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Abstract 
In patients undergoing catheter ablation procedures for atrial tachycardia, successful 

ablation requires the mechanism and location of the tachycardia to be correctly 

determined. This thesis explores the integration of engineering and computational 

methods with electrophysiological principles for mapping atrial tachycardias. 

The first objective of the thesis is to re-evaluate activation mapping. Ripple 

Mapping was created for this purpose. This is a method that displays each recorded 

electrogram as a bar on the shell that represents the cardiac surface: the length of the 

bar varies with time according to the electrogram voltage-time relationship. A proof-

of-concept study evaluates Ripple Mapping in a small number of patients with a variety 

of different arrhythmias. After further development of the method, it is evaluated in 

patients with atrial tachycardia. Benefits include avoiding the need to annotate each 

electrogram with a Local Activation Time and also avoiding the need to select a 

Window of Interest. 

The second objective is to investigate how macro-reentry tachycardias are 

detected. The classic entrainment criteria can be difficult to apply in the clinical setting 

of atrial tachycardia (particularly after prior ablation). A new entrainment criterion is 

described that utilises the response to entrainment from multiple locations. This can 

also detect double loop reentry from two entrainment manoeuvres. The theoretical 

basis for the criterion is developed within a mathematical framework. Clinical testing is 

performed in patients with typical flutter, left atrial macroreentry, and also analysis of 

previously published reports of double-loop reentry. The criterion is also incorporated 

into the overdrive pacing analysis software described below. 

The final objective was to integrate information from overdrive pacing 

manoeuvres in combination with the electroanatomic information from 3D mapping 

systems. A theoretical basis for this has been developed and incorporated into a 

computer program. Initial clinical evaluation is presented from patients with simulated 

focal tachycardias as well as clinical localised reentrant and macroreentrant 

tachycardias. 
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 Chapter 1 - Literature Review 

1.1 Introduction 

In 2003-2006, there were at least 21,000 ablation procedures performed worldwide 

for the treatment of AF.1 As will be discussed, AT is common in the context of AF 

ablation and so there has been a concomitant rise in the number of ablation 

procedures involving AT and also a widespread increase in the use of 3D-mapping 

technology. However, the fundamental methods for mapping AT have changed little 

over the last 10-20 years, despite the pivotal role that mapping plays in choosing the 

correct ablation strategy. The purpose of the research underlying this thesis is to re-

evaluate mapping techniques: by combining electrophysiological principles with 

engineering and computational methods, the aim is to create new mapping techniques 

to facilitate the treatment of AT. 

In this chapter, the literature relevant to mapping AT is reviewed. Particular 

emphasis is given to the mechanisms of tachycardia: an understanding of mechanisms 

is crucial because it underpins the interpretation of electrograms that are recorded. 

Invasive activation mapping involves the integration and analysis of electrogram 

information from different locations within the heart. This is reviewed, including the 

electroanatomical mapping systems that are used. Another tool for identifying AT is 

entrainment mapping, and the history and evolution of entrainment mapping is 

described. Currently, its main use in AT procedures is to confirm the tachycardia 

mechanism that activation mapping has indicated. 

1.2 Mechanisms of atrial arrhythmias 

AT is a broad term that is used to describe sustained arrhythmias, where the 

mechanism depends only upon atrial tissue. This incorporates a number of different 

mechanisms that occur with different prevalence in different groups of patients. These 

mechanisms have previously been classified and described in a consensus statement 

from a working group formed by the European Society of Cardiology and the North 

American Society of Pacing and Electrophysiology.2 Prior to this statement, AT 

classification had been based upon the ECG. However, the correlation between ECG 

appearance and tachycardia mechanism is not reliable, particularly in patients with 

diseased, previously ablated, or structurally abnormal atria. 
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The new classification placed greater emphasis upon intracardiac activation 

patterns and subdivides AT into: inappropriate sinus tachycardia, focal tachycardia or 

macroreentrant tachycardia. In the classification document, it is made clear that 

further mechanisms for AT might be discovered. Subsequently, localised reentry has 

been described, which involves reentry within a small area of tissue that has slow 

conduction (usually due to prior ablation).3, 4 See Table 1-1 for a summary of terms 

which are described in further detail below. 

 

Atrial Tachycardia Classification Mechanisms 

Inappropriate Sinus Tachycardia see text 

Focal Tachycardia enhanced automaticity 
triggered activity 
microreentry 

Reentry -  

 Macroreentrant Tachycardia typical flutter 
roof-dependent LA reentry 
perimitral reentry 
scar-related reentry 

 Localised Reentry Tachycardia reentry in diseased tissue 
 (<2cm diameter) 

Table 1-1. The classification of AT. 

1.2.1 Inappropriate sinus tachycardia 

Inappropriate sinus tachycardia consists of an increase in the sinus node rate that is 

disproportionate to the level of physiological stimulation, i.e. it is an exaggerated 

response by the sinus node. The mechanism for this abnormality is poorly understood. 

Ablation can be performed, targeting the earliest site of atrial activation during 

isoprenaline infusion,5 but results are mixed.6, 7 Due to the small number of cases 

presenting for atrial mapping and ablation, inappropriate sinus tachycardia will not be 

considered further in this thesis. 
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1.2.2 Focal tachycardia 

Prevalence 

In a Finnish study, 3554 consecutive ECGs were examined from asymptomatic males 

aged 17-21 who were applying for a pilot’s licence: the prevalence of AT was 0.34%.8 

The same authors performed a retrospective analysis of 3700 symptomatic patients 

attending an arrhythmia clinic, finding a prevalence of 0.43%.8 However, these data 

were obtained from single ECG recordings and the prevalence would probably have 

been higher if longer recordings had been made, or more than one ECG from each 

patient had been examined. However, the data do indicate that sustained AT leading 

to ablation therapy is relatively uncommon. There is little contemporary data but 

studies have suggested that about 10% patients with tachycardia demonstrated at EP 

study have focal AT.2, 9, 10 

Mechanism 

Focal tachycardias arise from a small region of atrial tissue, with centrifugal spread of 

activation away from this region.11 Three mechanisms have been proposed: enhanced 

automaticity, triggered activity, and microreentry.12 

Automaticity is a normal property of cells within the sinus node, atrioventricular 

node and His-Purkinje system. The sinus node is usually at the top of the hierarchy in 

pacemaker function and so normal cardiac activation originates from this tissue. 

However, in abnormal circumstances other cells can develop automaticity. Automatic 

arrhythmias often initiate with acceleration (‘warm-up’) and terminate after 

deceleration (‘warm-down’). Additionally, they are susceptible to suppression by 

overdrive pacing, which is usually followed by gradual re-acceleration of the 

tachycardia.10 

Triggered activity is impulse initiation occurring consequent to a preceding 

impulse.12 This can occur just before (phase 2), during (phase 3), or after repolarisation 

(phase 4). These arrhythmias are more likely to occur when the spontaneous heart 

rate is slow because, under these conditions, the action potential duration is longer. 

The effects of overdrive pacing upon triggered activity arrhythmias are variable. If 

pacing is fast enough for a long enough duration, then the rate of triggered activity 
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slows and may stop. However, if the pacing rate is only slightly faster than tachycardia, 

then it can cause overdrive acceleration of the tachycardia. 

Microreentry is a form of reentry that occurs over an area too small to map with 

conventional 4mm tip electrodes.12 There is rotation of the depolarisation wavefront 

around an area of slow conduction with fixed or functional block at its centre. Reentry 

will be discussed more fully below. 

Human studies 

In the 1980s surgical excision of the culprit region was employed as a treatment for 

focal AT13 – this allowed histological and electrical study of the excised portion of 

atrium. In the largest series, there were 12 patients who did not have structural heart 

disease.14 In these patients, there was fatty infiltration of uncertain significance (3/12) 

or normal histology (9/12). In the 4 other patients with structural heart disease, there 

was abnormal histology with patches of fibrosis between bundles of myofibrils: 

importantly, in these patients, AT could be reliably induced and terminated with paced 

atrial extrasystoli, suggesting a mechanism of reentry or triggered activity rather than 

enhanced automaticity. 

Following these early studies, Chen et al. reported one of the seminal studies of 

focal AT mechanism.9 They studied 36 patients referred for AT ablation to their centre 

over a 3 year period. Each patient underwent testing over 7 days, with ablation being 

performed on the last day. They attempted to categorise the mechanism of 

tachycardia based upon: 1) initiation with isoproterenol (automatic AT); 2) initiation or 

termination with programmed stimulation (microreentry or triggered reentry); 3) 

intracardiac after-depolarisations recorded (triggered activity); 4) entrainment 

phenomena observed (suggesting microreentry). On this basis 20/36 patients had 

microreentrant AT, 7/36 had automatic AT, and 9/36 had probable triggered activity. 

The sites where focal AT originates are not uniformly distributed around the 

atria. In one of the largest series, 126 patients undergoing ablation for 130 focal AT 

were studied.15 63% AT originated in the RA, with sites being limited to the crista, 

tricuspid annulus, CS ostium, near the AV node, septum and the RA appendage. The 

remainder of AT originated in the LA near to the pulmonary veins, mitral annulus, CS, 
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septum, or LAA. The origin of LA focal AT has been confirmed by other investigators.16-

19 

1.2.3 Reentry 

After a focal activation, a wave of depolarisation spreads away from the site of 

initiation with a centrifugal activation pattern, to depolarise the rest of the cardiac 

chamber. Propagation continues until the point is reached which has the greatest 

conduction time from the focal source. At this site of latest activation, the 

depolarisation wavefront collides with itself or with anatomical barriers so that 

propagation is terminated. The next activation then arises from the next focal impulse. 

Reentry is a different type of cardiac activation that can result in stable AT. 

The mechanism for reentry was first described by Mayer, who devoted his life to 

the study of jellyfish.20 He noted that it was possible to induce circular rhythms (that 

were visible due to the movement of the tissue) in rings cut from jellyfish. This work 

was applied to reptilian hearts by Mines (who also gave the first description of sinus 

arrhythmia and decremental conduction of the AV node in the same paper).21 In 

contrast to focal tachycardias, tachycardias involving reentry have a single wavefront 

that propagates indefinitely across the heart’s surface: the wavefront follows a path 

that re-enters tissue that it has already depolarised, and this allows self-perpetuation 

of the arrhythmia. Mines realised that reentry could only occur if certain conditions 

were met, and these conditions still hold today: 1) unidirectional block is required for 

initiation; and 2) the wavefront must pass around the circuit in a time long enough to 

allow the tissue to become repolarised. (See Figure 1-1.) 
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Figure 1-1. Reproduced from Mines.21 The rings are schematic, using shading to represent 
activation: black, depolarised (i.e. refractory); stippled, partially recovered; white, excitable. 
There is unidirectional block next to an initial impulse (left side). In row [a], the impulse 
reaches depolarised tissue causing termination of wavefront propagation and then 
repolarisation of the ring. In [b], propagation is slower and so activation returns to the top of 
the ring when the tissue is excitable. Propagation can continue indefinitely around the ring 
because of this ‘excitable gap’. 

The first condition - unidirectional block - can occur if there is anatomical 

asymmetry of the conduction tissue, or if there is functional asymmetry in excitability 

(see Kleber and Rudy for a full discussion22). The second condition implies that there 

must be an excitable gap – i.e. that the circuit is long enough such that tissue at the 

trailing edge of the wavefront has time to become excitable before the leading edge of 

the next wavefront returns to that location. The circuit length that is required will 

depend upon the conduction velocity and the refractory period. 

In human atria, reentry can give rise to arrhythmias in a number of ways. Reentry 

around relatively large fixed anatomical obstructions, such as vein orifices or valve 

annuli, gives rise to macroreentry. Reentry can also occur in the absence of fixed 

anatomical obstacles where there are areas of abnormal tissue. In microreentry, the 

reentry occurs within an area that is smaller than the resolution of standard 

intracardiac mapping catheters. The centre of the circuit has areas of fixed and 

functional block22 and the activation away from this area has a pattern similar to other 

forms of focal tachycardia.12 When the area of tissue involved in functional reentry is 

larger, then continuous activation can be recorded in a zone that is a few centimetres 
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in diameter and the term localised reentry is used.3 Figure 1-2 shows a schematic of 

different tachycardia mechanisms that have been discussed. 

 

 
 

Figure 1-2. Schematic of different tachycardia mechanisms. 1) Cavotricuspid isthmus 
dependent macroreentry. The anterior part of the circuit is shown, coursing around the 
tricuspid annulus. 2) Focal. There is centrifugal activation emanating from a discrete source. 3) 
Localised reentry. There is an area of slow conduction with a reentry circuit within it. 

An important property of atrial reentry tachycardias is that they can be 

entrained: when the atria are paced at a rate slightly faster than tachycardia then, at 

the termination of pacing, tachycardia continues without interruption. Entrainment is 

important because it allows the arrhythmia mechanism to be deduced and it also 

allows the re-entrant circuit to be located. This will be discussed more fully in 

Section 1.4. 

1.2.4 Typical right atrial flutter 

Prevalence 

Typical atrial flutter refers to a regular tachycardia that has a characteristic appearance 

when recorded with a surface ECG. The incidence and risk factors were studied using 

analysis of a large database that captures almost all healthcare activity in Wisconsin.23 

1
2 3
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Incidence was approximately 88 per 100,000 but there were wide variations in 

different groups. In people younger than 50 years the incidence was 5/100,000 per 

annum but in those older than 80 years the incidence was 587/100,000 per annum. 

Atrial flutter was 2.5 times more common in men, and the relative risk was also 

greater in those with heart failure (relative risk 3.5) and chronic obstructive pulmonary 

disease (relative risk 1.9). 

Mechanism 

Typical flutter is the most common macroreentrant arrhythmia, and is confined to the 

RA with the LA being activated passively. Anteriorly the circuit forms a loop around the 

tricuspid annulus. Posteriorly, there is a combination of anatomical and functional 

obstacles that provide a long enough circuit so that there is an excitable gap.24 

Therefore there may coexist two potential circuits – one posterior to the SVC and one 

anterior – that are capable of sustaining tachycardia (this will be discussed further in 

Section 1.4.5).25 However, all potential circuits pass through one area – the tissue 

between the IVC posteriorly and the tricuspid valve anteriorly. This area is known as 

the cavo-tricuspid isthmus (CTI). Termination and prevention of the tachycardia can be 

achieved by creating a line of ablation that prevents conduction through this 

isthmus.26, 27 

The structure of the right atrium provides the fixed anatomical substrate for 

reentry. However, this is necessary but not sufficient for reentry to occur. There is a 

small amount of direct evidence that patients with atrial flutter also have abnormal 

electrical substrate: both slower conduction velocity and also increased dispersion of 

conduction.28 This is consistent with the epidemiological data presented above – it is 

known that atrial conduction properties change with age29 and with pulmonary 

hypertension (as is often found in chronic lung disease and cardiac failure).30 The 

increased incidence of atrial flutter in males is more difficult to explain, but one reason 

might be the larger atrial size which would increase the excitable gap in any 

anatomically defined circuit. 
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1.2.5 Atrial tachycardia in the context of ablation for atrial fibrillation 

Mechanisms and substrate for atrial fibrillation 

AF is a disorganised arrhythmia where there is chaotic, irregular atrial activity: an 

episode of AF is defined as an episode >30 seconds with completely irregular RR 

intervals, no distinct P waves, and an atrial cycle length of <200ms (if visible) on the 

ECG. Patients with paroxysmal AF have episodes that terminate spontaneously within 

7 days, and those with persistent AF have longer episodes.31 It is the most common 

arrhythmia and is increasing in prevalence.31, 32 

It is known that sleeves of conducting tissue extend into the pulmonary veins33, 

and rapid firing from the pulmonary veins has become a well-established mechanism 

for the initiation and maintenance of AF.34, 35 In the majority of patients with 

paroxysmal AF, this is the dominant mechanism of arrhythmia, although 

arrhythmogenic foci from other thoracic veins have been also reported. 36-38 This 

mechanism is likely to be influenced by other mediators, including autonomic 

control39, hypoxia during sleep apnoea,40 obesity and alcohol.41 

The conduction properties of normal human atria are not uniform.42 Patients 

with AF have altered electrical properties of the atria.43 This may result from another 

condition that predisposes to AF, such as cardiomyopathy or valve disease. However, 

in pivotal experiments with chronically instrumented goats, Allessie's group 

demonstrated a causal effect between AF and electrical atrial remodelling.44 They 

implanted pacemakers into the goats and used them to induce and maintain AF. They 

found that after maintaining AF for 7.1 ± 4.8 days the arrhythmia sustained itself for 

>24 hours in 10/11 goats, and this was accompanied by a 35% reduction in the atrial 

effective refractory period. By contrast, at the start of the experimental period, 

episodes of AF only self-sustained for 6 ± 3s. Additionally, in 5 goats after 2-4 weeks of 

AF, sinus rhythm was restored and the electrophysiological changes were reversed 

after one week.44 

Further canine studies have confirmed the electrical remodelling that occurs in 

AF induced by chronic atrial pacing.45, 46 Additionally, other models of AF have been 

developed, involving atrial changes induced by heart failure,47 mitral regurgitation,48 

atrial ischaemia,49 or cholinergic agonists.50 The results of these studies may be 
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compared, and other investigators have also performed direct comparisons of these 

models.45, 51 

In the canine model of AF with 6 weeks of rapid atrial pacing, the primary change 

is electrical remodelling manifested by a reduction in refractoriness as well as an 

increase in the dispersion of refractoriness. Structural changes in the atrium are small 

but an increased level of fibrosis has been observed,45 although AF becomes sustained 

before this occurs. 

In the canine models of AF with heart failure, induced by ventricular pacing at 

high rates, there was electrical as well as structural remodelling (although in contrast 

to pacing induced AF the atrial refractoriness increased slightly). There was 

pronounced interstitial fibrosis.47, 52 After cessation of pacing and a 5 week recovery 

period, there was complete recovery of the electrical remodelling but AF vulnerability 

was still higher than baseline. Thus it is hypothesised that the fibrosis and structural 

changes led to continued AF susceptibility.52 In the AF models with mitral regurgitation 

and atrial ischaemia, the atrial fibrosis was less marked but other microscopic 

structural changes were present and were likely to be the primary factor for increased 

AF susceptibility.45 

In a comparative study of the canine models of AF, Everett et al. have 

demonstrated that the mechanism of perpetuation relates to the abnormality of the 

substrate.45, 51 In models with primary electrical remodelling, the AF was characterised 

by multiple wavelets or multiple stable high frequency areas.45 However, models with 

primary atrial structural changes were characterised by the presence of 'mother 

rotors'45 consistent with the presence of micro-reentry due to altered conduction. 

In humans, reversal of electrical remodelling has been demonstrated following 

treatment of AF by DC cardioversion.43, 53 There is also evidence for a relationship 

between fibrosis and AF in patients with AF54-56 and with mitral valve disease.57 More 

recently, MRI has been used to detect atrial fibrosis non-invasively. In a group of 44 

patients with lone AF, an increased burden of left atrial scar was associated with lower 

success rates after pulmonary vein isolation,58 suggesting that further arrhythmic 

substrate was present in addition to the focal drivers from the pulmonary veins. 
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Ablation for atrial fibrillation 

In patients with paroxysmal AF undergoing ablation, the majority of centres use 

radiofrequency ablation to achieve electrical isolation of the pulmonary veins.1 For 

patients with persistent AF, further ablation is required.59, 60 This includes electrogram-

guided substrate modification, which can be based upon electrogram fractionation61, 62 

and also upon frequency analysis.63 The aim of the electrogram-based ablation is to 

alter the atrial substrate in order to reduce its capability for supporting arrhythmia. 

However, the relationship of the underlying mechanisms to the electrogram (during 

AF) and the way in which modification by ablation reduces arrhythmia burden is poorly 

understood. Linear ablation lesions may also be performed and the aim of these is to 

prevent macroreentry and also to reduce the arrhythmia wavelength that can be 

supported.64 Again, there is controversy about when these lesions should be 

deployed.65 

During ablation for persistent AF, multiple ATs often occur during the procedure. 

These probably coexist and as the fastest tachycardia is ablated and terminates, a 

slower AT may then be revealed.66 Better outcomes have been reported in those 

patients in whom sinus rhythm is achieved by ablation.67-69 

Atrial tachycardia following atrial fibrillation ablation 

As described above, the atria in patients with persistent AF are known to have 

abnormal electrical properties. Additionally, the atrial tissue is intentionally damaged 

during ablation procedures for AF. There are no studies formally examining atrial 

conduction in areas where ‘substrate ablation’ has been performed. However, it is 

likely that there are areas with heterogeneous electrical properties and also slow 

conduction velocity: both factors that are known to be pro-arrhythmic. 

After an AF ablation, arrhythmia often does recur – either with AF recurrence but 

also with AT. When patients re-present with AT, as opposed to AF, then there is some 

evidence to suggest better outcomes. Ammar et al. studied 78 patients who 

underwent a repeat ablation procedure. At 9 month follow-up, 51% patients who had 

re-presented with persistent AT were free of arrhythmia without antiarrhythmic drugs, 

compared to 23% who had re-presented with persistent AF.70 This prompted AT to be 
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considered as a ‘stepping stone’ to maintenance of sinus rhythm by some 

commentators.31 

The reported incidence of AT, following AF ablation, varies widely (5-50%).68, 71-73 

Patients with AT have a high chance of recurrence if ablation is not performed.74 The 

mechanism varies but there is evidence that previous ablation is an important factor. 

Takahashi et al. studied 9 patients with localised reentry after AF ablation and found 

that the circuit responsible for arrhythmia was in the vicinity of prior linear lesions or 

near the ablated ostia of pulmonary veins (it is known that conduction can recur across 

lesions created to isolate pulmonary veins75).76 Cummings et al. studied 23 patients 

who developed AT in the LA following ablation that only involved PVI. In all patients, 

they repeated the PVI and did not perform any further ablation. In 11/12 patients, no 

LA low voltage areas were identified at the time of the repeat PVI and 11/12 of these 

patients remained arrhythmia free after 12 months follow-up. In contrast, in the other 

11/23 patients with low voltage areas of the LA, only 4/11 remained arrhythmia free.77 

There is also evidence that incomplete linear lesions can promote reentry. For 

example, an ablation line at the mitral isthmus that does not create conduction block 

may, instead, cause slow conduction. This zone of slow conduction will increase the 

conduction time to pass around a perimitral circuit, thus facilitating an excitable gap to 

promote reentry.78 Whilst linear lesions may prevent AT,79 if they are attempted and 

conduction block is not achieved then there is an increased risk of AT.80, 81 In another 

recent study of patients after AF ablation, the circuit of 96% macroreentrant 

tachycardias crossed a line of prior ablation.82 

Other studies have confirmed that the mechanism of AT varies according to the 

atrial ablation procedures that have been performed. Where only ostial PV isolation 

has been performed, the mechanism is usually localised reentry arising from 

reconnected PV ostia.71, 72, 83-85 Wider encirclement of the PVs and linear ablation is 

associated with macroreentry.73, 82 Where electrogram guided ablation is performed to 

modify the atrial substrate then this is associated with a higher proportion of focal and 

localised reentry AT recurrences.3, 62 

The location of microreentry or localised reentry tachycardias varies widely.86 

However, the circuits causing macroreentry are more limited. Jaïs et al. successfully 

mapped 238/246 AT in a series of 128 patients undergoing ablation for AT, after a 
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previous AF ablation.3 Importantly, there were multiple ATs in 77 patients. The 

mechanism was macroreentry in 109/238 (47%) and this was either CTI dependent, 

roof dependent or mitral isthmus dependent reentry (see Figure 1-3). Chae et al. also 

studied a large group of 78 patients undergoing ablation after AF ablation, and 

mapped multiple ATs in the patients.82 Of 155 ATs, 73% were macroreentrant.* 

Figure 1-3 illustrates the most common macroreentry circuits and the linear 

ablation lesions that are created to treat them.87-91 

 

 
 

Figure 1-3. Some macroreentry circuits. Successful ablation for macroreentry requires the 
creation of an ablation line that ‘cuts’ the circuit by forming a line of electrical block between 
two inert structures – either a valve orifice or an electrically inert thoracic vein (depicted by 
grey). From left to right: Magenta: A circuit around a right atriotomy scar is usually disrupted 
by ablation from the scar to the electrically inert IVC (dark grey line). Blue: CTI dependent 
reentry is treated by creating an ablation line from the tricuspid annulus to the IVC. Red: 
Perimitral reentry is usually treated with ablation at the isthmus between the mitral annulus 
and the left inferior pulmonary vein, which must be isolated to create electrical block. Green: 
Roof dependent macroreentry (shown around the left pulmonary veins) can be prevented by 
an ablation line between the superior pulmonary veins. 

