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Thesis Abstract

Respiratory motion degrades PET spatial resolution and image quality limiting

the potential benefits from increased resolution. Motion correction is complicated

by limitations of the poor statistical quality of PET data and there is still not a

robust method available. Motion correction can be implemented at different stages

of data processing either during or after reconstruction and may result in substantial

improvements in image quality. The recent development of whole body PET-MRI

scanners might provide a potential solution for motion correction since internal organ

motion could be measured concurrently with PET using MRI. However, although there

have been various proposed methods for motion correction, there is not sufficient

evidence in the current literature to answer which method is better in clinical practice

and investigating the impact of motion correction on lesion detectability.

The aim of this thesis is to assess respiratory motion correction in terms of its

quantitative accuracy and detectability performance to determine its potential for

improved and early cancer diagnosis. This thesis is based on numerical 4D simulated

PET data using real MRI data. Motion correction is investigated based on MRI-derived

motion fields as could be obtained from a simultaneous PET-MRI acquisition. As a

first step, this thesis aims to understand the behaviour of different approaches to

motion-corrected image reconstruction in terms of convergence rate and the properties

of the reconstructed images obtained. This thesis then deals with the impact of
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respiratory motion on lesion detectability. A comprehensive assessment is performed

using different amplitudes for lesion displacement due to respiration and different

respiration patterns derived from actual patient respiratory traces. The impact on the

detectability is compared with that achievable by a higher resolution scanner in order

to investigate the importance of correcting for motion to realise the benefit from the

increased resolution of future PET scanners.
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Chapter 1

Introduction

1.1 Positron emission tomography (PET) in oncology

Across the world a million people die every year from lung and liver cancer (Ferlay et al.

2010). Early detection and accurate staging of disease, requiring accurate detection and

localisation of small cancerous lesions, is important for more successful and more cost-

efficient treatment. Studies have reported prolonged and improved survival of patients

who have undergone therapy at the earliest stage of cancer in the lungs (Henschke et al.

2003) and liver (Adam and Vinet 2004).

Medical imaging techniques such as positron emission tomography (PET) play an

essential role in the management of cancer (Hillner et al. 2008). PET is a non-invasive

molecular imaging technique which provides images of biochemical processes in a

patient by detecting the radiation emitted from radiolabelled tracer molecules injected

into the patient. PET is now widely established in oncology as a powerful tool not only

for diagnosis and staging (i.e. determine how far the disease has progressed) but also

for radiotherapy planning and measuring the recurrence and progression of cancer to

assess therapy response (Vansteenkiste and Stroobants 2001; Rohren et al. 2004).

PET image quality in clinical oncology is usually characterised based on two tasks:

i. How well lesions can be distinguished from normal tissues?

– 30 –
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ii. How well the true tracer uptake can be recovered?

Both tasks depend on the quality of the images. For the first task a lesion is

usually distinguished from normal tissues by a human observer. However, in cases

where the use of human observers is not practical such as when various parameters are

investigated numerical observers have been developed that predict human detection

performance such as the channelized Hotelling observer (CHO). The CHO is based

on the ability of the human eye to discriminate certain frequencies. It transforms

the image from the spatial domain to the frequency domain and extracts the various

frequencies using appropriate frequency bandwidths channels. Finally, using the

statistical properties of the images the probability of detectability is computed. For

the second task, after identifying a region of higher tracer uptake than the surrounding

tissues, the region is usually evaluated by estimating the tracer uptake in a region.

An index often used to characterise the accumulation of the tracer is the standardized

uptake value (SUV). SUV is defined as the concentration of activity in the region of

interest (ROI) divided by the average activity concentration in the patient. SUV is used

widely clinically especially for staging and quantification of tumour response to therapy

(Erdi et al. 2000; Weber et al. 2003). For example, accurate quantification is important

to distinguish between malignant and benign pulmonary nodules.

Depending on the type of radiotracer injected, PET can provide information on

different biochemical functions. In clinical practice the most common radiotracer

currently used is a glucose analogue labelled with the radioisotope fluorine - 18

called fluorodeoxyglucose (18F-FDG) or simply FDG. 18F-FDG accumulates in regions

undergoing high metabolic activity such as the brain, liver and malignant tumours,

where rate of uptake is related to glucose metabolism. Consequently, accumulation

(uptake) of 18F-FDG by the tissue is directly related to its metabolic state (normal or
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hyper or hypo-metabolic), and increased uptake may indicate the presence of malignant

tumour cells. Thus, PET has the ability to non-invasively detect functional changes in

vivo.

1.2 Hybrid PET/MRI imaging

However, PET lacks anatomical information. Combination of the functional information

offered by PET with the information offered by anatomical imaging modalities such as

computed tomography (CT) or magnetic resonance imaging (MRI) allows localization

of the increased radioactivity distribution. The first combination of PET with CT was

developed in 2000 (Beyer et al. 2000) and has been proved effective in increasing the

accuracy of diagnosis and cancer management compared with PET as a stand alone

imaging modality (Antoch et al. 2003). CT data are acquired sequentially with PET

data, there is an increase in the patient radiation dose and CT has relatively poor

ability to differentiate between soft tissues. Compared with CT, MRI is advantageous in

terms of better soft tissue contrast with no extra patient radiation dose. Simultaneous

PET/MRI acquisition allows spatial and temporal correlation ensuring that the patient

is being imaged in the same physiological state during both PET and MRI.

1.3 Motion blurring limitations and challenges in 18FDG PET

PET acquisition usually requires 3 to 5 min per bed position (approximately 15 cm

axially) and so there is patient internal organ motion such as cardiac contraction and

respiration. Cardiac contraction affects mainly the heart and is a major concern of

cardiac imaging applications rather than for oncologic imaging as is the focus of this

project. On the other hand, respiration is more complex as it affects multiple organs

such as the liver and the heart since they are being pushed and pulled by the diaphragm
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and other connected tissues.

For normal breathing, the motion of the diaphragm due to respiration is in the

range of 15 to 20 mm (Schwarz and Leach 2000). Considering displacement of

lesions in the lung and liver, a number of investigations reported that the displacement

caused by respiratory motion is usually less than 10 mm for lung lesions but it may

be more than 20 mm for lung and liver lesions close to the diaphragm (Seppenwoolde

et al. 2002; Erdi et al. 2004). Motion of that range was also reported by a review

of respiratory motion provided by Langen and Jones (2001). Considering that

conventional PET scanners have a spatial resolution of approximately 5 to 6 mm motion

of that range is larger than the resolution and therefore is expected to induce blurring

and distortions in the images limiting the image spatial resolution (Xu et al. 2011;

Nehmeh et al. 2004; Visvikis et al. 2006). Moreover, with the advances in resolution

of future scanners (Schäfers 2008a) the effect of motion is expected to be even more

substantial (Daou 2008).

Motion blurring can cause underestimation of the tracer uptake and reduce tumour

detectability (Nehmeh et al. 2002; Liu et al. 2009). An example of the effects of

respiratory motion is shown on simulated images from a 5 min PET acquisition with

and without motion in figure 1.1. Considering that the biggest clinical application of

PET in oncology is to detect tumour metastases for staging, and to quantify the tracer

uptake it is important to investigate if the correction of motion can affect the image

interpretation and clinical decision making based on these two aspects of image quality.

Based on these, respiratory motion blurring contributes to the clinical challenges of

detecting a small tumour or detecting a tumour with low uptake.
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Static                                              With motion 

SUV= 6     SUV= 9     

Figure 1.1: Effects of respiratory motion on simulated PET images: Motion blurring reduces lesion
detectability (i.e. arrows point out a lesion clearly visble in image without motion but hardly detectable
in image with motion) and causes underestimation of the tracer uptake (i.e. as measured by SUV).

1.4 Motion correction in 18FDG PET

A common method to minimize respiratory motion effects is the use of respiratory

synchronized acquisition (i.e., gating) which relates the motion signal based on

respiratory amplitude or phase yielding multiple gates. However, each gate contains

only a proportion of the measured data resulting in reconstructed images with lower

signal-to-noise ratio (SNR) than using all data. Thus, a technique accounting for motion

effects which uses all measured data in order to improve the SNR is expected to provide

superior results. One approach to motion correction of gated data consists of two

steps, (i) estimation of motion and (ii) the incorporation of motion information into

the reconstruction of the gated data.

The motion fields are usually estimated by appropriate registration of the gated

data with a selected reference image. To estimate the motion fields CT, MRI, or from

PET images can be used. The problems encountered with CT is that the motion can

be different for sequential CT and PET acquisitions. This aspect could be handled by

measuring motion directly from PET, but PET data are noisy and in addition it would be

difficult to generalize this technique to any radiotracer. The development of whole-

body simultaneous PET-MRI might enable concurrent measurement of the internal

organ motion with MRI. Accurate measurement of motion is one of the motivations
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for combining MRI with PET.

After estimating the motion information, there are two popular motion correction

approaches - apply the estimated motion information either (i) after or (ii) during

the reconstruction of the gated images known as reconstruct-transform-average (RTA)

and motion compensated image reconstruction (MCIR) respectively. RTA is based on

independent reconstructions of each gate using conventional algorithms which are then

transformed to a reference position and averaged. In MCIR, all gated data are used,

incorporating motion information within reconstruction. Current PET scanners give the

reconstructed images directly and any correction (e.g. attenuation, scatter) is applied in

the reconstruction. Therefore, the user does not have usually the ability to reconstruct

data from the scanner and the only solution is to correct the already reconstructed

images, using the RTA method. However, as MCIR is potentially a better approach,

it is important to see what are the relative disadvantages and advantages of the two

methods.

The first aim of this thesis addresses whether it is advantageous to perform motion

correction inside the reconstruction and when (i.e. reconstruction parameters) do we

need to do this by evaluating the impact of both methods on quantification and noise

propagation.

The second part of this thesis deals with the important issue in clinical oncology

of lesion detectability. It investigates if, when and to what extent motion correction

implemented within PET reconstruction improves lung and liver lesion detectability

for lesions of various sizes and signal to background ratios. Using different respiratory

signals derived from actual patients, the impact of the breathing pattern on detectability

was also determined. The impact of respiratory motion correction on detectability is

further investigated as a function of the scanner spatial resolution.
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1.5 Thesis objectives and structure

The specific objectives of this thesis are the following:

i. to understand the impact of motion correction methods on quantification by

accurately characterizing the image bias and variance

ii. to understand the impact of motion blurring and motion-correction on detecting

tumours as a function of scanner resolution, breathing pattern, motion amplitude

and tumour size, tracer uptake

In the first part of chapter 2, a brief introduction to the basic principles of PET

is given and its clinical applications in oncology are presented. Then the reader is

introduced to the concepts and terminology used during data acquisition, storage,

correction and reconstruction of PET data. Furthermore, chapter 2 describes the

impact of image quality on the main tasks of PET in oncology and the basic principles

of assessing image quality; the concept of image quality is fundamental for the

understanding of this thesis. This is followed by a brief description of the main factors

that degrade PET images and a general overview of the respiratory motion correction

problem. Finally, chapter 2 reviews the most widely used approaches for PET motion

correction.

Chapter 3 describes in detail the methodology used for simulating realistic

numerical 4D PET data based on real segmented MRI dynamic data as used in this

thesis. Two methodologies are presented simulating either 4D gated-PET datasets or

real-time 4D PET datasets.

Chapter 4 presents an evaluation of the relative impact of implementing motion

correction after or during image reconstruction. The two approaches are evaluated

statistically in terms of convergence rate and the properties of the reconstructed images
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are obtained. The causes of any differences between the methods are also evaluated

and presented. This chapter also demonstrates how overall error can be examined in

terms of different components, and bias and noise trade-offs can be evaluated at voxel-

level.

Chapter 5 investigates the impact of respiratory motion and spatial resolution

of PET imaging systems on liver and lung lesion detectability. The results of a

comprehensive assessment are presented by investigating different amplitudes for the

lesion displacement due to respiration and different respiration patterns derived from

actual patient respiratory traces. The impact of different lesion sizes and lesion to

background ratios is also investigated.

Finally, chapter 6 summarises the findings and outcomes of this thesis and outlines

potential areas for future research.

1.6 Contributions in the thesis

This thesis is the work of the candidate - specific areas where others have contributed

specialist input are listed below. The open source software library for Tomographic

Image Reconstruction (STIR) (Thielemans et al. 2012) was used for the data

simulations and reconstructions (ht tp : //st ir.source f or ge.net/).

The algorithm used for motion modelling creation was provided by Dr Andy King

(King et al. 2011). A freely available registration algorithm (Buerger et al. 2011) was

used (ht tps : //www.isd.kcl.ac.uk/internal/hyperimage/). The respiratory signals

have been provided by Dr Paul Schleyer.

The MR segmentations were performed by the candidate manually using intensity

thresholds to extract the region of interest. Although the implementation of RTA

and MCIR methods was developed by the supervisor Dr Charalampos Tsoumpas
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optimization, debugging as well as thoroughly evaluation have been performed by the

candidate. A methodology was also developed by the candidate to calculate values such

as bias, standard deviation and mean squared error at the voxel-level using bash scripts.

Finally, the Channelized Hotelling observer was developed by the candidate with the

advice of Dr Miho Shidahara as described in detail in chapter 5.
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Chapter 2

Background and basic principles

2.1 Positron emission tomography (PET) imaging

2.1.1 Basic principles

Wrenn et al. (1951) introduced the concept of using positron annihilation in medicine

to localise radioactive substances in brain tumours while a few years later it has been

applied in the first positron scanner by Brownell and Sweet (1953). The first ring-based

functional positron emission tomography (PET) for brain imaging was introduced by

Ter-Pogossian et al. (1975), and Phelps et al. (1975) published the basic principles of

PET as we know them today. PET is now established in medical imaging as a non-

invasive modality that produces functional images of the human body (e.g. blood flow,

receptor density and glucose metabolism) based on detection of photons originating

from annihilations of positrons emitted by β+ radioisotopes.

During PET imaging, a radiotracer solution is injected into the patient and then

each molecule travels into the body where it decays mainly by emitting a positron.

The emitted positron travels through tissue a short distance interacting with the

surrounding atoms until almost complete loss of its kinetic energy when it interacts

with an electron and annihilates producing a pair of high energy (i.e. 511 keV ) photons

(figure 2.1). The two photons travel in opposite directions and can be detected by a

– 41 –
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circular array of scintillation detectors surrounding the human body - the line that

connects the two opposite detectors is known as line of response (LOR). The total

number of detected events between the two opposite detectors is proportional to the

total number of positron emissions along the LOR.
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Figure 2.1: Basic principles of PET imaging: After injection of the radiotracer into the human body, each
emitted positron travels through the tissue and annihilates with an electron producing two 511 keV
photons which are detected by the PET scanner.

The most readily available β+ radioisotopes used for PET imaging are 18F, 15O, 11C

and 13N. The radioisotope is bound on a metabolically active biomolecule, chemical

compounds, which have been designed to interact with molecules and proteins within

the human body. In particular, these biomolecules are targeted at various biochemical

functions in a human body (i.e. energy consumption, e.g. Alavi et al. 1986). Examples

of such compounds are glucose, glucose analogues, water, or ammonia. Such labelled

biomolecules are known as radiotracers. The radiotracer is intravenously injected into

the patient in tracer quantities and a PET image is reconstructed which shows the

radiotracer spatial distribution within a region of interest.

Depending on the type of radiotracer injected, PET can provide information on

different biochemical functions. In clinical practice the most common radiotracer

currently used is the glucose analogue labelled with the radioisotope fluorine - 18
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called fluorodeoxyglucose (18F-FDG) or simply FDG. 18F-FDG accumulates in regions

undergoing high metabolic activity such as the brain, liver and malignant tumours,

where rate of uptake is related to glucose metabolism. Consequently, accumulation

(uptake) of 18F-FDG by the tissue is directly related to its metabolic state (normal or

hyper or hypo-metabolic), and increased uptake may indicate the presence of malignant

tumour cells. Thus, PET has the ability to non-invasively detect functional changes in

vivo (Jones 2002).

Compared with other imaging modalities such as SPECT, PET may detect

abnormalities with higher scanner sensitivity (i.e. fraction of the events generated

that are detected) (Higashi et al. 2001). The high scanner sensitivity of PET may

allow the detection and characterization of tumour as benign or malignant based on

metabolic function. PET is a widely used technique in oncology for detecting tumour

metastases (or staging) and quantifying the radiotracer accumulation. In addition to

oncology it provides important clinical and research insights in cardiology, neurology,

pharmacology and drug development.

Most currently available PET scanners are constructed from multiple rings of

scintillation detector blocks surrounding the patient. The symmetrical pattern of the

PET scanners allows annihilation photons emitted in opposite directions to be detected

simultaneously. An example of a typical PET scanner is illustrated in figure 2.2. A

detector block is comprised of an array of scintillation detectors optically coupled to

photo sensors such as photomultiplier tubes (PMTs) which are the most frequently used

photo sensors in PET (Casey and Nutt 1986).

Incoming 511 keV photons interact in the crystals and are converted to visible

or ultraviolet (UV) photons which are subsequently converted to electrons by means

of a photocathode in the PMTs and amplified to produce a signal proportional to the
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energy deposited in the crystal. The signal is then analysed to determine in which

crystal the incoming photon was absorbed. Typically, due to size constraints, it is not

possible to couple each crystal with one PMT and therefore most PET systems employ

block detectors in which a block of crystal is segmented into an array of smaller crystal

elements. A typical block detector is segmented into 8 × 8 detector elements and is

read out by 4 PMTs as shown in figure 2.2. However, for higher resolution PET systems

a larger number of detector elements has been used such as the Siemens Biograph PET

scanner which has detector blocks consisted of 13 × 13 detector elements and read out

by 4 PMTs (Zaidi and Alavi 2007a).

Detector rings 

Scintillation crystals 

Photomultipliers (PMT) 

Figure 2.2: A typical PET scanner constructed from multiple rings of scintillation detector blocks. A
typical PET block detector consists of scintillation crystals coupled to 4 photomultiplier tubes (PMTs).
When a photon hits the crystals the light is distributed among the 4 PMTs based on the position of the
crystal.

The choice of the scintillation detector is based on specific characteristics such as

high stopping power, high light output and short decay time (Melcher 2000). High

stopping power is required in order to minimize the distance that a photon travels until

it stops after deposition of its full energy in the crystal and therefore maximize the
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detection of photons. For high stopping power the scintillation material must have high

density and high effective atomic number. The number of visible or UV photons emitted

per unit of energy deposited in the scintillation crystal, known as light output, must

also be high for better localization and energy discrimination between the detected

photons. Finally, short scintillation decay time is desirable to increase the ability of

the detector to detect photons at high photon rates and therefore minimize dead-time

count losses while a narrow coincidence timing window can be used increasing the

ability to distinguish true from random coincidences. Scintillation crystals with a short

decay time are often called fast scintillation crystals.

When two photons hit two opposite detectors they are analysed by a coincidence

logic circuit and processor that compare the time of each event with the time of events

recorded in the opposite detectors to identify if they originate from the same positron

annihilation. In order to record an annihilation event, both annihilation photons need

to be detected. A coincidence event is assumed to have occurred when a pair of events

are recorded within a specified coincidence timing window which is essential due to the

different distances from the annihilation event that the two photons have to travel and

also for differences in the transformation of each signal through cables and electronics

(Townsend et al. 1989). Also a coincidence event is valid if the energy deposited in the

crystal (i.e. pulse height) by both annihilation-photons is within the selected energy

window. For each accepted coincidence event, computer processing is used to assess

the geometry of the active volume of the two opposite detectors to define the LOR,

along which the annihilation event is assumed to have occurred. Another requirement

for the acceptance of a coincidence event is that the formed LOR must be within a valid

acceptance angle.

To identify two detected photons as coincidence events and record an LOR, the two
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photons must have energy within a specific energy window (e.g. 450-550 keV ) and the

time difference between their detection to be within a certain timing window (e.g. few

nanoseconds wide). The total number of detected events between the two opposite

detectors should be proportional to the total number of positron emissions along the

LOR. Consequently, by detecting many coincidence events¶ the activity distribution of

a region can be estimated.

During PET acquisition the measured data are derived from nuclear decays, a

random process that results in statistically variable data and therefore a PET image is

an average of independent measurements over the duration of the acquisition. The

statistical variability inherent in the limited detection of the measured data cause

uncertainties (i.e. noise) given as the square root of the number of coincidence events.

Lack of sufficient counts result in noisy data and a minimum number of counts are

required to achieve a meaningful image. The number of measured counts depends

on a number of factors such as the injected dose, acquisition duration and scanner

configuration.

2.1.2 Image degradation factors

The ability of the PET to localize the point of the positron annihilation for the detected

events in an image is known as spatial resolution and is empirically defined as the

full width at half maximum (FWHM) of a point source distribution. Although in an

ideal PET scanner the spatial resolution should be high and uniform, in reality spatial

resolution is limited by several physical factors (Rahmim and Zaidi 2008). The main

factors responsible for the finite spatial resolution in PET are:

¶ In typical clinical acquisition of the human thorax more than 107 events are required to obtain a
statistically meaningful reconstruction of the activity distribution.
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• The distance travelled by positrons before annihilation known as positron

range.

• The angular deviation from 180 degrees of the emitted annihilation photons

known as photon acollinearity.

• The finite crystal size in the PET detectors.

• The photon depth of interaction.

The linear distance between the nucleus from which the positron was emitted

and the position of the annihilation is known as the positron range as illustrated in

figure 2.3(a) (i.e. positron range is not the tortuous, continuous path of the positron).

Positron range limits the accuracy of localizing the exact position where the positron

was emitted and is one of the two main physical factors that deteriorate spatial

resolution (Levin and Hoffman 1999).

The positron range is increased with the positron energy and decreases with

increased tissue density. Consequently, different radiotracers result in different positron

range distributions for different tissue types (Levin and Hoffman 1999; Bailey et al.

2005). In addition, from the decay of the nucleus the positrons are emitted with

a continuous range of energies from zero to a maximum characteristic for each

radiotracer and only a limited number have the maximum possible energy (Cherry

et al. 2012). Due to this energy spectrum only a small fraction of positrons have enough

energy to achieve the maximum positron range and a mean range is usually determined.

The impact of the positron range in the PET resolution has been investigated by many

authors using water as the reference medium (Levin and Hoffman 1999) or different

human tissues (Sánchez-Crespo et al. 2004). For example, for positrons from 18F, which
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has low maximum energy equal to 0.633 MeV and a mean energy equal to 0.202 MeV

the mean positron range in water is 0.6 mm (Bailey et al. 2005).

The properties and application of the most commonly used positron emitting

radionuclides as well as respective positron ranges in water are presented in table 2.1

(Bailey et al. 2005). Considering that the positron range depends on the atomic

composition and tissue density again for positrons from 18F the range as measured

in human tissues is 0.54 mm in soft tissue and 1.52 mm in lung tissue (Sánchez-Crespo

et al. 2004).
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Figure 2.3: Main physical degradation factors of PET spatial resolution: (a) the distance travelled by
positrons before annihilation known as positron range; and (b) the angular deviation from 180 degrees
of the emitted annihilation photons known as photon acollinearity.

Although positrons lose nearly all of their momentum before annihilation,

the positron and electron possess some residual momentum when they annihilate.

Conservation of momentum requires that the resultant photons will not be emitted in

exactly opposite directions (i.e. 180 degrees) but slightly less than 180 degrees apart,

an effect known as photon acollinearity (figure 2.3(b)) (Sánchez-Crespo and Larsson



Background and basic principles 49

2006; DeBenedetti et al. 1950). The deviation from 180 degrees is approximated by

a Gaussian with a FWHM of 0.5 degrees with a corresponding loss of resolution equal

to 0.5R.tan(0.25◦) where R is the diameter of the detector ring (Cherry et al. 2012).

For example for a scanner of 80 cm diameter (e.g. a typical whole body scanner) the

loss of resolution due to acollinearity is approximately 2 mm whereas for a smaller

scanner diameter such as a 30 cm (e.g. an animal scanner) the loss is reduced to

0.7 mm. Acollinearity is the second factor affecting the spatial resolution (Levin and

Hoffman 1999). Despite the physical factors, other factors may also limit the PET

spatial resolution such as the geometry of the scanner.

The scanner geometry is appropriately designed not only to detect as many

annihilation photons as possible but also to locate the annihilation position with certain

spatial precision (i.e. spatial resolution). The finite detector size limits intrinsically the

resolution. In general as shown in figure 2.4 the number of measured coincidences is

reduced as the source is moved towards the edge of the FOV. For a pair of detectors the

intrinsic spatial resolution is the FWHM of the measured coincidence events sensitivity

when moving a point source across the detector face as shown in figure 2.4. On the

scanner axis at mid-position between the two detectors the distribution is a triangle

with a FWHM of half the detector width while at a position toward either detector the

distribution becomes trapezoidal with FWHM equal to the detector width at the face of

either detector.

Another factor of the scanner configuration that results in limited and non uniform

spatial resolution is the limited accuracy with which the intersection point of the

incoming photon with the detector is determined known as the parallax error (Sánchez-

Crespo and Larsson 2006). For annihilation events emitted from the centre of the FOV

of the scanner incoming photons enter the scintillation crystals perpendicular to the
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Figure 2.4: The intrinsic spatial resolution of PET detectors is determined by the finite crystal size and
is defined as the FWHM of the measured coincidence events sensitivity when moving a point source
across the detector face. For a point source positioned at the edge of the two detectors a limited number
of coincidences is measured (red lines) whereas if the same source is positioned at the centre more
coincidences are measured (black lines). As a result, the intrinsic spatial resolution is half the detector
size at mid-position between the two detectors and increases with distance from the centre up to detector
width at the face of either detector.

surface of the detector and although interact at different crystal depth until complete

energy loss, the depth of interaction will not affect the position of the measured LOR.

However, at a distance from the centre of the FOV of the scanner incoming photons

enter the scintillation crystals at different angles. As a result, the photons might enter

the two opposite crystals anywhere along their lengths and interact at different crystal

depth or might penetrate several crystals before they interact with one of them due to

the oblique angle of incidence. When there is no additional information for the depth

of interaction, the interaction positions of the incoming photons to the crystals will

be assigned at the most likely depth (e.g. midpoint of each crystal face) neglecting

the depth of interaction and may result in mispositioning of the coincidence events as

shown in figure 2.5(a).
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Parallax error progressively deteriorates the spatial resolution with increasing

distance from the centre of the FOV and therefore at the edge of the FOV a point source

will appear as an ellipsoid (figure 2.5(b)). In addition, the error is higher when the

detector is thicker and the position of the photons is away from the centre of the FOV.

The parallax error can be reduced by using larger detector rings such as to reduce the

angle of incidence. The correction of the parallax error can be addressed using depth

of interaction information (DOI) (MacDonald and Dahlbom 1998). Despite the large

interest on investigating DOI for improved image quality (Nakazawa et al. 2010; Thoen

et al. 2013), for whole body PET imaging there is not currently any commercial system

with DOI capability.
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Figure 2.5: Schematic illustration of the parallax error in PET. (a) At the edge of the FOV the interaction
positions of the incoming photons to the crystals will be incorrectly assigned at the midpoint of each
crystal neglecting the depth of interaction. (b) Parallax error progressively deteriorates the spatial
resolution with increasing distance from the centre of the FOV and causes a point source at the edge
of the FOV to appear as an ellipsoid.



Background and basic principles 53

A combination of all the physical factors and the geometry of the scanner that limit

the spatial resolution in PET determine the total spatial resolution. For example, whole

body conventional human PET scanners achieve a spatial resolution approximately 5

to 6 mm FWHM in the centre of the scanner which decreases with the distance from

the centre up to 6.5 mm as measured by the width of the peak produced by a scanned

point-source (Teräs et al. 2007).

However, except from the aforementioned factors other parameters also play an

important role in the final resolution such as the choice of reconstruction algorithm

and parameters (e.g. image voxel size) that yield different accuracies of tracer uptake

measurements and are expected to affect the final image resolution (Boellaard et al.

2008). For example filters that may be applied during or after the reconstruction

for noise suppression may degrade the resolution of the reconstructed image with a

magnitude determined by the choice of the filter parameters.

The limited resolution is one of the main reasons for the partial volume effect (PVE)

(Soret et al. 2007). The limited system resolution introduces blurring in the image and

as a result high tracer uptake objects (e.g. tumour) that are smaller than twice the PET

resolution show partial loss of activity because the activity within the object "spills out"

in adjacent regions with lower activity (Soret et al. 2007). The total counts in an area

are preserved but they spread out in adjacent areas and therefore the object appears to

be larger and to have a lower activity concentration than it actually has. The extent to

which an object is affected by PVE is determined by its size. For large objects although

will be blurred at the boundaries, the activity inside them will not change (figure 2.6).

The second aspect of PVE is the image sampling. Although the tracer distribution in

a human body is continuous function, the reconstructed data are inherently discretized

by a finite set of spatial basis functions (e.g. voxels). The underlying continuous
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distribution of the tracer uptake may not correspond to the boundaries determined

from the voxel grid used to sample the image. As a result different tissue types may

exist in a single voxel and the assigned tracer uptake value at the voxel will correspond

to the average of all the values of the tissue types that are present within the voxel. The

larger the voxel size the more this effect occurs and if the sampling is adequate (i.e.

voxel size half the spatial resolution) this effect will not be significant. This effect is

particularly apparent for voxels that are located on functional structure boundaries. In

particular, if a voxel is located right across an edge between a high activity region and a

low or no activity region, the voxel activity will be an average of the actual underlying

activity distribution, thus making the edge look smoother than it actually is. Various

methods have been proposed for compensating for PVE and reviewed by Rousset et al.

(2007) and Erlandsson et al. (2012).
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Figure 2.6: Due to the limited system resolution for objects that are smaller than twice the PET resolution
the true underlying radioactivity concentration is contaminated between adjacent regions with different
tracer uptake and the object appears to be larger and to have a lower activity concentration than it
actually has. This effect is particularly apparent for small objects. As the size is increased the object will
be blurred at the boundaries, but the activity inside will be less affected.

Mathematically, the blurring caused by the finite spatial resolution can be described

by a 3D convolution operation using the point spread function (PSF) as representative

of the system response. The PET image can be approximately modelled as the

convolution of the actual tracer uptake distribution with the PSF of the scanner. The
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PSF of the scanner is the distribution of the reconstruction of a point source and varies

across the FOV of the scanner due to the non-uniform response of the detector. The

operation is only a convolution when the PSF kernel does not vary. For the discrete

case this is a linear operation, but if the kernel was spatially invariant would be a

convolution operation. In addition, as the kernel varies smoothly and slowly over the

FOV that it can be considered of as a local convolution.

The physical factors related to the characteristics of the radiotracers are not

straightforward to change. However, more advanced image reconstruction methods

have been proposed to improve image quality which will be described later.

Furthermore, the detector related effects have been addressed by many studies

(Budinger 1998; Adam et al. 2001) and are continuously improved with scanner

developments. One of the recent developments is the reconstruction of images

by integrating information about the time difference in the detection of the two

annihilation photons a process known as time of flight (TOF) (Budinger 1983). By

incorporating the TOF information into the reconstruction it allows the determination

of the origin of the annihilation with higher accuracy. As a result images may be

reconstructed with higher SNR properties and improved spatial resolution (El Fakhri

et al. 2011). TOF requires faster scintillation crystals and electronics.

