associated with this EB-based 

differentiation protocol is that the size of manually generated EBs cannot be controlled. Yet, It 

has been demonstrated that EB-based differentiation outcomes can be greatly influenced by the 

initial EB size. EBs of 1,000 cells are optimal for cardiac differentiation (Bauwens et al., 2011). 

In order to generate size-controlled EBs of 1,000 cells/aggregate, Aggrewell plates (STEMCELL 

Technologies) were used. Aggrewell plates contain microwells that allow the even distribution of 

a single cell suspension in order to generate EBs of a chosen size. hESCs were seeded in 

Aggrewell plates in KOSR medium with 20% FBS and without bFGF to generate EBs of 1,000 

cells. After 24 h in the Aggrewell plates, EBs were placed into low-adhesion plates for four days 

before being plated on 0.5% gelatin (Figure 5-1). No beating was observed in wells with the H7 

hESC line within 30 days of differentiation. The protocol was repeated with EBs of 3,000 and 

10,000 cells. Indeed, the 1,000 cells EBs were smaller than the manually generated EBs that 

had a positive differentiation outcome in MEF-conditioned Medium (MEF-CM) cultured H7 

hESCs (Foldes et al., 2011) (personal communication from Dr. M. Mioulane). However, no 

beating was observed within 30 days of differentiation. 

Additionally, we trialled the EB-based spontaneous hESC cardiac differentiation using STEMDiff 

APEL medium (STEMCELL Technologies) as a basal medium, supplemented with 20 % FBS. 
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Its xeno-free, serum-free formulation was originally developed for EB-based hESC 

differentiation (Ng, E.S. et al., 2008). STEMCELL Technologies recommended it, as its 

formulation could be more suitable for cells cultured in mTeSR1. As summarised in Table 5-1, 

this differentiation condition was trialled with EBs of 1,000, 3,000 and 10,000 cells. No beating 

could be observed within 30 days of differentiation. 

 

 

Figure 5-1: Embryoid Body (EB) formation using the Aggrewell plates.  
Day 0: 1,000 cells per microwell were seeded in KOSR medium supplemented with 20% FBS 
and without bFGF. Day 1: 24 h later, EBs uniform in size could be cultured in suspension. 
Images were taken at 40x magnification. 

 

5.2.1.2 Directed cardiac differentiation of hESCs cultured in mTeSR1  

Due to the lack of success of the EB-based spontaneous cardiac differentiation protocol, a 

directed cardiac differentiation approach was trialled. Directed cardiac differentiation relies on 

exposing the hESCs to successive cytokine treatments to direct them into the cardiac lineage. 

Directed cardiac differentiation protocols also have the advantage of being fully defined and of 

bypassing the use of FBS. 

5.2.1.2.1 Yang protocol 

First, using H7 hESC line cultured in mTeSR1, we tested an EB-based protocol for directed 

cardiac differentiation (Yang, L. et al., 2008). However, the EBs rapidly disaggregated. One 

reason for this could be that the differentiation medium did not support survival of mTeSR1 

cultured cells. We repeated the protocol generating EBs of 1,000 cells as described in 5.2.1.1, 

using STEMDiff APEL medium as a basal medium. This time, the cells were left in the 

Aggrewell plate throughout the differentiation. However, within 15 days of differentiation, the 

EBs disaggregated and no beating could be observed (Figure 5-2). 
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Figure 5-2. DisaggregatIng EBs 15 days post differentiation in STEMDIff APEL.  
Image was taken at 100x magnification. 

 

5.2.1.2.2 Laflamme protocol 

Considering the negative outcomes of the EB-based differentiation protocols, we decided to try 

a monolayer directed differentiation protocol, which can be up to 50-fold more efficient than EB-

based cardiac differentiation protocols (Laflamme et al., 2007). As for the Yang protocol, the 

Laflamme protocol consists of a succession of cytokine treatments and is detailed in section 

2.3.2. This protocol was chosen because it is not FBS-based and is fully defined. More 

importantly, it was originally developed on the H7 hESC line and was since successfully 

reproduced by Prof. Harding’s group (Foldes et al., 2011). Using the H7 hESC line as a positive 

control, all the eight hESC lines used in this study were subjected to this protocol. Within 15 

days of differentiation, the cells formed clusters but none of them started beating within 30 days. 

Two examples of the clusters formed after 15 days of cardiac differentiation with the Laflamme 

protocol are presented in Figure 5-3. 

 
Figure 5-3: Day 15 day of cardiac differentiation in mTeSR1 medium (Laflamme protocol). 
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KCL020 (WT-hESC) and KCL036_HD7 (HD-hESC) formed clusters (arrows) 15 days post 
cardiac differentiation. No beating was observed within 30 days. Images were taken at 40x 
magnification. 
 

5.2.1.2.3 Lian protocol 

All of the above protocols were originally developed on cells cultured on MEF or on GFR-

Matrigel with MEF-CM, which could explain why they gave poor outcomes on cells cultured in 

mTeSR1. During our cardiac differentiation protocol development, Lian et al. (2012a) published 

a cardiac differentiation protocol that started with cells cultured feeder-free in mTeSR1 and 

GFR-Matrigel. It is based on the Laflamme protocol (Laflamme et al., 2007), with the addition of 

a three-day cell pre-treatment with a glycogen synthase kinase 3 (Gsk3) inhibitor (CHIR99021) 

and the use of a B27 supplement without insulin. Indeed, Lian et al. also published that low 

insulin levels were beneficial to cardiomyocytes differentiation (Lian et al., 2012b, 2013) One 

WT-hESC line (KCL031) and one HD-hESC line (KCL027_HD5) were subjected to this protocol. 

We also tested a range of CHIR99021 concentrations in combination with B27 with no insulin as 

indicated. 

Within eight days of the Lian cardiomyocytes differentiation protocol, cell survival decreased. No 

beating cardiomyocytes could be observed within 30 days of differentiation in the two cell lines 

tested (Figure 5-4). 
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Figure 5-4: Day 8 of cardiac differentiation in mTeSR1 medium (Lian protocol).  
Different concentrations of CHIR99021 were tested. KCL031 and KCL027_HD5 cell survival 
started decreasing from 8 days post cardiac differentiation. Images were taken at 40x 
magnification.
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5.2.1.3 Summary of the cardiac differentiation protocols trialled on mTeSR1-
cultured hESCs. 

 

hESC culture 
medium Protocol Additional Info Beating 

mTeSR1 EB (20%FBS) 

Manually formed 

EBs Negative 

mTeSR1 EB (20%FBS) 1,000 cells/EB Negative 

mTeSR1 EB (20%FBS) 3,000 cells/EB Negative 

mTeSR1 EB (20%FBS) 10,000 cells/EB Negative 

mTeSR1 STEMDiff APEL + 20%FBS 1,000 cells/EB Negative 

mTeSR1 STEMDiff APEL + 20%FBS 3,000 cells/EB Negative 

mTeSR1 STEMDiff APEL + 20%FBS 10,000 cells/EB Negative 

mTeSR1 

Yang et al. (2008) 

Manually formed 

EBs Negative 

mTeSR1 Yang et al. (2008) 1,000 cells/EB Negative 

mTeSR1 

Laflamme et al. (2007) 

Monolayer of 2 x 105 

cells/cm2 Negative 

mTeSR1 Laflamme et al. (2007) with 

STEMDiff APEL as a basal 

medium 

Monolayer of 2 x 105 

cells/cm2 Negative 

mTeSR1 
Lian et al. (2012a) * 

Monolayer of 2 x 105 

cells/cm2 Negative 

MEF-CM EB (20%FBS) 

Manually formed 

EBs Positive 

MEF-CM Laflamme 

Monolayer of 2 x 105 

cells/cm2 Positive 

Table 5-1: Summary of the cardiac differentiation conditions trialled on the H7 hESC lines 
cultured feeder-free in mTeSR1 medium or mouse embryonic fibroblast-conditioned 
medium (MEF-CM).  
* This condition was only trialled on WT-hESC KCL031 and HD-hESC KCL027_HD5 lines. 
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The differentiation conditions where the cells were cultured feeder-free in mTeSR1 medium all 

had a negative outcome (no beating within 30 days of differentiation) while the differentiation 

protocols were successful when the cells were cultured in MEF-CM prior to differentiation. This 

led to suggest that rather than the differentiation protocol; the undifferentiated hESC culture 

conditions could be impeding downstream cardiac differentiation. We thus decided to adapt the 

hESCs to a new culture medium. 

 

5.2.2 hESCs cultured In Nutristem 

All eight hESC lines but HD-hESC KCL012_HD3 could be adapted from culture in mTeSR1 

medium to culture in Nutristem medium (Stemgent) on GFR-Matrigel as a matrix. KCL012_HD3 

could not be cultured in these conditions for a minimum of three passages without excessive 

spontaneous differentiation and could thus not be used for cardiac differentiation. It cannot be 

excluded that KCL012_HD3 acquired a chromosomal abnormality during the study, which could 

explain the excessive differentiation. Nutristem was chosen over MEF-CM as it has a fully 

defined formulation, which would bypass any variability associated with different batches of 

MEFs. The hESCs were maintained in this culture condition for at least three passages prior to 

cardiac differentiation. 