* There is some inconsistency about which circuits are large enough to be called macroreentry rather 
than localized reentry. The convention is used here that macroreentry only occurs around a fixed 
(usually anatomical) obstruction to conduction. 
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1.2.6 Atrial tachycardia in the context of prior surgery 

Cardiac surgery may involve the use of surgical incisions in the atria in order to access 

internal structures. For example, a lateral incision in the RA provides access to the 

interatrial septum for the surgical repair of atrial septal defects. A further incision in 

the atrial septum is also used as a standard approach to the mitral valve, following its 

introduction by Guiraudon,92 (one of the pioneers in surgery for Wolff-Parkinson-

White syndrome). 

After surgery, the lines where these incisions are sutured back together remain 

inert (although conduction can sometimes recover to produce conducting channels 

through an old scar).93 The non-conducting scar can provide a substrate for reentry 

and often these patients often have a dual-loop tachycardia: there are two 

macroreentrant circuits that coexist, with one circulating around the incisional scar 

and the other circulating around the tricuspid annulus. (See circuits 1 and 4 in Figure 

1-3.) Frequently, these tachycardias can have an appearance similar to typical RA 

flutter on the surface ECG. However, ablation of the CTI is not sufficient to achieve 

arrhythmia termination because the CTI is not critical to the circuit that loops around 

the incisional scar. Therefore, an additional ablation line from the RA incision to IVC is 

often performed.89, 94-97 Ablation results are better in those patients when this isthmus 

is short and has slow conduction velocities.98 

There are many other forms of cardiac surgery that provide a substrate for 

arrhythmia. These are reviewed elsewhere.12 

1.2.7 Overview of the substrate for atrial arrhythmia 

It has been shown that focal tachycardias with triggered activity or enhanced 

automaticity can occur where there is minimal or no structural change. However, 

reentrant AT of all types occur in the presence of altered electrical properties, 

structural changes, or both. This explains the higher incidence of typical atrial flutter in 

older people and those with other forms of heart disease. Patients with prior cardiac 

surgery may develop AT around previous incision sites. In patients with prior AF 

ablation, the combination of altered underlying electrical properties, fibrosis, and 

changes caused by ablation itself all contribute to an increased susceptibility to 
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microreentry, localised reentry and macroreentry. These combine to increase the 

incidence of AT after AF ablation.  

In all cases where ablation is considered for AT, then the electrophysiologist 

must be aware of the particular substrate in each individual patient because it is likely 

to have a significant impact upon the arrhythmia mechanism, and hence the mapping 

and ablation strategy. For focal tachycardias, ablation of the cardiac tissue at the 

location of the focal source results in arrhythmia termination. For localised reentry 

tachycardias, ablation must be performed over a slightly wider area in order to 

encompass and destroy the tissue responsible for arrhythmia. For macroreentrant 

arrhythmias, ablation must be used to prevent conduction around the circuit by 

creating an appropriate obstruction of inert tissue. Mapping is required to identify a 

critical isthmus by combining anatomical information with electrical information. 

This thesis will seek to develop new methods for mapping AT. These will attempt 

to allow the electrophysiologist to relate the electrophysiological findings to possible 

mechanisms and to then plan an appropriate ablation strategy. 

1.3 Activation mapping of atrial tachycardia 

1.3.1 Introduction 

In order to determine an ablation strategy for successful treatment of AT, the 

activation pattern and the mechanism of tachycardia must be ascertained. If reentry is 

the mechanism then this can only be proved by the use of another technique – 

entrainment – which is discussed in Section 1.4. 

1.3.2 Surface electrical activity 

Surface ECG 

The surface ECG can be helpful in AT. In particular, the ECG appearance of typical (and 

also reverse typical) RA flutter is characteristic: the atrial rate is usually 240-360 beats 

per minute99 and there is a ‘saw tooth pattern’. In patients with no prior surgery or 

ablation, this appearance is specific for CTI dependent macroreentry. However, as 

described above, patients with an RA incisional scar can have double loop reentry 

despite similar ECG appearances. Additionally, patients with previous CTI ablation may 

also have an ECG with a similar appearance if activation originates to the septal side of 

  22 



 Chapter 1 - Literature Review 

the CTI line and passes around the tricuspid annulus to the lateral RA: this is a similar 

activation pattern to flutter, but the mechanism of RA activation is passive and does 

not form a reentrant circuit. 

For focal AT, P waves are usually separated by isoelectric intervals that are 

simultaneous in all ECG leads. A number of different ECG algorithms have been 

described for localizing the source of AT origin, and these assume normal atrial 

conduction.100 In a comparatively large series, a proposed algorithm correctly 

identified the location of the focus in 93%.15 However, the same data was used to 

develop and also to test the algorithm, which is likely to give an over-estimate of 

accuracy. Following AF ablation, attempts have been made to identify AT from the 

surface ECG, but these have been in the context of small amounts of LA ablation.101 

Establishing the mechanism and location of AT, from the ECG, in the presence of 

surgical incision scars, atrial ablation, or in the presence of abnormal atrial conduction 

is much more challenging and no accurate methods have been reported.100, 102 

Electrocardiographic mapping 

A surface ECG-based system has been used to map atrial tachycardias. This utilises 

recordings made from a large number (256) of surface electrodes all over the 

thorax.103 The dispersion of the electric field from the epicardium to the skin surface is 

modelled (this is known as the ‘forwards problems’) with knowledge of the patients 

anatomy that has been obtained from a CT scan. An inverse solution (the ‘backwards 

problem’) is then found that estimates the epicardial electric potential. 

The ‘backwards problem’ is mathematically ill-posed – the electric field tends to 

become ‘smoothed’ as it disperses through the body. Therefore, if the inverse problem 

is applied unconstrained to noisy electrical signals then this noise is amplified. 

Mathematical techniques such as Tikhonov regularisation must be used to constrain 

the solution and reduce the effects of recording errors.104, 105 

The method was initially used to model ventricular activation.106, 107 There was 

also a case report of a focal atrial tachycardia.108 Recently, Shah et al. used a 

commercial system to evaluate AT in 52 patients undergoing an ablation procedure.109 

In 4 patients the AT changed during the procedure. In the other 48 patients, the 
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electrocardiographic mapping successfully identified the tachycardia mechanism in 

44/48 (92%) patients. 

The study by Shah et al. had a number of limitations.109 In some patients with 2:1 

atrioventricular conduction, the T wave obscured the P wave morphology. However, 

this could be overcome by mapping during changes in atrioventricular conduction 

induced by vagal manoeuvres or drugs. Many of the patients (18/48) had typical CTI 

dependent flutter, which usually does not present a diagnostic challenge from the 12-

lead ECG. It is also not clear how many patients had low voltage regions of atrium: 

from a theoretical perspective areas of scar would be expected to give very low 

amplitude signals on the body surface. Nevertheless, the method provides promise for 

providing a much more accurate non-invasive assessment of atrial tachycardia than 

was previously possible.110 

1.3.3 Invasive recordings of electrical activity 

During ablation procedures, intracardiac catheters are used to record electrical signals. 

Typically, some catheters will be left stationary (for example, a catheter with multiple 

electrodes in the CS) and another catheter (the ‘mapping’ catheter) with fewer 

electrodes is moved around the atrium to explore the electrical signals at various 

locations. In this way, the timing of electrograms at different locations can be 

compared, using one of the stationary reference electrograms as a fiducial marker. 

When recording an electrogram, the potential difference is measured between 

two electrodes. For unipolar electrograms, the potential difference is measured 

between the electrode of interest and a distant indifferent electrode. The indifferent 

electrode is often Wilson’s central terminal but may also be an intravascular electrode 

that is positioned away from the heart. Wilson’s central terminal is produced by 

connecting the limb leads (right arm, left arm, and left leg) together via a network of 

high impedance resistors. 

For the majority of AT mapping, bipolar electrograms are used. These consist of 

the potential difference between a pair of electrodes on the same catheter and are 

usually recorded digitally with a sampling frequency of 1000Hz. The recording is 

affected most by tissue near to the electrode pair and so spatial resolution is improved 

by using narrowly spaced electrodes.111 The most rapid changes in potential occur as 
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the depolarisation wavefront passes between the electrodes: in order to emphasise 

components of the signal that correspond to activation, the signals are band-pass 

filtered at 30-250Hz. (Frequencies above 250Hz are attenuated in order to reduce 

noise and avoid aliasing effects.)112 

In normal homogeneous tissue, the first peak of the local bipolar electrogram is a 

good approximation to the activation time near to the electrode pair.112 However, in 

other situations, local activation time can be more difficult to determine and the 

electrogram can also provide additional information about the underlying tissue 

activation. Figure 1-4 summarises some important electrogram characteristics that can 

provide clues to the electrophysiologist in the search for arrhythmia mechanism. 

 

 
 

Figure 1-4. Some electrogram characteristics and their underlying mechanisms. 1) Normal 
conduction with corresponding bipolar electrograms recorded from 2 sites, for example the 
proximal (P) and distal (D) pairs of electrodes on a quadripolar catheter. 2) There is a line of 
slow conduction, such as might occur after a linear ablation lesion or after an atriotomy 
incision. This leads to double potentials, with an isoelectric period between them. At P, the 
first component is a normal electrogram and the second complex is a small far-field 
electrogram caused by activation on the other side of the line. At D, the first component is a 
far-field signal and the second component is normal. 3) In an area with localised reentry, the 
electrogram morphology will be of lower amplitude and appear fractionated. It is possible to 
record continuous activity – activity that spans the entire TCL. However, as shown in 4) this is 
not sufficient to prove that the area contains the tachycardia mechanism because passive 
activation can also create long fractionated signals. 

The region of atrium influencing a pair of 2mm electrodes with 2mm separation 

is at least 6mm in diameter for a catheter lying parallel to the atrial tissue. (This is the 

distance from the end of one electrode to the end of the next.) Double potentials can 
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occur when electrical activity from both sides of a line of slow conduction, or 

conduction block, influence the potential difference between the recording electrodes. 

This can occur in normal atria, particularly at the crista terminalis113, 114, or at the scar 

from previous incisions96 or at the site of previous linear ablation lesions.115 The time 

period between double potentials depends upon the conduction time to pass through 

the zone of slow conduction, or upon the time taken for activation to pass around the 

obstruction; whichever is shortest. 

Double potentials occur where there is a relatively large, discrete barrier to 

conduction. However, patients with AT often have more subtle changes to electrical 

propagation. Where there are areas of fibrosis or heterogeneity in electrical 

conduction properties, the depolarisation wavefront can become less uniform.116, 117 

This gives rise to electrogram fractionation, which has been observed in simulation 

models of fibrosis118, and during atrial pacing it is more marked in patients with 

paroxysmal AF than normal controls.119 In addition to effects upon electrogram 

morphology, areas of scar also reduce amplitude because of a reduction in the amount 

of simultaneously conducting tissue in the vicinity of the recording electrodes. 

Electrode spacing also has an effect upon the electrograms that are recorded in areas 

of fractionation.120 

Whilst mapping an AT, identification of electrograms that are fractionated or 

have double potentials is important. These characteristics indicate the presence of 

altered electrical conduction. As described above, this may be relevant to the 

tachycardia mechanism; for example, fractionation in a zone of localised reentry, or 

double potentials recorded at an incisional scar responsible for reentry. However, 

these electrogram characteristics can also occur at sites that are not part of the active 

tachycardia mechanism. As shown in Figure 1-4, fractionation can occur with passive 

activation of scarred tissue and double potentials can occur at lines of block in the 

absence of tachycardia. Therefore, in order to appreciate the significance of 

electrogram morphologies, they must be interpreted within the context of the 

activation sequence. This requires information about the positions where they were 

recorded. 

Aside from the electrogram morphology, electrogram voltage is also altered in 

the presence of scarred tissue. This is due to altered velocity and dispersion of the 
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electrical wavefront as well as a reduced density of viable cardiac tissue in the vicinity 

of the recording electrode. Most evidence for this effect arises from studies of 

myocardial infarction in the ventricle and reports from atrial studies are limited.121-125 

Studies from our group indicate that the atrial bipolar peak-to-peak electrogram 

voltage in atrial tissue that has been scarred by ablation is less than 0.3mV, whereas 

normal atrial tissue is usually >2mV.126 Previous investigators have used a bipolar peak-

to-peak voltage of <0.05mV to indicate scar124, 127 and <0.5mV to indicate ‘low 

voltage’,124 although these thresholds appear to be arbitrary. 

1.3.4 Assessing catheter position 

X-ray guidance 

X-ray guidance is the fundamental imaging modality for assessing the positions of 

intracardiac catheters. In order to navigate accurately and efficiently, the 

electrophysiologist is required to integrate the x-ray images with detailed anatomical 

knowledge and also electrogram recordings.128 Ablation of accessory pathways and 

atrioventricular nodal reentry formed a large proportion of the cases performed 

around the world when catheter ablation was in its infancy. These tachycardias are 

ablated by placing a small number of ablation lesions at anatomically predictable sites. 

However, ablations for ventricular tachycardia and AF have increased in numbers. With 

this, there was a need for improved catheter localisation – both for mapping and also 

for documenting the positions of ablation sites. For treatment of these tachycardias, 

the ablation catheter may need to be positioned accurately anywhere in the cardiac 

chamber of interest. Ideally, a 3D mapping system should record the position of the 

catheters relative to other cardiac structures, accurately compensating for motion 

caused by respiration and cardiac contraction. Improved technology for this purpose 

became available in the late 1990s129 and has led to a substantial reduction in patients’ 

X-ray exposure.130, 131 

Electromagnetic catheter location 

This technology is primarily used in the Carto System (Biosense Webster, California, 

USA). Electromagnetic catheter location uses an attachment that is fixed to the 

operating table, with three separated electromagnets.132, 133 Each electromagnet 

generates a magnetic field at a particular frequency. A purpose-built catheter is used 
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that has three small coils implanted in the tip with different orientations. The magnetic 

fields induce currents in these sensing coils, which are measured in order to calculate 

the distance to each electromagnet. The position of the catheter tip is then calculated 

by trilateration and the orientation of the catheter tip is also calculated. The position 

information from the catheter is gated with the ECG in order to reduce the effects of 

cardiac motion. Additionally, a reference patch is attached to the patients back and 

this can be used to detect and compensate for horizontal movement of the patient 

(but not rotation or rolling).  

More recently, technology has been described to locate other catheters in the 

heart (aside from the catheter that contains induction coils) using an impedance-based 

method.134 This utilises 3 skin patches attached to the front of the patient’s chest, and 

3 attached to their back. As the mapping catheter is moved around the heart, a small 

current is passed through it. It is then possible to calculate the impedance between the 

catheter and the six skin patches. Because the position of the mapping catheter is 

known (using electromagnetic catheter location), the relationship between position 

and impedance can be determined. This relationship is then used to calculate the 

position of other electrodes in the heart, after calculating their impedance between 

the skin patches. 

Electric field based catheter location 

With electric field based location, three pairs of electrodes are attached to the 

patient’s skin and a small current is passed through them to create three high 

frequency electric fields.135 A wide range of catheters can be used with the system, 

with up to 12 catheters or 64 electrodes at any one time. At each electrode, the 

potential from each of the 3 electric fields is recorded and then used to estimate the 

electrode position. It is assumed that the impedance of cardiac tissue and the blood 

pool is uniform. Due to the large and variable impedance of the lungs, this method can 

only be used to estimate catheter position relative to another catheter in the heart. 

Typically, the CS catheter is kept stationary and used for this purpose. 

Defining the anatomy 

The ability to track catheter position provides a means to establish the anatomical 

limits of catheter movement. All commercial systems provide for this. By dragging the 
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catheter around the cardiac surface, a shell is created to represent the chamber that is 

being studied. Computer software tracks all positions that have been reached and then 

applies an algorithm to overlay a shell upon these points. This can be manually edited 

in areas of anatomic complexity, and this is often necessary near the confluence of the 

left pulmonary veins and LAA. 

The anatomical shell inferred from catheter movement around the atria tends to 

overestimate the true atrial volume.136, 137 Additionally, the pulmonary vein ostial sizes 

are also overestimated but this can be improved by using respiratory compensation to 

correct for the movement of the heart that occurs with ventilation of the lungs.138 It is 

also possible to merge anatomical information from CT or MRI scans139, 140 and 

echocardiographic images141, if this is available. Whilst this reduces the X-ray exposure 

it probably does not improve acute outcomes.142, 143 

1.3.5 Integrating electrical activity with anatomical information 

General principles 

The goal of activation mapping is to combine electrogram information from multiple 

locations, in order to deduce the pattern of activation across the cardiac surface and to 

guide decisions about the likely tachycardia mechanism and appropriate ablation 

strategy. At its simplest, this involves comparing the electrograms at two locations that 

are in close proximity. The local activation time of each of the electrograms is 

assessed. It can then be inferred that direction of activation passes from the earliest 

site towards the later site. 

When a mapping catheter is used, reference catheters are helpful because the 

mapping catheter can only sample electrograms from one site at a time. Often one of 

the electrode pairs on the CS catheter is used as a reference. In this situation, at the 

first mapping site, activation is compared to the CS. The mapping catheter is then 

moved a small distance and activation is compared to the CS again. This will give an 

indication of the direction of activation. When electrograms from multiple locations 

are sampled then a more accurate indication of wavefront propagation can be 

estimated. 

Inferring the direction of activation in healthy tissue is relatively straightforward. 

However, when conduction is not uniform then more care must be taken. In particular, 
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where there is abnormal conduction the sequence of activation may not be so clear. 

For example, if there is a long delay between electrograms at two sites in the presence 

of a focal tachycardia then the order of activation depends upon correctly identifying 

electrograms from the same wavefront, rather than wavefronts from different beats. 

Isochronal maps 

To create an isochronal map, electrograms are recorded at different locations across 

the cardiac surface. Using the electrogram at each location, an LAT is assigned - this is 

the relative timing of activation compared to the reference. The representation of the 

cardiac surface is then coloured according to LAT so that points that have the same 

colour are activated at the same time (i.e. they are isochronal).144 See Figure 1-5. 

 

 
 

Figure 1-5. An isochronal map of the left atrium. Colours from red-green-blue correspond to 
timing that gets later. The white arrow indicates the direction of activation around the mitral 
valve. In this case, the diagnosis was perimitral reentry. The time taken to get from red to dark 
blue is similar to the tachycardia cycle length, i.e. the whole tachycardia cycle length has been 
mapped. Further methods for establishing macroreentry as the mechanism are discussed in 
the text. 
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Successful creation and interpretation of isochronal maps involves a number of 

steps:144 

1) Each electrogram must be representative. This requires good catheter 

contact and stability. Recordings during ectopy must be discarded. This 

requires careful attention by the operators.145 

2) Activation patterns should only be interpreted where there is a sufficient 

density of points.145 The creation of an isochronal map involves colouring 

the anatomical shell beyond the locations where electrograms were 

recorded. This is done by interpolation. The extent of the interpolation can 

be set by the user in commercially available systems. However, the user 

must be cautious in using this interpolated data because it may not be a 

true reflection of underlying activation. One of the difficulties with creating 

a dense map is that hundreds of points must be acquired; whilst this 

improves map quality, it requires a significant amount of time to perform 

with a mapping catheter that only acquires one point at a time. This can be 

overcome by using catheters with multiple mapping electrodes.86 However, 

a semi-automated method for annotating the LAT is required because so 

many electrograms are collected in a short space of time. 

3) LAT must be assigned appropriately: this requires the appropriate 

electrogram complex to be identified, and also to the correct LAT 

assignment within that complex. This is discussed below. 

Isochronal maps – the window of interest and LAT assignment 

In a repetitive tachycardia, when an electrogram is recorded then there is a repeating 

sequence of electrogram complexes. One of these must be used to make 

measurements of LAT. This is done by selecting the LAT that falls within a window of 

interest, which has been chosen with a fixed time relative to the reference 

electrogram. The purpose of the window of interest is to ensure that electrogram 

complexes from the same beat of tachycardia are compared. Thus, for a focal 

tachycardia, the window should span a single activation of the chamber.146, 147 

For a macroreentrant tachycardia, there is always activation within some part of 

the reentry circuit. Therefore, the window of interest covers one cycle of the 
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tachycardia. Some authors advocate using the P wave to set the window of interest, so 

that the start and end of the window correspond to the LAT where activation passes 

through a slowly conducting isthmus.148, 149 However, this does not appear to have 

been widely adopted, in part due to problems identifying the P wave in AT. 

Another difficulty with LAT assignment is that electrograms may have double 

potentials or fractionated signals, as discussed in Section 1.3.3. These signals often 

have particular significance because they give information about the underlying atrial 

substrate that may be relevant to the tachycardia mechanism. By reducing the 

displayed data to LAT alone, important information may be lost. 

1.3.6 Interpreting activation 

Relationship of activation to mechanism 

After AF ablation, almost all macroreentrant tachycardias are either CTI dependent, 

roof dependent or perimitral reentry (see Figure 1-3).150 Activation for these 

tachycardias involves reciprocal activation on opposite sides of the relevant atrium.3 

For example, in clockwise perimitral reentry, activation of the anterior portion of the 

LA is septal-to-lateral whereas activation of the inferior portion is lateral-to-septal. If 

activation of opposite sides of a reentrant circuit is in the same direction then this 

eliminates this mechanism from the differential diagnosis. 

For a macroreentrant tachycardia, whilst passing around the circuit the LAT 

should change by one cycle length (see Figure 1-5). From any point on the circuit, it is 

possible to make a small movement which results in a slightly earlier LAT (as long as 

the electrogram complexes with the smallest change in activation time are chosen). By 

contrast, for a focal tachycardia, when a mapping catheter is placed over the source 

then movement in any direction will result in a later LAT. 

On an isochronal map, macroreentry circuits present themselves in a similar way. 

For any potential circuit, the change in LAT around the circuit summates to one TCL. 

Therefore, there is a gradual change in colour from ‘early’ to ‘late’ whilst following the 

path of the circuit until the point where ‘late meets early’. It is important that the 

whole tachycardia cycle length is accounted for around the circuit of interest. For focal 

tachycardias, the isochronal maps show an area of early activation with LAT becoming 

later in a centrifugal pattern. 
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As discussed in Section 1.3.3, in localised entry tachycardias there is centrifugal 

activation of the atria away from the small area containing the active tachycardia 

mechanism. Within the localised reentry circuit, there are usually low-amplitude 

fractionated electrograms, to which it is often difficult to assign an LAT with 

confidence. 

1.3.7 Key Issues - activation mapping 

Activation mapping involves reconstruction of the activation pattern from the 

sequential collection of electrograms at different positions around the cardiac 

chamber. At the start of the chapter, tachycardia mechanisms were discussed and the 

importance of arrhythmia substrate was highlighted. In a patient with AT the prior 

information about heart structure and previous procedures is vital. As the 

electrograms are collected the activation pattern is constructed and interpreted within 

this context. However, the electrogram morphology also provides important clues 

about the underlying tissue’s electrical properties. 

Isochronal maps are the current gold standard for mapping AT. Creating an 

isochronal map that represents underlying activation requires 2 key steps: a 

tachycardia window must be chosen and the appropriate LAT for each electrogram 

must be selected. The resulting map only displays a small fraction of the information 

that may be relevant to the diagnosis. All electrogram characteristics (such as 

amplitude, fractionation, and double potentials) are lost in the process of reducing 

each waveform to a single corresponding activation time. As described above, these 

electrogram characteristics may be important in deducing the tachycardia mechanism. 

An additional source of error is that isochronal maps involve interpolation of LAT 

across the cardiac surface. This can be particularly problematic in the presence of LAT 

errors – because their influence is interpolated across the surface.127 

The work presented later in this thesis will seek to address the problems relating 

to: the window of interest, assignment of local activation time, and interpolation of 

information across the cardiac geometry. 
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1.4 Entrainment 

1.4.1 Background 

Despite the fact that typical flutter is common, proof for the mechanism only emerged 

in the 1970s. Canine models of atrial flutter were consistent with macroreentry151 and, 

in humans, the activation pattern had been described.152 However, the activation 

pattern is not proof of reentry: a focal tachycardia next to the CTI with functional 

conduction block in the CTI could give the same pattern of activation. 

Waldo and colleagues studied atrial flutter in patients with atrial flutter shortly 

after cardiac surgery.153 Their primary interest was to investigate the use of pacing 

manoeuvres for terminating the arrhythmia. They used overdrive pacing – pacing at a 

constant rate slightly faster than the rate of tachycardia. The significance of their 

observations was not recognised at the time. The authors later recognised that the 

ECG changes that they had noted provided strong proof for reentry. Over the following 

decade these observations, and others, were combined to form 4 criteria for transient 

entrainment. 