Except for the finite spatial resolution and the resulting PVE, PET image quality

is further deteriorated by photons that may interact in the patient body and result

in events contributing to background. The recorded LOR should correspond to two

photons originating from the same annihilation event in order to be a true coincidence

event (figure 2.7(a)). In addition to the true coincidence events, the measured events

include other type of events that have been wrongly recorded within the specific energy

and timing window.
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One type of coincidence events are scattered events when one or both photons

have undergone Compton scattering. In addition to changing the direction of the

photons, scatter also reduces the energy of the photons and therefore the photon might

not be detected within the energy window (i.e. photon attenuation) (figure 2.7(b)).

However, some scattered photons might not lose enough energy and thus might be

detected within the energy window especially if large energy windows are used.

Scatter coincidence events give erroneous information about the location of the positron

annihilation and therefore the coincidence event will be assigned to the wrong LOR as

shown in figure 2.7(c). Scatter events may decrease the reconstructed image contrast

causing inaccurate quantification (Zaidi and Montandon 2007c).



Background and basic principles 57

  (a)   (b) 

  (c)   (d) 
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Figure 2.7: Types of coincidence events in PET: (a) a true event with detection of annihilation photons
originating from the same annihilation; (b) a single event will be recorded if one of the two photons is
scattered out of the FOV; (c) scatter event result if one or both detected photons have undergone scatter;
(d) random event results from detection of two photons originating from different annihilations. Other
events than true events have erroneous information about the location of the positron annihilation. The
erroneous LOR is indicated with a dashed line.

Other coincidence events are random events. Random events might occur when

two positrons annihilate approximately at the same time and one photon from each

annihilation is not detected while the other two photons are detected. Therefore,

although the photons originate from different annihilations they are accepted within the

timing window, they are wrongly recorded as originating from the same annihilation,

and consequently result in an incorrect LOR (figure 2.7(d)). Random events are
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characterised as a relatively uniform background added to the true radiotracer

distribution. Random events may decrease the reconstructed image contrast and cause

uncertainties in quantification values.

Events other than true events have erroneous information about the location of

the positron annihilation and affect the accuracy of the estimation of the tracer uptake.

However, while attenuation, mainly due to scatter, reduces the number of detected

events, the random but also the scatter events increase the number of events (noise)

in the data by adding a background to the true events distribution. Therefore, the

number of detected true events is not the number of incident events as it would be

for an ideal PET system, but is susceptible to contamination from scatter and random

events decreasing the maximum possible signal to noise ratio (SNR). In particular, the

noise in PET can be described by the noise equivalent count rate (NECR) given by:

N ECR=
T2

T +S+kR
(2.1)

where T , S, R are the true, scatter and random events count rates respectively and k is

a scalar equal to 1 or 2 for noiseless or noisy estimates of random events respectively.

The NECR is the minimum number of coincident events that would have been

needed if all the incident events are considered as true events in order to obtain a

statistically equivalent noise level in the presence of measured scatter and random

events. The NECR is equivalent to the square of the SNR in the PET projection data

and can determine the significance of a particular noise level (Badawi and Dahlbom

2005). The SNR increases as the number of detected scatter and random events is

decreased.

The measured data can be corrected for the scatter and random either before

the reconstruction in projection space or within reconstruction. In particular, scatter

and random events after being estimated can be subtracted from the noisy measured
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projection data. This approach disturbs the Poisson nature of the measured data and

may generate negative values in the data which will be consequently set to zero during

iterative reconstruction introducing bias (Walker et al. 2011). Alternatively, these

events can be included as additive terms in the statistical model of event detection as in

the ordinary Poisson formulation of the maximum likelihood expectation maximisation

(MLEM) iterative reconstruction algorithm where the model accounts for the scatter

and random events (e.g. addition after forward projection operation) assuming that

they contribute to the background. Including these events within the forward model

of the reconstruction preserves Poisson statistics and applies the corrections separately

from the forward projection and backprojection operations in the reconstruction and

it does not significantly increase computational effort. Alternatively, this model can

be included within the system matrix creating a less sparse system matrix which

significantly increases computational effort but may improve image quality (Conti et al.

2012).

2.1.3 Data acquisition and storage

The circular pattern of multiple rings of PET scanners allows annihilation

photons emitted in opposite directions and between adjacent rings to be detected

simultaneously, three dimensional (3D) collection of data. However, a PET scanner

may offer the availability to acquire data either in two dimensional (2D) or three

dimensional (3D) mode. In the 2D mode a septa (usually made of lead or tungsten)

is positioned in between two adjacent crystal rings. As a result, only the detection of

photons between coincident detectors, either in the same ring or adjacent crystal rings,

depending on the length of septa, are recorded to form a single plane. On the other

hand, in 3D mode there are no septa and events which occurred between detectors
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by any combination of crystal rings are allowed to be detected resulting in increased

scanner sensitivity (i.e. fraction of photons generated within the FOV that are detected)

and SNR compared to 2D (Townsend et al. 1989; Cherry et al. 1991).

PET scanners tend to have a cylindrical geometry (figure 2.8). A coincidence event

detected by two opposite detectors can be characterized by the coordinates x , y,z of

detector 1, D1(x1, y1,z1), and detector 2, D2(x2, y2,z2), that define the LOR. The LOR

can also be expressed in the spherical coordinate system by the azimuthal angle φ and

polar angle θ as shown in figure 2.8 (Zanzonico 2004).

Detector 1 
(x1,y1,z1) 

Detector 2 
(x2,y2,z2) 

φ 
θ 

z 

y 

x 

Figure 2.8: Schematic illustration of PET cylindrical geometry with axial cross section. A coincidence
event detected by two opposite detectors is characterized by the coordinates of detector 1, D1(x1, y1,z1),
and detector 2 D2(x2, y2,z2) that define the line of response (LOR). The LOR can be expressed in the
spherical coordinate system by the azimuthal angle φ and polar angle θ .
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After recording a detected coincidence event, the LOR is usually stored in list-mode

or histogram format. In the list-mode format each measured coincidence event is stored

in the form of a list with the coordinates of the two photons defining the LOR along

with the time of detection. Each element of the list-mode format stores information for

just a single coincidence event sequentially as it is detected. There are two different

types of list-mode data format. In the first type the event coordinates of each detected

LOR are recorded. In the second type the position of each detector is recorded in a

sinogram bin and the address of the sinogram bin is recorded. With this type a single

sinogram bin can be used for sub-LORs and therefore the address of the sinogram bin

will not correspond to the coordinates of each recorded LOR but to the average location

of all possible sub-LORs stored within the specific bin. Apart from the location of the

pair of detectors and the time of the detection, additional information may be recorded

such as the energy of each photon and the time difference between their detection.

In the histogram the data are stored as the sum of the measured data along

the LOR within a matrix that described the location of the LOR within the FOV. The

total number of detected coincidence events between any detector pair is proportional

to the radioactivity distribution at each point along the LOR neglecting degradation

factors (e.g. attenuation and scatter) and may be modelled as proportional to line

integrals through the activity distribution, f (x , y,z), along the LOR. The collection of

line integrals parallel to a given direction is known as a projection.

For a 2D data acquisition the line integrals for each LOR are usually stored in the

form of a sinogram, a 2D matrix with the vertical axis corresponding to the azimuthal

angle φ and the horizontal axis corresponding to a spatial coordinate s which is related

to the radial distance of each LOR from the centre of each ring. In the sinogram

each bin value corresponds to a projection at a specific angle φ and axial offset s as
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illustrated in figure 2.9. Consequently, the sinogram for a single transaxial plane has

dimensions equal to the number of parallel projection elements times the number of

angular views. For example, storing the measured data of a point source will form a

sinusoidal pattern curve and thus the name sinogram, while the sinogram of an activity

distribution consists of multiple overlapped sinusoidal pattern curves.

For a 3D acquisition the polar angle θ is also used as an additional coordinate

to describe the projections and the measured data are then represented as a set of

sinograms with one sinogram per θ . If the events stored were measured within the

same detector ring, such as in the case of a 2D acquisition, the sinograms are known as

direct plane sinograms. On the other hand, if the events stored were measured between

different detector rings the sinograms are known as oblique sinograms. In 3D data

acquisition both direct and oblique sinograms are acquired leading to more sampling

points. Consequently, the storage and computation requirements for data acquisition

may be considerably higher for 3D acquisition with a large number of detector ring

combinations. In order to reduce the number of acquired sinograms, different methods

are used such as axial compression (Fahey 2002).

2.1.4 Image reconstruction

The measured data are used to calculate the radioactivity distribution in the patient

a process known as image reconstruction. A reconstructed image spatially maps the

radioactivity concentration that produced the measured data. Image reconstruction

algorithms can be classified into analytic or iterative methods.

Analytic methods are based on the approximation of perfect detectors and

measured data ignoring the underlying physics of the coincidence detection and the

statistical noise inherent in the measured data. They provide a direct mathematical
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Figure 2.9: Illustration of the coordinate system used for PET data stored in a sinogram. In a sinogram
the detected coincidence events are stored according to angular orientation φ versus its displacement s
from the centre of the detector rings. The arrow points out the position in the sinogram of one projection
p(s, φ).

solution for the recovery of the radioactivity distribution based on a line-integral

model and Fourier theory. The most commonly used analytic algorithm is filtered-

backprojection (FBP).

The Central Section theorem or Fourier Slice theorem states that the 1D Fourier

Transform (FT) of the projection (i.e. equivalent to line integral through the

radioactivity distribution) for a specific angle is equivalent to a profile at the same

angle through the centre of the 2D FT of the object. Therefore, calculating the Fourier

transform of the measured projections over a number of angles around the object and

subsequently apply inverse Fourier transformation will give the counts distribution in

the FOV.

In one approach to image reconstruction the magnitude of the values of each

point in the projection can be placed back to every point in the image space along the

appropriate LOR corresponding to the relevant line of integration in the radioactivity
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distribution a process known as backprojection. However, the exact position of the

value into the image space is unknown and therefore a constant value is placed into all

image voxels along the corresponding LOR. Therefore all image elements along the LOR

are assigned with the value of each point in the projection. If this process is repeated

for all measured angles an image of the radioactivity distribution will produced.

After simple backprojection the image is a blurred approximation of the true

radioactivity distribution because the exact position of the value of each projection

in the image space is unknown and is attributed to all voxels that project onto that

projection ray and not only to the voxel the radioactivity is coming from. The sampling

density in Fourier space is proportional to the inverse of the distance from the origin (i.e.

more sampling of the Fourier transform at the origin). Therefore, each projection fills in

one slice of the Fourier space resulting in oversampling in the centre and undersampling

away from the centre. The blurring caused by the non uniform sampling of the Fourier

space is commonly modelled as the result of a convolution of the radioactivity volume

distribution and an inverse radial blurring kernel. To overcome this, the profiles are

filtered prior to backprojection (e.g. ramp filter) in order to have equal contributions

throughout the Fourier space a process known as filtered backprojection (FBP).

Analytic algorithms are fast reconstruction methods with low computational

requirements due to the direct solution that simplifies the reconstruction. Despite this,

the reconstructed image quality is limited by the approximations of the line integral

model and the disregard of the statistical noise inherent in the measured data. These

approximations may cause errors in quantification and noise that may appear as streak

artefacts. The high noise levels can be treated by adjusting the cut-off frequency value

of filters applied either during or after the reconstruction (Van Laere et al. 2001) but at

the expense of quantification accuracy and image resolution. Due to these limitations
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FBP is not usually used clinically but it often used as the appropriate method for

quantification tasks.

An alternative to analytic methods is to use an iterative reconstruction algorithm.

In contrast with analytic methods, iterative methods can incorporate modelling of the

physical degradation factors and of the underlying physics (i.e more realistic model

of the system) and the statistical variability of photon detection. Iterative algorithms

may improve the image quality in terms of noise and spatial resolution compared

with analytic algorithms either for the case of high count measured data where the

accuracy of the model has high impact on image resolution or in the case of low count

measured data where the statistical noise due to the limited detection of photons has

high impact on image resolution. While, in routine clinical practice iterative algorithms

have replaced analytical algorithms, in some cases where quantification is the main task

of image interpretation analytic algorithms might be a preferable method.

The first step of the iterative algorithms is to model the object of the acquired

data in the image (i.e. spatial) domain. Modelling of the tracer distribution is usually

performed by using variables to discretize the image. Although the tracer distribution

in a human body is a continuous function, the iterative algorithms approximate the

continuous distribution by a finite set of spatial basis functions such as voxels or pixels,

3D or 2D image elements respectively. While, the value of each basis function is

assumed to describe the activity distribution contained in the volume of the human

body spanned by the voxel, the tracer distribution within the voxel is assumed to be

uniform and therefore this approximation is limited by the number and dimension

of the voxels used to discretize the tracer distribution in the human body. Following

discretization, the system is modelled by mapping the image space to the projection
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space as following:

gi = ~P~Λ (2.2)

where ~Λ= {Λ j} ∈RJ is the tracer distribution for J voxels (j=1...J), ~P = {Pi j} ∈RJ×I

is the forward projection operator, also known as the system matrix, and ~g = {gi} ∈RI

are the expected number of true events for each LOR. The element Pi j of the system

matrix represents the probability that a photon from the j th voxel is detected in the

i th projection element. The system matrix can include geometry, detector response,

attenuation and other factors for more realistic modelling of the relationship between

image space and projection space (Panin et al. 2006). The expected value of the

measured data qi given the measured data mi, (qi=



mi
�

), is given as:

qi =
J
∑

j=1

Pi jΛ j+ni (2.3)

where ~n = {ni} ∈ RI is the mean number of background events such as scatter and

randoms (unless these are included in the system model).

The next step of iterative algorithms is to model the measured data in order

to describe the statistical relationship between the measured data and the expected

data. During PET acquisition the measured data are derived from nuclear decays,

a random process, and therefore they are statistically variable. Photon detections

are usually modelled as random variables characterised by Poisson (Shepp and Vardi

1982) or more rarely Gaussian (Fessler 1994) distribution. With the assumption of the

Poisson probability, the discrete probability distribution of the expected data qi given

the measured data mi is the following:

Pr(mi | qi) =
e−qi qmi

i

mi!
(2.4)
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To model all the projection elements i the product of the probability density

function for every single element is calculated known as the Poisson likelihood, L:

L
�

~m |~q
�

=
I
∏

i=1

e−qi qmi
i

mi!
(2.5)

Then, after modelling the radioactivity distribution, an objective function is defined

to encompass the probabilistic model that is employed to describe the noise distribution

of the measured data, as well as any other model employed to describe the photon

detection. The most commonly used approach in these algorithms is the maximum

likelihood (ML). In ML the probability for the measured data to approach the unknown

true radioactivity distribution, Λ, is to obtain a model of the mean, q, such that the

probability likelihood reaches a maximum. With the assumption of a Poisson probability

distribution, the optimization is usually performed in the logarithmic domain (log-

likelihood). Due to the monotonic nature of the log function, this will lead to the same

local maximum, which is also a global maximum, since the log-likelihood function is

concave. Consequently the log-likelihood is given by:

(2.6)

lnL
�

~m | ~q
�

=
I
∑

i=1

ln





e−qi qmi
i

mi!





=
I
∑

i=1

�

−qi +mi ln(qi)− ln(mi!)
�

=
I
∑

i=1

 

−
J
∑

b=1

Pi bΛb +mi ln

 

J
∑

b=1

Pi bΛb

!

− ln(mi!)

!

where qi was substituted with
J
∑

b=1
Pi bΛb. In the above equation the background term

has been neglected for simplicity. To maximize the Poisson log-likelihood function its
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partial derivative with respect to a single voxel Λ j is calculated and set it to zero:

∂

∂Λ j
ln L
�

~m |~q
�

=
I
∑

i=1













−Pi j+
mi

J
∑

b=1
Pi bΛb

Pi j













= 0 (2.7)

The above equation can not be solved directly. To estimate the Λ j, the

probabilistic model is maximized iteratively by optimizing of the objective function. The

radioactivity distribution is updated until it converges to the maximiser of the objective

function. Various optimization algorithms have been proposed, from gradient based

to the commonly used expectation maximisation (EM) algorithm. The EM algorithm

determines the maximum likelihood estimate (MLEM).

Gradient-based methods are based on adding a step size. Considering that the

log-likelihood function is locally quadratic around one local maximum by adding

a step size to the current estimation, Λk
j , the next estimate will be closer to the

maximum likelihood (Qi and Leahy 2006). Using this gradient ascent the expectation

maximization is given as:

(2.8)

Λk+1
j = Λk

j + T k
j
∂

∂Λ j
ln L
�

~m
�

�~q
�

= Λk
j +

Λk
j

I
∑

i=1
Pi j













−
I
∑

i=1

Pi j +
I
∑

i=1

Pi j
mi

J
∑

b=1
Pi bΛk

b













=
Λk

j

I
∑

i=1
Pi j

I
∑

i=1

Pi j
mi

J
∑

b=1
Pi bΛk

b

This is the most popular optimisation technique in PET known as the expectation

maximisation (EM) algorithm. The EM algorithm is a general framework used to
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estimate the maximum likelihood solution through the introduction of a "complete"

set of data. The "complete" data is a hypothetical, unobserved set of data, which can

be thought of as the intersection between the sinogram data and the image data. The

dataset {mi} with each element equal to the number of photons detected in sinogram

bin i is incomplete dataset since there is no information from which voxel the data have

been emitted. The MLEM algorithm can be derived based on the complete dataset, {zi j},

where each element represents the number of detected photons in sinogram bin i that

originate from the voxel j with mi=
J
∑

j=1
zi j. The mean expected data are equal with




mi
�

= qi =
J
∑

j=1
Pi jΛ j and therefore the expected complete dataset is given by:

¬

zi j

¶

= Pi jΛ j (2.9)

Both {zi j} and {mi} are Poisson distributions and the likelihood function of the

complete dataset, LC D(Λ/z), can be written as:

LC D(Λ/z) =
∏

i

∏

j

(Pi jΛ j)
zi, j · ex p(−Pi jΛ j)

zi j!
(2.10)

To maximize the likelihood function the natural logarithm is firstly calculated

known as log-likelihood function:

ln LC D =
∑

i

∑

b

�

zi b ln Pi bΛb− Pi bΛb
�

(2.11)

In the above equation the factorial term has been neglected. The log-likelihood

function can be maximized by taking the partial derivative with respect to a single

voxel Λ j and set it to zero:

∂

∂Λ j
ln LC D =

∑

i

�

zi j ·
1

Pi jΛ j
Pi j− Pi j

�

(2.12)
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Setting the partial derivative to zero, ∂
∂Λ j

ln L= 0 it follows:

∑

i
zi j

Λ j
=
∑

i

Pi j (2.13)

Rearranging the above equation the maximum likelihood for a single voxel j is

given by:

ΛM L
j =

∑

i
zi j

∑

i
Pi j

(2.14)

Although the complete dataset {zi j} is unknown, the expected values of the

complete data can be used. Therefore the expectation maximization maximizes the

excepted values of the complete data. The complete data can be generated by

calculating the expected value of the data zi j with known the measured data mi

and based on



mi
�

= qi =
J
∑

j=1
Pi jΛ j. The joint distribution of independent Poisson

variables zi j with mean values Pi jΛ j is a multinomial distribution and the probability

that an event detected in the sinogram bin i originates from the voxel j is given

as (Pi jΛ j)/(
J
∑

j=1
Pi jΛ j). Therefore the conditional expectation of the complete data is

estimated as follows:

zi j

mi
=

Pi jΛ j

J
∑

j=1
Pi jΛ j

(2.15)

zi j(Λ
k) =

Pi jΛk
j

J
∑

j=1
Pi jΛk

j

mi (2.16)
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Substituting (2.16) to (2.14) the MLEM for all the voxels is given by:

Λk+1
b =

1
∑

i
Pi b

∑

i
Pi bΛk

bmi

J
∑

ν=1
PiνΛk

ν

=Λk
b

1
∑

i
Pi b

∑

i

Pi b
mi

J
∑

ν=1
PiνΛk

ν

(2.17)

The EM algorithm converges monotonically to the solution that maximises

the log-likelihood function of the estimates of the radioactivity distribution (2.11).

Consequently, at each iteration k the updated image will increase the value of the

likelihood function. Non negativity in the image domain is ensured provided that

the initial image estimate is non-negative. However, this introduces bias in low count

regions due to the shift of the discrete probability distribution of the Poisson distribution

(Reilhac et al. 2008).

An accelerated version of the MLEM is the ordered subsets expectation

maximization (OSEM) algorithm. The OSEM algorithm, processes the measured data

in groups and instead of applying the iteration process including all projections, a small

number of projections is grouped (known as subset) and the MLEM algorithm is applied

to each subset. The OSEM algorithm is given by:

Λk,q
b =Λ

k,q−1
b

1
∑

i∈Sq

Pi b

∑

i∈Sq

Pi b
mi

J
∑

ν=1
PiνΛ

k,q−1
ν

(2.18)

where Sq corresponds to the qth subset S of the projection space.

One full iteration is completed after using all subsets. Using a subset of the

measured data accelerates the convergence a factor equal to the number of subsets

producing images with similar quality.

One critical characteristic of these algorithms is the convergence rate. As the EM

algorithm progressively reconstructs an image, the low frequency components of the

image appear within the first iterations, while as the ML estimate is approached, higher
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frequency components are resolved, including noise. In addition, the theoretical ML

estimate may be reached only after an infinite number of iterations. Consequently,

there is a bias-variance trade off.

One method to compensate for the noise deterioration in OSEM reconstruction is

stopping after a small number of iterations. Early stopping might not be an efficient

method since the convergence rate is noise and object dependent and therefore the

convergence of different objects in the image is not achieved for all points at the

same iteration number. Boellaard et al. (2001) investigated dynamic PET images and

demonstrated that for OSEM, cold regions within a hot background converge more

slowly than small hot areas within a cold background. Therefore the optimal number

of iterations depends on the desired clinical benefit and the focused area as well as

the count statistics data. Another way is to post-smooth the images using filters (e.g.

Gaussian kernel) but the noise is controlled at the expense of resolution. An alternative

approach is to generalize these algorithms, by including a prior term which favours

certain characteristics in the reconstructed images (e.g. locally smooth) (Fessler 1994).

Prior terms can introduce additional information about the expected image noise

penalizing the loglikelihood function. This can be achieved via Bayesian estimation

schemes with the most commonly of them the maximum a posteriori (MAP) algorithm

(Hebert and Leahy 1989). Green (1990) proposed the one-step-late (OSL) method to

apply the EM algorithm to the MAP problem where a penalty term is determined by the

use of the previous estimate, hence the name one-step-late. The prior usually constrains

the solution by penalizing the intensity variations in the adjacent voxel values. For

example by using anatomical prior information the noise is reduced within the regions

while allowing for large variations between different voxels across the boundaries.

However, the image quality depends on the choice of the prior/penalty parameters.
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Another feature of statistical iterative image reconstruction algorithms is that there

are inherent constraints such as non-negativity. The non-negativity constraint does not

allow negative values to be assigned to an image voxel. Therefore, when high variance

(i.e. low count) data lead to a probability that a voxel will be assigned a negative

value the OSEM bounds the intensities distributions at zero and the distributions do

not remain symmetric. Whilst this non-negativity constraint is in keeping with a

priori knowledge of a non-negative activity distribution, it is expected also to result

in an overestimation bias for low count regions (Grezes-Besset et al. 2007; Ahn and

Fessler 2004). Therefore linearity is not preserved with iterative reconstruction, since

the reconstruction of the sum of two sinograms is not the same as the sum of the

independent reconstruction of the two same sinograms. The extent of this inequality

depends on the object, background activity levels, counting statistics, physical factors,

number of iterations and any applied penalization factors or filtering (Barrett et al.

1994; Wilson and Tsui 1993; Boellaard et al. 2001).

2.1.5 Image quality characterization and evaluation

The most common application of PET in oncology is for detecting tumour metastases

for staging and quantifying the radiotracer accumulation. An objective definition of

image quality is complex because it depends on the task being performed. In clinical

practice, image quality is usually characterised on how well the true tracer uptake can

be recovered (i.e. estimation task) and how well lesions from normal tissues can be

distinguished (i.e. classification task). PET has limitations on both tasks due to the

physics of PET (e.g. spatial resolution, scatter, randoms and attenuation) and the data

processing methods (e.g. reconstruction method). These two tasks can be considered

to characterise and evaluate the PET image quality.
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2.1.5.1 Estimation tasks

In estimation tasks, the aim is to recover quantitative values such as standardized

uptake values (SUVs) from the images. The most common parameter used to measure

tracer uptake is the SUV. In clinical practice there are two ways commonly used to report

the SUV, the mean and the maximum SUV. The mean SUV is the average value of all the

voxels in the ROI and therefore includes information from multiple voxels whereas the

maximum SUV is the maximum voxel value within the ROI. Consequently, the mean

SUV depends on the definition of the ROI and is less sensitive to the noise of the image

than the maximum SUV. The maximum SUV is the highest voxel value within the ROI.

Based on the assumption that the voxel with the highest activity value is included in

the predefined region the maximum SUV is independent of the definition of the region

and consequently less dependent on the observer than the mean SUV. However, the

maximum SUV is more susceptible to noise than the mean SUV. As an alternative the

peak SUV has been suggested (Wahl et al. 2009) defined as the average SUV within a

group of voxels in a small size region including the voxel with the highest value within

the ROI. The peak SUV is less susceptible to noise than maximum SUV and less sensitive

to the definition of the ROI than mean SUV. Although peak SUV was initially defined as

a spherical region of 1 cm3 size (Wahl et al. 2009), various other sizes and shapes have

been investigated that include the maximum voxel value but they are not necessarily

centred on it (Vanderhoek et al. 2012).

A common approach used to assess the quantitative performance of an image

reconstruction method is to determine its accuracy and precision. The ideal image is on

average the true image (unbiased) whose values do not deviate from their mean (zero

variance). Given that PET imaging is based on nuclear decay which is random process,

if the same object is imaged multiple times, the acquired data will have statistical
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variations. The ideal reconstruction method will produce images that are minimally

biased with respect to the true distribution and that have low variance.

Bias is a measure of the accuracy of a method and is given by the difference

between the expected value and the true value. The variance is a measure of the

precision of the estimate (how much the estimate varies around its average value).

Variance may be evaluated by repeated estimations of the same value expressed in

terms of the difference between the investigated data around its mean value. The sum

of the squared deviations from the mean of all measurements divided by the number of

measurements minus one defines the variance whereas the square root of the variance

is known as standard deviation. Another measurement is the mean squared error (MSE)

calculated as the sum of the square of standard deviation and the squared bias.

The estimation of quantitative values such as the tracer uptake is commonly

performed by placing a 2D or 3D region of interest (ROI) around a target (e.g. tumour)

in the image of interest. However, instead of calculating the figure of merit from the

statistics of a region in a single reconstructed image, another method is to calculate

the figure of merit voxel by voxel in multiple realizations of reconstructed images. In

contrast with a single image, the voxel-by-voxel analysis of multiple images provides

the expectation of the image estimate (average image over multiple realizations of

reconstructed images).

2.1.5.2 Classification tasks

To assess detectability, (i.e. the ability of a method to distinguish lesions from

normal tissues), various figures of merit can be used such as detection sensitivity

(i.e. fraction of positive cases correctly identified as positive), detection specificity

(i.e. fraction of negative cases correctly identified as negative) and accuracy (i.e.

fraction of cases identified correctly, whether positive or negative). Another way to
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assess the diagnostic performance of a method is the receiver operating characteristic

(ROC) curve.

A ROC curve illustrates the trade-off between the detection sensitivity and one

minus the detection specificity as a function of various decision thresholds. A ROC

study is performed using a set of images usually with lesion (i.e. positive image) or

without lesion (i.e. negative image). The images are given to an observer who is asked

to indicate the confidence level of the presence or not presence of a lesion (e.g. five

levels of confidence). Using the confidence levels some parameters can be calculated

such as the true positive rate (TPR) which is the fraction of positive images correctly

identified as positive by the observer (i.e. detection sensitivity). Similarly, the false

positive rate (FPR) is the fraction of negative images incorrectly identified as positive

by the observer. Based on these two parameters the true negative rate (TNR) can be

calculated which equals one minus the FPR and is known as detection specificity.

The ROC curve then is generated by plotting TPR versus FPR for various thresholds

(i.e. degrees of confidence) as illustrated in figure 2.10. The ROC curve lies above or

on the ascending 45-degree diagonal and as the distance of the curve increases from

the 45-degree line the better the detectability performance increases from no useful

information to the ideal.

One important characteristic of the ROC curve is that it not only describes the

ability of a method to correctly identify the positive images but also the false positives.

It must be noted, that in cases where multiple lesions are present in a single image

the traditional ROC curve can not be applied as the FPR can not be calculated. For

such cases an alternative method has been developed known as free-response operating

characteristic (Chakraborty 2000).

However, instead of just comparing the ROC curves of various methods in order
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Figure 2.10: Example of receiver operating characteristic (ROC) curves. A ROC curve is a plot of the
detection sensitivity versus one minus the detection specificity. The area under the ROC curve (AUC)
quantifies the detectability performance of a method. The best possible prediction would yield a point
here with (0,1) which represents 100% sensitivity (no false negatives) and 100% specificity (no false
positives).

to evaluate their detectability performance, a single value is usually derived from the

curves to characterise the detectability performance. The most common measurement

to define the diagnostic performance from a ROC curve is the integral of the curve,

the area under ROC curve (AUC), that describes the accuracy of correctly detecting

tumours. An ideal result would have maximum detection sensitivity and also perfect

separation of the distributions of the diseased and healthy cases with respect to the

range of possible test results and thus makes easier the determination of a diseased

from a healthy case. For a result of 100% detection sensitivity and 100% specificity

(i.e. perfect detectability performance) the AUC will equal to 1 which is the maximum

value while as the sensitivity and specificity are decreased the AUC is decreased. As

shown in figure 2.10 for the diagonal the AUC equals 0.5 and corresponds to a random

classification result (i.e. guessing) with no useful information. The diagonal line divides

the ROC space; points above the diagonal represent classification results that are better
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than random. The properties of the AUC have been analysed in the literature (Swets

and Pickett 1982; Metz 1986, 2000). In cases of clinical studies this method is limited

due to the lack of information about the real presence of the tumours.

2.1.5.3 Numerical observers

Tumour detection is traditionally achieved using human observers. However,

for evaluation of detectability many observers and images are required in order to

obtain statistically meaningful results and especially in cases where a large number

of parameters are to be evaluated this becomes an impractical process. To minimize or

replace the performance of various human observers, model numerical observers have

been proposed (Barrett et al. 1993).

Numerical observers are applied to images f and output a test statistic value

λ, over a given image which can be compared to a threshold; if the value is below

the threshold the given image is classified as background images or if it is above the

threshold it is classified as having signal. The most common numerical observers are the

linear observers which use linear discriminant functions to calculate the test statistic.

In general, for a linear numerical observer the test statistic, λ, for a given image f is

calculated by (Barrett and Myers 2003):

λ( f ) =W T · f (2.19)

W is the discriminant function known as the model observer template and T denotes

the matrix transpose operation.