 

5.2.2.1 Spontaneous cardiac differentiation of hESCs cultured in Nutristem 

Among seven feeder-free hESC lines adapted to Nutristem medium, and subjected to the 

spontaneous cardiac differentiation protocol described In 5.2.1.1, only one WT- (KCL031) and 

one HD- (KCL028_HD6) hESC line gave rise to beating clusters within 30 days of differentiation 

(Figure 5-5). 

 
Figure 5-5: hESCs cultured in Nutristem after 30 days of cardiac differentiation 
(Spontaneous EB-based protocol).  
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KCL031 and KCL028_HD6 formed beating clusters (arrows) 30 days post cardiac 
differentiation. Images were taken at 40x magnification. 
 

Considering this protocol only had a positive outcome on 2/7 hESC lines and the variability 

across different batches of FBS, we decided to differentiate the hESCs adapted to Nutristem 

feeder-free culture with the Laflamme directed differentiation protocol. This protocol offers a 

tighter control over the different variables of differentiation, which could lead to a better 

reproducibility across the seven different hESCs lines. 

 

5.2.2.2 Directed cardiac differentiation of hESCs cultured in Nutristem (Laflamme 

protocol) 

As in 5.2.1.2.2, we subjected seven hESCs lines adapted to Nutristem feeder-free culture to the 

Laflamme directed differentiation protocol. 

All the hESC lines but KCL040 presented beating areas within 30 days of differentiation. In our 

hands, the Laflamme protocol on cells cultured feeder-free in Nutristem medium was the most 

dependable despite a wide range of differentiation efficiency (summarised in Table 5-2). 

 

Cell line % wells with beating 
cardiomyocytes (day 30) 

KCL020 4.2% (2/48) 

KCL027_HD5 16.7% (8/48) 

KCL028_HD6 4.2% (2/48) 

KCL031 20.8% (10/48) 

KCL034 6.3% (3/48) 

KCL036_HD7 6.3% (3/48) 

KCL040 0% (0/48) 

Table 5-2: Summary of percentage of wells presenting beating areas by day 30 of cardiac 
differentiation by the Laflamme protocol. 

 

Next, the hESC line that presented beating by day 30 of the Laflamme differentiation protocol 

were analysed by qPCR for two pluripotency markers (NANOG and OCT3/4), two cardiac 

markers (NKX2.5 and TNNT2) and HTT. The relative gene expression and the gene expression 

normalised to the undifferentiated hESCs are presented in Table 5.3.A and B respectively. 
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Table 5-3: Gene expression of hESC and hESC-CM at day 30 of the Laflamme protocol.  
A. Relative gene expression of the hESC and hESC-CM (day 30). B. Gene expression levels in 
hESC-CMs normalised to the respective hESC line. 

 

The results presented in Table 5-3 confirm that the six hESC lines presenting beating areas by 

day 30 of the Laflamme differentiation protocol had a down-regulation of their pluripotency 

associated genes NANOG and OCT3/4, and an up-regulation of the cardiac-associated genes 

NKX2.5 and TNNT2. KCL031 and KCL027_HD5, which are the two cell lines that presented the 

most beating areas (Table 5-2), have the highest expression of NKX2.5 and TNNT2, whether 

looking at the relative or the normalised gene expression (Table 5-3). HTT expression remained 

similar between hESCs and hESC-CMs. 

The results presented in Table 5-3 support a study published by Allegrucci and Young 

(Allegrucci and Young, 2007) that demonstrated that hESC lines have variable in gene 

expressions. We have also observed this cell line variability, as shown in part A of Table 5-3, 
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where the undifferentiated hESCs have a wide array of expression of their pluripotency genes. 

This could explain the differences in differentiation efficiency observed. 

 

Next we assessed the gene expression of the normalised means of WT- and HD-hESCs and 

WT- and HD-hESC-CMs (Figure 5-6). This confirmed that both WT- and HD-hESCs had 

significant down-regulation of their pluripotency genes at 30 days of the Laflamme 

cardiomyocytes differentiation protocol. Both WT- and HD-hESCs had an up-regulation of 

cardiac-associated genes after 30 days of cardiac differentiation. However, the increase was 

only significant for NKX2.5 in WT-hESCs. HTT expression remained the same between both 

group in hESCs and hESC-CMs. 

 

Figure 5-6: Gene expression of the normalised means of WT-hESCs, WT-hESC-CM, HD-
hESCs and HD-hESC-CMs.  
WT-hESC are compared with WT-hESC-CM and HD-hESC are compared with HD-hESC-CM. 
Data are given by normalised mean ± standard error of the mean (n = 3); statistical significance 
was calculated by two-way ANOVA with Bonferroni post-hoc test. * P < 0.05, *** P < 0.01, NS: 
non significant. 
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We further confirmed the positive outcome of the Laflamme protocol and the presence of 

beating cardiomyocytes by immunostaining the cells against cardiac troponin T (cTnT), a 

cardiac marker specific to beating cardiomyocytes (Figure 5-7). 

 
Figure 5-7: Representative cardiac troponin T (cTnT) immunostaining on day 30 of 
cardiac differentiation.  
cTnT: green and Hoechst: blue. Images were taken at 400x magnification. 

 

After 30 days of cardiac differentiation, positive cTnT staining could be observed for three WT-

hESC-CM lines (KCL020, KCL031 and KCL034) and two HD-hESC-CM lines (KCL027_HD5 

and KCL036-HD7). cTnT immunostaining on HD-hESC-CM KCL028, which also presented 

beating areas within 30 days of differentiation, was not performed. We found no obvious 

difference between WT-hESC-CMs and HD-hESC-CMs, suggesting that HTT mutation does not 

prevent HD-hESCs from differentiating into cardiomyocytes. 

 

5.2.2.3 Comparison of WT- and HD-hESC-CMs. 

5.2.2.3.1 Cardiomyocyte-specific biomarker expression in WT- and HD-hESC-CMs 

We choose one WT- (KCL031) and one HD- (KCL027_HD5) hESC line with the best 

differentiation efficiency (20.8% and 16.7% respectively, see Table 5-2) and the highest gene 

expression of cardiac-associated genes to be screened for any disparities in differentiation 

potential and any potential molecular HD-specific phenotype. Samples from undifferentiated 

hESCs and hESC-CMs at day 30 of differentiation were analysed by qPCR using the Qiagen 

Human Cardiomyocyte Differentiation qBiomarker PCR Array. The array contains 19 

cardiomyocyte-specific biomarkers and two housekeeping genes for normalisation (summarised 

in Table 5-4). 
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Biomarker Gene 

Cardiomyocyte Structural Constituent: ACTN2 (Actinin alpha2), DES (Desmin), 
MYH7 (MyHC-beta), MYL2 (MLC-2, 

MLC-2v), MYL3, MYL7, TNNI3 (cTnI), 
TNNT2 (cTnT) 

Cardiomyocyte Transcription Factors GATA4, HAND2 (dHAND), NKX2-5 

Cardiomyocyte Receptors ADRB1, NPPA, RYR2, 

Cardiomyocyte Ion Channels KCNQ1, PLN, SLC8A1 

Cardiomyocyte Enzyme CKM 

Cardiomyocyte Transporter MB (myoglobin) 

Housekeeping Gene NAT1, GAPDH 

Table 5-4: List of cardiac biomarker genes present on the Qiagen Human Cardiomyocyte 
Differentiation qBiomarker PCR Array.  
Adapted from Qiagen (http://www.sabiosciences.com/qbiomarker_product/HTML/IPHS-
102A.html, accessed on 20/07/2013) 

 

Samples from the undifferentiated and the differentiated conditions for the two chosen hESC 

lines were run in technical triplicates on the qBiomarker array and were analysed using the 

Web-based Qiagen qBiomarker iPSC Data Analysis Software. Upon data analysis, 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was determined to be the most stable 

housekeeping genes and the sample were normalised against its expression. A clustergram of 

the samples’ normalised gene expression was generated and is presented in Figure 5-8. 
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Figure 5-8: Clustergram of expression values of cardiac genes in undifferentiated hESCs 
and hESC-CM at day 30 of cardiac differentiation (Laflamme protocol).  
A) Undifferentiated KCL031, B) KCL031-CM, C) undifferentiated KCL027, D) KCL027-CM. 
Green colour represents minimal gene expression and red colour represents maximal gene 
expression. 

 

The results of the clustergram presented in Figure 5-8 show that the undifferentiated hESCs 

populations (A and C) are well separated from the differentiated hESCs populations (B and D). 

