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Abstract 

Supramolecular self-assembly on metallic surfaces is the ideal playground for 

studying a variety of physical and chemical phenomena. Adsorbed molecules 

will diffuse and self-organise to form assemblies dictated by their 

functionalities, while the more or less pronounced metal reactivity will 

accordingly affect both the supramolecular patterns and the interfacial 

chemistry. Besides structural aspects, electronic properties are central in 

determining the energy level alignment at the heterojunction and, thus, the 

performance of organic-based devices. Notably, charge reorganisation at the 

metal-organic interface will produce surface dipoles, whose effect is to add 

electrostatic repulsion to the dispersion-driven supramolecular self-assembly 

and to change the work function of the surface.    

Herein, the relation between charge migration (i.e., the creation of surface 

dipoles) and molecular self-assembly is addressed by studying the behaviour of 

on-purpose designed molecular units on selected metals. We will show that 

choosing the substrate on the basis of its work function can selectively allow or 

inhibit the transfer of charge from the organic material to the electrode. When 

charge transfer occurs, the growing supramolecular structures exhibit a phase 

modulation driven by the presence of competing interactions. Moreover, the 

introduction of reactive moieties in formerly inert tectons will be identified as a 

suitable strategy for promoting the formation of interfacial dipoles upon 

surface-mediated chemical reactions. Our work paves the way for a more 

rational approach to the design of metal-organic systems, as we speculate that 

charge transfer effects and surface chemistry can be predicted at the stage of 

molecular design, at variance with the current trial and error approach used in 

the field of organic electronics.  

This thesis is based on multiscale theoretical modelling of selected metal-

molecule couples and it is the result of a fruitful collaboration with the groups 

of Prof Davide Bonifazi (Université de Namur) and Prof Giovanni Costantini 

(University of Warwick).    
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Chapter 1 
Supramolecular self-assembly  
on metal surfaces 
 
 
 
 
The ability of generic elements to self-assemble (self-organise) can be defined 

as their aptitude to autonomously evolve into structures and patterns, with the 

only guidance of the information enclosed in the elements themselves (i.e., 

without external direction) [1]. This general definition can be restricted to the 

field of organic chemistry, where the idea of self-assembly is indisputably 

linked to the formation of non-covalent molecular architectures. Indeed, the 

origins of the paramount interest in the research field of self-assembly are to be 

sought in its routine occurrence in a variety of biological processes 

fundamental in any living organism, such as the organisation (and 

reorganisation) of carbon-based molecules in specific higher-level structures [2].  

The requirement that the knowledge necessary for the structural development 

of a physical system has to be embedded in its molecular components makes 

supramolecular self-assembly a prototypical bottom up fabrication technique, 

at variance with the commonly applied construction methods, whose top down 

approach consists of shaping a material from the bulk to the desired product [3]. 

Here lays the importance of bottom up technologies: suitable molecular 

building blocks can be tailored to contain the planned a priori information, 

which then drives the autonomous evolution to the desired “product” with a 

high degree of precision and reproducibility. Needless to say, the full 
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understanding and control of matter at the atomic scale is necessary for 

handling bottom up nanofabrication. The technological improvements occurred 

in the last few decades − such as the invention of scanning tunneling 

microscopy (STM) [4,5,6], which allowed high resolution visualisation and 

manipulation down to the single atom level, together with advances in the 

synthesis of chemicals and nanomaterials with unprecedented properties − 

greatly improved the knowledge of structural and physical properties of such 

small systems [7]. 

These insights allow us to predict a new and more important role of 

nanotechnology, which might in the future answer the demands of continuous 

miniaturisation of devices, especially in the field of nanoelectronics [8,9]. 

However, the pursued development of new fabrication techniques − covering 

the 0.1−100 nm scale − will have to match the scalability, performances, 

reliability and cost effectiveness required for industrial applications, which 

calls for more in-depth efforts in studying the control of supramolecular self-

organisation.  

In this work, we aim to develop a highly novel approach to control the self-

assembly of organic molecules at the metal surface and to understand related 

electronic effects, such as charge transfer. This knowledge will provide new 

elements useful to unravel the fundamental mechanisms involved in the energy 

level alignment at the metal-organic interface, which is central to determine the 

performances of organic-based optoelectronic devices. Moreover, it will be 

shown how charge transfer affects the organisation of adsorbed molecules, by 

the competition between short-range van der Waals-like attraction and 

electrostatic repulsion. Long-range interactions are important to extend the 

control of molecular self-assembly to length scales that are larger than the 

nearest neighbour, in the view of making the integration of bottom up and top 

down nanofabrication possible [10,11]. Our methodology will combine the 

chemical synthesis of suitable molecular units, the application of scanning 

probe techniques for the production and characterisation of organic thin films 

and theoretical modelling to assist the stage of molecular design and help the 
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rationalisation of experimental observations. In particular, we will investigate 

whether long-range electrostatic forces between charged molecules can drive 

the formation of novel classes of supramolecular structures. At the same time, 

the observation of specific self-assembled patterns will reveal the occurrence of 

charge reorganisation at the metal-organic interface, providing useful 

information about the system’s electronic properties.       

 

1.1 Basic concepts in “on the surface” self-assembly 

Many bottom up nanofabrication techniques start with the deposition of atoms 

or molecules on a substrate. In fact, these methods are based on the time-

growth of structures, whose development is the result of the complex interplay 

between a wide range of atomistic processes. A balance between kinetics and 

thermodynamics will most likely control the structural evolution of self-

assembling systems on surfaces, which can be regarded as an archetypal non-

equilibrium process. In fact, interacting particles adsorbed on a substrate might 

experience kinetic limitations to their self-organisation (e.g., due to strong 

coordination with the substrate itself), with the effect of hampering the 

spontaneous evolution of the system to its thermodynamic equilibrium [11]. 

The deposition of thin layers of molecules is routinely performed by organic 

molecular beam epitaxy  (OMBE), an ultrahigh vacuum technique with which 

a gaseous molecular beam is generated upon thermal sublimation of a crystal 

powder. This step is followed by the actual growth of nanostructures, via 

transport and aggregation of particles on the surface. Of course, the transport of 

adsorbates implies that random hopping events are allowed, meaning that 

surface diffusion needs to be activated at the system temperature [12,13]. As a 

consequence, the diffusivity of adsorbates (defined as the mean square distance 

covered per unit time) will be described by an Arrhenius relation [14]: mobility 

on the surface is allowed or increased by supplying thermal excitation 

sufficient to overcome the energy barrier for moving a particle from an 

adsorption site to another, which is related to the surface reactivity and 

geometry.  
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Since we are interested in the study of systems approaching the thermodynamic 

equilibrium, our focus will be on the growth of nanostructures from the 

autonomous organisation of mobile molecular units, which are deposited at low 

rates on metal surfaces, so that the nucleation and coarsening of self-assembled 

aggregates will have the time necessary to reach a stable minimum energy 

configuration and to avoid kinetic limitations [15]. In this Chapter we will 

outline a brief introduction on concepts that are important to define the field in 

which our research work is located. In particular, we will provide a description 

of the metal-organic interface, by having a look at the fundamental phenomena 

related to the formation of supramolecular structures.  

 

1.1.1 Engineering self-assembling molecular units 

Single atoms are the smallest unit that can be used to grow potentially 

interesting nanostructures by means of self-organisation. This is usually 

obtained from the deposition of metal atoms on metal surfaces, provided that 

the mixing of the two species is unfavourable enough to prevent the formation 

of superficial alloys. However, the shape and size control of metal 

nanostructures is severely inhibited by the low selectivity of their self-

organisation, which is inherent to their tendency to strongly coordinate with 

any neighbouring object (i.e., kinetically limited self-assembly) [16].  

On the contrary, a much higher degree of control can be achieved by using 

molecular units as self-assembling elements, since molecules interact with one 

another mainly via weak non-covalent coordination, whose strength and 

directionality can be fine-tuned at the stage of molecular design to give desired 

supramolecular patterns [11,17,18]. Synthetic chemistry gives access to a 

potentially unlimited range of molecular building blocks (tectons [19]), in which 

the desired self-assembly behaviour can be programmed by the ad hoc 

insertion of functional groups to promote the formation of, e.g., hydrogen 

bonds [20], coordination chemistry [21], π stacking interactions [22] and other 

general dispersion forces. Even if the strength of these interactions, as a single 

contribution, is typically one order of magnitude lower than covalent 
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coordination, the synergic cooperation of dispersion forces organised in 

ordered networks can lead to stable minimum energy structures. In addition, 

molecular symmetries and chirality [23] may be designed and used to transfer 

selected regularities to the supramolecular assembly (e.g., formation of 

low dimensional structures [24] or porous two-dimensional crystals [25]). 

Nevertheless, the weak interactions regime proper of intermolecular 

coordination is both supporting and limiting the foreseen application of 

supramolecular structures in real-life devices. For instance, while the weak 

bonding confers important properties such as reversibility and the ability of 

self-correcting reticular defects [15], on the other hand, this structural flexibility  

– associated with thermal fluctuations – limits the stability of the 

supramolecular aggregates to low temperatures only. 

The inherent short-range character of the intermolecular interactions mentioned 

above does not allow the control of molecular organisation beyond the sub-

nanometric scale, which would be useful for the integration of these 

supramolecular structures with traditional top down fabrication [11]. Neglecting 

surface effects, the self-organisation of molecular units in the mesoscale (i.e., 

10 nm and above) can be achieved by incorporating long-range terms − such as 

electrostatic interactions between “charged adsorbates” − in the intermolecular 

interaction potential, as they are expected to promote structural reorganisation 

up to hundreds of Å length. Long-range forces are usually related to 

phenomena such as energy level alignment at the metal-organic interface or 

surface mediated chemical reactions [26,27], whose fundamental importance in 

organic electronics and heterogeneous catalysis increases the interest in 

understanding and controlling these electronic effects well beyond the mere 

supramolecular structure regulation.  

Beside intermolecular interactions, another parameter controlling the self-

assembly of adsorbed molecules is their mobility on the metal surface, which is 

dependent on the physical nature of the metal-organic coordination. The high 

degree of control in the synthesis of chemicals − and their consequent 

intermolecular interactions − cannot be generally transferred to the metal 
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surface without taking into account the occurrence of effects related to the 

surface geometry, electronic properties and coordination chemistry, which may 

themselves play a role in the formation of supramolecular structures [11,28,29]. 

Moreover, metal-organic interactions can occasionally modify the electronic 

surface states, affecting the adsorption of molecules [30]. Similar effects are 

observed when the metal reactivity promotes chemical modifications in the 

adsorbate. In this case, the topology of the surface may also play an important 

role by offering preferential adsorption sites to reactive molecular moieties, 

with contribution to the total adsorption energy of small molecules of 0.3−5 eV 

per functional group [31].  

In conclusion, the self-assembly of molecules on metals will depend on the 

chemical structure of the adsorbate, as well as on the substrate properties, 

making the rules governing the behaviour of molecules either in solution, or as 

a molecular crystal not directly applicable upon adsorption [32]. Therefore, 

while the design of functional molecular units is still a valuable tool to 

engineer the non-covalent interaction network, the choice of the metal substrate 

is also important in controlling supramolecular self-assembly, with both 

structural and electronic impacts. 

 

1.2 Adsorption of organic molecules on metal surfaces 

Supramolecular self-assembly is investigated primarily by means of STM 

experiments, where molecules are deposited and imaged on pristine metal 

surfaces prepared by cleavage along well defined crystallographic orientations. 

Metal atoms at the surface experience a bond deficiency that gives them a 

strong tendency to saturate their under-coordination by establishing 

interactions with any neighbouring matter. Adsorption is thus a process where 

atoms or molecules will interact with a proximal metal surface, experiencing 

different degrees of coordination (spanning from weak dispersion forces to 

covalent bonding).  
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It is then clear that – in the presence of adsorbed molecules − the metal 

substrate would not simply act as a steric constraint supporting the formation of 

two-dimensional structures, but it would rather interact with the adsorbate to 

the limit of overcoming the role of intermolecular forces in determining the 

evolution of supramolecular self-assembly. In the following Sections we will 

give a brief outline of the properties of metallic surfaces and their interactions 

with molecular species.  

 

1.2.1 Metal surfaces 

Metals are solid materials where atoms are mutually sharing valence electrons. 

These electrons are delocalised across a regular lattice of atoms, which tends to 

organise in dense, close-packed structures because of the lack of directionality 

in their coordination (metallic bond). The origin of the electronic delocalisation 

is found in the substantial overlap between valence orbitals in metal atoms, 

with the important consequence of creating the strong dispersion of electronic 

wavefunctions (bands) – in the reciprocal k-space − responsible for the good 

electronic conductivity of such materials.  

Obviously, the presence of discontinuities such as surfaces will deeply modify 

the properties of the bulk, because of the interruption in the periodicity of the 

metal crystal. For instance, the electronic description of surfaces in s and p-

block metals is provided by the uniform electron gas (UEG) model, where the 

charge of the ionic lattice is approximated by a uniform electrostatic potential. 

In correspondence to a surface, the electronic density is predicted to leak in the 

vacuum region due to the sudden fall of the nuclear electrostatic potential. The 

electronic profile is expected to readily return to the bulk value inside the slab, 

with some dumped fluctuation before stabilising to the asymptotic value 

(Friedel oscillations). This behaviour generates a small accumulation/depletion 

of charge density in the region immediately above/below the surface plane, and 

thus of a dipole layer. In particular, the magnitude of the surface dipole will be 

related to the atomic displacement at the interface, with important 

consequences on its electronic properties such as the work function φ [33,34], i.e., 
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the thermodynamic work required to move one electron from the metal to the 

vacuum at zero temperature, according to Eq. 1.1 below: 

φ ≡ eV (∞)−EF ,                                                                                             [1.1] 

where EF is the Fermi energy of the surface, i.e., the thermodynamic work 

required to remove the charge, while V(∞) is the electrostatic potential in the 

vacuum, which may be non-zero (thus giving a eV(∞) contribution to the 

electron energy, Fig. 1.1 left).  

 
Figure 1.1 Energy level diagram for a generic metal surface (left). The work function 
shift Δφ caused by a negative dipole layer (black arrow) is sketched in the right panel.    

The presence of a surface dipole will affect the work function by modifying the 

electrostatic potential profile at the metal-vacuum interface (Fig. 1.1 right), 

which will effectively shift the vacuum energy (Eq. 1.2): 

φ = eV (∞)−EF[ ]+Δφ                                                                                   [1.2] 

Δφ = −eD⊥  ,                                                                                                    [1.3] 

where Δφ is the work function shift induced by the dipole moment of the layer, 

taking its component normal to the surface D⊥ (Eq. 1.3) [35]. This means that 

the work function of a metal surface will be related to the strength of the 

electron binding to the bulk, as well as to the magnitude and nature of the 

surface dipole. The latter effect will be further detailed due to its importance in 

our investigations. 

EF 

eV 

+"
"
−"
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φ"

Δφ = − e D⊥  
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The limits of the UEG model become evident when approaching the 

description of d-bonded metals, where this approximation fails to give good 

description of their work function because of the reduced delocalisation of 

valence electrons, which are more bound to the nuclear positions. For such 

systems, the uniform ionic potential used in the UEG model has to be 

substituted with a periodic one, to take into account of the ionic lattice.  

The structural stability of the surface is usually measured in terms of the 

energy needed for its creation per unit area, i.e., the energetic penalty for 

breaking the bonds required for the cleavage of the bulk crystal. Therefore, the 

surface energy (γ) needed to split a crystal along different Miller directions will 

be lower for densely packed surfaces, as long as less bonds need to be broken. 

Furthermore, the creation of a surface is generally accompanied by more or 

less pronounced structural rearrangements. In fact, the under-coordination of 

the superficial atoms causes their displacement from the equilibrium bulk 

positions in order to minimise the system energy. This rearrangement may 

result in a simple shift of the frontier atoms towards or outwards the surface 

plane, or induce a more complex scenario, involving lateral displacements 

together with the variation of the interfacial atomic density. The latter effect is 

known as surface reconstruction, which is observed to occur on the dense 

Au(111) surface, with the formation of a peculiar herringbone pattern [36,37].     

 

1.2.2 Physisorption  

Molecules are generally adsorbed on metallic surfaces with different binding 

energies, whose magnitude is used as a criterion to distinguish between 

different adsorption types. Adsorption is usually referred to as physisorption 

when the binding energy does not exceed a few tenths of an eV, while values 

of 1 eV or more are generally associated with chemisorption.  

Physisorption of particles on a metal surface is a weak physical binding, which 

does not yield substantial changes in the electronic structure of the adsorbate. 

The interaction forces involved in this adsorption process are short-range     
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van der Waals contributions, generated by the attraction of the 

induced/permanent dipole moment of the adsorbate and its mirror image in the 

highly polarizable metal slab. Thus, physisorption can be easily understood by 

using the method of image charge to describe the interaction of a single 

hydrogen atom with an infinitely polarizable surface (Fig. 1.2).    

In this simple system, the positive nucleus will have position R = (0, 0, Z), 

which is the centre of rotation of the electron located in r = (x, y, z). Both the 

nucleus and the electron will interact with their mirror images in the conductive 

solid (the mirror electron being located in rʹ′), with total electrostatic energy 

calculated as follow: 

,                                   [1.4] 

where ε0 is the vacuum dielectric constant. The two attractive terms in Eq. 1.4 

account for the interaction between the nucleus/electron and its image. 

 

 
Figure 1.2 A single hydrogen atom in front of an ideal conductor (grey box) 
according to the image charge model (adapted from [38]). 

Under the limit of adsorption distance larger than the electronic oscillation 

(|R| » |r|), the van der Waals binding energy can be calculated by modelling the 

electron motion with the simple oscillator model (Eq. 1.5): 

Eim = −
e2

4πε0
1
2R

+
1

2R+ r+ "r
−

1
2R+ r

−
1

2R+ "r

#

$
%
%

&

'
(
(

+"−"
−"+"

Z −Z 



Chapter 1  
 

20 

Eim ≈ EvdW = −
!αω

16πε0Z
3 = −

CvdW

Z 3
 ,                                                                 [1.5]  

where ω is the vibrational frequency of the electron. Eq. 1.5 shows that the van 

der Waals constant CvdW is proportional to the atomic polarisability α, together 

with the Z−3 dependence of EvdW. By taking into account of higher order 

corrections in the Taylor expansion of Eq. 1.4, it is possible to identify another 

important property of the metal surface, i.e., the image plane Zim (Eq. 1.6): 

EvdW = −
CvdW

Z − Zim( )3
+O Z −5( )  .                                                                  [1.6] 

The image plane finds its origin in the spilling of electronic tails from the metal 

into the vacuum. This quantity corrects the position of the metal surface and 

allows for the application of classical electrostatic laws when describing 

adsorption on conductive surfaces. 

Even though van der Waals interactions − as expressed in Eq. 1.5 and 1.6 − are 

purely attractive, a positive energy term appears when the adsorbate gets closer 

to the surface, because of the increasing overlap between the wavefunctions 

belonging to the two subsystems. This effect is translated into a short-range 

Pauli repulsion term, which balances the van der Waals attraction to determine 

the equilibrium surface/adsorbate distance (lads) and energy (Eads) for the system 

(in the case of physisorption, typical values for Eads and lads are found in the 

ranges 0.01−0.50 eV and 3−10 Å, respectively).  

While physisorption plays an important role in many physical systems, its 

theoretical modelling is based on methods that often fail to provide satisfactory 

description of van der Waals interactions. In fact, adsorption of organic 

molecules on metals surfaces are commonly approached at the density 

functional theory (DFT) level, whose currently most applied exchange-

correlation functionals fail to capture the Z−1 proportionality of the electron 

potential outside the metal slab [33,38]. This misrepresentation causes the 

inadequate description of the long-range van der Waals and image forces, 
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which in turn affects the classical potentials relying on DFT parameterisation. 

These limitations were successfully overcome in the recent years by the 

implementation of self-consistent DFT functionals accounting for dispersion 

interactions (see Chapter 2, Section 2.3.2).  

 

1.2.3 Chemisorption  

At difference with physical adsorption, chemisorption is characterised by the 

instauration of definite chemical coordination between the adsorbate and the 

surface, with important effects on the electronic structure of both. This 

phenomenon is very important in heterogeneous catalysis, since the formation 

of chemisorbed intermediates is crucial in the development of reaction 

pathways. From a kinetic point of view, the first step involved in chemisorption 

is the trapping of particles at the surface. This requires the inelastic collision 

between an incoming particle and the surface, in such a way that the dissipation 

of momentum is sufficient to forbid its elastic reflection in the vacuum, with 

the particle remaining trapped at the surface potential well (similarly to 

physisorption). After that, the adsorbed particle can travel on the metal until a 

preferential chemisorption site is found, where the chemical coordination can 

take place [31,39]. 

The chemical bonding is reflected in the higher binding energy (usually 

ranging from one to few eV per molecule) and in adsorption distances close to 

the typical value for covalent or ionic coordination (1−3 Å).  

As long as significant local variations of the electronic structure are expected to 

occur, chemisorption is investigated at the level of theory by electron density of 

state analysis (DOS) – in particular the analysis of its local features, e.g., the 

DOS projected on selected atomic states (pDOS) – and by studying the total 

electronic charge or the differential charge density distribution (which 

compares the total density with the one of the subsystems taken separately). 

The DOS − calculated as the integral of the band structure over the k-space 

(Eq. 1.7) − describes the number of states available to electrons for each energy 
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level, which is useful to characterise the electronic structure of metals in 

particular. The DOS can be formalised as: 

DOS(ε) = δ ε −εnk( )
nk
∑  ,                                                                        [1.7] 

where εnk are the eigenvalues of the Kohn-Sham Hamiltonian (see Chapter 2), 

with n and k being the band and Block vector indexes, respectively. The pDOS 

is useful for the characterisation of a chemisorbed system, since it is calculated 

by projecting its total DOS on the atomic orbitals of the non-interacting 

adsorbate in the gas phase, according to Eq. 1.8 below:   

pDOS(ε) = δ ε −εnk( )
nki
∑ ψ

i
Ψnk

2
 ,                                                        [1.8] 

where ψi are (pseudo) wavefunctions localised onto the molecular atom “i” and 

Ψnk the Kohn-Sham eigenstates of the total system. The comparison of the 

adsorbate pDOS with its total DOS in gas phase can thus assess the effects of 

the interaction with the surface, which is found to be stronger when significant 

modifications in the pDOS spectral features are evidenced. Moreover, the same 

analysis can provide information on the relative position of the frontier 

molecular orbitals with respect to the Fermi level of the molecule-surface 

system (since EF falls within the DOS energy range [33]), which is used to 

understand if charge transfer from the adsorbate to the metal (or vice versa) is 

expected to occur (see Section 1.3).  

Since these modifications/shifts of molecular levels upon adsorption are arising 

from the creation of new electronic states at the interface, more insights on the 

chemisorption process can be obtained by studying, e.g., the adsorption of a 

hydrogen atom approaching a transition metal surface [40]. The frontier orbitals 

of hydrogen will be the ones playing a role in the interaction process, namely 

the 1s and 2s (the highest occupied and the lowest unoccupied, respectively). 

Initially, the hydrogen atom will interact with the s-electrons spilling from the 

metal surface into the vacuum region, causing the broadening and shift of the 

atomic orbitals to align the electron chemical potential to the Fermi level of the 

metal (the shift being usually accompanied to a fractional charge transfer). The 
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broadened peak will present both bonding and anti-bonding character in its 

lower and higher energy, respectively. For even closer adsorption distance, 

adsorbate states will start to interact with the more localised d-levels, again 

splitting in a bonding/anti-bonding pair. The provenience of the electronic 

charge density included in the bonding states will define the nature of the 

chemisorption interaction (ionic when either the adsorbate or the metal are 

solely contributing the shared state charge, or covalent for equally shared 

contributions). 

 

1.3 Energy level alignment and dipoles at the metal-organic interface  

Our brief analysis of the adsorption process highlighted some of the 

phenomena occurring when molecular and metallic electronic states are close 

enough to mutually impact each other. In this regard, the metal-organic 

interface plays a fundamental role in the field of organic electronics, since the 

performances of devices like organic light-emitting diodes (OLEDs), field 

effect transistors (OFETs) or photovoltaic cells, rely on the efficient charge 

transport through the interface between the two materials [41]. The study of the 

transport of charge from/to a metallic electrode to/from an organic medium is 

challenging due to the theoretical limitations in the modelling of this complex 

problem and the difficulties encountered in getting a univocal experimental 

picture.  