Usually there are two classes of the input images, a signal absent image (i.e.

background), fB, and a signal present image (i.e. lesion present), fL. In the simple

case of the detection of a known signal superimposed on a known background the only

source of randomness in the data is the variation in the observer measurement. If the
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variation in the measurement is modelled as normally distributed (i.e. Gaussian) and

non-correlated (i.e. white) the discriminant that provides maximum separation of the

probability density functions of the data from the two classes is defined by their mean

difference. Therefore, the difference in the means of the data belonging to the two

classes is the optimal way to discriminate the two classes and can be seen as the ideal

observer template for this case known as non-prewhitening matched filter (NPWMF)

(Barrett et al. 1993). The test statistic λ for the NPWMF observer applied to an image

f is described by (Barrett and Myers 2003):

λN PW ( f ) =
�

< f2>−< f1>
�T · f (2.20)

where < fk > is the ensemble average over all the data belonging to class k (where

k=1,2). For a binary classification task where there are two classes of images, k equal

to 1 corresponds to the signal absent image fB and k equal to 2 corresponds to the

signal present image fL. The angular brackets denote an average.

NPWMF is the ideal observer when the noise is normally distributed and white

(Barrett et al. 1993). However, as the human visual system does not have the same

visual response to excitations with different spatial or temporal frequencies it has been

suggested to incorporate in the NPWMF model observer information about the human

visual system properties such as the eye contrast sensitivity function (i.e. ability of

the eye to perceive a signal as a function of its frequency content) to increase its

performance (Burgess 1994).

Furthermore, NPWMF observer uses has no information about noise correlation in

the image such as any variations in the signal or the background. Due to this, it has

been found to yield high correlation with human for images containing uncorrelated

noise but if there is inherent randomness in the signal detection task, its performance

depends on the correlations in the pattern of the background and/or the signal in the
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image and may yield a poor performance level. In such cases the noise inherent in the

image must be decorrelated (i.e. data whitening). To do this, the image is filtered with

the inverse of the covariance matrix and the result is correlated with the difference of

the mean images, a process known as matched-filtering (Barrett and Myers 2003). This

observer is known as prewhitening matched filter (PWMF) due to the data whitening

before the matched filter operation. Under the assumption that the covariance matrix

is the same for both classes of images the prewhitening operation is performed by

multiplying each with the square root of the inverse of the covariance matrix and the

test statistic for the PWMF, λPW M F , is given as follows:

λPW M F ( f ) =
�


fB
�

−



fL
��T ·K−1/2 ·K−1/2 · f =

�

< fB >−< fL >
�T ·K−1 · f (2.21)

where K is the covariance matrix. For white noise only the diagonal elements of the

covariance matrix of the background have a non zero value. Therefore, under the

assumption of equal diagonal terms the covariance is equal to the identity matrix and

the PWMF becomes the NPWMF observer.

However, both NPWMF and PWMF observers are performed under the assumption

of a known signal superimposed on a known background task so that the only

randomness in the task is the measurement noise. In more complex situations in

addition to the measurement noise, the data may also be random because of the

randomness of the objects being imaged and the covariance matrices of the data from

the two classes can no longer be assumed as identical. In cases where the signal or

background are random or even the noise is not Gaussian the test statistic can be

constrained from the outset to be linear and this is known as the Hotelling observer

(Barrett et al. 1993). The Hotelling observer requires estimation of two scatter matrices,

the interclass (S1) and intraclass (S2). The interclass scatter matrix S1 measures the
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distance between the means of the two classes and is given by:

S1= P1P2
�


f2
�

−



f1
���


f2
�

−



f1
��T (2.22)

where P1 and P2 is the probability of occurrence of class 1 and 2 respectively.

The intraclass scatter matrix S2 is the average covariance matrix across all the data

from the two classes and is given by:

S2=
2
∑

K=1

PkKk =
2
∑

K=1

Pk

¬�

�

f−< fk >
��

f−< fk >
�T�¶ (2.23)

where Kk is the ensemble covariance matrix of the data for the class k (where k=1,2).

Based on the scatter matrices a measure of the separability of the two classes,

called the Hotelling trace J , is defined as (Smith and Barrett 1986; Barrett et al. 1993):

J = t r(S−1
2 S1) (2.24)

where t r denotes the trace of the matrix (i.e. sum of the diagonal elements of the

matrix).

The Hotelling observer can be considered as the linear observer that use the

scatter matrices and optimizes the Hotelling trace J in order to achieve maximum

discrimination performance (Barrett et al. 1993). For a binary classification problem

where there are two classes of images the optimal linear discriminant for the Hotelling

observer is:

λHO( f ) =
�


f2
�

−



f1
��T S−1

2 g (2.25)

However, to obtain a stable statistical definition of the signal and the background

a large amount of images is required. In addition, a number of studies have shown that

the Hotelling observer has higher performance than the human observers as it does not



Background and basic principles 82

take into account any information about the human visual system (Barrett and Myers

2003). To overcome these issues the Hotelling observer is constrained to a number of

frequency selective channels and is known as channelized Hotelling observer (CHO)

(Myers and Barrett 1987; Gifford et al. 2000; Gallas and Barrett 2003).

Firstly, the human eye is sensitive only to the total power in a series of frequency

channels and not to individual frequencies. Therefore, the entire frequency content of

an image within a given frequency channel is considered as a single value by the human

eye and channels can be added to act as frequency selective filters in a similar way with

the human visual system.

The second advantage of adding channels is that the number of elements of the

covariance matrix as seen through the channels is reduced to a limited set of channels;

if an image with N number of voxels is processed through M number of channels the

image vector consisted of N elements is reduced to a feature vector consisted of M

elements (i.e. each feature is the output of a frequency channel). As a result the

Hotelling observer methodology is applied to the M element feature vector instead of

the N element image vector and the estimation of the first and second order statistical

information is used, as estimating the statistics of the whole image would not be

possible. Therefore, the test statistic for the CHO, λCHO( f ), is given by:

λCHO( f ) =
�


U f2
�

−



U f1
��T S−1

2 U f =
�


r2
�

−



r1
��T K−1

U r (2.26)

where the channel space is defined by a matrix U and rk=U fk is the mean for the data

f of class k after transformation through the channels. Under the assumption that the

two classes have the same probability of occurrence, (P1 = P2 = 50%) the KU is matrix

averaged from the covariance matrices for the two classes derived after transformation

through the channels.
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The prewhitening operation using the KU matrix aims to decorrelate the noise

inherent between the channel responses and not the noise between the image elements

(i.e. voxels) as in the case of Hotelling observer. CHO has proven to be good predictor

of human visual performance in clinically relevant visual tasks such as the detection

of lesions in images with correlated noise such as PET (Kadrmas et al. 2009; Lartizien

et al. 2004; Shidahara et al. 2006; Nuyts et al. 2009).

2.1.6 Standard data corrections for quantification

The measured data are affected by a number of factors, including physical factors

such as photon attenuation and scatter of the detected events as well as scanner

geometric effects and detector efficiency variations. These factors may cause inaccurate

quantification of tracer uptake, increased image noise and artefacts and thus they need

to be accounted for before or during the image reconstruction process.

When an annihilation photon interacts with matter it changes direction and loses

energy, a process known as Compton scatter and it may be absorbed within the body

(i.e. photon attenuation) or detected by a detector resulting in an inaccurate definition

of the annihilation event. Scatter results in diffuse background counts in reconstructed

images, reducing contrast and distorting the relationship between image intensity and

activity concentration.

Various methods for scatter correction have been proposed, such as: energy-

based techniques; convolution or deconvolution; and simulation-based (Zaidi and Koral

2004). Energy-based methods use dual (Grootoonk et al. 1996; Adam et al. 2000),

triple (Shao et al. 1994) or multiple (Bentourkia et al. 1993) energy windows to

reject the detection of some scattered coincidences based on the energy difference

between scattered and unscattered events. However, some unscattered photons deposit
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only a portion of their energy in the detectors and therefore total discrimination of

the scattered and unscattered events based on their energy is not feasible. Another

approach for scatter correction are the convolution (Bailey and Meikle 1994) or

deconvolution (Floyd et al. 1985) methods. These methods assume that the scatter

distribution is slowly spatially varying and use a scatter kernel to estimate the

distribution of scatter from the photopeak measured projections via convolution-

subtraction or deconvolution. This method is limited because the parametrisation of

the scatter distribution is difficult especially for 3D acquisition.

Finally, simulation-based scatter correction methods model the scatter distribution

by using emission and attenuation data with a combination of the physics of photon

interactions and and detection process. This method has been applied based on Monte

Carlo simulation which provides a model of the whole scatter distribution (Holdsworth

et al. 2002; Guérin and El Fakhri 2008) or on single scatter simulation (SSS) (Watson

et al. 1996; Watson 2000; Accorsi et al. 2004) which models only the single scatter

distribution. For the SSS multiple scatter coincidences are modelled by appropriate

scaling. The most common way is tail-scaling that fit the tails of the scatter distribution

to the tails of the measured data (i.e. measured coincidences outside the patient)

(Watson 2000). The tails of the measured data may consist of scattered events

originating from the patient but also from outside the FOV or other factors and therefore

scaling may also compensate for these factors which might not be otherwise simulated.

However, tail-scaling may become unstable in cases where the tail region is very small

(e.g. large patients). To overcome this disadvantage Thielemans et al. (2007) proposed

to use all measured data to calculate the scale factors (i.e. total-scaled) providing a

potentially more accurate scatter estimation procedure. Nevertheless, there are cases

where multiple scatter broadens the scatter distribution and thus it is wider than the
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distribution of single scattered events. This broader distribution of multiple scatter may

lead to a mismatch between single and total scatter distribution. Thus, scaling of the

single scatter estimation might not be an accurate approximation of the total scatter

distribution, and simulation of double scatter events might be necessary (Tsoumpas

et al. 2005; Qian et al. 2010).

Photons are attenuated while passing through the human body mainly due to

Compton scatter but also due to photoelectric effect which is very unlikely at 511

keV photon energies (Bailey et al. 2005). The photon attenuation depends on the

distance that photons have to travel through an attenuating medium to reach the

detectors, the energy of the photon and the density of the medium. The annihilation

photons usually have to travel different distances inside the human body and thus they

are attenuated to a different degree (Bailey et al. 2005). The extent of attenuation

is quantified mathematically by a coefficient providing a measure of the photon

attenuation probability per unit length of the attenuating medium.

Attenuation correction factors can be determined for every LOR so that the

detection probability along a given LOR is not dependent on the point of the source

along that line but only on the total path length that is followed by both photons (van

Velden et al. 2008). Due to this, the spatial distribution of the attenuation coefficients

in the FOV of the scanner (i.e. attenuation map) can be derived by the use of an

additional external radionuclide transmission scanning (e.g. 153Gd or 68Ge), X-rays or

CT scanning. The attenuation coefficients are energy dependent and can be directly

estimated for a 511 keV energy source or can be derived using appropriate scaling. In

PET/CT which is currently the gold standard for PET studies and has emerged to replace

the PET as a stand alone modality, attenuation correction can be performed using CT

data (Kinahan et al. 1998; Burger et al. 2002; Bai et al. 2003). For CT, the energy of the
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photons is much lower than 511 keV , usually around 50 to 90 keV . The attenuation

map for PET is therefore derived by converting from the CT image the Hounsfield units

which are measured for x-ray energies to suitable attenuation coefficients values for

511 keV photons by applying appropriate conversion functions for each tissue (Kinahan

et al. 2003).

Attenuation correction can be performed either prior to reconstruction by

multiplying the projection data with the appropriate correction factors, after

reconstruction in the image space (Chang 1978) or in the step of reconstruction by

computing weights from the attenuation correction factors map for each projection bin,

and using them as multiplicative terms for each bin (Michel et al. 1998).

The fraction of prompt events due to random coincidences is a function of the

positron emissions per second. As with scatter events, random events may decrease

the reconstructed image contrast and cause uncertainties in quantification. Random

events are usually estimated using a delayed or a shifted coincidence timing window

(Meikle and Badawi 2005). The estimated random events can then either be subtracted

from the measured events before reconstruction or can be accounted for within

reconstruction as a background term along with other corrections. Another way to

estimate the random coincidences is by using the rate of detected single events for a

given detector pair. Random coincidences can be reduced by reducing the size of the

coincidence timing window but at the expense of losing true coincidences.

The raw data can not be reconstructed assuming that all coincidence events are

detected with the same scanner sensitivity. In practice there are variations mainly

caused by three factors: differences in detector efficiencies, physical variations in the

detector crystal and variation in the photomultiplier gain. These variations must be

corrected otherwise they will lead to artefacts and inaccuracies in the quantification of



Background and basic principles 87

the reconstructed images. Such correction, known as normalization correction, ensures

that all LORs joining detectors in coincidence have the same effective sensitivity.

Correction factors are calculated for each LOR (i.e. normalisation coefficients)

with two main approaches. The first and most common method, known as direct

normalisation, determines the normalisation coefficients by performing a high-statistics

scan where every possible LOR is illuminated by the same source and therefore all

LORs are exposed to the same number of annihilation events (Badawi et al. 1998).

This method typically uses a rotating line positron source in order to measure the

sensitivity of each LOR within the FOV. Then, the normalisation coefficients are assumed

to be proportional to the inverse of the measured counts for each LOR. The second

way to calculate these coefficients, known as component-based normalisation (Casey

et al. 1995) is to model the coefficients into a series of individual components and

compensate for each of them separately. These components are typically calculated

separately by performing one scan with a rotating line source, which provides the

geometric characteristics and a second scan with a cylindrical source, which provides

the crystal efficiencies. In addition, these components usually include pair-wise detector

efficiencies, crystal interference, axial and radial geometric factors, as well as dead-time

and count-rate dependencies (Badawi and Marsden 1999; Rodriguez et al. 2007).

As it was described before compared to any corrections applied prior to

reconstruction, modelling the corrections within the reconstruction preserves Poisson

statistics. Although there are a number of other degradation factors such as the PVE

only the aforementioned are routinely dealt with in clinical practice.
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2.2 Magnetic resonance imaging

Magnetic resonance imaging (MRI) is a non-invasive imaging modality that produces

anatomical and functional images of the human body by measuring the magnetic

properties of hydrogen nuclei inside the body. Most currently available MRI scanners

are constructed from a strong magnet (1.5 to 3 Tesla magnetic field for most

conventional scanners) surrounding the patient, radiofrequency coils and gradient

coils. An example of a typical MRI scanner is illustrated in figure 2.11.

Main magnet 
y gradient coil 

Radiofrequency coils z gradient coil 

x gradient coil 

Figure 2.11: A typical MRI scanner is constructed from a strong magnet surrounding the patient,
radiofrequency coils and gradient coils.

MRI is based on the detection of signal derived from the nuclear magnetic

resonance (NMR) property of nuclei of atoms, in particular hydrogen, within a tissue

in the body. Hydrogen is one of the main nuclei in a human body with the highest

abundance occurring in water followed by fat. The hydrogen nucleus has one proton
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with spin equal to 1/2 resulting in a small magnetic moment‡.

Typically, the hydrogen protons in a tissue are oriented in random directions

resulting in no net magnetization at the macroscopic level. By subjecting the hydrogen

nuclei to a strong external magnetic field the protons will align either parallel (i.e. spin

up) or anti-parallel (i.e. spin down) to the direction of the external magnetic field and

precess with a frequency proportional to the frequency of the external magnetic field

known as the Larmor frequency ω0 given by the following equation:

ω0= γB0 (2.27)

where γ is the gyromagnetic ratio and B0 is the strength of the external magnetic field.

This procedure at equilibrium creates a net magnetization M0 in the direction of the

external magnetic field.

To change the spin state of the protons energy must be applied at the Larmor

frequency. Through the application of a tuned radio frequency (RF) field equal to the

Larmor frequency of the nuclei§ and perpendicular to the external magnetic field, the

proton spins will precess in a transverse plane to the external magnetic field and will

be aligned such that they precess in phase. The RF field is applied using appropriate

coils and forces the protons to spin at a particular frequency and direction causing

a deflection of the net magnetization. Figure 2.12 shows the effect of applying the

RF pulse on the equilibrium net magnetisation. The net magnetisation M0 is pushed

towards the x-y plane (i.e. transverse plane) while it precesses around the z-axis at

the Larmor frequency. As the RF pulse is turned off, due to interactions with the

protons themselves and the protons with the surrounding molecules (i.e. lattice) the

‡ In the nucleus of an atom, protons spin on their axis and as a result a small magnetic field is produced.
For a nucleus with an even number of protons the magnetic fields tend to cancel each other. On the other
hand, nucleus with an odd number of protons, such as the hydrogen which has one proton, has a net
magnetic moment.
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spins slowly realign back from the transverse magnetization to their original orientation

(i.e. direction of the applied external magnetic field), a process known as relaxation.

During relaxation the protons lose the energy absorbed from the RF pulses, emit radio

frequency radiation, and generate the characteristic free induction decay (FID) curve.

Relaxation is due to two processes (McRobbie et al. 2006). The excited protons

due to interactions with the surrounding molecules (i.e. lattice) return to the initial

magnetization, before the RF field, parallel to the applied external magnetic field. The

rate of this process is described with an exponential function with a characteristic time

constant T1 known as longitudinal relaxation time. Furthermore, the other relaxation

process is due to interactions with the protons themselves causing a loss of coherent

precession of protons in the transverse plane. The rate of this process is described with

an exponential function with a characteristic time constant T2 known as transverse

relaxation time. The T1 and T2 relaxation time constants depend on environmental

factors such as the degree of binding of the spinning protons within the neighbouring

molecules and they also characterise inherent properties of tissues and are unique to

every tissue at a given strength of magnetic field and therefore are responsible for

the contrast between different tissue types in MRI. By changing the RF pulses the

differences of the T1 and T2 relaxation times can be used to create contrast among

different tissues by creating T1-weighted or T2-weighted images during which the T1

or T2 relaxation time respectively influences more the image contrast.

To create an image you need to know the origin of the signal within the patient. By

exciting all the protons at the same time, the emitted signal would have no information

about the position of the hydrogen nuclei in space as the Larmor frequency depends

on the magnitude of the external main field. To achieve spatial localization of the

§ For a scanner of 1.5 to 3 Tesla external magnetic field the Larmor frequency falls within the
radiofrequency band of the electromagnetic spectrum.
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Figure 2.12: Effect of RF pulse on the net magnetization (a) The spin vector precesses in the direction of
the main static magnetic field B0 (b) after applying RF pulse the spin vector precesses about the z-axis in
the direction of the B1 field generated from the RF pulse until returning back to its equilibrium state.

signal, field gradients are used to create a spatial dependency of the Larmor frequency

a process known as spatial encoding. Three orthogonal gradient coils are used able to

generate magnetic fields linearly variable in magnitude in one of the three axis in the

coordinate system.

The first step of the spatial encoding is the slice selection. Following the RF pulse

if a spatially varying gradient is applied, the excited protons will resonate at different

frequencies which depend on their location to the gradient field. Using gradient fields

that cause the Larmor frequency to vary along the direction in which the gradient is

applied, spins within the slice will precess with a particular frequency and a cross-

section of tissue (i.e. slice) can be selected.

The central frequency of the RF pulse determines the position of the slice along the

direction of the gradient and the bandwidth of the RF pulse determines the thickness

of the slice. Therefore, by adjusting the direction and frequency bandwidth of the

RF pulse to correspond to the Larmor frequency range within the desired slice the RF

pulse can only excite the slice with nuclei with Larmor frequency within the selected

frequency range. This gradient field is known as slice-selection gradient and although
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they can be applied in any direction of the scanner (i.e. transverse, coronal, sagittal

or oblique), they are usually applied in the transverse direction. The MRI images are

usually acquired as 2D slices along the direction of the chosen axis.

After slice selection, the spatial distribution of the protons within the particular

slice must be found for the other two axes. This is achieved using a frequency-encoding

and phase-encoding gradient to encode the other two axes by frequency and phase

respectively. The frequency-encoding and the phase-encoding gradient coils are then

used to reconstruct the selected 2D slice. For a transverse slice acquisition usually the

x direction is the frequency encoding and the y direction the phase encoding.

A phase encoding gradient is applied in a direction perpendicular to the slice

selective gradient. Precessional frequency of the protons is increased or decreased

depending on their position relative to the gradient. This introduces a spatially

dependent phase shift between nuclei in different regions in the FOV that is preserved

once the gradient is removed. At this moment, all spins within the slice return to their

original precession frequency, caused by the static magnetic field. Nevertheless, spins

which precess faster during the time that the gradient was on rotated farther than the

spins which precess slower, thus they have different phases of rotation and the phase

encoding gradient divides the slice into columns. The next step is to apply a frequency

encoding gradient at the time that the RF signal is received by the patient. When the

gradient is switched on similar to the slice selective gradient the precessional frequency

of the spins along the axis of the gradient is altered linearly. The frequency encoding

gradient changes the precessional frequencies for each row of the slice and when the

gradient is turned off some spins have different phases, thus the slice is divided into

rows. This gradient is also called readout because it is applied during the collection of

the data (i.e. readout phase).
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During image acquisition this sequence of pulses is repeated, increasing the

amplitude of the phase encoding gradient each time to collect all data needed to

produce an image. Having introduced spatially varying phase and frequency shifts we

can recover this information from the signal emitted as the spins decay using Fourier

techniques.

The MRI signals encoded in the three directions are reconstructed to give an image

of which the intensity describes the relaxation properties in the subject tissue. MRI

compared with PET provides anatomical soft tissue contrast (e.g. tissue specific contrast

agents) and does not use ionizing radiation. MRI is particularly well suited for imaging

soft tissue which has a high concentration of water molecules. On the other hand,

for cortical bone the T2 is as short as it takes for the emitted signal to decay during

acquisition and therefore it is very difficult to measure (Du et al. 2007). Due to this a

special acquisition has been developed known as ultra-short echo time (UTE).

MRI is an anatomical imaging modality which, due to its high resolution and short

acquisition times, has now been established in oncology, where it is especially useful

for the detection of metastases and haematologic malignancies in the lung and liver.

2.3 Hybrid PET/MRI imaging

PET is a molecular imaging modality but with poor visualization of anatomical

information. In current clinical practice it is often required to combine the functional

information of PET with anatomical information such as CT or MRI to obtain

localization of the increased radioactivity distribution.

Several studies have shown that the combination of functional and anatomical

information from PET and CT respectively (Beyer et al. 2000) provides more

information for clinicians for more accurate diagnosis and management of cancer
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compared with CT or PET alone (Antoch et al. 2003; Kim et al. 2005). PET combined

with CT systems are now used routinely clinically in oncology for lung and liver cancer.

However, for some applications, the performance of PET/CT is limited by the low soft-

tissue contrast of CT.

On the other hand, MRI is an anatomical imaging modality with significantly less

sensitivity for the measurement of functional and molecular information than PET.

Compared with CT, MRI is advantageous in terms of soft tissue contrast with no extra

patient radiation dose. A typical FDG PET scan using 370 MBq of injected tracer will

result in a patient radiation dose of approximately 7 mSv whereas a CT acquisition will

add an extra whole body dose of less than 3 mSv according to the current low-dose CT

scanners (Xia et al. 2012). The fusion of PET and MRI has been of great interest in the

literature (Pichler et al. 2010; Ratib and Beyer 2011). Studies have shown advantages

of combining PET/MRI over PET/CT on lesion delineation and characterization for

hepatic (Donati et al. 2010) and liver cancer (Schreiter et al. 2012). A more recent study

also showed that PET/MRI provided better diagnosis for liver lesions than PET/CT

(Beiderwellen et al. 2013).

Simultaneous PET/MRI acquisition allows spatial and temporal correlation

ensuring that the patient is being imaged in the same physiological state during

both PET and MRI. The spatial correlation of PET/MRI may be advantageous for

anatomically related tasks. For example, PET recognizes areas of abnormal metabolic

behaviour (e.g. cancer) while the addition of MRI anatomical information provides the

site of the malignancy. Hence, in practice, MRI can identify the location and size of a

tumour with great precision and PET can define the metabolic activity of the tumour.

For example, the size of a tumour may not alter after therapy and MRI will identify

no change. However, PET may show significant reduction in metabolic activity in the
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location of the tumour, which can be associated with a positive response to therapy.

Beyond the benefit on anatomical related tasks such as tumour location and size,

the spatial and temporal correlation of PET with MRI allows the use of anatomical

information of MRI images for other tasks such as motion correction. The accurate

measurement of motion is one of the motivations for combining MRI with PET. As it is

described later, motion correction methods usually require prior knowledge of motion,

the accuracy of which affects the accuracy of motion correction. Motion information

for PET images has been previously extracted using PET alone or from CT. However,

PET images are noisy thus it is difficult to derive motion information from them, while

CT gated data have better quality but result in an additional radiation dose. PET and

CT data are not acquired simultaneously, so CT motion information may differ from

motion occurring during PET. On the other hand, MRI can in principle offer continuous

motion monitoring with much better temporal and spatial resolution than PET with

no additional dose. Therefore, it is expected that simultaneous PET/MRI acquisition

may be able to provide the necessary information to correct for the motion in PET

(Tsoumpas et al. 2010; Dikaios et al. 2012b). Finally, PET/MRI offers the opportunity

to perform other studies using MRI sequences such as diffusion and perfusion imaging,

MRI spectroscopy or functional MRI.

The integration of MRI with PET started in the late 1990’s (Slates et al. 1999)

and was suggested before PET/CT became commercially available (Pichler et al. 2010;

Ratib and Beyer 2011). PET and MRI can be simultaneous or sequential (Zaidi and

Del Guerra 2011b). The first human PET insert was introduced by Siemens for brain

for 3 Tesla (Schlemmer et al. 2008) and 7 Tesla (Judenhofer et al. 2007). Later,

Philips installed the first whole-body Ingenuity TF PET/MR, with sequential PET and

MRI acquisition (Zaidi et al. 2011a). In the same year, Siemens released the first whole-
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body PET/MRI system with capabilities of simultaneous PET and MRI acquisitions, the

Biograph mMR (Delso et al. 2011). The role of PET/MRI, particularly in oncology is

promising. While PET/CT is now used routinely clinically in oncology as the reference

method for whole body staging and management of cancer, PET/MRI may become a

standard hybrid imaging modality in the future. PET/MRI is of emerging interest for

abdominal imaging (Schwenzer et al. 2012) and whole-body oncology (Drzezga et al.

2012) but also for several clinical applications such as tumour neuroimaging (Boss et al.

2010), prostate cancer (Bouchelouche et al. 2010), cardiac metabolism (Büscher et al.

2010) and cardiac function (Nekolla et al. 2011).

2.4 Respiratory motion blurring in PET

In typical clinical settings a whole body PET 18F-FDG scan usually requires 3-5 minutes

per bed position (5-8 bed positions for a whole body acquisition) to accumulate a

sufficient amount of counts and therefore patient motion is inevitable. During PET

acquisition patient motion may constitute accidental voluntary motion such as head

movements and unavoidable motion such as respiratory and cardiac motion. The

patient voluntary motion during the acquisition can be generally controlled by the

patient. Cardiac contraction affects mainly the heart and is a major concern of cardiac

imaging applications rather than for oncologic imaging as is the focus of this project.

On the other hand, during respiration not only the lungs oscillate between contraction

and relaxation but also multiple other organs are affected such as the liver and the

heart since they are pushed and pulled by the diaphragm and other inter-connected

tissues. However, the diaphragm as well as the thoracic and abdominal organs have

displacements to a variable degree in different directions. In this thesis the subject of

interest is the respiratory motion and other causes of motion will not be investigated.
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For normal breathing, the amplitude of diaphragm motion due to respiration is

about 15 to 20 mm in the vertical direction (Schwarz and Leach 2000) and it may be

more for deep breathing. A number of investigations reported that the displacement

caused by respiratory motion is usually less than 10 mm for lung lesions but it may

be more than 20 mm for lung and liver lesions close to the diaphragm (Seppenwoolde

et al. 2002; Erdi et al. 2004). Motion of that range was also reported by a review of

respiratory motion provided by Langen and Jones (2001). Understanding the behaviour

of tumour motion under breathing is important for addressing the motion effect. Based

on studies of twenty patients, Seppenwoolde et al. (2002) measured the displacement

of tumours in lungs due to motion and showed that although motion mainly affects the

axial direction, motion has also been reported in lateral and anteroposterior as well.

Considering that many of the conventional PET scanners have a spatial resolution

of approximately 5 to 6 mm FWHM, motion is larger than the resolution and therefore

is expected to affect image quality. Respiratory motion induces blurring and distortions

in the images limiting the image spatial resolution (Xu et al. 2011; Nehmeh et al. 2004;

Visvikis et al. 2006). Moreover with the advances in resolution of future scanners

(Schäfers 2008a) the motion effect is expected to be even more substantial (Daou

2008) and the development of accurate motion correction methods is now a major

task in medical imaging research. For example, the intrinsic resolution of the scanners

offered by Siemens mCT with TOF capabilities and ultra high-definition (HD) PET†,

allows a uniform spatial resolution throughout the transverse FOV of 2 mm FWHM

(Panin et al. 2006).

† HD PET scanners incorporate the detector PSF into the reconstruction to improve the accuracy of
the detector to determine the point of intersection of the incoming photon. Incoming photons might
penetrate several crystals before they interact with one of them causing non-uniform and reduced spatial
resolution.
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2.4.1 Effect of respiratory motion blurring

Motion causes uncertain quantification and reduces tumour detectability through

blurring. Several studies using simulations, phantom or patient data reported

underestimation of the radioactivity distribution measured in the images affected by

respiratory motion. The magnitude of the effect of respiratory motion blurring is

inversely related to the size of the tumour. In particular, Boucher et al. (2004) used

an elliptical phantom to simulate lung tissue and motors to apply a simple periodic

motion only in the vertical direction. The findings showed that for a displacement of

20 mm a decrease of the radioactivity distribution equal 21% for a 19.4 ml sphere

diameter and 41% for a 1.2 ml sphere diameter. Using a similar methodology, Pevsner

et al. (2005) for a displacement of 20 mm showed also underestimation of the tracer

uptake concentration by as much as 75% depending on the sphere diameter. Using

simulations of a dynamic digital anthropomorphic (NCAT) phantom, Visvikis et al.

(2004) investigated the effect of motion based on a realistic breathing pattern derived

from real CT scans but only using one respiratory cycle with phase based gating (10

frames of 0.5 s each). Similarly with previous studies the maximum displacement of

the diaphragm simulated was 20 mm and a contrast loss of up to 80% depending on

lesion size and location was reported.

However, all these studies investigated periodic motion or a simple respiratory

cycle. In real studies with more complex breathing patterns, the extent of the impact

of motion blurring on quantification accuracy may be different. In addition, although

respiratory motion mainly affects the vertical direction, motion has also been reported

in lateral and anteroposterior directions as well (Seppenwoolde et al. 2002). Using a

simple oscillatory motion to drive the phantom movement varies from realistic patient

respiratory motion patterns and also does not simulate the variation in real patient
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respiratory motion patterns. Breathing irregularities are expected to affect the impact

of motion. Consequently, the amplitude of the effect of motion blurring is expected to

be influenced by the lesion position and type but also on physiological issues related

with the patient specific breathing patterns.

These parameters were characterised by Liu et al. (2009) who applied real patient

respiratory traces from 5 min acquisition to a digital anthropomorphic phantom to

simulate more realistically the effect of motion. The findings showed larger effect of

respiratory motion as the size of the tumour was decreased and as the motion amplitude

was increased. Furthermore, in this study 1295 real patient respiratory traces were

grouped in three breathing patterns. The results showed that patients who spent more

time in the expiration position are less affected by respiratory motion than patients who

have more irregular breathing pattern. In particular, the results reported for lesions of

10 mm diameter the mean lesion maximum SUV was 28% underestimated based on 11

mm diaphragm motion for breathing characterised by large quiescent period fractions.