The data confirmed that the majority of cardiac-specific genes such as NKX2.5 and TNNT2 are 

minimally or not at all expressed in the undifferentiated hESCs populations (A and C) (the 

magnitude of gene expression is in green). This is in line with the data presented in Table 5-3 

and Figure 5-6. On the contrary, these genes were expressed in the differentiated hESCs 

populations (B and D), suggesting that the cardiac differentiation is taking place (the magnitude 

of gene expression is in red). Interestingly, a high proportion of cardiomyocyte biomarkers such 

as MYH7 and NKX2.5 appear to be less expressed in the HD-hESC-CMs (sample D) than in 

the WT-hESC-CMs (sample B) though whether this is of any significance should be confirmed. 

We next compared the cardiomyocyte biomarkers expression in KCL027_HD5-CM versus 

KCL031-CM and performed a scatter plot analysis where the Log10 of 2-^Delta-Ct expression 

of HD-hESC-CM KCL027 was plotted against the Log10 of 2-^Delta-Ct expression of WT-

hESC-CM KCL031. A fold change of two or more was considered significant. The scatter plot is 

presented in Figure 5-9 and a summary table of the genes with a fold change of two or more is 

presented in Table 5-5. 
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Figure 5-9: Relative comparison expression of cardiomyocyte biomarkers gene in 
KCL027_HD5-CM compared to KCL031-CM at day 30 of the Laflamme protocol.  
Scatter plot showing the Log10 of 2-^Delta-Ct expression of HD-hESC-CM KCL027 plotted 
against the Log10 of 2-^Delta-Ct expression of WT-hESC-CM KCL031. Green dots represent 
HD-hESC-CM genes with a fold expression lower than WT-hESC-CM and grey lines indicate 
e 2 folds expression. 



Chapter 5 hESC DIFFERENTIATION INTO CARDIOMYOCYTES 

- 129 - 

 

Gene Fold Regulation 

ACTN2 -2.2631 

CKM -5.9351 

DES -2.8504 

MB -8.103 

MYH7 -20.0035 

MYL2 -2.7055 

MYL3 -2.1997 

NKX2-5 -6.9687 

NPPA -2.9925 

PLN -2.1939 

SLC8A1 -2.4645 

TNNI3 -6.0878 

Table 5-5: Summary table of the relative expression of cardiomyocyte biomarker genes 
with a fold change of two or more in HD-hESC-CM KCL027 compared to WT-hESC-CM 
KCL031. 

 

It can be seen from Figure 5-9 and Table 5-5 that day 30 KCL027_HD5-CMs have 12 genes 

with a lower expression by two folds or more compared to day 30 KCL031-CMs. This further 

confirms the trend indicated by the clustergram presented in Figure 5-8. The gene expression of 

ACTN2, NKX2.5, DES, MYL2 and MYH7 has been shown to increase as the hESC-CM mature 

(Segev et al., 2005; Puppala et al., 2013; Dubois et al., 2011). Their lower expression in day 30 

KCL027_HD5-CMs compared to day 30 KCL031-CMs suggest that the HD-hESC-CMs might 

be less mature than the WT-hESC-CMs. However, it cannot be excluded that this difference 

could be due to hESC variability and not HD. 

 

5.2.2.4 CAG repeat stability in HD-hESC-derived cardiomyocytes  

The trinucleotide HD mutation is subject to mosaicism in HD sufferers, especially in the CNS 

and gonads (Telenius et al., 1994). However, there are also contradictory reports on whether 

CAG repeats increase during PSC differentiation (The HD iPSC Consortium, 2012; Niclis et al., 
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2009; Seriola et al., 2011; Camnasio et al., 2012). We therefore looked at CAG repeat stability 

in the HD-hESC-CMs after 30 and 60 days of cardiac differentiation with the Laflamme protocol. 

The results are presented in Figure 5-10. 

 

 

Figure 5-10: CAG repeat number in undifferentiated hESC KCL027_HD5 P22 and post 30 
and 60 days of cardiac differentiation (Laflamme protocol).  
The CAG repeat number remained stable at 44 CAG repeats. CAG repeats of over 36 are HD 
positive. 

 

The CAG repeat number of KCL027_HD5 remained stable at 44 CAG repeats throughout 

differentiation. These results are consistent with some previously published studies that showed 

that the CAG repeats were stable in undifferentiated HD-hESCs even after multiple passages, 

as well as in differentiated hESCs (osteogenic progenitor-like, neural progenitors and neurons) 

(Seriola et al., 2011; Camnasio et al., 2012). However, this may not be a rule. In some other 

publications, CAG repeats have been found to be instable with documented trinucleotide 

expansion of five and eight repeats in neurons (Niclis et al., 2009; The HD iPSC Consortium, 

2012). 
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5.2.3 Discussion 

Here I described the development of the first HD-specific human cardiac in vitro model. To 

generate this model, we characterised eight hESCs lines, four WT (KCL020, KCL031, KCL034 

and KCL040) and four carrying HD-specific mutation (KCL012, KCL027, KCL028, and KCL036) 

(Chapter 3). 

Using the H7 hESC line as a positive control, we subjected all the hESC lines cultured feeder-

free in mTeSR1 medium on GFR-Matrigel substrate to one spontaneous (5.2.1.1) and three 

directed differentiation protocols (5.2.1.2). All four differentiation protocols were unsuccessful at 

giving rise to beating cardiomyocytes, our endpoint to determine whether a cardiac 

differentiation protocol successfully generated functional cardiomyocytes or not. During our 

cardiac differentiation protocol development, Ojala et al. published a study demonstrating that 

hESC culture conditions prior to cardiac differentiation can have an impact on the differentiation 

outcome. Notably, their study on the H7 line demonstrated that the mTeSR1 with GFR-Matrigel 

substrate culture condition was the least favourable one to give rise to beating cardiomyocytes 

(Ojala et al., 2012). However, they used a co-culture method with END2 endothelial cells to 

differentiate H7 into cardiomyocytes, a condition not tested in our study. Taking this report into 

account, we decided to adapt the eight hESC lines to Nutristem medium. All but KCL012_HD3 

could be adapted to feeder-free culture in Nutristem / GFR-Matrigel. In these conditions, 

KCL012_HD3 presented excessive spontaneous differentiation. It cannot be excluded that at 

the time of Nutristem adaptation the cell line had acquired karyotypic abnormalities resulting in 

poor maintenance of pluripotency in these culture conditions The seven remaining hESCs were 

subjected to the spontaneous differentiation protocol 5.2.2.1, which resulted in a positive 

outcome (beating), though in two cell lines only (KCL031 and KCL028_HD6). This highlights the 

poor outcome of this protocol in our hands. In order to increase the cardiac differentiation 

outcome, we subjected the seven remaining hESC lines to the Laflamme directed differentiation 

protocol (5.2.2.2). Beating could be observed with various efficiencies (refer to Table 5-2) within 

30 days Beating could be observed within 30 days in all lines except one, WT-hESC KCL040. 

Since the cells were cultured on an identical substrate (GFR-Matrigel) and the only difference in 

culture condition was the culture medium, this positive outcome across multiple hESC cell lines 

suggested that in our hands, mTeSR1 might have an inhibitory effect on cardiac differentiation 

in the hESC lines used in this study. Feeder-free hESC culture presents many advantages such 

as culture upscaling and prevention of feeder–cell contamination. However, as observed in this 

study, it can also inhibit downstream differentiation. One way to prevent this would be to use 

feeder-free culture as a transient step for feeder-cell depletion prior to differentiation, rather than 

for long term culture (>20 passages) as in this study. 

Although with a wide range of efficiency, the positive cardiac differentiation results across the 

six different hESC lines confirmed that like WT-hESCS, HD-hESCs could be differentiated into 

cardiomyocytes. This is not unexpected as HD is characterised by a late onset and slow 

progression, with individuals that develop normally. Furthermore, this is in line with findings on 

other human and murine in vitro HD ESC models that HD-hESCs can be differentiated into 

other cell types, notably neurons (Castiglioni et al., 2012; Niclis et al., 2009; Camnasio et al., 
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2012; Seriola et al., 2011; Lorincz and Zawistowski, 2009). Gene expression analysis and 

positive cTnT immunostaining of the five tested hESC-derived CMs lines at day 30 of the 

Laflamme protocol, further confirmed that both WT and HD-hESCs could be differentiated into 

cardiomyocytes with no significant difference. One WT-hESC line (KCL031) and one HD-hESC 

line (KCL027_HD5) were then chosen for the molecular characterisation of cardiomyocyte 

biomarkers as they had the highest differentiation efficiency. Analysis of the cardiomyocyte 

biomarkers expression 30 days post-differentiation revealed that both the WT-hESC and the 

HD-hESC cell lines had differentiated into cardiomyocytes, as the cardiomyocyte biomarkers 

were more expressed in differentiated cells than in undifferentiated cells. However, expression 

levels of cardiomyocyte-specific genes such as MYH7 and NKX2.5 were somewhat lower in the 

HD-hESC-CMs than in the WT-hESC-CMs, raising the interesting possibility that HD-hESC-

CMs might be less mature than the WT-hESC-CMs. 