By taking the metal and the organic part separately, the fundamental energy 

levels in charge transfer processes are rather simply identified by the bare 

metal work function and the highest/lowest occupied/unoccupied molecular 

orbitals (HOMO/LUMO) of the organic material in gas phase. Anyway, the 

validity of the Schottky and Mott representation of the metal-semiconductor 

junction was disproved for the metal-organic one, since the simple vacuum 

level alignment at the interface was found to apply to a limited number of cases 

only. Accordingly to this model, the hole and electron injection barriers (ΔI and 

ΔA, respectively) would remain determined by the difference between the 

Fermi level of the metal (or its work function) and the ionisation potential (I) or 
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the electronic affinity (A) of the organic molecules, respectively, which gives 

incorrect values of the charge transfer barriers (Fig. 1.3).  

 
Figure 1.3 Energy diagram for the vacuum level alignment at the metal-organic 
interface, according to the Schottky and Mott representation of the metal-
semiconductor junction. 

A better representation is provided by considering the effect of the presence of 

a dipole layer at the metal-organic contact, which may shift the vacuum level 

of the metal (and thus its work function, see Eq. 1.3) by as much as 1 eV and 

induce Fermi level pinning [42-45]. Therefore, the formation of interfacial dipoles 

has a crucial importance in defining the properties of the electronic junction in 

organic devices, since the induced vacuum shift may control the energy level 

alignment and consequently the charge injection/extraction barrier at the metal-

organic interface.  

We note that a dipole – or its component perpendicular to the surface – with its 

negative pole directed towards the organic layer (i.e., a negative surface dipole) 

will increase the metal work function as well as the HOMO energy of the 

organic material, effectively reducing the hole injection barrier. On the other 

hand, a positive surface dipole (positive pole pointing towards the molecular 

layer) will reduce the work function and the electron injection barrier 

(Fig. 1.4).  
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Figure 1.4 Energy level diagram for the metal-organic interface. The formation of 
dipole layers shifts the vacuum level (i.e., the metal work function) with the effect of 
modifying the hole and electron injection barrier (see text). 

Dipole layers at the metal-organic interface can arise from a variety of 

processes, including interfacial chemical coordination, formation of interface 

states, charge transfer, permanent molecular dipoles or even the local 

compression/displacement of the metal electronic tails upon adsorption of 

molecules (pillow effect) [46,47]. In the absence of covalent metal-organic 

bonding – as it is the case for a large part of potentially interesting organic 

optoelectronic devices, the most influential theoretical descriptions of the 

aforementioned phenomena are the induced density of interfacial states 

(IDIS) [48-50], useful to approach systems with rather strong hybridisation 

between molecular and metal states, and the integer charge transfer models 

(ICT) [45,51-53], for systems where no or very little hybridisation occurs. 

The IDIS model assumes that the originally discrete molecular DOS can be 

broadened to a continuous distribution upon adsorption, due to the tunneling of 

surface wavefunction tails into the band-gap of the molecule itself. This effect 

will cause the presence of some induced DOS at the HOMO-LUMO gap, 

which may be filled by charge transfer. The energy level alignment at the 

metal-organic interface is then measured by the position of the metal work 

function (φ) relatively to the so-called molecular charge neutrality level (CNL) 

− calculated by distributing the electronic charge of the neutral molecule in the 

EF 

Vacuum 

−"""""+"
D⊥! 

φ"

Δφ = − e D⊥  

Δφ!

+"""""−"
D⊥! 

φ"

Δφ   

Δφ!
LUMO 

HOMO 



Chapter 1  
 

26 

induced DOS, which determines the size and magnitude of any charge 

migration. Therefore, the position of the interfacial Fermi level EF and the 

value of the surface dipole Δφ can be calculated as a function of a screening 

parameter S, which measures the dependence of EF on φ (i.e., the degree of 

Fermi level pinning):  

EF −CNL = S φ −CNL( )                                                                 [1.9] 

Δφ = 1− S( ) φ −CNL( )                                                                [1.10] 

S = dEF dφ  ,                                                                                     [1.11] 

where φ is the metal work function. While the screening parameter S 

(0 ≤ S ≤ 1) is quite sensitive to the molecular adsorption distance, the CNL 

value is not related to the conformation of the metal-organic interface. In 

addition, the work function reduction due to the pillow effect (i.e., the 

orthogonalisation of the metal and molecular wavefunctions) can be accounted 

within the IDIS framework [50], further improving its predictivity. 

At difference to the IDIS description, the ICT model approaches the energy 

level alignment by assuming that any charge migration at the interface will 

occur upon formation of discrete states, generated by integer charge transfer 

from electron tunneling. For instance, this representation implies that any 

surface adsorbed molecule will eventually transforms into a polaron − i.e., a 

localised state typical in organic conductors − in case of charge transfer. In 

particular, the ICT model assumes that the Schottky-Mott limit will apply when 

the metal work function is higher than the formation energy of a negative 

polaron (i.e., the molecular electronic affinity A) and lower than the formation 

energy of a positive one (i.e., the molecular ionisation potential I), with no 

charge migration at the interface (see Fig. 1.3). On the other hand, charge 

transfer is predicted (with the formation of positive/negative polarons) when 

the metal work function is lower/higher than the ionisation potential/electronic 

affinity of the organic material, with Fermi level pinning of the polaronic level. 
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In case of molecular polarons, the positive and negative charge transfer states 

will correspond to their HOMO and LUMO levels.    

A further term playing an important role in the energy level alignment at the 

interface is the surface polarisation, which is determined as the Coulomb 

interaction between the charged state of the adsorbate and its mirror image in 

the infinitely polarisable metal surface (Fig. 1.5).  

 
Figure 1.5 Schematic representations of ions adsorbed on a metal surface (grey boxes) 
according to the image charge model. The screening response of the conductor gives 
rise to vertical dipoles (represented by arrows).  

This interaction will effectively stabilise the charged state by narrowing the 

molecular HOMO-LUMO gap, similarly to the polarisation of neighbours in 

organic crystals [54,55]. Remarkably, for weakly physisorbed organic molecules, 

the screening response is simply related to the image charge potential [56]: 

Uim (Z ) =
1

4 Z − Zim
,                                                                                     [1.12] 

where Z is the distance between the centre of charge of the “polaronic state” 

(i.e., the added hole/electron) and the substrate. Moreover, the surface 

screening of charged adsorbates generates strong standing dipoles (i.e., 

perpendicular to the surface plane), whose sign we conventionally set to be 

positive/negative for positive/negative ions (Fig. 1.5). These charge transfer 

dipoles will significantly shift the work function of the interface − so that the 
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occurrence of charge migration may be detected by spectroscopy techniques. 

These typically strong dipoles are responsible for the long-range electrostatic 

repulsion between adsorbates carrying a net charge [26].     

 

1.4 Aims and outline of this work 

Herein, we will present a novel approach to understand and control the 

formation of dipole layers at the metal-organic interface. Our aim is to shed 

light on the influence of charge transfer on supramolecular self-assembly, 

which is the origin of the strong, vertical dipoles discussed above. Despite the 

huge interest in the study of molecular charging and energy level alignment at 

the metal-organic interface, the formation of low-dimensional supramolecular 

structure as a consequence of electrostatic repulsion is either poorly understood 

or its analysis is limited to systems where repulsion arises from irreversible 

deprotonation [27] or molecular permanent dipoles [57-60].  

We will demonstrate that the careful investigation of the relationship between 

molecular charging and self-assembly behaviour in the sub-monolayer 

coverage regime can be used to identify functional properties of the metal-

organic interface that are important in controlling the contact properties of 

many devices, with potential application in the field of organic electronics. Our 

targets are to: 

• Characterise how charge transfer effects or surface mediated chemical 

reactions can influence the formation of strong interfacial electrostatic 

dipoles, and whether such processes can be predicted by the appropriate 

selection of molecules, substrates and molecular coverage. 

• Obtain new supramolecular aggregates from the competition between 

long-range electrostatic forces and attractive dispersive interactions. 

• Identify if and how the observed self-assembly is related to charge 

rearrangement effects. 
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This Thesis will focus on three case studies, in which charge rearrangement at 

the metal-organic interface is observed in relation to the effect of different 

phenomena. The study of these systems was addressed by means of DFT 

calculations (to obtain the accurate description of the interfacial electronic 

structure), classical molecular dynamics (to resolve the interaction network of 

extended supramolecular structures), and Monte Carlo lattice gas simulations 

(useful to extensively sample the configuration pool of two-dimensional 

growth processes), in close collaboration with experimental group for the 

chemical synthesis of new molecular units and scanning probe experiments. 

The description of the theoretical methods used throughout the Thesis is the 

object of Chapter 2, together with some information on the experimental 

investigation techniques. 

Chapter 3 presents the characterisation of the self-assembly behaviour of a 

novel polycyclic aromatic hydrocarbon (PAH), designed in such a way that its 

ionisation potential (upon adsorption) is lower than the work function of the 

Au(111) surface, but higher than the Cu(111) one. Therefore, while the transfer 

of one electron from the molecule to the Au(111) surface is energetically 

favoured and indeed occur, charge transfer will not happen on the second 

substrate where the molecule adsorbs in its neutral state. This has important 

consequences on the self-assembly phase diagram and suggests a new strategy 

for the control of the energy level alignment at the metal-organic interface. 

In Chapter 4 we show how the presence of an electron donor molecule can 

locally modify the metal work function, inducing charge transfer from the 

metal to a second molecular species, which would otherwise remain adsorbed 

in its neutral state. This will be demonstrated by codepositing on Au(111) the 

same PAH presented in Chapter 3 and a second molecule with acceptor 

character, but whose electronic affinity alone would not be sufficient to cause 

charge uptake from the metal. 

Chapter 5 will be dedicated to the discussion of the self-assembly of an 

unprecedented class of organic functionalised borazine molecules adsorbed on 
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Cu(111). Here the molecular charging will be obtained by following the route 

of surface mediated chemical reactions. In particular, we will show that 

electrostatic repulsion arising from the deprotonation of reactive hydroxyl 

moieties is controlling the size distribution of supramolecular clusters. Our 

results predict that the molecular structure can be tuned in order to selectively 

favour specific sizes of the supramolecular aggregates. 

Finally, the main outcomes and conclusions of our investigations will be 

summarised in Chapter 6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



 
Chapter 2 
Methods of investigation 
 
 

 

 

 

 

This Chapter is entirely devoted to provide a brief introduction to the methods 

used throughout our work. We will start from the theoretical modelling tools 

we applied to rationalise the experimental outcomes. In particular, our focus 

will regard the fundaments of atomistic classical and quantum mechanical 

simulations, together with stochastic Monte Carlo methods. Because of the 

central role of experiments in our investigations, some details on scanning 

probe techniques will also be discussed. Since the vast amount of arguments 

involved forces us here to a very synthetic presentation, a more complete 

picture of the methodology can be found in [61,62] (for ab initio and classical 

atomistic simulation methods), [63] (for scanning probe microscopy) and the 

further references indicated along the Chapter. 

 

2.1 Molecular dynamics 

The dynamical behaviour of a system of interacting particles can be simulated 

by means of a wide class of computational techniques. The idea at the basis of 

these simulation methods is that the structural and physical characteristics of 

matter in all its forms can be “calculated”, provided that a mathematical model 

for the selected case is available. In fact, once interactions between particles 

are described by a suitable Hamiltonian form, all the forces acting in the 

system are defined. Thereafter, the dynamical evolution of the system can be 
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followed by integrating the appropriate equation of motion over time lengths 

consistent with the ergodic hypothesis, so that the simulated trajectory can be 

translated into the time average of thermodynamic properties. Thus, molecular 

dynamics is a useful tool for the calculation of equilibrium properties, but it 

can also be extended to the characterisation of non-equilibrium processes and 

to structural optimisation problems.   

Our brief discussion of the theoretical modelling of matter starts from the time-

independent Schrödinger equation, whose solution provides the complete 

characterisation of a general many-body system: 

ĤΨ(r,R) = EΨ(r,R)  ,                                                                                   [2.1]    

Where Ψ is the combined electronic/nuclear wavefunction and Ĥ is the 

Hamiltonian energy operator with eigenvalues E. The operator Ĥ corresponds 

to the total energy of the system and can be written in the extended form: 

    

Ĥ = T̂n (R I )+Ûnn (R I )!
"

#
$+ T̂e(ri )+Ûee(ri )!
"

#
$+Ûen (ri,R I )  ,                                 [2.2] 

where the operator  accounts for the kinetic energy and Û for the potential 

energy (inter-particles interactions). The subscripts e/i and n/I indicates 

electronic and nuclear terms/particle indices, respectively, of a system counting 

N electrons and Nn nuclei with positions ri and RI.  

Unless dealing with very simple problems, the direct solution of the 

Schrödinger equation is not viable because of its excessive computational cost. 

The huge complexity of the many-body problem calls for the introduction of 

simplifications, among which the first important example is provided by the 

Born-Oppenheimer adiabatic approximation. This approach exploits the large 

mass difference between nuclei and electrons with the aim of decoupling their 

dynamics. In particular, it is assumed that the mass of electrons is so small that 

they can adapt in negligible time to the eventual displacement of nuclear 

positions, with no effect on their energy state. This assumption allows treating 

T̂
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the electrons ( !Ψ ) and the nuclei (Φ) as two separate contributions to the global 

wave function (quasi-separable ansatz, Eq. 2.3), with the electronic term 

parametrically depending on the nuclear positions: 

Ψ r,R( ) = !Ψ r;R( )Φ R( ) . [2.3] 

Hence, Eq. 2.1 can be divided into two parts, the first of which describes the 

motion of electrons around fixed nuclear positions (Eq. 2.4): 

Ĥ !Ψ r;R( ) = ε0 R( ) !Ψ r;R( )  .   [2.4] 

The solution of Eq. 2.4 gives the ground state energy ε0 (i.e., the adiabatic 

contribution of electrons to the total energy), while the nuclei can be treated as 

classical objects moving on the ground state surface E0(R) = ε0(R)+Ûnn(R), so 

that their dynamics can be followed by solving the Newton’s equation:  

mI
!!R = −∇I  E0 R( )  ,    [2.5] 

where mI is the nuclear mass. The potential gradient, in Eq. 2.5, returns the 

force acting on all the atoms in the system (which sums the internuclear 

repulsion and the derivative of the electronic eigenvalues), so that its evolution 

can be tracked down starting from an initial time t, with known positions and 

velocities. Thus, Eq. 2.5 can be numerically solved by means of time 

discretisation, which is implemented by choosing an integration step Δt 

sufficiently long to sample the trajectory for meaningful time lengths, but small 

enough to minimise discretisation errors. Therefore, the atomic coordinates and 

velocities at (t +Δt) are usually calculated by means of fast and stable 

integration methods, among which the Verlet algorithm is the most applied [64]. 

Having chosen the discretisation step Δt, this method takes the sum of the 

Taylor series expansions for the atomic positions immediately before and after 

a generic time t, to calculate the positions at (t +Δt): 

 R(t +Δt) =R(t)+ v(t)Δt +
a t( )
2

Δt2 +O(Δt 4 )
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R(t +Δt) = 2R(t)−R(t −Δt)+ a(t) Δt2 +O(Δt 4 )  ,                                          [2.6] 

where v and a are the velocity and the acceleration, respectively. 

However, the derivation above – that is valid within the Born-Oppenheimer 

description − still requires at least a reasonable expression for the potential 

E0(R). This could be made available from the explicit solution of the electronic 

Schrödinger equation (Eq. 2.4), which usually requires further approximations 

(see Section 2.3). An alternative and very popular route is represented by 

classical molecular dynamics, where the real potential is replaced with an 

empirical or semi-empirical one, whose formulation – included in the 

framework of classical mechanics − is meant to imitate the effects of E0(R). 

 

2.2 Classical molecular dynamics 

Classical molecular dynamics is a simulation technique that aims to mimic the 

electronic contributions by means of a classical potential, commonly referred 

to as force field. The key requisite for this class of force fields is the accurate 

representation of the real potential for a large variety of systems, i.e., a 

challenging combination of accuracy and transferability. 

The mathematical formulation of a generic force field distinguishes between 

bonded (atomic bonds and bonding angles) and non-bonded potential terms 

(expressing electrostatic and dispersion interactions) (Eq. 2.7). Bonded 

contributions to the system’s energy are calculated using harmonic terms, 

where the equilibrium values of bond lengths and angles are inferred either 

from quantum mechanical calculations or experiments. Likewise, non-bonded 

interactions are usually described via Coulomb and Lennard-Jones potentials, 

which require specific parameterisation to model the electrostatic contributions 

associated to each atomic position (i.e., partial atomic charges) and the van der 

Waals forces. In particular, partial charges and are usually extrapolated from 

the electrostatic potential calculated at the quantum mechanical level − to 

R(t −Δt) =R(t)− v(t)Δt +
a t( )
2

Δt2 +O(Δt 4 )
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reflect the charge distribution of the system, while the van der Waals 

parameters can be extracted either from theory or experiments. The typical 

mathematic formulation of a classical force field is the following [65]: 

H = Kr r − req( )
2
+

BONDS
∑ Kθ θ −θeq( )

2
+

BONDS
∑

   + Vn
2

1+ cos nα −γ( )( )
TORSION
∑ +

   +   
Aij
Rij

12 +
Bij
Rij

6 +
q iqj
Rij

#

$
%
%

&

'
(
(i< j

∑

 ,                                                   [2.7] 

where the first two sums are harmonic potentials modelling the stretching and 

bending of interatomic bonds, while the third one represents the torsional 

potential involved in the relative rotations within quartets of bonded atoms. 

The last sum accounts for the non-bonded van der Waals and electrostatic 

contributions, where the first are described by a 12-6 Lennard-Jones potential 

and the latter by the elementary Coulomb potential between partial atomic 

charges. To limit the computational cost associated to the calculation of short 

and long-range interactions, a cutoff distance is chosen to define a finite 

volume beyond which the contribution of the potential is neglected. 

Electrostatic interactions are usually treated with Ewald summation techniques 

in the Fourier-space [66], to achieve convergence with improved efficiency. 

Although representing a useful tool for the modelling of large systems and to 

give access to time scales necessary for the investigation of their structural 

evolution [67], classical molecular dynamics suffers from several limitations, 

inherently related to the neglection of electronic effects. In fact, systems where 

chemical interactions occur cannot be addressed at this level of theory and even 

physical phenomena related to local fluctuations of charge density – such as 

polarisation screening – cannot be reproduced. Although new types of 

polarisable and reactive force field were made available in the recent years [68-

70], their diffusion is inhibited by the huge difficulty in recovering the 

parameterisation required for the meaningful and reliable representation of 

systems where several interatomic interactions are involved. Anyway, classical 



Chapter 2  
 

36 

potentials are still very important for the study of problems where complex 

electronic effects play a negligible role. 

 

2.3 Density functional theory  

The many-body wavefunction describing a group of interacting electrons − as 

given by the direct solution of the Schrödinger equation − is out of reach 

except for the most trivial systems. Therefore, the numerical solution of the 

electronic eigenvalue problem (Eq. 2.2) requires the introduction of 

approximations intended to preserve as much as possible the accuracy of the 

results, while significantly reducing the computational effort. Among these 

approaches, one of the first and most notable is the Hartree-Fock method, 

which was introduced shortly after Schrödinger’s formulation. This method – 

based on the antisymmetric product ansatz – is still in use, but it finds little 

application due to the large computational cost for a still substantially 

approximated solution. A more convenient way for approaching the solution of 

the Schrödinger equation was provided with the introduction of density 

functional theory (DFT), which constituted a major breakthrough in the field of 

theoretical material science, as it allowed mapping a many-body system onto a 

single-particle one. The relatively moderate computational cost, together with 

the continuous improvements in the representation of electronic exchange-

correlation contributions to the total energy and other physically important 

effects, contributed to make DFT the most successful quantum mechanical 

computational tool.  

The basis of the DFT method was set in 1964 by the work of Hohenberg and 

Kohn [71], in which it was demonstrated that the electronic charge density is the 

central variable in treating the electronic problem. In particular, Hohenberg and 

Kohn pointed out that (i) the total energy − and the external potential u − are 

uniquely determined by the electronic density ρ (r) (Eq. 2.8) and that (ii) the 

density obtained by minimising the total energy is the ground state. The energy 

of the system is thus defined as a functional of ρ (r) (Eq. 2.8): 



Chapter 2  
 

37 

 ,                                                          [2.8] 

where FHK is an universal functional of the electronic density (accounting for 

the kinetic and electron-electron interaction energies). The solution of the 

Schrödinger equation is then obtained by simply minimising the energy 

functional E[ρ] with respect to the electron density: 

 ,                            [2.9] 

where the only part missing is a practical analytic expression for the functional 

FHK. This issue was addressed by Kohn and Sham [72], whose approach 

consisted of approximating the kinetic and Hartree electrostatic contributions 

− the latter being defined as the potential arising from the electronic charge 

distribution − with those of a fictitious system of non-interacting electrons 

moving in the same external potential (Eq. 2.10 and 2.11, respectively): 

Ts[ρ]= −
1
2

ψi
i

N

∑ ∇2 ψi

 
,                                             [2.10] 

EH [ρ]= 1
2

d3r d3 !r ρ(r)ρ( !r )
r− !r∫∫

 
 .                                                       [2.11] 

In this way, a system of N non-interacting electrons can be tracked down to the 

single-particle scheme and described by a single determinant wavefunction in 

N orbitals ψi (with charge density defined as ρ (r) = Σi |ψi|2).  

When moving back to a system of mutually interacting electrons, the additional 

energy contributions can be “stored” in the exchange-correlation functional:  

  .                                                                [2.12] 

Hence, the total energy expression can be updated to include the exchange-

correlation term (Eq. 2.13): 

,                                   [2.13] 

E ρ r( )!" #$= u∫ r( )ρ r( )dr+FHK ρ r( )!" #$

E0 ρ r( )!" #$=min
ρ

E ρ r( )!" #${ }=min
ρ

U ρ r( )!" #$+FHK ρ r( )!" #${ }

Exc[ρ]= FHK[ρ]−Ts[ρ]−EH [ρ]

E0 ρ[ ] =min
ρ

Ts ρ[ ]+U ρ[ ]+EH ρ[ ]+Exc ρ[ ]{ }
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from which the Kohn-Sham functional VKS is defined as the sum of the last 

three terms on the left: 

 .                                                                [2.14] 

For a system of non-interacting electrons, the same minimum condition 

expressed in Eq. 2.13 is valid for the Kohn-Sham potential, which reads: 

vKS (r) = u(r)+ d3 !r ρ( !r )
r− !r

+
δExc ρ(r)[ ]
δρ(r)∫

 
.                                        [2.15] 

Finally, the ground state charge density of the interacting many-electron 

system in an external potential − originally described by a many-electron 

Schrödinger equation − can be calculated by solving a set of non-interacting 

single-particle problems in the fictive potential vKS (Kohn-Sham equations): 

−
1
2
∇2 + vKS (r)

#

$%
&

'(
ψi (r) = εiψi (r)   ,   [2.16] 

where ψi are the so-called Kohn-Sham orbitals. The solution of this nonlinear 

problem is carried out via self-consistent iterative methods, provided that an 

expression for the exchange-correlation potential is available.  

 

2.3.1 Local exchange-correlation functionals  

The DFT formalism, presented in the previous Section, is strictly exact within 

the Born-Oppenheimer approximation. However, in order to solve the Kohn-

Sham equations, the many-body effects left aside in the exchange-correlation 

potential require to be properly represented. In this regard, the exchange 

interactions are directly related to the antisymmetry of the many-body 

wavefunction − i.e., to the Pauli exclusion principle, which is exactly 

represented in the Hartree-Fock method (leading to development of hybrid 

DFT/Hartree-Fock functionals). The treatment of the correlation energy is way 

more challenging, since it is equal to the difference between the real and the 

Hartree-Fock energy of the system. This contribution cannot be directly 

VKS ρ[ ] =U ρ[ ]+EH ρ[ ]+Exc ρ[ ]
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calculated, but a good description is provided by Quantum Monte Carlo 

calculations. 