Apart from phantom studies, the effect of motion blurring on quantification

accuracy was also reported on studies with patient data. Erdi et al. (2004) analysed

eight lung lesions from five patients and reported up to 30% reduction of the lesion SUV

due to respiratory motion in the PET images. The findings showed that the extent of

these effects depend on the tumour size and the pattern of breathing with the amplitude

of the displacement.

Despite the large amount of studies based on simulations there is limited number of

studies on human data. One limitation of the studies using patient data is that it is not

possible to obtain the true tracer uptake value of a lesion which is theoretically derived

from a patient who does not breathe. For this reason most researchers use images

obtained during end-inspiration and end-expiration as representative of a motion free
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image (Erdi et al. 2004). Another way is to use a deep inspiration breath hold

acquisition during which image data are acquired at a single breathing position and

compared to the normal breathing acquisition. This may reduce the respiratory blurring

and can be used as a gold standard for the motion free image but these images have

high noise (Meirelles et al. 2007).

The inaccurate underestimation of the tumour tracer uptake measurements due to

respiratory motion during acquisition results in decreased contrast and the ability to

detect tumours may be affected.

In typical clinical acquisitions, several studies demonstrated that the smallest

volume of lesions detectable is affected by underestimation of the true tracer uptake

of small lesions that may be attributed partially to the limited resolution of the scanner.

Khalaf et al. (2008) in a study of 173 patients evaluated pulmonary lesions based on the

SUV and found underestimation of the SUV for the small tumours (less than 10 mm).

It has been further reported that as a result of not recovering the true tracer uptake of

the tumour due to the limited resolution, the contrast is reduced and consequently the

ability of PET to detect small or low tracer uptake lesions is deteriorated especially for

small lesions. In a study with patient data Lowe et al. (1998) reported the correlation

of PET detectability performance with the tumour size by showing up to 80% lower

detection sensitivity for the lung lesions smaller than 15 mm than the 92% reported

for larger lesions. Other studies reported also low performance of PET to recover small

lesions (i.e. less than twice the scanner resolution) in phantom (Raylman et al. 1999;

Farquhar et al. 1999) and real patient studies (Higashi et al. 2001; Nomori et al. 2004).

Considering that the recovery of small lesions is already a challenging task in

PET imaging deterioration of the spatial resolution and underestimation of the tumour

tracer uptake measurements due to the respiratory motion blurring will impede the
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ability to detect abnormalities. Although there have been several studies focusing

on the impact of respiratory motion on quantitative accuracy, only a limited number

of them demonstrated the impact of motion blurring on the detectability of lesions.

One reason for the lack of detectability studies is the lack of gold standard in patient

studies because it is not possible for the patients to hold their breath during acquisition.

Another reason is that it is very difficult to perform sufficient number of patient studies

to ensure accurate statistical power.

Despite the blurring in the reconstructed images, respiratory motion may affect

the spatial correlation of a PET image with images from other imaging modalities.

For example, during PET attenuation correction using transmission data such as CT

if the attenuation map does not align with the PET data due to different breathing

conditions respiratory motion may lead to distortions in the image (Goerres et al.

2002, 2003; Nehmeh et al. 2002; Beyer et al. 2003, 2004; Osman et al. 2003). In

PET a normal breathing protocol is applied but the lengthy acquisition results in data

that are an average over multiple respiratory cycles. In clinical practice, attenuation

data are usually acquired before or after PET and this may cause erroneous spatial

correlation between them. In particular although a normal breathing protocol is also

applied for CT, the high speed result in a snapshot of one respiratory position without

containing motion blurring and may only match one arbitrary bit of PET. Also any

artefacts in the transmission image caused by motion will be introduced to PET images

(Sarikaya et al. 2003). This artefact must be corrected in order to avoid a false positive

result. Motion induced artefacts during attenuation correction may result in inaccurate

tumour localization and estimation of tracer uptake affecting mainly the region near the

dome of the liver and the myocardium (Pan et al. 2005; Schäfers and Stegger 2008b;

Townsend 2008).
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2.5 Respiratory motion compensation in PET

Respiratory motion results in blurring and artefacts in PET images, adversely impacting

the usage of PET images for cancer diagnosis and staging as well as radiation therapy

planning which are dependent on the tracer uptake, size and position of the lesion. The

motion artefacts are expected to be particularly severe for lesions near the boundary

between the lung and the liver. In addition to the location of the lesion, the extent of

motion artefacts is expected to be dependent on the tracer uptake and size. As described

earlier, the PET image quality may be characterised on how well the true tracer uptake

can be recovered and how well the lesions can be distinguished from normal tissues.

Based on these, motion blurring contributes to the clinical challenges of detecting small

tumours or detecting tumours with low uptake. Correction of motion will help for more

accurate image interpretation and clinical decision making.

2.5.1 Data respiratory gating

2.5.1.1 Extraction of respiratory signal

Various methods have been proposed to record respiratory traces either during

acquisition using external motion monitoring systems or after acquisition of the

acquired data. A direct method to measure respiratory motion is measuring the lung

volume during respiration using a spirometer. However, such equipment is not practical

and not well tolerated by the patients due to the long duration of a PET acquisition.

Due to this, alternative approaches to measure respiratory motion have been suggested

using other parameters such as the displacement of abdominal or chest wall. This can

be measured either using hardware methods or directly from the acquired data.

Hardware methods usually measure the respiratory signal with an external

surrogate which is usually the displacement of the abdominal wall or chest
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circumference such as the use of sensors that measure pressure differences (Klein et al.

1998; Guivarch et al. 2004) or the use of a video camera to track reflective markers

(Nehmeh et al. 2002; Dawood et al. 2007). Temperature sensitive devices have also

been proposed that determine the respiratory motion by measuring the airflow in

the lungs (Boucher et al. 2004). Of the large number of hardware-based methods

some are commercially available. Among them are the real-time position management

(RPM) and the AZ-733V. The RPM tracks the vertical motion of a box positioned in

the abdominal or chest region using an infrared video camera (Pan et al. 2004). The

RPM method has been used by several studies and proved to produce accurate and

reproducible measurement of the respiratory signal (Nehmeh et al. 2002). The AZ-

733V measures the pressure differences from the expansion of the thoracic cavity during

respiration using a pressure sensor that is placed into a belt that is fastened around

the abdominal or chest of the patient (Seppenwoolde et al. 2007). Hardware-based

methods apart from the additional equipment that require to be applied are based on

the approximation that the movement of the outside surface of the body represents the

actual lung movement.

An alternative method to determine the respiratory signal is by measuring it

from the actual acquired data. Data-driven methods usually measure displacement

of the image elements (e.g. pixels) in the reconstructed images. Some methods are

based on defining the displacement of an ROI in the dynamically reconstructed images

(Bundschuh et al. 2007). However, these methods require many images due to the

long duration of a PET acquisition making them not practical to be used clinically.

Other methods have used raw data before reconstruction to measure the displacement

of specific pixels by measuring their intensity variations (Schleyer et al. 2009, 2011).

Other methods measure the counts in the raw data (Büther et al. 2009) or using CT



Background and basic principles 104

together with PET raw data and apply principle component analysis (PCA) (Thielemans

et al. 2013).

2.5.1.2 Data gating approaches

Using all the above mentioned methods a respiratory signal is created which is

used to gate the acquisition. Gating divides the respiratory cycle into a number of

gates (i.e. period in which the anatomy is assumed to be in a similar spatial location)

according to the phase or amplitude of respiration and acquired data are stored for

each gate as illustrated in figure 2.13. In a PET gated acquisition the respiratory signal

is tracked over multiple cycles and the time information of each event is correlated with

the motion signal. The raw list-mode data are then binned into multiple sinograms

corresponding to the different gates of the tracked motion. Under the assumption that

the tracked signal correlates with the motion of all organs of a patient in a periodic

way for all respiratory cycles of the entire acquisition, a near motion-free image may be

reconstructed for each gate.

The phase-based technique divides every cycle between two points of the

maximum inspiration phase considering the time duration and neglecting the depth

of breathing. Thus two inspiration phases from different cycles that may have different

amplitudes, if they have the same time phase will be added together. This method

results in gates of the same duration ensuring similar counts among the gates. However,

studies have shown that the phase correlation of motion changes over time for the

same patient and therefore phase gating may not reflect the motion amplitude for all

respiratory cycles (Ozhasoglu and Murphy 2002).

On the other hand, the amplitude-based gating scheme splits the respiratory cycle

with respect to the amplitude of the signal and only phases with the same breathing

magnitude will be added together. As the total time for each gate amplitude can vary
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Figure 2.13: Illustration of the procedure followed for (a) phase and (b) amplitude based gating of a
respiratory signal. For this example in both cases the respiratory signal is divided in eight gates which
are represented by eight different grey shades numbered from one to eight.

this method may result in different number of counts. The advantage of this method has

been reported by Dawood et al. (2007) who showed that respiratory gating methods

based on amplitude result in less noisy data than methods based on phase. However,

under regular breathing, phase and amplitude based gating may perform similarly. On

the other hand, under variable breathing amplitude and period, the amplitude based

gating may outperform phase based gating (Dawood et al. 2007).

Based on the approximation that images at discrete phase or time bins within the

respiratory cycle are motion free, respiratory data gating is a common solution to reduce

motion blurring in PET images (Dawood et al. 2007; Nehmeh et al. 2002). Optimized

gated acquisition aims to achieve the best temporal resolution (i.e. accurate motion

detection) and least possible noise in the images. While the temporal resolution is
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improved with the number of gates the SNR of the each gated image is decreased since

they have a smaller proportion of the total measured data.

To optimize the temporal resolution (i.e. accurate motion detection) and noise

trade-off the optimal number of gates must be determined. Dawood et al. (2009)

proved that with respect to the accurate motion detection and the level of noise the

amplitude based gating allows the use of more gates compared to phase based gating

and showed that the optimal number of gates for time-based respiratory gating is six

whereas for amplitude-based it is eight. Although, this might be used as a general

indication of the optimal number of gates it must always be taken into account that the

number of gates is related with the count statistics and consequently with the scanner

sensitivity or patient.

The limitation of single gate reconstruction is that each gate contains only a

proportion of the measured data resulting in reconstructed images with lower signal-

to-noise ratio (SNR) than un-gated data that contain all measured data (Boucher et al.

2004). As a result, the advantages of minimizing motion are at the expense of reduced

statistics of each individual gate (Visvikis et al. 2004). Thus, a technique accounting for

motion effects which uses all measured data in order to improve the SNR is expected

to provide superior results.

Different motion correction methods have been proposed that make use of all the

gated measured data together with motion information in order to compensate for

motion but also to improve SNR. Respiratory motion correction is a difficult problem

due to the poor statistical quality of PET data and many approaches have previously

been investigated and are reviewed in Rahmim et al. (2007); Nehmeh and Erdi (2008);

Nehmeh (2013). Motion correction is divided into two parts. First of all motion is

estimated and then is corrected.
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2.5.2 Image registration

Image registration is the process of spatial alignment of two images in order to warp

the one image to the other such that a feature in the first image is at the same position

with a corresponding feature in the second image. Image registration is extensively

used in medical imaging of the same imaging modality (intramodality registration) or

from different imaging modalities (intermodality registration) (Hutton et al. 2002). An

overview of image registration and its steps is provided by Crum et al. (2004). In

general the image registration can be divided in the following components:

• Similarity: Calculation of how well the transformed image matches the target

image.

• Transformation: Determination of the transformation that relates the positions

of the corresponding features of the two images. The transformation controls the

elasticity of the deformations described by the number of parameters used to

describe the deformations (e.g. number of degrees of freedom) and the domain

applied (e.g. locally or globally).

• Optimization: Calculation of transformation parameters that maximize or

minimize (depending on the matching criterion) the similarity measure also

known as cost function in order to improve the alignment of the two images.

The transformation warps the source image to the target image according to the

deformation parameters. The transformation operator can be applied globally to the

whole image or locally to a specific region. The choice of the transformation operator

depends on the type of deformation. Several types of transformation operators exist in

the literature such as rigid with the more complex affine and non-linear transformations

having successively more degrees of freedom.
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Considering an orthogonal coordinate system (x,y,z), a rigid transformation allows

3D rotation and 3D translation resulting in 6 degrees of freedom. During this type

of motion no shape or size changes are allowed. The rigid motion due to the small

number of degrees of freedom used to parameterize the movement usually models

simple motion for example head motion. For brain imaging, the motion has been

successfully modelled as rigid in many studies (Bloomfield et al. 2003).

Affine transformation is an extension of rigid motion and allows twelve degrees

of freedom, the 3 rotational and 3 translational components of rigid with additional

3 scaling and 3 shears components. Although, for small deformations rigid or affine

transformation can be a simple way to approximate motion, the motion of human body

is complex (e.g. chest and abdomen motion due to respiration) and requires flexibility

in matching local image details (Crum et al. 2004). Non-linear transformations have

more degrees of freedom to describe the more complex movement.

Many algorithms have been suggested for non-linear image registration (Crum

et al. 2004). One method of non-linear transformation is based on firstly defining

the deformation of a given set of control points followed by interpolation of motion

fields between these points. In particular, for a given image voxel only the closest

control points influence its displacement, therefore the registration accuracy is highly

dependent on the selection of the control points. Various transformation methods

have been proposed with the ability to model local deformations such as the spline

transformations (i.e. piecewise polynomials). During spline-based transformations,

given a set of control points splines are applied to each control point in the image and

the image is interpolated such that the location of each point at the first image matches

the corresponding point at the second.
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Although applying local non-linear transformations has been shown to produce

accurate motion fields even for the complex motion of respiration, it is highly

computationally complex due to the large number of degrees of freedom. An alternative

and more efficient technique is a combination of local and global transformations such

as rigid and affine (Little et al. 1996; Commowick et al. 2008). However, the particular

approaches are based on predefined regions and are not very practical when registration

is subject dependent and these techniques must be performed for each image separately.

An alternative approach uses hierarchical multiple local registrations in which the

image is subdivided into rectangular blocks and each block has its local transformation.

To combine multiple local registrations in an adaptive hierarchical structure the whole

FOV is firstly selected to be registered and then is divided into multiple blocks using

the centre of each block as a splitting point Hierarchical local registrations have

been applied for local affine firstly in 2D (Likar and Pernus 2001) and extended to

3D (Andronache et al. 2008) transformations but without any consideration for the

underlying content of the image blocks. As a result areas with large residual motion

may be subdivided causing registration artefacts at the block edges.

Buerger et al. (2011) suggested multiple local affine registrations in an adaptive

hierarchical structure during which instead of subdividing the image into equal size

blocks, the image is divided in subblocks that correspond to areas of anatomy that

have similar motion and these subblocks are registered to the reference image. To

do this the splitting point is not the centre of each block but is adaptively selected

based on the underlying motion. By applying adaptive splitting of the image, regions

with similar motion may be considered as one block and therefore large deformations

are allowed to be processed in one block. Similar to the method proposed by Likar

and Pernus (2001) and Andronache et al. (2008) after splitting the image into blocks,
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interpolation is applied to determine an overall smooth deformation field that combines

all local affine transformations of the registered blocks to a global non-linear free-form

transformation and the procedure of blocks splitting, registration and interpolation is

repeated until final transformations are calculated. This technique was compared to

the local rigid and local affine approaches and was found more efficient and accurate

especially for large deformations and is applied for the purposes of this thesis‖ (Buerger

et al. 2011).

After defining the type of transformation, the similarities of the two images are

measured iteratively until an optimum transformation is determined that maximizes the

matching criterion of details between the two registered images. The most commonly

used similarity measures are the sum of squared differences (Crum et al. 2004), the

correlation coefficient and mutual information (Wells et al. 1996). Sum of squared

differences calculate voxel similarities from the voxel intensity values directly assuming

identical intensities. Similarly the correlation coefficient calculates the voxel similarities

directly from the voxel intensity values but assumes a linear relationship between the

intensities of the images. Both the sum of squared differences and the correlation

coefficient cost functions assume identical or linear relationship and therefore are

limited to intramodality registration. Mutual information determines the relationship

among the image histograms or feature space (i.e. statistical dependency between the

images) based on probabilities without assuming identical or linear relationship and

therefore it is applicable to intermodality registration.

Finally, when the transformation type and the cost function are chosen iterative

optimization calculates improved transformation parameters by usually maximizing

or minimizing (depending on the type of cost function) the similarities between the

‖ The registration algorithm is available at http://www.isd.kcl.ac.uk/internal/hyperimage.
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two images that are registered. Finding the optimum transformation parameters is

challenging in cases when there are a large number of degrees of freedom.

Image registration has been used in medical imaging for estimating organ

deformations. Images (e.g. PET, CT or MRI) acquired at different positions of

the motion cycle are spatially registered to the image at a reference position to

extract motion information. The problems encountered with estimating the motion

information from CT is that motion can be different between sequential CT and PET

acquisitions and there is extra patient radiation dose. This aspect could be handled by

measuring motion directly from PET, but PET data are noisy and in addition it would be

difficult to generalize this technique to any radiotracer. The development of whole-

body simultaneous PET-MRI might enable concurrent measurement of the internal

organ motion with MRI. Accurate measurement of motion is one of the motivations

to combine MRI with PET. In our study image registration is applied on dynamic MRI

data to derive motion fields in order to use them to firstly simulate concurrent PET

data and then correct them for respiratory motion. However, motion estimation using

registration of gated images is limited to the number of gates used. An alternative way

is to use a motion model and derive transformations in real-time (McClelland et al.

2013).

After estimating motion the next step to correct the gated measured data for this

motion. Motion correction approaches can be classified into three main groups.

1) event rebinning in which the LORs are realigned based on known motion

information

2) reconstruct-transform-average (RTA) in which the motion information is applied

to reconstructed gated images
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3) motion compensated image reconstruction (MCIR) in which the motion is

incorporated into the reconstruction algorithm

2.5.3 Event rebinning

One of the early approaches for motion correction involved incorporation of motion

information prior to reconstruction into the sinogram, by repositioning the LOR of each

event based on the known motion information to where they would have been detected

if there were no motion.

Motion compensation directly in the projection data space has been originally

suggested for correction of rigid motion such as brain imaging (Daube-Witherspoon

et al. 1990; Bloomfield et al. 2003) where the motion can be measured by motion-

tracking devices and list-mode data aligned based on the motion information. Later,

Livieratos et al. (2005) proposed to correct for respiratory motion of the heart using

rigid registration of respiratory gated PET images to align the LOR of each event to

the reference position in list-mode data. However, the heart in this study was isolated

to rigid motion. In real clinical acquisitions the heart has also non-linear motion due

to respiration but the choice of whether the heart motion can be modelled as rigid

or non-linear depends also on the acquisition parameters (e.g. scanner resolution).

Later on, this approach was further extended to be applied for respiratory motion

compensation, by modelling the motion as affine (Lamare et al. 2007a) and non-linear

(Detorie and Dahlbom 2007). Although these studies showed that affine or non-linear

transformation of the list-mode data can improve quantification accuracy for lesions

in the lungs, it does not significantly correct the respiratory effects for organs below

the diaphragm such as liver, and stomach and it may only be a viable approach for

correcting motion if focusing on the heart or lungs with associated lesions (Lamare
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et al. 2007a).

However, motion may cause events that would have normally been detected in

some LORs, to exit axially or through detector gaps the PET scanner undetected. Motion

correction of individual LORs can correct detected events but does not compensate for

events that have not been detected outside the FOV (Rahmim et al. 2004). On the other

hand, the transformation of LORs along which the events are detected to LORs along

which the events would have been detected, if there was no motion, may correspond

to no actual detector pairs and thus these LORs also need to be properly modelled. To

compensate for this, Thielemans et al. (2003) proposed different approaches such as

scaling for the partially measured parts of the sinogram.

2.5.4 Image based motion correction

One respiratory motion correction method proposed by several authors is to transform

the sequence of gated images. This image-based method, combines independent

reconstructed gates which are then aligned to a reference position and averaged to

compensate for the motion without loss of count statistics. This method is henceforth

referred to as reconstruct-transform-average (RTA). To do this different registration

algorithms have been proposed. In the context of correcting for respiratory motion,

Dawood et al. (2006, 2008) used an optic flow method to align non-attenuation

corrected PET images with the motion restricted to elastic transformations. Despite this

the attenuation correction is expected to be affected by motion and it is an important

correction for obtaining accurate quantification in PET images, it was not explored by

these studies. Bai and Brady (2009, 2011) further explored the image based method

by applying attenuation correction to the images after motion correction. Using their

proposed method attenuation correction is applied voxelwise in the images. In contrast
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with the previous studies, in Bai and Brady (2009, 2011) estimation of non-linear

motion was allowed by the use of a regularized registration algorithm with B-splines.

All these studies used motion estimation from registration of gated images

and therefore only a limited number of transformations are able to be performed.

Respiratory motion correction using this framework of transforming already

reconstructed images was applied by King et al. (2011) for real time motion correction

using a previously established MRI motion model derived using dynamic MRI data for

three acquisitions (normal, deep, fast).

During RTA the motion corrected image is obtained post-reconstruction, without

taking into account the non-linearity characteristic of iterative reconstruction. Although

this method maintains the counts of measured data, it consists of a partition of counts in

each gate and thus the effects of non-linearity that characterises iterative reconstruction

will be exaggerated.

However, RTA is a practical approach because current PET scanners give the

reconstructed images directly and include several corrections inside the reconstruction

making it difficult in practice to reconstruct data from the scanner differently and

therefore to correct the already reconstructed images may be the only possible way.

2.5.5 Reconstruction based motion correction

Another approach to compensate for respiratory motion is by incorporating the motion

information within reconstruction known as motion compensated image reconstruction

(MCIR). These algorithms are usually extensions of the standard algorithms.

Early implementation of this method proposed spatial or temporal prior/penalty

terms in a 4D MAP likelihood framework to enforce consistency between the image

frames in the gating dimension (Lalush et al. 1996; Gilland et al. 2002; Cao et al. 2003;
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Gravier and Yang 2005). Therefore, these methods make use of temporal correlations

between the estimated radioactivity distribution at the different respiratory positions.

However, the performance of these methods depends on the choice of the prior/penalty

parameters, mostly selected empirically based on a trial-and-error procedure, and these

may erroneously affect the final reconstructed image. These approaches have been

tested for brain and cardiac studies and found to improve image quality only for simple

motion fields such as brain and motion due to the cardiac cycle whereas for respiratory

motion no relevant applications have been found in the literature.

An alternative, more efficient approach consists of incorporating motion

information in the probability matrix as part of the reconstruction without the need

of prior/penalty terms. Incorporating the motion into reconstruction without the need

of prior parameters was proposed by Qi and Huesman (2002) to compensate for rigid

motion while Jacobson and Fessler (2003) proposed a method that also allows non-

linear transformations to be considered. Later, in the context of rigid transformation

Rahmim et al. (2004) incorporated motion information into the reconstruction to

compensate for the brain motion. The method of Rahmim et al. (2004) was extended by

(Qiao et al. 2006; Li et al. 2006; Lamare et al. 2007b) to account for non-linear motion

and used time/gate-varying system matrix to integrate the gated measured data into

a single comprehensive objective function. The motion information was derived by

non-linear registration of CT data.

In contrast with previous studies, Jacobson and Fessler (2003) proposed a similar

approach but to jointly estimate the motion information as well as the underlying image

activity distribution directly from PET images during which the distribution and the

deformation field are updated per iteration. The motion information was derived as

compositions of interpolation functions and affine expressions of the unknown emission
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values. However, due to the high noise of PET images it is more desirable that the

motion parameters are calculated in advance using CT or MRI. In addition a drawback

of the joint motion and image estimation is the computational cost, therefore the

method was evaluated only on a small 2D phantom.

However, in order to reduce the computational demands of MCIR, Qiao et al.

(2007) proposed region based registration for respiratory motion correction. The

proposed method instead of calculating and applying the motion correction into the

whole images of the FOV uses only a predefined region. The proposed method has

been validated using both a physical cylinder phantom with spheres and numerical

simulations of the anthropomorphic NCAT phantom. The findings showed faster and

improved accuracy of motion estimation by focusing just in specific regions but no

difference in the reconstruction task. However, during this method the region of

interest must be predefined. In addition, in practice various regions may require

motion correction and as the number of regions is increased, it limits the efficiency

of the method on accelerating the motion estimation task. More recent studies also

compensated for respiratory motion using time/gate-varying system matrix into the

reconstruction (Guérin et al. 2011; Chun et al. 2012a) but used tagged MRI to estimate

the motion. Based on this framework with the difference of applying the motion

information through image deformations prior to forward projection and following

backprojection in the reconstruction process Dikaios and Fryer (2009, 2011a,b) also

compensated for respiratory motion.

All these studies performed the motion correction using gated data. However,

motion estimation using registration of gated images is limited to the number of gates

used. An alternative way is to use a motion model and derive transformations in real-

time (McClelland et al. 2013). Based on an MRI motion model Reyes et al. (2007)
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applied respiratory motion correction. However, the motion model was derived using

only two MRI image frames.



Chapter 3

Simulation of simultaneous PET-MRI data

3.1 Introduction

The increased interest on evaluation and comparison of developed algorithms for

motion correction requires an accurate representation of the motion as observed in

real subjects during PET acquisition. However, for extensive evaluation of different

methods using various parameters a substantial clinical data base with real studies is

required which takes money and time to be created. As an alternative, simulations have

been developed based on computational phantoms that represent the human anatomy

(Zaidi and Tsui 2009). Using simulations large datasets can be created for different

disease states providing also a ground truth which is not known in real clinical studies.

Many phantoms have been developed usually from segmented high resolution

anatomical images (e.g. CT or MRI) such as the widely used NCAT and its enhanced

version XCAT (Segars and Tsui 2009) that model the human thorax anatomy and

simulate both cardiac and respiratory motion. Computational phantoms have been

extensively used in a large number of applications, such as the optimization of the

detection system, the validation of reconstruction algorithms, the study of physical

effects including radiation attenuation, scatter and motion (Zaidi and Xu 2007b;

Tsoumpas and Gaitanis 2013a).

– 118 –
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To incorporate motion into the numerical phantoms many studies used registration

of dynamic images with sufficient temporal and spatial resolution (e.g. CT and MRI) to

derive voxel deformations and use them to warp the 3D numerical phantom (Tsoumpas

et al. 2011). For example, in the case of the XCAT phantom, respiratory and cardiac

motion information has been derived from CT data resulting in more than 100 time

frames over the cardiac cycle and 20 time frames over the respiratory cycle (Segars and

Tsui 2009).

Numerical phantoms are integrated in software tools to simulate PET acquisition

generating raw data in the form of sinograms. The most commonly used method is

based on Monte Carlo simulations such as the open source software GATE (Jan et al.

2004). Monte Carlo simulations can model the PET process with high accuracy and

precision, but their high computational demands has led to the development of fast

analytic methods such as the open source software library for Tomographic Image

Reconstruction (STIR) (Thielemans et al. 2012) or ASIM (Comtat et al. 1999). STIR

was the research tool used in this thesis¶.

Tsoumpas et al. (2011) developed a scheme for simulating realistic dynamic PET

data using real MRI acquisitions and analytic simulations. Using an extension of the

proposed approach temporally and spatially correlated MRI and PET datasets were

generated, similar to those obtained from PET/MRI acquisitions.

This chapter provides a description of the dynamic PET simulation toolkit used

in this thesis to study the performance of motion correction in PET and can be used

in general to investigate the performance of different reconstruction and correction

methods.

¶ STIR consists of functions, classes and utilities for different imaging modalities such as PET. In STIR,
image and projection data can be manipulated and images can be reconstructed.



Simulation of simultaneous PET-MRI data 120

3.2 Methods

3.2.1 4D numerical phantom using MRI-derived motion fields

An anthropomorphic numerical phantom of the thorax was derived from the real

dynamic MR dataset by simulating normal FDG activity distributions. A 4D dynamic

MRI dataset of the thorax was obtained by a colleague on a 1.5 Tesla Philips AchievaT M

scanner with a 32-channel coil using a T1 weighted turbo field echo (TFE) sequence

with repetition time equal to 3.3 ms and echo time equal to 0.9 ms and a flip angle

of 10◦. An ECG triggered dynamic 3D acquisition was applied with parallel imaging

sensitivity encoding factor of 2 in anterior-posterior and 4 in right-left direction to speed

up the acquisition so as to be possible to acquire the whole thorax volume. The whole

thorax volume was acquired with a FOV of 500 × 450 × 245 mm3. The volunteer was

breathing deeply to maximize the magnitude of the motion caused by respiration. The

MRI dataset consisted of thirty five 3D images with a reconstructed image resolution of

1.5 × 5 × 1.5 mm3 (feet-head, right-left, anterior-posterior) and temporal resolution

of 0.7 s per time frame. An amplitude signal was generated from a navigator placed

on the diaphragm and the thirty five 3D MRI images were distributed over a range of

respiratory positions covering a single respiratory cycle. One frame was selected (i.e.

mid-inspiration) as the reference image.

As proposed by Tsoumpas et al. (2011) the 3D MRI reference image was manually

segmented into different tissue types using intensity thresholds to extract the region of

interest. As a next step uniform FDG standardized uptake values (SUVs) as typically

measured in a clinical acquisition were assigned to each type (table 3.1). To derive

these values the mean FDG uptake values for lungs, liver, myocardium, soft tissue

and spinal cord were measured on real clinical PET/CT acquired data with the help
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of a clinician colleague (Dr Anastasia Chalkidou). The anatomical information of

CT was used in order to segment the regions of interest in PET images and then

calculate the mean SUV. To do this the HERMES medical image processing tool was

used (http://www.hermesmedical.com) was used and the anatomical information of

CT was used in order to segment the regions of interest and then calculate the mean

SUV. Then spherical lesions were created and embedded at different locations in the

image with various characteristics. The phantom developed by Tsoumpas et al. (2011)

had three lesions only in the lungs whereas this phantom had six lesions in the lungs

and three in the liver as described in table 3.1. Similarly, an anatomical 511 keV

attenuation map was generated with attenuation values as following: for air 0 cm−1,

for soft tissue 0.096 cm−1 and for lung tissue 0.0248 cm−1.

Table 3.1: Simulated radioactivity distribution in units of standardized uptake values (SUVs) and lesion
diameter.

Tissue Type SUV

Lungs 0.5
Liver 2.5

Myocardium 3.2
Soft tissue 1.0

L1 (diam.: 10 mm) 4.5
L2 (diam.: 16 mm) 4.5
L3 (diam.: 16 mm) 7.5
L4 (diam.: 10 mm) 6.5
L5 (diam.: 16 mm) 6.5
L6 (diam.: 16 mm) 9.5

After sorting the thirty five MRI images over a range of respiratory positions

covering a single respiratory cycle, ten frames were selected on the basis of amplitude

as the gates of the respiratory cycle including the reference image that was segmented

in the previous subsection. A non-linear registration algorithm (Buerger et al. 2011)

was applied to register each of the nine gates to the reference gate. In this way

transformation fields (i.e. displacement vectors) describing the motion estimates from
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locations of the reference gate to the locations of each other gate were obtained.

Figure 3.1 (a) displays the MRI image of the mid-inspiration gate and figure 3.1 (b) and

(c) the difference between the MRI images of the end-inspiration and end-expiration

gates before and after transformation respectively.

