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Abstract 
 

Within invasive breast cancers, lymphatic invasion is thought to be the first step 

tumour cells undertake when metastasizing through the lymphatic vasculature.  

The presence of lymphatic metastasis has been shown to stratify breast cancer 

phenotypes into distinct prognostic groups.  The exact molecular mechanisms 

mediating tumour cell entry and dissemination within the lymphatic system 

remain unclear.   We report the first identification of RORt+-innate lymphoid 

tissue inducer (LTi) cells within the human breast cancer tumour 

microenvironment and the enrichment of lymphoid chemokines/chemokine 

receptor gene signature within an aggressive breast cancer subtype. The presence 

of these cells within the tumour microenvironment was shown to correlate with 

both an increased lymphatic vessel density (LVD) and tumour invasion into 

lymphatic vessels. We demonstrate the CCL21-dependent recruitment of LTi cells 

into breast tumours, the CXCL13-dependent interaction between the tumoural LTi 

and stromal cells and the downstream effect of the CXCL13 positive feedback 

loop in promoting lymphatic tumour cell motility via the RANK-RANKL axis. 

These data suggest a novel role for LTi cells in enhancing lymphatic invasion of 

tumour cells through modulation of the local lymphoid chemokine profile.  
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Chapter 1: Introduction 
 

Breast cancer is the most common malignancy in women, with an estimated 

lifetime risk of developing breast cancer of 1 in 8 for women in the UK 1. An 

estimated 1 million cases are diagnosed annually worldwide and approximately 

400 000 patients die due to the disease every year 2.   Although the survival rates 

from breast cancer have improved within the last three decades owing to 

significant improvements in oncological management, the global burden of breast 

cancer exceeds all other cancers 3.  Majority of cancer-related deaths are caused 

by the development and continuous growth of metastases that are resistant to 

conventional therapies.   Approximately 5-10% of women with breast cancer have 

metastatic disease at diagnosis and an additional 20% to 30% of patients with 

early breast cancers will experience relapse with distant metastatic disease within 

3 years of diagnosis 4.  Median survival in women with metastatic breast cancer is 

about 18-24 months 5.  

 

1.1 Breast cancer subtypes 

 

It has become increasingly clear that rather than constituting a monolithic entity, 

breast cancer is a heterogeneous disease with subgroups that exhibit substantial 

differences in terms of presentation, morphology and response to therapy.  A 

clinical shorthand classification divides breast cancer into three major subtypes 

based on the expression of oestrogen (ER), progesterone (PgR) hormone 

receptors, human epidermal factor receptor 2 (HER2): luminal (ER/ PgR-positive 

disease) divided into low (A) and high proliferation (B) forms, HER2-amplified 
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tumours and triple-negative breast cancers (TNBCs).  However in recent years, 

various molecular techniques, particularly gene expression profiling, have been 

used increasingly to help refine breast cancer classification.  Parker et al. 6 

developed an efficient classifier, called PAM50, to distinguish breast cancers into 

five biologically intrinsic  subtypes  using  the  expression  of  50  “classifier  genes”. 

These include luminal A, luminal B, HER2-enriched (HER2+), basal-like, and 

normal-like 6,7, and more recently the breast cancer genomic analysis of a large 

breast cancer cohort (including approximately 2000 patients) produced a novel 

classification of breast cancers into 10 subgroups 8.    

 

The overall prognosis of women with TNBC, characterized by tumours that do 

not express ER, PgR, or HER-2 genes is significantly poorer compared to that of 

women with other subtypes of breast cancer; with upto 70% of women developing 

metastatic disease at 3 years.  It is characterized by its unique molecular profile, 

aggressive nature, increased incidence in younger women, distinct metastatic 

patterns and lack of effective targeted therapies, thus representing an important 

clinical challenge.  The poor prognosis of TNBC is derived largely from the 

fraction of patients with chemo-resistant disease, unfortunately representing >50% 

of TNBCs.  While those who achieve a pathological complete response (pCR) at 

surgery following neoadjuvant (preoperative) chemotherapy have an excellent 

long-term outcome, the majority of patients with TNBC do not achieve pCR and 

suffer a much poorer prognosis compared to those with other breast cancer 

subtypes 9,10. Tumour cells remaining after neoadjuvant chemotherapy are likely 

to represent the cancer cell population intrinsically resistant to chemotherapy, 

eventually reflecting metastatic disease. 
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In patients with early stage breast cancer, presence of tumour cells within the 

regional lymph nodes is one of the most important prognostic factors for survival 

independent of tumour size, histological grade and other clinico-pathological 

parameters 11-14. When compared with node-negative breast cancer, those patients 

with four or more involved axillary lymph nodes have a significantly worse 

outcome 15,16. Presence or absence of lymph node metastases remains central to 

staging and prognosis as well as guidance of treatment decisions. While this 

clinical significance of lymphatic metastasis in breast cancer is well recognized, 

the exact molecular mechanisms mediating tumour cell entry and persistence 

within the lymphatic system remain under considerable debate 17. 

 

Central to this thesis is the discussion surrounding: what tumour and or host cell 

factors regulate tumour cell trafficking in and out of lymphatic vessels? A 

mechanistic understanding into the regulation of tumour cell trafficking in and out 

of lymphatic vessels could provide important insights into the metastatic process 

and allow identification of targets for development of anti-metastatic therapies.  

 

1.2 Tumour metastasis model 

 

For most cancer cell types, the acquisition of metastatic ability leads to clinically 

incurable   disease.      Appropriately   the   words   “cancer”   (Latin   for   “crab”)   and  

metastasis   (Greek   for   “change   in   position”)   refer   to   the   slow   co-ordinated 

migration of tumour cells from the primary to a distant site.   Traditionally, 

development of metastases is believed to be a late event that occurs only after 

primary tumours reach a certain critical mass (the linear-progression model).  
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However, recent evidence indicates that tumour cells disseminate at a relatively 

early stage of the natural history of tumour growth 18. 

 

Metastasis formation is a multi-step process that require tumour cells to separate 

from the primary site, invade through the surrounding tissues and basement 

membranes, intravasate into the haematic or lymphatic circulation, migrate, 

extravasate and ultimately result in colonization and growth at distant sites 

(Figure 1-1) 19,20.  

 

 

 
Figure 1-1: Tumour metastasis model 21.  

 a) in situ tumour - defined by the absence of invasive cells. b) Local invasion of the 
surrounding extracellular matrix (ECM) and stroma. Metastasizing cells can then c) enter 
lymphatics, or d) directly enter the circulation. e) Survival and arrest of tumour cells, and 
extravasation into the parenchyma of distant tissue f) Metastatic colonization of the 
distant site progresses to form occult micrometastases and g) re-initiate their proliferative 
pathways to generate macroscopic, clinically relevant metastatic tumours.  
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This metastatic cascade is an exceedingly complex process, and an exhaustive 

discussion of each stage is not pertinent to this introduction.  Suffice to say, that 

the metastatic process is highly selective with each step demanding from the 

tumour cells survival skills to overcome the challenges imposed by the 

surrounding stroma. As a result metastasis formation is an extremely inefficient 

process, with 1% or fewer circulating tumour cells eventually able to thrive to 

form clinically relevant metastases 22,23.  Despite this relative metastatic 

inefficiency, the burden of metastatic disease on cancer morbidity and mortality 

remains high.  Identification of mechanisms that regulate tumour cell trafficking 

in and out of vasculature is crucial to control the metastatic process. 

 

1.2.1 Lymphatic vascular invasion   

 

While invasion of tumour cells into both the blood and the lymphatic vascular 

systems have been implicated, a vast number of clinical studies support the notion 

that the most common pathway for breast tumours to metastasize is through the 

lymphatic system 24,25.  Tumour cell emboli in lymphatic or blood vessels 

surrounding the tumour are often considered to be the morphological correlate of 

breast cancer cells metastasising to loco-regional lymph nodes and distant 

haematogenous sites, respectively.  

  

Several independent studies have investigated the prevalence and prognostic 

significance of lymphatic vessel invasion (LVI) compared to blood vessel 

invasion (BVI) in both lymph node negative and positive breast cancer patients 

(briefly summarised in Table 1-1).  Of these a large retrospective clinical study of 

1408 primary breast cancer cases reported a much higher prevalence rate of LVI 
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compared to BVI (34.2% vs 4.2%; p<0.0001) 26.  Given that breast cancers are 

now being increasingly recognised as heterogeneous, characterised by distinct 

molecular  ‘intrinsic  subtypes’  relating  to  tumour  biology  and  behaviour; 8 whether 

the differences seen in these studies are skewed by a subtype-specific effect has 

not been studied.  However, a more recent study reported that within basal-like 

breast cancer subtype (an aggressive form of triple negative breast cancer) the 

vascular invasion is almost entirely lymphatics 27.  

 

Table 1-1: LVI and BVI in breast cancer 

Study 
size 

% Invasion 
Associated with 
lymphatic metastasis 

Prognostic for disease 
outcome (DFS or OS)* Ref. 

LVI BVI LVI BVI LVI BVI 

1408 34.2 4.2 - - Yes No 26 

177 96.4 3.5 Yes No Yes No 27 

1258 27.6 - - - Yes - 28 

378 28 - - - Yes - 29 

123 28.5 15.4 - - Yes No 30 

95 69.6 37.9 Yes No - - 31 

850 - - Yes - - - 32 

4351 - - Yes - - - 33 

2606 22.6 Yes Yes  34 
Peri-tumoural vascular invasion (LVI + BVI) assessed 

* DFS = disease free survival; OS = overall survival;;  “-”  =  not  determined.

 

LVI have also been shown to correlate with increased metastatic lymph node 

involvement, as well as with poor prognosis within breast cancer patients 27,31-34. 

Although these studies do not rule out the role that haematogenous metastasis 
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play in mortality from breast cancer, they do highlight the strong independent 

contribution that local invasion into the lymphatic vessels play for long term 

survival of patients with breast cancer. Indeed, LVI has been included in the 

guidelines developed by the International Consensus Panel during the St Gallen 

Conference, 2005, as a novel adverse prognostic factor for postoperative adjuvant 

systemic therapies of early breast cancer 35. 

 

The lymphatic vessels themselves offer several advantages over blood vessels for 

invasion and transport of pre-metastatic cells.  The lymphatic system is 

physiologically equipped to transport cells throughout the body while ensuring 

cell survival remains optimal.  The lymphatic capillaries are thin walled with 

discontinuous basement membrane and loose cell–cell junctions, rendering them 

highly permeable 36.  They also contain intraluminal valves, ensuring 

unidirectional flow to the thoracic duct in order to reach the systemic blood 

circulation. Importantly, the primary source of pressure within the lymphatic is 

created by local skeletal muscle contractions resulting in a low flow rate, 

minimizing the shear stress on the cells inside the lymph 37.  Lymphoid tissue 

includes structurally well-organized lymph nodes located at intervals along the 

lymphatic vascular tree, representing a preferred site for lodgement of pre-

metastatic cells 38.   

 

Alongside these passive properties of the lymphatic system, mounting clinical and 

experimental data highlight the more complex, active role for the lymphatic 

system in metastatic tumour spread. Tumour lymphangiogenesis, a process by 

which tumours actively induce the formation of new lymphatic vessels - 

quantified as lymphatic vessel density (LVD) - is a novel prognostic parameter for 
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the metastatic risk of human cancers and it has been shown to correlate with 

lymph node metastasis in a breast cancer model 36,39-44.  Similarly, overexpression 

of lymphangiogenic growth factors such as vascular endothelial growth factor 

(VEGF)-A, VEGF-C or VEGF-D have now been detected in a range of human 

tumour types, such as melanoma, breast 39, cervical 45, non-small-cell lung 46, 

prostate 47, colorectal 48 and gastric cancers 49.  In a breast cancer mouse model, 

the increased VEGF-C secretion by transplanted tumours induced proliferation of 

the lymphatic endothelium and a fourfold increase in peritumoural and 

intratumoural lymphangiogenesis but had no effect on blood vessels. These 

manipulations resulted in a 50% increase in lymph node and lung metastases 39. 

 

 Although it is clear that tumour-induced lymphangiogenesis is controlled by the 

stimulation of various lymphatic growth factors secreted by the tumour cells, 

stromal cells, and inflammatory cells within the tumour microenvironment, the 

exact molecular and cellular processes that underpin lymphatic invasion and 

tumour lymphangiogenesis remain poorly understood. 

 

1.3 Immune cell trafficking  

 

One of the key physiological elements of immune surveillance and homeostasis is 

the continuous migration of immune cells such as dendritic cells (DCs) and T-

cells into the secondary lymphoid organs and then back into the blood 

(lymphocyte recirculation).   This continuous recirculation of immune cells from 

the blood to the lymphoid organs and back occurs as often as one or two times a 

day 50.  By being almost continually on the move, immune cells are able in a 

matter of days to survey many of the secondary lymphoid organs in hunt for 
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specific antigen. An important structural characteristic of lymph nodes allowing 

for this continuous recirculation is the existence of specialized vascular and 

lymphatic systems (Figure 1-2).  The steps that regulate the trafficking of immune 

cells in lymph nodes include: 1) entry of the immune cells into specialized blood 

vessels termed (HEVs), as well as via afferent lymphatics; 2) intra-nodal 

migration and positioning; and 3) egress via efferent lymphatics.  

 

Figure 1-2: Organisation of the lymph node and entry of immune cells (Adapted 

from 51).  

 

Within peripheral tissues, DCs constitutively sample their environment for 

antigens and eventually entry the lymph node via afferent lymphatic vessels into a 

large subcapsular sinus (SCS).  The bottom of the SCS, being the roof of the 

lymphoid compartment and is formed by sinus-lining cells which form a basement 

membrane that can be actively crossed by cells that enter the sinus with the 

afferent lymph but is otherwise impermeable for fluids. This way a closed 
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lymphoid compartment is created that is shielded from afferent and efferent 

lymph 52.  Following enter into the SCS, DCs settle onto the sinus floor, actively 

migrate through the sinus-lobule membrane and home in the vicinity of HEVs in 

the paracortex where they present the antigen to cognate T-cells; a process that 

can either mount to a protective immune response or contribute to peripheral 

tolerance 51,53,54, a process that is actively orchestrated and controlled by a family 

of secreted proteins called chemokines (see section 1.3.1).  During this journey in 

the lymph node, DCs lose their ability to collect antigen and gain the ability to 

present antigen to T cells 55.  DCs are thought to be short-lived, dying in the 

lymph nodes after they have presented antigen to lymphocytes 56.   

 

The main bulk of the naïve lymphocytes enter the lymph node via the HEVs 

which are anatomically distinct post-capillary venules characterised by their 

cuboidal morphology, discontinuous junctions between adjacent cells, and also by 

their luminal presentation of various adhesion molecules 51. HEVs are found only 

in lymphoid organs, but they can develop in non-lymphoid tissues during chronic 

inflammatory conditions and cancer, where they are associated with high levels of 

lymphocyte infiltration (see also section 1.5.2).  During  this  “homing” process B 

cells and T cells migrate to separate compartments within the secondary lymphoid 

organ, called B cell follicles and T cell areas respectively, staying there for several 

hours.  Naïve immune cells that do not encounter their specific antigen exit from 

the lymphoid tissue via the efferent lymphatics, and continue recirculating. As 

with DC migration into lymphatics, this process is also under the control of 

chemokines. 
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1.3.1 Chemokines and immune cell trafficking 

 

The original model of immune cell extravasation proposed three main stages: 1) 

selectin-mediated rolling; 2) chemokine-triggered activation and 3) integrin-

dependent arrest for a free flowing cell to move from the blood into the tissue 57-

59. However, recent evidence suggests that additional steps are involved 60, which 

include slow rolling, adhesion strengthening, intraluminal crawling, paracellular 

and transcellular migration, and migration through the basement membrane 

(Figure 1-3).  Pertinent to this introduction is the role that chemokine and their 

receptors play in immune cell trafficking into lymph nodes via the lymphatics and 

the HEVs.  

 

  

Figure 1-3: Leukocyte adhesion cascade (adapted from 60). 

The initial capture of lymphocytes occurs through integrin-mediated interactions with 
adhesion molecules. During the activation phase, lymphocyte G-coupled chemokine 
receptors respond to chemokine signals on endothelial cells, leading to a conformational 
change in lymphocyte-associated integrins. 
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Chemokines constitute a large family of small (8–12kDa), structurally related 

polypeptides, and exert   their   functions   by   binding   specific   Gαi-protein coupled 

chemokine receptors (CKR) on the cell surface 61.  To date, more than 40 human 

chemokines have been described. The most widely used nomenclature subdivides 

chemokines into four subfamilies (CC, CXC, CX3C and XC) according to the 

position of one or two conserved cysteine residues in their amino acid sequence. 

In CC chemokines, the two N-terminal cysteines are next to each other, while as 

in CXC chemokines, they are separated by a single amino acid.  In CX3C 

chemokines three amino acids separate both cysteines, while as in XC 

chemokines, these lack two of the four mentioned cysteines 62.  Another 

classification system broadly separates chemokines functionally into an 

“inflammatory”  and  a  “lymphoid/homeostatic”  subset.   

 

Lymphoid chemokines (CXCL12, CXCL13, CCL19, CCL21) are constitutively 

expressed in discrete microenvironments within lymphoid (bone marrow, thymus 

and secondary lymphoid organs) or non-lymphoid tissue like the skin or mucosa.  

Although traditionally thought to activate only one or two chemokine receptors, 

more recent studies also report that they can mediate signaling through a small 

family of atypical chemokine receptors (ACKRs), (Table 1-2) 63.  These 

chemokines are key regulators of leukocyte trafficking during homeostasis 64.
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Table 1-2: Lymphoid chemokines and their corresponding receptors 

Chemokine Chemokine Receptor  

CXCL12 CXCR4 

ACKR3  (also known as CXCR7) 

CXCL13 CXCR5 

CCL19 

CCL21 

CCR7 

ACKR4 (also known as CCRL1) 

 

Entry of DCs to activated lymphatic vessels is a highly complex multi-step 

process involving numerous chemokines and adhesion molecules. The lymphatic 

endothelial-derived chemokine CCL21 plays a well-characterized role in directing 

migration of CCR7+ DC in both resting and acute inflammatory conditions.  It 

has been suggested that hot spots of high CCL21 concentrations are formed at the 

basement membranes of initial lymphatics, and that migrating DCs contact these 

CCL21  “puncta”  before  actually  transmigrating  into  the  lymph  vessel  lumen  from  

these points 65,66.  These CCL21 gradients have been shown to attract DCs from a 

distance of upto 90micrometers 67. An elegant study by Weber et al, demonstrated 

that the main source of CCL21 production is the lymphatic endothelium, which 

harbors intracellular depots of this chemokine 67.  In the presence of such a 

chemokine gradient, DCs respond to chemokines by haptotaxis (rather than 

chemotaxis), which is defined as migration along a gradient of molecules that are 

bound to the extracellular matrix.  The degree to which the selectins and integrins 

participate in this process remains under debate.  On entry into the lumen, DCs 

crawl along the inner surface of the lymphatic endothelium, and by sensing lymph 

flow thereby undergoing directed migration downstream until they reach the 
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collecting afferent lymphatics which together with rhythmical contractions and 

one-way valves facilitate the active pumping of lymph and DCs towards the SCS 

of the draining LNs 68.   

 

Similar to DCs trafficking into afferent lymphatics, there is now a growing body 

of evidence supporting that chemokines produced in and around HEVs have a 

crucial role in the lymphocyte trafficking into lymphoid organs.   In particular, the 

CCR7 ligands, CCL21 and to a minor extent, CCL19 are the principal integrin 

activating chemokines for T-cell entry into the lymph nodes 69.  CCL21 is 

produced by the endothelial cells of HEVs 70, while as CCL19 is thought to be 

produced by stomal cells in the area surrounding HEVs and seems to be 

transported to the luminal surface of HEVs 71. These chemokines activate the 

integrins on the T-cells causing an interaction between the endothelial cell 

molecules, intercellular adhesion molecule 1 (ICAM1) and ICAM2, and the 

activated integrin lymphocyte function-associated antigen 1 (LFA1) resulting 

ultimately in lymphocyte arrest (sticking) to the HEV endothelium. The T-cells 

can then proceed to migrate across HEVs.  CXCL12 also participate to a small 

extent during T-cell adhesion to venules and particularly in the transmigration 

process 72. In vivo studies have showed that the transmigration of T cells through 

cultured HEV cells was strongly inhibited by a CXCR4 antagonist or by the 

CXCL12-mediated desensitization of T cells 73.  In contrast, B cells rely 

principally on CXCR5 and its ligand CXCL13 to carry out its LFA-1-dependent 

cell adhesion and transmigration 74. Similar to CCL19 and CXCL12, CXCL13 is 

produced mainly by non-HEV cells and might be transported to the HEV area 

through  the  fibroblastic  reticular  cell  (FRC)  network  or  ‘conduit’, which acts as a 

special delivery system for the transit of soluble factors to HEVs from the SCS 75.  
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Interestingly, when high-molecular-weight molecules were injected into the 

draining areas of the LN, they were excluded from the cortical parenchyma, 

indicating that the conduit functions as a molecular sizing column, allowing only 

low-molecular-weight molecules (e.g. chemokines) to reach the HEVs 76. 

 

Despite the continuously changing cellular composition of the lymph node, once 

inside the lymphoid tissues naïve lymphocytes, with remarkable precision, are 

restricted to specialized sub-compartments: T-cells migrate to the T-zones and 

naïve B cells migrate towards the B-cell zones. This compartmentalization is 

achieved through expression of the chemokine CXCL13 by follicular DCs, which 

directs CXCR5-expressing B cells to migrate to and stay within the cortical B-

zone 77. By contrast, expression of CCL19 and CCL21 by fibroblastic reticular 

cells is largely restricted to the paracortex, attracting T cells as well as DCs that 

both express high surface levels of CCR7 78. Within the T cell zone, T cells 

randomly migrate along the fibroblastic reticular cell network decorated with 

immobilized CCR7 ligands to search for cognate antigen presented by 

surrounding DCs 79.  Antigen stimulation of the naïve B-cells has been shown to 

upregulate its CCR7 expression, and the altered balance of chemokine 

responsiveness (i.e. between CXCL13 and CCL21) drives the migration of 

antigen-stimulated B cells into the T-cell zone 80. 

  

Other than being strong chemo-attractants of T-, B- and DCs 54,81,82, the lymphoid 

chemokines play a key role in lymphoid organogenesis (discussed in further detail 

in section 1.3.3), and have also been implicated in numerous pathological 

processes such as autoimmune conditions, infections, tissue injury, allergy, 

cardiovascular diseases and cancers.  
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1.3.2 Lymphoid chemokines in cancers 

 

Tumour cells, through the expression of lymphoid chemokine receptors, may 

exploit the physiological lymphatic trafficking system to mediate invasion into the 

lymphatic vasculature 83.  Within the last decade there have been numerous 

publications reporting on the expression of chemokine receptors on malignant 

cells and their utilisation for promoting tumour growth and metastasis.  

Chemokine receptors can potentially facilitate tumour dissemination at numerous 

stages of the metastatic cascade, including adherence of tumour cells to 

endothelium, vascular extravasation, metastatic colonization, angiogenesis, 

proliferation, and protection from the host 83-86.  To date the most recognised 

receptor/ligand pairs in these phenomena include CXCR4/CXCL12 and 

CCR7/CCL21. 

 

1.3.2.1 CXCR4/CXCL12 

 

In the context of cancers, CXCL12 (also known as stromal cell derived factor -1 

(SDF-1)) and its receptor CXCR4, is the most widely studied.  CXCL12 is 

expressed constitutively in a number of tissues including liver, lung, lymph nodes, 

adrenal glands and bone marrow, which may explain why this chemokine axis 

might be exploited by the tumours to promote distant metastasis.  CXCR4 is 

expressed by tumour types of epithelial, mesenchymal and haematopoietic origins 

87.  Interestingly, although CXCR4 expression is absent from normal breast, 

prostate and ovarian tissue, it is characteristically expressed on malignant tissues 

from these sites 87.  A large study (n=600) reported significantly higher CXCR4 
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and CXCL12 protein expression in localised and metastatic prostate cancer 

compared to normal or benign prostate tissue 85.   

 

The spread of breast cancer follows a distinct metastatic pattern typically 

involving spread of tumour to regional lymph nodes, lung, liver, and/or marrow, 

highlighting the fact that the process of metastasis formation is not random.  An 

elegant experiment by Muller et al; demonstrated that breast cancer cells migrate 

towards lymph node tissue extracts expressing high levels of CXCL12 and 

chemotaxis can be inhibited by neutralising antibodies for CXCR4 88.  These data 

formed the basis of the hypothesis that malignant cells may employ chemokine 

receptors to migrate toward chemokine ligands expressed at common metastatic 

sites, such as the lungs, bone marrow, and lymph nodes.  A high CXCL12 

concentration in the lymph node has been shown to ensure a chemotactic gradient 

within the lymphatic vessels, facilitating metastasis to the lymph nodes.  

Compared to normal lymphatic vessels, peritumoural or intratumoural lymphatics 

have been reported to express higher levels of CXCL12 89.     

 

It is noteworthy that only a sub-population of tumour cells have been reported to 

express CXCR4 (1-2%), raising the intriguing possibility that CXCR4 may be a 

marker of cancer stem cells and represent those cells that migrate and survive to 

form metastatic deposits 90.  In support of this, Fusi and colleagues reported that 

circulating tumour cells (possibly representing the metastasis-initiating cells) from 

patients with various types of solid tumours were positive for CXCR4 expression 

91. 
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Soon after the CXCL12/CXCR4 axis was proposed to regulate the trafficking of 

cancer cells, it was also implicated in other aspects of tumour progression.  For 

example, an interaction between CXCL12 and CXCR4 has been shown to 

stimulate proliferation of tumour cells 85,86. Similarly, studies demonstrate 

CXCL12 can mobilize and recruit CXCR4 expressing endothelial precursor cells 

to support revascularisation of ischaemic tissue within the tumour 92.  In short, it 

would seem that CXCR4 expression in tumours provides a selective advantage to 

the tumour cells at several levels; it is therefore not surprising to find numerous 

clinical studies in literature reporting a correlation between high CXCR4 

expression and poor prognosis in lung cancer 93, melanoma 94, pancreatic 95, 

ovarian 96, colorectal 97, and breast cancer 98.  

 

Targeting the CXCR4/CXCL12 axis is now regarded as a novel and efficient 

strategy for treating cancer metastases and their antagonists have shown some 

utility as potential therapeutics agents in pre-clinical models. CXCR4 inhibition 

has been shown to reduce metastasis formation in breast 88 and non-small cell 

lung 99 cancer mouse models. These studies highlight the functional significance 

of CXCL12 for effective metastatic tumour spread. 

 

1.3.2.2 CCR7/CCL21 

 

While overexpression of CXCR4/CXCL12 is related with homing of cancer cells 

to lung, liver, lymph nodes and bone marrow, the overexpression of 

CCR7/CCL21 has mainly been related with lymph node metastasis.  Several 

studies have reported that overexpression of the CCR7/CCL21 axis is associated 

with lymph node metastases and poor prognosis in gastric 100, head and neck 101, 
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lung 102, oesophageal 103, cervical 104, tonsillar 105, colorectal 106 and prostate 

cancers  107.  Within gastric cancers, CCR7 expression in the primary was reported 

as the most important factor determining lymph node metastasis 100.  There is also 

preclinical evidence that CCR7 expression is a rate limiting step for mediating the 

lymphatic spread of pancreatic ductal adenocarcinoma 108. 

 

Pre-clinical studies have demonstrated that CCL19/CCL21 producing lymphatic 

endothelial cells can actively guide the chemotactic migration of CCR7 expressing 

tumour cells 109.  The lymphatic flow to draining lymph nodes is know to be 

higher compared to non-tumour-bearing controls 110; and this increased lymphatic 

flow has been reported to increase the expression of CCL21 by the lymphatic 

endothelium, thereby enhancing invasion of the lymphatics by the tumours cells 

111. Another elegant mechanism by which CCL19/CCL21/CCR7 chemokine axis 

can promote tumour cell homing to lymphatics has been proposed based on the 

effect of interstitial fluid flow resulting from lymphatic drainage — a phenomena 

known as autologous chemotaxis 112. CCL21/CCL19 secreting tumour cells of 

various types were shown to generate autologous gradients of these ligands under 

the influence of slow interstitial flow rate, which then allow CCR7 expressing 

tumour cells to migrate along the chemokine gradient.  

 

Additionally, CCL21 has been shown to promote generation of new lymphoid-

like structures within the tumour microenvironment, which are characterized by 

infiltration of immune-suppressive T-regulatory cells and myeloid derived 

suppressor cells 113. However, unlike CXC12 the role of CCL21 during tumour 

progression remains rather controversial, with tumour-suppressive properties also 

having been reported.  CCL21 is a strong chemoattractant for tumour infiltrating 
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lymphocytes, which can exert a strong anti-tumour immune response especially 

during early stages of tumour progression 114. A recent clinical study reported 

improved outcome associated with increased infiltration of CCR7 positive T-cells 

within advanced colorectal carcinoma 115. The interaction between CCR7-CCL21 

has been shown to improve the immunogenicity of CCR7 expressing breast 

cancer cells 116.  Similarly, studies report that intratumoural injection of 

recombinant CCL21 significantly delayed tumour progression and stimulated 

cytotoxic immune responses 117-119.  In summary, the dual roles of CCR7/CCL21 

axis in protective immunity and tumour promotion suggest that its targeted 

therapies must be carefully evaluated. 

 

1.3.3 Lymphoid chemokines and lymphoid organogenesis 

 

Since the migrational cues employed during tumour progression share many 

characteristics with lymphoid tissue embryogenesis, it is important to dissect the 

molecular and cellular mechanisms that govern organogenesis of lymphoid 

organs.    The development of secondary lymphoid organs (SLOs) such as lymph 

nodes begins prenatally around embryonic day (E) 15 and requires the interaction 

of two specialised cell populations: haematopoietic lymphoid tissue inducer (LTi) 

cells, belonging to the family of innate lymphoid cells and mesenchymal 

lymphoid organiser cell (LTo), whose origin remains under investigation.   

Mesenteric lymph nodes are thought to develop first, followed by the rest of these 

organs along the anterior-posterior body axis 120.   

 

Production of CXCL13 by the mesenchymal lymphoid organiser cell is essential 

for the attraction of the first CXCR5-expressing LTi cell to the site of the lymph 
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node formation 121.  Notably nerve fibres adjacent to the lymph node anlagen 

secrete retinoic acid (RA), a metabolite of vitamin A, which induce the initial 

production CXCL13 by the LTo cells (Figure 1-4). Knockout mice for CXCR5-/-, 

CXCL13-/- or RA-synthesizing enzyme RALDH2-/- have all demonstrated an 

absolute lack of peripheral lymph nodes, indicating an important role for both 

retinoic acid and CXCL13-CXCR5 interaction for lymphoid organogenesis 121. 

Interestingly, the origin or the mechanisms that induce the specification of 

mesenchymal progenitor cells prior to the arrival of LTi cells remain largely 

unknown. 

 

After LTi cells collect in the areas designated for lymph node development they 

express lymphotoxin  (LTα1β2) and a set of tumour necrosis factor (TNF) family 

members.  LTα1β2 activate the LTo cells through lymphotoxin-β-receptor  (LTβR),  

resulting in the activation of the NF-κB  family  of  transcription  factors  through  the  

classical/canonical (NF-κB1   p50/RelA)   and   the   alternative/non-canonical 

pathways (NF-κB2   p52/RelB)   122.  This coincides with the differentiation of 

mesenchymal cells into vascular cell adhesion moleculehigh, intercellular adhesion 

moleculehigh, and mucosal addressin cell adhesion molecule 1+ 

(VCAMhighICAMhighMAdCAM-1+) LTo cells 123; and an increased production by 

these LTo cells of “lymphoid”  chemokines (CXCL13, CCL19, and CCL21) and 

lymphangiogenic factors such as VEGF-C, VEGF-D, fibroblast growth factor 

(FGF)-2 and hepatocyte growth factor (HGF), leading eventually to formation of 

Lyve-1+ lymphatic vessels 124 ,125-127. The production of lymphoid chemokines 

initiates an important positive feedback loop for a second wave of LTi cell 

clusters formation and for the proliferation and homeostasis of LTo cells. 
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Figure 1-4: Schematic overview of the early phases of lymphoid tissue development.  

Neuronal stimulation by retinoic acid induces CXCL13 expression in the organizer cells, which determine the site for first LTi recruitment. Clustering of LTi cells 
initiates RANK-RANKL and LTR signaling, leading eventually to a fully formed lymphoid organ.   
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Receptor activator of NF-κB   ligand   (RANKL, also called TRANCE, TNFSF11) 

signaling  has  also  been  shown  to  contribute  to  LTα1β2  expression  in  LTi  cells  128.  

RANK and RANKL-knockout mice display a complete absence of peripheral 

lymph nodes,   defects   in   Peyer’s   patches   and   cryptopatches along with 

abnormalities of the spleen 128-130. In fact, the clustering itself enhances the 

interaction between the membrane bound RANKL and RANK receptor on LTi 

cells. However, the LTR-dependent interaction between the LTi cells and the 

mesenchymal LTo cells also induces a positive feedback on RANKL production 

by the stromal cells with resultant increase in the expression of LTα1β2 on the LTi 

cells.  In support of this feedback loop, RANKL expression has been shown to be 

up to 10-times higher in LTo cells than in LTi cells 131.  

 

Albeit controversial, sufficient clustering of LTi cells and production of lymphoid 

chemokines eventually leads to the differentiation of LTo cells to give rise to the 

various stromal cell lineages that are present in the mature lymph nodes, including 

follicular dendritic cells, fibroblastic reticular cells, lymphatic and vascular 

endothelium 132.  The subsequent organization of lymphocytes into B and T cell 

zones of the lymph nodes is mediated by the lymphoid chemokines, with CCL21 

guiding T-cells into the T-zone and CXCL13 guiding the B-cells into the B-zones.  

The exact mechanisms that ensure subsequent organisation of lymphoid tissues 

remain unclear (see section 1.4.1.2). 

 

1.4 Innate lymphoid cells 

 

Lymphoid tissue inducer cells are members of an emerging family of 

developmentally related innate lymphoid cells (ILCs).  A major setback for the 
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ILC field has been the confusing number of different names that have been used 

to characterize the subsets of ILCs.  For example, IL-22-producing ILCs have also 

been called NK22 cells 133, NKR-LTi cells, NCR22 cells and ILC22s 134.  

However, recent moves to propose a uniform nomenclature to denote these cells 

have divided them into three groups based on their ability to produce type 1, type 

2 and TH17-cell associated cytokines (Table 1-3) 135.  These various ILCs have 

been implicated in protection against infectious organisms, organogenesis of 

lymphoid tissue, tissue remodeling during wound healing and homeostasis in 

tissue stromal cells. 

Table 1-3: Innate lymphoid cell family classification 

Family Subgroup 
Signature 
cytokine 

Function 

Group1 ILCs 

ILC1s 

IFN- 

Innate immunity against 

viral infections, tumour 

surveillance 
NK cells 

Group 2 ILCs ILC2s IL-5 & IL-13 
Innate immunity against 

parasites 

Group 3 ILCs 

(RORt+ ILCs) 

LTi cells IL-17 & IL-22 Lymphoid tissue formation 

and repair; innate immunity 

against bacteria 
ILC3s* IL-17 & IL-22 

ILC = Innate lymphoid cell; NK= Natural killer; IFN = Interferon; IL=interleukin; LTi= lymphoid 

tissue inducer; NCR = natural cytotoxicity triggering receptor; *also referred to as NKp46 positive 

LTi-like cells. 

 

Development of ILCs depends on the transcription factor inhibitor of DNA 

binding 2 (Id2), suggesting that the innate lymphocyte lineages share a common 

transcriptional and developmental program 136.  Early expression of Id2 protein 

has been show to act as a developmental block for the common lymphoid 
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progenitor cells against differentiation down the T cell and B cell pathway 137. 

Commitment towards the group 3 ILCs (including LTi cells) – in the fetal liver or 

the adult bone marrow - has been shown to be dependent primarily on retinoid-

related orphan receptor (RORt) and interleukin-7 receptor  (IL-7R) signaling 

138.   

 

The retinoic acid receptor-related orphan receptors (Ror, Ror, and Ror) are a 

family of DNA-binding transcription factors which are nuclear receptors. Rort is 

a short Ror isoform that is specifically expressed in cells of the immune system 

and studies demonstrate that   mice   deficient   in   the   expression   of   the   RORγt  

completely lacked LTi cells and this correlates with a total absence of lymph 

nodes 139. IL-7 has been implicated in maintaining RORγt expression, maintaining 

the pool of LTi cells in vivo 140,141.   Mice with a defect in the IL-7 signaling 

pathway have severe defects in peripheral lymph node development 125.  

Similarly, over-expression of IL-7 in vivo has been shown to significantly 

increase LTi cells numbers causing de novo formation of multiple organized 

ectopic lymph nodes. However, mice overexpressing IL-7 but lacking either 

ROR, or LT12 were unable to develop ectopic lymph nodes 141. 

 

1.4.1 RORt+ ILCs – Lymphoid tissue inducer cells 

 

1.4.1.1 LTi phenotype 

 

LTi   cells   represent   the   prototypic   cell   type   of   the   “group   3”  RORγt+ family of 

ILCs and broadly speaking are CD45+ haematopoietic cells distinguished by the 
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expression of the  nuclear  RORγt  receptor  and  membranous IL-7R in the absence 

of lineage markers (e.g. CD3, CD19, B220, CD11c) 141,142.  These LTi cells are 

innate cells in that they do not develop in the thymus and lack antigen-specific 

receptors; instead they respond to cytokines or receptor ligands.   

 

Within the last decade the shared expression of RORt by Th17  cells and LTi-

like cells which express NK cell receptors (such as NKp46) have promoted 

various hypotheses speculating a lineage or functional relationship between the 

cell types; inadvertently sparking an interest in LTi  cells themselves.  Both 

mouse and human LTi cells have now been well characterized (Table 1-4). 

 

LTi cells can be readily visualized in and isolated from mice in which a GFP 

reporter  has  been  inserted  at  the  start  site  of  the  RORγt  gene 139. Approximately, 

50% of the LTi cells in mice are CD4+ while the other 50% are CD4-, possibly 

indicating the diversity in the LTi cell phenotypes.  Adult LTi cells differ from 

their fetal counterpart due to expression of the T cell costimulatory molecule 

ligand (OX40-L) and CD30L 143. It is noteworthy that NKp46+ LTi-like cells have 

not been detected in the embryo, and therefore unlikely to be involved in 

lymphoid organogenesis. 
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Table 1-4: Phenotypic comparison of mouse and human LTi cells 

Marker Mouse LTi Human LTi 

Surface marker 

CD4 50% - 

CD117 (c-KIT) + + 

CD127 (IL-7R) + + 

CD90 (Thy-1.2) + ND 

Nkp44 + + 

Nkp46 - ND 

CD56 - 10% 

CD161 (NK1.1) + + 

OX40L* + + 

CD30L* + + 

Transcriptional 
factors 

ROR  + + 

Id2 + + 

Chemokine receptors 

CXCR5 + + 

CCR7 + + 

CXCR6 + + 

TNF family members 

RANK + + 

RANKL + + 

Lymphotoxin  + + 

Secretory molecules 
IL-22 + - 

IL-17 + + 

*Found in adult LTi cells only. “+”  =  Positive;;  “-”  =  Negative. 
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1.4.1.2 LTi function 

 

As discussed earlier in section 1.3.3, LTi cells are indispensable for embryonic 

lymphoid tissue organogenesis with studies demonstrating that mice deficient in 

the  expression  of  the  RORγt  completely  lacked  LTi  cells  and  this correlated with 

a total absence of lymph nodes 139.  Identification of LTi cells in adults, albeit in 

far less abundance than fetal tissue have provided the impetus for exploring the 

role of LTi cells for adult organogenesis.  Fate mapping experiments have 

established that the half-life of LTi cells is 3 weeks, indicating that fetal LTi cells 

do not account for the pool of adult LTi cells 144.  One of the most frequently 

documented examples of adult organogenesis driven by LTi cells is found in the 

intestine, where LTi numbers are found in much larger numbers than other adult 

tissues 145 . Gut-associated lymphoid tissue (e.g. cryptopatches) formation occurs 

after birth around 1– 2 weeks of age in mice; consisting of numerous small and 

randomly distributed clusters of LTi cells, with a few DCs but almost no T or B 

cells 146.  These structures are absent in RORt-deficient mice.  Following 

bacterial gastro-intestinal infections, these cryptopatches have been shown to 

transform into isolated lymphoid follicles (ILFs), which are important anatomical 

sites for the generation of IgA-producing plasma cells 147.  In the mouse, these 

structures are not observed until the colonization of the intestine by microflora 

around weaning time (3–4 weeks).  This transformation is regulated by 

interactions  between  RORγt+ LTi  cells  and  stromal  cells  through  LTβR signaling 

148.  

 

In addition to organogenesis of lymphoid tissue, evidence indicates that postnatal 

LTi cells also help repair damaged lymphoid structure after viral infections, which 
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is crucial for an effective immune response 149.  For example, an elegant study by 

Scandella et al, reported that during an acute infection with lymphocytic 

choriomeningitis virus, the splenic architecture was disrupted with a consequent 

failure in the ability of mice to mount protective antibody responses to secondary 

infections.  However, the accumulation of proliferative LTi cells and the crosstalk 

between the LTi and stromal cells via the LTR signaling restored the lymphoid 

lymphoid microanatomy, as well as the ability to form high-affinity antibodies, a 

process that is severely delayed in mice lacking LTi cells 150. 

  

Adult LTi cells have recently been implicated to influence T-cell adaptive 

immune responses.  Within lymphoid tissues, LTi cells are often located at the 

edge of the B cell follicles, where interactions between T cells and B cells 

commonly occur in primary and secondary immune responses 151. Adult LTi cells 

express costimulatory molecules, OX40L and CD30L and interactions between 

LTi and T cells via these co-stimulatory molecules have been shown to induce 

survival of Th2 cells 152.  These interactions have also been implicated in 

establishing microenvironments within which CD4+ T cells provide help for 

effector immune responses and then sustain primed CD4+ T cells for memory 

responses 149,152-154. Within the intestinal LN anlagen, LTi cells have also been 

reported to produce pro-inflammatory cytokines interleukin 17 (IL-17) and/ IL-22 

in response to IL-23 both inducing the production of anti-microbial peptides by 

epithelial cells, providing support for their role in tissue remodelling and mucosal 

immunity 155.  However, whether IL-17 or IL-22 producing LTi cells represent 

three distinct subpopulations of group 3 ILCs or activation stages of a single 

plastic lineage modulated by environmental cues remains under debate 156.  
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1.5 RORt+ LTi cells and Cancers 

 

Collectively, referred to as the tumour microenvironment (TME), tumours are 

complex tissues that comprise of malignant cells and a multitude of stromal cells 

157. These include e.g. the extracellular matrix (ECM), activated fibroblasts, 

mesenchymal stem cells, immune cells, pericytes, adipocytes, epithelial cells, 

vascular and lymphatic endothelial cells (see Figure 1-5).  Recently RORt+ ILCs 

have been added to the list of immune cells that may contribute to the TME within 

mouse melanoma models 113,158. 