However, the exchange-correlation term is quite successfully estimated with 

the local density approximation (LDA), where it is assumed to be equal to that 

of a homogeneous electron gas and to depend only on the local density as: 

Exc
LDA ρ(r)[ ] = εxc

hom ρ(r)( )∫  ρ(r) d3r  .            [2.17]                

The popularity of the LDA functional is generally attributed to its systematic 

cancellation of errors, arising from the overestimation of the exchange energy. 

This effect is responsible for the successful application of LDA to a range of 

systems much wider than the simple metals and intrinsic semiconductors 

classes, which were originally proposed in view of their smooth charge density. 

However, even though LDA is proven to give good result for condensed 

matter, its description of molecular systems is much less accurate, leading to an 

overestimations of bond lengths and energies of the 20% in average.  

The LDA approach to the calculation of the exchange-correlation energy was 

extended by taking into account the local gradient of the charge density, which 

is referred to as generalised gradient approximation (GGA): 

Exc
GGA ρ(r)[ ] = εxc ρ(r),∇ρ(r)( )∫  ρ(r) d3r  .        [2.18]                                 

The GGA functional guarantees a better representation of binding energies, for 

a moderate increase of the computational cost. In addition, GGA yields 

improved results for the modelling of strong intermolecular interactions such as 

hydrogen bonds or chemisorption at the metal-organic interface, whose effect 

would be badly overestimated by LDA.  

 

2.3.2 Non local exchange-correlation functionals  

When dealing with sparse systems, the interparticle distances are typically so 

large that non local (dispersion) forces need to be considered. This is the case 

of van der Waals complexes, soft matter or – as it is relevant for our study – 
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organic molecules physisorbed on metal surfaces. Simulating adsorption is 

challenging within the aforementioned local (LDA) and semilocal (GGA) 

density functionals. In fact, while GGA yields satisfactory representation of 

chemisorption, the weaker physisorption binding is usually misrepresented to 

the point of being totally omitted. On the other hand, LDA was found to give 

better results just because of its known overbinding, which somehow mimics 

the van der Waals long-range interactions. For these reasons, GGA/LDA 

results are usually regarded as a lower/upper limits for van der Waals binding 

energies, and the combination of the two can give a more coherent picture for 

the properties a sparse system [73]. 

The reason for the failure of local or semi-local functionals in representing 

long-range dispersion forces is to be found in their intrinsic mean-field 

approach, which treats the charge as a localised entity and in turn cuts any 

long-range tail. However, when two atoms (A and B) are separated in such a 

way that their respective wavefunctions are not overlapping, their 

polarisabilities (αA and αB) generate induced dipole interactions calculated as: 

 ,                                                                                              [2.19] 

where C6 (known as the Hamaker constant) is a parameter accounting for the 

dispersion interactions strength for the AB couple (Enl), neglecting both the 

influence of the medium and quantum perturbations. The constant C6 is 

calculated as:  

 ,                                                                                        [2.20] 

where K is a dimensionless factor and ω0 the frequency of the harmonic 

oscillator. Even if very simple, the potential in Eq. 2.19 captures the 1/R6 

dependence of van der Waals interactions determined by a dipolar field. These 

effects were accurately reproduced at the ab initio level by using second-order 

Møller-Plesset perturbation theory (MP2 method), which is however too 

computationally demanding to find wide application.  

Enl =
−C6

AB

R6

C6
AB = Kω0αAαB
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In recent years, non local contributions have been explicitly included in van 

der Waals density functionals, based on implementation schemes relying on 

efficient fast Fourier transform algorithms [74,75]. These approaches express the 

non local correlations in terms of density-density interactions − fully defined 

by the local charge density and its gradient. 

 

2.3.3 Limitations of density functional theory 

Even though DFT is successfully applied in the characterisation of many 

physical systems, its current development is still affected by major 

shortcomings [76]. First of all, the interactions between electrons and their own 

field should cancel, which is not the case within the actual approximations. 

This flaw is known as the self-interaction error [77], which is particularly 

important in the presence of localised electrons and for truncated geometries. 

A second issue is evidenced for systems containing both atomic-like (d or f 

electrons) and delocalised states (usually associated to s and p electrons), 

where the filling of the localised d/f states increases their energy − due to the 

high electron-electron Coulomb repulsion – and may affect the validity of the 

Kohn-Sham way of filling electronic orbitals.     

Ultimately, the bandgap of solids is usually strongly under/overestimated since 

DFT is a ground state theory, where the Kohn-Sham eigenvectors and 

eigenvalues are mathematical quantities with no physical meaning.  

 

2.3.4 Plane waves in the reciprocal lattice 

In accord with the Bloch’ theorem (Eq. 2.21), the Kohn-Sham wavefunctions 

for periodic systems can be treated as the product between an exponential term 

(plane wave) and a periodic Bloch function (with periodicity equal to that of 

the system’s potential, Eq. 2.22): 

ψn,k (r) = e
ik⋅r  fn,k (r)                                                                                       [2.21] 
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fn,k (r+R) = fn,k (r)  ,                                                                                     [2.22] 

where R is the lattice vector of the periodic system and k is a vector in the 

reciprocal lattice. Each Bloch state ψnk corresponds to an energy eigenstate 

εn (k) = εn (k +K) (K being the k-space periodicity), where the eigenstate εn is a 

continuous function of k, which identifies the nth band. Therefore, each energy 

band n presents the same periodicity of the k-space and is uniquely defined by 

the set of k-vectors included in the first Brillouin zone. 

The periodic functions f can be expanded as Fourier series: 

,                                                                                     [2.23] 

where G are vectors in the reciprocal space, satisfying the condition 

G·R = 2π m (m an integer), and c are the expansion coefficients. Hence, the 

linear combination of plane waves gives the electronic wavefunctions:   

ψn,k (r) = cn,(k+G)  e
i(k+G)⋅r

G
∑ .                                                                           [2.24] 

The potentially infinite plane waves basis set is in practice reduced to include 

only those with kinetic energy lower than a threshold (cutoff energy), which 

has to be anyway sufficient to guarantee the convergence of the total energy. In 

addition, as long as the electron wavefunctions is similar for k-vectors that are 

close, the wavefunctions over an entire region of the k-space can be 

represented by the wavefunction at a selected point. This allows one to limit 

the number of k-points used for the orbitals expansion, provided that the 

sampling is sufficient to assure the convergence of the total energy. The 

advantages of the plane wave formalism are directly connected to its inherent 

non-locality, together with the diagonal character of the gradient operator in the 

reciprocal space, which greatly simplifies the computation.  

fn,k (r) = cn,G  eiG⋅r
G
∑



Chapter 2  
 

43 

Importantly, the periodicity can be exploited also for non-continuous systems 

(such as molecules or surfaces), with the only requirement that the supercell 

dimensions are sufficient to avoid interactions between periodic replicas.  

 

2.3.5 Core states and pseudopotentials 

The computational cost associated with the plane wave approach is connected 

to the magnitude of the energy cutoff, which should ideally be as small as 

possible in order to limit the number of basis functions to be handled. 

However, in proximity of nuclear positions, the valence orbitals are bound to 

strongly oscillate to fulfil the orthogonality condition with the core states, 

which would require setting a very high value of energy cutoff in order to 

include plane waves with short wavelength (i.e., increasing the size of the basis 

set and consequently the time required to have converged results).  

This issue is usually circumvented with the implicit description of core 

electrons, i.e., by replacing them with an effective potential (pseudopotential) 

mimicking the core states. The pseudopotential approach finds support from 

two simple considerations, namely: (i) low energy core electrons are highly 

localised and are not expected to play a significant role in the “chemistry” of 

the system of interest, (ii) valence orbitals are rapidly varying only in 

correspondence of nuclear positions, their shape being much smoother 

elsewhere. Obviously, such a fictitious potential will have to match the 

important requirements of (i) reproducing the same valence spectrum as the 

real potential, (ii) define a “core radius” outside which the pseudo 

wavefunctions are reproducing the all-electron ones and (iii) being transferable.  

The general representation of pseudopotential in the bra ket notation is the 

following (Eq. 2.25):  

VION = lm Vl lm
lm
∑

 
,                                                                                    [2.25] 

where 〈lm⏐are spherical harmonics and Vl are components of the 

pseudopotential  acting on the respective  wavefunction components (with 
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angular momentum l). Pseudopotentials are known in either their local 

formulation (where Vl  is taken to be the same for each l), or in their non local 

Kleinman-Bylander one [78] (which is required to obtain accurate results). In 

particular, norm-conserving pseudopotentials are constructed in such a way 

that the norm of the pseudo wavefunction has the same value of the all-electron 

one inside the core radius. This condition is relaxed in ultrasoft 

pseudopotentials, which have found wide application as they further reduce the 

size of the basis set (i.e., the energy cutoff) by partitioning the valence charge 

in different contributions [79]. The application of the pseudopotential method to 

describe core states brings the advantages of effectively reducing the total 

number of electrons to be treated explicitly and the energy cutoff, due to the 

smoother oscillations around atomic cores. 

 

2.3.6 Total energy minimisation 

For a group of fixed nuclear position, the solution of the Kohn-Sham equations 

set is traditionally performed by a self-consistent loop, i.e., the Kohn-Sham 

eigenvalues − calculated for a guess charge density ρ (r) – are in turn used to 

calculate an updated charge density with matrix diagonalisation algorithms, 

this loop being performed until self-consistency is reached. 

When the electronic states of a system are fully defined by the procedure 

above, the forces acting on each atomic position can be calculated using the 

Hellmann-Feynman theorem: 

FI = −
∂E
∂R I

= − ψi
i
∑ ∂Ĥ

∂R I

ψi  ,                                                                  [2.26] 

where FI is the force acting on the I-ion with position RI. Once the forces 

acting on all the atoms are known, the Newton’s equation of motion can be 

integrated to follow the dynamic of the systems. This knowledge can be also 

easily translated into geometry optimisation procedures, noting that the global 

force has to be (at least nearly) null at the equilibrium, so that (Eq. 2.27): 
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FI = −
∂E
∂R I

= 0  .                                                                                         [2.27] 

This geometry optimisation problem in multi-dimensional space is usually 

tackled by means of Quasi-Newton-Raphson methods.     

 

2.4 Monte Carlo simulations of lattice gas models 

The two-dimensional Ising magnet is a flexible tool that can be easily adapted 

to the modelling of liquid-gas phase transitions or, more generally, of the two-

dimensional aggregation of generic particles [80]. In fact, the Ising lattice of spin 

can be thought of as a grid of cells, which can be either empty (σ = 0) or 

occupied by a particle (σ = 1). The value of σ  is then the cell occupation 

number and it is defined by the following change of variable: 

si = 2σ i −1  ,                                                                                                  [2.28] 

where s = ±1 is the magnetic spin and the subscript i indicates the lattice 

position index. Eq. 2.28 immediately shows that the “spin up” state translates 

into an occupied lattice cell (s = +1 →σ = 1), while the “spin down” remains 

associated to an empty position (s = –1 →σ = 0). The parallel between the 

magnetic and the particle lattice can be further extended to the Ising 

Hamiltonian, as the coupling constant J of the magnet can be directly translated 

into the van der Waals attraction between neighbouring particles, whereas the 

eventual action of a magnetic field would define the chemical potential µ. 

Hence, in analogy with the Ising model, the grand canonical partition function 

for the isomorphic particle lattice can be written as: 

Ξ = exp 1
kT

µ σ i + J σ iσ j
i. j
∑

i=1

N

∑
#

$
%
%

&

'
(
(

)

*
+
+

,

-
.
.ν

∑
 
.                                                          [2.29] 

The external sum in Eq. 2.29 is extended over all the system’s microstates ν, 

while, in the exponential term, the first sum is made over all the N lattice 

positions i and the latter over the nearest neighbours couples 〈i, j〉. A system 
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with such a partition function is commonly referred to as lattice gas, whose 

implementation can be prepared to include more states per lattice position (e.g., 

multicomponent case), different potential terms or even more complicated 

morphologies (for relevant examples see [81,82]).          

The typical system we aim to investigate here is one were mutually interacting 

molecules are constrained (i.e., adsorbed) onto a two-dimensional plane, where 

they are freely hopping between degenerate adsorption positions. It is then 

clear that Monte Carlo simulations of the two-dimensional lattice gas model 

represent the ideal tool to study the configurational evolution of such systems, 

provided that a suitable parameterisation of the intermolecular interactions is 

available. The Hamiltonian is usually made available from calculations at the 

atomistic level of the molecule-molecule attraction (e.g., using classical force 

fields or DFT modelling), while electrostatic interactions – if necessary – can 

be parameterised on the basis of the image charge screening model, together 

with the geometrical information obtained from DFT structural-optimisation. 

Once the Hamiltonian for the system is defined, its equilibrium is searched by 

means of the statistical sampling of the configurational space (so that the 

probability of falling in a specific configuration is proportional to the 

Boltzmann one), instead of following the route of molecular dynamics. More 

specifically – restricting our analysis to the case of the (N,V,T) canonical 

ensemble, one can start from a randomly generated configuration “o” with 

known energy U(o), and generate a new configuration by, say, exchanging the 

position of two particles to give a new configuration “n” with energy U(n). The 

swap can be then tested accordingly to the Metropolis scheme [83] by, e.g., 

accepting it if the energy difference associated with the swap is negative 

([U(n) − U(o)] < 0) or accepting it with probability a = exp{−[U(n)−U(o)]/kT} 

otherwise.  

The further screening of the move for the condition [U(n) − U(o)] > 0 is 

performed by generating a random number r (0 ≤ r ≤ 1) and refusing the 

configuration swap only if exp{−[U(n) − U(o)]/kT} <  r. Therefore, the direct 
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consequence of the Metropolis method is that − at finite temperature − there is 

always a non-null probability for accepting a configurational change, even 

when it is associated to an increase in the total energy of the system. This is 

useful to avoid the system’s evolution to get trapped in local minima, but at the 

same time it may require an extensive sampling in order to reach the actual 

equilibrium. The convergence is usually helped using the method of simulated 

annealing, which involves the controlled cooling of the system (i.e., a gradual 

reduction of the probability of accepting energetically unfavourable Monte 

Carlo moves).  

 

2.5 Scanning tunneling microscopy   

Scanning tunneling microscopy (STM) is a technique based on the quantum 

mechanical electron tunneling effect, which allows the imaging of surfaces 

with atomic resolution. With this method, introduced by Binning and Roherer 

in 1981 [84,85], the atomic imaging is obtained with lateral resolution of ~1 Å by 

taking an ideally atomic sharp tip to a distance of 10 Å or less from the surface 

of the sample. A small current is then generated and measured (~ 1 nA) by 

applying a bias voltage sufficient to trigger the tunneling of electrons through 

the vacuum region separating the tip and the sample. The actual intensity of the 

current is related to the tunneling transition probability, whose exponential 

dependence on the tip-sample distance increases the resolution of vertical 

displacements up to tenths of Å. Piezoelectric devices guarantee the precise 

control of the tip position, while either the current or the tip height can be kept 

fixed to give constant current or constant height topographic maps, 

respectively.   

In the limit of zero temperature and small bias voltage, Tersoff and Hamann [86] 

showed that the tunneling current I is proportional to the local density of state 

of the sample (Ns) at EF, in correspondence to the tip position   (I ∝ Ns (r0, EF)), 

where Ns is calculated as (Eq. 2.30): 



Chapter 2  
 

48 

Ns r0,EF( ) = Ψν r0( )
2
δ Eν −EF( )

ν

∑  ,                                                    [2.30] 

where the sum is made over surface states ν, giving essentially the charge 

density of states at Fermi.  

The sign of the applied bias voltage is important because it defines the 

direction of the tunneling current flux. In particular, at positive bias (i.e., the tip 

being the negative pole) electrons are flowing from occupied tip states to 

unoccupied sample ones, while at negative bias (i.e., the sample being the 

negative pole) electrons are flowing from occupied sample states to the tip. 

Consequently, measures at positive/negative bias will map the density of states 

of LUMO/HOMO levels, provided that STM images are not iso-Ns surfaces but 

rather the sum of Ns in the interval comprised between EF and EF + eV, where V 

is the applied bias. Since the features observed in STM images are a mixture 

between geometrical and electronic effects, theoretical modelling is often 

required to support the interpretation of the experimental results. 

 

2.6 Scanning tunneling spectroscopy   

Since the STM method allows for the local probing of the density of electron 

states, its application was readily extended to perform local spectroscopy 

measurements. The chance of applying the same STM technology to gather 

information about the local density of states was evidenced in the early works 

of Binning and Rohrer, who noticed changes in the atomic imaging when 

varying the applied tip/sample bias. 

Scanning tunneling spectroscopy (STS) uses the same STM apparatus to record 

Ns as a function of the electrons energy (i.e., the tip/sample bias). This is 

routinely performed by placing the tip in a selected position, at fixed height, 

and then measuring the tunneling current by moving the bias in a defined range 

of energies. The recorded I-V curve is the STS spectrum and its derivative 

dI/dV is proportional to the local density of states, even though the direct 

proportionality between I and Ns, shown in Eq. 2.30, is only valid in the limit 
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of small bias. Within this limit, the current can be expressed (using the 

Wentzel-Kramers-Brillouin approximation) as a convolution of the tip and 

sample density of states (Nt and Ns, respectively) (Eq. 2.31): 

I(V )∝ Ns (E) Nt (E − eV ) T (E,eV,Z ) dE
0

eV

∫  ,                                             [2.31] 

where the integration is made over all the states contributing to the tunneling 

current (zero corresponds to the Fermi level) and T is the tunneling transition 

probability. Assuming constant tip density of states, the derivative of Eq. 2.31 

reduce to the form: 

dI(V )
dV

≈ Ns (0) Nt (eV ) T (E,eV,Z )  .                                                            [2.32] 

The equation above shows the relationship between dI/dV and Ns, which 

defines the local STS spectra. 

Similarly, STS can be performed at constant V, by measuring the response of 

the current to the variation of the tip/sample distance Z. This type of 

spectroscopy is used to measure the work function of the surface, since its 

value is related to the differential conductivity dI/dZ from the relation: 

φ ≈ 0.95 d ln(I )
dZ
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,                                                                                       [2.33] 

which is valid in the small bias limit and for tip/sample distances >5 Å. 

Recently, the introduction of tip height modulation techniques allowed the 

simultaneous acquisition of constant current STM and dI/dZ STS maps. This 

approach sums a high frequency modulated voltage to the actual tip/sample 

bias, which in turn generates a small sinusoidal displacement of Z (typically of 

few tenths of an Å). This small oscillation is accompanied by an alternating 

current response, whose component in-phase with the modulation gives 

directly the dI/dZ spectra and, thus, the work function [63]. 
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The deposition of thin molecular layers onto metallic electrodes represents the 

first step in the fabrication process of devices such as organic solar cells. In 

these applications, the efficiency of charge injection and transport is dependent 

on both the electronic properties of the interface and the structure of the 

molecular layers. The initial arrangement of the molecules in the growing film 

is particularly crucial to set the device performance, since it determines the 

energy level alignment at the interface and the efficiency of the charge 

transport through the molecular medium.  

Within this framework, the electronic properties of polycyclic aromatic 

hydrocarbons (PAHs) place them among the best candidates for the 

development of “green”, cost-effective technologies and of optoelectronic 

devices in particular. In fact, PAHs are suitable electron donor molecules 

thanks to their ionisation potential being close to the Fermi energy of several 

transition metals [87-89].  
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The work presented in this Chapter is the result of a novel approach that aims 

to obtain some degree of control in the experimental construction of 

supramolecular self-assembled systems through the theoretical understanding 

of the charge injection processes at the metal-PAH interface. We will present 

the characterisation of the self-assembly behaviour of a novel pyrene derivative 

(tetra[1,3-di(tert-butyl)-phenyl]-pyrene (TBP)) upon deposition on the Cu(111) 

and Au(111) surfaces. Our approach will combine scanning tunneling 

microscopy/spectroscopy and theoretical modelling, to obtain a comprehensive 

description of the metal-organic interface.  

The ad hoc molecular functionalisation permits the fine tuning of the gas phase 

ionisation potential, in such a way to trigger charge transfer from the molecule 

to the noble Au(111) surface only. Moreover, the interplay between 

intermolecular electrostatic repulsion arising from charge transfer and van der 

Waals attraction generates a complex self-assembly phase diagram, which we 

attribute to an anomalous coarsening process, related to the non-trivial energy 

level alignment at the interface. The observed organisation behaviour reveals 

the possibility of controlling molecular self-assembly beyond the nearest 

neighbour scale by means of long-range electrostatic interactions, which can be 

useful for the integration of bottom up and top down nanofabrication 

techniques.  

This work results from the synergic collaboration with Daphne Stassen, Prof 

Davide Bonifazi (chemical synthesis of the molecule, Université de Namur), 

Ada Della Pia and Prof Giovanni Costantini (STM/STS characterization of the 

metal-organic system, University of Warwick) and Dr Andrea Floris (ab initio 

theoretical modelling, King’s College London). Part of the study presented 

here has been recently edited and submitted for publication [90]. 
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3.1 Charge transfer dipoles and long-range ordering 

It is well established that short-range attractive interactions are the dominant 

driving force for the organisation of molecules on atomically flat metal 

surfaces with smooth potential adsorption energy profile. Indeed, they dictate 

the formation of extended structures whose regularity is a function of the 

strength and directionality of the intermolecular forces [17]. On the other hand, 

the effect of long-range interactions between charged molecules is much less 

understood and calls for further in-depth analysis. In this direction, ordering on 

length scales larger than the nearest neighbour was recently obtained via 

electrostatic intermolecular interactions, achieved by depositing either 

strong [91] or weak molecular donors [26] on metal surfaces.  It was observed that 

molecules with strong donor character do not show any self-assembly, but 

rather organise as isolated monomers, while a weaker donor character (i.e., 

higher ionisation potential) results in a richer self-assembly behaviour, with the 

formation of complex low dimensional supramolecular structures. This is 

related to the possibility for a donor molecule to become a cation upon 

injection of one or even more electrons into a metal substrate (i.e., integer 

charge transfer (ICT)), which would then screen the charged molecule to 

generate a strong surface dipole. Therefore, several molecular ions adsorbed on 

a metal would translate into an equal number of charge transfer dipoles 

(directed normally with respect to the surface), which would repel each other 

adding a long-range energy term proportional to R−3 (R being the distance 

between dipoles), competing with short-range van der Waals attraction. This 

balance between competing forces is analogous to those observed in many 

other physical systems [92,93] and it suggests that the control of the energy level 

alignment at the metal-organic interface − that would constitute in itself a 

formidable achievement − could be the key to control supramolecular self-

assembly by tuning the ratio between short-range attraction and long-range 

repulsion. 

Beside self-assembly alterations, surface dipoles are important because they 

shift the vacuum level of the metal-organic interface, with the effect of 
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modifying the work function of the metal by as much as 0.5−1 eV, thus playing 

an important role in the control of the energy level alignment at the interface 

(see Chapter 1, Section 1.3). This is fundamental in organic electronics, since 

pinning the Fermi level of the molecular charge carriers to the one of the 

electrode guarantees the efficient charge transport and thus the efficiency of a 

hypothetical optoelectronic device [42,94]. 

 

3.1.1 Selection of surface and molecule 

The aim of our study is to understand the formation of charge transfer dipoles 

at the metal-organic interface, in order to determine whether this process can 

be controlled a priori via a careful choice of molecule and metal. In this regard, 

the first condition to be met is that the ionisation potential and Fermi energy of 

the chosen molecule and substrate are close enough to permit charge migration. 

Secondly, to achieve full control over the processes occurring at the interface, 

it is quite helpful to work with molecules that cannot establish strong 

coordination bonds with the surface. In this way, complex behaviours 

introduced by strong hybridisation at the interface are avoided [95] and the gas 

phase electronic structure of the adsorbed molecule is preserved, allowing a 

more direct comparison between experimental and theoretical results. 

Moreover, weak adsorption enables high molecular mobility, which is useful to 

avoid kinetic limitation in the self-assembly process and thus, to observe the 

formation of low dimensional patterns deriving from repulsion between weakly 

adsorbed molecular ions. 

Cu(111) and Au(111) were identified as suitable substrates to match the 

aforementioned requirements. Their atomic-level flatness results in a smooth 

potential energy surface [96], whose effect is to ensure high planar mobility of 

physisorbed molecules. Furthermore, while the work function of both Cu(111) 

and Au(111) (4.9 and 5.3 eV, respectively) is in line with the typical ionisation 

energy of PAH hydrocarbons, their difference is still sufficient to result in a 

greater “oxidising power” for the nobler gold surface. 
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Figure 3.1 Ball-and-stick model of TBP molecular structure (colour code: black C, 
white H). 