Unfortunately, I ran out of time and I could not repeat the Laflamme differentiation protocol at 

least three times on all the lines in order to have differentiation triplicates on top of biological 

replicates. If results were consistent, to avoid the possibility of an hESC line-specific bias, I 

would repeat the Qiagen Human Cardiomyocyte Differentiation qBiomarker PCR Array on the 

six hESC lines that generated beating cardiomyocytes within 30 days of the Laflamme cardiac 

differentiation protocol (KCL020, KCL031, KCL034, KCL027_HD5, KCL028_HD6 and 

KCL036_HD7). This would enable me to generate a stronger baseline of WT cardiomyocyte 

biomarker gene expression. Comparing the HD-hESC-CMs to this baseline would then give a 

better insight on whether or not the lower cardiomyocyte biomarker gene expression is an HD-

specific phenotype or if it is a hESC line specificity. Results presented in Table 5-3 and Figure 

5-6 confirm that all the cell lines down-regulate their pluripotency-associated genes. This 

indicates that poor cardiac differentiation efficiency is likely due to the cells not committing to the 

cardiac lineage. This could be investigated by looking at the gene expression of genes from the 

ectoderm and endoderm cell lineages. Their expression should be minimal. Lower levels of 

cardiomyocyte-specific biomarker expression in HD-hESCs could be due to inefficient 

differentiation rather than an HD-specific phenotype. Until then, no definitive conclusion can be 

drawn from these results. Furthermore, quantitative analysis of the hESC-derived 

cardiomyocytes could be performed by flow cytometry for markers such as cTNT, MCL2a or 

SMA. This would enable us to further investigate whether or not there is a difference in 

cardiomyocyte differentiation propensity between WT-hESCs and HD-hESCs. Moreover, 

electrophysiological analysis of the WT-hESC-CM and HD-hESC-CM is necessary to further 

investigate a potential difference between the cell lines due to the HD mutation. 

Using the KCL027_HD5 hESC lines, we also investigated CAG repeat stability in the HD-hESC-

CMs after 30 and 60 days of cardiac differentiation with the Laflamme protocol. In our hands, 

the CAG repeats (44) of KCL027_HD5 remained unchanged throughout cardiac differentiation 

with this protocol. Other groups have published contradictory reports on whether CAG repeats 

increase during PSC differentiation (The HD iPSC Consortium, 2012; Niclis et al., 2009; Seriola 

et al., 2011; Camnasio et al., 2012). However, it has been established that like in patients, there 

is an in vitro CAG repeat expansion associated phenotype, notably in iPSC-derived neurons 
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(The HD iPSC Consortium, 2012). To confirm the presence of an in vitro HD-specific phenotype 

in HD-hESC-CMs, they should be generated from HD-PSCs with greater CAG repeat numbers. 

In this instance we tried to generate HD-iPSCs and aimed to target JHD patients. 

One drawback of the Laflamme directed differentiation protocol used in this study is that it does 

not generate a pure cardiomyocytes population (# 30%) (Laflamme et al., 2007), which was also 

observed from the wide range of differentiation efficiency presented in Table 5-2 and from the 

immunostaining presented in Figure 5-7. Treating the cells with 1-2% DMSO has recently been 

found to be beneficial for cardiac differentiation (Chetty et al., 2013). Removing insulin from 

certain stages of the differentiation protocol could also improve efficiency as the latter has been 

found to inhibit cardiac differentiation (Lian et al., 2012b; Burridge et al., 2011; Lian et al., 2013). 

Challenging the ratios of cytokines used in the differentiation protocol is another approach that 

could be beneficial for the cell lines used in this study. Thanks to an elegant NKX2.5 reporter 

hESC line, Elliot et al. could track cardiac differentiation. They tested 96 Activin A and BMP4 

concentration combinations and determined that in their differentiation conditions, a ratio of 

BMP4:Activin A of 1:1 or 1:2 was optimal (Elliott et al., 2011). Finally, the use of small molecules 

in addition to cytokines has the capacity to give differentiation of great efficiency. Even though 

our attempt with CHIR99021 compound was not successful (5.2.1.2.3), it helped give rise to a 

cTnT+ population of approximately 85% in the original study (Lian et al., 2012a). Another small 

molecule with great potential is KY02111, which can increase cardiac differentiation by 80 folds 

(Minami et al., 2012). Interestingly, both CHIR99021 and KY02111 modulate the Wnt signaling 

pathway, but in opposite ways. Indeed, the Wnt signaling pathway needs to be activated in 

order to promote mesoderm differentiation, and then inhibited at later stages in order to ensure 

cardiac differentiation and not differentiation into cells from the hematopoietic or vascular 

lineage (Mignone et al., 2010; Naito et al., 2006). Consequently, Lian et al. (2012a) used the 

CHIR99021 Wnt activator as a pre-treatment before starting cardiac differentation via cytokine 

induction, while Minami et al. (2012) used KY02111, a Wnt signaling inhibitor 3 days post-

cardiac differentiation induction. Another alternative is to modify the differentiation ECM. Zhang 

et al. could get up to 98% cTnT+ cells by using a GFR-Matrigel “sandwich” method. It is worth 

noting that Zhang et al. obtained these results with hESCs cultured in mTeSR1 prior to 

differentiation. However mTeSR1 was not used for long-term maintenance of undifferentiated 

hESCs but rather for feeder-cell depletion three to six days prior to starting cardiac 

differentiation (Zhang, J. et al., 2012). 

If cardiac differentiation cannot be enhanced, another approach is to perform “cardiac 

enrichment” in order to have a purer cell population prior to molecular analysis. Cardiomyocyte 

enrichment techniques include dissection of the beating areas prior to dissociation, or the use of 

a discontinuous Percoll gradient centrifugation step for density separation of the 

cardiomyocytes, which can lead to a four-fold enrichment (Xu et al., 2002). Another strategy 

could be to use the SIRPA or ALCAM cardiomyocytes surface markers for enrichment by 

fluorescence-activated cell sorting (FACS) or magnet-assisted cell separation (Dubois et al., 

2011; Rust et al., 2009). Finally, establishing hESC lines with a cardiomyocyte-specific promoter 

fluorescent reporter vector would also enable us to enrich the differentiated cell populations by 
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FACS. This approach has already been successful using &-myosin heavy chain, myosin light 

chain 2V and Troponin-I promoters (Kita-Matsuo et al., 2009;Ritner et al., 2011;Huber et al., 

2007;Gallo et al., 2008). However, there is a risk for random insertion of the transgene in the 

genome or for the transgene to rearrange. Thorough characterisation of the transgene’s 

expression and stability would thus be needed. 

Given more time and resources, I would also have characterised the cardiomyocytes by 

electrophysiological analysis to look at action potential properties. iPSC-derived cardiomyocytes 

from patients have already proven to replicate disease phenotypes of Timothy syndrome, long 

QT-disease, dilated cardiomyopathy, arrhythmogenic right ventricular cardiomyopathy and 

familial hypertrophic cardiomyopathy in vitro (Yazawa et al., 2011; Lahti et al., 2011; Ma et al., 

2012; Tse et al., 2013; Lan et al., 2013). The HD cardiac phenotypes found in the R6/2 murine 

model comprise a decreased heart weight and left ventricular defects, including a 50% 

reduction in cardiac output (Mihm et al., 2007; Wood, 2012). Interestingly, MYH7, which is 

mostly expressed in cardiac ventricles, was expressed # 20 folds lower in our HD-hESC-CMs 

(Table 5-5) than in our WT-hESC-CMs. However, in vivo, these phenotypes are found in 12 

weeks old mice that have a very aggressive and rapid form of HD. Such phenotype might not 

develop in HD hESC-derived cardiomyocytes within the timeframe allowed by their in vitro 

culture, even if it can reach several months. Furthermore, R6/2 mice present severe 

neurodegeneration at this age and lose a lot of weight, including heart weight. It cannot be 

excluded that the cardiac phenotype observed in these studies is only an indirect consequence 

of the latter. This hypothesis is reinforced by a recent publication from Kiriazis et al., which 

suggests in their study of the R6/1 murine HD model that the observed cardiac defects are 

consequences of neurocardiac dysregulations and neurogenic arrhythmias (Kiriazis et al., 

2012). R6/1 and WT mice displayed different heart rate responses to isoprotenerol and 

atropine. The action potential of our HD-hESC-CM could be studied and such drug treatments 

could be replicated, with the unique advantage of not having any neuronal influence. This would 

give further highlight on whether HD cardiac defects are a direct or indirect consequence of HD. 

Finally, given more time and resources, I would have liked to study the HD-hESC-CMs calcium 

handling properties. Our model displays a 20-fold lower expression of MYH7. A $MYH (chick 

analogue of MYH7) knockdown in cardiac ventricle shows calcium transients deregulations, 

notably by the induction of a decrease in the rise time during the calcium transient. Correct 

calcium transients are essential for the cardiomyocytes to contract and beat properly (Rutland et 

al., 2011; Lan et al., 2013). 

