
This electronic thesis or dissertation has been 

downloaded from the King’s Research Portal at 

https://kclpure.kcl.ac.uk/portal/  

Take down policy 

If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing 

details, and we will remove access to the work immediately and investigate your claim. 

END USER LICENCE AGREEMENT 

Unless another licence is stated on the immediately following page this work is licensed 

under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International 

licence. https://creativecommons.org/licenses/by-nc-nd/4.0/ 

You are free to copy, distribute and transmit the work

Under the following conditions: 

 Attribution: You must attribute the work in the manner specified by the author (but not in any
way that suggests that they endorse you or your use of the work).

 Non Commercial: You may not use this work for commercial purposes.

 No Derivative Works - You may not alter, transform, or build upon this work.

Any of these conditions can be waived if you receive permission from the author. Your fair dealings and 

other rights are in no way affected by the above. 

The copyright of this thesis rests with the author and no quotation from it or information derived from it 

may be published without proper acknowledgement. 

Quiescence and cell fate regulation are essential for preserving adult stem cell number
and function

Jones, Kieran Michael

Awarding institution:
King's College London

Download date: 05. Jan. 2025



 
 

 
 

 
Quiescence and cell fate regulation are essential for 

preserving adult stem cell number and function 

 

 

A thesis submitted for the degree of Doctor of Philosophy at King's College 

London 

 

 

2013 

 

Kieran Michael Jones 

 

King's College London 

The Dental Institute 

Department of Craniofacial Development and Stem Cell Biology



Contents 
 

2 
 

Contents 
Quiescence and cell fate regulation are essential for preserving adult stem cell number 

and function .................................................................................................................. 1 

Contents ....................................................................................................................... 2 

List of Figures ............................................................................................................... 8 

Abbreviations .............................................................................................................. 12 

Acknowledgements ..................................................................................................... 15 

Abstract ...................................................................................................................... 16 

Chapter 1 .................................................................................................................... 17 

Introduction ................................................................................................................. 17 

1.1. Stem cell function in embryonic development and adult tissue ......................... 18 

1.2. Formation of vertebrate limb skeletal muscle .................................................... 20 

1.3. Satellite cells .................................................................................................... 21 

1.3.1. Formation of a satellite cell pool ................................................................. 22 

1.3.2. Satellite cells are stem cells in adult skeletal muscle .................................. 22 

1.3.3. The satellite cell response to myotrauma ................................................... 23 

1.3.4. Heterogeneity of the satellite cell pool ........................................................ 32 

1.4. The satellite cell niche ...................................................................................... 34 

1.5. Ageing in skeletal muscle ................................................................................. 38 

1.5.1. Age-associated intrinsic changes in satellite cells ...................................... 39 

1.5.2. Age-associated changes in the satellite cell niche ..................................... 41 

1.6. Neurogenesis ................................................................................................... 44 

1.6.1. Embryonic neurogenesis............................................................................ 45 

1.7. Adult neurogenesis and adult neural stem cell properties ................................. 45 

1.8. Subventricular zone - olfactory bulb neurogenesis ........................................... 46 

1.8.1. The neurogenic lineage in the adult subventricular zone ............................ 48 

1.9. Adult hippocampal neurogenesis ...................................................................... 51 

1.9.1. The neurogenic lineage in the adult subgranular zone ............................... 53 

1.10. Adult neural stem cell niches .......................................................................... 55 

1.10.1. Notch signalling in the neurogenic niches ................................................ 56 

1.11. Survival of neural stem cell progeny in the hippocampus ............................... 59 



Contents 
 

3 
 

1.12. Survival of neural stem cell progeny in the SVZ-OB system ........................... 60 

1.13. Heterogeneity of neural stem cells ................................................................. 61 

1.13.1. Heterogeneity of SVZ NSCs .................................................................... 61 

1.13.2. Heterogeneity of SGZ NSCs .................................................................... 64 

1.14. Epigenetic control of adult neurogenesis ........................................................ 66 

1.14.1. Chromatin structure and remodelling proteins .......................................... 66 

1.14.2. CHD proteins ........................................................................................... 72 

1.14.3 CHD7 ........................................................................................................ 72 

1.15. Aims and objectives ....................................................................................... 76 

Chapter 2 .................................................................................................................... 77 

Methods ...................................................................................................................... 77 

2.1. Solutions and reagents ..................................................................................... 78 

2.1.1. General reagents ....................................................................................... 78 

2.1.2. Immunohistochemistry reagents ................................................................ 79 

2.1.3. Plasmid linearisation and mRNA probe synthesis reagents ....................... 80 

2.1.4. Section in situ hybridisation reagents ......................................................... 82 

2.1.5. Wholemount in situ hybridisation reagents ................................................. 85 

2.1.6. Satellite cell isolation and culture reagents ................................................ 86 

2.1.7. Neural stem cell culture reagents ............................................................... 88 

2.2. Animals ............................................................................................................ 89 

2.3. Methods for Chapter 3 and Chapter 4 .............................................................. 90 

2.3.1. Satellite cell in vivo cell division analysis .................................................... 90 

2.3.2. In vivo FGFR inhibition ............................................................................... 90 

2.3.3. Purified myofibre extract ............................................................................ 91 

2.3.4. Single muscle fibre isolation ....................................................................... 92 

2.3.5. Tibialis anterior muscle preparation ........................................................... 92 

2.3.6. Myoblast isolation ...................................................................................... 92 

2.3.7. Myogenic cell preparation .......................................................................... 93 

2.3.8. In vitro activation of Cre recombinase ........................................................ 94 

2.3.9. In vivo activation of Cre recombinase......................................................... 94 

2.3.10. Fluorescence-activated cell sorting .......................................................... 94 

2.3.11. SC and skeletal muscle histology and immunofluorescence .................... 95 

2.3.12. Analysis of satellite cells and their progeny .............................................. 95 

2.3.13. Whole-mount in situ hybridisation ............................................................ 96 



Contents 
 

4 
 

2.3.14 Plasmid digestion and DNA extraction ...................................................... 97 

2.3.15. Probe synthesis ....................................................................................... 97 

2.3.16. RNA isolation and RT-qPCR .................................................................... 98 

2.3.17. Antibodies and reagents .......................................................................... 99 

2.3.18. Genotyping ............................................................................................ 100 

2.3.19. Statistics and data .................................................................................. 102 

2.4. Methods for Chapter 5 and Chapter 6 ............................................................ 102 

2.4.1. Isolation, growth, and differentiation of NSCs ........................................... 102 

2.4.2. Forebrain processing ............................................................................... 103 

2.4.3. Neural stem cell histology and immunofluorescence ................................ 103 

2.4.4. Frozen section histology and immunofuorescence ................................... 104 

2.4.5. Section in situ hybridisation ...................................................................... 104 

2.4.6. Probe synthesis from PCR reaction ......................................................... 106 

2.4.7. RNA isolation and RT-qPCR .................................................................... 107 

2.4.8. In vivo activation of Cre recombinase....................................................... 108 

2.4.9. NSC in vivo cell division analysis ............................................................. 108 

2.4.10. Analysis of NSCs and their progeny ....................................................... 109 

2.4.11. Antibodies and reagents ........................................................................ 110 

2.4.12. Genotyping ............................................................................................ 110 

2.4.14. Image processing ................................................................................... 112 

2.4.15. Statistics and data .................................................................................. 112 

Chapter 3 .................................................................................................................. 113 

Results Part I ............................................................................................................ 113 

3.1. Skeletal muscle and ageing ............................................................................ 114 

3.1.1. Satellite cells display a decline in number and function in aged skeletal 
muscle ............................................................................................................... 116 

3.1.2. Aged satellite cells cycle more frequently during homeostasis ................. 120 

3.2. Formation of a purified myofibre extract to determine age-associated changes in 
the satellite cell myofibre niche .............................................................................. 122 

3.3. Aged purified myofibre extract induces quiescent satellite cells to cycle ......... 124 

3.3.1. FGF2 is sufficient to drive satellite cells to cycle ...................................... 127 

3.3.2. FGF2 is upregulated in aged skeletal muscle fibres ................................. 129 

3.3.3. Induction of aged niche-derived FGF2 disrupts satellite cell quiescence .. 135 

3.4. Discussion ...................................................................................................... 139 



Contents 
 

5 
 

Chapter 4 .................................................................................................................. 145 

Results Part II ........................................................................................................... 145 

4.1. Sprouty proteins modulate FGF signalling ...................................................... 146 

4.1.1. Loss of Spry1 further enhances loss of satellite cell quiescence in response 
to the aged niche in vitro .................................................................................... 147 

4.1.2. Spry1 inhibits FGF2-FGFR signalling ....................................................... 152 

4.1.3. Spry1 overexpression inhibits the mitogenic effect of the aged niche ....... 154 

4.2. Short-term loss of Spry1 in vivo causes increased satellite cell cycling and 
increased Pax7 cell number .................................................................................. 157 

4.3. Long-term loss of Spry1 in vivo leads to loss of stem cell number and impaired 
satellite cell function .............................................................................................. 159 

4.4. Inhibition of FGF signalling in the aged satellite cell niche rescues stem cell 
number and function ............................................................................................. 163 

4.5. The adult niche is inhibitory to satellite cell activation ..................................... 166 

4.6. Discussion ...................................................................................................... 168 

Chapter 5 .................................................................................................................. 173 

Results Part III .......................................................................................................... 173 

5.1. Chromatin remodelling in adult neurogenesis ................................................. 174 

5.2. Chd7 heterozygous mice display reduced olfactory bulb length and reduced 
number of tyrosine hydroxylase+ interneurons ....................................................... 180 

5.3. CHD7 is expressed in the dorso-lateral aspect of the subventricular zone and in 
the rostral migratory stream ................................................................................... 188 

5.3.1. CHD7 is expressed at high levels in transit-amplifying cells in the 
subventricular zone ............................................................................................ 191 

5.4. Reduction in Chd7 expression results in a decrease in immature neuron 
production in the subventricular zone .................................................................... 195 

5.4.1. Loss of Chd7 in NSCs blocks their differentiation ..................................... 198 

5.5. Restoration of Chd7 function partially rescues the expression of tyrosine 
hydroxylase in the olfactory bulb ........................................................................... 203 

5.6. Discussion ...................................................................................................... 206 

5.6.1. The reduction in olfactory bulb size and number of tyrosine hydroxylase+ 
interneurons may be progressive with age ......................................................... 208 

5.6.2. A reduction in Chd7 expression may result in a loss of cells of the tyrosine 
hydroxylase lineage, or a loss of tyrosine hydroxylase production ..................... 209 

5.6.3. CHD7 regulates subventricular zone - olfactory bulb neurogenesis ......... 212 

5.6.4. Loss of Chd7 results in a large reduction in olfactory bulb neurogenesis . 213 



Contents 
 

6 
 

5.6.5. CHD7 in adult subventricular zone neurogenesis ..................................... 213 

Chapter 6 .................................................................................................................. 215 

Results Part IV .......................................................................................................... 215 

6.1.  Quiescence of a somatic stem cell population is essential for maintenance of 
the stem cell pool .................................................................................................. 216 

6.1.1. Maintenance of neural stem cell quiescence ............................................ 216 

6.1.2. Neural stem cell proliferation and ageing ................................................. 217 

6.1.3. Regulation of neural stem cell fate decisions ........................................... 217 

6.2. CHD7 is expressed in transit amplifying cells in the subgranular zone ........... 220 

6.3. The GLAST::CreERT2;Chd7f/f mouse line allows for efficient deletion of Chd7 in 
the dentate gyrus .................................................................................................. 226 

6.4. Loss of Chd7 in neural stem cells causes a reduction in neurogenesis .......... 231 

6.5. Loss of Chd7 leads to a transient increase in neurogenesis ........................... 234 

6.6. Loss of Chd7 impairs mature neuron formation .............................................. 237 

6.7. CHD7 regulates neural stem cell quiescence ................................................. 240 

6.8. Loss of Chd7 results in an increase in the number of neural stem cells .......... 244 

6.9. Loss of neural stem cell quiescence may be due to loss of Notch signalling ... 249 

6.10. A decrease in Chd7 expression may be linked to intellectual disability in 
CHARGE syndrome .............................................................................................. 251 

6.11. Discussion .................................................................................................... 254 

6.11.1. Chd7 may regulate neural stem cell quiescence cell autonomously or non-
cell autonomously .............................................................................................. 256 

6.11.2. Decreased Notch signalling only accounts for some of the phenotypes 
seen after the loss of Chd7 ................................................................................ 257 

6.11.3. Chd7 may have separate roles in the self-renewal, maintenance of 
quiescence, and differentiation of neural stem cells ........................................... 257 

6.11.4. In vivo clonal analysis of adult neural stem cells .................................... 260 

6.11.5. Neural stem cell quiescence and maintenance of the stem cell pool ...... 260 

6.11.6. CHD7 and the regulation of apoptosis .................................................... 261 

6.11.7. CHD7 may regulate adult hippocampal and olfactory bulb neurogenesis in 
a similar fashion ................................................................................................. 262 

6.11.8. CHD7 and human disease ..................................................................... 262 

6.11.9. CHD7 regulates adult hippocampal neurogenesis via SoxC transcription 
factors ................................................................................................................ 263 

6.12. CHD7 regulates different aspects of adult neurogenesis ........................... 264 

Chapter 7 .................................................................................................................. 266 



Contents 
 

7 
 

Discussion ................................................................................................................ 266 

7.1. Discussion ...................................................................................................... 267 

7.1.1. Quiescence is a property of many somatic stem cells essential for stem cell 
function and maintenance of the stem cell pool ................................................. 267 

7.1.2. Maintenance of the stem cell pool is essential for tissue function ............. 269 

7.1.3. Upregulation of FGF2 in the aged satellite cell niche may be due to 
accumulated myofibre damage .......................................................................... 271 

7.1.4. Ageing in the hippocampus is associated with altered neural stem cell 
function and cognitive decline ............................................................................ 271 

7.1.5. Ageing in the hippocampus is associated with changes in the chromatin 
landscape .......................................................................................................... 272 

7.1.6. CHD7 and the regulation of bHLH factors in neurogenesis and myogenesis
 .......................................................................................................................... 274 

7.1.7. CHD proteins in adult neurogenesis ......................................................... 274 

7.1.8. CHD7 may play a role in autism spectrum disorder and neurodegenerative 
disorders ............................................................................................................ 275 

7.1.9. Intrinsic and extrinsic changes affect somatic cell function ....................... 276 

7.2. Future work .................................................................................................... 277 

7.2.1. In vivo clonal lineage analysis .................................................................. 277 

7.2.2. The long-term effect of a loss of Chd7 on the neural stem cell pool ......... 278 

7.2.3. The role of CHD7 on neural stem cell quiescence ................................... 278 

7.2.4. Chromatin immunoprecipitation of CHD7 in cultured neural stem cells .... 279 

Bibliography .............................................................................................................. 280 

 

Enclosed in back cover: 

Chakkalakal, J. V., Jones, K. M., Basson, M. A. & Brack, A. S. The aged 

niche disrupts muscle stem cell quiescence. Nature 490, 355-360, 

doi:10.1038/nature11438 (2012). 



List of Figures 
 

8 
 

List of Figures 

Figure 1 - Schematic illustration of the myogenic lineage of satellite cells. .................. 21 

Figure 2 - Schematic of FGF-ERK signalling. .............................................................. 32 

Figure 3 -  Schematic illustration of the satellite cell niche………………………………37 

Figure 4 - Schematic illustration of impaired muscle regeneration in old age. ............. 39 

Figure 5 - Schematic illustration of adult subventricular zone neurogenesis ................ 47 

Figure 6 - Schematic illustration of the multipotency of adult neural stem cells in the 

subventricular zone ..................................................................................................... 49 

Figure 7 - Schematic illustration of the adult subventricular zone cell lineage ............. 50 

Figure 8 - Schematic illustration of adult subgranular zone neurogenesis. .................. 52 

Figure 9 - Schematic illustration of the adult subgranular zone lineage. ...................... 54 

Figure 10 - Schematic illustration of Notch signalling in neural stem cells ................... 59 

Figure 11 - Schematic illustration of the regional specification of SVZ cells ................ 63 

Figure 12 - Schematic illustration of radial and horizontal neural stem cells in the 

subgranular zone ........................................................................................................ 65 

Figure 13 - Schematic illustration of the action of chromatin remodelling complexes. . 71 

Figure 14 - Overview of the protein structure of CHD7. ............................................... 75 

Table 1 - Mouse lines used ......................................................................................... 90 

Table 2 - Details of PCR primers .............................................................................. 101 

Table 3 - RT-qPCR primer sequences ...................................................................... 108 

Table 4 - Details of PCR primers 2 ........................................................................... 111 

Figure 15 - The number of satellite cells declines in aged skeletal muscle and their 

function is impaired ................................................................................................... 119 

Figure 16 - Aged satellite cells cycle more frequently during homeostasis ................ 121 

Figure 17 - Purified myofibre extract represents soluble fractions from skeletal muscle 

fibres ......................................................................................................................... 123 

Figure 18 - The aged niche induces the loss of satellite cell quiescence ................... 126 



List of Figures 
 

9 
 

Figure 19 - FGF2 acts as a potent mitogen to induce satellite cells to cycle in a dose-

dependent manner .................................................................................................... 128 

Figure 20 - Expression of Fgf2 from the muscle fibre increases in aged skeletal muscle

 ................................................................................................................................. 132 

Figure 21 - Muscle fibre-derived FGF2 increases with age ....................................... 134 

Figure 22 - FGF2 is an aged niche-derived factor that induces satellite cells to cycle 138 

Figure 23 - The systemic environment and the niche have opposing influences on 

satellite cells in adult and aged skeletal muscle ........................................................ 144 

Figure 24 - Reduction in Spry1 increases reserve cell cycling  in response to the aged 

niche ......................................................................................................................... 149 

Figure 25 - Loss of Spry1 specifically from satellite cells in vivo causes increased 

sensitivity to the aged niche and impaired function. .................................................. 151 

Figure 26 - Spry1 inhibits FGF2-FGFR signalling ...................................................... 153 

Figure 27 - Overexpression of Spry1 inhibits the mitogenic effect of the aged niche . 155 

Figure 28 - Spry1 overexpression in vivo inhibits the mitogenic effect of the aged niche

 ................................................................................................................................. 156 

Figure 29 - Short-term increase in FGF signalling increases satellite cell cycling ...... 158 

Figure 30 - Chronic exposure to FGF signalling leads to depletion of the satellite cell 

pool and impaired satellite cell function ..................................................................... 162 

Figure 31 - Inhibition of FGF signalling rescues stem cell number and function ........ 165 

Figure 32 - The adult niche is inhibitory to satellite cell activation. ............................ 167 

Figure 33 - Schematic illustration of the changes in satellite cells with ageing under 

homeostatic conditions ............................................................................................. 170 

Figure 34 - Modulation of FGF signalling affects satellite cell outcome ..................... 172 

Figure 35 - Reduced expression of Chd7 leads to a decrease in tyrosine hydroxylase+ 

interneurons due to decreased olfactory epithelial stem cell proliferation .................. 178 

Figure 36 - A reduction in Chd7 expression may cause a decrease in SVZ-OB 

neurogenesis leading to a loss of interneuron production ......................................... 180 

Figure 37 - Reduction in Chd7 expression causes a decrease in olfactory bulb length

 ................................................................................................................................. 184 



List of Figures 
 

10 
 

Figure 38 - Reduction in Chd7 expression specifically affects tyrosine hydroxylase+ 

olfactory bulb interneurons ........................................................................................ 186 

Figure 39 - Reduction in Chd7 expression results in a decrease in TH-lineage cells . 187 

Figure 40 - CHD7 is expressed in the subventricular zone, rostral migratory stream, 

and olfactory bulb ..................................................................................................... 190 

Figure 41 - CHD7 is expressed by proliferating cells and type C cells ....................... 193 

Figure 42 - Schematic of CHD7 expression in the SVZ ............................................. 194 

Figure 43 - Reduction in Chd7 expression affects SVZ neurogenesis ....................... 197 

Figure 44 - Efficient recombination in the GLAST::CreERT2 mouse line ................... 200 

Figure 45 - Loss of Chd7 in neural stem cells affects subventricular zone neurogenesis

 ................................................................................................................................. 202 

Figure 46 - Restoration of Chd7 function in neural stem cells partly rescues tyrosine 

hydroxylase production in the olfactory bulb ............................................................. 205 

Figure 47 - Reduction in Chd7 expression affects subventricular zone neurogenesis 207 

Figure 48 - Regulation of Er81 expression by CHD7 ................................................. 211 

Figure 49 - Schematic diagram of the fate decisions of adult neural stem cells ......... 220 

Figure 50 - CHD7 is expressed in the subgranular zone of the dentate gyurs ........... 222 

Figure 51 - CHD7 is expressed by a subset of type 2a cells ..................................... 224 

Figure 52 - Schematic of CHD7 expression in the dentate gyrus .............................. 225 

Figure 53 - Efficient recombination in the dentate gyrus of GLAST::CreERT2 mice. a,

 ................................................................................................................................. 229 

Figure 54 - The GLAST::CreERT2;Chd7f/f mouse line allows for efficient deletion of 

Chd7 ......................................................................................................................... 231 

Figure 55 - Chd7 regulates adult hippocampal neurogenesis ................................... 234 

Figure 56 - Loss of Chd7 results in a transient increase in neurogenesis .................. 237 

Figure 57 - CHD7 is essential for neurogenesis in vitro............................................. 240 

Figure 58 - Loss of Chd7 initially results in increased subgranular zone proliferation 242 

Figure 59 - CHD7 regulates neural stem cell quiescence .......................................... 243 



List of Figures 
 

11 
 

Figure 60 - Loss of Chd7 results in an increase in the number of neural stem cells .. 247 

Figure 61 - The disposable stem cell hypothesis may account for an increase in the 

number of neural stem cells in Chd7 mutants over time ............................................ 248 

Figure 62 - Loss of Chd7 leads to a decrease in Notch signalling ............................. 250 

Figure 63 - Reduction in Chd7 expression affects hippocampal neurogenesis .......... 253 

Figure 64 - Schematic diagram of the role of CHD7 in adult hippocampal neurogenesis

 ................................................................................................................................. 256 

Figure  65 - The role of CHD7 in adult hippocampal neurogenesis ........................... 258 



Abbreviations 
 

12 
 

Abbreviations 
aCasp Cleaved caspase 3 
Ang1 Angiopoietin 1 
AraC Arabinoside 
bHLH Basic helix-loop-helix 
BL Basal lamina 
BLBP Brain lipid binding protein 
Bmi1  B lymphoma Mo-MLV insertion region 1 homolog 
BMP Bone morphogenic protein 
bp Base pairs 
BrdU 5-bromo-2'-deoxyuridine 
BRG1 BRM/SWI2-Related Gene  
BSA Bovine serum albumin 
BV Blood vessel 
CalB Calbindin 
CalR Calretinin 
CNS Central nervous system 
CTX Cardiotoxin 
CSF Cerebrospinal fluid  
ddH2O Double distilled water 
DEPC Diethyl pyrocarbonate 
DG Dentate gyrus 
Dll Delta-like ligand 
DMD Duchenne muscular dystrophy 
DMSO Dimethyl sulphoxide 
dpi Days post injury 
DTA Diphtheria toxin A 
DTR Diphtheria toxin receptor 
E Embryonic day 
ECM Extracellular matrix 
EDL Extensor digitorum longus  
EGF Epidermal growth factor 
EGFR EGF receptor 
ES cells Embryonic stem cells 
EtOH Ethanol 
FBS Foetal bovine serum 
FCS Foetal calf serum 
FACS Fluorescence-activated cell sorting 
FGF Fibroblast growth factor 
FGFR FGF receptor 
g Relative centrifugal force 
GFAP Glila fibrillary acidic protein 



Abbreviations 
 

13 
 

GL Granular layer 
GLAST Glutamate aspartate transporter 
gt Gene trap 
H Histone 
HGF Hepatocyte growth factor 
HGPS Hutchinson-Gilford Progeria Syndrome 
Hip Hippocampus 
His High-stringency wash 
HS Horse serum 
HSC Haematopoeitic stem cell 
HSPG Heparan sulfate proteoglycan 
IGF Insulin-like growth factor 
I.P. Intraperitoneal 
Jag Jagged 
LRC Label-retaining cells 
MABT Maleic acid buffer with Tween-20 
MAPK Mitogen-activated protein kinase 
me3 Tri-methylated 
ML Molecular layer 
MyoG Myogenin 
N.A. Not attained 
NCAM Neural cell adhesion molecule 
ND Not detected 
NGF Nerve growth factor 
NICD Notch intracellular domain 
N.S. Not significant 
NTMT Sodium chloride-Tris-Magnesium-Tween-20 buffer 
OB Olfactory bulb 
P Postnatal day 
PBAF Polybromo-associated BRG1-associated factor 
PBS Phosphate buffered saline 
PBSTw PBS with Tween-20 
PBSTx PBS with Triton X 
PcG Polycomb group 
PCP Planar cell polarity 
PCR Polymerase chain reaction 
PDGF Platelet-derived growth factor-BB 
PFA Paraformaldehyde 
PI Propidium iodide  
PME Purified myofibre extract 
PRC Polycomb repressive complex 
RG Radial glia 
RMS Rostral migratory stream 
ROS Reactive oxygen species 
RSC Reserve cell 



Abbreviations 
 

14 
 

RT-qPCR Real-time reverse-transcription PCR 
RTK Receptor tyrosine kinase 
S.E.M. Standard error of means 
SC Satellite cell 
SGZ Subgranular zone 
shRNA Short hairpin RNA 
siRNA Short interfering RNA 
Spry Sprouty 
SSC Standard saline citrate 
STAT Signal transducer and activatior of transcription 
SVZ Subventricular zone 
TA Tibialis anterior  
TAE Tris base, acetic acid, EDTA 
TE Tris-EDTA 
TGF Transforming growth factor 
TH Tyrosine hydroxylase 
TNF Tumour necrosis factor 
TxG Trithorax group 
ub Ubiquitin 
VEGF Vascular endothelial growth factor 
w/v Weight/volume 
WT Wild type 



Acknowledgements 
 

15 
 

Acknowledgements 

I would like to thank Dr. M. Albert Basson for all of his support and guidance 

throughout my time at King's College London, and for being a great source of 

inspiration which has shaped me as a scientist. I would like to thank Dr. Andrew 

Brack for all of the excellent training and support in Boston and for providing an 

incredible scientific environment. In particular, I would like to thank Dr. Joe 

Chakalakal who was great to work with. I am grateful to all of the lab mates that 

I've had the pleasure of working with in the Brack lab and HSCI, and in the 

Basson lab and CFD, especially Dr. Tian Yu, who has taught me so much over 

the years. I would also like to thank my fellow write-up person, Lara, who has 

been a great friend and colleague, and Leena, who has been brilliant 

throughout the years in CFD and even more so outside of CFD. Finally, I would 

like to thank all of my friends and family for their support.



Abstract 
 

16 
 

Abstract 

Somatic stem cell populations display a remarkable capacity to self-renew and 

generate specialised cell types throughout the life of the organism. In my thesis 

I examined extrinsic and intrinsic factors that regulate stem cell quiescence, a 

reversible state of growth arrest crucial to the preservation of somatic stem cell 

number and function in many systems. Skeletal muscle-specific stem cells, 

known as satellite cells (SCs) are responsible for skeletal muscle regeneration. 

The ability of skeletal muscle to regenerate declines with age. I identify 

fibroblast growth factor 2 (FGF2) as a potent mitogenic factor that is up-

regulated in the aged muscle fibre and causes a loss of SC quiescence and 

depletion of the stem cell pool. Deletion of a negative regulator of FGF 

signalling, Sprouty1 (Spry1), in SCs increases stem cell loss, whereas over-

expression of Spry1 partly prevents depletion. These experiments show that an 

age-associated change in the SC niche is partly responsible for stem cell 

depletion during ageing. 

In the adult forebrain, new neurons produced from neural stem cells (NSCs) in 

the hippocampus play an important role in learning and memory formation. I 

show that deletion of the chromatin remodelling enzyme chromodomain 

helicase DNA-binding protein 7 (CHD7) in NSCs results in a severe reduction in 

neurogenesis. I identify CHD7 as an essential regulator of NSC quiescence and 

self-renewal. Collectively, my results suggest that the regulation of the intrinsic 

chromatin landscape and the extrinsic niche environment are essential for 

somatic stem cell function, and may contribute to ageing when disrupted. 
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1.1. Stem cell function in embryonic development and adult 
tissue 

Stem cells are characterised by two essential properties: 

1. The ability to generate daughter cells capable of differentiation into 

multiple cells types, known as multipotency, and 

2. The ability to undergo numerous rounds of cell division whilst maintaining 

an undifferentiated pool, known as self-renewal. 

During embryonic development, embryonic stem (ES) cells from the inner cell 

mass of blastocysts can proliferate extensively and can differentiate into 

ectoderm, mesoderm and endoderm [1]. ES cells form all the cell types of adult 

organisms indirectly through the generation of other stem cell populations. 

However, many embryonic cells lose their stem cell properties as differentiation 

ensues and the signals that promote growth decline. By adulthood, stem cells 

are no longer dispersed throughout the organism but, instead, exist in discrete 

niches in many tissues. Somatic stem cells retain the ability to self-renew and 

generate different specialised cell types [1, 2]. 

Generally, somatic stem cells divide infrequently under homeostatic conditions. 

Instead, they form lineage-restricted progenitors with a greater proliferative 

output. Progenitors then form an immature differentiated cell type, often with 

migratory capabilities, which mature into a new fully functional cell type [2, 3]. 

Quiescence is a reversible state of growth arrest crucial to the preservation of 

somatic stem cell number and function in many systems [4-6]. Limiting the 

proliferative output of somatic stem cells prevents the accumulation of DNA 

replication errors in stem cells, and also stops the depletion of the stem cell pool 

through replicative senescence [7]. The niche is a critical factor in the 

maintenance of somatic stem cell function and provides the proper cues needed 

for stem cell quiescence under homeostatic conditions [6, 8]. Aberrant changes 

in the niche can lead to a loss of stem cell quiescence and an alteration in stem 

cell function [6, 8]. 
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Ageing is a physiological process whereby the composition of many somatic 

stem cell niches is disrupted and the stem cells display intrinsic changes [9]. An 

'adult' stage of life is generally considered to be when stem cells become 

quiescent but before any large loss in the stem cell pool later in life. In mice, 

skeletal muscle is generally accepted as being in an adult stage between 3-8 

months old [10, 11], and the adult forebrain is considered adult between 2-5 

months old [12]. 'Aged' is considered to be a stage where stem cells exhibit an 

impaired function in the absence of any other diseases. Murine skeletal muscle 

is considered to be aged at around 24 months old [10, 11], based on a 

decrease in skeletal muscle function as assessed by contractile properties. The 

adult murine forebrain is considered aged as early as 12 months old as it 

exhibits a large decrease in stem cell self-renewal and proliferation which has 

been associated with cognitive defects [12-16]. 

Ageing leads to alterations in stem cell number and function, often having a 

negative impact on tissue homeostasis. In addition, the numbers of stem cells 

present in various tissues generally decline with age [17-20]. The notable 

exception to this general rule is the haematopoietic system, which exhibits an 

increase in the number of haematopoietic stem cells with age [21]. Despite this, 

aged haematopoietic stem cells display a loss in self-renewal potential and 

skewed fate decisions [21]. 

Very little is known about age-related changes in mammalian stem cell niches 

and how this impacts on stem cell number. Furthermore, the mechanisms 

controlling stem cell quiescence and fate decisions are not completely 

understood. Current literature indicates that intrinsic changes in somatic cells, 

such as epigenetic changes [22, 23], and extrinsic influences, such as the stem 

cell niche [12, 19, 24], clearly play an important role in the regulation of stem 

cell number and function. 

This thesis examines fundamental properties of somatic stem cells in two well-

characterised types of stem cells: skeletal muscle stem cells and neural stem 

cells. Specifically, influences on stem cell quiescence and differentiation will be 
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explored in the context of homeostasis and also in a state of physiological 

disease, such as ageing. 

 

1.2. Formation of vertebrate limb skeletal muscle 

Muscle is composed of elongated, multinucleated myofibres that are capable of 

contracting. Skeletal muscle is transversely striated and principally attached to 

bone to allow for skeletal movement. Skeletal muscle contraction is achieved 

through the interaction between myofibrillar proteins, which temporarily bind to 

each other and release, generating force [25]. 

In vertebrates, skeletal muscle forms from paraxial mesoderm, which segments 

and form pairs of transitory structures on either side of the neural tube called 

somites [26]. Somites differentiate into dermatome, myotome and sclerotome. 

Cells in the dermatome form the skin of the back, the sclerotome forms the 

vertebrae and rib cartilage, and cells in the myotome become specified as 

skeletal muscle progenitors. Cells migrating from the myotome begin to express 

myogenic determination genes, such as MyoD and Myf5, once they reach the 

limb [27]. These muscle progenitor cells undergo extensive proliferation in the 

limb and fuse to form the first multinucleated muscle fibres around embryonic 

day (E) 11-14 in mouse [28]. Throughout the first weeks of postnatal life in mice, 

skeletal muscle undergoes great muscle growth, with little addition of myonuclei 

to myofibres from postnatal day (P) 14, although the extensor digitorum longus 

(EDL) muscle of the hind limb continues to increase in weight up to 17 weeks of 

age [29]. 
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1.3. Satellite cells 

Somatic stem cells are present in adult skeletal muscle. These cells are referred 

to as satellite cells (SCs) by virtue of their distinct location on the surface of the 

myofibre, underneath the basal lamina. SCs are capable of producing 

proliferative myoblasts which can differentiate into myotubes. SCs are also able 

to maintain their own population through self-renewal, hence they fit the 

definition of stem cells (Figure 1). 

 

 

Figure 1 - Schematic illustration of the myogenic lineage of satellite cells. Under 

homeostatic conditions SCs are completely quiescent. However, in response to myotrauma they 

activate and proliferate to form myoblasts, becoming positive for markers of cell cycle entry such 

as Ki67 and upregulating MyoD and Myf5. As myoblasts become more committed to 

differentiation and form myotubes, they upregulate myogenin and mature into new myofibres. A 

subset of activated SCs are able to self-renew and maintain Pax7 expression. Adapted from 

[30]. 
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1.3.1. Formation of a satellite cell pool 

Most SCs are formed from the somites, with the notable exception of the head 

muscles, which have a distinct embryonic origin and form from the pre-chordal 

mesoderm and other cell lineages [31-33]. SCs are widely accepted as forming 

from a distinct subset of a large population of myogenic progenitors, which 

retain multipotency and self-renewal capacity throughout adulthood [34]. 

Tritiated thymidine labelling studies have shown that SCs are mitotically active 

and contribute to new myonuclei during postnatal growth before P21 [35]. After 

P21, most SCs become mitotically quiescent and do not contribute to new 

myonuclei [35-37]. Quiescent SCs express Pax7, which is essential for their 

proper function in growth of postnatal skeletal muscle and regeneration of adult 

muscle after myotrauma [34]. Collectively, these data indicate that the majority 

of developmental and postnatal myogenesis is completed by P21 as SCs enter 

a quiescent state. 

 

1.3.2. Satellite cells are stem cells in adult skeletal muscle 

The stem cell properties of SCs were first hypothesised in the 1960s as it was 

demonstrated that SCs underwent cell division in regenerating muscle [38, 39]. 

However, it was not until myofibres were isolated and cultured  ex vivo that SCs 

were shown to generate myoblast progeny that could fuse and differentiate into 

myotubes [40, 41]. 

More recently, inducible genetic lineage tracing studies, taking advantage of 

Pax7 as a marker of SCs, have further demonstrated that SCs can generate 

myoblasts for muscle growth and repair in vivo. Using different Pax7CreER/+ 

mouse lines crossed with R26RlacZ/+ mice, activation of CreERT2 by tamoxifen 

administration confirmed β-galactosidase activity specifically in SCs. During 

muscle regeneration, however, β-galactosidase activity was readily detected in 

de novo muscle fibres, indicating differentiation and fusion of SC-derived 

myoblasts [42, 43]. In addition, after injury, β-galactosidase expression was 
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detected in a similar number of SCs as was seen prior to injury suggesting that 

the SC pool is replenished by self-renewal [42]. 

Transplantation into injured skeletal muscle has reinforced the stem cell nature 

of SCs. Donor-derived SCs are able to occupy a SC niche on the periphery of 

the myofibre and remain quiescent and undifferentiated whilst retaining the 

ability to activate and proliferate in response to myotrauma [44, 45]. Even after 

serial transplantations, grafted myogenic cells are able to contribute myonuclei 

and retain proliferative potential [46-52]. In addition, it has been observed that 

engraftment of a single myofibre, or a single isolated SC, can repopulate the 

host muscle with new myonuclei and SCs, firmly showing that SCs are a source 

of myogenic precursors with self-renewal capability [53, 54].  

 

1.3.3. The satellite cell response to myotrauma 

Adult skeletal muscle displays the remarkable capability to regenerate after 

injury, a phenomenon that relies on Pax7+ SCs. Indeed, even after severe 

myofibre necrosis, rat skeletal muscle is able to re-establish full contraction 

power potential as soon as three weeks after injury [55]. Muscle fibre 

regeneration involves the activation of SCs to form myoblasts with a concurrent 

upregulation of the basic helix-loop-helix (bHLH) myogenic determination factor 

MyoD. MyoD+ myoblasts continue to proliferate and amplify their population as 

they downregulate Pax7. Through fusing with each other and existing 

multinucleated cells, myoblasts are able to form immature myotubes, identified 

by myogenin (MyoG) expression. Myotubes continue to mature into new 

myofibres. A subset of activated SCs are able to retain Pax7 expression, 

downregulate MyoD expression and return to quiescence through a process of 

self-renewal, retaining the ability to undergo the same processes of muscle 

regeneration during subsequent traumas [56] (see Figure 1). 
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1.3.3.1. Pax7+ satellite cells are essential for muscle regeneration 

SCs have been widely implicated as the main stem cell responsible for muscle 

regeneration. However, until recently, the necessity of SCs for regeneration had 

not been fully demonstrated. Utilisation of CreER driven by a Pax7 promoter 

has allowed for the genetic ablation of Pax7+ SCs in a specific and temporal 

manner when used in combination with alleles that express diphtheria toxin A 

(DTA) flanked by a floxed 'stop' signal. Upon tamoxifen-induced cre-mediated 

recombination of floxed stop sequences, the R26RDTA mouse line constitutively 

expresses DTA, a potent inhibitor of protein synthesis that kills the cells in which 

it is produced [57]. Hence, crossing mice where CreER is driven by Pax7 with 

mice where DTA is flanked by floxed stop signals have allowed groups to 

analyse the contribution of SCs to homeostatic muscle function and muscle 

regeneration. Studies employing this technique have shown that skeletal 

muscle lacking SCs displayed no regenerating myofibres after injury [58-61]. 

Furthermore, the few cells which escaped Cre-mediated recombination were 

unable to regenerate the muscle, suggesting there may be a minimum threshold 

for the number of SCs in skeletal muscle, or per myofibre, required for proper 

regeneration  [58-61]. These data show an absolute requirement for Pax7+ SCs 

in muscle regeneration. Without SCs, skeletal muscle is unable to form new 

myofibres after injury. 

 

1.3.3.2. Signalling cascades in the satellite cell response to myotrauma 

The process of repair and regeneration of adult skeletal muscle shares many 

similarities with developmental myogenesis. However, unlike in development, 

SCs are quiescent in adulthood and so they require an orchestrated set of cues 

to activate and proliferate, followed by signals to their progeny to differentiate 

into myotubes to form new muscle fibres. Various secreted growth factors have 

been shown to play an important role in the up and down-regulation of muscle 

specific genes and the sequence of growth factor release appears to be highly 

regulated in order to enable efficient muscle repair without activating SCs under 

homeostatic conditions [62]. 
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Many growth factors play a stimulatory role in myogenic proliferation and 

differentiation. Hepatocyte growth factor (HGF), for example, is released from 

regenerating myotubes and activated SCs and can act in an autocrine manner 

to enhance SC proliferation [63]. Insulin-like growth factor (IGF) has a unique 

dual role in muscle regeneration, inducing both the proliferation of SCs (which 

express the IGF receptor) as well as their differentiation throughout the 

regenerative response [64-67]. Transforming growth factor β (TGFβ) is released 

by platelets and myoblasts and acts to depress SC proliferation and 

differentiation in vitro, possibly to maintain a pool of undifferentiated progenitors 

in regenerating muscle  [68, 69]. The effect of TGFβ in vivo, however, is more 

varied, and can induce or inhibit SC proliferation depending on the presence of 

other growth factors [70, 71].  

The immune system plays an essential role in muscle regeneration with 

inflammation being a key response to muscle damage. Tumour necrosis factor-

α (TNFα) is a well-characterised cytokine partly responsible for the activation of 

the inflammatory response. TNFα is released by activated leukocytes, 

macrophages, and injured muscle fibres and acts not only as a chemoattractant 

and activator of other leukocytes, but is also involved in the degeneration and 

regeneration of damaged muscle fibres [72, 73]. By binding to TNF receptor, 

TNFα promotes the activation of the transcription factor nuclear factor κB 

(NFκB) in muscle fibres, leading to the catabolism of muscle proteins and 

induction of reactive oxygen species (ROS) [74, 75]. Additionally, TNFα has 

been shown to directly activate SCs and enhance expression of MyoD to aid 

muscle regeneration [73]. Interleukin-6 (IL-6) plays a similar role to TNFα, 

regulating muscle protein breakdown and activating SCs [73, 76]. Platelet-

derived growth factor-BB (PDGF) is released from platelets, macrophages, and 

injured blood vessels, and can signal to myoblasts to stimulate their proliferation 

and inhibit their differentiation [68, 77]. By modulating angiogenesis, PDGF can 

also indirectly regulate skeletal muscle regeneration [68]. These studies show 

the immune system to be a key regulator of the SC-response to myotrauma. 
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Wnt proteins belong to a large family of secreted molecules that can signal 

through distinct canonical and non-canonical pathways. β-catenin, the 

downstream effector of canonical Wnt signalling, has been shown to be 

expressed by cultured rat and mouse myoblasts [78, 79] and by the mouse C2 

cell line [80] where it interacts with cadherins to regulate the early steps of 

myoblast differentiation and fusion [78, 80-83]. Recent studies have shown that 

β-catenin can interact with the myogenic determination factor MyoD and this 

interaction is essential for muscle differentiation [84]. Furthermore, canonical 

Wnt signalling has been implicated in the regulation of SC proliferation after 

myotrauma, with induction of proliferation or quiescence dependent on the Wnt 

ligands present and the localisation of stabilised β-catenin [79].  

Notably, not only secreted factors can modulate regenerative behaviour. Notch 

signalling involves the binding of a transmembrane ligand to the extracellular 

domain of a Notch receptor (see Figure 10). In mammals there are four Notch 

receptors (Notch1-4) which can interact with their ligands delta-like 1 (Dll1), dll3 

and dll4, and jagged1 (Jag1) and Jag2. Ligand binding to Notch receptor leads 

to the proteolytic cleavage of the Notch intracellular domain (NICD) by γ-

secretase. The NICD can then translocate to the nucleus and activate target 

gene transcription through interaction with the transcription factor RBPJ (see 

Figure 10). Notch signalling has been shown to aid the homing of SC 

precursors to a SC position [85] and prevent precocious differentiation of 

myogenic precursors during development [86, 87]. Notch signalling plays a 

similar role in adult SCs. SCs express Notch1-3 as well as Dll1 and Jag1 [88, 

89]. Activation of Notch1 promotes the activation of postnatal and adult mouse 

SCs and prevents their differentiation, with mutant mouse models of increased 

Notch signalling showing compromised muscle regeneration [88, 90]. In 

agreement with these findings, loss of Notch signalling through loss of Rbpj 

function leads to the spontaneous differentiation of quiescent SCs and depletion 

of the stem cell pool [91].  

The balance between proliferation and differentiation of myogenic cells is 

important for efficient muscle regeneration and this balance has been shown to 
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rely on crosstalk between Notch and Wnt signalling cascades [92]. Brack et al. 

showed that activation of postnatal myogenic precursors through Notch 

signalling is antagonised by Wnt3a to promote differentiation [92].  Crosstalk 

between the two pathways converge on glycogen synthase kinase 3β, which is 

maintained in an active state by Notch signalling and inactivated by Wnt 

signalling [92].  Interestingly, asymmetric distribution of Numb, a negative 

regulator of Notch signalling, in some SC divisions has been hypothesised to 

lead to different transcriptional programs and cell fates [88, 93]. This suggests 

that localisation of Numb and abrogation of Notch signalling may alter the 

balance between an activated SC self-renewing or differentiating [88, 93]. 