The key principle for entrainment is that part of the overdrive pacing wavefront 

travels antidromic to the tachycardia and collides with the tachycardia wavefront, 

whereas another part of the pacing wavefront travels orthodromically and reinitiates 

another cycle of tachycardia.154 This continual antidromic collision and orthodromic 

reset is illustrated in Figure 1-6. 
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Figure 1-6. Left Panel. A schematic diagram shows reentry around a fixed anatomical 
obstruction (solid grey circle). Isochrones are shown as dashed-grey lines and are 
perpendicular to the direction of wavefront propagation. The solid grey arrow shows the 
shortest path around the obstruction – the ‘tachycardia circuit’; the time taken to complete 
one loop is the ‘tachycardia cycle length’ (TCL). There is a gap in the arrow to indicate the 
excitable gap. Right Panel. During overdrive pacing, the paced activation (solid black arrows) 
travels i) antidromically to collide with the tachycardia wavefront (dashed black line), and ii) 
orthodromically to reset the tachycardia (leftward black arrow). This requires an excitable gap, 
such that pacing can excite the tissue before arrival of the tachycardia wavefront. 

1.4.2 Criteria for entrainment 

Despite attempts to introduce alternatives, the main criteria for entrainment have not 

changed for over 2 decades.155 The criteria for entrainment prove the presence of 

reentry. They are presented in Table 1-2, with initial explanation given in the following 

figure (Figure 1-7). 
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  Criteria for Entrainment 
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1 During overdrive pacing that fails to interrupt tachycardia, the 
demonstration of constant fusion beats in the electrocardiogram, 
except for the last captured beat, which is not fused. 

2 During overdrive pacing at two rates that fail to interrupt 
tachycardia, the demonstration of constant fusion beats of the ECG 
at each rate, but different degrees of constant fusion at each rate 
(progressive fusion). 

El
ec

tr
og

ra
m
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  3 During overdrive pacing that interrupts the tachycardia, the 
demonstration of localised conduction block to a site(s) for 1 beat 
followed by activation of that site(s) by the next paced beat from a 
different direction and with a shorter conduction time. 

4 During overdrive pacing at two rates that fail to interrupt 
tachycardia, the demonstration of a change in conduction time to 
and electrogram morphology at an electrogram recording site. 

Definition of overdrive pacing: 
During tachycardia, pacing at a constant rate that is faster than the rate of 
spontaneous tachycardia. 

Table 1-2. Criteria for transient entrainment. Adapted from Henthorn et al.156 
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Figure 1-7. The same anatomical obstruction is shown, as in Figure 1-6. Upper Left Panel. 
Tachycardia is illustrated again, this sequence is indicated with blue. Upper Right Panel. During 
pacing, in the absence of tachycardia, the activation sequence is different. This is indicated 
with red. Lower Left Panel. During overdrive pacing, the chamber’s activation pattern is partly 
similar to pacing (red) and partly similar to tachycardia (blue). The surface ECG morphology is 
therefore neither the pacing morphology nor the tachycardia morphology, but it is a fusion 
between the two (cf. 1st criterion of entrainment). At the site marked ‘e’, there is a long 
stimulus-to-electrogram time because activation must pass orthodromically around the circuit. 
However, if tachycardia terminates during pacing then the entire activation pattern will revert 
to the paced pattern (Upper Right Panel), and the stimulus-to-electrogram time will shorten 
(cf. 3rd criterion of entrainment). Lower Right Panel. This shows the effect of increasing the 
pacing rate. The antidromic penetration of the circuit has increased (thick arrow). This has 
resulted in a change in the degree of fusion between the pacing (red) and tachycardia (blue) 
activation patterns (cf. 2nd criterion of entrainment). At the site marked ‘e’, there is a shorter 
stimulus-to-electrogram time in comparison with the Lower Left Panel (cf. 4th criterion of 
entrainment).  
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The criteria for entrainment cannot be observed for focal tachycardias. During 

overdrive pacing of a focal tachycardia, the entire activation pattern is the same as for 

pacing in the absence of tachycardia. Theoretically, some degree of fusion could occur 

if an automatic tachycardia was accelerated by overdrive pacing. However, it is 

implausible that overdrive pacing could accelerate a focal tachycardia to the pacing 

rate and for it to remain constant (as required by the entrainment criteria). 

Demonstration of any of the entrainment criteria is evidence for reentry. 

However, they are not always sensitive methods for detecting the tachycardia 

mechanism. For example, if the pacing site is near to a slowly conducting isthmus then 

the antidromic pacing wavefront may not have a significant effect upon the ECG. 

Therefore, although there is acceleration of the rate, the morphology is the same as in 

tachycardia. This is known as ‘entrainment with concealed fusion’ (i.e. fusion is 

presumed to occur but is not detectable).157 

In the case of a microreentry tachycardia, the tachycardia circuit exists within a 

very small area of diseased tissue (Section 1.2.2). Theoretically, overdrive pacing will 

entrain the tachycardia but the fusion will be confined to the small area within which 

the tachycardia mechanism is confined. Therefore, the surface ECG will have the same 

appearance as during pacing in the absence of tachycardia. This is called ‘concealed 

entrainment’ by some authors158, 159 (but the term is used interchangeably with 

‘entrainment with concealed fusion’ by others). 

1.4.3 Application of entrainment criteria to atrial arrhythmias 

Entrainment has become a fundamental technique in electrophysiology.160 For VT, the 

surface ECG and the relationship between the surface QRS complex and recorded 

electrograms is particularly important.161 In scar-related VT, there is a zone of slow 

conduction and the onset of the QRS complex is associated with activation exiting this 

site. The appropriate site for ablation is dependent upon the detailed electrical 

substrate of the underlying scar and entrainment is critical in identifying this. 

In macroreentrant AT, the use of the ECG is hampered by the low voltage of the 

P wave, particularly in atria with extensive scar. Even in patients with typical flutter 

and without any prior surgery or ablation, the sensitivity and specificity of concealed 

entrainment for detecting entrainment from the CTI are limited.162 An additional 
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problem is interference with the P wave by the QRS-T components of the ECG. 

Therefore, the surface ECG is only routinely used when assessing entrainment 

manoeuvres during AT by some groups163, but not others.3, 69 

The 3rd and 4th entrainment criteria do not require use of the surface ECG. 

However, the 3rd criterion can only be observed when tachycardia terminates. In the 

context of ablation for AT, this is undesirable because further assessment of the 

tachycardia can only be performed if the same tachycardia can be re-induced. The 4th 

criterion of entrainment is most easily observed when multipolar catheters are placed 

around a tachycardia circuit.164 However, this is not practical for many reentrant 

circuits. One goal of this thesis is to re-evaluate the principals underlying the criteria of 

entrainment to see if they can be re-synthesised into a more practical criterion for use 

during ablation procedures. 

Currently, the most commonly used parameter after entrainment is the post-

pacing interval. 

1.4.4 Post-pacing interval 

During entrainment, the orthodromic pacing wavefront resets the tachycardia and 

travels around the tachycardia circuit until it collides with the antidromic wavefront 

from the next paced beat (see Figure 1-6). If pacing has ceased, then there is no 

collision. Instead the paced wavefront continues around the circuit and also passes 

back to the pacing site. The time from the last paced atrial capture to the arrival of the 

next activation wavefront is the PPI. Therefore, at the pacing site the PPI is the time 

taken for paced wavefront to pass orthodromically around the tachycardia circuit and 

return to the pacing position. 

In patients with VT, it was realised that the PPI gave important information about 

the position of the pacing site with respect to the tachycardia circuit.161 Following this, 

analysis of PPI was applied to atrial macroreentry circuits.158, 164, 165 If the pacing site is 

within the tachycardia circuit, then the shortest route that passes orthodromically 

around the circuit and back to the pacing site is the same as the tachycardia circuit: 

theoretically, the PPI is equal to one TCL. In Figure 1-6 the pacing site is not within the 

tachycardia circuit, and so the PPI would be greater than the TCL. 
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In reality, it is an assumption that PPI is equal to TCL for pacing sites within the 

tachycardia circuit. This assumption is only met if conduction is stable and unaffected 

by overdrive pacing. Often, atrial macroreentry circuits have an isthmus with relatively 

slow conduction. For typical flutter, this is located at the CTI.166-168 Cosio et al.164 

studied conduction delay in 6 patients with typical flutter. Changes in conduction were 

dependent upon the rate of overdrive pacing, with faster rates causing greater 

conduction delay. When pacing with a CL equal to 20ms less than TCL, these delays did 

not exceed 30ms. Therefore, when choosing pacing rates, they must be fast enough to 

identify a difference in the pacing rate from the tachycardia rate. However, at faster 

rates the risk of conduction disturbance increases: this can change electrogram timings 

and can also change the tachycardia. 

In this thesis, the methods are developed to detect macroreentry and also to 

obtain further information from the PPI (at the pacing site as well as remote 

catheters). The issues of decremental conduction are relevant and ideally should not 

have a significant effect upon their robustness. 

Post-pacing interval for focal tachycardia 

The development of entrainment methods, for AT, was based upon macroreentrant 

tachycardias. In these tachycardias it is possible to observe the entrainment criteria for 

reentry. For focal tachycardias it is not possible to observe constant, progressive, or 

concealed entrainment. However, as discussed in Section 1.2, some focal tachycardias 

do not appear to be interrupted by overdrive pacing and it was assumed that the 

mechanism in these cases was microreentry.9 

More recently, the use of overdrive pacing for focal tachycardias was re-

examined. Mohamed et al. studied 9 patients with AT and also performed 

measurements in 15 controls with sinus rhythm.169 They used the scheme in Figure 1-8 

to discuss their results. They found that the PPI did correspond to the distance from 

the tachycardia focus. The location of the focus was identified with activation 

mapping, and later confirmed by termination of tachycardia with ablation at that site. 

At the site of the focus in patients with AT, PPI-TCL ranged from 0-19ms. In patients 

with sinus rhythm, the PPI at the site of earliest atrial activation varied from 81-222ms. 
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Figure 1-8. Left Panel. A schematic diagram shows the events after overdrive pacing with a 
focal tachycardia, adapted from Mohamed el al.169 The last paced beat travels to the peri-focal 
junction, an area of slow conduction that is represented by grey shading. It then reaches the 
focus and resets the tachycardia. After one TCL, the focus fires and the wavefront must then 
exit the peri-focal junction before traversing the atrium back to the pacing site. For the sinus 
node, the time taken to traverse the ‘peri-focal junction’ is actually the sino-atrial conduction 
time. 

Of the 8 ATs in this study169, only 2 were classified as automatic on the basis of 

‘warm-up’ and ‘cool-down’ phenomena in response to isoproterenol. This may partly 

due to the exclusion of patients where the atrial cycle length varied by more than 

35ms. The study supports the use of PPI-TCL to give an indication of proximity to a 

focus. However, it is possible that PPI-TCL may underestimate the proximity if there is 

a long transit time at the peri-focal junction. 

Post-pacing interval integrated into mapping 

Miyazaki et al. developed a systematic approach to the use of entrainment for 

localizing AT.170 Patients were only included if the cycle length variability was <20ms, if 

activation mapping was consistent with macroreentry, and if ablation successfully 

terminated the arrhythmia. They developed their algorithm using data from 90 

patients and then applied it to a further 90 patients for prospective testing. Using a 

pre-determined strategy, the approximate location of the tachycardia could be 

identified with 2 or 3 manoeuvres in 93% of cases. 

The algorithm by Miyazaki et al.170 has not been evaluated for patients with 

localised reentry or focal AT. Additionally, one of the concerns about overdrive pacing 
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is that it can result in tachycardia modification or termination.3, 93 For this reason, it is 

generally recommended to perform activation mapping before a limited number of 

entrainment manoeuvres.3, 82, 86 This usually consists of identification of the potential 

macroreentry circuit by activation mapping and then using this information to guide 

the choice of entrainment manoeuvres. This can minimise the number of manoeuvres 

that are performed. After finding that activation is consistent with macroreentry, one 

group performs overdrive manoeuvres at two opposite segments of the proposed 

circuit; if the value of PPI-TCL is less than 30ms then this supports the diagnosis.3 

Another use of PPI is to create complete electroanatomical maps, with colour 

coding according to the PPI-TCL at multiple locations around the atria. One group has 

used this approach in order to inform their ablation strategy.171 This gave very accurate 

delineation of the active tachycardia circuit. However, the number of pacing 

manoeuvres was high (14-77 per patient) and the time taken for PPI mapping was long 

(12-200 minutes per tachycardia). This limits the practicality of the method and also 

restricts its use to very stable tachycardias. 

Other investigators have used multiple entrainment manoeuvres combined with 

electroanatomical mapping.25 By colour coding the electroanatomic map according to 

the PPI measured at each site (instead of the LAT), the regions of atrium with a PPI that 

closely approximates the TCL can be visualised. These have helped to clarify the 

activation pattern of typical right atrial flutter, revealing that there may be two active 

circuits in the RA – double loop reentry. 

1.4.5 Double loop reentry 

A PPI electroanatomical map from a patient with typical flutter is shown in Figure 1-9. 

It shows that there are two circuits that can be identified by short PPIs. One runs 

anteriorly, adjacent to the tricuspid annulus, and the other runs posterior to the SVC. 

These investigators found that the exact circuit(s) in patients with typical flutter is 

variable, although the cavotricuspid isthmus was a critical part of the circuit in all 

patients. 
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Figure 1-9. An RA PPI map in a patient with typical flutter (TCL 200ms), from Santucci et al.25 
The surface is coloured according to the PPI measured at each location. Red indicates areas 
with PPI<215ms and magenta indicates PPI>235ms (see colour bar at bottom). Four views are 
shown (AP – antero-posterior, LAO – left anterior oblique, LL – left lateral, PA – postero-
anterior). There are 2 circuits with PPI<215ms. Both circuits share a common isthmus before 
separating (see LL) into: an anterior circuit around the tricuspid valve annulus and another 
coursing posterior to the SVC. 

Fujiki et al. also studied entrainment manoeuvres in patients with typical 

flutter.172 They performed fewer entrainment manoeuvres but they tracked activation 

with multipolar basket catheters. When pacing a circuit separately (i.e. not at the 

common isthmus) they identified ‘paradoxical delayed capture’ of the other circuit. For 

example, if they entrained from the top of the posterior circuit then the pacing 

wavefront had to pass through the common isthmus and also around the anterior 

circuit before activating the lateral anterior tricuspid annulus. 

In addition to studying typical flutter, Fujiki’s group also used similar methods to 

identify double loop reentry in patients with previous cardiac surgery. Although the 

principle appears to be sound, it does require the use of a basket catheter (a 

multipolar catheter that can gather electrodes from the entire atrium). It is more 

common to perform electroanatomical activation mapping with a limited number of 

entrainment manoeuvres.94, 173 
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1.4.6 Use of information from remote catheters 

When overdrive pacing is performed from a location that is outside a reentrant circuit, 

then the PPI will be greater than the TCL. There has only been one investigation in 

which the distance to the macroreentrant circuit has been related to the PPI. In this 

study, mathematical equations were developed assuming a uniformly conducting two-

dimensional sheet of conducting tissue, but not validated with electroanatomical 

mapping in animals or humans.174 This issue will be further examined in this thesis in 

order to make stronger inferences about the tachycardia from the results of overdrive 

pacing manoeuvres. 

When overdrive pacing is performed, the response at the pacing electrodes is 

usually analysed. The electrograms recorded from other sites are only used to help 

ensure that the tachycardia activation pattern has not changed. One study devised a 

scheme in which the timings at other electrode sites can be used more rigorously. The 

feasibility of using remote electrograms to estimate the PPI at the pacing electrode, 

when the electrogram is obscured by pacing artefacts, was demonstrated.175 There are 

no studies that systematically explore the activation of remote catheters after 

entrainment, with respect to chamber geometry and tachycardia mechanism. This will 

be addressed further in Chapters 5 and 6. 

1.4.7 Key issues – entrainment mapping 

The development of entrainment was initially aimed at using pacing techniques to 

terminate atrial flutter. However, entrainment became a vital tool for the elucidation 

of macroreentry as the mechanism for flutter. Entrainment criteria were described 

that, if present, prove reentry. The use of entrainment was disseminated to other 

tachycardias: its development as a diagnostic tool for the invasive mapping of VT led to 

the PPI being used as a qualitative surrogate for ‘distance from the circuit’. 

Entrainment continued to be used as a research tool, and this led to further 

characterisation of atrial flutter as well as accurate descriptions of double-loop circuits 

in patients with previous cardiac surgery. However, detailed PPI maps are impractical 

for most clinical situations – they take too long to create and the use of multiple 

manoeuvres risks altering the tachycardia. Therefore, the basis for most clinical 

diagnosis remains the use of a few PPIs to confirm a mechanism that has been 
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hypothesised on the basis of activation mapping. The established entrainment criteria 

are often difficult to apply to AT because the surface P wave is often too indistinct to 

provide clear evidence of fusion, and the electrogram-based criteria require 

electrograms to be recorded from specific locations. There are no existing entrainment 

criteria to detect double loop reentry. 

If PPI information does not confirm the expected diagnosis then there is little 

previous work to indicate how this information can be integrated into a diagnostic 

strategy. There has not been an attempt to quantify the relationship between PPI and 

the distance from the tachycardia mechanisms. Additionally, the information from 

other catheters in the heart is not generally used. Despite some enthusiasm for using 

computational techniques to integrate the information from entrainment 

manoeuvres,176 further research has not been forthcoming. 

In this thesis, the analysis of electrogram information from overdrive 

manoeuvres will be reassessed. In particular, this will involve improved methods for 

detecting macroreentry and also improved methods for analysing the PPI. 

1.5 Aims for this thesis 

In this chapter, the mechanisms of atrial tachycardia were reviewed and then the 

current methods for performing activation mapping and entrainment mapping were 

examined. These enabled the identification of key issues that form the basis for the 

aims of the thesis. 

1.5.1 Aims for activation mapping 

A1 Design a new method for activation mapping that does not require a user-chosen 

window of interest. 

A2 Avoid the need for local activation time assignment. 

A3 Enable the display of electrogram characteristics, such as fractionation or double 

potentials. 

A4 Create a prototype for analysis of clinical cases. 

1.5.2 Aims for entrainment mapping 

E1 Re-assess the criteria for entrainment to see if the principles can be reformulated 

into a method that is practical for use during AT procedures. 
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E2 Re-assess the criteria for entrainment, with a view to detecting double-loop 

reentry. 

E3 Investigate the theoretical relationship between PPI and the trans-atrial distance 

from the tachycardia mechanism. 

E4 Investigate the theoretical response to overdrive pacing for different tachycardia 

mechanisms, with respect to the PPI. 

E5 Investigate the theoretical response to overdrive pacing for different tachycardia 

mechanisms, with respect to the response at electrodes distant from the pacing 

site. 

E6 Integrate the theoretical findings from above into a clinical prototype for testing 

with patients. 
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2.1 Introduction 

All aspects of this thesis involve the integration of mathematical and computing 

methods for assisting with the diagnosis of atrial tachycardia. In the first parts of this 

chapter, the methods used for collecting clinical data are discussed. Following this, 

some of the software methods are described. The purpose of the research was to use 

software as a tool, rather than to develop improved software techniques. Therefore, 

the methods for writing and testing software are kept to a minimum. 

2.2 Patient studies 

2.2.1 Patient setup, electrogram recording, Carto setup 

All clinical procedures were performed in a clinical laboratory routinely used for 

electrophysiology procedures. Patients were monitored according to local protocols. 

Electrical signals were recorded using the LabSystem Pro Recording System (Bard 

Electrophysiology, Massachusetts, USA) and these typically included a 12-lead surface 

ECG as well as electrograms from intracardiac catheters. Surface ECG signals were 

filtered using a band-pass filter with cut-off frequencies set to 0.05Hz and 25 Hz. 

Bipolar intracardiac electrograms were also filtered with a band-pass filter but the 

passband was set at 30Hz to 500Hz. All signals were then digitised with a sample 

frequency of 1000Hz and stored. 

A decapolar catheter was placed into the CS, using an SL3 sheath if necessary. 

For cases where connection of the pulmonary veins would require assessment, a 

circular mapping catheter was also used (Lasso Catheter, Biosense Webster, California, 

USA). The ablation catheter was selected according to the characteristics of the case. 

For patients undergoing electroanatomic mapping, the Carto3 System was used 

(Biosense Webster, California, USA). The electromagnets were fixed to the operating 

table and skin patches attached to the patient, according to manufacturer instructions 

(see “Electromagnetic catheter location” on p27 for further information). A Navistar 

Thermocool ablation catheter (Biosense Webster, California, USA) was used for 

mapping. 

In patients requiring LA access, a trans-oesophageal echocardiogram was 

performed in order to exclude thrombus in the left atrial appendage. This was 
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performed during the procedure, if general anaesthesia was used, or within 24 hours 

prior to the procedure otherwise. A transseptal puncture was performed if a patent 

foramen ovale was not present. This was accomplished using an SRO pre-shaped 

sheath and a BRK needle (St Jude Medical, Minnesota, USA) using fluoroscopic 

guidance and trans-oesophageal echocardiography if available. Immediately after 

access to the LA, heparin was given to achieve an activated clotting time of 

approximately 300s. 

2.2.2 Creating isochronal maps for atrial tachycardia cases 

If there was uncertainty about the location of the tachycardia mechanism, then RA 

activation was mapped and LA mapping was only performed if mapping indicated that 

an LA mechanism was likely. For all cases, one of the bipoles from the decapolar CS 

catheter was selected with a reproducible sharp atrial component to the electrogram. 

Selection of a window-of-interest was left to operator discretion. Generally, our 

approach is to gather information from an area of healthy myocardium first, as close as 

possible to the atrial timing reference, where the electrograms have unambiguous LAT. 

Mapping then proceeds with small movements around the atrial surface. The mapped 

area is gradually expanded, endeavouring to avoid crossing the edge of the window-of-

interest or entering areas with abnormal electrograms where the LAT is unclear. 

After this, the remaining areas of the surface are mapped and the electrograms 

are interpreted with knowledge of the likely tachycardia mechanism and activation of 

the previously mapped areas. For assignment of the LAT, the first peak of the near-

field electrogram was assigned. In healthy tissue this is usually unambiguous. In the 

case of double potentials, the catheter was moved slightly so that one component was 

larger, and then this was annotated. This is similar to the approach of other 

investigators.177 

2.2.3 Performing overdrive pacing 

In order to perform overdrive pacing, the TCL was measured using the EP recording 

system. The desired catheter was then electronically connected to the stimulator and 

pacing was performed with a CL 10-30ms shorter than TCL. When electrograms 

recorded from electrodes distant to the pacing catheter were observed to have 

advanced their CL to the paced CL, then pacing was terminated. 
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In order to improve analysis of overdrive pacing manoeuvres, software was 

written to assist with the process. Figure 2-1 shows the GUI for electrogram 

annotation. This was implemented using Matlab (Mathworks, Massachusetts, USA). It 

allows the user to annotate the activation from each electrogram and see the 

corresponding cycle lengths plotted on the same interface, for a visual assessment. 

Once this has been done, then the activation time data is analysed. 

 

 
 

Figure 2-1. GUI for annotating electrograms. After an AOP, the electrogram data is imported 
from the Bard recording system. The user annotates the activation time from each electrogram 
and indicates the last pacing stimulus (green vertical line). The black vertical lines correspond 
to the previous paced beats, and the red vertical lines correspond to tachycardia. In the right 
panel, the cycle length (i.e. time between each activation) is shown. The cycle length that 
follows each activation is shown, e.g. the cycle length following the last paced stimulus is 
shown as a green circle. 

For each electrogram, the pacing CL and the TCL are calculated. The software 

provides warnings if these are outside the expected range. Warnings are also provided 

if the difference between pacing CL and tachycardia CL are less than 10ms because this 

suggests that AOP may not have accelerated the atria to be faster than the 

tachycardia. 
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2.3 Accessing data 

2.3.1 Electrophysiology recording system download 

The LabSystem Pro Recording System allows the user to export recorded data in text 

format. Object-oriented code was written to import these files into Matlab and to 

manipulate them simply in that programming environment. The code utilises memory-

mapping, a technique that involves re-storing data to file and then mapping that file so 

that the application can access it in the same way as it would access dynamic memory. 

This has the advantage that large amounts of data can be efficiently utilised and 

shared between applications. 

2.3.2 Carto3 download 

With the initial release of the Carto3 System, there was no facility for the user to 

access data from the cases. I acknowledge the help of Biosense Webster, who 

provided a workstation with an encrypted shared library, allowing for data to be 

extracted using Mathematica (Wolfram Research, Illinois, USA). Mathematica code was 

written to export data from cases in a format that could then be imported into Matlab, 

with which most code was written. 