About the organic side, we designed a model tecton derived from pyrene, 

namely tetra[1,3-di(tert-butyl)-phenyl]-pyrene (TBP) (Fig. 3.1). The parent 

pyrene molecule was found to strongly interact with the Cu(111) surface [97], as 

revealed from the registry of self-assembled structures with the substrate 

(consistently with what observed for other planar pyrene derivatives on 

Au(111) [98]). Here, the strong interaction of the pyrene core with the surface 

was reduced with the addition of four symmetric 1,3-di(tert-butyl)-phenyl 

residues, which effectively increased the adsorption distance and, thus, 

decoupled the molecule from the substrate. It is noteworthy that the 

functionalization diminished the gas phase ionisation potential of TBP to 

6.15 eV (to be compared to 7.39 eV for the parent pyrene), a value much closer 

to the Fermi level of Au(111). This effect produced important consequences on 

the energy level alignment at the metal-organic interface, which will be 

thoroughly discussed in the next Sections, where the supramolecular self-

assembly of TBP will be characterised by means of scanning probe techniques 

and theoretical modelling.  

 

3.2 Methodology 

Before addressing the characterisation of the system of interest, we provide 

here the details of the theoretical and experimental methodology used in the 

next Sections. This includes DFT and classical molecular dynamics 
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calculations, together with STM imaging and work function measurements by 

means of STS.  

 

3.2.1 Computational methods 

DFT calculations were performed with the plane-wave package Quantum-

ESPRESSO [99], using ultrasoft pseudopotentials [79] and the PBE-GGA 

exchange-correlation functional [100] within the non-local vdW-DF 

formalism [74] to account for dispersion interactions. The molecular structure 

was relaxed both in gas phase and on the substrate, with wavefunction energy 

cutoff of 408 eV and 204 eV, respectively. The calculations of charge transfers 

to the substrate were re-computed increasing the cutoff to 408 eV. The 

sampling of the Brillouin zone was limited to the k = Γ point. The total energy 

of charged molecules was corrected accordingly to the Makov-Payne 

scheme [101], while a counter dipole term [102,103] was included in molecule-

surface calculations. Au(111) and Cu(111) surfaces were approximated with a 

two-layered slabs (equivalent to a 9×9 cell), allowing ~10 Å vacuum between 

periodic replicas. Only forces acting on the first metal layer and the molecular 

atoms were minimised during structural optimisation (up to 0.026 eV/Å).  

Classical molecular dynamics simulations were carried out with the LAMMPS 

and Amber packages [104,105], using the General Amber Force Field (GAFF) [106] 

to model the geometry and the intermolecular interactions of TBP molecules. 

Non-bonded interactions at the metal-organic interface were described using a 

semi-empirical force field fitted from experimental desorption energies of 

organic molecules on Au(111) and second order perturbation theory (MP2) 

calculations [69]. This parameterisation was assumed to be valid also for the 

Cu(111) surface, since the measured adsorption energies of small π-conjugated 

hydrocarbons − e.g. ethylene, benzene and naphthalene − on Cu(111) [107] and 

Au(111) surfaces [108] are nearly equivalent. The structural relaxation of metal 

atomic layers was not considered to affect the molecular self-assembly. Hence, 

metal atom positions were kept fixed by setting to zero all their force 
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components [109]. All atomistic models were prepared with the Mercury crystal 

structure analysis package [110]. 

 

3.2.2 Experimental methods 

STM experiments were performed with a commercial variable-temperature 

STM (Createc) operated in ultrahigh vacuum (typical residual pressure of 

4×10-11 mbar). Cu(111) and Au(111) crystal surfaces were prepared via 

repeated cycles of Ar+ sputtering (1 keV) and annealing (up to 800 K). After 

complete degassing, TBP molecules were deposited by means of organic 

molecular beam epitaxy (OMBE) onto the metal crystals held at 300 K. STM 

images were acquired after quenching at 77 K, using chemically etched 

tungsten tips in the constant current mode. Typical values for bias voltage and 

tunneling current were V = −2 V (occupied state imaging) and I = 20 pA. 

Spatial variations of the sample work function (work function maps) were 

measured by means of STS experiments, where a sinusoidal modulation 

voltage was added to the z-piezo controlling the STM tip height, via an external 

lock-in amplifier, and recording the induced alternating current output. 

Measurements were done using modulation frequencies of 3÷5 KHz (higher 

than the bandwidth of the z-piezo feedback system [63]) and peak-to-peak 

amplitudes of 0.2÷0.6 Å, with the sample chamber temperature kept at 5 K. All 

STM images were processed using the WSXM software [111]. 

 

3.3 Self-assembly of TBP on Cu(111) and Au(111): STM analysis 

We begin our discussion by presenting the STM characterisation of TBP self-

assembly upon deposition on the Cu(111) and Au(111), performed by Ada 

Della Pia (University of Warwick, Coventry). The experimental outcomes will 

be then thoroughly investigated by means of ab initio and classical theoretical 

modelling.  

Upon deposition on both substrates, single TBP molecules appeared as eight 

bright lumps arranged at the perimeter of an oval. These features are attributed 
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to the tert-butyl residues, with the four internal ones being brighter (i.e., 

higher) than the external ones (Fig. 3.2 left panel). These observations are in 

good agreement with the molecular dynamics adsorption conformation (which 

was further relaxed at the DFT level (Fig. 3.2 right)). For both the Cu(111) and 

Au(111) substrates, the calculated structures  show a significant deviation from 

planarity for the pyrene core (which assumes a pronounced saddle shape), 

while the (tert-butyl)-phenyl substituents are forced to rotate upwards due their 

mutual steric hindrance and the presence of the substrate (see Fig. 3.8). This 

concave adsorption geometry produces a permanent molecular dipole of 0.90 

and 1.53 D on Cu(111) and Au(111), respectively. 

 

 
Figure 3.2 Right: top view of the DFT-optimised adsorption configuration of TBP on 
Au(111). Left: STM rendering of an isolated molecule (−2 V bias voltage).  

STM imaging of deposited TBP molecules revealed their tendency to self-

assemble, with hexagonal packing, into compact islands on both metal 

surfaces, similar to what was observed for a wide range of molecular 

species [17]. Consistently with a weak molecule/molecule and molecule/surface 

interaction regime, the evaporation of TBPs from the edges of the aggregates 

was found to occur on both Au(111) and Cu(111) at the liquid nitrogen 

temperature (~77 K) and isolated molecules were observed only in the 

presence defects or impurities, which suggests that molecular diffusion must be 

highly activated at any higher temperature. However, the size and distribution 

of molecular islands was very different on the two metals.  

1 nm 
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Figure 3.3 Supramolecular self-assembly of TBP on Cu(111) and Au(111) (left/right 
panels) at low and high coverage (top/bottom). The metal surface appears in dark 
orange (−2 V bias voltage for all images). 

We observed the formation of large, typically single TBP aggregates on every 

Cu(111) terrace (Fig. 3.3 left panels), which can be regarded as the result of a 

standard Ostwald ripening process [112].  This implies that the self-assembly of 

TBP on copper is driven solely by van der Waals intermolecular interactions. 

Unsurprisingly, the average size of the single islands was found to increase 

with the molecular coverage, and annealing cycles at temperature up to 400 K 

did not result in altering the observed self-assembly, which is an ulterior proof 

that the system is at the thermodynamic equilibrium. On the other hand, the 

molecular self-organisation found on Au(111) was completely different 

(Fig. 3.3 right panels). Our STM topographies revealed that, at low molecular 

coverage (< 0.4 monolayers, ML), the deposition of TBP produced the 

formation of several small aggregates, which appeared uniformly distributed 

over the terraces with no evident registry to the rims of the herringbone 

reconstruction of the surface. 

Au(111)!Cu(111)!

30 nm!

30 nm!
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3.4 Anomalous phase coarsening of TBP on Au(111): The fingerprint 
of charge transfer? 

The observed high molecular mobility brought us to exclude that kinetically 

inhibited diffusion might be the origin of the self-assembly observed on the 

atomically flat Au(111) (whose limited reactivity and consequently smooth 

potential energy surface are well established [96]).  

 
Figure 3.4 Sequence of STM images (taken with time interval of 5 minutes, from left 
to right), showing a couple of small clusters on Au(111) exchanging molecules with 
the environment (−2 V bias voltage for all images). 

In case of kinetically limited growth, annealing cycles should increase/decrease 

the average cluster size/density as a function of the heating time and 

temperature [113,114]. However, our annealing experiments for time/temperature 

up to 20 min/420 K did not change the self-organisation of TBP on the 

Au(111) surface, eventually proving that the small islands shown in Fig. 3.3 

are also an equilibrium structure.  

STM frames taken with fixed time intervals confirmed that clusters exchange 

particles. By having a closer look at Fig. 3.4, the images show that the total 

number of molecules decreases from 43 to 36 (frame 1 to 2), and then increases 

to 41 (frame 2 to 3) in about 10 minutes. Even though very approximated, this 

allowed an estimation of the average “molecular sublimation rate” at 77 K 

(N2/N1  = 0.042, which is the ratio between “unbound” and “bound” molecules) 

and consequently of the intermolecular binding energy ΔE, since the 

Boltzmann population N2/N1 = exp[−ΔE / (kT)] links the two quantities. The 

cohesive energy is estimated in the range 0.06−0.12 eV/molecule, consistently 

5 nm! 5 nm! 5 nm!
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with the highly activated evaporation and exchange of molecules between 

clusters at the liquid nitrogen temperature. 

The experimental observations are thus suggesting a thermodynamic 

explanation for the self-assembly of TBP molecules on Au(111), which we 

refer to as anomalous ripening, in contrast with the standard Ostwald ripening 

observed on the less noble Cu(111) surface. As is usually the case, attractive 

interactions alone cannot produce a self-assembly different from the collective 

aggregation of molecules [17] (as consistently found for TBP deposited on 

Cu(111)), especially when no strong coordination with the substrate hampers 

molecular diffusion. For this reason, we suggest that a second interaction 

opposite to the van der Waals forces must be present to explain the distribution 

of the isolated aggregates observed on Au(111). We tentatively interpret this 

unexpected structure as the fingerprint of charge transfer, which is occurring 

via donation of one electron from a TBP molecule to the gold surface (i.e., 

ICT). This surface mediated “oxidation” would result in the presence of 

adsorbed molecular cations, which mutually repel each other as standing 

positive dipoles (due to the image charge effect deriving from the metal 

polarisation). The observed self-assembly on Au(111) could be then 

understood as the result of a fine balance between attractive dispersion and 

repulsive dipolar interactions. This hypothesis will be validated all along the 

discussion by means of ab initio modelling, scanning tunneling spectroscopy 

experiments and an ad hoc Monte Carlo lattice gas model.  

However, a first support for our tentative explanation was offered by the 

analysis of the molecular tiling in the aggregates. In fact, TBP molecules 

adsorbed on Cu(111) were found to self-organise following a “zigzag” pattern 

only (where one half of the molecules is rotated by 90°, Fig. 3.5, left), while on 

Au(111) they can adopt either the same “zigzag” or a less dense “row” tiling 

(where all the molecules are parallel with respect to their major axis, Fig. 3.5 

right) even within the same island, without apparent distortion of the structure 

(Fig. 3.6). 
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Figure 3.5 “Zigzag” (left) and “row” (right) tiling observed in TBP aggregates on 
Au(111). Molecular dynamics models are superimposed, together with experimental 
unit cells (shades).  

Our classical force field estimated the cohesive energy for neutral molecules 

packed in the “row” tiling to be  ~0.05 eV/molecule lower than that calculated 

for molecules in the “zigzag” one (molecular dynamics structures are 

superimposed to STM topographies in Fig. 3.5). This identifies the latter as the 

preferred packing for neutral TBPs (i.e., neutral molecules can produce only 

“zigzag” islands), in agreement with our observations on Cu(111). 

 
Figure 3.6 Large TBP island where both tiling patterns are observed (Au(111)). 

On the other hand, the less dense tiling motif observed on Au(111) seems to 

indicate that charging is actually present. Indeed, despite the smaller cohesive 

energy, the new unit cell would favour the self-assembly of charged elements, 

it allows a slight increase of the intermolecular distance and therefore a 

significant reduction of the hypothesised electrostatic repulsion. 

2 nm! 2 nm!

7 nm!
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3.5 DFT model of the gas phase and adsorbed TBP molecule 

We will present here the DFT-based modelling we have performed, with the 

aim to disclose the phenomena at the origin of the different self-assembly 

behaviour observed for TBP molecules adsorbed on Cu(111) and Au(111). 

This analysis will be further developed in Sections 3.6 and 3.7, where we will 

show how, by combining ab initio calculations, surface screening models and 

STS experiments, we could obtain a more complete picture strongly supporting 

the hypothesis that TBP molecules are subjected to charge transfer when 

adsorbed on Au(111), while they remain in their neutral state on Cu(111).  

 
Figure 3.7 HOMO spatial distribution for gas phase TBP (courtesy of Dr A. Floris). 

Calculations were carried out for both the gas phase and the adsorbed TBP 

molecule, in order to test the effect of the interaction with the metal substrate 

on its electronic properties.  

The gas phase molecular HOMO orbital is mainly located in correspondence of 

the pyrene core, but it shows features extending on the lateral (tert-butyl)-

phenyl residues (Fig. 3.7). The higher delocalisation of the TBP HOMO in 

comparison to that of the unsubstituted pyrene translates into a significant 

reduction of the gas phase ionisation potential (I = 6.15 eV and 7.39 eV, 

respectively). This result reveals the fundamental importance of TBP 
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functionalisation, as moving the HOMO level closer to the Fermi energy of 

Au(111) (5.3 eV) favours the charge transfer to the surface, consistent with the 

observed self-assembly and our hypothesis. The gas phase ionisation potential 

was simply obtained from total energies difference as I = EN−1 − EN, N being 

the total number of electrons. We note that no structural relaxation was 

performed upon electron removal and that the Makov-Payne correction was 

applied for the total energy calculation of the charged molecule [101]. 

 

 
Figure 3.8 Top (left) and side (right) view of the calculated adsorption equilibrium 
structure.  

The calculated molecular adsorption conformation is presented in Fig. 3.8. The 

substantial non-planarity of adsorbed TBP leads to a non-negligible intrinsic 

dipole, which is defined as the electrostatic dipole calculated in the gas phase 

for the molecule in its adsorption conformation. The average distance between 

the pyrene core and the topmost surface layer was 3.59 and 3.65 Å for Cu(111) 

and Au(111), respectively. The relatively large separation between the 

molecule and the substrate is consistent with a physisorption picture and, 

owing to the concave adsorption geometry, the distance between the molecular 

centre of mass and the surface was significantly larger (i.e., 4.34 Å and 4.68 Å 

for Cu(111) and Au(111)). We note that the different values for the molecular 

intrinsic dipoles derives indeed from the different vertical extension of the 

molecule on the metal (values for TBP adsorbed on Cu(111) and Au(111) are 

0.90 D and 1.53 D, respectively). 
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Figure 3.9 pDOS of TBP on Cu(111) and Au(111) (filled areas), compared with the 
gas phase molecular DOS (solid back line). The gas phase DOS was aligned to match 
the HOMO/LUMO peaks of the adsorbed molecule (courtesy of Dr A. Floris).  

The pDOS of an adsorbed TBP molecule, together with the gas phase 

molecular DOS, are shown in Fig. 3.9 for both substrates. The pDOS were 

calculated as pDOS(ε) = ∑nki δ(εnk–ε) |〈 ψnk | ψ i 〉|2 , where ψ i are (pseudo) 

wave functions of molecular atoms, εnk and ψnk are the Kohn-Sham eigenvalues 

and eigenstates and the indices n and k identify the bands and Bloch vectors, 

respectively. We find no significant broadening of the frontier molecular 

orbitals or hybridisation with surface states upon adsorption, further indicating 

weak physisorption on both metals. We note that the absence of chemical 

interaction is very likely due to the large molecule-surface distance, differently 

to more planar PAHs for which mixing between molecular and metal states 

was observed [95,115]. In this case, the most relevant surface induced effect is the 

shift of the HOMO level of TBP adsorbed on Au(111), which results in it being 

aligned to the Fermi level of the metal (whereas HOMO lays below Fermi for 

TBP on Cu(111)). This result is generally interpreted as an indication of partial 

occupation (the corresponding fractional value is an artefact due to the well 

known limitations of standard DFT functionals [100]), further indicating that the 
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molecule can act as an electron donor only when adsorbed on Au(111). 

However, the nearly null spatial overlap between the molecular and surface 

wave functions suggests the occurrence of ICT [45,115] from the molecule to 

Au(111).  

 

3.6 Effect of the surface screening: energy level alignment of TBP upon 
adsorption 

A natural test for assessing the occurrence of ICT is the comparison of the 

molecular HOMO level relatively to the Fermi energy of the substrate. In fact, 

the energy of the frontier molecular orbitals is modified when a molecule 

arrives in the proximity of a metallic substrate.  

The high polarisability of a metal results in the ability to effectively screen any 

external electric field (e.g., a molecule or a molecular ion), in accord with the 

image charge model, with the result of upshifting/downshifting the 

HOMO/LUMO of an adsorbate and reducing the HOMO-LUMO gap. This 

means that the energy required to remove an electron from the adsorbate (i.e., 

the ionisation potential/HOMO energy) will be reduced by the Coulomb 

interaction between the electron hole and its negative “reflection” in the metal 

slab. Of course, the same effect is expected for the opposite case, so that the 

energy gained in adding one more electron to a molecule (i.e., electron 

affinity/LUMO energy) will be increased by the added interaction between the 

electron and its positive image inside the surface (see Section 1.3). 

However, DFT calculations within the GGA approximation are not suitable to 

obtain the real HOMO-LUMO gap reduction [100], which was instead 

reproduced by GW calculations for weakly coupled systems [56]. Interestingly, 

the latter approach calculated a value for the HOMO upshift almost equal to 

the image charge correction, i.e., the simple electrostatic interaction between a 

charge and its screened image. This allowed us to estimate the HOMO upshift 

for TBP upon charging as PHOMO = − e2  / 4(ZCC − Zim), where ZCC is the HOMO 

centre of charge and Zim is the position of the surface image plane [116].  



Chapter 3  
 

66 

 
Figure 3.10 Schematic representation of the energy level alignment at the TBP/metal 
interface. The molecular HOMO shifts above the metal Fermi level upon adsorption 
on Au(111), making the transfer of one electron from TBP to the surface energetically 
possible (see text).  

The calculated PHOMO = 1.24 eV for a TBP molecule adsorbed on Au(111) 

decreases the ionisation potential to an effective Ieff = 4.91 eV, significantly 

below the surface work function (5.3 eV), making the donation of one electron 

to the substrate energetically favoured. On the contrary, by applying the same 

correction to a TBP molecule adsorbed on Cu(111), the calculated effective 

ionisation potential is higher than the surface work function by ~0.06 eV. This 

positive difference (which we can refer to as a “hole injection barrier”) 

indicates that copper would less likely succeed in oxidising for its lower work 

function (4.9 eV).  

Moreover, the concave adsorption geometry of TBP is expected to produce 

itself a correction to the PHOMO upshift, which has to be added to the above-

calculated electrostatic term. In fact, the bent molecular conformation was 

found to generate an intrinsic positive dipole, which acts in the direction of 

slightly opposing CT. The consequent HOMO downshift was calculated by 

means of a classical capacitive model as 0.21 and 0.13 eV for Au(111) and 

Cu(111) adsorption respectively [35,117]. This second effect takes the differences 

between the work function of the substrates and the HOMO of the adsorbed 

Molecule/image plane distance!

Vacuum level!

Image plane!

E!

EF, Cu(111) = 4.9 eV!

I gas phase = 6.15 eV!

HOMO@Cu(111) = 5.09 eV!

HOMO@Au(111) = 5.12 eV!EF, Au(111) = 5.3 eV!

20nm!
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TBP to the final values of ΔIAu = −0.18eV and ΔICu = 0.19 eV, which enforces 

the picture of neutral adsorption on Cu(111) for the increased hole injection 

barrier (from 0.06 to the actual 0.19 eV) (Fig. 3.10). The confirmed negative 

value obtained for TBP adsorbed on Au(111) further supports the prediction of 

ICT, which implies the formation of molecular ions and consequentially of 

strong vertical dipoles. 

 

3.7 Work function modulation at the metal-organic interface 

Scanning tunneling spectroscopy (STS) experiments were carried out to look 

for a fingerprint of ICT. Indeed, the presence of ICT molecular dipoles is 

expected to generate a local electric field with a strong reduction of the local 

work function φ as main effect [118].  

To this aim, the surface work function was thoroughly resolved by measuring 

the tunneling current vs. STM tip/sample distance spectra (I(z)), as a function 

of the tip position on the sample [118-120]. The adopted experimental set-up 

allowed the molecular-resolved mapping of the surface work function shift 

Δφ (x,y) = φ (x,y) – φ M, where φ (x,y) is the work function detected in the 

position (x,y) and φ M its value on the clean metal. The analysis of the maps 

shown in Fig. 3.11 (a) and (b) revealed a diminution of the work function on 

molecular islands, which was calculated to be 0.2 eV more pronounced on 

Au(111) with respect to Cu(111) (Fig. 3.11 (c)).  

However, charge transfer is not the only effect contributing to these negative 

Δφ values, since also the intrinsic molecular dipoles and the pillow effect 

modify the distribution of charge at the interface and therefore contribute to the 

measured value [26,42,45,94]. In this regard, DFT calculations were used in order to 

shed light on the relative weight of the different contributions to the total 

surface dipoles Dtot. 
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Figure 3.11 Constant current STM topographies and simultaneously acquired I(z) 
maps on Cu(111) (a) and Au(111) (b). I(z) maps show the work function variation Δφ 
with respect to the bare metal surfaces. The Δφ distributions measured on TBP islands 
are reported in panel c, for both metals.    
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The aforementioned total dipole can be considered as the sum of three 

components: Dtot = Dsub + Dmol + Dind, the first one (Dsub) being the surface 

dipole of the bare metal surface (which is zero for a symmetric slab), the 

second (Dmol) being the intrinsic molecular dipole and the latter (Dind) resulting 

from the molecule-metal interaction (i.e., charge transfer and pillow effect). 

The total surface dipole calculated for a TBP molecule on Au(111) was 8.41 D, 

which compared to the intrinsic dipole (Dmol = 1.53 D) identifies the combined 

effect of charge transfer and pillow effect (Dind = 6.88 D) as the main 

contribution. A similar behaviour was found on Cu(111), where the total dipole 

(Dtot = 4.74 D) was definitely smaller than the one on Au(111). Here the total 

dipole was attributed to the sum of the intrinsic dipole and pillow effect only 

(which is stronger on Cu(111) [121]), the charge transfer contribution being 

much lower on this surface. 

Going back to the Δφ maps for TBP adsorbed on Au(111), their intramolecular 

resolution allowed us to observe a strong modulation of the local work function 

for TBP adsorbed on Au(111), which revealed a minimum (~ −1 eV) located 

within the pyrene core (Fig. 3.11 (b)). This modulation was much less 

pronounced on Cu(111) (Fig. 3.11 (a)).  

 
Figure 3.12 Calculated electrostatic potential energy shift (Δφ) with respect to the 
clean metal surfaces for a single molecule adsorbed on Cu(111) (left) and Au(111) 
(right). The work function reduction is more pronounced upon adsorption on Au(111), 
consistent with donation of charge from the molecule to the gold surface.   
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This scenario was quantitatively reproduced at the DFT level by evaluating the 

electrostatic potential energy shift of an adsorbed TBP molecule, where the 

HOMO partial occupation − expected on Au(111) − was enforced by removing 

one electron. Similarly to the experiments, the Δφ was close to −1 eV on the 

molecular core, but definitely less pronounced in correspondence to the lateral 

residues (Fig. 3.12). Thus, the charge density distribution of a TBP molecule − 

upon withdrawal of one electron − resembles a positive hole state localised on 

the pyrene core. The electrostatic potential energy shift calculated for a neutral 

molecule adsorbed on Cu(111) did not show noticeable modulation, again in 

quantitative agreement with our experiments (cf. Fig. 3.11 (b) and Fig. 3.12). 