 

 

 

Figure 1-5: Schematic representation of the tumour microenvironment 159.   

TME comprises of malignant and stromal cells.  Stromal components include vascular or 
lymphatic endothelial cells, supporting pericytes, fibroblasts, and both innate and 
adaptive infiltrating immune cells. 
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Components within the TME have been shown, from experimental models and 

clinical studies to either provide host protection leading to tumour regression or 

tumour-promotion by providing an immunosuppressive milieu.  The role that 

RORγt+ ILCs play within the TME remains to be established with the two 

aforementioned studies reporting conflicting findings.  Whilst Shields et al 113, 

reported that tumours with a higher LTi count (CCL21high expressing tumours) 

were associated with an increased tumour growth/survival, Eisenring et al 158, 

reported that even a small number of LTi cells were able to potently inhibit 

tumour growth by initiating an intense leukocyte invasion into the tumour 

microenvironment.  The authors speculated that IL-12 converts a subpopulation of 

LTi cells in the tumour into innate NKp46+ LTi-like cells, which in turn changes 

the tumour microenvironment from anti-inflammatory to pro-inflammatory 158. 

The study by Shields et al 113 also reported that CCL21high melanoma tumours 

induced lymphoid-like stromal networks resembling those of the lymph node 

paracortex within a tumour microenvironment. Whether the induced lymphoid-

like stoma within the tumour promoted immune escape/immune tolerance via 

neo-lymphangiogenesis remains unclear but this study does highlight the potential 

for the lymphatic stroma as a key modulator of tumour-immune responses. The 

presence or role of RORt+ LTi cells has not been explored in human tumours and 

requires further investigation. 

 

1.5.1 Cancer Immunoediting 

 

Recent years   have   seen   a   growing   appreciation   of   the   term,   “cancer 

immunoediting” as  an  academic  framework  integrating  the  immune  system’s  dual  
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host-protective and tumour-promoting roles and consists of three successive steps: 

elimination, equilibrium and escape 160,161 (see Figure 1-6).  

 

 

Figure 1-6: Phases of “cancer immunoediting.” 

1): Elimination/immunosurveillance: Functional innate and adaptive immune cells and 
molecules recognise a transformed cancer cell and function to destroy the tumour cell or 
prevent its outgrowth. This can sometimes represent the end of immunoediting process. 
2): Equilibrium: However, the inability of the antitumour immunity to completely 
eliminate transformed cells results in the surviving tumour variants to enter into a state of 
equilibrium, where the tumour cells become dormant and clinically unapparent.  3): 
Escape: Tumour variants may eventually acquire further mutations that result in the 
evasion of tumour cell recognition, killing, or increase cancer-induced 
immunosuppression to promote tumour growth and survival.  

 

In the elimination phase, various components of the immune response work 

together to destroy developing tumours long before they become clinically 

apparent. The role of an effective innate immune system during the elimination 

phase is well recognized 162-164. During   the   ‘equilibrium’   phase,   a   balance   is  

established between the tumour and the immune system, shaping each other 

reciprocally 165,166.  Finally, the immune system contributes to the selection of 
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tumour variants that enter the escape phase, in which their outgrowth is no longer 

blocked by immunity resulting in clinically apparent disease 166,167.  

 

Data collected from large cohorts of human cancers demonstrate that the immune 

contexture of primary tumours hold prognostic information that may be superior 

to the AJCC/UICC TNM-classification of tumours, particularly in early stage 

cancers 168,169. A strong lymphocytic infiltration has been reported to be associated 

with good clinical outcome in many different tumour types, including melanoma, 

head and neck, breast, bladder, ovarian, colorectal, renal, prostatic and lung 

cancer 170. Within colon cancers, an immune score that quantifies the intra-

tumoural density and location of CD8+T cells and memory CD45RO+T cells has 

been proposed as a useful approach both for predicting the impact of the tumour 

microenvironment on clinical outcome in colon cancer patients, and for selecting 

therapy for patients 169.  Loi et al 171, recently reported on the prognostic role for 

tumour-associated lymphocytes in breast cancer in a large prospective clinical 

trial, evaluating more than 2,000 tumour samples from patients with node-positive 

breast cancer. Within specific subtypes of breast cancer, patients with an 

increased lymphocytic infiltrate had reduced relapse rates and improved survival.  

Moving forward, implementation of the  “Immunoscore”  as  a  new  component  for  

the classification of cancer, designated TNM-Immune (TNM-I) have already 

began 170; and international immunological consortia (the Society for 

Immunotherapy of Cancer (SITC), the European Academy of Tumour 

Immunology (EATI), the Cancer and Inflammation Program, the National Cancer 

Institute, National Institutes of Health, USA and "La Fondazione Melanoma 

Onlus) recently addressed the issue of immune assay harmonization across 
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laboratories with the objective of accelerating immune biomarker identification 

and drug development 172.  

 

Although, the exact mechanisms that underpin immunoediting remain poorly 

understood, an increasing body of evidence suggests that antigen presentation can 

take place in ectopic lymph node-like   structures   named   “tertiary   lymphoid  

structures”   (TLS)   within   the   tumour   microenvironment.      Given the well-

recognised link between LTi cells and lymphoid organogenesis, these innate 

lymphoid cells may play a role in immunoediting by inducing TLS neogenesis. 

 

1.5.2 Tertiary Lymphoid Structures   

 

Several pieces of evidence suggest that the development of 'tertiary' or 'ectopic' 

lymphoid tissues in areas of chronic inflammatory stimulation (e.g. in 

autoimmune diseases or viral and bacterial infections) represent a compensatory 

mechanism for the increased demand for a localized immune reaction. Malignant 

tumours resemble chronic inflammatory conditions in that they host a persistent 

immune infiltration that fails to clear the antigenic insult  - often referred to as “a 

wound that never heals”.     

 

TLS are structurally reminiscent to SLOs (e.g. lymph nodes, spleen), in that they 

have organized immune cell infiltrates containing anatomically distinct yet 

adjacent T and B cell compartments and, in most cases, they contain high 

endothelial venules through which lymphocytes can enter from the blood.  

Although, in theory the immunosuppressive nature of the tumour 

microenvironment would represent a challenge for the induction or the 



 57 

functioning of TLSs, the presence of organised intratumoural lymphoid 

aggregates have been described in a range of tumour types (See Table 1-5). 

 

Table 1-5: Clinical studies reporting on the presence of lymphoid aggregates 

Tumour Composition Ref. 

Breast Cancer 

T- cells, mature DCs 
173 

T- cells, B-cells, FDCs 
174 

Lymphocytes (Haemotoxylin counterstaining) 
175 

T-cells, B-cells, HEVs 
176 

T-cells (TfH, CD4+ & CD8+ cells), B-cells, FDCs 
177 

T-cells, B-cells, mature DCs, HEVs 
178 

Colorectal 

Cancer 

T-cells, B-cells, mature DCs 
179 

T-cells, mature DCs 
180 

T-cells, B-cells, FDCs 
181 

T-cells, B-cells, mature DCs 
182 

Lung Cancer 
T-cells, B-cells, mature DCs, FDCs 

183 

T-cells, B-cells, mature DCs, HEVs 
184 

Melanoma 

T-cells (CD4+, CD8+, Foxp3+ Tregs), B-cells, 

mature DCs 

185 

T-cells, B-cells, mature DCS, FDCs, HEV 
186 

Ovarian Cancer T-cells, B-cells, HEVs 
176 

Renal Cell 

Cancer 
T-cells, B-cells, mature DCs 

182 

Abbreviations: DC: dendritic cell, FDC: follicular DC, HEV: high endothelial venules. Bold text 

represent studies describing distinct TLSs. Adapted from 187
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Although most experts agree that LT12 is necessary for TLS induction, the role 

of LTi cells in the process remains controversial. LTi cells have been identified 

within TLS and the injection of LTi cells into normal skin has been shown to be 

sufficient to induce them 188, but mice lacking in LTi cells  (e.g. Id2–/– or Rorc–/– 

mice) have also been shown to develop TLS in response to influenza viral 

infection 189,190.  Pathological lymphoid neogenesis is therefore likely to involve 

additional players that can substitute for LTi cells 190,191. 

 

While evidence suggests that the presence of HEVs around the TLS represent an 

ideal gateway for the entry of circulating lymphocytes into the tumour 

microenvironment providing per se a survival benefit for cancer patients 187, 

cancer-associated TLSs may also provide a niche for the differentiation of 

functional suppressive immune cell populations (e.g. T regulatory (Treg) or 

myeloid-derived suppressor cells (MDSC)).  These immunological alterations 

may act to enhance tumour metastasis to the draining lymph nodes.  A deeper 

comprehension of the molecular and cellular interactions of cancer-associated LTi 

cells may provide an insight into the mechanisms involved in the phases of 

“immunoediting”  by  cancers,  and  allow  for  further  exploration  of   the  concept  of  

the chemokines and/chemokine receptors associated lymphangiogenesis with an 

opportunity for identification of targets for anti-lymphangiogenenic strategies for 

breast cancer patients. 
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1.6 Summary 

 

Within invasive breast cancers, trans-endothelial migration through existing or 

new lymphatic vessels is thought to be the first step for tumour cells to undertake 

when disseminating through the lymphatic vasculature; and has been shown to 

stratify breast cancer phenotypes into distinct prognostic groups 192. The exact 

molecular mechanisms mediating tumour cell entry and persistence within the 

lymphatic system remain unclear.  Genetic and functional studies have established 

an important role for the “lymphatic-based   migratory”   chemokines (CXCL13, 

CCL19 and CCL21) in the trafficking of LTi, DC, T- and B-cells to the secondary 

lymphoid organs (reviewed in 62).  

 

Tumour cells may manipulate normal processes that govern chemokine-dependent 

trans-lymphatic migration of immune cells.  RORt+ ILCs, which include LTi 

cells are a family of immune cells that are heterogeneous in their cytokine 

production, tissue location and effector functions (reviewed in 134,156).   Despite 

studies reporting on the presence of LTi cells within the tumour 

microenvironment of a melanoma xenograft 113,158, the presence or role of these 

cells has not been explored in human tumours. Thus, the relevance of these 

findings to human cancers requires further investigation. 

  



 60 

Chapter 2: Hypothesis  and  Aims 
 

2.1 Hypothesis 

The null hypothesis of this thesis is that lymphoid tissue inducer (LTi) cells do not 

have a role in the tumourogenesis of breast cancers.   

 

2.2 Aims 

Investigating the relationship between LTi cells, stromal and breast cancer cells 

within the tumour microenvironment (TME) will further our insight into the 

mechanisms involved in lymphangiogenesis and lymphatic invasion of breast 

tumours.  

 

2.2.1 Experimental plan 

 Identification of LTi cells within human breast cancer tissue 

 Analyse the expression of lymphoid chemokine and/chemokine receptors 

within human breast cancer datasets and relate this to the presence or 

absence of LTi cells 

 Explore any correlation between LTi cells and lymphatic invasion, 

neolymphangiogenesis and lymph node tumour burden. 

 Explore the interactions between LTi, stromal and tumour cells in vitro 

and in vivo 
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Chapter 3: Materials  and  Methods 
 

This project received the approval of the NHS Research Ethics Committee (REC 

No: 07/40874/131) for use of tissue from the King’s   Health   Partners   Cancer  

Biobank  at  Guy’s  Hospital,  London.  All   in vivo experiments were performed in 

accordance with the local ethical review panel, the UK Home Office Animals 

Scientific Procedures Act, 1986 and the UKCCCR guidelines 193. 

 

3.1 Reagents & Materials 

 

3.1.1 Cell lines 

The mouse breast cancer cell line 4T1.2 (derived from a spontaneous mammary 

carcinoma in a BALB/c mouse194 was procured  from  Professor  Robin  Anderson’s  

group (Peter MacCallum Cancer Centre, Australia). 

 

Bone marrow derived mesenchymal stromal cells (HS-5) were a kind gift from 

Professor   Lythgoe’s   laboratory (Centre for Advanced Biomedical Imaging, 

University College London). Two further fluorescently labelled cell lines (GFP 

and DsRed) were generated from the human bone-marrow-derived mesenchymal 

stromal cell line (Courtesy of Dr Gilbert Fruhwirth).   

 

3.1.2 Cell culture 

Dulbecco’s  Modified  Eagle  Media  - DMEM (Life Technologies Ltd) 

RPMI Media 1640 (Life Technologies Ltd) 
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“Complete   media”   contains   10%   Penicillin/   Streptomycin   (10,000IU Penicillin 

and 10mg/ml Streptomycin) (Life Technologies Ltd, UK) 2mM L-Glutamine 

(Life Technologies Ltd, UK), and 10% heat inactivated Foetal Bovine Serum 

(Sera Laboratories International Ltd) 

Trypsin/EDTA (0.25% trypsin, 0.02% ethylenediaminetetraacetic acid, EDTA) 

(PAA Laboratories, Germany) 

 

3.1.3 Immunofluorescence staining 

4% (w/v) paraformaldehyde (PFA; Sigma-Aldrich) in PBS 

99.5% acetone (PFA; Sigma-Aldrich) - ice cold 

Blocking solution: 10% goat serum in 1% BSA in PBS or 1% BSA in PBS alone 

Sodium borohydride (Sigma-Aldrich) 

Triton X-100 (polyethylene glycol p-(1,1,3,3-tetramethylbutyl)-phenyl ether) 

(Fischer) 

Heat inactivated human serum (Invitrogen): 10% in 1% BSA in PBS 

Heat inactivated goat serum (Invitrogen): 10% in 1% BSA in PBS 

TBS: Tris-buffered saline (25mM Tris, 100mM NaCl, pH 7.5)  

Hoechst 33342 (Invitrogen) 

Mowiol: 10% (w/v) Mowiol 4-88, 25% glycerol, 100mM Tris-HCl pH 8.5 

(Calbiochem) 

DABCO: 2.5% (w/v) 1,4-diazabicyclooctane (Sigma-Aldrich) 

Immersol 510 Immersion oil (Zeiss) 

 

3.1.4 Immunohistochemical staining 

3% hydrogen peroxidise (Sigma-Aldrich) in PBS 

 Xylene (Solmedia) 
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100% and 70% ethanol (Tennants) 

Haematoxylin (VMR) 

Eukit mounting media: contains 45% acrylic resin and 55% xylene (Sigma-

Aldrich 

DAKO primary antibody diluent: (Tris-HCI buffer containing stabilizing protein 

and 0.015 mol/L sodium azide).  

Bond primary antibody diluent: (Tris-buffered saline, surfactant, protein stabilizer 

and 0.35% ProClin 950 (active ingredient is the biocide, 2-methyl-4-isothiazolin-

3-one) 

Leica BOND refine polymer detection kit (DS9800). 

 

3.1.5 FACS sorting and staining 

RPMI Media 1640 (Life Technologies Ltd) 

Collagenase-dispase (100mg/ml stock, Roche) 

DNase (10mg/ml stock, Sigma-Aldrich).  

Red Blood Cell Lysis Solution: contains 8.3 g/L ammonium chloride in 0.01 M 

Tris-HCl buffer (Sigma-Aldrich) 

Cell  strainer  (70μm  mesh  size) 

FACS buffer solution: 0.5% BSA in PBS, 2mM EDTA 

Foxp3 staining buffer kit: contains Fix/perm diluents, fix/perm concentrate and 

10x permeabilisation buffer (ebioscience)  

4% (w/v) paraformaldehyde (PFA; Sigma-Aldrich) in PBS 

CD11c MACS beads (Miltenyi Biotec) 

PeakFlow blue flow cytometry reference bead (Life technologies Ltd) 
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3.1.6 Western blotting 

Lysis buffer: 50mM Tris/Hcl pH7.4, 150mM NaCl, 2.5mM EDTA, 2.67mM 

EGTA (ethylene glycol tetraacetic acid),10% Glycerol, 1% Triton X- 100  

Freshly   added:   0.2mM   sodium   orthovanadate,   0.01μM  Calyculin   A   (in   EtOH),  

1:100   P8340   Protease   inhibitor   cocktail   (Calbiochem   USA)   (aprotinin   0.8μM,  

leupeptin   20μM,   AEBSF   1040μM,   E-64   protease   inhibitor   14μM,   pepstatin-A 

15μM,  bestatin  40μM) 

Sample buffer: after protein determination in the sample, 100mM Dithiothreitol 

(DTT) and 0.4% w/v Serva blue dye were added 

Gels: pre-made Novex Nupage 12% or 4-12% Bris Tris gel (Invitrogen) 

Standard: Precision Plus protein dual colour standard (BioRad) 

Nupage MES SDS Running Buffer (20X) (Invitrogen).  This buffer was diluted to 

1X with distilled H2O for electrophoresis 

Transfer buffer: 7.2g glycine, 1.7g Trisma base, 200ml methanol, made up to a 

final volume of 1L in distilled H2O 

Wash buffer: Tris-buffered saline (TBS): 0.02mM Tris, 0.05M NaCl, 0.01M KCl, 

pH 7.4 

TBS-Tween (TBST): TBS containing 0.1% Tween-20 

Blocking solution: 4% Bovine Serum Albumin (BSA) (BioSera) made up in TBS-

Tween or 5% nonfat dry milk in TBS-Tween 

PVDF transfer membrane (Immobillon) 

Pierce ECL Western Blotting substrate (ThermoScientific) 

3.1.7 ELISA 

Human CXCL13/BLC/BCA-1 Quantikine ELISA Kit (Cat no: DCX 130, R&D 

systems) 
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Mouse CXCL13/BLC/BCA-1 Quantikine ELISA Kit (Cat no: MCX 130, R&D 

systems) 

Human CCL21/6Ckine DuoSet (Cat no: DY366, R&D systems) 

Mouse CCL21/6Ckine DuoSet (Cat no: DY457, R&D systems) 

Human TRANCE/RANK L/TNFSF11 DuoSet (Cat no: DY462, R&D systems) 

Mouse TRANCE/RANK L/TNFSF11 DuoSet (Cat no: DY462, R&D systems) 

Wash Buffer - 0.05% Tween 20 in PBS, pH 7.4 

Reagent diluents: 0.1% BSA, 0.05% Tween 20 in Tris-buffered saline (20nM 

Trizma base, 150nM Nacl), pH 7.2-7.4, 0.2M filtered). 

Streptavidin-HRP (R&D Systems) 

1-Step Ultra TMB  (3,3  ́,5,5  ́-tetramentylbenzidine) ELISA (Thermo Scientific) 

2mM sulphuric acid stop solution (Fisher chemicals) 

 

3.1.8 Elispot cytokine antibody array 

RayBio human cytokine antibody array 5 kit (Cat# AAH-CYT-5-8) 

10% bovine serum albumin in Tris-buffered saline 

Biotinylated antibody cocktail mixed with 2ml of blocking buffer 

1X HRP streptavidin 

 

3.1.9 Invasion assay 

QCM ECMatrix Cell Invasion Assay, 96-well  (8  μm),  fluorime  (Millipore,  UK) 

Staining solution: contains 0.5 g Crystal Violet (0.05% w/v), 27 ml 37% 

Formaldehyde (1%), 100 mL 10X PBS (1X), 10 mL methanol (1%), 863 dH20 to 

1L  
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3.1.10 Migration assay 

8-well µ-Slide (chambered coverslip)  (Ibidi) 

0.5M 4-(2-Hydroxyethyl)piperazine-1-ethanesulfonic acid (Hepes) buffer (PAA 

Laboratories, Germany)  

 

3.1.11 Cell stimulation 

Recombinant Mouse CXCL13/BLC/BCA-1 stock 25g/ml (R&D systems)  

Recombinant Mouse CCL21/6Ckine stock 25g/ml (R&D systems)  

Recombinant Mouse TRANCE/RANK L/TNFSF11 stock 10g/ml (R&D 

systems) 

Recombinant human epidermal growth factor, stock 100g/ml (PeproTech, USA) 

 

3.1.12 Cell inhibition 

70mg/ml denusumab (Xgeva, Amgen) was a kind gift from the London Oncology 

Clinic; diluted to the required concentration in PBS 

 

3.1.13 Multi-photon imaging 

Custom-made titanium mammary imaging window (In collaboration with 

Professor Boris Vojnovic, Advanced Technology Development Group, Oxford, 

UK) 

CellTracker™  Orange  CMTMR   

(5-(and-6)-(((4-Chloromethyl)Benzoyl)Amino)Tetramethylrhodamine) 

(invitrogen) 

 CellTracker™   Green   CMFDA   (5-Chloromethylfluorescein Diacetate) 

(invitrogen) 
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Soft silk wax coated braided suture (Covidian) 

Isoflurane-Vet 100% w/w Inhalation Vapour, Liquid (Merial Animal Health Ltd.) 

 

3.1.14 Fresh frozen tissue storage of animal tissue 

2-Methylbutane (ReagentPlus®,  ≥99%) (Ispopentane, Sigma-Aldrich) 

 OCT Mounting media (VMR) 

 

3.1.15 siRNA transfection  

OPTi-MEM-1 (Gibco) 

Lipofectamine™  RNAiMAX (Invitrogen) 

 

 

 

  

http://www.noahcompendium.co.uk/Compendium-datasheets_by_company/Companies/-31293.html
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Table 3-1: Sequence of siRNA oligonucleotides 

Gene siRNA ID Target  Sequence  (5’  → 3’) 

CXCL13 S20727 CAAGCUGAAUGGAUACAAA 

CXCL13 S20726 UGAUGGAAGUAUUGAGAAA 

CXCL13 S20725 AUCGAAUUCAAAUCUUGGU 

CCL21 S12606 CCAUCCCAGUAUCCUGUU 

CCL21 S12605 CAGCUACCGAAGCAGGAA 

CCL21 S12607 GCTATCCTGTTCTTGCCCCG 

Scrambled #10300934 Non-targeting siRNA pool from Thermo Scientific Dharmacon 
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3.1.16 Antibodies 

Table 3-2: List of antibodies used 

Name Clone Dilution Company Applicatio
n 

Cross-
reactivity 
to MS 

Cross-
reactivity 
to Hu 

 Primary antibodies 

Rat anti-human RORt AFKJ5-9 1:25 ebioscience IF Yes Yes 

Mouse anti-human CD127 Biotin ebioRDR5 1:25 ebioscience IF No Yes 

Mouse anti-human CD3 APC UCHT1 1:30 ebioscience IF No Yes 

Mouse Anti-human gp36/podoplanin 18H5 1:1500 Abcam IHC No Yes 

Goat anti-mouse Pancytokeratin - 1:500 Santa Cruz IHC Yes Yes 

Rat anti-mouse e-cadherin PerCP-efluor 710 DECMA-1 1:100 ebioscience FACS Yes Yes 

Rat anti-mouse CD11c PE N418 1:100 ebioscience  FACS Yes No 

Rat anti-mouse B220R PE RA3-6B2 1:100 ebiosciene  FACS Yes  Yes 

Rat anti-mouse CD3e-PE-Cy7  145-2C11 1:100 ebioscience FACS Yes Yes  

Rat anti-mouse CD127 (IL-7Ra)-PerCP/Cy5.5 A7R34 1:50 Biolegend® FACS Yes No 

Rat anti-mouse CD90.2-APC/Cy7 30-H12 1:50 Biolegend® FACS Yes No 

Rat anti-mouse CD335 (NKp46) eFluor® 450 29A1.4 1:100 ebioscience FACS Yes No 
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Rat anti-mouse CD19 FITC 1D3 1:200 BD Pharmingen FACS Yes  No 

Armenian Hamster anti-mouse CD3e-PE 145-2C11 1:200 Ebioscience FACS Yes No 

Armenian Hamster anti-mouse CD11c-FITC N418 1:100 Miltenyi Biotec FACS Yes No 

Rat anti-mouse B220/CD45R- Alexa Flour® 
646 

RA3-6B2 1:150 Biolegend® FACS Yes No 

Multi-potent mesenchymal Stromal Cell 
Marker Antibody Panel Kit  

Cat No. 
SC017 

- R&D systems IF No Yes 

Rabbit anti-  AA11-60 1:100 LifeSpan 
BioSciences 

IF Yes Yes 

Mouse anti-mouse Vimentin  V1-10 1:100 (IF) 
1:1000 (WB) 

Abcam IF, WB Yes Yes 

Rabbit anti-human/mouse RANK - 1:1000 Cell Signaling IF/WB Yes Yes 

Goat anti-mouse RANKL - 1:500 R&D systems IF/WB Yes No 

 Secondary antibodies 
Dnk anti-Rat-IgG-FITC - 1: 100 Jackson 

ImmunoResearch 
IF Minimal Minimal 

Rabbit anti-rat IgG-FITC - 1:200 Invitrogen IF No No 

Goat anti-Rabbit-FITC - 1:100 Southern Biotech IF No No 

Streptavidin Alexa 555 - 1:500 Invitrogen IF No No 
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Dnk anti-rabbit Cy3 - 1:200 Jackson 
ImmunoResearch 

IF No No 

 Neutralising antibodies 

Mouse CXCL13/BLC/BCA-1 Affinity Purified 
Polyclonal Ab, Goat IgG 

- 0.5mg R&D systems B/N Yes No 

Mouse CCL21/6Ckine Affinity Purified 
Polyclonal Ab, Goat IgG 

- 0.5mg R&D systems B/N Yes No 

Mouse TRANCE/RANK L/TNFSF11 Affinity 
Purifed Polyclonal Ab, Goat IgG 

- 0.5mg R&D systems B/N Yes No 

Normal Goat IgG Control  0.5mg R&D systems Control - - 
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3.2 Methods  

 

3.2.1 METABRIC cohort/dataset 

 

The METABRIC (Molecular Taxonomy of Breast Cancer International 

Consortium) project represents a cohort of patients who were recruited from 1989 

and 2002 from 5 different hospitals/research centres across Canada and the UK: 

Guy’s   &   St   Thomas’   NHS   Trust   Hospitals, Cambridge Breast Unit, 

Addenbrooke’s  Hospital,  Nottingham  University  City  Hospital in the UK and the 

Tumour Bank of British Columbia, Vancouver and the Manitoba Tumour Bank in 

Canada 195. The cohort selection criteria entailed female patients with primary 

breast cancer, who had not had neoadjuvant treatment and had been followed-up 

for more than 5 years. METABRIC has been approved by the 'NHS National 

Research Ethics Service, Cambridgeshire 4 Research Ethics Committee' with 

reference number: 07/MRE05/35. 

 

This project aimed to analyse 2000 tumours by using a combination of high-

resolution array-CGH, expression profiling, sequencing and tissue microarray 

analysis, and correlate the molecular profiles obtained with the clinical outcome 

of the tumours. The clinical data collected included survival data, date and cause 

of death, treatment information and hormone receptor status, e.g. ER, PR and 

HER2 status. 

 

The data used in Chapter 4:, relates to the subset of patients which were recruited 

at Guy’s  and  St.  Thomas’  Hospital,  for  whom  tumour  samples  were  stored  in  the  
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King’s   Health   Partners Cancer   Biobank   at   Guy’s   Hospital,   London. The KHP 

Breast Tissue and Data Bank (GSTT/KCL BTDB) is a Human Tissue Authority 

licensed tissue bank, which has been banking breast tissue and clinical data on 

patients over the last 30 years. The Tissue Bank maintains over 7200 FFPE 

primary tumours, 2500 fresh frozen tumours and 900 matched tumour and blood 

DNA samples, all of which are associated with prospectively acquired 

pathological and clinical data.  

 

3.2.1.1 Gene expression dataset 

 

The King’s   Health   Partners   Cancer   Biobank   at   Guy’s   Hospital subset of the 

METABRIC data set was profiled using the Illumina HT12 platform 8. The frozen 

tissue sections from which nucleic acids were isolated were subject to expert 

histopathological review to assess the presence of invasive tumour, pre-malignant 

or benign changes, tumour cellularity, and lymphocytic infiltration in specific 

subgroups and only samples with >70% tumour DNA were included. Samples 

were filtered for array intensity, quantile normalised, and a ComBat BeadChip 

correction applied (n=234; 176 ER+ samples, 58 ER- samples based on ESR1 gene 

expression). PAM50 subtype was assigned as in 196 using re-sampling to reflect 

the hormone receptor statuses of the PAM50 discovery cohort 6,197.  Dr Katherine 

Lawler kindly carried out the analysis of gene expression data. 
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3.2.2 Immunohistochemical  (IHC) staining 

 

3.2.2.1 IHC staining in fresh frozen tissue 

 

5m thick sections were cut from frozen archival primary breast cancer tissue.  

Depending on the antibody tissues were either fixed in acetone for 20 minutes at 

4oC, then stored at -80oC at the time of sectioning or 4% PFA fixation 

immediately at the time of staining. At the time of staining, tissue sections taken 

out from -80oC were left to dry for 30 minutes. They were then rehydrated with 

PBS for 5 minutes.  Slides were then incubated for 5 minutes at room temperature 

(RT) with 3% hydrogen peroxide in order to inactivate endogenous peroxidase.  

Following 5 minute washing steps with PBS, slides were incubated with the 

primary antibody of interest, diluted in DAKO Primary Antibody Diluent, which 

contains Tris-HCI buffer containing stabilizing protein and 0.015 mol/L sodium 

azide), for 1 hour. Apart from when using an HRP conjugated antibody, antigen 

binding was detected using an enzyme-conjugated secondary antibody diluted to 

the optimised concentration. 3-3′-diaminobenzidine (DAB) chromogen technique 

was used to perform the immune histochemical reaction.  A light haematoxylin 

counterstain was applied and sections dehydrated, cleared and mounted using 

Eukitt mounting medium.  Stained sections were photographed using a 

Hamamatsu NanoZoomer-XR C12000 digital slide scanner (Hamamatsu 

Photonics; Japan).  
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3.2.2.2 IHC staining in formalin fixed paraffin embedded tissues samples 

 

Immunohistochemistry of 2μm   thick formalin-fixed, paraffin-embedded wax 

sections were stained with no antigen retrieval step, using protocol F, on the Leica 

BOND-Max automated IHC platform (Leica Microsystems Inc, Wetzlar, 

Germany).  Slides were incubated with the primary antibody of interest, diluted in 

Bond Primary Antibody Diluent, which contains Tris-buffered saline, surfactant, 

protein stabilizer and 0.35% ProClin 950 (active ingredient is the biocide, 2-

methyl-4-isothiazolin-3-one), for 30-40 minutes; and antigen binding detected 

using the Leica BOND refine polymer detection kit (DS9800). A light 

haematoxylin counterstain was applied and sections dehydrated, cleared and 

mounted using Eukitt mounting medium.  Stained sections were photographed 

using a Hamamatsu NanoZoomer-XR C12000 digital slide scanner (Hamamatsu 

Photonics; Japan).   

 

The mean number of stained lymphatic vessels was collected through Chalkley 

count, where a 25-point grid was placed onto the scanned image and all points 

coinciding with the marked vessels counted (see Figure 3-1). Three to five images 

were used and the mean value was obtained with the number of vessels in each 

image. This method is thought to abolish the observer-dependent step of 

measuring LVD since the Chalkley count is a relative area estimate rather than a 

true vessel count. 
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Figure 3-1: Chalkley point counting.  Following  identification  of  a  “hotspot” at low 
magnification, a 25-point grid was placed onto the scanned image and all points 
coinciding with the marked vessels counted.  In the current example, 8 points were scored 
as positive.  Three to five images were used and the mean value was obtained with the 
number of vessels in each image.  

 

3.2.3 Immunofluorescence (IF) staining 

 

3.2.3.1 IF staining for LTi cells in human fresh frozen breast cancer tissues. 

 

All the antibodies used were optimized for use in fresh frozen human tissue 

samples, initially by IHC. 5m thick sections were cut from frozen archival 

primary breast cancer tissue and fixed in acetone for 20 minutes at 4oC, then 

stored at -80oC. This fixation method was superior to 4% PFA or fixation 

immediately at the time of staining (data not shown).  At the time of staining, 

tissue sections taken out from -80oC were left to dry for 30 minutes. They were 
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then rehydrated with PBS for 5 minutes. Tissues were then blocked with 10% 

goat serum in 1% BSA in PBS for 15 minutes. Samples were incubated with three 

primary antibodies (e.g. rat anti-human/mouse ROR-t, mouse anti-human CD3e-

APC, mouse anti-human CD127-biotin) for one hour. Biotinylated antibody was 

detected with Steptavidin-Alexa Fluor555. In order to amplify the nuclear 

RORt staining, the sections were incubated with fluorescently labelled donkey 

anti-rat IgG-FITC (AbD Serotec), then rabbit anti-FITC- Alexa Fluor 488 

(Invitrogen), then goat anti-rabbit IgG FITC (Southern Biotech) for 30 minutes 

each, with 10 minute washing steps in between. Sections were counterstained 

with Hoechst 33342 (Invitrogen) and mounted with mowiol mounting medium 

mixed with 2.5% DABCO as an antifading agent, and dried overnight at room 

temperature. 

 

Confocal tile scan images were obtained using an LSM 510 Metamicroscope 

(Carl Zeiss, Welwyn Garden City, UK) equipped with 405, 488, 543 and 633nm 

lasers and image analysis for LTi quantification was carried out using 

MacBiophototonics Image J software. 

 

3.2.3.2 IF staining of cells in vitro 

 

For cellular imaging experiments, cells that were seeded on glass coverslips 

overnight.  The cells were washed in PBS and treated and fixed with 4% 

paraformaldehyde (PFA) in PBS for 15 minutes then rinsed thrice with PBS over 

a five-minute interval. Samples were then incubated with 0.25% Triton X-100 in 

PBS for 12 minutes at RT to permeabilize cells.  The cells were rinsed once with 

PBS and treated with fresh 0.1% sodium borohydride/PBS (1mg/ml) for 5 
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minutes to reduce background autofluorescence, washed 3 times in PBS and then 

blocked with 1% BSA solution for 30 minutes followed by a incubation step at 

RT with the primary antibody of interest along with an unstained control. The 

coverslips were rinsed once with PBS and then incubated with a secondary 

antibody for upto 45 minutes.  The cells were then washed 3 times in PBS and 

nuclei were stained with Hochst33342 at a concentration of 0.1µg/ml. Following a 

further washing step, coverslips were mounted on slides with Mowiol/DABCO 

(antifade) mounting medium, and dried overnight at room temperature. 

 

3.2.4 Cell culture 

 

HS-5 cells and 4T1/4T1.2 were cultured in DMEM and RPMI Medium 164 

respectively.  All media were supplemented with 10% foetal bovine serum (FBS), 

2mM L-glutamine and penicillin/streptomycin antibiotics. The cell cultures were 

kept at 37°C in humidified air containing 5% CO2. Media were changed 

frequently to remove dead cells and to refresh nutrients. 4T1 and 4T1.2 cells were 

split once they became 80-90% confluent. HS-5 cells were split once they became 

50-60% confluent. 

 

3.2.5 4T1.2 triple negative mouse model 

 

Female BALB/c immune-competent mice were purchased from Charles River 

Laboratories (Wilmington, MA). The animals were 6–8 weeks of age, maintained 

under sterile conditions in filter top cages on sterile bedding, and fed an irradiated 

diet of standard mouse chow. 1 X 106 cells were suspended in 50µl sterile PBS 

and were injected subcutaneously into the mammary fat pads of the animals. 
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Tumour volume was calculated using the formula v = l x (w) 2/2, where v = 

volume, l = length and w = width of tumour.  

 

3.2.5.1 Preservation of fresh frozen tissue 

 

Tissues (e.g. primary tumours or lymph nodes) were dissected out and embedded 

in the optimal cutting temperature (OCT) compound.  The tissue was then 

immersed into isopentane which had been cooled by suspension in liquid nitrogen.  

Tissue was not removed from the isopentane until freezing is complete (5 seconds 

or less depending on size).  We then transferred the snap frozen sample from the 

isopentane to a pre-chilled storage container for transfer to a -80oC freezer until 

further use.  Frozen tumours were cut into 4-5µm sections with a cryostat for 

immunostaining. 

 

3.2.5.2 In vivo neutralization experiments 

 

In neutralization experiments, 1 day after the subcutaneous inoculation of the 

4T1.2 cells into the mammary fat pads of female BALB/c mice, groups of mice 

were treated with a neutralizing antibody for CXCL13, CCL21, RANKL or 

isotype control antibodies (0.5mg each antibody) via tail-vein injections.  This 

was repeated every 3 days until either day 14 or day 21.  Mice were monitored 

continuously for external symptoms of toxicity and health status. 
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3.2.5.3 In vivo serum collection 

 

500l of peripheral blood was obtained from tumour-bearing mice via 

intracardiac puncture at the termination of the experiment and transferred into a 

micro-container serum separator tube (Becton Dickinson). The blood samples 

were  centrifuged  at  6000rpm  for  5  minutes and the separated serum was stored in 

−80°C  until  usage.   

 

3.2.6 Flow cytometry 

 

3.2.6.1 LTi cell sorting 

 

For LTi cell sorting experiments, spleens were harvested from BALB/c immune-

competent mice. Spleens were minced by scalpel and passed through a 40-μm  

nylon mesh to produce a single-cell suspension.  Cells were then stained for CD3, 

CD11c, B220R, CD127, CD90.2 and NKp46 and sorted into populations by using 

a FACSAria. Purity was confirmed by flow cytometry and confirmed at > 90% (n 

= 3). For multi-photon experiments, 5-6x104 sorted LTi cells were injected 

intravenously into tumour bearing mice on the same day. 

 

3.2.6.2 Flow cytometric analysis of immune cell components within tumours 

and lymph nodes 

 

Tissues were weighed and dissociated mechanically to obtain a single-cell 

suspension. Tumours were minced by scalpel and incubated in RPMI media 
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mixed with collagenase/hyaluronidase at 37°C for 60 min. Lymph nodes did not 

require this digestion step.  The tissues were further dissociated by pipette 

trituration and then passed through a 40-μm  nylon  mesh to produce a single-cell 

suspension.  Total numbers of live cells were determined by staining with Trypan 

blue and counting under a microscope or by using the Casy® cell counter and 

analysis system.  Cells were then stained for immune cell components e.g. LTi 

(CD3, CD11c, B220, CD127, CD90.2 and NKp46). Flow cytometry reference 

beads (PeakFlow blue; Invitrogen) were added to the samples before analysis for 

quantification of cells in each tumour. Flow cytometric analysis was performed by 

using BD FACSCanto II or Fortessa, employing FACSDiva Software (BD 

Biosciences). Data were analyzed by using FlowJo software (TreeStar Inc., 

Ashland, OR, USA). The absolute number of a subset of cells per milligram of 

tumour was calculated using the formula: Density of x cells = (number of beads 

added to each sample multiplied by count of x cells/count of beads)/tumour 

weight.  Further details and list of antibodies used are included in Table 3-2. 

 

3.2.7 Protein quantification assays 

 

3.2.7.1 Enzyme linked immunosorbent assay (ELISA)  

 

We have used commercial kits (R&D systems) as  part  of  the  “sandwich  ELISA”  

technique as advised by the manufacturer. In principle, as antigen the kits contain 

E. coli-expressed recombinant protein (e.g. CXCL13, CCL21 or RANKL). 

Results of the test show linear curves that are parallel to natural protein in serum, 

saliva and cell- culture supernatants, and can therefore be used for determination 

of relative mass values for natural protein. 
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Briefly, monoclonal antibody directed against the antigen of interest was allowed 

to adsorb to a 96-well plate overnight. After three washes in PBS containing 

0.05% Tween-20 (PBS-T), wells were incubated for 1 h at RT with PBS 

containing 1% bovine serum albumin (BSA) (Sigma) to block non-specific 

binding. 50l of standard or sample supernatant were added to the wells and 

incubated for 2 hours at RT. Tests were loaded in triplicates. Unbound antigen 

was removed by washing with PBS-T and the plate was incubated with 

biotinylated monoclonal antibody against the antigen of interest for 2 hours at RT.  

After the wells have been washed a second time to remove any unbound antibody-

enzyme reagent, 200μl   substrate   solution   (streptavidin-conjugated HRP (1:200)) 

is pipetted into the wells and left in the dark for 30 minutes for incubation. During 

this time, colouring occurs in relation to the amount of protein bound in the first 

step. The reaction was stopped by adding 100L sulfuric acid to the wells and the 

optical density at 450 nm and 540 nm was determined using a microplate reader.   

 

3.2.7.2 Elispot cytokine antibody array 

 

Conditioned media from various human breast cancer cell lines were analysed 

with a semiquantitative human cytokine antibody array that detects upto 80 

chemokine/cytokines in one experiment (RayBio Human Cytokine Antibody 

Array V).  The assay was performed as per the manufacturers guidelines.  Briefly, 

antibody membranes were blocked with 10% bovine serum albumin in Tris-

buffered saline for 30minutes. 1ml of 2-fold diluted supernatants were added into 

each separate well and shaken at 90 rpm at RT for 2hours. Thereafter the array 

membrane was washed and incubated with a biotin-conjugated antibody cocktail 

for a further 2 hours at RT.  After the membranes have been washed a second 
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time, 2ml of 1X HRP-Streptavidin is pipetted into each well and left in the dark 

for 2 hours for incubation. Following a thorough wash, the membranes were 

placed in an X-ray cassette, covered in a chemiluminescent substrate for 2 

minutes as per manufacturer instructions. The blots were then exposed on 

Hyperfilm and developed using Imaging Systems Xograph compact X4 

developer.  HRP-conjugated antibody served as a positive substrate control at six 

spots and was also used to identify membrane orientation. 

 

3.2.7.3 Western blotting 

 

Cells were cultured until 80% confluent in 6 well or 12 well tissue culture dishes. 

Cells were stimulated or inhibited as described elsewhere. Cells were then washed 

twice in ice-cold PBS and lysed on ice by scraping into 100-350μl   of   1.5   fold  

sample buffer, heated to 75oC. The lysates were centrifuged at 4oC at 16,000g for 

5 minutes to clear debris. The total protein content of the samples was measured 

by the BCA protein assay kit (Pierce) using known concentrations of BSA protein 

as standards. 

  

For immunoblot, cell lysates were heated  at  95˚C  for  15minutes in 100mM DTT 

reducing agent  (to break disulfide bonds) and loaded on to pre-made Novex 

Nupage 12% or 4-12% Bris Tris gels immersed in MES-SDS running buffer.  One 

lane was reserved for a standard molecular weight marker ladder.  Gels were run 

on an Invitrogen X-Cell mini-gel system, which were subjected to constant 

voltage electrophoresis at 200V until the blue loading dye reached the bottom of 

the gel. After separation, proteins were electrophoretically transferred onto PVDF 

transfer membrane using the Invitrogen XCell IITM transfer apparatus 
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(arrangement: sponge, two filter papers, gel, membrane, two filter papers, 

sponge). The gels were subjected to constant voltage at 38V for 45mins for the 

transfer to occur. 