In later releases of Carto3, access to clinical data has been improved by including 

a facility for exporting the information directly from the clinical workstation. Matlab 

code was written to import this data. 

2.4 Modelling reentry 

In Chapters 5 and 6, mathematical and computer models of reentry are used to 

develop new approaches to the use of entrainment for mapping arrhythmias. These 

methods are described and discussed in those chapters. 

2.5 Computational methods 

In this section, computational methods for this thesis are briefly described. These were 

a critical tool for the research that is described but the goal was not to research these 

methods per se. Where quantitatively important code was written, it was validated as 

described below. 
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2.5.1 Shell reconstruction 

Shells are represented in software as surfaces composed of multiple adjoining 

polygons. In this work, and most other software applications, triangles are used and 

the representation is referred to as a triangulation. This contains information about 

the vertices (a matrix of x, y, and z coordinates) as well as the triangulation matrix (a 

matrix in which each row lists the 3 vertices comprising a face). This provides the 

means with which to approximate curved surfaces in space. Typically, for an LA 

geometry produced using the Carto3 system, there are 5,000 – 10,000 vertices and 

10,000 – 20,000 faces. The larger these matrices, the better the approximation of the 

geometry to the actual surface but the more computational power is required. 

When a computer model of a surface is rendered as an image, the properties of 

each face can be controlled. These include colour, but also transparency, and the 

effect of reflected light. Whilst some of these aspects are computationally expensive, 

leading to slower refresh rates, they help to improve the 3D perception of the 

rendered surfaces. 

For the Ripple Mapping application, each electrogram is represented as a moving 

cylinder on the surface of the heart. One of the difficulties was to achieve a sufficient 

speed of playback. In order to do this, the software adjusts the number of vertices and 

faces that are used to represent each cylinder depending upon the required frame 

rate. Further optimisation was also achieved by pre-storage of all calculated data 

within the graphics object (requiring faces to be turned ‘on’ or ‘off’ rather than fully re-

rendered). 

2.5.2 Graphical User Interfaces 

For aspects of the research requiring repeated execution of code, GUIs were written. 

These were important to facilitate other users to test the software. 

2.5.3 Calculating the distance across a shell 

Finding the minimal geodesic between two points on a curved surface is non-trivial and 

considerably more complex than shortest-path problems in 2 dimensions. The 

requirement to calculate geodesics was encountered in the design of the software for 

electroanatomic analysis of entrainment manoeuvres. In this application, the distance 
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from the pacing electrodes to the rest of the atrial surface, including the other 

electrodes present, must be calculated. 

Unfortunately, no suitable open-access software could be found. Therefore, a 

modified fast-marching algorithm was written, in which a virtual source was calculated 

for each face. Speed of the algorithm was optimised by storage of all intermediate 

variables in an object hierarchy, which reduced the need for repeated iterations when 

calculations were made between multiple catheters. 

The ‘virtual source’ part of the algorithm determines the distance from the 

original source to a new vertex on a face where the distance to the other vertices in 

the face is known. This is explained further in Figure 2-2 below.  

 

 
 

Figure 2-2. To the left is shown a small fragment of a triangulation. It is a 3 dimensional shell 
and so the shortest paths from o to A, B, and C are not straight lines. In order to calculate the 
shortest distances from o to A, B and C, virtual sources are used. For triangle Aab, the position 
of the source for its neighbour aob is known. Therefore, aob is rotated about ab so that it is 
coplanar with aAb (right part of figure). The position of the virtual source for triangle aAb is o’ 
and the distance from o to A can easily be calculated because it is the same as the distance 
from o’ to A. 

There may be more than one route to reach vertices from the origin. Therefore, 

a ‘fast-marching’ type of algorithm is used to select which vertex should be calculated. 

This is an iterative process and is illustrated in Figure 2-3. 
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Figure 2-3. Fast marching algorithm. Part of a randomly generated spherical triangulated mesh 
is shown in each panel. Distances are being calculated from the yellow point to all of the other 
vertices. The green points represent locations to which a preliminary distance has been 
calculated. The blue points indicate locations where the distance has been ‘fixed’ (i.e. the 
algorithm will make no further modifications). The red location is the last point that was fixed. 
In the top right panel, the red arrow indicates the preliminary point that has the shortest 
distance from the yellow starting point. In the next iteration (top left), this point is fixed by the 
algorithm, and the surrounding vertices that are not fixed are then recalculated. This process is 
repeated to create an expanding number of fixed points (lower left panel). 

In addition to verification of the subroutines that were written to calculate 

geodesic distances, validation was also performed by calculating the distance around a 

randomly generated spherical cloud of points. (The number of points was 4000, which 

is similar to the number in a Carto3 atrial geometry.) These were triangulated using a 

convex hull algorithm (available within Matlab) and the distance from a random vertex 

to all other vertices was calculated. This was compared with the mathematically 
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calculated distance: 𝑑 = 𝑟𝜃, where 𝑟 is the radius of the sphere and 𝜃 is the angle 

separating the two points (in radians). As shown in Figure 2-4 the error is less than 

1.5%, which is acceptable for its requirements. 

 

 
 

Figure 2-4. Validation of geodesic calculation. 4000 points were created on a unit sphere, 
which was triangulated with a convex hull algorithm (Left Panel). The red point shows the 
point from which geodesic distances were calculated to each other point. The error was 
calculated by comparing the result with the mathematical solution for a perfect sphere. The 
error increases as the distance around the shell increases. The main reason for this is that the 
geodesic on the triangulated surface traverses a series of straight chords that subtend the 
sphere. 

2.6 Conclusion 

This Chapter has outlined methods involved with patient studies, accessing clinical 

data, and some of the computational methods relating to cardiac surfaces. Further 

details are given in the following chapters. 
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3.1 Ripple Mapping publication 

The publication describing the initial development of Ripple Mapping is included on 

the following pages.178 
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References are included in this chapter as well as the References section.93, 163, 179-194 
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4.1 Aims for this chapter (in combination with Chapter 3) 

A1 Design a new method for activation mapping that does not require a user-chosen 

window of interest. 

A2 Avoid the need for local activation time assignment. 

A3 Enable the display of electrogram characteristics, such as fractionation or double 

potentials 

A4 Create a prototype for analysis of clinical cases. 

4.2 Introduction 

The initial study of Ripple Mapping was a proof-of-concept study. Following this, 

substantial changes were made to the software. The anatomical shell created with the 

commercial software is used instead of a surface generated from the collected points 

(see Section 2.3.2 on p51). Also, the interpolated values of the bipolar voltage 

amplitude are used to shade the atrial shell, giving additional information about 

underlying substrate. Further software changes to the user interface also allowed for 

much faster running of the displayed data. This was important so that novice users 

could assess the raw data without having to rely upon pre-prepared videos. This meant 

that they could assess a case without any influence from the researcher. 

In this chapter, the next rendition of the software is tested more systematically. 

Specifically, the activation maps of patients with atrial tachycardia are assessed with 

Ripple Mapping by 4 electrophysiologists of varying experience. 

4.3 Design modifications to Ripple Mapping 

4.3.1 Surface rendering and voltage information 

The Ripple Mapping was changed so that it can run from an exported Carto3 case, as 

described in Section 2.3.2. The electrograms, triangulated atrial surface, and valve 

orifices are imported. The Carto3 data also includes voltage amplitude data – the peak-

to-peak amplitude of the electrograms is interpolated across the atrial surface. In the 

initial Ripple Mapping study, the atrial surface was shaded in grey, but this has been 

modified to include shading according to this voltage data. This allows the user to 

interpret activation within the context of information about the underlying tissue – 

low voltage areas being likely related to scar or previous ablation. 
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4.3.2 Playback speed 

The speed at which the Ripple Mapping can run was increased by reducing the total 

number of graphics objects that are held in memory (it is more efficient to have one 

graphics object holding information for multiple bars rather than having multiple 

graphics objects relating to a single bar each). If the user selects particularly fast 

playback speeds, then the quality of graphics rendering is reduced in order to facilitate 

the required frame-rate increase. This method allows for a frame rate of playback so 

that up to 150ms of data can be displayed per second. 

4.3.3 Automatic ‘window’ 

In the initial use of Ripple Mapping, the user selected the time-period that was 

included. However, for this study a fixed time-frame was used (to emphasise that a 

user-defined window of interest does not need to be used). The time-frame was 

chosen in relation to the mid-CS electrogram for all LA maps, and in relation to the 

most proximal CS electrogram for RA maps. For each map, the time-frame was taken 

from one TCL before the respective electrogram to one TCL afterwards. When the 

Ripple Map reaches the end of the time-frame the display of all points is briefly 

suspended, in order to indicate to the user that the Ripple Map is restarting. Using this 

method, the user sees two complete cycle lengths of the tachycardia being displayed. 

This guarantees that, for a macroreentrant tachycardia, if any arbitrary ‘start point’ is 

chosen then an entire cycle is displayed without interruption. The Ripple GUI is shown 

in Figure 4-1. 
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Figure 4-1. The user-interface for Ripple Mapping. The atrial surface is downloaded from 
Carto3 and coloured according to the interpolated bipolar electrogram voltages. Cyan 
represents areas with low voltage and magenta high voltage (the sliders in the bottom right 
corner are used to adjust the scale). The bars extend outward from the cardiac surface 
according to the electrogram voltage (red for positive and blue for negative voltages). The bars 
reach their maximum length at a user controlled value (similar to clipping). Additional controls 
adjust the speed of play. The user can select electrograms and see them displayed at the top 
left. 

4.4 Experimental methods 

Carto3 maps for patients with atrial tachycardia were assessed, for the period 

01/01/2010 – 01/04/12. All procedures were performed by the same operator and the 

same mapping strategy. Carto maps were only included where the mechanism of 

tachycardia was confirmed by successful ablation. Maps for typical right atrial flutter in 

structurally normal hearts were excluded. In total, 16 cases were identified with a total 

of 18 mapped atrial tachycardias. Further information about the clinical methods for 
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creating the Carto3 maps are given in Section 2.2.2, p49. For each tachycardia, the 

activation of each atrial wall was determined by the researcher using all of the 

information available (known arrhythmia mechanism, isochronal map, Ripple Map, 

interpretation of electrograms). The surface voltage scale was chosen to shade all 

areas >0.5mv as magenta and <0.05 as cyan, as per other studies. 

Four electrophysiologists were then asked to interpret the Ripple Maps from 

each patient. They were given written instructions describing how to interpret Ripple 

Maps. For each case, they were then asked to fill out a pro forma requiring them to 

identify: the direction of activation of the anterior, posterior, septal, lateral and 

inferior walls; the difficulty in establishing a diagnosis; the most likely diagnosis; and an 

ablation target. No information about entrainment manoeuvres was provided. If 

activation was consistent with a reentrant tachycardia all electrophysiologists 

confirmed that it was their usual practice to perform entrainment in order to rule out a 

localised tachycardia adjacent to a line of conduction block. 

Isochronal maps were also assessed by the electrophysiologists, after a period of 

more than 1 month from the initial analysis. The same pro forma was used. The 

proportion of correct responses could then be compared between Ripple Maps and 

isochronal maps. 

The activation maps were also assessed qualitatively in order to assess the utility 

of the method. 

4.5 Results 

Table 4-1 gives details about the cases which were included in the study. 
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Case CL 
(ms) 

Previous ablation / surgery Diagnosis 

Left atrial cases 
1 410 CTI ablation for typical flutter Focal from ridge between LUPV and LAA 
2 250 Previous PVI for PAF Exit from posterior aspect of LUPV 
3 280 PVI, CTI line, roof line Localised reentry from a circuit on the septum 

between the RIPV and CS 
4 360 PVI, roof line, mitral line Localised reentry on anterior wall 
5 260 Mitral valve repair, tricuspid 

annuloplasty, and surgical PVI 
Reentry around atriotomy scar and perimitral reentry 
(2 mechanisms) 

6 250 Previous PVI, roof line, mitral 
line 

Activation consistent with roof dependent reentry. 
Entrainment indicated localised reentry anterior to 
blocked roof line 

7a 260 PVI, roof line. Roof dependent reentry around L veins. Also 
perimitral circuit (double loop) 

7b 315 Following on from Case 7 Perimitral reentry 
8 240 PVI, roof line, mitral line, CTI 

line 
Perimitral reentry 

9 345 PVI, roof line, attempted mitral 
line 

Perimitral reentry 

10 225 PVI, roof line, mitral line, 
anterior mitral line 

Roof dependent around R veins 

11 320 PVI, roof line Roof dependent flutter (or possible focal next to 
blocked line) 

12 250 PVI, roof line, mitral line, 
'maze' 

Perimitral flutter 

    
Right atrial cases 

13 240 Previous cardiac surgery with R 
+ L atriotomies 

Dual-loop around tricuspid annulus and R atriotomy 
scar 

14a 285 Surgical repair for Tetralogy of 
Fallot 

Dual-loop around tricuspid annulus and R atriotomy 
scar 

14b 305 Following on from case 14, 
new tachycardia CL 305ms. 

Reentry around R atriotomy 

15 420 Mitral valve repair (R 
atriotomy) and surgical PVI 

Reentry around R atriotomy scar 

16 220 Tetralogy of Fallot repair Single loop reentry around tricuspid annulus 
Table 4-1. Details of the cases for which activation maps were analysed. On average there 
were 110 (range 34-322) points in each map. 

4.5.1 Questionnaire study 

Figure 4-2 shows the proportion of correct responses by the electrophysiologists 

analysing each case using Ripple Mapping, and a similar graph for the isochronal maps. 

The results have been grouped according to the tachycardia mechanisms. Overall 

diagnostic accuracy was high for all types of macroreentrant tachycardia, and lower for 

localised reentry tachycardias. 
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Figure 4-2. Proportion of correct responses for analysis of isochronal maps (above) and Ripple 
Maps (below). For each type of tachycardia, the proportion of correct responses for wall 
activation (left bar) and tachycardia mechanism (right bar) is shown. For each chamber, the 
activation of 5 walls was assessed by 4 observers, giving a total of 5*4=20 responses for each 
tachycardia. The tachycardia mechanism was assessed 4 times for each tachycardia. Correct 
responses were less frequent for focal / localised reentry tachycardias (see Text and Discussion 
on Qualitative analysis, starting on p74). 

When comparing the accuracy for determining the direction of activation on 

each atrial wall, there was no significant difference between isochronal maps and 

Ripple Mapping for LA macroreentry (p = 1), RA macroreentry (p = 0.17), or localised 
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reentry (p = 0.32). Similarly there was no significant difference in the accuracy of 

diagnosis for LA macroreentry (p = 0.37), RA macroreentry (p = 0.35). There was a 

trend to increased diagnostic accuracy for the Ripple Maps of localised reentry, but 

this did not achieve statistical significance (p = 0.18). 

Users’ ratings of ‘case difficulty’ and ‘diagnostic accuracy’ were not significantly 

different between any of the groups and were not predictive of successful 

identification of the tachycardia mechanism. Similarly, the number of points used to 

create the maps was not predictive, although users subjectively reported that a higher 

number of points was more helpful for the Ripple Maps. 

4.5.2 Qualitative analysis 

The pre-chosen time interval for Ripple Maps allowed interpretation of the data 

in all cases. In the LA macroreentry cases, most areas of atrium had voltages >0.5mV. 

An example of peri-mitral reentry is shown in Movie 4-1. Note that the Ripple Map 

successfully displays double potentials at the atrial roof, where a linear ablation lesion 

had been performed at a previous procedure. 
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Movie 4-1. [The Movie is included in supplemental data.] Ripple Map from Case 12. The Ripple 
Map shows activation consistent with anti-clockwise perimitral flutter. There are double 
potentials at the roof, which successfully convey the impression of activation reaching a 
previous ablation line from the anterior wall, and then from the posterior wall. Most areas of 
atrium have a voltage >0.5mV, facilitating interpretation.  
In the lower panel, two views of the isochronal map. In the LAO view, the tachycardia 
mechanism is demonstrated clearly (dotted arrow). In the superior (sup) view, there is 
ambiguity of LAT assignment at the roof (thin arrow) and the presence of double potentials is 
not conveyed. 
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The success rate for focal / localised tachycardias was lower than for 

macroreentry. In Case 1, there was a focal tachycardia originating from the left 

superior pulmonary vein, and the LA had normal voltages throughout. In this case, all 

observers made the correct diagnosis using both the Ripple Map and also the 

isochronal map. Similarly, in Case 2, there was a focal breakout from the left superior 

vein in a patient in whom PVI had previously been performed. Reentry could not be 

ruled out as a mechanism but the activation pattern of the LA was from a ‘source’ in 

the pulmonary vein. 
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Movie 4-2. [The Movie is included in supplemental data.] Ripple Map from Case 2, viewed 
from superior/posterior. The Ripple Map shows activation earliest at P85 (electrogram shown). 
Activation is centrifugal away from this location.  
The isochronal display is shown in the lower panel. For this tachycardia all observers correctly 
interpreted both types of map. 

The other cases involving a focal / localised reentry mechanism were Cases 3 and 

4. In both of these, a substantial portion of the LA surface had bipolar electrogram 

voltages <0.5mV and the localised reentry circuit had portions with voltages similar to 
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the intrinsic noise of the measuring system (<0.05mV). It is notable that during the 

ablation procedure for Case 3, the correct location of the circuit was not correctly 

identified and tachycardia terminated when ablation was re-directed to an area of 

fractionated activity approximately 1cm away from the initial site. In Case 4, 

interpretation of activation was also difficult. In the clinical case, temporary cessation 

of tachycardia was noted with catheter pressure during mapping. Ablation at this site 

resulted in termination and non-inducibility of tachycardia. Figure 4-3 illustrates the 

localised reentry circuits for these cases. 
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Figure 4-3. Upper Row: Voltage maps for Cases 3 and 4. Lower Row: The corresponding 
isochronal maps. The black arrows represent the localised reentry circuit, which has been 
inferred by examination of the maps and also post hoc knowledge of the location where a 
single lesion caused tachycardia termination. In each case, large areas of the atrium have 
electrograms with voltage amplitudes of less than 0.05mV. This limited the number of 
electrogram points that were recorded, particularly in Case 3, because of the difficulty in 
assigning activation time when using Carto 3. On each map, the ablation lesion resulting in 
termination of tachycardia is located at the black arrowhead. In Case 3, ablation was initially 
attempted at the grey arrowhead because this was where activation appeared to ‘break out’. 
The cases can also be viewed as Movie 4-3 and Movie 4-4. 

Cases 3 & 4, illustrated in Figure 4-4, were the tachycardias with the lowest rate 

of successful interpretation. However, Case 3 had a higher rate of success when the 

Ripple Mapping was used, in comparison to the isochronal map. The isochronal map 
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drew users to the ‘earliest’ electrogram, as it had done in the clinical case, to the site 

were ablation was directed first without success. However, with the Ripple Map 

observers did not state a single point for an ablation target but instead correctly 

identified a larger region of interest. One of the limitations of this study, is that the 

benefits of mapping systems are best assessed using tachycardias where the activation 

pattern is difficult to ascertain. Unfortunately, this is a small proportion of the clinical 

tachycardias that are encountered. 

Although it did not reach statistical significance, there was a trend towards 

higher success rates with interpretation of RA Ripple Maps than with the isochronal 

maps. All of these patients had previous atriotomy scars. Incorporation of the voltage 

data onto the Ripple Map was useful for interpreting activation within the context of 

underlying substrate. See Figure 4-4. 

 

 
 

Figure 4-4. Case 13, dual-loop reentry around a right lateral atriotomy and around the 
tricuspid annulus. There was difficulty in obtaining points with clear activation times, so the 
density of points is low where ‘early meets late’ on the isochronal map. The Ripple Map shows 
the location of the atriotomy scar from the Carto3 data. It can be viewed as Movie 4-5. 
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4.6 Discussion 

This study has shown that Ripple Mapping is capable of conveying the correct 

activation pattern to electrophysiologists who are not practised in its use. The success 

rates for identifying correct activation were similar to those for identifying activation 

on isochronal maps. However, Ripple Mapping has the advantage that no user-defined 

window of interest is required and the user does not need to annotate the local 

activation time for each individual electrogram. The use of atrial shells produced with 

Fast Anatomical Maps (FAM) from the Carto3 system allowed interpretation of 

activation despite being concave in some areas (see Chapter 3). 

In cases with macroreentry, the success rate for identifying tachycardia 

mechanisms was high and the efficacy of Ripple Mapping was, again, similar to 

isochronal mapping. The success rate for correctly identifying activation patterns was 

lower in the group of cases that exhibited localised reentry, using any form of 

activation map. There are several explanations for this finding. First, these tachycardias 

usually arise from areas of tissue that have been altered by previous ablation. 

Therefore the electrograms in the area of interest often have low voltages which are 

similar in amplitude to the noise in the recordings. This makes identification of 

activation timing difficult, whatever method is used. Second, there is a more varied 

substrate for localised reentry tachycardias, in contrast to the stereotypical 

macroreentry circuits with their relatively clear targets for ablation (e.g. see Figure 1-3, 

p20). 

One of the limitations of this study is that electrogram points were collected for 

the purpose of LAT assignment and incorporation into an isochronal map. In areas with 

low voltage or ambiguous activation times then some points may not have been 

collected because of the risk of creating an incorrect isochronal map (see Chapter 3, 

Figure 3). However, these are the areas where a high density of points might be more 

useful for the Ripple Mapping because this makes activation easier to identify. For 

example, in Case 3, Ripple Mapping did suggest a low voltage localised reentry circuit 

to some users, whereas the isochronal map seemed suggestive of a more focal 

tachycardia. 
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In the future, if Ripple Mapping is incorporated into an electroanatomic mapping 

system then the collection of data will be directed towards interpretation of the Ripple 

Map rather than an isochronal map. Locations with low voltage and indeterminate 

activation times could still be collected, without fear that they will adversely affect the 

map. This may be particularly useful if multi-electrode mapping is employed because 

this utilises catheters with up to 20 electrodes, which collect 10 bipolar electrograms 

simultaneously. Although this has the potential to allow much faster and more densely 

spaced electrogram acquisition, it does require that every electrogram is correctly 

annotated with the LAT for an isochronal map. This is likely to be the critical factor in 

enabling an accurate diagnosis to be achieved. In contrast, with Ripple Mapping it is 

likely that electrograms could be collected much more quickly because they are 

interpreted ‘as is’ on the Ripple Map rather than requiring any form of user pre-

processing. 

Even with a very high density of points, it is likely that interpretation of Ripple 

Maps will be difficult in areas of low voltage. If there is no recordable signal then no 

technique will be able to assess direction of activation. In the presence of very small 

signals, then avoidance of electrical noise in the catheter laboratory is even more 

important. It is also possible that some signal processing techniques could improve the 

clarity of the recorded electrograms. In the current study, all electrograms were 

collected from a 4mm-tip ablation catheter with a 2mm gap to the proximal 2mm ring 

electrode. If multi-electrode mapping is used, then these catheters usually have 

smaller electrodes with a wider spacing. The effects of these different electrode 

dimensions have not been studied. 

At present, mapping systems are tools to assist the electrophysiologist. In 

difficult cases, their skill at incorporating information about the patient, the activation 

pattern, cycle length variability, and entrainment information is critical to achieving 

the right ablation strategy. In this study, a questionnaire survey was used to quantify 

successful interpretation. However, ‘offline’ analysis does not provide the same time 

for the electrophysiologists to consider the nuances of the case. Most activation maps 

were interpreted within approximately 5 minutes – considerably shorter than it would 

take to create a map in the clinical situation. It is possible that when activation maps 
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are collected in the context of a mapping strategy that diagnostic accuracy might be 

higher. 

4.7 Conclusion 

Ripple Mapping enables assessment of atrial tachycardia activation without requiring 

assignment of local activation times or a pre-defined window of interest. The 

prototype software was used successfully by observers to analyse cases and was non-

inferior to analysis of isochronal maps. Ripple Mapping was able to indicate activation 

at points with double potentials. However, where the electrogram voltage was small in 

comparison to underlying noise, discerning activation was difficult. 
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5.1 Aims for this chapter 

E1 Re-assess the criteria for entrainment to see if the principles can be reformulated 

into a method that is practical for use during AT procedures. 

E2 Re-assess the criteria for entrainment, with a view to detecting double-loop 

reentry. 

5.2 Introduction 

The following work has recently been accepted for publication195, with an 

accompanying editorial.196 This has been reorganised to include the appendices within 

the text, additional discussion, and data from a recently published case report. 