(a)                         (b)                       (c) (a)                                                   (b)                                                   (c) 

Figure 3.1: Visual demonstration of inspiration-expiration misalignment: (a) MRI image of the mid-
inspiration phase; (b) difference between the MRI images of the end-inspiration and end-expiration
phases (c) difference between the MRI images of the end-inspiration phase and the end-expiration phase
after transformation to the end-inspiration using MRI derived motion field.

Respiratory motion was incorporated in the numerical phantom by applying

the calculated MRI deformation fields to the phantom. Therefore the radionuclide

distribution was transformed to each of the ten gate positions according to the MRI

motion fields. The diaphragm motion was measured as the difference between the

highest and lowest diaphragm edge locations between inspiration and expiration

images. The results showed that the diaphragm motion amplitude was equal to

approximately 24 mm. A similar procedure was followed to generate a gated

anatomical 511 keV attenuation map.
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3.2.2 Real-time 4D numerical phantom using MRI-derived motion model

An alternative way that allows real time datasets to be simulated is to incorporate

motion in the numerical phantom using a motion model. The proposed approach by

Tsoumpas et al. (2011) was extended to incorporate realistic models of respiratory

motion into the numerical phantom. Datasets with continuous motion were generated

for studying further the impact of motion by including the effect of intra-frame motion.

To do this real respiratory signals derived from PET-CT images are combined with MRI-

derived motion modelling.

3.2.2.1 3D numerical phantom

In this part the aim was to develop a more realistic version of the numerical

phantom developed above that could be used for studying the effect of respiratory

motion on detectability.

Firstly, the anatomy of the lungs was extended in order to include heterogeneity

such as pulmonary vessels. Furthermore, more accurate attenuation maps were used

by including information for bone regions extracted using an MRI UTE acquisition

(Buerger et al. 2012). Anatomical information was obtained from a breath-hold UTE

scan for a healthy volunteer on a 1.5 Tesla Philips AchievaT M scanner with a 32-

channel coil. An ECG triggered MRI scan was also applied to acquire information

for myocardium. The procedure of the acquisition was similar as used before in

section 3.2.1 with additional information of cortical bone.

The 3D MRI image was manually segmented into different tissue types, and

uniform FDG SUV values were assigned to each tissue type as before in section 3.2.1

with the additional inclusion of bone with an SUV of 2.3. Lesions were embedded at

different locations in the image with various characteristics based on the aim of the
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investigation. Similarly, an anatomical 511 keV attenuation map was generated with

attenuation values as described before in section 3.2.1 but also with the inclusion of

bone with an attenuation value of 0.15 cm−1.

3.2.2.2 MRI-derived motion model

A subject-specific motion model was used derived from a series of real dynamic

MRI data (King et al. 2011, 2012). For the same volunteer as before, 105 dynamic 3D

MRI images of the thorax were acquired with a reconstructed image resolution of 1.5

× 5 × 1.5 mm3 (feet-head, right-left, anterior-posterior) and temporal resolution 0.7 s

per time frame. The first thirty five images were acquired during normal breathing, the

next thirty five during fast breathing and the last thirty five during deep breathing.

Each of the 105 images was registered to the reference breath hold image

using hierarchical registration. In particular, for each control point in the image the

displacements in x, y, and z directions were calculated and plotted as functions of the

head-foot diaphragm translation signal (i.e. surrogate signal). A curve based on second

order polynomial functions is fitted to the x, y, and z displacements as a function of

surrogate values (i.e. non-linear function allows capturing of non-linear motion). The

variation of the motion fields as a function of the surrogate was modelled separately for

inspiration and expiration to compensate for hysteresis effects (i.e. differences between

the breathing curves followed during inspiration and expiration).

By using high temporal resolution and three types of acquisition (i.e. normal, fast

and deep breathing) respiration of different amplitudes and frequencies is included in

the formation of the model in order to capture respiratory cycle variation as expected

in real subjects. For a given surrogate value (e.g. diaphragm position in a respiratory

signal) and breathing direction (i.e. inspiration or expiration) the model calculates

motion fields.
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3.2.2.3 Respiratory signal database

Respiratory signals describing the vertical displacement of the diaphragm as a

function of time, were obtained by a colleague from thirty four ammonia (NH3) cardiac

perfusion PET studies of anonymized freely breathing patients using a data driven

method (Schleyer et al. 2009, 2011). The data driven method used in this study

extracts the motion signal by measuring the intensity change in the pixels and it was

validated against the real-time position management hardware method (RPM) which

is the standard method used clinically to acquire a respiratory signal.

Each signal was acquired for 3 min of 0.1 s duration for each time point. Examples

of these signals are presented in figure 3.2. The reason that all the thirty four patients

studies in the database were investigated was to determine the maximum, minimum

and mean motion amplitude in order to calibrate the expected motion amplitude range

during a PET study. To do this, for each of the thirty four patient curves, the diaphragm

motion was measured as the difference between the highest and lowest diaphragm edge

locations on the gated no attenuation-corrected PET images. The results showed that

the maximum and minimum diaphragm motion amplitude as measured in PET images

were equal to approximately 20 and 6 mm respectively. This range is consistent with

a previous study by Liu et al. (2009) who reported a maximum displacement 20 and

15 mm and a minimum displacement 5 and 4 mm for the left and right diaphragm

respectively.
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Figure 3.2: Examples of breathing curves and corresponding displacement histograms for nine patients.
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As shown by Liu et al. (2009), the variability of the different respiratory patterns

can be classified into three types based on the corresponding displacement histogram.

For each of the thirty four signals in the database of thorax PET studies a displacement

histogram was created in order to group the curves to these three groups. After

classification of all the respiratory curves into the three types, three respiratory signals

were selected according to their displacement histogram such that each signal was

representative of one of the three different breathing patterns. Only one representative

example was selected for each of the three breathing pattern classifications since

the aim of this study was to demonstrate any possible differences using different

patterns and not to investigate the individual characteristics of each study. The selected

respiratory signals and their corresponding displacement histograms are illustrated in

figure 3.3. The first signal is described by long quiescent motion periods (type-A)

accounting for approximately 60% of patients, the second signal by regular quiescent

motion periods (type-B) accounting for approximately 20% of patients and the third

signal is characterised by random baseline shifts (type-C) accounting for approximately

20% of patients.

With the use of the selected breathing patterns a database with variable diaphragm

motion amplitude was created based on the above measurements of expected motion

amplitude range in a 3 min acquisition. To do this, each of the three signals was

firstly shifted to have zero median displacement and then scaled to nine diaphragm

amplitudes ranged from 4 to 20 mm with a step of 2 mm creating a database of

breathing type-A, type-B and type-C each one consisting of nine signals.
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Figure 3.3: Breathing curves and corresponding displacement histograms for the three breathing types:
(a) long quiescent motion periods (type-A) accounting for approximately 60% of patients, (b) regular
quiescent motion periods (type-B) accounting for approximately 20% of patients and (c) random baseline
shifts (type-C) accounting for approximately 20% of patients.

3.2.2.4 4D computational phantom

Given a respiratory signal, the motion model is used to calculate motion fields

necessary to transform the reference distribution (i.e. the 3D tracer uptake distribution)

to the relevant respiratory positions and generate a 4D phantom. Note that no

redistribution of radioactivity within the body was simulated. The FDG distribution

was warped using transformations calculated from the motion model for each sampling

point every 0.1 s during a 3 min acquisition (i.e. 1800 sampling points) as illustrated

in figure 3.4. Similarly, the motion fields were applied to the anatomical attenuation

maps to create dynamic datasets.

Furthermore, for each dynamic PET dataset, the data were gated based on

amplitude as described in section 2.5.1 to generate eight partitions (gates) over the

full motion cycle. To do this, for a given breathing type and motion amplitude, the
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corresponding amplitude histogram was firstly divided into eight equal amplitude bins

(i.e. gates). Then each of the 1800 images in a dynamic phantom based on its

respiratory position it was assigned to the corresponding gate. An averaged image

was then formed for each gate creating a 4D dynamic FDG distribution comprising of

eight gated images. Since, the PET acquisition system model is linear, averaging the

FDG distributions prior to simulating the projection data will give the same result as

simulating continuous projection data and gating afterwards.
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Figure 3.4: The 4D simulation is based around a motion model that describes the 3D trajectory (b) of
each point in a grid covering the torso (c) as a function of the displacement of the diaphragm (a). The
4D description of the motion in the torso is then used to create the 4D radionuclide distribution model
(d).
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3.2.3 PET simulation

The output from both techniques is a dynamic FDG distribution. Each gated image was

used as the input to an analytic simulation of a PET acquisition to create projection

data as described by Tsoumpas et al. (2011). The gated emission maps were forward

projected and raw data were generated in the form of sinograms for the Philips Gemini

scanner (Surti et al. 2007). The simulated scanner is made of 44 detector rings of

90.034 cm inner ring diameter with an axial extent of 0.4 cm. 644 detectors exist in

each ring (see also Appendix A1). 3D projection data (maximum ring difference: 43,

span: 3) were simulated based on Siddon’s ray tracing algorithm with ten rays per tube

of response (see also Appendix A2).

Following forward projection, photon attenuation, scatter and Poisson noise can

be included in each respiratory position. Attenuation coefficient projection data was

estimated from the attenuation images using the same analytic forward projector

settings and applied by multiplication to each respiratory gate. Scatter was simulated

analytically using the single scatter simulation formula (Watson et al. 1996) as

implemented in STIR (Tsoumpas et al. 2004; Polycarpou et al. 2011) (Appendix B).

A global scaling was applied such that the total amount of the simulated scatter events

corresponded to 33% of total measured events. Noise was added to each respiratory

gate accordingly to the purposes of the investigation.

The resulting projection data are then reconstructed using standard or novel

reconstruction algorithms. In this thesis STIR was also used for the reconstructions.
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3.3 Results

3.3.1 4D Gated-PET datasets using MRI-derived motion fields

One gated simulated numerical phantom was created simulating motion from a single

respiratory cycle consisting of ten respiratory positions without intraframe motion.

Figure 3.5 and figure 3.6 show examples of slices through the images of the

simulated radioactivity distribution images without and with lesions respectively.

Images are presented for a single respiratory position and for the average of the

simulated radioactivity distribution for ten respiratory positions created with the use

of dynamic MRI images consisting of 10 gates of 0.7 s per time frame. For the emission

datasets figure 3.7 shows example of the result of forward projecting the radioactivity

distribution images presented in figure 3.5. The image blurring introduced by motion

is evident in the data with motion compared to the data without motion.
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Figure 3.5: Examples of transverse, coronal and sagittal planes of the simulated radioactivity distribution
for (a) one respiratory position and (b) average of ten respiratory positions as created by dynamic MRI
images consisting of 10 gates of 0.7 s per time frame.
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Figure 3.6: Examples of coronal planes of the simulated radioactivity distribution with lesions for (a)
one respiratory position and (b) average of ten respiratory positions as created by dynamic MRI images
consisting of 10 gates of 0.7 s per time frame.
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Figure 3.7: Sinograms corresponding to the simulated radioactivity distribution for (a) one respiratory
position and for (b) ten averaged respiratory positions as created by dynamic MRI images consisting of
10 gates of 0.7 s per time frame.

3.3.2 Real-time 4D PET datasets using MRI-derived motion model

A database of a real-time simulated numerical phantom with variable diaphragm

motion amplitude and breathing patterns was created. Figure 3.8 shows an example

of slices through the images of the simulated radioactivity distribution for a single

respiratory position and for the average of the simulated radioactivity distribution for
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1800 respiratory positions as created with the use of the MR motion model combined

with a respiratory signal of 3 min of 0.1 s duration for each time point. The selected

respiratory signal is for type-C breathing with 20 mm maximum motion amplitude. For

the emission datasets figure 3.9 shows example of the result of forward projecting the

radioactivity distribution images presented in figure 3.8.
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Figure 3.8: Examples of transverse, coronal and sagittal planes of the simulated radioactivity distribution
for (a) one respiratory position and (b) average of 1800 respiratory positions as created with the use of
an MRI motion model combined with a respiratory signal of 3 min of 0.1 s duration for each time point.
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Figure 3.9: Sinograms corresponding to the simulated radioactivity distribution for (a) one respiratory
position and (b) 1800 averaged respiratory positions as created with the use of an MRI motion model
combined with a respiratory signal of 3 min of 0.1 s duration for each time point.
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3.4 Discussion

This chapter presents the methodology that can be followed in order to create dynamic

PET datasets based on a sequence of real MRI acquisitions followed by a combination of

segmentations and image registrations. Two alternative methodologies for producing

dynamic PET radioactivity distribution are described.

The first approach is based on registration of dynamic MRI data over a single

respiratory cycle to calculate motion information. Motion information is then applied

to warp the 3D tracer uptake distribution to the relevant respiratory positions and

generate a 4D phantom. This approach models a single respiratory cycle.

However, a realistic breathing cycle is not perfectly periodic and may have cycle-

to-cycle variations in magnitude, as well as longer-term variations in both magnitude

and period (Sonke et al. 2008; Siebenthal et al. 2007). Consequently, real respiratory

signals representative of three breathing patterns expected to be observed during a PET

acquisition (Liu et al. 2009) can be used with variable motion amplitude in order to

provide a better understanding of the extent of motion blurring in both normal and

extreme breathing cases and define when motion is important or not.

The second approach, is based on a motion model that is combined with real

respiratory signals to estimate the motion information for any position in the signal.

Similarly, a 4D phantom is created using the estimated motion information to transform

the 3D tracer uptake distribution to any position in the signal. Using a motion model

any respiratory position can be generated to simulate real time data as observed in real

subjects. Considering that in real studies respiratory motion is only in part periodic

this method allows the simulation of motion trajectories according to the amplitude

and frequency of motion observed in real subjects. In addition, this method allows

simulations of temporal resolution similar to the PET imaging system being simulated.
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In this thesis a subject-specific motion model was used. On the other hand, the proposed

simulation scheme could be further extended by the use of a global motion model

to provide motion information without the need for patient specific MRI acquisitions

(Fayad et al. 2012).

Furthermore, in the example of the motion model in figure 3.4 the plot represents

the displacements for a specific control point in the image as a function of the head-

foot diaphragm translation signal. Although the plot for the specific control point shows

almost identical relationship between inspiration and expiration this is only an example

and it is not the case for all control points in the image. In general, in the specific

motion model used in this thesis the variation of the motion fields as a function of

the surrogate are modelled separately for inspiration and expiration. Previous studies

have shown differences between the trajectories followed during inspiration and the

trajectories followed during expiration (i.e. hysteresis effects) especially for anterior-

posterior displacements but also for superior-inferior displacements (King et al. 2009).

Lack of modelling the different paths followed by a tumour during inspiration and

expiration may lead to underestimation of errors in describing the motion especially

for patients with an irregular breathing pattern. Therefore, the complexity of having

inspiration and expiration separately is necessary in order to capture respiratory cycle

variation to represent the actual real motion observed in patients.

The degree of blurring is evident in the data with motion in both gated-simulation

and real-time simulation. The simulations can be a useful tool to evaluate the

accuracy of motion correction methods. However, the gated-simulation with no intra-

gate motion can be a simple approach to investigate the properties of the motion

correction algorithms without being affected by the motion correction accuracy and the

consequent transformation errors that may occur when intra-gate motion is present.
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On the other hand, real-time simulation provides a more realistic and comprehensive

view of motion effect as observed in real acquisitions and might be a preferable method

to study the resolution recovery rather than the properties of the algorithms.

In addition, in real clinical applications a lung lesion that is visible in a PET scan

may appear in a CT scan with attenuation equivalent to soft tissue density and be

therefore classified as soft tissue. On the other hand, there are cases where lung

lesions that are revealed in a PET scan may not be visible in the attenuation images

and may be classified as lung rather than soft tissue during attenuation correction.

In the simulation procedure used in this thesis we considered lung lesions not visible

in attenuation images. Under the assumption that attenuation of the lung lesions

is equivalent to lungs, during both the creation of simulations and reconstruction,

the absence of lung lesions in the attenuation images is not expected to affect the

conclusions derived from this thesis. However, in the case that lung lesions were

assumed to behave as soft tissue density masses in the attenuation images there are

two scenarios. Firstly under the assumption of no motion artefacts, in the presence of

lung lesions in attenuation images during the creation of the simulations, their absence

during attenuation correction may result in undercorrection (no compensation for loss

of counts due to attenuation) which is expected to result in underestimation of the

tumor tracer uptake. In a previous study Martinez-Möller et al. (2009) investigated

attenuation correction using attenuation maps with and without compensating for the

lung lesions and showed that the absence of the lung tumor in the attenuation map may

result in a variation in the tumor SUV of 35%. Furthermore, in the presence of motion

any mismatches between the emission and attenuation image is expected to introduce

additional uncertainties in the quantification accuracy (Killoran et al. 2011).

Finally, the proposed methodology can be a fast and practical approach to simulate
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a large number of dynamic PET datasets allowing also the opportunity to generate

multiple statistical realizations of any given dataset. The two methodologies presented

in this chapter are used in the next chapters to study the impact of respiratory

motion correction on lesion detection and quantification in PET. Depending on the

level of approximation that is required for a study, the appropriate methodology can

be followed.

3.5 Conclusion

A scheme was described for simulating realistic dynamic PET data using real MRI

acquisitions. This approach allows incorporation of realistic models of respiratory

motion to generate temporally and spatially correlated MRI and PET datasets, as those

expected to be obtained from PET/MRI acquisitions. Simulations with realistic anatomy

and motion trajectories as those observed in real subjects can help to investigate the

performance of different reconstruction and correction methods (e.g. motion).



Chapter 4

Analysis of two methods for respiratory motion
compensated reconstruction

4.1 Introduction

Respiratory motion correction is a difficult problem due to the poor statistical quality

of PET data and many approaches have previously been investigated. The two most

popular motion correction approaches in PET are RTA and MCIR as described in

chapter 2. Depending on the stage that the correction is applied the final motion

corrected image is expected to have different image properties. Theoretically, an

average of independently reconstructed gates is expected to be affected by the low

counts of each gate and therefore to provide inferior quality images, in terms of

both quantitative accuracy and noise characteristics, than the use of all gates in a

single reconstruction (Lamare et al. 2007b). This is in agreement with the theoretical

comparison of RTA and MCIR by Asma et al. (2006) who predicted better image quality,

in terms of both quantification accuracy and noise properties, for MCIR. Another recent

theoretical investigation showed that the MCIR has lower or comparable variance to

RTA (Chun and Fessler 2013). However, the results were not assessed for low counts

where the statistical noise introduces bias and affects the accuracy of the reconstructed

images (Walker et al. 2011).

– 138 –



Analysis of two methods for respiratory motion compensated reconstruction 139

Simulation studies showed that although MCIR recovers lesion contrast better and

is quantitatively more accurate than RTA (Dikaios and Fryer 2011b), at late iterations

RTA may be less noisy and has better lesion detectability than MCIR (Thielemans et al.

2006). Although the low noise observed in RTA is contrary to theoretical expectations,

this has not been further communicated in the literature. Another more recent study by

Dikaios and Fryer (2011a) showed that MCIR is more robust quantitatively than RTA,

attributing the differences to interpolation errors introduced during transformation.

However, there is still not sufficient evidence in the current literature to answer the

question of which is the best practical method for motion correction.

This chapter compares RTA versus MCIR and investigates the differences between

them in terms of bias and noise. Real MRI dynamic data are used to obtain motion

information. Evaluation is performed using voxel-based statistical analysis with an

adequate number of iterations to study quantification accuracy. In contrast with

other studies, we perform an analysis with respect to the number of iterations for

reconstruction without or with post-filtering using a high number of independent

realisations to ensure sufficient statistics. This chapter also demonstrates a paradigm

of a robust methodological approach on how to separate the overall error into different

components and evaluate both bias and noise trade-offs at the voxel-level.

4.2 Methods

4.2.1 Statistical comparison of RTA and MCIR

4.2.1.1 Simulated 4D PET data

A realistic spatially and temporally coregistered dynamic PET dataset comprising

of ten gated PET images was simulated as follows, using the procedure described in

section 3.2.1. Ten frames distributed over a range of respiratory positions on the basis
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of amplitude were used as the gates of the respiratory cycle. Transformation fields

describing the motion estimates from locations of the reference gate to the locations of

each other gate were obtained using a non-linear registration algorithm (Buerger et al.

2011). In addition, the corresponding inverse MRI motion fields were numerically

estimated from the same motion vectors (Crum et al. 2007).

The MRI reference image was manually segmented into different tissue types, and

uniform FDG standardized uptake values (SUVs) as typically measured in a clinical

acquisition were assigned to each type (table 4.1). Six spherical lesions of different

contrasts and sizes were manually embedded at different locations in the lungs and in

the liver as shown in figure 4.1 and as described in table 4.1. Then the radionuclide

distribution was transformed to each of the ten gate positions according to the MRI

motion fields.

  10 

  0 

L1 L2 L3 
L4 L5 L6 

  10 

  0 

Figure 4.1: Coronal planes of the simulated radioactivity distribution with six lesions of different
contrasts and sizes added at different locations in the lungs and in the liver as described in table 4.1.

Table 4.1: Simulated radioactivity distribution in units of standardized uptake values (SUVs) and lesion
diameter.

Tissue Type SUV

Lungs 0.5
Liver 2.5

Myocardium 3.2
Soft tissue 1.0

L1 (diam.: 10 mm) 4.5
L2 (diam.: 16 mm) 4.5
L3 (diam.: 16 mm) 7.5
L4 (diam.: 10 mm) 6.5
L5 (diam.: 16 mm) 6.5
L6 (diam.: 16 mm) 9.5
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Each gate of the 4D generated activity distribution was used as the input to an

analytic PET-acquisition simulation to generate raw data in the form of sinograms for

the Philips Gemini scanner. Following forward projection, attenuation and Poisson

noise were included in each respiratory position. No scatter or random coincident

events were simulated. Noise was added to each respiratory gate such that the overall

counts of the whole dataset correspond to a 5 min 18F-FDG 3D PET clinical thorax

acquisition (i.e. approximately 50 million coincidences). One hundred realisations

of the acquisition process were simulated¶. To generate multiple realisations of the

acquisition process statistical noise was included taking different seeds from the random

number generator for each gate and realisation.

4.2.1.2 Motion compensated image reconstruction

In this study, both motion correction methods, RTA and MCIR, were developed

within STIR. During RTA, motion correction is performed by first reconstructing

independently the raw data of each respiratory position using the OSL algorithm as

illustrated in figure 4.2. Then the reconstructed image of each gate is transformed to

the reference position using known motion fields. The same motion fields were used

both to create the simulations and to correct for motion. The transformed gates are

then averaged to produce a motion-corrected image:

Λ(s+1)
ν g =Λ(s)ν g

1
∑

b∈Sl

PbνAbg+βg
∂

∂Λν g
E(s)ν

∑

b∈Sl

Pbν
Ybg

∑

ν̃

Pbν̃Λ
(s)
ν̃ g+

Bbg

Abg

(4.1)

Λν =
1

G

∑

g
Wg→1Λν g (4.2)

¶ Part of the datasets are available at: http://www.isd.kcl.ac.uk/pet-mri/simulated-data/.
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where:

• Λ(s)ν g is the estimated radioactivity concentration at voxel ν , subiteration

number s and gate g.

• Ybg is the number of coincident photons measured events of each detector pair

(bin) b and gate g.

• Sl corresponds to the l th subset of the projection space, which is divided into

L total subsets.

• s is the subiteration number and l= s mod L. A set of L subiterations comprises

a full iteration.

• Pbν is the geometric system projection matrix.

• W1→g , Wg→1, represent the backward and forward warping operations

respectively that move the activity from voxel in gate g to the voxel in the

reference gate 1.

• G is the total number of gates.

• Abg and Bbg are the attenuation coefficient and the background term

respectively for each bin and gate.

• βg is the penalization factor.

• E is the energy function.

The penalty function used in this study was based on the median root prior

(Alenius and Ruotsalainen 1997, 2002; Bettinardi et al. 2002). The penalty function

is calculated based on the difference of the voxel value with the median among
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neighbouring voxels around voxel ν for the previous iteration denoted as Mν as

described by:

βg
∂

∂Λν g
E(s)ν = βg

Λ(s)ν g−M (s)ν

M (s)ν
(4.3)

In addition, a gated attenuation map was used in the reconstruction in order to

model the motion in the attenuation map and for each gate the attenuation correction

factors were calculated using the corresponding attenuation map.

For MCIR the motion transformations are incorporated directly into the

reconstruction as illustrated in figure 4.3. The motion corrected image is reconstructed

using the following iterative formula which is based on conventional OSL, including

motion via the forward/backward transformation operators (Dey and King 2009):
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ν =Λ(s)ν
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(4.4)

Based on the implementation of the expectation maximization update in the

conventional OSL algorithm, the forward warping operation, W1→g , should be the

transpose of the motion matrix, Wg→1. However, similarly with previous studies

(Dey and King 2009; Dikaios and Fryer 2011a,b; Ouyang et al. 2013), in this

thesis the inverse of the motion matrix was used rather than its transpose. If the

motion matrix is orthogonal, then the transpose and the inverse are the same, and

therefore the expectation maximization is still obtained even if the inverse of the
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motion matrix is used. On the other hand, if the motion matrix is simply not

orthogonal, using the inverse rather than the transpose of motion matrix results in an

approximate implementation of the expectation maximization update, with the level of

approximation corresponding to the level to which the transpose and inverse of motion

matrix give different results.
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Figure 4.2: Reconstruct-transform-average motion correction method: Independent reconstructions of
each gate are transformed to a reference gate and averaged.
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Figure 4.3: Motion compensated image reconstruction motion correction method: Motion information is
incorporated within the reconstruction.
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4.2.1.3 Evaluation datasets

To understand the errors introduced during the different motion correction

methods the investigation was divided into two parts: First, RTA and MCIR methods

were evaluated with the motion fields set to zero for both simulation and correction.

Then the same reconstructions were evaluated using motion fields as described above.

Applying RTA and MCIR methodology with zero motion fields enables evaluation of the

methods without being affected by transformations and the consequent inaccuracies

due to interpolation that may occur when motion is present. For these cases,

reconstructions were performed for βg equal to zero (i.e. standard OSEM) and with

23 subsets and for different iterations from 1 to 20. Each volume consisted of 250 ×

250 × 87 voxels each with an isotropic size of 2 mm. Furthermore, for the next part of

the chapter which studies the impact of post-reconstruction filtering, each reconstructed

realisation image was smoothed with a 4 mm isotropic FWHM Gaussian kernel. The

following datasets were reconstructed and evaluated:

• Reference: The reference gate (i.e. gate 1) was reconstructed using the

conventional OSEM algorithm with the same standard count statistics as for the

entire gated dataset.

• Non-motion corrected (Non-MC): The ten respiratory positions were averaged

and reconstructed using the conventional OSEM algorithm.

• RTA with zero motion (Gate1-RTA): The reference gate (i.e. gate 1) was

reconstructed by applying RTA with the use of zero motion fields. The ten gates

were simulated as different noise realisations of the reference gate.

• MCIR with zero motion (Gate1-MCIR): The reference gate was reconstructed

by applying MCIR with the use of zero motion fields. The ten gates were
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simulated as different noise realisations of the reference gate.

• Motion corrected with RTA (MC-RTA): The ten respiratory positions were

reconstructed using the RTA motion correction method with MRI-derived motion

fields.

• Motion corrected with MCIR (MC-MCIR): The ten respiratory positions were

reconstructed using the MCIR motion correction method with MRI-derived

motion fields.

The choice of the number of iterations was selected after a preliminary study

which showed that for the reference reconstructed gate the mean values over the

100 realizations for single voxels selected in the centre of the lung and liver lesion

approached a stabilized value after 20 iterations (figure 4.4). In addition, the difference

between the standard deviation values of the single voxels, after 15 iterations with

the value after 20 iterations is small and therefore 20 iterations can be considered a

satisfactory number of iterations to study quantification accuracy for the specific type

of simulation setup used in this study.

Secondly, the advantages gained by the two different methods by including

median-root-prior regularization within the reconstruction have also been studied. For

the purposes of this part of the chapter the degree of regularization was determined

by changing the value of the weighting factor βg in (4.1) and (4.4). The kernel size

for the regularization was 3 voxels isotropic. Different weights have been studied for

the regularization term (i.e. βg : 0, 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50, 100). These

weights were constant and spatially invariant throughout each reconstruction. For

practical reasons, as a first step only one reconstruction realisation was obtained for

all the different values of the regularization term in order to determine the optimal
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value of the regularization term. Twenty independent noise realisations have been

reconstructed using the optimal values of βg for both RTA and MCIR.
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Figure 4.4: Mean and standard deviation values over the 100 realizations with respect to the number of
iterations (with increment of 23 subsets) for the reference reconstructed image. Results are displayed
for four single voxels, two adjacent voxels in the centre of the lung lesion and two adjacent voxels in the
centre of the liver lesion.
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4.2.1.4 Image assessment

Figures of merit were computed from all the reconstructed images produced from

each numerical experiment. As it was mentioned in chapter 2 the advantage of

simulated data for assessing or comparing algorithms is that the gold standard (i.e.

true images) are known and therefore the precision (i.e. noise) and accuracy (i.e. bias)

of the reconstructed images can be assessed for each algorithm. The following figures

of merit were calculated:

Bias: An image of the absolute percentage bias with respect to the true simulated

radioactivity distribution was determined as follows:

(4.5)
Bias(%) =
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where Λideal is the reference image, Λi is the reconstructed image of the i th noise

realization and Λ̄ is the mean image calculated as the average of the sequence of N

realisations of the reconstructed image.

Noise: The noise was evaluated through the use of the standard deviation (std)

calculated over the sequence of N reconstructed images:

std =

√

√

√

√

1

N−1

N
∑

i=1

(Λi− Λ̄)2 (4.6)

Mean squared error (MSE): MSE was calculated as the sum of the square of the

standard deviation and the squared bias:

MSE = (std)2+(bias)2 (4.7)
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Contrast recovery (CR): The percentage CR was calculated according to:

(4.8)
CR(%) =

Crec

Cre f
× 100

=
(Ilesion/Ibackg)rec − 1

(Ilesion/Ibackg)re f − 1
× 100

where Crec and Cre f are the contrast values in the reconstructed image of interest and

the reference image, respectively. Ilesion and Ibackg are the SUV values in the lesion

and background, respectively. For the background region a spherical region of interest

(ROI) of 10 mm diameter was placed close to each lesion. For lesions 1-3 the ROI

was placed inside the lungs and for lesions 4-6 inside the liver. The lesion ROIs were

created in the simulated images in order to contain the actual lesion without excluding

edge voxels and therefore including any partial volume effect. Any underestimation or

overestimation of the volume caused by the two motion correction methods was not

assessed in this investigation.

The results were also assessed using a statistical significance test. The Wilcoxon

signed-rank test was chosen as the different measurements may not follow a normal

distribution. For the bias, standard deviation, and MSE all voxel pairs between

MCIR and RTA were compared separately for each lesion, whereas for the CR of

each lesion the values from each reconstructed realisation pair were compared. The

statistical significance threshold was set to 0.001 and p-values below this threshold

were considered statistically significant.