 

 Membranes were blocked in the   relevant   blocking   buffer   as   per   the   antibody’s  

manufacturers instructions for 45min at RT with shaking and then incubated with 

specific primary antibody overnight at 4oC.  Blots were rinsed once and washed 

two times with TBS-Tween for 5 minutes each on a roller, prior to incubation 

with the appropriate secondary antibody for 45min at room temperature. 

Following a second washing step, the blots membranes were placed in an X-ray 

cassette, covered in enhanced chemiluminescent (ECL) substrate for one minute 

as per manufacturer instructions. The blots were then exposed on Hyperfilm and 

developed using Imaging Systems Xograph compact X4 developer. 

 

It was possible to re-use the transfer membrane for incubation with second 

primary antibody. The protein bound to the transfer membrane were stripped off 

with Re-BLOT Plus Strong solution, diluted 1:10 with TBS-Tween, for 15minutes 

at 37oC, followed by blocking and antibody incubation steps as above. Western 

blot results were analysed and normalised with Quantity One software (Bio-Rad 

Ltd). 

 

3.2.8 siRNA Knockdown 

 

siRNA knockdown of was achieved by treating cells with three different 

predesigned sequences targeting the sequence of interest (see Table 3-1).  In the 

control group, cells were treated with scrambled non-targeting siRNA.   Cells 
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were transfected following the manufacturer's instructions. Briefly, mesenchymal 

stromal cells (MSC) were seeded in 6-well plates 1 day before transfection in 

DMEM media that was supplemented with 2% fetal calf serum without 

antibiotics. Targeting or non-targeting siRNA was mixed with Lipofectamine 

RNAiMAX (Invitrogen) in Opti-MEM medium (Invitrogen) for 20 min at room 

temperature and then added to the cell culture medium at a final concentration of 

20 nmol/liter. The cells were incubated at 37 °C for 24-72 hours. At the end of 

this incubation, protein expression was determined by ELISA analysis to assess 

knockdown efficiency.  

 

3.2.9  Invasion Assay 

 

The ability of cells to invade through ECM was assessed using the CM ECMatrix 

96-well Cell Invasion Assay Kit (ECM555, CHEMICON, International, CA, 

USA). The assay was performed as per the manufacturers instructions. Briefly, 

4×104 cells were seeded on to the Transwell® insert and allowed to attach at 37°C 

with 5% CO2 for 2 h. Inserts were then placed in serum-free DMEM and DMEM 

containing 10% FBS or media containing increasing concentration of the 

recombinant stimulant (e.g. CCL21, CXCL13, EGF or RANK) acting as a 

chemoattractant. Cells were left to invade for 24 hours at 37°C with 5% CO2.  The 

invasive cells, which migrated through the ECM layer and attached to the bottom 

of the polycarbonate membrane, were dissociated from the membrane after 

incubation with the Cell Detachment Solution for 30 minutes at 37 °C. Next, 50 

μL  of  lysis  buffer/CyQuant  GR  Dye  Solution  (1:75)  was  added  to  each  well  and  

incubated for 15 min   at   room   temperature.   Finally,   150   μL   of   the  mixture  was  

transferred to a new 96-well plate, and the fluorescence value was detected with a 



 86 

fluorescence plate reader using 480nm/520nm filter set. As a negative control, 

Cell Detachment Solution in the absence of cells was used. 

 

3.2.10 Migration assay 

 

For LTi-MSC co culture cell migration experiments, MSCs were grown in 9.4 x 

10.7 mm ibidiTM 8-well -slide chambers and allowed to attach at 37°C with 5% 

CO2 for 24 hours. Prior to imaging sorted splenic LTi cells in RPMI complete 

medium supplemented with 25 mM HEPES were added to the MSC plated 

chambers.  

 

For the 4T1.2 cell stimulation migration experiments, cells were plated in 6-well 

plates and allowed to incubate at 37°C with 5% CO2 for 24hours.  Six hours 

before to imaging, cells were stimulated with either control media or recombinant 

proteins.  The media was supplemented with 25 mM HEPES just prior to imaging 

for 10 hours. 

 

3.2.11 Microscopy 

 

3.2.11.1 Confocal Microscopy 

 

Confocal fluorescence images were acquired on a confocal fluorescence laser-

scanning microscope (model LSM 510; Carl Zeiss Inc.) equipped with 

40X/1.3Plan-Neofluar and 63X/1.4Plan-APOCHROMAT oil immersion 

objectives, or a Leica DMIRE2 (Leica Microsystems, Germany). Confocal 
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aperture was set to one Airy unit for the longest wavelength. The various colour 

filters that were used for detecting the different fluorophores are as follow 

(excitation wavelength): DAPI (405- 450nm), FITC (488- 510nm), Cy3 (543- 

573nm) and Cy5 (633- 738nm). Images were analysed using the LSM Image 

Brower software. 

 

3.2.11.2 Time-lapse microscopy and image analysis 

 

For time-lapse microscopy experiments cells were cultured in DMEM/RPMI 

complete medium supplemented with 25 mM HEPES. Image acquisition was 

performed using an Olympus IX71 inverted microscope fitted with an automated 

xy stage (Ludl), a CCD camera (Andor), and shutter controller (Ludl). The 

microscope body was housed within an environment chamber accurately 

maintained at 37°C. The automated XY stage enabled imaging of multiple fields 

across multiple wells over the course of time-lapse experiments. Sequential phase 

contrast images were captured at 10-minute intervals for a total of 10 hours.  

Automated image acquisition was under the control of Andor iQ imaging 

software.  Sequential images were assembled into video files in ImageJ for 

subsequent image processing and cell tracking. 

 

3.2.11.3 Surgical window and Multi-photon Imaging In vivo 

 

The Mammary Imaging Window (MIW) was placed on D10 after injection of 

1x106 4T1.2 cells into the mammary fat-pad. All surgical procedures were 

performed under 2% isoflurane inhalation anaesthesia and under aseptic 

conditions. Before surgery, the tumour area was shaved and the skin was 
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disinfected using 70% ethanol. An incision was made through the skin, where the 

imaging window was inserted (for details see 198). After surgery the mice were 

kept at 32°C until fully recovered from anaesthesia.  

 

For multi-photon experiments, 1x106 MSCs followed 24 hours later by 5X104 

sorted LTi cells were injected (intravenously) into tumour-bearing mice treated 

with an IgG control antibody or neutralising CXCL13 antibody respectively.  

Twenty-four hours later the mice were sedated using isoflurane inhalation 

anaesthesia (1.5% to 2% isoflurane/O2 mixture) and placed with their head in a 

facemask within a custom designed imaging box. The imaging box and 

microscope were kept at 32°C using a climate chamber surrounding the complete 

microscope stage, including the objectives. Mice were imaged for a maximum 

period of 3 hours per day.  

 

All post-hoc image processing and image reconstructions were done using 

MacBiophototonics Image J software. At the end of the experiments, tumours, 

lymph nodes and tissues with suspected metastatic foci were surgically removed. 

 

3.2.12 Analytical Methods 

 

3.2.12.1 ImajeJ clustering 

 

To measure the LTi clustering around stromal cells, series of image processing 

functions in ImageJ were performed to measure the area of the frame occupied by 

the cells. AVI videos were recorded in an RGB format and then converted to 8-bit 

grey-scale. Each frame of the video was treated independently and a 2-D rolling 
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ball algorithm (aka grey-scale morphology) was run using the "Subtract 

Background" function with a ball radius of 10 pixels to remove interfering 

background variations. The Otsu algorithm ("Auto Threshold", "method=Otsu 

white"), was used to segment the foreground cells from the background by 

thresholding. On the resulting binary image the "Measure" function reports the 

average image intensity. This value divided by 255 equals the area proportion of 

foreground in the frame, for a binary image, and this was used to quantify the 

clustering. This algorithm has been implemented as an ImageJ macro running in 

batch mode, with a processing time of about 7 minutes for one 300-frame video.  

The macro is available from: 

(http://users.ox.ac.uk/~atdgroup/software/ForegroundArea_batch.ijm).  

 

3.2.12.2 Cell tracking 

 

In order to generate trajectory data for the analysis of cell migration interactive 

tracking of cells from time-lapse videos was performed using the ImageJ Manual 

Tracking plugin  

(http://imagej.nih.gov/ij/plugins/track/track.html). Resulting trajectory data was 

used to analyse cell speed and to generate trackplots for the visual representation 

of migration data.  

 

3.2.12.3 Statistical analysis 

 

Permutation tests for small samples with multiple ties were performed using the 

“coin”  package  in  R-2.13.0 199,200. Prism software (GraphPad) was used for other 

http://users.ox.ac.uk/~atdgroup/software/ForegroundArea_batch.ijm
http://imagej.nih.gov/ij/plugins/track/track.html
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data analysis. P values less than 0.05 were considered significant.  In figures, 

asterisks  were  used  as  follows:  *  p≤0.05;;  **  p≤0.01;;  ***  p≤0.001;;  ****  p≤10-4.  
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Chapter 4: Lymphoid  tissue  
inducer  cells  within  human  breast  

cancers 
 

In this chapter I will discuss the novel identification of RORt+ LTi cells within 

the breast cancer tumour microenvironments and their possible role in providing 

signals for lymphatic tumour cell invasion and lymphangiogenesis within specific 

subtypes of breast cancer. 

 

4.1 Identification of RORt+ LTi cells within the human breast cancer 

tumour microenvironment.  

 

As described in section 1.5, the presence or role of LTi cells has not been 

explored in human tumours.  In  collaboration  with  Professor  Peter  Lane’s  group  at  

the MRC Centre for Immune Regulation, University of Birmingham; we stained 

fresh frozen primary tumour sections of patients with breast cancer for markers 

discriminatory for LTi cells (defined as positive for a nuclear transcription factor 

RORt and membrane receptor CD127 (IL-7R) but negative for CD3 as 

previously described 201,202. Given that postnatal LTi numbers are found in much 

larger numbers in the intestines and the tonsils 145, we first optimised our protocol 

for LTi staining using small bowel lymph node fresh frozen sections (Figure 4-1) .  
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Figure 4-1:  LTi cell identification within small bowel lymph node sections 

A: Low-power (x25 oil immersion optic) confocal image is shown.  LTi cells (white 
arrow in merged image) are identified as positive for CD127 (red perinuclear staining), 
negative for CD3 (blue membrane and cytoplasmic staining) and positive for RORt 

(green nuclear staining).   Grey corresponds to 4,6-diamidino-2-phenylindole (DAPI) 
staining of the cell nuclei. B: Negative controls with no primary antibody to identify non-
specific binding are shown (i.e. only secondary antibodies were used). 
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Having optimised the protocol, we then stained fresh frozen primary breast cancer 

tumour sections for LTi cells. We identified within the breast cancer 

microenvironment RORt+CD127+CD3- cells that were comparable in phenotype 

to the LTi cells (Figure 4-2A-C).  The staining of RORt+, which is a class of 

DNA-binding transcription factors with hitherto unknown gene target (hence also 

known   as   nuclear   orphan   receptors)   has   a   characteristic   nuclear   “speckled”   or  

punctate appearance (Figure 4-2D). 

 

Within 2 out of the 60 cases (approximately 3.3%), we noticed that tumour-

infiltrating lymphocytes were not only scattered throughout the stroma and 

interspersed between tumour cells; but they also cluster in aggregates resembling 

tertiary lymphoid structures (TLS) with distinct compartmentalization between a 

T and a B cell zone (Figure 4-3).  B-zones represent the unstained centres within 

the lymphocyte aggregate. RORt+CD127+CD3- cells were in close proximity to 

CD3 positive cells within the stromal component of tumours and were also seen 

within TLS.  
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Figure 4-2: LTi cell identification within the breast cancer 
microenvironment.   

A: Haematoxylin-eosin (H&E) staining of fresh frozen section of a primary human breast 
cancer.  B: Immunofluorescence detection of LTi cells in a low-power (x25) 15x15 
confocal tile scan is shown. C: Zoomed images show confocal micrographs of LTi cells 
(white arrow) are identified as positive for RORγt (green nuclear staining) and CD127 

(red perinuclear staining) and negative for CD3 (blue membrane and cytoplasmic 
staining).   Grey corresponds to 4,6-diamidino-2-phenylindole (DAPI) staining of the cell 
nuclei. (Scale bar = 15m). (Sample No: GU_801098). D: The characteristic speckled 
appearance of RORt staining (green) within the nucleus (grey) is shown. (Sample No: 
461649080-C). 
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Figure 4-3: Breast cancer tissue with prominent tertiary lymphoid follicle 
formation.  

H&E histopathological images show (A): Low power view of a breast cancer tumour 
section and (B): High power view allows identification of dense areas of lymphoid cell 
aggregates within the human breast cancer microenvironment (red circles). C: 
Immunofluorescence for CD3 (membrane or cytoplasmic blue staining) identifies the 
outer T-zone of these lymphoid structures. D: Identification of a RORt+CD127+CD3- 
LTi cells (white arrow) (RORt+, green nuclear; CD127+, red perinuclear) within the TLS. 
TZ=T zone. Red squares represent areas of interest. (Sample No: GU_1027). 
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4.2 Breast cancer datasets confirm differential expression of the 

lymphoid chemokines between tumours.  

 

4.2.1 The  King’s  Health  Partners  Cancer  METABRIC  Biobank   

 

The breast cancer genomic analysis performed by METABRIC (Molecular 

Taxonomy of Breast Cancer International Consortium) recently produced a novel 

classification of breast cancers into 10 subgroups 8; one of the subgroups 

(IntClust4) represents a common breast cancer subtype in which the antigen 

presentation pathway, OX40 signalling, and cytotoxic T-lymphocyte-mediated 

immune response is prominent and has very few DNA aberrations (such as 

acquired somatic copy number aberrations (CNA)) compared with those in other 

subgroups 8. In collaboration with Dr Katherine Lawler (Bioinformatics, Institute 

for Mathematical and Molecular Biomedicine,   King’s   College   London),   we 

further analysed the gene expression of lymphoid chemokines (CXCL13, CCL19, 

and CCL21) 62,78,203 and their corresponding receptors (CXCR5 and CCR7) within 

the METABRIC samples originating from Guys & St Thomas’  Breast  Tissue  and  

Data Bank.  

 

An unsupervised hierarchical cluster analysis of the transcriptional profile of the 

Guy’s  &  St  Thomas’  Breast  Tissue  and  Data  Bank  subset of METABRIC tumour 

samples (n=234) revealed that this breast cancer cohort could be categorized 

based on the expression of lymphoid chemokines and their receptors. 

Interestingly, the group of tumours exhibiting relatively high expression of these 

genes was found to be enriched for the aggressive form of breast cancer -“basal-

like”   breast   cancers - according to PAM50 intrinsic subtype assignments (see 
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section 1.1) 204,205 (31/53 basal-like tumours lie in the top-branch cluster, n=89; 

p=0.0007, two-tailed Fisher's exact test) (Figure 4-4). Lymphoid chemokine and 

receptor genes showed highly significant internal pair-wise correlations.  

Specificity was demonstrated by virtue of a lack of correlation of these lymphoid 

chemokine and receptor genes with other lymphoid chemokine genes such as the 

ligand-receptor pair CCL20-CCR6 that is known to chemoattract immature DC, 

effector/memory T-cells and B-cells 206 (Figure 4-4).  
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Figure 4-4: LTi cells and associated chemokine gene signature within breast cancer microenvironment.  

A: Hierarchical clustering of the expression of genes encoding lymphoid-associated  chemokines  and  receptors  in  the  Guy’s  METABRIC  data  set  (n=234). Columns 
represent patient samples, with dendrogram colored according to the top-level cut-point (black/red). PAM50 intrinsic subtype assignments are displayed below.  B: 
Significance of pair-wise gene expression correlations for genes encoding lymphoid-associated chemokines and receptors (solid line: p < 10-4; dashed otherwise).  
The significance of each gene-gene correlation was assessed using a background distribution estimated from 1000 randomisations of each gene probe across 
samples.
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4.2.2 Cross validation of lymphoid chemokine signature using other breast 

cancer gene expression datasets 

 

An additional six independent breast cancer datasets were used to evaluate further 

the correlation of the co-expression of lymphoid chemokines and their receptors 

with subtypes of primary breast tumour tissue. These data sets originated from 

multiple platforms and different patient cohorts. The BREAKTHROUGH dataset 

(n=196; 18 oestrogen positive (ER+) and 178 ER negative (ER-) tumours by 

unified ER gene expression and immunohistochemical evaluation) 207 is a triple-

negative-enriched data set performed on Affymetrix Exon arrays. Due to the 

enrichment for triple-negative samples in the BREAKTHROUGH data-set, 

PAM50 intrinsic subtypes were assigned based on resampling to reflect the 

hormone receptor status of the PAM50 training cohort 207. The remaining five 

breast cancer data-sets were retrieved as pre-processed data sets from 

Bioconductor.org and filtered for samples with known ER status 208-213: 

TRANSBIG (n=198; 134 ER+, 64 ER-) 214, MAINZ (n=200; 162 ER+, 38 ER-) 

215, UPP (n=247; 213 ER+, 34 ER-) 216, VDX (n=344; 209 ER+, 135 ER-) 217,218, 

UNT (n=126;  86 ER+, 40 ER-) 219. Probes corresponding to the lymphoid 

chemokine and receptor genes were matched using gene symbols; where multiple 

probes match a single gene symbol, the probe with the highest standard deviation 

across samples is displayed. PAM50 intrinsic subtypes were assigned according to 

Weitgel et al., 196 using gene-standardised   data   and   “Gene.symbol”   to   match  

features.  

 

All six datasets indicated that breast cancer cohorts could be categorized based on 

the expression of lymphoid chemokines and their receptors. Four out of the six 
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datasets (BREAKTHROUGH, TRANSBIG, UPP, VDX) confirmed the 

association seen between basal-like breast cancer (BLBC) subtype and relatively 

high expression of genes encoding -associated chemokines and their receptors 

(Figure 4-5).  Apart from the MAINZ and UNT datasets, the red bars 

(representing BLBCs) were higher amongst the 5th quintile (representing the high 

expressers within the dataset). 
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Figure 4-5: Expression of lymphoid chemokine and chemokine receptor 
genes in breast cancer datasets.  

Heat maps display gene-standardised expression for each breast cancer data set. Columns 
(samples) are ordered by increasing expression score (mean of gene-standardised 
expression values of the listed genes) and displayed in blocks representing score quintiles 
(left-right, lowest to highest expression score). PAM50 assignments are depicted above. 
Bar plots show the distribution of intrinsic subtype assignments within each expression 
quintile. Relative enrichment for the basal-like subtype (red) amongst samples with 
higher expression scores is observed in multiple independent data sets. 



 102 

4.3 Tumoural LTi cell density correlation with lymphoid gene signature 

 

We hypothesised that tumours with high levels of lymphoid chemokines would 

have a higher number of LTi cells present within the tumour microenvironment.  

We therefore performed a blinded study to investigate how the selected gene 

expression levels for lymphoid chemokines correlated with the presence of 

RORt+CD127+CD3- LTi cells in primary breast cancer sections. 

 

A total of 60 tumour sections  from  the  METABRIC  Guy’s  and  St  Thomas’  Tissue  

bank were selected at random for LTi staining. I was blinded to the information 

relating to the lymphoid chemokine gene expression levels of the tumours. These 

tumours were stained following the protocol described in section 3.2.3.1 and 

confocal tile scan (15x15 using a X25/1.8 objective) images obtained. The total 

number of CD3+ lymphocytes and LTi cells/mm2 within each section were 

recorded.  An example of the analysis for LTi quantification of a breast cancer 

sample is shown in Figure 4-6. 

 

Patient characteristics for the cohort stained for LTi density in comparison to the 

Guys’  METABRIC  data set are depicted in Table 4-1.  The dataset was relatively 

well balanced for ER expression with 54% of cases being ER-positive and 46% 

being ER-negative.  This is important as majority of the BLBCs and therefore 

higher expressers for the lymphoid chemokine gene signature are ER-negative 

(75%) as compared the ER-positive cases, the majority of which would fall in the 

group   representing   the   “low”   expressers   of   the   lymphoid gene signature.  Any 

difference between the two is therefore more likely to be seen. 
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Figure 4-6: Strategy for LTi cell density quantification in primary breast 
tumour sections.  

A: A15x15 tile scan obtained at low power (x25/1.4 oil immersion optic) of a fresh 
frozen breast cancer tumour section stained for CD127, CD3, and RORt. B: Further 
analysis was carried out using the MacBiophototonics Image J software to obtain the total 
surface area of the tissue. The total numbers of CD3+ (C) and CD127+CD3-RORt+ LTi 
(D) cells were recorded using an Image J manual cell counter. 
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Table 4-1: Clinico-pathological characteristics for the METABRIC data set 

Guy's METABRIC 

 (i) 
Gene expression data 

set 

(ii) 
Gene expression & LTi assay dataset  

(iii) 
By PAM 50 subtype 

Basal Luminal 
A 

Luminal 
B 

HER2 Normal 

 N = 234 N = 59 N =53 N =75 N =44 N =40 N =22 

 Number (%) Number (%) Numbers 

Age 
Median (y) 60.8  59.3  56.8 62.9 65.5 57.2 59.5 
Grade 

1 29 (12%) 3 (5%) - 23 3 1 2 
2 84 (36%) 12 (20%) 5 36 22 10 11 
3 112 (48%) 42 (71%) 48 9 19 29 7 

Unknown 9 (4%) 2 (3%) - 7 - - 2 
ER status (ESR1 expression)      

Positive 176 (75%) 32 (54%) 13 75 44 25 19 
Negative 58 (25%) 27 (46%) 40 - - 15 3 
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Lymph nodes, No. positive 

0 95 (41%) 15 (25%) 19 34 16 17 9 
1-3 93 (40%) 27 (46%) 25 29 16 14 9 
4+ 45 (19%) 17 (29%) 9 12 11 9 4 

Unknown 1 (0.4%) - - - - 1 - - 
Invasive tumour size      

<= 2cm 100 (43%) 21 (36%) 20 41 15 15 9 
> 2cm 134 (57%) 38 (64%) 33 34 29 25 13 

Hormone treatment      

Yes 188 (80%) 39 (66%) 28 69 40 32 19 
No 46 (20%) 20 (34%) 25 6 4 8 3 

Chemotherapy      

Yes 49 (21%) 28 (47%) 29 6 2 9 3 
No 184 (79%) 31 (53%) 24 69 42 31 19 
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We observed that the number of RORt+CD127+CD3- LTi cells/mm2 (of the total 

surface area) varied considerably from case to case (range 0-56/mm2). Within the 

study group, patients with high LTi counts within the tumour microenvironment 

were also likely to have a gene expression profile corresponding to a high gene 

expression score for the LTi- associated chemokines (p < 10-3, Spearman’s 

correlation permutation test) (Figure 4-7). Similarly the numbers of 

CD3+cells/mm2 also varied considerably from case to case (range 0-1065/mm2). 

Again patients belonging to the high gene expressing group for the lymphoid-

associated chemokines correlated with higher CD3+  cell counts within the tumour 

microenvironment (p < 10-3, Spearman’s correlation permutation test). 

 

 

Figure 4-7: Comparison of gene expression profiles and presence of LTi cells 
in primary breast tumours.  

The heat map illustrates relative expression of genes encoding lymphoid chemokines and 
receptors. Columns (samples, n = 59) are ordered by increasing expression score and 
rows by hierarchical clustering. The ranks of LTi and CD3 counts (cells per mm2) are 
depicted below and are ordered from lowest to highest (range 0-56 cells/mm2) and (range 
0-1065 cells/mm2).  
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4.4 Tumoural LTi cell density correlation with lymphatic invasion and 

lymphangiogenesis 

 

As discussed in section 1.2.1, information about lymphatic invasion (LI) and 

lymphatic vessel density (LVD) have been shown to be promising and important 

prognostic factors for various tumour types.  Given the known effect of LTi cells 

in enhancing the production of lymphangiogeneic factors such as VEGF-C/D by 

the mesenchymal lymphoid tissue organiser (LTo, stromal) cells 127, 

immunohistochemistry for the lymphatic endothelial marker, podoplanin was 

performed on tumour sections of the patient cases that had been analysed for LTi 

cell counts with the aim of investigating their role in lymphatic vessel invasion or 

in promoting lymphangiogenesis within breast cancers. 

 

4.4.1 Podoplanin staining 

 

In order to avoid false data from low specificity of staining, selection of the 

optimal marker of the lymphatic endothelium was a critical step in the assessment 

of LI or LVD for our study.  Within the last decade, major research efforts have 

lead to the discovery of a large spectrum of candidate lymphatic markers.  In 

2006, Van der Auwera et al, published the first international consensus on the 

methodology and criteria of the evaluation of lymphatic vessels within solid 

tumours 220. Commonly used markers include vascular endothelial growth factor 

receptor 3 (VEGFR-3/Flt4), homeobox prospero-like protein (Prox1), lymphatic 

vessel endothelial hyaluronan receptor-1 (LYVE-1) and podoplanin (E11 antigen, 

gp38, D2-40).   
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Podoplanin (E11 antigen, gp38, D2-40) is a ~38-kD surface glycoprotein that is 

expressed by lymphatic endothelial cells (LECs) and is not expressed by blood 

vessels 221. It is expressed by both developing and mature LECs as compared to 

LYVE-1 which is detected in only a subset of cultured podoplanin positive 

endothelial cells 222.  Podoplanin is not an exclusive marker of the lymphatic 

endothelium; it is also expressed in podocytes, osteoblastic cells, osteocytes, basal 

keratinocytes, choroid plexus epithelial cells, alveolar type I cells, osteoblasts, 

peritoneal mesothelial cells, dendritic cells and a subset of macrophages 223.   

 

Comparative studies between podoplanin and other lymphatic markers have 

proved it to be the most sensitive and specific marker for lymphatic vessel 

endothelium in sections of both frozen and formalin-fixed paraffin-embedded 

normal and neoplastic tissues 224,225.  Extremely high specificity of 99.7% and 

high sensitivity of 92.6% has been reported for podoplanin antibodies 224.  We 

therefore chose this lymphatic marker for further work within this study.   

 

4.4.2 Lymphatic invasion  

 

Conventional H&E immunohistochemical staining of the 60 selected cases  with 

known LTi density score were first evaluated for lympho-vascular invasion by 

Professor Sarah Pinder (Lead Professor in Histopathology, Kings College 

London) in order to select the most appropriate specimen block for 

immunohistochemical staining.  This also allowed for each case to have a LVI 

positive/negative status, representing a measure of tumour cell invasion within 

both the blood and the lymphatic vessels (Figure 4-8A).    Although we did not 
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find a significant correlation between the LTi and LVI statuses within the tumour 

microenvironment, a non-significant trend in favour of the presence of LTi cells 

with associated LVI and vice versa was seen (Figure 4-8B).  

 

 

Figure 4-8: The presence of LVI within breast tumour sections as determined 
by pathological review.  

A: H&E section of breast tissue with lympho-vascular invasion (red arrows) is shown.  
B: Correlations between LTi counts within the breast cancer tumour microenvironment 
and LVI is shown (NS=non  significant;;  Fisher’s  exact  test). 

 

 

Without knowledge of the LVI status based on the H&E slide, I evaluated the 

cases for tumour cell lymphatic invasion by reviewing the podoplanin 

immunohistochemical stained paraffin embedded tumour sections of the selected 

60 cases.  Presence or absence of tumour cell invasion into the lymphatics was 

recorded and used to derive a lymphatic invasion score (LI).  LI was considered 
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evident if at least one tumour cell cluster was clearly visible in the lymphatic 

vascular space (red arrows in Figure 4-9).  Samples showing inappropriate 

staining in internal negative or positive controls were considered non-informative 

and were excluded from the analysis.  

 

Seventy eight percent (47/60) of the cases were evaluable for analysis.  We found 

that 82% (14/17) of patients with lymphatic tumour cell invasion had LTi cells 

present within the microenvironment; whilst the patients without lymphatic 

tumour cell invasion only 27% (8/30) had LTi cells present   in   the   primary  

tumours.         Similarly,   73%   (22/30)   of   patients   without   lymphatic   tumour   cell  

invasion  did  not  have  any  LTi  cells  present  within  the  microenvironment,  whereas  

only  17%  (3/17)  of  patients  without  LTi  cells  were  seen  to  have  LI  present  (Figure 

4-9C; p <0.001, Fisher's  exact  test).     

 

We  concluded  that  patients with tumour cell invasion into lymphatics were more 

likely to have a higher LTi score, compared to patients without lymphatic 

invasion. This  correlation  did  not  hold  true  for  association  between  LI  and  CD3+  

cells  counts,  strengthening  the  specificity  of  our  LTi  –  LI  correlation.     
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Figure 4-9: Podoplanin staining of primary breast tumour tissue shows 
tumour cell invasion into lymphatics is associated with increased number of 
LTi cells 

Podoplanin staining is shown in brown and cell nuclei are stained blue. A: Staining in 
sample No. GU 1208 shows large tumour emboli present within dilated lymphatics. B: 
Staining in sample No. GU 1023 shows the presence of small tumour cell clusters within 
small lymphatics. Scale bar = 100m. C: Correlations between LTi and CD3 cell counts 
within the breast cancer tumour microenvironment and LI is demonstrated. CD3low = 
<100cells/mm2.  CD3high = >100cells/mm2. Asterisks represent the p-values   (Fisher’s  
exact  test:  ***  p≤0.001;;  NS  =  not  significant). 
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4.4.3 Lymphatic vessel density 

 

Immunohistochemical application of podoplanin has been used as a tool to 

measure lymphatic vessel density (LVD), a surrogate marker for tumour-

associated lymphangiogenesis.  Its quantification has been proven valuable to 

assess metastatic involvment within  regional lymph nodes.  We therefore went on 

to determine the LVD according to the previously  described  “hotspot”  method  by  

Weidener et al 226; whereby LVD is determined by counting the number of 

podoplanin-positive vessels in   the   selected   ‘hot-spot’   areas.   ‘Hot   spots’   are 

defined as areas visualised at low magnification of containing numerous 

microvessels (Figure 4-10A). Traditionally, vascular   ‘hot   spots’   are   thought   to  

represent localised areas of biological importance 220. 

 

 

Figure 4-10: Positive correlation between increased LVD and LTi cell density 
within human breast cancers. 

A: Podoplanin staining is shown in brown and cell nuclei are stained blue. Intra- and 
peritumour lymphatic   vessel   densities   (LVD)   were   determined   using   the   “hot-spot”  
method.  Scale bar = 100m. B: Correlations between LTi cell count and LVD. Asterisks 
represent the p-values (****p<10-4, Mann-Whitney test). 
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Lymphatic vessels were considered countable only when podoplanin stained 

microvessels showed visible lumen. The mean LVD was collected through a 

Chalkey count, where a grid was placed onto the scanned image and all points 

coinciding with the stained lymphatic vessels counted 220. Three to five images 

were used and the mean value obtained with the number of counted vessels in 

each image  (see Figure 3-1).  

 

Of the 47 evaluable cases, the average LVD was approximately 9 vessels/mm2.  

We found a statistically significant correlation between increasing numbers of LTi 

cell counts within the tumour microenvironment and increased LVD (Figure 

4-10B; p < 10-4, Mann-Whitney test).  These findings provide evidence for a 

possible role of LTi cells in lymphangiogenesis within tumours. 

 

4.4.4 Lymph node burden 

 

Axillary lymph node positive breast cancers have a significantly worse prognosis 

than node-negative disease.  The number of involved nodes (rather than simply 

the absence or presence of nodal involvement) is a key determinant of prognosis 

after relapse. For example studies report that, when compared with node-negative 

patients, those with four or more involved lymph nodes have a significantly worse 

outcome after relapse. However, for patients with only one to three involved 

nodes, the outcome is not significantly different from that of the node-negative 

patients 15. Our data supported the role of lymphoid-associated chemokines and 

LTi cells in promoting lymphatic invasion and or lymphangiogenesis within 

tumours.  We therefore went on to test if this translated to an association with an 

increased risk of lymph node metastasis.   
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We returned to our selected patient cohort within the METABRIC dataset to 

investigate any relationship between the tumoural LTi density and lymph node 

tumour burden. As shown in Figure 4-11, we observed that within the BLBC – a 

poor outcome breast cancer subtype, the majority of which are triple negative 

breast cancers – a high lymph node tumour burden (4 or more metastatic lymph 

nodes at surgical resection) was associated with significantly increased levels of 

LTi cell counts (p=0.02; permutation-based Mann-Whitney).  These correlations 

were not seen within other breast cancer subtypes (HER2+ and Luminal A/B), 

strongly suggesting that the proposed roles/associations may be subtype specific, 

although limited numbers within these groups may account for the non-

significance in the HER2+ cases. 

 

 

Figure 4-11: Correlation between LTi cell count and lymph node tumour 
burden. 

A positive correlation between the higher LTi counts and tumour burden within draining 
lymph nodes with BLBCs is shown. Asterisks represent the p-values when comparing the 
>4 LN status to 1-3 LN status (Permutation-based Mann-Whitney Fisher’s  exact   test:  * 
p≤0.05; NS = non significant). 
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Additionally, we examined how the metastatic burden within the lymph nodes 

was related to gene expression of the key lymphoid--associated chemokines 

CCL21 and CXCL13 in the primary tumours within the METABRIC dataset.   

We observed a significant association of high lymph node tumour burden with 

increased levels of CCL21 (Figure 4-12; p≤0.01; lymph nodes positive, 4+ vs. 0; 

two-tailed Mann-Whitney) in BLBCs but not in human epidermal receptor 2+ 

(HER2+) or Luminal A/B tumours (Figure 4-12A). Although not statistically 

significant, a trend in increased CXCL13 expression and high lymph node burden 

was observed amongst the BLBC subgroup (Figure 12B). 

 

 

Figure 4-12:  Clinical relevance of lymphoid-associated chemokine gene 
expression in the context of lymph node metastasis. 

Correlation of CCL21 (A) and CXCL13 (B) chemokines gene expression with lymphatic 
tumour burden within our subset of the METABRIC dataset.  Asterisks represent the p-
values when comparing to the LN negative cases (Two-tailed Mann-Whitney:  **  p≤0.01, 
NS = non significant). 
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4.5 Discussion 

 

The previously unappreciated family of RORt+ innate lymphoid cells (ILCs), 

which include LTi cells have been shown to be key components for the 

construction of lymphoid structures underlying key immune response (see section 

1.4.1.2).  The aims of the experiments presented in this chapter were to explore 

the possible relevance of LTi cells in human breast cancers, which are 

summarised here in Figure 4-13.  A model system I hope to build upon in the 

subsequent chapters. 

 

Figure 4-13: Schematic illustration of correlations between LTi cells and 
chemokines, tertiary lymphoid structures and markers of tumour invasion 
observed in human basal-like breast cancer datasets. 

Increased LTi cells within the primary tumours were associated with increased lymphatic 
tumour cell invasion, lymphatic vessel density and increased tumour load in the draining 
lymph nodes. Consistent with previous studies, we observed tumour-infiltrating 
lymphocytes (CD3+) and TLS were present within the tumour microenvironment. 
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From the data presented in this chapter I report, for the first time, on the 

identification of RORt+CD127+CD3- LTi cells within the human breast tumour 

microenvironments. The CD3 negativity distinguishes these cells from the 

RORt+ Th17 cells.  However, it is important to note that although there is 

published data using these three markers to identify LTi cells within tissue 

sections 202, recent moves proposing a uniform nomenclature for ILCs would 

denote RORt+CD127+CD3- as group 3 ILC, which include both the LTi cells and 

the NK-like LTi cells.  To further investigate the role of LTi cells in cancers for 

our in vivo and in vitro studies, we have therefore included the marker NKp46 to 

make a clear distinction between the two cell types. Nonetheless, to the best of our 

knowledge, the presence or absence of these RORt+CD127+CD3- ILCs has not 

been explored in any human cancers to date. Although tumour periphery is often 

thought of as the place of greatest immunological importance (allowing sufficient 

immune tumour cell interaction) we did not observe a specific pattern for 

distribution of LTi cells within tumours. For example not only were the LTi cells 

scattered throughout the stroma and interspersed between tumour cells; they were 

also seen in aggregates resembling tertiary lymphoid tissue structures.  

Identification of these cells within the tumour microenvironment provides strong 

clinical support for the two previously published pre-clinical studies reporting on 

the presence of LTi cells within melanoma xenograft models 113,158. 

 

Subsequently, we went on to explore the relevance of the presence of these cells 

within the tumour microenvironment.  Our results support two main hypotheses.  

Firstly, LTi cells promote intratumoural lymphangiogenesis.  Corroborative 

evidence is provided by a direct correlation between intratumoural LVD and a 

higher LTi count within human breast cancer samples, suggesting an association 
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between LTi cells and neo-lymphangiogenesis in tumours.  In line with this, 

previous studies reporting on the initiation of fetal lymphoid tissue organogenesis 

have  shown  that  LTi  cells  activate  LTo  cells  by   ligating  LTβR  on   these  stromal  

cells. Once activated, stromal cells secrete lymphoid chemokines, increase 

expression of adhesion molecules, as well as secrete lymphangiogeneic factors 

such a VEGF-C and VEGF-D 120,123,227.  Interpretation of our results have an 

inherent limitation in that the sections selected for podoplanin staining were 

chosen from tissue blocks which were first evaluated by our senior pathologist for 

lymphovascular invasion, thereby introducing a potential selection bias to the 

analysis.  Ideally scoring for LVD from a number of sections from different 

blocks for each patient sample would provide a more representative picture of 

lymphangiogenesis within each tumour sample.  However, given the limitations 

of having access to precious human tissue, we did not receive ethical approval for 

this to be done from   the  Guy’s   and   ST  Thomas   Tissue  Bank. Nonetheless, the 

possible influence of the infiltrating LTi cells on the expression of these 

lymphangiogenic factors within tumours 228, at the transcriptional and post-

transcriptional levels is interesting and requires further investigation.  

 

Secondly, our data suggests that LTi cells may provide signals for lymphatic 

invasion by the tumours cells. We showed that patients with tumour cell invasion 

into lymphatics were more likely to have a higher LTi score compared to patients 

without lymphatic vessel invasion; and within the BLBC subtype the higher LTi 

density translated to a greater risk of increased tumour burden within the lymph 

nodes.  In support of this subtype specific relationship between LTi cells and 

BLBC subtypes, we also report on the discovery of a novel lymphoid chemokine 

gene expression signature within seven independent datasets that correlates with 
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1) LTi infiltration of human breast tumour and 2) relatively higher expression of 

the lymphoid chemokines and receptor genes within BLBCs.   Additionally, we 

observed that within the BLBC a high lymph node tumour burden was associated 

with significantly increased levels of CCL21 and an associated trend in CXCL13.   

 

Given the recent advances in microarray-based gene expression studies that have 

helped classify breast cancer as a highly heterogeneous disease with distinct 

molecular   ‘intrinsic   subtypes’   relating   to   tumour   biology   and   behaviour 8,205,229, 

the subtype specific link between LTi cells and BLBCs is not particularly 

surprising.   Similarly, it is noteworthy that within our dataset not all the BLBCs 

fall in the group characterised as having a high expression of the 

chemokine/chemokine receptors, possibly reflecting limitations of the PAM50 

classification of breast cancer into only 5 main subtypes.  As discussed, the breast 

cancer genomic analysis performed by METABRIC recently produced a novel 

classification of breast cancers into 10 subgroups 8; and this is further complicated 

by the recently published study by Lehmann et al. 230 demonstrating that even 

within triple negative breast cancers (representing the BLBCs of the PAM50 

classification) the group can be further sub-divided into six distinct subtypes 230. 

These include: two basal like (BL1 and BL2), an immunomodulatory, a 

mesenchymal (M), a mesenchymal stem like (MSL), and a luminal androgen 

receptor (LAR) subtype; each representing subgroup exhibiting unique tumour 

biology.  

 

Among the molecular subtypes of breast cancer identified, none has generated as 

much interest or controversy as the basal-like group.  BLBCs account for 15% of 

all breast cancers and are more prevalent amongst young African, African-
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American and Latino women.  They are known to be associated with an 

aggressive clinical course and a generally poorer prognosis 231-233.  BLBCs show a 

specific pattern of distant metastasis with an increased propensity for visceral 

metastases to the brain and lung and are less likely to metastasize to the bone and 

liver, suggesting that such tumours might also possess a distinct mechanism of 

metastatic spread from non-basal-like tumours 232. A recent study reported that 

within BLBCs the vascular invasion is almost entirely via lymphatics 27.  My own 

view is that LTi cells play a role in this lymphatic tumour cell invasion within the 

BLBCs.  However, bearing in mind that studies have reported abnormal 

multidirectional flow within tumour associated lymphatic vessels (perhaps due to 

insufficient or dysfunctional valves) 234, it is also possible that the increased 

number of lymphatic vessels within these tumours results in an increased 

infiltration of immune (including LTi) cells into the microenvironment.  

 

Histologically, majority of BLBCs are of high histological grade, and 

characterized by exceptionally high mitotic indices, the presence of central 

necrotic or fibrotic zones and conspicuous lymphocytic infiltrate.  Several lines of 

evidence suggest that clinical outcomes in this molecular subtype are particularly 

influenced by the host immune response 171,235.  Given our pathological findings, 

the lymphoid chemokine gene signature is likely to contribute additional 

prognostic information within the BLBCs.  It is possible that the correlation 

between the chemokine gene signature and LTi infiltration reflects the known 

physiological chemotactic functions of the lymphoid chemokines for lymphocytes 

(see section 1.3); supported by our observed higher CD3 infiltration within the 

relatively higher expressers for the lymphoid gene signature.  
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In summary, identification of LTi cells and their relevance particularly in the 

lymphatic invasion of basal-like breast cancers requires further investigation. 
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Chapter 5: Lymphoid  tissue  
inducer  cells  within  a  murine  

breast  cancer  microenvironment 
 

The aim of this chapter was to further investigate the mechanisms that underlie 

the correlations observed in Chapter 4: between the presence of tumoural LTi 

cells in human basal-like breast cancers (BLBCs) and increased tumour cell 

invasion within a breast cancer mouse model. 

 

5.1 Syngeneic murine model of triple negative breast cancer 

 

A clinical shorthand classification divides breast cancer into three major subtypes 

based on the expression of oestrogen (ER), progesterone (PgR) hormone 

receptors, human epidermal factor receptor 2 (HER2) and grade or Ki67 staining: 

luminal (ER/ PgR-positive disease) divided into low (A) and high proliferation 

(B) forms, HER2-amplified tumours and triple negative breast cancer (TNBC). 