HD cardiac mitochondria have a disrupted morphology and density in 12 weeks old R6/2 mice 

(Mihm et al., 2007). High magnification microscopic techniques, like e.g. Transmission Electron 

Microscopy (TEM) could be used to verify this phenotype in our model. TEM has enabled the 

modelling of pathological cardiac phenotypes in iPSC-derived cardiomyocytes, such as 

increased cell width, disorganised Z-band and differences in lipid droplets (Ma et al., 2012). 

TEM could be used in our in vitro model to compare the ultra-structure of HD-hESC-CM and 

WT-hESC-CM, notably for the mitochondria, and to look for the presence of aggregates. 

Aggregates have been found in sparse quantities in hearts of the HdhQ150 and the R6/2 
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murine models of HD (Moffitt et al., 2009; Sathasivam et al., 1999) and a study on 

polyglutamine amyloids revealed that transgenic mice expressing 83 CAG repeats residues in 

the cardiac tissues only suffered from reduced cardiac function and dilation by five months and 

died by eight months (Pattison et al., 2008). However, for practical reasons, TEM needs to be 

prepared from EB-based cardiomyocytes (Dr. G. Vizcay-Barrena, personal communication) so 

the TEM sample preparation does not interfere with cardiomyocyte morphology. This correlates 

with recent methods described in the literature where TEM was performed on contractile EBs or 

cardiac bodies (Ma et al., 2012; Gherghiceanu et al., 2011; Yu, T. et al., 2013; Tse et al., 2013; 

Kensah et al., 2013). Cardiomyocytes derived by the Laflamme differentiation protocol would 

not be suitable for TEM analysis. 

A good positive control would be to try replicating in our HD-hESC lines some HD-phenotypes 

found in another in vitro HD modeling study, such as higher lysosomal activation (Camnasio et 

al., 2012). Even though it has been stressed previously that this study requires more biological 

replicates in order to generate a baseline of WT gene expression, the best control would be to 

have isogenic hESC lines where only the HD mutation would differ. Such HD-hESCs were 

successfully generated by insertion of HTT exon 1 transgene baring different CAG repeats 

length into the H9 WT-hESC line (Lu and Palacino, 2013) or by homologous recombination 

where the 72 CAG repeats allele was corrected to 21 CAG repeats. This latter correction did not 

affect the pluripotency of hESCs nor their neuronal differentiation potential, and allowed the 

correction of HD-specific phenotype such as elevated caspase-3/7 activity (An et al., 2012). 

Isogenic iPSCs have also been generated for Rett syndrome by X-Chromosome inactivation 

selection (Ananiev et al., 2011), and by zinc finger nuclease (ZFN)-mediated genome editing for 

Parkinson’s disease iPSCs (Soldner et al., 2011). Genetic engineering of hESCs is also 

possible with Transcription Activation-Like Effector Nucleases (TALENs), which offer more 

flexibility in the sequence reading than ZFN and have the advantage of recognising single 

nucleotides (Hockemeyer et al., 2011; Miller et al., 2011). 
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Chapter 6 Summary 

 

6.1 Development of pluripotent models of HD 

The work presented in this thesis focuses on the characterisation, development and 

differentiation of pluripotent stem cell models of HD. HD is an autosomal dominant, late onset 

disease caused by a single mutation, which offers a large window for therapy. In vivo and in 

vitro disease models were therefore developed for a better understanding of the disease, 

phenotype identification and therapeutic compound screening and development. Yet, at the 

beginning of this project, existing cellular models of HD had been developed from tumour cell 

lines using genome-integrating lentiviral delivery system carrying a mutated HTT exon 1. These 

models were not optimal, as the cells would always have non-innate extra copies of HTT, with 

CAG repeat sizes rarely seen in patients, and whose expression was driven by an exogenous 

promoter. Furthermore, none of the existing human HD cellular models were pluripotent, 

therefore restricting the somatic cell type in which the mutation could be studied.  

In order to circumvent this, we aimed to develop two human pluripotent stem cell models of HD. 

The first model was HD-hESCs, isolated after PGD and donated to research by consenting 

couples. Seven HD-hESC lines were derived at the ACU, Guy’s Hospital, King’s College 

London. The second model to be developed was iPSCs generated from HF-keratinocytes using 

synthetic modified mRNA as a reprogramming vector. Although the technique was successfully 

optimised to reprogramme WT-fibroblasts, in the timeframe of this project I was not successful 

in optimising the protocol for the mRNA reprogramming of HF-keratinocytes. One possibility for 

the future would be to reprogramme HD fibroblasts with the optimised mRNA reprogramming 

protocol instead of HD-HF-keratinocytes. 

 

 

6.2 Characterisation of HD-PSCs 

Five HD-hESC lines were fully characterised in this study, along with four WT-hESC 

counterparts. I also characterised two iPSC lines generated with the optimised mRNA 

reprogramming protocol. The PSCs were characterised according to seven criteria: their 

morphology, the presence of pluripotency markers, their ability to differentiated in vitro and in 

vivo, DNA fingerprinting, genomic stability and HLA typing. Only one hESC line (KCL013_HD4) 

presented with genomic instability and was eliminated from this study. The other eight hESC 

lines were suitable for downstream differentiation. 

The iPSCs generated in this study were exposed to different treatments, one of which 

comprised the transient inhibition of the p53 pathway. One iPSC line from each treatment group 

was selected for further investigation. Upon preliminary characterisation, no differences could 
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be observed between the two lines. Additionally, they behaved similarly to the hESCs used in 

this study. Nevertheless, future characterisation of these iPSCs would include full-exome 

sequencing and whole-genome DNA methylation analysis to confirm whether or not the 

transient p53 treatment could have induced any somatic mutations. 

 

 

6.3 HD-PSC differentiation 

Prior to their differentiation, the PSC were adapted to feeder-free culture conditions. The feeder-

dependant culture system is not fully defined, requires manual passaging, which is labour-

intensive and time consuming, this limits the scalability of PSC culture. Therefore, I trialled two 

different feeder-free matrices: GFR-Matrigel and decelullarised feeders matrix and two fully 

defined pluripotent stem cell media: complete KOSR and mTeSR1, for the feeder-free 

adaptation of the PSCs used in this study. It was determined that GFR-Matrigel and mTeSR1 

was the best combination for feeder-free culture and PSC culture expansion. These results are 

in accordance with those published by a multicentre investigation that also determined that 

these were the best, defined, feeder-free PSC culture conditions (Akopian et al., 2010). Once 

adapted to feeder-free culture conditions, the PSCs could be differentiated. For time constraints, 

it was decided to focus on the differentiation of the eight hESCs only. 

HD is primarily a neurodegenerative disorder. Nevertheless, HTT is an ubiquitously expressed 

protein and disease-specific phenotypes are also present in peripheral tissues (Van Der Burg et 

al., 2009; Sassone et al., 2009; Sathasivam et al., 1999). Epidemiology studies show that 

cardiac defects are a prevalent cause of death amongst HD patients (Sorensen and Fenger, 

1992; Lanska et al., 1988; Chiu and Alexander, 1982). Furthermore, cardiac defects, including 

atrophy, have previously been described in HD murine models (Sathasivam et al., 1999; Mihm 

et al., 2007; Wood, 2012; Kiriazis et al., 2012). For these reasons, it was decided to differentiate 

the hESCs into cardiomyocytes in order to explore the HD phenotype in this cell type, and 

determine if the reported cardiac defects are a cell autonomous or non-cell autonomous 

consequence of HD. To our knowledge, other in vitro human HD cardiomyocytes model 

currently does not exist. 

Several cardiac differentiation protocols were tried, either based on spontaneous or directed 

cardiac differentiation. In our hands, mTeSR1 had an inhibitory effect on cardiac differentiation. 

This observation was further supported by a study by Ojala et al. (2012) that also reported GFR-

Matrigel and mTeSR1 to be the least favourable for cardiac differentiation. Consequently, the 

hESCs were adapted to another fully defined medium, Nutristem. All the hESCs lines but 

KCL012_HD3 could be adapted to it. KCL012_HD3 presented with a lot of spontaneous 

differentiation in these new culture conditions and was excluded from the rest of the study. It 

cannot be excluded that KCL012_HD3 could have acquired a chromosomal abnormality which 

could explain this increased rate of spontaneous differentiation. 
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Using Nutristem and GFR-Matrigel, the Laflamme directed cardiac differentiation protocol 

(Laflamme et al., 2007) was the most dependable in our hands. All the differentiated hESC lines 

but KCL040 presented beating areas within 30 days of differentiation. Despite a range of 

efficiency, the observation of beating areas, the positive immunofluorescence and gene 

expression study of cardiac-specific markers confirmed that the HD-hESCs could be 

differentiated into cardiomyocytes similarly to WT-hESCs. I next chose one WT- and one HD-

hESC line (KCL031 and KCL027_HD5 respectively) with the best cardiac differentiation 

efficiency at 30 days for further investigation. In these samples, I looked at the gene expression 

of 16 cardiac-specific biomarkers. This further confirmed that the HD-hESCs differentiated into 

cardiomyocytes. However, the data also suggested that the HD-hESCs could be less mature 

than the WT-hESCs at 30 days of cardiac differentiation with the Laflamme protocol. 