4.2.2 Investigation of uncertainties introduced in RTA and MCIR

An investigation has been performed to study the hypothesis that the differences

observed between RTA and MCIR in section 4.2.1 depend on the the non-linearity

effects of iterative reconstruction which are exaggerated due to the relatively low
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counts in each gate. To examine this hypothesis the two methods were compared by

applying zero motion fields for simulation plus correction using an iterative non-linear

algorithm, such as the OSEM, and an analytic linear algorithm, such as the filtered

backprojection (FBP). Therefore without any complications related to the properties of

the motion information, RTA and MCIR were compared in terms of bias introduced due

to the reconstruction properties. Then as a next step using only the OSEM algorithm

the datasets were reconstructed by including the motion effect for simulation plus

correction.

4.2.2.1 Simulated 4D PET data

A PET dataset derived from a real dynamic MRI dataset comprised of ten gated

images was used (figure 4.5, table 4.2) as developed by Tsoumpas et al. (2011). Each of

the PET gates was forward projected simulating the Philips Gemini scanner. Afterwards,

attenuation and Poisson noise were added to each gate such that the overall counts

correspond to a 5 min PET clinical thorax acquisition. 100 realizations were simulated.

Transformations describing the motion between the ten respiratory positions and a

reference position were obtained by applying a hierarchical affine image registration

procedure (Buerger et al. 2011) to each of the 10 gates in the MRI dataset.

Ideal!
        7!

    0!

     3.5!

Tumor 1!
Tumor 3!

Tumor 2!

Tissue Type! Emission (SUV)!
Lungs! 0.50!
Liver! 2.50!
Myocardium! 3.50!
Tissue! 1.00!
Tumor 1! 3.48!
Tumor 2! 3.48!
Tumor 3! 6.95!

Figure 4.5: Coronal plane of the simulated radioactivity distribution with three lesions of different
contrasts and sizes added at different locations in the lungs as described in table 4.2.
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Table 4.2: Simulated radioactivity distribution in units of standardized uptake values (SUVs).

Tissue Type SUV

Lungs 0.5
Liver 2.5

Myocardium 3.5
Soft tissue 1.0
Tumour 1 3.48
Tumour 2 3.48
Tumour 3 6.95

4.2.2.2 Evaluation datasets

Reconstructions were performed using OSEM (23 subsets with 1-40 iterations) and

FBP (with ramp filter). Each slice consisted of 167 × 167 pixels with size 4 mm each,

and the entire volume consisted of 87 slices with 2 mm thickness. The comparisons

were assessed by computing the voxel-wise figure of merit bias using the images of

the 100 realizations. Bias was determined as the difference with respect to the true

simulated radioactivity as described in (4.5).

4.3 Results

4.3.1 Statistical comparison of RTA and MCIR

Figure 4.6 shows coronal planes of the mean images for the reference reconstructed,

the non-motion corrected and following motion correction images using RTA and MCIR.

Results are displayed at 20 iterations. Without motion correction, images are blurred

and the small lesions are hardly visualized. However, after motion correction using

either RTA or MCIR the image blurring is improved and all lesions are visible.
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Figure 4.6: Coronal planes of mean images (i.e. average image across all 100 noisy realisations) for the
reference reconstructed gate (a); non-motion corrected (Non-MC) (b); and following motion correction
using RTA (MC-RTA) (c); and MCIR (MC-MCIR) (d). Results are displayed at 20 iterations. Motion
correction improves motion blurring.

Table 4.3 and table 4.4 present mean and percentage CR values with standard

errors for the reference reconstructed image and images reconstructed before and after

motion correction. The results are presented for the six different lesions as shown in

figure 4.1 and described in table 4.1. Without motion correction there is erroneous

estimation of the radioactivity distribution especially for the small lesions. After motion

correction using RTA there is only partial recovery of the PET signal. On the other

hand, motion correction using MCIR is successful in the recovery of the true values of

all lesions with CR more than 90% for all lesions.
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Table 4.3: True and mean values with standard errors for the different lesions. Results are displayed at
20 iterations for the: reconstructed reference image and before motion correction (Non-MC) and after
motion correction using RTA (MC-RTA) and MCIR (MC-MCIR).

SUV True Reference Non-MC MC-RTA MC-MCIR

Lesion 1 4.5 4.26 ± 0.25 1.68 ± 0.16 2.87 ± 0.09 4.37 ± 0.31
Lesion 2 4.5 4.26 ± 0.25 2.35 ± 0.18 3.22 ± 0.08 4.30 ± 0.30
Lesion 3 7.5 7.33 ± 0.34 4.37 ± 0.26 6.14 ± 0.13 7.40 ± 0.39
Lesion 4 6.5 6.27 ± 0.56 3.72 ± 0.43 4.94 ± 0.19 6.42 ± 0.66
Lesion 5 6.5 6.36 ± 0.54 4.13 ± 0.43 5.35 ± 0.19 6.40 ± 0.70
Lesion 6 9.5 9.30 ± 0.69 6.30 ± 0.57 7.82 ± 0.23 9.23 ± 0.78

Table 4.4: Mean percentage CR values with standard errors for the different lesions over the 100
realisations. Results are displayed at 20 iterations for the: reconstructed reference image and before
motion correction (Non-MC) and after motion correction using RTA (MC-RTA) and MCIR (MC-MCIR).

CR (%) Reference Non-MC MC-RTA MC-MCIR

Lesion 1 93 ± 7 30 ± 3 61 ± 8 94 ± 14
Lesion 2 96 ± 6 48 ± 3 70 ± 9 91 ± 14
Lesion 3 95 ± 5 57 ± 4 83 ± 7 96 ± 13
Lesion 4 97 ± 3 31 ± 3 67 ± 5 99 ± 12
Lesion 5 104 ± 5 42 ± 3 78 ± 6 98 ± 13
Lesion 6 98 ± 5 55 ± 3 82 ± 6 98 ± 12

Figure 4.7 shows coronal planes of the bias and standard deviation images for the

RTA and MCIR reconstructions with the motion fields set to zero for both simulation and

correction as described in the methodology subsection (section 4.2.1.3). Figure 4.8

shows coronal planes of the bias and standard deviation images for the motion

corrected data. The results are displayed at a low number of iterations as typically used

in the clinic (i.e. 2 iterations), for a case expected to have low bias (i.e. 10 iterations),

and for a case expected that the reconstruction has not necessary reach convergence but

has reached an approximately stabilized value over iterations satisfactory to study the

quantification accuracy as has been shown in section 4.2.1.3 (i.e. 20 iterations). The

results illustrate substantial differences between the two methods. For a low number
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of iterations the MCIR bias is localized around edges and approaches a uniform small

value as the number of iterations increase. On the other hand, for RTA high bias remains

throughout. Standard deviation images show that noise is stabilized to a constant value

at a small iteration number for RTA, while for MCIR it progressively increases with the

number of iterations.
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Figure 4.7: Coronal planes of the bias and standard deviation images for reconstructions with zero
motion fields for simulation plus correction for RTA (Gate1-RTA) and MCIR (Gate1-MCIR). For 2
iterations the MCIR bias is localized around edges and approaches a uniform small value at 20 iterations.
On the other hand, RTA has high bias for all iterations especially at the edges of the lesions independent
of the iteration number. Standard deviation is stabilized to a constant value for RTA, while for MCIR it
progressively increases with the number of iterations.
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Figure 4.8: Coronal planes of the bias and standard deviation images after motion correction using
both RTA (MC-RTA) and MCIR (MC-MCIR). For 2 iterations the MCIR bias is localized around edges
and approaches a uniform small value at 20 iterations. On the other hand, RTA has high bias for all
iterations especially at the edges of the lesions independent of the iteration number. Standard deviation
is stabilized to a constant value for RTA, while for MCIR it progressively increases with the number of
iterations.

Figure 4.9 shows the absolute percentage bias versus the number of iterations

before and after motion correction using RTA and MCIR as well as the RTA and MCIR

reconstructions with the motion fields set to zero for both simulation and correction as

described in the methodology subsection. Results are displayed for the average of the

lesions in the lungs and liver correspondingly. Reconstructions with RTA and MCIR

with zero motion fields have different performance: at a low number of iterations

(i.e. 1-2), bias is similar in both methods, i.e. approximately 30% and 18% for lung

and liver lesions, respectively, whereas at late iterations (i.e. 20) MCIR bias in lungs

and liver is 5% and 2%, respectively, while RTA bias is 18% and 14% for lungs and
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liver, respectively. Introducing motion into the simulations and correcting for it, MCIR

performance has slightly reduced bias, while RTA has clearly increased bias.
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Figure 4.9: Absolute percentage bias with respect to the number of iterations (with increment of 23
subsets) for images with no-motion correction (Non-MC), following motion correction using RTA (MC-
RTA) and MCIR (MC-MCIR), and reconstructions with zero motion fields for simulation plus correction
for RTA (Gate1-RTA) and MCIR (Gate1-MCIR). Although correction with both RTA and MCIR improves
quantitative accuracy, MCIR outperforms RTA. In contrast to RTA, MCIR reconstruction with zero motion
fields has similar performance to introducing motion into the simulations and correcting for it.

For similar datasets as shown in figure 4.9, figure 4.10 shows the absolute

percentage bias versus standard deviation at different iteration numbers, while

figure 4.11 illustrates the MSE versus the number of iterations. At 1-2 iterations

MCIR has smaller bias than RTA but similar noise. However, MCIR advances along

the bias-standard deviation curve faster than RTA as the number of iterations increase.

In terms of MSE, at 1-2 iterations MCIR provides superior performance to RTA for most

occasions, while for a high number of iterations RTA is extensively better than MCIR.
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Figure 4.10: Absolute percentage bias versus the standard deviation at different number of iterations
for the images with no motion correction (Non-MC), following motion correction using RTA (MC-RTA)
and MCIR (MC-MCIR), and reconstructions with zero motion fields for simulation plus correction for
RTA (Gate1-RTA) and MCIR (Gate1-MCIR). At low iterations MCIR has smaller bias than RTA but similar
noise while MCIR advances along the bias-standard deviation curve faster than RTA as the number of
iterations increase.
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Figure 4.11: Mean squared error with respect to the number of iterations (with increment of 23 subsets)
after motion correction using RTA (MC-RTA) and MCIR (MC-MCIR), and reconstructions with zero
motion fields for simulation plus correction for RTA (Gate1-RTA) and MCIR (Gate1-MCIR).
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Figure 4.12 shows coronal planes of the images produced with one realisation

after motion correction using RTA and MCIR, before and after smoothing with a 4

mm isotropic FWHM Gaussian kernel. The images are presented at 20 iterations.

Prior to smoothing MCIR images are noisier than RTA, while after smoothing the two

methods have more similar visual quality. Figure 4.13 and figure 4.14 illustrate the

mean percentage CR and the MSE, respectively, versus the number of iterations for

the different lesions after motion correction. Results are displayed before and after

smoothing the 100 reconstructed realisations.
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Figure 4.12: Coronal planes of the image produced with one realisation without and with post-
reconstruction filtering after motion correction using RTA (MC-RTA) and MCIR (MC-MCIR). Results are
displayed at 20 iterations. Smoothing reduces noise and improves visual quality especially for MCIR.
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Figure 4.13: Mean percentage contrast recovery with respect to the number of iterations (with increment
of 23 subsets) for the different lesions over the 100 realisations without and with post-reconstruction
filtering after motion correction using RTA (MC-RTA) and MCIR (MC-MCIR).
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Figure 4.14: Mean squared error with respect to the number of iterations (with increment of 23 subsets)
for the different lesions over the 100 realisations without and with post-reconstruction filtering after
motion correction using RTA (MC-RTA) and MCIR (MC-MCIR).
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Table 4.5 shows the aggregate results (i.e. average over the six lesions) with

standard errors for the mean percentage CR and the MSE at different iteration numbers

after motion correction using RTA and MCIR without and with post-reconstruction

filtering. The standard errors correspond to the precision of the average values over the

six lesions and therefore the variation in the average values with post-reconstruction

filtering is not necessarily lower than without post-reconstruction filtering.

Table 4.5: Average percentage CR and MSE values with standard errors over the six lesions at different
iteration numbers. Results are displayed without and with post-reconstruction filtering after motion
correction using RTA (MC-RTA) and MCIR (MC-MCIR).

Filtered Filtered
Iteration MC-RTA (MC-RTA) MC-MCIR (MC-MCIR)

CR (%) 1 66 ± 6 55 ± 6 74 ± 6 61 ± 6
2 74 ± 4 61 ± 5 91 ± 2 74 ± 4
3 74 ± 4 61 ± 5 95 ± 2 76 ± 4
5 74 ± 4 61 ± 5 96 ± 1 77 ± 3

10 73 ± 4 61 ± 5 96 ± 1 76 ± 3
15 73 ± 4 61 ± 5 96 ± 1 76 ± 3
20 73 ± 4 61 ± 5 96 ± 1 76 ± 3

MSE (SUV 2) 1 5 ± 0.5 6 ± 1 4 ± 0.4 5 ± 1
2 4 ± 0.5 5 ± 1 3 ± 1 3 ± 0.4
3 4 ± 1 5 ± 1 5 ± 1 3 ± 0.4
5 4 ± 1 5 ± 1 9 ± 3 2 ± 0.3

10 5 ± 1 5 ± 1 18 ± 6 2 ± 0.3
15 5 ± 1 5 ± 1 26 ± 8 2 ± 0.3
20 5 ± 1 5 ± 1 32 ± 10 2 ± 0.3

For the figures of merit bias, standard deviation, CR and MSE, the lesion values

between MCIR and RTA at different numbers of iterations (e.g. 1, 2, 3, 5, 10, 15, and

20) are compared using the Wilcoxon signed-rank test. Without post-reconstruction

filtering, there are statistically significant differences between RTA and MCIR for all

lesions in terms of bias, standard deviation, and CR. In the case of MSE, there are only

a few instances without statistically significant difference between RTA and MCIR. In

particular, these differences are not significant at: two iterations for lesion 4 (p = 0.15)
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and lesion 6 (p= 0.45), at three iterations for lesion 3 (p= 0.014), and at five iterations

for lesion 1 (p = 0.17) and lesion 2 (p = 0.15). With post-reconstruction filtering for all

lesions there are statistically significant differences between post-reconstruction filtered

RTA and post-reconstruction filtered MCIR for bias, standard deviation, CR and MSE (p

less than 0.001) except for standard deviation at first iteration in lesion 4 (p = 0.25).

Figure 4.15 shows coronal planes of the images produced with one realisation after

motion correction using RTA and MCIR for different values of the penalization factor

(i.e. βg : 0, 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50, 100). Results are displayed at 10 iterations.

For βg equal to 50 the RTA and MCIR result in similar performance based on visual

appearance.

Figure 4.16 shows coronal planes of the mean, bias and standard deviation images

for the motion corrected images using both RTA (MC-RTA) and MCIR (MC-MCIR) using

penalization factor βg equal to 2 for the RTA and 10 for the MCIR. The results have been

obtained using twenty noise realisations and are presented at 10 iterations.
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Figure 4.15: Coronal planes of the image produced with one realisation after motion correction using
(MC-RTA) and MCIR (MC-MCIR) for different values of the penalization factor (i.e. βg : 0, 0.1, 0.2, 0.5,
1, 2, 5, 10, 20, 50, 100). Results are displayed at 10 iterations.
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Figure 4.16: Coronal planes of the mean, bias and standard deviation images after motion correction
using both RTA (MC-RTA) and MCIR (MC-MCIR) using penalization factor βg equal to 2 for the RTA and
10 for the MCIR. The results have been obtained using twenty noise realisations and are presented at 10
iterations.

4.3.2 Investigation of uncertainties introduced in RTA and MCIR

Figure 4.17 shows the bias images for reconstructions with zero motion fields for

simulation plus correction for RTA and MCIR using the reconstruction algorithms

FBP and OSEM at 1, 5 and 40 iterations with 23 subsets. FBP reconstructed

images demonstrate equal bias for RTA and MCIR. On the other hand, substantial

differences are observed between RTA and MCIR using OSEM; overestimations and

underestimations in low and high counts areas respectively.

Figure 4.18 presents the plots of the absolute percentage bias with respect to the

number of iterations for reconstructions with zero motion fields for simulation plus

correction for RTA (i.e. Gate1-RTA) and MCIR (i.e. Gate1-MCIR) for the FBP and OSEM
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algorithms. Results of including the motion effect for simulation plus motion correction

using RTA and MCIR are also presented for the OSEM algorithm. Without including

the motion effect, FBP reconstructed images result in identical bias for RTA and MCIR

while OSEM reconstructed images show higher bias for RTA compared to MCIR. After

introducing motion into both simulation and correction the bias in MCIR remains low

while RTA shows increased bias demonstrating that interpolation errors are introduced

during RTA motion correction.

OSEM-40Iter.!

     0.7!

  -0.7!

        0!

RTA! MCIR!

RTA! MCIR!

OSEM-5Iter.!

OSEM-1Iter.!

RTA! MCIR!

RTA! MCIR!

FBP!

Bias! Bias!

Figure 4.17: Coronal planes of the bias images for reconstructions with zero motion fields for simulation
plus correction for RTA and MCIR. Results are displayed for the reconstruction algorithms FBP and OSEM
(1, 5 and 40 iterations).
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Figure 4.18: Plots of the absolute percentage bias with respect to the number of iterations (with
increment of 23 subsets) for reconstructions with zero motion fields for simulation plus correction for
RTA (Gate1-RTA) and MCIR (Gate1-MCIR) for the FBP and OSEM reconstruction algorithms. Results are
also plotted for images from simulations which include the motion and plus motion correction using RTA
(MC-RTA) and MCIR (MC-MCIR) for the OSEM reconstruction algorithm.
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4.4 Discussion

The main aim of this chapter was to understand the behaviour of the two most common

motion correction approaches, RTA and MCIR, in terms of convergence and image

properties. As can be seen in figure 4.6, table 4.3 and table 4.4 motion correction using

either RTA or MCIR improves motion blurring and quantification accuracy. The two

methods behave differently: MCIR has better CR than RTA (table 4.4) and negligible

bias, whereas RTA has high bias but minimum noise (figure 4.8). The high bias in RTA

was also reported in other studies, (Thielemans et al. 2006; Dikaios and Fryer 2011a,b)

while the different noise characteristics between RTA and MCIR were reported only by

Thielemans et al. (2006).

Applying RTA and MCIR methodology with zero motion fields, and therefore

avoiding any consequent inaccuracies due to interpolations that may occur during

transformations, RTA and MCIR have different performances. As shown in figure 4.7 for

reconstructions with zero motion fields for simulation plus correction for 2 iterations

the MCIR bias is localized around edges and approaches a uniform small value at 20

iterations while RTA has high bias for all iterations especially at the edges of the lesions

and the myocardium indicating resolution degradation. Considering the absence of

motion effects the higher bias observed in RTA compared to MCIR can be attributed to

resolution degradation due to low count statistics. This is also confirmed quantitatively

in figure 4.9. For low numbers (i.e. 1 or 2) of iterations, bias is similar in both methods.

In particular at 1 iteration bias for both RTA and MCIR is approximately 30% and 18%

for lung and liver lesions, respectively, whereas at 20 iterations MCIR bias in lungs and

liver is 5% and 2%, respectively, while RTA bias in lungs and liver is 18% and 14%,

respectively.

After the introduction of motion into the simulations and correction for it, MCIR
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performance is unchanged, whereas the RTA shows even higher bias (figure 4.8). A

possible explanation for the additional bias in RTA is the interpolation errors introduced

during the transformation procedure where RTA appears to be more sensitive than

MCIR. During RTA equation (4.2) each reconstructed gate is transformed once and

thus errors will have a linear effect on the corrected image. On the other hand, during

MCIR equation (4.4) the transformation is not applied on the image directly but on

the update image at each iteration: the same transformation is used prior to forward

projection and following back-projection and the errors are reduced (Dikaios and Fryer

2011a).

One source of bias in RTA is the relatively low count statistics (Walker et al. 2011)

in each gate (i.e. 1/10 of a 5 min acquisition), while MCIR considers all counts

simultaneously. The low count statistics may cause very slow convergence or not

allow convergence to the correct value. In particular, within the framework of OSEM

algorithm, non-negativity constraint does not allow negative values to be assigned to

an image voxel and when low count data lead to a probability that a voxel will be

assigned a negative value the OSEM bounds the intensities distributions at zero. As a

result for high variance data the mean of the intensity distributions changes and the

distributions do not remain symmetric (Walker et al. 2011) and is expected to result

in an overestimation bias for low count regions (Grezes-Besset et al. 2007; Ahn and

Fessler 2004). Therefore linearity is not preserved in the OSEM; the reconstruction of

the sum of two sinograms, similar to the methodology followed in MCIR, is not the

same as the sum of the independent reconstruction of the two same sinograms, similar

to the methodology followed in RTA.

The effect of the non-linearity of the OSEM at low counts statistics on the

performance of RTA and MCIR was also confirmed by a study using a linear (i.e. FBP)
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and an iterative (i.e. OSEM) reconstruction algorithm. The methodology followed by

the two methods in the absence of motion was compared; reconstructing the sum of

a number of sinograms (MCIR) or adding independent reconstructions of sinograms

(RTA). As illustrated in figure 4.17, FBP reconstructed images demonstrate equal bias

for RTA and MCIR in areas and edges which can be attributed to reconstruction

artefacts. On the other hand, substantial differences are observed between RTA and

MCIR using OSEM; overestimations and underestimations in low and high counts areas

respectively. For all regions, higher bias is observed for RTA than MCIR while for both

methods the bias is progressively decreased as the number of iterations is increased

(figure 4.18). Considering that images are motion free, the high bias in RTA can be

attributed to the reconstruction properties (i.e. OSEM non-linearity effects) which are

exaggerated due to the relatively low counts in each gate while MCIR uses all data

simultaneously and thus it is less susceptible to non-negativity constraints.

The investigation comparing OSEM with FBP provides a better understanding of

the differences observed between RTA and MCIR. With the use of a linear reconstruction

algorithm the sum of independently reconstructed projection data (i.e. RTA) is the

same with summing all the projection data and then reconstructing them (i.e. MCIR).

On the other hand, with the use of a non-linear algorithm the sum of independently

reconstructed projection data (i.e. RTA) is prone to the non-linearity effects which

are exaggerated due to the low counts present in each gate. Furthermore, figure 4.18

indicates that after introducing motion into both simulation and correction, bias in

MCIR is low. On the other hand, RTA shows increased bias after introducing motion,

suggesting that interpolation errors are introduced during the RTA motion correction.

Even though other studies (Dikaios and Fryer 2011a,b; Thielemans et al. 2006)

reported high bias in RTA, our results show that RTA errors occur from both the
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transformation procedure and the non-linearity characteristics of OSEM (i.e. first

step of RTA). OSEM non-linearity characteristics result in bias of approximately 18%

and 14% for lungs and liver lesions correspondingly, while interpolation errors cause

additional bias of approximately 9% and 6% for lungs and liver lesions, respectively.

Furthermore, it is interesting to note that after introducing motion, MCIR has

marginally even less bias than MCIR without motion. This might be explained by

the use of all data in one reconstruction taking advantage of regions that appear in

different voxels of multiple gates providing denser discretization sampling Dikaios and

Fryer (2012a). Based on this Wallach et al. (2012) enhanced the image resolution

by using motion information in a sequence of respiratory gated datasets representing

different views of the same object.

Although resolution degradation may be caused during RTA due to both low count

statistics and interpolation errors, noise is very small and stabilizes to a constant value,

whereas in MCIR noise becomes progressively greater with the number of iterations. At

a low number of iterations (e.g. 1 or 2), currently the typical setting for clinical PET,

MCIR outperforms since it has a smaller bias than RTA but similar noise, while MCIR

advances along the bias versus standard deviation curve faster than RTA as the number

of iterations increase (figure 4.10).

The different noise characteristics of RTA and MCIR have been reported only by

Thielemans et al. (2006). It has been assumed that the summation of independently

reconstructed gates will result in inferior quality images compared to the use of all

gates in a single reconstruction (Lamare et al. 2007b) and that therefore MCIR will

provide better signal to noise properties than RTA. Similar conclusions were also drawn

by a theoretical study by Asma et al. (2006) using penalized likelihood reconstruction

where it was shown that MCIR would provide lower noise than RTA with or without
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penalization in both methods. Another recent theoretical study based on penalized

likelihood reconstruction by Chun and Fessler (2013) showed that noise in MCIR is

expected to be lower or comparable to noise of RTA. However, the finding of our study

shows that at high number of iterations (e.g. 20) RTA provides superior performance to

MCIR in terms of MSE due to reduced and stabilized noise over iterations (figure 4.11)

indicating that RTA may outperform MCIR in lesion detectability (Thielemans et al.

2006). The single realisation images in figure 4.12 provide a visual demonstration that

at a high number of iterations MCIR may have worse detectability properties than RTA

due to high noise. For a small number of iterations (e.g. 2) MCIR provides superior

performance to RTA for nearly all occasions, while at a high number of iterations

(e.g. 20) RTA provides superior performance to MCIR in terms of MSE (p < 0.001)

(figure 4.14).

Furthermore, in the current simulations no blurring was used to mimic scanner

resolution, something that may result in aliasing and cause variance magnification use

effects that are lessened with RTA via image interpolation. However, the differences

in bias and noise characteristics of RTA and MCIR observed in this chapter are in

agreement with a preliminary study presented in Appendix C that uses more realistic

simulations confirming that the noted effects are indeed a characteristic of the RTA and

MCIR methods and not a detail of the simulations or an aliasing effect.

The choice of the optimal method depends on the figure of merit referred to

(i.e. bias, standard deviation, MSE). RTA causes high levels of overestimation and

underestimation in cold and hot regions, respectively due to bias induced by the non-

negativity constraints and interpolation errors resulting in resolution degradation. It

is found that for a small number of iterations, MCIR outperforms in the aspect of bias

and MSE and has similar noise distribution to RTA. However, for a large number of
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iterations RTA has improved MSE compared to MCIR due to the bias induced from non-

negativity constraints and interpolation smoothing. Consequently, overall this study

indicates that MCIR may provide superior performance overall to RTA providing noise

can be minimized.

A common way to treat noise in clinical practice is early stopping or post-

reconstruction filtering or a combination of early stopping and post-reconstruction

filtering. In this way, MSE performance is improved at the expense of CR and resolution.

In the particular simulations of this study without filtering, MCIR successfully recovers

the true values of all lesions with a CR of more than 90%, whereas after post-

reconstruction filtering CR is more than 65% (figure 4.13). Following smoothing MCIR

outperforms RTA (with the same level of smoothing) in terms of both CR and MSE (p

< 0.001). Without post-reconstruction filtering the MSE values are not affected by the

lesion size: lesions of different size but of the same SUV and background (e.g. lesion

pairs 1/2 and 4/5) show similar performance. After post-reconstruction filtering, the

MSE values are more affected in the small lesions (e.g. lesions 1 and 4).

The aggregate results for the CR and the MSE presented in table 4.5, even if they

are lesion dependent, provide an indication of the trend for the optimal number of

iterations for the specific figures of merit. To minimize the MCIR MSE without post-

reconstruction filtering requires 2 iterations while with post-reconstruction filtering

needs 3 to 5 iterations. In order to maximize CR, MCIR needs 3 to 5 iterations, with

or without post-reconstruction filtering. On the other hand, the best case for optimal

CR and MSE for RTA without or with post-reconstruction filtering is at 2 iterations.

After 2 iterations post-reconstruction filtered MCIR outperforms RTA with or without

post-reconstruction filtering in both MSE and CR. In particular, regarding the optimal

iteration number for each figure of merit: After post-reconstruction filtering MCIR
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results in 42% lower MSE and 4% higher CR than without post-reconstruction filtering

RTA. It must be noted that while post-reconstruction filtering in RTA deteriorates both

MSE and CR on average 25% and 18%, respectively, post-reconstruction filtering in

MCIR deteriorates CR on average 20% but improves the MSE 33%.

The performance of post-reconstruction filtered MCIR is likely to depend on the

smoothing level and the reconstruction algorithm parameters chosen (e.g. number of

iterations). Different smoothing levels and number of iterations may be required based

on the desired contrast recovery or noise level and diagnostic task. For example, the

optimum number of iterations with respect to MSE is at about 5 iterations and CR

at about 5 iterations with the use of an isotropic 4 mm Gaussian filter (table 4.5).

However, MCIR that is stopped early at 2 iterations and post-reconstruction filtered

produces similar results to non filtered RTA in terms of CR. This demonstrates that in

the current clinical protocols for FDG PET acquisitions, motion correction with RTA is

expected to be a valid method.

However, post-reconstruction filtering is expected to be a good approach to

regularize MCIR when the quantification is not the main issue since the noise is

controlled at the expense of quantification accuracy. In order to fully exploit the high

quantification accuracy of MCIR and RTA, methods to minimize noise while retaining

the quantification accuracy may be superior to post-reconstruction filtering such as

introducing appropriate regularization into MCIR reconstruction.

The findings of this study show that introducing regularization into the

reconstruction results in similar performance between the RTA and MCIR in terms of

both bias and noise properties as shown in figure 4.16. However, the performance

of regularization depends on the value of the penalization factor βg as it has been

shown to affect the RTA and MCIR in a different way (figure 4.15). In order to
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obtain similar noise levels between RTA and MCIR the latter requires a higher value

of βg . Another advantage gained by including median-root-prior regularization within

the reconstruction is that RTA bias is decreased for small βg (e.g. 0.1) Tsoumpas

et al. (2013b). The advantages gained by including median-root-prior regularization

within the reconstruction of both motion correction methods are presented in detail in

Tsoumpas et al. (2013b). Further research is needed in better regularisation approaches

(Wang and Qi 2012).

Furthermore, a recent study showed improvements in the performance of RTA

by reducing the bias using registration-weighted motion correction (Dikaios and Fryer

2012a). Another possible way of dealing with the high bias in RTA is using a better

warping function in order to reduce the interpolation errors during the transformation.

In addition, as the voxel size is decreased interpolation errors are expected to be

decreased but this may not be an efficient method to deal with the bias in RTA: as

the voxel size is decreased the low count statistics create an additional limitation.

In this study no scatter or random coincident events were simulated. In the

simulations used for the purposes of this thesis the available method for scatter

correction is the single scatter simulation (SSS) based method with appropriate scaling

to compensate for the multiple scatter coincident events (see Appendix B). In the case

that scatter was included in the simulations, the scatter distribution would be estimated

for each respiratory position and used for the simulations of the projection data for each

respiratory position. However, for the scatter correction, during reconstruction of the

non motion corrected image, the scatter distribution is estimated with non-spatially

correlated emission and attenuation data due to the effect of motion. As a result of this

misalignment the measured data are not aligned to the scatter points in the attenuation

image introducing uncertainties in the scatter distribution. In addition, the effect of
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motion is evident during scaling of the SSS which is based on the tails of the measured

data. If the measured data are not aligned with the attenuation map, the coincidences

might be wrongly measured outside the patient resulting in wrong tails and therefore

wrong scaling factor introducing inaccuracies to the estimated scatter distribution and

consequently uncertainties in the quantification accuracy of the reconstructed image.

On the other hand, during reconstruction of the motion corrected image, with both

RTA and MCIR methods, the scatter distribution corresponding to each respiratory

position is used and therefore the results are not expected to change. In the case of

random events which tend to be uniformly distributed in the FOV the effect of motion

is expected to be small. Increasing the realism of the modelling of the photon detection

by including scatter and random events is expected to affect the results of the effect of

motion on PET but not the differences observed between the two algorithms which is

the point under investigation in this study.

Another limitation of the simulation datasets used for the purposes of this

investigation is that the same projector was used for simulation and reconstruction.