 

Atrial tachycardia occurs commonly in the context of ablation for persistent AF or prior 

surgery for congenital or acquired heart disease.31, 95, 197 Successful catheter ablation 

therapy requires the mechanism to be elucidated, typically using a combination of 

activation mapping and also overdrive pacing manoeuvres.3, 86, 198, 199 Overdrive pacing 

to entrain macroreentry circuits was first described by Waldo and colleagues, and they 

developed four criteria whose presence indicates reentry (although absence of the 

criteria does not exclude reentry).156, 200, 201 These were pivotal in establishing the 

mechanism of reentry but their applicability can be limited - particularly for atrial 

tachycardia. This is discussed in Section 1.4.3 on p38. 

During atrial ablation procedures, overdrive pacing (entrainment) manoeuvres 

carry the risk of changing or terminating the tachycardia.3, 93 Typically, overdrive pacing 

is performed from a limited number of different positions, seeking a short post-pacing 

interval, while keeping 'reference' electrodes at the same locations (e.g. coronary sinus 

and right atrium).3 Algorithms have been developed to assist with localizing the 

tachycardia circuit on the basis of post-pacing intervals.170 However, in order to 

maximise the diagnostic gain, it would be advantageous to use information from all 

these available electrode recordings. 

This study was conducted in two phases: 1) Development of the entrainment 

criterion using a detailed mathematical description and also illustrated with a 

mathematical model of uniform conduction; and 2) Testing of the entrainment 

criterion using clinical data. 
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5.3 Proposed criterion 

The proposed criterion relies upon adherence to the definitions of overdrive pacing, 

FBT, Activation Difference, and centrifugal tachycardia that are listed below, in Table 

5-1. 

 

Overdrive pacing During tachycardia, pacing and capturing the relevant cardiac 
chamber(s) at a constant rate that is faster than the rate of the 
spontaneous tachycardia and that fails to interrupt it. 

First beat of tachycardia 
(FBT) 

After the termination of overdrive pacing, the first beat of 
tachycardia (at any particular site) is the first activation where 
the preceding cycle length is longer than the overdrive pacing 
cycle length. 

Activation Difference The time difference between the first beat of tachycardia at two 
sites. 

Centrifugal tachycardia A tachycardia with activation that spreads centrifugally from a 
small area. The mechanism could be focal automaticity, micro-
reentry, or localised reentry. 

Table 5-1. Definitions. 

The proposed criterion follows in Table 5-2. 
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After overdrive pacing at two different locations and assessing the first ensuing beats 
of tachycardia, the difference in activation time recorded between any two stationary 
positions changes by one or two tachycardia cycle lengths. 

�[𝑇𝐴 − 𝑇𝐵]𝑜𝑣𝑒𝑟𝑑𝑟𝑖𝑣𝑒 1 − [𝑇𝐴 − 𝑇𝐵]𝑜𝑣𝑒𝑟𝑑𝑟𝑖𝑣𝑒 2� ≈ 𝑇𝐶𝐿 

�[𝑇𝐴 − 𝑇𝐵]𝑜𝑣𝑒𝑟𝑑𝑟𝑖𝑣𝑒 1 − [𝑇𝐴 − 𝑇𝐵]𝑜𝑣𝑒𝑟𝑑𝑟𝑖𝑣𝑒 2� ≈ 2 × 𝑇𝐶𝐿 

A change of two tachycardia cycle lengths is usually due to double-loop reentry. 

 
Table 5-2. Proposed criterion for reentry. If the criterion is not observed, then this does not 
exclude the presence of reentry. In the mathematical expressions: A and B refer to two 
different locations. 𝑇𝐴 is the time of FBT at 𝐴 following cessation of overdrive pacing, and 𝑇𝐶𝐿 
is the tachycardia cycle length. [𝑇𝐴 − 𝑇𝐵]𝑜𝑣𝑒𝑟𝑑𝑟𝑖𝑣𝑒 1 is the Activation Difference between 𝐴 and 
𝐵 (as defined in Table 5-1) corresponding to the first overdrive pacing manoeuvre 

5.4 Development of the new criterion 

5.4.1 An intuitive example – single loop reentry 

Consider a 'clockwise' reentrant circuit with catheters positioned at 12 o'clock and 3 

o'clock. After overdrive pacing from the first, the difference in timing of the first beat 

of tachycardia (FBT) is 3 'hours', i.e. activation proceeds from 12 o'clock to 3 o'clock. 

After overdrive pacing from the second, activation proceeds from 3 o'clock to 12 

o'clock: the difference in timing is 9 'hours' and the order of activation is reversed (as 

long as antidromic penetration of the circuit did not reach the first catheter during 

entrainment). The change in Activation Difference is 3-(-9) = 12 'hours', which is equal 

to the tachycardia cycle length (TCL). It will be shown that this proves that reentry is 

present. The criterion developed in this study can also be applied to situations where 

pacing and sensing are performed from different catheters that are not close to the 

tachycardia circuit. 

5.4.2 Mathematical development 

This section describes the background to the criterion using a mathematical basis. I am 

grateful to Dr Steven Niederer (Division of Imaging Sciences, KCL) for verifying the 
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equations that are presented. The concepts are also illustrated in Section 5.4.3 (p96) 

using a model with uniform conduction across a sheet of tissue. 

In the following discussion, geodesic paths between points are represented with 

“→” and we use the term ‘geodesic’ to describe a path where the conduction time 

between any two local points on the path is minimised. The shortest time for 

activation to travel from 𝑥 to 𝑦 is indicated by 𝑇(𝑥 → 𝑦). By describing activation in 

this way, spatially non-uniform and anisotropic conduction can be accounted for. After 

cessation of overdrive pacing, it is assumed that the relative timing of the first beat of 

tachycardia between any two points is not significantly perturbed, in comparison to 

the timing for the following beats. For reentry circuits, it is assumed that the 

conduction time of any path that circumnavigates the circuit is at least as long as the 

TCL. 

Centrifugal tachycardia 

 

 
 

Figure 5-1. Scheme for centrifugal tachycardia. 

After entrainment of a centrifugal tachycardia, the first beat of tachycardia 

emanates from the tachycardia source, 𝑠. Therefore, if there are two catheters at  𝑎 

and at 𝑏, then the activation difference is: 

 𝐴𝐷𝑎,𝑏 = 𝐹𝐵𝑇𝑏 − 𝐹𝐵𝑇𝑎 = 𝑇(𝑠 → 𝑏) − 𝑇(𝑠 → 𝑎) [5-1] 

The activation pattern of the first beat of tachycardia is independent of the position 

from which entrainment was performed. If two entrainment manoeuvres are 

compared, then there will be no significant change in activation difference. 

source, s

a
b
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Single loop reentry 

 

 
 

Figure 5-2. Scheme for single loop reentry. 

For a single loop reentry circuit, during overdrive pacing from point, 𝑝, there is a 

line of wave collision where the antidromic wavefront collides with the orthodromic 

wavefront from the previously paced beat. This occurs at a line, 𝐾, such that at any 

location on the line: 

 𝑇(𝑝 → 𝐾) = 𝑇 �𝑝
𝐶
→ 𝐾� − 𝑃𝐶𝐿 [5-2] 

where, 𝑃𝐶𝐿 is the pacing cycle length, 𝑇(𝑝 → 𝐾) is the time taken to traverse the 

shortest geodesic from 𝑝 to 𝐾, and 𝑇 �𝑝
𝐶
→ 𝐾� is the time taken to traverse the 

shortest geodesic from 𝑝 to 𝐾 that also joins the tachycardia circuit, orthodromically, 

for part of its course. 

After the last pacing stimulus, the last paced wavefront continues to activate the 

surface because there are no further collisions at the line 𝐾: activation can continue 

𝑝
𝐶
→ 𝐾 → 𝑜𝑛𝑤𝑎𝑟𝑑𝑠. Therefore, the wavefront causing the first beat of tachycardia has 

originated from the pacing site, then travelled around part of the tachycardia circuit, 

𝐶, and then passed exactly once through line 𝐾. 

Let 𝑐 be a point on 𝑝
𝐶
→ 𝐾 that is on the circuit, 𝐶. Considering the first beat of 

tachycardia, the path from 𝑝 to any recording site, 𝑟, must cross the location of the 

p

K

C
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collision line 𝐾 exactly once. The alternatives are illustrated in Figure 5-3 and given 

in [5-3]. 

 

 
 

Figure 5-3. Illustration for Equation [5-3]. 

 

 𝐹𝐵𝑇𝑟 = � 𝐿𝑃𝐵𝑝 +  𝑇(𝑝 → 𝑐 → 𝑟) , 𝑖𝑓 𝑐
𝐾
→ 𝑟 

𝐿𝑃𝐵𝑝 + 𝑇(𝑝 → 𝑐 → 𝐾 → 𝑐 → 𝑟) , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 [5-3] 

𝑐
𝐾
→ 𝑟 indicates that the path 𝑐 → 𝑟 crosses line 𝐾. 𝐿𝑃𝐵𝑝 is the time of the last paced 

beat at the pacing location, 𝑝. 

In general, 

 𝑇(𝑥 → 𝑦 → 𝑧) = 𝑇(𝑥 → 𝑦) + 𝑇(𝑦 → 𝑧) [5-4] 

Also, 𝑇(𝑐 → 𝐾 → 𝑐) is equal to one tachycardia cycle length and so [5-3] can be 

rearranged: 

 𝐹𝐵𝑇𝑟 = � 𝑇(𝑝 → 𝑐) + 𝑇(𝑐 → 𝑟) , 𝑖𝑓 𝑐
𝐾
→ 𝑟

𝑇(𝑝 → 𝑐) + 𝑇𝐶𝐿 + 𝑇(𝑐 → 𝑟) , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 [5-5] 

Now consider the activation difference, 𝐴𝐷𝑎,𝑏, at two recording sites 𝑎 and 𝑏, 

which we define as: 

 𝐴𝐷𝑎,𝑏 = 𝐹𝐵𝑇𝑏 − 𝐹𝐵𝑇𝑎 [5-6] 

p
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C
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Then, combining [5-5] and [5-6]: 

 𝐴𝐷𝑎,𝑏 =

⎩
⎪
⎨

⎪
⎧ 𝑇(𝑐 → 𝑏) − 𝑇(𝑐 → 𝑎) , 𝑖𝑓  𝑐

𝐾
→ 𝑏 ,  𝑐

𝐾
→ 𝑎

𝑇(𝑐 → 𝑏) − 𝑇(𝑐 → 𝑎) − 𝑇𝐶𝐿 , 𝑖𝑓  𝑐
𝐾
→ 𝑏 ,  𝑐

𝑛𝑜𝑡 𝐾
�⎯⎯� 𝑎

𝑇(𝑐 → 𝑏) + 𝑇𝐶𝐿 − 𝑇(𝑐 → 𝑎) , 𝑖𝑓  𝑐
𝑛𝑜𝑡 𝐾
�⎯⎯� 𝑏 ,  𝑐

𝐾
→ 𝑎

𝑇(𝑐 → 𝑏) − 𝑇(𝑐 → 𝑎) , 𝑖 𝑓  𝑐
𝑛𝑜𝑡 𝐾
�⎯⎯� 𝑏 ,  𝑐

𝑛𝑜𝑡 𝐾
�⎯⎯� 𝑎

 [5-7] 

where 𝑐 is a constant position on the circuit, 𝐶, such that 𝑇(𝑐 → 𝑎) and 𝑇(𝑐 → 𝑏) are 

geodesic paths starting in the orthodromic direction, and 𝑐 is chosen to minimise these 

distances, i.e. 𝑐 is at the ‘exit’ from the circuit (see Figure 5-3). [5-7] can be restated: 

 𝐴𝐷𝑎,𝑏(𝐾) =

⎩
⎪
⎨

⎪
⎧∆ − 𝑇𝐶𝐿, 𝑖𝑓  𝑐

𝐾
→ 𝑏 ,  𝑐

𝑛𝑜𝑡 𝐾
�⎯⎯� 𝑎

∆ + 𝑇𝐶𝐿, 𝑖𝑓   𝑐
𝑛𝑜𝑡 𝐾
�⎯⎯� 𝑏 ,  𝑐

𝐾
→ 𝑎

   
𝐾
→∆, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 [5-8] 

  ∆= 𝑇(𝑐 → 𝑏) − 𝑇(𝑐 → 𝑎)  [5-9] 

Equation [5-8] indicates that the relative timing of 𝐹𝐵𝑇 at two sites depends 

upon their location and also the position of the collision line, 𝐾, that was created 

during entrainment. Note that, with respect to the activation of the first beat of 

tachycardia, it is the position of the collision line, 𝐾, that is important rather than the 

position of the pacing location (although the two are related). Consider the change in 

activation difference with two different manoeuvres, represented by two different 

collision lines, 𝐾1 and 𝐾2. Using Equation [5-8]: 

 

𝐴𝐷𝑎,𝑏(𝐾2)−𝐴𝐷𝑎,𝑏(𝐾1)

= �
±2 × 𝑇𝐶𝐿 , 𝑐

𝐾1�� 𝑏, 𝑐
𝑛𝑜𝑡 𝐾1�⎯⎯⎯� 𝑎, 𝑐

𝑛𝑜𝑡 𝐾2�⎯⎯⎯� 𝑏, 𝑐
𝐾2�� 𝑎  𝑂𝑅   𝑐

𝐾1�� 𝑎, 𝑐
𝑛𝑜𝑡 𝐾1�⎯⎯⎯� 𝑏, 𝑐

𝑛𝑜𝑡 𝐾2�⎯⎯⎯� 𝑎, 𝑐
𝐾2�� 𝑏

±𝑇𝐶𝐿 , 𝑒𝑥𝑖𝑠𝑡𝑒𝑛𝑐𝑒 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑐 → 𝑏 𝑂𝑅 𝑐 → 𝑎 𝑤𝑖𝑡ℎ 𝐾 𝑐ℎ𝑎𝑛𝑔𝑒𝑠
0  , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
[5-10] 

This is represented in diagrammatic form below in Figure 5-4. 
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Figure 5-4. Schematic representation of [5-10]. To obtain all mathematical possibilities, the 
order of the manoeuvres can be reversed and the positions 𝑎 and 𝑏 can be interchanged. 
Further explanation is given in the text. The point 𝑐 is a position on the circuit, 𝐶, such that 
𝑇(𝑐 → 𝑎) and 𝑇(𝑐 → 𝑏) are geodesic paths starting in the orthodromic direction, and 𝑐 is 
chosen to minimise these distances. 
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In the first row of Figure 5-4, the collision line in Manoeuvre 1 and in 

Manoeuvre 2 does not change with respect to its intersection with 𝑐 → 𝑎 or 𝑐 → 𝑏. 

Therefore, the Activation Difference in both manoeuvres will be the same and so the 

change will be 0. This situation is also illustrated in Figure 5-10. In the second row, the 

collision line intersects neither 𝑐 → 𝑎 nor 𝑐 → 𝑏 in Manoeuvre 1, but in Manoeuvre 2 it 

intersects both 𝑐 → 𝑎 and 𝑐 → 𝑏. Thus, in both manoeuvres the wavefront passes 

through the collision line and then through 𝑎 and 𝑏 with the same Activation 

Difference, so again there is a change of 0. 

In the next two rows of Figure 5-4 (“±TCL”), the collision line changes its 

intersection with only one of 𝑐 → 𝑎 or 𝑐 → 𝑏. This results in the Activation Difference 

changing by ±TCL. 

In the final row of Figure 5-4, it is demonstrated that the Activation Difference 

can change by 2 TCL. This can only occur under conditions where the collision lines of 

the two manoeuvres intersect each other, as shown. This would require pacing 

manoeuvres to be performed at different distances from the tachycardia circuit and 

recordings to be made within both small areas of intersection. 

Double loop reentry 

Consider a dual loop tachycardia circuit, 𝐶 and 𝐶′ - as illustrated in Figure 5-5. It is 

assumed that there is a common isthmus that has a finite width, and that one of the 

circuits,𝐶, has a transit time that is less than or equal to the transit time of the other, 

𝐶′. The TCL is the transit time around the shorter circuit. The situation where the 

common isthmus is very narrow is discussed later. 

  93 



 Chapter 5 - A New Criterion for Detecting Reentry 

 

 
 

Figure 5-5. Schematic for activation during double loop reentry and also for overdrive pacing 
of double loop reentry See text for further explanation. 

When performing overdrive pacing of a double loop tachycardia, with a cycle 

length shorter than tachycardia cycle length, there is a line of collision, 𝐾, similar to 

the collision that occurs when overdrive pacing a single-loop reentry tachycardia (refer 

to Figure 5-2). Additionally, there is a line of wave collision (𝑊𝐶) where wavefronts 

from each circuit collide with each other. After cessation of overdrive pacing, 

activation passes through the lines 𝐾 and 𝑊𝐶 and tachycardia continues. The line of 

wave collision, 𝑊𝐶, returns to its original location. 
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Figure 5-6. Two Overdrive Pacing manoeuvres are illustrated, in a similar way to Figure 5-3. 𝑐𝑒 
is the location on circuit 𝐶 where the activation exits the circuit in order to follow a geodesic 
path to the contralateral circuit 𝐶′ where it joins at 𝑐𝑗′. 𝑐′𝑒  and  𝑐𝑗  are corresponding positions 
on 𝐶 and on 𝐶′. 𝑖 is the intersection between 𝑐𝑒′ → 𝑐𝑗  and 𝑐𝑒 → 𝑐𝑗. 

Figure 5-6 shows a schematic for two different overdrive pacing manoeuvres 

with a double loop reentry circuit. In the following analysis, we do not consider all 

possible locations of pacing and recording electrodes. It is assumed that the recording 

sites, 𝑎 and 𝑏, are on opposite circuits, 𝐶 and 𝐶′. It is also assumed that the paths 

shown in the figure cross (or do not cross) the lines of collision as illustrated. 

The first beat of tachycardia is caused by a wavefront that has travelled through 

one of the collision lines 𝐾 or 𝑊𝐶 exactly one time. Using Figure 5-6, combined with 

the definition of activation difference in [5-6]: 

 𝐴𝐷𝑎,𝑏(𝐾1) = 𝑇 �𝑝1 → 𝑐𝑒′ → 𝑖 → 𝑐𝑗
𝐶
→ 𝑐𝑗 → 𝑏� − 𝑇�𝑝1 → 𝑐𝑒′ → 𝑐𝑗′ → 𝑎� [5-11] 

 𝐴𝐷𝑎,𝑏(𝐾2) = 𝑇�𝑝2 → 𝑐𝑒 → 𝑐𝑗 → 𝑏� − 𝑇(𝑝2 → 𝑐𝑒
𝐶
→ 𝑐𝑒 → 𝑖 → 𝑐𝑗′ → 𝑎) [5-12] 

In equations [5-11] and [5-12], 𝑐𝑗
𝐶
→ 𝑐𝑗 and 𝑐𝑒

𝐶
→ 𝑐𝑒 represent entire loops of the 

tachycardia circuit, 𝐶, associated with a transit time of one TCL. Therefore, using [5-4], 

these equations can be re-written: 

 
𝐴𝐷𝑎,𝑏(𝐾1) = 𝑇�𝑐𝑒′ → 𝑖 → 𝑐𝑗�  +  𝑇𝐶𝐿 +  𝑇�𝑐𝑗 → 𝑏�  −  𝑇�𝑐𝑒′ → 𝑐𝑗′�     

− 𝑇(𝑐𝑗′ → 𝑎) 
[5-13] 

 
𝐴𝐷𝑎,𝑏(𝐾2) = 𝑇�𝑐𝑒 → 𝑐𝑗�  +  𝑇�𝑐𝑗 → 𝑏� −  𝑇�𝑐𝑒 → 𝑖 → 𝑐𝑗′�  −  𝑇𝐶𝐿

− 𝑇(𝑐𝑗′ → 𝑎) 
[5-14] 

Now considering the change in activation difference: 
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𝐴𝐷𝑎,𝑏(𝐾2) − 𝐴𝐷𝑎,𝑏(𝐾1)

= −2 × 𝑇𝐶𝐿 +  𝑇�𝑐𝑒 → 𝑐𝑗� − 𝑇�𝑐𝑒 → 𝑖 → 𝑐𝑗′�

− 𝑇�𝑐𝑒′ → 𝑖 → 𝑐𝑗� + 𝑇�𝑐𝑒′ → 𝑐𝑗′� 

[5-15] 

From Figure 5-6, and the definitions that have been given, we know that: 

  𝑇�𝑐𝑒 → 𝑐𝑗� < 𝑇(𝑐𝑒 → 𝑖) + 𝑇�𝑖 → 𝑐𝑗� [5-16] 

Therefore, using 𝜀 as an error term where 𝜀 > 0: 

  𝑇�𝑐𝑒 → 𝑐𝑗� = 𝑇(𝑐𝑒 → 𝑖) + 𝑇�𝑖 → 𝑐𝑗� − 𝜀 [5-17] 

Similarly, using 𝜀′ > 0, 

  𝑇�𝑐𝑒′ → 𝑐𝑗′� = 𝑇(𝑐𝑒′ → 𝑖) + 𝑇�𝑖 → 𝑐𝑗′� − 𝜀′ [5-18] 

Now rearranging [5-15] and using [5-17] and [5-18]: 

 

𝐴𝐷𝑎,𝑏(𝐾2) − 𝐴𝐷𝑎,𝑏(𝐾1) = −2 × 𝑇𝐶𝐿 +  𝑇(𝑐𝑒 → 𝑖) + 𝑇�𝑖 → 𝑐𝑗� − 𝜀 −

𝑇(𝑐𝑒 → 𝑖) − 𝑇�𝑖 → 𝑐𝑗′� − 𝑇(𝑐𝑒′ → 𝑖) − 𝑇(𝑖 →

𝑐𝑗) + 𝑇(𝑐𝑒′ → 𝑖) + 𝑇�𝑖 → 𝑐𝑗′� − 𝜀′  

[5-19] 

 𝐴𝐷𝑎,𝑏(𝐾2) − 𝐴𝐷𝑎,𝑏(𝐾1) = −(2 × 𝑇𝐶𝐿 + 𝜀 + 𝜀′) [5-20] 

If the manoeuvres were performed in the reverse order, or if the naming of 𝑎 and 𝑏 is 

reversed, then the change in Activation Difference would be positive. Generally: 

 𝐴𝐷𝑎,𝑏(𝐾2) − 𝐴𝐷𝑎,𝑏(𝐾1) = ±(2 × 𝑇𝐶𝐿 + 𝜀 + 𝜀′) [5-21] 

The error terms result from time taken to traverse the isthmus. If there is no width to 

the isthmus between the circuits, then 𝑐𝑗, 𝑐𝑒, 𝑐𝑗′, 𝑐𝑒′ , and 𝑖 will all have the same 

position and so, from [5-17] and [5-18], 𝜀 = 𝜀′ = 0. 

5.4.3 Illustration of the new criterion 

To illustrate the criterion, reentry is modelled around circular obstructions on 

uniformly conducting sheets: mathematical formulae for all isochrones and lines on 

the figures were derived using basic geometry, and implemented using Matlab 

(Mathworks, MA). However, the key results of these models hold with any topological 

transformation. That is, the sheets and isochrones can be stretched and distorted in 

order to account for zones of slow conduction, non-uniform conduction velocities and 

the irregular shape of reentrant circuits in real hearts. It is assumed that conduction 

properties after the cessation of pacing are stable and similar to those during 

sustained tachycardia, and that the conduction time of any path that circumnavigates 

the circuit is at least as long as the TCL. 
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Single loop reentry 

Figure 5-7 illustrates entrainment and the mechanism by which reentry leads to the 

criterion for single-loop reentry proposed in Table 5-2. During sustained reentry, the 

tachycardia circuit does not have any 'start' or 'end'. However, during entrainment 

there is a line of collision where the antidromic wavefront from the pacing electrode 

meets the orthodromic wavefront from the previously paced beat (or functional block 

can occur in an area of slow conduction). After cessation of pacing, the paced 

orthodromic wavefront can pass through the line where the collision occurred and 

becomes the FBT as it does this. 
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Figure 5-7. Reentry around an obstruction (solid grey circle). Legend follows on next page. 
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Panel 1 illustrates entrainment with isochrones shown as grey-dashed lines and the pacing site 
as an asterisk. The orthodromic wavefront from a paced beat has travelled around the circuit 
(grey) and collided with the antidromic wavefront from the next paced beat (black). In Panel 2 
there is no further paced beat. Transition from last paced beat (grey) to FBT (black) occurs 
where the activation wavefront passes through the former collision line (thick black dash). This 
is consistent with the definition of FBT in Table 5-1. Note that close to the circuit, FBT may 
precede the last paced beat at some other locations. Panel 3 is similar to Panel 2 but without 
isochrones and includes the complete geodesic paths from the pacing location (A) up to FBT at 
A and at B. During pacing, antidromic conduction to B is blocked at the collision line, and so 
activation occurs orthodromically via the circuit with a long transit time (grey arrows). After 
the last paced beat, the activation wavefront passes through the former collision line to 
become responsible for FBT (black arrows). Note that the wavefront causing FBT at B has 
completed almost one revolution of the circuit more than the wavefront causing FBT at A. The 
corresponding electrograms are illustrated below, with activation at the pacing CL shown in 
grey: at each site, the FBT is the first complex drawn in black. Difference in the timing of FBT 
(i.e. Activation Difference) is marked. In Panel 4, entrainment has been performed from B and 
the line of collision (thick-black-dash) has moved so that it no longer intersects the shortest 
path between the catheters. In contrast to Panel 3, FBT occurs at B and then A in rapid 
succession. Consequently, as shown on the electrograms below, the relative timing of FBT at 
these sites has changed by one TCL, fulfilling the criterion for reentry (see Table 5-2). 