TNBC describes a subset of breast cancers that lack expression of oestrogen and 

PgR as defined by immunohistochemistry (IHC), as well as HER2 overexpression 

or gene amplification of HER2 by IHC or in-situ hybridization, respectively 232. 

BLBCs are dominated by the TNBC phenotype and some investigators have 

suggested that the TNBC and basal-like phenotypes are effectively synonymous 

236. 

 

A clinically relevant animal model of spontaneous triple negative breast cancer 

metastasis to multiple sites is now available 194,237,238. Several tumour lines with a 
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spectrum of metastatic phenotypes have been derived from a spontaneously 

arising mammary tumour in a BALB/cfC3H mouse, offering the advantage of 

being able to be transplanted into immune competent recipients239.  Of these the 

highly metastatic 4T1 and its variant 4T1.2 cell lines are thought to most closely 

mimic the tumour growth and metastatic spread of human breast cancers 194,237. 

These cell lines have been shown to not express the ER, PgR or the gene for 

HER2 238.  In particular mice bearing 4T1.2 are thought to develop metastatic 

disease via a lymphatic route as compared to a haematogenous route and 

occasionally these mice have been shown to develop hind limb paralysis and have 

elevated plasma levels of calcium and parathyroid hormone-related protein 

(PTHrP), two pathologic hallmarks of the human disease240.   

 

We first confirmed the lymphotropic metastatic capacity of the 4T1.2 cell line in 

BALB/c mice.  We observed that following subcutaneous inoculation of 1x106 

cells of either the 4T1 or its daughter clone 4T1.2 cell lines into the mammary fat 

pad of BALB/c mice, the growth of the primary tumour did not differ 

significantly between the two cell lines (Figure 5-1A).  However, the size of the 

draining lymph nodes at day 21 was significantly larger within the 4T1.2 tumour-

bearing mice (Figure 5-1B). There was no significant difference between the 

lymph nodes from the 4T1 tumour-bearing mice and non-tumour-bearing mice. 

Consistent with previous studies, analysis of tumour load with the lymph nodes, 

by staining for E-cadherin and pan-cytokeratin for FACS analysis and 

immunohistochemistry respectively indicated that 4T1.2 metastasize 

preferentially via the lymphatics compared to 4T1 tumours, at least until day 21 of 

the tumour development (Figure 5-1C &D).  
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The lymphotropic nature of this 4T1.2 triple negative breast adenocarcinoma cell 

line made it an attractive model system for us to understand the mechanistic basis 

for the association between BLBCs and LTi cells in vivo. 
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Figure 5-1: 4T1.2 cell line as a syngeneic model of murine triple-negative 
breast cancer. 

A: Tumour size was evaluated two-three times per week by caliper measurements using 
the following formula: tumour volume = [length × width2] / 2.   The change in tumour 
volume after inoculation of tumour cells is shown.  B: The average volume of draining 
inguinal lymph node from mice sacrificed at the end of the in vivo experiment at Day 21 
is shown.  Lymph node size was evaluated at the end of the experiment at Day 21 using 
the following formula: volume = [length × width2] / 2.   C: Flow cytometry analysis of E-
cadherin positive cells obtained from the draining lymph nodes of non-tumour-bearing 
(NTB) and 4T1/4T1.2 tumour-bearing mice.  D: Immunohistochemical staining of the 
draining lymph nodes of tumour-bearing mice using a pancytokeratin (brown) to assess 
for tumour load between the treatment groups.  Cell nuclei are stained blue. The inserts 
represent low magnification images and a photograph of the dissected lymph node.  Data 
represent means ± SEM.   Asterisks represent the p-values when comparing to the groups 
to 4T1 tumour bearing cohort (one-way   ANOVA:   *   p≤0.05,   **   p≤0.01, NS= Non 
significant). 
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5.2 Analysis of tumour infiltration by LTi cells in a mouse model of 

triple negative breast cancer  

 

To further investigate the relationship between TNBCs and LTi cells in vivo, we 

first set about to identify LTi cells within the 4T1.2 mouse breast cancer 

microenvironment.  Groups of BALB/c mice (n=18) were inoculated 

subcutaneously with 1 x 106 4T1.2 cells on day 0. Following tumour inoculation, 

groups of tumour-bearing mice (n=3) were culled on days 10, 12, 14, 18, 20, 24.  

We performed flow cytometric analysis to determine the absolute numbers of LTi 

cells (CD3-,CD11c-,B220-,CD127+,CD90.2+,NKp46-) at different stages of 

tumour growth within the tumours, draining lymph nodes and non-draining lymph 

nodes 241.  The gating strategy used for identification of LTi cells is shown in 

Figure 5-2A.   Absolute cell numbers in tumours were calculated using the 

reference fluorescent beads method (see Methods & Material section 3.2.6.2). 

 

Infiltration of LTi cells into the tumours was seen to peak at day14 (D10 vs D14 

p=0.0019 unpaired t-test); followed by a later transient peak at day18 within the 

draining lymph nodes (D10 vs D18 p=0.0041 unpaired t-test) (Figure 5-2B).  

Importantly, LTi density within the non-draining lymph nodes did not change 

significantly, acting as an internal control. These experiments confirmed the 

presence of LTi cells within our triple negative 4T1.2 breast cancer mouse model, 

demonstrating also a temporal pattern of LTi infiltration into the tumours and the 

draining lymph nodes. 
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Figure 5-2: Tumour infiltration of LTi cells in the 4T1.2 tumour-bearing mice  

A: Gating strategy for flow cytometry analysis for LTi cells: In this sample gating, cells were first gated for lymphocytes (SSC-A vs FSC-A) and then for singlets 
(FSC-H vs. FSC-A). The gate for the reference beads (red gate) used to obtain the absolute cell count is shown. The singlets are further analyzed for their uptake of 
the Live/Dead stain to determine live versus dead cells and taking only the live cells. Cells expressing CD11c, B220R and CD3 were then gated out and from this 
lineage negative population, cells identified as CD127+ CD90.2+ NKp46- were recognised as the LTi cells. B: Absolute number of LTi cells in draining (orange line) 
and non-draining (green line) lymph nodes and cell counts per milligram of tumour in tumours (black line) is shown (n=3).  A temporal pattern of LTi infiltration 
into the tumours and the draining lymph nodes is seen. Data represent means ± SEM.  DLN, draining lymph nodes, NDLN, non draining lymph nodes.  
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5.3 Tumour infiltrating lymphocytes within 4T1.2 breast cancer mouse 

model 

 

Given the correlations seen between the chemokine gene signature, LTi and CD3 

cell infiltration into tumours, (Figure 4-7) and to look for any relationship 

between the tumour infiltrating lymphocytes and LTi cells; we investigated the 

pattern of infiltration of the T- and B-lymphocytes (defined as CD3+ or CD19+ 

cells) at different stages of tumour growth within the tumours, draining and non-

draining lymph nodes (between days 10-24). The gating strategy used for 

identification of T- and B-cells is shown in Figure 5-3A.   

 

In contrast to the temporal pattern of tumour infiltration by LTi cells observed in 

Figure 5-2B, the infiltration of CD3+(Figure 5-3B) and CD19+ (Figure 5-3C) cells 

decreased over time; whilst the recruitment of CD3+ and CD19+ lymphocytes into 

the draining lymph nodes continued up to day 24.  The density of the lymphocytes 

did not change significantly within the non-draining lymph nodes.  These data 

suggested an independent mechanism for the lymphocyte c.f. LTi infiltration into 

the tumours or the draining lymph nodes. 
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Figure 5-3: Kinetics of lymphocyte infiltration within the 4T1.2 tumour-bearing mice. 

A: Gating strategy for flow cytometry analysis for CD3+ and CD19+cells: In this sample cells were first gated for lymphocytes (SSC-A vs FSC-A) and then for 
singlets (FSC-H vs. FSC-A). The singlets are further analyzed for their uptake of the Live/Dead stain to exclude dead cells. Cells expressing either CD3 or CD19 
were recognised as the T- or B-cells, respectively. B & C: Tissues collected at different time points following tumour induction were analysed for absolute number 
of CD3+ T-cells and CD19+ B-cells in draining (orange line) and non-draining (green line) lymph nodes (n=3). Cell counts per milligram of tumour tissue are 
indicated by the black line). Data represent means ± SEM.  DLN: draining lymph nodes. NDLN: non-draining lymph nodes. 
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5.4 Variations in the levels of lymphoid chemokines during tumour 

development in the 4T1.2 breast cancer mouse model 

 

Given the essential role of CXCL13 in LTi cell function 121 and the correlation 

between CCL21 expression and induction of lymphoid-like stroma (reminiscent 

of lymph node paracortex) within primary tumours 113; we analysed the serum 

CXCL13 and CCL21 responses following inoculation of 4T1.2 tumour cells into 

the mammary fat pad.  500l of peripheral blood was obtained from 4T1.2 

tumour-bearing mice via intracardiac puncture at the termination of the 

experiment at each time-point between days 10-24.  Separated serum was 

analysed by enzyme-linked immunosorbent assay (ELISA) (see Materials & 

Methods; Section 3.2.7.1).  

 

An early peak in serum CCL21 levels was observed at day 12, with a mean 

increase in concentration from 112pg/ml at day 10 to 1631pg/ml at day 12 (p<10-4 

unpaired t-test) (Figure 5-4; green line).  In contrast, levels of serum CXCL13 

peaked later at day 14, with a mean increase in concentration from 538pg/ml at 

day 10 to 1399pg/ml at day 14 (p<10-4 unpaired t-test).  Levels of CXCL13 

appeared to oscillate with a second peak in concentration at day 24 (1615pg/ml) 

(Figure 5-4; orange line). 
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Figure 5-4: The levels of chemokines CXCL13 and CCL21 vary during 
tumour development. 

Chemokine CCL21 and CXCL13 serum concentrations after inoculation of 4T1.2 cells 
into the mammary fat pad were determined at the indicated time points by ELISA. 3 
animals were analysed per time point. Data represent means ± SEM. 

 

 

5.5 Analysis of the effect of in vivo blocking of chemokines CXCL13 and 

CCL21 in a triple negative breast cancer mouse model 

 

5.5.1 Chemokine-dependent lymphatic metastasis and LTi cell recruitment  

 

In order to examine if there was any relationship between the LTi recruitment and 

changes in the chemokine levels within the serum, we investigated the effect of 

CCL21 or CXCL13 blockade on LTi recruitment within tumours in vivo.  

Tumour-bearing mice were treated with a neutralizing antibody for CXCL13, 

CCL21 or isotype control antibodies (0.5mg each via tail-vein injections) started 

one day after tumour cell implantation and repeated every 3 days.  Two time 

points, day 14 and day 21 were tested.  As discussed in section 5.1, day 14 
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represents an early stage within our 4T1.2 mouse breast cancer model as 

lymphatic metastases were not present at this time-point; compared to day 21 

when lymphatic metastasis (seen by pancytokeratin IHC and E-cadherin positive 

cells on FACS) were present. 

 

We observed from our antibody blockade in vivo experiments that neither anti-

CXCL13 nor anti-CCL21 treatments significantly affected the growth of the 

primary tumour when compared with isotype control antibody at both time-points 

(day 14 and day 21) (Figure 5-5A-C); suggesting no effect on the proliferation of 

4T1.2 cells in vivo. We observed no statistically significant difference in the 

weight of the draining lymph nodes at day 14 within either cohorts (Figure 5-5D).  

However, when compared with the isotype control antibody the weight of the 

draining inguinal lymph nodes at day 21 were significantly reduced in both 

cohorts (anti-CXCL13 and anti-CCL21), when compared with isotype control 

(anti-CXCL13 p≤0.05; anti-CCL21 p≤0.01; Figure 5-5E).  No side effects, or 

severe toxicity, of anti-CXCL13 or anti-CCL21 treatments were observed during 

the whole course of treatment. 
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Figure 5-5: Effect of chemokine neutralization (CXCL13/CCL21) within the 
4T1.2 tumour model in vivo. 

BALB/c mice were injected s.c. with 1×106 4T1.2 breast cancer cells. Mice were treated 
with either an anti-murine anti-CXCL13 antibody, anti-CCL21 or goat IgG isotype 
control antibody injected intravenously every other day for a total of 21 days. A: 
Subcutaneous tumour growth curves of the 4T1.2 cells within each cohort are 
demonstrated. B: The average weight of primary tumours collected from mice sacrificed 
at the end of in vivo experiments at day 14. C: The average weight of primary tumours 
collected from mice sacrificed at the end of in vivo experiments at day 21. D: The average 
weight of draining inguinal lymph node (DLN) from non tumour bearing (NTB) and 
tumour bearing mice sacrificed at the end of in vivo experiments at day 14. E: The 
average weight of draining lymph nodes collected from mice sacrificed at the end of in 
vivo experiments at day 21. Photographic example of the lymph nodes within each cohort 
is shown (Scale Bar = 1mm). The results are expressed as mean +/- SEM. Asterisks 
represent the p-values when comparing to the control (Mann Whitney test:  *  p≤0.05,  **  
p≤0.01,  NS=  Non  significant) 
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Tumours and draining lymph nodes were analysed for LTi (CD3-, CD11c-, B220-, 

CD127+, CD90.2+, NKp46-) cell numbers by flow cytometry (as per the gating 

strategy in Figure 5-2A) at day 14, a time-point by which maximum number of 

LTi cells had been recruited into the tumours (demonstrated in Figure 5-2B) and 

at day 21, a time-point when lymphatic metastasis are present within the lymph 

nodes (demonstrated in Figure 5-1D-E). 

 

At day 14, when compared with the isotype control antibody, antibody blockade 

using an anti-CCL21, but not an anti-CXCL13 neutralising antibody, was able to 

reduce significantly LTi recruitment into the primary tumours (control vs anti-

CCL21 p≤0.01,  one-way ANOVA; Figure 5-6A), supporting the earlier findings 

by Shields et al. that CCL21 chemokine is involved in the recruitment of LTi cells 

into the primary tumour. Within the draining lymph nodes, the numbers of LTi 

cells were significantly lower in both cohorts (control vs anti-CCL21 & control vs 

anti-CXCL13  p≤0.05,  one-way ANOVA; Figure 5-6A).   

 

At day 21, when compared with the control group, the numbers of intratumoural 

LTi cells were higher amongst the anti-CXCL13 treated cohort (control vs anti-

CXCL13  p≤0.05,  one-way ANOVA; Figure 5-6B). Although, a similar trend for 

an increase in the numbers of LTi cell counts within the anti-CXCL13 cohort at 

day 14 was also noted, this was not statistically significant.   In keeping with the 

findings at day 14, we confirmed again that antibody blockade using an anti-

CCL21 neutralizing antibody was able to reduce significantly the numbers of 

intratumoural LTi cells control vs anti-CCL21 (p≤0.001,   one-way ANOVA, 

Figure 5-6B). Within the draining lymph nodes, the numbers of LTi cells were 

again lower amongst both the anti-CXCL13 and anti-CCL21 treated cohorts when 
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compared to the control cohort (control vs anti-CCL21   p≤10-4; control vs anti-

CXCL13  p≤0.01,  one-way ANOVA; Figure 5-6B).   

 

These data propose a key role for CCL21 in the recruitment of LTi cells into the 

primary tumour.  

 

 

Figure 5-6: Effect on LTi recruitment following chemokine  
(CXCL13/CCL21) neutralization within the 4T1.2 tumour model in vivo. 

Absolute cell counts of LTi cells per milligram of tumour detected in tumours (right-axis) 
and absolute numbers within the draining lymph nodes from 4T1.2 tumour-bearing 
BALB/c mice treated with anti-CXCL13, anti-CCL21 or isotype control antibody at day 
14   (A)   or   day   21   (B)   are   shown,   (n≥3).  Data represent means ± SEM.  Asterisks 
represent the p-values when comparing to the control group (One way ANOVA: * 
p≤0.05,  **  p≤0.01, *** p≤0.001, ****p≤10-4, NS= Non significant). 
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5.5.2 Effect of chemokine blockade on lymphocyte blockade 

 

Given the known chemotactic roles of CCL21 and CXCL13 on T- and B-cells 

respectively, we also examined for the anti-inflammatory effect of our chemokine 

blockade within the 4T1.2 breast cancer mouse model.  We analysed by flow 

cytometry the total B/T-cell counts, defined as CD3+ or CD19+ cells respectively 

(as per the gating strategy in Figure 5-3) within the tumours and the draining 

lymph nodes at day 14 and day 21. 

 

Irrespective of the time-point, our analysis demonstrated a statistically significant 

decrease in the number of CD3+ T-cells within the primary tumours and the 

draining lymph nodes amongst both the anti-CCL21 and anti-CXCL13 treated 

cohorts compared to the cohort group (Figure 5-7A &B).   Similarly, the number 

of CD19+ cells within the primary tumours and the draining lymph nodes (Figure 

5-7C & D) was significantly decreased at day 14 and day 21 amongst both the 

anti-CCL21 and anti-CXCL13 treated cohorts (see figure legend for the p-values).  

It was reassuring to note that the greatest effect on T-cell and B-cell recruitment 

was observed amongst the anti-CCL21 or anti-CXCL13 treated cohort 

respectively.  
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Figure 5-7: Effect on T-/B-cell recruitment following in vivo chemokine  
(CXCL13/CCL21) neutralization within the 4T1.2 tumour model.  

Absolute cell counts of CD3+ (A and B) or CD19+ (C and D) cells per milligram of 
tumour detected in tumours (right-axis) and absolute numbers within the draining lymph 
nodes from 4T1.2 tumour-bearing BALB/c mice treated with anti-CXCL13, anti-CCL21 
or isotype control antibody at day 14 (A and C) or day 21 (B and D)  are  shown,  (n≥3).    
Data represent means ± SEM.  Asterisks represent the p-values when comparing to the 
control groups (one-way  ANOVA:  *  p≤0.05;;  **  p≤0.01;;  ***  p≤0.001). 
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5.5.3 Effect on tumour burden within the lymph nodes 

 

From our earlier studies day 21 represents a time-point when lymphatic 

metastases are present within the lymph nodes.  Although the decreased size of 

the lymph nodes at day 21 (Figure 5-5E) was in part due to effects of chemokine 

blockade on the lymphocyte recruitment into the primary tumours and the 

draining lymph nodes (Figure 5-7), we further examined for a difference in the 

tumour load within the lymph nodes by staining for pancytokeratin. 

 

 

Figure 5-8: Tumour load in draining lymph nodes is decreased by in vivo 
CXCL13 or CCL21 neutralization within the 4T1.2 tumour model  

A: Immunohistochemical staining of the draining lymph nodes of tumour-bearing mice 
using a pancytokeratin (brown) to assess for tumour load between the treatment groups.  
Cell nuclei are stained blue. B: Quantification of the total area of metastasis per mm2 of 
sectional area within lymph nodes.  Data represent means ± SEM. Asterisks represent the 
p-values when comparing to the control groups (one-way  ANOVA:  *  p≤0.05). 
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Immunohistochemical analysis of tumour load with a pancytokeratin antibody 

revealed noticeably fewer tumour foci within the lymph nodes in mice treated 

with anti-CXCL13 or anti-CCL21 treatment compared with those treated with 

isotype control antibody (Figure 5-8A).  Measurements of the total surface area of 

tumour  foci  (μm2) demonstrated a significant decrease in the tumour load within 

the lymph nodes of mice treatment with anti-CXCL13 or anti-CCL21   (p≤0.05  

one-way ANOVA; Figure 5-8B), suggesting an inhibitory effect of chemokine 

blockade on 4T1.2 tumour cell migration into the draining lymph nodes.  

 

5.6 Chemokine dependent LTi cell interactions within the breast cancer 

microenvironment 

 

Sufficient clustering of LTi cells and production of lymphoid chemokines by 

activated LTo cells (stromal cells of mesenchymal origin) during lymphoid tissue 

embryogenesis is dependent on CXCL13, which is responsible for initiating an 

important positive feedback loop on further LTi cell recruitment (after the initial 

LTi-stromal   cell   contact)   and   subsequent   amplification   of   lymphotoxin   (LT)β  

receptor signaling 242. Given that within our 4T1.2 breast cancer mouse model, the 

circulating CXCL13 level was upregulated after that of CCL21 (Figure 5-4) we 

investigated whether there is a non-redundant function of CXCL13, as a 

consequence of the initial CCL21-mediated recruitment of LTi cells (Figure 5-6) 

into the primary tumour. 

 

There is a lineage relationship between mesenchymal stromal cells (MSCs), 

which exhibit a marked tropism for tumours 243-247, and LTo cells that are known 

to interact with LTi cells. MSCs are adult multi-potent non-hematopoietic stem 
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cells capable of self-renewal and generation of different cell lines. Recent 

evidence suggests that the bone-marrow-derived MSCs are recruited in large 

numbers to the stroma of developing tumours and are capable of suppressing the 

immune response for example by inhibiting the maturation of dendritic cells and 

suppressing the function of T-lymphocytes, B-lymphocytes and NK cells 248-252.  

We therefore hypothesized that LTi cells may interact with bone marrow derived 

MSCs, thereby modulating the chemokine profile of the tumour 

microenvironment. 

 

5.6.1 Characterization of the mesenchymal stromal cells 

 

We obtained a parental bone marrow derived MSC cell line (HS-5) from 

Professor   Lythgoe’s   laboratory   at   UCL.      Morphologically,   cells   grew   with   a  

fibroblast like format (fusiform) and were plastic-adherent when maintained in 

standard culture conditions using tissue culture flasks.  In vitro, the MSC cell lines 

could be efficiently expanded reaching 50-60% confluency within 3-4 days.  Cells 

generally appeared to have a limited in vitro lifespan of up to 8-9 passages, a 

phenomenon which is well documented in literature and is thought to occur due to 

a  lack  of  activity  of  immortalizing  enzyme  telomerase  (“replicative  senescence”)  

253,254.   

 

5.6.1.1 Mesenchymal Stromal Cell Marker Panel Immunofluorescence 

 

In accordance with the Mesenchymal and Tissue Stem Cell Committee guidelines 

for the characterization of MSCs 255, immunofluorescence staining showed that 
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our cell line was as expected positive for Stro-1, CD90, CD106, CD105, CD146, 

CD166, and CD44 and negative for CD19 and CD45 (Figure 5-9). 

 

 

Figure 5-9: Phenotypic characterization of mesenchymal stem cell line. 

A: Immunofluorescence images of staining for stem cell markers (red) in the bone 
marrow derived MSC cell line HS-5 using a x63 oil immersion objective. (1-6: positive 
markers and 7-8: negative markers). B: Negative and positive controls are shown. 
Hoechst stained nuclei are shown in grey. 
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5.6.1.2 LTR receptor expression on MSCs 

 

An interaction between LTon LTi cells and LTR, expressed on mesenchymal 

LTo cells, is an absolute requirement for effective lymphoid tissue development 

256,257. We therefore confirmed the expression of LTR on the MSCs by 

immunofluorescence; providing support to the theory that the recruited MSCs 

within the tumour microenvironment could interact with LTi cells (Figure 5-10). 

 

 

Figure 5-10:    LTβR  expression  in  MSCs 

Immunofluorescence staining showing the LTβR  staining  (red)  using  a  x63 oil immersion 
objective. Hoechst stained nuclei are shown in grey.  

 

5.6.1.3 Lymphoid chemokine secretion by MSCs. 

 

As discussed in Chapter 1 section 1.3.3, during organogenesis mesenchymal LTo 

cells are the main source of lymphoid chemokines which function to first attract 

the LTi cells into the lymph anlagen and then act as strong chemo-attractant for 

lymphoid cells within the secondary lymphoid organs.  We next measured the 

protein levels of CXCL13 and CCL21 in conditioned media (CM) obtained from 

the bone marrow derived MSC cell line (HS-5) compared to non-conditioned 
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media by ELISA.  MSC cells were seeded at a density of either 6x103 or 12x103 

cells per well and kept in culture for 48 hours.  We confirmed that within 48 hours 

12x103 MSCs were able to secrete significantly high concentrations of CCL21 

(>2000pg/ml) and CXCL13 (>1000pg/ml) (Figure 5-11).  These data provided 

additional support for exploring the interactions of MSCs and LTi cells within the 

tumour microenvironment. 

 

 

Figure 5-11: ELISA based quantification of CCL21 and CXCL13 secretion 
by MSCs. 

CCL21 and CXCL13 concentrations were measured by ELISA.  MSC cells seeded at 
densities of either 6x103 or 12x103 cells per well are labelled in orange and green, 
respectively.  The levels were compared to media alone. Data represent means of three 
independent experiments ± SEM.   Asterisks represent the p-values when comparing to 
the control groups (one-way  ANOVA;;  **  p≤0.01). 
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5.6.2 CXCL13 dependent, CCL21-independent interactions between LTi and 

stromal cells 

 

To further investigate the interaction of LTi cells with MSCs, we first sought to 

optimise our protocol for isolating LTi cells.  Freshly isolated splenocytes from 

BALB/c mice were FACS sorted into CD3-, CD11c-, B220-, CD335-, CD127+, 

CD90.2+, NKp46-LTi cells (as per the gating strategy in Figure 5-2A).  We found 

that the yield for LTi cells was relatively low (approximately 7000 cells/spleen). 

Our protocol required an enrichment step by depleting for CD11c+ cells using 

microbeads.  This improved the yield to 20,000 LTi cells per spleen.  The purity 

of the LTi cells isolated by flow cytometry was confirmed by RORt expression 

using confocal immunofluorescence analysis (Figure 5-12). 
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Figure 5-12: Flow cytometric sorting of CD3-, CD11c-, B220-, CD127+, CD90.2+, NKp46-LTi cells 

A: Immunofluorescence of unsorted CD11c-depleted splenocytes.  An LTi cell (white arrow) is seen amongst CD3+ cells.  Bottom panel demonstrated that majority 
(if not all) of the sorted cells express the nuclear transcription factor RORt. 
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5.6.2.1 LTi cell clustering around MSCs 

 

Owing to the sparsity of the LTi cell population, various migration assays to study 

MSC and LTi cells interactions were difficult to interpret.  However, an 

interaction between the two cells was observed when freshly isolated splenic LTi 

cells (CD3-, CD11c-, B220-, CD127+, CD90.2+, NKp46- cells) were co-cultured 

with MSCs growing in 9.4 x 10.7 mm ibidiTM 8-well µ-Slide chambers and 

monitored by time-lapse microscopy with images captured at regular intervals for 

10 hours. LTi cells were observed to cluster around MSCs (Figure 5-13A, upper 

panel), remaining closely associated for as long as 7 hours (Figure 5-13A, red 

arrow in lower panel).  We observed that this clustering was not evident with a co-

culture of CD11c+ cells (collected following the CD11c depletion step) and MSC 

cells (Figure 5-13B).  The clustering of LTi cells around MSCs was quantified by 

measuring the area of the frame occupied by the MSC and or LTi cells (Figure 

5-13C) (see Methods & Material section 3.2.11.2). The mean value (area occupied 

by cells) was found to reduce with increased incubation time, as LTi-MSC 

clustering occurred (Figure 5-13D). The extent of LTi-MSC clustering was then 

measured as the rate of reduction in the area occupied by cells during the time-

lapse series. 
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Figure 5-13: CXCL13-dependent interactions between LTi cells and stromal 
cells in vitro. 

A: Time-lapse microscopy of sorted splenic LTi cells (CD3-, CD11c-, B220-, NKp46-, 
CD127+, CD90.2+) co-cultured with MSC cells over a 10h period. Scale bar: upper panel 

from co-culture time-lapse experiments and associated binary images (lower panel) used 
for the quantification of cell clustering. C: The graph summarises the change in mean 
area of the image field occupied by cells over the course of time-lapse experiments and 
was generated from binary image data. The area occupied by cells falls as clustering 
increases. 



 148 

At the end of these experiments, we also assessed the effect of MSC-LTi cells 

interaction on the secretion of CCL21 and CXCL13 by the stromal cells by 

measuring the protein levels of the chemokine in the cell culture supernatants at 

48 hours by ELISA.  CXCL13 secretion by the stromal cells was enhanced 

significantly when co-cultured with LTi cells at 48 hours ( 4-fold increase, 

p≤0.05, paired t-test; Figure 4A).  Although a similar trend was seen in the 

CCL21 secretion, this was not statistically significant.  

 

 

Figure 5-14: Effect on MSC-LTi cells interactions on lymphoid chemokine 
secretion by stromal cells 

Cell culture supernatants from co-culture experiments of MSC and LTi cells were 
analysed after 48h to determine levels of CXCL13 and CCL21 by ELISA (*p=0.04, 
paired t-test; NS= non significant, paired t-test).  Data represent means ± SEM.   
Asterisks represent the p-values when comparing to MSC CM (paired t-test:   *  p≤0.05,  
NS= Non significant).  
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5.6.2.2 Effect of chemokine knockdown on LTi clustering in vitro 

 

We then investigated how short interfering RNA (siRNA) knockdown of 

CXCL13 and CCL21 in MSCs would affect the extent of LTi clustering around 

MSCs.  Three siRNAs for either chemokines were evaluated.  MSC cells cultured 

in 6-well plates to 30% confluency were transiently transfected with one of three 

different siRNAs against either CXCL13 (Figure 5-15A), CCL21 (Figure 5-15B) 

or with a control non-targeting scrambled siRNA. Chemokines levels in the cell 

supernatants were measured by ELISA 24 hours after transfection.  Protein 

expression of both CXCL13 and CCL21 by the MSCs was downregulated 

significantly by all targeting siRNAs (Figure 5-15). However, siRNA-2 for 

CXCL13 and and siRNA-1 for CCL21 provided the maximum gene knockdown 

achieving >90% reduction in the chemokine levels.  We therefore used these 

siRNAs for subsequent experiments. 

 

We observed in the co-culture experiments of MSCs and LTi cells, that 

knockdown of CXCL13 resulted in a decrease of LTi clustering around MSCs 

(Figure 5-15C & D, p<1x10-4). In contrast knockdown of CCL21 did not affect 

LTi clustering. These data suggested a non-redundant role for CXCL13 (i.e. 

promotion of clustering of LTi around MSCs), which may be synergistic with the 

initial CCL21-mediated recruitment of LTi cells into the primary tumour (Figure 

5-6). 
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Figure 5-15: Effect on LTi clustering from chemokine knockdown in MSCs. 

A, B: MSC cells were transfected with non targeting (NT) control or siRNAs  specific for 
CXCL13 or CCL21 (CXCL13 siRNA: si-20725, si-20726, si-20727 or CCL21 siRNA: 
si-12605, si-12606, si-12607 respectively). Cell culture supernatants were analysed by 
ELISA at 48  hours   (*  p≤0.05,  **  p≤0.01,  paired   t-test).  Data represent means ± SEM.   
Asterisks represent the p-values when comparing to the control group (paired t-test: * 
p≤0.05,  **  p≤0.01,        NS=  Non   significant) C: Summary of time-lapse microscopy cell 
clustering experiments showing co-cultures of sorted splenic LTi cells and siRNA-
transfected  MSCs (with either non-targeting siRNAs or siRNAs specific for CCL21 or 
CXCL13).  One independent experiment, representative of three (n=3 fields for each 
group) is shown. D: Quantification data reporting on the area occupied by the cells in the 
last frame (i.e. at 10 hours). Asterisks represent the p-values when comparing to the 
control group (one-way AVONA ****p<10-4, NS = non significant). 
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5.6.2.3 Effect of chemokine knockdown on LTi function within the 4T1.2 breast 

cancer tumour model 

 

The use of high-resolution multi-photon imaging of tumours in vivo is now an 

established and powerful technique to assess cell-cell behaviour at single cell 

resolution.  To assess the interaction between LTi and MSC cells intravitally 

within our syngeneic mouse model of triple negative breast cancer, we utilized the 

recently reported mammary imaging window (MIW) technique 258 with multi-

photon imaging. The MIW consists of a titanium ring which forms a mount for a 

glass coverslip. The mount has holes which facilitate suturing into the skin, 

whereas the glass coverslip assures the optimal working distance and refraction 

index for high resolution imaging. Studies have shown that tumours with MIW 

implants do not show inflammation, or a change in growth and 

microenvironments scored at 1–9 days after the implantation procedure 258.   

 

4T1.2 tumour cells were injected into the mammary fat pad subcutaneously and a 

MIW was surgically placed over the mammary tumour 10 days after tumour 

establishment (Figure 5-16A). Treatment with either a neutralizing antibody for 

CXCL13 or isotype control antibody was initiated one day after cell implantation, 

given every three days. Fluorescently labelled MSC cells (cell tracker orange 

CMTMR) were injected via the tail-vein at day 22, 48 hours prior to multi-photon 

imaging. Twenty four hours later freshly isolated splenic LTi cells (labelled with 

cell tracker green CMFDA) were injected via the tail-vein (Figure 5-16B). 
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Figure 5-16: Multi-photon imaging of using mammary imaging window 
within the 4T1.2 tumour model 

A: Mammary imaging window (MIW) consisting of a coverslip mounted on top of a 
titanium ring was surgically implanted on top of the developing mammary tumour. B: 
Representation of the experimental set up: 48hours prior to imaging 1x106 labelled MSC 
cells (red cell tracker orange CMTMR dye) were injected intravenously. into all tumour-
bearing mice; followed 24hours later by injecting 1x105 sorted splenic LTi cells (green 
cell tracker dye). The MSC-LTi cell interaction was then imaged under the MIW using a 
multi-photon microscope over 3 consecutive days. 

 

Within the experimental cohort of mice injected with a neutralizing anti-CXCL13 

antibody, LTi and MSC cells were seen within the primary tumour but not in 

direct contact with each other; this was in contrast to the cohort injected with the 

control antibody, where LTi cells (likely to be clusters i.e. not single cells, similar 

in size to that detected in the human tissues stained in Chapter 3 Figure 4-2) and 

MSC cells were seen in close proximity within the primary tumour (Figure 5-17; 

p<10-4 unpaired t-test).  
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Figure 5-17: Multi-photon imaging of LTi-MSC cell interactions in vivo 
within the 4T1.2 tumour model.   

BALB/C mice were injected s.c. with 1×106 4T1.2 breast cancer cells. Mice (n=6) were 
treated with an anti-murine anti-CXCL13 antibody (30g/ml in PBS; R&D systems) or 
goat IgG antibody via t.v. every other day for 22 days. A: Representative combined 
multi-photon images from the green and red channels using an imageJ function are shown 
from both experimental groups (IgG control and anti-CXCL13 treatment).  B: The 
average distance between the centre of imaged MSC and LTi cells is demonstrated. Data 
represent means ± SEM.  Asterisks represent the p-values when comparing to the control 
(unpaired t-test:  ****p≤10-4).   

 

These in vivo imaging results, obtained from within the primary tumour, further 

support the in vitro observation of a CXCL13-dependent clustering of LTi cells 

around the mesenchymal stromal cells. This CXCL13-dependent LTi-MSC 

interaction can then initiate a positive feedback loop whereby further CXCL13 

secretion by the stromal cells is stimulated. 
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5.7 Discussion 

 

Following on from the results presented in chapter 4, the aims of the experiments 

presented in this chapter were to explore the relevance of LTi cells in murine 

triple negative breast cancers, a type of breast cancer that has been described to be 

more aggressive than other kinds of breast cancers.  We confirmed the 

lymphotropic metastatic capacity of the 4T1.2 cell line within a syngeneic mouse 

model; thereby providing an attractive model system to further investigate the 

mechanistic relationship between TNBCs and LTi cells in vivo. 

 

Our data confirm that effective recruitment of LTi cells into the primary tumours 

was primarily dependent on the chemokine CCL21 (Figure 5-6); in addition to the 

observation that the peak in serum CCL21 levels (Figure 5-4) was closely 

followed by a peak in the number of LTi cells within tumours (Figure 5-2C).  It 

was interesting to note that this CCL21 dependence was present from an early 

stage of tumour progression – i.e. before lymph node metastases developed within 

our 4T1.2 mouse model.  The CCL21/CCR7 axis has been shown to play a key 

role in the progression of a number of different malignancies 88,100,259. Work by 

Shields et al described, in a murine model of melanoma, a novel mechanism by 

which CCL21-expressing tumours transform their microenvironment into that of a 

lymphoid-like tissue to create a tolerant milieu that promotes immune evasion 113.  

Consistent with our data, the authors found that higher expression of CCL21 

within tumours was correlated with LTi cell recruitment.  

 

Given the lineage relationship between MSC, which are known to infiltrate 

tumours in large numbers 243-247, and LTo cells that are known to interact with LTi 
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cells, we hypothesized that LTi cells recruited into the tumours may interact with 

bone marrow derived MSCs. In support of this we confirmed that our MSC cells 

express the LTR and secrete high levels of the lymphoid chemokines, CXCL13 

and CCL21.  In line with this, previous studies reporting on the initiation of foetal 

lymphoid tissue organogenesis have shown that LTi cells activate LTo cells by 

ligating   LTβR   on   these stromal cells.  Once activated, stromal cells secrete 

chemokines (e.g., CXCL13, CCL21, and CCL19), increase expression of 

adhesion molecules such as VCAM-1, ICAM-1, and MAdCAM-1, as well as 

secrete lymphangiogeneic factors such a VEGF-C 120,123,227. The co-clustering 

between these innate lymphoid cells and stromal cells is induced in a CXCL13-

dependent fashion, shown in vitro by our time-lapse microscopy analysis (Figure 

5-15), and in vivo by multi-photon imaging through the mammary window 

chamber –i.e. within the tumour microenvironment (Figure 5-17). We therefore 

concluded that there is a non-redundant function of CXCL13, produced as a 

consequence of the initial CCL21-mediated recruitment of LTi cells into the 

primary tumour. Although our results demonstrate that LTi interaction with the 

surrounding stromal cells is dependent on CXCL13, it is important to highlight 

here that but I do not propose that the secretion of CXCL13 within tumours is a 

function exclusive to MSC cells. For example, a recent study proposed that 

CXCL13-producing CD4+ follicular helper T-cells infiltrating breast tumours 

were involved in promoting TLS within tumours 177.  Further research into the 

relationship between the LTi and follicular helper T-cells may provide important 

information to understand the complex and potential interactions between innate 

and adaptive components of the immune response to tumours. 
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The co-clustering itself further amplifies, in a positive feedback fashion, the 

production of CXCL13 within the mesenchymal stromal cells (Figure 3A) and 

may provide an explanation for the second peak in serum CXCL13 levels seen 

during tumour progression in vivo (Figure 5-4).  Interestingly our in vivo data also 

showed that although anti-CXCL13 treatment did not affect LTi 

recruitment/migration at an early time point (i.e. day 14); the numbers of 

intratumoural LTi cells were much higher amongst this cohort compared to the 

control groups at day 21, with concomitant reduction in lymph node metastases 

(Figure 5-6).  Although speculative, these results may provide some evidence for 

the role of CXCL13 on LTi migration – i.e. within the anti-CXCL13 treated 

cohort despite an effective CCL21-dependent recruitment of LTi cells into the 

primary, there is defective migration of LTi cells out of the tumour into the 

draining   lymph  nodes.  To  me,   this  observation  also  raises   the   fascinating     “pied  

piper”  hypothesis,  whereby CXCL13-dependent LTi cell migration into the lymph 

nodes subsequently results in tumours cells following.  Using the MIW technique 

in transgenic mice with fluorescent RORt+ LTi cells may allow for this 

hypothesis to be investigated.   

 

Both the CCL21-CCR7 and CXCL13-CXCR5 axes are reported as being highly 

expressed in clinical samples from numerous tumour types 88,100,259-261; but there is 

conflicting evidence on how they affect tumour progression.  For example, whilst 

high CXCL13-CXCR5 expression has been reported to positively correlate with 

classical determinants of poor prognosis, such as high grade, hormone receptor 

negativity and axillary node involvement 260,262, it appears to serve, counter-

intuitively, as a good prognostic marker within this subgroup of high risk breast 

cancer patients 262. In the context of the tumour microenvironment, the role of 
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immune cells and/or chemokines is particularly complex (reviewed by 263,264), as a 

prime example of CCL2 being able to promote tumour metastasis 265 as well as 

immune-mediated tumour rejection 266. Genomic profiling studies have verified 

the role of CXCL13 as a good prognostic marker for patients with triple negative 

breast cancer 267,268.  However we found that although not affecting tumour 

growth itself, CXCL13 and for that matter CCL21 promoted lymph node 

metastases within our triple negative mouse model (Figure 5-8).   

 

However, there are a few important additional factors to consider, given the 

multivariate factors that influence the heterogeneous clinical outcome in patients.  

Firstly, these chemokines can influence anti-tumour immunity by acting as 

powerful chemoattractants for lymphocytes177. As discussed in chapter 4.5, basal-

like breast cancers/TNBCs frequently bear a prominent associated tumoural 

lymphocytic infiltrate. The presence of TILs has been described as key prognostic 

and predictive marker for specific breast cancer subtypes 171,177,235,269.  This is in 

line with our own in vivo data demonstrating a significant decrease in the number 

of infiltrating CD3+ and CD19+ lymphocytes within the primary carcinoma in 

mice treated with a neutralizing antibody for CCL21 or CXCL13 (Figure 5-7). 

Additionally, the possibility that early tumour cell lymphatic vessel invasion in 

response to an increase in CXCL13 levels within the cancer microenvironment 

may effectively cross-present tumour antigens in the draining lymph nodes thus 

acting as a powerful mitogen for responding T-cells requires further investigation.  

 

There are some limitations to the data presented in this chapter that necessitate 

some caution in the interpretation of the findings.  Firstly, it is important to point 

out the caveat of assuming that the changes in the serum chemokine levels 
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represent also the changes occurring more locally within the tumour 

microenvironment. While a number of studies have reported overexpression of 

chemokine receptors and ligands within the tumour stroma being associated with 

progression of various cancer types (see section 1.3.2), few studies of serum 

levels have yielded significant links to the prognosis of cancer or been translated 

into clinically meaningful biomarkers.  It would seem that studies analysing 

differences in local expression of chemokines, compared to those measuring 

chemokine levels in the serum, offer a stronger, more consistent association 

between cancer prognosis and changes in patterns of chemokines ligands and 

receptors in the primary tumor and metastatic lesions.   

 

Secondly, although embryonic and adult splenic LTi cells have been reported to 

co-express both CXCR5 and CCR7 241, our results could have been further 

supported by investigating the expression of these receptors on tumoural LTi cells 

themselves; or comparing the expression of LTi cells from tumour bearing with 

non tumour bearing mice.  Fetal LTi and adult LTi cells are known to differ and 

similarly within our own group we have seen differences in the expression of 

some co-stimulatory molecules on splenic LTi from tumour bearing compared to 

splenic LTi cells from non-tumour bearing mice (discussed in further detail in 

Chapter 7:); highlighting the need for a more in-depth phenotyping of tumoural 

LTi cells themselves. 