 

1.3.3.3. Fibroblast growth factor signalling in muscle regeneration 

Fibroblast growth factors (FGFs) are a large family of heparin-binding proteins, 

consisting of twenty-two members in vertebrates. They have diverse roles in 

regulating cell proliferation, migration and differentiation. FGF1-10 and FGF15-

23 elicit their effect by binding to FGF receptors (FGFRs), and activating their 

receptor tyrosine kinase activity. So far, four genes encoding FGF receptors 

have been identified (Fgfr1 - 4). FGFRs consist of three domains: an 

extracellular ligand binding domain; a transmembrane domain; and an 

intracellular tyrosine kinase domain. FGF binding to FGFRs leads to the 

formation of a receptor complex composed of two FGF molecules linked by 

heparin sulphate proteoglycans (HSPG) and bound to the FGFR. Formation of 

this complex leads to receptor dimerisation and tyrosine phosphorylation on its 

intracellular domain. Receptor phosphorylation allows for the binding of adaptor 

proteins on the intracellular domain of the receptor, which become 

phosphorylated by the receptor heterodimers. Other intracellular signalling 

molecules bind the receptor and adaptor proteins and are phosphorylated 

themselves, leading to an intracellular signalling cascade. Activation of FGFRs 

engages several second messenger pathways, which include Protein Kinase C, 

Akt, and Ras – MAP Kinase (Figure 2). 
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The strength and type of pathway activated can be modulated by many different 

factors. These include the expression and levels of ligands and cognate 

receptors, and modifications of HSPGs which can differentially modulate ligand-

receptor specificity [94]. Additionally, interactions of FGFRs with adhesion 

molecules, such as neural cell adhesion molecule (NCAM) and N-Cadherin [95, 

96], and other receptors, can further modify downstream signalling events. 

Skeletal muscle expresses all four FGFRs, with FGFR2 and 3 being expressed 

only at low or negligible levels [97-99]. Myoblast cultures express FGFR1 and 4, 

and tend to upregulate Fgfr1 after mitogen addition [98]. In vitro, FGFs tend to 

stimulate myoblast proliferation. FGF2 has a potent mitogenic effect and 

stimulates SCs to enter the cell cycle [100-102]. FGF2 can maintain the 

proliferation of myoblast cultures whilst not altering the transition from 

proliferation to differentiation in isolated myofibres [100-102]. FGF1, 4, and 6 

can also enhance SC proliferation on ex vivo myofibre cultures, and, 

additionally, FGF6 slows down the transition to differentiation in myogenic cells 

[97]. FGF6 is expressed in cultured isolated rat myofibres, suggesting that the 

myofibre can act as a source of FGFs under certain conditions [97]. 

Interestingly, rat myoblast cultures express Fgf1 and Fgf2 suggesting that 

myogenic precursors themselves can enhance their proliferation through an 

autocrine mechanism of action of these ligands in vitro [103, 104]. In addition, 

FGFs may elicit their effect by modulating the expression of other factors. 

Rosenthal et al. showed that treatment of myoblasts with FGF2 resulted in a 

reduction of IGF-II expression, leading to the hypothesis that FGF2 inhibits 

muscle cell differentiation through inhibition of IGF-II expression [105].  

Under normal homeostatic conditions in skeletal muscle fibres there is very little 

FGF present [106]. FGFs are associated with the extracellular matrix (ECM), 

outside of the basal lamina, and it is not until the muscle is damaged that the 

muscle fibre and SCs are exposed to FGFs in the surrounding area. A large 

amount of FGFs are released after muscle injury in the inflammatory phase of 

regeneration. These mitogenic factors act to induce the proliferation of SCs and 

also chemotactically recruit other muscle precursor cells [68]. In addition, 



1: Introduction 

 

29 
 

Husmann et al. showed that FGFs also possess potent angiogenic capabilities, 

which may aid their regenerative effects [68]. FGF2 protein is found in the 

perimysium and ECM surrounding muscle fibres [107], and has been shown to 

be produced by infiltrating macrophages of the inflammatory response and 

many mononuclear cells in regenerating rat muscle [68, 108]. Upregulation of 

FGF2 seen in mouse models of Duchenne muscular dystrophy (DMD), where 

skeletal muscle undergoes repeated rounds of degeneration and regeneration 

due to the lack of functional dystrophin protein, could partly explain the 

persistent skeletal muscle regeneration seen in these animals [68]. 

Concomitantly, inhibition of FGF signalling through the blockade of FGFR 

results in a large decrease in muscle mass and this has been attributed to 

premature terminal differentiation causing a depletion of the pool of myogenic 

progenitors [109-111]. Genetic overexpression of Sprouty (Spry) proteins, 

negative regulators of receptor tyrosine kinase (RTK) signalling, prevents 

embryonic myogenic progenitor cells from proceeding down the myogenic 

differentiation program and instead encourages self-renewal, further showing a 

role for FGF signalling in myogenesis [112]. 

The role of FGF2 in vivo after muscle injury appears to be mainly restricted to 

the initial activation and proliferation of SCs. The injection of neutralising 

antibodies to FGF2 at the time of muscle injury reduced the number and 

diameter of regenerating myofibres, suggesting a delay in the activation of SCs 

and / or myoblast fusion [113]. Taken together, these data show that FGF2 

exhibits mostly a mitogenic role. FGF6 plays a prominent role in regeneration in 

vivo and is induced in response to muscle injury [114]. Mutant mice null for 

FGFR4, FGF6, and both FGF6 and FGF2, display severely impaired 

regeneration with increased fibrosis after injury, attributed to a lack of SC 

activation and defective migration to damaged areas [99, 114, 115]. 

Strict control of FGF signalling in the SCs of injured adult skeletal muscle is 

essential for efficient regeneration and the return to quiescence of myogenic 

progenitors [42]. Shea et al. showed that deletion of Spry1, which encodes for a 

negative regulator of FGF signalling (Figure 2) specifically in SCs, leads to 
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increased FGF signalling, causing a subset of myogenic progenitors to 

apoptose [42]. These data demonstrate a critical role for regulation of FGF 

signalling in SC proliferation and differentiation. 
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Figure 2 - Schematic of FGF-ERK signalling. FGF signalling is initiated by FGF ligand binding 

to FGFR. This leads to dimerisation of FGFRs and the cross phosphorylation of tyrosine 

residues intracellularly. These phosphorylated residues are then bound specifically by several 

intracellular signal transduction proteins such as GRB2 and FRS2. These initiate several 

signalling pathways such as PLCγ pathway (not shown), PI3K/PKB pathway (not shown) and 

the Ras/ERK pathway. After activation by addition of GTP, Ras initiates signal transduction 

through a series of 3 tyrosine-serine/threonine kinases (MAPKKK to MAPK) that culminates in 

the phosphorylation and activation of several transcription factors such as activating protein-1 

(AP-1), and signal transducer and activator of transcription (STAT). The downstream effectors 

of Ras/ERK signalling include Erm, Pea3, and Sprouty. Sprouty proteins negatively regulate 

receptor tyrosine kinase signalling somewhere around the level of Ras or Raf. FGF signalling 

can be inhibited by the addition of a chemical inhibitor of FGFR called SU5402 which binds to 

the intracellular kinase domain of FGFR. The addition of a blocking antibody to FGFs (αFGF) 

can inhibit FGF-mediated FGFR signalling. ERK, extracellular-signal related kinase; FRS2, 

fibroblast growth factor receptor substrate 2; Gab, Grb2-associated protein; Grb2, growth factor 

receptor-bound protein 2; MEK, mitogen-activated protein kinase kinase; Raf, v-raf-leukaemia 

viral oncogene homologue 1; Ras, rat sarcoma; SHP2, SH2 domain-containing tyrosine 

phosphatase 2; SOS, son of sevenless. 

 

1.3.4. Heterogeneity of the satellite cell pool 

Many studies propose that the SC pool is functionally heterogeneous, 

suggesting that not all SCs have stem cell characteristics. For example, deletion 

of Spry1 specifically in adult SCs caused the apoptosis of not all, but a subset of 

muscle progenitors after injury [42]. Indeed, in many adult stem cell populations 

there is growing evidence that stem cells with different proliferative kinetics, 

differentiation potentials and mitogenic responsiveness exist in the same tissue. 

In adult skeletal muscle there is clear evidence for heterogeneity in SC 

populations from different muscles and also between SCs within the same 

tissue. For example, SCs associated with extraocular muscles continue to 

proliferate and contribute myonuclei to the tissue in the absence of damage, 

unlike limb SCs, and, strikingly, these muscles are not affected in DMD [116, 

117]. Comparing various limb muscles, SCs also present with different 

proliferation and differentiation kinetics [118], suggesting a large degree of 

heterogeneity in SC pools. 
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1.3.4.1. Self-renewal heterogeneity 

In transplantation studies of irradiated mice, some transplanted SCs were able 

to give rise to many clones and new muscle whereas some grafts did not give 

rise to any, suggesting that a subset of SCs may have a limited capacity for 

self-renewal [53, 54]. This idea is supported by ex vivo studies. In isolated 

single muscle fibres MyoD is rapidly induced as SCs activate and proliferate. 

Most cells downregulate Pax7 expression and commit to differentiation through 

activation of MyoG. However, a subset of activated SCs are able to maintain 

Pax7 expression, downregulate MyoD expression, and return to quiescence 

[119, 120]. This progression suggests that all cells enter a Pax7 and MyoD co-

expression stage before a subset self-renew. 

Kuang et al. and Brack et al. proposed that a subset of SCs which did not 

express a reporter driven by the Myf5 promoter are the true stem cell of skeletal 

muscle as they have never activated the myogenic differentiation program [83, 

121]. The cells which did express the reported gene, on the other hand, are 

their myoblast progeny [83, 121]. In support of these data, around 10% of SCs 

were found to have no Myf5 protein at all [122]. Further evidence for this 

heterogeneity come from studies which have noted that only a subset of SCs 

undergo asymmetric divisions [88, 93, 123, 124]. For example, asymmetric 

distribution of Numb, an inhibitor of Notch signalling, was found to take place in 

some but not all SC divisions [88, 93]. However, contradictory data came from 

Kanisicak et al. who used a MyoDiCre/+ mouse line to drive YFP or β-

galactosidase expression [125]. The authors showed that all SCs were labelled 

with this mouse line, suggesting that all SCs have activated the myogenic 

differentiation program at some point [125]. Therefore, further study into 

heterogeneity based on the stage of differentiation of SC populations is needed. 

Sacco et al. analysed heterogeneity based on the expression of certain genes 

of fluorescence-activated cell sorting (FACS)-isolated single SCs from the same 

muscle [54]. Whilst all cells expressed Pax7 and Myf5 transcript,  25% of SCs 

expressed MyoD, indicating a degree of differentiation commitment, and a small 

population expressed Pax3, a marker of progenitors intermediate between SCs 
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and myoblasts [54]. Collectively, these data show that there is heterogeneity 

within the SC pool with regards to gene transcription, degree of differentiation, 

and self-renewal capability. 

 

1.3.4.2. Proliferative heterogeneity 

Heterogeneity of cells in the SC position can be seen during postnatal growth, 

with cells separated into either a rapidly proliferative majority or slowly 

proliferative minority pool [126]. In these stages of postnatal myogenesis, the 

slow-dividing SCs are thought to be the self-renewing population [126]. The 

fast-dividing population, on the other hand, act as transit amplifying cells and 

undergo limited divisions before continuing through the myogenic program 

[126]. This is also seen in ex vivo systems in adult muscle with label retaining 

experiments [124]. Cells which proliferate slowly and retain a dye or DNA-

replication label are known as label-retaining cells (LRCs), whereas cells which 

proliferate more rapidly and dilute the label to undetectable levels are known as 

non-LRCs. Shinin et al. demonstrated that LRCs have an increased tendency to 

self-renew rather than differentiate in ex vivo cultures and therefore appear to 

be more stem cell-like [124]. Ono et al. added to this concept and showed that 

transplantation of LRCs in injured muscle led to more efficient muscle 

regeneration than transplantation of non-LRCs [127].  Furthermore, the authors 

demonstrated that, upon a second injury, more newly regenerated fibres were 

only observed in the LRC-transplanted muscle compared to the primary 

engraftment [127]. These data suggest that the less proliferative SCs are true 

muscle stem cells, whilst the more proliferative SCs are progenitors with limited 

self-renewal capacity [127]. 

 

1.4. The satellite cell niche 

SCs reside in a microenvironment that maintains stem cell quiescence during 

homeostasis but also allows for efficient activation, proliferation, and 

differentiation during skeletal muscle regeneration. The SC niche is composed 
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of ECM, the myofibre, vascular cells, neural cells, inflammatory cells, other 

surrounding cells such as adipocytes and fibroblasts, diffusible molecules, and 

the SC itself (Figure 3). 

Experiments in the early 1990s identified the muscle fibre as an essential 

component of the SC niche. Upon destruction of the myofibre, whilst leaving the 

basal lamina intact, SCs rapidly entered the cell cycle and proliferated [128]. 

These experiments described a role for the myofibre in the maintenance of SC 

quiescence, a feature of many stem cells that allows for maintenance of the 

stem cell pool and proper function throughout life [128]. More recent studies 

have reported many SC regulatory factors to be expressed by myofibres. 

Myofibres secrete stromal cell-derived factor-1 which binds to chemokine 

receptor type 4 on the surface of SCs to stimulate their migration to areas of 

high chemokine gradients [129]. Furthermore, the Notch ligand Delta is 

expressed by myofibres and is upregulated following muscle injury [130]. Delta 

binds to Notch receptor on SCs and stimulates their proliferation [130]. 

Growth factors also constitute an important part of the SC niche and their 

effects are discussed in Section 1.3.3.2 and Section 1.3.3.3. Many growth 

factors are associated with ECM proteins, in close contact with the basal 

lamina, and can be activated by proteolytic enzymes, enabling them to carry out 

the highly orchestrated processes of SC activation, proliferation and 

differentiation upon muscle injury [131-134]. Basal lamina components, 

including laminin and fibronectin, support SC proliferation and it has been 

proposed that the basal lamina functions as a scaffold for the formation of new 

myofibres [8].  

Mononucleated interstitial cells and growth factor-secreting fibroblasts are major 

components of the stromal tissue in adult skeletal muscle. Tcf4+ fibroblasts and 

their interactions with SCs have recently been shown to be essential for efficient 

muscle regeneration and also affect the differentiation potential of myogenic 

precursors [59, 135]. 
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The vasculature plays an important role in SC regulation, perhaps exemplified 

by the fact that many SCs are closely associated with capillaries [136, 137]. 

Endothelial cells promote proliferation of myoblasts by secreting a panel of 

growth factors such as vascular endothelial growth factor (VEGF), IGF-1, HGF, 

and PDGF. In addition, angiopoietin-1 (Ang-1) is secreted by perivascular cells 

and binds to its cognate receptor Tie-2 on SCs to promote a return to 

quiescence of a subset of SCs after activation [137, 138]. 

Under homeostatic conditions the immune system plays little or no role in the 

regulation of SC behaviour, and only a small number of immune cells reside 

within homeostatic skeletal muscle. However, upon muscle injury, immune cells 

are recruited and, in addition to removing necrotic tissue, they secrete factors 

that encourage SC activation, inhibit apoptosis, and remodel the ECM to allow 

for efficient muscle regeneration [139]. 

The SC niche is also subject to peripheral nervous input from the motor neuron. 

In the 1970s, Schultz et al. showed that acute denervation results in activation 

and proliferation of SCs, mimicking the proliferation seen after myotrauma [140]. 

Chronic denervation results in progressive skeletal muscle atrophy and a large 

decline in stem cell number, thought to be due to exhaustion of the satellite cell 

pool, decreased ability of SCs to enter the cell cycle, and increased apoptosis 

[141-144]. The mechanisms responsible for these phenotypes remain largely 

unknown, however it has been suggested that denervation may influence 

myofibre properties and have a secondary effect on SCs [145]. 
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Figure 3 - Schematic illustration of the satellite cell niche. The SC is in close contact with 

the muscle fibre and the basal lamina. Under homeostatic conditions the SC is shielded from 

potent activatory stimuli such as factors in the ECM secreted by fibroblasts, interstitial cells, and 

macrophages. The systemic environment of blood vessels, endothelial cells, and associated 

cells such as pericytes (not shown) can influence SC function. The motor neuron can influence 

SC behaviour through activity on the muscle fibre. Adapted from [8]. 
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1.5. Ageing in skeletal muscle 

Ageing is associated with impairment of skeletal muscle regeneration following 

injury (Figure 4). Furthermore, as age progresses, there is a decrease in 

skeletal muscle mass (sarcopenia) and muscle fibres are replaced by fat and 

fibrous tissue, leading to reduced physiological function [146]. Because SCs 

appear to be solely responsible for skeletal muscle regeneration, these 

hallmarks of ageing are associated with a progressive loss of stem cell number 

and function. During regeneration of aged muscle, SCs exhibit a large decrease 

in activation and proliferation at the population level and generate fewer 

myoblasts compared with adult muscle [147, 148].  There is a large volume of 

evidence suggesting that the decline in SC function is attributable to both cell-

intrinsic and cell-extrinsic factors. However, the issue of whether the number of 

SCs declines with age is still somewhat controversial, with studies documenting 

increased and decreased numbers of SCs depending on the species, muscle, 

and technique of observation [146]. Despite this, there is accumulating evidence 

that limb skeletal muscle exhibits a decline in the number of SCs present 

throughout ageing under homeostatic conditions [149-151]. Furthermore, what 

drives a change in SC number and whether a change in stem cell number 

results in an age-related decline in regenerative capacity has not been 

investigated. Regardless of changes in stem cell number, it has been shown 

that SCs in aged tissue are able to effectively participate in muscle regeneration 

given the appropriate signals. 
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Figure 4 - Schematic illustration of impaired muscle regeneration in old age. In response 

to injury, SCs from adult skeletal muscle are able to rapidly activate and form myoblasts which 

then fuse to form new myofibres. However, as ageing progresses, SCs display an impaired 

ability to regenerate damaged myofibres due to impaired function. There may be fewer SCs 

present in the muscle which are less able to proliferate and form  myoblast progeny and, 

furthermore, myoblasts fuse to form thinner, more fragile myotubes. Collectively this leads to a 

decline in skeletal muscle function. Adapted from [152]. 

 

1.5.1. Age-associated intrinsic changes in satellite cells 

SCs, like other somatic stem cells, have a limited proliferative capacity and 

undergo replicative senescence after a finite number of divisions [153]. 

Telomeres are repetitive nucleotide sequences at the ends of chromatids and 

are implicated in cellular ageing and chromosome stability [154]. As cells divide 

their telomeres become slightly shorter, and so telomere length can be an 

indication of replicative history. In vitro studies using SCs of different ages, and 

from DMD patients, noted that cells isolated from older donors or DMD patients, 

where SCs would have been forced to proliferate more, have a decreased 

proliferative capacity and increased tendency to become senescent, and this 

was associated with telomere shortening [153, 155, 156]. Sacco et al. used a 
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mouse model of telomere shortening on a muscular dystrophy model 

background and noted that these mice presented with severe muscular 

dystrophy and impaired SC proliferation both in vivo and in vitro [152]. This 

suggested that shortened telomeres may caused impaired SC function [152, 

157]. 

Experiments examining changes in gene expression in human cells have 

demonstrated that the transcriptional profile of SCs is altered during ageing 

[158]. However, this was performed at the population level and so it is unknown 

if some aged SCs retain transcriptional signatures of young SCs. Additionally, it 

is not known if these intrinsic changes are permanent or reversible. It is possible 

that the age-associated decline in SC function is from epigenetic changes which 

are reversible. 

Aged myoblasts in culture display a slow response to mitogenic factors [159, 

160]. However, over time in culture and after many passages, aged myoblasts 

proliferate at almost a similar rate to young myoblasts [151, 160]. This suggests 

that age-related cell-intrinsic changes in SCs are responsible for reduced 

proliferative output. Despite this striking result it is possible that passaging of 

the cells may select for a subpopulation of myoblasts with similar proliferative 

potential from both the young and aged animals. Alternatively, these data may 

suggest that reversible epigenetic changes may be responsible for the delayed 

activation of aged SCs. 

Activation and lineage progression of SCs to myoblasts is dependent on Notch 

signalling. Insufficient upregulation of the Notch ligand Dll1 after muscle injury 

has been proposed to be one of the major factors implicated in impaired SC 

proliferation after muscle injury in aged animals [130]. Furthermore, forced 

expression of Notch signalling in aged homeostatic muscle restores 

regenerative potential to that of an adult muscle [130]. 

SCs have the ability to differentiate into non-myogenic cells, including 

fibroblasts and adipocytes, under certain conditions [161-164]. With ageing, 

myogenic cells tend to adopt a fibroblast fate due to elevated Wnt signalling, 
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and inhibition of Wnt signalling in progenitors blocked the increase in fibrosis 

that is usually seen after injury of aged skeletal muscle [164, 165]. Interestingly, 

this is different to the role of Wnt signalling in regeneration of adult skeletal 

muscle, where it promotes proliferation and the early phases of myogenic 

differentiation (See Section 1.3.3.2). These differences could be due to the 

effects of signalling through different Wnt proteins and receptors, or perhaps the 

SC response to Wnt signalling may change with age. 

The differentiation of myogenic cells is also impaired with ageing as SCs fuse to 

form thinner, more fragile myotubes [155]. Furthermore, fewer aged myogenic 

cells expressed markers of more mature myofibres after being placed in 

differentiation conditions compared to adult cells, consistent with impaired 

differentiation [150, 166]. Interestingly, after multiple passages myoblasts were 

capable of efficient differentiation, suggesting that reversible cell-intrinsic 

changes in myogenic cells result in impaired differentiation capability [10]. 

 

1.5.2. Age-associated changes in the satellite cell niche 

In invertebrate stem cell systems, age-associated changes in the niche have 

been shown to negatively impact on stem cell maintenance and function [167, 

168]. The niche is an important regulator of stem cell quiescence, a reversible 

state of proliferative inactivity essential for maintenance of stem cell number 

and function in many mammalian systems [20]. The environment can reverse 

cell-intrinsic changes that occur with age, suggesting that the niche can 

influence SC function. Heterochronic transplantation studies, where aged or 

young whole muscle was transplanted into either aged or young hosts, 

demonstrated that the systemic environment can affect regeneration. 

Engraftment was successful when old muscle was transplanted into young 

hosts, whereas regeneration was impaired when young muscle was 

transplanted into aged hosts [148, 169]. Furthermore, the regeneration of a 

single aged fibre transplanted into a young irradiated host was comparable to 

the engraftment of a young fibre transplanted into a young host [150], 
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suggesting that the host environment affects stem cell function and 

regeneration. 

Parabiotic studies have been used to examine the effect of the aged and adult 

environment on stem cell function in different systems, including skeletal muscle 

SCs. These experiments involve surgically joining together two animals so that 

they develop a single, shared circulatory system, followed by inflicting muscle 

injury to examine SC activation and differentiation. In heterochronic pairs, where 

aged mice were paired with adult mice, injury to the aged mice resulted in 

increased activation of their SCs and improved regeneration [10, 164]. Aged 

SCs exposed to an adult systemic environment were also less prone to adopt a 

fibrotic fate [10, 164]. These studies also showed that the aged systemic 

environment may inhibit muscle regeneration as regeneration of the skeletal 

muscle of adult heterochronic pairs was impaired compared to adult 

homochronic pairs and adult SCs had an increased tendency to adopt a fibrotic 

fate [10, 164]. Aged skeletal muscle also displays decreased capillarisation 

compared to young muscle, suggesting that the ability of systemic factors to 

contact the myofibre and SC may be decreased [170]. These studies show that 

the young systemic environment has a pro-proliferative effect on SCs, whereas 

the aged systemic environment is detrimental to SC function during 

regeneration. 

Changes in the composition of the ECM with age may also have detrimental 

effects on skeletal muscle regeneration. A thickened basal lamina and an 

increase in connective tissue between muscle fibres have been noted in aged 

compared to young muscle [171-173]. A thicker basal lamina would result in 

more collagen surrounding the fibre, possibly changing the physical properties 

and stiffness of the niche and altering SC function [146]. 

As ageing progresses there are changes in the expression of circulating factors 

important for muscle regeneration. An increased level of TGFβ occurs with age, 

and this has been suggested to impair SC activation [174-176]. Administration 

of neutralising antibodies to the downstream effector of TGFβ signalling, 

phospho-SMAD3, restores regeneration in aged skeletal muscle [174]. TGFβ 
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signalling also enhances the adoption of a fibrotic or adipogenic cell fate, 

possibly in part due to driving the expression of periostin, a protein produced by 

interstitial fibroblasts [164, 165, 177, 178]. Enhanced TGFβ signalling combined 

with decreased Notch signalling (see Section 1.5.1) with ageing will collectively 

promote the expression of cell cycle inhibitors such as p15, p16, p21, and p27 

in SCs, supporting the idea that the balance between signalling pathways is 

crucial to ensure proper stem cell function [174, 175]. 

A functional deficit in the immune response with age can affect SC function. In 

vitro studies suggest that many of the immune cells' key responses, such as 

phagocytosis and chemotaxis, are impaired with age [179]. This would hamper 

the regenerative response and SC activation as immune cells can influence SC 

behaviour through the release of cytokines, such as IL-6, and the removal of 

damaged tissue. 

The neuromuscular junction also undergoes age-related changes, with electron 

microscope examination revealing decreases in nerve terminal area and 

occasional denervated postsynaptic regions in aged skeletal muscle [180]. The 

resulting activation and exhaustion of the stem cell pool may potentially be one 

of the causes of decreased SC number with age [141-143, 181]. 

These data demonstrate that it is possible to restore regenerative potential to 

aged SCs through modulation of the niche. However, although many of these 

studies have examined aged SCs in the context of muscle injury and 

regeneration, few studies have looked at the internal and external changes 

under homeostatic conditions. This analysis will be necessary to prevent, or 

even reverse, age-associated changes in muscle stem cell number and 

function. 
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1.6. Neurogenesis 

Despite originating from different cell populations during embryonic 

development and serving different tissue systems, there are similarities in the 

regulation of adult skeletal muscle stem cells and neural stem cells. Both stem 

cell populations are relatively quiescent and form specified mature cell types 

through the generation of transit amplifying daughter cells [182, 183]. 

Furthermore, both stem cell populations reside in well-defined niches which can 

modulate their function under homeostatic conditions and under traumatic 

conditions [8, 183]. Interestingly, skeletal muscle stem cells and neural stem 

cells both exhibit a decline in number with ageing [8, 184]. Investigating the 

extrinsic and intrinsic mechanisms which regulate the maintenance and self-

renewal of these two stem cell populations may therefore provide an insight into 

the common mechanisms by which somatic stem cell number and function are 

regulated. 

Neurogenesis is the formation of new neurons that are able to functionally 

integrate into synaptic circuitry. In mammals, neurogenesis occurs throughout 

embryonic developmental stages to form the CNS. Neurogenesis also occurs in 

discrete regions of the postnatal and adult forebrain at a much lower level. 

Neural stem cells (NSCs) are multipotent cells capable of self-renewal, and are 

responsible for the generation of new neurons and glia during development and 

in adulthood. 
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1.6.1. Embryonic neurogenesis 

During development, radial glia (RG) in the neuroepithelium form the neurons 

and glial cells of the entire CNS in a defined manner [185]. By the end of 

development most RG convert into mature astrocytes [185]. However, some RG 

cells form somatic NSCs instead, which retain many of the stem cell markers 

seen in RG cells. Adult NSCs  have many morphological characteristics of RG 

cells and indeed serve a similar function as the primary progenitors of new 

neurons and glia [186]. 

 

1.7. Adult neurogenesis and adult neural stem cell properties 

NSCs have been shown to persist in at least two specialised niches of the adult 

forebrain of many mammalian species: The subgranular zone (SGZ) of the 

dentate gyrus (DG), and the subventricular zone (SVZ) of the walls of the lateral 

ventricles [183]. NSCs in these regions continue to generate new neurons 

throughout life [187-189]. Although NSCs in the SGZ and SVZ are separated 

spatially and give rise to neurons that serve different systems and purposes, 

there are common themes that define the adult NSCs and their niches. Adult 

NSCs in both systems have a radial morphology [190] and express astrocytic 

markers such as glial fibrillary acidic protein (GFAP) [191, 192], brain lipid-

binding protein (BLBP), vimentin, and glutamate aspartate transporter (GLAST), 

as well as expressing stem cell markers such as Sox2 and Nestin, much like 

RG cells [193]. In addition, there is some overlap between signalling pathways 

that modulate SGZ and SVZ systems, and also embryonic RG function [194]. 

Adult NSCs in both niches display the capacity for self-renewal throughout life, 

as well as the ability to generate neurons and glia [195]. This has been shown 

by in vivo labelling studies and in vitro culture assays in many mammalian 

species, including humans [189, 196-200]. However, unlike their embryonic 

counterparts, adult NSCs are relatively quiescent and divide infrequently under 

homeostatic conditions. Doetsch et al. demonstrated the quiescent nature of 

adult NSCs by using the anti-mitotic agent cytosine arabinoside (AraC), which 
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killed the rapidly-dividing NSC progeny in the SVZ, but did not affect the slowly-

dividing NSCs [201]. Upon removal of AraC, the NSCs were able to generate 

immature precursors and new neurons [201]. These data show that radial 

astrocyte-like cells in the SGZ and SVZ are the true neural stem cells of the 

adult forebrain. 

 

1.8. Subventricular zone - olfactory bulb neurogenesis 

The SVZ is the layer of cells around the walls of the lateral ventricle, outside of 

the ependymal layer (Figure 5a,b). The SVZ is the major source of adult 

neurogenesis in the mouse and is responsible for short-term olfactory memory 

and long-term associative olfactory memory [202-204]. In addition, olfactory 

bulb neurogenesis regulates olfaction dependent sex responses and predator 

avoidance, implicating SVZ neurogenesis in pheromone-related behaviours and 

olfactory fear conditioning [202]. Cells born in the SVZ traverse a long distance 

anteriorly via chain migration through a well-defined pathway called the rostral 

migratory stream (RMS) towards the olfactory bulb (OB) [205, 206]. Once they 

reach the OB, the immature neurons then migrate radially to different OB layers 

and differentiate into new interneurons (Figures 5a-c) [205]. This process is 

functionally correlated with olfactory learning and it has been shown an 

increased number of newborn OB interneurons survive during olfactory 

behaviours [201, 207]. It is estimated that the number of newly formed 

interneurons that are added to the OB ranges from 10,000 to 30,000 per day in 

adult mice [208], to 80,000 in young adult rats [209]. This correlates to around 

1% of the olfactory granule cell population per day in a young adult rodent [209, 

210]. The size of the OB does not change substantially throughout life, 

suggesting that SVZ-OB neurogenesis must be accompanied by cell death 

[210-212]. Indeed, large levels of apoptosis are observed in the OB, which 

presumably maintains a constant OB cell number [210] . 
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Figure 5 - Schematic illustration of adult subventricular zone neurogenesis. a, Illustration 

of a coronal section of the adult mouse brain showing the lateral ventricles (LV). The boxed 

area is shown enlarged in b. b, Composition of the SVZ niche. The LV is lined by ependymal 

cells (grey) and SVZ cells are ensheathed by a basal lamina (BL - yellow). Type B cells (dark 

blue) are the NSCs of the SVZ and have many features of astrocytes. Some contact the 

ventricle through a single cilium and may contact a blood vessel (BV). Type B cells give rise to 

type C cells (green) which are rapidly dividing. Type C cells give rise to type A cells (red). Type 

A cells migrate via chain migration through the rostral migratory stream (RMS) towards the 

olfactory bulb (OB; c). Once in the OB, type A cells migrate radially to different areas of the OB 

where they mature into new interneurons. Adapted from [213] and [214]. 
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1.8.1. The neurogenic lineage in the adult subventricular zone 

Different types of neurons are generated by SVZ cells. The vast majority 

newborn cells are GABAergic glomerular cells (Figure 6) [215-220]. A minority 

of newborn cells become GABAergic periglomerular cells [215, 216, 218-220], 

and one study also noted the formation of glutamatergic juxtaglomerular 

neurons (see Figure 11) [221]. Parenchymous astrocytes and oligodendrocytes 

of the corpus callosal white matter are also produced to a limited extent by SVZ 

cells (Figure 6) [216]. The primary precursors for the generation of these cells 

are SVZ NSCs, also called type B cells [201]. These NSCs exist along the 

lateral, medial, and dorsal walls of the lateral ventricle in the SVZ, as well as in 

the RMS and corpus callosum [201, 222, 223]. Type B cells are relatively 

quiescent but divide infrequently to form transit-amplifying progeny, also known 

as type C cells [183]. Type C cells divide rapidly to amplify their population and 

they give rise to neuroblasts, also known as type A cells. Type A cells are 

ensheathed by astrocytes and migrate along the RMS to the OB [183]. Type A 

cells then mature into new granule or periglomerular neurons after arrival in the 

OB (see Figure 5 and Figure 7) [183]. 
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Figure 6 - Schematic illustration of the multipotency of adult neural stem cells in the 
subventricular zone. SVZ NSCs are capable of forming interneurons in the olfactory bulb (OB), 

mature astrocytes in the parenchyma, and oligodendrocytes in the corpus callosum (CC). GL, 

glomerular layer; LV, lateral ventricle; RMS, rostral migratory stream. 
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Figure 7 - Schematic illustration of the adult subventricular zone cell lineage. Type B cells 

are relatively quiescent and express astrocytic markers such as GFAP, vimentin and BLBP as 

well as Notch receptor, Tlx, Nestin, and Sox2. Upon activation, type B cells upregulate EGFR 

and become positive for cell cycle markers such as Ki67. MASH1 marks activated type B cells 

and their progression to type C cells. Type C cells downregulate astrocytic markers and Notch 

receptor and upregulate Notch ligand to induce Notch signalling in type B cells. Type C cells 

proliferate rapidly and form type A cells which express doublecortin (DCX) and polysialic acid 

neural cell adhesion molecule (PSA-NCAM). Type A cells downregulate stem cell markers such 

as Nestin and Sox2 as well as EGFR, MASH1 and Notch ligand. In addition they are much less 

proliferative than type C cells and few are positive for Ki67. Type A cells migrate to the OB 

where they form different types of interneurons. All interneurons are positive for NeuN but these 

can be further categorised into interneuron type by their expression of calretinin (CalR), 

calbindin (CalB), and tyrosine hydroxylase (TH). 
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1.9. Adult hippocampal neurogenesis 

Neurogenesis in the DG plays an important role in hippocampus-dependent 

learning tasks and memory formation. Blocking hippocampal neurogenesis 

leads to decreased performance in various learning and memory tasks and, 

conversely, increasing neurogenesis in this region leads to improved 

performance [224-227]. Cells born in the SGZ migrate only a small distance 

through the granular layer (GL) and, unlike in the OB, cells mature and become 

only one type of neuronal population: granule neurons (Figure 8) [228]. 

Generation of astrocytes and, to a very limited extent, oligodendrocytes from 

SGZ cells have also been observed under certain conditions [229-233]. The 

production of new neurons in the hippocampus is much lower than in the SVZ-

OB system, with the formation of new cells estimated to be around 9000 per 

day in an adult rat [232, 234], corresponding to 0.03% of the total hippocampal 

dentate neuronal population [235]. Interestingly, in the DG old neurons are not 

just replaced but SGZ neurogenesis contributes to the increase in the volume of 

the granular layer and the number of granule cells throughout life [224, 236, 

237]. 
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Figure 8 - Schematic illustration of adult subgranular zone neurogenesis. a, Illustration of 

a coronal section of the adult mouse brain showing the dentate gyrus (DG) of the hippocampus 

(HP). The boxed area is enlarged in b. b, Composition of the SGZ niche. Type 1 cells (dark 

blue) are the NSCs of the SGZ. They are usually in close contact with a blood vessel (BV) and a 

basal lamina (yellow stripes). Type 1 cells are relatively quiescent and give rise to type 2a cells 

(orange). Type 2a cells proliferate rapidly and form type 2b cells (light green) which are less 

proliferative and more committed to differentiation. Type 2b cells give rise to type 3 cells (purple) 

which migrate to deeper layers of the granular layer (GL) and divide infrequently. Type 3 cells 

form new mature granule neurons (G; red). Adapted from [213]. 
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1.9.1. The neurogenic lineage in the adult subgranular zone 

Dentate granule neurons are generated throughout life by SGZ cells in many 

species, including humans [189]. The primary precursors for adult born dentate 

cells are SGZ NSCs, also called type 1 cells. Type 1 cells have a unique 

morphology compared to other cells in the hippocampus as they have their cell 

body in the SGZ and extend astrocytic projections through the granular layer 

and into the molecular layer of the DG (see Figure 8) [228]. These cells share 

many similarities with type B cells in the SVZ, however, the two cell types are 

not identical. Type 1 cells and Type B cells serve different brain systems and 

functions, so the regulation of the NSCs in the different niches may be different. 

 NSCs in the SGZ divide very infrequently and can form transit amplifying 

progeny collectively known as type 2 cells [228]. Type 2 cells are divided into 

two subtypes corresponding to consecutive stages of cell development based 

on proliferative output and stage of differentiation and are called type 2a and 

type 2b cells. It is thought that type 2a cells are the primary daughter cells of 

type 1 cells as they have a relatively high proliferative output and express few 

differentiation markers [228]. Type 2a cells then form type 2b cells, which are 

more limited in their proliferative output and express markers consistent with a 

greater commitment to differentiation (Figure 9) [228]. Type 2b cells give rise to 

neuroblasts, also called type 3 cells, which migrate to deeper layers of the DG. 

Type 3 cells proliferate much less and exit the cell cycle and give rise to 

postmitotic immature granule cells which form nascent network connections 

(see Figure 8 and Figure 9) [233]. Some of these immature neurons eventually 

mature into new granule cells which project axons to the CA3 region of the 

hippocampus and receive input from the entorhinal cortex [203].   
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Figure 9 - Schematic illustration of the adult subgranular zone lineage. Type 1 cells are 

relatively quiescent and express astrocytic markers such as GFAP, vimentin and BLBP as well 

as Notch receptor, Tlx, Nestin, and Sox2. Upon activation, type 1 cells upregulate EGFR and 

become positive for cell cycle markers such as Ki67. MASH1 marks activated type 1 cells and 

their progression to type 2a cells. Type 2a cells downregulate astrocytic markers and Notch 

receptor and upregulate Notch ligand to induce Notch signalling in type 1 cells. Type 2a cells 

proliferate rapidly and form type 2b cells. As type 2b cells become more committed to the neural 

lineage they begin to upregulate NeuroD1 and downregulate EGFR. Type 2b cells form type 3 

cells which express doublecortin (DCX) and polysialic acid neural cell adhesion molecule (PSA-

NCAM). Type 3 cells downregulate stem cell markers such as Nestin and Sox2 as well as 

MASH1 and Notch ligand. Type 3 cells form new granule cells which express NeuN and low 

levels of Notch receptor. Immature granule cells initially express calretinin (CalR) and as the cell 

matures it downregulates CalR and upregulates calbindin (CalB). 
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1.10. Adult neural stem cell niches 

The ability of SVZ and SGZ NSCs to act as the primary progenitors in the 

generation of new neurons is partly due to signalling that occurs in the NSC 

niche, and partly due to intrinsic differences between these stem cell astrocytes 

and non-stem cell astrocytes. When adult SVZ cells are transplanted to non-

neurogenic regions they usually differentiate into parenchymous astrocytes 

[238]. Lim et al. discovered that transplantation of NSCs in the striatum 

accompanied by ectopic expression of an inhibitor of bone morphogenic protein 

(BMP) signalling, Noggin, promoted the cells to differentiate into neurons [239]. 

This suggests that the environmental signals around neurogenic astrocytes are 

essential for part of their function. However, when parenchymal tissue is 

transplanted to the SVZ of adult mice these astrocytes do not become 

neurogenic, suggesting that environmental signals, although important for NSC 

proliferation and differentiation, do not confer a neurogenic phenotype on 

astrocytes [240]. The adult NSC niches are thus able to instruct NSCs towards 

neurogenesis and gliogenesis. In addition to this, the hippocampal 

microenvironment has been shown to have an instructive role in stem cell fate. 

Studies by Shihabuddin et al showed that adult spinal cord stem cells 

transplanted into the hippocampus were instructed towards a neurogenic and 

gliogenic lineage characteristic of the hippocampus [241]. This suggests that 

common features may be present in the microenvironments of CNS stem cell 

niches [241]. 

Astrocytes, vascular cells, NSC progeny and mature neurons are the major cell 

types of the neurogenic niches, which can influence the behaviour of neural 

progenitors. Astrocytes have been shown to play roles in modulating NSC 

proliferation and differentiation as well as migration and differentiation of 

progenitors [242-245]. Mature neurons near the neurogenic site regulate 

neurogenesis in response to neuronal activity, and many neurotransmitters 

have been shown to play a role in regulating NSC proliferation [246-248]. 

Vascular cells are also thought to play a role in regulating proliferation of NSCs 

in the niches. Indeed, the SVZ has a unique specialised vasculature associated 
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with it, displaying a modified blood-brain barrier devoid of astrocyte end-feet 

and pericyte coverage [249-251]. The SGZ and SVZ niches therefore provide 

important signals to regulate neurogenesis. 

 

1.10.1. Notch signalling in the neurogenic niches 

NSCs are mostly quiescent and only certain subpopulations appear to be 

proliferating and forming transit-amplifying cells [252, 253]. Notch signalling has 

been shown to be an essential regulator of NSC quiescence and inhibition of 

NSC differentiation. Notch1-4, their cognate ligands, Jagged (Jag) 1, and Delta-

like ligand (Dll) 1, and downstream effectors, Hes1 and Hes5, are expressed in 

the SVZ and SGZ [252, 254, 255]. Notch signalling is highly active in type B 

cells in the SVZ and type 1 cells in the SGZ [252, 253, 256]. Pro-neural gene 

products, such as the bHLH transcription factors Mash1 and Neurogenin 1 and 

2, induce the expression of Notch receptor ligands as well as initiating the 

neuronal differentiating program [257, 258]. The downstream effectors of Notch 

signalling, Hes1 and Hes5, then repress the expression of pro-neural genes and 

Dll1 thereby inhibiting neuronal differentiation (Figure 10) [259]. This lateral 

inhibition by a committed neural progenitor cell prevents neighbouring NSCs 

from differentiating [259]. Therefore, Notch signalling represents a mechanism 

by which the proliferation and differentiation of NSCs is regulated by the 

production of transit amplifying progeny.  

Imayoshi et al. inhibited Notch signalling in the SVZ by deleting RBPJκ, a DNA-

binding protein that forms a complex with NICD to initiate Notch-dependent 

signalling (Figure 10), specifically from adult NSCs [256]. The authors showed 

that loss of Notch signalling resulted in a transient increase in SVZ proliferation 

and neurogenesis, followed by a depletion of the NSC pool [256]. This was 

caused by loss of NSC quiescence and exhaustion of the NSC pool due to 

premature conversion of type B cells to type C cells [256]. A similar phenotype 

was found by Ehm at al. in the hippocampus, where deletion of RBPJ in adult 

NSCs led to a loss of NSC quiescence and a transient increase in neurogenesis 

followed by a depletion of the stem cell pool [252]. Ables et al. found a slightly 
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different phenotype with the loss of Notch1 receptor in adult hippocampal NSCs 

which resulted in the eventual loss of type 1 cells but without a transient 

increase in proliferation [260]. The reason for this difference is probably due to 

Notch signalling being inactivated to a greater level in RBPJ mutants, and also 

due to the fact that other Notch receptors are present in the SGZ  [252, 261]. In 

addition, Androutsellis-Theotokis et al. demonstrated that NSCs are also 

regulated by RBPJ-independent Notch signalling [262]. The authors showed 

that Notch receptor activation can induce the expression of Hes3 and Shh 

through rapid activation of STAT3, thereby promoting the survival of neural 

stem cells [252, 262]. These data depict an important role for Notch signalling in 

the regulation of NSC quiescence as well as progenitor differentiation. 
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Figure 10 - Schematic illustration of Notch signalling in neural stem cells. The proneural 

proteins Mash1 and Ngn2 upregulate the expression of Notch ligands such as Dll1. Ligands 

activate Notch signalling in neighbouring cells. Upon Notch activation, Notch receptor is 

proteolytically cleaved by γ-secretase, freeing the Notch intracellular domain (NICD) from the 

cell membrane. The NICD then translocates to the nucleus where it forms a complex with RBPJ 

and induces the transcriptional activation of Notch target genes such as Hes1 and Hes5. Hes1 

and Hes5 repress proneural gene expression. Adapted from [263]. 