When transient entrainment is performed from different locations then the 

sequence of FBT will change because the circuit resumes activation at different phases 

of tachycardia. It was hypothesised that this change can be detected when the relative 

timing of FBT, recorded at different sites, changes by one TCL. In contrast, for a 

centrifugal tachycardia, the activation wavefront causing FBT will always arise from a 

similar location and so different recording sites will have a comparatively fixed timing 

relationship. This is illustrated in Figure 5-8. In Figure 5-9, Figure 5-10, and Figure 5-11 

illustrations of other catheter positions are shown, with single loop reentry, and 

different theoretical values of the change in Activation Difference are demonstrated.  

  99 



 Chapter 5 - A New Criterion for Detecting Reentry 

 

 
 

Figure 5-8. Comparison of macroreentry with centrifugal tachycardia. Panels 1) and 2) 
illustrate entrainment of a macroreentrant tachycardia from 2 locations with similar post-
pacing intervals. The activation sequence at A and B changes, as described in Figure 5-7. In 
Panels 3) and 4) entrainment of a centrifugal tachycardia is illustrated. The activation 
sequence remains similar, despite overdrive pacing from different locations. Additionally, the 
Activation Difference would be similar if the post-pacing interval altered due to transient 
slowing of the tachycardia.  
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Figure 5-9. Single loop reentry with catheters positioned at opposite sides of the circuit. 
Activation has been illustrated only after it has passed through the line of collision that was 
created by pacing. The pacing site is represented by an asterisk. The FBT on the electrogram 
traces corresponds to the first complex drawn in black (rather than grey). The activation 
difference changes by one tachycardia cycle length between the manoeuvres.  
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Figure 5-10. The criterion for reentry is not met because A and B are too close together: B has 
been captured antidromically when pacing from A. Therefore, the relative timing of A and B for 
the first beat of tachycardia has not changed.  
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Figure 5-11. A change in Activation Difference of 2 TCL, with single loop reentry. When pacing 
from A, the shortest path to B is blocked by the collision line (the dashed line between A and 
B). Additionally, when pacing from B, the shortest path to A is also blocked by the respective 
collision line. There is a long post-pacing interval at B because it is a long way from the circuit. 
This can only occur when A and B are positioned in specific locations and one of them must be 
further from the tachycardia circuit than the other. The result of the positioning shown is that 
the Activation Difference changes by 2 TCL, despite only a single loop reentry circuit: thus this 
is an exception to the statement that a change of two tachycardia cycle lengths is usually due 
to double-loop reentry (see proposed criterion in Table 5-2). In practice, the specific conditions 
for this situation are unlikely to occur frequently.  
This figure is also an example showing that the first beat of tachycardia can precede the last 
paced beat at other locations (e.g. the first manoeuvre).  
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Double loop reentry 

Figure 5-12 illustrates the description for double-loop reentry proposed in Table 5-2. It 

is shown on the next page. 
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Figure 5-12. Double-loop reentry around slightly unequal obstructions. Panel 1 - during 
tachycardia, a wavefront from the shorter circuit (black) drives the longer circuit, where there 
is a line of collision (WC, black-dash) with the previous activation wavefront (grey). If the cycle 
lengths around each separate circuit were the same, then this line of wave collision would 
reach to the isthmus where the wavefronts would fuse. Panel 2 illustrates activation during 
overdrive pacing at A, near to the longer circuit. Overdrive pacing is always performed at a CL 
shorter than TCL (i.e. shorter than the CL around the shortest circuit). Therefore, the line of 
collision observed in Panel 1 has been advanced onto the shorter circuit, which is now passive 
(WC-A). There is also a line of collision where the paced antidromic wavefront collides with the 
orthodromic wavefront from the previous beat (PC-A, similar to Figure 1, Panel 1). Importantly, 
this has not reached any part of the contralateral circuit so that each paced wavefront must 
traverse the isthmus orthodromically before activating it (grey arrows). Panel 3 is similar to 
Panel 2 but shows transitions from the last paced beat (grey) to FBT (black) where the 
wavefronts pass through the lines of former collision. (The line where the wavefronts from 
each circuit collide will then regress to the position in Panel 1.) The wavefront causing FBT at B 
must complete an additional rotation of the tachycardia circuit, compared to the wavefront 
causing FBT at A. Corresponding electrograms are shown below, with activation at the pacing 
CL shown in grey. The difference in activation time of FBT is marked. In Panel 4, overdrive 
pacing has been performed from site B, near to the shorter circuit, and the positions of the 
collision lines have moved (WC-B and PC-B). Again, the wavefront responsible for FBT at the 
non-paced circuit has completed an extra revolution of the tachycardia circuit. Therefore, in 
comparison to Panel 3, the relative timing of FBT has changed by approximately two TCL, 
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fulfilling the criterion for reentry (see Table 5-2). (The inequality is due to the small additional 
time associated with traversing the isthmus when pacing the longer circuit (Panel 3).) 

Further theoretical implications 

In Figure 5-7 through to Figure 5-12, the pacing sites also act as recording sites. In the 

development of the theoretical background, the recording sites can be separate from 

the pacing sites. This is demonstrated further in Figure 5-13, as well as the following 

corollaries: 

• Corollary 1: Observation of the single-loop criterion from recording sites 

on either side of an appropriate anatomical isthmus confirms that the 

isthmus is critical to the tachycardia mechanism, as long as single-loop 

reentry is the only tachycardia mechanism present. 

• Corollary 2: Observation of the criterion for double loop reentry indicates 

that the recording sites are usually on different loops, and that neither is 

positioned at the common isthmus. If the single loop criterion is observed 

when comparing a passive electrode at a third site with both the previous 

sites, then this third site is in continuity with the common isthmus (Zone 

I, Figure 5-13). 
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Figure 5-13. Use of passive catheters and isthmus verification. Panel 1 – single-loop reentry. 
Isochrones and lines of functional block are shown, as described in Figure 5-7. After overdrive 
pacing from A, the last paced wavefront crosses the line where 'paced collision' previously 
occurred (PC-A) to become the FBT (also see Figure 5-7, Panel 2). It passes through Zone A then 
Zone B. After overdrive pacing from B, the last paced wavefront crosses PC-B, becoming the 
FBT and passing through Zone B then Zone A. Therefore, any pair of passive recording 
electrodes, where one is positioned in Zone A and the other in Zone B (the zones being caused 
by pacing at positions A and B), will demonstrate a change in the relative timing of FBT and 
fulfil the criterion for single-loop entrainment. If B was moved away from A, then Zone B would 
become larger because PC-B would also move. In the example shown, an isthmus is illustrated 
(black arrows, with additional grey obstruction). The single-loop criterion confirms that there 
are two paths between A and B (one passing through an anatomical isthmus and the other 
around the circuit). The isthmus may be an appropriate ablation target if it is anatomically 
amenable to ablation and if there are no other coexistent tachycardia mechanisms or double-
loops. Panel 2 – double-loop reentry. Isochrones and lines of collision are shown, as described 
in Figure 5-12. Zone I includes the common isthmus.* During overdrive pacing from A, there is 
'paced collision' at PC-A, and wave collision between the circuits at WC-A (see Figure 5-12, 
Panel 3). After pacing, the wavefront crosses PC-A to become the FBT and activate Zone A, 
then Zone I†, and then Zone B. After entrainment from B, the last paced wavefront crosses PC-B 
to become the FBT and activate Zone B, then Zone I, and then Zone A. Thus, the criterion for 
double-loop reentry will be met for any pair of passive electrodes in non-adjacent zones, i.e. 
one in Zone A and the other in Zone B. Additionally, the criterion for single-loop reentry will be 
met for any pair in adjacent zones, i.e. one in Zone I, and the other in Zone A or B.  
* - Note that Zone I would be larger if electrodes A or B were placed more distally in their 
respective circuits.  
† - Zone I is also activated by a wavefront emanating from WC-B, see Figure 5-12, Panel 3. 
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5.5 Experimental Methods 

5.5.1 Patients with common atrial flutter 

Five patients were studied prior to cavotricuspid isthmus ablation. All patients had 

structurally normal hearts and none had previous cardiac surgery or ablation. After 

femoral access, a quadripolar catheter was advanced distally into the coronary sinus 

(CS) and a radiofrequency (RF) ablation catheter was positioned at pre-specified sites 

distributed around the right atrium (posterior wall, right atrial appendage, lateral, 

cavotricuspid isthmus, and septal positions). At each position of the RF catheter, 

overdrive pacing was performed from the CS and then from RF with a cycle length (CL) 

20-30ms less than in tachycardia. The electrograms recorded from the CS and RF 

catheters were analysed and the change in Activation Difference was measured. 

5.5.2 Other data 

A literature search [Medline Search Terms: Any Field: "entrainment" & "pacing"] 

identified two publications exhibiting multipolar recordings of transient entrainment 

from different sites in patients with dual-loop reentry. 172, 202 Two examples are also 

provided from patients, in routine clinical practice, with double loop reentry in whom 

the criterion is demonstrated. 

5.5.3 Electrogram processing 

The criterion requires that the timing of FBT is identified in the relevant electrogram 

recordings, in order to calculate the change in Activation Difference (see Table 5-1 for 

definition). Software was written to assist with this process (see Figure 2-1, p50). The 

user annotates the activation time corresponding to each electrogram complex and 

the software then plots the calculated CLs. In this way, FBT can be identified as the first 

activation after the cessation of pacing with a preceding CL greater than the pacing CL. 

5.6 Results 

5.6.1 Common atrial flutter 

Four or 5 pairs of manoeuvres were performed in each of 5 patients (4 male, 1 female, 

aged 60-80yrs) with common flutter (TCL 220-285ms). In all patients, cavotricuspid 

isthmus ablation led to arrhythmia termination. After overdrive pacing, FBT could be 

unambiguously determined in all recordings. The single-loop criterion was observed in 
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22/23 pairs of recordings, despite a wide range of positions for the RF catheter and 

placement of the CS electrodes distally in the CS (away from the tachycardia circuit). In 

1/23 pair of recordings, the criterion was not observed: the RF catheter was positioned 

at the low septum and captured the CS antidromically during entrainment. An example 

of analysis for a recording pair is shown in Figure 5-14 and the data is summarised in 

Figure 5-15. 

 

 
 

Figure 5-14. Patient with common flutter. In the first manoeuvre, entrainment has been 
performed from the coronary sinus (CS). In the second, the distal bipole of the other catheter 
was used for entrainment and this was positioned near the right atrial appendage (RAA). 
Artefact rendered the recording from distal bipole unusable. Because the entrainment 
criterion can be applied to any passive catheter, the recording from the proximal bipole can be 
used legitimately. After pacing, FBT has been identified according to the definition in Table 5-1 
(grey highlights). For electrograms displaying concealed entrainment, the CL has been plotted 
to confirm a change in CL after the cessation of pacing – the black crosses represent intervals 
after FBT and the grey crosses prior to this. Measurements of activation difference are shown 
(D1 and D2). The change in Activation Difference (D1-D2) was approximately equal to one TCL, 
confirming reentry. 
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Figure 5-15. Detection of single-loop criterion in 5 patients with common flutter. Pairs of 
entrainment manoeuvres were performed – with each comprising overdrive pacing from CS1-2 
and then overdrive pacing from the RF catheter, which was positioned at 4-5 locations around 
the tricuspid annulus. For each manoeuvre, the graph shows:  
 

𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 − 𝑇𝐶𝐿 = 

��𝐹𝐵𝑇𝑅𝐹 − 𝐹𝐵𝑇𝐶𝑆1,2�𝑜𝑣𝑒𝑟𝑑𝑟𝑖𝑣𝑒 𝑅𝐹 − �𝐹𝐵𝑇𝑅𝐹 − 𝐹𝐵𝑇𝐶𝑆1,2�𝑜𝑣𝑒𝑟𝑑𝑟𝑖𝑣𝑒 𝐶𝑆1,2� − 𝑇𝐶𝐿 
 

For 21/23 manoeuvres, the Change in Activation Difference was within 20ms (dotted lines) of 
the TCL. There were 2 outliers: in Patient 3, there was a change in CS electrogram morphology 
and timing suggesting catheter movement; and in Patient 2, when the RF catheter was 
positioned at the low septum, entrainment from RF captured the CS antidromically and so 
Activation Difference did not change (see Figure 5-10 for explanation). 

5.6.2 Double loop reentry 

Three cases were identified from the literature with sufficient data for re-analysis.172, 

202 In each case, there was a dual-loop macroreentrant tachycardia located in the right 

atrium (RA). Multipolar catheters were positioned in the RA and overdrive pacing was 

performed from 2 sites that were on separate loops.  

Case 1 

In Figure 5-16, data are shown from double-loop reentry around a septal surgical scar 

as well as the tricuspid annulus.202 The investigators used a multipolar 'basket' catheter 

to track activation of the last paced beat in order to identify both circuits. 
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As can be seen in Figure 5-16, each individual spline of the basket catheter has 

the same activation sequence in each entrainment manoeuvre. Thus, for this particular 

example, the change in activation difference only depends upon the splines, and not 

the particular electrodes. Table 5-3 shows the calculated values of change in activation 

difference, tabulated for each possible pair of splines: for example, the change in 

activation difference between spline A and spline B was calculated as follows: 

𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒

= �𝐹𝐵𝑇(𝐵)���������� − 𝐹𝐵𝑇(𝐴)�����������𝑚𝑎𝑛𝑒𝑢𝑣𝑒𝑟 2 − �𝐹𝐵𝑇(𝐵)���������� − 𝐹𝐵𝑇(𝐴)�����������𝑚𝑎𝑛𝑒𝑢𝑣𝑒𝑟 1 

where 𝐹𝐵𝑇(𝐴)���������� is the average activation time of FBT for all electrodes on spline A. 

 

change (ms) A B C D E 

A -     

B 289* -    

C 289* 578† -   

D 286* 574† 3 -  

E 288* 576† 1 2 - 

* - criterion for single-loop reentry met 

† - criterion for double-loop reentry met 
 

Table 5-3. Change in the difference of activation time between catheter splines, for the first 
beats of tachycardia corresponding to Figure 5-16. Tachycardia cycle length 290ms. 
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Figure 5-16. Double-loop reentry in a patient with previous mitral valve replacement.202 
Tachycardia cycle length 290ms. Recordings are shown from a basket catheter in the right 
atrium. A schematic diagram of the catheter spline positions (top left) and the deduced 
tachycardia mechanism (top right) are shown. Note that splines C and D are adjacent, lying 
between the tricuspid valve (TV) and the crista terminalis. During entrainment from the 
inferior septum, the wavefront causing the last paced beat must pass around the septal 
atriotomy before it can activate the common isthmus and then the circuit around the TV. 
Electrograms corresponding to the last paced beat are marked (black stars) and FBT is the 
following complex on each electrogram. The post-pacing interval (at the pacing site) was 
within 10ms of the TCL. During entrainment from the tricuspid annulus, the wavefront causing 
the last paced beat must pass around the tricuspid valve before activating the common 
isthmus and then the circuit around the septal atriotomy. The post-pacing interval (at the 
pacing site) was the same as the TCL, demonstrating concealed entrainment. Analysis using the 
criterion for reentry is presented in the Text.  
Red parts of the figure illustrate how Change in Activation Difference is calculated (the 
equation is given in Table 2). The red lines indicate the Activation Difference for A3 vs B2, B2 vs 
C2, and C2 vs D2, for each manoeuvre. In the central column, the Change in Activation 
Difference has been calculated and is approximately equal to 1, 2, and 0 TCL respectively. 
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In Table 5-3, the double-loop criterion is observed when spline B is paired with 

spline C, D, or E. This confirms double loop reentry, with B on the opposite circuit to C, 

D, and E. It also excludes the electrodes of B, C, D and E from being positioned at the 

common isthmus (Corollary 2, Methods). The single-loop criterion is observed between 

spline A and all other catheters. Thus, spline A is in continuity with the common 

isthmus (i.e. it is located somewhere in Zone I, Figure 5-13). Note that the common 

isthmus is not always the best site for ablation (in this case, ablation lines were created 

from the scar to inferior vena cava and at the cavotricuspid isthmus). 

Case 2 

In Figure 5-17 data are shown from entrainment manoeuvres in a case of 

cavotricuspid-isthmus dependent flutter, with one loop around the tricuspid annulus 

and the other posterior to the superior vena cava.172 In this particular example, the 

activation sequence in each entrainment manoeuvre does not change within the 

following groups of electrodes: CS+TA1-5; PS1-2; TA6-10; and PS3-4. Therefore, these 

have been pooled in a similar manner as for Case 1. 

Table 5-4 shows tabulated values of the change in activation difference, when 

comparisons are made between these groups. The double-loop criterion is met for 

TA6-10 and PS3-4, proving that double-loop reentry is present, and that these 

electrodes are on opposite loops and not at the common isthmus (Corollary 2, 

Methods). The single-loop criterion is observed between these groups and CS+TA1-5 

and PS1-2, demonstrating that CS+TA1-5 and PS1-2 are in continuity with the common 

isthmus (i.e. Zone I, Figure 5-13). Although anatomically PS1-2 are on the posterior 

circuit, they were not captured antidromically by pacing from PS3 and so are activated 

in continuity with the isthmus. 
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Figure 5-17. Double-loop reentry in a patient with common atrial flutter, consisting of a 
posterior loop and a loop around the tricuspid annulus. Tachycardia cycle length 245ms. 
Diagrams and electrograms are reproduced from Fujiki et al,172 with permission. Recordings 
are shown from a duodecapolar catheter, a decapolar catheter, and surface ECG leads (I, aVF, 
and V1). A right anterior oblique x-ray image is shown (bottom left) along with a schematic 
that indicates the electrode labelling (TA, tricuspid annulus; PS, posterior septum; CS, coronary 
sinus; SVC, superior vena cava; IVC, inferior vena cava; CT, crista terminalis). During 
entrainment from PS3, collision with the previous paced beat prevents direct activation of PS2 
and PS1. The crista terminalis also prevents direct activation of TA10 – TA6. Thus, the 
wavefront causing the last paced beat (marked with *) must reach the isthmus (solid arrow on 
corresponding schematic at bottom right) before activating the circuit around the tricuspid 
annulus (dotted arrow) to reach TA10-TA6. This was referred to as 'paradoxical delayed 
capture' by the investigators.172 When entrainment is performed from TA10, the path to TA6 is 
shorter than the path to the isthmus.  
Red parts of the figure illustrate how Change in Activation Difference is calculated (the 
equation is given in Table 2 (main manuscript)). The red lines indicate the Activation Difference 
for TA3 vs TA8, and TA8 vs PS4, for each manoeuvre. In the central column, the Change in 
Activation Difference has been calculated and is approximately equal to 1 and 2 TCL 
respectively. 
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diff (ms) CS, TA 1-5 PS 1-2 TA 6-10 PS 3-4 

CS, TA 1-5 -    

PS 1-2 1 -   

TA 6-10 240* 241* -  

PS 3-4 250* 249* 490† - 

* - criterion for single-loop reentry met 

† - criterion for double-loop reentry met 

 
Table 5-4. Change in the difference of activation time between electrode groups, for the first 
beats of tachycardia corresponding to Figure 5-17. Tachycardia cycle length 245ms. 

Another case was presented in the same report as Case 2 with similar results.172 

Of note, the proposed criterion can be applied to any pair of electrodes, even if pacing 

is performed from other sites. Therefore, for each case, every combination of 

electrode pairs was analysed by calculating the change in Activation Difference that 

occurred between the 2 overdrive manoeuvres. The results are presented in Figure 

5-18 and show that the change in Activation Difference was approximately equal to 0, 

1, or 2 TCL. These changes are related to the position of each electrode as follows 

(referring to Figure 5-12, Panel 2): 

• change ≈ 0 TCL: both electrodes of the pair are positioned in the same Zone 

• change ≈ 1 TCL: the electrodes are positioned in adjacent Zones (i.e. Zone A 

and Zone I, or Zone B and Zone I). 

• change ≈ 2 TCL: the electrodes are positioned in non-adjacent Zones (i.e. Zone 

A and Zone B – opposite 'loops'), so neither electrode can be at the common 

isthmus. 

This information allows the location of the zone containing the common isthmus to be 

identified. 
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Figure 5-18. Summary of double-loop reentry analysis. Three cases were identified from the 
literature, in which multipolar catheters were used in the presence of 2 entrainment 
manoeuvres.10, 11 For each case, the Activation Difference was calculated for every possible 
pair of electrodes from the two manoeuvres. The Change in Activation Difference for each pair 
was approximately equal to 0, 1, or 2 multiples of the TCL (see Text). 

5.6.3 Further examples 

Figure 5-19 illustrates two cases in which double loop reentry was detected using two 

catheters. 
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Figure 5-19. Two examples showing the detection of double-loop reentry with two catheters. 
After pacing, FBT has been identified according to the previous definition (Table 5-1) and it is 
marked in grey. For electrograms displaying concealed entrainment, the CL has been plotted to 
confirm a change in CL after the cessation of pacing – the black crosses represent intervals 
after FBT and the grey crosses prior to this. Measurements of activation difference are shown 
(D1 and D2). Electrode positions are shown in the schematics to the right.  
Upper panel: Double loop reentry – perimitral and roof dependent tachycardia. Electrodes 
were placed at the high posterior left atrium (PLA) and the mid coronary sinus (CS). The change 
in Activation Difference (D1-D2) was approximately equal to 2*TCL indicating double-loop 
reentry. The diagnosis was confirmed by ablation of the LA roof (which caused a change in PPI 
at the posterior wall) and then termination by ablation at the mitral isthmus.  
Lower panel: Common flutter with a double loop. Electrodes were placed at the antero-lateral 
RA (LRA), the posterior RA (PRA) and the CS. Entrainment was performed from LRA and from 
PRA. The Activation Difference between LRA and PRA changed by approximately 2*TCL, 
indicating that these electrodes are positioned on different loops. Comparing the Activation 
Differences between PRA-to-CS and LRA-to-CS indicated single-loop reentry, confirming that 
the CS was in continuity with the common isthmus. 
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There was a recent case report of typical cavotricuspid dependent flutter but 

with long post-pacing intervals from near to the circuit, in a patient with depressed left 

ventricular function.203 The likely explanation for this unusual finding was abnormal, 

decremental conduction within the tachycardia circuit between the cavotricuspid 

isthmus and the CS. I am grateful to Kelvin Wong and Tim Betts from the John Radcliffe 

Hospital, Oxford for sharing the data from this case. All measurements were retaken 

from the data as presented in Figure 5-20. 

  118 



 Chapter 5 - A New Criterion for Detecting Reentry 

 
 

Figure 5-20. An unusual case of typical right atrial flutter. Legend follows on next page. 
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Data from a previously reported case.203 The upper panel shows entrainment from the distal 
pole of the ablation catheter, which is positioned just lateral to the cavotricuspid isthmus. The 
TCL is 273ms and overdrive pacing was performed with a CL of 240ms. The PPI was 347ms 
giving a long value for PPI-TCL (74ms). Along with Abl D, CS5,6 was chosen for calculation of 
the Activation Difference because there is a sharp onset to the electrogram: it was measured 
at +143ms. In the lower panel, entrainment has been performed from CS7,8 and Abl D was in a 
similar (but not identical) position. After this entrainment, the Activation Difference 
was -111ms. Therefore, the change in Activation Difference was 143-(-111)=254ms. This is 
similar to the TCL (273ms) and therefore consistent with single loop reentry. Additionally, it 
implies that the cavotricuspid isthmus is an appropriate ablation target (see “Further 
theoretical implications” on p106) despite the long PPI from near to that location. 