This result is consistent with a neutral adsorption picture, where a small 

reduction of work function is anyway expected for the stronger pillow effect on 

Cu(111) [121].  

 

3.8 Increasing TBP surface concentration: Fermi level pinning 

The physical picture emerging from the results presented so far suggests that 

adsorbed TBP molecules remain neutral on Cu(111), where they interact only 

through attractive van der Waals forces and form single large islands via 

standard Ostwald ripening process. Conversely, molecules adsorbed on 

Au(111) are expected to undergo ICT and to carry strong electrostatic dipoles 

because of the surface screening. 

For this reason, the self-organisation of TBP on Au(111) can be explained in 

terms of the simultaneous presence of short-range van der Waals attractions 

and long-range electrostatic repulsion between molecular ions. It is known that 

the action of competitive forces – acting on different length scales – may drive 

the formation of characteristic patterns in a variety of physical systems [92,93], 

such as the formation of magnetic domains, camouflage patterns in animal 

skin/fur, block-copolymer organisation, as well as in two-dimensional 

supramolecular assembly [26,122-124], which is brought as a first simple 

explanation of the “bubble phase” (i.e., anomalous Ostwald ripening) observed 

at low coverage (Fig. 3.3 right). At higher molecular deposition, bubble phases 
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are expected to evolve to striped domains, in order to minimise the electrostatic 

repulsion by maximising the average intermolecular distance (provided that the 

ratio between attraction and repulsion does not depend on coverage).  

 
Figure 3.13 Self-assembly of TBP versus molecular coverage. The coexistence of 
small and large aggregates on Au(111) starts at critical coverage θc ≈ 0.4 ML. 

However, our STM experiments at coverage θ ≥ θc = 0.4 ML never revealed 

the presence of striped-phases, while showing instead the unusual coexistence 

of small and large islands (Fig. 3.13 for θ > θc). We attribute this behaviour to 

the self-limiting nature of ICT at the metal-organic interface, which become 

evident when the driving force (ΔIAu) for charging an isolated molecule is small 

enough that the interplay of charging and assembly allows for a richer 

behaviour repertoire. Namely, charged molecules could reverse back to 

neutrality upon assembly if the local molecular arrangement made this 

energetically favourable.  

An explanation may be attempted in terms of the general ICT picture, where 

the surface (positive) dipoles created by TBP ions generate an electric field 

which is expected to downshift the molecular energy levels − together with the 

vacuum level − towards the Fermi energy of the substrate [26]. In other words, 

the surface work function is lowered by gradually increasing the coverage, 
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until no driving force is left for molecules to oxidise (i.e., ΔIAu = 0) and any 

further deposited molecule will adsorb in its neutral state [26,42,45,94].  

This simplified mean field picture captures the self-limiting character of ICT 

and can be readily transferred to the local scale, where the driving force for 

ionising a single molecule depends on both the energy difference ΔI (between 

the HOMO level and the Fermi energy of the metal) and the electrostatic 

repulsion with its neighbours. Therefore, when a neutral molecule is located in 

the proximity of several already charged ones, its further electron donation 

might be inhibited. In a similar manner, a charged molecule might return to the 

neutral state, whenever the change results energetically convenient within the 

local environment. Reversible ICT can be used to rationalise the observed 

molecular assembly behaviour once molecular charging is allowed to depend 

locally on the electrostatic interaction between neighbouring molecules, and 

identifies the observed phase diagram as the growth pattern most likely to 

emerge in this complex situation.  

 

3.8.1 Monte Carlo model for the anomalous coarsening 

In order to shed light on the assembly behaviour observed on both Cu(111) and 

Au(111), we implemented a simple Monte Carlo (MC) model where TBP 

molecule were treated as structure-less particles, accommodated in a two-

dimensional hexagonal lattice gas (Fig. 3.14). The short-range van der Waals 

attraction was described as a nearest neighbour coupling, while the electrostatic 

interactions – for the image charge effect due to surface screening – were 

modelled with a 1/R3 term, to take into account the repulsion between standing 

dipoles, positively oriented along the direction normal to the substrate. In this 

version of the dipolar Ising model [125], the dipole hosted by a particle could 

assume two possible values in relation to the state of charge of the particle 

itself: a small positive dipole was associated to the pillow and the intrinsic 

“conformational” dipole accompanying an adsorbed neutral molecule, while a 

much larger one was related to the molecular ion obtained after ICT.  
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Figure 3.14 Molecular dynamics model (superimposed on a STM topography) 
highlights the hexagonal close packed self-assembly of a TBP island (left), which is 
described by a two-dimensional lattice gas in our Monte Carlo model (right). 

The state of charge of each particle was permitted to swap between the two 

available conditions (i.e., between charged or neutral), the selection being 

controlled by standard MC acceptance rate depending on total energy 

fluctuations. To allow for this non-trivial charge sampling, every particle was 

assumed to add an energy term equivalent to the difference between the 

HOMO level and the Fermi energy of the substrate for both Au(111) and 

Cu(111) (i.e., the ionisation energy gain, which can be either negative or 

positive). All the above was summarised in the following Hamiltonian:  

H = −J σ i
i, j
∑ σ j +

1
2

p δi( ) p δ j( )
ri − rj

3
i, j
i≠ j

∑ + NcΔI                                                       [3.1]                                           

Where: i, j are lattice site indexes; σ defines the state occupation (σ = 1 for an 

occupied site, 0 if vacant); J is the vdW coupling constant; 〈i, j〉 are nearest 

neighbour site pairs; p(δi) is the molecular dipole value at an occupied site i, 

and δ is a dipole-type flag, set to 1 for molecular ions and 2 for neutral 

molecules; r being the site position vector. The last term in the Hamiltonian in 

Eq. 3.1 accounts for the global ”ionisation gain”, where Nc is the number of 

charged molecules and ΔI is the energy gain/cost associated with the formation 

of a molecular ion from an adsorbed neutral molecule. It was proven that the 

chosen model potential, taken without the grand canonical Nc ΔI term, could 

result in the formation of bubble/island, striped or generally elongated phases, 

b1 

b2 
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which are well known to occur in physical systems with competing 

interactions [92,125]. The presence of long-range dipolar energy contributions 

increases the computational cost (which scales as the square of the number of 

particles) and requires the employment of periodic boundary conditions (PBC) 

to avoid finite size effects. PBC were implemented by direct summation [126], 

which is much more accessible and at least as efficient as Ewald summation 

techniques in the two-dimensional case. For instance, the original system can 

be repeated in space to simulate the continuum, provided that its chosen 

geometry respects the periodicity and symmetry of the hexagonal lattice. The 

Hamiltonian in Eq. 3.1 can be rewritten to explicitly account for PBC: 

H = − Π ri,R+ rj( )σ iσ j
#$ %&+

1
2
Δ ri,R+ rj( ) p δi( ) p δ j( )#$ %&

(
)
*

+
,
-R

∑
i, j
∑  ,                  [3.2] 

where R is a translation vector, which transforms the original system in any of 

its images and the functions Π (Eq. 3.3) and Δ (Eq. 3.4) account for the van der 

Waals nearest neighbours (NN) coupling and the repulsion terms, respectively: 

Π ri,R+ rj( ) =
J    if   ri   and  R+ rj  are NN,  
0   otherwise.

"
#
$

                                              [3.3] 

Δ ri,R+ rj( ) =
0  if  ri =R+ rj,  

1
ri −R− rj

3   otherwise.

#

$
%

&
%

                                                         [3.4]           

The double sum in Eq. 3.2 can be calculated in advance, since it is dependent 

on the positions i and j only, making the Hamiltonian computationally 

equivalent to the case without long-range interactions (Eq. 3.5): 

H = − Πijσ i
i, j
∑ σ j +

1
2

Δij p δi( )
i, j
∑ p δ j( )  ,                                                           [3.5] 

where 

Πij = Π ri,R+ rj( )
R
∑ ,       Δij = Δ ri,R+ rj( )

R
∑  .                                       [3.6, 3.7] 
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The effective interaction parameters (Eq. 3.6 and 3.7) include the van der 

Waals nearest neighbour energy as well as the dipole-dipole repulsion between 

two occupied positions and replicas and need to be calculated only once at the 

beginning of a MC simulation, which then scales linearly with the number of 

molecules. This allowed the search of the equilibrium configuration for large 

unit systems (105 adsorption sites, corresponding to a 200×200 nm2 surface), 

which was useful to approach the real system size. This was useful for 

immediate qualitative/quantitative comparison with experiments and also 

positive in terms of improved accuracy (in fact, the underestimation of the 

dipolar contribution due to finite system size is minimal in this way).  

The numeric values of the parameters included in the Hamiltonian are listed in 

Table 3.1 below. The van der Waals coupling constant J was calculated at the 

DFT level (vdW-DF functional [74]), while the charge transfer dipole was 

estimated from standard electrostatics within the image charge approximation 

and in the ICT limit (i.e., p (δ =1) = e (2 lD) + Dmol, where lD is the calculated 

adsorption distance corrected to account for the image plane distance [26,116]). 

Finally, the dipole associated to a neutral molecule (p (δ =2)) was set to be 

equal to the intrinsic molecular dipole Dmol.  

J  0.12 eV 

p (δ =1) 13.06 ea0 

p (δ =2)   1.99 ea0 

ΔIAu −0.18 eV 

ΔICu   0.19 eV 

 
Table 3.1 Parameters used in the model Hamiltonian. Note that any positive value of 
ΔICu will effectively remove any driving force for molecular charging. We note that 
the molecule-molecule distance is set to the experimental value (18 Å).  

MC trial moves included the exchange between occupied and empty sites and – 

as previously introduced − the switching of the state of charge of an occupied 

site along the Metropolis annealing simulations. This means that, besides 

diffusion steps, the allowed MC trial moves included swapping the dipole of 
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each molecule between the lower value, corresponding to the net dipole of the 

neutral molecule, and the higher one calculated for the positive molecular ion. 

Again, the driving force for this process was provided by adding to the model 

Hamiltonian a ΔI contribution for each charged molecule. This quantity was set 

to our calculated values ΔIAu = −0.18 eV and ΔICu = 0.19 eV for TBP adsorbed 

on Au(111) and Cu(111), respectively. In a typical simulated annealing run, the 

temperature was decreased linearly from 300 to 77 K over 108 MC steps and 

then kept at 77 K for further 107 steps for data gathering.  

Any positive value assigned to the ionisation gain (i.e., ΔI > 0) always resulted 

in disabling the charged state option, since a positive contribution adds a 

further energy cost to the constant/increased electrostatic repulsion after the 

retention/addition of an ICT dipole, causing to always accept the neutral state. 

Therefore, by setting ΔI > 0, the simulated annealing runs invariably identified 

the global coalescence of particles to be the equilibrium configuration, as 

appropriate for the Cu(111) case and consistently with our observations 

(Fig. 3.15 left).  

On the other hand, setting ΔI to a negative value revealed a more complex 

situation, since the net energy gain introduced can favour the charged state 

over the neutral one, provided that the repulsion maintained/added from the 

retention/addition of a molecular ion is compensated (e.g., the ΔI = −∞ limit 

would always allow for the retain/creation of charge transfer dipoles). By 

setting the value of the ionisation gain to ΔIAu = −0.18 eV in MC simulations at 

low molecular coverage (0.15−0.30 ML, Fig. 3.15 top right), particles were 

found to aggregate in several small islands, qualitatively matching our low 

coverage experimental observations (cf. Fig. 3.3 and Fig. 3.15).  
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Figure 3.15 Monte Carlo simulations snapshots of the TBP molecules self-assembly 
on Cu(111) and Au(111), obtained allowing only neutral molecules (left), or both 
charged and neutral species (right). Neutral and charged molecules are represented in 
yellow and pink colours, top and bottom panels correspond to low (~0.2 ML) and high 
coverage (~0.5 ML), respectively. 
 

Moreover, the good quantitative agreement between the experimental cluster 

size distribution and the one predicted from our simulations (Fig. 3.16) 

ultimately suggests that the inclusion of dipolar repulsion is both necessary and 

sufficient to reproduce the experimental observations, supporting our 

hypothesis that TBP molecules undergo ICT on the Au(111) surface.  

For coverage exceeding 0.4 ML, simulations carried out in the ΔI = −∞ limit 

(i.e., all particles are forced to the charged state) would always produce striped 

equilibrium configurations (Fig. 3.17 left). This morphology was never 

observed in our experiments in the same coverage conditions, which had 

shown instead the formation of larger aggregates, compatible with the average 

reduction of electrostatic repulsion at higher coverage (Fig. 3.17 right). As 

explained before, this is the expected outcome of the self-limiting nature of 

30 nm!

30 nm!

Au(111)!Cu(111)!
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ICT, since the state of charge, number and displacement of neighbours cause 

the variation of the net energy gained in “charging” a molecule. 

 
Figure 3.16 Cluster size population from MC simulations (blue) and experiments 
(red) for molecular coverage in the range 0.15−0.30 ML. 

This relation was implemented in our model by setting the value of the energy 

associated with the formation of a molecular ion to the one calculated for an 

isolated TBP molecule adsorbed on Au(111). As a consequence, a MC move 

changing the state of a particle from neutral to charged (and vice versa) is 

accepted depending on the total energy variation in the system. For instance, let 

us suppose that a MC diffusion trial moves a charged molecule in the 

proximity of an area with high density of already charged ones. This would 

further increase the total repulsion energy, but instead of simply rejecting the 

move (which would be the case if the charging was irreversible, ΔI = − ∞), the 

MC simulations might also accept the move (thereby gaining the attractive van 

der Waals interactions due to the increased number of nearest neighbours) by 

reverting the molecule to its neutral state. This method allows us to constrain 

the total number of charged molecules in the systems, which remains 

determined by the chosen value of ΔI, between the neutral and the totally 

charged limits (corresponding to a choice of ΔI > 0 and ΔI = − ∞, respectively). 

On the macroscopic scale, setting a threshold to the number of charged 
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molecules can be considered equivalent to the condition of Fermi level pinning 

in charge transfer systems [42,94].  

In this regard, our simulations showed that − by allowing the choice between a 

neutral and a charged state − the local crowding of molecular ions is permitted 

in small islands only, while it has to be limited in larger aggregates. The 

distribution of the molecular ions locally optimises the balance between the 

ICT energy gain and electrostatic repulsion, leading to the coexistence of small 

and large islands similarly to the experimental observations.   

 
Figure 3.17 High coverage (0.4 ML) equilibrium configurations obtained from the 
MC simulation of the TBP/Au(111) system. Left: ΔI= −∞, corresponding to all 
molecules being ionised. Right: ΔIAu= −0.18eV, corresponding to the ICT situation. 
Charged molecules and neutral molecules are shown in yellow and pink colours, 
respectively (the substrate in brown). 

The results obtained with our MC model have to be considered at best 

qualitative due the approximations included in the chosen model Hamiltonian, 

which were necessary in order to limit the number of parameters and guarantee 

their “availability”. However, the very good agreement found between the 

experimental topographies and the calculated equilibrium structures strongly 

suggests that the self-assembly of TBP on the Au(111) is the result of the 

coexistence of neutral and charged molecules due to “reversible charge 

transfer” [26].  

We finally note that our local work function measurements reveal charge 

transfer on Au(111) but no significant variations between different molecules 
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of a given island. This is not surprising, since during the measurement of local 

work function at negative bias, the STM tip acts as a hole injector (locally 

changing the dI/dV spectrum [127]) on any neutral molecule capable of (or 

indeed selected for) hole accepting, such as TBP. 

 

3.9 Conclusions 

In this Chapter we investigated the effect of reversible charge transfer on the 

supramolecular self-assembly of TBP at the Au(111) surface. Theoretical 

modelling and STS experiments provided a comprehensive analysis of the 

energy level alignment at the metal-organic interface, which strongly suggests 

that charge donation can happen for TBP adsorbed on Au(111) but not on 

Cu(111). In this regard, we showed that ICT can be controlled with the ad hoc 

synthesis of molecular units designed to weakly adsorb on metal surfaces and 

with effective ionisation potential smaller (but still close) to the substrate work 

function. In fact, the presence of electrostatic repulsion between charged ICT 

cations was found to be both necessary and sufficient to explain the anomalous 

Ostwald ripening observed on Au(111). On the other hand, ICT related effects 

were not observed on a substrate with significantly lower work function such 

as Cu(111), where a different, purely attractive assembly behaviour was 

expected and indeed observed.  

We suggest that our analysis can be extended to similar systems, where 

anomalous coarsening was observed but not directly addressed or explained [128-

130], provided that a set of conditions is met at the metal-organic interface. First 

of all, the selected molecule must undergo charge transfer as an isolated 

adsorbate. Secondly, the monomer’s lateral size, dipole, and intermolecular van 

der Waals attraction must balance in such a way that the assembly driven by 

attractive short-ranged forces is moderated, while not forbidden, by the energy 

cost associated with long-range electrostatic repulsion. This can be achieved 

via appropriate selection of the adsorbate height (h) on the surface, to balance 

the ionisation energy gain ΔI (which is proportional to −1/h) and the dipole-

dipole repulsion (proportional to h2) at low coverage. Under these conditions, 
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anomalous coarsening can occur only if reversible ICT is possible (not charge 

transfer due, e.g., to irreversible deprotonation [27]). At low coverage, the 

equilibrium structure will eventually be achieved by limiting the assembly to 

small islands, while at higher coverage, much larger aggregates will be allowed 

to form, with some of the molecular ions reverting to the neutral state. These 

two island populations may be viewed as two phases characterised by a 

different fraction of charged molecules (a higher fraction can be 

accommodated in smaller islands for the same repulsion energy), which can 

coexist during the assembly. This mechanism evidences the self-limiting nature 

of charge transfer (i.e., its reversibility), since the energy cost associated to the 

formation of an electron hole is expected to increase with the number of 

molecular cations. 



 
Chapter 4 
Codeposition of donor and acceptor 
molecules:  
TBP and TCNQ on Au(111) 
 
 

 

 

 

 

Blending electron-acceptor and electron-donor molecules has come to 

prominence as a viable way to produce organic heterostructures, with unique 

electronic and optical properties [131]. For instance, such materials were found to 

have high electroluminescence (required for the production of OFETs or 

OLEDs), good photovoltaic response (bilayer organic solar cells are based on 

donor-acceptor coupling) and one-dimensional conductivity (for conductive 

coatings) [132]. These applications require the molecular blend to be deposited 

onto metal electrodes. The device performances will then rely on both 

electronic (energy level alignment [42,47], metal-organic hybridisation) and 

structural regularity aspects [11]. 

In this Chapter we will show that the donation of electrons from TBP 

molecules to the surface has the result of locally modifying the electronic 

properties at the interface, with the consequent activation of charge transfer for 

a second molecular species. This behaviour was observed after the 

codeposition of TBP and a prototypical strong electron acceptor molecule 

(7,7,8,8-tetracyanoquinodimethane (TCNQ)) on Au(111).  
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The molecular structure of TCNQ (shown in Fig. 4.1 (a)) is planar and rather 

rigid, due to the unsaturated B3 bond. The core of the molecule is a hexagonal 

non-aromatic carbon ring linked to four cyano groups, which are responsible 

for its high gas phase electron affinity. Upon intake of one electron, which 

saturates the B3 bond, the molecular stiffness is significantly reduced and the 

molecule is able to bend upon adsorption, with the cyano groups interacting 

more directly with the surface [133,134]. 

 
Figure 4.1 a) Ball-and-stick and chemical structure of a TCNQ molecule. The 
addition of one electron aromatise the carbon ring and saturate the B3 bond, increasing 
the flexibility of the molecule. b) Molecular layer on Au(111): the unit cell vectors are 
reported, together with the atomistic model of the H-bonded assembly. The 
herringbone reconstruction features are still visible. 

The mentioned high electronic affinity of TCNQ was found sufficient to allow 

charge transfer with a range of alkali and transition metals [133,135-141] and upon 

deposition on several metal substrates [133,137,141-143], but not on the noble 

Au(111) surface. However, we will show that the codeposition of TBP and 

TCNQ on Au(111) produced a complex self-assembly phase diagram, where 

TCNQ was found to organise in structures that are associated to its −e charge 

state. Therefore, we will conclude that TBP has to donate charge to effectively 

produce a local reduction of the surface work function, which is in turn 

required to activate the otherwise forbidden charge transfer from the Au(111) 

surface to the TCNQ molecules.  
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The work presented here is the result of a close collaboration with Daphne 

Stassen, Prof Davide Bonifazi (chemical synthesis, Université de Namur), Ada 

Della Pia and Prof Giovanni Costantini (STM/STS experiments, University of 

Warwick).  

 

4.1 Introduction: TCNQ and TBP on the Au(111) surface 

Before addressing the study of the codeposition (TBP/TCNQ)@Au(111), we 

aim to give a short description of the two separate sub-systems. 

The strong acceptor character of TCNQ was observed to favour charge transfer 

upon deposition on several surfaces, including Ag(100) [141], Ag(111) [137], 

Cu(100) [133] and Cu(111) [142,143]. On the contrary, the molecular electronic 

affinity is not sufficient to oxidise the nobler Au(111) [137,144], which is more 

reluctant  to lose electrons because of its higher work function. The neutral 

adsorption of TCNQ on Au(111) was confirmed by recent DFT 

calculations [145] and XPS experiments [137], where the observed spectrum was 

compatible with the one of uncharged TCNQ. Moreover, the substrate work 

function was reduced by 0.3 eV, instead of being increased as expected in case 

of electron transfer from the substrate to the molecules [137]. Similar results 

were obtained from STM and STS experiments. In particular, the STS spectra 

displayed features associated with empty LUMO levels, while the Au(111) 

herringbone reconstruction under organic layers  showed no variation, 

indicating weak molecule-substrate interactions [144]. The weak coordination of 

TCNQ with the surface indicates neutral adsorption, since the rigid structure of 

the neutral molecule does not allow the molecule to bend the cyano terminals 

and to achieve a strong interaction with the metal [145].   

The deposition of TCNQ on the Au(111) surface was characterised by means 

of low temperature STM, which revealed the assembly shown in Fig. 4.1 (b), 

consistently with previous observations [144]. The molecular self-assembly 

produced extended, faultless layers stabilised by a network of H-bonds, where 

the four hydrogen atoms of TCNQ interact with the electronegative cyano 
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groups of four neighbouring molecules, leading to a rhombic unit cell 

(a1 = a2 ≈ 1 nm). 

This behaviour is very different to what we have observed for the self-

assembly of TBP molecules on the same Au(111) surface. Indeed, in Chapter 3 

we have shown and discussed the anomalous phase coarsening leading to the 

formation of distributed small supramolecular islands, whose origin was 

identified in the donation of electrons from TBP to the metal. Consistently, we 

found that the formation of charge transfer dipoles reduced the work function 

of Au(111) by few tenths of an eV. Here, we will show that the latter effect can 

radically change the self-assembly and electronic properties of TCNQ 

coadsorbed on Au(111). Our results will be compared to the case of pure 

TCNQ deposition, and characterised by means of local spectroscopy, DFT and 

Monte Carlo models. 

 

4.2 Methods 

DFT calculations and data processing were carried out with the Quantum-

ESPRESSO package [99], using ultrasoft pseudopotentials [79] and the PBE-GGA 

exchange-correlation functional [100] within the non-local vdW-DF [74] 

formalism. Gas phase and on the substrate calculations were performed with a 

wavefunction energy cutoff of ~408 eV. The Brillouin zone sampling was 

expanded on a 4×6×1 Monkhorst-Pack grid, while a counter dipole correction 

was used for all “on metal” calculations [102,103]. The non-reconstructed Au(111) 

surface was modelled as a four-layer slab, allowing ~12.5 Å vacuum between 

periodic replicas. Forces acting on the metal and molecular atoms were relaxed 

up to 0.05 eV/Å (the bottom layer of the slab being constrained to the bulk 

positions). 

STM experiments were performed with a commercial STM apparatus (Createc) 

operated in ultrahigh vacuum. The Au(111) crystal surface was cleaved and 

cleaned via repeated cycles of Ar+ sputtering and annealed up to 800 K. 