 

1.11. Survival of neural stem cell progeny in the hippocampus 

The SVZ and SGZ produce a large number of immature neuroblasts, yet many 

do not go on to mature into new neurons and form stable synaptic contacts. In 

the hippocampus, programmed cell death is largely responsible for the numbers 

of new neurons formed and it has been shown that less than 30% of newborn 

cells in the hippocampus survive to be mature neurons [229, 233, 264]. There 

are two critical periods of survival of precursors and neurons, with most 

apoptosis taking place at the transit-amplifying to neuroblast stage, where newly 

born cells are between 2 and 4 days old, and a second period at the stage of 

maturation of immature neurons, where cells are between 1 and 3 weeks old 

[264]. The first period of survival is thought to limit the number of new neurons 

able to proceed down the neurogenic lineage, whereas the second period 

appears to be dependent on excitatory input, perhaps allowing for the selection 

of neurons with ideal electrophysiological properties [264, 265]. The few 

newborn neurons that do survive have been shown to remain integrated into the 

hippocampal synaptic circuitry for at least 11 months [266]. 

Just as there are mechanisms in place to limit the number of new neurons 

formed, there are also physiological stimuli that can increase the survival of 

newborn cells. Hippocampal dependent learning tasks can aid the survival of 

newborn cells up to one week old [267, 268]. Physical exercise has been shown 

to increase the proliferation and survival of type 2 and type 3 cells respectively, 

due, in part, to increased uptake of serum IGF1 in the brain parenchyma, 

leading to increased dentate neurogenesis [269-271]. In addition, exposing 

animals to an enriched environment can increase the survival of newborn 
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neurons in the SGZ without affecting SVZ neurogenesis [235]. Interestingly, 

these physiological stimuli only affect the behaviour of the progeny of NSCs and 

do not affect NSC behaviour. This suggests that NSCs are not responsive to 

acute fluctuations in changes in the environment, but are instead governed by 

NSC-specific genetic programs. 

 

1.12. Survival of neural stem cell progeny in the SVZ-OB 
system 

Between 15 and 45 days after being born approximately half of all newly 

generated SVZ cells undergo apoptosis, however, those that do survive are 

integrated into the OB for up to a year in mice [211, 219]. Hippocampal-

dependent learning tasks, physical exercise, and an enriched environment all 

affect dentate neurogenesis but do not have any impact on OB neurogenesis. 

Instead, activity from the OB aids cell survival and causes an increase in 

proliferation of NSCs and their progeny in the SVZ [272-275]. Conversely, naris 

occlusion causes a decrease in neurogenesis by affecting the survival of new 

interneurons, mostly between two and four weeks after birth [273, 276]. Mice 

partaking in olfactory learning tasks show an increase in the survival of new 

interneurons involved with processing the odourants in the learning task [274]. 

Olfactory learning tasks involve training mice to associate a particular odour 

with a reward (a reinforced odour) as well as introducing a second odour that is 

not associated with a reward (non-reinforced odour). Interestingly, Alonso et al. 

showed that survival of newborn cells was also increased in the area of the OB 

responsive to the non-reinforced odour [274]. Additionally, exposure of animals 

to odourants without a learning paradigm (i.e. without a reward) did not affect 

new cell survival [274], suggesting there is an interplay between many factors in 

the physiological regulation of OB neurogenesis. 
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1.13. Heterogeneity of neural stem cells 

Growing evidence suggests that the population of NSCs in both the SVZ and 

SGZ are heterogeneous in terms of their proliferative output and neurogenic 

potential. Due to inefficient lineage tracing however, it is not always possible to 

determine if activated NSCs represent a continuum in the neurogenic lineage or 

are instead discrete and separate populations. Instead, heterogeneity within the 

NSC pool is often inferred by morphological differences and surface marker 

expression. 

 

1.13.1. Heterogeneity of SVZ NSCs  

The morphology of SVZ B cells has been extensively studied to determine the 

ultrastructural characteristic differences between different types of stem cells, 

specifically activated and quiescent type B cells. A small subpopulation of B 

cells have an apical process that contacts the ventricle, and the number of cells 

contacting the ventricle appears to be increased when SVZ proliferation is 

stimulated, most probably allowing the stem cell to respond to activatory signals 

from the cerebrospinal fluid (CSF) [201]. Activation of SVZ stem cells is also 

associated with increased EGFR expression so that activated astrocytes are 

GFAP+EGFR+ [277]. Addition of EGF to NSC cultures increases the proliferation 

of progenitors, however there is a heterogeneous population of cells in these 

cultures and it is thought that type C cells are the main cells responding to EGF 

in these conditions [277]. 

Recent work shows that the plasticity of NSCs and progenitors in the SVZ is 

subject to regional specification. Postnatal RG and adult type B cells in different 

areas of the SVZ generate different types of OB neurons (Figure 11). This has 

been shown through the fate mapping of cells expressing different transcription 

factors in the SVZ and RMS in combination with lineage tracing of RG cells in 

restricted regions of the walls of the lateral ventricle in postnatal mice [278-282]. 

These data confirmed that NSCs from different regions of the SVZ ultimately 

gave rise to different types of periglomerular and glomerular interneurons. For 
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example, cells in the dorso-lateral aspect of the SVZ and RMS had a greater 

tendency to form tyrosine hydroxylase (TH)-positive interneurons in the 

glomerular layer of the OB (Figure 11) [207]. Thus, SVZ B cells have a regional 

limit to their plasticity as they inherit a regional pattern of gene expression from 

embryonic RG. Grafting experiments suggest that this specification is cell-

autonomous and not dependent on the regional SVZ environment [223, 282, 

283]. However, whether there is one stem cell population in the adult 

mammalian brain, which gives rise to this heterogeneous population, is still to 

be uncovered. 
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Figure 11 - Schematic illustration of the regional specification of SVZ cells. Labelling 

postnatal stem cells has shown that cells in the dorso-lateral aspect of the SVZ (dashed oval 

with red circles) produce mostly superficial glomerular cells (GCs; green) and TH+ glomerular 

cells (red). TH+ and some CalR+ periglomerular (PGC) OB interneurons are derived from Emx1-

expressing progenitors (red arrow and red area). Deep GCs (blue) and CalB+ PGCs (purple) are 

produced primarily by lateral and ventral SVZ cells (dashed oval and purple circles). Some 

NSCs in this region express the transcription factors Gsh2 and Nkx2.1 (light blue and purple 

areas, respectively).  Gsh2+ progenitors primarily produce CalB+ PGCs (light blue arrow). 

Adapted from [207]. 
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1.13.2. Heterogeneity of SGZ NSCs 

Two stem cell populations in the SGZ have been identified that possess 

different proliferative potentials and may be responsible for the neurogenic 

responses to different physiological stimuli. The quiescent NSC in the DG 

resides in the SGZ and extends processes perpendicularly through the granular 

layer and often into the molecular layer (Figure 12). In addition, a stem cell with 

horizontal astrocytic processes, running parallel to the SGZ, exists, and is much 

less quiescent (Figure 12) [233, 253, 284]. Studies by Lugert et al. have 

suggested that under homeostatic conditions, Notch-activated radial type 1 cells 

contribute very little to active dentate neurogenesis. Instead, Notch-activated 

horizontal NSCs are much more proliferative and may divide asymmetrically to 

form type 2 cells at a much greater rate than radial cells [253]. Whether 

horizontal astrocytes are derived from radial astrocytes is unknown, but during 

ageing this activated pool of NSCs is lost, resulting in decreased neurogenesis 

[253].  Despite both pools sharing a common dependence on Notch signalling, it 

is has yet to be uncovered whether they have different requirements for their 

maintenance and differentiation [253]. However, it has been shown that Notch-

dependent radial NSCs respond to physical exercise and proliferate, without 

affecting the horizontal population [253]. In addition, seizures, a well 

documented stimulator of neurogenesis, increased proliferation of both Notch-

dependent radial and horizontal NSCs (Figure 12) [253]. These findings are in 

contradiction with earlier studies, which suggests that radial SGZ NSCs do not 

respond to physical exercise [235, 267, 268]. Instead, these data indicate that 

Notch-activated NSCs may represent a distinct type of NSC, different from non-

Notch-activated NSCs. Further study into these two populations with lineage 

tracing will uncover the true SGZ NSC lineage and their functional relevance. 
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Figure 12 - Schematic illustration of radial and horizontal neural stem cells in the 
subgranular zone. Radial type 1 cells that have their cell body in the SGZ and extend 

astrocytic processes through the granular layer (GL) have long been proposed to be the NSC of 

the dentate gyrus. Under homeostatic conditions they are relatively quiescent. In response to 

physical exercise or seizures, Notch-dependent radial type 1 cells proliferate. Also in the SGZ 

resides a horizontal astrocyte, with astrocytic processes extending parallel to the SGZ. Under 

homeostatic conditions, Notch-dependant horizontal NSCs are relatively proliferative. They 

further increase their proliferative activity in response to seizures, but do not respond to physical 

exercise. ML, molecular layer. 
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1.14. Epigenetic control of adult neurogenesis 

Epigenetic regulation of stem cell function is an emerging concept in the field of 

stem cell biology, and involves the regulation of gene transcription by DNA 

methylation, histone modifications, chromatin remodelling, and gene translation 

by microRNAs [285, 286]. These epigenetic changes permit cells to rapidly 

respond to internal and external physiological cues to coordinate the transition 

from one cellular state to another [286]. Chromatin remodelling has been shown 

to play a role in the differentiation and self-renewal of embryonic and postnatal 

neural stem and precursor cells [286], but there is now an emerging role for 

chromatin remodelling in the regulation of adult neurogenesis in both the SVZ 

and SGZ [287, 288]. 

 

1.14.1. Chromatin structure and remodelling proteins 

Chromatin is structured in a way that not only allows great compaction of DNA 

within a nucleus, but also allows for the rapid activation and repression of 

potentially large sets of genes. Chromatin consists of DNA wrapped around 

histones to form nucleosomes and linker DNA in between nucleosomes (Figure 
13). Tightly packed DNA in heterochromatic regions will generally be harder to 

access by transcription factors and polymerases (silenced chromatin regions), 

whereas DNA within linker regions and in a euchromatic state will generally be 

much easier to access (active chromatin regions). Chromatin can be silenced or 

activated through the action of proteins called chromatin remodellers. Some 

chromatin remodellers utilise energy from ATP hydrolysis to open up chromatin 

by evicting nucleosomes or inducing nucleosome sliding, as well as by 

mediating chromatin looping, and this can potentially have diverse effects on 

gene transcription (Figure 13). 

There are two general groups for chromatin remodellers: trithorax group (TxG) 

proteins which usually cause the activation of their target loci, and polycomb 

group (PcG) proteins which tend to repress gene activation [289]. PcG and TxG 

proteins often form large multi-protein complexes that regulate chromatin 
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structure. PcG proteins usually belong to one of at least two complexes: 

Polycomb repressive complex (PRC) 1 and PRC2, whereas the composition of 

TxG complexes is heterogeneous. PcG and TxG proteins are antagonistic, 

evolutionary conserved chromatin complexes that can maintain gene 

expression states over many cell divisions [290] and often mediate gene 

expression through different histone modifications. For example, PRC2 contains 

Ezh2 (among other PRC2 components) which can catalyse histone H3 lysine 

27 tri-methylation (H3K27me3), leading to gene silencing. PRC1 can contain 

Ring1, an E3 ubiquitin ligase that mono-ubiquitinylates histone H2A at lysine 

119 (H2Aub1), also resulting in gene silencing [291, 292]. The interplay 

between these two complexes can also lead to stable gene suppression [293, 

294]. One model by which this happens involves the recruitment of PRC2 to 

specific loci where it catalyses H3K27me3. The modified histones in turn recruit 

PRC1, which catalyses H2Aub1 and thereby impedes gene transcription [295, 

296]. In addition to these two complexes, other PcG complexes with different 

enzymatic activities can further regulate cellular biological processes [297]. 

TxG complexes can catalyse H3K4me3 resulting in gene expression. However, 

it is unclear if TxG proteins cause gene activation by antagonising PcG function 

or by globally activating gene expression. The yeast SWI/SNF (switch/sucrose 

nonfermentable) subfamily was the first TxG chromatin remodelling complex to 

be discovered [298]. Mammalian SWI/SNF complexes comprise of the 

assembly of at least 14 subunits, allowing for an extensive diversity of 

complexes with specialised functions in specific tissues [299]. SWI/SNF 

complexes regulate the chromatin structure of a large number of genes involved 

in cell cycle regulation, cell signalling, and proliferation [299].  SWI-like ATP-

dependent chromatin remodelling complexes are broadly divided into four main 

families based on the sequence and structure of the ATPase subunit: SWI/SNF, 

imitation-switch (ISWI), INO80, and CHD complexes. In addition, many 

predicted SWI-like proteins do not yet fit any of these classes and need further 

study [299]. Members of the SWI/SNF family are characterised by the presence 

of a bromodomain, which recognises acetylated lysine residues on histone tails 

[300]. The ISWI family of enzymes are characterised by a SANT domain, which 
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functions as a histone-binding module [301]. The INO80 member is the only 

chromatin remodelling enzyme in which DNA helicase activity has been 

observed [302]. Lastly, members of the CHD family are characterised by the 

presence of tandem N-terminal chromodomains and a central SNF2-like 

ATPase domain [303].  

Many studies of histone modifications in ES cells have found that almost all 

sites of PcG activity not only carry the repressive H3K27me3 modification, but 

also carry the activating, TxG-associated H3K4me3 modification [304, 305]. 

These genomic regions are termed 'bivalent domains' and keep target loci in a 

silenced but poised state. Upon ES cell differentiation, many bivalent domains 

resolve. Induced genes become enriched for H3K4me3 and lose H3K27me3, 

while many non-induced genes retain H3K27me3 but lose H3K4me3 [305, 306]. 

These data show the dynamic modulation of histone modifications in stem cell 

maintenance and differentiation. 

Chromatin remodelling can engage or maintain particular genetic programs and 

therefore likely plays a critical role in both stem cell maintenance as well as 

daughter cell differentiation. Maintaining stem cell properties involves the 

epigenetic suppression of pro-neural and glial genes and the activation of genes 

involved in self-renewal and quiescence. Conversely, NSC differentiation 

involves the removal of pro-neural gene suppression and instead involves the 

inhibition of genes involved in NSC maintenance. Recently, Lim et al. showed 

that the expression profiles of many epigenetic genes, such as genes encoding 

chromatin remodelling proteins, is altered along the adult neural lineage in the 

adult SVZ-OB system [287]. These data implicate the process of chromatin 

remodelling in playing a critical role in adult neurogenesis [287]. 

One of the most well studied PcG proteins in adult and postnatal neurogenesis 

is Bmi1 (B lymphoma Mo-MLV insertion region 1 homolog). Bmi1 is a member 

of the PRC1 complex and positively regulates H2Aub1 [307]. Mice deficient for 

Bmi1 (Bmi1-/-) displayed a loss of SVZ NSCs [308]. In contrast, lineage-

restricted progenitors were not affected and this was shown to be mediated at 

least in part by p16 [308]. However, short hairpin-RNA (shRNA)-mediated 



1: Introduction 

 

69 
 

knockdown of Bmi1 in the post-natal SVZ showed that Bmi1 does negatively 

influence progenitor proliferation in vitro [288, 309]. This was shown to be partly 

due to elevated p21 levels, suggesting that NSC and progeny devoid of Bmi1 

throughout development may develop compensatory mechanisms to maintain 

neurogenesis, albeit to a much lesser extent [288, 309]. Furthermore, it has 

been found that loss of Bmi1 leads to increased astrocyte formation both in vivo 

and in vitro [310, 311]. Conversely, lentiviral-mediated overexpression of Bmi1 

in vitro increased the self-renewal of NSCs, and increased SVZ proliferation and 

neurogenesis in vivo [312]. Interestingly, overexpression of Bmi1 also led to the 

presence of large growths in the brain, indicating that prolonged expression of 

Bmi1 could result in tumour formation [312]. Indeed, Cui et al. showed that Bmi1 

is expressed at high levels in several human neuroblastoma cell lines, but at 

very low levels in many glioblastoma lines [313]. When Bmi1 levels were 

reduced via short interfering RNA (siRNA) in neuroblastomas, cells gave fewer 

tumour colonies, and formed a smaller number and size of tumours when 

injected into mice [313]. However, one study found no effect of Bmi1 

overexpression on NSC proliferation in either the SVZ or SGZ in vivo, 

suggesting that further analysis may be required [314]. 

Mixed-lineage leukemia 1 (Mll1) is a TxG member with H3K4 methyltransferase 

activity [315]. Mll1 is expressed by cells in the SVZ and has been shown to play 

a role in postnatal neurogenesis [316]. Loss of Mll1 from embryonic and 

postnatal NSCs revealed a role for Mll1 in neuroblast migration and 

differentiation [316]. This was due to a direct effect of Mll1 on suppressing the 

accumulation of repressive H3K27me3 at the locus of gene encoding the 

neuron-specific transcription factor Dlx2 [316]. Loss of Mll1 resulted in the 

accumulation of H3K27me3 and repression of Dlx2, causing impaired 

neuroblast differentiation and migration [316]. 

As well as regulating stem cell self-renewal and differentiation, chromatin 

remodelling enzymes and other epigenetic factors can also regulate cell fate 

choices [317-319]. BRG1 (brahma-related gene 1, also called SmarcaA2) is a 

TxG chromatin remodelling protein with helicase and ATPase activity that 
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belongs to the SWI/SNF family of complexes [289]. BRG1 has been shown to 

play a role in the regulation of the waves of neurogenesis and gliogenesis in 

embryonic development. Loss of Brg1 caused premature neuronal 

differentiation and little gliogenesis, with cells being unable to respond to 

gliogenic cues [317]. This suggests that BRG1 is required to repress neuronal 

differentiation in NSCs as a means of permitting glial cell differentiation in 

response to gliogenic signals [317]. Taken together these data show that 

chromatin remodelling can potentially affect many areas of stem cell biology, 

such as stem cell maintenance, proliferation, and cell fate decisions. 
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Figure 13 - Schematic illustration of the action of chromatin remodelling complexes. 

Chromatin consists of DNA associated with histones to form nucleosomes and linker DNA in 

between nucleosomes. a, DNA and transcription factor binding sites associated with 

nucleosomes will generally be harder to access by transcription factors and polymerases 

compared to DNA in linker regions. Some large multi-subunit chromatin remodelling complexes 

can utilise the energy of ATP-hydrolysis to physically move nucleosomes or alter the structure of 

DNA within a nucleosome (b). This can lead to the exposure of previously inaccessible 

transcription factor binding sites and the silencing of others (c) leading to potentially diverse 

effects on gene transcription. Adapted from [320]. 
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1.14.2. CHD proteins 

The CHD (chromodomain-helicase-DNA-binding) family are SWI-like ATP-

dependent chromatin remodelling proteins that have been predicted to act as 

part of large multi-subunit complexes [321, 322]. The CHD family consists of 

nine members divided into three subfamilies based on the presence of 

structural protein motifs [322]. The first subfamily includes CHD1 and CHD2, 

which contain a C-terminal DNA-binding domain. The second subfamily 

includes CHD3 and CHD4 which lack a DNA-binding domain and instead 

contain a pair of N-terminal PHD domains which may bind to nuclear proteins 

and nucleosomes [323]. The third subfamily includes CHD5 to CHD9. Members 

of this subfamily possess additional functional motifs such as SANT domains, 

BRK domains, CR domains, and a DNA-binding domain [303, 324-326]. 

However, these additional domains are not shared between subfamily 

members. Mutations in CHD genes have recently been implicated in human 

diseases. For example, mutations in CHD8 has been shown to play a role in 

autism spectrum disorder, and may account for up to 0.4% of cases [327]. 

Additionally, mutations and deletions in CHD5 have been associated with 

neuroblastoma development [328, 329]. 

 

1.14.3 CHD7 

Mutations in CHD7 have recently been implicated in human diseases. De novo 

mutations in CHD7 is one of the leading causes of CHARGE syndrome, a 

congenital defect characterised by coloboma of the eye, heart defects, atresia 

of the nasal choanae, retardation of growth, genital and ear abnormalities and 

deafness [330]. Mutations in CHD7 have also been implicated in Kallman 

syndrome, characterised hypogonadism and anosmia [331]. 

The CHD7 protein contains functional domains such as a chromodomain, 

SNF2-related helicase / ATPase and two tandem C-terminal BRK domains 

[321] (Figure 14). CHD7 binds to  areas of methylated H3K4, with the majority 

of CHD7 sites overlapping with H3K4me1/2. CHD7 has been shown to bind to 
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regions distal to the transcription start site that show features of gene enhancer 

elements including hypersensitivity to DNase I digestion and colocalisation of 

the enhancer binding protein, p300 [332-335]. This interaction is predicted to be 

mediated by tandem N-terminal chromodomains and is thought to function to 

fine-tune cell type-specific gene expression (Figure 14) [332, 333]. 

ChIP-Seq data from mouse ES cells combined with global gene expression 

profiles obtained from Chd7+/+, Chd7+/−, and Chd7−/− ES cells shows that CHD7 

can either repress or stimulate gene expression, although negative regulation 

appears to be the more direct effect of CHD7 binding [332]. The Chd7 

Drosophila ortholog, Kismet, encodes a TxG protein [336-338]. Kismet 

stimulates transcriptional elongation by RNA polymerase II and may counteract 

PcG repression by recruiting the histone methyltransferases ASH1 and TRX to 

target loci [339]. Kismet itself is unable to bind methylated histone tails and was 

not found associated with methylated H3K4 [339]. Interestingly, Melicharek et 

al. showed that adult flies with decreased Kismet protein, displayed defects in 

gross motor coordination and defective learning and memory, and showed 

multiple neuronal populations to have defects in cell and axonal migration [340]. 

In mouse ES cells, CHD7 binding sites colocalise with binding sites of ES cell 

master regulators OCT4, Sox2, and NANOG, suggesting that CHD7 may have 

a wide variety of roles in ES cell maintenance and differentiation [332]. Indeed, 

in embryonic NSCs, CHD7 was shown to directly interact with Sox2 to regulate 

target gene expression, with common target genes including downstream 

effectors of the Notch and Sonic hedgehog (Shh) signalling pathways [341]. 

In addition to stem cell maintenance, CHD7 has been implicated in regulation of 

cell fate specification from adipogenesis to osteoblastogenesis of bone marrow 

mesenchymal stem cells during development [342]. CHD7 has also been shown 

to cooperate with PBAF (polybromo- and BRG1-associated factor-containing 

complex) to promote neural crest gene expression and cell migration during 

embryogenesis [343]. These data show that CHD7 has diverse roles in the 

regulation of fate specification, cell migration, and stem cell maintenance. 
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Mice homozygous for a Chd7 loss-of-function allele die before E10.5 [344], thus 

the use of a conditional allele or heterozygous lines are necessary to study the 

effect of CHD7 later in development and in adulthood. Adult mice heterozygous 

for Chd7 (Chd7+/-) display a decreased brain size and decreased OB length 

[345, 346]. In addition, studies by Layman et al. showed that Chd7+/- mice 

displayed a reduction in TH expression in the OB [345]. The authors showed 

that CHD7 was expressed by MASH1+ stem cells in the olfactory epithelium, 

and reduction in Chd7 expression led to decreased proliferation of the epithelial 

stem cells [345]. This resulted in a decrease in the number of mature olfactory 

sensory neurons, which normally signal to dopaminergic interneurons [345]. 

Hence, a loss of signal to dopaminergic interneurons resulted in a decrease in 

TH-production (see Figure 35) [345]. These data implicate CHD7 in regulation 

of stem cells in adults. However, due to the role of postnatal and adult SVZ-OB 

neurogenesis in formation of OB interneurons, misregulation of olfactory 

epithelial stem cells may not be the sole cause of the OB defects seen in these 

mice (see Figure 36). 

Collectively, these data strongly implicate a role for CHD7 in adult 

neurogenesis. 
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Figure 14 - Overview of the protein structure of CHD7. CHD7 is a large protein over 300kDa 

in size (CHD7_HUMAN, Q9P2D1). It contains tandem N-terminal chromodomains (red) that 

mediate binding to methylated histones, specifically all methylated forms of H3K4 [333]. It 

contains a helicase / ATPase domain (blue) that defines the ATP-dependent chromatin 

remodelling proteins and mediates chromatin remodelling [321]. It contains three conserved 

region domains (CR1-3; yellow) and a switching-defective protein 3, adaptor 2, nuclear receptor 

corepressor, transcription factor IIIB (SANT) domain (green) which is believed to function as a 

histone tail-binding module [301]. CHD7 has tandem N-terminal BRK domains (black), the 

function of which is still unknown, but may allow binding of CHD7 to certain proteins such as the 

transcriptional repressor CTCF [347]. Adapted from [348]. 
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1.15. Aims and objectives 

The maintenance and differentiation of somatic stem cells is strictly controlled. 

Extrinsic signals, such as from the niche, and intrinsic changes, such as from 

chromatin remodelling, can greatly impact stem cell function. Still many 

questions remain in understanding somatic stem cell function: 

• What is the role of chromatin remodelling in somatic stem cells? 

• How are the steps of activation and repression of key genes orchestrated 

with regards to stem cell activation, proliferation, differentiation and self-

renewal? 

• How does the niche influence somatic cell function under homeostatic 

conditions? 

• How do age-related changes in mammalian stem cell niches drive 

changes in stem cell number, and how does this influence stem cell 

function? 

This thesis aims to examine intrinsic and extrinsic regulators of two different 

somatic stem cell systems; skeletal muscle satellite cells and neural stem cells. 

This will help to better understand the regulation of stem cell quiescence and 

cell fate decisions, which are two fundamental properties of somatic stem cells 

and allow for the maintenance of a functional stem cell pool throughout life. I will 

examine the consequences of an altered stem cell niche on stem cell number 

and function. Additionally, I will analyse the effects of an altered intrinsic 

regulation of somatic stem cells. 
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2.1. Solutions and reagents 

Unless otherwise stated, all PBS and water solutions used in RNase-sensitive 

protocols were treated with 0.05% diethyl pyrocarbonate (DepC; Sigma) and 

autoclaved. All other stock solutions were sterilised by autoclaving. All water 

used was double distilled/deionised (ddH2O). 

 

2.1.1. General reagents 

1x PBS Phosphate buffered saline tablets (Sigma) were 

dissolved  in ddH2O 

 
PBSTx 1ml TritonX (Sigma) was added to 1l of PBS prior 

to use to make 0.1%. 
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2.1.2. Immunohistochemistry reagents 

Heat-inactivated goat 

serum 

 

Goat serum (Sigma) heat inactivated at 50°C for 

1 hour and stored in aliquots at -20°C 

 

Blocking solution 

 

 

Antibody blocking 

solution (Ab block) 

 

Blocking solution for 

antibodies raised in goat 

 

Ab block for antibodies 

raised in goat 

 

4% (w/v) PFA 

 

 

 

2N HCl 

 

0.1M Borate buffer pH8.5 

 

10% heat-inactivated goat serum, 0.2% gelatin 

type A, made up with PBSTx 

 

5% heat-inactivated goat serum, 0.2% gelatin 

type A, made up with PBSTx 

 

5% bovine serum albumin (BSA; Sigma) made up 

with PBSTx 

 

2% BSA made up with PBSTx 

 

 

Paraformaldehyde (PFA; Sigma) was dissolved in 

PBS with stirring and heating at 60°C. Aliquots 

were stored at -20°C 

 

Made by diluting 11N HCl (Sigma) in ddH2O 

 

Made by dissolving sodium borate (Sigma) in 

ddH2O and adjusting the pH to 8.5 with boric acid 

(Sigma) 
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2.1.3. Plasmid linearisation and mRNA probe synthesis reagents 

Tris-EDTA (TE) buffer 

 

 

 

Plasmid digestion 

reaction mix 

 

1mM TRIS-HCl, pH 7.5 

0.1mM EDTA 

Made in ddH2O 

 

Made according to manufactures specifications 

(NEB): 

10µl plasmid (~5µg) 

2µl restriction endonuclease; EcoR1, EcoRV, SpaI 

5µl 10x buffer 

0.5µl BSA (if required) 

33µl ddH2O 

 

Probe synthesis 

reaction mix 

 

 

 

 

 

 

 

 

 

 

 

Made according to manufacturer's (Roche) 

specifications: 

10µl sterile, distilled water 

4µl 5x transcription buffer  

2µl 0.1M DTT  

2µl DIG nucleotide mix, pH8  

1µl linearised plasmid at 1µg/µl  

0.5µl Rnase inhibitor  

1µl RNA polymerase enzyme; SP6 (Promega), T3 

(Promega) or T7 (Promega) 

 

 

Made according to manufacturer's (Roche) 
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Probe synthesis from 

PCR primers 

specifications: 

0.5ml sterile, distilled water 

4µl 5x transcription buffer  

2µl 0.1M DTT  

2µl DIG nucleotide mix, pH8  

10µl DNA  

0.5µl RNase inhibitor  

1µl RNA polymerase enzyme; SP6 (Promega), T3 

(Promega) or T7 (Promega) 
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2.1.4. Section in situ hybridisation reagents 

Acetylation solution 

 

 

 

 

 

Proteinase K solution 

 

625µl trietholamine (Fluka) 

130µl 11N HCl (Sigma) 

125µl acetic anhydride (Fisher scientific) 

Made up to 50ml with DepC-treated sterile water 

immediately prior to use. 

 

20µg/ml proteinase K in PBS 

Section hybridisation 

buffer 
To make 100ml: 

50ml formamide  

20ml Dextran sulphate (Millipore) 

1ml Denhardt’s solution (Sigma) 

2.5 ml 10mg/ml yeast tRNA (Invitrogen) 

6ml 5M NaCl  

2ml 1M Tris-HCl, pH8  

1ml 0.5M EDTA  

1ml 1M NaPO4  

5ml 20% Sarcosyl (Sigma) 

11.5ml ddH2O. 

Aliquots were stored at -20°C 

 

5x standard saline 

citrate (SSC)  
20xSSC (Sigma) was diluted 4 times in ddH2O. 
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2xSSC 20xSSC was diluted 10 times in ddH2O. 

 

0.1xSSC 20xSSC was diluted 200 times in ddH2O. 

High stringency wash 

(His) 

 

 

Formamide (Sigma) and 2xSSC were mixed in equal 

measures to produce the required volume of His. 

RNase buffer  100ml 5M NaCl 

10ml 1M Tris-HCl, pH7.5 

10ml 0.5M EDTA 

Made up to 1L with ddH2O and stored at room 

temperature. 

 

RNaseA solution 

(10mg/ml)  

 

 

 

 

 

PBSTw 

 

 

100µl 1M Tris-HCl, pH7.5 

30µl 5M NaCl 

9.8ml distilled water 

100mg RNaseA (Roche) 

Boiled for 15 minutes before aliquoting and storing at 

-20oC. 

 

1ml Tween 20 (Sigma) in 1L PBS to make a 0.1% 

solution 
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Antibody block 10% heat inactivated goat serum in PBSTw 

 

Sodium (Na) chloride- 

Tris-magnesium- 

Tween20 buffer 

(NTMT) 

 

1ml 5M NaCl 

5ml 1M Tris-HCl, pH9.5 

1.25ml 2M MgCl2 

5ml 10% Tween20 

100µl 20mg/ml Levamisole 

Made up to 50ml with water immediately prior to use. 
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2.1.5. Wholemount in situ hybridisation reagents 

50% methanol 

 

Methanol (Sigma) diluted in PBSTw 

30% methanol 

 

Hyb- pre-hybridisation mix 

 

 

 

 

Hyb+ pre-hybridisation 

mix 

 

 

Hybridisation mix 

 

Maleic acid buffer 

containing Tween 20 

(MABT) 

 

 

Antibody block 

 

Methanol diluted in PBSTw 

 

250ml Formamide 

122.5ml ddH2O 

125ml 20x SSC 

2.5ml 20% Tween 20 

 

495ml Hyb- mix 

2.5g yeast tRNA (Sigma) 

5ml 50µg/ml Heparin (Sigma) 

 

4ml Hyb+ mix with 2µg probe 

 

For a 5x stock: 

500ml maleic acid pH 7.5 (Sigma) 

750mM NaCl 

0.5% Tween 20 

 

10% BSA 

2% Foetal calf serum (Sigma) 

Made in PBS 
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2.1.6. Satellite cell isolation and culture reagents 

DMEM Dulbecco's modified eagle's medium (Sigma) 

supplemented with 1% penicillin-streptomycin 

(Invitrogen) 

 

Ham's F10 Ham's F10 nutrient mixture supplemented with 

1% penicillin-streptomycin 

 

Freezing medium 

 

 

Cell dissociation solution 

 

Growth media 

 

 

 

FACS-isolated SC basal 

media 

 

Digest solution 1 

 

 

 

 

 

90% foetal calf serum (Invitrogen) 

10% dimethyl sulfoxide (DMSO) 

 

Non-enzymatic cell dissociation solution (Sigma) 

 

20% heat-inactivated foetal bovine serum (FBS) 

5ng/ml FGF2 (R&D Systems) 

In Ham's F10 media 

 

DMEM + 5% Horse Serum (HS; Sigma) 

 

 

0.2% Collagenase II (Invitrogen) 

15ml total volume for up to 3 animals made in 

DMEM 
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Rinsing solution 

 

 

 

Digest solution 2 

 

 

 

Single fibre digest 

solution 

 

RSC generation media / 

SC differentiation media 

 

Cell sorting media 

10% HS 

2mM HEPES 

In Ham's F10 media 

 

0.015% Collagenase II  

0.07% Dispase (invitrogen) 

In 7ml Rinsing solution 

 

0.2% Collagenase I (Invitrogen) 

Made in DMEM 

 

3% HS 

Made in DMEM 

 

10% HS 

Made in Ham's F10 media 
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2.1.7. Neural stem cell culture reagents 

Euromed-N Euromed-N (Euroclone) supplemented with 1% 

penicillin-streptomycin (Invitrogen) 

  

Freezing medium 

 

 

1x Trypsin-EDTA 

 

 

Growth media 

 

 

 

 

3day Neuronal 

differentiation media 

 

 

 

6day Neuronal 

differentiation media 

90% foetal calf serum (Invitrogen) 

10% dimethyl sulfoxide (DMSO) 

 

1x Trypsin EDTA made by diluting 10x Trypsin-

EDTA (Invitrogen) in DMEM 

 

20ng/ml human FGF2 (Peprotech) 

20ng/ml human EGF (Peprotech) 

1% N2 supplement (Invitrogen) 

In Euromed-N 

 

10ng/ml FGF2 

0.5% N2 supplement 

1% B27 supplement (Invitrogen) 

In Euromed-N 

 

After the 3day neuronal differentiation step: 

10ng/ml FGF2 

20ng/ml BDNF (Peprotech) 

0.5% N2 supplement 

1% B27 supplement 

In Euromed-N 



2: Methods 
 

89 
 

2.2. Animals 

Line Description Reference 

Pax7CreERT2/+ The CreERT2 cassette was placed within the 3′ 

untranslated region of the Pax7 gene following the 

stop codon in exon 9. 

[349] 

Spry1flox The complete Spry1 ORF is flanked with LoxP 

sites. 

[350] 

CAG–GFPflox; 

Spry1 (Spry1OX) 

 

Consists of chicken β-actin gene (CAG) promoter-

loxP-GFP-loxP-Spry1ORF with a myc/his tag. The 

Spry1OX construct constitutively expresses GFP, 

and upon Cre-mediated recombination, Spry1 

expression is induced, with concomitant loss of 

GFP marker expression. 

[351] 

FgfR1/2flox/flox For FgfR2flox/flox, a 5′ loxP site was inserted in the 

intron between exon 7 and 8, and a 3′ loxP site 

was inserted in the intron downstream of exon 10. 

For FgfR1flox/flox, exons 8–15 encoding the 

transmembrane domain, juxtamembrane domain 

and most of the tyrosine kinase domain of 

FGFR1, are flanked by loxP sites. 

[352, 353] 

GLAST::CreERT2 The CreERT2 expression cassette was inserted 

into a BAC with GLAST genomic DNA by 

homologous recombination at the transcription 

initiation site. 

[354] 

Chdxk403/+ 

(Chd7gt/+) 

The genetrap construct contains a beta-geo 

cassette with a floxed splice acceptor. The 

Chdxk403 line has a genetrap insertion site 

between exons 36 and 37, and produces a protein 

containing all exons, except 37 and 38, fused to 

the gene trap cassette. Cre-mediated 

recombination results in deletion of the splice 

acceptor site and loss of β-galactosidase activity. 

[355, 356] 
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Chd7flox Exon 3 of Chd7 flanked by LoxP sites EUCOMM ID: 

35714 

NestinCre Tansgenic mouse line. [357] 

Table 1 - Mouse lines used 

 

2.3. Methods for Chapter 3 and Chapter 4 

2.3.1. Satellite cell in vivo cell division analysis 

To assess cell proliferation and label retention character, aged (24-28 months 

old) and adult (3-8 months old) C57BL/6, Ctrl, Spry1null and Spry1OX mice 

were fed BrdU (Sigma; 0.5 mg/ml supplemented with 5% sucrose) continuously 

for six weeks. For label retention studies, Spry1null mice were given three daily 

intraperitoneal (I.P.) injections of tamoxifen (see Section 2.3.9.) following BrdU 

loading and placed on regular drinking water to chase label. For cell 

proliferation and label retention studies, SCs were sorted, immediately fixed and 

processed for immunostaining with Pax7 and BrdU antibodies after sodium 

citrate antigen retrieval. For label retention studies, BrdU+ SCs were classified 

as label retaining on the basis of quantification of BrdU fluorescent intensity. 

 

2.3.2. In vivo FGFR inhibition 

Prolonged pharmacological inhibition of FGF activity in vivo was conducted as 

previously described [358]. Initially, anion exchange resin beads (AG1x2, 200-

400, CL, CAT# 1401251, BioRad) were reconstituted at a beads/PBS ratio of 

1:2. Half of the PBS–bead mixture was pelleted at 2,400g for 5 minutes. Pellets 

were then incubated with 500 μM SU5402 (Calbiochem) or an equivalent 

volume of vehicle (DMSO) for 60 minutes on a nutator at room temperature. 

Loaded pellets were washed in PBS and reconstituted into 50% w/v PBS before 

I.P. injection of 300μl into aged and adult mice using a 25G5/8 1-ml insulin 

syringe (BD Biosciences). After injection, mice were fed BrdU continuously for 

six weeks before isolation of SCs. SCs were subsequently fixed and processed 
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for BrdU immunostaining via sodium citrate antigen retrieval. For quantification, 

300–600 cells were counted per condition. 

 

2.3.3. Purified myofibre extract 

All reagents used to obtain purified myofibre extract are shown in Section 2.1.6. 
Initially, forelimb and hindlimb muscles were cut into smaller longitudinal pieces 

and digested into single or smaller groups of muscle fibres using digest solution 

1 in a horizontal shaking water bath at 37 °C for 90 minutes [42]. Isolated 

muscle fibres were gentley triturated and repeatedly washed in PBS (×6) to 

ensure removal of interstitial cells or other contaminating debris. Purified fibres 

were then incubated in a high-salt extraction buffer (400 mM NaCl, 1 mM EGTA, 

1 mM EDTA, 10 mM Tris pH 7.5, 1mg/ml PMSF) to dissociate any ligands 

bound to receptors or the extensive basal lamina network of skeletal muscle 

fibres [359]. Dissected muscles in extraction buffer were further triturated with a 

glass Pasteur pipette to dissociate bound ligands. The muscle fibre mixture was 

centrifuged at 2,500g for 10 minutes to remove cytoskeletal and nuclear 

elements that compromise the majority of skeletal muscle fibre cytosol. The 

resultant supernatant was collected and spun at 375g for 5 minutes. 

Supernatant was then collected and transferred into Eppendorf tubes and spun 

at 16,500g for 30 minutes at 4 °C. The supernatant was pooled and 

subsequently drawn up into a 20-gauge syringe and filtered through a 0.45-μm 

filter into Amicon Ultra centrifugal filter columns (10,000 relative molecular mass 

cut-off; UFC901008, Millipore). Exchanges with PBS were done at 2,050g for 

20 minutes until the solution was translucent and concentrated into a volume of 

approximately 1 ml PBS. Protein concentration and purity was determined with 

a nanodrop analyser. 

To assess cycling-inducing activity, cultures of RSCs and SCs in basal medium 

(3% HS for RSCs and 5% HS for satellite cells in DMEM) were incubated with 

10 μg total PME for 24 hr. For inhibition of FGF activity, RSCs and SCs were 

incubated with 10 μM SU5402 (Calbiochem) or DMSO as carrier control for 1 

hour before incubation with PME. For FGF2 neutralization, niche extracts were 
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incubated with 15 ng/μl FGF2blocking antibody (Millipore) for 1 hour at 37°C 

before being added to RSC or SC cultures. Unless otherwise stated, three to 

five experiments were performed in triplicate and 300–600 RSCs or SCs were 

counted. PMEs were obtained from n = 5 different aged and adult mice and 

examined. 

 

2.3.4. Single muscle fibre isolation 

All reagents used for single muscle fibre isolation are shown in Section 2.1.6. 
Single fibres were isolated as previously described [360]. Briefly, EDL muscle 

was dissected and lightly digested in single fibre digest solution and incubated 

at 37°C shaking for 45 minutes to 1.5 hours. Following digestion, the muscle 

was transferred to a petri dish containing DMEM and triturated with a fire-

polished Pasteur pipette pre-flushed in 10% HS to stop fibres from sticking to 

the pipette. Fibres were cleaned by transferring them to fresh petri dishes four 

times. Single fibre assays were performed using DMEM+3%HS and stated 

concentrations of FGF2 and/or PME. 

 

2.3.5. Tibialis anterior muscle preparation 

Dissected tibialis anterior (TA) muscle was fixed in 4% PFA for 20 minutes on 

ice and cryoprotected in 30% sucrose at 4°C overnight. Muscle was then frozen 

in OCT and sectioned in 10µm steps. For FGF2 immunohistochemistry, TA 

muscle was sectioned and stained immediately after cryoprotection and 

freezing without being fixed in PFA. 

 

2.3.6. Myoblast isolation 

All reagents used for myoblast isolation are shown in Section 2.1.6. SCs were 

isolated from bulk fibres as previously described [42] with modifications. Bulk 

skeletal muscle from hindlimbs, triceps and the lower back was digested in 
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digest solution 1 at 37°C for 75 minutes shaking. Contaminating adipose tissue 

was then removed through rinses in rinsing solution. Muscle was then physically 

dissociated by triturating with a jagged-edged glass Pasteur pipette in rinsing 

solution. To further remove any contaminating cells, the solution was 

centrifuged at 375g for 5 minutes and washed in rinsing solution 3 times. To 

remove individual fibres and associated SCs from the muscle tissue, the 

solution was resuspended in Digest solution 2 and incubated at 37°C for 30 

minutes. Cells were dislodged from fibres by drawing and releasing the solution 

through a 20g needle 5 times. The solution was then centrifuged at 375g for 5 

minutes and washed in rinsing solution 3 times. Cells were resuspended in 20% 

foetal bovine serum (FBS; Sigma), 5ng/ml FGF2 (Peprotech) with 1% Pen/Strep 

(Invitrogen) in Ham's F-10 (Growth media) and plated on uncoated tissue 

culture dishes for 5 minutes to remove fibroblasts. SCs in the supernatant were 

collected, centrifuged at 375g for 5 minutes, resuspended in growth medium 

and strained through a 20µm filter. To further remove fibroblasts, the Easy Sep 

Kit (Invitrogen) was used in combination with a Biotin-tagged anti-Sca1 antibody 

(BD Pharmingen; 1:400). Cells were then grown in growth media on 1:1000 

ECM-coated tissue culture dishes (Nunc) with media changed every 1.5 days 

and passaged at 80% confluency using 1x cell dissociation solution (Sigma). 