5.7 Discussion 

An additional criterion for entrainment has been developed. It relies upon the fact that 

the ‘phase’ at which a reentrant tachycardia resumes is dependent upon the location 

from which entrainment was performed. After overdrive pacing, the relative timing of 

FBT between two locations (the Activation Difference) is dependent upon the location 

of the collision line(s) present when the last antidromic pacing wavefront collided with 

the orthodromic wavefront(s) from the previously paced beat. When two entrainment 

manoeuvres have been performed, the respective collision lines partition the cardiac 

surface into zones, as shown in Figure 5-13. The Activation Difference between two 

sites will be: ≈ 0 TCL if both sites are in the same zone; ≈ 1 TCL if the sites are in 

adjacent zones (demonstrating reentry); and ≈ 2 TCL if the sites are in non-adjacent 

zones (demonstrating reentry and suggestive of a double loop). 

The criterion enables detection of single- and double-loop macroreentry after 

performing 2 overdrive manoeuvres from 2 different locations. For single-loop reentry, 

if these locations are reasonably separated with respect to the macroreentry circuit 

then precise positioning is not required. For double-loop reentry, pacing must be 

performed from each loop without capturing the other circuit antidromically. The 

response to overdrive pacing at other (passive) electrodes can also be assessed and 

may yield further diagnostic information. For example, if activation mapping suggests a 

double loop reentry circuit then the mechanism can be confirmed and the common 

isthmus identified using only two overdrive manoeuvres; pacing from electrodes 

positioned at opposite loops in the presence of a third electrode at the common 

isthmus. 
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In developing the entrainment criterion, it has been assumed that conduction 

times between different parts of the atrium are not affected by pacing. In reality, 

conduction disturbances are known to be caused by entrainment. In macroreentrant 

arrhythmias, overdrive pacing can cause a change or termination of tachycardia.127 

However, if this does not occur then changes in conduction times are usually small in 

comparison to the TCL164, 204 and so would be unlikely to give a false positive result 

when the entrainment criterion is applied. Additionally, the conduction affecting the 

relative timing of FBT has had longer to recover, in comparison to a method relying on 

the timing of the last paced beat. This hypothesis is supported by reanalysis of a single 

case report203 in which overdrive pacing caused significant changes in conduction 

properties (see Figure 5-20, p119): these cases are unusual164 and no other cases 

reported in this thesis had marked decremental conduction associated with 

entrainment. 

For centrifugal arrhythmias, the PPI often varies due to localised conduction 

disturbances within the tachycardia focus.169, 204 However, application of the 

entrainment criterion will not be affected as long as the global atrial activation 

sequence of the first beat of tachycardia has a similar origin.  

The criterion presented here has conceptual similarities with the fourth criterion 

of transient entrainment, described previously.156 In the fourth criterion, overdrive 

pacing is performed from the same site with different pacing rates. The effect of 

increasing the rate is to advance antidromically the collision line (where the antidromic 

and orthodromic paced wavefronts meet - refer to Figure 1, Panel 1): this is detected if 

an electrode is positioned within the small zone where antidromic penetration 

changes.156, 205 The criterion presented here is applied to overdrive pacing at different 

sites, and also relies upon a change in the position of the collision line. A potential 

disadvantage with the present criterion is that overdrive pacing must be stopped, 

tachycardia allowed to resume, and then another overdrive pacing manoeuvre 

performed from a second site. However, in the diagnosis of atrial tachycardia it is 

common to perform more than one manoeuvre and the present criterion can be 

observed from a wide range of electrode positions. By contrast, the fourth criterion 

requires specific positioning of an electrode such that it is sited where antidromic 
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penetration changes with a change in pacing rate. This may be difficult to achieve 

without prior knowledge of the tachycardia mechanism. 

Previously, double-loop reentry has been identified by extensive entrainment 

mapping25, and also by appreciation of subtle changes in cycle length and activation 

during ablation.94, 95 Fujiki and colleagues172, 202 described the careful tracking of 

activation due to the last paced beat, when entrainment was performed from each 

loop of double-loop reentry circuits. This allowed both loops to be elucidated, but did 

require the use of multipolar catheters and pacing close to the tachycardia circuits. The 

double-loop criterion described in the present study was applied retrospectively to 

their data, and successfully identified regions that were positioned on opposite circuits 

as well as regions in continuity with the common isthmus. A potential advantage of the 

present criterion is that it can be applied to situations with only 2 electrodes, but 

further information may be gained by application to recordings from any other 

electrodes within the relevant cardiac chambers. Additionally, the response to 

overdrive pacing distant from the circuits can be assessed. 

5.7.1 Limitations 

Demonstration of the criterion proves that reentry is present. If the criterion is not 

demonstrated then this does not exclude macroreentry. However, pacing from widely 

separated sites can prevent false negative results that are due to antidromic capture of 

the recording electrode. Thus, the clinical utility of the criterion will be dependent 

upon strategic positioning of electrodes in the heart and choice of pacing sites. In turn, 

this will depend upon the likely tachycardia mechanisms in any particular patient (e.g. 

as suggested by activation mapping), and a clear understanding of the mechanism by 

which the criterion can establish reentry. 

We have presented a theoretical situation, where the Activation Difference can 

change by two TCL in the presence of single loop reentry alone. In our small group of 

patients we did not observe this. However, further study is required to clarify the 

frequency with which this response can be elicited in clinical practice. A change in 

Activation Difference of two TCL is more likely to represent double-loop reentry, but 

this requires the pacing sites to be on different loops. 
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The present criterion requires correct identification of FBT. It is important to be 

certain that the last pacing stimulus resulted in successful capture. It is also necessary 

that overdrive pacing is fast enough to cause a clear change in CL when pacing stops. 

FBT is often the second complex following the last pacing artefact, but may be one of 

the subsequent beats if there is a long stimulus-to-electrogram time. In our limited 

prospective evaluation of the criterion, we used plots of CL to assist this process 

(Figure 2-1). 

After overdrive pacing of a centrifugal tachycardia, the wavefront causing FBT 

arises from the area where the tachycardia mechanism is located. Thus, the Activation 

Difference between locations that are distant from this area will be consistent, and so 

the criterion for reentry will not be met. Conceptually, it is possible that the criterion 

could be met if sites from within an area of localised reentry or microreentry are 

recorded. However, these sites are associated with fractionated electrogram 

recordings. Therefore, if the criterion is used for the identification of macroreentry, we 

recommend that electrodes with fractionated electrograms are not used. This is 

subject to further investigation. 
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6.1 Aims for this chapter 

E3 Investigate the theoretical relationship between PPI and the trans-atrial distance 

from the tachycardia mechanism. 

E4 Investigate the theoretical response to overdrive pacing for different tachycardia 

mechanisms, with respect to the PPI. 

E5 Investigate the theoretical response to overdrive pacing for different tachycardia 

mechanisms, with respect to the response at electrodes distant from the pacing 

site. 

E6 Integrate the theoretical findings from above into a clinical prototype for testing 

with patients. 

6.2 Introduction 

As discussed in Chapters 1 and 5, AT is frequent in the context of prior atrial ablation 

or atrial scars due to previous surgery, and it is often refractory to drug therapy. The 

first stage of mapping for atrial tachycardia is usually activation mapping.3, 86 Although 

not obligatory, electroanatomic mapping systems are commonly used to assist with 

this process. They may utilise additional anatomic data obtained with MRI, CT, or 

rotational angiography. After initial activation mapping has been performed, it is usual 

to perform AOP. 

The work described in Chapter 5 focussed upon using AOP effectively to 

determine the arrhythmia mechanism. This chapter describes the development of an 

algorithm for providing more detailed information about the arrhythmia location. The 

aim is to integrate the electroanatomic information obtained from multiple AOP 

manoeuvres. The steps in this process involve the development of new algorithms for 

relating the response to AOP to the location of the tachycardia, development of 

software to display and integrate this information, followed by clinical testing. 

6.3 Development of new analysis techniques 

6.3.1 Overview 

Software was written using Matlab (Mathworks, Natick, MA). An anatomic shell, 

represented using a triangulation, and electrogram information can be imported. The 

shell is then color-coded according to the results of entrainment manoeuvres. The user 
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can decide to perform a 'focal analysis' or a 'macroreentry analysis' of the data, 

although the software also performs computations to detect the likely mechanism, 

using the entrainment criterion developed in Chapter 5. All distances between 

different points on the shell are calculated by finding the shortest geodesic paths (see 

Section 2.5.3 on p52) 

Atrial conduction velocity is anisotropic and heterogeneous. However, a simple 

model of conduction is used, assuming that the conduction velocity in any direction is 

less than a user-defined value, 𝑣𝑚𝑎𝑥. This is not a precise model but was chosen for 

reliability (as long as 𝑣𝑚𝑎𝑥 is greater than the true conduction velocity) and simplicity 

(to facilitate comprehension of the results by the user). We hypothesised that 

integration of AOP information would be clinically useful, even with a simple 

underlying model of conduction. 

Equations to determine the distance to the tachycardia mechanism, based upon 

the response to AOP are developed below. Next, Section 6.3.3 describes the way in 

which AOPs are analysed and information from them is combined visually on the 

electroanatomic shell. 

6.3.2 Modelling post-pacing response to distance from tachycardia 

Focal tachycardia - equations for distance to focus 

As described in Chapter 1, ‘focal tachycardia’ is used to refer to tachycardias with a 

localised mechanism and centrifugal activation of the rest of the atrium. The 

mechanisms include micro-reentry, triggered activity, automatic foci, and localised 

reentry. After AOP with a focal tachycardia, the PPI is composed of the conduction 

time from the pacing catheter to the peri-focal junction, the peri-focal conduction 

time, at least one tachycardia cycle length (TCL), another peri-focal conduction time, 

and then the conduction time from the peri-focal junction to the pacing catheter. This 

has been validated by other workers.169 A schematic is shown below in Figure 6-1. 
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Figure 6-1. Adapted from Mohamed et al.169 The figure has been extended from Figure 1-8 to 
include a reference catheter. This schematic is used for the development of equations in the 
text. 

Using the notation in Figure 6-1,  

 𝑡𝑝𝑓 + 𝑇𝐶𝐿 + 𝑡𝑓𝑝 ≤ 𝑃𝑃𝐼 [6-1] 

and so if 𝑡𝑝𝑓 ≈ 𝑡𝑓𝑝 then 

 𝑡𝑓𝑝 ≤
𝑃𝑃𝐼 − 𝑇𝐶𝐿

2
 [6-2] 

If the PPI and the TCL are known, it is possible to estimate the conduction time 

using [6-2]. Conduction velocity in the atria is anisotropic and heterogeneous. 

Specifically, areas of low conduction velocity can occur with disease or prior ablation, 

and an area of slow conduction occurs at the peri-focal zone. However, by combining 

[6-2] with the use of an upper estimate for the conduction velocity in any direction, 

𝑣𝑚𝑎𝑥, then the maximum distance between the focus and the pacing catheter can be 

estimated. In the following equations, 𝑑𝑓𝑝 is the distance from the focus to the pacing 

electrode and 𝑑𝑓𝑝,𝑚𝑎𝑥 is the maximum estimate of 𝑑𝑓𝑝. 

 𝑑𝑓𝑝 ≤ 𝑣𝑚𝑎𝑥 × 𝑡𝑓𝑝 ≤ 𝑣𝑚𝑎𝑥 ×
𝑃𝑃𝐼 − 𝑇𝐶𝐿

2
 [6-3] 

 𝑑𝑓𝑝 ≤ 𝑣𝑚𝑎𝑥 ×
𝑃𝑃𝐼 − 𝑇𝐶𝐿

2
 [6-4] 

 𝑑𝑓𝑝,𝑚𝑎𝑥 = 𝑣𝑚𝑎𝑥 ×
𝑃𝑃𝐼 − 𝑇𝐶𝐿

2
 [6-5] 
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At the resumption of tachycardia, the relative timing of the reference electrode 

and the pacing electrode depends upon the relative conduction times from the 

tachycardia focus. In the following equation, 𝑇𝑟𝑇1 and 𝑇𝑝𝑇1 represent the timing of the 

first beat of tachycardia at the reference and pacing electrodes respectively. The 

conduction time from the focus to the reference electrode is denoted by 𝑡𝑓𝑟. 

 𝑇𝑟𝑇1 − 𝑇𝑝𝑇1 = 𝑡𝑓𝑟 − 𝑡𝑓𝑝 [6-6] 

Combining this with [6-1] gives 

 𝑡𝑓𝑟 ≤ 𝑡𝑓𝑝 + 𝑇𝑟𝑇1 − 𝑇𝑝𝑇1  [6-7] 

Finally, combining with the maximum conduction velocity and [6-2] yields: 

 𝑑𝑓𝑟,𝑚𝑎𝑥 = 𝑣𝑚𝑎𝑥 × �
𝑃𝑃𝐼 − 𝑇𝐶𝐿

2
+ 𝑇𝑟𝑇1 − 𝑇𝑝𝑇1�  [6-8] 

[6-5] and [6-8] provide estimates of the greatest possible distance between an 

electrode (pacing or reference) and the tachycardia focus, after an AOP. Areas of the 

atria beyond these boundaries can be excluded from further mapping. 

Algorithm for colouring shell 

For each electrode response to AOP, Overdrive3D finds all parts of the atrial shell that 

lie within the maximum possible distance to the tachycardia focus – the focus must lie 

within this boundary. Areas outside of this boundary can be eliminated and are shaded 

in grey to denote this. When analysing more than one AOP, including the response at 

multiple electrodes, the tachycardia focus must lie within the intersection of all 

boundaries that have been calculated. Areas outside of this intersection are shaded 

grey, and areas within it are coloured according to the distance from the electrode 

positions – the recommended site for pacing is located away from the sites that have 

already been assessed. See Figure 6-2 below. 
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Figure 6-2. 2D schematic to show how the shell is shaded. Let us suppose that there is a focal 
tachycardia and that 2 AOP manoeuvres have been performed. The maximum distance from 
AOP 1 to the tachycardia is calculated – the tachycardia focus must lie within a circle of this 
radius. A similar calculation gives a radius from AOP 2, for the second manoeuvre. When 
information from these manoeuvres is combined, the focus must lie within the intersection of 
these circles. This is shaded, with magenta indicating sites furthest from all previous AOP 
manoeuvres. Thus the recommended next pacing sites are at the apices of this intersection. 
Note that the information from passive ‘reference’ catheters could also be included, using 
[6-8]. As more AOP manoeuvres are performed, the tachycardia is located with increasing 
accuracy. 

Macroreentrant tachycardia – equations for distance to circuit 

The relationship between distance to a macroreentrant circuit and the PPI has 

previously been investigated, for reentry around a circular obstruction on a plane.174 

Here, the analysis is extended to include reentry around a linear scar and also reentry 

around a truncated cone. Linear scar is a more realistic model for an atriotomy, and a 

truncated cone is a more realistic representation of reentry around the tricuspid or 

mitral annulus. 
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Reentry modelled around a linear scar 

 

 
 

Figure 6-3. Reentry around a linear scar. The scar is modelled as an obstruction with length, 𝑙. 
The pacing site is perpendicular to the middle of the scar (this assumption is discussed in the 
text) and separated by a distance, 𝑑. 

Figure 6-3 shows a schematic for reentry around a linear obstruction. The 

activation wavefront from the last pacing stimulus will travel from the pacing catheter, 

orthodromically around the reentrant circuit and then return to activate the paced 

site. For a conduction velocity, 𝑣, then using Pythagoras’ theorem, the PPI is given by: 

 𝑃𝑃𝐼 =
1
𝑣

 × �𝑙 + 2�𝑑2 + �𝑙 2� �
2
� [6-9] 

The TCL is given by: 

 𝑇𝐶𝐿 = 2𝑙 𝑣�    ⇒    𝑙 = 𝑇𝐶𝐿. 𝑣/2  [6-10] 

Now combining [6-9] and [6-10]: 

 𝑑 = 𝑣
2�𝑃𝑃𝐼 × (𝑃𝑃𝐼 − 𝑇𝐶𝐿)  [6-11] 

In the presence of non-uniform conduction velocities, then the distance 𝑑 must 

be shorter than the distance calculated by assuming the maximum conduction velocity. 

Therefore, the maximum distance 𝑑𝑚𝑎𝑥 is given by: 

 𝑑𝑚𝑎𝑥 = 𝑣𝑚𝑎𝑥
2 �𝑃𝑃𝐼 × (𝑃𝑃𝐼 − 𝑇𝐶𝐿)  [6-12] 

It can be shown that this equation also provides a valid over-estimate for pacing 

positions that are not located perpendicular to the middle of the obstruction. 

d

l
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Reentry modelled around a truncated cone 

 

 
 

Figure 6-4. Reentry around a truncated cone. The pacing site is a distance, 𝑑, from the reentry 
circuit, which courses around the part of the cone with the smallest radius. The mathematics is 
simplified by ‘cutting’ the cone along a meridian (dotted line on left part of figure), and then 
‘unrolling’ it onto a plane. 

Using Figure 6-4, let 𝑝 be the path taken by the last paced wavefront around the 

cone and then returning to the pacing site. 

 𝑝 = 2�(𝑙 + 𝑑)2 − 𝑙2 + (𝛼 − 2𝛽). 𝑙  [6-13] 

Let the aperture of the cone be 2𝜃. The angles, 𝛼 and 𝛽, are in radians and can be 

related to the cone’s dimensions as follows: 

 𝛼 = 2𝜋 sin(𝜃)  ,  𝛽 = cos−1 � 𝑙
𝑙+𝑑

� [6-14] 

The TCL can be related to 𝑙 by the distance around the inner circle and the conduction 

velocity, 𝑣: 

 𝑇𝐶𝐿 =
𝛼. 𝑙
𝑣

 [6-15] 

α
β

β
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If there is a uniform conduction velocity, 𝑣, then 𝑝 = 𝑃𝑃𝐼 × 𝑣. This can be 

combined with [6-13], [6-14], and [6-15] to give: 

 
𝑑2 + 2𝑑𝑙 + �𝑙. �2𝜋 sin(𝜃) − 2cos−1 �

𝑙 

𝑙 + 𝑑 �� − 𝑃𝑃𝐼. 𝑣�
2

= 0 

[6-16] 

Reentry modelled around a circular obstruction 

From Figure 6-4, it can be seen that a circular obstruction is a special case of reentry 

around a truncated cone, where the aperture of the cone is 𝜋 radians, and so 𝜃 = 𝜋/2 

and 𝛼 = 2𝜋. Now [6-16] becomes: 

 𝑑2 + 2𝑑𝑙 + �𝑙. �2𝜋 − 2cos−1 �
𝑙 

𝑙 + 𝑑 �� − 𝑃𝑃𝐼. 𝑣�
2

= 0 [6-17] 

This is equivalent to equations derived by previous workers.174 

Summary – post pacing response and distance to the tachycardia 

 

 
 

Figure 6-5. A comparison of models for relating PPI to the distance from the tachycardia site. 
PPI-TCL is related to distance for each of the mathematical models that have been used in the 
text. From left to right, these are: focal tachycardia, reentry around a circular obstruction, 
reentry around a truncated cone, and reentry around a linear lesion. Parameters were: TCL 
250ms, conduction velocity 0.7m/s, and a conical aperture of 80°. For discussion , see text. 
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In Figure 6-5, the relationship between PPI and distance to the tachycardia site is 

summarised. From this graph, it can be seen that for a PPI-TCL=30ms, the maximum 

possible distance to a scar-related macroreentry circuit is much greater than for a focal 

tachycardia. In order not to underestimate the distance to a tachycardia site, the 

equation for a linear obstruction was used for macroreentrant tachycardias ([6-12]). 

6.3.3 Development of the Overdrive3D algorithm 

Each AOP must be annotated with activation times and assessed for capture of the 

entire chamber at the pacing CL, and the FBT must be identified for each electrogram. 

A GUI was written to assist with the interpretation of AOP manoeuvres and this was 

described in Section 2.2.3 on p49. Following this, the information is incorporated with 

information from previous AOPs before being displayed on a reconstruction of the 

electroanatomic shell. Details of this process are given below. 

Import and analysis of electrograms 

It is usual for reference catheters to remain in the same location between different 

AOP manoeuvres. The first beat of tachycardia can be compared between every pair of 

stationary electrodes, for every pair of AOP manoeuvres. This was discussed in detail in 

Chapter 5. If the difference in timing between a pair of electrodes changes by one TCL, 

then this is evidence for single loop reentry. If there is a change of two TCL then this 

suggests double loop reentry. If there are changes that are not a multiple of the TCL, 

then this suggests that the tachycardia activation pattern is different between the 

different AOP manoeuvres – i.e. that the tachycardia has changed. 

Assimilation of AOP information onto the electroanatomic shell 

The assimilation of information onto the electroanatomic shell depends upon the 

tachycardia mechanism. The user can select ‘focal’ or ‘macro’ analysis. This choice will 

be informed by previous activation mapping and also by the results of previous AOP 

analyses: the Overdrive3D program will indicate if the responses are consistent with 

macroreentry. 

For focal analysis, the response at each electrode for each AOP is used to 

determine the maximum possible distance to the focus, using [6-5] and [6-8]. Areas 

outside this perimeter are shaded grey. Locations on the shell that are within the 
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maximum possible distance to each electrode for each AOP are possible locations for 

the tachycardia. These areas are shaded as previously described in Figure 6-2. 

For macroreentry analysis, the maximum distance from the pacing electrode to 

the tachycardia circuit is estimated using [6-12], for each AOP. The atrial surface within 

this boundary is then shaded according to the PPI. The tachycardia mechanism must 

pass through this area. As more AOPs are performed, more information about the 

location of the circuit is generated. An example is given later, in Section 6.5.3 on p139. 

Maximum possible conduction velocity 

The software requires an estimate of the maximum possible conduction velocity, 𝑣𝑚𝑎𝑥, 

in order to relate electrogram timings to distances. This is set by the user and it is 

important that it is an upper estimate of the actual value: a high value of 𝑣𝑚𝑎𝑥will also 

compensate for errors in the model, geometrical representation, and electrogram 

timings. However, the software also provides estimates of conduction velocity from 

the entrainment manoeuvres, by calculating the shortest geodesic distances between 

the pacing electrode and reference electrodes during an AOP, and dividing these by 

the respective conduction times. (Position and timing measurement accuracies are 

incorporated in order to give appropriate error bars on the graphical display.) Low 

velocities may be recorded near to zones of slow conduction, or if functional block is 

created during the entrainment of a macroreentrant tachycardia. 

Graphical User-Interface 

A GUI for Overdrive3D has been designed. This performs a number of tasks: 

anatomical geometry can be imported; electrograms can be annotated with assistance 

for detecting the first beat of tachycardia; basic checks of the data are performed, with 

alert messages if possible errors are detected; different AOP manoeuvres can be 

'hidden' or 'unhidden' from the analysis; and the results are presented. Additionally, 

the value of 𝑣𝑚𝑎𝑥 used for the calculations can be interactively adjusted, and the user 

can view calculated conduction velocities. 

6.4 Methods for clinical testing 

Patients undergoing ablation for atrial tachycardia (including atrial flutter) or for 

pulmonary vein isolation were included in the study. All patients had venous access via 
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the right femoral vein and transseptal puncture was performed if left atrial access was 

required for their clinical procedure. As is standard clinical practice, all AOP 

manoeuvres were performed by pacing with a cycle length 20-30ms shorter than the 

tachycardia cycle length. For annotation of electrograms at the pacing site, local 

activation time during pacing was annotated at the onset of the stimulus artefact. 

For all patients, a Navistar catheter was used with Carto3 (Biosense Webster, 

Diamond Bar, CA) to create an anatomical shell. This was then exported to a CD, and 

imported into the Overdrive3D software on a separate computer. For each AOP site, 

the x-, y-, z- coordinates were read from Carto3 and imported manually into 

Overdrive3D. Immediately after each AOP, the electrograms exported from the 

LabView recording system onto flash memory storage and then imported into 

Overdrive3D. 

Overdrive3D was then used to interpret all AOP manoeuvres that had been 

performed for the tachycardia being analysed. For focal simulated tachycardias, the 

‘focal analysis’ was used. For other tachycardias, ‘focal analysis’ was used initially and 

two manoeuvres were performed from differing locations. Overdrive manoeuvres 

were assessed using the GUI described in Section 2.2.3. For catheters that remained in 

the same position between different manoeuvres, the activation pattern of the FBT 

was assessed. If the relative timing of FBT at two electrodes changed by more than 

12.5ms then a warning was activated to indicate that the tachycardia may have 

changed. If the change was close to a multiple of the TCL, then the warning indicated 

that this change may be due to underlying macroreentry according to the criterion 

presented in Chapter 5. 