Next, I looked at the stability of the CAG mutation in the HD-hESC line KCL027_HD5 in 

undifferentiated samples and after 30 and 60 days of cardiac differentiation with the Laflamme 

protocol. The mutation (44 CAG) remained stable throughout differentiation. 

 

 

6.4 Future prospects of HD-PSC modelling 

HD being a late-onset disease, one could wonder if in vitro HD-PSCs could display HD-specific 

phenotypes. Several HD studies have identified HD specific in vitro phenotypes, such as 

increased lysosomal activity in undifferentiated hESCs (Camnasio et al., 2012) and elevated 

caspase in HD-iPSCs derived neurons (Zhang, N. et al., 2010). In the work presented in this 

study our undifferentiated HD-hESCs cannot be distinguished from WT-hESCs. They can also 

be differentiated into cardiomyocytes to study the HD mutation in this somatic cell type. 

However, it is known that there is variability in gene expression in hESCs (Allegrucci and 

Young, 2007), an observation that could also be made in our undifferentiated hESCs (Table 

5.3). Therefore, it is recommended to repeat the cardiac differentiation of the hESCs used in 

this study to further distinguish what could be a potential HD-specific phenotype from cell line 

variability. To completely exclude this possibility, it would be best to work with isogenic lines. An 

et al. (2012) were able to correct the HD mutation by homologous recombination and rescue the 

HD phenotype in their lines this way.  

In this study, gene expression was analysed at 30 days post differentiation. HD being a 

progressive disease, it would be interesting to study later time points. . Further investigation of 

HD-specific cardiac phenotypes could also be complemented by electrophysiology work at the 

single cell level by patch-clamping for instance. Indeed, this technique allows distinguishing 

between different types of cardiomyocytes action potential i.e. ventricular-, atrial- or nodal-like. 

In the case of Long-QT Syndrome iPSC-derived cardiomyocytes, patch clamping revealed 

differences in spontaneous beating of ventricular and atrial Long-QT Syndrome cardiomyocytes 

compared to wild-type cardiomyocytes, while no significant differences could be reported for 
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nodal Long-QT Syndrome cardiomyocytes compared to wild-type cardiomyocytes (Moretti et al., 

2010). On top of studying spontaneous cardiomyocyte beating, the WT-hESC-CMs and the HD-

hESC-CMs could also be electrically stimulated in order to study their adaptive response to 

changing rates of electrical stimulation. Other functional studies that could be performed on the 

cardiomyocytes generated in this study could include comparing the $-adrenergic regulation of 

the WT-hESC-CMs and the HD-hESC-CMs. To do so, the cardiomyocytes could be treated with 

a nonselective $-adrenergic receptor agonist such as isoproterenol. If the cardiomyocytes are 

functional, an increase in heart and decrease in action potential should be observed. Finally, 

analyzing the calcium transients during spontaneous or stimuli-induced beating of the WT-

hESC-CMs and the HD-hESC-CMs could be used for the characterization of the calcium 

channels.  

Recent studies on HD-iPSC-derived neurons observed increased cell death and increase 

caspase activity after growth factor removal (An et al., 2012; Zhang, N. et al., 2010; The HD 

iPSC Consortium, 2012). Stressing the cells by the use of toxic agents or growth factor removal 

might be required in order to observe a phenotype in HD-hESC-CMs. Lastly, as discussed in 

chapter 5, even though beating was observed after 30 days of differentiation in six hESC lines, 

to further explore the HD in vitro cardiac phenotype, the yield of cardiomyocytes needs to be 

improved. This could be achieved by further optimising the cardiac differentiation protocol or by 

enriching the cardiomyocyte population post-differentiation. 

The HD iPSC consortium recently published that the positive correlation between CAG repeat 

size and severity of symptoms observed in HD patients could also be observed in vitro in HD-

iPSC derived neurons (The HD iPSC Consortium, 2012). Even though the CAG-repeat 

expansion associated phenotypes were already reported in transgenic models of HD, this is of 

critical importance as it is from the endogenous mutation. These data further highlight the need 

to generate HD-iPSCs with a wider range of repeats, possibly from JHD patients in the future. 
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KCL013_HD4 Characterisation. a) Morphological criteria. Initial outgrowth (left), KCL012_HD4 
cell colony on HFF (middle) and feeder-free condition (right). b) Pluripotency markers: alkaline 
phosphatase (AP) activity, NANOG, OCT4, TRA-1–60 and TRA-1–81. c) In vitro differentiation 
markers for the three germ layers: (-fetoprotein (endoderm), $-III tubulin (ectoderm) and 
smooth muscle actin (mesoderm). d) Genotyping: microsatellite markers specific for 
chromosomes 13, 18, 21, X and Y were amplified. The allele sizes in base pair for markers on 
chromosomes 13, 18, and 21 are listed in the table. Array comparative genomic hybridization 
(CGH) did not detect any copy number changes using Promega female G1521 as a standard. 
e) CAG repeat sizing. Images were taken at 40x magnification. 
 

 

 

KCL020 

KCL020 Characterisation. a) Genotyping: microsatellite markers specific for chromosomes 13, 
18, 21, X and Y were amplified. The allele sizes in base pair for markers on chromosomes 13, 
18, and 21 are listed in the table. Array comparative genomic hybridization (CGH) did not detect 
any copy number changes using Promega female G1521 as a standard. b) Pluripotency 
markers: alkaline phosphatase activity, NANOG, OCT4, TRA-1–60 and TRA-1–81. c) HLA 
typing. d) In vitro differentiation markers for the three germ layers: smooth muscle actin 
(mesoderm), $-III tubulin (ectoderm) and (-fetoprotein (endoderm). Images were taken at 40x 
magnification. 
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KCL027_HD5 

KCL027_HD5 Characterisation. a) Genotyping: microsatellite markers specific for 
chromosomes 13, 18, 21, X and Y were amplified. The allele sizes in base pair for markers on 
chromosomes 13, 18, and 21 are listed in the table. Array comparative genomic hybridization 
(CGH) did not detect any copy number changes using Promega female G1521 as a standard. 
b) Pluripotency markers: alkaline phosphatase activity, NANOG, OCT4, TRA-1–60 and TRA-1–
81. c) HLA typing. d) In vitro differentiation markers for the three germ layers: smooth muscle 
actin (mesoderm), $-III tubulin (ectoderm) and (-fetoprotein (endoderm). e) In vivo 
differentiation. Teratoma sections were counterstained with hematoxylin and eosin and specific 
stains are either light blue (Alcian blue) or brown (all immunohistochemistry). Mesoderm germ 
layer markers: Alcian blue– and periodic acid–Schiff (PAS)-stained cartilage and desmin. 
Ectoderm germ layer markers: $-III tubulin and glial fibrillary acidic protein (GFAP). Endoderm 
germ layer marker: GATA4 and (-fetoprotein. Positive immunostaining for complex IV type II 
marker confirms the human origin of the tumour (adjacent section of the one stained for 
desmin). Images were taken at 40x magnification. Images were taken at 40x magnification. 
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KCL027_HD5 CAG repeat sizing. 
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KCL028_HD6 

 
KCL026_HD6 Characterisation. a) Genotyping: microsatellite markers specific for 
chromosomes 13, 18, 21, X and Y were amplified. The allele sizes in base pair for markers on 
chromosomes 13, 18, and 21 are listed in the table. Array comparative genomic hybridization 
(CGH) did not detect any copy number changes using Promega female G1521 as a standard. 
b) Pluripotency markers: alkaline phosphatase activity, NANOG, OCT4, TRA-1–60 and TRA-1–
81. c) HLA typing. d) In vitro differentiation markers for the three germ layers: smooth muscle 
actin (mesoderm), $-III tubulin (ectoderm) and (-fetoprotein (endoderm). e) In vivo 
differentiation. Teratoma sections were counterstained with hematoxylin and eosin and specific 
stains are either light blue (Alcian blue) or brown (all immunohistochemistry). Mesoderm germ 
layer markers: Alcian blue– and periodic acid–Schiff (PAS)-stained cartilage and desmin. 
Ectoderm germ layer markers: $-III tubulin and glial fibrillary acidic protein (GFAP). Endoderm 
germ layer marker: GATA4 and (-fetoprotein. Positive immunostaining for complex IV type II 
marker confirms the human origin of the tumour (adjacent section of the one stained for 
desmin). Images were taken at 40x magnification. Images were taken at 40x magnification. 
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KCL028_HD6 CAG repeat sizing. 
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KCL031 