 

2.3.7. Myogenic cell preparation 

To generate RSC cultures [361], low-passage primary myoblasts were plated in 

1:500 ECM-coated eight-well Permanox chamber slides (Lab-Tek) at 80–90% 

confluency and maintained in growth medium (20% FBS, 5 ng/ml FGF2 in 

Ham’s F-10). Subsequently, cells were switched to differentiation medium (3% 

HS in DMEM) for two to three days to allow for the formation of myotubes and 

SC-like RSCs expressing Pax7 that had escaped differentiation and returned to 

a quiescent state [361]. RSC cultures were then treated with appropriate PMEs 

for 24 hours. For adenovirus experiments, cells were infected after formation of 

myotubes and RSCs and allowed to recover for 24 hours before treatment with 

extracts unless otherwise stated. 
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2.3.8. In vitro activation of Cre recombinase 

Cultures of RSCs were infected with either Ad5CMVCre-eGFP or Ad5CMV-

eGFP-control adenovirus (Gene Transfer Vector Core, University of Iowa) 

(diluted 1:1000 in growth media from a stock titer of 1 × 1010 pfu/ml) with 

1:1000 Polybrene Transfection Reagent (Chemicon) for 1.5 hours at 37 °C. 

Cells were washed in PBS and incubated in fresh differentiation medium for an 

additional 48 hours. 

 

2.3.9. In vivo activation of Cre recombinase 

Aged and adult mice were given one I.P. injection of 300µl of 10mg/ml 

tamoxifen (Sigma) diluted in corn oil (Sigma) daily for 3 days [42]. 

 

2.3.10. Fluorescence-activated cell sorting 

All reagents used for fluorescence activated cell sorting (FACS) are shown in 

Section 2.1.6. To obtain highly purified myogenic cells, mononucleated cells 

were isolated from muscle as described previously [42] with modifications. After 

incubating cells in Digest solution 2 in Section 2.3.6, cells were dislodged from 

fibres by drawing and releasing the solution through a 20g needle 5 times. The 

solution was centrifuged at 375g for 5 minutes and washed in rinsing solution 3 

times. Cells were incubated in sorting medium (10% HS, in Ham’s F-10) for 

10 minutes and then incubated in biotin-conjugated anti-VCAM1 (Novus) and 

anti-mouse integrin-α7 (1:200; MBL) for 30 minutes. Cells were washed in 

sorting medium and spun at 375g for 5 minutes. Cells were stained in CD31-PE 

(BD Biosciences), CD45-PE (BD Biosciences), Pacific Blue (Invitrogen) and 

streptavidin-647 (Invitrogen), all at 1:200, for 30 minutes. Propidium iodide (PI) 

was added at 1:500 before sorting to enable the identification of dead cells. 

Myogenic cells had the following profile: VCAM1+, integrin-α7+, CD31−, 

CD45−, PI−. Cells were sorted with FACS Aria (BD Biosciences).   
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2.3.11. SC and skeletal muscle histology and immunofluorescence 

All reagents used for immunohistochemistry are shown in Section 2.1.2. 
Cultures of RSCs, satellite cells and tibialis anterior tissue sections were fixed in 

4% PFA for 5 minutes, washed and processed for immunohistochemistry as 

previously described [42]. Briefly, samples were washed in PBS followed by 

2x10 minute washes in PBSTx to permeabilise samples. Non-specific antibody 

binding was blocked by incubating samples with blocking solution for 30 

minutes. Primary antibody was diluted in Ab block and incubated with samples 

at 4°C overnight. The next day, unbound antibody was washed off with PBS 

washes and fluor-labelled secondary antibody (1:1500), diluted in Ab block, was 

incubated with samples for 1 hour at room temperature. Dapi (1:3000, Sigma) 

was also added. After secondary antibody incubation, samples were washed in 

PBS and mounted with Fluormount G (Fisher Scientific). For detection of FGF2 

in transverse orientation, sections were not fixed. For longitudinal sections, 

samples were processed for primary FGF2 antibody before fixation. For BrdU 

detection, cultures of SC, RSCs and tissue sections were fixed in 4% PFA, 

washed in PBS and then antigen-retrieved with sodium citrate buffer (10 mM, 

0.05% Tween in PBS) at 95 °C for 30 minutes before immunostaining as 

described above. 

 

2.3.12. Analysis of satellite cells and their progeny 

Muscles sections were stained with a cocktail of antibodies to determine the 

number of Pax7+ SCs that were quiescent (Pax7+, Ki67-) or cycling (Pax7+, 

Ki67+) underneath the basal lamina (laminin+). The total number of Pax7+ cells 

was quantified in a minimum of ten serial sections per muscle in three separate 

regions from the mid-belly of the muscle [42]. The number of Pax7+ cells was 

quantified on freshly isolated single EDL muscle fibres. A minimum of 20–30 

muscle fibres were counted per animal [42]. Cultures of RSCs and SCs in eight-

well Permanox chamber slides (Nunc) were stained with a panel of antibodies 

to characterise myogenic cells with self-renewal potential (Pax7+), cycling 

(Pax7+, Ki67+), apoptosis (activated caspase-3+) and differentiation (myogenin+) 
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[42]. For fate analysis, quantification of three to five experiments was performed 

in triplicate and 300–600 cells were counted per condition. To assess cell 

growth, satellite cells were plated at clonal density (10–12 cells per well, Nunc 

eight-well Permanox chamber slides) and the number of cells present in each 

individual well was determined after four days in culture (10% HS in DMEM). 

For cell growth experiments, 21–28 clonal density cultures were examined per 

condition. Wells with no cells present after four days of culture were not 

included in quantification.  

 

2.3.13. Whole-mount in situ hybridisation 

RNA in situ hybridisation and riboprobe synthesis were performed as previously 

described [362]. Briefly, Digoxigenin-labelled anti-sense and sense riboprobes 

of Fgf2 were synthesised from a plasmid preparation [363]. All details of the 

Fgf2 plasmid can be found in Section 2.3.15. Purified isolated myofibres were 

fixed in PFA and washed in 100% methanol.  Fibres were rehydrated in a series 

of methanol / PBS + 0.2% Tween 20 (PBSTw) washes, starting with 50% 

methanol for 5 minutes, then 30% methanol for 5 minutes, and then fibres were 

taken into PBSTw. For pre-hybridisation, muscle fibres were rinsed in PBSTw 

and then incubated with Hyb- mix for 5 minutes at 70 °C, and then Hyb+ for 4 

hours at 70°C. For hybridisation, fibres were incubated with 5µg/ml of either 

anti-sense or sense (control) Fgf2 riboprobe in Hyb+ mix overnight at 70°C. The 

following day, any unbound probe was removed in a series of formamide / SSC 

washes and maleic acid buffer containing 0.2% Tween 20 (MABT) washes. 

These washes consisted of 55% formamide / 2x SSC containing 0.2% Tween 

20 (SSCTw) for 30 minutes, then; 55% formamide / 1x SSCTw for 30 minutes, 

then; 1x SSCTw for 30 minutes, then; 2 washes of 0.2x SSCTw for 30 minutes 

each, then; 4 washes in MABT for 30 minutes each. Unspecific antibody binding 

was blocked using a solution of MABT with 2% Blocking Reagent (Roche) for 4 

hours at room temperature. Bound riboprobe was then detected by staining 

fibres with anti-Digoxigenin antibody (1:5000 in blocking solution; Roche) at 4°C 

overnight. The following day, fibres were rinsed twice for 15 minutes in MABT + 
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10% FCS, followed by 6 washes in MABT for 15 minutes each. Fibres were 

then washed twice for 5 minutes each in NTMT and signal was detected using 

NBT/BCIP solution (Roche). After a signal appeared, fibres were washed 3 

times for 5 minutes in PBSTw and then fixed in 4% PFA for 10 minutes. 

Following two further PBS washes, fibres were mounted onto coverslips. In 

some cases, after fixation and before mounting, muscle fibres were further 

processed for Pax7 immunostaining as described above. 

 

2.3.14 Plasmid digestion and DNA extraction  

Plasmid digests were carried out according to the manufacturer's 

recommendations (New England Biolabs) using the reaction mix detailed in 

Section 2.1.3. Plasmids were typically digested at 37oC overnight, unless the 

manufacturer's specification suggested otherwise. 

After digestion, the linearised DNA was precipitated from the digest solution by 

centrifugation with an equal volume of phenol chloroform, and incubated at -20 

oC for 1 hour with 0.1 volumes of 3M sodium acetate and 2.5 volumes of 

ethanol. The solution was centrifuged at max speed for 30 minutes to produce a 

DNA pellet which was washed with ethanol then stored in solution with 0.1 

volumes of TE or DepC water. Linearised DNA was stored at -70oC until 

required for RNA probe synthesis. 

 

2.3.15. Probe synthesis 

Probes were synthesised using the reaction mix detailed in Section 2.1.3. The 

probe synthesis mix was left for 2 hours at 37°C. 1µl of the mix was then 

resolved on a 1.5% agarose gel to check for an RNA band, and to estimate the 

concentration of the probe against a 1µl sample of the linearised plasmid. If a 

RNA band was observed, 2µl of DNase I was added to the remaining mix, and 

the reaction left at 37°C for 15 minutes in order to digest any DNA still present. 

Finally, the probe was purified by spinning down the solution in SigmaSpin post-
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reaction Cleanup columns (Sigma) according to the manufacturer's 

recommendations. 

For Fgf2, antisense probe was made by linearising plasmid with NotI and 

synthesising probe with T3 [363]. Sense probe was made by linearising plasmid 

with EcoRI and synthesising probe with T7 [363]. 

 

2.3.16. RNA isolation and RT-qPCR 

RNA extraction from approximately 10,000 FACS-isolated satellite cells and 50 

single muscle fibres was done with Trizol (Invitrogen) according to the 

manufacturer’s recommendations. Briefly 1ml of Trizol was added to samples 

and samples were homogenised by vortexing. 200µl of chloroform (Sigma) was 

added and mixed by vortexing. The solution was left to settle on ice for 5 

minutes before phases were separated through centrifugation at 13000g for 15 

minutes at 4°C. The aqueous phase containing RNA was transferred to a new 

Eppendorf tube and RNA was precipitated by adding 500µl isopropanol 

(Sigma), and 20-40µg of Ultrapure Glycogen (Invitrogen). RNA was left to 

precipitate at -80°C overnight. The following day, the RNA suspension was 

centrifuged at 13000g for 20 minutes. Any contaminants were then removed by 

washing the RNA pellet in ice-cold 75% ethanol and centrifuging at 13000g for 

10 minutes. This step was performed twice. All trances of ethanol were 

removed and the RNA pellet was left to air dry for around 5 minutes. RNA was 

resuspended in RNase-free water and stored at -80°C. RNA concentration was 

determined using a nanodrop. 

Purified RNA was then prepared for RT-qPCR analysis or array analysis. First-

strand complementary DNA was synthesised from 4 μl (200 ng) of RNA using 

the SuperScript First-Strand cDNA Synthesis Kit (Invitrogen) according to 

manufacturer's recommendations. RT-qPCR was performed on a Step One 

Plus Real Time PCR machine (Applied Biosystems), with Platinum SYBR 

Green qPCR SuperMix-UDG and ROX master mix (Invitrogen) using primers 
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against Pax7, Fgf2, Stat1, and Gapdh as a housekeeping control. Primer 

sequences are as follows: 

Fgf2 forward - 5'-CGGCTTCTTCCTGCGCATCC-3' 

Fgf2 reverse - 5'-GGTACCGGTTGGCACACACTCC-3' 

Pax7 forward - 5'-GTGGAATCAGAACCCGACCTC-3' 

Pax7 reverse - 5'-GTAGTGGGTCCTCTCAAAGGC-3' 

Gapdh forward - 5'-AGGTCGGTGTGAACGGATTTG-3' 

Gapdh reverse - 5'-TGTAGACCATGTAGTTGAGGTCA-3' 

All reactions for RT-qPCR were performed using the following thermal cycler 

conditions: 50 °C for 2 minutes, 95 °C for 2 minutes, 40 cycles of a two-step 

reaction, denaturation at 95 °C for 15 seconds, annealing at 60 °C for 

30 seconds. Analysis of FGF ligands was conducted with the mouse growth 

factor RT2Profiler PCR array system (SABiosciences) according to the 

manufacturer’s recommendations, with the exception that RNA was extracted 

by the Trizol method. Unless otherwise stated, data are from three separate 

reactions performed in triplicate from n = 4–6 mice per condition. 

 

2.3.17. Antibodies and reagents 

The antibodies used are as follows: rat anti-BrdU (1/500, Abcam), rabbit anti-

Ki67 (1/500, Abcam), mouse anti-Pax7 (1/100, DSHB), rabbit anti-myogenin 

(1/250, Santa Cruz), rabbit anti-cleaved caspase-3 (1/500, Cell Signaling 

Technologies), chick anti-laminin (1/5,000, Abcam), VCAM (1/100), mouse anti-

integrin-α7 (1/200, MBL), CD31-PE and CD45-PE (1/200, BD), and rabbit anti-

FGF2 (1/500, Abcam). The corresponding species-specific Alexa-conjugated 

(Pacific Blue, 488, 546, 647) secondary antibodies (Molecular Probes) were 

used at 1:1500 for immunohistochemistry and 1:200 for FACS.  
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2.3.18. Genotyping 

Details of all primer sequences and the sizes of products produced from 

polymerase chain reaction (PCR) amplification can be found in Table 2. 

Genotyping was carried out by PCR amplification using a FastStart Taq DNA 

polymerase kit (Promega), according to the manufacturer’s recommendations.   

PCR reactions were carried out in 20µl reactions using Promega reagents as 

follows: 

4µl 5x transcription buffer 

1.2µl MgCl2 solution 

1µl primer solution, containing 10µM of each primer 

1µl DNA sample to be amplified 

0.15µl dNTPs (25mM) 

0.15µl Hot Start taq 

12.5µl sterile water 

 

All samples were amplified using the following program: 

95oC for 10 minutes 

40 cycles of:  94oC for 45 seconds 

57oC for 45 seconds 

72oC for 1 minute 

Followed by 72oC for 7 minutes. 

After PCR amplification, samples were resolved by electrophoresis, using a 

1.5% agarose gel with 0.05% ethidium bromide in 1xTAE buffer. 
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Gene of interest Primers 

Cre 

Primer A: CCTGGAAAATGCTTCTGTCCG 

Primer B: CAGGGTGTTATAAGCAATCCC 

 

Cre: Primer pair A+B = 390bp 

Wildtype: No product 

 

Spry1flox 

Primer A: GGGAAAACCGTGTTCTAAGGAGTAGC 

Primer B: GTTCTTTGTGGCAGACACTCTTCATTC 

Primer C: CTCAATAGGAGTGGACTGTGAAACTGC 

 

Spry1flox: Primer pair A+C = 342 bp 

Wildtype: Primer pair A+C = 311 bp 

Null: Primer pair A+B = 150 bp 

 

Spry1OX 

Primer A: GAGGAAATGCTGCGCACAATGTATACTCGG 

Primer B: GGATACTGACACATTGTGCCTCAGCCTTTC 

 

Spry1OX : Primer pair A+B = 920bp 

Wildtype: No product 

 

FgfR1flox 

Primer A: GTATTGCTGGCCCACTGTTC 

Primer B: CTGGTATCCTGTGCCTATC 

Primer C: CAATCTGATCCCAAGACCAC 

 

FgfR1flox : Primer pair B+C = 387 bp 

Wildtype: Primer pair B+C = 327 bp 

Null: Primer pair A+C = 300 bp 

 

FgfR2flox 

Primer A: TGCAAGAGGCGACCAGTCAG 

Primer B: ATAGGAGCAACAGGCGG 

 

FgfR2flox: Primer pair A+B = 207 bp 

Wildtype: Primer pair A+B = 142 bp 

 

Table 2 - Details of PCR primers 
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2.3.19. Statistics and data 

Unless otherwise stated, all data are represented as mean ± s.e.m.; *P < 0.05 

**P<0.01 ***P<0.001, student's t-test. For multiple comparisons, analysis of 

variance with Bonferroni’s multiple-comparison post hoc test was used. 

 

2.4. Methods for Chapter 5 and Chapter 6 

2.4.1. Isolation, growth, and differentiation of NSCs 

All reagents used for NSC cultures are shown in Section 2.1.7. Foetal-derived 

NSCs were isolated, grown, and differentiated as previously described [364, 

365] with modifications. Briefly, the cortex and striatum from E16.5 embryos 

generated from a mating between NestinCre;Chd7f/+ and Chd7f/f mice were 

dissected and put in to ice-cold PBS. Tissue pieces were centrifuged at 800g for 

3 minutes, the supernatant was removed and the tissue was dissociated by 

incubating on ice for 10 minutes, flicking the side of the tube every 3 minutes to 

aid dissociation. 1ml of PBS was added and cells were then dissociated by 

triturating with a pipette tip and centrifuged at 375g for 5 minutes. Cells were 

then plated on laminin-coated (1:100; Sigma) tissue culture plates and grown in 

growth media containing 1% N2 supplement (Invitrogen), 20ng/ml EGF 

(Peprotech), 20ng/ml FGF2 (Peprotech), 1% Pen/Strep (Invitrogen) in 

Euromed-N (Euroclone). Growth media was changed every 1.5 days and cells 

were passaged at 70-80% confluency using 1x Trypsin EDTA (Sigma) which 

was neutralised with Trypsin inhibitor (Sigma). After genotyping, any 

NestinCre;Chd7f/f cultures were pooled and Chd7f/f control cultures were pooled. 

Differentiation into neurons was performed as previously described [365] with 

modifications. Briefly, cells were plated onto laminin-coated (1:100) glass 8-well 

chamber slides pre-treated with poly-L-ornithine (Sigma) in neuronal 

differentiation media containing 1% B27 supplement (Invitrogen), 0.5% N2, and 

10ng/ml FGF2 in Euromed-N. Cells were maintained in these conditions for 3 

days (3d neuro diff) changing the media once throughout the period. After the 3 
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day period, cells were put into media containing 0.5% N2, 1%B27, 10ng/ml 

FGF2 and 20ng/ml BDNF (Peprotech) in Euromed-N. Cells were maintained in 

these conditions for a further 3 days (6d neuron dff) changing the media once 

throughout the period. 

 

2.4.2. Forebrain processing 

Mice were given a lethal dose of Euthanal (pentobaribital sodium; Merial) and 

perfused with 10ml of ice-cold PBS followed by 10ml ice-cold 4% PFA. Brains 

were then dissected and further fixed in 4% PFA overnight at 4°C. For section in 

situ hybridisation experiments, fixed brains were dehydrated in 70% ethanol and 

equilibriated into paraffin wax using a Leica ASP300 Tissue Processor. Brains 

were then embedded in paraffin wax, sectioned in 10µm steps, and placed on to 

Superfrost+ slides. 

For immunohistochemistry, fixed brains were cryoprotected in 15% sucrose 

(Sigma) at 4°C overnight followed by 15% sucrose and 7.5% gelatine type B 

(Sigma) at 37°C overnight. Brains were then embedded in 15% sucrose and 

7.5% gelatine type B and frozen in methylbutane (Sigma) with dry ice. Frozen 

brains were sectioned in 20µm steps and placed on to Superfrost+ slides. 

 

2.4.3. Neural stem cell histology and immunofluorescence 

All reagents used for immunohistochemistry are shown in Section 2.1.2. Cells 

on 8-well glass chamberslides were fixed in 4%PFA for 5 minutes followed by 

2x 10 minute PBS washes. Cells were permeabilised with a 10 minute wash in 

PBSTx and non-specific antibody binding was blocked by incubating slides in 

blocking solution for 1 hour. Primary antibody was diluted in Ab block at 4°C 

overnight. The following day, unbound antibody was washed off with 3x 10 

minute PBS washes and a 10 minute PBSTx wash. Slides were incubated with 

fluor-labelled secondary antibody (1:500) and Dapi (1:5000) in Ab block for 1 
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hour. Unbound secondary antibody was then washed off with 3x 10 minute PBS 

washes and mounted using Citifluor (Citifluor Ltd.). 

 

2.4.4. Frozen section histology and immunofuorescence 

Sections of the DG, SVZ, or OB on Superfrost+ slides were incubated in PBS at 

37°C for 45mins to wash away the gelatine. Sections were then fixed with 4% 

PFA for 10 mins followed by by 2x 10 minute PBS washes. Cells were 

permeabilised with a 10 minute wash in PBSTx and non-specific antibody 

binding was blocked by incubating slides in blocking solution for 1 hour. Primary 

antibody was diluted in Ab block at 4°C overnight. The following day, unbound 

antibody was washed off with 3x 10 minute PBS washes and 2x 10 minute 

PBSTx wash. Slides were incubated with fluor-labelled secondary antibody 

(1:200) and Dapi (1:5000) in Ab block for 1 hour. Unbound secondary antibody 

was then washed off with 3x PBS washes and slides were mounted using 

Citifluor. For BrdU, Ki67 and PCNA detection, tissue sections were antigen-

retrieved with 2N HCl for 15 mins at 37°C prior to blocking sections. Acid was 

then neutralised with 2x 5 minute washes in 0.1M borate buffer pH 8.5. 

 

2.4.5. Section in situ hybridisation 

RNA in situ hybridisation and riboprobe synthesis were performed as described 

previously [363]. Briefly, Digoxigenin-labelled anti-sense and sense riboprobes 

of Er81 were synthesised from a plasmid preparation as shown in Section 
2.3.14 and Section 2.3.15. Er81 plasmid was linearised with SpeI and probe 

was synthesised using T7. Chd7 was synthesised from PCR reaction. Probe 

synthesis from PCR reaction is shown in Section 2.4.6. 

All reagents used for in situ hybridisation on tissue sections are shown in 

Section 2.1.4. All section in situ hybridisations were performed on wax section. 

Sections were rehydrated in a coplin jar through a series of xylene and ethanol 

washes: 3x3 minute washes in xylene followed by 2x2 minute washes in 100% 
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ethanol, 95% ethanol and 70% ethanol in water, then rinsed twice in water. 

Sections were then fixed in 4% PFA for 10 minutes at room temperature, then 

rinsed for 5 minutes in PBS. To permeabilise cell membranes, slides were 

washed for 10 minutes at 37°C in 50ml PBS with 50µl proteinase K. Slides were 

then rinsed again in PBS followed by incubation with acetylation solution for 10 

minutes to minimise background. Following acetylation, slides were washed 3 

times for 5 minutes each in PBS, then dehydrated through 70% and 95% 

ethanol washes before being left to air dry. Meanwhile, the chosen probe was 

added to hyb at a concentration of 1µg/ml, and then heated at 80°C for at least 

two minutes. Following dehydration, slides were transferred into a preheated 

humid (50% formamide / water solution) chamber. Once in the chamber, 300µl 

of probe/hyb solution was added to each slide and the slide was covered with 

parafilm. Hybridisation was performed at 65°C overnight. 

The following day, slides were washed in 5xSSC solution to gently float off the 

parafilm coverslips. Slides were then washed for 30 minutes at 65°C in a high 

stringency wash to ensure that all the unbound or weakly bound probe was 

washed off the sections. Slides were washed 3 times for 10 minutes in RNase 

buffer at 37°C before undergoing a 30 minute wash in RNase A in RNase buffer 

(100µl of enzyme in 50 ml of buffer) at 37°C, to digest any unbound RNA. 

Slides were washed one last time in RNase buffer at 37°C for 15 minutes 

followed by two high stringency washes at 65°C for 20 minutes. Sides were 

then washed in 2xSSC and 0.1xSSC for 15 minutes at 37°C and a PBSTw 

wash for 15 minutes. Any non-specific antibody binding was then blocked by 

incubating slides in blocking solution (10% heat inactivated goat serum in 

PBSTw) for one hour at room temperature. Blocking solution was then replaced 

with antibody solution (anti-digoxigenin-AP diluted 1/5000 in 1% heat 

inactivated goat serum in PBSTw) and left overnight at 4°C.  

After antibody incubation, slides were washed 4 times in PBSTw for 15 minutes 

each to ensure any unbound antibody was washed away.  The slides were then 

washed in NTMT. Slides were then stained in BM purple with 25ng/ml 
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levamisole to minimise background staining. Slides were stained at room 

temperature in the dark until any signal was detected 

Once sections were adequately stained, the BM purple was removed and slides 

were washed twice in PBS, fixed briefly in 4% PFA, then rinsed once more in 

PBS, before counterstaining in 20% nuclear fast red solution for 10 minutes.  

Finally, sections were dehydrated through a series of brief ethanol washes 

(2x70%, 95% and 100%), and washed 3 times for 3 minutes in Xylene before 

mounting with DPX. 

 

2.4.6. Probe synthesis from PCR reaction 

PCR reactions were carried out using a FastStart Taq DNA polymerase kit 

(Promega) according to the manufacturer's recommendations. PCR reactions 

were carried out in 20µl reactions using Promega reagents using the mix 

described in Section 2.1.3. 

All samples were amplified using the following program: 

95oC for 10 minutes 

40 cycles of:  94oC for 45 seconds 

55oC for 45 seconds 

72oC for 1 minute 

Followed by 72oC for 7 minutes. 

 

PCR product was then purified using a QiaQuick PCR purification kit (Qiagen) 

according to the manufacturer's recommendations. Probe was then synthesised 

using the reaction mix detailed in Section 2.1.3. The probe synthesis mix was 

left for 2 hours at 37°C. 1µl of the mix was then removed and resolved on a 

1.5% agarose gel to check for an RNA band, and to estimate the concentration 

of the probe against the DNA ladder. If an RNA band was observed, 2µl of 
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DNase I was added to the remaining mix, and the reaction left at 37°C for 15 

minutes in order to digest any DNA still present. Finally, the probe was purified 

by spinning down the solution in SigmaSpin post-reaction Cleanup columns 

(Sigma) according to the manufacturer's recommendations. 

For Chd7, primer sequences span exon 3 and are as follows: 

Chd7 forward - 5' TTGGTAAAGATGACTTCCCTGGTG 3' 

Chd7 reverse - 5' ATTGTAATACGACTCACTATAGGGGTTTTG 3' 

Probe was synthesised using T7 polymerase. 

 

2.4.7. RNA isolation and RT-qPCR 

RNA extraction from approximately 1x106 foetal-derived NSCs was done  with 

Trizol (Invitrogen) according to the manufacturer’s suggested modifications, by 

the addition of ultrapure glycogen (Invitrogen), and prepared for RT-qPCR 

analysis as in Section 2.3.16. 

First-strand complementary DNA was synthesised from 4 μl (200 ng) of RNA 

using the  Precision Nanoscript Reverse Transcriptase kit (PrimerDesign) 

according to manufacturer's recommendations. RT-qPCR was performed on a 

Stratagene Mx3000p Real Time PCR machine (Aglient Technologies), with 

Precision 2 x real-time PCR MasterMix (PrimerDesign) using primers against 

Er81, Hes5, Chd7, Stk25, Prkca, Nrarp, Wnt9a, Cd24a, Ring1, Chd4, Bcan, 

Reln, Smarca2, NeuroD2, Spred1, Trp53, Arid1b, and Gapdh as a 

housekeeping control. Primer sequences are shown in Table 3. 

All reactions for RT-qPCR were performed using the following thermal cycler 

conditions: 95 °C for 10 minutes, 40 cycles of a two-step reaction, denaturation 

at 95 °C for 15 seconds, annealing at 60 °C for 1 minute, followed by a 50°C 

step for 30 seconds at the end. Unless otherwise stated, data are from two 

separate reactions performed in duplicate. 
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Target Forward primer (5'-3') Reverse primer (5'-3') 
Er81 TCCATACCAGACAGCACCTAC GTCGGCAAAGGAGGAAAAGAA 
Hes5 AGTCCCAAGGAGAAAAACCGA GCTGTGTTTCAGGTAGCTGAC 
Chd7 TCACCAGCCTTGGGCACAACTC TAGCTGAGCGTTCTGTGCGCTG 
Stk25 ATATCACCCGCTACTTCGGCT GGTGGCAATATAGGTCTCTTCCA 
Prkca AGAGGTGCCATGAGTTCGTTA GGCTTCCGTATGTGTGGATTTT 
Nrarp TTCAACGTGAACTCGTTCGGG TTGCCGTCGATGACTGACTG 
Wnt9a TACAGCAGCAAGTTTGTCAAGG ATTTGCAAGTGGTTTCCACTCC 
Cd24a CTTCTGGCACTGCTCCTACC GGTAGCGTTACTTGGATTTGGG 
Ring1 TCTGCCTGGACATGCTGAAG CGTAGGGACCGCTTGGATAC 
Chd4 GAGGAGGATATGGACGCACTTC TGAGCTTTGGAGTCTCTGCTTC 
Bcan TCTGGAAGAACTGTCCTGGC CTCCTCCAAGCATGTCCCAC 
Reln TTACTCGCACCTTGCTGAAAT CAGTTGCTGGTAGGAGTCAAAG 
Smarca2 TCACGGACGGGTCTGAGAAA CCCAGGTGTTCAGCAAAGG 
NeuroD2 CTCGCATGGCGCTCTGAAG GAACAGGCGGGTCAGCATGG 
Spred1 GAGATGACTCAAGTGGTGGATG TCTGAAAGGTAAGGCCAAACTTC 
Trp53 GCGTAAACGCTTCGAGATGTT TTTTTATGGCGGGAAGTAGACTG 
Arid1b CAACAAAGGAGTCACCCGGC CCCATCCCATACAACTGAGGTC 
Gapdh AGGTCGGTGTGAACGGATTTG TGTAGACCATGTAGTTGAGGTCA 

Table 3 - RT-qPCR primer sequences 

 

2.4.8. In vivo activation of Cre recombinase 

Unless otherwise stated, adult mice were given one I.P. injection of 120µl of 

20mg/ml tamoxifen (Sigma) diluted in corn oil (Sigma) daily for 5 days. 

 

2.4.9. NSC in vivo cell division analysis 

For analysing SVZ or SGZ proliferation, animals were given one I.P. injection of 

BrdU (Sigma) dissolved in isotonic saline (0.9% NaCl) at a concentration of 

75mg/kg. For the analysis of new cell formation, animals were administered 

BrdU in their drinking water for 3 weeks at a concentration of 1mg/ml, 

supplemented with 5% sucrose. 
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2.4.10. Analysis of NSCs and their progeny 

In vitro cultures of foetal-derived NSCs were stained with antibodies to 

determine their stage of differentiation from immature neuron (DCX+) to mature 

neuron (MAP2+). The number of DCX+ or MAP2+ cells was counted per field of 

view and the percentage of cells positive for each marker was calculated by 

counting the total number of cells (Dapi+) per field of view. A minimum of 4 fields 

of view were counted at 20x magnification per culture. A minimum of 1000 cells 

were counted per culture. Each experiment was performed twice with duplicate 

cultures. 

The number of BrdU+, DCX+, PCNA+, Sox2+, CHD7+, GFAP+ or MASH1+ cells 

per dentate gyrus section was calculated by counting the number of cells on 

each dentate gyrus on a minimum of 10 sections at least 40µm apart from the 

anterior to posterior DG. The number of animals used is shown by each 

experiment. The total number of cells per dentate gyrus was then averaged. 

The number of BrdU+, PCNA+, or DCX+ cells in the subventricular zone was 

calculated by counting the number of cells on each SVZ on a minimum of 10 

sections at least 40µm apart from the anterior SVZ. The number of animals 

used is shown by each experiment. The total number of cells per SVZ was then 

averaged. 

The number of TH+, CalR+, or CalB+ cells in the olfactory bulb was calculated by 

counting the number of cells in several 10,000µm2 areas throughout the 

glomerular layer. A minimum of 6 areas were counted per OB for a minimum of 

8 sections at least 40µm apart in the bulk of the OB. The number of animals 

used is shown by each experiment. The total number of cells per defined area 

in the OB was then averaged. 

For analysis of OB sizes, pictures of the forebrain and OB of Chd7gt/+ and WT 

mice were taken after perfusion fixing and prior to preparation for embedding. 

Measurements were then performed using Adobe Photoshop CS5 software. 
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2.4.11. Antibodies and reagents 

The antibodies used are as follows: rat anti-BrdU (1/50, Abcam), mouse anti-

Ki67 (1/50, Abcam), mouse anti-PCNA (1/200, Abcam), mouse anti-Sox2 

(1/800, Abcam), rabbit anti-Chd7 (1/80, Abcam), rabbit anti-tyrosine 

hydroxylase (1/1000, Abcam), rabbit anti-GFAP (1/500, Sigma), mouse anti-

GFAP (1/1000, Abcam), mouse anti-MASH1 (1/200, BD Biosciences), rabbit 

anti-DCX (1/500, Abcam), mouse anti-NeuN (1/100, Chemicon), goat anti-

Calretinin (1/5000, Chemicon), rabbit anti-Calbindin (1/2000 Swant), rabbit anti-

GFP (1/200, Invitrogen), mouse anti-PSA-NCAM (1/100, Sigma). The 

corresponding species-specific Alexa-conjugated (488, 568, 647) secondary 

antibodies (Invitrogen) were used at 1:200 for immunohistochemistry on tissue 

sections and 1:500 for immunohistochemistry on cultured cells. Dapi (Sigma) 

was used at 1:5000. 

 

2.4.12. Genotyping 

All genotyping was performed as in Section 2.3.18. Details of all primer 

sequences and the sizes of products produced from PCR amplification can be 

found in Table 4. 
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Gene of interest Primers 

Cre 

Primer A: CCTGGAAAATGCTTCTGTCCG 

Primer B: CAGGGTGTTATAAGCAATCCC 

 

Cre: Primer pair A+B = 390bp 

Wildtype: No product 

 

Chd7gt 

Primer A: CAGGAGAAGAAAGGGTTCCTG 

Primer B: GGCAGGTCCTTCATTGGA 

Primer C: TTTCCCAGTCACGACGTTG 

 

Chd7gt: Primer pair B+C = 1000bp 

Wildtype: Primer pair A+B - 280bp 

 

Chd7flox 

Primer A: GAAGGAGAAGAAAGAGCCCAAGAC 

Primer B: TGAGTTACGGAGAGAACCAAGCAC 

 

Chd7flox : Primer pair A+B - 392bp 

Wildtype: Primer pair A+B - 423bp 

 

RYFP 

Primer A: GCGAGGAGGCGCTCCCAGGTTCCG 

Primer B: CTTTAAGCCTGCCCAGAAGACTCC 

Primer C: GAGGCAGGAAGCACTTGCTCTCC 

Primer D: CATCAAGGAAACCCTGGACTACTG 

 

RYFP : Primer pair C+D =300bp 

Wildtype: Primer pair A+B = 500 bp 

 

Table 4 - Details of PCR primers 2 
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2.4.14. Image processing 

All images were processed using NIS Elements Viewer 4.0 and Adobe 

Photoshop CS5 software. 

 

2.4.15. Statistics and data 

Unless otherwise stated, all data are represented as mean ± s.e.m.; *P < 0.05 

**P<0.01 ***P<0.001, student's t-test. For multiple comparisons, analysis of 

variance with Bonferroni’s multiple-comparison post hoc test was used. 



   

 

113 
 

 

 

 

Chapter 3 

 

Results Part I



3: Results Part I   

 

114 
 

3.1. Skeletal muscle and ageing 

Under normal homeostatic conditions, SCs are completely quiescent [35]. 

However, in response to muscle damage they are capable of rapidly activating 

and proliferating to generate myoblasts [182]. Myoblasts cycle quickly and are 

able to fuse with each other to form new myotubes [182]. Nascent myotubes 

mature into new myofibres to regenerate damaged muscle [182]. Pax7+ SCs 

are essential for the response to skeletal muscle injury and efficient 

regeneration [58, 59, 61]. In addition, SCs are capable of extensive self-renewal 

to retain a stem cell pool, with the ability to undergo the regenerative response 

upon successive myotraumas [53, 54]. However as ageing progresses, the 

regenerative ability of skeletal muscle declines due, at least in part, to impaired 

SC function (see Figure 4) [146, 147]. Activation of aged SCs is delayed in 

response to injury compared with their young counterparts, and their 

proliferative potential is reduced [159, 160]. Thus, aged SCs are less able to 

generate myoblast progeny. In addition, the differentiation capacity of aged SCs 

and their progeny is reduced, with cells fusing to form thinner myotubes which 

are delayed in upregulating mature fibre markers [150, 155, 166]. Furthermore, 

the self-renewal potential of aged SCs may be reduced, leading to further 

declines in regenerative capability following subsequent injuries [153, 155, 156]. 

These changes lead to a loss of skeletal muscle mass and age-associated 

sarcopenia, resulting in impaired skeletal muscle function in aged animals [146]. 

Whether the number of SCs declines with age is still somewhat controversial, 

with studies documenting increased and decreased numbers of SCs depending 

on the species, muscle, and technique of observation [146]. However, it is 

generally accepted that the number of Pax7+ SCs present in skeletal muscle 

undergoes a notable decline in ageing under homeostatic conditions [149-151]. 

Across different species and organ systems the stem cell niche has a critical 

role in the maintenance of stem cell number and function. In invertebrates, age 

associated changes in the niche have been shown to cause a decline in stem 

cell number and function [167, 168]. In mammals, the stem cell niche is a critical 



3: Results Part I   

 

115 
 

factor in the maintenance of quiescence, a reversible state of growth arrest 

crucial to the preservation of adult stem cell number and function [20, 366]. 

Changing the aged SC niche can partly restore the proliferation and 

differentiation of aged SCs. For example, exposure to a young systemic 

environment promotes the proliferative expansion and myogenic progression of 

aged SCs in regenerative conditions [10, 148, 150, 164, 169]. Manipulation of 

growth factors and signalling pathways, such as Wnt signalling and Notch 

signalling, can also aid the regeneration of aged skeletal muscle [130, 164, 

174]. The signalling cascades responsible for the decline in SC function in 

regenerating aged muscle have been intensively investigated, yet, in contrast, 

the mechanisms driving SC depletion under homeostatic conditions with age 

remain unknown. 

The following experiments were conducted to investigate how age-associated 

changes in the niche impact SC number and function under homeostatic 

conditions: 

1. Numbers of SCs present in skeletal muscle were determined in adult and 

aged animals and their function was assessed using an in vitro fate 

assay. 

2. The cycling status of SCs was determined in adult and aged animals with 

5-bromo-2'-deoxyuridine (BrdU) studies to determine if impaired function 

could be due to altered quiescence. 

3. Age-associated changes in the SC niche were investigated through the 

use of a purified myofibre extract (PME) in combination with in vitro 

quiescence assays. 

4. The possibility that deregulated FGF expression from the niche was 

responsible for skeletal muscle ageing was investigated through the use 

of pharmalocogical and genetic inhibitors of FGF signalling in 

combination with PME and in vitro quiescence assays. 
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3.1.1. Satellite cells display a decline in number and function in aged 
skeletal muscle 

To first determine if there was any change in the SC pool with age, TA sections 

of adult (3-8 months old) and aged (24-28 months old) mice were stained with 

antibodies raised against the SC marker, Pax7, and laminin to mark the basal 

lamina (Figure 15a). SCs were identified as Pax7+ cells outside of the myofibre 

but underneath the basal lamina (Figure 15a). The number of Pax7+ SCs per 

section was reduced by almost 50% in aged skeletal muscle compared to adults 

(Figure 15b). The reduction in SC number was also confirmed by isolating 

single muscle fibres from EDL muscle and staining them with antibodies raised 

against Pax7 (Figure 15c). As a further method of confirmation, SCs from aged 

and adult skeletal muscle were FACS-isolated (Figure 15d). Cells were 

positively selected for VCAM-1 and α7-integrin, and negatively selected for 

CD31, CD45, and propidium iodide (PI) to remove endothelial cells, immune 

cells, and dead cells respectively (Figure 15d). This sorting method allowed for 

the isolation of a 95% pure population of Pax7+ SCs, which were all quiescent 

(Ki67-), after staining for Pax7 and Ki67 immediately after sorting (Figure 15e,f 
and data not shown). FACS profiles of VCAM-1+, α7-integrin+, CD31/45-, PI- 

events showed that the percentage of SCs present in aged skeletal muscle was 

reduced by 50% compared to adult (Figure 15d,g). Furthermore, RT-qPCR 

analysis for the expression of Pax7 revealed no difference in aged compared to 

adult FACS-isolated SCs, showing that a reduction in the number of Pax7+ cells 

is not due to a decrease in levels of Pax7 transcript in aged cells (Figure 15h). 

SCs in aged skeletal muscle display impaired regenerative capability [147]. To 

determine the exact cell-autonomous changes in SC function a fate assay was 

performed. FACS-isolated SCs were plated at clonal density in culture 

(DMEM+10%HS) and then stained with antibodies to determine self-renewal 

potential (Pax7), differentiation (MyoG), and apoptosis (cleaved caspase 3; 

aCasp) (Figure 15i). After four days in culture, aged SCs tended to lose 

markers of self-renewal potential (Figure 15j) as the percentage of Pax7+ cells 
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was decreased, and instead became more prone to differentiate (Figure 15k) 

and apoptose (Figure 15l). 

Collectively, these data show that the number of SCs is decreased with age and 

the few that remain display a loss of self-renewal potential and increased 

tendency to differentiate or apoptose. 
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Figure 15 - The number of satellite cells declines in aged skeletal muscle and their 
function is impaired. a, Representative image of Pax7 (white), laminin (green) and Dapi (blue) 

staining of 10µm thick skeletal muscle cross-sections (scale bar, 50µm). b, Quantification of the 

number of Pax7+ cells / muscle cross-section averaged from 30 cross-sections / mouse (n=5-6 

animals / age group). c, Quantification of the number of Pax7+ cells / single muscle fibre from 

adult and aged skeletal muscle. 20-30 single muscle fibres / animal (n=5-6 animals / age 

group). d, FACS profiles for the isolation of purified SCs from adult and aged muscle. Cells were 

positively selected for VCAM-1 and α7-integrin and negatively selected for CD31, CD45 and 

propidium iodide (PI). Note the decrease in double-positive cells in aged muscle compared to 

adult muscle (far right panels). e, Representative image of freshly isolated SCs obtained by 

FACS, plated, immediately fixed and immunostained for Pax7 and Dapi. Scale bar, 20µm. f, 
Quantification of the percentage of Pax7+ cells from the selected gate. Note ~95% of sorted 

SCs from both adult and aged skeletal muscle are Pax7+ (100% were Myogenin-negative). g, 
Relative proportion of SCs sorted from live (PI-) cells derived from adult and aged muscles. h, 
RT-qPCR analysis for the expression of Pax7 in aged relative to adult sorted SCs. i, 

Representative images of sorted SCs cultured for 4 days and stained with anti-Pax7, MyoG, 

MyoD, and cleaved caspase 3 (aCasp). j, Quantification of the percentage of Pax7+, MyoG+ (k) 

and cleaved caspase 3+ (aCasp; l) adult (Ad) and aged (Ag) cells after 4 days in culture. 21–28 

clonal density cultures were examined per condition, performed in triplicate. Scale bar, 20µm. 

All individual experiments were performed in triplicate. All data represented as mean ±s.e.m.; 

*P<0.05 student's t test. 
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3.1.2. Aged satellite cells cycle more frequently during homeostasis 

Preservation of the quiescent state is a fundamental process that maintains the 

number and function of self-renewing stem cells [367]. Loss of stem cell 

quiescence has been shown to cause a decline in stem cell number and impair 

stem cell function in many systems, including somatic NSCs [252, 259, 260]. 

Therefore, having shown that there is a depletion of the SC pool with age (see 

Figure 15), I sought to investigate whether the cycling status of SCs was 

altered in aged animals under homeostatic conditions. To determine if SC 

quiescence was disrupted under homeostatic conditions during ageing, BrdU 

was administered in the drinking water of adult and aged mice to label 

proliferating cells (Figure 16a). After 6 weeks of BrdU administration, SCs were 

FACS-isolated and immediately fixed and stained with antibodies raised against 

BrdU and Pax7 (Figure 16a). The percentage of aged SCs that were BrdU+ 

was nearly 3-fold greater compared to adult SCs. To further confirm this, 

sections of TA muscle from adult and aged animals were stained with 

antibodies raised against Pax7, laminin, and Ki67 to determine the number of 

SCs that had exited quiescence (Figure 16c). The percentage of Ki67+ SCs 

was increased 4-fold in aged animals compared to adults (Figure 16d), 

therefore showing that aged SCs lose their ability to retain a quiescent state in 

vivo.  

 



3: Results Part I   

 

121 
 

 

Figure 16 - Aged satellite cells cycle more frequently during homeostasis. a, BrdU feeding 

schematic and representative images of freshly isolated SCs obtained by FACS after 6 weeks 

of BrdU feeding, immediately fixed and immunostained for Pax7 and BrdU (Dapi in merge). b, 

Quantification of the percentage of BrdU+ SCs immediately after plating. 300-600 cells were 

assessed per experiment, performed in triplicate. n=4-6 animals / age group. c, Representative 

images of sections from aged muscle stained with anti-Pax7 (red in merge) and Ki67 (green in 

merge; Dapi, blue, in merge) showing a Pax7+Ki67- cell (top panel) and a Pax7+Ki67+ cell 

(bottom panel). d, Quantification of the percentage of Ki67+ Pax7+ SCs per section (n = 4-6 

animals per age group). All scale bars, 20µm. All data represented as mean ±s.e.m.; *P<0.05 

student's t test. 