 

In summary, from the data presented in this chapter, our model system introduced 

in chapter 4.5 can be further illustrated to show the CCL21-dependent recruitment 

of LTi cells into tumours with a subsequent CXCL13-dependent interaction 

between the tumoural LTi and stromal cells. 
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Figure 5-18: Schematic illustration of our proposed model for the role of LTi 
cells within triple negative breast cancers. 

Recruitment of LTi cells into the primary tumours is primarily dependent on CCL21.  
Following a CXCL13-dependent LTi-stromal cell interaction a positive feedback loop 
develops which helps promote lymph tumour cell invasion and alongside CCL21 also 
acts as a strong chemoattractant for tumour infiltrating lymphocytes. 
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Chapter 6: Lymphoid  tissue  
inducer  cells  promote  lymphatic  
invasion  of  breast  cancer  cells  via  
a  CXCL13-  dependent  RANK-

RANKL  axis   
The aim of this chapter was to further investigate the downstream mechanisms 

that underlie the relationship between chemokine-dependent lymphatic metastasis 

and LTi cell recruitment. 

 

6.1 Tumour cells are not the source of CXCL13 and CCL21 

 

To test the relationship between CXCL13, CCL21 and tumour cell invasion in 

vitro, we first screened a panel of human breast cancer cell lines using a cytokine 

antibody array that simultaneously detects 80 cytokines and chemokines.  We 

confirmed that cancer cells were not the source of CXCL13 and CCL21 

chemokines (Figure 6-1).  To validate our mouse model of breast cancer, we 

quantified by ELISA the levels of CXCL13 and CCL21 within the conditioned 

media from our murine breast cancer cell line (4T1.2).  For our positive control, 

we obtained a murine bone marrow derived stromal cell line (ST2s), from 

Professor Agi Grigoriadis, Craniofacial Development& Stem Cell Biology, KCL. 

Although high levels of CCL21 and CXCL13 were seen in the conditioned media 

from the stromal cell line, no significant increase compared to the negative control 

(media alone) was seen in the conditioned media from the 4T1.2 cell line.  These 

findings confirmed that the source of CXCL13 and CCL21 was likely to be 

stromal cells within tumours. 
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Figure 6-1: Analysis of cytokines secretion by human and murine breast 
cancer cell lines 

Conditioned medium was collected from various human breast cancer cell lines at 48 
hours after plating 50,000 cells in 6 well plates. Cytokine array membranes were 
incubated with 1 ml conditioned medium. Non-conditioned media represents the negative 
control. A: Representative array readouts are shown.  Upper left four spots and lower 
right two spots serve as positive controls on each membrane. The 80 human inflammatory 
cytokines examined included CXCL13 (red circles) and CCL21 (green circles). B & C: 
ELISA quantification of CXCL13 and CCL21 chemokine levels in the conditioned media 
from the 4T1.2 cell line.  Positive control = murine stromal cell line (ST2s); Negative 
control = media alone. Data represent means of three independent experiments ± SEM.   
Asterisks represent the p-values when comparing to the negative control (one-way 
ANOVA:  ***  p≤0.001, NS – non significant). 
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6.2 Effect of CXCL13 and CCL21 on tumour cell invasion 

 

Considering that invasion across the basement membrane by cancer cells is a 

critical process in tumour metastasis and our in vivo results in Chapter 4 section 

5.5.3 suggested an inhibitory effect of CXCL13 or CCL21 chemokine blockade 

on 4T1.2 tumour cell invasion into the draining lymph node, we used an 

extracellular matrix invasion assay, to directly investigate the effects of CXCL13 

and CCL21 on 4T1.2 cancer cell invasion (see Chapter 2 section 3.2.9). 

 

4T1.2 tumour cells were incubated with increasing concentrations of CCL21, 

CXCL13 or epidermal growth factor (EGF) (positive control for 4T1.2 invasion). 

A mouse embryonic fibroblast cell line, NIH3T3 served as a non-invasive control.   

The invasion assay used was based on the Boyden chamber principal, as 

demonstrated in  Figure 6-2A.  Each insert contains an 8μm   pore   size  

polycarbonate membrane coated with a thin layer of extracellular matrix (ECM). 

The ECM layer occludes the membrane pores, blocking non-invasive cells from 

migrating through. Invasive cells, on the other hand, migrate through the ECM 

layer and cling to the bottom of the polycarbonate membrane. Invading cells on 

the bottom of the insert membrane are then dissociated from the membrane when 

incubated with cell detachment buffer and subsequently lysed and detected by a 

green fluorescent dye, which exhibits strong fluorescence enhancement when 

bound to cellular nucleic acids.  As expected, EGF-dependent invasion was 

detected with 4T1.2 cell line at all concentrations between 10-100ng/ml.  In 

contrast, addition of recombinant CXCL13 or CCL21 did not significantly 

increase the invasion of 4T1.2 cells at any concentrations between 10-100ng/ml ( 

Figure 6-2B).  At the end of the experiment, the invading cells were stained with 
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1% crystal violet in PBS, further confirming that CXCL13 or CCL21 did not 

affect the migration of 4T1.2 cells across the ECM membrane ( Figure 6-2C). 

 

 

 Figure 6-2: Effect of CXCL13 and CCL21 on tumour cell invasion. 

A: Schematic presentation of the ECMatrix cell invasion chamber composed of a ECM 
coated  transwell  insert  containing  an  8μm  pore  size  membrane.    Cells  were  seeded  at  high  
density into the upper chamber. Cells were allowed to invade through membrane for 24 
hours at 37ºC in a 5% CO2 incubator. After 24 hours the cell migration was measured 
using a fluorescence reader after labeling the lysed cells with a green fluorescent dye. B:  
Cell invasion assay results are shown.  An increase in the relative fluorescent units (RFU) 
indicates more invasion of cells through the extracellular matrix membrane.   NIH3T3 
cells (green bars) were used as a non-invasive control. Data represent means ± SEM.    C: 
Invading cells were visualized by crystal violet staining. Asterisks represent the p-values 
when comparing to the control groups (one-way   ANOVA:   ***   p≤0.001,   NS   – non 
significant). 
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6.3 Effect of CXCL13 and CCL21 on tumour cell migration 

 

We had observed that stimulation of 4T1.2 cells with conditioned media from 

MSC cells resulted in tumour cells developing an elongated morphology which 

was accompanied by membrane ruffling, giving rise to the formation of 

lamellipodia and filapodia; visualised by phase contrast microscopy (Figure 

6-3A).  This change in morphology was quantified by measuring the circularity of 

cells, calculated using the formula: 4 × (area/perimeter2). This derives a value 

between 0 - 1 with values that tend towards one representing highly circular 

shapes and those that tend towards zero representing highly elongated shapes. A 

significant decrease in the circularity of the 4T1.2 tumour cells was seen 

following stimulation with MSC-CM as compared to unstimulated control tumour 

cells (p<10-4, unpaired t-test; Figure 6-3B). 

 

 

Figure 6-3: Stimulation with MSC CM induces changes in 4T1.2 cell 
morphology 

A: Phase contrast micrograph images taken 6 hours after stimulation of 4T1.2 cells with 
control media or MSC-CM.  B: Quantification of the circularity of 4T1.2 cells (defined 
by 4 × (area/perimeter2)) within each group. Data represent means ± SEM Asterisks 
represent the p-values when comparing to the control (unpaired t-test: **** p≤10-4). CM 
= conditioned media. 
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An epithelial-mesenchymal transition (EMT) is a physiological process that 

allows a non-migratory epithelial cell to undergo profound morphological 

transformation into highly migratory, invasive mesenchymal-like cells.  EMT 

involves a cascade of genetic programs in epithelial cells which eventually leads 

to loss of expression of the epithelial markers, including E-cadherin and 

cytokeratins; with concomitantly, gain in expression of mesenchymal-associated 

proteins, such as fibronectin and vimentin270.  We observed by confocal 

microscopy and western blotting that the change in morphology of 4T1.2 cells 

was associated with an increase in the expression of vimentin, a classical marker 

of EMT (Figure 6-4A &B).  Vimentin expression was significantly increased in 

cells cultured with MSC-CM at 4hours (6-fold increase, Figure 6-4C). 

 

 

Figure 6-4: Stimulation of 4T1.2 cells with MSC CM induces upregulation of 
vimentin expression  

A: Confocal micrograph for vimentin expression of 4T1.2 cells cultured with control 
media or MSC CM for at least 6 hours. B: Representative immunoblot illustrating the 
effect of MSC CM on vimentin expression on 4T1.2 cells. C: Quantification of the 
vimentin expression shown as a fold increase compared to time 0. Data represent means ± 
SEM Asterisks represent the p-values when comparing to 0h (paired t-test: *p<0.05; Ns= 
non significant). GAPDH served as a loading control.  
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To test if CXCL13 or CCL21 chemokines within the MSC CM directly affected 

tumour cell migration within our 4T1.2 breast cancer model, we performed time-

lapse microscopy experiments.  The conditioned media for these stimulation 

experiments was taken from MSC cells seeded at a density of 12 x103 and 

incubated for 48 hours. The protein concentration of CCL21 and CXCL13 within 

this media was approximately 3ng/ml and 1ng/ml respectively (see Figure 5-11).  

4T1.2 tumour cells were plated in 6-well plates and stimulated with control 

media, MSC CM (positive control), rCXCL13 (1ng/ml or 25ng/ml) or rCCL21 

(3ng/ml or 25 ng/ml) 6 hours prior to time-lapse microscopy.  Interactive tracking 

of cells from time-lapse videos was performed using the ImageJ Manual Tracking 

plugin in order to generate trajectory data for the analysis of cell migration 

(Figure 6-5). 
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Figure 6-5: Cell tracking of time-lapse microscopy videos 

Time-lapse frame image sequence of 4T1.2 cells observed for 10 hours is shown (upper panel).  The time difference in hours to the first image of the sequence is 
given in the top right hand corner of each frame.  Using ImageJ, each cell is tracked over 60 frames (10 minutes apart), generating a trajectory for each cell (lower 
panel). 
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Resulting trajectory data was used to generate trackplots for the visual 

representation of migration data and to analyse cell speed.  Trackplots  (Figure 

6-6) represent pooled cell trajectories, shifted to a common origin, for all cells 

from a given treatment group and were generated using purpose-written software 

developed in-house by Dr James Monypenny, KCL, London. The circular horizon 

associated with each trackplot represents the maximum displacement from the 

origin achieved by at least 50% of the cell population and provides a visual 

indication of the overall propensity for cells to migrate within each treatment 

group. We observed that stimulation of 4T1.2 tumour cells with low (1ng/ml – 

comparable to the concentration of CXCL13 in the MSC CM) and high (25ng/ml) 

concentrations of rCXCL13 did not significantly increase the motility of the cells 

(Figure 6-6A & B). Similarly, stimulation of 4T1.2 with low (3ng/ml) and high 

(25ng/ml) concentration of rCCL21 did not significantly increase the motility of 

the cells (Figure 6-6A &B).  We noticed that the 4T1.2 cells did not look healthy 

at concentration of higher than 25ng/ml of rCCL21 in vitro.  



 169 

 

Figure 6-6: Effect of rCXCL13 and rCCL21 on 4T1.2 migration 

A: 4T1.2 tumour cells were plated in 6-well plates and stimulated with control media, 
MSC CM, recombinant CXCL13 or CCL21 6 hours prior to time-lapse microscopy. 
Track plots illustrate the trajectories, shifted to a common origin, of individual 4T1.2 
cells from time-lapse experiments (n=3 independent experiments per treatment. The 
circular boundary for each plot (pink shaded circle) represents the maximum 
displacement from the origin achieved by at least 50% of the cells. B: Mean speed 
(measured in microns/hour) of 4T1.2 cells within each group. Data represent means ± 
SEM.  Asterisks represent the p-values when comparing to the media alone group 
(unpaired t-test; ****p<10-4; NS, not significant). 
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6.4 CXCL13-dependent RANK-RANKL signaling  

 

The physiological role of the TNF receptor (TNFR) family member, RANK 

(Receptor activator of NF-κB), for downstream LTi signaling during lymph node 

development is well established (discussed in Chapter 1 section 1.3.3).  In 

development (embryonic lymphangiogenesis), the interaction of LTi cells with 

LTo (akin to the LTi-MSC interaction/co-clustering we have observed, both in 

vitro and in vivo, in chapter 4 section 5.6.2) is thought to establish a positive 

feedback loop for stimulating RANKL production by the stromal cells, via 

RANKL/RANK- and   LTα1β2/LTβR-dependent amplification (reviewed in 271).  

Although LTi cells are known to secrete RANKL, RANKL expression is up to 

10-fold higher in LTo than in LTi cells 131. 

 

More recently, the RANK receptor has been shown to be expressed by several 

human breast cancer cell lines and its signaling has been reported to induce an 

epithelial-mesenchymal transition in various tumour types 272. Reciprocally, 

pharmacologic inhibition of RANKL or genetic ablation of RANK attenuates 

mammary tumour development 273.  Additionally, CXCL13-CXCR5 signaling 

axis has been shown to induce RANKL expression in stromal cells within oral 

squamous cell carcinomas 274.  Given that CXCL13 and CCl21 chemokine did not 

stimulate tumour cell invasion in vitro, we hypothesised that following the 

CCL21-dependent LTi cell recruitment into the primary tumours in vivo (Figure 

5-6), CXCL13-dependent LTi interaction with the surrounding stromal cells 

(Figure 5-13) establishes a positive feedback loop for CXCL13 amplification, 

which in turns triggers RANKL production, thus promoting increased tumour cell 

motility into the draining lymph nodes. 
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6.4.1 RANK-RANKL expression within 4T1.2 cell line 

 

To test the relationship between CXCL13 and RANK signaling within our murine 

breast cancer model, we first analysed the RANK and RANKL expression in our 

4T1.2 cell line.  We observed by confocal microscopy that 4T1.2 cancer cells 

expressed the RANK receptor in vitro (Figure 6-7A).  The concentrations of 

RANKL secreted into the culture media after 48 hours were determined by ELISA 

quantification. Recombinant RANKL (100pg/ml) and media alone served as 

positive and negative controls respectively.  In keeping with previous findings by 

Sambandam et al 274, we found that 4T1.2 tumour cells did not secrete any 

RANKL Figure 6-7B). In contrast, levels over 200pg/ml of RANKL were 

observed in the MSC CM, supporting the hypothesis that the source of RANKL 

within the tumour is also likely to be stromal. 

 

 

Figure 6-7: RANK-RANKL expression within 4T1.2 triple negative breast 
cancer cell line 

A: Confocal micrograph showing cytoplasmic and membranous staining of RANK (red) 
in 4T1.2 breast cancer cells. Dapi-stained nuclei are shown in blue. B: Cell culture 
supernatants from culture experiments of 4T1.2 cells and MSCs were analysed after 48h 
to determine the level of RANKL by ELISA.  Data represent means ± SEM.  Asterisks 
represent the p-values when comparing to the media alone group (one-way ANOVA: *** 
p≤0.001; NS, non significant).  
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6.4.2 Effect on RANKL expression following chemokine stimulation in stromal 

cells 

 

We then tested the effect on RANKL levels in the MSC conditioned media 

following stimulation with increasing concentrations of recombinant CXCL13 or 

CCL21. We observed by ELISA that stimulation of the MSCs by rCXCL13 at 

concentrations between 25-100ng/ml significantly increased the expression of 

RANKL by the MSC cells (Figure 6-8B).  In contrast, stimulation of the MSCs by 

rCCL21 at any concentration between 5-100ng/ml had no significant effect on the 

expression of RANKL by the MSC cells (Figure 6-8A).  RANKL is synthesized 

as a membrane-bound protein, which is then cleaved by metalloproteases into a 

soluble form by ectodomain shedding 275.  We therefore also stained for 

membrane-bound RANKL on the MSC following stimulation with increasing 

concentrations of recombinant CXCL13.  Consistent with our ELISA findings, we 

observed that stimulation of MSCs by CXCL13 resulted in an increase in the 

intensity of staining for RANKL (Figure 6-8B). 
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Figure 6-8: CXCL13, but not CCL21, induces the expression of RANKL in 
MSCs. 

A: ELISA-based quantification of soluble RANKL concentrations in the supernatants of 
MSC cell cultures after 48h of stimulation with the indicated concentrations of rCXCL13 
or rCCL21. Data represent means ± SEM.  Asterisks represent the p-values when 
comparing to the non-stimulated control (one-way  ANOVA:  *  p≤0.05;;  **  p≤0.01; NS, 
non significant). B: Increased expression of membrane-associated RANKL (green) in 
MSCs following stimulation by rCXCL13. Scale bar = 50m.  
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6.4.3 Effect of RANKL on tumour cell invasion 

 

We then investigated if increasing concentrations of recombinant RANKL would 

increase tumour cell invasion within our ECM based invasion assay.  Again EGF 

stimulation of 4T1.2 and NIH3T3 cell lines served as positive and negative 

control respectively.  In contrast to the results in  Figure 6-2, addition of 

recombinant RANKL to 4T1.2 cells at any concentration between 10-100ng/ml 

significantly increased the ability of the tumour cells to invade through the matrix 

(Figure 6-9). 

 

 

Figure 6-9: Effect of RANKL on 4T1.2 tumour cells invasion in vitro. 

Cell invasion assay results are shown.  An increase in the RFU indicates more invasion of 
cells through an extracellular matrix membrane.   NIH3T3 cells (green bars) were used as 
a non-invasive control.  EGF stimulation was used as the positive control. Data represent 
means ± SEM.   Asterisks represent the p-values when comparing to the non-stimulated 
control group (one-way  ANOVA:  ***  p≤0.01,  ****  p≤0.001). 
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6.4.4 Effect of RANKL on tumour cell migration 

 

Given the effect of RANKL on tumour cell invasion, we went on to test if 

increasing concentration of recombinant RANKL would promote the migration of 

4T1.2 cells in vitro. 4T1.2 tumour cells were stimulated with control media or 

recombinant RANKL (5ng/ml and 25ng/ml) 6 hours prior to time-lapse 

microscopy and imaged for a total of 10 hours. Contrary to our hypothesis, we 

observed that stimulation with rRANKL did not significantly increase the motility 

of the 4T1.2 cells in culture (Figure 6-10A & B).  However, MSC-CM-induced 

migration of 4T1.2 cells (observed in Figure 6-6A) was inhibited significantly by 

the addition of a RANKL blocking antibody (Figure 6-10C & D).  This decrease 

in migration was associated with a decrease ( 2-fold) in the expression of 

vimentin, providing support for the role of RANKL in promoting a more 

migratory phenotype of tumour cells (Figure 6-10E &F). 
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Figure 6-10: Effect of RANKL on 4T1.2 tumour cells migration in vitro 

4T1.2 tumour cells were plated in 6-well plates and kept in media only or stimulated with 
different concentrations of rRANKL (A), or MSC CM with or without RANKL-blocking 
antibody (B) for 6 hours prior to time-lapse microscopy. Track plots illustrate the 
trajectories, shifted to a common origin (n=3 independent experiments per treatment). C 
and D show the mean speed (measured in microns/hour) of 4T1.2 cells within each group. 
E/F: Immunoblot analysis of vimentin expression by 4T1.2 cells following stimulation 
with MSC CM or MSC-CM + RANKL blocking antibody. GAPDH served as a loading 
control. Data represent means ± SEM.  Asterisks represent the p-values when comparing 
to the control group. 
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6.4.5 Kinetics of serum RANKL during tumourigenesis within the 4T1.2 breast 

cancer mouse model 

 

Complimentary to the kinetics of lymphoid chemokine changes observed in 

Figure 5-4, we analysed the serum RANKL response following inoculation of 

4T1.2 tumour cells into the mammary fat pad.  500l of peripheral blood was 

obtained from 4T1.2 tumour-bearing mice via intracardiac puncture at the 

termination of the experiment at each time-point between days 10-24.  Separated 

serum was analysed by ELISA (see Method & Material Chapter 2 section 

3.2.5.3).  RANKL levels were seen to peak (up to  3000pg/ml)  at  day  18  (p≤10-4, 

unpaired t-test).  This peak is seen approximately 4 days after the peak in 

CXCL13 levels as observed in Figure 5-4. 

 

 

Figure 6-11: Kinetics of circulating RANKL following tumour induction. 

RANKL serum concentrations after inoculation of 4T1.2 cells into the mammary fat pad 
were determined at the indicated time points by ELISA. 3 animals were analysed per 
time-point. Data represent means ± SEM. 
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6.4.6 RANKL blockade within our triple negative breast cancer mouse model 

 

In order to examine further the relationship between the CXCL13, RANKL and 

LTi cells within our TNBC mouse model, we investigated the effect of RANKL 

blockade on LTi recruitment within tumours in vivo.  4T1.2 tumour-bearing mice 

were treated with a neutralizing antibody for RANKL or isotype control 

antibodies (0.5mg each antibody via tail-vein injections) started one day after 

tumour cell implantation and repeated every 3 days.  Again two time-points, day 

14 and day 21 were tested; whereby day 14 represents an early stage within our 

4T1.2 mouse breast cancer model, and day 21, a time-point when lymphatic 

metastasis are present within the lymph nodes. 

 

We observed from our antibody blockade in vivo experiments that anti-RANKL 

treatment did not significantly affected the growth of the primary tumour when 

compared with isotype control antibody at both time-points (day 14 and day 21); 

suggesting no effect on the proliferation of 4T1.2 cells in vivo (Figure 6-12A-C) - 

similar to results from anti-CXCL13 and anti-CCL21 treatments. 

 

We observed that the weight of the draining inguinal lymph nodes at both time-

points (day 14 & 21) was significantly reduced in the anti-RANKL cohort, when 

compared with isotype control (Figure 6-12D &E).  We noticed also that the size 

and the weight of the spleens within tumour-bearing mice treated with anti-

RANKL blocking antibody were much significantly lower as compared to the 

weight of the spleens within the control isotype, anti-CXCL3 or anti-CCL21 

treatment cohorts (Figure 6-12F &G).  It was noteworthy that in the cohort treated 

with anti-RANKL majority of the mice developed toxic symptoms of lethargy, 
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ruffled fur, and body weight loss by day 14 and one mouse died within 10 days of 

treatment. 

 

 

Figure 6-12. Effect of RANKL in vivo neutralization on primary tumour and 
secondary lymphoid organs size within the 4T1.2 tumour model. 

BALB/c mice were injected s.c. with 1×106 4T1.2 breast cancer cells. Mice were treated 
with either an anti-murine RANKL antibody or goat IgG isotype control antibody 
injected intravenously every other day for a total of 21 days. A: Subcutaneous 4T1.2 
tumour growth curves within each cohort is demonstrated. The average weight of primary 
tumours (B & C), draining inguinal lymph node (DLN) (D & E), and spleens (F & G) 
from mice sacrificed at the end of in vivo experiments at day 14 and day 21 respectively. 
The results are expressed as mean +/- SEM.  Asterisks represent the p-values when 
comparing to the control group (*  p≤0.05,  **  p≤0.01, **  p≤10-4 NS= Non significant). 
NTB=non-tumour-bearing. 
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6.4.7 Effect on LTi recruitment into lymph nodes 

 

Tumours and draining lymph nodes were analysed for LTi (CD3-,CD11c-,B220-, 

CD127+,CD90.2+,NKp46-) cell numbers by flow cytometry (as per the gating 

strategy in Figure 5-2A) at day 14, a time-point by which maximum number of 

LTi cells had been recruited into the tumours (demonstrated in Figure 5-2B) and 

at day 21, a time-point when lymphatic metastasis are present within the lymph 

nodes.  It is noteworthy that whilst the increased tumour cells at D21 represents 

partly an increase in tumour burden within these lymph nodes, the increase in 

lymph node size at day 14 was not due to the presence of metastatic disease 

within these nodes.   

 

Within tumours, when compared with the isotype control antibody, antibody 

blockade using an anti-RANKL neutralising antibody, did not significantly affect 

the recruitment of LTi cells into the primary tumours (Figure 6-13).  Within the 

draining lymph nodes, despite a trend for lower LTi numbers within the anti-

RANKL treated cohort at day 14, this did not reach statistically significance 

(Figure 6-13A).  In contrast, at day 21, when compared with the control group, the 

numbers of LTi cells within the draining lymph nodes were significantly lower 

amongst the anti-RANKL treated cohort (Figure 6-13B). 
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Figure 6-13:  Effect of in vivo RANKL neutralisation on LTi recruitment to 
primary tumour and draining lymph nodes in the 4T1.2 tumour model. 

A: Absolute cell counts of LTi cells per milligram of tissue detected in tumours (right-
axis), and absolute numbers within the draining lymph nodes (left axis) derived from 
4T1.2 tumour-bearing mice. Mice (n≥3)   were treated with anti-RANKL blocking 
antibody or isotype control antibody until day 14 (A) or day 21 (B). Data represent means 
± SEM. Asterisks represent the p-values  when  comparing  to  the  control  group  (*  p≤0.05,  
NS= Non significant). 

 

6.4.8 Anti-inflammatory effect of RANKL blockade  

 

We also examined for the anti-inflammatory effect of RANKL blockade within 

the 4T1.2 breast cancer mouse model.  As in chapter 4 section 5.5.2, we analysed 

by FACS analysis the total B/T-cell counts, defined as CD3- or CD19-positive 

cells respectively (as per the gating strategy in Figure 5-3A) within the tumours 

and the draining lymph nodes at day 14 and day 21. 
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Figure 6-14: Effect on T and B cells recruitment following RANKL 
neutralization within the 4T1.2 tumour model in vivo. 

A & B: Analyses of absolute cell counts of CD3+ cells per milligram of tumour detected 
in tumours (right-axis) and absolute numbers within the draining lymph nodes (left axis) 
from 4T1.2 tumour-bearing mice treated with anti-RANKL or isotype control antibody at 
(A) day 14 or (B) day 21 are shown. C & D: Analyses of absolute cell counts of CD19+ 
cells per milligram of tumour detected in tumours (right-axis) and absolute numbers 
within the draining lymph nodes from 4T1.2 tumour bearing BALB/c mice treated with 
anti-RANKL or isotype control antibody at (C) day 14 or (D) day 21 are shown (n≥3).    
Data represent means ± SEM.  Asterisks represent the p-values when comparing to the 
control groups (one-way ANOVA: *  p≤0.05;;  **  p≤0.01;;  ***  p≤0.001; **** p≤0.0001). 
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Irrespective of the time-point, analysis of the CD3-positive cells (Figure 6-14A 

&B) demonstrated a statistically significant decrease in the number of T-cells 

within the primary tumours and the draining lymph nodes amongst both the anti-

RANKL treated cohort compared to the cohort group (similar to results from anti-

CXCL13 and anti-CCL21 treatments (Chapter 4 section 5.5.2)).   Similarly, 

analysis of the CD19 positive cells (Figure 6-14C & D) within the primary 

tumours and the draining lymph nodes at day 14 and day 21 demonstrated a 

statistically significant decrease in the number of B-cells amongst anti-RANKL 

treated cohort (see figure legend for the p-values).    

 

6.4.9 Effect on tumour burden within the lymph nodes 

 

To confirm if the decreased size of the lymph nodes at day 21 was also due to any 

differences in the tumour load within the lymph node, we performed 

immunohistochemical analysis of tumour load with a pancytokeratin antibody.  

We observed absence of metastasis within the draining lymph nodes in majority 

of the cases (n=5/7) (Figure 6-15); suggesting an inhibitory effect of RANKL 

blockade on 4T1.2 tumour cell migration into the draining lymph node.  

 

 



 184 

 

Figure 6-15: In vivo neutralisation of RANKL inhibits the migration of 4T1.2 
tumour cells into draining lymph nodes. 

A: Immunohistochemical staining of the draining lymph nodes of tumour-bearing mice 
using a pancytokeratin (brown) to assess for tumour load between the treatment groups.  
Cell nuclei are stained blue. B: Quantification of the total area of metastasis per m2 of 
sectional area within lymph nodes.  Data represent means ± SEM. Asterisks represent the 
p-values when comparing to the control groups (one-way ANOVA: **  p≤0.01). 

 

6.4.10 Effect of chemokine and RANKL blockade on the CXCL13 and CCL21 

serum levels 

 

Next we examined the relationship between CCL21, CXCL13 and RANKL 

within our 4T1.2 tumour bearing mouse model.  We quantified by ELISA the 

serum concentrations of CCL21, CXCL13 and RANKL at day 14 in mice treated 

with a neutralizing antibody for CXCL13, CCL21, RANKL or isotype control 

antibodies.  We observed that in mice treated with anti-CXCL13 and anti-

RANKL treatments, the serum levels of CCL21 were seen significantly reduced 

in both cohorts (Figure 6-16A). Similarly, the serum concentration levels of 

CXCL13 were significantly reduced in mice treated with anti-CCL21 or anti-

RANKL neutralising antibodies (Figure 6-16B).  Finally, in mice treated with 
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anti-CCL21 and anti-CXCL13 treatments, the serum levels of RANKL were seen 

significantly reduced in both cohorts (Figure 6-16).  These data provide evidence 

of the complex mechanisms involved in regulating the chemokine profiles within 

tumour bearing mice. 

 

 

Figure 6-16: Relationship between serum concentrations of CCL21, CXCL13 
and RANKL    

Serum concentrations of CCL21 (A), CXCL13 (B) and RANKL (C) at day 14 were 
analysed by ELISA within each treatment cohort respectively.    Data represent means ± 
SEM. Asterisks represent the p-values when comparing to the control groups (one-way 
ANOVA: *  p≤0.05;;  **  p≤0.01;;  ***  p≤0.001; **** p≤0.0001). 
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6.5 Discussion 

 

Following on from the results presented in chapter 4, the aims of the experiments 

presented in this chapter were to investigate the downstream mechanisms that 

underlie the relationship between CXCL13 and CCL21-dependent lymphatic 

metastasis and LTi cell recruitment. 

 

Our data suggest that a CXCL13-dependent autocrine feedback loop promotes 

RANKL upregulation in the mesenchymal stromal cells, which causes the tumour 

cells to become more invasive.  Although we did not directly observe increasing 

concentrations of recombinant RANKL promoting tumour cell migration, 

inhibition of RANKL by a RANKL blocking antibody did inhibit the induction of 

EMT (hallmark for a migratory phenotype) in the tumour cells. The complexity 

that exists between the regulation of CCL21, CXCL13 and RANKL within our in 

vivo model was evident by analysis of serum chemokine and RANKL levels in 

mice treated with either anti-CCL21, anti-CXCL13 or anti-RANKL treatments. 

We observed a reduction in the serum levels of RANKL by both anti-CCL21 and 

anti-CXCL13 treatments; hence it would seem that the action of CXCL13 on 

RANKL production in vivo depends on LTi recruitment by CCL21. Our 

observations are in keeping with studies reporting that RANKL can increase the 

migration of tumour cells by activating the c-Src/Akt and c-Src/ ERK signaling 

pathways 261,276,277.  Additionally, these recent studies provide further support for 

our findings that RANKL expression is sensitive to CXCR5-CXCL13 signalling.  

 

Although the functions of RANKL and its receptor RANK in bone remodeling 

and mammary gland development have long been recognized; more recently 
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activation of the RANK pathway has also been shown to promote tumourigenesis 

in both human and murine studies 272. For example, Tan et al. demonstrated that 

RANK signaling in mammary carcinomas enhances lung metastases in mice 278. 

Similarly, overexpression of RANK or RANKL in the mammary gland leads to 

increased proliferation of the mammary epithelia 279, increased expression of 

breast cancer stem cell markers and EMT contributing to tumour cell invasion and 

metastasis 272. Yamada et al. show that RANKL promotes EMT and induces 

angiogenesis independently of VEGF in a human head and neck squamous 

carcinoma 280.  This is in keeping with our own in vitro and in vivo findings 

showing that following stimulation by MSC CM, acquisition of a motile 

phenotype (via EMT) contributing to increased tumour cell migration is primarily 

dependent on the RANK pathway; and that RANKL blockade inhibits tumour cell 

invasion into the lymph nodes within our triple negative breast cancer mouse 

model. 

 

An association of RANK/RANKL levels in tumours with patient outcome also 

support the pro-metastatic role of this pathway.   Interestingly, in primary breast 

cancer, RANK expression is more commonly observed in the more aggressive 

triple negative tumours (50%) than ER/PR positive tumours (18%) 272.  RANK-

RANKL signaling has been shown to specifically promote the tumourigenesis of 

TNBCs by enriching cancer stem cells281. Furthermore, RANK/RANKL mRNA 

expression levels (determined by reverse transcription (RT)-PCR) were able to 

discriminate between node-negative and lymph node-positive patients 282.  

Numerous studies demonstrate that higher RANK expression in primary tumours 

correlates with shorter overall survival 283,284. Therefore, it would seem that 

RANK-RANKL pathway manipulation may not only provide benefit in patients 
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with bone metastases but inhibiting RANKL may offer a therapeutic advantage 

for reducing the risk of lymph node and or distant metastasis, especially in the 

aggressive triple negative breast cancer subtype. 

 

Given this context, complementary gain- or loss-of-function approaches (RANK 

transgenic and knock-out mouse models and pharmacological RANKL inhibition) 

have been of great interest.  Interestingly, treatment of mice in our experiments 

with anti-RANKL caused majority of the mice to develop profound toxicity on 

subsequent intravenous injections. These findings may be consistent with the 

diverse functions of the RANK-L/RANK interactions within the immune system. 

Recent work has demonstrated that RANKL/RANK signaling is important in 

lymph-node development, lymphocyte differentiation, dendritic cell survival, T-

cell activation, and tolerance induction.  These considerations do give rise to some 

questions as to the immunological safety of RANKL inhibition for human use.  

RANKL and RANK knockout mice have been shown to result in disruptions in 

the microarchitecture of the spleen 285.  Of note is that whilst patients with 

mutations in the RANKL gene do not present with any immunological defects286, 

patients with mutations in the RANK gene present with significantly decreased 

mature B-cells and failure to mount an antibody response 287. In comparison, both 

RANK/RANKL knockout mice exhibit marked reduction in the splenic and 

marrow mature B-cell numbers 129,288.  It may be RANKL/RANK signaling 

pathway may be more crucial to murine than human B cell maturation. 

 

Following on from the pre-clinical and clinical data establishing that RANKL 

inhibition delays the formation of de novo bone metastases, and inhibits the 

progression of established bone metastases 289; denosumab (Xgeva® injection, 
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Amgen Inc.), a fully human monoclonal antibody against RANKL, was approved 

by the Food and Drug Administration (FDA) for the treatment of bone metastasis 

in patient with solid tumours in June 2013.  The studies that led to this approval 

were designed to address the skeletal effects and not designed to test an anti-

tumour effect of denosumab. For example, meta-analyses of three randomized 

double-blind phase 3 trials reported that denosumab was superior to the prior 

standard of care zoledronic acid, for the prevention or delay of skeletal 

complications in patients with advanced cancer and bone metastases 290.  Patients 

enrolled within the trial tolerated denosumab well with no related serious adverse 

events.  A recent post hoc analysis of the above mentioned trials has indicated that 

treatment with denosumab was also associated with improved overall survival 

compared with zoledronic acid in a subgroup of patients with lung cancer 291.  

These findings are particularly exciting and the results of an ongoing phase III 

trial studying the effect of denosumab in preventing disease recurrence, when 

given as an adjuvant therapy for women with early-stage breast cancer, who are at 

high risk of disease recurrence (NCT01077154) are eagerly awaited.  One of the 

major issues in the development of anti-metastatic therapies is the extremely long 

time periods required to achieve the study endpoints, e.g. disease free survival. 

This is particularly the case with ER-positive breast cancers.  However, within 

triple negative breast cancer (TNBC) patients the clinical pattern of developing 

metastases differs: approximately 50% of TNBC patients do not achieve 

pathological complete response (pCR) following neoadjuvant chemotherapy, and 

70% of this pCR-negative group go on to develop metastatic disease within the 

first three years following diagnosis, making it very feasible to test anti-metastatic 

therapies such as denosumab within this clinical trials setting. Additionally, a shift 

towards innovative study designs, such as pre-surgical  “window  of  opportunity”  
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early phase trials in patients prior to surgery provide an opportunity to 

prospectively answer key biological hypotheses within breast cancer patients. 

 

In summary, from the data presented in this chapter, we found that downstream of 

CCL21-mediated recruitment of intra-tumoural LTi cells, CXCL13 promotes 

lymphatic invasion of tumour cells via a chemokine dependent RANK-RANKL 

axis through the aforementioned positive feedback loops (illustrated in Figure 

6-17 below).  Investigations into how the CXCL13, CCL21 chemokine and 

RANKL axes, in a coordinated way, establish a network of interactions between 

the tumour cells and their microenvironment; may provide new avenues for 

possible anti-cancer treatments.   

 

 

Figure 6-17: Schematic illustration of our proposed model for the role of LTi 
cells within triple negative breast cancers. 

Recruitment of LTi cells into the primary tumours is primarily dependent on CCL21.  
Following a CXCL13-dependent LTi-stromal cell interaction a positive feedback loop 
develops which helps promote lymph tumour cell invasion via the RANK-RANKL axis 
by promoting EMT within the tumour cells. 



 191 

Chapter 7: Summary  &  Future  
Directions 

 

7.1 Summary 

 

Breast remains the most common cancer in females.  Although early breast cancer 

is not fatal, majority of cancer-related deaths are caused by the metastatic spread 

of the disease.  Within invasive breast cancers, lymphatic invasion is thought to be 

the first step tumour cells undertake when disseminating through the lymphatic 

vasculature.  Emerging evidence supports the strong contribution of stromal 

influences on tumour progression to help sustain growth, invasion and metastasis 

292. The components and the relevance of the bi-directional (host-protection vs. 

tumour promotion) nature of these complex interactions of tumour cells with their 

adjacent microenvironment (tumour stroma) remain to be fully elucidated.   

 

Research over the past few years has revealed a previously unappreciated family 

of innate lymphoid cells (including LTi cells) with diverse physiological roles, 

ranging from immune protection to wound repair and homeostasis 156,293. In this 

thesis, we report, for the first time, the identification of LTi  

(RORt+CD127+CD3-) cells within the human breast TME and the enrichment of 

lymphoid chemokines/chemokine receptors gene signature within an aggressive 

triple negative breast cancer subtype.   LTi cells and the lymphoid chemokines 

were seen to provide signals for lymphatic tumour cell invasion and 

lymphangiogenesis in tumours.  Our in vitro and in vivo work demonstrate the 
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CCL21-dependent recruitment of LTi cells into tumours, the CXCL13-dependent 

interaction between the tumoural LTi and stromal cells and the downstream effect 

of the CXCL13 positive feedback loop in promoting lymphatic tumour cell 

motility via the RANK-RANKL axis.  These results suggest a pivotal role for LTi 

cells and the associated chemokines in facilitating lymphatic vessel invasion of 

tumour cells particularly in the poor outcome triple negative breast cancer 

subtype. Our work is likely to represent a significant advance for understanding 

tumour-immune-stromal interactions within tumours. 

 

7.2 Future directions 

 

Our novel identification of LTi cells within human breast cancer 

microenvironments has laid a foundation for exploring the role of these cells 

within human cancers.  Specifically, a number of interesting data presented in this 

thesis open several avenues for future work in order to understand the 

implications of this crosstalk for breast cancer patients. 

 

As discussed in Chapter 3, we observed that higher LTi numbers within human 

primary tumours correlate with higher intratumoural LVD, suggesting an 

association between LTi’s cells and neo-lymphangiogenesis in tumours. Studies 

indicate that lymphangiogenic factors such as VEGF-C and VEGF-D induce 

hyperplasia of peritumoural lymphatics, as well as formation of intratumoural 

lymphatics, and that these lymphatics facilitate metastatic spread to lymph nodes 

39-41.   The known mechanism by which LTi cells activate VEGF-C and VEGF-D 

expression via the LTR signaling on the stromal organiser cells during fetal 

lymphangiogenesis127, requires further investigation in the context of LTi 
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recruitment in tumours.  The hypothesis that LTi cells promote neo-

lymphangiogenesis within tumours is now being tested within our group.  In 

collaboration with Dr Matt Smalley (European Cancer Stem Cell Research 

Institute, Cardiff) and Dr Taija MaKinen, (Department of Immunology, Genetics 

and Pathology, Cancer and Vascular Biology, Uppsala), we are in the process of 

developing a triple negative mouse model in Prox1-CreERT2;R26-mTmG 

transgenic mice. This animal model expresses the green fluorescent protein under 

the promoter of Prox1, a master control gene in lymphatic development and 

therefore providing a great tool for further lymphatic research.  Using the MIW 

technique discussed in Figure 5-16, we will investigate further the LTi-associated 

lymphangiogenesis within breast tumours.   

 

Secondly, our group has already begun to explore further the role that LTi cells 

play in the immunoediting/immune surveillance mechanisms within tumours. In 

particular, despite high CXCL13-CXCR5 expression acting as a good prognostic 

marker within high-risk breast cancer patients 262; results presented in this thesis 

reported that downstream of CCL21-mediated recruitment of intra-tumoural LTi 

cells, CXCL13 promotes lymphatic invasion of tumour cells via a chemokine 

dependent RANK-RANKL axis.  The possibility that early tumour cell lymphatic 

vessel invasion in response to an increase in CXCL13 levels within the cancer 

microenvironment may effectively enhance the cross-presentation of tumour 

antigens in the draining lymph nodes thus acting as a powerful mitogen for 

responding T-cells requires further investigation.  It was interesting to note that as 

well as blocking lymph node metastases, anti-RANKL treatment within our 

mouse demonstrated a significant decrease in the numbers of LTi cells within the 

draining lymph nodes.  Recent studies have indicated that LTi cells influence the 
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adaptive immune responses within lymphoid tissues.  For example, LTi cells have 

been shown to be located at the edge of the B cell follicles, where T and B cell 

zones intersect 152,293,294; specifically where intranodal lymphatics drain lymph to 

the efferent lymphatics – a point of entry for the incoming lymphocytes.  Despite 

the low numbers of LTi cells present in adult life, this location puts them in 

position to interact with immune cells as they recirculate between blood and 

lymph 294.  Strikingly, LTi cells in fetal and neonatal lymphoid tissues, before the 

need for adaptive immune responses, do not express co-stimulatory molecules; in 

contrast to adult LTi cells which have been shown to express high levels of co-

stimulatory molecules such as: OX40 ligand (OX40L; TNFSF4) and CD30 ligand 

(CD30L; TNFSF8)143.  We therefore hypothesize that studying the molecular and 

cellular interactions of LTi cells with the surrounding immune cells within tumour 

models may provide an insight into some of the mechanisms involved in the 

phases  of  “immunoediting”  by  cancers. 