Degassed TCNQ (commercially available) and TBP crystal powder were 
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sublimated and codeposited by organic molecular beam epitaxy (OMBE) onto 

the metal crystal held at room temperature. STM images were acquired after 

quenching at 77 K and 5 K, using chemically etched tungsten tips in the 

constant current mode (typical voltage and tunneling current were V = -2 V and 

I = 20 pA). dI/dV spectra were acquired at 5 K. 

 

4.3 Codeposition of TCNQ-TBP on Au(111): STM analysis 

TBP and TCNQ molecules were sublimated and deposited on Au(111) at room 

temperature, spanning a range of relative coverage ratio (Ada Della Pia is 

acknowledged for the experimental characterisation).  

For codeposition in the TBP:TCNQ = 3:1 ratio, our STM topographies showed 

the formation of rather small TCNQ islands decorated with a one-molecule-

thick TBP frame (Fig. 4.2 left), with all the available TCNQ adopting this 

assembly (which we identify as “β”). On the other hand, the excess of TBP 

molecules was found to form homomolecular aggregates, with shape and size 

distribution similar to those observed for the deposition on Au(111) of TBP 

alone (see Chapter 3).  

Figure 4.2 STM topographies showing the self-assembly of TBP and TCNQ 
codeposited on Au(111). Left) Close up view of β-TCNQ aggregates framed by TBP 
molecules. Right) For low TBP:TCNQ ratios the assembly is characterised by the 
coexistence of α- and β-TCNQ structures together with homomolecular TBP and 
TCNQ islands (−2 V bias voltage). 
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Reducing the TBP:TCNQ ratio, the codeposition led to a more complex 

situation, where TCNQ assembled again to form β assemblies, but was also 

observed to form extended H-bonded layers (Fig. 4.2 right). The latter structure 

is equivalent to what observed in [144] for TCNQ adsorbed on Au(111) (which 

we identify as “α-TCNQ”), whereas TBP molecules not constrained at the rims 

of β-TCNQ islands were still assembled as shown in Chapter 3. 

The assembly of β-TCNQ is such that all molecules are aligned and almost 

perfectly parallel one with respect to the other (Fig. 4.4 (c) and (d)). The 

resulting molecular packing is denser than that of α-TCNQ, as revealed by the 

smaller dimensions of the unit cell (b1 = (7.3±0.4) Å, b2 = (11.1±0.4) Å, 

θ = (103±3)°). A simple analysis shows that this configuration cannot represent 

the energy minimum for neutral TCNQ, due to the electrostatic repulsion 

arising from the eclipsed displacement of the neighbouring electron rich nitrile 

moieties. Indeed, DFT gas phase calculations showed that the total energy of a 

TCNQ monolayer significantly decreases when shifting the relative position of 

neighbour molecules away from the experimental β unit cell, to avoid the local 

crowding of cyano groups (Fig. 4.3 left).   

 
 
Figure 4.3 Left: total energy decreases when moving molecules away from parallel 
displacement (gas phase DFT calculations), Right: vdW-DF geometry optimisation 
showing how molecules initially positioned according to the experimental b-TCNQ 
unit cell tend to rotate to form H-bonds (dotted lines). 

In a similar manner, DFT geometry optimisation of neutral TCNQ adsorbed on 

Au(111) − initially arranged to match the experimental β unit cell −  resulted in 
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an equilibrium structure where the distance between adjacent cyano moieties 

was maximised by in-plane rotation of the molecules, with the formation of 

two H-bonds per neighbour (Fig. 4.3 right). These results are consistent with 

previous works indicating the α H-bonded structure as the expected self-

assembly template for neutral TCNQ on Au(111) [145]. 

However, TCNQ was found to self-assemble into β-like structures in proximity 

of step-edges on Cu(111) [142,143], on Cu(100) [133] and on Ag(111) [137]. 

Moreover, similar observations were reported for the deposition of the more 

electronegative fluorinated TCNQ (tetrafluoro-tetracyanoquinodimethane (F4-

TCNQ)) on Au(111) and Cu(100) [135,146]. All these reports associate the 

observed supramolecular structures to charge transfer effects, suggesting that 

β-TCNQs could as well accept electrons from the substrate. Since TCNQ by 

itself is expected to remain neutral on Au(111) and to form only α-structures, 

we attribute the occurrence of β phases – thus, of charge transfer − to the  

codeposition with TBP.  

The first evidence supporting this statement was provided by the analysis of 

STM images of α- and β-TCNQ, taken at negative and positive bias voltage. 

Imaging of α-TCNQ showed that single molecules appear as elliptic bulges at 

negative voltage, while, switching to positive bias, they closely resemble the 

shape of the gas phase molecular LUMO. This indicates that no charge transfer 

occurs and that the interaction with the surface is weak [144] (Fig. 4.4 (a) 

and (b)).  

Conversely, the imaging of single β-TCNQ molecules at negative voltage 

strikingly resembles the LUMO shape (Fig. 4.4 (c) and (d)), an effect that is 

usually observed in correspondence of partial occupation of the LUMO itself. 

The simultaneous presence of both α- and β-TCNQ in the same topography 

consented to exclude spurious effects related to the experimental setup, which 

safely allows us to conclude that the different molecular renderings mirror 

significant differences in the electronic structures, i.e., that β-TCNQ is 

negatively charged. 
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Figure 4.4 STM images of α- (a and b) and β-TCNQ molecules (c and d) at negative 
and positive tunneling voltage. The calculated LUMO isosurface is shown in the inset 
in (b). The H-bond network of α-TCNQ is highlighted in the ball-and-stick models 
superimposed in (a) and (b). A simulated STM image and DFT structures are reported 
in (c) and (d) for β-TCNQ. Adatoms and adatom vacancies are indicated by black and 
white circles, respectively. 

The round features observed in the interstitial regions included around four 

cyano moieties (Fig. 4.4 (c) and (d)) were interpreted as Au atoms incorporated 

in the molecular network. In fact, the higher density packing of β-TCNQ is not 

energetically compatible with the occurrence of charging effects, while the 

formation of an “organic salt” could explain the stabilisation of such a dense, 

charged structure. Moreover, the presence of defects in the metal-organic 

assembly allowed us to exclude that the features associated to adatoms were to 
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be rather attributed to electronic effects. The charge transfer to adsorbed 

molecules was previously reported to produce surface reconstruction, due to 

lifting or segregation of metal atoms [133]. In particular, F4-TCNQ deposited on 

Au(111) was found to accept one electron from the metal and to segregate 

surface atoms from the herringbone reconstruction [135,137]. These low-

coordinated atoms were then included in the molecular self-assembly, whose 

structure is remarkably similar to the one we observe (Fig. 4.4 (c)). In analogy 

with the cited relevant literature, our results suggest that the formation of the 

metal-organic β-structures is promoted by the presence of TBP molecules, 

which allow the donation of electrons from gold to TCNQ. 

To further check the consistency of our model, TCNQ alone was deposited on 

Au(111). The STM experiments gave evidence of the formation of the 

expected H-bonded α-structures, while, surprisingly, small domains of β-

TCNQ were found in proximity of step-edges (Fig. 4.5), contrasting with our 

picture (i.e., that the presence of donor molecules is necessary to form metal-

organic assemblies). Even though β-phases were not reported before in 

TCNQ/Au(111) systems, the Smoluchowski effect [147,148] could explain their 

formation, since step-edges are electron-richer than the terrace surface. 

Therefore, charge transfer from the substrate to TCNQ is favoured and hence 

occurs in vicinity of step-edges – where the local work function is reduced. 

 
Figure 4.5 Tunneling voltage dependence for β-TCNQ observed near a step-edge at 
positive and negative bias (left and right), respectively. DFT models are reported as a 
guide for the eye. 
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In conclusion, the formation of β-TCNQ metal-organic structures on Au(111) 

terraces was observed only after codeposition with TBP. Thus, the presence of 

a donor molecule seems necessary to locally decrease the surface work 

function and consequently promote the transfer of electrons to TCNQ 

molecules, which would not be otherwise possible. The formation of β-phases 

close to step-edges upon deposition of pure TCNQ on Au(111) is related to the 

Smoluchowski effect, further supporting that the work function reduction on 

the terraces has to be ascribed to donor TBP molecules. 

 

4.4 Theoretical modelling 

This Section is dedicated to the DFT modelling we have performed to 

rationalise the β-TCNQ assembly. Our aims were to obtain the atomic 

resolution of the structure and a confirmation of the electronic effects devised 

from the experimental characterisation. Though we could not disclose the 

mechanism leading to the formation of the metal-organic complex, our results 

shed light on the nature of the metal-organic coordination. 

 

4.4.1 Au/TCNQ organic salt: a DFT model 

DFT geometry optimisation was carried out on the basis of the structural 

information extracted from the STM images. The unit cell used in our 

calculation consisted of a four-layered Au slab, with an overlayer comprising 

one TCNQ molecule plus one Au adatom.  

The minimum energy structure for β-TCNQ, shown in Fig. 4.6, is in excellent 

agreement with our experimental observations. The adatom was found to 

accommodate in a three-fold hollow site on the Au(111) surface, which did not 

show any further reconstruction mediated by the adlayer. 
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Figure 4.6 Left: top view of the DFT-relaxed metal-organic β-TCNQ phase on 
Au(111). Au adatoms are displayed in orange to easily distinguish them from the 
surface atoms. The side view of the unit cell is shown in the inset. Right: Tersoff-
Hamann STM simulation at negative bias (−1.3 V) for the same structure (unit cell 
vectors are reported for reference). 

The dimension of the unit cell are b1 = 11.97 Å, b2 = 7.82 Å, θ = 100.9°, to be 

compared with the experimental measures b1 = (11.1±0.4) Å, b2 = (7.3±0.4) Å, 

θ = (103±3)°. Once more, we note that the calculated structure closely 

resembles the self-assembly obtained after codeposition of TCNQ and Ni/Mn 

on Au(111) and Ag(100) or of pure F4-TCNQ on Au(111) [135,140,141]. Because of 

the lattice mismatch between the six-fold Au(111) surface and the two-fold 

rhombic β-adlayer, each TCNQ molecule is directly bound to two diagonal 

adatoms only, setting  the stoichiometry of the organic salt to Au:TCNQ = 1:1. 

The presence of adatoms is essential for the stabilisation of this structure, 

which would be otherwise forbidden (see Fig. 4.3 (b)) due to electrostatic 

repulsion between proximal cyano moieties. Adatoms are thus screening the 

electron-rich cyano residues, by establishing chemical coordination with the 

two closer nitrogen atoms (Au−N bond length ~2.2 Å, Au−N maximum 

distance ~3.5 Å). The molecular adsorption conformation is rather bent, with 

the nitrogen atoms laying about 0.7 Å below the core plane (Fig. 4.6 left). This 

indicates a strong interaction of the cyano moieties with the Au adatoms, but 

also the increased flexibility of the molecular backbone, which is associated to 

charge rearrangement at the metal-organic interface and to the consequent re-

aromatisation of the hexagonal carbon core (as reported for TCNQ and other 

organic molecules [133,134]).  

b1 

b2 
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Charge transfer is confirmed from the calculated pDOS of β-TCNQ, shown in 

Fig. 4.7 together with the gas phase molecular DOS, where the LUMO peak is 

aligned to the Fermi level − indicating its partial occupation – and the HOMO 

feature is shifted ~1.1 eV below. 

 
Figure 4.7 Top: comparison of the pDOS of β-TCNQ on Au(111) with the DOS of 
gas phase molecule. Bottom: pDOS projected on cyano moieties (blue), core (grey) 
and Au adatoms (orange). The Fermi level of the metal-organic system is set to zero. 

The charge rearrangement at the interface was resolved by plotting the charge 

density difference Δρ(r) = ρtot(r) – ρsur(r) – ρmol(r), where ρtot(r), ρsur(r) and 

ρmol(r) are the densities of the full interacting system, the bare metal surface 

and the gas phase molecule, respectively. The surface plot of Δρ presented in 

Fig. 4.8 (a) shows defined charge depletion from the adatom and correspondent 

charge accumulation on a molecular region resembling the LUMO of TCNQ.  
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Figure 4.8 a) Δρ(r) isosurface (±0.004 bohr−1) for the metal-organic complex. Red 
and blue regions indicate charge enrichment and depletion respectively. b) Total 
charge density in a plane crossing the Au−N bonds. c) Δρ integrated on x-y planes 
versus the direction normal to the surface (z). Positive values indicate charge 
accumulation. 

A more detailed depiction of the charge migration was obtained by plotting the 

differential electron energy Δρ integrated over the x-y plane, along the z 

coordinate of the unit cell (Fig. 4.8 (c)). Consistently with what observed in 

Fig. 4.8 (a), the Au adatom shows a clear loss of electron density, which 

appears to be totally transferred to the molecule. The only effect evidenced in 

the metal is a minor charge accumulation directly under the adatom − most 

likely due to a screening rearrangement in the slab, with the three bottom layers 

not being perturbed by the charge transfer process. The amount of charge 

transferred to TCNQ molecules was estimated on the basis of a Bader 

topological analysis of the system’s charge density ρtot(r) [149], from which we 
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calculated a net transfer of 0.54 e/molecule (0.46 e are directly ascribed to the 

Au adatom). 

The DOS projected on the nitrile moieties and the molecular core separately, 

together with the pDOS of the Au adatom, are reported in Fig. 4.7 (bottom) for 

a better understanding of the chemical nature of the metal-organic interaction. 

In particular, the pDOS of the Au adatom shows some spectral weight at 

−1.2 eV, corresponding to the molecular peaks associated to HOMO for both 

the pDOS of the cyano and TCNQ core. These observations suggest a covalent 

character of the Au−TCNQ bonds (as expected in case of coordination with a 

transition metal [139]), which is further evidenced by the presence of charge 

density in the Au−N space gap (Fig. 4.8 (b)). Moreover, the STM simulations 

calculated at a bias voltage of −1.3 V (accordingly to the Tersoff-Hamman 

approach [86], Fig. 4.6 right) resembles well the experimental images obtained at 

the same voltage. In fact, the bright features appearing in correspondence to the 

molecules closely match their LUMO shape, with the signal being stronger on 

the cyano residues. The cyano groups bound to the adatoms have a brighter 

rendering than the other two, which reflects the diagonal coordination and also 

well matches the experimental observations. Finally, Au adatoms appears as 

additional protrusions included between four neighbouring cyano residues, 

confirming the attribution given to the corresponding features observed in the 

STM images.      

 

4.5 I(V) spectroscopy 

The local electronic structure of α- and β-TCNQ phases was probed by means 

of STS spectroscopy to experimentally investigate charge transfer effects. The 

I(V) spectra recorded on α molecules displays the typical features associated to 

neutral TCNQ (Fig. 4.9 (a)) [144]. In particular, the broad peak in the positive 

energy region (~0.7 eV) is associated to the LUMO level, while the slight shift 

of the Au(111) surface state can be attributed to the pillow effect and is 

consistent with weak metal-molecule interactions. The HOMO peak was not 
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observed in the investigated bias voltage range, which is ascribed to the rather 

large HOMO-LUMO gap (~3.1 eV for TCNQ on Au(111) [145]). 

 
 
Figure 4.9 I(V) spectra measured on α- (a), β-TCNQ (b) and TBP molecules (c). In 
the insets, filled circles indicate the point where the spectrum was acquired (the same 
colour code applies in the graphs). The Au(111) spectra are shown in (a) and (c) for 
reference (black and red colour, respectively).  

On the other hand, a substantially different dI/dV spectrum was measured on 

top of β-TCNQ molecules (Fig. 4.9 (b)). In fact, the Au(111) surface state 

disappeared, suggesting a significant charge rearrangement at the metal-

organic interface, while the spectral features recorded on different molecular 

positions showed different characteristics. For instance, the dI/dV profile 
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measured in correspondence of the cyano moieties shows a broad peak at 

~ −1.1 eV (Fig. 4.9 (b), blue curve), which we associate to the formation of a 

metal-organic state from the hybridisation between the molecular LUMO and 

Au adatom states. This picture allows to rationalise the position of the −1.1 eV 

peak on the cyano-Au adatom sites and is further supported by the fact that 

both the experimental and simulated STM images at negative bias (i.e., the 

occupied states region) resemble the LUMO orbital of TCNQ plus some 

contribution from adatoms (cf. Fig. 4.4 (c) and 4.6). The dI/dV spectrum 

measured on the TCNQ core only shows a small peak at ~0.8 eV, which we 

associate to the LUMO+1 resonance (Fig. 4.9 (b), red curve).   

For completeness, STS experiments were performed also for codeposited TBP 

molecules (Fig. 4.9 (c)). While the collection of dI/dV spectra was not possible 

for TBP molecules located at the border of β-TCNQ (because of tip-induced 

rotations), the measurements were carried out on homomolecular TBP islands 

close to β-TCNQ formations. No molecular features were observed in the 

chosen bias voltage range, where only the Au(111) surface state is present with 

a slight shift ((140±10) meV) induced by the pillow effect [136,137,144].   

  

4.6 Two dipoles in action: Monte Carlo simulations 

Our combined experimental and theoretical analysis allowed us to demonstrate 

that TCNQ undergoes charge transfer on Au(111) in the presence of a donor 

molecule (TBP), with the formation of an organic salt arranged in β-islands 

decorated by rims of TBP. However, the codeposition of donor and acceptor 

molecules was reported to promote the formation of ordered self-assemblies, 

e.g., by alternating the two species in homomolecular rows [150].  

To rationalise the peculiar self-assembly associated to the presence of β-TCNQ 

phases, we implemented a Monte Carlo model very similar to the one 

introduced in Chapter 3. The main difference here is that we are dealing with a 

bicomponent system, which we reproduced by fixing the concentration of 

TCNQ and then “fluxing” some TBP-like particles in the system (by setting the 



Chapter 4  
 

98 

system in chemical equilibrium with an infinite reservoir, in agreement with 

the grand canonical description). The model Hamiltonian was formulated in 

analogy with the one used in Chapter 3, i.e., considering nearest neighbours 

van der Waals attraction and a long-range dipolar field to account for 

electrostatic repulsion. Since the system is now bicomponent, parameterisation 

was necessary not only for mono-species interactions (already defined for 

TBP-TBP pairs), but also for cross-species interactions. The “strong” TCNQ-

TCNQ short-range attraction was tentatively set to twice the value used for 

TBP-TBP (owing to the stronger interactions deriving from H-bonds or salt-

induced stabilisation), while the “weak” TBP-TCNQ cross attraction was fixed 

to the half of TBP-TBP van der Waals coupling (due to the very different 

chemical nature and adsorption configuration of the two molecules). 

Ultimately, TBP/TCNQ molecules were associated to positive/negative charge 

transfer dipoles perpendicular to the surface plane (consistent with charge 

donation/injection). The magnitude of the anionic TCNQ dipole was set to half 

of the cationic TBP one, due to the reduced dipole length (vertical distance) for 

the TCNQ-Au adatom couple.    

 
Figure 4.10 Snapshots of Monte Carlo simulations modelling the codeposition of TBP 
(yellow) and TCNQ (pink). Phase segregation is always observed but different 
equilibrium distributions are obtained depending on the state of charge of the 
components (in a both TBP and TCNQ are charged, in b only TBP, while in c both 
molecules are neutral). 

a 

b 
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Remarkably, the equilibrium structures produced by our Monte Carlo model 

showed good qualitative agreement with the experimental observations in the 

relevant TCNQ:TBP = 3:1 stoichiometry (Fig. 4.10 (a)). A very different 

situation was instead obtained when simulating neutral TCNQ. In this case, the 

predicted equilibrium structure was a single TCNQ island framed by the still 

charged TBP molecules (Fig. 4.10 (b)), which suggests that the distribution of 

small β-TCNQ aggregates is driven by electrostatic repulsion. Finally, our 

model invariably predicts the formation of homomolecular aggregates when 

both species are neutral (Fig. 4.10 (c)). Phase segregation was the expected 

outcome due to the unfavourable van der Waals TBP-TCNQ mixing; however, 

the opposite dipoles carried by the two species make the formation of a one-

molecule-thick TBP frame around TCNQ islands energetically convenient. In 

our Monte Carlo simulations, this assembly allows to maximise the high “β-

TCNQ cohesive energy”, while the TBP-TBP repulsion results screened by the 

proximity of an opposite dipole. 

Although very simplified, we believe that this model captures the behaviour of 

binary systems, where the components are carriers of opposite charges. Our 

aim was not to reach a detailed explanation of the complex process leading to 

mutually induced charge transfer and the consequent formation of an organic 

salt, but rather to give a qualitative description of the observed assembly. 

Indeed, our model further confirms that the formation of β-TCNQ islands 

decorated by a rim of TBP molecules requires both molecules to carry a dipole, 

whose sign is the result of the charge transfer direction with respect to the 

metal substrate.   

 

4.7 Conclusions  

In this Chapter the supramolecular self-assembly of codeposited TBP and 

TCNQ molecules on Au(111) was characterised by means of STM techniques 

and theoretical modelling. 
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The self-assembly showed a well-defined phase segregation behaviour, where 

both species have the tendency to form homomolecular domains. However, 

TCNQ was found to follow two different organisation patterns: the first 

producing an extended H-bond coordinated network (α-phase, already 

observed after deposition of TCNQ alone), the second being characterised by 

the formation of islands decorated by a rim of TBP molecules (β-phase). 

We demonstrated how the formation of the latter structure could only be 

explained if both TBP and TCNQ are subjected to charge transfer from and to 

the surface, respectively. In other words, the presence of TBP molecules was 

found necessary to enable the otherwise forbidden charge transfer from 

Au(111) to TCNQ, which constitutes an indirect (and further) confirmation of 

the donor nature of TBP. Here, uncommonly enough, the source of charge 

migration was not related to intermolecular charge transfer occurring between 

donor/acceptor couples [150,151], but was rather originated from a surface-

mediated charge transfer. This means that the charge transfer from TBP donor 

molecules locally decreases the surface work function, allowing TCNQ to 

oxidise the Au(111) surface. In addition, we also demonstrated the formation 

of TCNQ-Au organic salt upon segregation of Au adatom in the molecular 

assembly, as confirmed by STM experiments and DFT calculations and 

consistently with previous findings. We note that the observation of 

unexpected self-assembly patterns can be actually interpreted as a first 

indication of charge transfer at the metal-organic interface, as for the 

anomalous coarsening of TBP discussed in Chapter 3. 



 

Chapter 5 

Organic substituted borazines: 
“Magic” clustering after surface 
mediated deprotonation 
 
 

 

 

 

 

The design of novel molecular building blocks is the baseline for the 

fabrication − via self-assembly − of nanostructured materials with selected 

properties and functionalities. This evolutionary approach has emerged only in 

the last couple of decades, when the introduction of STM microscopy allowed 

to atomically resolving the organisational behaviour of molecules adsorbed on 

various substrates. However, this hardly represents a novelty, since the design 

and production of “self-assembling bricks” is routinely performed in many 

biological processes [2], where the levels of complexity reached are still hardly 

understood. Learning from nature, the variety of covalent bonds that carbon 

atoms can shape allows for the realization of molecular structures with very 

different chemical and physical properties. In particular, the addition of 

heteroatoms or heterogroups to hydrocarbon-based architectures is the most 

effective way to add specific functionalities to a single molecule and –

subsequently − to promote the formation of well defined supramolecular 

structures, driven by highly directional intermolecular interactions. 
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In this Chapter we will present for the first time the bottom up fabrication of 

borazine-doped nanostructures on metallic surfaces and their joint theoretical 

and experimental characterization. Here, the molecular building blocks are 

organic-substituted borazine molecules, in which the addition of a hydroxyl 

moiety allows for deprotonation on the reactive Cu(111) substrate. The 

electrostatic repulsive interactions following deprotonation are responsible for 

the self-assembly into small “magic” clusters of 7, 10, 11, 12, and 13 

monomers, in contrast with the large close-packed islands we observe for not-

acidic borazine molecules.  

The experimental picture has been rationalised by our ad hoc kinetic Monte 

Carlo model, which shows that the observed supramolecular organization can 

be explained only in terms of a fine balance between van der Waals and 

electrostatic interactions. This delicate, yet robust equilibrium of forces pushes 

the extent of the self-organisation beyond the nearest neighbour length scale.   