  



3: Results Part I   

 

122 
 

3.2. Formation of a purified myofibre extract to determine age-
associated changes in the satellite cell myofibre niche 

The stem cell niche is essential for quiescence and maintenance of the stem 

cell pool [168, 366]. Skeletal muscle stem cells are located along the length of 

the muscle fibre in close contact with the fibre and basal lamina. The 

association of SCs with a healthy mature muscle fibre is of vital importance to 

maintain adult SCs in a relatively quiescent state during homeostasis [128].  

Hence, the differentiated progeny of SCs, the muscle fibre, functions as a niche 

cell for its own stem cell. To determine if changes in the niche of the SC with 

age account for loss of quiescence under homeostatic conditions and a decline 

in function, all soluble fractions produced by the muscle fibre were extracted 

(purified myofibre extract; PME). Firstly, skeletal muscle of adult and aged mice 

was digested and all contaminating mononucleated cells, including interstitial 

cells and fibroblasts, were washed away. After this step, the presence of any 

contaminating mononuclear cells in the fibre fraction were rare compared to the 

fraction of mononucleated cells that were excluded (Figure 17a-d), showing 

that the myofibre fraction was pure. Purified myofibres were then incubated in a 

high-salt protein extraction buffer (see Section 2.3.3.) to extract all soluble 

components of the niche. 

 



3: Results Part I   

 

123 
 

 

Figure 17 - Purified myofibre extract represents soluble fractions from skeletal muscle 
fibres. a, Representative image from the contents of the fibre fraction or the mononucleated 

fraction (b) of PME prior to the extraction of soluble fractions. Merge of brightfield and Dapi 

shown. Note very few mononucleated cells were present in the fibre fraction, and very few fibre 

fragments were present in the mononucleated fraction. Scale bars, 100µm. c, Quantification of 

the number of mononucleated cells present in the fibre fraction and the mononucleated fraction 

(d). Note that there are over 100-fold fewer mononucleated cells in the fibre fraction than the 

mononucleated fraction, showing efficient removal of contaminating cells. n=1000 cells per 

condition. Data are from 3 experiments conducted in triplicate. All data represented as mean ± 

s.e.m. 
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3.3. Aged purified myofibre extract induces quiescent satellite 
cells to cycle 

To identify if any soluble muscle-derived factors signal to SCs, PME was 

incubated with sorted SCs in basal media (DMEM+5%HS) for 48 hours and 

assayed for cell cycle entry (Figure 18a,b). In comparison with adult PME, aged 

PME increased the fraction of adult and aged quiescent cells that began to 

cycle (Figure 18c), suggesting that there are pro-mitogenic factor(s) in the aged 

fibre which are absent in the adult fibre. 

Under differentiation conditions in vivo (DMEM+3%HS) myoblasts fuse to form 

myotubes, however, some myoblasts retain Pax7 expression and enter a 

quiescent state and these are termed reserve cells (RSCs) [182]. RSCs are an 

in vitro model of reversible SC quiescence [182]. To further confirm that aged 

PME induces a loss of quiescence, PME was incubated with RSCs and cells 

were assayed for cell cycle entry (Figure 18d,e). Like in sorted SCs, aged 

PME, but not adult PME, caused the loss of RSC quiescence (Figure 18f) and 

did not affect apoptosis (Figure 18g). In contrast to aged PME, aged serum did 

not induce cell cycle entry (Figure 18h) whereas adult serum did, in agreement 

with previous findings on the effect of adult and aged systemic system on SC 

activation [10].  

Adult and aged mononuclear extract caused the activation of RSCs (Figure18i). 
However, in adult and aged PME there are roughly 2.5 contaminating 

mononuclear cells / µl PME (see Figure 17c). When adult and aged 

mononuclear extract was diluted to a level close to what is present in the 

contaminating PME fraction it had no effect on RSC quiescence (Figure 18i), 
further showing the purity of adult and aged PME.  

Collectively, these results demonstrate that the proliferative activity of SCs is 

induced by aged muscle fibre-derived factors. 
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Figure 18 - The aged niche induces the loss of satellite cell quiescence. a, Strategy to 

assess the mitogenic activity of PMEs with sorted SCs. Adult and aged PME was incubated with 

adult and aged sorted SCs for 48 hours prior to analysing cell cycle entry. b, Representative 

image of an activated SC stained for anti-Pax7, Ki67 and Dapi. Scale bar, 10µm. c, 

Quantification of the percentage of cycling (Ki67+) adult and aged SCs incubated with vehicle 

control (V), adult PME (Ad) or aged PME (Ag). d, Schematic of the experimental strategy to 

assess cycling reserve cells (RSCs) after exposure to adult or aged PME. PMEs were incubated 

with RSCs for 24 hours in basal media (DMEM+3%HS). e, Representative image of RSCs 

stained with anti-Pax7, Ki67 and Dapi. Scale bar, 100µm. f, Quantification of the percentage of 

cycling (Ki67+) RSCs incubated with vehicle control (V), adult PME (Ad) or aged PME (Ag). g, 

Quantification of the percentage of RSC apoptosis (aCasp+) after exposure to vehicle control 

(V), adult PME (Ad) or aged PME (Ag). Note apoptosis is less than 1% under all conditions. h, 

Quantification of the percentage of cycling RSCs after exposure to negligible amounts of serum 

(V, less than 3%), 10% horse serum (Horse), adult (Ad) and aged (Ag) serum directly isolated 

from mice. Note both 10%HS and adult serum can induce RSCs into cycle whereas aged serum 

is less effective. i, Quantification of the percentage of cycling RSCs after exposure to vehicle 

control (V), adult (Ad), or aged (Ag) mononuclear cell protein extract at a 20µg/ml concentration 

or diluted to contaminating concentrations found in adult and aged PMEs. Note no significant 

difference in the ability of diluted Ad and Ag mononucleated protein extract to induce RSCs into 

cycle. For all experiments, n=500-1000 cells per condition conducted in triplicate. All data 

represented as mean ± s.e.m.; *P<0.05 student's t test. 
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3.3.1. FGF2 is sufficient to drive satellite cells to cycle 

Members of the FGF family of ligands are well-characterised growth factors that 

are known to possess potent SC mitogenic activity (see Section 1.4.3.3. and 

Figure 2). In particular, FGF2 can effectively drive cycling of myogenic 

precursors [100-102]. FGF2 induced SCs on isolated single muscle fibres to 

cycle in a dose dependent manner (Figure 19a) and had a similar effect on 

RSCs (Figure 19b). Addition of FGF2 to sorted adult and aged SCs in basal 

media caused them to lose quiescence (Figure 19c). Furthermore, addition of 

FGF2 to adult PME caused isolated SCs and RSCs to cycle (Figure 19d,e). To 

further demonstrate the sensitivity of the quiescence assay and the potent 

mitogenic capabilities of FGF2, adult and aged sorted SCs were incubated with 

FGF2 or vehicle control for 24, 48, or 72 hours and then assayed for cell cycle 

entry. At 24 and 48 hour time points, SCs in basal media were relatively 

quiescent in the absence of FGF2, and aged and adult SCs lost quiescence in 

response to FGF2 addition (Figure 19f). At a 72 hour time point, many SCs 

were cycling, yet FGF2 still increased the number of cycling SCs (Figure 19f). 
These data show that sorted SCs are relatively quiescent in basal media up to 

48 hours after isolation, and FGF2 can cause a loss of quiescence in a dose-

dependent manner. 
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Figure 19 - FGF2 acts as a potent mitogen to induce satellite cells to cycle in a dose-
dependent manner. a, Quantification of the percentage of cycling SCs (Ki67+) on isolated 

single muscle fibres. Fibres were incubated with different concentrations of FGF2 in basal 

media (DMEM+5%HS) for 24 hours and stained for anti-Pax7 and Ki67. n=30 fibres per 

condition. b, Quantification of the percentage of cycling RSCs after incubation with different 

concentrations of FGF2 in basal media (DMEM+3%HS) for 24 hours. n=500 cells performed in 

triplicate. c, Quantification of the percentage of aged and adult sorted SCs cycling after addition 

of 40ng/ml FGF2 for 48 hours of culture in basal media (DMEM+5%HS). n =300 cells performed 

in triplicate. d, Quantification of the percentage of cycling sorted SCs and RSCs (e) after 

exposure to Ad PME with or without prior treatment with 40ng/ml FGF2. Note addition of FGF2 

to Ad PME caused the cycling of SCs and RSCs, whereas Ad PME on its own did not. n= 1000 

cells / condition performed in triplicate. f, Quantification of the proportion of cycling sorted SCs 

cultured in basal media (DMEM+5%HS) with or without incubation with 100ng/ml FGF2 for 24, 

48 and 72 hours. Data are from 2 experiments conducted in triplicate. n=1000 cells / 

experiment. All data represented as mean ± s.e.m.; *P<0.05 student's t test. 
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3.3.2. FGF2 is upregulated in aged skeletal muscle fibres 

To determine if FGF2 is a niche-derived factor which is upregulated in ageing, 

RNA from purified single skeletal muscle fibres from adult and aged mice was 

extracted  and changes in the expression of Fgf ligands were determined by a 

targeted growth factor array. The expression of Fgf1,2,6,13 and 18 was altered 

in aged muscle fibres compared to adult fibres (Figure 20a). Of these, Fgf2 had 

the greatest fold change, being upregulated between 1.5 and 2 fold (Figure 
20a). An increase in the expression of Fgf2 was confirmed by RT-qPCR (Figure 
20b). Furthermore, in situ hybridisation of an anti-sense probe to Fgf2 on 

isolated adult and aged single fibres showed large areas, or 'hotspots', of Fgf2 

expression along the length of aged fibres which were not present in adult fibres 

(Figure 20c,d). Performing immunohistochemistry for Pax7 after in situ 

hybridisation using an anti-sense Fgf2 probe showed that many of these Fgf2 

'hotspots' were close to, but unlikely to be produced by, SCs (Figure 20e). 

To determine if the expression of Fgf2 is altered in aged myofibres compared to 

adult, RT-qPCR for Fgf2 was performed on purified myofibres prior to extracting 

the soluble fraction. Fgf2 was upregulated approximately 2-fold in aged PME 

compared to adult PME (Figure 20f). 

To determine if FGF2 protein was upregulated in aged PME, fibre fragments 

obtained to generate PMEs were immunostained for Pax7 and FGF2 (Figure 
21a). A greater number of aged fibre fragments expressed FGF2 protein 

(Figure 21b), and FGF2 could be seen close to Pax7+ SCs (Figure 21a). 

Interestingly, the number of mononucleated cells expressing FGF2 in the 

mononucleated fraction was slightly decreased (Figure 21c,d). Although this 

was not significant, it argues against an increase in FGF2 outside of the 

myofibre being responsible for a loss of SC quiescence under homeostatic 

conditions. 

To determine if FGF2 increased in aged skeletal muscle under homeostatic 

conditions, adult and aged TA sections were stained with antibodies raised 

against FGF2 and the number of FGF2+ areas were counted. Even though no 

Fgf2 'hotspots' were found on adult single fibres by in situ hybridisation, FGF2+ 
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areas were found associated with adult skeletal muscle by immunostain (Figure 
21e). This suggests that either the FGF2 antibody is more sensitive than the 

Fgf2 anti-sense probe, or alternatively it may indicate a degree of non-specific 

antibody binding. Regardless, aged skeletal muscle displayed a 2-fold increase 

in the number of FGF2+ areas associated with muscle fibres (Figure 21e,f). 
Interestingly, the number of interstitial FGF2+ areas was decreased, further 

arguing against an increase in FGF2 expression outside of the myofibre causing 

a loss of SC quiescence. To determine if the areas of FGF2 protein on muscle 

fibres were close to SCs, adult and aged TA sections were stained with 

antibodies raised against FGF2, Pax7, and laminin. Of note, FGF2 protein was 

not detected on SCs (Figure 21f), further suggesting that they do not produce a 

significant amount of FGF2 under homeostatic conditions. However, the 

percentage of SCs found close to a source of FGF2 was increased 2-fold in 

aged skeletal muscle (Figure 21g). 

Together these results show that FGF2 is upregulated in aged skeletal muscle 

under homeostatic conditions and that the aged SC niche, the muscle fibre, is 

the principal source of FGF2. 
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Figure 20 - Expression of Fgf2 from the muscle fibre increases in aged skeletal muscle. a, 

Table of expression for 17 different FGF ligands from aged relative to adult isolated single 

muscle fibres (Fold A/Ad) from duplicate RT-qPCR based array kits (SAbiosciences). N.A. (not 

attained) designates whereby Cq values were greater than controls provided by the kit. b, 
Quantification of Fgf2 expression in aged relative to adult single muscle fibres by RT-qPCR. 

Data are from 3 reactions conducted in triplicate. c, Representative images of Fgf2 in situ 

hybridisations on adult and aged single muscle fibres. A sense probe was used as a 

background negative control (lower panel). d, Representative image of Fgf2 in situ hybridisation 

on aged single muscle fibres shows increased Fgf2 (brown) in close proximity to Pax7+ (red) 

SCs. Dapi (blue). Scale bar, 20µm. e, Quantification of the number of Fgf2 'hotspots' along the 

length of single muscle fibres. n>30 fibres / animal, n=3 mice / group. f, Expression of Fgf2 in 

adult and aged fibres obtained to generate PMEs as assessed by RT-qPCR. Note the fold 

difference in Fgf2 expression is similar to that observed for purified single muscle fibres (see 

Figure 20b). Data are from 3 reactions conducted in triplicate. All data represented as mean ± 

s.e.m.; *P<0.05. 
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Figure 21 - Muscle fibre-derived FGF2 increases with age. a, Representative image of aged 

fibres obtained to generate PMEs immunostained for Pax7, FGF2 and Dapi. Merge with 

brightfield. Scale bar, 50µm. Note FGF2 protein close to Pax7+ SCs. b, Quantification of the 

percentage of muscle fibres that contain FGF2+ regions in aged or adult fibres used to generate 

PME. Data are from 3 separate experiments. n=100 fibres / experiment. c, Quantification of 

FGF2+ cells in isolated skeletal muscle mononucleated cells. Note a decrease in the expression 

of FGF2 in aged compared to adult mononucleated compartments. Data are from 3 experiments 

conducted in triplicate. n=1000 cells per condition. d, Representative image of FGF2 expression 

in isolated skeletal muscle mononucleated cells. Scale bar, 100µm. e, Representative 

longitudinal sections of adult and aged skeletal muscle stained with anti-Pax7 (green), laminin 

(white) and FGF2 (red). A white arrow shows a Pax7+ satellite cell close to FGF2 (asterisk). 

Dapi (blue) in merge. f, Quantification of FGF2+ areas in transverse muscle sections showing 

increased muscle fibre-associated, and decreased interstitial-associated, FGF2 in aged muscle 

fibre sections. Note FGF2 protein was not detected (ND) on SCs. n = 5-6 mice / age group. g,  
Quantification of the percentage of SCs near (<20 µm) FGF2+ regions. n = 3 animals / age 

group. All data represented as mean ± s.e.m.; *P<0.05, **P<0.01 student's t test. 
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3.3.3. Induction of aged niche-derived FGF2 disrupts satellite cell 
quiescence 

I have shown that FGF2 is a niche-derived factor which is upregulated in the 

aged SC niche (see Figure 21). Through in vitro assays, I have shown that the 

aged niche can drive the loss of quiescence of SCs (see Figure 18). From 

these data, I hypothesised that FGF2 was the potent mitogenic factor which 

was causing the loss of SC quiescence with age, leading to altered stem cell 

number and function. To test if FGF2 is directly responsible for the loss of SC 

quiescence, I inhibited FGF signalling genetically and by using chemical 

inhibitors, and I also blocked FGF2 activity directly. 

To investigate whether FGF2 is the factor in the aged niche which is causing 

SC activation, myoblasts from mice where both FgfR1 and FgfR2 alleles are 

floxed (FgfR1/2flox/flox) were generated. Myoblasts were then treated with either 

GFP adenovirus (Ctrl) or Cre-GFP adenovirus (FGFR1/2null) to cause a loss of 

FgfR1 and FgfR2 function. RSCs were then generated to determine the effect of 

the loss of FgfR1/2 on RSC quiescence. FgfR2 is not expressed by myoblasts, 

myotubes, or reserve cells (Figure 22a), so any effects seen from FgfR1/2 

deletion is solely due to abrogation of signalling through FGFR1. Deletion of 

FgfR1/2 completely inhibited the proliferative effect of FGF2 and aged PME in 

transfected cells (Figure 22b-d), suggesting that FGFR1 signalling is necessary 

for RSC activation. Furthermore, incubation of adult and aged sorted SCs with 

the FGFR-specific inhibitor, SU5402 (see Figure 2), prior to addition of adult or 

aged PME completely blocked aged-PME-induced stem cell activation (Figure 
22e) and a similar effect was seen in RSCs treated with SU5402 (Figure 22f). 
Notably, incubation with SU5402 did not affect apoptosis (Figure 22g). These 

results show that signalling through FGFR is responsible for the loss of SC 

quiescence in the aged niche. 

To directly test whether FGF2 was responsible for the altered biological activity 

of aged PME, the extract was treated with a blocking antibody against FGF2 

(αFGF2; see Figure 2) prior to incubating it with RSCs or sorted SCs. 

Neutralisation of FGF2 activity prevented aged PME-induced cell cycle entry in 
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RSCs (Figure 22h) and adult (Figure 22i) and aged SCs (Figure 22j).  
Therefore, the increased abundance of soluble muscle-fibre-derived FGF2 in 

aged muscle leads to a loss of quiescence in aged satellite cells. 
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Figure 22 - FGF2 is an aged niche-derived factor that induces satellite cells to cycle. a, 
Expression of FgfR1 and FgfR2 in myoblasts (MyoB), Myotubes (MyoT), and reserve cells 

(RSCs) as assessed by RT-qPCR. Data are from 3 reactions conducted in triplicate. b, 
Quantification of cycling RSCs after adenoviral Cre-mediated deletion of FgfR1 and FgfR2 from 

RSCs (FGFR1/2null) or control adenovirus (Ctrl) and upon  incubation with vehicle (V), 40µm 

FGF2, or adult (Ad) or aged (Ag) PME (c). N.S., Not significant. n=300-600 cells / condition, 4-5 

separate experiments. d, Representative image of myoblasts from FgfR1/2flox/flox mice treated 

with Cre-GFP adenovirus (FGFR1/2null) or GFP adenovirus (Ctrl) and induced to form RSCs. 

Scale bar, 100µm. e, Quantification of the percentage of cycling adult and aged sorted SCs or 

RSCs (f) treated with adult or aged PME and SU5402. n=1000 cells per condition; n=5 animals 

per group. g, Quantification of the percentage of apoptotic RSCs (aCasp+) after incubation with 

SU5402 or FGF2. Note less than 1% of cells undergo apoptosis in all conditions. Data are from 

3 experiments conducted in triplicate. n=500 cells per condition. h, Quantification of the 

percentage of cycling RSCs or adult (i), or aged (j) sorted SCs treated with adult or aged PME 

and FGF2-blocking antibody (αFGF2). n=1000 cells per condition; n=5 animals per group. All 

data represented as mean ± s.e.m.; *P<0.05, student's t test. 
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3.4. Discussion 

I sought to investigate the influence of ageing on the SC niche and its impact on 

stem cell homeostasis. The data presented here identify a specific and 

functionally important change in the molecular composition of the aged stem 

cell niche. These data show that SCs are relatively dormant during 

homeostasis. By contrast, aged SCs become mitotically active, leading to a loss 

of self-renewal potential and this is a likely mechanism causing the eventual 

diminution of the SC pool with age (Figure 23). I have demonstrated that the 

aged SC niche, the muscle fibre, is pro-mitogenic and capable of driving a 

subset of SCs to break quiescence and lose self-renewing capacity under 

homeostatic conditions. I have identified FGF2 as a key niche-derived mitogenic 

factor that is increased in the aged niche. 

Proliferative exhaustion of stem cell populations is marked by the failure to 

maintain quiescence, impaired self-renewal and eventual loss in numbers [367]. 

Loss of SC quiescence under homeostatic conditions was surprising 

considering their proliferative disadvantage in high-mitogen regenerative 

contexts [88]. Instead, it may have been expected that aged SCs would be even 

more quiescent than their adult counterparts. However, in support of a loss of 

quiescence with age, aged HSCs are more active in the aged niche [368, 369]. 

It is tempting to speculate that a consequence of ageing across stem cell niches 

is their inability to retain stem cells in a quiescent state. 

These data are consistent with a key role for a niche-derived factor, FGF2, that 

is low in the adult SC niche and increases during ageing to drive cells out of 

quiescence and contribute to stem cell loss. SCs in the adult niche do not 

proliferate under homeostatic conditions, indicating that there are no pro-

mitogenic factors in the adult niche. Alternatively SCs could be kept quiescent 

through the expression of Spry1, or quiescence-inducing factors such as Ang1 / 

Tie2 signalling [138], or by certain cell-to-cell contacts such as association with 

a healthy myofibre [128]. Aged SCs cycle, suggesting that the aged niche 

induces the loss of stem cell quiescence. Reducing the level of FGFR 

signalling, through deletion of FgfR1/2 and through chemical inhibitors of FGFR 
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and FGF2, altered the degree of cell cycle entry. Therefore, SCs are clearly 

responsive to changes in niche-initiated signalling and altering the level of FGF 

signalling can change stem cell outcome. 

Loss of quiescence is consistent with the impaired function of aged SCs. 

Recent experiments examining the proliferative heterogeneity of SCs has 

uncovered two pools of SCs exist; a quiescent pool (LRC), and a more 

proliferative pool (non-LRC) [124, 127]. The non-LRC SC pool had a decreased 

ability to self-renew and reconstitute the niche after transplantation, whereas the 

LRC pool had an increased tendency to self-renew and were able to generate 

more new myofibres after multiple injuries [124, 127]. These data suggest that 

loss of quiescence can lead to impaired function and a loss of SC number over 

time. 

I have shown that the expression of five Fgfs are altered in ageing (see Figure 
20a). It is possible that the change in the expression of Fgfs other than FGF2 

may account for other aspects of skeletal muscle ageing. For example, in vitro, 

FGF6 slows down the transition to differentiation in myogenic cells [97]. A 

decrease in Fgf6 expression from the myofibre may increase the tendency for 

SCs to prematurely differentiate and contribute to the impaired regenerative 

capability of aged skeletal muscle. It would be interesting to investigate the 

effect of the changes in other Fgf ligands and see how they contribute to 

skeletal muscle ageing alone and in combination with other changes.  

The systemic environment plays a significant role in SC proliferation in vitro and 

during repair. The young systemic environment stimulates SC proliferation, 

whereas the aged systemic environment inhibits SC proliferation (see Figure 
18h) [10, 164]. These data show that the aged niche becomes stimulatory, 

suggesting that the systemic environment and the niche have opposing 

influences on SCs in both adult and aged muscle (Figure 23). During 

homeostasis, adult SCs remain quiescent when in a pro-mitogenic systemic 

environment, and aged SCs  respond to the stimulatory myofibre niche when 

surrounded by an inhibitory systemic environment (Figure 23). These data 

suggest that the niche is dominant. In the context of injury, the relationship 
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between niche and systemic environment is disrupted due to breakdown of the 

myofibre after injury, leaving a permissive systemic environment to exert its 

influence on SCs. However, many factors are known to change in muscle 

during ageing including systemic factors, neuromuscular integrity and fibrosis 

(see Section 1.6.2). It will be of interest to determine how these changes may 

act either alone or collectively to affect SC function either directly or indirectly 

through niche modulation and maintenance with age. 

I have partially characterised the muscle stem cell niche during ageing, focusing 

on the elements that control stem cell quiescence and number during 

homeostasis. The reasons behind the increased FGF2 are not known, however, 

based on mRNA distribution, Fgf2 mRNA appears to be located at many sites 

along the fibre (see Figure 20c), rather than localised to discrete regions such 

as the SC microenvironment, muscle-tendon connections or neuromuscular 

junction. I propose that the induction of this potent mitogen is an attempt to 

repair the aged muscle fiber. Since muscle fibres are not regenerated under 

homeostatic conditions there may be an accumulation of low-level chronic 

myofibre damage with age. This may cause the myofibre to upregulate FGF2 

after a certain threshold has been reached in aged skeletal muscle. This 

upregulation of FGF2 is akin to the induction of FGFs during development to 

promote myogenic commitment and differentiation [102, 109, 370-373]. 

However, unlike during development, upregulation of FGF2 occurs at the 

expense of the stem cell number and function in aged skeletal muscle. 

Therefore, strategies to prevent chronic FGF2 production from the aged niche, 

or repress FGF signalling at the level of the aged SC, or prevent damage to the 

aged niche, may reduce stem cell loss during ageing. 

These data suggest that increased niche-derived FGF2 and loss of quiescence 

may be detrimental to stem cell number and function. In order to determine if 

increased FGF2 expression from the niche negatively impacts SC number and 

function with age, I sought to modulate FGF signalling in vivo by altering the 

levels of the negative regulator of FGF signalling, Spry1 (see Figure 2). 



3: Results Part I   

 

142 
 

Furthermore, I sought to investigate if the loss of stem cell number with age can 

be halted by inhibiting FGF signalling specifically in SCs. 
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Figure 23 - The systemic environment and the niche have opposing influences on 
satellite cells in adult and aged skeletal muscle. The systemic environment in adult skeletal 

muscle is pro-mitogenic and can enhance the activation of aged SCs  [10, 164]. However, under 

homeostatic conditions, the basal lamina acts as a barrier to these mitogenic stimuli and SCs 

are maintained in a quiescent state (top panel). The aged SC systemic environment does not 

instruct SCs to cycle and is detrimental to regeneration [10, 164]. The aged SC niche, however, 

upregulates FGF2 and this causes SCs to cycle (bottom panel). This suggests that the niche is 

the dominant signal to SCs. Aged skeletal muscle also displays increased fibrosis, a thickened 

basal lamina and breakdown of the neuromuscular junction, which may all interact to modulate 

aged SC function. 
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4.1. Sprouty proteins modulate FGF signalling 

Sprouty (Spry) proteins are negative regulators of FGF signalling, specifically 

inhibiting Ras-ERK MAPK signalling, leaving phosphoinositide 3-kinase (PI3K) 

and other MAPK pathways unaffected (see Figure 2) [374, 375]. In mammals 

there are four Spry proteins (Spry1-4). The transcription of Spry genes is 

induced by Ras-ERK MAPK signalling (see Figure 2) [376]. However, the 

expression of Spry genes is not always induced by RTK signalling and their 

induction may be controlled differently in various cell types. For example, in 

NIH3T3 fibroblast cells and endothelial cells, the expression of Spry2 is 

upregulated by growth factor addition, and, in contrast, Spry1 is downregulated 

[374, 377]. Tissue-specific transcription factors may also regulate the 

spatiotemporal expression patterns of Spry genes. For example, in mouse 

kidney development, the transcription factor Wilms tumor-suppressor gene 1 

induces the expression of Spry1 by directly binding to the Spry1 promoter [378]. 

This suggests that the different Spry proteins may play distinct roles in these 

cell types. 

Spry proteins have recently been shown to play a role during embryonic 

myogenesis. Studies by Lagha et al. showed that Spry1 is directly regulated by 

Pax3 [370]. The authors identified a role for Spry proteins in forming immature 

myogenic precursors at the expense of more differentiated cells [370]. This 

suggests that modulation of Spry levels may affect myogenic stem cell fate 

decisions. 

Spry1 is robustly expressed in adult quiescent SCs under homeostatic 

conditions with the other Spry family members expressed at much lower levels 

[42, 89]. This suggests that growth factors may be present in uninjured muscle 

and can actively signal to SCs. It is possible that the growth factors present may 

induce SC quiescence rather than activation, or hold them in a state allowing for 

rapid activation upon injury. Alternatively, expression of Spry1 may be 

controlled via transcription factor activity independent of RTK signalling, like in 

kidney development and embryonic myogenesis [370, 378]. 
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Spry1 has recently been shown to be an essential regulator of adult SC function 

after myotrauma. Studies by Shea et al. have shown that Spry1 expression is 

downregulated as SCs proliferate in response to injury and re-induced as SCs 

return back to quiescence [42]. Deletion of Spry1 specifically in adult SCs led to 

an increase in the apoptosis of SCs after injury and, therefore, a reduction in the 

SC pool [42]. Collectively, these studies suggest a model whereby Spry1 

normally inhibits the RTK signals required for SC proliferation in homeostasis 

[42]. 

So far, I have shown that FGF2 is upregulated in the aged SC niche and this 

drives a loss of stem cell quiescence (see Figure 23). To investigate the role of 

FGF signalling in adult and aged SCs under homeostatic conditions, I sought to 

manipulate FGF signalling levels in SCs in vivo. This was achieved through the 

conditional deletion and overexpression of Spry1 which allowed for the non-

invasive manipulation of FGF signalling with endogenous regulators. The aims 

for this chapter are to: 

1. Delete Spry1 specifically in Pax7+ SCs to determine if increased FGF 

signalling further disrupts SC quiescence and function, and 

2. Overexpress Spry1 specifically in Pax7+ SCs to determine if blockade of 

FGF signalling under homeostatic conditions can rescue age-related 

changes in SC number and function. 

 

4.1.1. Loss of Spry1 further enhances loss of satellite cell 
quiescence in response to the aged niche in vitro 

To increase the sensitivity of SCs to RTK signalling, Spry1 levels were reduced 

using a Spry1flox/+ myoblast line. Spry1flox/+ myoblasts were induced to form 

RSCs and then cells were treated with either GFP adenovirus (Ctrl-AdV; WT) or 

Cre-GFP adenovirus (Cre-AdV; S1flx) to reduce Spry1 levels (Figure 24a,b). 

Reduction in Spry1 levels increased RSC sensitivity to FGF2 (Figure 24c) and 

aged PME (Figure 24d) and increased their cycling. These results suggested 
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that reducing Spry1 levels would further increase stem cell responsiveness to 

the aged niche. 

To determine if SCs are more sensitive to FGF2 in the aged niche, Spry1flox/flox 

mice were crossed with Pax7CreERT2/+ mice to remove Spry1 specifically in SCs. 

Adult and aged Pax7CreERT2/+;Spry1flox/flox (Spry1null) and Cre-negative control 

(WT) mice were given tamoxifen and SCs were isolated four weeks later 

(Figure 25a). Adult and aged Spry1null isolated SCs displayed an increased 

sensitivity to FGF2 (Figure 25b,c) and aged PME (Figure 25d,e) compared to 

WT controls. Interestingly, Spry1null isolated SCs also cycled more in vehicle 

control and adult PME compared to WT controls (Figure 25d,e). This could be 

explained by cells generally becoming more prone to activate after deletion of 

Spry1 for 4 weeks. 

I have previously shown that aged SCs are more prone to differentiate or 

apoptose compared to adult SCs (see Figure 15k,l). To determine if Spry1null 

SCs have an even greater tendency to apoptose or differentiate, Spry1 was 

deleted specifically from adult and aged SCs for four weeks and isolated cells 

were plated at clonal density in culture. Their fate was determined by staining 

with antibodies to determine differentiation (MyoG) and apoptosis (aCasp). After 

four days in culture, Spry1null aged SCs became more prone to differentiate 

(Figure 25f) and apoptose (Figure 25g) compared to WT aged cells, whereas 

Spry1null adult SCs were not significantly different from adult WT cells (Figure 
25f,g). These data suggest that increasing SC sensitivity to RTK signalling, 

through the loss of Spry1, increases SC cycling in the aged niche and further 

exaggerates age-associated changes in SC function. 
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Figure 24 - Reduction in Spry1 increases reserve cell cycling  in response to the aged 
niche. a, Schematic of the experimental strategy to reduce Spry1 levels in vitro. Spry1flox/+ 

myoblasts were put into differentiation media (DMEM+3%HS) and then treated with Cre-GFP 

adenovirus to reduce Spry1 levels (S1flx) or GFP control (Ctrl).  b, Representative image of 

RSCs and myotubes stained with GFP, Pax7, and Ki67. Scale bar, 50µm. c, Quantification of 

the percentage of cycling (Ki67+) RSCs after incubation with vehicle control (V), FGF2 or adult 

(Ad) or aged (Ag) PME (d). For all experiments, n=500-1000 cells per condition conducted in 

triplicate. All data represented as mean ± s.e.m.; *P<0.05, **P<0.01 student's t test. 
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Figure 25 - Loss of Spry1 specifically from satellite cells in vivo causes increased 
sensitivity to the aged niche and impaired function. a, Schematic of the experimental 

strategy to delete Spry1 from adult and aged SCs and assess cell cycle entry after incubation 

with PMEs. b, Quantification of the percentage of cycling adult and aged (c) SCs after 

incubation with FGF2. d, Quantification of the percentage of cycling adult and aged (e)  sorted 

SCs after incubation with vehicle control, adult PME, or aged PME. f,  Quantification of the 

percentage of Myogenin+ (differentiated) and apoptotic (cleaved caspase 3+; g) cells from 

Spry1null (S1null) and WT adult and aged cells cultured for 4 days in DMEM+10%HS. 21-28 

clonal density cultures were examined per condition, performed in triplicate. Note aged S1null 

cells display a much greater tendency to differentiate or apoptose compared to aged WT cells. 

For b-e, n=500-1000 cells per condition conducted in triplicate. All data represented as mean ± 

s.e.m. ; *P<0.05, **P<0.01, ***P<0.001 student's t test. 
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4.1.2. Spry1 inhibits FGF2-FGFR signalling 

The Spry family of proteins inhibit RTK signalling. The data shown so far 

indicate that loss of Spry1 increases SC cycling, differentiation and apoptosis in 

response to the aged niche. To determine if this effect of Spry1 loss was 

through increasing FGF2-FGFR signalling, RSCs from Spry1flox/+ mice were 

generated and Spry1 levels were reduced as in Figure 24a. Cells were treated 

with SU5402 prior to incubation with adult and aged PME to block FGFR 

signalling. Inhibition of FGFR blocked the increased sensitivity to aged PME in 

RSCs with reduced Spry1 levels (Figure 26a). Furthermore, in cells from 

Pax7CreERT2/+;Spry1flox/flox mice treated as in Figure 25a, incubation of isolated 

cells with SU5402 prior to addition of PMEs had a similar effect and inhibited 

increased cell cycle entry in response to aged PME in Spry1null adult (Figure 
26b) and aged (Figure 26c) SCs. To show that Spry1 blocks FGF2-induced 

FGFR signalling, cells from Pax7CreERT2/+; Spry1flox/flox mice treated as in Figure 
25a were isolated and incubated with adult and aged PME that had been 

treated with a blocking antibody to FGF2 (αFGF2). Block of FGF2 inhibited the 

effect of aged PME in WT and Spry1null adult (Figure 26d) and aged SCs 

(Figure 26e). Collectively, these results show that expression of Spry1 is 

essential to maintain the quiescence of SCs in the aged niche by inhibiting 

FGF2 signalling. 
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Figure 26 - Spry1 inhibits FGF2-FGFR signalling. a, Quantification of the percentage of 

cycling RSCs from Spry1flx or control cells incubated with adult (Ad) or aged (Ag) PME with or 

without the prior treatment with SU5402. b, Quantification of the percentage of cycling sorted 

SCs from Spry1null or control adult or aged (c) mice incubated with adult or aged PME with or 

without the prior treatment with SU5402. d, Quantification of the percentage of cycling sorted 

SCs from Spry1null or control adult or aged (e) mice incubated with adult or aged PME that had 

been treated with a blocking antibody to FGF2 (αFGF2) or vehicle control. n=500-1000 cells per 

condition conducted in triplicate. All data represented as mean ± s.e.m.; *P<0.05, **P<0.01, 

***P<0.001 student's t test. 
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4.1.3. Spry1 overexpression inhibits the mitogenic effect of the aged 
niche 

I have shown that loss of Spry1 further increases mitogenic responsiveness of 

SCs to the aged niche (see Section 4.1.1.). Thus, I hypothesised that 

increasing levels of Spry1 in SCs would inhibit cell cycle entry in response to 

FGF2 in the aged niche. To test this, myoblasts were generated from mice 

carrying a transgene encoding a Cre-inducible expression construct for Spry1 

controlled by a chicken β-actin gene (CAG) promoter (CAG–GFPflox;Spry1; 

Spry1OX). Spry1OX myoblasts were treated with GFP adenovirus (Ctrl) or Cre 

adenovirus (Spry1OX) to cause an increase in Spry1 expression (Figure 27a). 

RSCs were then generated to determine the effect of increased Spry1 

expression on RSC quiescence (Figure 27a,b). Overexpression of Spry1 

inhibited the activation of RSCs in response to FGF2 (Figure 27c) and aged 

PME (Figure 27d). 

To further show that overexpression of Spry1 can inhibit the effect of FGF2 in 

the aged niche, SCs from adult Pax7CreERT2/+; Spry1OX (Spry1OX) and cre-

negative control (WT) mice were isolated 10 days after tamoxifen 

administration, incubated with adult and aged PME and assayed for cell cycle 

entry (Figure 28a). Spry1OX SCs did not enter the cell cycle in response to 

aged PME (Figure 28b), showing that overexpression of Spry1 in SCs inhibits 

the mitogenic effect of the aged niche. 

 



4: Results Part II 

 

155 
 

 

Figure 27 - Overexpression of Spry1 inhibits the mitogenic effect of the aged niche. a, 
Schematic of the experimental strategy to overexpress Spry1 levels in vitro. Spry1OX/OX 

myoblasts were treated with Cre adenovirus to overexpress Spry1 levels (Spry1OX) or GFP 

adenovirus as a control (WT) under growth conditions (GM). Cells were then put into 

differentiation media (DMEM+3%HS) to form RSCs and incubated with PMEs or FGF2. b, 
Representative image of RSCs and myotubes stained with GFP, Pax7, and Ki67. Scale bar, 

50µm. Note, the Spry1OX line constitutively expresses GFP and recombination results in Cre-

mediated deletion of GFP. c, Quantification of the percentage of cycling (Ki67+) RSCs after 

incubation with vehicle control (V), FGF2 or adult (Ad) or aged (Ag) PME (d). For all 

experiments, n=500-1000 cells per condition conducted in triplicate. All data represented as 

mean ± s.e.m.; *P<0.05, student's t test. 
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Figure 28 - Spry1 overexpression in vivo inhibits the mitogenic effect of the aged niche. 

a, Schematic of the experimental strategy to overexpress Spry1 (Spry1OX) from adult SCs and 

assess cell cycle entry after incubation with PMEs. b, Quantification of the percentage of adult 

cycling sorted SCs after incubation with vehicle control, adult PME, or aged PME. n=500-1000 

cells per condition conducted in triplicate. Data represented as mean ± s.e.m.; *P<0.05, 

student's t test. 
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4.2. Short-term loss of Spry1 in vivo causes increased satellite 
cell cycling and increased Pax7 cell number 

Loss of Spry1 in SCs causes increased FGF signalling and increased cycling in 

response to the aged niche in in vitro quiescence assays (see Section 4.1.1.). 
To test the requirement of Spry1 for maintaining SC quiescence in vivo, 

tamoxifen was administered to adult and aged Pax7CreERT2/+; Spry1flox/flox mice 

(Spry1null) and Cre-negative controls (WT). Mice were sacrificed 10 days later 

and TA sections were stained with antibodies raised against Pax7 and Ki67 to 

determine the number of cycling SCs (Figure 29a). Loss of Spry1 in adult mice 

caused no change in the number of cycling SCs (data not shown), consistent 

with there being no or very little FGF2 present in the adult niche. However, loss 

of Spry1 increased the number of cycling SCs 1.5 fold in aged mice (Figure 
29b). Furthermore, the number of Pax7+ cells on purified single myofibres was 

increased almost 4 fold after short-term deletion of Spry1 in aged SCs, 

consistent with a loss of SC quiescence (Figure 29c). The number of Pax7+ 

cells was not changed in adult single fibres after loss of Spry1, further showing 

that a negligible level of FGF2 is present in the adult niche (Figure 29c). 
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Figure 29 - Short-term increase in FGF signalling increases satellite cell cycling. a, 
Schematic of the experimental strategy to delete Spry1 from adult and aged SCs. b, 
Quantification of the number of cycling (Ki67+) Spry1null and WT SCs in aged skeletal muscle 

cross-sections. Data are from 4-6 animals / condition. c, Quantification of the number of WT and 

Spry1null Pax7+ cells per isolated myofibre in adult (Ad) and aged (Ag) mice. Note, deletion of 

Spry1 has no effect on adult SCs. Data are from 20-30 single muscle fibres / animal (n=5-6 

animals / condition). All data represented as mean ± s.e.m.; *P<0.05, student's t test. 
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4.3. Long-term loss of Spry1 in vivo leads to loss of stem cell 
number and impaired satellite cell function 

I have shown that acutely increasing the sensitivity of SCs to FGF2 in the aged 

niche further drives their cycling. Loss of quiescence is associated with 

depletion of the stem cell pool and impaired stem cell function [20, 366]. I 

hypothesised that further driving the loss of quiescence in SCs leads to an even 

greater loss of stem cell number and function under homeostatic conditions. To 

test this, BrdU was administered in the drinking water of adult and aged 

Pax7CreERT2/+; Spry1flox/flox mice (Spry1null) and Cre-negative controls (WT) for 

six weeks (Figure 30a). Mice were then injected with tamoxifen and put back on 

normal drinking water for six more weeks (chase period; Figure 30a). SCs were 

then FACS-isolated and immediately fixed and stained with antibodies raised 

against BrdU and Pax7 to determine loss of quiescence. Any cells that rapidly 

proliferated would have diluted the BrdU label to undetectable levels during the 

chase period (non-LRCs), whereas any cells which did not proliferate would 

have retained the BrdU label (LRCs). Adult Spry1null SCs did not lose 

quiescence and retained the BrdU label, consistent with a negligible amount 

FGF2 being present in the adult niche (Figure 30b). However, aged Spry1null 

cells further lost quiescence over the six week period and diluted the BrdU label 

(Figure 30c). These data show that aged SCs cycle extensively over six weeks 

after loss of Spry1. 

To determine the effect of a further loss of quiescence on SC number and 

function, aged Pax7CreERT2/+; Spry1flox/flox (Spry1null) and Cre-negative control 

(WT) mice were injected with tamoxifen and sacrificed six weeks later (Figure 
30d). The number of Pax7+ SCs was reduced by 50% in aged Spry1null mice 

compared to WT (Figure 30e), consistent with a loss of quiescence further 

driving SC depletion. To examine the effect of long-term Spry1 loss on SC 

function, SCs were isolated from mice treated as in Figure 30d and plated at 

clonal density in culture and stained with antibodies to determine apoptosis 

(aCasp). After four days in culture the percentage of cells undergoing apoptosis 

was almost 3 fold higher in Spry1null cells compared to WT (Figure 30f). To 
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further show that long-term loss of Spry1 leads to loss of the SC pool, adult 

Pax7CreERT2/+; Spry1flox/flox mice and WT controls were injected with tamoxifen 

and sacrificed 18 months later (termed a life-long deletion; Figure 30g). TA 

sections were then stained with antibodies raised against Pax7 and laminin to 

determine SC number. Life-long overexposure to FGF signalling caused a 50% 

decline in the number of SCs present in aged skeletal muscle (Figure 30h). 