 

In support of this, we have recently analysed the expression levels of a panel of 

co-stimulatory molecules on splenic LTi cells from non-tumour bearing mice 

compared with splenic LTi cells from tumour bearing mice (data not shown). We 

found that the Inducible T-cell COStimulatory (CD278/ICOS) molecule was 

expressed at much higher levels on LTi cells from tumour bearing compared to 

non-tumour bearing mice. ICOS and its ligand (ICOS-L) belongs to the 

CD28/CTLA-4/B7 immunoglobulin superfamily and have been shown to play 

diverse roles in T-cell responses such as mediating autoimmunity as well as 

enhancing the development/activity of regulatory T cells 295. These findings 

require further investigation within both in vitro and in vivo settings. 
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Abstract The TACT trial is the largest study assessing
the benefit of taxanes as part of adjuvant therapy for early

breast cancer. The goal of this translational study was to

clarify the predictive and prognostic value of Tau within
the TACT trial. Tissue microarrays (TMA) were available

from 3,610 patients. ER, PR, HER2 from the TACT trial

and Tau protein expression was determined by immuno-
histochemistry on duplicate TMAs. Two parallel scoring

systems were generated for Tau expression (‘dichotomised’

vs. ‘combined’ score). The positivity rate of Tau expres-
sion was 50 % in the trial population (n = 2,483). Tau

expression correlated positively with ER (p \ 0.001) and

PR status (p \ 0.001); but negatively with histological

grade (p \ 0.001) and HER2 status (p \ 0.001). Analyses
with either scoring systems for Tau expression demon-

strated no significant interaction between Tau expression

and efficacy of docetaxel. Contrary to the hypothesis that
taxane benefit would be enriched in Tau negative/low

patients, the only groups with a suggestion of a reduced

event rate in the taxane group were the HER2-positive, Tau
positive subgroups. Tau expression was seen to be a

prognostic factor on univariate analysis associated with an

improved DFS, independent of the treatment group
(p \ 0.001). It had no prognostic value in ER-negative

tumours and the weak prognostic effect of Tau in ER-

positive tumours (p = 0.02) diminished, when considering
ER as an ordinal variable. On multivariable analyses, Tau

had no prognostic value in either group. In addition, no

significant interaction between Tau expression and benefit
from docetaxel in patients within the PR-positive and
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negative subsets was seen. This is now the second large

adjuvant study, and the first with quantitative analysis of ER

and Tau expression, failing to show an association between
Tau and taxane benefit with limited utility as a prognostic

marker for Tau in ER-positive early breast cancer patients.

Keywords Breast cancer ! Clinical trials ! TACT !
Taxanes ! Tau ! Predictive biomarker ! Prognostic

biomarker

Introduction

Taxanes are potent cytotoxic compounds that have become

a standard component of many adjuvant and neoadjuvant

chemotherapy regimens for early breast cancer [1–5].
Overview analyses have suggested a small but clear

incremental benefit for taxane-based therapy [6]. However,

the addition of taxanes to cytotoxic regimens has not
always demonstrated a consistent improvement in out-

comes. Some studies have clearly shown an overall sur-

vival (OS) benefit, others an improvement in disease-free
survival (DFS) but not OS, while others have shown no

benefit [6]. Explanations for the variable evidence of

additional therapeutic efficacy may include differences in
sequence, duration and choice of control regimen. The UK

Taxotere as Adjuvant Chemotherapy Trial (TACT) asses-

sed the benefit of taxanes as part of an adjuvant therapy for
early breast cancer patients and did not demonstrate an

improvement in DFS, its primary endpoint measure [7, 8].

In the TACT trial treatment duration was similar in the
comparator groups. The EBCTCG meta-analyses of adju-

vant taxane treatment (n = 44,000 in 33 studies) confirmed

that in trials where more anthracycline was given in the
control groups to balance the treatment duration of taxanes,

no significant difference in breast cancer mortality in

favour of taxanes was observed, but in trials in which four
cycles of a taxane were added to a fixed anthracycline-

based regimen, breast cancer mortality decreased [9].

In addition to differences in clinical trial design and
demographic differences in trial patient populations, the

biological heterogeneity between patients’ tumours in

relation to sensitivity and resistance to microtubule

inhibition is likely to be critical in determining taxane

benefit. Identification of definitive biomarkers to predict
which patients benefit from taxane therapy and, conversely,

which can be spared the cytotoxic effects of such treat-

ments would be an important improvement in patient care
[10]. Taxanes are known to exert their cytotoxic activity by

interfering with spindle microtubule dynamics causing G2-

M interphase cell cycle arrest, inducing subsequent apop-
tosis of tumour cells [3, 11]. Microtubule-associated pro-

teins (MAPs) are endogenous proteins which participate in
the organization, stabilization and function of the micro-

tubules [12], and have, therefore, been under investigation

as candidate markers to predict response to taxane therapy.
MAP-Tau protein (50–64 KDa) binds to the same

pocket as taxanes in microtubules, thus competing for the

drug-binding site [13–15]. In vitro experiments with small
interfering RNAs have indicated that suppression of Tau

increases the sensitivity of breast cancer cells to taxanes

[16, 17], however, results from clinical studies evaluating
Tau as a predictive biomarker for taxane sensitivity have

been conflicting. Early studies of neoadjuvant taxane

therapy reported a significant correlation between low Tau
protein expression and higher pathological complete

response (pCR) rate [16, 18]. Although this association has

been supported by other clinical studies in the metastatic
setting [19, 20]; no correlation between Tau gene/protein

expression levels and efficacy of taxanes was observed in

the retrospective subset analyses of the neoadjuvant Ge-
parTrio [21], the adjuvant Hellenic Cooperative Oncology

Group (HECOG) [22] or the National Surgical Adjuvant

Breast and Bowel Project (NSABP) B-28 trials [23].
Tau mRNA expression is induced by oestrogen, as well as

tamoxifen, and correlates with oestrogen receptor (ER)

expression [18, 22, 24]. It is possible that greater paclitaxel
treatment effects observed in patients with Tau negative, ER-

positive tumours who also received hormonal therapy may be

skewed by the greater effect of addition of a taxane in those
with less endocrine therapy sensitive disease. High Tau

mRNA expression was shown to be significantly associated

with reduced risk of recurrence (at both 5 and 10 years,
p = 0.005 and p = 0.05, respectively) in patients treated with

tamoxifen, indicating a potential predictive value of high Tau

expression for endocrine therapy [18]. However, the positive
association between Tau and ER expression within ER-

positive tumours may explain this observation, addressing

this question was one of the motivations of the current study.
As well as linking high Tau expression with endocrine

sensitive disease and poorer response to chemotherapy,

high Tau expression has been shown to be an independent
good prognostic factor in some series [18, 20, 22, 23, 25].

In NSABP B-28 study (n = 1,942), a positive prognostic

effect of high Tau expression was found in patients with
ER-positive tumours. However, there were too few
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(n = 97) Tau positive patients in the ER-negative group to

confidently address this question for this subgroup [23]. In
contrast, a more recent study by Baquero et al. [26],

reporting on the Yale University breast cancer cohort

(n = 651) consisting of 57 % ER-negative cases, Tau
showed a prognostic value in patients with ER-negative

tumours. It is noteworthy that the immunohistochemistry

(IHC) staining and scoring procedures were fundamentally
different between the two studies. The relationship between

ER and Tau in relation to prognosis and taxane treatment
benefit prediction thus remains unclear and further study

with separate analyses of ER-positive and negative

tumours, and quantitative analyses of degree of expression
of these biomarkers, are required to explore the Tau and

oestrogen association in more detail. The TACT trial

translational tissue database provides an appropriate test-
bed for assessing biomarkers such as Tau. The goal of this

translational study was to clarify the prognostic and pre-

dictive value of Tau using tissue specimens from patients
enrolled into TACT.

Patients and methods

This study is reported in accordance with REMARK cri-
teria [27], and biomarker analysis was performed in a

GCLP-compliant facility.

Patients

A total of 4,162 patients with node-positive or high-risk
node-negative operable early breast cancer were random-

ised within the TACT trial to FEC (fluorouracil 600 mg/

m2, epirubicin 60 mg/m2 and cyclophosphamide 600 mg/
m2) four cycles followed by docetaxel (100 mg/m2) four

cycles, or control. Control regimens were FEC60 for a total

of eight cycles or epirubicin (100 mg/m2) for four cycles
followed by classical CMF (cyclophosphamide 600 mg/

m2, methotrexate 40 mg/m2 and fluorouracil 600 mg/m2)

for four cycles [7].

TMA construction and immunohistochemistry

A representative formalin-fixed, paraffin-embedded (FFPE)

block of invasive breast tumour was requested for each

patient who consented to its collection for research in a
prospectively planned programme for translational bio-

marker evaluation within the TACT trial cohort ‘trans-

TACT’, as described in [28]. From each FFPE block, four
0.6 mm cores of invasive tumour were selected to create a

tissue microarray (TMA). Within the TACT patient pop-

ulation, tumour tissues from 3,610 patients (87 % of total)
were available for TMA construction. Each TMA block

contained between 100 and 200 cores of tissue, depending

upon the array design. Clinical and pathological data [age,
histological grade, invasive tumour size, lymph node sta-

tus, ER and progesterone receptor (PR) status, disease

outcome data] were collected within the TACT trial.
Central HER2 testing was carried out, as described else-

where [29]. Sections from duplicate TMA blocks com-

posed of 0.6 mm tumour cores were used to assess Tau
protein expression using IHC. The IHC procedure was

centralized with sections processed within 5 days.
TMA sections were dewaxed and rehydrated. Antigen

retrieval was achieved using the Pascal pressurized retrieval

unit with Dako Target Retrieval Solution (pH 6). Sections
were transferred to an automated staining system (BioGenex

i6000) and the following antibodies applied; Tau (US Bio-

logical T1029, 1:50), ER (Labvision SP-1, 1:150), PR (Dako
PgR636, 1:400). Following incubation, bound antibody was

detected using the Envision/HRP kit (Dako, Denmark) and

sections counterstained with haematoxylin.

Assessment of ER, PR and Tau expression

Staining for ER, PR and Tau was performed at Guy’s and

St Thomas’ Hospital on duplicate TMAs and central spe-

cialist review was separately undertaken by two of CG,
SEP, JB and AH for each marker, without reference to

treatment allocation or clinical outcome. ER (by CG and

SEP) and PR (by JB and AH) were quantified using the
Allred score [30], resulting in a scale of 0–8. For ER and

PR, a score of 3 or more was considered positive [30].

For Tau expression (assessed by CG and SEP) both the
intensity (negative, weak, moderate or strong) and pro-

portion of invasive tumour cells showing cytoplasmic

staining (in 5 % increments) were recorded (Fig. 1). Cores
with less than 20 invasive cells were excluded as insuffi-

cient for assessment. If there was disagreement between the

two observers on intensity score, or if proportion differed
by more than 10 %, the cases were jointly re-assessed by

CG and SEP and consensus reached. For each marker, the

rounded average of the scores from the duplicate TMAs
was regarded as the final result. An ‘average Allred’ score

of 1, representing the average of duplicate cores with

Allred scores of 0 and 2 was, therefore, obtained for a small
number of cases.

Two parallel scoring systems were generated for the Tau

expression: a) a ‘dichotomised score’ of negative versus
positive, where Tau positive cases were defined as those

demonstrating any expression and b) a ‘combined Allred

score’ summing the intensity and the proportion of cyto-
plasmic staining, where intensity was scored 0–3, and

proportion staining converted into a 0–5 score (0 % = 0,

\1 % = 1, 1–10 % = 2, 11–33 % = 3, 34–65 % = 4
and 66–100 % = 5), thus representing Tau as a semi-
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quantitative categorical variable with scores from 0 to 8.
For simplicity, when illustrating the distribution of Tau by

other characteristics and displaying the results of multi-

variable analysis, the Tau combined score was classified
into three groups: ‘negative’ with a score of 0; ‘interme-

diate’ with a score of 1–6 and ‘high’ with a score of 7–8.

Statistical analysis

DFS was the primary endpoint of the study, defined as time

from randomisation to first invasive relapse, new primary

invasive breast cancer (ipsilateral or contralateral), or death
from any cause; patients who remained alive and disease free

at their date of last follow up being censored at that point.

Kaplan–Meier curves were plotted for survival endpoints,
and treatment groups compared by use of the log-rank test.

Hazard ratios (HRs) (with 95 % CIs) were obtained from

Cox proportional hazards regression models with a HR less
than 1 favouring the experimental regimen (FEC-T). The

proportionality assumption of the Cox model was tested by

fitting time-dependent effects (proportional to log (follow up
time) for each factor using the TVC command in STATA.

Unless stated otherwise, all analyses were unadjusted and

stratified by centre’s choice of control regimen. All patients
as randomised on an intention-to-treat basis were included in

a specific analysis, if they had the factors required for that
analysis successfully measured. A significance level of

p \ 0.05 was considered significant. This analysis is based

on a database snapshot frozen on 25th November 2011 [8].
All analyses were done in STATA 11.2 for windows. The

TACT trial is registered as an International Standard Ran-

domised Controlled Trial, number ISRCTN79718493/

Fig. 1 Representative immunohistochemical staining of Tau expres-
sion in tissue microarrays constructed from the TACT trial patient
population. A Low-power tissue microarray showing variable
expression between tumour cores. B Strong expression (strong,

100 %). C Moderate expression (Moderate, 95 %). D Weak expres-
sion (Weak, 80 %). E No expression (Negative). F Intra-tumour
variability demonstrating strong and no expression. G Intra-tumour
variability showing weak and moderate expression

Fig. 2 Relationship between intensity and proportion of Tau staining.
The number of cases is depicted along the vertical y axis. Subgroups
of intensity of staining are depicted along the horizontal x axis. The
percentage of cell staining within tissue sections is depicted along the
z axis. Tau positive status in the dichotomized scoring analysis was
defined as demonstrating at least weak intensity staining (red box)
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CRUK01/001. With 796 events an interaction equivalent to a

HR (taxane group: non-taxane group) of 0.76 in patients with
Tau negative tumours and 1.08 in patients with Tau positive

tumours would be detectable with 80 % power, one-sided

5 % significance level, these levels have been chosen to be
compatible with the overall HR of 0.92.

Results

Patient characteristics and Tau expression

Sixty-nine percent (n = 2,483) of the tumours from the
total of 3,610 cases in the TMAs were assessable for ER,

Table 1 Tau expression correlation with clinical variables

Tau expression p value

n (%)

Negative/low Intermediate High
1,124 647 712

Age median (range) 2,493 49 (25-70) 49 (25–88) 48 (28–75) 0.06

No. of lymph nodes with metastasis

0 552 311 (59.6) 101 (19.4) 110 (21.1)

1–3 1,097 423 (38.6) 308 (28.1) 366 (33.4)

4? 864 390 (45.1) 238 (27.6) 236 (27.3) 0.002

Invasive tumour size (cm)

\2 1,599 718 (44.9) 426 (26.6) 455 (28.5)

2–5 662 293 (44.3) 165 (24.9) 204 (30.8)

[5 222 113 (50.9) 56 (25.2) 53 (23.9) 0.09

Histological grade

1 135 30 (22.2) 35 (25.9) 70 (51.9)

2 916 283 (30.9) 269 (29.4) 364 (39.7)

3 1,432 811 (56.6) 343 (24) 278 (19.4) \0.001

ER, Allred score

0 783 611 (78) 106 (13.5) 66 (8.4)

1a 60 39 (65) 15 (25) 6 (10)

2 44 27 (61.4) 12 (27.3) 5 (11.4)

3 77 38 (49.4) 20 (26) 19 (24.7)

4 130 64 (49.2) 39 (30) 27 (20.8)

5 173 54 (31.2) 60 (34.7) 59 (34.1)

6 327 87 (26.6) 119 (36.4) 121 (37)

7 441 111 (25.2) 138 (31.3) 192 (43.5)

8 448 93 (20.8) 138 (30.8) 217 (48.4) \0.001

PR, Allred score

0 1,026 719 (70.1) 191 (18.6) 116 (11.3)

1a 88 52 (59.1) 24 (27.3) 12 (13.6)

2 101 46 (45.5) 32 (31.7) 23 (22.8)

3 105 44 (41.9) 40 (38.1) 21 (20)

4 176 61 (34.7) 61 (34.7) 54 (30.7)

5 139 41 (29.5) 60 (43.2) 38 (27.3)

6 159 33 (20.8) 61 (38.4) 65 (40.9)

7 236 54 (22.9) 67 (28.4) 115 (48.7)

8 453 74 (16.3) 111 (24.5) 268 (59.2) \0.001

HER2 status

Negative 1,910 781 (40.9) 490 (25.7) 639 (33.5)

Positive 573 343 (59.9) 157 (27.4) 73 (12.7) \0.001

a The rounded average of the Allred score from the duplicate TMAs was regarded as the definite result for each marker, thus an average Allred
score of 1 is obtained for cases with duplicate cores scoring 0 and 2, respectively
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PR, HER2 and Tau. Biomarker assessable patients showed

very similar patient characteristics to the overall trial

population (Supplementary Table 1). The median follow
up time was 8.2 years. A very strong association was

observed between the intensity and the proportion of Tau

staining (p \ 0.001) (Fig. 2). Tau positive status, defined

as demonstrating at least weak intensity staining was

assigned to 50 % of cases in the dichotomized scoring

analysis (n = 1,242). The combined scoring system yiel-
ded the three Tau groups as described: negative—45 %

281 (n = 1,124) of the whole population, intermediate—

26 % 282 (n = 647), and high—29 % (n = 712). Tau

Fig. 3 Tau, ER and PR
correlation as semi-quantitative
categorical variables. The
number of cases is depicted
along the vertical y axis. A, B X
axes represent ER and PR
Allred subgroups, respectively.
Z axes represent the Tau
subgroups: blue negative; red
intermediate and green high
expression

Fig. 4 Tau expression and docetaxel efficacy within breast cancer
subgroup. Forest plots reporting on the interaction between Tau
expression and efficacy of docetaxel. A by dichotomized cut off for
Tau, ER and HER2. B By ‘combined’ score for Tau. C By Allred
scores for ER. The solid squares are centred on the point estimate,
and the horizontal line through each square represents the 95 % CI.

The size of each square represents the weight of the study in the
subgroup analysis. The centre of the diamond represents the summary
estimate of the effect size, and the horizontal tips represent the 95 %
CI. The solid vertical line corresponds to no effect, and the dashed
vertical line corresponds to the summary estimate. CI confidence
interval

336 Breast Cancer Res Treat (2014) 144:331–341

123



positive status correlated positively with ER status
(p \ 0.001) and PR status (p \ 0.001) (Table 1; Fig. 3A,

B, respectively). In contrast, Tau positive status correlated

negatively with histological grade (p \ 0.001) (from the
local histopathology reports) and central HER2 status

(p \ 0.001). Tau expression did not show a significant

correlation with age or tumour size but was weakly cor-
related with nodal status (Table 1).

Tau expression as a predictive biomarker for taxane
benefit

Exploratory analysis of the main TACT trial suggested
benefit from docetaxel might be related to ER negativity

and HER2 positivity, with a suggestion of docetaxel benefit
in node-positive patients with ER-negative/HER2-positive

disease (HR 0.7 (95 % CI 0.49–1.00)). Dichotomised cut-

offs for Tau and ER status (i.e. positive or negative)
demonstrated no significant interaction between Tau

expression and efficacy of docetaxel (Fig. 4A). Although

not statistically significant, patients with ER-negative/
HER2-positive/Tau positive tumours appeared to exhibit

an association with greater taxane benefit; contrary to the

preclinical hypothesis that Tau expression induced resis-
tance to taxanes and that taxane benefit would be enriched

in Tau negative patients. These results were further vali-

dated using the ‘combined’ and the ‘Allred’ scores for Tau
and ER, respectively, confirming no role of Tau as a pre-

dictive marker for taxane benefit (Fig. 4B, C).

Fig. 5 Univariate analyses of disease-free survival (DFS). Kaplan–
Meier curves are shown. A DFS according to dichotomized Tau status
and treatment subgroups: Blue line control/Tau negative, green line
FEC-T/Tau negative, red line control/Tau positive and orange line
FEC-T/Tau positive. B DFS according to combined Tau status: Blue
line low Tau, red line intermediate Tau, green line high Tau. C DFS
according to dichotomized ER and Tau subgroups: blue line ER and
Tau negative, green line ER positive and Tau negative, red line ER

negative and Tau positive and orange line ER and Tau positive.
D DFS according to ER Allred scoring and dichotomized Tau
subgroups. Cases with negative and high Allred ER scores only are
depicted: blue line ER 0–2 and Tau negative, green line ER 7–8 and
Tau negative, red line ER 0–2 and Tau positive; orange line ER 7–8
and Tau positive. Control = 8*FEC60 or 4*E-4*CMF. DFS disease-
free survival
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Tau expression as a prognostic biomarker

In agreement with the NSABP B-28 trial analysis, Tau
expression (both dichotomised and combined scoring) was

seen to be a prognostic factor on univariate analysis asso-

ciated with an improved DFS, independent of the treatment
groups (p \ 0.001, Fig. 5A, B). Among patients with ER-

positive tumours (n = 1,596), patients with Tau positive

disease (n = 1,069) had an improved DFS (Fig. 5C)
compared with Tau negative tumours (p = 0.02). Among

the patients with ER-negative cancers (n = 887), Tau

expression had no prognostic value (Fig. 5C). Tau may
appear to be prognostic in ER-positive patients due to its

association with degrees of ER positivity, rather than being

a truly independent factor. To test this we used quantitative
ER in the analysis, the weak prognostic effect of Tau did

not remain in the proportional hazards model when con-

sidering ER as an ordinal variable, however, there was

some evidence of a prognostic effect with regard to events

occurring early in follow up (Fig. 5D and see multivariable
analysis (Table 2).

Tau and PR expression

Like Tau, PR is an ER-regulated gene and, as studies

indicate Tau expression is perhaps a reflection of ER
downstream function, we therefore, hypothesized that Tau

expression would correlate strongly with PR expression. As
described, central PR status correlated positively with Tau

expression (Table 1). Dichotomised cut-offs for Tau and

PR status (i.e. positive or negative), demonstrated no sig-
nificant interaction between Tau expression and efficacy of

docetaxel in patients within the PR-positive and negative

subsets (Fig. 6A). No prognostic effect of Tau was
observed amongst PR subgroups (Fig. 6B).

Table 2 Multivariable
Analysis for ER-positive and
ER-negative cancers

ER positive ER negative

n = 1,596 n = 887

HR (95 % CI) P value HR (95 % CI) p value

Lymph node status

Negative versus positive 1.77 (1.58–1.97) \0.001 1.85 (1.66–2.06) \0.001

Invasive tumour size (cm)

\2 1.00 1.00

2–5 0.65 (0.51–0.83) 0.001 0.88 (0.67–1.15) 0.35

[5 1.32 (1.01-1.72) 0.042 1.44 (1.02-2.03) 0.037

Age

\40 1.00 1.00

40–49 0.69 (0.53–0.9) 0.006 1.14 (0.84–1.55) 0.41

50–59 0.73 (0.56–0.95) 0.021 0.89 (0.65–1.22) 0.48

60? 0.9 (0.63–1.27) 0.54 0.8 (0.52–1.25) 0.33

Histological grade

1 1.00 1.00

2 1.17 (0.78–1.77) 0.44 2.19 (0.3–16.07) 0.44

3 1.89 (1.26–2.86) 0.002 2.66 (0.37–19.15) 0.33

Taxane versus none 1.11 (0.93-1.34) 0.25 0.87 (0.7-1.09) 0.22

HER2

Pos. versus neg. 1.08 (0.86–1.37) 0.49 1 (0.79–1.27) 0.99

ER, Allred score

Ordinal (3–8) 0.93 (0.81–1.06) 0.26

PR, Allred score

Ordinal (0–8) 0.93 (0.86-1.01) 0.08 0.87 (0.69-1.08) 0.2

Tau

Negative/low 1.00 1.00

Intermediate 1.02 (0.81–1.29) 0.84 0.98 (0.71–1.36) 0.92

High 0.94 (0.73–1.19) 0.59 1.07 (0.72–1.57) 0.75
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Multivariable analyses

Multivariable analyses were performed separately for ER-

positive and ER-negative cancers (Table 2). Tau had no
prognostic value in either of these groups when propor-

tional hazards throughout follow up were assumed. Inves-

tigation of time-dependent effects in the multivariable
model suggested that high Tau expression may be associ-

ated with a time-dependent effect relative to the low-

expression category. In the ER-positive group, the risk of
an event in the high Tau category relative to the low cat-

egory is approximately a half in the first 2 years, but this

effect has largely disappeared in 5 years; this can be seen
in the early separation of Tau negative vs Tau positive

curves in Fig. 5C, D, the curves separate within the first

2 years, but thereafter, the risk of an event is similar in both
groups.

Discussion

In this study, we investigated the predictive and prognostic
value of Tau in patients enrolled into the TACT trial

examining the role of taxane benefit as adjuvant therapy in

early breast cancer. Clinical studies evaluating Tau as a
biomarker for prognostic and treatment predictive effects

have been conflicting; this may relate to their design.
Although dichotomization of quantitative variables is a

common approach in clinical research, it may be seen as

introducing an extreme form of rounding, with an inevi-
table loss of information and power [31]. There is a risk of

underestimating the extent of variation in outcome between

groups, as individuals close to, but on opposite sides of, the

cut-point are characterized as being very different rather

than very similar. Dichotomization has also been shown to
increase the probability of false positive results [32].

Within our study analyses using both dichotomized and

ordinal parameters for Tau, ER and PR analyses were,
therefore, performed.

We observed no evidence for a role of Tau as a pre-

dictive marker of taxane benefit. Contrary to the hypothesis
that taxane benefit would be enriched in Tau negative

tumours, the only group with (non-significantly) reduced

event rate in the taxane group were the HER2- and Tau
positive subgroup. This is now the second large adjuvant

study which, despite our studies use of both dichotomized

and ordinal parameters, fails to show an association
between Tau and response to taxane therapy; suggesting

that measurement of Tau does not aid in clinical decision

making to select optimal use of taxanes. Thus, the pre-
clinical observations that high Tau expression confers

selective resistance to paclitaxel in breast cancer cell lines

remains largely unsubstantiated in clinical trials [16, 17]. In
clinical studies, it is likely that other molecular mecha-

nisms relating to chemotherapy resistance override the

importance of Tau as a predictive biomarker for response
to taxane therapy. Mechanisms of resistance are complex

and are likely to be multiple, it may, therefore, be difficult

to detect individual molecular markers that predict cyto-
toxicity from microtubule stabilizing agents like taxanes

from amongst the competing mechanisms. In addition,

because of the high level of biological, molecular and
genetic heterogeneity in breast cancer, the use of a single

marker is unlikely to be sufficiently specific and reliable. It

is also worth noting that low Tau expression is closely
associated with ER negativity, high histological grade and

Fig. 6 Tau and PR expression. A Forest plots reporting on the
interaction between Tau and PR expression. B Kaplan–Meier curve
reporting on the DFS according to PR Allred scoring and dichoto-
mized Tau subgroups. Cases with negative and high Allred PR scores

only are depicted: blue line PR 0–2 and Tau negative, green line PR
7–8 and Tau negative, red line PR 0–2 and Tau positive and orange
line PR 7–8 and Tau positive. DFS disease-free survival
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HER2 positivity, which might explain the earlier obser-

vations that low Tau was associated with higher pCR rates
in a group with the worst prognosis.

Within our study, Tau expression was seen to be a

prognostic factor associated with improved DFS, when all
breast cancer patients are analysed together on univariate

analysis. Tau is an ER-regulated gene with expression

induced by both oestrogen and tamoxifen in vitro. The
improved DFS amongst the Tau positive (i.e. high

expression) patients in the trial population is likely to be a
surrogate for endocrine sensitive, ER-positive tumours in

which the relative sensitivity or resistance between indi-

vidual chemotherapy agents is of limited relevance. Strat-
ification by ER status confirmed that Tau expression had no

prognostic value in ER-negative tumours. The good prog-

nostic effect seen among patients with ER-positive cancers,
however, was weakened, when applying ER as an ordinal

variable and where the added effect of Tau is minor

compared with the prognostic effect of quantitative ER in a
group of patients treated with appropriate endocrine ther-

apy. Multivariable analyses performed separately for ER-

positive and ER-negative cancers also indicated that Tau
had limited prognostic value in either of these groups

beyond possibly identifying a subgroup of ER-positive

patients with good prognosis during early follow up. PR,
another oestrogen-regulated gene, approached statistical

significance in the ER-positive group. Importantly, our

conclusions apply to an essentially higher risk patient
population who had been selected for chemotherapy and

randomization to a taxane-based regimen in the TACT

trial.
Disparities between RNA and protein expression, as well

as the techniques used to assess these parameters [18, 22, 23,

26] may also have contributed to lack of agreement between
studies. In separate clinical studies, RT-PCR and different

immunohistochemistry approaches have been used to assess

Tau expression. Tau has six isoforms that are spliced from a
single gene and in vitro studies indicate that expression of

Tau protein isoforms less than 70 kDa have the most influ-

ence on sensitivity to taxanes [24] Therefore, analysis of Tau
mRNA expression may not be an appropriate for examining

the utility of Tau as a predictor of taxane sensitivity. Fur-

thermore, the status of the expression of different Tau protein
isoforms is important in determining sensitivity to taxanes,

but immunohistochemistry cannot, at present, be used to

identify separate isoforms [24]. The antibody used in our and
other studies [16, 20], recognizes both non-phosphorylated

and phosphorylated forms of Tau proteins (45–68 kD).

There may be value in the examination of individual Tau
isoform expression in breast cancer tissues to further inform

how Tau may be related to other aspects of the biology to

response to taxanes.

Identification of robust biomarkers capable of identify-

ing women with a high likelihood of response to taxanes
would represent a significant advance in breast cancer

research. When Tau was first proposed as a potential bio-

marker to discriminate between taxane sensitivity and
resistance, there was great optimism that it may offer

clinical utility in improving patient care. This report from

the adjuvant taxane trial TACT, along with those from the
GeparTrio, NSABP and HECOG trials confirms that there

is no clinical application for Tau and demonstrates again
the perils of relying on a single biomarker to report the

complexity of drug resistance in relation to clinical out-

come. This is disappointing, but recent advances in geno-
mic and proteomic technologies are likely to drive the

development of novel multi-component companion diag-

nostic biomarkers for the taxane class of drugs and may
prove to be more fruitful in the future.
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COMMENTARY

BRCA1 mutations and luminal-basal transformation
T Ng1,2, S Irshad1,2 and J Stebbing3

The multifunctional roles of BRCA1 include its ability to regulate transcriptional processes that control differentiation at multiple
levels, as well as functioning as a tumor suppressor. Data herein demonstrate that germline mutations in Brca1 impair luminal
cell lineage and mammary development, with its deficiency converting ER-positive luminal tumors into basal-like cancers.
Heterozygous mutations in Brca1 lead to downregulation of a number of luminal differentiation genes, explaining how it
suppresses basal-like tumors, also highlighting its importance outside of its known highly publicized role in DNA repair.

Oncogene (2013) 32, 2712–2714; doi:10.1038/onc.2012.379; published online 27 August 2012

In this issue of Oncogene, Bai et al.1 describe studies that show
germline mutation of Brca1 in p18-deficient mice blocks the
increase of luminal progenitor cells, impairs luminal gene
expression and promotes malignant transformation of mammary
tumors (schematic, Figure 1).

In several human solid tumors, including breast and ovarian
cancers, the tumor-promoting effect of a loss of tumor-suppressing
function of BRCA1, due to mutations, may be contingent on
additional genetic changes within the cell-cycle pathways.2

Recently, there have been genetic data to support the notion
that human BRCA1 breast cancers may be derived from mammary
epithelial luminal progenitors.3 Bai et al.1 now show that a haploid
loss of Brca1, when coupled to the deletion of p18 (INK4c), a cyclin-
dependent kinase (CDK) inhibitor, can promote an expansion of
luminal progenitors and malignant transformation, giving rise to
ER-negative tumor cells that are of luminal epithelial origin.

p18 is a CDK inhibitor, which is a downstream target of GATA3,
and restrains mammary luminal progenitor cell proliferation and
tumorigenesis.4 Given the literature that describes the physical and
functional linkage of BRCA1 to important transcriptional regulators,
such as p53, c-Myc and p300,5 it is of interest to map out a more
comprehensive picture of the transcriptional feedback-control
network that exists between BRCA1 and various cell-cycle
regulators. Indeed, Bai et al.1 demonstrate that haploid loss of
Brca1 in primary mammary epithelial cells increased p18 mRNA level
and that knockdown of Brca1 in three different cell lines led to an
average of 1.3- and 1.5-fold increase in p18 mRNA and protein
levels, respectively. Moreover, p18 is not the only cell-cycle regulator
that is upregulated. Previously, BRCA1 overexpression has been
shown to cause cell-cycle arrest by a mechanism that requires
p21WAF1, another CDK inhibitor.2 In the present study,1 p21 mRNA
level was not altered in Brca1þ /" mammary glands at 3 months
of age, but increased by 2.9- and 3.1-fold in p18" /" and p18" /" ;
Brca1þ /– glands, respectively. p16INK4a mRNA levels were
increased 1.7-fold in Brca1þ /" , and 1.4- and 3.9-fold in p18" /"
and p18" /" ;Brca1þ /– glands, respectively. In aggregate, these
new data strongly suggest a concerted but complex regulatory
feedback between BRCA1 and a network of cell-cycle regulators
on one hand, as well as among the different CDK inhibitors within
the network. The precise identities of the transcriptional regulators
that potentially mediate this feedback control, in response to

BRCA1 loss or mutation, are currently unclear. One possible
candidate mechanism may involve changes in the promoter
methylation status of these CDK-inhibitor genes (for example,
Taghavi et al.6).

The question that has not yet been addressed by the current
study is whether the loss of BRCA1 function, for example, through
the Brca1C61G mutation,7 known to impair the ubiquitin ligase
activity of BRCA1 result in a similar increase in the levels of
p18, along with a malignant transformation of mammary tumors
in p18-deficient mice? Mechanistically, do these functionally
impaired mutants of BRCA1 differ from the wild-type protein
in terms of their ability to physically interact with important
transcriptional regulators, such as p53, c-Myc and p300, and
thereby the ability to regulate the transcription of downstream
targets, for example, of luminal differentiation genes such as
Foxa1.1

A major clinical implication of the current study is to support
the notion that CDK inhibition may be a useful therapeutic
approach particularly for BRCA1-deficient cancers, because, for
example, tumor cells that lack BRCA1 (or ATM) are particularly
sensitive to CDK inhibitors, especially CDK2 blockade.8 However,
the expression levels of multiple, rather than a single, CDK
inhibitors may be altered in BRCA1-deficient tumors and thus
broad-spectrum CDK inhibitors may be required. Herein rests a
drug-development paradox in that early pan-CDK inhibitors have
evolved to specific second- and third-generation drugs with
higher selectivity. Despite this, CDK inhibitors have not yet
achieved their desired results in clinical trials, and perhaps the
multiple CDK variants with their cell cycle and transcriptional
regulatory roles are too complex to target.

Finally, in terms of companion diagnostics for such therapeutic
approaches, we need to focus our research efforts on finding
assays that can identify rare (B5%) non-hereditary BRCA1-
deficient breast cancers. In the absence of a known mutation,
assays that can be applied to patient samples to probe the
function of BRCA1 are rare. Recently, the first images that quantify
the extent of BRCA1 sumoylation in cells have been published,9

and can potentially serve as a surrogate measurement of
BRCA1 function during DNA repair. SUMOylation, independently
of mutation status, may stimulate E3 ubiquitin ligase activity
of BRCA1, perhaps by inducing a conformational change
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and/or affecting protein–protein interaction, providing insights
into how BRCA1 is both regulated and modified.

There is clearly a heterogeneity that we do not yet understand
and the ‘BRCAness’ of breast cancer subtypes is probably a
spectrum, with basal-like tumors at one end, which probably best
resemble BRCA1-mutant cancers. Results of clinical trials in these
patients, including those of the PARP inhibitors, have probably
been disturbed by noise from nonbasal-like tumors, but patient
numbers dictate that we cannot be too selective.

The present paper1 has highlighted the importance of studying
the function of BRCA1 outside the DNA-repair context, such as
transcriptional regulation of cell-cycle control genes and more
recently its interaction with a cytoskeleton protein complex, ezrin–
radixin–moesin, which affects breast cancer cell spreading and
motility.10 It also utilizes a new mouse model that harbors a
germline mutation of Brca1, with broad applicability to both
luminal and basal-like breast tumors. Overall, these findings
will hopefully yield new approaches that are based on the
concept of synthetic lethality11 to target BRCA-deficient tumors.

CONFLICT OF INTEREST
The authors declare no conflict of interest.

REFERENCES
1 Bai F, Smith MD, Chan HL, Pei X-H. Germline mutation of Brca1 alters the

fate of mammary luminal cells and causes luminal-to-basal mammary tumor
transformation. Oncogene 2013; 32: 2715–2725.

2 Somasundaram K, Zhang H, Zeng Y-X, Houvras Y, Peng Y, Zhang H et al. Arrest of
the cell cycle by the tumour-suppressor BRCA1 requires the CDK-inhibitor
p21WAF1/CiPl. Nature 1997; 389: 187–190.

3 Molyneux G, Geyer FC, Magnay FA, McCarthy A, Kendrick H, Natrajan R et al.
BRCA1 basal-like breast cancers originate from luminal epithelial progenitors and
not from basal stem cells. Cell Stem Cell 2010; 7: 403–417.

4 Pei X-H, Bai F, Smith MD, Usary J, Fan C, Pai S-Y et al. CDK inhibitor p18INK4c is a
downstream target of gata3 and restrains mammary luminal progenitor cell
proliferation and tumorigenesis. Cancer Cell 2009; 15: 389–401.

5 Chen Y, Lee W-H, Chew HK. Emerging roles of BRCA1 in transcriptional regulation
and DNA repair. J Cell Physiol 1999; 181: 385–392.

6 Taghavi N, Biramijamal F, Sotoudeh M, Khademi H, Malekzadeh R,
Moaven O et al. p16INK4a hypermethylation and p53, p16 and MDM2
protein expression in esophageal squamous cell carcinoma. BMC Cancer 2010;
10: 138.

7 Drost R, Bouwman P, Rottenberg S, Boon U, Schut E, Klarenbeek S et al. BRCA1
ring function is essential for tumor suppression but dispensable for therapy
resistance. Cancer Cell 2011; 20: 797–809.

8 Deans AJ, Khanna KK, McNees CJ, Mercurio C, Heierhorst J, McArthur GA. Cyclin-
dependent kinase 2 functions in normal dna repair and is a therapeutic target in
BRCA1-deficient cancers. Cancer Res 2006; 66: 8219–8226.

Luminal progenitor cells

CDK4/6

Cyc D

P15

CIP/KIP
family 

P27

INK4
family 

P16

P19

P57
P21

P18

?

BRCA1

CDK2

Cyc E

??

CDK4/6

Cyc D

P15

CIP/KIP
family P27

INK4
family 

P16

P19

P57P21

P18

?

BRCA1

a b c

CDK2

Cyc E
CDK4/6

Cyc D

P15

CIP/KIP
family

P27

INK4
family 

P16

P19

P57
P21

P18

?

BRCA1

CDK2

Cyc E

?

Cell Cycle Regulation Tumorigenesis

Luminal (ER +ve)
Cancer Phenotype

Basal-like Breast
Cancer Phenotype

Figure 1. Functional role of BRCA1 in mammary luminal progenitor cell differentiation. (a) Several groups demonstrate the role of BRCA1 in
mammary epithelial cell differentiation,12–16 and in this issue of oncogene, Bai et al.1 report on the predominant expression of BRCA1 in
luminal epithelium. BRCA1 negatively regulates CDK inhibitors (INK4 and CIP/KIP family), which restrain mammary luminal progenitor cell
proliferation and tumorigenesis.4 Although the cross-talk between BRCA1 and various cell-cycle regulators remains to be fully elucidated, data
presented by Bai et al.1 strongly suggests the existence of a complex transcriptional regulatory feedback mechanisms between BRCA1 and a
network of cell-cycle regulators, and among the different CDK inhibitors within the network. (b) p18 deficiency has been shown to increase
luminal progenitor cell proliferation, leading to luminal ER-positive tumor development.4 (c) Bai et al.1 demonstrate that germline mutations in
BRCA1 impair luminal progenitor cell differentiation and, when combined with loss of p18 (INK4C), can promote basal-like tumor formation,
giving rise to ER-negative tumor cells that are of luminal epithelial origin.

BRCA1 mutations and luminal-basal transformation
T Ng et al

2713

& 2013 Macmillan Publishers Limited Oncogene (2013) 2712 – 2714



9 Morris JR, Boutell C, Keppler M, Densham R, Weekes D, Alamshah A et al. The
SUMO modification pathway is involved in the BRCA1 response to genotoxic
stress. Nature 2009; 462: 886–890.

10 Coene ED, Gadelha C, White N, Malhas A, Thomas B, Shaw M et al. A novel role for
BRCA1 in regulating breast cancer cell spreading and motility. J Cell Biol 2011;
192: 497–512.

11 Turner NC, Lord CJ, Iorns E, Brough R, Swift S, Elliott R et al. A synthetic lethal
siRNA screen identifying genes mediating sensitivity to a PARP inhibitor. EMBO J
2008; 27: 1368–1377.

12 Furuta S, Jiang X, Gu B, Cheng E, Chen PL, Lee WH. Depletion of BRCA1 impairs
differentiation but enhances proliferation of mammary epithelial cells. Proc Natl
Acad Sci USA 2005; 102: 9176–9181.

13 Marquis ST, Rajan JV, Wynshaw-Boris A, Xu J, Yin GY, Abel KJ et al. The devel-
opmental pattern of Brca1 expression implies a role in differentiation of the
breast and other tissues. Nat Genet 1995; 11: 17–26.

14 Rajan JV, Wang M, Marquis ST, Chodosh LA. Brca2 is coordinately regulated with
Brca1 during proliferation and differentiation in mammary epithelial cells. Proc
Natl Acad Sci USA 1996; 93: 13078–13083.

15 Lane TF, Deng C, Elson A, Lyu MS, Kozak CA, Leder P. Expression of Brca1 is
associated with terminal differentiation of ectodermally and mesodermally
derived tissues in mice. Genes Dev 1995; 9: 2712–2722.

16 Kubista M, Rosner M, Kubista E, Bernaschek G, Hengstschlager M. Brca1
regulates in vitro differentiation of mammary epithelial cells. Oncogene 2002;
21: 4747–4756.

BRCA1 mutations and luminal-basal transformation
T Ng et al

2714

Oncogene (2013) 2712 – 2714 & 2013 Macmillan Publishers Limited



BJR © 2014 The Authors. Published by the British Institute of Radiology

Received:
9 January 2014

Accepted:
3 March 2014

doi: 10.1259/bjr.20140065

Cite this article as:
Chowdhury R, Ganeshan B, Irshad S, Lawler K, Eisenblätter M, Milewicz H, et al. The use of molecular imaging combined with
genomic techniques to understand the heterogeneity in cancer metastasis. Br J Radiol 2014;87:20140065.