The study presented here is the result of the collaboration with Dr Simon 

Kervyn, Jonathan Tasseroul, Prof Davide Bonifazi (who prepared and applied 

the protocols for the chemical synthesis of the molecules, Université de 

Namur), Dr Nataliya Kalashnyk, Ben Moreton and Prof Giovanni Costantini 

(acknowledged for the STM characterization of the metal-organic system, 

University of Warwick) and has been partly presented in a recently published 

paper [152]. 
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5.1 Borazine and boron nitride as heterogroups in hydrocarbons 

Carbon chemistry constitutes the natural playground for the development of 

novel chemicals, which can be tailored − with virtually no limits − to display 

selected structural, electronic or other physical properties. Among the many 

carbon-based allotropes and compounds, polyaromatic hydrocarbons are of 

particular importance because of their excellent conductivity and interesting 

optical properties. These characteristics are particularly valuable in the field of 

organic optoelectronics, where the availability of new π-electronic materials is 

fundamental for the efficient realisation of devices like organic light emitting 

diodes (OLEDs) and organic field effect transistors (OFETs) [8,41,131,132]. To this 

aim, polyaromatic hydrocarbons have been functionalised with hydrophilic or 

electron donor/acceptor groups in order to adjust their solubility, solid-state 

packing and electronic properties. 

Recently, the substitution of carbon-carbon sp2 couples (C=C) with 

isoelectronic heteroatom pairs has emerged as an effective doping strategy, 

opening up the possibility of tuning both electronic and mechanical properties 

of polycyclic hydrocarbons. For instance, C=C units can be replaced with 

boron nitride (BN) pairs to give isostructural and isoelectronic molecules 

bearing strong intrinsic dipoles and displaying larger HOMO-LUMO gaps, 

with consequently different photophysical properties [153,154]. 

Boron nitride is found to form all of carbon polymorphs in the solid state (e.g., 

graphite-like α-BN, tetrahedral diamond-like β-BN and wurtzite, BN-

nanotubes) and it has also very similar mechanical properties. On the other 

hand, the large electronegativity difference between boron and nitrogen 

reduces the covalent character of their bond, which translates into a dramatic 

reduction of α-BN conductivity, as revealed by its large band gap energy 

located in the UV region. For this reason, the BN benzene counterpart, known 

as borazine (B3N3H6, Fig. 5.1) [155], is being considered with its oligomers as a 

suitable building block for BN-ceramics, thin-film insulators, LEDs and lasing 

mediums for UV-lasers [156,154,157,158]. 
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Figure 5.1 Benzene (right) and its isostructural/isoelectronic inorganic equivalent 
borazine (left). 

However, the high susceptibility of the B−N bond to hydrolysis has 

considerably hampered the development of borazine-based devices. In order to 

overcome this issue, we have designed hydrolysis-resistant borazines which are 

promising UV-emitting materials for application in optically active layers [159]. 

The unprecedented stability of this novel class of hybrid BN compounds is 

ascribed to their functionalisation with bulky aromatic moieties, which are able 

to screen the B−N bonds from incoming water molecules. Moreover, the 

organic substitution leads to unique crystallisation patterns, owing to spatial 

proximity and intermolecular interactions between the π conjugated moieties in 

the molecular solid [160]. Similar effects, i.e. molecular recognition driven by π 

stacking, are expected to occur also in the two-dimensional self-assembly of 

hybrid BN-organic molecules on metal surfaces, which is the object of the 

study presented here. Although mostly unexplored, the analysis of the self-

organisation of borazine layers could help understand and engineer new 

functional materials.      

 

5.2 Synthesis of hybrid BN-organic molecules 

While showing desirable optical properties, borazine was also proven to act as 

a flexible molecular hub, since two different moieties could be selectively 

attached to boron or nitrogen atoms [160].  

We present here a brief description of the synthetic protocols developed by 

Dr Simon Kervyn and Jonathan Tasseroul (Université de Namur) for the 
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production of the borazine derivatives used in this work, which is functional to 

introducing their structure and nomenclature. The synthesis is conducted 

following a simple one-pot procedure, where the reaction of boron chloride 

(BCl3) with aminobenzene (aniline) yields B-trichloro-N-triphenylborazine. 

The product can be treated afterwards with alkaline-derivative of mesitylene 

(1,3,5-trimethylbenzene) to give B-trimesityl-N-triphenylborazine, here 

identified for simplicity with the index 1 (cf. Scheme 1 below; we will refer to 

this molecule throughout the discussion either as molecule 1 or borazine 1). 

 

 
Scheme 1 Top: protocol for the synthesis of hydroxyl- and methyl- borazines 2 and 3. 
Bottom: chemical structure of trimesityl-borazine 1 (left) and X-ray diffraction 
molecular configuration of 2 (right) (colour code: blue N, red O, yellow B, grey C). 
Courtesy of Dr S. Kervyn. 

Molecule 1 has shown exceptional stability to hydrolysis in water solution, due 

to sterical screening of the mesityl (Mes) groups. In fact, X-ray structure 

analysis revealed a quasi-perpendicular arrangement of the aryl moieties that 

constrains the ortho-methyl groups on top of the boron atoms, effectively 

preventing possible nucleophilic reactions with water (Fig. 2). Furthermore, 
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borazine 1 was found to display radiative emission with spectral features below 

300 nm (i.e., conserving the UV-emitting properties of pure hexagonal BN), 

which makes this molecule a candidate active material for the fabrication of 

electroluminescent layers [159].   

Asymmetric borazine derivatives, bearing single hydroxyl (−OH) moieties, 

were synthesised to investigate the effect of an added acidic character upon 

deposition on a relatively reactive metal surfaces. In a similar manner to the 

experimental protocol for the synthesis of molecule 1, the hydroxyl borazine 2 

derivative was obtained upon reaction of boron chloride with aniline and 

successive addition of two molar equivalents of alkaline-Mes and water 

(MesLi, see Scheme 1). An asymmetric non-acidic borazine (identified by the 

index 3) was also synthesised to serve as a test molecule in comparative metal 

deposition experiments, where the B−OH terminal of 2 was replaced by a 

methyl (B−CH3). 

 

 
Figure 5.2 Spacefill atomic models of borazine 1 (left) and 2 (right) with colour code: 
light grey H, grey C, pink B, light blue N, red O. 
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5.3 STM analysis of borazine 1 deposited on Cu(111) 

We show here the results of the STM characterization of the system 

borazine 1/Cu(111) conducted by Dr Nataliya Kalashnyk (University of 

Warwick). The nanostructures obtained upon room temperature deposition will 

be further studied by means of classical molecular dynamics. A detailed 

description of the experimental procedure and of the theoretical modelling will 

be provided before the respective discussions.     

The experiments were carried out using a commercial low temperature STM 

equipment (Createc) under ultra high vacuum conditions (typical base pressure 

of the STM chamber of 4×10-11 mbar). The clean Cu(111) surface was prepared 

via repeated Ar+ sputtering cycles and successive annealing at 870 K. Before 

deposition, the molecules (in the form of crystal powder) where fully degassed 

under high vacuum. The deposition on the Cu(111) crystal was obtained from 

thermal sublimation by molecular beam epitaxy (using a Knudesen cell 

evaporator). The metal substrate was maintained at 300 K during the deposition 

and then quenched to 77 K for the imaging process. All the measurements were 

obtained with chemically etched tungsten tip in the constant current mode 

(typical values for the tip/sample bias V = 1.8 V and for the tunneling current 

I = 4×10−11 A). 

The deposition of borazine 1 reveals the formation of highly ordered islands for 

any sub-monolayer coverage (Fig. 5.3). Each single monomer appears like a 

group of three bright bulges arranged in a slightly distorted triangular shape, 

where each blob is attributed to a Mes group [161,162], which are bulkier and 

richer in electrons. The collective tiling pattern of the triangular features 

generates rows in which each unit is flipped upwards or downwards with 

respect to the neighbouring one (cf. Fig. 5.3 right) and adjacent rows are 

related by a C2 rotation.  
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Figure 5.3 Left panel: high resolution STM topography of borazine 1 deposited on 
Cu(111) reveals its highly ordered self-assembly. Right panel: close-up view of the 
layer structure where the single molecules are indicated by up- (green) or down-
flipped (grey) triangles arranged in rows. The unit cell of the assembly is shown in the 
bottom-right corner. 

The resulting unit cell contains four molecules arranged in a quasi-square 

geometry (a = 23.8 Å, b = 24.3 Å), which bears no registry with the three-fold 

symmetric (111) transition metal surface. This suggests a supramolecular 

organisation primarily driven by intermolecular interactions. 

 

5.4 Molecular dynamics model for adsorbed borazine 1 

The inherent complexity of metal-organic systems requires a detailed 

description at the atomistic level in order to understand the processes involved 

in the self-assembly mechanisms. The necessary information can only be 

obtained by combining experimental and theoretical tools.  

To this aim, molecular dynamics calculations were carried out to achieve a 

better resolution of the self-assembling motif of borazine 1, primarily by 

determining the adsorption conformation and by atomically resolving the 

intermolecular interactions network. Experiments and theory will be integrated 

to obtain a comprehensive description of the system. 
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5.4.1 Technical details 

Classical molecular dynamics simulations were carried out with the LAMMPS 

package [105], using the Universal Force-Field (UFF) to model the geometry and 

the intermolecular interactions of organic-substituted borazine 1 [163].  

Interactions at the metal-organic interface were modelled accordingly to a 

semiempirical force-field fitted from desorption experiments and MP2 

calculations of simple hydrocarbons adsorbed on Au(111) [69]. This force-field 

parameterisation was assumed to remain valid also for the Cu(111) surface, 

since adsorption energies of π-conjugated hydrocarbons − e.g., ethylene and 

benzene − on Cu(111) [107] and Au(111) surfaces [18] are nearly equivalent.  

Structural relaxation of the metal substrate was assumed to have negligible 

effect on the molecular self-assembly [109], hence, the position of the metal 

atoms was kept frozen by setting all their force components to zero. 

B-metal and N-metal interactions were accounted for by a single set of 

Lennard-Jones parameters, which was enough to reach excellent agreement 

between the simulated structures and the experimental ones (cf. e.g., Fig. 5.4 

and 5.5). All calculations were carried out in the canonical ensemble, the 

temperature control being set with a Langevin thermostat. Particle mesh Ewald 

was used to compute long-range electrostatic interactions based on a 1 Å mesh, 

and the cutoff for non-bonded terms was set to 10 Å. The Newton equation of 

motion was integrated with the Verlet algorithm [64]. 

 

5.4.2 Modelling a borazine 1 layer 

The steric hindrance between the lateral substituents of molecule 1 turns out 

not only to prevent hydrolysis of the B−N bonds (by screening incoming water 

molecules), but also to decouple the borazine ring from the substrate. In fact, 

the spatial congestion prevents any rotation of the aryl and mesityl groups, 

which are constrained to lay perpendicular to the surface. 
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The configuration of the adsorbate was determined by molecular dynamics 

simulation of a single adsorbed molecule. This has shown that the mesityl 

groups are operating as a “tripod” lifting the borazine core ~5 Å above (and 

parallel) to the Cu(111) surface. Moreover, the calculated distance of 6 Å 

between the benzene rings of the mesityl groups well matches the one 

measured between the centres of the three bright bulges associated to a 

monomer in the STM images (Fig. 5.4). 

 
Figure 5.4 Atomistic and schematic models for molecule 1 superimposed on a STM 
close-up image. The three bright spots constituting a molecule are clearly assigned to 
the mesityl groups (black circles) in the spacefill all-atom model.  

It is worth noting that the absence of reactive heterogroups (e.g., carboxyl [164], 

nitrile [165]) that would be able to strongly interact with the metal, together with 

the smoothness of the potential energy surface of Cu(111) [96] allow for the high 

mobility of the adsorbates even at low temperature (~10−9 m2/s at 77 K, as 

estimated by our classical model). This result is supported by our STM 

experiments, where isolated monomers are never observed, indicating that the 

hopping between degenerate adsorption sites is highly activated even at the 

liquid nitrogen temperature. Following these observations, we can conclude 

that the substrate is playing a negligible role on the self-assembly of borazine 

1, which instead arises most likely from van der Waals attractive forces.   

1.5nm
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In order to investigate the morphology of the observed close-packed self-

assembled layer, a molecular island composed of 36 borazine 1 units was 

positioned on top of a four layer metal slab yielding a (28.8×28.8 nm2) surface 

unit cell, periodically repeated. The initial configuration of this larger structure 

was obtained by observing the coordination mechanisms of smaller clusters 

(from dimers to hexamers) and by extending their basic principles to larger 

aggregates. The system dynamics was computed for 2 ns at 250 K (to allow for 

structural relaxation), followed by slow cooling and equilibration at 77 K 

(8 ns), resulting in an equilibrium configuration that nicely reproduces the 

features observed in our STM topographies (Fig. 5.5, right). 

 
Figure 5.5 Calculated structure (left) and its superimposition on the experimental 
borazine 1 monolayer (right, the shaded rectangle corresponding to the experimental 
unit cell). The molecules are strongly interdigitated owing to π-π stacking interactions. 

Having a closer look at Fig. 5.5, it is clearly visible that mesityl and phenyl 

groups of neighbouring molecules are strongly interdigitated, producing a gear 

bearing-like structure. This distinctive self-assembly is the result of molecular 

structure-directed growth (i.e., driven by molecular recognition) resulting in a 

regular network of offset-parallel π stacking interactions [160], with an average 

π-π distance of 3.50 Å. The observed self-organization is a direct consequence 

of the C3 symmetry of molecule 1 and gives an estimated energy gain of 

roughly 0.10 eV for each intermolecular contact. 

1.5 nm 
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5.5 Borazine 2 on Cu(111) 

In a second set of experiments, borazine 2 was deposited on the Cu(111) 

surface under the same operative conditions adopted for molecule 1.  

At variance with the faultless two-dimensional crystals obtained from the 

deposition of molecule 1, hydroxyl-borazine 2 self-organises into a variety of 

small clusters, in which the single molecule appears like two aligned bright 

bulges. These aggregates are imaged in the STM topographies as recurrent and 

well-defined structures, even though they do not always show regular 

geometries and can thus be considered as different isomers. 

 
Figure 5.6 Isolated clusters of borazine 2 observed at low molecular coverage. The 
perfect hexagonal geometry of regular heptamers is highlighted in panels b and c.  

The only exception to the above is observed in the smallest and most 

frequently observed cluster, which is always composed by a central monomer 

surrounded by six neighbours (heptamer or 7-mer) arranged in a tight 

hexagonal structure. The dark spot appearing slightly off the centre of the 

regular 7-mer shows that the cluster fine structure is preserved upon rotation, 

thus, all the observed hexagonal clusters are not different isomers but the same 

kind of aggregate (cf. Fig. 5.6 (c)). 

The observed clusters sizes range from a minimum of 7 to a maximum of 25 

molecular units and they are substantially unaffected by an increase in the 

coverage up to 0.3 ML, indicating that the usual Ostwald ripening [112] does not 

occur for borazine 2 (i.e., small structures are not succumbing in favour of 

larger ones, Fig. 5.7). 

c a b 10 nm 6 nm 4 nm 
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Figure 5.7 Series of STM images for increasing molecular coverage (from left to 
right) showing no coarsening of borazine 2 clusters.  
 
 

5.5.1 Atomistic model 

Since individual molecules are never observed, the self-assembly of molecule 2 

in sparse aggregates is not expected to arise from limited mobility caused by 

chemisorption (i.e., kinetically hindered growth). Nevertheless, copper is 

known to establish coordination bonds with carboxyl moieties and one might 

expect to observe similar interactions with hydroxyl groups [164,166]. In order to 

exclude that chemisorption could be at the origin of the molecular clusters, we 

studied the adsorption of borazine 2 by means of DFT with the aim of 

resolving the metal/molecule binding mode.   

 
Figure 5.8 VdW-DF equilibrium energy structure of a single adsorbed hydroxyl-
borazine 2 (left: top view, right: side). The bulky aryl moieties are effectively 
confining the borazine core and the OH group well above the Cu(111) surface. 

 

20 nm 20 nm 20 nm 
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The quantum mechanical modelling was implemented at the DFT level with 

the plane-wave package Quantum ESPRESSO [99]. The calculations were 

performed using ultrasoft pseudopotentials [79] and the PBE-GGA exchange-

correlation [100] within the non-local vdW-DF formalism [74]. The kinetic energy 

cutoff for the wavefunctions and the electron density was set to 0.41 and 

4.1 keV, respectively. The structure of the metal-organic system was relaxed 

until all the atomic forces components were less than 0.10 eV/Å, with the 

copper surface being modelled by a three-layer slab (equivalent to a 12×12 

supercell). The Brillouin zone was integrated over a 3×3×1 Monkhorst-Pack 

grid. The size of the orthorhombic unit cell was sufficient to allow 10 Å 

vacuum between periodic replicas and the Bengtsson dipole correction was 

applied [102,103] to correct for the non-periodicity of the slab geometry.  

 
Figure 5.9 pDOS of the isolated adsorbed borazine 2 (red fill) compared to the total 
DOS of the molecule in gas phase (blue), where the Fermi energy of the metal-organic 
system was set as the origin. The frontier molecular orbitals show no significantly 
modifications upon adsorption.    

The calculated adsorption equilibrium configuration of molecule 2 reveals that 

the bulky mesityl groups are effectively decoupling the borazine core from the 
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Cu(111) top-layer even after the addition of a more reactive hydroxyl moiety. 

Similar to the borazine 1 case, the distance between the molecule’s centre of 

mass and the surface is ~5.4 Å (~3.0 Å vacuum space) with the borazine core 

slightly inclined towards the surface and tilted in the direction of the missing 

mesityl group (Fig. 5.8). This clear physisorption picture is further supported 

by the relatively small adsorption energy (~0.87 eV) and by the analysis of the 

pDOS of the adsorbate, where no hybridization or broadening of the frontier 

molecular orbitals is observed (Fig. 5.9). 

Having established the weak character of the molecule-surface interactions, we 

next extended our analysis to the molecular clusters. Due to the large number 

of atoms required to model the structure of a whole aggregate, the use of 

classical molecular dynamics was necessary to contain the computational cost. 

 
Figure 5.10 Comparison between the calculated minimum energy structure of the 
regular heptamer and its experimental appearance (left). The detailed features visible 
in the STM image are nicely reproduced by the ball-and-stick model (black circles 
correspond to Mes moieties). 

By adopting the same protocol described in Section 5.4.1, we focused on the 

hexagonal 7-mer with the aim of studying the intermolecular interactions at the 

atomic level. The initial configuration of the 7-mer was inspired by the high-

resolution STM images and then simulated by heating (250 K for 1 ns) and 

quenching (77 K for 5 ns) cycles to allow for structural rearrangement. The 

calculated minimum energy configuration perfectly corresponds to experiments 

1.0 nm 
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(Fig. 5.10). The mesityl groups in the atomistic model are located in 

correspondence of the bright spot in the STM images (confirming the two-

bulge appearance of the molecule) and the hexagonal geometry of the 

aggregate is nicely preserved. Furthermore, the cluster structure reveals an 

interdigitation of the aromatic substituents similar to that observed for 

borazine 1, indicating that the collective organisation is still driven by π-π 

stacking. However, attractive interactions alone are not sufficient to explain the 

sparse self-assembly of borazine 2, particularly when no strong coordination 

with the metallic surface is expected to hinder the molecular planar 

diffusion [11].  

On the basis of the indications reported above, it clearly appears that the 

presence of a competing interaction is required to achieve the formation of the 

observed bubble-phases [92,93]. This hypothesis will be substantiated during the 

rest of the Chapter, where deprotonation of the hydroxyl moiety of borazine 2 

will be identified as the source of electrostatic repulsion. Our arguments will be 

based on the analysis of the observed cluster size population followed by its 

interpretation as a delicate interplay between repulsion and attraction, with an 

ad hoc Monte Carlo model.  

 

5.5.2 “Magic” clusters from competing interactions 

The interpretation of the distribution of cluster sizes can help the rationalisation 

of “condensation problems” − in terms of mechanisms of aggregation − by 

capturing their underlying physics [166]. For instance, a size population 

displaying sharp features or discontinuities may reveal either enhanced or 

reduced stability of the correspondent elements, in connection with the 

interactions regime of the system under study. 

The borazine 2-cluster size distribution was obtained by gathering statistics 

from an extensive sample of STM topographies, where the total number of 

analysed clusters exceeds the 300 units. Remarkably, the calculated population 
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shows well-defined peaks for “magic” clusters counting 7, 10, 11, 12 and 13 

molecules (Fig. 5.11). 

 
Figure 11 Normalised population of cluster sizes obtained from STM images. 

The 7-mer is the most abundant group with a normalized frequency of 28%, 

followed by the 13-mer with 20% of the total counts. On the other hand, the 

population of clusters bigger than the 13-mer is very small, showing a first 

minimum for the 14-mer and eventually fading for sizes beyond the 17-mer. 

The picture emerging from the above considerations is rather different from the 

well-known phase coarsening process driven by van der Waals interactions, 

further suggesting that repulsive forces have to play a role in the evolution of 

the observed statistics. In this regard, we have already shown in the previous 

Chapter that simple Monte Carlo simulations on a discrete hexagonal lattice 

lead to large, single molecular islands for any appropriate van der Waals 

bonding force in the experimental coverage/temperature range (i.e., the self-

assembling behaviour observed for molecule 1 can be explained in these 

terms), whereas sparse phases are the expected product of systems where 

competing interactions are acting on different length-scales. 
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We note that the hydroxyl moiety confers an acidic character to molecule 2, 
which leads us to hypothesize that surface-mediated deprotonation might be the 

origin of repulsive interactions. Deprotonation reactions have been observed 

(directly or indirectly) several times [164,167] on the relatively reactive copper 

terraces (possibly mediated by Cu adatoms [168,169]), leading to the formation of 

adsorbed molecular anions when no coordination with the metal occur [27]. 

These charged adsorbates are then screened by the surface (i.e., following the 

standard image charge description) and interact with each other as mutually 

repulsive negative electrostatic dipoles, supporting our tentative explanation 

(see Chapter 1, Section 1.3). 

Further evidence for the presence of repulsive interaction terms is made 

available by STM experiments conducted at higher molecular coverage. For 

longer deposition times of hydroxyl-borazine 2, the surface density of clusters 

increases, while the cluster size and shape distributions remain essentially 

unaffected (see Fig. 5.7). This is brought as a clear indication that the phase 

coarsening must be limited to the clusters sizes allowed by the ratio between 

repulsive and attractive interactions acting in the system. Beyond a “critical 

coverage” (about 0.3 ML), further exposure of the Cu(111) surface to the 

molecular beam at the same deposition rate (i.e., same mass flux) does not lead 

to an increased molecular surface coverage. We interpret this phenomenon as 

the combined result of the relatively low molecular adsorption energy (due to 

the decoupling effect of the mesityl substituents already described for 

molecule 1) and to the high density of molecular dipoles reached at the critical 

coverage. We find that the adsorbate density can be increased above the critical 

value (0.3 ML) only for higher molecular deposition rate. In this case, we 

observe coexistence of extended compact molecular islands with a distribution 

of isolated clusters similar to that described for lower coverage. We expect the 

molecules located within the extended islands to be mostly neutral (i.e., still 

protonated), consistent with a lower degree of dipole-dipole repulsion relative 

to van der Waals attraction. The fact that this result can be obtained only at 
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high molecular deposition rate points towards a possible kinetically determined 

origin of this phenomenon [11], which goes beyond the scope of our analysis.  

Finally, we note that the self-assembly of the non-acidic reference borazine 3 

invariably produced large islands, similar to the ones obtained after deposition 

of molecule 1. This evidence is brought as a strong indication that the 

formation of sparse clusters is driven by electrostatic repulsion after 

deprotonation of the B−OH moiety, which cannot happen for the B−CH3 of 

molecule 3. The discussion above lists just a first set of arguments presented to 

support our hypothesis and it is functional to introduce the detailed analysis of 

the system borazine 2/Cu(111) that will be disclosed in the next Section. 

 

5.6  A model for the “magic” clustering 

Further employment of atomic-scale modelling tools to improve our 

comprehension of the borazine 2 self-assembly would be mostly ineffective, 

because of the inherent limits of the available theories and the huge size of the 

relevant systems (in terms of total number of atoms). 

The argumentation developed up to this point can be readily translated into a 

larger scale model, which will still suffer from lack of precision, but which will 

enable us to test and validate our tentative description by appraising its final 

outcomes. The information gathered from the STM images and the results of 

our molecular dynamics simulations can be incorporated into a model where a 

single molecule is pictured as a generic particle allowed to bind with up to six 

neighbours, accordingly with the three-fold symmetry dictated by the 

hexagonal borazine core.   