These data show that prolonged FGF signalling drives SC depletion and impairs 

function under homeostatic conditions. Collectively, these data demonstrate that 

aged-niche-induced FGF signalling leads to an initial loss of quiescence 

followed by a depletion of the stem cell pool. 
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Figure 30 - Chronic exposure to FGF signalling leads to depletion of the satellite cell pool 
and impaired satellite cell function. a, BrdU pulse-chase schematic to determine loss of 

quiescence in Spry1null mice. Note, all mice were administered BrdU in their drinking water as 

wild types, before injection of tamoxifen. b, Quantification of the relative percentage of 

Pax7+BrdU+ cells (label retaining cells; LRCs) in adult and aged (c) Spry1null mice relative to 

WT, stained immediately after isolation. n=300-600 cells / experiment performed in triplicate. d, 
Schematic of the experimental strategy to delete Spry1 from aged SCs for 6 weeks. e, 
Quantification of the number of Pax7+ SCs per isolated myofibre in WT mice and in long-term 

deleted Spry1 mice (Spry1 null). n=30-40 fibres / animal. f, Quantification of the percentage of 

Pax7+aCasp+ cells (cell death) in WT mice and in long-term deleted Spry1 null mice after 4 days 

in culture (DMEM+10%HS). g, Schematic of the experimental strategy for a life-long deletion of 

Spry1. h, Quantification of the number of Pax7+ cells per muscle section in WT and life-long 

deleted Spry1 mice (Spry1 null). For all experiments n = 4-6 animals per condition. All data 

represented as mean ±s.e.m.; *P<0.05 student's t test. 
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4.4. Inhibition of FGF signalling in the aged satellite cell niche 
rescues stem cell number and function 

Upregulation of FGF2 in the aged niche causes a loss of SC quiescence. This 

leads to impaired SC function and a loss of the stem cell pool. I have shown 

that SCs in the aged niche are acutely sensitive to Spry1 levels and the level of 

FGF signalling. Therefore, I hypothesised that inhibiting FGF signalling will 

prevent the age-associated loss of stem cell number and will antagonise the 

decline in SC function. To test this, 18 month old Spry1OX and WT mice were 

injected with tamoxifen and sacrificed 6.5 months later (Figure 31a). BrdU was 

administered in their drinking water in the last 6 weeks of life to determine the 

effect of inhibition of FGF signalling on SC quiescence (Figure 31a). 

Remarkably, the percentage of SCs that had entered the cell cycle was reduced 

by half (Figure 31b). In addition, the number of SCs associated with purified 

single myofibres was increased two fold (Figure 31c). These data show that 

inhibition of FGF signalling in aged SCs partly inhibits the loss of SC 

quiescence and depletion of the stem cell pool. 

To determine if prolonged FGF signalling could be inhibited pharmacologically, 

adult and aged mice were injected with a suspension of 500 µM SU5402 or 

vehicle control adsorbed onto beads (to allow slow SU5402 release)[358]. Mice 

were then administered BrdU in their drinking water for six weeks and sacrificed 

(Figure 31d). Remarkably, the percentage of cycling aged SCs was reduced to 

adult levels after in vivo treatment with SU5402 (Figure 31e). Furthermore, after 

four days in culture, aged SCs that were treated with SU5402 in vivo were less 

prone to apoptose (Figure 31f). 

Collectively, these data show that inhibition of FGF signalling partly retains SC 

quiescence and this leads to maintenance of SC number and function. 
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Figure 31 - Inhibition of FGF signalling rescues stem cell number and function. a, BrdU 

feeding schematic of aged (18 month old) Spry1OX and WT mice after 5 months of 

overexpression. b, Quantification of the percentage of Pax7+BrdU+ isolated SCs from WT and 

Spry1OX mice stained immediately after isolation. c, Quantification of the number of SCs on 

isolated single myofibres from WT and Spry1OX mice. d, SU5402 (or vehicle control) injection 

and BrdU feeding schematic of adult and aged WT mice. e, Quantification of the percentage of 

BrdU+ SCs and aCasp+ (f) SCs (% SC cell death) isolated from adult (Ad) and aged (Ag) mice 

and stained immediately. For all experiments n = 4-6 animals per condition. All data represented 

as mean ±s.e.m.; *P<0.05 student's t test. 
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4.5. The adult niche is inhibitory to satellite cell activation 

The aged SC niche is pro-mitogenic and drives SCs out of quiescence causing 

depletion of the stem cell pool. I have shown that incubation of RSCs and 

isolated SCs with FGF2 added to adult PME causes SCs to cycle (see Figure 
19d,e). However, addition of FGF2 to adult PME did not cause as many SCs to 

cycle compared to FGF2 alone. To confirm this, RSCs were incubated with 

different concentrations of FGF2 added to 20µg/ml adult PME and assayed for 

cell cycle entry. Although addition of FGF2 to adult PME induced RSC cycling, 

more RSCs remained quiescent with FGF2 incubated with adult PME compared 

to adult PME alone (Figure 32a). These data indicate that the adult niche is 

inhibitory to FGF2-induced SC activation, suggesting that the loss of SC 

quiescence in aged animals may be due to the increase in the production of 

FGF2 from the niche, and a decrease in the expression of inhibitory factors. 
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Figure 32 - The adult niche is inhibitory to satellite cell activation. a, Quantification of the 

relative percentage of activated RSCs (Pax7+Ki67+) after incubation with 40µg/ml adult PME 

(red line) or vehicle control (black line) and different concentrations of FGF2. n=500-800 cells 

per condition conducted in triplicate. Data represented as mean ± s.e.m.; *P<0.05 student's t 

test. 
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4.6. Discussion 

The data shown here support a model where FGF2 increases in the aged SC 

niche, the muscle fibre, which causes SCs to break quiescence and proliferate, 

leading to a loss of self-renewal function and eventual SC depletion (Figure 
33). Manipulating Spry1 levels, a negative feedback inhibitor of the FGF 

pathway, in SCs, altered the degree of cell cycle entry and stem cell loss 

(Figure 34). Therefore, a balance between excitatory and inhibitory signals is 

clearly essential to stem cell outcome. 

Remarkably, conditional over-expression of Spry1 in aged Pax7+ SCs was able 

to retain stem cell quiescence and prevent losses in SC number observed with 

age. These observations suggest that cell intrinsic mechanisms, at the level of 

feedback inhibition of niche-derived signalling, manipulated under conditions of 

homeostasis, can promote SC maintenance with age. Furthermore, 

administration of a chemical inhibitor of FGFR, SU5402, also attenuated the 

loss of SC number and inhibited apoptosis of SCs. These results suggest that it 

may be possible to prevent age-related sarcopenia in humans through the use 

of pharmacological inhibitors. 

I have shown that inhibition of FGF signalling is important for the maintenance 

of SC number and function in the aged niche. However, the expression of FGF2 

is also essential for efficient muscle regeneration [68, 100-102, 107, 108]. 

Inhibition of FGF signalling through blockade of FGFR has been shown to result 

in a large decrease in muscle mass and this has been attributed to premature 

terminal differentiation causing a depletion of the pool of myogenic progenitors 

[109-111]. This suggests that in order to maintain functional skeletal muscle, 

aged SCs would have to be unresponsive to FGF2 in the niche under 

homeostatic conditions, but then responsive to FGF2 under regenerative 

conditions. Thus, a temporal switch in sensitivity to FGF signalling would be 

needed to maintain SC number under homeostatic conditions, and regenerative 

capability after myotrauma. 
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RSCs generated from Spry1flx myoblasts displayed an increased sensitivity to 

FGF2 from the aged niche (see Figure 24d). However, Spry1null myoblasts 

(myoblasts from Spry1flox/flox mice treated with Cre adenovirus) were unable to 

form RSCs (data not shown). These data further confirm previous findings that 

Spry1 is required for a subset of activated SCs to return to quiescence [42]. 

Interestingly, the number of reserve cells formed from Spry1OX myoblasts was 

no different to controls, and, furthermore, the differentiation index for Spry1OX 

myoblasts was also no different to controls (data not shown). These data 

suggest that just the presence of Spry1 is needed for the formation of quiescent 

RSCs and the level of Spry1 does not play a role in specifying which cells will 

return to quiescence. 

I have shown that the adult niche is inhibitory to FGF2-induced SC activation 

(see Figure 32a). Whether inhibitors of FGF signalling are present in the adult 

niche, or whether inhibitors of SC activation are present is unknown. The Ang1 / 

Tie2 signalling pathway is one of the main inhibitors of SC activation [138]. 

Ang1 / Tie2 signalling has been involved in various biological activities, 

including cell survival, proliferation, migration, chemotaxis, and quiescence 

[379, 380]. In skeletal muscle, Ang1 and Tie2 are expressed by quiescent SCs 

and their signalling acts to maintain SC quiescence [138]. However, it has not 

been shown if mature muscle fibres express Ang1 and, therefore, Ang1-Tie2 

signalling may not be the inhibitor of SC activation in adult PME. It is interesting 

to speculate that ageing is associated with an increase in FGF2 expression 

from the niche and a concomitant decrease in inhibitory signalling molecules. 

In this chapter I have identified inhibition of FGFR, either by overexpression of 

Spry1 or by pharmacological methods, as a novel mechanism to maintain the 

number and function of SCs in aged mammals (Figure 34). Collectively these 

data show that inhibition of FGF signalling under homeostatic conditions is 

essential for maintenance of the SC pool during ageing. 
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Figure 33 - Schematic illustration of the changes in satellite cells with ageing under 
homeostatic conditions. Under homeostatic conditions SCs are quiescent (top panel). 

However, in aged mice, the SC niche upregulates FGF2 (bottom panel). This drives a loss of 

stem cell quiescence and depletion of the stem cell pool as SCs have a decreased tendency to 

self-renew, and an increased tendency to apoptose or differentiate. 
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Figure 34 - Modulation of FGF signalling affects satellite cell outcome. Short-term loss of 

Spry1 in aged SCs (top panel) causes a further loss of SC quiescence and an increase in the 

number of Pax7+ cells. Long-term loss of Spry1 in aged SCs (middle panel) causes a further 

loss of SC quiescence and depletion of stem cell pool as cells are more prone to differentiate or 

apoptose. The effects of the aged niche can be partly inhibited by pharmacological inhibition of 

FGF signalling or through overexpression of Spry1 in SCs (bottom panel). Inhibition of FGF 

signalling in the aged niche maintains SC quiescence and causes an increase in SC number 

compared to WT and cells are less prone to apoptose. Modulation of Spry1 in adult SCs under 

homeostatic conditions does not affect SCs (not shown). 
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5.1. Chromatin remodelling in adult neurogenesis 

Chromatin remodelling can engage or maintain particular genetic programs and 

therefore likely plays a critical role in stem cell maintenance as well as daughter 

cell differentiation [286]. Different cellular states may be defined at least in part 

by differential allocation of genomic regions to euchromatic or heterochromatic 

domains [381]. During development, an open chromatin state largely devoid of 

heterochromatin is a hallmark of stem cells, and this has been proposed to 

contribute to  the pluripotency of ES cells [382, 383]. As ES cells differentiate 

they accumulate more areas of heterochromatin [382, 383]. CHD1 is a 

chromatin remodelling enzyme that has recently been shown to be required for 

ES cell self-renewal and pluripotency by maintaining a euchromatic state [384]. 

Knockdown of Chd1 in ES cells caused  the accumulation of large areas of 

heterochromatin and an increased propensity of cells to differentiate [384], 

showing that chromatin remodelling is essential for pluripotency. 

Chromatin remodelling also plays a role in the maintenance and differentiation 

of somatic stem cell populations. For example, the chromatin remodelling 

enzyme CHD4 was shown to positively regulate HSC-specific transcriptional 

signatures, such as the expression of receptors important for HSC niche 

interaction, and negatively regulate genes involved with HSC differentiation, 

such as the cyclin-dependent kinase Ccnd2 [385]. Deletion of CHD4 in HSC 

populations caused the loss of HSC quiescence and skewed their differentiation 

potential to generate mainly erythroid cells [385]. These data show that 

chromatin remodelling is a process which can potentially modulate many areas 

of somatic stem cell function. 

The mRNA expression levels of many genes encoding chromatin remodelling 

proteins are changed as cells progress along the SVZ-OB adult neural lineage, 

from the SVZ to the RMS to the OB [287]. Furthermore, transcriptional profile 

analysis has revealed that the expression of genes encoding chromatin 

remodelling proteins are different between NSCs and non-neurogenic cells 
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[287]. These data suggest that chromatin remodelling is an active process in 

adult neurogenesis. 

Chromatin remodelling proteins are generally categorised into one of two 

groups; trithorax group (TxG) proteins, which usually cause the activation of 

their target loci, and polycomb group (PcG) proteins which tend to repress gene 

activation [289]. Mixed lineage leukemia 1 (Mll1) is a TxG chromatin 

remodelling enzyme with H3K4 methyltransferase activity and is associated with 

epigenetic transcriptional activation. Lim et al showed that Mll1 is required in 

postnatal neurogenesis to suppress the accumulation of repressive H3K27me3 

at the locus of gene encoding the neuron-specific transcription factor Dlx2 in 

postnatal SVZ cells [316]. Loss of Mll1 resulted in the accumulation of 

H3K27me3 and repression of Dlx2, causing impaired neuroblast differentiation 

and migration [316]. Bmi1 is a PcG protein and a member of the PRC1 complex 

which positively regulates H2Aub1 [307]. Bmi1 has been shown to be required 

for embryonic and post-natal NSC self-renewal [288, 308, 309]. Bmi1 

overexpression increased the self-renewal of embryonic NSCs and maintained 

their ability to produce neurons in culture after many passages [312]. These 

data suggest that chromatin remodelling plays a critical role in embryonic and 

postnatal neurogenesis. However, the role of chromatin remodelling in adult 

neurogenesis is unknown. 

The chromatin remodelling enzyme CHD7 has been implicated in the regulation 

of embryonic brain development as Chd7-/- mice exhibit severe brain defects 

[344]. Chd7-/- mice die before E10.5 [344], but adult mice heterozygous for 

Chd7 (Chd7+/-) display a decreased brain size and decreased olfactory bulb 

(OB) length [345, 346]. In addition, studies by Layman et al. showed that 

Chd7+/- mice displayed a reduction in tyrosine hydroxylase (TH) expression in 

the OB (Figure 35) [345]. The authors showed that CHD7 was expressed by 

MASH1+ stem cells in the olfactory epithelium, and reduction in Chd7 

expression led to decreased proliferation of the epithelial stem cells [345]. This 

resulted in a decrease in the number of mature olfactory sensory neurons, 

which normally signal to dopaminergic interneurons [345]. Hence, a loss of 
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signal to dopaminergic interneurons resulted in a decrease in TH-production 

(Figure 35) [345]. These data implicate CHD7 in regulation of stem cells in 

adults. However, due to the role of postnatal and adult SVZ-OB neurogenesis in 

formation of OB interneurons, misregulation of olfactory epithelial stem cells 

may not be the sole cause of the OB defects seen in these mice (Figure 36). 

The authors did not address the contribution of SVZ-OB neurogenesis to the 

formation of new OB interneurons in Chd7+/- mice and so the role of CHD7 in 

adult neurogenesis remains unknown (Figure 36). In support for CHD7 playing 

a role in adult neurogenesis, CHD7 has been shown to directly interact with 

Sox2, a protein important in the maintenance and differentiation of NSCs [386-

389]. 

I hypothesised that CHD7 plays a role in adult SVZ-OB neurogenesis and that 

loss of Chd7 results in impaired formation or differentiation of OB interneurons 

(Figure 36). 

The aims for this chapter are to: 

1. Characterise gross changes in brain sizes and analyse the changes in 

OB interneuron number in Chd7 heterozygous mice. 

2. Determine the expression profile of CHD7 in SVZ-OB neurogenesis. 

3. Determine changes in SVZ-OB neurogenesis by analysing the 

proliferation of cells in the SVZ and generation of immature neurons in 

Chd7 heterozygous mice. 

4. Establish whether CHD7 expression in adult NSCs is necessary for the 

production of OB interneurons by restoring Chd7 function specifically in 

NSCs to rescue OB defects. 
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Figure 35 - Reduced expression of Chd7 leads to a decrease in tyrosine hydroxylase+ 
interneurons due to decreased olfactory epithelial stem cell proliferation. CHD7 is 

expressed in olfactory epithelial stem cells (OESC) in the olfactory epithelium (OE) [345]. 

OESCs form olfactory sensory neurons (OSN). OSNs signal to dopaminergic interneurons 

(green circles) in the glomerular layer (GL) of the olfactory bulb (OB) to maintain their activity 

and production of tyrosine hydroxylase (TH; top panel). Layman et al. proposed that a reduction 

in Chd7 expression led to the decreased proliferation of OESCs (bottom panel) [345]. This led 

to a decreased formation of OSNs and loss of signal to dopaminergic interneurons, resulting in 

either a decreased production of TH, or a loss of these interneurons (bottom panel) [345]. LV, 

lateral ventricle. 
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Figure 36 - A reduction in Chd7 expression may cause a decrease in SVZ-OB 
neurogenesis leading to a loss of interneuron production. Neurogenic cells in the SVZ and 

rostral migratory stream (RMS; red dots) contribute to new interneuron formation in the olfactory 

bulb (OB), including the formation of tyrosine hydroxylase+ dopaminergic interneurons (green 

dots; top panel). Reduced SVZ-OB neurogenesis can lead to a decrease in the production of 

OB interneurons (bottom panel). 

 

5.2. Chd7 heterozygous mice display reduced olfactory bulb 
length and reduced number of tyrosine hydroxylase+ 
interneurons 

Loss of Chd7 function is embryonic lethal and is associated with defects in 

many developing tissues [344]. Therefore, to determine if there were any gross 

changes in adult forebrain size, mice heterozygous for a genetrap Chd7 allele 

were utilised (Figure 37a; Chd7gt/+) [356]. The genetrap allele contains a beta-

geo fusion cassette with a floxed splice acceptor inserted into intron 36 of Chd7, 

presumably resulting in the translation of an unstable, truncated, non-functional 

protein which is rapidly degraded (Figure 37a) [356]. Mutations in CHD7 have 

been implicated in the development of CHARGE syndrome [330]. Mice carrying 

the Chd7gt allele have been previously shown to display phenotypes associated 

with Chd7 haploinsufficiency such as abnormalities in pharyngeal arch arteries 

and other phenotypes associated with CHARGE syndrome [356]. Therefore, the 

Chd7gt/+ mouse line is presumed to have a reduced Chd7 expression in all 

tissues. Furthermore, RT-qPCR analysis of dissected OB showed that Chd7 

expression is significantly reduced in adult (10-12 weeks old) Chd7gt/+  mice 

compared to WT (Figure 37b). Hence, adult Chd7gt/+ mice will be described as 

having a decrease in Chd7 expression. Adult Chd7gt/+ mice display a very slight 

reduction in forebrain size (data not shown), but most notably display a 20% 

reduction in OB length (Figure 37c,d), with no change in OB width compared to 

WT littermates (data not shown). These data are in agreement with previous 

findings [345]. 
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To determine if the reduction in OB length was progressive from postnatal 

stages to adulthood, the brain sizes of P21 Chd7gt/+ mice and WT littermates 

were analysed. A slight reduction in OB length could be seen in P21 Chd7gt/+ 

mice compared to WT (Figure 37e), suggesting that the reduction in OB length 

is progressive with age. Importantly, the overall brain size of Chd7gt/+ mice at 

P21 was not significantly different to WT littermates (Figure 37f), arguing 

against a decrease in Chd7 expression causing a general developmental delay. 

Collectively, these data show that a reduction in Chd7 expression mostly affects 

the OB size, and a decrease in the length of the OB is reduced from postnatal 

stages through to adulthood. 

The olfactory bulb is composed of three main types of interneurons: TH+ 

(dopaminergic), CalR+ (GABAergic), and CalB+ (GABAergic) interneurons [223]. 

Cells born in the adult SVZ are capable of differentiating into one of these three 

types of interneuron in the OB [223]. The integration of these interneurons 

presumably contributes to proper OB formation, and the size of the OB is 

normally maintained throughout life through the turnover of OB interneurons 

[210]. To determine if a reduction in OB size was due to a reduction in the 

production of TH+, CalR+, or CalB+ interneurons, sections of OB from Chd7gt/+ 

and wildtype littermates (WT) were stained with antibodies raised against TH, 

CalR, and CalB (Figure 38a,c,d). The OB of Chd7gt/+ mice displayed a 

reduction in the number of cells expressing TH in the glomerular layer 

compared to WT (Figure 38a,b), in agreement with findings by Layman et al. 

[345]. Interestingly, reduction in Chd7 expression had no effect on the 

expression of CalR (Figure 38c,d) and CalB (Figure 38e,f) in the glomerular 

layer. These data show that CHD7 specifically regulates TH-producing 

interneurons, leaving other OB interneuron populations unaffected. 

To confirm that the production of cells in the TH-lineage is impaired, I performed 

an in situ hybridisation using an anti-sense Er81 probe on OB sections of adult 

Chd7gt/+ and WT mice. Er81 is a transcription factor that is required for TH-

expression in the mouse OB and is used as an early marker of TH-lineage cells 

[390, 391]. Expression of Er81 was decreased in the RMS and in areas of the 
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OB of Chd7gt/+ mice compared to WT, including in the glomerular layer where 

TH+ interneurons are found (Figure 39a). Furthermore, RT-qPCR analysis of 

dissected OB from Chd7gt/+ and WT mice confirmed that Er81 expression was 

reduced by 33% in Chd7gt/+ mice (Figure 39a). These data show that a 

reduction in Chd7 expression results in a decrease in the formation of cells of 

the TH+ interneuron lineage. 

Alternatively, a decrease in Er81 expression may lead to a decrease in TH 

expression from interneurons in the OB, rather than a loss of the interneurons 

themselves and this will be discussed in Section 5.6.2.  
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Figure 37 - Reduction in Chd7 expression causes a decrease in olfactory bulb length. a, 
Schematic diagram of the Chd7xk403 allele. The genetrap construct contains a beta-geo cassette 

with a floxed (not shown) splice acceptor (SA). The Chd7xk403 line has a genetrap insertion site 

between exons 36 and 37, and produces a protein containing all exons, except 37 and 38, 

fused to the gene trap cassette. Adapted from [356]. b, RT-qPCR expression level of Chd7 from 

dissected OB of adult Chd7gt/+  relative to wild type (WT) mice. n=2 animals / condition. Data are 

from 2 reactions conducted in duplicate. Note that Chd7 expression is around 50% of WT levels 

in Chd7gt/+  OB. c, Representative image of brains from adult Chd7gt/+ and control mice (WT). 

Scale bar, 1mm. d, Quantification of OB lengths from adult Chd7gt/+ and WT mice. Each mark 

represents the length of 1 OB. n=6-8 animals / condition. e, Quantification of the OB length and 

forebrain length (f) of P21 Chd7gt/+ and WT mice. Each mark represents the length of 1 OB or 

forebrain hemisphere. n=8-11 animals / condition. All data represented as mean ± s.e.m.; 

*P<0.05 student's t test. 
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Figure 38 - Reduction in Chd7 expression specifically affects tyrosine hydroxylase+ 
olfactory bulb interneurons. a, Representative image of a 10µm thick coronal section of OB 

glomerular layer stained with antibodies raised against TH, CalR (c), and CalB (d). Scale bar, 

50µm. b, Quantification of the number of TH+, CalR+ (d), and CalB+ (f) cells / defined area in 

Chd7gt/+ and WT mice per 10µm section. n=3-4 animals / condition. All data represented as 

mean ± s.e.m.; ***P<0.001 student's t test. 
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Figure 39 - Reduction in Chd7 expression results in a decrease in TH-lineage cells. a, 
Representative image of an in situ hybridisation using an anti-sense Er81 probe on OB sections 

of Chd7gt/+ and WT mice. Note a decrease in Er81 expression in Chd7gt/+ OB compared to WT. 

Scale bar, 1mm b, Quantification of Er81 expression from RT-qPCR experiments in Chd7gt/+ 

relative to WT OB. Data are from 3 reactions conducted in duplicate. Data represented as mean 

± s.e.m.; **P<0.01 student's t test. 

  



5: Results Part III 

 

188 
 

5.3. CHD7 is expressed in the dorso-lateral aspect of the 
subventricular zone and in the rostral migratory stream 

SVZ-OB neurogenesis is critical for the formation of new OB interneurons 

throughout life [183]. It is estimated that the number of newly formed 

interneurons that are added to the OB from cells born in the SVZ ranges from 

10,000 to 30,000 per day in adult mice [208]. Adult NSCs residing in different 

areas of the SVZ give rise to different types of periglomerular and glomerular 

OB interneurons [223]. Of note, cells in the dorso-lateral aspect of the SVZ and 

RMS have a greater tendency to form tyrosine hydroxylase-positive 

interneurons in the glomerular layer of the OB (see Figure 11) [207]. My data 

so far shows that a reduction in Chd7 expression is associated with a specific 

decrease in the number of TH-expressing cells in the OB (see Section 5.2.). 
Therefore, I hypothesised that a reduction in Chd7 expression results in a loss 

of TH-producing interneurons in the OB due to abnormalities in SVZ-OB 

neurogenesis. To first determine if Chd7 was expressed in cells in the SVZ 

neurogenic lineage, an in situ hybridisation using an anti-sense Chd7 probe was 

performed on coronal sections of adult WT (CD1 mouse strain) brains. Chd7 

was expressed in the dorso-lateral aspect of the SVZ and in the RMS (Figure 
40a), which is the area of the SVZ associated with the production of TH+ OB 

interneurons (see Figure 11) and this was confirmed by antibody staining 

(Figure 40b). In situ hybridisation using an anti-sense Chd7 probe on coronal 

sections of the RMS and OB showed that Chd7 was expressed in the RMS and 

glomerular layer of the OB, as well as in the granular cell layer to a lesser extent 

(Figure 40c,d). This was confirmed by staining sagittal sections of WT adult 

brains with an anti-CHD7 antibody (Figure 40e). These data show that CHD7 is 

expressed in the area of the SVZ associated with production of TH+ OB 

interneurons, as well as in the RMS and glomerular layer of the OB. 
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Figure 40 - CHD7 is expressed in the subventricular zone, rostral migratory stream, and 
olfactory bulb. a, Diagram of an in situ hybridisation using an anti-sense Chd7 probe (blue) in 

the SVZ from a'. a' In situ hybridisation using an anti-sense Chd7 probe (blue) in the SVZ. The 

boxed area is enlarged in a''. Scale bars, 100µm. b, Coronal adult SVZ section stained with an 

anti-CHD7 antibody and Dapi. The boxed area is enlarged in b'. Scale bars, 50µm c, In situ 

hybridisation using an anti-sense Chd7 probe (blue) in a coronal section of the RMS and OB 

(d). Scale bars, 1mm. e, Diagram of a sagittal adult mouse brain showing the SVZ, RMS, and 

OB (adapted from http://neurochirurgie.charite.de/forschung/arbeitsgruppen/ag_endogene_ 

neuronale_stammzellen/). Green areas represent where neurogenic cells can be detected. The 

boxed area depicts the area shown in f. f, Sagittal adult RMS and OB section stained with an 

anti-CHD7 antibody and Dapi. Scale bars, 100µm GCL, granule cell layer; GL, glomerular cell 

layer. 
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5.3.1. CHD7 is expressed at high levels in transit-amplifying cells in 
the subventricular zone 

My data so far demonstrate that CHD7 is expressed in the SVZ-OB neurogenic 

niche (see Section 5.3.). To determine which cell types in the SVZ express 

CHD7, a series of co-localisation experiments were performed by staining SVZ 

sections with antibodies raised against CHD7 and various markers of cells in 

the neurogenic lineage (see Figure 7). Around 10% of GFAP+ NSCs and 

astrocytes expressed CHD7 (Figure 41a,b), suggesting that CHD7 may be 

expressed in a subset of NSCs. However, GFAP+ astrocytes were not the 

primary cell type that expressed CHD7 (Figure 41a,c). Sox2 is expressed by 

NSCs and type C cells (see Figure 7). CHD7 was expressed in nearly 40% of 

Sox2+ cells (Figure 41d,e), and the majority of CHD7+ cells were Sox2+ (Figure 
41d,f). Type C cells proliferate rapidly and the majority of type C cells express 

markers of cell cycle entry such as Ki67 and PCNA. CHD7 was expressed by 

the majority of proliferating (Ki67+) cells (Figure 41g,h) and most cells that 

expressed CHD7 were proliferating (Figure 41g,i). MASH1 also marks 

activated NSCs and type C cells. CHD7 was expressed by almost all MASH1+ 

cells (Figure 41j,k), and many CHD7+ cells expressed MASH1 (Figure 41j,l). 
CHD7 was expressed in many type A cells, as shown by its expression in the 

RMS where type A cells migrate to the OB (see Figure 40e), but this was at a 

much lower level than other cells in the SVZ. CHD7 was not expressed at high 

levels by PSA-NCAM+ neuroblasts (Figure 41m,n), and few highly-expressing 

CHD7+ cells also expressed PSA-NCAM (Figure 41m,o). These data show that 

CHD7 is expressed mainly in proliferating type C cells in the SVZ, and CHD7 

expression is downregulated as cells proceed through the neurogenic lineage 

(Figure 42). 
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Figure 41 - CHD7 is expressed by proliferating cells and type C cells. a, Representative 

image of SVZ sections stained with antibodies raised against CHD7 and GFAP, Sox2 (d), Ki67 

(g), MASH1 (j), and PSA-NCAM (m). The yellow arrow head shows a GFAP+CHD7+ cell. Scale 

bars, 20µm. b, Quantification of the percentage of GFAP+, Sox2+ (e), Ki67+ (h), MASH1+ (k), 

and PSA-NCAM+ (n) cells that also express CHD7. c, Quantification of the percentage of 

CHD7+ cells that also express GFAP, Sox2 (f), Ki67 (h), MASH1 (l), and PSA-NCAM (o). n = 

100-150 cells analysed by confocal microscope. All data represented as mean ± s.e.m. 
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Figure 42 - Schematic of CHD7 expression in the SVZ. CHD7 is expressed mostly in type C 

cells and is expressed at much lower levels in type A cells. CHD7 is also expressed at low 

levels in interneurons in the glomerular cell layer of the OB (not shown). 
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5.4. Reduction in Chd7 expression results in a decrease in 
immature neuron production in the subventricular zone 

My data so far suggests that a reduction in Chd7 expression causes a decrease 

in the number of TH+ OB interneurons (see Section 5.2.). CHD7 is expressed 

by transit amplifying cells in the area of SVZ associated with TH-interneuron 

production (see Section 5.3.), and therefore likely plays a role in fate decisions 

and the differentiation of SVZ cells. I therefore hypothesised that CHD7 

regulates the generation of new neurons in SVZ-OB neurogenesis. To 

determine if a reduction in Chd7 expression affects the generation of immature 

interneurons, sections of the SVZ of WT and Chd7gt/+  mice were stained with 

antibodies raised against DCX, a marker of immature neurons (type A cells; 

Figure 43a). Chd7gt/+ mice had fewer DCX+ cells specifically in the area of the 

lateral ventricle where CHD7 is expressed (Figure 43b-d). These data suggest 

that cells with reduced Chd7 expression may have an impaired differentiation 

capability. Alternatively, there may be a defect in progenitor proliferation 

causing impaired formation of new immature neurons, or there may be an 

increase in the apoptosis of type A cells. To determine if the proliferation of SVZ 

cells was affected by a decrease in Chd7 expression, sections of the SVZ of 

WT and Chd7gt/+  mice were stained with antibodies raised against PCNA to 

label proliferating cells, the majority of which are type C transit amplifying cells 

[183]. Interestingly, SVZ proliferation was increased in the lateral wall and RMS 

(Figure 43e-g). These data show that proliferation in the SVZ is not impaired 

and suggests that a decrease in immature neuron formation may instead be 

due to impaired differentiation. That the number of proliferating cells in the SVZ 

increases suggests that there is a block in differentiation which causes an 

accumulation of proliferating type C cells. To determine if a reduction in Chd7 

expression leads to changes in apoptosis, an activated caspase 3 stain will 

need to be performed (see Section 6.11.6.). Collectively, these data reveal a 

role for CHD7 in SVZ-OB neurogenesis, with Chd7gt/+ mice exhibiting a 

decrease in the generation of type A cells possibly due to a block in 
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differentiation which results in a decrease in the production of TH+ interneurons 

in the OB. 
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Figure 43 - Reduction in Chd7 expression affects SVZ neurogenesis. a, Representative 

image of the lateral wall of the SVZ of Chd7gt/+ and WT mice stained with antibodies raised 

against PCNA and DCX. Scale bar, 20µm. b, Quantification of the number of DCX+ cells in the 

lateral wall of the lateral ventricle and RMS, and in the medial wall (c), and dorsal wall (d) of the 

lateral ventricle of Chd7gt/+ and WT mice per 10µm section. Note, there is no change in the 

number of DCX+ cells in the medial and dorsal walls of the lateral ventricle as CHD7 is not 

expressed there. n=3 animals / condition. e, Quantification of the number of PCNA+ cells in the 

lateral wall of the lateral ventricle and RMS, and in the medial wall (f), and dorsal wall (g) of the 

lateral ventricle of Chd7gt/+ and WT mice per 10µm section. n=3 animals / condition. All data 

represented as mean ± s.e.m.; *P<0.05 **P<0.01 student's t test. 
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5.4.1. Loss of Chd7 in NSCs blocks their differentiation 

Chd7gt/+ mice have reduced Chd7 expression in all cell types, including in 

olfactory epithelial stem cells (OESCs), and so the phenotypes seen may be 

due to effects on cells other than those in the SVZ neural lineage. Therefore, to 

exclude the possibility that the reduction in the number of TH-expressing 

interneurons is due to effects on OESCs, I sought to delete Chd7 specifically 

from adult NSCs using a GLAST::CreERT2 mouse line [253]. GLAST is 

expressed by NSCs and astrocytes and so upon tamoxifen injection Cre-

mediated recombination should only take place in NSCs [253]. To first 

determine its efficiency in the SVZ, the GLAST::CreERT2 line was crossed to a 

RYFP reporter line to generate GLAST::CreERT2;RYFP/+ mice. Adult 

GLAST::CreERT2;RYFP/+ mice were given 5 injections of tamoxifen to induce 

recombination and expression of YFP and sacrificed 5 days after the last 

tamoxifen injection (Figure 44a). Sections of the SVZ were stained with 

antibodies raised against GFP along with GFAP to label NSCs (Figure 44c). 

YFP could be detected in around 75% of GFAP+ cells (Figure 44b), however, 

this is likely to be an underestimation due to the difficulty in seeing individual 

GFAP+ cells in these sections. YFP+GFAP- cells were also present in the SVZ 

which are presumably type C daughter cells (Figure 44c). Therefore, my 

tamoxifen injection regime in GLAST::CreERT2 mice results in efficient 

recombination in SVZ cells. 

To delete Chd7 specifically from adult NSCs, GLAST::CreERT2 mice were 

crossed with a mouse line where exon 3 of Chd7 is floxed (Chd7f/f) [EUCOMM 

ID: 35714] to generate a GLAST::CreERT2;Chd7f/f mouse line (Figure 45a). 

Tamoxifen injection causes Cre-mediated recombination and formation of a 

truncated, non-functional CHD7 protein specifically in NSCs and astrocytes 

(Chd7null; see Section 6.3.). Chd7null and Cre-negative control mice (WT) 

were treated with tamoxifen and sacrificed 11 weeks later (Figure 45b). BrdU 

was administered in the drinking water of mice in the last 3 weeks of life to label 

all newly generated cells (Figure 45b). The number of BrdU+ cells was reduced 

in the SVZ and RMS of Chd7null mice compared to WT, suggesting that loss of 
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Chd7 from NSCs results in a decrease in the number of new cells formed 

(Figure 45c,d). These data are consistent with decrease in SVZ neurogenesis 

in Chd7gt/+ mice.  
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Figure 44 - Efficient recombination in the GLAST::CreERT2 mouse line. a, Schematic of 

the experimental strategy to induce recombination and YFP expression in SVZ NSCs. Adult 

GLAST::CreERT2;RYFP mice were given one injection of 80mg/kg tamoxifen a day for 5 days 

and sacrificed 5 days after the last tamoxifen injection. b, Quantification of the percentage of 

GFAP+ cells that were also GFP+. At least 60 GFAP+ cells were counted. n=2 animals. Data 

represented as mean ± s.e.m. c, Representative image of a sagittal section of the lateral 

ventricle (LV) of GLAST::CreERT2;RYFP mice treated as in a stained with antibodies raised 

against GFP and GFAP. Note the large overlap between GFAP and GFP in the SVZ and RMS. 

The boxed area is enlarged in the merge and shows a GFP+GFAP+ cell. Lat SVZ, lateral wall of 

the SVZ. Scale bar, 100µm. n=2 animals.  
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Figure 45 - Loss of Chd7 in neural stem cells affects subventricular zone neurogenesis. 

a, Schematic of the Chd7 flox allele (EUCOMM ID: 35714). The selection cassette was removed 

by crossing with Flp deleter mice. Exon 3 is flanked by loxP sites to allow for conditional 

inactivation and the formation of a truncated, non-functional protein after Cre-mediated 

recombination. b, Schematic of the experimental strategy to delete Chd7 from adult NSCs and 

label newly born cells by administering BrdU in the drinking water of mice. c, Representative 

image of a section of the SVZ and RMS of GLAST::CreERT2;Chd7f/f mice treated with tamoxifen 

(Chd7null) and Cre-negative controls (WT) stained with antibodies raised against BrdU. Scale 

bar, 50µm. d, Quantification of the number of BrdU+ cells in the lateral wall and RMS of WT and 

Chd7null mice per 20µm section. n=2 animals / condition. Data represented as mean ± s.e.m.; 

*P<0.05 student's t test. 
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5.5. Restoration of Chd7 function partially rescues the 
expression of tyrosine hydroxylase in the olfactory bulb 

The data shown so far suggests that the reduction in TH expression in the OB 

likely reflects changes in SVZ-OB neurogenesis. I hypothesised that restoration 

of Chd7 specifically in NSCs and their progeny could restore the number of TH-

producing cells in the SVZ. To test this, Chd7gt/+ mice (which have 50% reduced 

Chd7 expression (see Figure 37b)) were crossed to GLAST::CreERT2 mice to 

generate a GLAST::CreERT2;Chd7gt/+ mouse line. Injection of tamoxifen results 

in restoration of Chd7 function specifically in NSCs and their progeny 

(GLAST::CreERT2;Chd7+/+ ; Rescue; Figure 46a,b), however, I did not have 

the mice to confirm by RT-qPCR to what extent the expression of Chd7 is 

restored. GLAST::CreERT2 mice were used as controls (WT) (Figure 46b). 

Restoration of Chd7 function in NSCs partially rescued the number of TH+ 

interneurons compared to GLAST::CreERT2;Chd7gt/+ mice (Figure 46c,d). 

Collectively, these data show that CHD7 regulates TH+ interneuron production, 

and restoration of Chd7 function specifically in NSCs can partly rescue the 

deficit of TH+ interneurons in the OB of Chd7gt/+ mice. Alternative explanations 

are possible and these will be discussed in Section 5.6.2. 
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Figure 46 - Restoration of Chd7 function in neural stem cells partly rescues tyrosine 
hydroxylase production in the olfactory bulb. a, Schematic of the Chd7xk403 allele before (top 

panel) and after (bottom panel) recombination. Cre-mediated recombination results in deletion 

of the splice acceptor (SA) site (green triangles flanking the SA) and loss of β-galactosidase 

activity, thereby allowing for the production of functional and stable CHD7 protein. Adapted from 

[356]. b, Schematic diagram of the strategy to assess the effect of restoration of Chd7 function 

on OB neurogenesis. Three cohorts of adult mice were used:1. GLAST::CreERT2 mice were 

used as controls (WT) and taken at 5 months of age (top panel); 2. GLAST::CreERT2;Chd7gt/+ 

mice (Chd7gt/+) taken at 5 months of age (middle panel); 3. GLAST::CreERT2;Chd7gt/+ mice 

treated with tamoxifen at 2 months of age and sacrificed 3 months later (Rescue). c, 

Representative picture of OB glomerular sections stained with antibodies raised against TH 

(green), and Dapi (blue). Scale bar, 100µm. d, Quantification of the number of TH+ interneurons 

per area of WT, Chd7gt/+ and Rescue mice per 10µm section. n=3 animals / condition. Data 

represented as mean ± s.e.m.; *P<0.05 ***P<0.001 student's t test. 
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5.6. Discussion 

I sought to investigate the role of the chromatin remodelling enzyme CHD7 in 

adult neurogenesis. The data presented here depict a specific role for CHD7 in 

the regulation of the production of TH+ interneurons from SVZ cells (Figure 47). 

These data show that CHD7 is expressed mainly by type C cells in the dorso-

lateral aspect of the SVZ and in the RMS, the area associated with production 

of TH+ OB interneurons [207]. Reduction in Chd7 expression results in a 

decrease in OB length whilst having very little effect on the size of other areas 

of the brain. My data suggests that Chd7 is required for the formation of 

immature neurons of the TH-lineage (Figure 47). I have shown that loss of 

Chd7 specifically in NSCs results in a loss of the formation of new cells in the 

SVZ and restoration of Chd7 function specifically in adult NSCs results in an 

increase in TH+ interneurons in the OB compared to Chd7gt/+ mice. These 

results show that Chd7 does indeed regulate adult neurogenesis. 
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Figure 47 - Reduction in Chd7 expression affects subventricular zone neurogenesis. 

Under homeostatic conditions, SVZ neurogenesis is required for the formation of new OB 

interneurons (top panel). However, a reduction in Chd7 expression results in a loss of TH+ 

interneurons and a decrease in the number of immature neurons (type A cells) (bottom panel). 

Additionally, a reduction in Chd7 expression also leads to an increase in the number of 

proliferating cells in the SVZ, possibly due to a block in differentiation (red block).  
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5.6.1. The reduction in olfactory bulb size and number of tyrosine 
hydroxylase+ interneurons may be progressive with age 

The OB length is around 10% shorter in P21 Chd7gt/+ mice compared to WT 

littermates (see Figure 37e). That the forebrain length of P21 Chd7gt/+ mice is 

not significantly shorter (see Figure 37f) argues that this is not due to a 

developmental delay, but instead reflects a specific effect of a reduction of Chd7 

expression on the formation of the OB. By adulthood the OB of Chd7gt/+ mice is 

33% shorter than controls, suggesting that the decline in OB size is progressive 

with age (see Figure 37d). SVZ-OB neurogenesis is presumably required for 

maintenance of OB structure and size since the OB interneuron population is 

constantly turned over [210-212]. Furthermore, the decline in number of 

interneurons producing TH also appears to decline with age in Chd7gt/+ mice 

compared with controls (compare the number of TH+ interneurons in Chd7gt/+ 

mice in Figure 38b with Figure 46d). These data imply that a reduction in Chd7 

expression leads to a decline in the formation of TH+ interneurons that is 

progressive with age and further indicate that a reduction in Chd7 leads to 

impaired SVZ-OB neurogenesis. 

I have shown that restoration of Chd7 function, specifically in NSCs, results in a 

significant increase in TH-expressing interneurons in just 3 months compared to 

Chd7gt/+ mice. If the reduction in TH+ interneurons is progressive with age in 

Chd7gt/+ mice, then the restoration of Chd7 function may reinstate a normal level 

of OB neurogenesis and maintain the production of TH+ interneurons, whereas 

the number of TH+ interneurons would continue to decline in Chd7gt/+ mice. A 

fourth cohort of Chd7gt/+ mice taken at 2 months of age, at the very start of the 

experiments, would be needed to test this. 
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5.6.2. A reduction in Chd7 expression may result in a loss of cells of 
the tyrosine hydroxylase lineage, or a loss of tyrosine hydroxylase 
production 

I have shown that Chd7gt/+ mice display a reduction in Er81 expression, which is 

an early marker for cells of the TH-lineage [390, 391]. However, Er81 is also 

required for the expression of TH in cells [390, 391]. Hence, an alternative 

explanation for the loss of TH-producing cells in Chd7gt/+ mice could be that a 

reduction in Chd7 expression results in decreased expression of TH from cells 

rather than a decrease in the formation of TH-expressing cells (Figure 48). 

These points can be addressed by staining OB sections of Chd7gt/+ and WT 

mice with markers to specifically label cells that would produce TH (such as 

dopamine decarboxylase (DDC), an enzyme involved in the production of TH). 

This would reveal if the TH-expressing interneurons are still present in Chd7gt/+ 

mice, but just not producing TH. However, preliminary experiments performed 

using DDC antibodies have shown them to be very non-specific and they do not 

overlap with TH expression. Therefore, other antibodies such as dopamine 

transporter (DAT) [392], will be required to distinguish between a reduction in 

TH-expression or a reduction in interneurons. 

A reduction in Chd7 expression causing a decreased expression of TH from 

cells (Figure 48), may also mean that restoration of Chd7 function in NSCs 

results in a significant increase in TH-expressing interneurons due to restoration 

of Chd7 function reinitiating the signalling programs required for the production 

of TH, such as expression of Er81. To determine if the reduction in TH+ 

interneurons in Chd7gt/+ mice was due to a reduction in neurogenesis, the 

number of type A cells would need to be counted in Rescue mice. If restoration 

of Chd7 results in an increase in the number of type A cells compared to 

Chd7gt/+ mice it would suggest that CHD7 regulates the formation of TH+ 

interneurons. To fully conclude this, labelling newly born cells in Rescue mice 

through BrdU pulse-chase experiment would allow for the analysis of the 

number of newborn neurons that have integrated into the OB [228]. If CHD7 

regulates the formation of TH+ interneurons, an increase in the number of BrdU+ 
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cells would be seen in the OB in Rescue mice. Additionally, using a marker to 

specifically label cells that would produce TH would reveal if the TH-expressing 

interneurons are still present in Chd7gt/+ mice, but just not producing TH. To fully 

appreciate the role of CHD7 in dopaminergic OB neuron production, lineage 

tracing using a GLAST::CreERT2;Chd7f/+;RYFP/+ would need to be performed. 