REVIEW ARTICLE

The use of molecular imaging combined with
genomic techniques to understand the heterogeneity
in cancer metastasis

1,2R CHOWDHURY, MRCP(UK), BSc (Hons), 3B GANESHAN, PhD, BEng Biomedical Engineering, 4S IRSHAD, MRCP(UK), BSc,
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ABSTRACT

Tumour heterogeneity has, in recent times, come to play a vital role in how we understand and treat cancers; however, the
clinical translation of this has lagged behind advances in research. Although significant advancements in oncological
management have been made, personalized care remains an elusive goal. Inter- and intratumour heterogeneity, particularly
in the clinical setting, has been difficult to quantify and therefore to treat. The histological quantification of heterogeneity of
tumours can be a logistical and clinical challenge. The ability to examine not just the whole tumour but also all the molecular
variations of metastatic disease in a patient is obviously difficult with current histological techniques. Advances in imaging
techniques and novel applications, alongside our understanding of tumour heterogeneity, have opened up a plethora of
non-invasive biomarker potential to examine tumours, their heterogeneity and the clinical translation. This review will focus
on how various imaging methods that allow for quantification of metastatic tumour heterogeneity, along with the potential
of developing imaging, integrated with other in vitro diagnostic approaches such as genomics and exosome analyses, have
the potential role as a non-invasive biomarker for guiding the treatment algorithm.

Although continual improvements in diagnosis, surgical
techniques and radiation oncology have together provided
improved survival for many forms of human cancers, a
majority of deaths from cancer are caused by the de-
velopment and continuous growth of metastases that are
resistant to conventional therapies. Similarly, although the
use of systemic non-targeted and targeted adjuvant thera-
pies has helped to prevent the spread of tumour cells from
the primary site and is now a standard practice for many
tumour types, the emergence of resistant disease continues

to be a significant cause of patient mortality. These features
provide an insight into the dynamic nature of the signalling
network within the tumour cells,1 and human cancers are
now being increasingly recognized as heterogeneous, char-
acterized by distinct pathological, genomic, clinical and
therapeutic features.

Nearly 150 years after the original theory of tumours orig-
inating from immature cells by Virchow,2 innovative tech-
nological approaches unequivocally demonstrate the cellular
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heterogeneity of tumours, composed of distinct subpopulations of
cancer cells within (“intra”) and between (“inter”) tumours of
individual patients. These subpopulations are characterized by
specific genetic and morphological profiles, representing the
clonal selection and evolution of that tumour.3,4 This heteroge-
neity provides a powerful internal mechanism through which
tumour cells can ultimately escape environmental stresses,
including oncological therapies, posing a considerable challenge
for translational researchers.

There is considerable evidence that the tumour microenviron-
ment actively contributes to tumour heterogeneity.5 Arguably the
best example of this is the “pre-metastatic niche”, defined as the
creation of an ideal thriving environment for the primary tumour
to “seed” to. Through the secretion of cytokines, chemokines and
growth factors, the primary tumour “primes” a distal site to be-
come an ideal niche/target organ, favourable for future metastatic
colonization.6 Although in some cases the target organ is already
primed for metastatic spread and many organs may have “seed-
ing” of cells, only a few will take “root”.7 Increasing understanding
of tumour heterogeneity demands an effort from researchers to
establish and understand pre-metastatic changes within distant
organs and their major drivers.

This new paradigm of cancer heterogeneity has yet to be fully
assimilated into everyday patient management. It has been well
documented with certain cancers that imaging signals can show
phenotypic tumour heterogeneity and have clinical implications;
for example, in radio-iodine imaging of metastatic thyroid cancer,
somemetastatic lesionsmay not take up radio-iodine and therefore
will be unaffected by radio-iodine therapy. However, for the ma-
jority of tumours, biopsies remain the standard of care for assessing
tumour biology but cannot be expected to represent the entirety of
a tumour in this tumour heterogenic era.4 Many physicians ad-
vocate the re-biopsy of metastatic disease at re-presentation for
histological analysis and comparison with the primary, in an at-
tempt to improve the choice of therapy upon relapse, having taken
into account, for instance, intertumoral heterogeneity between the
primary and metastatic disease.8 Repeated biopsy of tumour tissue
is invasive, may be practically difficult, has resource implications
and is clearly confounded by intratumoral heterogeneity. These
shortcomings give huge potential to the recent advances in mo-
lecular imaging, which have the ability to visualize and quantify
heterogeneity of tumour receptor expression, metabolism, apo-
ptosis, blood flow or structure, non-invasively over time, i.e. at
baseline and to assess response to treatment.

Owing to space constraints, we can only select a subset of imaging
techniques for illustration purposes; a more comprehensive précis
of the different image modalities has been reviewed elsewhere.8

VARIOUS IMAGING MODALITIES AND METHODS
THAT CAN HELP TO MAP THE HETEROGENEITY IN
TUMOUR METASTASIS
The development of metastasis is multifactorial and is dependent
on the complex interaction between host factors and the tumour
biology. This process is highly selective, and the metastatic lesion
represents the end point of many sequential events that only a few
cells can survive. Recent advances in next generation sequencing

(NGS) have increased the understanding of (1) the clonal het-
erogeneity between primary and metastatic tumours and (2) the
degree of genetic heterogeneity of metastatic tumours. For ex-
ample, a study comparing sequences of primary tumours and
metastases in lobular breast cancers revealed multiple mutations
present only in metastases and several other mutations with in-
creased frequency in metastatic sites.9 Similarly, a number of
studies report on the discordance in oestrogen receptor, pro-
gesterone receptor and human epidermal growth factor receptor
2 (HER2) expression between different metastatic sites.10 As
pointed out, histological analyses with repeated invasive biopsies
have limitations. For instance, when different metastatic deposits
are heterogeneous with respect to receptor expression and/or cel-
lularity11 and are not all subjected to biopsy, then a clinical decision
based on in vitro analysis of the biopsied material may be prone
to undersampling error. However, recent advances in imaging
techniques, image acquisition and image analysis have been
used to measure quantitative imaging biomarkers that may be
able to address the complexities of tumour heterogeneity better
than a standard histological biopsy. Here, we critically appraise
these strategies specifically in the context of heterogeneous
metastatic disease.

18F-fludeoxyglucose–positron emission
tomography/CT
Although CT is the imaging modality most widely used for tumour
assessment, it provides very little in the way of distinct tumour
activity information. The addition of positron emission tomogra-
phy (PET) to CT can add such further information, and
18F-fludeoxyglucose (18F-FDG) is the most commonly used PET
radiotracer, although there are many other radiotracers that ex-
amine different aspects of tumour biology. The ability of
18F-FDG-PET to detect cancer is based on elevated aerobic gly-
colysis in the malignant tissue in comparison with the normal
tissue—also known as the Warburg12 effect. Although primarily
reporting on tumour cell activity, 18F-FDG-PET has been shown
to also inform on tumour heterogeneity. A retrospective study
using 18F-FDG-PET/CT to monitor response among lesions in
patients with bone-dominant metastatic breast cancer treated
with systemic therapies reported that lesions showed heteroge-
neous metabolic response amongst responding and non-
responding bony and non-bony lesions.13

Novel utilization of 18F-FDG-PET/CT in recent years, such as
texture analysis on CT imaging, has been shown to reflect tumour
heterogeneity and associated prognosis. This has been examined in
multiple tumour types, including lung,14–16 colorectal17–19 and
oesophageal20 cancers. There are a number of ways to extract
texture elements in images. One such CT textural analysis meth-
odology utilizes a two-step filtration–histogram technique. The
first stage uses a Laplacian of gaussian spatial band-pass filter to
selectively extract and enhance features of different sizes corre-
sponding to fine, medium and coarse texture scales, allowing de-
tection of spatial differences within a tissue (arising from the
different band of spatial frequencies employed). The Laplacian
detects intensity changes (or edges) within an image, which have
been first smoothened by the gaussian distribution, based on the
spatial scale filter (SSF) value. A lower SSF value (e.g. 2mm)
extracts and enhances features of a “finer” texture scale, whereas an
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SSF value of 3, 4 or 5mm extracts and enhances features of
a “medium” texture scale and a higher SSF value (e.g. 6mm)
extracts and enhances features of a “coarser” texture scale, as shown
in Figures 1 and 2. These novel texture analyses have also been
applied to other imaging modalities, e.g. MRI,21,22 and will be
discussed later (section on Simultaneous positron emission
tomography/MR and textural analysis).

Generation of these texture parameters provides vital information
on the image features themselves (reviewed in Miles et al23).
Standard deviation (SD) increases approximately in proportion to
the square root of the number of features highlighted and their
mean intensity difference comparedwith background (i.e. dark and
bright features are both positive). Skewness is related to the average
brightness of the highlighted features (predominantly bright fea-
tures give positive values, while predominantly dark objects give
negative values), which tends to zero with increasing number of
features highlighted and moves away from zero with intensity
variation in highlighted features. Kurtosis is related inversely to the
number of features highlighted (whether bright or dark) and
increases by intensity variations in highlighted features. By quan-
tifying these different image features (size, concentration and

density variation of the features highlighted by the filter) within
a lesion (representing the different aspects of tissue heterogeneity),
computed image texture analysis algorithms have the potential to
provide additional morphological information relating to tumour
heterogeneity. The intratumoral variability assessed by this tech-
nique is at a scale where the measured heterogeneity is likely to
reflect tumour vs stroma and/or tumour vs necrosis. These features
could feasibly correlate with a metastatic phenotype, but more
work is required in this area to understand the associations between
tumour–stromal relationships and gene expression and/or meta-
static potential (see section Molecular imaging of metastatic po-
tential). Yet, the prognostic application of CT textural analysis has
been validated in various tumours types, with coarser tumours
pertaining to a poorer prognosis24 (Figure 3). In fact, overall sur-
vival (OS), progression-free survival (PFS) and local progression-
free survival were all lower in individuals with high primary
tumour coarseness.25 Analysis of tumour texture in pre- and post-
chemotherapy treatment in colorectal patients, to examine
response and prognosis, has revealed that tumours that respond to
treatment have lower initial tumour coarseness.18 In addition to its
correlation with survival, there is also limited pre-clinical literature
which suggests that the application of these texture techniques can

Figure 1. (a) Conventional hepatic CT image. (b–d) Corresponding images selectively display (b) fine, (c) medium and (d) coarse
texture obtained by using values for image filtration [spatial scale filter value (or sigma)] of 0.5 [width, 2 pixels (1.68mm)], 1.5
[width, 6 pixels (5.04mm)] and 2.5 [width, 12 pixels (10.08mm)], respectively. Images should be viewed in the online format.
Reproduced from Miles et al18 with permission from the Radiological Society of North America.

Review article: Imaging and genomic techniques to dissect metastasis heterogeneity BJR

3 of 15 birpublications.org/bjr Br J Radiol;87:20140065

http://birpublications.org/bjr


be used to analyse the surface heterogeneity of the primary tumour,
and may yield non-invasive image parameters that may distinguish
betweenmetastatic and non-metastatic tumour phenotypes,26 with
exciting translational potential which needs further investigation.

PET texture analysis (PTA) can be conducted on the stand-
ardized uptake value (SUV) images used to measure the maxi-
mum SUV. The SUV images (individual pixel values) with initial
units of uptake in Bqml21 can be converted (scaled) to SUV
calibrated by patient weight and actual tracer activity (taking into
consideration the initial tracer activity, amount of decay between
the tracer measured time and scan time with respect to the half-life
period of 18F-FDG) with final units of uptake in gml21. The tu-
mour heterogeneity can be measured only on the SUV image
without image filtration, using the histogram characteristics as
described above in the section 18F-fludeoxyglucose–positron
emission tomography/CT. Image filtration is not appropriate owing
to the inherently poor resolution of PET (SUV) data. A recent
study in non-small-cell lung cancer (NSCLC) using PET/CT image
data sets has shown the ability of PTA to be a prognostic marker
of survival.27 Other groups have shown that intra-tumour he-
terogeneity on PET via texture analysis predicts response to
radiochemotherapy in oesophageal cancer (entropy, size, local and
global heterogeneity and homogeneity, SUV),28 and lung cancer
(coarseness, contrast, busyness, complexity).25 Given the poorer
spatial resolution of PET compared with CT, the biophysical basis
of metabolic textural features is not intuitive and requires further
exploration.

Non-18F-fludeoxyglucose–positron emission
tomography for imaging the metastatic potential of
primary tumours and/or detecting
tumour metastases
18F-fluoro-39-deoxy-39-L-fluorothymidine–positron
emission tomography
18F-fluorothymidine (FLT) is a tracer used to examine cell
proliferation. Pyrimidine analogue thymidine is incorporated
in DNA, during the S phase of the cell cycle, where pro-
liferating cells synthesize DNA. 18F-FLT is taken up by the cell
and is phosphorylated by thymidine kinase 1. Thymidine ki-
nase 1 activity is the highest during the cell division process
in cells and takes place at a greater rate in malignant cells.29

Given the dependence of this radiotracer on thymidine kinase 1
activity, there can be issues when used in conjunction with
certain cytotoxic drugs, which arrest cells in S phase,30 such as
5-fluorouracil. Various studies have been carried out on corre-
lating imaging with histological findings and on immuno-
staining with Ki-67 to assess tumour proliferation rate. These
studies have shown good correlation between the histological
tumour proliferation rate and the 18F-FLT-PET image.31 Al-
though 18F-FLT-PET is an excellent tool for measuring tumour
proliferation, there are several theoretical limitations to its use
in detecting micrometastatic disease in patients with cancer.
While an increase in proliferation is important for the initia-
tion and maintenance of primary tumours, growth inhibition
could ultimately be crucial for survival of carcinoma cells in
the circulation. Mechanistically, this apparent paradox is

Figure 2. (a) A conventional CT (from a positron emission tomography/CT) image of a patient with a lung lesion and (b–d)
corresponding images selectively displaying fine, medium and coarse texture obtained from TexRAD CT texture analysis (image
heterogeneity) commercial research software (www.texrad.com, Radstock, UK). Images should be viewed in the online format.
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because of the dual function of cell cycle regulators, such as the
well-known tumour suppressor gene p5332 and transcription
factor YB-1,33 which also impact on the cell motility ma-
chinery. Additionally, metastatic cells in the target organ can
enter into dormancy (i.e. a lag in tumour growth),34 thus the
sensitivity of detecting tumour metastases is somewhat
limited.35,36

11C-choline and 18F-fluorocholine–positron
emission tomography
Some tumours have low glucose metabolism, and therefore
standard FDG-PET imaging has difficulties in the assessment of
disease and treatment response. In prostate cancers, choline-PET
imaging has been especially useful for restaging. Choline- and

fluorocholine-based tracers used in PET scanning utilize the
principle that choline is an essential component of the phos-
pholipid portion of the cell membrane. It is particularly of
benefit in a selected group of individuals rather than as a staging
method for all; namely, patients with minimal recurrent
prostate-specific antigen (PSA) levels of $1 ngml21, those with
short PSA doubling time (less than 3 months to a maximum of
6 months), and those with initial high recurrence risk tumour
stage.37,38

Simultaneous positron emission tomography/MR
As discussed earlier in this review, PET image analysis tradition-
ally focuses on the region of interest. The addition of MR to PET
imaging can further add heterogeneity information regarding the

Figure 3. Kaplan–Meier plots demonstrating differences in patients with high and low primary tumour 18F-fludeoxyglucose–positron
emission tomography coarseness (a–c), contrast (d–f) and busyness (g–i). Differences in overall survival (OS) (a, d and g),
progression-free survival (PFS) (b, e and h) and local progression-free survival (LPFS) (c, f and i) are demonstrated. Cum,
cumulative. Reproduced from Cook et al25 with permission from SN Turiel & Associates, Inc. © by the Society of Nuclear Medicine
and Molecular Imaging, Inc.
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tumour phenotype that is gathered from radionuclide-based
studies.39 Dynamic contrast-enhanced (DCE) imaging differs
from traditional MRI through the ability to acquire multiple
images, before, during and after contrast injection (Figure 4). In
the context of PET/MR, this imaging technique allows dynamic
imaging of tumours to take place, with detailed imaging of tu-
mour vascularity40 through the concomitant evaluation of avb3

expression and high glucose metabolism within tumours that can
show perfusion heterogeneity.41 This form of imaging has also
played a role in treatment assessment with vascular endothelial
growth factor (VEGF) inhibitor use, which we discuss later on in
further detail in this review (see section Molecular imaging of
metastatic potential).

Ongoing developments in the combination of PET/MR with
nanoparticle imaging have had further implications in the as-
sessment of tumour heterogeneity.42 Given the above discussion
on specific (FDG- and non-FDG-based) PET tracers that are
potentially of use in mapping the heterogeneity of different tu-
mour types, the combination of specific-tracer PET/MR holds
particular interest in imaging molecular heterogeneity.

The combination of microstructural and vascular information
afforded by MRI with specific metabolic PET tracers can now
be achieved in a clinic with whole-body PET/MR scanners.43

Multiparametric imaging has well-recognized utility for
microstructural and vascular tissue characterization and is
rapidly establishing an expanding niche in the localization and
management of prostate cancer.44,45 Yet, in general, it remains
more difficult to assess metabolic activity with MRI than with

PET; MR spectroscopy (MRS) is inconsistently used in clinics,
as it requires significant expertise in acquisition and processing
of the MR signal; whilst hyperpolarized (HP) MRI in addition
requires significant investment in infrastructure. Studies vali-
dating the use of whole-body PET/MR compared with PET/CT
have repeatedly shown increased sensitivity in early tumour
detection, and using diffusion weighting on top of PET/MR
can also detect treatment response at varying levels within
metastases.46–50

Multiparametric PET/MR performed by our group demon-
strates the ability to assess glycolysis, cellularity and water con-
tent and intralesional heterogeneity (via texture analysis) within
a single examination (Figure 5). In general, we found that
tumours with more heterogeneous water distribution (i.e. higher
SD and proportion of positive pixels) were more cellular
(i.e. lower mean apparent diffusion coefficient) and glycolytic
(i.e. higher SUVmean). Foci of high cellularity also correspond to
areas of increased glycolysis. Textural filters applied to the
fractional water images revealed features of around 3- to 4-mm
bright objects, which may be associated with pockets of water
content and tended to be higher within tumours having adverse
biology (restricted diffusion and increased glucose uptake).
Multiparametric PET/MRI data sets evaluating tissue micro-
structure, metabolism and heterogeneity are likely to contain
prognostic information/relate to metastatic potential; both hy-
potheses require further work to validate.

Furthermore, simultaneous PET/MRI offers the opportunity in
the clinic to combine tissue characterization multiparametric

Figure 4. Produced from an imaging unit at the Institute of Nuclear Medicine, University College London, UK. Simultaneous 18F-
fludeoxyglucose–positron emission tomography (PET)/MRI-acquired image of a patient with a sigmoid tumour. Fused axial T2 and
PET (a), PET alone (b), MRI apparent diffusion coefficient map (c) and representative subtracted image from a dynamic contrast-
enhanced MRI series (d); showing increased metabolism, cellularity and vascularity. Images should be viewed in the online format.
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MRI with specific molecular PET imaging, with the potential to
assess dynamic biological relationships through multimodal
imaging of, for example, tumour cellularity/cell turnover
[diffusion-weighted imaging (DWI) or FLT-PET], hypoxia
(blood oxygen level-dependent MRI or 18F-fluoromisonidazole
PET ligand), vascularity (DCE/MRI or a-V-b-3 PET ligand) and
glycolysis (18F-FDG-PET ligand or glucose chemical exchange
saturation transfer MRI).51 Spatial heterogeneity of PET-MRI
signals among metastases is often evident.11 Elucidating the
mechanisms leading to heterogeneous multimodal metastatic
phenotypes and the consequent therapeutic implications
remains the remit of future research.

Imaging the link between metabolism and tumour
signalling pathways that are associated with
metastasis: hyperpolarized MRI
13C-MRS has been used in the investigation of metabolic pro-
cesses in vivo for many years.52 Its limitations relate to the diffi-
culty in the signal intensity of the proteins in question, mainly
down to the physics of MRI and its use of the apparent diffusion
coefficient of water. Hyperpolarization with the dynamic nuclear
polarization technique can yield .10 000-fold signal increases in
MR-active nuclei, allowing the detection of 13C-labelled substrates
in vivo and also imaging of tissue distribution, in the absence of
any background signal from non-polarized material. Pyruvate is

a molecule involved in major metabolic and catabolic pathways in
mammalian cells (Krebs cycle) and depending on anaerobic or
aerobic metabolism can have various end products. 1-13C-
pyruvate imaging can therefore detect lactate, alanine and car-
bon dioxide.53,54 The imaging data generated by this technique in
a transgenic mouse model of prostate adenocarcinoma were
shown to correlate with the histological grading of tumours and
have been used to identify tumour necrosis and metastatic lymph
nodes. The NCT01229618 clinical trial is examining the role of
1-13C-pyruvate imaging in patients with prostate cancer.55 HP 13C
MR spectroscopic imaging, measuring the HP lactate-to-pyruvate
ratios, can be used to monitor the heterogeneity in a major sig-
nalling pathway within cancers, namely the PI3K/AKT/mTOR
pathway and its response to molecule-targeted therapeutics, such
as Everolimus,56 and potentially inhibitors of other signalling
pathways, e.g. hypoxia-inducible factor-1 and MYC, which are
known to predispose tumour cells to metastasize under both
normoxic and hypoxic conditions.57–59

Nanoparticle-based imaging
Nanoparticles are small, 1–100 nm, structures that in recent years
have been explored in their capacity for imaging, drug delivery and
monitoring of treatment outcome.60 Nanoparticles may be organic
based (liposomes, polymeric nanoparticles, micelles, dendrimers
and solid lipid nanoparticles), inorganic based (iron oxide

Figure 5. Multiparametric positron emission tomography (PET)/MRI of a rectal cancer. (a) High 18F-fludeoxyglucose uptake on fused
PET/T2 MRI, with (b) a correspondingly patchy reduced apparent diffusion coefficient (ADC) in keeping with pockets of high
cellularity within the tumour and (c) a fractional water image derived from source fat and water Dixon images of the same tumour
confirms that areas of increased cellularity correlate with relatively increased water content (white arrows). (d) Application of
a medium coarse textural filter highlights 3- to 4-mm bright objects on the fractional water image (medium texture map). Images
should be viewed in the online format. (www.texrad.com, Radstock, UK.)
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nanoparticles, gold nanoparticles, semiconductor nanocrystals,
ceramic nanoparticles and carbon nanotubes) or a hybrid of both.
Nanoparticles have large surface to volume ratios contributing to
their high loading capacity. As drug delivery systems, nanoparticles
have been shown to improve drug solubility, prolong blood cir-
culation half-life and control drug release.61 One of the major
advantages with nanoparticle technology is that drug delivery and
imaging probes can be combined into one delivery system.

Gold nanoparticles have high density and extinction coefficients and
can be applied as contrast agents for CT, dark field imaging and
photoacoustic imaging. The shape of gold nanoparticles can facilitate
them to strongly absorb light in the near-infrared range, converting
this energy into heat for photothermal therapy. Iron oxide-based
nanoparticles are magnetic and therefore used as contrast agents to
produce hypodense regions on T2/T2 weighted MR images.

Nanoparticles have also been used as a predictive tool in functional
imaging. Superparamagnetic iron oxide nanoparticles (SPIONs),
specifically reporting on tumour vasculature, have recently been
used in predicting the likelihood of brain metastases in melano-
mas.62,63 Various imaging nanoparticles are currently undergoing
human clinical trials; for example, 124I-labelled cRGDY silica
nanoparticles in melanoma (NCT01266096), 99mTC-sulphur col-
loid nanoparticles in sentinel node mapping in breast cancers
(NCT00438477) and ultrasmall (U)SPION in pre-operative pan-
creatic cancers (NCT00920023). All of the above are a mixture of
imaging modalities, CT, MRI and single photon emission CT
(SPECT), showing that nanoparticle imaging is not exclusive to
one imaging modality. A specific application of these (U)SPIOs to
characterize the heterogeneity of macrophage infiltration in the
tumourmicroenvironment will be described in section Application
of an integrated imaging–genomic approach to stratify cancer
treatment—requirements for clinical translation.

Imaging tumour heterogeneity at a cellular level:
intra-operative optical imaging
The basis of radio-guided surgery involves the deployment of
a radiolabelled tumour tracer pre-operatively and the use of a de-
tection probe intra-operatively. Intra-operative use of a gamma
probe has been shown to reveal small (,10mm) lesions within the
abdomen that can be missed on traditional whole-body functional
imaging. This technique has been shown to individualize surgical
procedures intra-operatively, resulting in improved complete re-
section rates with subsequent effects on reducing recurrence
rates.64–67 Moreover, to facilitate the visualization of cancer cells
at a higher resolution, intra-operative tumour imaging has been
successfully conducted with near-infrared dye-labelled molecule-
targeted antibodies against various tumour cell targets, e.g. folate
receptor, VEGF (bevacizumab) and HER2 (trastuzumab).68,69 The
first-in-man ovarian cancer surgery was performed with an
optical detection device that has a corresponding resolution
varying between 150 and 30mm.69 It allows for individual cel-
lular clusters to be visualized and dissected. Further genomic
investigations of these cellular clusters is likely to add further
details to the degree of cell-to-cell tumour heterogeneity and its
role in promoting resistance within an evolving tumour
genome.

MOLECULAR IMAGING OF
METASTATIC POTENTIAL
Early identification of patients at high risk of metastatic disease is
arguably the most important task for improving cancer mortality.
The pre-metastatic niche hypothesis comprises the creation of
a supportive environment for circulating tumour cells to “seed”
to.70 This dynamic process is thought to involve both chemokine
secretion at the primary tumour site and subsequent activation of
immune cells in the target tissue of metastasis. In response to
tumour-secreted factors (TSFs), intra- and extramedullary hae-
matopoiesis and consecutive immune cell differentiations are
altered in order to promote the survival and outgrowth of dis-
seminated tumour cells. Certain organs carry a greater suscepti-
bility to specific tumours; for example, bone metastases are
prevalent in breast and prostate cancers, whereas are rarer in
others, such as ovarian. The understanding of tumour hetero-
geneity should allow us to not only assess the primary tumour at
a molecular level but also examine distant organs for pre-
metastatic changes.

Although targeted SPECT and PET probes mostly address surface
markers or metabolic features of the primary tumour cells them-
selves, the same principles can be used for visualization of
metastasis-associated changes of tissue composition or intercellular
communication. Using a PET imaging probe for vascular cell ad-
hesion molecule-1 (VLA-4), reportedly highly expressed in bone
marrow-derived cells that have been implicated in establishing the
pre-metastatic niche,71 Shokeen et al72 reported using imaging
combined with immunohistochemistry, an enrichment of these
haematopoietic progenitor cells (HPCs) at the sites of metastasis.
Besides the HPCs, tumour-associated macrophage (TAM) accu-
mulation in the tumour microenvironment has been linked to
increased tumour invasiveness and therefore metastasis5 In pri-
mary tumours, visualization of TAM by MRI is established and
frequently performed using macromolecular substances that are
taken up by the target cells via phagocytosis, such as (U)SPIONs,73

as mentioned earlier in this review. Nevertheless, the limited sen-
sitivity of MRI (compared with the extremely high sensitivity of
PETmicrodosing), combined with the high background activity of
phagocytic cells in typical target organs of metastasis, would,
however, probably hinder the use of such techniques in imaging of
pre-metastatic tissue priming.

Another aspect of the promoting effect of TAM on tumour me-
tastasis is through enhanced angiogenesis, partly through an in-
crease in VEGF secretion by macrophages.74–77 VEGF is an
important signalling pathway in vasculogenesis and angiogenesis,
and therefore plays a vital role in tumour growth, survival and
metastases. In oncology, there have been multiple anti-VEGF
therapies, of various forms, monoclonal antibodies (bevacizumab)
and small tyrosine kinase inhibitors (pazopanib). The use of DCE/
MR in vascular imaging has already been discussed in the assess-
ment of angiogenesis. The lack of an appropriate biomarker for
VEGF inhibitors has been a particular issue in the clinical setting.
VEGF inhibitors are used widely in various tumour types, such as
breast,78 colon,79 ovarian,80 renal cell81 and hepatocellular;82

however, treatment response can be very difficult to assess, espe-
cially in the maintenance setting. DCE/MRI allows non-invasive
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quantification of tumour microvasculature through dynamic im-
aging of enhancement and washout of injected contrast material.
The vascular configuration in tumours promotes an initial faster
and greater accumulation of contrast within the interstitial space
and favours more rapid removal of contrast from the interstitium,
as the concentration of contrast in the blood falls owing to renal
excretion. These features can be fitted to pharmacokinetic models,
and the derived variables have been directly related to VEGF
modulation of vascular permeability.83,84

Imaging of mediators of inflammation, such as tumour necrosis
factors or interleukin-1a, has been performed successfully in
clinical and experimental imaging of inflammation.85,86 How-
ever, given the high background activity and relatively low
specific accumulation of the respective tracers at the target site
where there is a significant degree of inflammation, it is not
hopeful that the subtle potential changes in pre-metastatic tissue
could specifically be picked up using these or comparable
approaches. It has recently been established that, in pre-
metastatic lung tissue of tumour-bearing animals, the vessel
permeability is locally altered in response to TSFs,87 resembling
local inflammation. This permeability as well as the accompa-
nied increase in extravascular cellularity (e.g. inflammatory cell
content in the extravascular compartment) could in theory be
visualized using established imaging approaches such as
MRI.88,89 It would be of interest to see changes in tissue archi-
tecture and other MRI-based assessment of features, such as
collagen content, consecutive mechanical characteristics, vessel
architecture etc., that are revealed during the establishment of
metastasis.

Moreover, further investigation of the cellular composition of the
pre-metastatic niche and the main regulating factors is strongly
required.90 It would potentially enable the use of specific MRI
approaches for tissue characterization as well as an armament of
specific probes for radionuclide and optical imaging of already
established disease-associated target molecules and cells.91 In this
context, exosomes are 40- to 100-nm-diameter membrane vesicles
of endocytic origin that have been demonstrated to containmRNA,
miRNA and proteins, and are gaining increasing interest in terms
of their translational research potential in cancer.92–96 They are
released into the extracellular space from various cell types and
body fluids and mediate intercellular transfer of RNAs and pro-
teins. As such, exosome analysis is ideally suited for monitoring the
evolving tumour longitudinally, in terms of its whole tran-
scriptome, miRNome and proteome profiles.92,97 Exosomes have
been shown to have an important role in intercellular communi-
cation, and they are involved in stimulation of the secretion of
growth factors, cytokines. There is growing evidence that exosomes
are generally involved in the manipulation of the pre-metastatic
niche.96,98,99 Imaging the transfer of exosomes secreted by tumour
cells into host cells in a cancer mouse model suggests that the
tumour-derived exosomes contribute to the formation of a niche to
promote tumour growth and metastasis.100 A number of current
studies have shown that there is a correlation between exosomes
and metastasis in different types of cancers. The detection and
quantification of exosomes carrying tumour-relative antigens in
melanoma patients may represent a potential tool for cancer
screening and prediction of metastatic risk.101 Tumour-derived

microvesicles from patients with head and neck cancer induce
apoptosis of activated CD81 T cells that correlated with disease
activity and the presence of lymph node metastases.102 Further-
more, exosomes adapt to hypoxia in the local tumour microenvi-
ronment during cancer progression and thus reflect the hypoxic
state of cancer cells. Under hypoxic conditions, a change of the
protein cargo of exosomes secreted by tumour cells was observed
that modulates the microenvironment and promotes angiogenesis
and metastasis.95 In highly aggressive brain tumours, the anal-
ysis of exosomes from patient samples reveals the enrichment in
exosomes of hypoxia-regulated mRNAs and proteins.103 In
addition to the in vitro analysis of plasma/serum exosomes, the
effect of the exosomes on pulmonary vascular permeability96

can be assessed by the aforementioned MR-based whole-body
imaging techniques.

Clinically, exosomes are increasing in prominence for their
diagnostic/predictive potential in cancers. For example, the tumour
suppressor gene phosphatase and tensin homolog is only expressed
in exosomes that circulate in the blood of patients with prostate
cancer, but it is not detected in exosomes from normal subjects,
and might be thus a potential biomarker for prostate cancer.104 In
another study, potential diagnostic markers for human NSCLC
were identified by proteomic analysis of purified microvesicles from
pleural effusion in patients with NSCLC.102 Micro-RNA and pro-
tein profiling of brain metastasis cell-derived exosomes vs non-
brain metastasis revealed changes in specific miRNA and proteins
which may contribute to the discovery of new biomarkers for brain
metastasis.105 Similarly, proteome profiling of exosomes from hu-
man primary and metastatic colorectal cancer reveal different ex-
pression of key metastatic factors.106 These examples demonstrate
the increasing importance of exosomes in the identification of

Figure 6. Intertumour heterogeneity of gene expression pro-
files associated with cellular processes and disease progres-
sion. Unsupervised hierarchical clustering showing pair-wise
correlations of a panel of gene signature scores across primary
breast tumour tissue samples (234 patients). Representative
signatures are indicated for each cluster: T-cells, B-cells and
dendritic cells, Immune1*, Motility, stem-cell-like, tumour growth
factor b (TGFb) response, RAS*, Stroma2*, GGI*, Gene70*, MYC*
(*signature curated by Ignatiadis et al112). Recent studies report
expression-based prognostic and predictive stratification of
primary breast tumours, which are phenotypically similar
according to current clinical methods.111,113,114 Images should be
viewed in the online format.
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novel biomarkers in metastatic cancers, although imaging in
patients is still a little way off clinical application.107

APPLICATION OF AN INTEGRATED
IMAGING–GENOMIC APPROACH TO STRATIFY
CANCER TREATMENT—REQUIREMENTS FOR
CLINICAL TRANSLATION
Much energy has been expended recently in establishing the role
of imaging biomarkers for evaluating treatment response in
cancers. An ongoing collaborative effort by the American Col-
lege of Radiology Imaging Network (ACRIN), Philadelphia, PA,
Cancer and Leukaemia Group B, Chicago, IL, and the National
Cancer Institute, Bethesda, MD, Specialized Programs of Re-
search Excellence recently conducted the largest multicentre
imaging trial (ACRIN 6657) as part of the I-SPY1 trial (In-
vestigation of Serial Studies to Predict Your Therapeutic Response
With Imaging and Molecular Analysis). ACRIN 6657 utilizes MRI
to measure treatment response in patients receiving neoadjuvant
chemotherapy.108 Volumetric estimates of the tumour size, based
on functional criteria applied to contrast-enhanced images, were
seen to have greater sensitivity than linear tumour diameter
measurements for predicting pathologically complete responses in
patients completing neoadjuvant chemotherapy. The greatest

difference in predictive ability occurred at the early time points,
providing “proof of concept” that imaging parameters can serve as
non-invasive predictive biomarkers of early treatment response. Its
subsequent I-SPY2 clinical trial platform targeting the rapid focused
clinical development of paired oncologic therapies and biomarkers
now uses MR volumes to provide information about response to
chemotherapy between regimens—information that cannot oth-
erwise be obtained without surgical resection.109 Additionally, its
sub-study, ACRIN 6698, combines both DCE and DWI MRI data
to generate novel imaging biomarkers that may correlate with
treatment response,110 and its results are eagerly awaited. In-
tegration of these imaging biomarkers with genomic profiles of
tumours are likely to prove essential for future clinical translation.

Transcriptomic analyses of primary solid tumours have revealed
differential activation of gene expression signatures relating to
cellular processes, including proliferation, cell migration and im-
mune response (Figure 6) with the potential for prognostic and
predictive stratification of tumours, which are phenotypically
similar by current clinical methods.111,112,115 Meanwhile, putative
associations between clinical imaging traits and gene expression
profiles have been reported in solid tumours. Exploratory studies
have reported correlations between selected image traits and the

Figure 7. Schematic of potential future trial design, incorporating functional imaging and tissue samples to further biomarker
research.
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expression of individual genes or larger modules of co-expressed
genes113,116 reviewed in Rutman and Kuo.117 Genomic copy
number and other genomic aberrations exhibit variation between
tumours from different patients118,119 and between subclones
within a primary tumour4,120 Lesional and temporal variations in
HER2 amplification and specific HER2 insertional mutations (such
as HER2YVMA), for example, could have clinical implications for
HER2-targeted treatment and monitoring in the metastatic set-
ting.121,122 PET imaging using tracer-linked trastuzumab has been
used to identify HER2-positive tumour and metastatic sites,123,124

indicating the potential for non-invasive monitoring of HER2-
positive lesions. In the treatment–response setting, early metabolic
response to trastuzumab (less than 48h post treatment) was
detected in a pre-clinical study using optical metabolic imaging but
not FDG-PET.125 Many more genomic aberrations have been
catalogued as part of large-cohort studies of primary solid tumours,
revealing both recurrent mutations (e.g. p53, PIK3CA119,126) and
recurrent dysregulation associated with a diversity of less frequent
underlying genomic or transcriptional variation.121,127 Detection of
intertumoral, interlesional and temporal variationsmay prove to be
critical for describing and monitoring disease progression but
would require methods for non-invasive detection. Non-invasive
imaging, coupled to more advanced analyses, may in the future
yield parameters that oncologists can monitor longitudinally, in
conjunction with high-coverage NGS of plasma-derived DNA to
monitor the evolution of tumour genomic profiles under treatment
pressure.128 Some initial results have shown that there may be
a correlation between some of these mutations (codons 12, 13 and
61 of KRAS, for instance) and various PET/CT-based parameters in
colorectal cancers.129

TRANSLATION OF IMAGING TECHNOLOGIES IN
ONCOLOGICAL TRIALS
Given the lack of measurable biomarkers through patient sampling,
the advances in molecular imaging provide an impetus for testing
functional imaging as a cancer biomarker, in a way that is com-
plementary to tissue- and blood-based biomarkers. Despite these
rapid advances, the translation of such techniques into clinics
continues to lag behind. Incorporation of functional imaging to
evaluate tumour responses should play an important role in de-
signing future trials (Figure 7). Strategically planned biomarker
evaluations with access to functional imaging in early phase trials
(Phase I/II) will allow for efficient Phase III clinical trial designs,
increasing the chances of positive Phase III biomarker-driven trial
results. Functional imaging can not only provide information on
the treatment response but can also monitor mutational pathways
and the various molecular pathway pressures on an individual tu-
mour, allowing a more robust stratification of treatment pathways.
A major setback for targeted therapy has been the duration of
tumour response, as many patients go on to have progressive dis-
ease after a relatively short response period. At present, althoughwe
understand a small fraction of these tumour escape pathways, we
are unable to respond in a clinical setting to early mutational
changes. Functional imaging information can help identify and
assess high-/at-risk patients non-invasively, allowing for imple-
mentation of appropriate management plans governed by their
personal escape pathway and thereby improving patient outcome.

At present robust large patient trials examining the methods we
have discussed in this review are lacking. However, a few large
trials are currently incorporating functional imaging within their
remit. The NeoPHOEBE trial is a Phase II trial examining the
application of FDG-PET as a biomarker of early response in the
neoadjuvant setting in the treatment of HER2-positive breast
cancer. Similarly, the FOCUS4 trial, currently recruiting, is a
molecularly stratified randomized trial for patients with in-
operable or metastatic colorectal cancer. It contains five arms
[v-raf murine sarcoma viral oncogene homolog B (BRAF),
PI3KCA, RAS, no mutation and non-classified] of randomiza-
tion with prior histological analysis of patient pathology de-
termining treatment. Despite the optimism behind these trials,
the need for robust validation is crucial in order to offer patients
lasting results.

The role of clinical trials should not be purely to review efficacy
of treatment but also to aid the development of new research. To
this end, the acquisition of patient samples at each step of the
treatment paradigm plays a vital role in developing the trans-
lational application of research. As previously discussed, the role
of exosomes in cancers is developing in prominence and un-
derstanding alongside the emerging role of circulating tumour
cells and their reflection of the primary and metastatic tumour.

The integration of functional imaging, patient sampling and
drug development together with wider research is likely to play
a key role in fully understanding the nature of heterogeneity and
ultimately how to control its effects to clinical advantage.

CONCLUSION
In this review, we have discussed the novel application of current
imaging techniques in the assessment of heterogeneity especially
in the context of examining metastasis and predicting metastatic
potential. Although we have access to and are developing new
tracers and new imaging techniques, there is a significant need
for large patient trials and applications to fully determine their
specific validity in the personalized patient treatment paradigm.
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7. Hüsemann Y, Geigl JB, Schubert F, Musiani
P, Meyer M, Burghart E, et al. Systemic
spread is an early step in breast cancer.
Cancer Cell 2008; 13: 58–68.

8. Patel GS, Kiuchi T, Lawler K, Ofo E,
Fruhwirth GO, Kelleher M, et al. The
challenges of integrating molecular imaging
into the optimization of cancer therapy.
Integr Biol (Camb) 2011; 3: 603–31. doi:
10.1039/c0ib00131g

9. Shah SP, Morin RD, Khattra J, Prentice L,
Pugh T, Burleigh A, et al. Mutational
evolution in a lobular breast tumour pro-
filed at single nucleotide resolution. Nature
2009; 461: 809–13. doi: 10.1038/
nature08489

10. Hoefnagel LD, van der Groep P, van de
Vijver MJ, Boers JE, Wesseling P, Wesseling J,
et al. Discordance in ERa, PR and HER2
receptor status across different distant breast
cancer metastases within the same patient.
Ann Oncol 2013; 24: 3017–23.

11. Gaertner FC, Fürst S, Schwaiger M. PET/
MR: a paradigm shift. Cancer Imaging 2013;
13: 36–52.

12. Warburg O. On the origin of cancer cells.
Science 1956; 123: 309–14.

13. Huyge V, Garcia C, Alexiou J, Ameye L,
Vanderlinden B, Lemort M, et al.

Heterogeneity of metabolic response to
systemic therapy in metastatic breast
cancer patients. Clin Oncol (R Coll Radiol)
2010; 22: 818–27. doi: 10.1016/j.
clon.2010.05.021

14. Ganeshan B, Goh V, Mandeville HC, Ng
QS, Hoskin PJ, Miles KA. Non–small cell
lung cancer: histopathologic correlates for
texture parameters at CT. Radiology 2013;
266: 326–36.

15. Ganeshan B, Panayiotou E, Burnand K,
Dizdarevic S, Miles K. Tumour heteroge-
neity in non-small cell lung carcinoma
assessed by CT texture analysis: a potential
marker of survival. Eur Radiol 2012; 22:
796–802. doi: 10.1007/s00330-011-2319-8

16. Ganeshan B, Abaleke S, Young RCD, Chatwin
CR, Miles KA. Texture analysis of non-small
cell lung cancer on unenhanced computed
tomography: initial evidence for a relationship
with tumour glucose metabolism and stage.
Cancer Imaging 2010; 10: 137–43.