KCL031 Characterisation. a) Genotyping: microsatellite markers specific for chromosomes 13, 
18, 21, X and Y were amplified. The allele sizes in base pair for markers on chromosomes 13, 
18, and 21 are listed in the table. Array comparative genomic hybridization (CGH) did not detect 
any copy number changes using Promega female G1521 as a standard. b) Pluripotency 
markers: alkaline phosphatase activity, NANOG, OCT4, TRA-1–60 and TRA-1–81. c) HLA 
typing. d) In vitro differentiation markers for the three germ layers: smooth muscle actin 
(mesoderm), $-III tubulin (ectoderm) and (-fetoprotein (endoderm). e) In vivo differentiation. 
Teratoma sections were counterstained with hematoxylin and eosin and specific stains are 
either light blue (Alcian blue) or brown (all immunohistochemistry). Mesoderm germ layer 
markers: Alcian blue– and periodic acid–Schiff (PAS)-stained cartilage and desmin. Ectoderm 
germ layer markers: $-III tubulin and glial fibrillary acidic protein (GFAP). Endoderm germ layer 
marker: GATA4 and (-fetoprotein. Positive immunostaining for complex IV type II marker 
confirms the human origin of the tumour (adjacent section of the one stained for desmin). 
Images were taken at 40x magnification.  
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KCL034 

KCL034 Characterisation. a) Genotyping: microsatellite markers specific for chromosomes 13, 
18, 21, X and Y were amplified. The allele sizes in base pair for markers on chromosomes 13, 
18, and 21 are listed in the table. Array comparative genomic hybridization (CGH) did not detect 
any copy number changes using Promega female G1521 as a standard. b) Pluripotency 
markers: alkaline phosphatase activity, NANOG, OCT4, TRA-1–60 and TRA-1–81. c) HLA 
typing. d) In vitro differentiation markers for the three germ layers: smooth muscle actin 
(mesoderm), $-III tubulin (ectoderm) and (-fetoprotein (endoderm). e) In vivo differentiation. 
Teratoma sections were counterstained with hematoxylin and eosin and specific stains are 
either light blue (Alcian blue) or brown (all immunohistochemistry). Mesoderm germ layer 
markers: Alcian blue– and periodic acid–Schiff (PAS)-stained cartilage and desmin. Ectoderm 
germ layer markers: $-III tubulin and glial fibrillary acidic protein (GFAP). Endoderm germ layer 
marker: GATA4 and (-fetoprotein. Positive immunostaining for complex IV type II marker 
confirms the human origin of the tumour (adjacent section of the one stained for desmin). 
Images were taken at 40x magnification. Images were taken at 40x magnification.   
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KCL036_HD7 

KCL036_HD7 Characterisation. a) Genotyping: microsatellite markers specific for 
chromosomes 13, 18, 21, X and Y were amplified. The allele sizes in base pair for markers on 
chromosomes 13, 18, and 21 are listed in the table. Array comparative genomic hybridization 
(CGH) did not detect any copy number changes using Promega female G1521 as a standard. 
b) Pluripotency markers: alkaline phosphatase activity, NANOG, OCT4, TRA-1–60 and TRA-1–
81. c) HLA typing. d) In vitro differentiation markers for the three germ layers: smooth muscle 
actin (mesoderm), $-III tubulin (ectoderm) and (-fetoprotein (endoderm). e) In vivo 
differentiation. Teratoma sections were counterstained with hematoxylin and eosin and specific 
stains are either light blue (Alcian blue) or brown (all immunohistochemistry). Mesoderm germ 
layer markers: Alcian blue– and periodic acid–Schiff (PAS)-stained cartilage and desmin. 
Ectoderm germ layer markers: $-III tubulin and glial fibrillary acidic protein (GFAP). Endoderm 
germ layer marker: GATA4 and (-fetoprotein. Positive immunostaining for complex IV type II 
marker confirms the human origin of the tumour (adjacent section of the one stained for 
desmin). Images were taken at 40x magnification. Images were taken at 40x magnification.   
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KCL036_HD7 CAG repeat sizing  

 

 

KCL040 

KCL040 Characterisation. a) Genotyping: microsatellite markers specific for chromosomes 13, 
18, 21, X and Y were amplified. The allele sizes in base pair for markers on chromosomes 13, 
18, and 21 are listed in the table. Array comparative genomic hybridization (CGH) did not detect 
any copy number changes using Promega female G1521 as a standard. b) Pluripotency 
markers: alkaline phosphatase activity, NANOG, OCT4, TRA-1–60 and TRA-1–81. c) HLA 
typing. d) In vitro differentiation markers for the three germ layers: smooth muscle actin 
(mesoderm), $-III tubulin (ectoderm) and (-fetoprotein (endoderm). Images were taken at 40x 
magnification. 
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APPENDIX II Modified mRNA synthesis 

 

Coding sequences of the different genes used for the generation of modified synthetic mRNA. 

SOX2 954bp NM_003106.2 CDS Gene ID: 6657 

 

ATGTACAACATGATGGAGACGGAGCTGAAGCCGCCGGGCCCGCAGCAAACTTCGGGGGG
CGGCGGCGGCAACTCCACCGCGGCGGCGGCCGGCGGCAACCAGAAAAACAGCCCGGAC
CGCGTCAAGCGGCCCATGAATGCCTTCATGGTGTGGTCCCGCGGGCAGCGGCGCAAGAT
GGCCCAGGAGAACCCCAAGATGCACAACTCGGAGATCAGCAAGCGCCTGGGCGCCGAGT
GGAAACTTTTGTCGGAGACGGAGAAGCGGCCGTTCATCGACGAGGCTAAGCGGCTGCGA
GCGCTGCACATGAAGGAGCACCCGGATTATAAATACCGGCCCCGGCGGAAAACCAAGAC
GCTCATGAAGAAGGATAAGTACACGCTGCCCGGCGGGCTGCTGGCCCCCGGCGGCAATA
GCATGGCGAGCGGGGTCGGGGTGGGCGCCGGCCTGGGCGCGGGCGTGAACCAGCGCA
TGGACAGTTACGCGCACATGAACGGCTGGAGCAACGGCAGCTACAGCATGATGCAGGAC
CAGCTGGGCTACCCGCAGCACCCGGGCCTCAATGCGCACGGCGCAGCGCAGATGCAGCC
CATGCACCGCTACGACGTGAGCGCCCTGCAGTACAACTCCATGACCAGCTCGCAGACCTA
CATGAACGGCTCGCCCACCTACAGCATGTCCTACTCGCAGCAGGGCACCCCTGGCATGGC
TCTTGGCTCCATGGGTTCGGTGGTCAAGTCCGAGGCCAGCTCCAGCCCCCCTGTGGTTAC
CTCTTCCTCCCACTCCAGGGCGCCCTGCCAGGCCGGGGACCTCCGGGACATGATCAGCA
TGTATCTCCCCGGCGCCGAGGTGCCGGAACCCGCCGCCCCCAGCAGACTTCACATGTCC
CAGCACTACCAGAGCGGCCCGGTGCCCGGCACGGCCATTAACGGCACACTGCCCCTCTC
ACACATGTGA 

 

 

OCT-4 1,083bp NM_002701.4 CDS CDS GENE ID: 5460   

 

ATGGCGGGACACCTGGCTTCGGATTTCGCCTTCTCGCCCCCTCCAGGTGGTGGAGGTGAT
GGGCCAGGGGGGCCGGAGCCGGGCTGGGTTGATCCTCGGACCTGGCTAAGCTTCCAAG
GCCCTCCTGGAGGGCCAGGAATCGGGCCGGGGGTTGGGCCAGGCTCTGAGGTGTGGGG
GATTCCCCCATGCCCCCCGCCGTATGAGTTCTGTGGGGGGATGGCGTACTGTGGGCCCC
AGGTTGGAGTGGGGCTAGTGCCCCAAGGCGGCTTGGAGACCTCTCAGCCTGAGGGCGAA
GCAGGAGTCGGGGTGGAGAGCAACTCCGATGGGGCCTCCCCGGAGCCCTGCACCGTCAC
CCCTGGTGCCGTGAAGCTGGAGAAGGAGAAGCTGGAGCAAAACCCGGAGGAGTCCCAGG
ACATCAAAGCTCTGCAGAAAGAACTCGAGCAATTTGCCAAGCTCCTGAAGCAGAAGAGGAT
CACCCTGGGATATACACAGGCCGATGTGGGGCTCACCCTGGGGGTTCTATTTGGGAAGGT
ATTCAGCCAAACGACCATCTGCCGCTTTGAGGCTCTGCAGCTTAGCTTCAAGAACATGTGT
AAGCTGCGGCCCTTGCTGCAGAAGTGGGTGGAGGAAGCTGACAACAATGAAAATCTTCAG
GAGATATGCAAAGCAGAAACCCTCGTGCAGGCCCGAAAGAGAAAGCGAACCAGTATCGAG
AACCGAGTGAGAGGCAACCTGGAGAATTTGTTCCTGCAGTGCCCGAAACCCACACTGCAG
CAGATCAGCCACATCGCCCAGCAGCTTGGGCTCGAGAAGGATGTGGTCCGAGTGTGGTTC
TGTAACCGGCGCCAGAAGGGCAAGCGATCAAGCAGCGACTATGCACAACGAGAGGATTTT
GAGGCTGCTGGGTCTCCTTTCTCAGGGGGACCAGTGTCCTTTCCTCTGGCCCCAGGGCCC
CATTTTGGTACCCCAGGCTATGGGAGCCCTCACTTCACTGCACTGTACTCCTCGGTCCCTT
TCCCTGAGGGGGAAGCCTTTCCCCCTGTCTCCGTCACCACTCTGGGCTCTCCCATGCATT
CAAACTGA 
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KLF4 1,440bp  NM_004235.4 CDS gene ID: 9314 