In the case of having a different projector as in the real cases edge artefacts might be

introduced due to the mismatches such as overestimation of the blurring kernel used

for the reconstruction compared to the true system PSF when using a broader blurring

resolution kernel than the actual system PSF. This would result in inaccurate modelling

of the system matrix and therefore it would be more complex to define the origin of

the observed errors when comparing two motion correction methods. The purpose of

this choice was to increase as much as possible the matching of forward projector and

backprojector in order to simplify the problem and isolate the effect of motion to clearly

characterize the discrepancies between the two motion correction methods.

Finally, it is important to mention that in this investigation the same motion fields
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were used both to create the simulations and to correct for motion, and intra-gate

motion was not simulated. However, in reality there will be discrepancies between

actual and estimated motion due to the dynamic acquisition and the inaccuracies of the

motion estimation. Although this is a limitation of this study, using the same motion

fields to both generate and correct the data favours motion correction accuracy and

allows the investigation of reconstruction both methods without being affected from

any errors introduced from motion estimation inaccuracies.

4.5 Conclusion

This investigation has revealed the statistical and computational differences between

RTA and MCIR. The main findings are the substantially different convergence and

statistical performance between them. The choice of the optimal method depends on

the figure of merit referred to (i.e. bias, standard deviation, MSE, CR). RTA causes high

levels of overestimation and underestimation in cold and hot small regions, respectively,

due to the non-linearity of OSEM at low count statistics and interpolation errors

resulting in resolution degradation. It is found that for a small number of iterations

(e.g. 2), MCIR outperforms in the aspect of bias and has similar noise properties to RTA.

On the other hand, for large number of iterations RTA has better MSE than MCIR. This

study indicates that MCIR may provide superior performance overall to RTA, but only

if noise is minimized. However, in current clinical applications where quantification is

not the main objective, RTA can be a practical and simple method to correct for motion.



Chapter 5

Effect of respiratory motion correction and spatial
resolution on lesion detection in PET.

5.1 Introduction

One of the biggest clinical applications of PET in oncology is staging of disease for

which it is necessary to detect small and low uptake lesions with as high a sensitivity

as possible. However, lesion detection in PET is inherently limited by the spatial

resolution of the scanner which underlines the importance of improved resolution

in future scanners (Schäfers 2008a). Despite the improvements in PET scanner

technology, respiratory motion is an unavoidable factor that severely degrades the

effective spatial resolution (Xu et al. 2011) limiting lesion detection performance for

chest and abdominal imaging. Respiratory motion typically causes displacements of less

than 10 mm for lung lesions but this may increase to more than 20 mm for lung and liver

lesions close to the diaphragm (Seppenwoolde et al. 2002; Langen and Jones 2001).

Considering that conventional PET scanners have a spatial resolution of approximately

6 mm, motion of that range effectively reduces the spatial resolution. Resolution is the

limiting factor for detecting small lesions. With the potential improved resolution of

future scanners the effects of motion are likely to become relatively more important

(Daou 2008).

– 176 –
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Despite the interest in the development of respiratory motion correction

methodologies and the benefits of them on quantitative imaging tasks, the improvement

in sensitivity for lesion detection has not yet been rigorously evaluated. A study

by Marache-Francisco et al. (2010) has shown that motion correction can improve

detectability in the liver, but only a small effect is seen in the lungs, and this may

be attributed to the extent of the displacement caused by motion that varies with the

location of the lesions or the accuracy of the motion fields used for correction. Another

recent study by Park et al. (2012) reported significantly better detection performance

for lung lesions with than without respiratory motion correction. However, in both

these studies the extent of the improvement as a function of lesion characteristics was

not investigated while the study was restricted to one respiratory signal (i.e. motion

amplitude and breathing pattern) and assumed conventional PET scanner resolution.

The aim of this chapter is to understand the impact of respiratory motion correction

in PET on detecting lesions in the lungs and liver as a function of lesion size,

tracer uptake, breathing pattern and extent of displacement. Simulated dynamic

PET data were gated based on amplitude and reconstructed with a conventional

image reconstruction method and with respiratory motion compensation using motion

information obtained from gated MRI data. Based on the results of chapter 4 the

motion information was incorporated within the reconstruction (Li et al. 2006; Qiao

et al. 2006; Lamare et al. 2007b) to successfully recover accurate quantitative values

(Polycarpou et al. 2012). The improvement in detectability performance resulting from

motion correction was quantified using ROC methodology with CHO. All evaluations

were performed for both a simulated 6 mm FWHM scanner spatial resolution and for 3

mm FWHM spatial resolution in order to determine the relative importance of motion

correction as new higher resolution scanners are developed.
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5.2 Materials and Methods

5.2.1 Simulated dynamic PET data

For this chapter as a first step, a population of 3D phantoms was generated by adding

spherical lesions to the phantom created in section 3.2.2 with size ranging from 6-

12 mm diameter with a step of 2 mm and lesion to background ratio ranging from

3:1 to 6:1 with a step of 1. For each combination of size and lesion to background

ratio, one phantom was created with lesions manually embedded in the lungs and liver

such that for a given phantom lesions were added to identical positions. Considering

four different lesion diameters and four different lesion to background ratios, sixteen

phantoms were created in total. Finally, each phantom (i.e. 3D FDG distribution) was

convolved with a Gaussian kernel of 6 or 3 mm FWHM in x, y, z to simulate a current

and a better resolution scanner respectively¶.

As a next step, real respiratory signals were combined with an MRI-derived motion

model to simulate multiple dynamic thorax PET datasets acquired from a continuously

moving subject as described in section 3.2.2. Real signals representative of three

breathing patterns expected to be observed during a PET acquisition (Liu et al. 2009)

were used with variable motion amplitude in order to provide a better understanding

of the extent of motion in both normal and extreme breathing cases and define when

motion is important or not. Furthermore, the dynamic PET data were gated based on

amplitude. Dynamic datasets were created for each of the 16 phantoms, 2 simulated

resolutions, 3 breathing types and 9 motion amplitudes (figure 5.1).

¶ Based on that the scanner PSF is commonly approximately modelled by a 3D Gaussian distribution,
the total effect of spatial resolution may be approximated by convolving the FDG distribution with a
Gaussian kernel featuring the same FWHM as the scanner PSF. This approximation may also account for
physical phenomena affecting spatial resolution and not included in the simulation (e.g. positron range,
non-collinearity effect, detector geometry blurring).
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Figure 5.1: Dynamic PET datasets simulation using motion modelling.
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Finally, each gated image was used as the input to an analytic simulation of a PET

acquisition to create projection data as described in section 3.2.3. The projection data

accounted for photon attenuation, scatter (approximately 33% of the total counts) but

not for random coincidences. Statistical (Poisson) noise was added to the projection

data such that the overall counts of the whole dataset correspond to 50 million

unscattered coincidences (i.e. 3 to 5 min 3D PET clinical thorax acquisition). To

add noise in the gated projection data, based on the corresponding amplitude based

histogram (i.e. distribution of the motion amplitudes), each of the eight sinograms

was weighted according to the dwell time at each displacement (i.e. histogram value).

Each histogram value shows the duration that patient spends in the specific breathing

position (i.e. how many times the specific amplitude was repeated in a respiratory

signal). Sixty noise realisations were obtained for each investigated case.

5.2.2 Reconstruction algorithms

Each dataset was reconstructed without and with motion correction. Based on the

results of chapter 4 we showed that incorporating the motion information within

the reconstruction algorithm can successfully recover accurate quantitative values and

therefore the motion corrected images were obtained via the forward / backward

transformation operators in the reconstruction as described in equation (4.4). In all

cases, reconstructions were performed for βg equal to zero (i.e. OSEM) and with twenty

three subsets and for two iterations.

The transformation operators describing the motion between the gated data (i.e.

eight positions of the respiratory cycle) were estimated using voxel-wise deformation

vectors, which were produced by co-registration of MRI gated datasets with a non-linear

registration algorithm based on a composition of hierarchical local affine registrations
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recently developed by Buerger et al. (2011). The transpose motion matrix operation of

MCIR was approximated by warping the image with the inverted motion fields which

were numerically estimated from the same motion vectors (Crum et al. 2007). Finally,

reference datasets (zero motion amplitude) were created by reconstructing only the

reference gate with the same standard count statistics as for the entire gated dataset.

The selection of the reconstruction parameters have been optimized in chapter 4

which showed that for 23 subsets and for a low number of iterations (i.e. 2) as typically

used in the clinic, MCIR outperforms RTA since it has the lowest possible MSE over

all iterations and therefore it is expected to provide an overall good performance.

Consequently, all iterative reconstructions were performed with 23 subsets and for 2

iterations. Each slice consisted of 250×250 pixels with size 2×2 mm each, and the

entire volume consisted of 87 slices with 2 mm thickness.

5.2.3 Detectability performance

Model numerical observers, such as the CHO, can be used to predict human

performance in clinically relevant visual tasks. As described in chapter 2 a CHO

computes a test statistic λCHO over a given image f using the input image and statistics.

In the CHO implementation of this study two classes of images were considered, lesion

present and lesion absent.

Fourier Transformation was applied to transform a given image from the spatial

domain to the frequency domain. The output of the Fourier Transformation was then

multiplied with frequency selective channels with variable frequency bandwidth in

order to extract certain frequencies from the image. The CHO used in this study

consisted of five radially symmetric octave wide frequency channels with 3D processing

(Frey et al. 2002). The frequency and width of the first channel was 1/64 cycles per
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voxel as has been used in previous studies and which has shown good correlation with

human observer performance. The CHO was applied in various adjacent planes with

the central plane containing the centre of the lesion in order to approach the volumetric

viewing scheme implemented by human observers in real clinical studies as discussed

by Chan et al. (1997).

The CHO was applied by estimating first order (mean) and second order

(covariance) statistics using a set of different noise realizations for lesion-present and

lesion-absent reconstructed images (i.e. training images). 60 realisations for each

combination of lesion size and lesion to background ratio were used for lesion present

images, and the same number of images without lesions was created. The images were

processed through a "masking" procedure in order to extract a region of interest (ROI)

based on the known lesion location (i.e. everything outside the extracted ROI was set to

zero). The ROI was spherical and was selected to be 36 mm diameter, three times larger

than the size of the largest size tumour (i.e. 12 mm diameter) in order to account for

sufficient statistical information regarding both the tumour and the background. The

same mask was applied for both lesion present and lesion absent image and the CHO

was applied to this 3D volume and not to the entire image volume.

Both the mean and covariance were calculated using the Microsoft Excel program.

The mean for the lesion present images after transformation through the frequency

selective channels over N noise realizations of images is obtained by:




rL
�

=



U fL
�

=
1

N

N
∑

i=1

U fL,i (5.1)

where fL,i is a signal present image of the i th noise realization and U is the channels

matrix. The angular brackets denote an average over all images.

The mean for the lesion absent images after transformation through the frequency
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selective channels over N noise realizations of images is obtained by:




rB
�

=



U fB
�

=
1

N

N
∑

i=1

U fB,i (5.2)

where fB,i is a signal absent image of the i th noise realization.

In this implementation there is the same number of images with lesions and images

without lesions. Under the assumption that the two classes have the same probability

of occurrence the composite covariance matrix, KU , is estimated by averaging the two

covariance matrices for the lesion present and lesion absent data after transformation

through the frequency selective channels as follows:

Ku=
0.5

N−1

N
∑

i=1

�

rL,i−



rL
�

��

rL,i−



rL
�

�T
+

0.5

N−1

N
∑

i=1

�

rB,i−



rB
�

��

rB,i−



rB
�

�T
(5.3)

For a given image after transformation from the image domain to the frequency

domain the Fourier transformed image passes through five frequency channels. The

output of the channels is processed through the prewhitening operation (K−1
U ) and

then multiplied by the ensemble difference of the means of the data,



rB
�

=



U fB
�

and



rL
�

=



U fL
�

, a process that can be considered as matched filtering of the data to

produce finally the test statistic (λCHO) (figure 5.2). The λCHO as described in chapter 2

(2.26) is given by:

λCHO( f ) =
�


rL
�

−



rB
��T K−1

U r (5.4)

Each reconstructed image was processed through the frequency channels to esti-

mate the test statistic λ of lesion present or lesion absent. The test statistic values were

used as continuously distributed to create multiple receiver operating characteristic

(ROC) curves (Swensson 1996; Metz 1986). Using the software Web-based calculator

for ROC curves (http://www.rad.jhmi.edu/jeng/javarad/roc/JROCFITi.html) an ROC
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curve was fitted to the given data using a maximum-likelihood technique of a binormal

model. This software is a freely available web version of LABROC package developed

by Metz et al. (1988). It creates ROC curves and provides estimation of the area under

each ROC curve (AUC) and its standard error using a non-parametric approximation.

The significance of the differences between two different ROC curves was statistically

tested using the the method of Hanley and McNeil (1982) implemented in the Vas-

sarStats software (http://vassarstats.net/).
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Figure 5.2: Channelized Hotelling observer procedure: The image is transformed from the image domain
to the frequency domain. The Fourier transformed image passes through five frequency channels. The
output of the channels is processed through prewhitening and matched filtering to produce the test
statistic (λ). The value of the test statistic over a given image can be compared to a threshold to derive
the decision of the CHO; if the value is below the threshold, the given image is classified as background
images without lesion or if it is above the threshold, it is classified as having a lesion.

The AUC was calculated as the figure of merit of the detectability performance.

An AUC value of 0.5 represents random detectability while 1 represents perfect

detectability. An ROC curve was created for each case investigated; 2 regions of interest

(i.e. lungs and liver) ×2 reconstruction methods (without or with motion correction)

×2 scanner resolution (i.e. 3 mm and 6 mm FWHM) ×4 size values ×4 tracer uptake

values (i.e. 3:1-6:1) ×9 lesion motion amplitudes ×3 breathing types. In addition,

a ROC curve was created for the reference image for 2 regions of interest (i.e. lungs
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and liver) ×4 size values ×4 tracer uptake values (i.e. 3:1-6:1). To derive the ratings

and generate the ROC curves, the number of noise realisations used was again 60

realisations for each case investigated.

The detection performance using the CHO implemented in this study was

compared with that obtained using human observers. Two observers participated in

this study. The observers had to report the position of any suspected lesion and their

confidence in its being present at that position on a scale from 1 to 6 (i.e. 1: definitely

no lesion, 2: probably no lesion, 3: possibly no lesion, 4: possibly lesion, 5: probably

lesion, 6: definitely lesion). The volumetric visualization software tool Amide (Loening

and Gambhir 2001) was used. The observer evaluated reconstructed images with or

without motion correction for the datasets of 20 mm motion under breathing of type-C.

The results were analysed with the AUC calculated in a similar way as in the CHO study.

5.3 Results

5.3.1 Impact of respiratory motion on lesion detectability for three breathing types

For scanner resolutions of 6 mm and 3 mm FWHM figure 5.3 shows examples of coronal

planes of lesion-present cases after reconstruction of the reference image and without

correction of 20 mm motion for three breathing types. Each row in the figure shows

different slices to emphasize a different lesion. As indicated by arrows the first and

third rows show liver lesions whereas the second and fourth rows show lung lesions.

The displayed lesions have a diameter of 8 mm with a lesion to background ratio of

3:1 and 6:1. Lesions are easily detectable in the reference images but hardly or not

detectable in images with motion. In the reference images, for both 3 mm and 6 mm

FWHM PET resolution scanners, the lesions are easily detectable. On the other hand,

in the images with motion, for the 6 mm FWHM scanner resolution it is difficult or
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virtually impossible to detect the tumours whereas by increasing the resolution to 3 mm

FWHM some lesions are recovered. However, lesions in images representing breathing

type-A are more easily detectable compared to images representing breathing type-C

especially for scanner resolution of 3 mm FWHM.

Figure 5.4 presents the effect of motion on lesion detection performance as

measured by the AUC plotted as a function of motion amplitude. The relationship was

investigated for three breathing patterns and for approximate scanner resolutions of 6

mm and 3 mm FWHM. The results are displayed for the liver lesions of 8 mm diameter

and for low (i.e. 3:1) and high (i.e. 6:1) lesion to background ratio values. For all

the aforementioned graphs a zero motion amplitude is also presented as the result of

the reference reconstructed image. Considering a current (i.e. 6 mm FWHM) PET

resolution, motion of 20 mm for small lesions (e.g. 8 mm diameter) and high (i.e. 6:1)

lesion to background ratio may result in a degradation of detectability performance of

up to 16% reduction in AUC under breathing of type-A, up to 28% for type-B and up to

30% for type-C. Similarly, for high PET resolution (i.e. 3 mm FWHM) motion of 20 mm

for small lesions (e.g. 8 mm diameter) and low (i.e. 3:1) lesion to background ratio

may result in a degradation of detectability performance of up to 21% under breathing

of type-A, up to 29% for type-B and up to 37% for type-C.
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Figure 5.3: Visual demonstration of the effect of respiratory motion blurring on lesion detectability:
Coronal planes after reconstruction of the reference image and prior to correction (No-MC) of 20
mm motion under breathing of type-A, type-B and type-C. The lesions, indicated with arrows, are
characterised with a diameter of 8 mm with a lesion to background ratio of: (a) 3:1 and (b) 6:1. The
results are displayed for PET scanner resolution of 6 mm and 3 mm FWHM. The lesions are easily
detectable in the reference image but hardly or not detectable in images with motion.
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Figure 5.4: Effect of motion on area under the ROC curve (AUC) estimated using Channelized Hotelling
observer as a function of the motion amplitude under breathing of type-A, type-B and type-C. The results
are displayed for the liver lesions of 8 mm diameter and for 3:1 and 6:1 lesion to background ratio values.
The impact of motion in lesion detection is higher for respiration with higher amplitudes and long-term
variability (i.e. type-B and type-C) as compared with longer quiescent motion periods (i.e. type-A).

5.3.2 Impact of respiratory motion correction on lesion detectability as a function of

lesion characteristics

The impact of motion correction on lesion detectability is presented for type-C which is

the case expected to benefit more from motion correction as shown in section 5.3.1.

For scanner resolutions of 6 mm and 3 mm FWHM figure 5.5 shows examples of

coronal planes of lesion-present cases after reconstruction prior to motion correction

and after motion correction of 20 mm motion under breathing of type-C. As indicated

by arrows the first and third rows show liver lesions whereas the second and fourth

rows show lung lesions. The displayed lesions have a diameter of 8 mm with a lesion
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to background ratio of 3:1 and 6:1. Lesions are easily detectable in the images after

motion correction but hardly or not detectable in images with motion.
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Figure 5.5: Visual demonstration of the effect of respiratory motion correction on lesion detectability:
Coronal planes after reconstruction prior to motion correction (No-MC) and after motion correction (MC)
of 20 mm motion under breathing of type-C. The lesions, indicated with arrows, are characterised with
a diameter of 8 mm with a lesion to background ratio of: (a) 3:1 and (b) 6:1. The results are displayed
for PET scanner resolution of 6 mm and 3 mm FWHM. The lesions are easily detectable after motion
correction but hardly or not detectable in images with motion.
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Figure 5.6 presents the performance in lesion detection before and after motion

correction as a function of lesion size and tracer uptake. For each lesion size (i.e. 6

to 12 mm diameter) and lesion to background ratio (i.e. 3:1 to 6:1) the detection

performance as measured by the AUC is plotted with respect to the motion amplitude

without motion correction (No-MC) and with motion correction (MC) under breathing

pattern of type-C. The results are displayed for scanner resolutions of 6 mm and 3 mm

FWHM. Similar results have been observed for the lung lesions and only the results for

the liver lesions are shown.

As the motion amplitude becomes larger than the scanner resolution motion

correction significantly increases the detectability performance for small (less than

10 mm diameter) lesions (p-value less than 0.01). The highest gain in detection

performance after motion correction is achieved for small (less than 10 mm diameter)

or low tracer uptake (3:1) lesions. In particular, motion correction showed an up to 42%

and 51% improvement in AUC for 6 mm and 3 mm FWHM PET resolution respectively.

For example lesions of 8 mm and 3:1 lesion to background ratio for 3 mm FWHM

scanner PET resolution and 20 mm motion are just detectable prior to motion correction

(AUC= 0.63) whereas after correction they may be easily detected (AUC=0.95). On

the other hand, the detection performance was only moderately changed with motion

correction using a large lesion size since as the lesion size is increasing the susceptibility

to motion blurring is decreased. In particular, lesions with diameter larger than 12 mm

have negligible (i.e equal to 9% for 3 mm FWHM resolution and 15% for 6 mm FWHM

resolution) reduction in AUC with motion even for low tracer uptake and high motion

amplitudes (i.e. 20 mm) and were perfectly detected even with motion, indicating that

in this case there is no apparent advantage on detectability with motion correction even

for respiration characterised by randomly varying amplitude (i.e. type-C).
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Figure 5.6: Area under the ROC curve (AUC) estimated using Channelized Hotelling observer as a
function of the motion amplitude after reconstruction prior to motion correction (No-MC) and after
motion correction (MC) under breathing of type-C. The results are displayed for PET scanner resolution
of 6 mm and 3 mm FWHM and for liver lesions. Motion correction significantly increases the detectability
performance for small lesions (less than 10 mm diameter).
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5.3.3 Improvement in lesion detectability with respiratory motion correction and

scanner resolution

Figure 5.7 shows the lesion detection performance as measured by the AUC with the

standard errors for a lesion motion amplitude of 20 mm and breathing pattern of type-C.

The results are given for scanner resolutions of 6 mm and 3 mm FWHM without motion

correction (No-MC) and with motion correction (MC). The p-values of the statistical

significance test of the differences between prior and after motion correction are also

given. For a p-value less than 0.01 the result is considered statistically significant.

After motion correction the 3 mm FWHM resolution outperforms the 6 mm FWHM

resolution in terms of lesion detection performance. For example, liver lesions of 8

mm diameter with low (i.e. 3:1) lesion to background ratio are not detectable with

a 6 mm FWHM resolution scanner without or with motion correction (AUC=0.51-

0.52) whereas with a 3 mm FWHM resolution scanner they are hardly detectable

(AUC=0.63) without correction but almost perfectly detectable if motion is corrected

(AUC=0.95). The combination of increased scanner resolution and motion correction

results in substantial improvement in detectability. For the same cases as in figure 5.7

the plotted ROC curves are shown in figure 5.8.

Figure 5.9 and figure 5.10 show the lesion detection performance as measured by

the AUC for two human observers. The evaluated datasets as in figure 5.7 include a

lesion motion amplitude of 20 mm and breathing pattern of type-C. The results are

given for scanner resolutions of 6 mm and 3 mm FWHM without motion correction

(No-MC) and with motion correction (MC).
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Figure 5.7: Area under the ROC curve (AUC) with standard errors estimated using Channelized Hotelling
observer for liver lesions with motion amplitude of 20 mm under breathing of type-C after reconstruction
prior to motion correction (No-MC) and after motion correction (MC) for PET scanner resolutions of 6
mm and 3 mm FWHM. The p-values of the statistical significance test of the differences between prior
and after motion correction are also given. After motion correction the 3 mm FWHM resolution has
superior detection performance than the 6 mm FWHM resolution. The benefit of increasing the scanner
resolution is small unless motion correction is applied.
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Figure 5.8: ROC curves estimated using Channelized Hotelling observer for liver lesions with motion
amplitude of 20 mm under breathing of type-C after reconstruction prior to motion correction (No-
MC) and after motion correction (MC) for PET scanner resolutions of 6 mm and 3 mm FWHM. After
motion correction the 3 mm FWHM resolution has superior detection performance than the 6 mm FWHM
resolution. The benefit of increasing the scanner resolution is small unless motion correction is applied.
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Figure 5.9: Area under the ROC curve (AUC) obtained for human observer A. The results are presented
for liver lesions with motion amplitude of 20 mm under breathing of type-C after reconstruction prior to
motion correction (No-MC) and after motion correction (MC) for PET scanner resolutions of 6 mm and
3 mm FWHM.
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Figure 5.10: Area under the ROC curve (AUC) obtained for human observer B. The results are presented
for liver lesions with motion amplitude of 20 mm under breathing of type-C after reconstruction prior to
motion correction (No-MC) and after motion correction (MC) for PET scanner resolutions of 6 mm and
3 mm FWHM.
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5.4 Discussion

5.4.1 Impact of respiratory motion on lesion detectability for three breathing types

Visual interpretation of figure 5.3 shows blurring and inferior lesion contrast in PET

reconstructed images with motion compared to the motion-free reference images.

Lesions in the lungs and liver may be hardly detectable in the images with motion

whereas they are clearly detectable in the reference image. However, the detectability

performance differs among the three breathing pattern types; motion blurring is more

important for acquisitions under respiration with long-term amplitude variability (i.e.

type-B and type-C) as compared with longer quiescent motion periods (i.e. type-A).

The edge artefacts observed in the images with motion compared to the motion-free

images are a consequence of emission and attenuation map mismatches (figure 5.3)

that are particularly severe at the boundaries between low and high attenuating media

such as in the cases of liver and lung. These edge artefacts are not visible after applying

motion correction as illustrated in figure 5.5.

Quantitative analysis of lesion detection performance as measured by the AUC

presented in figure 5.4 confirms the visual observation and shows the extent of the

impact of motion blurring in detectability among the different breathing types. For any

breathing type, respiratory motion degrades the detectability performance, with the

greatest impact of motion blurring observed for type-C whereas the least is observed

for type-A; for 20 mm motion amplitude the degradation of AUC compared to the zero

motion amplitude equals 16% for the type-A, 28% for the type-B and 30% for the

type-C. The differences among the three breathing pattern types are expected since

respiration becomes progressively more irregular from type-A to type-C. The patients in

type-A tend to breathe to a similar end-expiration location and spend a higher amount
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of time near that location while patients with type B respiration have similar inspiration

and expiration positions but spend similar amounts of time in inspiration and expiration

locations. On the other hand, patients with type-C respiration cycle breathe irregularly

with long term variation of the breathing cycles length and amplitudes and therefore

type-C is expected to have the highest motion content in the acquired data with type A

the lowest. However, it must be noted that approximately 60% of patients are expected

to breathe with a type-A pattern whereas only 20% of patients are expected to breathe

with type-C.

5.4.2 Impact of respiratory motion correction on lesion detectability as a function of

lesion characteristics

Comparing the images in figure 5.5 and the various plots in figure 5.6 we are able to

see the difference resulting from respiratory motion correction as lesion size and tracer

uptake increase. Motion correction significantly increases the detectability performance

with the greatest improvement achieved for the smaller lesions and lesions with low

metabolic activity as long as the detectability was not limited by the scanner resolution.

Large diameter or high tracer uptake lesions are less subject to motion and more easily

detectable yielding little improvement by using motion correction. This is expected due

to the fact that motion blurring spreads out and decreases the apparent tracer uptake

(i.e. lesion contrast) (Liu et al. 2009) and therefore smaller lesions which are more

susceptible to the PVE. Consequently the required tracer uptake in order to detect the

lesions varied with the motion amplitude and lesion size.

Another feature of the results in figure 5.6 is that motion correction does not

fully recover the best possible outcome of a scan without motion and the detection

performance often strongly depends upon the motion amplitude. This might be
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attributed to the limited number of gates used as each gate is representative of a

specific moment of the motion cycle, the different gates have different motion content

especially under breathing with high variability between the different breathing cycles.

Consequently, a higher number of gates, or real time motion correction, may be

required to limit the content of motion in each gate and capture extreme phases such

as a deep inspiration or expiration. In the current study 8 gates have been used as is

common in clinical practice. However, the optimal number of gates is expected to be

related with the scanner resolution and motion amplitude (Dawood et al. 2009) but

this is beyond the scope of this study. Another explanation is the possible inaccuracies

of the estimated motion fields since different motion fields were used to create the

simulations and to correct for motion. Simulations were derived using motion fields for

each point in real-time respiratory curves (i.e. 1800 points) whereas motion fields for

correction were derived from registration of gated data (i.e. 8 gates). Therefore the

results are prone to any errors in the motion estimation (e.g. interpolation) introduced

by the registration algorithm.

5.4.3 Improvement in lesion detectability with respiratory motion correction and

scanner resolution

The results indicate that in order to take advantage of the potential increased spatial

resolution of future PET scanners, it becomes important to account for respiratory

motion assuming that acquisition protocols remain largely similar to those currently

used and investigated in this study. In particular, considering a small liver tumour

for the current standard of 6 mm FWHM PET resolution (i.e 6 mm lesion diameter)

even if it has high tracer uptake (i.e. 6:1) it can not be detected due to the inherently

limited resolution (AUC=0.5). However, although it is likely to be recovered with a next
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generation scanner of 3 mm FWHM (i.e. AUC=0.88 for zero motion amplitude) the

motion effect limits this benefit (i.e. AUC=0.57 in the non motion corrected images).

Similarly, considering a very low tracer uptake (3:1) of an 8 mm diameter liver tumour,

it is not detectable with a 6 mm FWHM resolution (AUC=0.51) whereas although it is

likely to be recovered with a next generation scanner of 3 mm FWHM resolution (i.e.

AUC=1 for zero motion amplitude) the motion effect limits this benefit (i.e. AUC=0.63

in the non motion corrected images). Consequently, improving spatial resolution allows

not only the detection of smaller tumours but also the detection of tumours with low

metabolic activity and contrast (i.e. metastases) - the detection of small and lower

uptake lesions may prove important for early detection and staging.

To the best of our knowledge within the current literature there are only limited

studies showing the impact of motion correction for different parameters. Marache-

Francisco et al. (2010); Park et al. (2012) showed that for conventional PET scanner

resolution (i.e. 6 mm FWHM) motion correction can improve detectability but both

studies did not study the effect of the lesion characteristics or extent of motion or

resolution.

Although clinically the respiratory cycle can be divided into a number of gates

according to the phase or amplitude of respiration, in this investigation the gating was

based only on amplitude. As it was described in chapter 2 previous studies showed that

phase and amplitude based gating may result in similar performance under regular

breathing while for breathing when the phase and amplitude of the motion change

over time the amplitude based gating may outperform phase based gating. This is due

to that with the phase-based technique the acquired data are stored to gates based on

their time phase regardless of the depth of breathing and therefore data with the same

phase range but with different amplitudes may be combined together in the same gate.



Effect of respiratory motion correction and spatial resolution on lesion detection in PET 201

Consequently, the phase gating may not reflect the motion amplitude for all respiratory

cycles while the amplitude-based gating scheme splits the respiratory cycle with respect

to the amplitude of the signal and only the inspiration phases with the same breathing

magnitude will be added together.

Similar trends were observed on the detectability performance of the two human

observers (figure 5.9 and figure 5.10). In most of the cases the AUC estimated with

the CHO (figure 5.7) has been shown to be in good agreement with human observers

(figure 5.9 and figure 5.10) except from some cases where the CHO detectability

performance was higher than the human observer performance. In particular, without

motion correction for a 3 mm FWHM resolution for a 10 mm diameter liver tumour of

3:1 lesion to background ratio both human observers achieve an AUC equal to 0.75 and

the CHO achieves an AUC equal to 0.82 while for a tumour of 5:1 lesion to background

ratio the human observers achieve an AUC equal to 0.83 and 0.87 respectively and the

CHO achieves an AUC equal to 0.97. The increased detectability performance achieved

using CHO was also observed in previous studies (Gifford et al. 2000) and has been

attributed to the fact that in the CHO a known signal is superimposed on a known

background and therefore it is likely that the contrast required for human observer is

higher than CHO. Although the numerical observer was generally in good agreement

with human observers, the observers were not trained and therefore the results may

be artificial. As a future step a broader population of expert human observers could be

used to evaluate the results.