The first trivial consequence of this assumption is that the 7-mer is determined 

as the first energetically favourable “magic” cluster, in which all the molecules 

are bound to three neighbours, maximizing the negative van der Waals energy. 

The formation of an 8-mer and of a 9-mer would require the successive 

addition of one or two molecules allowed to bind with two others only, causing 
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the new additions to be more “volatile” as demonstrated by the nearly null 

frequency count for these cluster sizes (cf. Fig. 5.11). 

The 10-mer should be another “magic” cluster since it is the next aggregate in 

which all the molecules can bind with at least three neighbours. In fact, the 

increased frequency count for the 10-mer reflects the improved van der Waals 

stabilization whereas its low incidence relatively to the 7-mer (about one third) 

constitutes a further indication of the presence of competing interactions. Since 

the hydroxyl moiety shows a definite acidic character (pKa: ~9), molecule 2 

can likely undergo deprotonation with the formation of standing negative 

electrostatic dipoles due to the metal screening. Deprotonation is predictably 

favoured by the induced polarisation of neighbouring molecules [56], which 

stabilise the resultant surface dipole by screening. Borazines embedded inside 

an aggregate are the ones expected to release a proton, hence the 10-mer is the 

first cluster allowed for multiple deprotonation given that it the first cluster 

counting two non-peripheral units (Fig. 5.12). We note that any pair of 

standing dipoles generated by a pair of charged molecules will be engaged in a 

repulsive long-range energy term (scaling as 1/R3, where R is the distance 

between dipoles) that can be readily implemented in our model. The great 

number of conformational isomers observed for the 10-mer is consistent with 

the presence of dipolar repulsion (i.e., multiple deprotonation). The same 

effect, a sort of “electrostatic melting”, has been revealed from STM images 

also for the 11-mer and 12-mer populations. 

The high frequency count for the 13-mer can be explained by using similar 

arguments. This is the first “magic” cluster within which multiple 

deprotonation can occur for two molecules that are not nearest neighbours 

(Fig. 5.12), leading to a consistent reduction of the repulsive energy as revealed 

by the large experimental population. 

The next in the series, namely the 14-mer, is the only cluster allowed to 

stoichiometrically split into two 7-mers. This decay mechanism might be 

enforced by the repulsion between the two dipoles included in the 14-mer and 
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would be a viable explanation for its small population and in the same time for 

the very high incidence of 7-mers (Fig. 5.11). 

We conclude the analysis of individual clusters by noting that pairs of 

deprotonated non-nearest neighbour molecules might be enclosed in any 

cluster bigger than the 14-mer. Therefore, the number of ions per aggregate 

could exceed the number of two, with the number of dipole pairs scaling 

quadratically with the cluster size. Consistently, the observed population of 

clusters larger than the 16-mer is almost null, since the repulsive energy 

between several couples of dipoles destabilises larger aggregates.   

Following this approach, we can univocally assign an energy value for each 

cluster size in terms of attractive nearest-neighbours and repulsive 1/R3 

interactions. These energies can be transformed into transition rates suitable to 

calculate the evolution of the cluster size population by means of a kinetic 

Monte Carlo (KMC) scheme, where couples of clusters can exchange single 

molecules. A detailed description of the model will be presented in the next 

Section together with the obtained results. 

 

5.7 Clustering model: Implementation and results 

To rationalize the clustering of molecule 2, the discussion presented in the 

previous Section was translated into a simple model Hamiltonian based on a 

discrete hexagonal mesh, where the energy terms involved are van der Waals 

and dipolar interactions only. 

We assume that the energy of each cluster size has a specific value, resulting 

from the number of intermolecular “bonds” between neighbour molecules 

(each one giving a negative contribution) and the number of molecular ions. 

We impose that repulsive energy within a cluster will be present only if the 

aggregate is large enough to accommodate more than one “internal” molecule. 

These molecules can undergo deprotonation (switching on the positive dipolar 

repulsion term) due to the polarisation of their neighbours, which is itself 

contributing to the total cluster energy with a negative screening contribution. 
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The evolution of the system is computed starting from a uniform cluster size 

distribution, which is then updated by allowing single molecule transfers 

between clusters pairs. The acceptance and the rejection of these Monte Carlo 

moves is controlled by a standard Metropolis scheme [83] performed in a loop 

that terminates when the equilibrium size population is reached. A reference 

temperature of 200 K was used in the Boltzmann acceptance rate for all 

calculations, since it is reasonable to assume that the experimental cluster size 

distribution represent the statistics obtained at temperatures high enough to 

allow for molecular diffusion. 

In order to determine an energy value for each cluster size, the model has to be 

provided with a set of three parameters describing the attractive van der Waals 

term σ between nearest neighbours, the dipolar repulsion µ1 and µ2 for first and 

second neighbouring ions (related by inverse cubic scaling with relative 

distance) and a negative screening term β to account for the polarisation 

response of each molecule surrounding an ion.  

 
Figure 5.12 Schematic models of molecular clusters (from the 7-mer to the 14-mer), 
where the geometry is constructed assuming close-packed arrangement and on the 
basis of the STM observations. Charged molecules are represented by red filled circles 
(blue for neutral molecules). The dotted frames indicate the “magic” clusters 
corresponding to the main peaks in the histogram in Fig. 5.11, which represent the 
first compact cluster (7-mer), the first compact doubly charged cluster (10-mer) and 
the first cluster with non nearest neighbour charged molecules for (13-mer). 
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The typical conformations of clusters with size from the 7- to 14-mer were 

derived from STM images and are shown in Fig. 5.12, where the cluster 

morphologies are approximated by a simple hexagonal close packed 

connectivity. The total van der Waals contribution to the cluster energy is then 

immediately calculated by counting the number of intermolecular connections 

present in the cluster scheme in Fig. 5.12 (each one brings one σ to the sum). 

We assume that a molecule nested in an aggregate can undergo deprotonation 

when it has a minimum of four screening neighbours, implying that the 

formation of an ion has a fixed energy cost of 4β. In addition, when multiple 

deprotonation sites are available, the arrangement of the molecular ions within 

the cluster has to correspond to the minimum energy one. Finally, triple 

deprotonation is not allowed for the cluster sizes considered (i.e., for cluster 

from the 4- to the 18-mer). One last parameter is included in the model to 

capture the rare occurrence of 14-mer and the exceptionally high 7-mer 

population observed in the experiments. To this aim, we occasionally allow a 

14-mer cluster to split into two 7-mers accordingly to some small decay 

factor f.   

The van der Waals interaction parameter σ was computed from molecular 

dynamics simulations, performed according to the procedure illustrated in 

Section 5.4.1. The value was easily calculated as σ = (E7 +6ES −7E1)/12 = 

−0.06 eV, where E7 is the total energy of a 7-mer adsorbed on the surface, ES 

the total energy of the metal slab alone and E1 the one of a single adsorbed 

molecule (the unit cell being equal for all the calculations), while the 

denominator is determined by the number of intermolecular contacts (e.g., 

twelve in the 7-mer case). Furthermore, the atomistic structural optimization 

was functional to the estimation of the repulsive Coulomb parameters, since 

accurate measures of the adsorption geometry and the intermolecular distances 

were made available for the calculation of µ1 and µ2 by means of standard 

image charge model and dipole-dipole energy equation. Once determined the 

hydroxyl-surface distance (dads = 4.81 Å) and the image charge plane 

displacement for the Cu(111) surface (z = 1.20 Å [170]), the dipole length value 
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was calculated as l = 2(dads − z) = 7.22 Å, while the distance between the 

hydroxyl moieties of two nearest neighbour molecules was assumed to be 

equal to the minimum distance between interacting dipoles (d = 15.00 Å, Fig. 

5.13). 

 
Figure 5.13 Schematic representation of two deprotonated molecules adsorbed on the 
Cu(111) surface (blue box). The red filled circles represent the hydroxyl radicals while 
the empty ones indicate the image charges within the metal bulk, generating the 
negative surface dipole. The distance between the radicals d is 15.00 Å and the dipole 
length l is 7.22 Å. The dotted line indicates the position of the image charge plane. 

From the geometry reported above and consistently with the cluster 

conformations reported in Fig. 5.12, the repulsion parameters were easily 

determined with values µ1= 0.11 eV and µ2 = µ1 / 33/2 = 0.02 eV for the first- 

and second-neighbour terms. The screening energy β and the decay ratio f were 

left as free fitting parameters of the model, with optimised values 

β = −0.084 eV and f = 0.001 (i.e., the splitting rate of a 14-mer into two 7-mer 

is set to 0.001 times the decay rate of the competing reaction leading to the 

detachment of a single molecule and a 13-mer). 

The calculated cluster size population nicely reproduces the experimental one 

(cf. Fig. 5.14), leading us to conclude that the competition between van der 

Waals attraction and dipole induced repulsion is responsible for the observed 

sparse clustering of molecule 2. Even though our modelling approach is not 

expected to go beyond a qualitative description, we have shown that the main 

traits of the “magic” clustering can be captured by feeding realistic parameters 
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into a simple aggregation model, if and only if charging effect are accounted 

for. In fact, if electrostatic repulsion was not considered, the model would 

invariably produce large aggregates, following the well-known Ostwald 

ripening process and in full agreement with the self-assembly observed for the 

non-acidic molecules 1 and 3. 

 
Figure 5.14 Comparison between the experimental (red bars) and the calculated 
cluster size population (blue bars) of molecule 2. 

This result suggests the possibility of selectively tuning the cluster population 

(e.g., favouring the occurrence of 7-mers) by adjusting the ratio between 

attraction and repulsion in hypothetical modified borazines. In the next Section, 

we will use our Monte Carlo model to predict the effect of possible 

modifications of the molecular structure. 
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5.8 Towards monodispersion 

The last part of our analysis aims to make use of our KMC model in order to 

identify the properties of this metal-organic system that can be realistically 

tuned to obtain some degree of control on the cluster size population.    

This analysis entails a formidable task, as many structural and physical 

parameters could in principle be varied independently. Their list must include 

the size of the used monomers, the strength of the electric dipole created by 

deprotonation, and the strength of the attractive “contact” energy. Moreover, it 

could be extended to include other variables such as the deprotonation energy, 

the number of detachable protons per monomer, the HOMO and LUMO energy 

level position with respect to the vacuum level, the choice of the substrate and 

its related Fermi energy level, the strength of the “pillow” effect [42] and the 

adsorption coverage. Making reliable predictions across the whole range of all 

these parameters is clearly beyond the reach of our model, which explicitly 

contains only the first three items in the above list. However, it is still very 

interesting to try to isolate those system properties that could control the degree 

of monodispersion while still being both reliably described by our model and 

fully within the reach of realistic experiments.  

The first structural modification examined was the variation of the radial size 

of molecule 2, which would in turn change the distance between deprotonated 

molecules and thus the attraction/repulsion ratio. The molecular effective 

diameter might be increased by the insertion of ethynyl/polyphenyl spacers 

linking the borazine core to the peripheral aryl and mesityl groups. 

However, assuming that deprotonation could still occur, this would result in a 

larger distance between dipoles with the consequent fall of the fast-decaying 

1/R3 repulsion, which is expected to consistently favor the formation of large 

aggregates, reducing the selectivity towards a specific size. On the other hand, 

the reduction of the molecular radius of borazine 2 by substituting its aromatic 

moieties with bulky but shorter isoalkyl/isoalkenyl substituents would 

definitely favor small cluster sizes and thus promote monodispersion. Anyway, 
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we note that the replacement of the aryl moieties, which are accountable for the 

rather strong π-π interactions, would drastically decrease the contact energy 

(thus severely limiting the formation of self-assembled structures).  

Secondly, the intensity of the dipole generated by a molecular ion could be 

adjusted by varying the distance between the hydroxyl moiety and the surface. 

Such distance is thus a parameter acting on the repulsion strength without 

changing the molecular radius (i.e., not changing the van der Waals attraction). 

The lifting of the molecule could be obtained by substituting the methyl 

terminals of the mesityl groups with bulkier ethenyl, iso-propyl or tert-butyl 

fragments, progressively increasing the adsorption distance. The electrostatic 

dipole would consequently increase, since it is proportional to the distance 

between the deprotonated hydroxyl and the image-charge plane of the metal 

surface, and thus strengthen the electrostatic terms, which are proportional to 

the square of the dipole magnitude. This effect could be easily reproduced in 

terms of our KMC model by correcting the dipole intensity with a 

multiplicative coefficient α ∈ [0.85, 1.30] (α = lr / l, where lr is the modified 

dipole length and l = 7.22 Å is the original value calculated for molecule 2). 

We note that − within the selected α range − the variation of the screening 

energy caused by an enhanced dipole strength was determined to be still 

sufficient to balance the accordingly altered deprotonation energy (due to the 

reduced image charge screening). Therefore, we could leave unmodified the 

original assumption for which deprotonation might occur for molecules 

surrounded by four or more others. 

Finally, the attraction/repulsion ratio of adsorbed borazines 2 could be tuned by 

modifying the chemical and electronic nature of the lateral aryl moieties, 

without considerably changing either the radial size of the molecule or its 

distance to the substrate. Essentially, the π stacking interactions due to 

interdigitation of molecules 2 could be weakened or enhanced by introducing 

bulkier branched terminals or different heterogroups (acting as electron-

acceptor or donor) to the aryl moieties. This would turn into the alteration of 

the van der Waals cohesive energy, without affecting the electrostatic terms. 
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Again, this scenario was represented in our KMC model by simply changing 

the van der Waals cohesive energy within the range σr = λ σ with λ ∈ [0.5, 1], 

where σ = −0.06 eV is the calculated value for molecule 2, while leaving the 

electrostatic contributions unchanged.   

The discussion above relies on the reasonable expectation that increasing the 

ratio between repulsive and attractive contributions would yield enhanced 

monodispersion by destabilising clusters containing more than one 

deprotonated molecule. This was readily tested with our KMC model by 

defining a set of values for the two parameters α and λ, acting on the 

electrostatic and van der Waals terms respectively, and by calculating the 

cluster size population as a function of α and λ within their stated range. The 

predicted evolution of the cluster size population is reported in Fig. 15, where 

the 7-mer cluster emerges as the selectively monodispersed species. For 

instance, we find that increasing the molecule-surface distance by as little as 

0.5 Å (i.e., increasing the dipole length by 1 Å) would increment the frequency 

count of 7-mer from ~30% to ~60% (cf. Fig. 5.15 for α = 1.00 and α = 1.15, 

respectively). A similar effect is predicted to occur for a reduced van der Waals 

energy term, with the population of 7-mers exceeding 75% after lowering the 

contact energy to 70% of the value calculated for the original molecule 2 

(Fig. 5.15 bottom). Again, we note that although inevitably qualitative, the 

predictions reported above are attempted relatively to variations of physical 

properties − namely electrostatic scaling and van der Waals energy terms − that 

must follow the hypothesised structural modifications of borazine 2. In this 

regard, it is reasonable to expect that the synergic combination of the two 

investigated approaches can be implemented in real experiments in order to 

compensate for any unexpected limitation in reproducing the proposed 

adjustments, i.e., creating new systems in which the dipole strength and the 

cohesive energy are varied concertedly. Our results brought us to speculate that 

this approach could be applied to obtain a certain control on the self-assembly 

behaviour of metal-organic systems in which electrostatic repulsions are 

produced not only by irreversible processes like deprotonation. 
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Figure 5.15 Top panel: predicted evolution of the “magic” cluster size distribution as 
a function of the relative dipole strength α, where α = 1 corresponds to the original 
borazine 2 system. The graph suggests that monodispersion towards the 7-mer could 
be obtained increasing the adsorption distance of deprotonated borazines. Bottom 
panel: predicted cluster size population as a function of the relative contact energy λ, 
where λ =1 returns the original system. A strongly monodispersed 7-mer population 
could be achieved by decreasing the contact energy between neighbour molecules to 
50% of its original value (see text).  
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5.9 Conclusions 

The investigation presented in this Chapter resolved the self-assembly 

behaviour of molecules subject to irreversible ionisation upon adsorption on 

the Cu(111) surface, with the formation of a distinctive cluster size population. 

We acknowledge previous reports describing two-dimensional [27] and one-

dimensional [26] structures, where repulsion was shown to be strong enough to 

shape the large-scale features of extended supramolecular structures. 

Additionally, arrays of isolated molecules − where electrostatic repulsions 

prevented any assembly − have also been presented before [60,122]. The main 

novelty we presented here is the degree of control of the repulsion-driven self-

assembly, enabled by molecular design, assisted by theoretical modelling and 

verified by STM observations.  This allowed a new balanced midway between 

the two general situations above, illustrated by the assembly of “magic cluster” 

structures due to partial deprotonation.   

Our integrated approach involved the synthesis of novel boron nitride-doped 

materials, i.e., unprecedented borazine molecules prepared by means of a new 

synthetic protocol, allowing the controlled insertion at the B atom centres of 

different functional groups (B−Mes, B−OH and B−CH3 for borazine 1, 2 and 3, 

respectively) within a common molecular framework. This allowed enabling 

selective deprotonation of the (B−OH)-bearing 2 units, introducing long-range 

repulsions on top of essentially the same short-range van der Waals attractions 

acting between B−Mes and B−CH3 substituted, neutral borazines 1 and 3. Our 

goal was to use the on-the-surface deprotonation reactions to generate extended 

repulsive intermolecular forces driving the cluster self-assembly, and then 

check that repulsion controls the system’s behaviour by “null experiments” on 

the neutral control molecule 3.  

The common molecular framework of the investigated unit molecules was 

optimized for efficient core-substrate decoupling by selecting bulky, sterically 

hindering phenyl and mesityl substituents. This caused all the units to behave 

essentially as van der Waals spheres, so that their supramolecular self-



Chapter 5  
 

131 

assembly is predictably guided by intermolecular forces rather than by surface-

molecule interactions.  

STM experiments revealed that for the case of our B−OH molecule 2, the 

interplay of attractive and repulsive forces drives the formation of small 

supramolecular clusters. These clusters reach the optimal net charge for their 

precise shape and connectivity through selective deprotonation, such that only 

one or two molecules in each cluster actually deprotonate. The process yields 

an enhanced statistics for magic cluster size numbers. This result is by no 

means a coincidence, as the size and structure of our unit monomers is such 

that the two opposite interactions (with their different laws of decay with 

distance) approximately balance each other for small cluster sizes. Achieving a 

more complete control on the experimental cluster size distribution after further 

refinement of the molecular structure of the borazine tectons is certainly a 

possibility revealed by our work. Most notably, controlling the degree of 

monodispersion may be not unconceivable from here. This is an important 

point, even though we cannot experimentally investigate it without a full new 

synthesis cycle, which is anyway in process.  
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This thesis addressed the self-assembly of novel carbon-based molecular units 

adsorbed on coinage metal surfaces, using an investigation scheme based on 

multiscale theoretical modelling and scanning tunneling microscopy 

techniques. Starting from the design of specific molecular units, we created 

metal-organic systems where the formation of surface dipoles, upon either 

charge transfer or surface-mediated reaction, could be clearly discerned by 

analysing their effects on the development of supramolecular structures. This 

strategy was applied to different metal-molecule combinations to shed light on 

the mechanisms and identify the factors involved in the formation of strong 

surface dipoles and their influence on the self-assembly motifs. In fact, the 

presence of dipoles generates repulsive forces acting in the medium-long 

range, which oppose the omnipresent attractive dispersion forces between 

molecules and lead to the formation of modulated phases, depending on the 

relative strength of the competing interactions.  

We first investigated the self-assembly behaviour of a modified pyrene 

molecule (TBP) designed to weakly interact with the (111) surfaces of Cu and 

Au. In this case, the molecular electronic structure did not change upon 

adsorption due to the minimal hybridisation with metallic states. Therefore, the 

energy level alignment at the junction could be described by the integer charge 



Outlook and conclusions  
 

133 

transfer model (ICT), meaning that the occurrence of charge migration is 

determined exclusively by the position of the frontier molecular orbital 

relatively to the metal Fermi level. To assess the influence of the choice of the 

molecule-metal combination, TBP molecules were designed to have – upon 

adsorption – an ionisation potential similar to the work function of the chosen 

substrate. The observation of different self-assembly motifs for TBP molecules 

adsorbed on Cu(111) and Au(111) could then be strictly assigned to diverse 

charge transfer effects, since the molecule-molecule and molecule-surface 

interactions are analogous on both surfaces.  

On the Au(111) surface, the anomalous coarsening observed at low coverage 

(i.e., the formation of sparse molecular islands) and the coexistence of small 

and large aggregates at higher molecular deposition were explained as the 

result of the competition between van der Waals attraction and long-range 

repulsion between dipoles generated by reversible charge transfer through the 

metal-organic junction (as rationalised by our Monte Carlo model). 

Conversely, the observation of single compact aggregates for TBP molecules 

adsorbed on Cu(111) was compatible with  the standard Ostwald ripening 

process driven by dispersion interactions, hence excluding charge migration for 

this molecule-metal combination. Therefore, our analysis allowed to clearly 

identify the importance of the choice of the molecule-metal couple in 

determining the occurrence of charge transfer, the formation of interfacial 

dipoles and, eventually, in driving the development of novel supramolecular 

structures. In this particular case, the occurrence of ICT could be activated or 

forbidden by changing the electrode. 

The second investigation analysed the codeposition of TBP with an acceptor 

molecule (TCNQ). Our results demonstrated that the donation of charge from a 

donor species (TBP) could activate charge transfer from Au(111) to TCNQ, 

which would be otherwise forbidden. This is explained in terms of local 

modulations of the electrostatic potential induced by the donor molecules, 

whose effect is to locally reduce the work function of the substrate and thus to 

enable the transfer of electrons from the noble metal to the acceptor molecule. 
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This “induced charge transfer” picture was confirmed by the observation of 

self-assembled structures that could be explained only if both TBP and TCNQ 

were carrying opposite charge, as confirmed by our theoretical models. In 

particular, we observed the formation of several TCNQ islands surrounded by 

single-molecule-thick TBP frames. In these structures, the TCNQ was involved 

in the formation of an organic salt, where positive Au adatoms were 

incorporated in the anionic network with 1:1 stoichiometry in order to screen 

the electrostatic repulsion between negatively charged molecules.  

In our last analysis, we studied the self-assembly of an unprecedented class of 

organic substituted borazine molecules deposited on the Cu(111) surface. Here, 

we demonstrated how electrostatic repulsion between adsorbed monomers 

could be achieved by following the route of surface-mediated chemical 

reaction, at variance with the charge transfer upon energy level alignment used 

in the previous investigations. In fact, the formation of size-selective molecular 

clusters was obtained by introducing a reactive hydroxyl moiety in a previously 

inert molecular structure. The added acidic character was found sufficient to 

activate deprotonation on the Cu(111) substrate. A simple Monte Carlo model, 

based on the balance between electrostatic repulsion and dispersion attraction, 

nicely reproduced the experimental cluster size distribution and predicted the 

possibility of tuning the molecular structure (i.e., the ratio between attraction 

and repulsion) in order to selectively favour specific cluster sizes. 

In conclusion, we believe that achieving control on the charge rearrangement 

processes that occur at the metal-organic interface can represent a new way for 

directing molecular self-assembly. The possibility of predicting and controlling 

the formation of self-assembled molecular structures over hundreds of 

nanometers, as suggested by our results, may be useful for the integration of 

bottom up and top down nanofabrication techniques. Moreover, our analysis 

highlighted the importance of the choice of the molecule-metal combination to 

selectively activate or inhibit the donor or acceptor properties of organic 

materials with potential application in organic electronics. This knowledge can 

be applied to the design and synthesis of “molecular dopants” for the fine-
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tuning of the work function of metal electrodes, which would be beneficial for 

the fabrication of devices with improved efficiency. 

More molecular units are currently being prepared and studied with the aim of 

improving the prediction and control of the electronic properties of the metal-

organic junction. In particular, we are studying molecules where factors such 

as molecular size/functionalisation, permanent dipole, adsorption height, 

ionisation potential, etc., are modified to further study their influence on the 

energy level alignment and surface chemistry. The information collected from 

this new series of investigations will help rationalise the approach to the design 

of metal-organic systems, which is currently based on the trial and error 

selection of the metal and organic materials. 
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