Overdrive3D was evaluated for 6 clinical atrial tachycardias, and 4 simulated 

tachycardias. For the simulated tachycardias, focal atrial tachycardia was simulated by 

pacing, with a temporary pacing system in AAI mode, from an additional catheter 

placed near to the left or right atrial appendage. For all cases, an initial value for 𝑣𝑚𝑎𝑥 

of 1.25m/s was used and adjusted on the basis of individual conduction velocities 

measured between the pacing and reference electrodes. 
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6.5 Results 

Table 6-1 includes details of each patient included in the study. The number of AOP 

required refers to the number of manoeuvres to localise a focal tachycardia (or 

simulation) within 1cm. For macroreentry circuits, this number refers to identification 

of macroreentry as the mechanism and also identification of an appropriate ablation 

strategy (i.e. a critical isthmus). 

 

Patient Age Tachycardia Number of AOP 
Required 

    
1 63 Focal simulation, LA near LAA 2 
    

2 52 Focal simulation, LA near LAA 3 
    

3 55 Focal simulation, RA near RAA 2 
    

4 58 Focal simulation, RA near RAA 2 
  Common flutter 4 
    

5 54 RA macro-reentry, around SVC 4 
    

6 48 Common flutter 3 
  Localised-reentry near LSPV 4 
    

7 31 Localised-reentry, inferolateral RA 4 
  Localised-reentry, inferoseptal RA 3 

 
Table 6-1. LSPV, left superior pulmonary vein. 

Overdrive3D was able to perform all necessary calculations for analysis of an AOP 

within approximately 20 seconds, after data entry. (This computation time is necessary 

for the extensive iteration involved in finding shortest geodesic paths around the 

anatomical shell.) The export of geometry data from Carto3 took approximately 10 

minutes, due to the need to write the data to CD. Export of the electrogram data for 

each entrainment manoeuvre took less than 1 minute. Integration of Overdrive3D into 

the localisation system would obviate the need for these export times. For most 

analyses, the pre-set value of 𝑣𝑚𝑎𝑥 (1.25m/s) was satisfactory. In some patients, it was 

increased according to measured values but was always in the range 1.25-1.4m/s. 
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6.5.1 Simulated Focal Tachycardias 

Focal tachycardias were simulated by pacing from a temporary generator in 4 

patients (see Table 1). An example is presented in Figure 6-6. For 3 of the patients, the 

positions (<1cm) of the simulated tachycardia were identified with 2 AOP, and in the 

other patient 3 AOP were required. 

 

 

 
 

Figure 6-6. Overdrive3D and analysis of a simulated focal tachycardia. To the left, two views of 
the atrial geometry are displayed (RAO and LAO). The user control panel is to the right. A single 
Atrial Overdrive Pacing (AOP) manoeuvre has been performed, just lateral to the cavo-
tricuspid isthmus. Information from the pacing electrode and from the proximal CS electrode 
has been used for analysis. The post-pacing interval (at the pacing catheter) was 137ms, and 
the estimated conduction time from the CS electrode was also long. Therefore, the entire 
lateral right atrium is within the calculated 'boundaries' (see Text). The software recommends 
sites to pace – strong recommendations in magenta, weak recommendations in cyan. The 
recommended sites are within the calculated boundaries but far away from the CS and pacing 
sites. The algorithm makes these calculations on the basis of the supplied geometry, which 
extends out of the heart to the IVC in this case. Thus, the recommended site for the next AOP 
is the high-postero-lateral right atrium and this was close to the site of the simulated 
tachycardia (open mesh point). 
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6.5.2 Clinical Localised Reentry Tachycardias 

In total, 3 localised reentry tachycardias were mapped in two patients. In Patient 6, 

there was localised reentry near to the left superior pulmonary vein (the patient had 

not had any prior ablation or history of AF). AOP was performed at the anterior wall, 

two locations on the posterior wall and then at the tachycardia site – 4 in total, 

including the site of tachycardia. Patient 7 had atrial tachycardia in the context of a 

prior Fontan procedure for congenital heart disease, with a very large right atrium. 

Analysis of the first tachycardia is illustrated in Figure 6-7, and localisation would have 

been achieved with 4 AOP: although it was not possible to obtain capture at the 4th 

site, ablation was performed here and caused a change of cycle length and activation 

pattern consistent with termination of this tachycardia. Mapping of the next 

tachycardia localised it to the septal side of the atrium using 3 AOP, where further 

ablation restored sinus rhythm. 
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Figure 6-7. Use of Overdrive3D for a patient with a previous Fontan surgery, a huge right 
atrium, and atrial tachycardia. Analysis provided by the software is shown after 1, 2, and 3 
atrial overdrive pacing (AOP) manoeuvres (right lateral view). The atrial surface is shaded 
according to 'pacing recommendation' (colour bar, top left), and the pacing sites are indicated 
by a sphere shaded according to the post-pacing interval (PPI, colour bar, top right). A 
reference catheter was not used for this case (the activation sequence changed, probably due 
to movement). The first AOP was performed on the septal side of the atrium (site not in view), 
giving a very long PPI (477ms) and resulting in the recommendation to perform the next AOP 
at the lateral wall. The second AOP resulted in a much shorter PPI (53ms), and a shorter 
boundary to define the location of the tachycardia. A third AOP was performed with a similar 
PPI (63ms), but the combined information gives 'bracketing' of the tachycardia location and 
two recommended sites for the next AOP. Activation timing at the inferior site was early and 
therefore this was chosen. However, it was not possible to get capture during pacing (site 
indicated by open mesh). Due to favourable activation mapping in this region, ablation was 
performed and resulted in termination of this tachycardia. 

6.5.3 Clinical Macroreentrant Tachycardias 

Patient 5 had previously undergone CTI ablation. Macroreentry was verified with 2 

AOP and 2 further AOP were used to characterise the circuit further, as illustrated in 

Figure 5. The diagnosis was macroreentry around the SVC, despite a relatively short PPI 

(19ms) just lateral to the CTI. After termination of tachycardia pre-existing bi-

directional CTI block was demonstrated, confirming that the CTI had not participated in 

the tachycardia. Patient 4 and Patient 6 both had typical CTI dependent flutter. In each 

case, reentry was identified with 2 AOP and the circuit was further characterised with 

2 additional AOP. 
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Figure 6-8. Use of Overdrive3D with an unusual case of macroreentry. The patient had 
previously undergone ablation of the cavotricuspid isthmus, but had not had any other cardiac 
interventions and had a normal echocardiogram. The right atrium is displayed in 3 views 
(antero-posterior, right lateral, and postero-anterior). In the top row, the Overdrive3D analysis 
is shown after 4 atrial overdrive pacing (AOP) manoeuvres. The first AOP was performed at the 
high septum and gave a short PPI (yellow, PPI-TCL=11ms). Therefore, the mapping catheter 
was held in the same position and an AOP was performed from a reference catheter at the low 
lateral wall (pale blue, PPI-TCL=19ms). Combining information from these AOP gave two alert 
messages: 1) there was no position on the geometry within the boundaries of both AOP, for a 
focal tachycardia and 2) when comparing the first beat of tachycardia between the AOP 
manoeuvres, the activation difference between the mapping and reference catheters changed 
by 402ms (almost equal to the tachycardia cycle length of 399ms) confirming the presence of 
reentry (see Chapter 5). Therefore, the Overdrive3D analysis was changed to 'Macroreentrant 
Tachycardia Analysis'. Two further AOP were performed at the right atrial appendage and high 
posterior wall (both with PPI-TCL=1ms). The shaded areas represent the area that falls within 
the estimated maximum distance from the pacing site to the tachycardia mechanism, for each 
AOP, and is shaded according to the PPI. Consequently, the reentry circuit must pass through 
each shaded zone. Note that the shaded areas are large relative to the short PPIs that were 
obtained – see Discussion. The activation map is shown in the bottom row. There was a zone 
of slow conduction at the medial aspect of the posterior wall and so linear ablation was 
performed here (red points, best seen lower right panel), achieving termination at the site 
marked with the white asterisk (there was no slowing of tachycardia cycle length with ablation 
at sites more superior on the line). The tachycardia mechanism is shown with white arrows 
and is consistent for both Overdrive3D and the activation maps. 
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6.6 Discussion 

The feasibility of a computer assisted approach to the interpretation of AOP 

manoeuvres has been demonstrated. The software, Overdrive3D, provides a platform 

for the interpretation of any manoeuvres that have been performed at different stages 

of the procedure from user-chosen locations, with any number of reference 

electrodes. This flexibility provides the potential for integration into a combined AOP-

mapping and activation-mapping strategy. The expectation is that this will allow 

maximum diagnostic gain from AOP, minimizing the number of manoeuvres that are 

required, and therefore contributing to swift and accurate diagnosis. 

For the design of Overdrive3D, a simple model of cardiac conduction was used – 

assuming that velocity in all locations and directions is less than a user-defined value, 

𝑣𝑚𝑎𝑥. The value of 𝑣𝑚𝑎𝑥 can be adjusted by the user during the procedure, on the 

basis of measured conduction velocities from the pacing sites to the reference 

electrodes. However, we recommend a margin for error of at least 30%. We found that 

values for 𝑣𝑚𝑎𝑥 of 1.2-1.4m/s were satisfactory for the patients in this small series. 

Whilst extremely heterogeneous conduction velocities in a patient might cause some 

lack of precision, the results should be reliable if 𝑣𝑚𝑎𝑥 is set fast enough. Integration of 

results from multiple AOP then compensates for the simplistic model: Overdrive3D 

performed adequately, even for a challenging case of atrial tachycardia in a patient 

with prior Fontan surgery (see Figure 6-7) in which conduction velocities were likely to 

have been variable across different parts of the atrium. 

The analysis of AOP for focal tachycardias builds upon work by other 

investigators.169 As noted in an editorial accompanying that study, these may often 

arise from microreentry or localised reentry rather than from an automatic focus, and 

the response of automatic foci to overdrive pacing might be more variable.206 

However, provided that AOP causes a return cycle length, at nearby atrial tissue, that is 

equal to or longer than the TCL, then [6-5] and [6-8] will still give valid (over-) 

estimates for the distance from the recording electrodes to the tachycardia focus. 

Overdrive pacing should be performed for long enough to ensure that acceleration of 

the tachycardia has not occurred. 
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For macroreentrant tachycardias, the concept of color-coding a geometrical 

representation of the cardiac anatomy according to results of AOP is not new. Previous 

investigators used commercially available electroanatomical mapping software to do 

this, annotating each AOP location according to the PPI and using in-built interpolation 

of colour between the points.25, 171 This method has been used for detailed 

characterisation of flutter circuits using a high number of AOP manoeuvres (range 18-

103).25 In another study, the method was used to assist with diagnosis and ablation 

strategy for reentrant tachycardias.171 However, the number of AOP manoeuvres was 

high (14-77 per patient) and the time taken for PPI mapping was long (12-200 minutes 

per tachycardia). In contrast to these previous studies, Overdrive3D indicates possible 

locations of the tachycardia mechanism, calculated from a simple model of conduction 

and integrating information from a comparatively small number of AOP manoeuvres. 

An algorithm for determining macroreentry circuits has previously been 

described, using up to 3 AOP manoeuvres from predetermined locations in the RA and 

CS, in patients without complex congenital heart disease.170 One of 6 possible regions 

is then identified as being critical to the circuit. This strategy could be used in 

conjunction with Overdrive3D. Overdrive3D has the added benefit that its design 

allows flexibility in AOP position, use with macroreentrant as well as focal 

tachycardias, and also use with patients who have structural cardiac abnormalities 

including complex congenital heart disease. 

There has been little previous investigation of the relationship between PPI and 

the distance from pacing site to macroreentrant circuit. One study developed 

theoretical equations for reentry around a circular obstruction on a sheet.174 Further 

theoretical work was undertaken for the development of Overdrive3D, investigating 

simple mathematical models of reentry around a linear obstruction (analogous to an 

atriotomy scar) and around a truncated cone (analogous to peri-tricuspid or peri-mitral 

flutter). This analysis suggested that the distance to the tachycardia circuit may be 

greater than previously appreciated, for a given PPI, and the equation corresponding 

to a linear lesion was used for Overdrive3D because this represented a 'worst case 

scenario'. This was vindicated by the analysis of AOP in Patient 5 (see Figure 6-8). The 

PPI lateral to the CTI was 19ms. However, a relatively large possible distance to the 

tachycardia circuit was calculated and a large corresponding area was shaded onto the 
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anatomical representation. Further AOP manoeuvres and activation mapping 

confirmed that the tachycardia circuit passed near to the limit of this shaded area, i.e. 

the shaded area was appropriately large. 

The equations used for calculating distance to the macroreentry circuit are 

sensitive to small changes in PPI. Therefore, it is important that the PPIs are accurate 

and reflect the tachycardia. It has previously been reported that conduction delay at 

pacing rates faster than TCL can cause transient slowing of the tachycardia circuit,164 

which would give artificially long PPI and artificially long distances to the tachycardia 

circuit in Overdrive3D. This effect did not noticeably impair the analysis in this 

feasibility study, but will need further investigation. 

Further investigation is also required in order to optimise the way in which 

Overdrive3D is integrated with results from activation mapping. Currently, the Focal 

Tachycardia Analysis provides the user with information about the possible location of 

the tachycardia as well as recommendations for the next AOP location. It is anticipated 

that selective activation mapping within these areas will help to clarify the best 

location. 

In its current form, Overdrive3D can confirm the presence of reentry using new 

entrainment criteria (see Chapter 5). There is no similar entrainment criterion for focal 

tachycardias. However, the presence of focal tachycardias can sometimes be inferred 

from cycle length variability during tachycardia or in response to AOP.3, 204 Another 

limitation of AOP, and its use in Overdrive3D, is that confounding results might be 

obtained if multiple competing tachycardia mechanisms co-exist. However, if AOP 

mapping is used close to the dominant mechanism (based on activation mapping) then 

it should still be reliable: for its most effective use, Overdrive3D must be used in 

conjunction with the other tools available to the electrophysiologist. 

6.7 Conclusion 

Using a simple model of conduction, this study has shown the feasibility for integrating 

electroanatomic information from multiple AOP, in the presence of any chosen 

recording electrodes. It is hoped that Overdrive3D, integrated into electroanatomic 

mapping systems, could greatly expedite procedures for atrial tachycardia. Further 

testing is in progress. 

  143 



 Chapter 7 - Conclusions 

7 Conclusions 
7.1 Introduction ......................................................................................................... 145 

7.2 Original Contributions ......................................................................................... 145 

7.2.1 Activation mapping .......................................................................... 146 

7.2.2 Entrainment mapping ...................................................................... 146 

7.3 Implications of the research ................................................................................ 147 

7.4 Future directions ................................................................................................. 148 

7.5 Conclusion............................................................................................................ 150 

  

  144 



 Chapter 7 - Conclusions 

7.1 Introduction 

Mapping is crucial for the successful ablation treatment of atrial tachycardias, which 

have formed an increasing clinical burden in the era of AF ablation. Only by 

determining the mechanism of these tachycardias can lesions be strategically placed at 

locations which will terminate and prevent recurrence of the arrhythmia. The 

mechanism must be deduced by mapping and the current gold standard is isochronal 

mapping followed by attempted entrainment. 

It is difficult to quantify the need for better mapping systems precisely because 

accurate data is not available. However, during 2003-2006 there were at least 4000 

patients with persistent AF who received treatment with catheter ablation, 

worldwide,1 at a time when the number of ablations was growing at 15% per year in 

the US.207 Some of these patients would have required ablation of AT during their 

index procedure, and approximately 25% would have re-presented with AT afterwards. 

Therefore, the number of patients requiring treatment of AT, in the context of AF 

ablation, is substantial and growing. Additionally, AT continues to require treatment in 

patients with normal hearts and in patients with previous cardiac surgery. Arrhythmia 

is an important cause of morbidity and mortality in patients with a history of 

congenital heart disease. 

A literature review, in Chapter 1, identified key shortcomings of current 

approaches (see Sections 1.3.7 and 1.4.7). In brief, activation mapping with isochronal 

maps requires a user-defined window of interest and also a single LAT to be defined 

for each electrogram. Existing entrainment criteria are often difficult to apply in the 

setting of AT and the analysis of electrograms has been limited to interpretation of the 

PPI at the electrode used for pacing. 

The overarching goal of the thesis was to reassess these mapping techniques and 

to develop new techniques that facilitate and improve the interpretation of 

information that is collected. 

7.2 Original Contributions 

This thesis has explored new approaches to the mapping of atrial activation and also 

interpretation of entrainment manoeuvres. 
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7.2.1 Activation mapping 

In Chapter 3, Ripple Mapping was developed and tested in a variety of different 

arrhythmias. Computational methods were developed to reconstruct a cardiac surface 

from the locations of collected electrograms. Software was written to display each 

electrogram as a bar protruding from the cardiac surface, where the length varies with 

time according to the electrogram’s voltage-time relationship. The method was further 

developed in Chapter 4, with the cardiac surface being exported from the Carto3 

platform and shaded according to the bipolar electrogram voltage. The user-interface 

was also modified so that cases could be loaded directly and then assessed by other 

users, with minimal prior instruction (Aim A4). 

Interpretation of Ripple Maps was performed without requiring a user-defined 

window of interest (Aim A1) or LAT assignment (Aim A2). Double potentials were also 

displayed successfully (Aim A3) although the visualisation of electrogram 

characteristics was limited if the signal-to-noise ratio was low. This may be one of the 

reasons why the successful diagnosis of localised reentry tachycardias was lower than 

for macroreentry. 

7.2.2 Entrainment mapping 

At an early stage in the research into entrainment, it became clear that the 

interpretation of the response to overdrive pacing depended critically upon the 

mechanism of tachycardia: for example, the trans-atrial distance from the tachycardia 

mechanism could be much longer, for a given PPI, if the mechanism was macroreentry 

rather than focal. This provided the motivation to search for an improvement in the 

methods for detecting macroreentry. 

Previous criteria for detecting reentry are often difficult to apply to AT, as 

discussed in Section 1.4.7 on p44. The new entrainment criterion proposed in Chapter 

5 is simple to elicit (Aim E1) and can detect reentry from a wide variety of location 

pairs around the atria. Preliminary testing in clinical cases is presented. It is the first 

entrainment criterion with the capability to detect double-loop reentry (Aim E2). 

Integration of the entrainment criterion with anatomical information can also assist 

with the identification of an appropriate isthmus for ablation (see “Further theoretical 
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implications” on p106), even if there is decremental conduction that results in a long 

PPI from this location (see Figure 5-20). 

The mathematical development for the entrainment criterion in Chapter 5 sets 

out the assumptions and conditions for which the criterion will detect single-loop or 

double-loop reentry. This analysis was useful in providing a framework for 

understanding limitations of the method: only with the theoretical analysis did it 

become apparent that the criterion could theoretically suggest the presence of double 

loop reentry even if only single loop reentry was present. The wording of the 

entrainment criterion was modified to allow for this. 

In Chapter 6, a mathematical approach was continued in order to investigate the 

relationship between the response to overdrive pacing and the distance from 

recording electrodes to the tachycardia mechanism. Equations were developed that 

used conservative assumptions in order to relate the maximum possible trans-atrial 

distance to the PPI (Aim E3), depending upon the tachycardia mechanism (Aim E4). 

Additionally, for focal tachycardias the post-pacing response at electrodes that were 

not used for pacing can be used to give an estimate for this distance (Aim E5). 

The rationale behind developing a clinical prototype for electroanatomic 

integration of overdrive pacing manoeuvres was to assimilate the information using 

the theoretical analysis that had been developed. Despite the conservative 

assumptions (and hence possible lack of precision for identifying the tachycardia 

location from any one piece of information), it was hoped that by using information 

from all pacing manoeuvres then the utility of the approach would be increased. 

Feasibility of the method was demonstrated in patients with localised reentry, 

macroreentry and also with tachycardias simulated by pacing (Aim E6). 

7.3 Implications of the research 

In recent years, improvements in technology have allowed for more realistic and 

precise delineation of atrial geometry at the time of ablation procedures. Additionally, 

mapping can be performed with catheters comprising multiple electrodes. (For the 

Carto system, this technology has only become available at this institution within the 

last month.) It is therefore possible to acquire electrogram data much faster than LAT 

can be properly assessed by the operator or their assistant. Ripple Mapping may be 
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particularly useful in this context because LAT annotation is not required. The Ripple 

Map can then be interpreted using a top-down approach that draws upon the 

knowledge of the electrophysiologist as they interpret cardiac activation. 

In this thesis and in much of the literature, activation mapping and entrainment 

mapping have been considered separately. When they are combined, entrainment 

information has usually been used to confirm a diagnosis that has been hypothesised 

from activation mapping. However, there has been no work on closer integration of 

the two methods. 

In the research presented here, a more formal analysis of overdrive pacing in an 

electro-anatomic context has been undertaken. Methods for analysing overdrive 

pacing have been developed here that can be used flexibly, or in the future could be 

integrated into a more prescriptive approach. The prototype Overdrive3d software 

uses the newly developed entrainment criterion and also mathematical modelling to 

combine information from multiple electrodes with multiple manoeuvres. For focal 

tachycardias, the region of atrium containing the tachycardia mechanism is 

progressively bracketed as this information becomes available. For macroreentry, 

areas which must contain part of the tachycardia circuit are highlighted. 

This raises the possibility of a more iterative approach between the mapping of 

activation and entrainment. Preliminary overdrive pacing could be performed earlier in 

the mapping process in order to provide an indication of areas where careful activation 

mapping should be performed. Further overdrive pacing could then be performed on 

the basis of all of this information. Even if overdrive pacing is used very sparingly, on 

occasions where the PPI information is different to the electrophysiologist’s 

expectation then being able to analyse the response at multiple electrodes and 

integrate this with other manoeuvres is likely to be helpful. 

7.4 Future directions 

The techniques developed in this thesis involve computational methods for improving 

the interpretation of signals measured during clinical electrophysiology procedures. 

The ultimate aim is that the techniques can influence the treatment of patients 

through their widespread use. This requires their incorporation into the systems that 

are used around the world in electrophysiology labs. 
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In this thesis, testing has been performed with off-line analysis because the 

commercially available systems for electroanatomic mapping do not allow for 

immediate download of clinical data. This has been a major obstacle to the progress of 

the research but some progress has been made. 

The Ripple Mapping technique has been taken up by Biosense Webster and will 

be incorporated into the next version of the Carto3 software (personal 

communication). This will finally allow assessment of the utility of Ripple Mapping in 

the real clinical setting, used by a broader spectrum of the electrophysiology 

community. The future improvement of Ripple Mapping should be with two distinct 

objectives. 

The first objective is to improve the usability of the existing method, in order to 

maximise the diagnostic accuracy of arrhythmias. The user-interface will be modified in 

the light of user feedback and the strategy for sampling electrical signals around the 

atria will be refined. The second objective should be to improve the signal processing 

in order to convey arrhythmia activation better. For example, in atrial tachycardia, 

algorithms could correct for, or remove, beats with a significant far-field ventricular 

component. Similarly, for mapping ventricular tachycardia substrate in sinus rhythm, 

algorithms might also be developed to enhance the components of signals deriving 

from local late potentials, as opposed to far-field healthy ventricular activation. 

For the work on entrainment, there is also some interest from Biosense Webster 

in assisting us with development. A non-disclosure agreement has been created 

between King’s College London, Bordeaux University, and Biosense Webster. It is 

hoped that a system will be provided to allow for export of data from Carto3 to a 

research system during real clinical cases. This will allow for further data gathering for 

a much larger cohort of patients. Hopefully, this will then support the case for 

incorporation into commercially available systems. 

There has been extensive focus on the theoretical background for the 

Entrainment Criterion and for the Overdrive 3D software presented in this thesis. One 

of the substantial advantages of this approach is that the assumptions behind the 

computer algorithms are explicit. This will allow future developers to refine the 

software and also to be clearer about its limitations. It is also possible that the 
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application of the methods might be broadened; this thesis has pursued techniques for 

the atrium but some of these might also be applied to ventricular arrhythmias. 

Although electroanatomic systems have improved the delineation of the atrial 

shape and the catheter location within it, imaging techniques may have an increasing 

role in the management of complex arrhythmias in the future. These techniques 

provide the atrial geometry and this can be aligned to the frame of reference of the 

electroanatomic system. MRI techniques may also allow delineation of scar and this 

could be represented on the Ripple Mapping software (in the way that bipolar voltage 

amplitude is currently used). For the Entrainment Mapping, MRI could be used to 

inform patient specific models of cardiac activation. These could then be used to 

improve upon the simplistic modelling that was used for the development of the 

Overdrive3D software. 

7.5 Conclusion 

The research presented in this thesis has involved the development of a new method 

for mapping activation, a new entrainment criterion for detecting macroreentry, and a 

new framework for integrating information from overdrive pacing manoeuvres. It is 

hoped that this contribution will help to advance the quality of treatment that patients 

receive in the future. 
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