This would allow for the analysis of the contribution of cells with reduced Chd7 

expression to OB neurogenesis, and so the number of newly formed TH+ OB 

interneurons can be calculated. 

To fully determine if the reduction in Er81 expression seen in Chd7gt/+ mice is 

due to a decrease in its expression in immature neurons, the transcription of 

Er81 would need to be determined in isolated type A cells. 
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Figure 48 - Regulation of Er81 expression by CHD7. CHD7 may bind to Er81 promoter 

elements or distal enhancers to induce Er81 expression in cells of the SVZ-OB neurogenic 

lineage. Er81 then directly induces the expression of tyrosine hydroxylase in dopaminergic OB 

cells (top panel). In Chd7gt/+ mice, a reduction in Chd7 expression may limit the expression of 

Er81, thereby causing a reduction in the expression of tyrosine hydroxylase from OB cells 

without affecting the production of cells (bottom panel).  
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5.6.3. CHD7 regulates subventricular zone - olfactory bulb 
neurogenesis 

Studies by Layman et al. showed that CHD7 was expressed by MASH1+ stem 

cells in the olfactory epithelium [345]. The data presented here show that CHD7 

is expressed in MASH1+ cells in the SVZ. It is interesting to speculate that 

CHD7 has a conserved role in MASH1+ cells to drive the neurogenic program. 

The authors also found that reduction in Chd7 expression led to decreased 

proliferation of the epithelial stem cells [345]. Whilst I have not calculated the 

proliferation specifically of NSCs in the SVZ, my data indicate that proliferation 

in the SVZ is generally increased, perhaps suggesting differences in the role of 

Chd7 in different stem cell populations. Layman et al. attributed a decline in TH 

expression in the OB of Chd7gt/+ mice to a decrease in the proliferation of 

olfactory epithelial stem cells and a loss of signalling to dopaminergic 

interneurons (see Figure 35) [345]. Restoration of Chd7 function specifically in 

NSCs and astrocytes, partially rescued the deficiency in TH in the OB, and 

argues against a decrease in olfactory epithelial stem cell proliferation being the 

sole reason for a loss of TH in the OB. An alternative explanation to these 

findings is that CHD7 may affect GLAST+ mature astrocyte function, which may, 

in turn, regulate stem cells and their progeny in the olfactory epithelium. 

However, in preliminary studies using a GLAST::CreERT2;RYFP mouse line, I 

could not detect YFP expression in the olfactory epithelium 3 months after 

tamoxifen-induced recombination (data not shown). These data suggest that 

this Cre is not active in the olfactory epithelium, and therefore restoration of 

Chd7 in GLAST+ cells does not directly affect the olfactory epithelium. 

Furthermore, the finding that very few GFAP-expressing cells also express 

CHD7 suggests that the regulation of mature astrocyte function by CHD7 is 

unlikely. 
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5.6.4. Loss of Chd7 results in a large reduction in olfactory bulb 
neurogenesis 

Recently, CHD7 was shown to play a role in adult SVZ-OB neurogenesis in 

mice. Feng et al. observed that CHD7 was expressed in few GFAP+ cells and 

also in the majority of proliferating cells as well as in neuroblast cells [386], 

which is in agreement with my data. The authors utilised NestinCreERt2;Chd7f/f 

and Tlx-CreERt2;Chd7f/f mouse lines to specifically delete Chd7 from adult 

NSCs and progenitors [386]. Feng et al. saw that 8 weeks after tamoxifen 

injection, the OB of Tlx-CreERt2;Chd7f/f mice had a reduction in the number of 

TH+, CalR+, and CalB+ interneurons [386]. I have shown that a reduction in 

Chd7 expression leads to a decrease in the number of TH+ OB interneurons 

without affecting other types of interneurons (see Figure 38). These data 

suggest that the effect of CHD7 on adult neurogenesis may be dependent on 

the level of Chd7. I have shown that the transcript of Chd7 is reduced by 50% in 

Chd7gt/+ mice (see Figure 37b), whilst Feng et al. observed a complete 

absence of CHD7 protein in the SVZ of Tlx-CreERt2;Chd7f/f mice that had been 

injected with tamoxifen [386]. Therefore, a reduction in Chd7 levels to 50% of 

WT levels may preferentially affect TH+ interneuron production, whereas 

ablation of Chd7 may affect all types of OB interneuron production. These data 

suggest that cells of the TH-lineage may be more sensitive to the Chd7 gene 

dosage. I have shown that loss of Chd7 from adult NSCs using a 

GLAST::CreERT2;Chd7f/f mouse line leads to a reduction in the formation of 

newly formed cells (see Figure 45d), in agreement with Feng et al. [386], and 

so further analysis of neurogenesis in this mouse line will allow for greater 

comparisons to be made. 

 

5.6.5. CHD7 in adult subventricular zone neurogenesis 

Collectively, these data show that CHD7 plays a role in the neurogenic 

progression of SVZ cells, specifically affecting production of TH-expressing OB 

interneurons. In order to determine the full role of CHD7 in adult neurogenesis, I 
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sought to analyse the effect of loss of Chd7 in hippocampal neurogenesis. This 

will allow for similarities and differences to be drawn between the role of CHD7 

in the regulation of different NSC populations which serve different brain 

systems, revealing common themes in the regulation of NSCs and their 

progeny. 
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6.1.  Quiescence of a somatic stem cell population is essential 
for maintenance of the stem cell pool 

Quiescence is a property of somatic stem cell populations that is essential for 

the maintenance of stem cell number and function. In support of this, I have 

previously shown that loss of muscle stem cell quiescence can lead to a loss of 

stem cell number and function (see Chapter 4). In the SVZ and SGZ 

neurogenic niches NSCs are in a relatively quiescent state, which has been 

shown to be essential to prevent proliferative exhaustion and premature 

differentiation of the stem cell pool [201, 253]. 

 

6.1.1. Maintenance of neural stem cell quiescence 

Notch signalling is a critical regulator of NSC quiescence. For example, NSCs 

express Notch receptor, and signalling from Notch ligand-expressing 

progenitors in the niche is crucial for preserving NSC quiescence and 

preventing their proliferative exhaustion [252, 253, 256, 260]. Deletion of Rbpj, 

the transcriptional activator of Notch signalling, specifically from adult NSCs 

results in the loss of NSC quiescence, a transient increase in neurogenesis, 

followed by an eventual loss of the NSC pool and a decline in neurogenesis 

[252, 256]. This was shown to be due to premature conversion of NSCs to 

transit-amplifying progeny, showing that a loss of quiescence coupled with 

differentiating (non-self-renewing) divisions can lead to depletion of the stem 

cell pool [252, 256]. These data are in contrast to what is seen in p21 mutant 

mice. p21-/-  mice display an increase in NSC proliferation and initially exhibit an 

increase in NSC number, suggesting that a loss of NSC quiescence can also 

lead to an increase in the NSC pool if coupled with self-renewing divisions. In 

middle-aged p21-/-  mice however, NSCs also undergo proliferative exhaustion 

and neurogenesis declines [393]. Collectively, these data indicate that the 

maintenance of NSC quiescence and regulation of NSC fate decisions is critical 

for the maintenance of adult neurogenesis. 
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6.1.2. Neural stem cell proliferation and ageing 

Low-level proliferation of hippocampal NSCs and the generation of new granule 

neurons is vital for specific types of hippocampal function [224-227]. 

Proliferative exhaustion of stem cells has been suggested to be the primary 

cause of ageing [18, 394]. Ageing is associated with reduced NSC proliferation 

and a decrease in newly generated neurons [187, 395-397], leading to cognitive 

decline [17, 398, 399]. Whether there is a decrease in the numbers of NSCs 

with age is largely disputed, with some studies reporting a strong reduction in 

cell numbers in the ageing hippocampus of rodents [400-402], and others 

reporting a change in their proliferative state, but not in their absolute numbers 

[253, 403]. The cell cycle entry and associated depletion of NSCs has been 

contested in two recent models. Encinas et al. proposed a 'disposable stem cell 

model' where quiescent NSCs enter the cell cycle, undergo a limited number of 

asymmetric cell divisions, and terminally differentiate into mature astrocytes, 

thus leading to depletion of the stem cell pool during life [404]. In vivo clonal 

analyses by Bonaguidi et al. by a low dose of tamoxifen injection in a NSC 

reporter mouse reported a diverse behavior of NSCs [196]. The authors 

observed some depletion of the NSC pool with time but also noted that some 

NSCs that had cycled did not terminally differentiate but instead persisted for 

long periods of time [196]. Therefore, investigating the mechanisms which 

regulate NSC quiescence and differentiation under homeostatic conditions in 

adults may help to better understand the signalling pathways which lead to 

proliferative exhaustion of stem cells and cognitive decline with ageing. 

 

6.1.3. Regulation of neural stem cell fate decisions 

In addition to proliferation, regulation of NSC fate decisions can modulate levels 

of neurogenesis in the adult forebrain. This can be achieved, for example, by 

changing the proportion of cells undergoing proliferative versus differentiative 

divisions, symmetric versus asymmetric divisions, and gliogenic versus 

neurogenic divisions (Figure 49). 



6: Results Part IV 

 

218 
 

With ageing, two opposing scenarios have been proposed with regards to 

changes in NSC fate decisions. Some studies have reported a decrease in the 

number of newborn neural cells with age [230, 405]. Other studies reported that 

the proportion of differentiated cell types generated from the pool of cycling 

NSCs is similar or only slightly changed, even if the number of proliferating 

NSCs and absolute number of newborn neurons decreases during aging [16, 

406-408]. 

Nevertheless, before developing approaches to combat the age-related decline 

in NSC activity and possible changes in function, it is important to first identify 

the mechanisms involved in the regulation of NSC proliferation, maintenance, 

and cell fate decisions under homeostatic conditions in adults. I have shown 

that CHD7 plays a role in adult SVZ neurogenesis, by regulating the 

proliferation and differentiation of SVZ cells (see Chapter 5). However, the role 

of CHD7 and chromatin remodelling in hippocampal neurogenesis remains 

unknown. I hypothesised that, like in the SVZ, CHD7 plays a role in adult 

hippocampal neurogenesis and that loss of Chd7 results in impaired formation 

or differentiation of SGZ cells. The aims for this chapter are to: 

1. Determine the expression profile of CHD7 in SGZ cells. 

2. Characterise of the effects of a loss of Chd7 on adult hippocampal 

neurogenesis specifically examining the effects on neurogenesis and the 

NSCs themselves. 

3. Use in vitro NSC cultures to model the phenotypes seen after loss of 

Chd7 in vivo. 
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Figure 49 - Schematic diagram of the fate decisions of adult neural stem cells. a, In vivo 

clonal analysis has shown that neural stem cells (NSCs) can self-renew, differentiate into 

astroglia, or form precursor cells capable of expanding their population and differentiating into 

neurons. b, NSCs are capable of undergoing different types of division. Symmetric self-

renewing divisions amplify the population of NSCs at the expense of forming differentiated cell 

types. Conversely, symmetric differentiative divisions lead to an increase in the progenitor pool 

but also lead to a depletion of the NSC pool. Asymmetric cell divisions allow for the 

maintenance of the NSC pool as well as the production of differentiated cell types. Adapted 

from [196]. 

 

6.2. CHD7 is expressed in transit amplifying cells in the 
subgranular zone 

To first determine if Chd7 was expressed in the hippocampus, in situ 

hybridisation using an anti-sense Chd7 probe was performed on coronal 

sections of adult WT (CD1 mouse strain) brains. Chd7 was expressed in the 

SGZ of the dentate gyrus (DG) where NSCs and progenitors reside (Figure 
50a). This result was confirmed by antibody staining (Figure 50b). Of note, the 

expression of CHD7 was much lower in the SGZ than in the SVZ as determined 

by immunofluorescence intensity (data not shown). 

To determine which cell types in the SGZ express CHD7, a series of co-

localisation experiments were performed by staining hippocampal sections of 

adult WT mice with antibodies raised against CHD7 and various markers of 

cells in the neurogenic lineage (see Figure 9). NSCs in the SGZ can be readily 

identified based on GFAP immunoreactivity and the presence of GFAP+ 

processes extending through the granular layer of the DG. CHD7 was not 

detected in any GFAP+ NSCs in the SGZ (Figure 51a-c). Sox2 is a marker of 

NSCs and transit amplifying progeny (type 1 and type 2 cells; see Figure 9). 

CHD7 was expressed in 6% of Sox2+ cells (Figure 51d,e). However, the 

majority of cells which expressed CHD7 also expressed Sox2, meaning that 

most CHD7+ cells are Sox2+ (Figure 51d,f). MASH1 is a marker of type 2a cells 

(see Figure 9). CHD7 was expressed by around half of all MASH1+ cells in the 

SGZ (Figure 51g,h), but almost all cells which expressed CHD7 also expressed 
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MASH1 (Figure 51g,i). Therefore, most CHD7+ cells are Sox2+MASH1+, 

suggesting that CHD7 is present in transit amplifying type 2a cells (Figure 52). 

Furthermore, CHD7 was not detected in mature NeuN+ granule neurons in the 

dentate gyrus (Figure 51j-l), suggesting that CHD7 is downregulated as SGZ 

cells differentiate. Due to the low expression of CHD7 in the SGZ I have not yet 

analysed the expression of CHD7 in proliferating cells and type 3 cells. 

However, my data suggests that CHD7 will be expressed in proliferating cells 

since CHD7 is expressed in MASH1+ cells which are proliferative, and may be 

expressed in type 3 cells but at lower levels similar to in the SVZ (see Figure 
41). 
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Figure 50 - CHD7 is expressed in the subgranular zone of the dentate gyurs. a, In situ 

hybridisation using an anti-sense Chd7 probe (blue) in the SVZ. The boxed area is enlarged in 

a'. Scale bars, 50µm. b, Coronal adult DG section stained with an anti-CHD7 antibody and 

Dapi. The boxed area is enlarged in the far right panel. Yellow arrow heads show CHD7+ cells 

with clear nuclear staining. SGZ, subgranular zone; Hi, hilus; GL, granular layer; ML, molecular 

layer. Scale bar, 20µm. 
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Figure 51 - CHD7 is expressed by a subset of type 2a cells. a, Representative image of 

dentate gyrus sections stained with antibodies raised against CHD7 and GFAP, Sox2 (d), 

MASH1 (g), and NeuN (j). Yellow arrow heads show CHD7+GFAP- cells, purple arrow head 

shows a likely NSC with a GFAP+ process protruding through the granular layer of the dentate 

gyrus. A lower magnification image of (a) compared to other pictures was chosen to show 

GFAP+ processes through the dentate gyrus. Scale bars, 20µm. b, Quantification of the 

percentage of GFAP+, Sox2+ (e), MASH1+ (h) and NeuN+ (k) cells that also express CHD7. c, 
Quantification of the percentage of CHD7+ cells that also express GFAP, Sox2 (f), MASH1 (h) 

and NeuN (l). n = 100-150 cells analysed by confocal microscope. All data represented as 

mean ± s.e.m. 
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Figure 52 - Schematic of CHD7 expression in the dentate gyrus. CHD7 is expressed in a 

subset of type 2a cells. 
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6.3. The GLAST::CreERT2;Chd7f/f mouse line allows for efficient 
deletion of Chd7 in the dentate gyrus 

I have shown that CHD7 is expressed by transit amplifying cells in the SGZ (see 

Figure 52) and therefore CHD7 likely plays a role in hippocampal 

neurogenesis. To determine if CHD7 is an essential regulator of adult 

hippocampal neurogenesis, I sought to delete Chd7 specifically from adult 

NSCs using a GLAST::CreERT2 mouse line [253]. GLAST is expressed by 

NSCs and astrocytes and so upon tamoxifen injection Cre-mediated 

recombination should only take place in NSCs [253]. To first determine its 

efficiency in the DG, the GLAST::CreERT2 line was crossed to a RYFP reporter 

line to generate GLAST::CreERT2;RYFP/+ mice. Adult 

GLAST::CreERT2;RYFP/+ mice were given 5 injections of tamoxifen to induce 

recombination and expression of YFP and sacrificed 7 days and 28 days after 

the last tamoxifen injection (Figure 53a). Sections of the SVZ were stained with 

antibodies raised against GFP along with GFAP to label NSCs (Figure 53c,d). 

7 days after the last tamoxifen injection 86% of radial GFAP+ cells were YFP+, 

showing efficient recombination in NSCs (Figure 53b). Additionally, some YFP+ 

cells which were not GFAP+ were observed, and these are presumably NSC 

progeny (Figure 53c). 28 days after the last tamoxifen injection, YFP+ cells in 

the granular layer (GL) of the DG were visible (Figure 53d). As cells born in the 

SGZ differentiate they migrate to deeper layers of the granular layer, and so 

YFP+ cells in the GL are presumably new neurons formed from NSCs. 

Furthermore, at this time point many GFAP+ cells were still YFP+, showing that 

recombination is stable (Figure 53d). Therefore, my tamoxifen injection regime 

in GLAST::CreERT2 mice results in efficient recombination in SGZ cells. 

To delete Chd7 specifically from adult NSCs, GLAST::CreERT2 mice were 

crossed with Chd7f/f mice to generate a GLAST::CreERT2;Chd7f/f mouse line 

(see Figure 45a). Tamoxifen injection causes Cre-mediated recombination and 

the formation of a truncated, non-functional CHD7 protein specifically in NSCs 

and astrocytes (Chd7null). To test if the deletion of Chd7 was efficient, the DG 

of GLAST::CreERT2;Chd7f/f (Chd7null) and Cre-negative control mice (WT) was 
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stained with antibodies raised against CHD7 and the number of CHD7+ cells 

was counted 1 week and 4 weeks after tamoxifen administration. Hardly any 

CHD7+ cells were detected in the DG of Chd7null mice both 1 weeks and 4 

weeks after Chd7 deletion, indicating that deletion of Chd7 was efficient (Figure 
54a-d). Therefore using the GLAST::CreERT2;Chd7f/f mouse line allows for 

efficient deletion of Chd7 and recombination in a large portion of NSCs. 
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Figure 53 - Efficient recombination in the dentate gyrus of GLAST::CreERT2 mice. a, 

Schematic of the experimental strategy to induce recombination and YFP expression in SGZ 

NSCs. Adult GLAST::CreERT2;RYFP mice were given one injection of 80mg/kg tamoxifen a 

day for 5 days and sacrificed either 7 days or 28 days after the last tamoxifen injection. b, 

Quantification of the percentage of radial GFAP+ cells that were also GFP+ in the SGZ. At least 

90 GFAP+ cells were counted. n=2 animals. Data represented as mean ± s.e.m. c, 

Representative image of a coronal section of the dentate gyrus of GLAST::CreERT2;RYFP 

mice 7 days or 28 days (d) after tamoxifen injection stained with antibodies raised against GFP 

and GFAP. GFP antibodies recognise YFP protein. White arrow heads show GFAP+GFP+ 

astrocytic processes. Note the large overlap between GFAP and GFP. Also note the presence 

of YFP+ cells in the granular cell layer (light blue arrow head which is GFAP-) in (c), indicating 

that recombined NSCs have produced new mature neurons. Scale bar, 100µm. n=2 animals / 

condition. 
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Figure 54 - The GLAST::CreERT2;Chd7f/f mouse line allows for efficient deletion of Chd7. 

a, Representative image of a section of the SGZ stained with antibodies raised against CHD7 

and MASH1 in WT and Chd7null (b) adult brains 4 weeks after tamoxifen administration. 

Sections were stained with antibodies raised against MASH1 to fully identify CHD7+ cells since 

the majority of CHD7+ cells also express MASH1. c, Quantification of the number of CHD7+ 

cells in the SGZ of WT and Chd7null mice 1 week and 4 weeks (d) after the last tamoxifen 

injection. n=2-4 animals / condition. All data represented as mean ± s.e.m. 

 

6.4. Loss of Chd7 in neural stem cells causes a reduction in 
neurogenesis 

CHD7 is expressed in neurogenic SGZ cells and so I hypothesised that CHD7 

likely plays a role in hippocampal neurogenesis. To analyse the effect of loss of 

Chd7 on hippocampal neurogenesis, GLAST::CreERT2;Chd7f/f (Chd7null) and 

Cre-negative control mice (WT) were treated with tamoxifen and sacrificed 12 

weeks later (Figure 55a). Sections of the hippocampus were stained with 

antibodies raised against DCX to label immature neurons (type 3 cells). 

Chd7null mice displayed a 45% reduction in the number of immature neurons in 

the DG compared to WT (Figure 55b,c), showing that CHD7 is a critical 

regulator of neurogenesis. A decrease in neurogenesis could be due to 

impaired differentiation of neuronal progenitors or impaired proliferation of cells 

in the SGZ. To determine if proliferation in the SGZ was altered after loss of 

Chd7, Chd7null and WT mice were treated with tamoxifen and sacrificed 12 

weeks later. BrdU was injected 24 hours before sacrifice to label proliferating 

cells (Figure 55a). A 24 hour BrdU pulse labels the majority of progenitors 

without labelling a significant number of neurons [228]. Despite a large 

decrease in neurogenesis, the number of proliferating cells (BrdU+ or PCNA+) in 

the SGZ was not altered (Figure 55d,e). These data suggest that the formation 

and/or survival of DCX+ type 3 cells is impaired. Alternatively, it is possible that 

CHD7 may regulate DCX expression, and loss of Chd7 results in the inability of 

cells to express DCX. This will be addressed in Section 6.5. 

To determine if the formation of new mature neurons is affected after loss of 

Chd7, adult GLAST::CreERT2;Chd7f/f (Chd7null) and Cre-negative control (WT) 
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mice were injected with tamoxifen and sacrificed 11 weeks later, giving BrdU in 

their drinking water for the last 3 weeks of life to label newly born cells (Figure 
55f). The number of newborn cells (BrdU+) in the DG was reduced by 55% in 

Chd7null mice (Figure 55h), showing that the formation of new cells is impaired 

in Chd7null mice. To fully determine if the formation of new neurons was 

impaired, sections of the DG of Chd7null and WT mice were stained with 

antibodies raised against BrdU and NeuN. Any cells which are BrdU+NeuN+ 

cells are new granule neurons [228]. The percentage of newly formed cells that 

were mature neurons (%BrdU+NeuN+) was reduced by 33% (Figure 55g,i). 
These data show that the production of newborn cells is decreased in Chd7null 

mice, and the percentage of newly formed cells that become neurons is 

adversely affected by the loss of Chd7. 

A decrease in the percentage of newly formed cells that become neurons could 

be due to: 

1. An increase in apoptosis (see Section 6.11.6.) 
2. A delay or block in neurogenesis (see Section 6.6.) 
3. Decreased expansions of neural progenitors (see Section 6.5.) 
4. A fate change of SGZ cells (see Section 6.8.) 

These possibilities will be discussed in the following sections. 
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Figure 55 - Chd7 regulates adult hippocampal neurogenesis. a, Schematic diagram of the 

experimental strategy to delete Chd7 from adult NSCs for 12 weeks (long-term) and label 

proliferating cells by injecting BrdU 24 hours prior to sacrifice. b, Representative image of a 

section of the DG of GLAST::CreERT2;Chd7f/f mice treated with tamoxifen (Chd7null) and Cre-

negative controls (WT) stained with antibodies raised against DCX. Scale bar, 100µm. c, 

Quantification of the number of DCX+ cells in the DG of Chd7null and WT mice per 20µm 

section. n=4 animals / condition. d, Quantification of the number of BrdU+ and PCNA+ (e) cells 

in the SGZ of Chd7null and WT mice per 20µm section. n=4 animals / condition. f, Schematic 

diagram of the experimental strategy to delete Chd7 from adult NSCs and label newly born cells 

by administering BrdU in the drinking water of mice. g, Representative image of a section of the 

DG stained with antibodies raised against BrdU and NeuN. Scale bar, 20µm. h, Quantification 

of the number of BrdU+ cells and the percentage of BrdU+ cells that were NeuN+ (i) in the DG of 

Chd7null and WT mice per 20µm section. n=2 animals / condition. All data represented as mean 

± s.e.m.; **P<0.01 ***P<0.001 student's t test. 

 

6.5. Loss of Chd7 leads to a transient increase in neurogenesis 

I have shown that the loss of Chd7 in NSCs leads to a decrease in the number 

of immature neurons in the dentate gyrus (see Figure 55c). One possible 

explanation is that the decrease in the number of DCX+ cells formed may 

indicate that CHD7 regulates DCX expression. Hence, a loss of Chd7 

expression would cause a loss of DCX+ cells. To test this, adult 

GLAST::CreERT2;Chd7f/f (Chd7null) and Cre-negative control (WT) mice were 

injected with tamoxifen and sacrificed 1 week later to determine if impaired DCX 

expression was a primary defect caused by the loss of Chd7 (Figure 56a). At 

this time point there was no change in the number of DCX+ immature neurons in 

Chd7null mice compared to WT (Figure 56b), suggesting that the expression of 

DCX and formation of immature neurons is not impaired after the loss of Chd7. 

However, it could be argued that at this time point, only a very small percentage 

of recombined NSCs would not have formed type 3 cells, and so this is why no 

effect on immature neurons is seen in Chd7null cells [228]. To address this 

point, adult Chd7null and WT mice were injected with tamoxifen and sacrificed 4 

weeks later (Figure 56c). At this time point many NSCs should have formed 

type 3 cells [228]. Furthermore, 4 weeks after tamoxifen injection in 

GLAST::CreERT2;RYFP/+ mice I have shown that recombined cells can be 
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observed in the granular layer of the DG, indicating that some SGZ NSCs have 

formed new mature neurons (see Figure 53c). Therefore, if CHD7 regulates the 

expression of DCX, abnormalities should be seen 4 weeks after Chd7 deletion. 

Interestingly, 4 weeks after Chd7 deletion, there was an increase in the number 

of DCX+ immature neurons (Figure 56d), showing that loss of Chd7 does not 

lead to a loss of DCX+ cells. Collectively, these data show that loss of Chd7 in 

NSCs leads to a transient increase in neurogenesis followed by a large decline 

in new neuron formation. This transient increase in neurogenesis could be 

explained by an increase in the number of progenitors in the SGZ, or by an 

increase in NSC proliferation leading to a general increase in formation of more 

DCX+ cells, or by a decrease in the apoptosis of DCX+ cells, or by a block in the 

differentiation of immature neurons. To determine if the number of progenitors 

was altered in the SGZ, adult Chd7null and WT mice were injected with 

tamoxifen and sacrificed 4 weeks later (Figure 56c). DG sections of Chd7null 

and WT mice were stained with antibodies raised against the transit amplifying 

type 2a cell type MASH1. Four weeks after loss of Chd7 there was no change in 

the number of type 2a cells in the SGZ (Figure 56f), suggesting that the 

transient increase in neurogenesis was not due to an increase in the number of 

progenitors. These data also argue that the eventual loss in neurogenesis seen 

in Chd7null cells is not due to an impaired expansion of immature progenitors, 

since the number of MASH1+ cells is not altered. 

A transient increase in neurogenesis due to a decrease in apoptosis seems 

unlikely as the loss of Chd7 eventually leads to the depletion of DCX+ cells and 

a decreased number of newly born cells forming neurons, which may imply that 

there is possibly an increase in apoptosis at this time point. However, this will 

need further investigation (see Section 6.11.6.). 

Lastly, the hypothesis that an increase in NSC proliferation may lead to a 

transient increase in neurogenesis will be discussed in Section 6.7. 
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Figure 56 - Loss of Chd7 results in a transient increase in neurogenesis. a, Schematic of 

the experimental strategy to delete Chd7 from adult NSCs for 1 week (short-term). b, 

Quantification of the number of DCX+ cells in the DG of Chd7null and WT mice 1 week after the 

last tamoxifen injection per 20µm section. n=4 animals / condition. c, Schematic of the 

experimental strategy to delete Chd7 from adult NSCs for 4 weeks (mid-term) and label 

proliferating cells by injecting BrdU 24 hours prior to sacrifice. d, Representative image of a 

section of the DG of GLAST::CreERT2;Chd7f/f mice treated with tamoxifen (Chd7null) and Cre-

negative controls (WT) 4 weeks after the last tamoxifen injection stained with antibodies raised 

against DCX. Scale bar, 100µm. c, Quantification of the number of DCX+ cells in the DG of 

Chd7null and WT mice per 20µm section. n=4 animals / condition. d, Quantification of the 

number of BrdU+ cells in the SGZ of Chd7null and WT mice 4 weeks after the last tamoxifen 

injection per 20µm section. n=4 animals / condition. e, Quantification of the number of MASH1+ 

cells in the DG of Chd7null and WT mice 4 weeks after the last tamoxifen injection per 20µm 

section. n=4 animals / condition. All data represented as mean ± s.e.m.; **P<0.01 student's t 

test. 

 

6.6. Loss of Chd7 impairs mature neuron formation 

I have shown that the loss of Chd7 lead to a transient increase in immature 

neuron formation followed by a large decline in neurogenesis. The data so far 

suggest that a block in neuronal differentiation occurs when immature neurons 

proceed to full maturation. To further confirm this I employed the use of an in 

vitro model of NSCs which allows for the analysis of cell proliferation and 

differentiation in defined conditions [365]. Cultured NSCs are therefore a good 

model for analysing if CHD7 is an essential regulator of neurogenesis. To obtain 

this cell line, foetal NSCs from the cortex and striatum of E16.5 

NestinCre;Chd7δ/δ  (Chd7null) and Cre-negative embryos (WT) were isolated 

and cultured to form foetal-derived NSCs. These cells  retain multi-lineage 

differentiation capacity after prolonged expansion [364] and give a high yield of 

neurons when put under certain conditions [365]. To determine if Chd7 was 

expressed by cells in growth conditions and under differentiation conditions, 

RNA was extracted from Chd7null and WT cells and RT-qPCR for Chd7 was 

performed. Chd7 expression was upregulated as cells were put into 

differentiation conditions and expression was then downregulated as cells 

differentiated further (Figure 57a). These data show that in this in vitro culture 



6: Results Part IV 

 

238 
 

system, Chd7 is expressed in more neuronally committed cells, which is 

consistent with Chd7 being expressed in neuronally-committed type 2a cells in 

vivo (see Figure 52). These data suggest that the expression of Chd7 in the in 

vitro culture of NSCs reflect that seen in vivo. Importantly, the expression of 

Chd7 was completely absent in Chd7null cells (Figure 57a). To confirm that 

CHD7 protein expression was absent in Chd7null cells, a western blot of CHD7 

in total cell lysates of Chd7null and WT cells after being placed in neuronal 

differentiation conditions for 3 days (where expression of Chd7 was at its 

greatest) was performed. CHD7 protein was completely absent from Chd7null 

cells (Figure 57b), confirming that these mutant cells do not express CHD7. 

To confirm that CHD7 is an essential regulator of neurogenesis, Chd7null and 

WT cells in growth medium, neuronal differentiation conditions for 3 days, or 

neuronal differentiation conditions for 6 days were stained using antibodies 

raised against the mature neuron marker MAP2. Chd7null cells displayed a 

decreased tendency to form mature neurons compared to WT cells (Figure 
57c), showing that CHD7 regulates mature neuron formation. 

I have previously shown that loss of Chd7 results in a transient increase in 

neurogenesis and I have suggested that loss of Chd7 expression leads to an 

inability of immature neurons to fully mature. To test this in vitro, Chd7null and 

WT cells in growth medium, neuronal differentiation conditions for 3 days, or 

neuronal differentiation conditions for 6 days were stained using antibodies 

raised against the immature neuron marker DCX. Chd7null cells displayed a 

large increase in the number of DCX+ cells (Figure 57d,e). These data show 

that loss of Chd7 does not negatively affect DCX expression. Instead, these 

data suggest that impaired neurogenesis in Chd7null cells is a result of 

immature neurons being unable to fully differentiate. The block in the 

differentiation of DCX+ cells may lead to their accumulation before an increase 

in apoptosis leads to a decline in DCX+ cells 
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Figure 57 - CHD7 is essential for neurogenesis in vitro. a, RT-qPCR expression level of 

Chd7 from cultured foetal-derived NSCs from NestinCre;Chd7δ/δ (Chd7null) and Cre-negative 

(WT) E16.5 embryos under growth conditions (Growth), differentiation conditions for 3 days (3d 

neuron diff) and 6 days (6d neuron diff) relative to WT. Note Chd7 expression is completely 

absent from Chd7null cells. n = 2 cultures performed in duplicate. b, Western blot for CHD7 on 

total cell lysates of cultured foetal-derived NSCs from Chd7null (NestinCre Chd7-/-) and WT 

(Chd+/+) cells under differentiation conditions for 3 days. Cleavage and polyadenylation 

specificity factor 100 (CPSF100) was used as a loading control. c, Quantification of the number 

of MAP2+ mature neurons formed from Chd7null and WT cells under growth conditions 

(Growth), differentiation conditions for 3 days (3d neuron diff) and 6 days (6d neuron diff). n = 2 

cultures performed in duplicate. d, Representative image of cultured foetal-derived NSCs from 

Chd7null and WT E16.5 embryos under differentiation conditions for 6 days stained with 

antibodies raised against DCX. Scale bar, 50µm. e, Quantification of the number of DCX+ 

immature neurons formed from Chd7null and WT cells under growth conditions (Growth), 

differentiation conditions for 3 days (3d neuron diff) and 6 days (6d neuron diff). n = 2 cultures 

performed in duplicate. All data represented as mean ± s.e.m.; ***P<0.001 student's t test. 

 

6.7. CHD7 regulates neural stem cell quiescence 

I have shown that CHD7 is a critical regulator of adult neurogenesis. Loss of 

Chd7 leads to a transient increase in neurogenesis followed by a large decline 

in neuron formation. I have shown that the number of MASH1+ cells is 

unaffected after the loss of Chd7 (see Figure 56f), suggesting that changes in 

progenitor number are not the cause of the transient increase in the number of 

DCX+ cells. I have suggested that the accumulation of DCX+ cells may be due 

to a block in differentiation before their numbers are reduced by an increase in 

apoptosis. One remaining possibility for the transient increase in neurogenesis 

is that an increase in NSC proliferation may cause an increase in the number of 

immature neurons formed. To first determine if the numbers of proliferating cells 

was altered shortly after loss of Chd7, adult GLAST::CreERT2;Chd7f/f 

(Chd7null) and Cre-negative control (WT) mice were injected with tamoxifen 

and sacrificed 1 week later. BrdU was injected 24 hours before sacrifice to label 

proliferating cells (Figure 58a). The number of proliferating cells (BrdU+) was 

over 2-fold greater in the SGZ of Chd7null mice compared to WT (Figure 
58b,c). These data show that loss of Chd7 initially causes an increase in the 
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number of proliferating cells in the SGZ. To determine if an increase in 

proliferation in the SGZ leads to an alteration in the total number of NSCs and 

progenitors after a short-term deletion of Chd7, sections of the DG were stained 

with antibodies raised against Sox2 to label type1 and type2 cells. There was 

no change in the number of Sox2+ cells in Chd7null mice compared to WT 

(Figure 58d). These data suggest that the total number of NSCs and 

progenitors was not altered, meaning that the increase in the proliferation of 

SGZ cells was not due to changes in the cellular composition of the niche. 

However, analysing the number of NSCs and progenitors separately is needed 

to fully conclude if there is a change in these cell populations. Collectively, 

these results show that loss of Chd7 initially affects proliferation in the SGZ. 

An increase in the number of proliferating cells in the SGZ could reflect a loss of 

NSC quiescence or an increase in progenitor proliferation. To determine which 

cell types are proliferating, DG sections of mice treated as in Figure 58a were 

stained with antibodies raised against BrdU, Sox2 and GFAP to determine the 

number of NSCs (GFAP+Sox2+ SGZ cells with a radial morphology) and 

progenitors (GFAP-Sox2+ SGZ cells) that had cycled in the 24 hour period 

(BrdU+; Figure 59a). The number of BrdU+ radial NSCs was over 2.5 fold 

greater in Chd7null mice compared to WT (Figure 59b). Interestingly, the 

number of cycling progenitors (GFAP-Sox2+) was no different between Chd7null 

and WT mice (Figure 59c), suggesting that the primary effect of loss of Chd7 is 

a loss of NSC quiescence, with no effect on progenitor cycling. These data 

show that loss of Chd7 in NSCs leads to a loss of NSC quiescence. Further 

experiments to investigate if there are any changes in the number of type 1 and 

type 2 cell populations separately at this stage will be useful in determining if a 

loss of NSC quiescence results in an increase in NSC number or progenitor 

number.  
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Figure 58 - Loss of Chd7 initially results in increased subgranular zone proliferation. a, 
Schematic diagram of the experimental strategy to delete Chd7 from adult NSCs for 1 week 

(short-term) and label proliferating cells by injecting BrdU 24 hours prior to sacrifice. b, 

Representative image of a section of the DG of GLAST::CreERT2;Chd7f/f mice treated with 

tamoxifen (Chd7null) and Cre-negative controls (WT) stained with antibodies raised against 

BrdU. Scale bar, 20µm. c, Quantification of the total number of BrdU+ cells and Sox2+ cells (d) 

in the SGZ of Chd7null and WT mice per 20µm section. n=2-3 animals / condition. All data 

represented as mean ± s.e.m.; ***P<0.001 student's t test. 
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Figure 59 - CHD7 regulates neural stem cell quiescence. a, Representative image of a 

section of the DG stained with antibodies raised against BrdU, Sox2, and GFAP with Dapi. 

Yellow arrow heads shows a BrdU+ NSC (BrdU+Sox2+GFAP+ cells in the SGZ), purple arrow 

heads shows a BrdU- NSCs, light blue arrow heads show a BrdU+ progenitor 

(BrdU+Sox2+GFAP-). Scale bar, 20µm. b, Quantification of the percentage of BrdU+ NSCs and 

progenitors (c) in the SGZ of Chd7null and WT mice. n=4 animals / condition. All data 

represented as mean ± s.e.m.; *P<0.05 student's t test. 
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6.8. Loss of Chd7 results in an increase in the number of neural 
stem cells 

I have shown that the loss of Chd7 in NSCs results in the loss of stem cell 

quiescence, followed by a transient increase in neurogenesis and then a large 

decrease in neurogenesis in the long-term. One remaining possibility for the 

eventual loss of neurogenesis and decreased tendency for SGZ to form 

neurons is that there may be a fate change of NSCs. For example, NSCs may 

have an increased tendency to self renew or form glial cells in Chd7null mice, 

and immature neurons may have an impaired differentiation capacity, leading to 

a transient increase in immature neuron formation and a decrease in mature 

neuron formation. Alternatively, loss of stem cell quiescence may lead to 

depletion of the NSC pool due to proliferative exhaustion and differentiation of 

NSCs [259, 393]. To distinguish between these possibilities, 

GLAST::CreERT2;Chd7f/f (Chd7null) and Cre-negative control (WT) mice were 

treated with tamoxifen and sacrificed 12 weeks later (Figure 60a). Sections of 

the dentate gyrus were stained with antibodies raised against Sox2 and GFAP 

and the number of non-neurogenic, non-radial radial astrocytes (GFAP+Sox2-) 

were counted to determine if there was a fate change to glial cells. There was 

no change in the number of mature astrocytes in the DG of Chd7null compared 

to WT mice, indicating that loss of Chd7 does not result in a fate change to glial 

cells. To further confirm this, a S100β stain, to mark only mature astrocytes, 

would be needed. 

To determine if the loss of Chd7 leads to an increase in self-renewal or a 

decrease in the number of NSCs, sections of the dentate gyrus were stained 

with antibodies raised against Sox2 and GFAP and the number of radial NSCs 

(GFAP+Sox2+ cells with a cell body in the SGZ and astrocytic processes 

through the GL) in the SGZ were counted. Surprisingly, the number of NSCs 

present in Chd7null SGZ was increased by over 20% (Figure 60b,d), and the 

number of Sox2+GFAP- progenitors was decreased compared to WT (Figure 
60e). These data suggest that pool of NSCs has expanded due to increased 

symmetric divisions forming more NSCs. Alternatively, it may be possible that 
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the pool of NSCs has been maintained over a 12 week period in Chd7null mice, 

whereas the pool of NSCs in WT mice has undergone division-coupled 

astrocytic differentiation (Figure 61). This mechanism of NSC loss in WT mice 

has been proposed to be the reason for the loss of NSCs with age and states 

that NSCs only undergo limited rounds of division before differentiating into 

post-mitotic astrocytes [404]. This possibility will be addressed in Section 
6.11.4. 
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Figure 60 - Loss of Chd7 results in an increase in the number of neural stem cells. a, 
Schematic diagram of the experimental strategy to delete Chd7 from adult NSCs for 12 weeks 

(long-term). b, Representative image of a section of the DG of GLAST::CreERT2;Chd7f/f mice 

treated with tamoxifen (Chd7null) and Cre-negative controls (WT) stained with antibodies raised 

against GFAP and Sox2 with Dapi 12 weeks after Chd7 deletion. Scale bar, 10µm. c, 

Quantification of the number of GFAP+Sox2-  non-radial cells (mature astrocytes) in the DG of 

Chd7null and WT mice per 20µm section. n = 4 animals / condition. d, Quantification of the 

number of GFAP+Sox2+  radial NSCs and GFAP-Sox2+ progenitors (e) in the SGZ of Chd7null 

and WT mice per 20µm section. n = 4 animals / condition. All data represented as mean ± 

s.e.m.; *P<0.05 **P<0.01 student's t test. 
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Figure 61 - The disposable stem cell hypothesis may account for an increase in the 
number of neural stem cells in Chd7 mutants over time. The disposable stem cell 

hypothesis states that NSCs, once activated, undergo a few rapid rounds of division to generate 

progenitors before differentiating into post-mitotic astrocytes (left panel) [404]. In the Chd7null 

dentate gyrus, it is possible that instead of undergoing differentiation into post-mitotic 

astrocytes, the NSCs are instead maintained, leading to a relative increase in the number of 

NSCs over time compared to wild type (right panel).  
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6.9. Loss of neural stem cell quiescence may be due to loss of 
Notch signalling 

Notch signalling is a conserved regulator of NSC quiescence in the SVZ and 

SGZ [252, 253, 256, 260]. Loss of Notch signalling is associated with loss of 

NSC quiescence [252, 253, 256, 260]. Therefore, it may be possible that altered 

Notch signalling is responsible for a loss of NSC quiescence. To test this 

hypothesis, GLAST::CreERT2;Chd7f/f (Chd7null) and Cre-negative control (WT) 

mice were treated with tamoxifen and the DG was then microdissected three 

weeks later and RNA was extracted (Figure 62a). A three week time point was 

chosen because CHD7 is predominantly expressed in MASH1+ type 2 cells, and 

so by three weeks after recombination a sufficient number of GLAST+ NSCs 

should have formed type 2 daughter cells [196, 233]. RT-qPCR analysis for the 

downstream effector of Notch signalling, Hes5 was performed to determine if 

Notch signalling was altered in Chd7null mice in vivo. Interestingly, the 

expression of Hes5 tended to be decreased by around 50% (Figure 62b), 

suggesting that loss of Notch signalling may be the reason for a loss in NSC 

quiescence. 
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Figure 62 - Loss of Chd7 leads to a decrease in Notch signalling. a, Schematic of the 

experimental strategy to delete Chd7 from adult NSCs for 3 weeks. b, RT-qPCR expression 

level of Hes5 from dissected DG of GLAST::CreERT2;Chd7f/f (Chd7null) and Cre-negative 

control (WT) mice treated with tamoxifen and sacrificed 3 weeks later. n=2-3 animals / 

condition. Data are from 2 reactions conducted in duplicate. Data represented as mean ± s.e.m. 
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6.10. A decrease in Chd7 expression may be linked to 
intellectual disability in CHARGE syndrome 

De novo mutations in CHD7 is one of the leading causes of CHARGE 

syndrome, a congenital defect characterised by coloboma of the eye, heart 

defects, atresia of the nasal choanae, retardation of growth, genital and ear 

abnormalities and deafness [330]. 90% of patients with CHARGE syndrome 

also present with intellectual disability [330], suggesting that CHD7 is a key 

regulator of brain development and neurogenesis in humans. 