There are a number of limitations to the current study that should be considered.

Firstly, all results are shown at a low number of iterations (i.e. 2) of image

reconstruction with a standard OSEM algorithm as used in clinical practice. Using

other reconstruction parameters (i.e. number of iterations and subsets) (Morey and
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Kadrmas 2013) and advanced techniques such as time of flight and point spread

function modelling in image reconstruction (Alessio et al. 2010; Tong et al. 2010) or

smoothing filters and incorporating regularisation (Wang and Qi 2012; Tsoumpas et al.

2013b) may provide better image quality and could affect detectability performance

therefore limiting any possible positive false findings that might occur due to the noise

observed in OSEM reconstructed images. However, this is beyond the scope of the

current study. This study was based on a simulation for a 3 min acquisition which is the

current protocol in clinical practise. However, for a longer study (e.g. 60 min) motion

variability is more likely to occur. This is probably the case when you do dynamic

imaging of one bed position. However, in cases where you have multiple bed positions

multiple times (Karakatsanis et al. 2013) for acquisitions with continuous bed motion

that will last longer than 5 min motion and variability of breathing will be an issue to

be solved.

The motion model used in this thesis has certain limitations and is in general

a simplification of the actual real motion observed in patients. Real motion

is characterized with intracycle and intercycle variability. Intracycle variability

characterizes the differences observed between the trajectories during inspiration and

the trajectories during expiration which is addressed in the motion model used in

this investigation. Intercycle variability is divided in two parts. The first part is the

variation in the amplitudes that are observed during breathing which is also addressed

in the motion model while the second part is the variation in relationship between

the surrogate value and the actual motion (i.e. different motion may correspond

to the same surrogate value), something that can not be addressed in the specific

implementation which has a single motion field for a single surrogate value.

Another limitation is the spherical shape of the lesions and the homogeneity of the
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background uptake of the simulations simplifying the detection task especially in liver.

In addition, bulk motion during acquisition (i.e. unpredictable random patient motion)

was not taken into account (Kolbitsch et al. 2012). Finally, the numerical observer

was applied in the centre of the lesion eliminating the possibility of false positives in

surrounding regions.

5.5 Conclusions

This chapter indicates that respiratory motion correction has a high impact on lesion

detectability. Patients with large quiescent motion periods are less subject to the effects

of motion than patients with regular breathing cycles or with long-term variability

in respiratory cycles and higher motion amplitudes. Furthermore, lesion detection

performance depends on the lesion size, position and tracer uptake. Motion blurring

particularly influences small size (less than 10 mm) or low metabolic activity lesions

highlighting that respiratory motion correction could play a key role in detecting

marginally detectable lesions. Finally, this chapter underlines the importance of

correcting for respiratory motion in order to benefit from the potential improved spatial

resolution of future PET scanners.



Chapter 6

General summary and conclusions
Despite the advancement in the PET reconstruction methods and scanner

technology, patient respiratory motion is an inevitable factor during acquisition

that degrades image quality and resolution. In addition, following the continuous

improvements in PET spatial resolution, subject motion is now an important source

of resolution degradation, thus motion correction is a major challenge in PET imaging

research. The aim of this thesis was to assess respiratory motion correction in terms

of its quantitative accuracy and detectability performance in order to determine its

potential for improved and early cancer diagnosis.

Two of the most common motion correction approaches that make use of all gated

measured data, are RTA and MCIR. The two approaches differ in how motion correction

is applied to the gated data. With RTA it is applied after reconstruction of the gated data

and with MCIR it is applied during reconstruction. Both RTA and MCIR methods require

knowledge of the subject motion and a key aspect of motion correction is the accurate

measurement of internal organ motion. The recent development of whole body PET-

MRI scanners might provide a potential solution for motion correction since internal

organ motion could be measured concurrently with PET using MRI. In this thesis based

on the use of 4D simulated PET data using real MRI data, respiratory motion correction

is investigated with MRI-derived motion fields as could be acquired using simultaneous

PET-MRI.

– 204 –
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One of the aims of this thesis was to understand the behaviour of applying motion

correction during or after reconstruction of the gated data. A statistical analysis was

performed to characterise the bias and variance of the two methods. The results in

chapter 4 have shown that although both approaches improve the image quality, they

have different convergence and statistical performance. The extent of the different

behaviour depends on the figure of merit used.

In terms of quantification accuracy, incorporating the motion correction of the

gated PET data within the reconstruction process has been found to be successful

with recovery of more than 90% of the true values of all regions even for lesions of

small diameter (i.e. 10 mm). On the other hand, applying motion correction after

reconstruction of the gated data using the RTA method causes resolution degradation

as a result of high levels of overestimation and underestimation in cold and hot small

regions respectively. A comprehensive evaluation of datasets with or without the

occurrence of motion has shown the non-linearity of the OSEM at low counts statistics

and interpolation errors as the main sources of the bias observed in RTA.

In terms of noise characteristics, the errors introduced during RTA motion

correction have found to act as a low pass filter yielding a smoothed final motion

corrected image with low and stabilized noise to a constant value after a large number

of iterations. In contrast, MCIR noise becomes progressively greater with the number

of iterations.

A common way to treat noise in clinical practice is early stopping (i.e. small

number of iterations) or post-reconstruction filtering or a combination of both. In

this thesis post-reconstruction filtered RTA and MCIR have been compared. Post-

reconstruction filtered MCIR outperforms RTA (with the same level of smoothing) in

terms of both quantification accuracy and noise properties for any iteration number
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even for the small lesions (10 mm diameter) which are affected more by smoothing.

For a combination of post-reconstruction filtering and early- stopping (e.g. 2 iterations)

MCIR produces similar results to unfiltered RTA. This demonstrates that in the current

clinical protocols for 18F-FDG PET acquisitions, motion correction with RTA is expected

to be a valid method.

Although smoothing improves the noise properties, it limits the spatial resolution

and quantification accuracy. The performance of post-reconstruction filtered MCIR

depends on the smoothing level and the reconstruction algorithm parameters chosen

(e.g. number of iterations). Different smoothing levels and number of iterations

may be required based on the desired quantification accuracy or noise level and

diagnostic task. This indicates that to fully exploit the high quantification accuracy

of MCIR and RTA, methods to minimize noise while retaining the quantification

accuracy may be superior to post-reconstruction filtering. In parallel with this work

a study showed that introducing appropriate regularization into MCIR reconstruction

may be the optimal choice for reconstruction with respect to quantification accuracy

(Chun and Fessler 2013). As a further step chapter 4 provides a demonstration

that introducing appropriate regularization to MCIR may be the optimal choice with

respect to quantification accuracy. The results demonstrate that including median-root

prior regularization within the reconstruction of RTA and MCIR methods can improve

noise properties and also maintain the quantification accuracy. The performance of

regularization depends on the value of the penalization factor and it has been shown to

affect the RTA and MCIR in a different way (i.e. a stronger penalization is required for

MCIR than RTA to achieve similar noise level).

Consequently, MCIR provides superior performance overall to RTA when noise

is minimized. However, in current clinical applications where quantification is not
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the main objective, RTA can be a practical and simple method to correct for motion

especially when tumour quantification is not the main task.

As a next step in this thesis, the impact of motion correction on lesion

detectability in the lungs and in the liver was investigated using the MCIR method

with early stopping, which was shown to provide optimal image quality. Respiratory

motion correction leads to visually enhanced reconstructed PET images depicting

better detectability performance (chapter 5). The results demonstrate that lesion

displacement due to respiration larger than twice the scanner resolution has a high

impact on lesion detectability. Lesions in the lungs and liver may be hardly detectable

without motion correction. However, patients with large quiescent motion periods

are less subject to the effects of motion than patients with regular breathing cycles

or with long-term variability in respiratory cycles and higher motion amplitudes.

The differences in detectability performance observed among the different breathing

patterns indicates that the effect of motion depends on the pattern and extent of

breathing and therefore if a motion model is used to estimate the motion information

for motion correction, it must be either patient specific or a generic population based

model able to model the breathing variability among the patients (McClelland et al.

2013).

Furthermore, chapter 5 shows that lesion detection performance depends on

the lesion size, position and tracer uptake. Motion blurring particularly influences

small size (less than 10 mm) or low metabolic activity lesions (3:1 lesion to

background ratio) highlighting that respiratory motion correction could play a key role

in detecting currently undetectable lesions. Motion correction significantly increases

the detectability performance especially for small lesions and lesions with low metabolic

activity on which even for a small amount of motion (i.e. 6 mm) motion correction
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seems essential for their detection. Large diameter or high tracer uptake lesions are

less subject to motion and more easily detectable yielding little improvement by using

motion correction and therefore the required tracer uptake in order to detect the lesions

varied with the motion amplitude and lesion size.

Finally, in order to take advantage of the potential increased spatial resolution of

future PET scanners, it becomes important to account for respiratory motion assuming

that acquisition protocols remain largely similar or longer to those currently used and

investigated in this study. Improving spatial resolution allows not only the detection

of smaller tumours but also the detection of tumours with low metabolic activity and

contrast (i.e. metastases) - the detection of small and lower uptake lesions may prove

important for early detection and staging.

This thesis is focused on one radiotracer (FDG) because it is currently the most

used. However, the methodology is applicable to different types of body motion as

well as other imaging modalities such as single photon emission computed tomography

(SPECT) and other radiotracers.

In this thesis concurrent PET data were simulated from dynamic MRI data as

expected from a simultaneous PET-MR scanner. In the future the findings of this thesis

could be evaluated using clinical data from a whole body PET-MRI scanner. The realism

of the simulations was limited by not simulating the positron range in the MRI. In

addition, in real studies limitations in the MRI acquisition process such as magnetic

field inhomogeneities may affect the correlation of PET and MRI data. Another aspect of

using simultaneous PET/MRI acquisition is that during spatial and temporal registration

the PET images might not be perfectly aligned with the MRI images. To eliminate any

spatial or temporal inconsistencies between PET and MRI data Balfour et al. (2013)

proposed to correct PET data using motion fields derived from a combination of the
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information of an MRI derived motion model with the PET.

In addition, for the comparison of the two motion correction algorithms in

chapter 4 the same motion fields were used both to create the simulations and to

correct for motion, and intra-gate motion was not simulated in order to investigate

the two methods without being affected from any errors introduced from motion

estimation inaccuracies. Extension of this thesis can evaluate the accuracy of the

motion estimation and how it affects the performance of the two motion correction

methods. Motion estimation inaccuracies might propagate differently in the two motion

correction methods and this aspect needs further investigation.

Results on introducing regularization into the reconstruction for motion correction

are promising (chapter 4). However, this thesis has been focused on the use of one

type of regularization (i.e. median-root prior). Further research is needed in better

regularisation approaches (Wang and Qi 2012). In particular, a recent study by Chun

and Fessler (2012b) showed that for conventional quadratic regularization motion

can lead to non-uniform and anisotropic spatial resolution in areas with different

displacement due to motion affecting mainly the quantification of small tumours. As

a next step motion correction can be further investigated by selecting regularization

parameters that can achieve isotropic and uniform spatial resolution in areas with

different displacement due to motion. Finally, extension of this thesis can evaluate the

impact of respiratory motion correction on image quality using advanced techniques

such as time of flight and point spread function modelling in image reconstruction that

are expected to provide better image quality (Alessio et al. 2010; Tong et al. 2010).
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Appendix A. PET simulated data

Simulations and reconstructions have been performed using the open source
software library for Tomographic Image Reconstruction (STIR) (Thielemans et al.
2012). STIR consists of functions, classes and utilities for different imaging modalities
such as PET. In STIR, image and projection data can be manipulated and images can be
reconstructed. STIR provides the flexibility to simulate cylindrical scanners of different
size and implement new reconstruction algorithms (Jacobson et al. 2000).

STIR is based on the use of utilities with command-line functionality. The user can
manipulate the function of utilities by selecting different components in text files with
Interfile-like syntax known as parameter files.

The implementation details of the analytic simulations as used in this thesis are
described in this appendix.

A1. Scanner settings

The parameter file used to simulate the scanner:

INTERFILE :=
name of data file := PhilipsGemini.s
originating system := GeminiTF
GENERAL DATA :=
GENERAL IMAGE DATA :=
type of data := PET
imagedata byte order := LITTLEENDIAN
PET STUDY (General) :=
PET data type := Emission
applied corrections := None
number format := float
number of bytes per pixel := 4
number of dimensions := 4
matrix axis label [4] := segment
matrix size [4] := 29
matrix axis label [3] := view
matrix size [3] := 322
matrix axis label [2] := axial coordinate
matrix size [2] := 5,11,17,23,29,35,41,47,53,59,65,71,77,83,
87,83,77,71,65,59,53,47,41,35,29,23,17,11,5
matrix axis label [1] := tangential coordinate
matrix size [1] := 322
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minimum ring difference per segment := -43,-40,-37,-34,-31,-28,-25,-22,-19,
-16,-13,-10,-7,-4,-1,2,5,8,11,14,17,20,23,26,29,32,35,38,41
maximum ring difference per segment := -41,-38,-35,-32,-29,-26,-23,-20,-17,
-14,-11,-8,-5,-2,1,4,7,10,13,16,19,22,25,28,31,34,37,40,43
Scanner parameters:=
Scanner type := GeminiTF
Number of rings := 44
Number of detectors per ring := 644
Inner ring diameter (cm) := 90.034
Average depth of interaction (cm) := 1.5
Distance between rings (cm) := 0.4
Default bin size (cm) := 0.4
View offset (degrees) := 0
Maximum number of non-arc-corrected bins := 322
Default number of arc-corrected bins := 287
Number of blocks per bucket in transaxial direction := 6
Number of blocks per bucket in axial direction := 1
Number of crystals per block in axial direction := 44
Number of crystals per block in transaxial direction := 23
Number of detector layers := 1
Number of crystals per singles unit in axial direction := 44
Number of crystals per singles unit in transaxial direction := 23
end scanner parameters:=
effective central bin size (cm) := 0.226921
image scaling factor[1] := 1
data offset in bytes[1] := 0
number of time frames := 1
END OF INTERFILE :=
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A2. Forward projector settings

The forward projector settings were the following:

Maximum absolute segment number to process: 14
Shift z-origin (in pixels): 0
projector pair type := Matrix
Projector Pair Using Matrix Parameters :=
Matrix type := Ray Tracing
Ray Tracing Matrix Parameters:=
use a slightly better approximation than simple ray tracing
disable caching := 0
store only basic bins in cache := 1
restrict to cylindrical fov := 1
number of rays in tangential direction to trace for each bin := 10
use actual detector boundaries := 1
do symmetry 90degrees min phi := 0
do symmetry 180degrees min phi := 1
do symmetry swap segment := 1
do symmetry swap s := 1
do symmetry shift z := 1
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A3. Reconstruction settings

The following reconstruction parameter file is compatible to the local STIR version
(based on 2.1 version). A variation is now available with STIR 3.0 and more
information can be found in STIR user’s guide documentation.

OSMAPOSLParameters :=
objective function type:=PoissonLogLikelihoodWith
LinearModelForMeanAndGatedProjectionDataWithMotion
PoissonLogLikelihoodWithLinearModelFor
MeanAndGatedProjectionDataWithMotion Parameters:=

input filename prefix := INPUTFILE
maximum absolute segment number to process := -1
zero end planes of segment 0:= 1
projector pair type := Matrix
Projector Pair Using Matrix Parameters :=
Matrix type := Ray Tracing
Ray Tracing Matrix Parameters:=
use a slightly better approximation than simple ray tracing
disable caching := 0
store only basic bins in cache := 1
restrict to cylindrical fov := 1
number of rays in tangential direction to trace for each bin := 10
use actual detector boundaries := 1
do symmetry 90degrees min phi := 0
do symmetry 180degrees min phi := 1
do symmetry swap segment := 1
do symmetry swap s := 1
do symmetry shift z := 1
End Ray Tracing Matrix Parameters:=
End Projector Pair Using Matrix Parameters :=

; if the next parameter is disabled,
; the sensitivity will be computed using the normalisation object
sensitivity filename:= SENSOFILE
; if next is set to 1, sensitivity will be recomputed
; and written to file (if "sensitivity filename" is set)
recompute sensitivity := 1
use subset sensitivities := 1

normalisation sinograms prefix:= NORMALIZATION
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additive sinograms prefix := ADDITIVE

zoom:= 2
xy output image size (in pixels) := 250
end PoissonLogLikelihoodWithLinearModelForMeanAnd
GatedProjectionDataWithMotion Parameters:=
number of subsets:= 23
start at subiteration number:= 1
start at subset:= 0
number of subiterations:= 46
save estimates at subiteration intervals:= 46
output filename prefix := OUTPUTFILE

END :=
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Appendix B. Scatter simulation

B1. Introduction

The purpose of this appendix was to validate the realism of simulations used in

this thesis by including scatter effect. A study for scatter modelling and correction is

presented based on the MSc thesis of the candidate which focused on scatter correction

using analytic reconstructions and extended here for an iterative reconstruction

algorithm.

As it was described in section 2.1.6 one of the most commonly used methods for

PET scatter correction is the use of the analytic algorithm single scatter simulation

(SSS) (Watson et al. 1996). In SSS emission and attenuation images are used with the

scanner characteristics and the probability of the photon to be scattered and detected by

a detector pair estimated using the Klein-Nishina formula for each scatter point in the

attenuation image. For each detector pair the single scatter distribution is calculated

as the sum of the single scatter probabilities over all scatter points. The scattering

distribution is then calculated by summation of the probabilities of scatter that have

been estimated for each possible scatter point in the attenuation image and every

detector pair.

To accommodate for multiple scatter, the SSS estimation is usually scaled to the

tails of the measured data but tail-scaling may become unstable in cases where the tail

region is very small and total-scaling in which the scaling factors are determined using

all measured data might be a more accurate scatter estimation procedure.

The first aim of this study was to clarify the improvements in terms of

quantification if scatter correction requires double scatter simulation and to investigate

how accurate it is to approximate multiple scattered events using tail or total scaled

single scatter. The second aim was the evaluation of the SSS scatter correction as

implemented in STIR library.

B2. Anthropomorphic numerical phantom

A whole body anthropomorphic numerical phantom (Zubal et al. 1994) was used.

In the original phantom each slice consisted of 128 × 128 pixels with size 4 mm

each, and the entire volume consisted of 243 slices with 4 mm thickness but for this

investigation to approximate a larger human torso than the average the original pixel
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size for each slice was scaled to 5.27 mm with 3.27 mm slice thickness. Figure B1 shows

example of slices through the simulated radioactivity distribution and attenuation

images as described in table B1.

Figure B1: Examples of transverse, coronal and sagittal planes of the simulated radioactivity distribution
and attenuation.

Table B1: Simulated radioactivity distribution in units of standardized uptake values (SUVs) and
attenuation values in cm−1.

Tissue Type SUV Attenuation (cm−1)

Lungs 0.39 0.03
Liver 2.14 0.10
Heart 3.15 0.10

Spinal cord 1.07 0.11
Ribcage sternum 1.04 0.15

Kidneys 3.51 0.10
Stomach 1.08 0.10

B3. Comparative evaluation of different scatter-level approximations

Simulations for different scatter levels and different scaling approaches simulated

using the Monte Carlo simulation package known as simulation system for emission

tomography (SimSET) (Lewellen et al. 1998) have been provided by the colleagues Dr

Ravindra Manjeshwar and Dr Pablo Aguiar. 3D acquisition was simulated based on

the GE DiscoveryT M STE scanner. This scanner is made of 24 detector rings of 88.62

cm inner ring diameter with axial extent of 0.24 cm. 560 detectors exist in each ring.

Standard energy settings were used for the simulation: 425 keV for the lower and 650
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keV for the upper energy threshold. Simulated data included separate projection data

for true, single scatter, double scatter and multiple scatter events resulting in 103.1

total million coincidences.

Tail-scaled single scatter data were also calculated by scaling the single scatter

sinogram to the total events sinogram (i.e. sum of true, single scatter, double scatter

and multiple scatter events) using the tail-fit method (Watson et al. 1997). Scale factors

were estimated for each slice so as to be equal with the number of events in the "tails"

of the total events sinogram¶. Using a similar approach the total-scaled single scatter

were also calculated by setting the tail region to cover the entire projection data.

Reconstructions were performed with STIR using the ordered subsets expectation

maximization (OSEM) algorithm (i.e. 2 iterations and 28 subsets) and the filtered

backprojection (FBP) algorithm (i.e. ramp filter of 0.5 cycles cut-off frequency). Each

slice consisted of 128 × 128 × pixels with size 5.27 mm each, and the entire volume

consisted of 47 slices with 3.27 mm thickness. During the reconstruction the data were

corrected for detection efficiencies, attenuation and interleaving. The following SimSET

datasets were reconstructed and evaluated:

i. Reference: Only the true events were reconstructed.

ii. Non-scatter corrected: The total simulated events (i.e. sum of true, single

scatter, double scatter and multiple scatter events) was reconstructed.

iii. Single scatter corrected: The total simulated events was reconstructed by

applying single scatter correction.

iv. Single plus double scatter corrected: The total simulated events was

reconstructed by applying single and double scatter correction.

v. Tail-scaled single scatter corrected: The total simulated events was

reconstructed by applying tail-scaled single scatter correction.

vi. Total-scaled single scatter corrected: The total simulated events was

reconstructed by applying total-scaled single scatter correction.

¶ The "tails" is a binary sinogram obtained by thresholding the attenuation correction factors sinogram.
The minimum and maximum thresholds used in this study were 0.4 and 1.4, respectively.
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In the aforementioned cases for the scatter correction the corresponding scatter

data is incorporated into the OSEM algorithm as an additive term, while subtracted

from the total emission sinogram for the FBP algorithm.

In order to quantitatively evaluate the results, mean SUV and the corresponding

standard deviation values were calculated from the ROI analysis of the FBP

reconstructed images of all investigated cases for the following: kidneys, heart, liver,

spinal cord, ribcage sternum and lungs. The ROIs excluded edge/boundary voxels to

avoid partial volume effects.

B4. Evaluation of scatter correction using SSS implemented in STIR

The scatter distribution was computed with the SSS analytic algorithm as

implemented in STIR (Tsoumpas et al. 2004). To estimate the SSS the GE DiscoveryT M

STE PET scanner with coarser sampling was used such that to create a scanner

consisted of 6 detector rings with axial extent of 0.336 cm and 40 detectors for each

ring. However, the data were then distributed on a rectangular sampling grid to

correct for interleaving and upsampled with linear interpolation prior to reconstruction.

Furthermore, for the scatter points a low resolution attenuation image was used by

resampling the attenuation image such that each slice consisted of 39 × 39 × pixels

with size 17.58 mm each, and the entire volume consisted of 14 slices with 10.90

mm thickness. Reconstructions were performed using OSEM and FBP with the same

parameters as in the previous section. The scatter estimation was applied to the

emission projection data iteratively in order to perform scatter correction (Watson et al.

1997) as described in 5 steps (figure B2):

i. Step 1: The normalized SimSET total emission data are corrected for

attenuation and then reconstructed.

ii. Step 2: Use SSS as described on the previous section with the image obtained

by Step 1. Scale the SSS estimation using tail-fit or total-fit with the same

methodology as described in the previous subsection.

iii. Step 3: Subtract the scaled scatter estimation from the total SimSET emission

data to scatter-correct the sinogram.

iv. Step 4: Repeat Steps 1 and 2, but in place of the SimSET total emission data of

Step 1 use the scatter-corrected sinogram of Step 3
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v. Step 5: Average scatter estimates from Steps 2 and 4. Use the result as final

scatter estimate.

Figure B2: Schematic representation of scatter correction of the SSS algorithm with scaling.

B5. Results

Figure B3 shows coronal planes of OSEM reconstructed images for the different

scatter order approximations (i.e. total non-corrected; ideal total scatter corrected;

single scatter corrected; single plus double scatter corrected; tail-scaled single scatter

corrected; and total-scaled single scatter corrected) as well as scatter correction

using SSS implemented in STIR (i.e. tail-scaled SSS corrected; and total-scaled SSS

corrected).
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(a) (b) (c) (d) 

(e) (f) (g) (h) 

Figure B3: Coronal planes of images for the: (a) total non-corrected; (b) ideal total scatter corrected; (c)
single scatter corrected; (d) single plus double scatter corrected; (e) tail-scaled single scatter corrected;
and (f) total-scaled single scatter corrected; (g) tail-scaled SSS corrected; and (h) total-scaled SSS
corrected.

Figure B4 illustrates the profiles through a coronal plane of the OSEM

reconstructed images of the SimSET total non-corrected, ideal total scatter corrected,

single scatter corrected, and the SSS corrected using tail-fit or total-fit.

Figure B4: Intensity profiles through a coronal plane of the OSEM reconstructed images of the SimSET
total non-corrected; ideal total scatter corrected; single scatter corrected; and of the tail-scaled SSS
corrected; and total-scaled SSS corrected.
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The SUV with the standard deviations for the FBP reconstructed images for the

ideal radioactivity distribution and the different scatter order approximations are

presented in figure B5.

Figure B5: Ideal radioactivity distribution and SUV with standard deviation for different ROIs of the FBP
reconstructed images. The results correspond to SimSET reconstructed output unless indicated as SSS
which corresponds to STIR scatter estimation.

B6. Discussion and Conclusion

Visual interpretation of the images in figure B3 shows differences following

multiple scatter compensation, either by single scatter scaling, or directly by multiple

scatter correction. Quantification accuracy has improved by scatter correction

(figure B5). In particular, heart SUV was 3 in the ideal, 4 before scatter correction, 3.3

after applying single scatter correction and 3 after applying single and double scatter

correction. Double scatter has high impact in quantification; kidneys SUV after single
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scatter correction was 4.1, while following single plus double scatter correction was

3.7.

Furthermore, the kidneys SUV after correction by scaling single scatter with tail-fit

approaches 3.8, whereas it is 3.6 with total-fit. However, tail-fit slightly underestimates

the total scatter in some places (e.g. kidneys and ribcage sternum), whereas this is not

observed when scaled with total-fit.

Compensation for double scattered coincident events is required for the accurate

estimation of activity distribution. In addition, this investigation has verified that

scaling the single scatter distribution is an efficient method to compensate for multiple

scattering; thus, separate modelling double or higher order scatter seems unnecessary

for human PET scanners with BGO crystals, and consequently they are expected to

be even less important for higher energy resolution scanners (e.g. LSO/LYSO crystals

systems). However, results might have been different with significant out of FOV scatter

events, longer axial FOV scanners, or cases of exceptionally higher multiple scatter.

Evaluating the SSS implementation in STIR, figure B3 shows very good agreement

between tail-scaled or total-scaled SSS scatter correction and SimSET true events.

Intensity profiles in figure B4 show also good agreement between SSS correction

and SimSET true events. Quantitative investigation in figure B5 also verifies good

agreement between SSS correction and SimSET true events. Similarly with the SimSET

scaled single scatter results discussed above, total- fit SSS correction may slightly

outperform tail-fit SSS correction in some regions. In particular, for the spinal cord,

true events SUV was 1.4, whereas 1.6 after tail-scaled SSS correction and 1.5 after

total- scaled SSS correction. For the region of the heart, the true events SUV was 3.0,

whereas after tail-scaled SSS correction it was 3.1 and after total-scaled SSS correction

it was 3.0.

This work has illustrated that the scatter correction methodology implemented in

STIR successfully recovers scatter-free images and shows good agreement with Monte

Carlo simulations.
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Appendix C. Noise properties of RTA and MCIR motion correction methods

including resolution blurring

The purpose of this appendix was to validate the results of chapter 4 by using more

realistic simulations including resolution blurring.

C1. Methods

A numerical phantom was created by adding spherical lesions to the phantom

created in section 3.2.2 with 12 mm diameter and lesion to background ratio equal to

6:1. The 3D FDG distribution was convolved with a Gaussian kernel of 6 mm FWHM

in x, y, z to simulate a current resolution scanner. A real respiratory signal for type

C breathing pattern of 20 mm maximum value was combined with an MRI-derived

motion model to simulate a dynamic thorax PET dataset acquired from a continuously

moving subject as described in section 3.2.2.

The dynamic PET data were gated based on amplitude to create 8 gates and each

gated image was used as the input to an analytic simulation of a PET acquisition to

create projection data as described in section 3.2.3. The projection data accounted for

photon attenuation, scatter (approximately 33% of the total counts) but not for random

coincidences. Statistical (Poisson) noise was added to the projection data such that the

overall counts of the whole dataset correspond to 50 million unscattered coincidences

(i.e. 3 to 5 min 3D PET clinical thorax acquisition). To add noise in the gated projection

data, based on the corresponding amplitude based histogram (i.e. distribution of the

motion amplitudes), each of the eight sinograms was weighted according to the dwell

time at each displacement (i.e. histogram value). Each histogram value shows the

duration that patient spends in the specific breathing position (i.e. how many times the

specific amplitude was repeated in a respiratory signal). Sixty noise realisations were

created.

The eight respiratory positions were reconstructed using both RTA and MCIR

motion correction methods with MRI-derived motion fields. The transformation

operators describing the motion between the gated data were estimated using voxel-

wise deformation vectors, which were produced by co-registration of MRI gated

datasets with a non-linear registration algorithm (Buerger et al. 2011). The transpose

motion matrix operation of MCIR was approximated by warping the image with the
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inverted motion fields which were numerically estimated from the same motion vectors

(Crum et al. 2007). All iterative reconstructions were performed with 23 subsets and

for 2 iterations and for βg equal to zero (i.e. OSEM). Each slice consisted of 250×250

pixels with size 2×2 mm each, and the entire volume consisted of 87 slices with 2 mm

thickness.

Figures of merit were computed from all the reconstructed images produced from

each numerical experiment. The following figures of merit were calculated:

Bias: An image of the bias with respect to the true simulated radioactivity

distribution was determined as follows:

Bias=
1

N

N
∑

i=1

Λi−Λideal = Λ̄−Λideal (C1.1)

where Λideal is the reference image, Λi is the reconstructed image of the i th noise

realization and Λ̄ is the mean image calculated as the average of the sequence of N

realisations of reconstructed images.

Noise: The noise was evaluated through the use of the standard deviation (std)

calculated over the sequence of N reconstructed images:

std =

√

√

√

√

1

N−1

N
∑

i=1

(Λi− Λ̄)2 (C1.2)

C2. Results

Figure C1 shows coronal planes of the bias and standard deviation images for the

RTA and MCIR reconstructed images. The results are displayed at 2, 4, 6, 8 and 10

iterations.
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Figure C1: Coronal planes of the bias and standard deviation images with motion correction using both
RTA (MC-RTA) and MCIR (MC-MCIR). For 2 iterations the MCIR bias is localized around edges and
approaches a uniform small value at 10 iterations. On the other hand, RTA has high bias for all iterations
especially at the edges of the lesions and the myocardium independent of the iteration number. Standard
deviation is stabilized to a constant value for RTA, while for MCIR it progressively increases with the
number of iterations.

C3. Discussion and Conclusion

The results are similar with chapter 4 including the reduced noise in RTA compared

to MCIR. This confirms that the noted effects are indeed a characteristic of the RTA and

MCIR methods and not a detail of the simulations used in this thesis and there is no

effects of aliasing that may cause variance magnification which are attenuated with RTA

via image interpolation.
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