 

ATGAGGCAGCCACCTGGCGAGTCTGACATGGCTGTCAGCGACGCGCTGCTCCCATCTTTC
TCCACGTTCGCGTCTGGCCCGGCGGGAAGGGAGAAGACACTGCGTCAAGCAGGTGCCCC
GAATAACCGCTGGCGGGAGGAGCTCTCCCACATGAAGCGACTTCCCCCAGTGCTTCCCGG
CCGCCCCTATGACCTGGCGGCGGCGACCGTGGCCACAGACCTGGAGAGCGGCGGAGCC
GGTGCGGCTTGCGGCGGTAGCAACCTGGCGCCCCTACCTCGGAGAGAGACCGAGGAGTT
CAACGATCTCCTGGACCTGGACTTTATTCTCTCCAATTCGCTGACCCATCCTCCGGAGTCA
GTGGCCGCCACCGTGTCCTCGTCAGCGTCAGCCTCCTCTTCGTCGTCGCCGTCGAGCAG
CGGCCCTGCCAGCGCGCCCTCCACCTGCAGCTTCACCTATCCGATCCGGGCCGGGAACG
ACCCGGGCGTGGCGCCGGGCGGCACGGGCGGAGGCCTCCTCTATGGCAGGGAGTCCGC
TCCCCCTCCGACGGCTCCCTTCAACCTGGCGGACATCAACGACGTGAGCCCCTCGGGCG
GCTTCGTGGCCGAGCTCCTGCGGCCAGAATTGGACCCGGTGTACATTCCGCCGCAGCAG
CCGCAGCCGCCAGGTGGCGGGCTGATGGGCAAGTTCGTGCTGAAGGCGTCGCTGAGCG
CCCCTGGCAGCGAGTACGGCAGCCCGTCGGTCATCAGCGTCAGCAAAGGCAGCCCTGAC
GGCAGCCACCCGGTGGTGGTGGCGCCCTACAACGGCGGGCCGCCGCGCACGTGCCCCA
AGATCAAGCAGGAGGCGGTCTCTTCGTGCACCCACTTGGGCGCTGGACCCCCTCTCAGCA
ATGGCCACCGGCCGGCTGCACACGACTTCCCCCTGGGGCGGCAGCTCCCCAGCAGGACT
ACCCCGACCCTGGGTCTTGAGGAAGTGCTGAGCAGCAGGGACTGTCACCCTGCCCTGCC
GCTTCCTCCCGGCTTCCATCCCCACCCGGGGCCCAATTACCCATCCTTCCTGCCCGATCA
GATGCAGCCGCAAGTCCCGCCGCTCCATTACCAAGAGCTCATGCCACCCGGTTCCTGCAT
GCCAGAGGAGCCCAAGCCAAAGAGGGGAAGACGATCGTGGCCCCGGAAAAGGACCGCCA
CCCACACTTGTGATTACGCGGGCTGCGGCAAAACCTACACAAAGAGTTCCCATCTCAAGG
CACACCTGCGAACCCACACAGGTGAGAAACCTTACCACTGTGACTGGGACGGCTGTGGAT
GGAAATTCGCCCGCTCAGATGAACTGACCAGGCACTACCGTAAACACACGGGGCACCGCC
CGTTCCAGTGCCAAAAATGCGACCGAGCATTTTCCAGGTCGGACCACCTCGCCTTACACAT
GAAGAGGCATTTTTAA 

 

MYC v-myc myelocytomatosis viral oncogene homolog 1,365bp NM_002467.4 Gene ID: 
4609  

 

CTGGATTTTTTTCGGGTAGTGGAAAACCAGCAGCCTCCCGCGACGATGCCCCTCAACGTTA
GCTTCACCAACAGGAACTATGACCTCGACTACGACTCGGTGCAGCCGTATTTCTACTGCGA
CGAGGAGGAGAACTTCTACCAGCAGCAGCAGCAGAGCGAGCTGCAGCCCCCGGCGCCCA
GCGAGGATATCTGGAAGAAATTCGAGCTGCTGCCCACCCCGCCCCTGTCCCCTAGCCGCC
GCTCCGGGCTCTGCTCGCCCTCCTACGTTGCGGTCACACCCTTCTCCCTTCGGGGAGACA
ACGACGGCGGTGGCGGGAGCTTCTCCACGGCCGACCAGCTGGAGATGGTGACCGAGCTG
CTGGGAGGAGACATGGTGAACCAGAGTTTCATCTGCGACCCGGACGACGAGACCTTCATC
AAAAACATCATCATCCAGGACTGTATGTGGAGCGGCTTCTCGGCCGCCGCCAAGCTCGTC
TCAGAGAAGCTGGCCTCCTACCAGGCTGCGCGCAAAGACAGCGGCAGCCCGAACCCCGC
CCGCGGCCACAGCGTCTGCTCCACCTCCAGCTTGTACCTGCAGGATCTGAGCGCCGCCG
CCTCAGAGTGCATCGACCCCTCGGTGGTCTTCCCCTACCCTCTCAACGACAGCAGCTCGC
CCAAGTCCTGCGCCTCGCAAGACTCCAGCGCCTTCTCTCCGTCCTCGGATTCTCTGCTCTC
CTCGACGGAGTCCTCCCCGCAGGGCAGCCCCGAGCCCCTGGTGCTCCATGAGGAGACAC
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CGCCCACCACCAGCAGCGACTCTGAGGAGGAACAAGAAGATGAGGAAGAAATCGATGTTG
TTTCTGTGGAAAAGAGGCAGGCTCCTGGCAAAAGGTCAGAGTCTGGATCACCTTCTGCTG
GAGGCCACAGCAAACCTCCTCACAGCCCACTGGTCCTCAAGAGGTGCCACGTCTCCACAC
ATCAGCACAACTACGCAGCGCCTCCCTCCACTCGGAAGGACTATCCTGCTGCCAAGAGGG
TCAAGTTGGACAGTGTCAGAGTCCTGAGACAGATCAGCAACAACCGAAAATGCACCAGCC
CCAGGTCCTCGGACACCGAGGAGAATGTCAAGAGGCGAACACACAACGTCTTGGAGCGC
CAGAGGAGGAACGAGCTAAAACGGAGCTTTTTTGCCCTGCGTGACCAGATCCCGGAGTTG
GAAAACAATGAAAAGGCCCCCAAGGTAGTTATCCTTAAAAAAGCCACAGCATACATCCTGT
CCGTCCAAGCAGAGGAGCAAAAGCTCATTTCTGAAGAGGACTTGTTGCGGAAACGACGAG
AACAGTTGAAACACAAACTTGAACAGCTACGGAACTCTTGTGCGTAA 

 

LIN28A lin-28 homolog A (C. elegans) [ Homo sapiens ] NM_024674.4  630bp  Gene ID: 
79727 

 

ATGGGCTCCGTGTCCAACCAGCAGTTTGCAGGTGGCTGCGCCAAGGCGGCAGAAGAGGC
GCCCGAGGAGGCGCCGGAGGACGCGGCCCGGGCGGCGGACGAGCCTCAGCTGCTGCA
CGGTGCGGGCATCTGTAAGTGGTTCAACGTGCGCATGGGGTTCGGCTTCCTGTCCATGAC
CGCCCGCGCCGGGGTCGCGCTCGACCCCCCAGTGGATGTCTTTGTGCACCAGAGTAAGC
TGCACATGGAAGGGTTCCGGAGCTTGAAGGAGGGTGAGGCAGTGGAGTTCACCTTTAAGA
AGTCAGCCAAGGGTCTGGAATCCATCCGTGTCACCGGACCTGGTGGAGTATTCTGTATTG
GGAGTGAGAGGCGGCCAAAAGGAAAGAGCATGCAGAAGCGCAGATCAAAAGGAGACAGG
TGCTACAACTGTGGAGGTCTAGATCATCATGCCAAGGAATGCAAGCTGCCACCCCAGCCC
AAGAAGTGCCACTTCTGCCAGAGCATCAGCCATATGGTAGCCTCATGTCCGCTGAAGGCC
CAGCAGGGCCCTAGTGCACAGGGAAAGCCAACCTACTTTCGAGAGGAAGAAGAAGAAATC
CACAGCCCTACCCTGCTCCCGGAGGCACAGAATTGA 
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pTNT vector circular map (Promega). 

 

 