Neurogenesis in the adult hippocampus plays an important role in certain types 

of learning tasks, memory formation, and pattern separation [224-227]. 

Therefore, defects in adult hippocampal neurogenesis likely contribute to 

intellectual disability [17, 398, 399]. I have shown that CHD7 is an essential 

regulator of adult neurogenesis and loss of Chd7 in NSCs results in a loss of 

neurogenesis (see Section 6.4.). Therefore, I hypothesised that a loss of CHD7 

and a decrease in hippocampal neurogenesis is at least partly responsible for 

the intellectual disability phenotypes seen in CHARGE syndrome patients. 

However, CHARGE syndrome is caused by heterozygous mutations and 

deletions of the CHD7 gene [330], and so a complete loss of Chd7 does not 

model the syndrome accurately. To address this point, I utilised a mouse line 

heterozygous for a genetrap Chd7 allele (Chd7gt/+). This genetrap allele 

presumably results in the translation of an unstable, truncated, non-functional 

protein which is rapidly degraded (see Figure 37a). Mice carrying the Chd7gt 

allele have been previously shown to display phenotypes associated with Chd7 

haploinsufficiency such as abnormalities in pharyngeal arch arteries and other 

phenotypes associated with CHARGE syndrome [356]. I have previously shown 

that Chd7gt/+ mice have a 50% reduction in Chd7 expression in the olfactory 

bulb (OB) compared to WT (see Figure 37b), and so Chd7gt/+ mice presumably 

have decreased Chd7 expression in all brain regions. 

To determine if a reduction in Chd7 expression affects the generation of 

immature interneurons in the DG, sections of the DG of adult WT and Chd7gt/+  

mice were stained with antibodies raised against DCX (Figure 63a). Chd7gt/+ 
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mice had fewer DCX+ cells compared to WT, suggesting that hippocampal 

neurogenesis is impaired (Figure 63b). To determine if the number of 

proliferating cells in the SGZ is altered in Chd7gt/+ mice, sections of the DG of 

adult WT and Chd7gt/+  mice were stained with antibodies raised against PCNA 

(Figure 63a). A reduction in Chd7 expression had no effect on the number of 

proliferating cells in the SGZ of Chd7gt/+ mice (Figure 63c), suggesting that the 

main phenotype of decrease in Chd7 expression is a reduction in neurogenesis. 

Further experiments subjecting Chd7gt/+ mice to hippocampal-dependent 

learning tasks would show if a decrease in Chd7 expression causes impaired 

learning and memory. 

Collectively, these data indicate that impaired hippocampal neurogenesis in 

Chd7gt/+ mice may reflect the intellectual disability associated with in CHARGE 

syndrome.  
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Figure 63 - Reduction in Chd7 expression affects hippocampal neurogenesis. a, 

Representative picture of the DG of adult Chd7gt/+ and WT mice stained with antibodies raised 

against PCNA and DCX. Scale bar, 50µm. b, Quantification of the number of DCX+ and PCNA+ 

(c) cells in the DG of WT and Chd7gt/+ mice per 10µm section. n=3 animals / condition. All data 

represented as mean ± s.e.m.; *P<0.05 student's t test. 

  



6: Results Part IV 

 

254 
 

6.11. Discussion 

I sought to investigate the role of the chromatin remodelling enzyme CHD7 on 

adult hippocampal neurogenesis. The data presented here show that CHD7 is a 

key regulator of the maintenance and differentiation of hippocampal NSCs. 

These data show that upon Chd7 loss, NSC quiescence is disrupted and this 

leads to a transient increase in neurogenesis. In addition, a long-term loss of 

Chd7 results in a large decline in neurogenesis and an increase in the number 

of NSCs, consistent with an increase in self-renewing divisions and a block in 

neurogenesis (Figure 64). 
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Figure 64 - Schematic diagram of the role of CHD7 in adult hippocampal neurogenesis. 

Under homeostatic conditions, adult hippocampal neurogenesis depends on the balance 

between NSC (pink) activation (mitotic spindles) and daughter cell differentiation to form 

immature neurons (blue; top panel). Proliferating NSCs can generate additional NSCs or new 

neurons (arrows). During maturation, many neurons undergo apoptosis (crosses). 1-4 weeks 

after the deletion of Chd7 from NSCs, NSCs lose quiescence and neurogenesis is transiently 

increased (middle panel). This may be due to the inhibition of apoptosis of cells, or their 

increased formation. 12 weeks after deletion of Chd7 the number of NSCs is increased and the 

number of immature and mature neurons formed is decreased (bottom panel). Adapted from 

[184]. 

 

6.11.1. Chd7 may regulate neural stem cell quiescence cell 
autonomously or non-cell autonomously 

I have shown that CHD7 could not be detected in GFAP+ NSCs in the SGZ (see 

Section 6.2). However, the expression of CHD7 in the SGZ is much lower than 

in the SVZ, and so it is possible that SGZ NSCs may express a low level of 

CHD7. Furthermore, a subset of MASH1+ cells also display NSC properties and 

are capable of producing differentiated progeny as well as maintaining their own 

pool by self-renewal [409]. Since CHD7 was mostly detected in MASH1+ cells, it 

is possible that CHD7 is expressed by MASH1+ NSCs. Therefore, a loss of NSC 

quiescence after Chd7 deletion may be a cell-autonomous effect. However, the 

niche also largely regulates NSC quiescence [410]. I have shown that the total 

number of Sox2+ cells does not change initially after loss of Chd7 in NSCs (see 

Figure 58d), thus a loss of NSC quiescence is unlikely to be due to a change in 

the cellular composition of the niche. It is possible, however, that intrinsic 

changes in progenitors may induce a loss of NSC quiescence. For example, 

type 2 cells in the dentate gyrus express Notch ligand such as Jag1 and Dll1 

and signal to NSCs which express Notch receptor such as Notch 1 [259]. Notch 

signalling is a crucial regulator of NSC quiescence [259]. I have shown that 

Notch signalling is reduced in Chd7null mice (see Figure 62b), and this may be 

due to changes in the expression of Notch ligands on type 2 cells, or changes in 

the expression of Notch receptors on type 1 cells. RT-qPCR analysis of Notch 
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receptors and ligands will show if Notch signalling is altered due to the 

expression of receptors on type 1 cells or ligands on type 2 cells. 

 

6.11.2. Decreased Notch signalling only accounts for some of the 
phenotypes seen after the loss of Chd7 

A loss of Notch signalling has been shown to cause a loss of NSC quiescence 

and a transient increase in neurogenesis followed by a large decline in 

neurogenesis and depletion of the stem cell pool due to proliferative exhaustion 

[252]. I have shown that in Chd7null mice, loss of NSC quiescence leads to a 

transient increase in neurogenesis followed by a large decline in neurogenesis 

and maintenance of the stem cell pool, possibly through an increase in self-

renewal (see Figure 64). Therefore, a decrease in Notch signalling only 

accounts for some of the phenotypes seen in Chd7null mice. However, it is 

possible that CHD7 regulates different aspects of neurogenesis by  regulating 

the expression of genes associated with self-renewal and lineage priming in 

NSCs. In agreement with this concept, the CHD family member CHD4 has been 

shown to regulate the expression of genes associated with self-renewal and cell 

fate decisions in HSCs [385]. Alternatively, CHD7 may have separate roles in 

NSCs and differentiating progeny. 

 

6.11.3. Chd7 may have separate roles in the self-renewal, 
maintenance of quiescence, and differentiation of neural stem cells 

I have shown that the loss of Chd7 specifically in NSCs results in the loss of 

NSC quiescence, an increase in the NSC pool, and a decrease in the formation 

of new neurons (see Figure 64). I hypothesise that these phenotypes are not all 

regulated by one single mechanism, but instead CHD7 has different effects on 

NSCs and their differentiating progeny (Figure 65). Therefore, analysing the 

role of CHD7 in different aspects of neurogenesis would reveal the full role of 

CHD7 in adult neurogenesis. 
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Figure  65 - The role of CHD7 in adult hippocampal neurogenesis. CHD7 can regulate NSC 

quiescence (1), the self-renewal of NSCs (2), and the differentiation of daughter cells (3). 

Adapted from [196]. 
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6.11.3.1. CHD7 regulates the differentiation of immature neurons 

My data show that a loss of Chd7 in NSCs leads to a decrease in mature 

neuron formation and an increase in immature neuron formation in vitro (see 

Section 6.6). Therefore, I hypothesise that CHD7 plays a role specifically in 

immature neurons to regulate their differentiation into mature neurons. This 

could be addressed by deleting NSCs specifically from more differentiated cells 

and analysing the differentiation potential of recombined cells. 

 

6.11.3.2. CHD7 regulates NSC quiescence 

I hypothesise that CHD7 regulates NSC quiescence independently of the role of 

CHD7 on progenitor cell differentiation and NSC self-renewal. Although I have 

not been able to detect CHD7 in GFAP+ NSCs in the dentate gyrus, CHD7 is 

expressed in MASH1+ cells, a subpopulation of which is capable of long-term 

neurogenic potential [409]. Therefore, CHD7 may regulate NSC quiescence 

cell-autonomously. This possibility can be directly tested in vitro by inducing 

cells into quiescence by adding BMP4 to the culture media [411], and then 

deleting Chd7. I have generated CreERT2;Chd7f/f;RYFP/+ foetal-derived NSCs, 

and so addition of 4-hydroxy-tamoxifen to the culture should result in deletion of 

Chd7 within all cells. Utilising this cell line, It will be possible to examine whether 

Chd7null cells are capable of returning to quiescence in this assay. This assay 

provides a powerful tool for the analysis of the role of CHD7 in quiescent and 

activating NSCs. 

 

6.11.3.3. CHD7 regulates NSC self-renewal 

I hypothesise that the self-renewal of NSCs is regulated by CHD7 

independently of the effects of CHD7 on the formation of new neurons. The 

signalling pathways which regulate adult NSC self-renewal in vivo are not well 

understood, and so analysis of direct CHD7 targets may reveal novel pathways 

required for the maintenance of the stem cell pool. In vivo clonal analysis 

(described below) can be performed to address this. 



6: Results Part IV 

 

260 
 

6.11.4. In vivo clonal analysis of adult neural stem cells 

I have demonstrated that CHD7 is expressed in 50% of MASH1+ cells (see 

Figure 51). This may reflect a unique subset of type 2a cells that require CHD7, 

or it may reflect a stage in the cell cycle or the degree of differentiation of type 2 

cells (i.e. CHD7 may just be expressed by MASH1+ cells that are cycling or less 

differentiated MASH1+ cells for example). It is tempting to speculate that CHD7 

is required by a subset of MASH1+ cells to activate the neurogenic 

differentiation program and, without CHD7, cells instead revert to a more stem 

cell-like state, leading to an increase in NSC number in the long-term (see 

Figure 64). In vivo clonal analysis of NSCs after Chd7 deletion is needed to test 

this hypothesis. This involves injection of a small amount of tamoxifen in 

GLAST::CreERT2;Chd7f/f;RYFP/+ mice to label only a few cells in the SGZ and 

analysing the fate of recombined cells [196]. 

 

6.11.5. Neural stem cell quiescence and maintenance of the stem 
cell pool 

The data presented here describes a unique scenario where loss of NSC 

quiescence is not coupled to a depletion of the stem cell pool. I have shown that 

the neural stem cell pool is increased 3 months after loss of Chd7 (see Figure 
64). However, it is possible that this time point is not long enough to see 

proliferative exhaustion of NSCs and a loss of the stem cell pool. In agreement 

with this, loss of cell cycle regulators, such as p21, also leads to the loss of 

NSC quiescence and an increase in NSC self-renewal followed by depletion of 

the stem cell pool [393]. p21-/- mice display a greater number of NSCs up to 5 

months of age compared to WT mice due to increased NSC proliferation [393]. 

Thereafter, however, the number of NSCs in p21-/- mice decline and are 

reduced at 16 months of age relative to WT mice [393]. p21-/- NSCs initially 

display an increased self-renewal capacity in vitro [393]. However, the self-

renewal of  p21-/- NSCs eventually becomes limited and cells only survive a few 

passages [393]. Interestingly, foetal-derived NSCs from NestinCre;Chd7δ/δ 

embryos are able to be passaged for many months (data not shown), 
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suggesting that in vitro, NSC self-renewal potential is not affected, or, at least, 

not reduced. However, in vitro, cells are grown in high amounts of FGF2 and 

EGF, and so small changes in self-renewal may be masked by the culture 

conditions. These data show that Chd7null and p21-/- mice share many 

similarities in changes in neurogenesis. Therefore, it will be interesting to 

examine and changes in the expression of p21 in the DG of Chd7null mice. 

Furthermore, I am preparing to determine the number of NSCs present in the 

SGZ of Chd7null mice over 6 months after deletion to determine if NSCs without 

Chd7 eventually succumb to proliferative exhaustion. 

 

6.11.6. CHD7 and the regulation of apoptosis 

I have shown that the loss of Chd7 results in a transient increase in immature 

neuron formation, followed by a large decrease in the number of immature 

neurons compared to wild type (see Figure 64). It is possible that apoptosis is 

employed as a mechanism to attenuate the accumulation of immature neurons, 

resulting in an eventual decline in the number of DCX+ cells. In the DG, 

programmed cell death is largely responsible for the numbers of new neurons 

formed and it has been shown that less than 30% of newborn cells in the 

hippocampus survive to be mature neurons [229, 233, 264]. There are two 

critical periods of survival of precursors and neurons, with most apoptosis taking 

place at the transit-amplifying to neuroblast stage, where newly born cells are 

between 2 and 4 days old, and a second at the stage of maturation of immature 

neurons, where cells are between 1 and 3 weeks old [264]. Therefore, an 

increase in apoptosis may be responsible for a decrease in neurogenesis. I 

hypothesise that the eventual reduction in DCX+ cells in Chd7null mice is due to 

increased apoptosis in the second stage of maturation of immature neurons due 

to the inability of cells to form new mature neurons. To test this, sections of the 

DG of Chd7null and WT mice would need to be stained with an antibody such 

as cleaved caspase-3 along with markers of cells in the neurogenic lineage to 

determine if the apoptosis of certain populations is altered. All sections for this 

experiment have been prepared but not completed in time for writing this thesis. 
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6.11.7. CHD7 may regulate adult hippocampal and olfactory bulb 
neurogenesis in a similar fashion 

My data suggests that CHD7 plays a similar role in the SGZ and SVZ. The 

reduction in the number of newly formed cells after the loss of Chd7, and the 

reduction in immature neuron formation in the SVZ and dentate gyrus of Chd7 

heterozygous mice, indicates that CHD7 may regulate hippocampal 

neurogenesis and SVZ-OB neurogenesis in a similar fashion. These findings 

may be surprising considering that NSCs in the hippocampus and SVZ serve 

different purposes and brain systems, and are regulated by different 

mechanisms [412, 413]. It would also be interesting to see if CHD7 is a 

conserved regulator of adult somatic stem cell function in niches outside of the 

brain. In support of this idea, it has been observed that CHD7 is widely 

expressed in many tissue-specific stem cell niches like hair follicles and 

bronchioles in the adult lung [414]. 

 

6.11.8. CHD7 and human disease 

I have suggested that a decrease in Chd7 expression and a consequent 

reduction in hippocampal neurogenesis may be responsible for a part of the 

intellectual disability observed in CHARGE syndrome. This shows that 

analysing the effect of CHD7 on hippocampal NSCs and the differentiation of 

daughter cells may help to better understand CHARGE syndrome. Additionally, 

CHD7 may also be involved in other syndromes. Batsukh et al. recently showed 

that CHD7 directly interacts with CHD8 [348]. De novo mutations in CHD8 has 

been heavily implicated in autism spectrum disorder [327, 415], a disorder of 

neural development characterised by impaired social interaction, 

communication, and repetitive behaviour. Mouse models of autism exhibit 

defects in learning and memory and synaptic plasticity [416]. Since SGZ 

neurogenesis is important for certain types of hippocampal-dependent learning 

tasks [224-227], these findings indicate that interactions between CHD7 and 

CHD8 may play a role in hippocampal neurogenesis and autism spectrum 

disorder. 
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6.11.9. CHD7 regulates adult hippocampal neurogenesis via SoxC 
transcription factors 

Recently, CHD7 has been shown to play an important role in adult hippocampal 

neurogenesis through the regulation of the chromatin structure around SoxC 

transcription factors [414]. In agreement with the data shown here, Feng et al. 

showed that CHD7 was expressed by type 2 and type 3 cells but was not 

conclusively shown to be present in NSCs [414].  

After deletion of Chd7, Feng et al. showed that there was a decrease in the 

number of newly formed neurons along with a slight increase in the number of 

Ki67+ cells in the DG [414]. The authors suggested that there was an 

accumulation of proliferating cells due to a blockage in neuronal differentiation 

[414]. Twelve weeks after deletion of Chd7 I see no change in the number of 

proliferating cells in the SGZ (see Figure 55). Furthermore, I show that there is 

in fact a decrease in the number of progenitors in the SGZ (see Figure 60e). 

The increase in proliferation seen by Feng et al. may be increased proliferation 

of NSCs, but the authors have not analysed specifically which cells are 

proliferating. Alternatively, the phenotypes seen by Feng et al. may be different 

to the phenotypes I see because of the different time points at which the mice 

were taken. Of note, Feng et al. do not show that loss of neurogenesis is a 

primary phenotype after loss of Chd7 in adult NSCs since a decrease in type 3 

cells was only observed 14 weeks after the loss of Chd7, and the authors did 

not examine any earlier time points [414]. 

 

6.11.9.1. CHD7 regulates the chromatin state around the promoter of Sox4 
and Sox11 

From the Cancer Genome Atlas project, focusing specifically on gliomas, the 

SoxC transcription factors, Sox4 and Sox11, were greatly downregulated with 

Chd7 [414]. Sox4 and Sox11 have been previously shown to play an essential 

role in adult neurogenesis by binding directly to the Dcx promoter and inducing 

its expression [417]. Feng et al. showed that loss of Chd7 from the adult 
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neurogenic lineage was associated with decreased expression of Sox4 and 

Sox11 [414]. Transfection of cells lacking Chd7 with Sox4 or Sox11 expression 

constructs rescued the impairment in neuronal differentiation in cells lacking 

Chd7 [414]. Importantly, Sox4 and Sox11 function to increase the expression of 

Dcx [417]. My data suggest that the number of DCX+ cells is not impaired 

immediately after loss of Chd7, and is even increased slightly 4 weeks after 

Chd7 deletion, suggesting that the effect of CHD7 on Sox4 and Sox11 may not 

be crucial for neurogenesis in vivo. Despite this, it may be possible that Sox4 

and Sox11 activate other transcriptional programs required for proper neuronal 

differentiation, and so further investigation into the role of Sox4 and Sox11 in 

adult neurogenesis is needed. 

 

6.11.9.3. Notch1 expression is correlated with Chd7 expression 

Feng et al. found that Notch1 was highly positively correlated with CHD7, 

meaning that a decrease in Chd7 expression is found with a decrease in Notch1 

expression [414]. These data suggest that loss of NSC quiescence in Chd7null 

mice could be due to a decrease in the expression of Notch1 on NSCs. These 

data also suggest that overexpression of Chd7 would lead to a increase in 

Notch1 expression and increased NSC quiescence. These points can be 

addressed by examining the expression of Notch ligands and receptors on 

NSCs and their progeny. Furthermore, I have access to a Chd7 overexpression 

construct, and so transfection of foetal-derived NSCs with the construct would 

show if overexpression of Chd7 results in an increase in quiescence in vitro. 

 

6.12. CHD7 regulates different aspects of adult neurogenesis 

The data presented here indicate a role for CHD7 in the maintenance of the 

NSC pool, regulation of NSC quiescence, and regulation of the terminal 

differentiation of daughter cells. Furthermore, I have suggested that a decline in 

neurogenesis in mice heterozygous for Chd7 may be responsible for the 

intellectual disability associated with CHARGE syndrome.  Although a recent 
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study has shown a role for CHD7 in the differentiation of NSC progeny [414], I 

have identified a novel role for CHD7 in the regulation of NSC quiescence and 

cell fate decisions. This suggests that CHD7 may potentially regulate the 

transcription of diverse sets of genes, and so further investigation into the 

targets of CHD7 would give an insight into the role of CHD7 in adult 

neurogenesis.  
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7.1. Discussion 

Ageing is a physiological process whereby the composition of many somatic 

stem cell niches is disrupted and the stem cells display intrinsic changes [9]. 

Ageing leads to alterations in stem cell number and function, often having a 

negative impact on tissue homeostasis. In addition, the numbers of stem cells 

present in various tissues generally declines with age [17-20]. Still very little is 

known about age-related changes in mammalian stem cell niches and how this 

impacts on stem cell number. Furthermore, the mechanisms controlling stem 

cell quiescence and fate decisions are not completely understood. In this thesis 

I attempted to examine intrinsic and niche influences on stem cell quiescence 

and differentiation using skeletal muscle SCs and adult NSCs. 

 

7.1.1. Quiescence is a property of many somatic stem cells essential 
for stem cell function and maintenance of the stem cell pool 

As ageing progresses, the regenerative ability of skeletal muscle declines due, 

at least in part, to impaired SC function [146, 147]. The physiological changes 

which lead to impaired SC function in aged animals have been intensely 

investigated [10, 148, 150, 164, 169]. However, the changes which lead to a 

decline in the number of SCs, and the relevance of a loss of SCs, with ageing, 

were unknown. Here, I have identified a specific and functionally important 

change in the molecular composition of the aged stem cell niche. Upregulation 

of FGF2 by the muscle fibre drives a subset of SCs to break quiescence and 

lose self-renewal capacity under homeostatic conditions in aged animals. This 

results in an increased tendency of SCs to differentiate or apoptose (see Figure 
33). 

Chakalakal et al. have shown that two pools of SCs exist in adult skeletal 

muscle; a label retaining cell (LRC) population, and a non-LRC population [418]. 

Upon transplantation, aged LRCs seeded approximately threefold more SCs 

and differentiated myonuclei than did non-LRC transplant recipients [418], 

showing that maintenance of quiescence is essential for regeneration and stem 
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cell function. These data also indicate that the quiescent, label-retaining 

population may represent the true regenerative stem cell population. 

As ageing progresses in adult skeletal muscle there is a diminution of highly 

functioning LRCs and a gain of committed non-LRCs [418]. That non-LRCs self 

renew poorly and tend to differentiate, suggests that the relative increase of 

non-LRCs in aged muscle occurs through proliferation of LRCs [418]. These 

data indicate that the transition of LRCs into the non-LRC compartment due to a 

loss of quiescence is responsible for impaired regeneration in aged animals. 

However, these studies show that in aged animals there still exists a subset of 

SCs with great regenerative capacity, but the decline in SC number may limit 

full regeneration. 

Label retention is a characteristic which allows for the identification of adult 

stem cells in other tissue systems, such as NSCs in the adult forebrain, hair 

follicle bulge cells, and HSCs [419-422]. Interestingly, like in the SC niche, 

quiescent HSCs and NSCs are often found alongside more proliferative tissue-

specific stem cells [253, 423], suggesting that heterogeneity based on 

proliferative history within adult stem cell populations may be a common feature 

in adult stem cell niches. Investigating whether the more proliferative tissue-

specific stem cells are formed from the quiescent population, or whether they 

represent a completely different population of cells, independent of the 

quiescent stem cell lineage, would give a better insight into the role of 

heterogeneity within adult tissue-specific stem cells. 

Interestingly, quiescence is not a feature of SCs in all muscles. Satellite cells in 

the extraocular muscles remain proliferative under homeostatic conditions and 

add myonuclei to the uninjured myofibre [116] and these muscles are 

unaffected in Duchenne muscular dystrophy [117]. These studies indicate that 

SCs of the extraocular muscles may display mechanisms to prevent 

proliferative exhaustion of the stem cell population which are not present in SCs 

of the limb, perhaps reflecting their different ontogeny from limb muscles. 

Indeed, quiescence is not a universal feature of all adult somatic stem cells. 

Actively proliferating Lgr5+ stem cells have been described in the stomach, 
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small intestine and colon, with these cells displaying self-renewal ability and the 

capacity to generate differentiated cell types [424, 425]. These studies suggest 

that quiescence is not an obligatory feature of stemness. 

The incorporation and retention of DNA analogues, such as BrdU, is often used 

to study cell-cycle kinetics. However, these DNA labels can only be visualised in 

fixed and permeabilised cells. Furthermore, in many tissues, fully differentiated 

cells often retain label [422, 426]. Therefore, as an alternative strategy, we have 

labelled chromatin in vivo using a doxycycline-inducible transgenically 

expressed EGFP-tagged histone 2B (H2B-GFP) [418, 420]. This approach 

enables fractionation of live LRC and non-LRC populations by FACS and has 

been used in several tissues [420-422]. This technique allows for additional 

identification of different stem cell populations based on proliferative history and 

will give a better understanding of the differences between quiescent and 

proliferative stem cell populations. 

 

7.1.2. Maintenance of the stem cell pool is essential for tissue 
function 

Loss of tissue-specific stem cells and their impaired function has been proposed 

to be one of the primary causes of ageing [18, 394]. This has been suggested to 

be due to a combination of heritable intrinsic events, such as DNA damage, as 

well as extrinsic influences, such as changes in the stem cell niches. These 

events collectively lead to a decline in tissue function under homeostatic and 

regenerative conditions. Several effects of ageing on the brain, skeletal muscle 

and blood organ have been described in humans, and have been suggested to 

be due to, in part, impaired stem cell function. Impaired HSC function has been 

suggested to contribute to decreased immunity [427], increased incidence of 

bone marrow failure [428], and moderate anaemia [429, 430], whereas impaired 

NSC function with age has been suggested to contribute to cognitive decline 

[17, 398, 399], and impaired SC function has been proposed to be the main 

cause of age-related sarcopenia [146]. 
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My data shows that increasing the sensitivity of aged SCs to niche-derived 

FGF2 leads to increased depletion of the SC pool (see Section 4.3). 

Chakalakal et al. have shown that further diminution of the aged SC pool, 

achieved by long-term Spry1 deletion in aged SCs, impairs muscle regenerative 

capacity and further exacerbates ageing [418]. Conversely, muscle injury after a 

short-term (10 day) deletion of Spry1 in aged mice, when the number of Pax7+ 

cells had increased owing to the initial loss of quiescence (see Section 4.2), led 

to a greater regenerated muscle fibre size compared to aged controls [418]. 

These data show that the exacerbated loss of the SC pool, due to a long-term 

increase in FGF signalling in aged uninjured muscle, becomes limiting on 

regeneration. Therefore, strategies to maintain the quiescence of SCs under 

homeostatic conditions should result in maintenance of the SC pool and allow 

for efficient regeneration. These data also show that increasing the SC pool in 

aged animals such as through transplantation should also allow for efficient 

regeneration. 

I have shown that inhibition of FGF signalling led to decreased cycling of the 

aged SC pool and a decreased tendency to apoptose (see Section 4.4). 

Chakalakal et al. tested whether long-term inhibition of FGF-signalling would 

improve SC regenerative capacity by injuring adult and aged mice after six 

weeks of FGFR inhibition [418]. After injury, muscle fibre size was 30% smaller 

in FGFR-inhibited mice compared with controls, suggesting that repression of 

FGF signalling inhibits myofibre repair [418]. This is in agreement with data 

showing that FGF signalling is important for efficient skeletal muscle 

regeneration [113, 114]. In contrast, the number of self-renewing SCs was 

greater in aged FGFR-inhibited mice than in controls [418]. This result 

demonstrates that repressing FGF-signalling during ageing improves the self-

renewal capacity of satellite cells during regeneration. Therefore, investigating 

changes in stem cell niches with age, and their effects on resident stem cells, 

will give an insight into the reasons behind altered stem cell number and 

function with age.  
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7.1.3. Upregulation of FGF2 in the aged satellite cell niche may be 
due to accumulated myofibre damage  

I hypothesised that upregulation of FGF2 with age may be due to the 

accumulation of chronic myotrauma over time (see Section 3.4). Under 

homeostatic conditions there is no turnover of skeletal muscle, and so low-level 

myotrauma, which may not elicit a regenerative response, may accumulate on 

the myofibre throughout life. The promoter region of Fgf2 has binding sites for 

many transcription factors, including AP1, c-Jun, and p53 (as predicted by 

SABiosciences' Text Mining Application). The transcription factor with the 

greatest number of predicted binding sites on the Fgf2 promoter is Signal 

Transducer And Activator Of Transcription 1 (STAT1). STAT1 is a transcription 

factor upregulated in stress and is involved in interferon signalling. Interestingly, 

Stat1 expression increases in aged single fibres compared to adult (data not 

shown), suggesting that accumulated myofibre damage may cause the fibre to 

upregulate STAT1 which then induces the transcription of Fgf2. It is important to 

note that STAT1 is only active as a transcription factor in its phosphorylated 

form, so an upregulation of Stat1 does not necessarily mean an upregulation in 

its activity. It would be interesting to further investigate the role of STAT1 in 

aged skeletal muscle. 

 

7.1.4. Ageing in the hippocampus is associated with altered neural 
stem cell function and cognitive decline 

The hippocampus is one of the areas in the brain that is most susceptible to 

functional and structural alterations in ageing, which are often accompanied by 

learning and memory problems [431]. It has been proposed that an age-related 

decline in neurogenesis may underlie age-associated learning and memory 

declines [395, 406, 432] and may contribute to pathological conditions such as 

Alzheimer’s disease [433-435]. Decreased neurogenesis has been correlated 

with decreased proliferation of neural precursors in the DG [395], but the 

reasons for this decrease in proliferation, and exactly which cells are affected, 

remains largely unexplored. Even in the data presented here, a reduction in 
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immature neuron production can be seen in WT mice with age (compare the 

number of DCX+ cells in the WT DG from Figure 55c  to Figure 56bd) as well 

as a slight reduction in the number of proliferating cells (compare the number of 

BrdU+ cells in the WT SGZ from Figure 55d to Figure 58c). Furthermore, It is 

generally accepted that the number of NSCs declines with age [196, 404] and 

decreased dentate neurogenesis has been proposed to be a result of increased 

quiescence of NSCs [403]. Therefore, strategies to increase NSC number and 

their proliferation may ameliorate age-related phenotypes to a certain extent. 

Increased progenitor proliferation in aged rats has been achieved through 

infusion of IGF1[436] and exposure to environmental enrichment, which has 

been associated with improved performance in spatial learning tasks [15, 230, 

437]. Physical exercise can increase progenitor proliferation and neurogenesis 

in adult animals and has a similar effect in the aged DG [405, 438]. I have 

shown that loss of Chd7 specifically in NSCs results in an increase in NSC 

proliferation and an increase in the NSC pool (see Figure 64). These results 

suggest that a loss of Chd7 in aged animals may temporary ameliorate age-

related phenotypes. However, loss of Chd7 also results in a decrease in 

neurogenesis. Dissecting out the pathways by which CHD7 regulates aspects of 

neurogenesis, from NSC proliferation, to stem cell self-renewal, to daughter cell 

differentiation may give a better insight into how to reverse age-related changes 

in NSCs and their daughter cells. 

 

7.1.5. Ageing in the hippocampus is associated with changes in the 
chromatin landscape 

Changes in the structure of chromatin has been proposed to be one of the 

reasons for the age-related changes to biological functions in cells and the 

increased incidence of disease [439]. During ageing, somatic stem cells display 

decreased chromatin stability and extensive chromatin remodelling which 

occurs with changes in cellular gene expression profiles [440]. These changes 

have been shown to impair stem cell function [441, 442]. 
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In contrast to stable genetic changes to the DNA sequence, epigenetic changes 

are reversible and, therefore, are an interesting therapeutic target for the 

treatment of age-related diseases. Individuals with Hutchinson-Gilford progeria 

syndrome (HGPS) display characteristics of premature ageing. Aged individuals 

and HGPS patients exhibit disrupted cellular chromatin structure and nuclear 

organisation, suggesting that there may be a link between altered chromatin 

structure and ageing [443]. Furthermore, the spacing of nucleosomes may 

become more irregular with age in mammalian cells, and chromatin fibres in 

ageing fibroblasts become less dense, suggesting a loosening of chromatin 

structure with age [444, 445]. Aged mice generally have a decreased ability to 

maintain heterochromatin, as shown by less efficient X-inactivation [446]. 

Collectively these data suggest that changes in chromatin structure may lead to 

aberrant age-related changes in cells. Further evidence for this came from 

analysis of chromatin remodelling complexes with age. NUcleosome 

Remodelling Deacetylase (NURD) is a protein complex with ATP-dependent 

chromatin remodelling activity and histone-deacetylase activity [447]. HGPS 

cells exhibit decreased levels of NURD subunits, which has been proposed to 

cause a loss of H3K9me3, associated with heterochromatic regions, and 

elevated levels of DNA damage foci [448]. Healthy aged cells also demonstrate 

a decline in levels of NURD subunits, such as retinoblastoma binding protein 4 

(RBBP4) and RBBP7 [449]. It is not known how decreased NURD activity 

causes ageing phenotypes, but these studies highlight the importance of 

chromatin modifications in ageing. It would be interesting to see if the 

expression of Chd7 changes with age. It is tempting to speculate that a gradual 

loss of Chd7 expression may lead to decreased formation and impaired 

maturation of neurons with age. Indeed, mice heterozygous for Chd7 display a 

decreased formation of immature neurons in the dentate gyrus (see Section 
6.10), and newly formed neurons from NSCs lacking Chd7 display abnormal 

dendrite morphology [414], which may cause an increased incidence of age-

related neurodegenerative disorders. 
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7.1.6. CHD7 and the regulation of bHLH factors in neurogenesis and 
myogenesis 

I have shown that CHD7 is highly expressed in a subset of MASH1+ cells in the 

SGZ and suggest that CHD7 may be required to allow for proper differentiation 

and self-renewal of these cells (see Figure 65). CHD7 is also highly expressed 

in proliferating cells in the SVZ and SGZ [414]. From preliminary experiments in 

adult myogenic cells, Chd7 is expressed at very low levels in quiescent SCs 

and RSCs, greatly increases in proliferative myoblasts, and is then 

downregulated as myoblasts fuse to form myotubes (data not shown). This 

suggests that CHD7 may have a similar role in myogenesis and neurogenesis 

as they are expressed in bHLH-expressing progenitors. However, Chd7gt/+ mice 

do not show any changes in myofibre diameter, indicating that a decrease in 

Chd7 expression does affect developmental myogenesis at least (data not 

shown). CHD7 loss of function mutations have been associated with CHARGE 

syndrome [330]. CHARGE syndrome patients generally do not display gross 

muscle abnormalities, but do have a low muscle tone with muscles unable to 

maintain a contraction for as long as normal tone muscles [450]. It has not been 

shown that CHARGE syndrome patients with CHD7 mutations have decreased 

muscle tone, but it is tempting to speculate that, like in neurogenesis, loss of 

Chd7 results in impaired maturation of newly formed cells, leading to impaired 

contractile properties in skeletal muscle. Crossing a Chd7f/f mouse line with a 

Pax7CreERT2/+ mouse line would allow for deletion of Chd7 specifically in SCs. 

Analysing muscle regeneration in these mice would show whether CHD7 is 

involved in SC or daughter cell function. 

 

7.1.7. CHD proteins in adult neurogenesis 

Recently, CHD5 has been shown to play a similar role in neurogenesis as 

CHD7 [451]. CHD5 was shown to be expressed in type2b, type3, and mature 

neurons in the DG [451]. shRNA-mediated knockdown of Chd5 in vitro led to 

impaired neuronal differentiation, suggesting that CHD5 plays a critical role in 

adult neurogenesis, specifically in neuronal differentiation [451]. GO analysis of 
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Chd5-depleted cells showed that mutant cells were unable to activate many 

genes involved in late-stage neuronal differentiation, including genes with roles 

in the regulation of synapse development and neuron projections [451]. 

Furthermore, the authors showed that a cohort of PcG target genes 

characteristic of non-neuronal lineages were upregulated in mutant cells, 

suggesting that proper neuronal differentiation is dependent on the capacity of 

CHD5 to facilitate the activation of pro-neurogenic genes and maintain the 

repression of Polycomb-repressed genes [451]. Considering that CHD7 is 

expressed predominantly by type2a cells (see Figure 52), CHD5 is expressed 

by type2b, type3, and mature cells [451], and CHD8 appears to be expressed 

by mature neurons in the DG (data not shown), it is tempting to speculate that 

CHD proteins act in a temporal manner to regulate neurogenesis and proper 

neuron formation. Interestingly, overexpression of CHD5 failed to promote 

neurogenesis, suggesting that it lacks the inductive capacity of proneural factors 

such as MASH1. Whether CHD7 also lacks inductive capacity for neurogenesis 

remains to be determined. Together, these results show that CHD proteins play 

important roles in neurogenesis and neuronal maturation. 

 

7.1.8. CHD7 may play a role in autism spectrum disorder and 
neurodegenerative disorders 

Adult neurogenesis has been shown to play a significant role in various 

neurological disorders and diseases, including epilepsy and depression [452]. 

Furthermore, neurodegenerative disorders such as Huntington's disease and 

Parkinson's disease exhibit specific alterations in neurogenic areas leading to 

changes in dendrite morphology and synaptic plasticity. 

I have shown that a reduction in Chd7 expression results in a decrease in 

immature neuron formation and suggested that impaired neurogenesis in these 

mutants may be responsible for the intellectual disability seen in CHARGE 

syndrome patients (see Section 6.10). Preliminary data from a microarray of 

misregulated transcripts from Chd7null and wild type dentate gyrus shows many 

transcripts involved in synapse formation, plasticity, and ion channel formation 
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are altered in Chd7null mice compared to controls (data not shown). These data 

are consistent with an involvement of CHD7 in the efficient differentiation of 

neural progenitors. Additionally, pathway analysis showed that misregulated 

transcripts were involved in Huntington's, Alzheimer's, and Parkinson's diseases 

(data not shown), implicating a role for Chd7 in the regulation of many 

neurodegenerative diseases and neuron maturation. 

Recently, impaired neuronal maturation and misregulation of ion channels has 

been implicated in some of the phenotypes associated with ASD [453, 454]. For 

example, MARK1 (microtubule affinity-regulating kinase 1), which is 

upregulated in the DG of Chd7null mice (data not shown), has been found to be 

overexpressed in the prefrontal cortex of patients with autism and causes 

changes in the function of cortical dendrites [455]. AUTS2 (Autism susceptibility 

candidate 2) has been found to be disrupted in patients with ASD and a loss of 

AUTS2 function has been implicated in intellectual disability [456, 457]. Auts2 is 

downregulated in the DG of Chd7null mice (data not shown). Shank3 is a 

postsynaptic protein found to be downregulated in the DG of Chd7null mice 

(data not shown) and haploinsufficiency of Shank3 leads to deficits in synaptic 

function, social interaction, and social communication [458]. These data 

implicate a role for CHD7 in ASD. Recently, mutations in another CHD family 

member, CHD8, have been shown to play a role in autism spectrum disorder, 

and may account for up to 0.4% of cases [327]. It is tempting to speculate that 

CHD7 may play a role in ASD through interactions with CHD8. Examining the 

binding partners and direct targets of CHD7 would be useful for uncovering the 

role of CHD7 in ASD. 

 

7.1.9. Intrinsic and extrinsic changes affect somatic cell function 

In this thesis I set out to examine the fundamental properties of somatic stem 

cells and explore the mechanisms regulating stem cell quiescence and 

differentiation. The data presented in this thesis display the necessity for strict 

control of the intrinsic chromatin landscape and the extrinsic niche environment 

on somatic cell function. I have shown that alterations in the niche lead to a loss 
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of SC quiescence and depletion of the SC pool. I have shown that loss of the 

chromatin remodelling enzyme CHD7 leads to a loss of NSC quiescence and a 

loss of neurogenesis. Both changes lead to alterations in the tissue associated 

with ageing, such as impaired regenerative capability in skeletal muscle, and a 

decrease in neurogenesis in the hippocampus. Furthermore, based on 

expression profiles, I have suggested that CHD7 may play a similar role in 

myogenesis as it does in neurogenesis. Collectively, these data help to better 

understand the regulation of stem cell quiescence and cell fate decisions, two 

fundamental properties of somatic stem cells which allow for the maintenance of 

a functional stem cell pool throughout life. 

 

7.2. Future work 

The data presented in this thesis establish a role for CHD7 in the regulation of 

NSC quiescence, self-renewal, and differentiation. However, how CHD7 

regulates these separate events is not completely understood. Recently, CHD7 

has been shown to be essential for the differentiation of neural progenitors 

through the regulation of SoxC transcription factors [414], but the role of CHD7 

in NSCs remains largely unexplored. Future experiments aim to examine how 

CHD7 regulates NSC quiescence and self-renewal, and the long-term effects of 

the loss of Chd7 from NSCs. 

 

7.2.1. In vivo clonal lineage analysis 

I have shown that the loss of Chd7 results in an increase in the number of 

NSCs compared to WT (see Figure 64). To fully determine whether this is due 

to an increase in NSC self-renewal, an in vivo clonal analysis assay can be 

performed [196]. This involves injecting GLAST::CreERT2;Chd7f/f;RYFP/+  and 

Cre-negative (WT) mice with a small amount of tamoxifen to induce 

recombination in only a small number of cells. Sacrificing mice 3 months after 

tamoxifen injection will allow for clonal analysis of recombined cells through use 
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of the YFP allele. If the loss of Chd7 is associated with increased NSC self-

renewal, I would expect to see two or more RYFP+ cells with a radial glia 

morphology next to each other in the SGZ. I have generated 

GLAST::CreERT2;Chd7f/f;RYFP/+  and Cre-negative control mice to begin in 

vivo lineage tracing. These experiments will also show the exact extent of the 

decrease in neurogenesis in Chd7null mice at the single cell level. Due to the 

complexity of generating these mice, I have not been able to complete this 

experiment before writing my thesis. 

 

7.2.2. The long-term effect of a loss of Chd7 on the neural stem cell 
pool 

I have shown that there is an increase in the number of NSCs 3 months after 

deletion of Chd7 compared to WT (see Figure 64). However, it is possible that 

this increase in the stem cell pool may only be temporary, and NSCs eventually 

succumb to proliferative exhaustion and the pool is depleted. Therefore, 

analysing the number of NSCs present in Chd7null and WT mice longer than 3 

months after deletion is necessary to fully understand the role of CHD7 in adult 

neurogenesis. Due to the length of time needed for this experiment, I have not 

yet been able to collect the samples. However, I have planned to take 

GLAST::CreERT2;Chd7f/f and Cre-negative control mice 8 months after 

tamoxifen injection and count the number of stem cells present in the 

hippocampus.  

 

7.2.3. The role of CHD7 on neural stem cell quiescence 

I have shown that the loss of Chd7 in NSCs results in a loss of NSC quiescence 

(see Figure 64). It has been recently shown that NSCs in culture can be 

induced into a state of reversible quiescence through the replacement of EGF 

with BMP4 in the culture media [411]. Using this technique, I plan to examine if 

Chd7null cells display any defects in quiescence induction by staining for 

markers of cell cycle entry such as Ki67 after addition of BMP4 to the culture 
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media. Furthermore, I have generated foetal-derived NSCs from 

CreERT2;Chd7f/f;RYFP/+ mice to delete Chd7 after quiescence induction and 

examine any inability to remain quiescent. These experiments will determine the 

role of CHD7 in the maintenance of NSC quiescence. 

 

7.2.4. Chromatin immunoprecipitation of CHD7 in cultured neural 
stem cells 

Chromatin immunoprecipitation (ChIP) with massively parallel DNA sequencing 

(ChIP-Seq) can be used to determine the binding sites of DNA-binding proteins 

across the genome. ChIP-seq analysis of CHD7 binding sites in cultured ES-

cells showed that CHD7 binds to areas associated with genes involved in Notch 

signalling and progression through the neurogenic lineage, including Hes1, 

Hes5, Mash1 and NeuroD1 [341]. Therefore ChIP-Seq analysis of Chd7null 

(negative control) and WT cells cultured under growth conditions and 

differentiation conditions, will suggest possible direct targets of CHD7 and show 

how the distribution of CHD7 across the genome changes as cells are induced 

to differentiate. Furthermore, this technique can also be used in combination 

with the in vitro quiescence assay, as detailed in Section 7.2.3, to determine if 

CHD7 associates with regulatory regions that control the expression of genes 

important for the maintenance of NSC quiescence. The chromatin state around 

identified CHD7 binding sites can then be analysed by micrococcal nuclease 

digestion, which examines the density of chromatin.  These experiments will 

help to identify primary changes caused by loss of Chd7 and will also identify 

direct targets of CHD7. 
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