17. Ganeshan B, Miles KA, Young RCD,
Chatwin CR. Hepatic enhancement in colo-
rectal cancer: texture analysis correlates
with hepatic hemodynamics and patient
survival. Acad Radiol 2007; 14: 1520–30.
doi: 10.1016/j.acra.2007.06.028

18. Miles KA, Ganeshan B, Griffiths MR, Young
RC, Chatwin CR. Colorectal cancer: texture
analysis of portal phase hepatic CT images
as a potential marker of survival. Radiology
2009; 250: 444–52. doi: 10.1148/
radiol.2502071879

19. Ganeshan B, Miles KA, Young RC, Chatwin
CR. In search of biologic correlates for liver
texture on portal-phase CT. Acad Radiol
2007; 14: 1058–68. doi: 10.1016/
j.acra.2007.05.023

20. Cheng NM, Dean Fang YH, Chang JT,
Huang CG, Tsan DL, Ng SH, et al. Textural
features of pretreatment 18F-FDG PET/CT
images: prognostic significance in patients
with advanced T-stage oropharyngeal
squamous cell carcinoma. J Nucl Med 2013;
54: 1703–9.

21. Brown R, Zlatescu M, Sijben A, Roldan G,
Easaw J, Forsyth P, et al. The use of
magnetic resonance imaging to noninva-
sively detect genetic signatures in oligo-
dendroglioma. Clin Cancer Res 2008; 14:
2357–62. doi: 10.1158/1078-0432.CCR-07-
1964

22. Foroutan P, Kreahling JM, Morse DL, Grove
O, Lloyd MC, Reed D, et al. Diffusion MRI
and novel texture analysis in osteosarcoma
xenotransplants predicts response to

anti-checkpoint therapy. PLoS One 2013; 8:
e82875.

23. Miles KA, Ganeshan B, Hayball MP. CT
texture analysis using the filtration-
histogram method: what do the measure-
ments mean? Cancer Imaging 2013; 13:
400–6. doi: 10.1102/1470-7330.2013.9045

24. Ganeshan B, Skogen K, Pressney I,
Coutroubis D, Miles K. Tumour heteroge-
neity in oesophageal cancer assessed by CT
texture analysis: preliminary evidence of an
association with tumour metabolism, stage,
and survival. Clin Radiol 2012; 67: 157–64.

25. Cook GJ, Yip C, Siddique M, Goh V,
Chicklore S, Roy A, et al. Are pretreatment
18F-FDG PET tumor textural features in
non-small cell lung cancer associated with
response and survival after chemoradio-
therapy? J Nucl Med 2013; 54: 19–26. doi:
10.2967/jnumed.112.107375

26. Fan X, River JN, Zamora M, Tarlo K, Kellar K,
Rinker-Schaeffer C, et al. Differentiation of
nonmetastatic and metastatic rodent pros-
tate tumors with high spectral and spatial
resolution MRI. Magn Reson Med 2001; 45:
1046–55.

27. Win T, Miles KA, Janes SM, Ganeshan B,
Shastry M, Endozo R, et al. Tumor
heterogeneity and permeability as measured
on the CT component of PET/CT predict
survival in patients with non-small cell lung
cancer. Clin Cancer Res 2013; 19: 3591–9.
doi: 10.1158/1078-0432.CCR-12-1307

28. Tixier F, Hatt M, Le Rest CC, Le Pogam A,
Corcos L, Visvikis D. Reproducibility of
tumor uptake heterogeneity characteriza-
tion through textural feature analysis in
18F-FDG PET. J Nucl Med 2012; 53:
693–700.

29. Boothman DA, Davis TW, Sahijdak WM.
Enhanced expression of thymidine kinase in
human cells following ionizing radiation.
Int J Radiat Oncol Biol Phys 1994; 30: 391–8.

30. Mirjolet JF, Barberi-Heyob M, Merlin JL,
Marchal S, Etienne MC, Milano G, et al.
Thymidylate synthase expression and ac-
tivity: relation to S-phase parameters and 5-
fluorouracil sensitivity. Br J Cancer 1998;
78: 62–8.

31. Francis DL, Freeman A, Visvikis D, Costa
DC, Luthra SK, Novelli M, et al. In vivo
imaging of cellular proliferation in colo-
rectal cancer using positron emission
tomography. Gut 2003; 52: 1602–6.

32. Roger L, Gadea G, Roux P. Control of cell
migration: a tumour suppressor function
for p53? Biol Cell 2006; 98: 141–52.

BJR R Chowdhury et al

12 of 15 birpublications.org/bjr Br J Radiol;87:20140065

http://dx.doi.org/10.1038/nature09807
http://dx.doi.org/10.1038/nature09807
http://dx.doi.org/10.1056/NEJMoa1113205
http://dx.doi.org/10.1056/NEJMoa1113205
http://dx.doi.org/10.1039/c0ib00131g
http://dx.doi.org/10.1039/c0ib00131g
http://dx.doi.org/10.1038/nature08489
http://dx.doi.org/10.1038/nature08489
http://dx.doi.org/10.1016/j.clon.2010.05.021
http://dx.doi.org/10.1016/j.clon.2010.05.021
http://dx.doi.org/10.1007/s00330-011-2319-8
http://dx.doi.org/10.1016/j.acra.2007.06.028
http://dx.doi.org/10.1148/radiol.2502071879
http://dx.doi.org/10.1148/radiol.2502071879
http://dx.doi.org/10.1016/j.acra.2007.05.023
http://dx.doi.org/10.1016/j.acra.2007.05.023
http://dx.doi.org/10.1158/1078-0432.CCR-07-1964
http://dx.doi.org/10.1158/1078-0432.CCR-07-1964
http://dx.doi.org/10.1102/1470-7330.2013.9045
http://dx.doi.org/10.2967/jnumed.112.107375
http://dx.doi.org/10.2967/jnumed.112.107375
http://dx.doi.org/10.1158/1078-0432.CCR-12-1307
http://birpublications.org/bjr


33. Evdokimova V, Tognon C, Ng T, Sorensen
PH. Reduced proliferation and enhanced
migration: two sides of the same coin?
Molecular mechanisms of metastatic pro-
gression by YB-1. Cell Cycle 2009; 8:
2901–6.

34. Giancotti FG. Mechanisms governing met-
astatic dormancy and reactivation. Cell
2013; 155: 750–64.

35. Troost EGC, Vogel WV, Merkx MA,
Slootweg PJ, Marres HA, Peeters WJ, et al.
18F-FLT PET does not discriminate be-
tween reactive and metastatic lymph nodes
in primary head and neck cancer patients.
J Nucl Med 2007; 48: 726–35. doi: 10.2967/
jnumed.106.037473

36. Troost EG, Bussink J, Oyen WJ, Kaanders
JH. 18F-FDG and 18F-FLT do not dis-
criminate between reactive and metastatic
lymph nodes in oral cancer. J Nucl Med
2009; 50: 490–1. doi: 10.2967/
jnumed.108.055962

37. Umbehr MH, Müntener M, Hany T, Sulser
T, Bachmann LM. The role of 11C-choline
and 18F-fluorocholine positron emission
tomography (PET) and PET/CT in prostate
cancer: a systematic review and meta-
analysis. Eur Urol 2013; 64: 106–17. doi:
10.1016/j.eururo.2013.04.019

38. Yang Z, Sun Y, Zhang Y, Xue J, Wang M,
Shi W, et al. Can fluorine-18 fluoroestradiol
positron emission tomography–computed
tomography demonstrate the heterogeneity
of breast cancer in vivo? Clin Breast Cancer
2013; 13: 359–63.

39. Judenhofer MS, Wehrl HF, Newport DF,
Catana C, Siegel SB, Becker M, et al.
Simultaneous PET-MRI: a new approach
for functional and morphological imaging.
Nat Med 2008; 14: 459–65.

40. Choyke PL, Dwyer AJ, Knopp MV. Func-
tional tumor imaging with dynamic
contrast-enhanced magnetic resonance im-
aging. J Magn Reson Imaging 2003; 17:
509–20.

41. Metz S, Ganter C, Lorenzen S, van
Marwick S, Herrmann K, Lordick F, et al.
Phenotyping of tumor biology in
patients by multimodality multiparamet-
ric imaging: relationship of microcircu-
lation, alphavbeta3 expression, and
glucose metabolism. J Nucl Med 2010; 51:
1691–8.

42. Glaus C, Rossin R, Welch MJ, Bao G.
In vivo evaluation of (64)Cu-labeled mag-
netic nanoparticles as a dual-modality PET/
MR imaging agent. Bioconjug Chem 2010;
21: 715–22.

43. Fraioli F, Punwani S. Clinical and research
applications of simultaneous positron
emission tomography and MRI. Br J Radiol

2014; 87: 20130464. doi: 10.1259/
bjr.20130464

44. Langer DL, van der Kwast TH, Evans AJ,
Trachtenberg J, Wilson BC, Haider MA.
Prostate cancer detection with multi-
parametric MRI: logistic regression analysis
of quantitative T2, diffusion-weighted im-
aging, and dynamic contrast-enhanced
MRI. J Magn Reson Imaging 2009; 30:
327–34.

45. Panebianco V, Barchetti F, Sciarra A, Musio D,
Forte V, Gentile V, et al. Prostate cancer
recurrence after radical prostatectomy: the
role of 3-T diffusion imaging in multi-
parametric magnetic resonance imaging.
Eur Radiol 2013; 23: 1745–52.

46. Reiner CS, Stolzmann P, Husmann L,
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REVIEW

Genomic scars as biomarkers of homologous
recombination deficiency and drug response in
breast and ovarian cancers
Johnathan A Watkins, Sheeba Irshad, Anita Grigoriadis* and Andrew NJ Tutt

Abstract

Poly (ADP-ribose) polymerase (PARP) inhibitors and platinum-based chemotherapies have been found to be particularly
effective in tumors that harbor deleterious germline or somatic mutations in the BRCA1 or BRCA2 genes, the products
of which contribute to the conservative homologous recombination repair of DNA double-strand breaks. Nonetheless,
several setbacks in clinical trial settings have highlighted some of the issues surrounding the investigation of PARP
inhibitors, especially the identification of patients who stand to benefit from such drugs. One potential approach to
finding this patient subpopulation is to examine the tumor DNA for evidence of a homologous recombination defect.
However, although the genomes of many breast and ovarian cancers are replete with aberrations, the presence of
numerous factors able to shape the genomic landscape means that only some of the observed DNA abnormalities are
the outcome of a cancer cell’s inability to faithfully repair DNA double-strand breaks. Consequently, recently developed
methods for comprehensively capturing the diverse ways in which homologous recombination deficiencies may arise
beyond BRCA1/2 mutation have used DNA microarray and sequencing data to account for potentially confounding
features in the genome. Scores capturing telomeric allelic imbalance, loss of heterozygosity (LOH) and large scale
transition score, as well as the total number of coding mutations are measures that summarize the total burden of
certain forms of genomic abnormality. By contrast, other studies have comprehensively catalogued different types of
mutational pattern and their relative contributions to a given tumor sample. Although at least one study to explore the
use of the LOH scar in a prospective clinical trial of a PARP inhibitor in ovarian cancer is under way, limitations that
result in a relatively low positive predictive value for these biomarkers remain. Tumors whose genome has undergone
one or more events that restore high-fidelity homologous recombination are likely to be misclassified as double-strand
break repair-deficient and thereby sensitive to PARP inhibitors and DNA damaging chemotherapies as a result of prior
repair deficiency and its genomic scarring. Therefore, we propose that integration of a genomic scar-based biomarker
with a marker of resistance in a high genomic scarring burden context may improve the performance of any
companion diagnostic for PARP inhibitors.

Introduction
Cancer is a disease of the genome. In certain types of
cancers, a handful of mutations drive and accompany
carcinogenesis; in others, tumor growth unfolds in the
context of widespread genomic turmoil [1]. The latter
scenario is the consequence of the tumor securing a mu-
tator phenotype in which one or more of the mecha-
nisms that preserve genomic integrity are undermined.
The resultant increase in the rate of spontaneous change

to the genome, a phenomenon termed ‘genomic instabil-
ity’, furnishes the genetic variation that is grist to the mill
of natural selection [2]. Immune responses, anti-growth
signaling, and competition for space and resources all
contribute to the selection of cancer cell clones with the
fitness advantage to proliferate and dominate the tumor
landscape [3].
Unearthing the information buried within cancer

genomes will have two consequences for the management
of cancer in the clinic. On the one hand, identification of
the genetic abnormalities that direct the acquisition of
malignant features other than the mutator phenotype may

* Correspondence: anita.grigoriadis@kcl.ac.uk
Breakthrough Breast Cancer Research Unit, Guy’s Hospital, Kings College
London, Kings Health Partners AHSC, 3rd Floor, Bermondsey Wing Guy’s
Hospital, Great Maze Pond, London SE1 9RT, UK

© Watkins et al.; licensee BioMed Central Ltd. The licensee has exclusive rights to distribute this article, in any medium,
for 6 months following its publication. After this time, the article is available under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

Watkins et al. Breast Cancer Research

2014

2014, 16:211
http://breast-cancer-research.com/content/16/3/211

mailto:anita.grigoriadis@kcl.ac.uk
http://breast-cancer-research.com/content/16/3/211


enable the selection of therapies that disrupt the relevant
oncogenic pathway. On the other hand, tracing scars in a
patient’s tumor genome back to particular drivers of the
mutator phenotype that caused them will enable the selec-
tion of treatments that target these origins. In this review,
we will focus on the latter application and, in particular, on
how the genomic scars that are carved out by a deficiency
in a DNA repair process known as homologous recombin-
ation (HR) may be measured and used as biomarkers or
companion diagnostics for response to platinum-based
chemotherapies and synthetic lethal agents such as the poly
(ADP-ribose) polymerase (PARP) inhibitors.

The need for a companion diagnostic based on
homologous recombination deficiency
Familial mutations in one copy of either the BRCA1 or
BRCA2 gene predispose patients to female breast (85%
lifetime risk), ovarian (10% to 40%), male breast, pancreatic,
or prostate cancer [4]. The majority of breast tumors that
develop in carriers of BRCA1 mutations - the products of
which are involved in HR - are triple-negative breast can-
cers (TNBCs) overlapping with the gene expression-defined
subtype of breast cancer known as ‘basal-like breast cancer’,
whereas BRCA2 mutation-associated breast cancers have a
less restricted immunohistochemical phenotype [5-7]. As a
result of the BRCA1/2-related deficiency in HR, pre-
cancerous cells within at-risk organs are unable to reliably
repair DNA double-strand breaks [8], resulting in genomic
instability that eventually leads to cancer. These tumors are
intrinsically sensitive to DNA damage response inhibitors,
such as the PARP inhibitors, whose putative efficacy lever-
ages upon a synthetic lethal effect [9] in which cell death
results from mutations in two or more genes but not in
each gene individually (reviewed in [10]). This phenomenon
is well illustrated by PARP inhibition in BRCA1/2-deficient
cells whereby PARP-dependent base excision repair and
replication fork maintenance functions become critical to
cell viability.
Elegant preclinical work by Bryant and colleagues [11]

and Farmer and colleagues [12] demonstrating the increased
sensitivity of BRCA1/2-deficient cells to PARP inhibition
and the subsequent resistance to PARP inhibition on restor-
ation of BRCA2 functionality provided the impetus for the
use of PARP inhibitors in patients with BRCA1/2-associated
cancers and subsequently in sporadic cancers that display
‘BRCAness’ (that is, have defective HR without germline
BRCA1/2 mutations) [13]. BRCAness can be explained by
epigenetic silencing of BRCA1/2 or the inactivation of
several other HR-associated genes such as PTEN, ATM,
ATR, AURA, PALB2, BRIP, and RAD51 and the FANC
family of genes [14-18]. These have been associated with
several malignancies, including TNBC and sporadic high-
grade serous ovarian cancer (HGSC).

Despite the early success of PARP inhibitors in demon-
strating efficacy and a favorable toxicity profile in the treat-
ment of previously heavily treated hereditary BRCA1/2-
related breast and ovarian cancers [19-22], trials that
expanded to include patients without BRCA1/2 mutations
were less successful. Clinical features considered surrogates
for BRCAness within these trials (for example, TNBC or
HGSC) might not have been sufficiently specific in predict-
ing response to PARP inhibitors. Indeed, 50% of HGSCs
are thought to be HR-deficient [23].
Recent recognition that iniparib (also known as BSI-201

or SAR240550) from BiPar/Sanofi (formerly Sanofi-Aventis,
Paris, France) was erroneously considered a PARP inhibitor
during its clinical evaluation within a phase III trial [24,25],
and new phase I and II data reporting on the anti-tumor
activity of various potent PARP inhibitors such as niraparib
(MK4827) [26], BMN673 [27], and rucaparib [28] in
BRCA1/2-mutated tumors and sporadic HGSC, non-small-
cell lung cancer, prostate cancer, and pancreatic cancer, have
renewed enthusiasm for PARP inhibitor drug development.
Therefore, the challenge remains to develop an efficient and
coordinated strategy to identify effective biomarkers such
that the patients who are more likely to respond to drugs
like the PARP inhibitors may be identified. The complexity
of the crosstalk between DNA repair pathways suggests that
assays that detect the status of multiple DNA repair path-
ways could prove critical for PARP inhibitor biomarker
development.

Genomic aberrations in cancer
The majority of TNBCs and HGSCs exhibit a high burden
of genomic aberration. High-throughput genomic technol-
ogy such as next-generation sequencing and DNA micro-
arrays have made it possible to construct comprehensive
catalogues that illustrate the complexity of such changes in
those cancers. Commonly used classifications of genomic
aberrations address the size and type of variation in DNA
sequence (Figure 1). Mutations encompass substitutions,
insertions, and deletions (collectively termed ‘indels’) that
affect one or a few nucleotide bases. Depending on the
location of the mutation, either the amount (mutation in a
regulatory region) or the sequence (non-synonymous cod-
ing mutation) of a gene product may be affected; in either
case, the impact on a protein’s function is the primary inter-
est. Conversely, the significance of mutations irrespective of
their genomic location lies with the processes by which they
were generated [29,30]. Structural aberrations are oper-
ationally defined as acquired changes that exceed 1 Kbp in
size. In general, two fundamental types are discernible: (a)
regional copy number aberrations (CNAs), which are
delineated by a gain or loss in the number of copies of a de-
fined, subchromosomal region of DNA; and (b) structural
rearrangements, which are defined by a change to the
precise location or orientation of a given sequence of DNA.
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Figure 1 Genomic aberrations in cancer. Three classes of genomic aberration that develop in cancer cells are depicted: mutations of less than 1
Kbp in length (top box), structural copy number aberrations (CNAs) (bottom left box), and structural rearrangements (bottom right box). The initial
state in the germline is shown followed by the corresponding change in the tumor. Mutations that affect regions of less than 1 Kbp are of three basic
types: substitutions, of which there are transversions and transitions; insertions; and deletions. Insertions and deletions are often collectively termed
‘indels’. Structural CNAs are typically greater than 1 Kbp in size. One of the basic types is copy number gain. The two homologous chromosomes are
shown with a gain of two further copies of region A on the paternal chromosome leading to an imbalance in the allelic ratio (1:3, maternal: paternal).
The gained region is highlighted by the green bar adjacent to paternal region A. Copy number loss of regions A and B on the paternal chromosome
is shown with a red bar highlighting the deleted regions. Three of the commonest types of structural rearrangement are shown, with the letters A to
D and X to Z depicting defined chromosomal segments. An inversion on the same chromosome results in a change to the orientation of DNA
sequences on the same chromosome either paracentrically (without crossing the centromere) or pericentrically (crossing the centromere). The
inverted sequences in the tumor are shown in red. Translocations can be reciprocal or non-reciprocal and typically occur between non-homologous
chromosomes (the green and blue chromosomes are non-homologous). A reciprocal translocation is shown with regions A and B exchanged for
regions X and Y. Recombinations typically occur between sister chromatids where they are conservative, but can occur between homologous
chromosomes (the green and purple chromosomes are homologous with green being the maternal, and purple the paternal) where recombinations
at a heterozygous allelic locus can lead to cnLOH. The dotted boxes indicate where these aberrations are detectable by single-nucleotide polymorphism
microarrays, whereas the grey dashed line encompasses those that can also be captured by array comparative genomic hybridization (aCGH), which does
not distinguish between alleles. All forms of aberration may be interrogated by using sequencing. A, adenine; C, cytosine; cnLOH, copy number-neutral loss
of heterozygosity; G, guanine; LOH, loss of heterozygosity; T, thymine.
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Of these, translocations (exchange of material between
non-homologous regions of DNA), inversions (a change to
the orientation of a defined sequence of DNA), and recom-
binations (most often used to express the exchange of
material between homologous regions of DNA) are the
most frequently described [31]. The potential outcome of
this latter structural rearrangement is that of regional loss
of heterozygosity (LOH), in which one of the parental cop-
ies of a heterozygous region of DNA is lost and the other
retained. LOH that occurs as a result of a copy number loss
is generally termed a ‘deletion LOH’, whereas LOH gener-
ated by an isolated recombinational event is called ‘copy
number-neutral LOH’. Both copy number-neutral LOH
and CNAs that lead to an imbalance in the ratio of parental
alleles from the normal 1:1 constitute regions of allelic im-
balance. When the rate of one or more of these structural
changes increases, a cell is said to exhibit ‘structural
chromosomal instability’ [32]. CNAs and LOH can also be
created by alterations in the number of whole chromo-
somes as a result of errors in the segregation of chromo-
somes during mitosis. Elevation in the incidence of such
events is termed ‘numerical chromosomal instability’ [32].

Genomic scars as reporters of homologous
recombination deficiency and drug response
A genomic scar can be defined as a genomic aberration
with a known origin. Recent attempts at developing an
assay that acknowledges the different means by which de-
fects in HR may occur besides BRCA1/2 dysfunction have
centered around the measurement of such scars (Table 1)
[29,33-35]. The major challenge in this endeavor has been
to distinguish HR defect (HRD)-related genomic aberra-
tions from the wide-ranging complexity inherent to cancer
genomes. Indeed, the role played by BRCA1 in other DNA
repair mechanisms such as mismatch repair and its role at
stalled replication forks may obfuscate any HRD-related
signal [36,37]. On the other hand, spontaneous, chance
events and mutagen-induced changes have no definitive
root in defective HR and yet the scars of these events may
confound the quantification of a bona fide HRD. Further-
more, numerical chromosomal instability and one-off
events such as whole-genome duplications and a newly
described phenomenon known as ‘chromothripsis’ can all
prevent the accurate measurement of HRD-related scars
[32]. Chromothripsis, which is a single chromosomal
shattering event followed by reconstitution of the genomic
fragments, results in localized, complex rearrangements
that, even if they have a basis in a targetable HR deficiency,
can result in an overestimate of the gravity, and hence
exploitability, of the defect [38,39]. In contrast, events that
spatially overlap in such a way that only the effects of one
are countable can lead to an underestimate of the extent of
genomic instability [29]. In cases in which matched gen-
omic germline data are unavailable, germline copy number

variants and germline runs of homozygosity can confound
CNA- and LOH-based measures of scarring, respectively.
On account of these issues, recent research has taken

advantage of the allelic information and mutational context
afforded by advances in single-nucleotide polymorphism
(SNP) microarray and high-throughput sequencing tech-
nologies, respectively, and several measures of scarring
believed to report an HRD have been developed.

Structural chromosomal instability scars from microarrays
By training a classifier on bacterial artificial chromosome and
oligonucleotide array comparative genomic hybridization
(aCGH) data from BRCA1/2 germline mutation status-
annotated breast cancer data sets, several studies have
demonstrated the utility of genome-wide information in
identifying HR-defective tumors, which they also linked to
better platinum response rates [40-42]. In general, these
studies found that BRCA1 and BRCA2 germline-mutated
cancers harbored a greater number of break points and
hence copy number changes. In two studies of independent
TNBC cohorts, these aCGH classifiers exhibited a sensitiv-
ity of approximately 80% in defining samples with BRCA1
mutation [40,42]. However, in comparison with newer SNP
microarray technology, aCGH presents a number of limita-
tions, which make it more difficult to discriminate between
HRD-related genomic changes and the many confounding
alterations that can affect the genome, leading to poorer
specificity. Specifically, the information from SNP micro-
array platforms makes it possible to distinguish between
inherited copy number changes due to normal cell contam-
ination and acquired DNA repair defect-related changes in
cancer cells, an ability that is notably absent from aCGH
analyses. Moreover, as one study described below demon-
strates, the capacity to estimate tumor ploidy status from
SNP microarray data - again a feature absent from aCGH
data - may have implications for predicting platinum
treatment outcome [35].
Capitalizing on these advantages, Birkbak and colleagues

[33] used SNP microarray data to test their hypothesis that
the aberrant chromosomal structures formed as a result of
defective HR are likely to be resolved with allelic imbalance
extending from the double-strand break point to the
subtelomeres of a chromosome. By scoring tumors for the
frequency with which these types of genomic segment
occurred, they extracted a telomeric allelic imbalance score
(NtAi) (Figure 2 and Table 1) [33], which ranges from 0 to
46, with 2 being the maximum permissible contribution by
each chromosome. High levels of NtAi were shown to
predict sensitivity to platinum agents in breast cancer cell
lines, HGSCs and TNBCs. Moreover, tumors with muta-
tion, promoter methylation, or low levels of mRNA for ei-
ther BRCA1 or BRCA2 were demonstrated to have a higher
burden of NtAi than tumors without BRCA1/2 deficiency.
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Table 1 Genomic scars of homologous recombination deficiency and relationships to drug response
Input Name Demonstrated objective(s) Output Data sets used (sample size) References

Segmented allele-specific copy
number from SNP microarray data

Telomeric allelic imbalance
score (NtAi)

1. Indicate sensitivity to
platinum drugs

Integer between 0 and 46
per sample

Breast cancer cell lines (10 + 24) [33,43]

2. Indicate BRCA1/2
dysfunction

Cisplatin-1 TNBC trial (27)

Cisplatin-2 TNBC trial (37)

TCGA HGSCs (218)

Homologous recombination
defect (HRD) score

1. Indicate HR dysfunction Integer from 0 upper sample MDACC ovarian cancers (152) [32,42,43]

2. Indicate sensitivity to
platinum drugs

UPMC ovarian cancers (152)

TCGA ovarian cancers (435)

Cancer cell lines (57)

Cisplatin-1 TNBC trial (27)

Cisplatin-2 TNBC trial (37)

PreECOG TNBC/BRCA1/2 trial (80)

Large-scale transition (LST)
score

1. Indicate HR dysfunction Integer from 0 upper sample BLBC discovery set (65) [35,43]

2. Indicate sensitivity to
platinum drugs

BLBC validation set (55)

BLBC cell lines (17)

Cisplatin-1 TNBC trial (27)

Cisplatin-2 TNBC trial (37)

LOH clustering 1. Indicate sensitivity to
platinum drugs

Three clusters of tumors: HiA, Boston HGSCs (47) [34]

2. Indicate BRCA1/2
dysfunction

HiB, and Lo Boston TNBCs (50)

3. Provide prognostic
information

AOCS HGSCs (85)

TCGA HGSCs (116)

Single-nucleotide variant calls
from exome sequencing data

Total number of somatic,
synonymous, and
non-synonymous
coding mutations (Nmut)

1. Indicate sensitivity to
platinum drugs

Integer from 0 upper sample TCGA HGSCs (316) [44]

2. Indicate BRCA1/2
dysfunction

3. Provide prognostic
information

Mutational catalogue from
whole-genome sequencing data

Mutational
signature 3/Mutational
signature D

Indicate BRCA1/2
dysfunction

Proportion of mutational
spectrum contributed by
mutational signature
3 per sample

Initial breast cancer data set (21) [1,45]

Larger breast cancer data set (879)

AOCS, Australian Ovarian Cancer Study; BLBC, basal-like breast cancer; HGSC, high-grade serous ovarian cancer; HR, homologous recombination; LOH, loss of heterozygosity; MDACC, MD Anderson Cancer Center; Nmut,
number of coding mutation; SNP, single-nucleotide polymorphism; TCGA, The Cancer Genome Atlas; TNBC, triple-negative breast cancer; UPMC, University of Pittsburgh Medical Center.
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In contrast, Wang and colleagues [34] discovered that
clustering HGSCs according to significantly frequent re-
gions of LOH produces three platinum response-linked
groups of tumors: one harboring comparatively little LOH
(Lo cluster) and two possessing high levels of LOH: the
HiA and HiB clusters, distinguished by the presence and
absence of 13q chromosomal loss and more frequent LOH
on 5q and 17, respectively (Table 1). When the platinum
response data available for three independent HGSC data
sets were used, patients in the HiA cluster were found to
have lower rates of resistance. In contrast, the rate of resist-
ance was higher for the HiB and Lo clusters. Application of
this LOH clustering approach to a high-grade breast cancer
data set separated tumors into a Lo cluster comprising
HER2- and hormone receptor-positive cancers and a Hi
cluster comprising TNBCs and BRCA1-associated tumors.
However, the relevance of the HiA-versus-HiB distinction
to TNBC has yet to be investigated.
Leveraging on the known association between BRCA1/2

deficiency and response to DNA damage-inducing drugs
[21,43], Abkevich and colleagues [29], of Myriad Genetics
Inc. (Salt Lake City, UT, USA), developed an HRD score
defined as the number of subchromosomal segments

(excluding chromosome 17) with LOH of a size exceeding
15 Mbp but shorter than the length of a complete chromo-
some (Figure 2 and Table 1). The objective of this score
was to provide a comprehensive means of assessing defects
in HR beyond sequencing of BRCA1 and BRCA2. To evalu-
ate the correlation between HRD score and HR deficiency,
three independent HGSC cohorts along with 57 cancer cell
lines were assessed for bi-allelic functional inactivation of
BRCA1, BRCA2, or RAD51C through the integration of
mutation, methylation, expression, and LOH data. The
presence of bi-allelic inactivation of these genes was taken
as a surrogate for HR deficiency. In all data sets, HRD score
was elevated in HR-deficient samples, which stood in con-
trast to measures of whole chromosomal LOH and LOH of
regions of less than 15 Mbp in length, suggesting that the
maximum and minimum size thresholds employed were
able to filter out aberrations because of numerical chromo-
somal instability and short non-HRD-related aberrations,
respectively. Furthermore, in the phase II PrECOG 0105
study of gemcitabine and carboplatin plus iniparib (BSI-
201) as neoadjuvant therapy for TNBC and BRCA1/2
mutation-associated breast cancer, 70% of patients with an
HRD score of more than 9 responded compared with 20%

Figure 2 Scoring by genomic scars of homologous recombination deficiency and drug response. Eight examples of various forms of structural
copy number aberrations and rearrangements are given, whereby each box, lettered A to F, represents a genomic segment of approximately 3 Mbp in
length. Below the chromosomes, the three genomic scars - homologous recombination defect (HRD), telomeric allelic imbalance score (NtAi), and
large-scale transition (LST) - are listed along with the respective integer count for the scar (0 = not seen, 1 = detected once). LOH, loss of heterozygosity.
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of patients with an HRD score of less than 10, indicating
that HRD score was significantly correlated with pathologic
response. This association remained significant when pa-
tients with known BRCA1 or BRCA2 were excluded from
the analysis [44]. Besides breast and ovarian cancers, HRD
scores above 9 were characteristic for HR deficiency and
were also observed in esophagus, lung, and prostate tumors
as well as gastric, colon, and brain cell lines, advancing the
case that HRD score has general applicability to distinct
cancer types.
A separate signature of chromosomal instability, termed

‘large-scale transitions’ (LSTs), was established by using
basal-like breast cancer and cell line data sets in which
samples with BRCA1 promoter methylation or BRCA1/2
mutation (germline or somatic) were considered BRCA1/2-
inactive [35]. For this genomic scar, copy number variant
regions shorter than 3 Mb are first filtered and smoothed.
This is followed by a count of the number of break points
that occur between regions of at least 10 Mb in length for
each chromosomal arm of a sample, with the sample’s LST
score being the sum of these counts (Figure 2 and Table 1).
After genomic ploidy was estimated on the basis of SNP-
based microarray data, near-diploid tumors were classified
as BRCA1/2-deficient if the number of LSTs exceeded
15. In near-tetraploid tumors, an LST cutoff value of 20
was used to segregate tumors into BRCA1/2-intact and
BRCA1/2-deficient. The LST measure of HRD-related
genomic scarring and its associated cutoff were found to
significantly indicate BRCA1/2 deficiency in an independ-
ent validation data set of basal-like breast cancers as well as
basal-like breast cancer cell lines.
Recently, it has been shown that HRD, NtAi, and LST are

highly correlated with each other and with BRCA1/2
deficiency (BRCA1 promoter methylation, germline, or
somatic) in a breast cancer cohort that encompassed all the
molecularly defined subtypes. Among TNBCs, all three
scores were associated with cisplatin sensitivity [45].
Furthermore, the arithmetic mean of the three scores was
even more strongly associated with BRCA1/2 deficiency
and therapeutic response.

Sequencing-based mutational signatures
The advent of massively parallel sequencing has enabled the
mutational effects of a diverse range of etiological drivers to
be unraveled. By finding the total number of somatic
synonymous and non-synonymous mutations (Nmut) in the
exome of each ovarian tumor in a cohort of 316, Birkbak
and colleagues [46] found Nmut to be higher among
patients who responded well to chemotherapy (platinum
agent with or without taxane) than among those who failed
to respond (Table 1). Moreover, higher Nmut was observed
in patients with germline or somatic BRCA1/2 mutation.
Interestingly, within the 70 ovarian tumors harboring either

germline or somatic BRCA1/2 mutation, cases that were
considered chemotherapy-sensitive possessed a higher mu-
tational burden than cases that were considered resistant,
whereas in the wild-type BRCA1/2 population, this
association was not observed.
In contrast to the integer scores that Nmut and three of

the SNP microarray-based scars provide, several sequence-
based studies have concentrated on examining the specific
type and pattern of mutations that certain genomic events
leave in their wake. In the first study to use mutational
context to mathematically extract signatures of mutational
processes, Nik-Zainal and colleagues [47] catalogued somat-
ically acquired mutational signatures in 21 deep-sequenced
breast cancers (Table 1). These included eight TNBCs, of
which five possessed germline mutation and heterozygous
loss of BRCA1, and four non-TNBC tumors with BRCA2
germline mutation and heterozygous loss. Interrogating the
bases either side of each substitution to give a trinucleotide
sequence context comprising 96 possible combinations
followed by non-negative matrix factorization, the authors
were able to decompose the spectrum of sequence contexts
into five signatures (‘signatures A-E’) each believed to
represent the scar of a distinct mutational process [1].
Hierarchical clustering of the relative contributions of these
signatures to the mutational catalogue of each breast cancer
revealed ‘signature A’ and ‘signature D’, representing a lesser
and greater proportion of the total signature contribution,
respectively, in BRCA1/2-associated tumors than in
BRCA1/2 wild-type tumors. Whereas ‘signature A’ exhibited
enrichment for C >T conversions at XpCpG trinucleotides,
‘signature D’ displayed a relatively even distribution of
mutations across the 96 trinucleotides. During investigation
of the patterns of indels in the 21 tumors, two further
hallmarks of BRCA1/2 mutation were ascertained. The first
was the observation that the size of indels was typically
greater in BRCA1/2-inactivated cancers. The second
hallmark required the authors to examine whether the
sequences flanking each indel were either short tandem re-
peats or short homologous sequences. BRCA1/2-inactivated
tumors were differentiated from BRCA1/2-intact tumors
by having a greater frequency of short homologous
sequences adjoining indels. This observation is congruent
with the notion of error-prone non-homologous end joining
compensating for defective HR since such short homology-
flanked indels would facilitate the joining of two non-
homologous sequences through processes such as
micro-homology single-strand annealing.
Following this seminal work, the repertoire of mutational

signatures across 30 different cancer types was examined,
and a further 16 substitution-based mutational signatures
were identified (Table 1) [1]. The BRCA1/2 defect-
associated mutational signature D was relabeled ‘signature
3’ and was seen to be exclusively over-represented in breast,
ovarian, and pancreatic cancers for which germline
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mutations to BRCA1/2 have been reported to elevate the
risk. Among breast tumors in the study, ‘signature 3’ was
found to be operative in 255 out of 879 cases, which ex-
ceeds the estimated 5% to 10% of breast cancers accounted
for by BRCA1/2-mutated tumors [48], supporting the case
that ‘signature 3’ captures the effects of HR deficiencies at-
tributable to a variety of means of BRCA1/2 inactivation as
well as abnormalities in the function of other genes associ-
ated with HR.

The companion diagnostic challenge
The development of biomarkers that accurately and
robustly predict treatment outcome is a key part of the
drive toward personalized medicine. Already one prospect-
ive clinical trial is under way to establish HRD score for

selecting appropriate patients with ovarian cancer for treat-
ment with the PARP inhibitor, rucaparib (ClinicalTrials.gov
ID: NCT01891344), and equivalent studies will be carried
out as exploratory analyses in TNBCs or BRCA1/2-related
breast cancers. Moreover, despite the sensitivity with which
the genomic scars discussed predict inactivation of genes
involved in HR, limitations exist to the application of these
assays as a companion diagnostic for drugs that target
HRDs. Unlike gene expression, which is liable to the influ-
ence of many confounding variables, genomic scars offer a
comparatively stable readout of a tumor’s lifetime DNA
damage repair competency, including the impact of HR
inactivation where constructed to do so. Consequently,
similar to other biomarkers such as estrogen receptor
testing as a companion diagnostic for hormonal therapy,

Figure 3 Workflow for the development of an integrated predictive biomarker of response to homologous recombination (HR) defect
directed therapy. The workflow begins with genomics data - either sequence or single-nucleotide polymorphism microarray data - for tumor
samples that have been annotated with patient response data to a given HR targeting drug therapy. After development of a genomic scar
measure and a cutoff with high negative predictive value (NPV) were shown to identify non-responders but likely poor positive predictive value
(PPV) due to inclusion of patients who have developed resistance (for example, 53BP1 loss) subsequent to development of the genomic scar, two
groups can be identified: those predicted not to respond and those predicted to respond accepting a poor PPV. Patients in the former group
should not be treated with the drug, whereas for patients in the predicted responder group, gene expression or mutation data are collected.
Within the latter group, a biomarker excluding those with acquired resistance is constructed that is highly specific for response to the drug, better
dichotomizing patients into those who do and those who do not benefit. By combining the genomic scar biomarker with the resistance-refined
biomarker, the resultant two-step companion diagnostic should possess both high NPV and high PPV.
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genomic scars are likely to prove to be high-negative
predictive value (NPV) biomarkers of response to HR
deficiency-targeting drugs, meaning that the great majority
of patients who test negative for the biomarker will not
benefit from the therapy. However, the relative stability of
genomic scars is also their weakness. By chronicling the
past but not documenting the present, genomic scar
measures report whether or not a defect in HR has been
operative at some point in tumorigenesis and not whether
it remains operative at the point of treatment. A variety of
mechanisms could restore HR or compensate for its loss in
the aftermath of genomic scarring. Loss of 53BP1 [49] and
reversion mutations to BRCA1 and BRCA2 [50-53] have
both been demonstrated to confer resistance to platinum
agents and PARP inhibitors through the restoration of HR.
Pathways that operate independently of repair processes,
such as drug catabolism and transporter activity, may also
grant resistance [54]. To add further complexity to the
issue, one study has found that upregulated activity of the
c-MYC oncoprotein induces resistance to cisplatin medi-
ated by regulation of PARP1-interacting genes [55]. Conse-
quently, genomic scarring measures are likely to have
relatively low positive predictive values (PPVs) with the
consequence that a substantial number of patients who
would not benefit from platinum-based agents and PARP
inhibitors would be predicted to do so. Thus, although the
argument for using genomic scars as a companion diagnos-
tic may be sustainable on the basis that platinum-based
agents either are the standard of care (in ovarian cancer) or
have a toxicity profile at least comparable to that of stand-
ard alternatives (in breast cancer), the development of a
biomarker that possesses both high NPV and PPV repre-
sents an optimal and achievable objective.
To address this, the development of a genomic scar-

based predictive biomarker could be followed by the
construction of a second biomarker by using only the
population for which the genomic scar predicts drug effi-
cacy (Figure 3). By looking within a genomic scar-predicted
responder population, the signal from resistance mecha-
nisms that specifically operate within a HR-deficient setting
should be stronger than if the population was taken as a
whole. Mutational data could reveal reversions in a suite of
HR-related genes, whereas transcriptional data might
uncover the elevated expression of genes that compensate
for HR impairment. Coupling the high-NPV genomic scar
biomarker with a high-PPV post-genomic scar biomarker
into an integrated biomarker would thus capture the best
of both approaches (Figure 3).

Conclusions
Although targeting DNA repair deficiencies in cancer has
been a mainstay of the therapeutic oncology armamentar-
ium for decades, this has been more through serendipity
and observation of average effects in populations than

by mechanistic DNA repair activity-informed design.
Consequently, the approach has lacked a personalized
medicine companion diagnostic strategy. Consistent with
the requirement of the US Food and Drug Administration
for every new drug to be accompanied to market by a
biomarker that predicts its effectiveness, the rapidity with
which PARP inhibitors and now genomic scars have been
brought from concept to clinical trial reflects the current
interest in selecting patients for whom administration of a
drug that impacts the DNA damage response is predicted
to be clinically beneficial. However, therapies directed at
HRDs are not the only examples of therapy that could be
individualized by using genomic scar-based biomarkers.
Any flaw in the genomic maintenance machinery that (a)
can be capitalized on therapeutically and (b) leaves an
imprint in the genome that is detectable through current
techniques and technologies is ripe for the development of
a genomic scar to predict drug response. In compiling a list
of 21 validated mutational signatures, researchers have
already taken the first steps toward the goal of constructing
a repertoire of integrated predictive biomarkers [1]. One
example outside the context of HR deficiency is that of
Alexandrov and colleagues’ ‘Signature 6’ [1], which was
found to be associated with a defect in DNA mismatch
repair. Such a signature may in turn predict the effective-
ness of drugs like methotrexate, which has been shown to
be selectively effective in mismatch repair-deficient cancer
cells [56]. The next steps therefore will require the
characterization of the etiologies behind every one of these
signatures and, in the case of SNP microarray-based scars,
the expansion of our understanding of the interaction
between the scar repertoire and the presence of other
targetable deficiencies in the DNA maintenance machinery.
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Zusammenfassung
Fortschritte in der DNA-Sequenzierungstechnologie sowie 
verfeinerte Bioinformatik-Methoden zur Interpretation kom-
plexer Datensätze haben die umfassende  Bestimmung der 
Genexpression in Tumoren und der sie umgebende Mik-
roumwelt möglich gemacht. In jüngster Vergangenheit 
haben diese Fortschritte das Zusammenspiel zwischen Im-
muneffektormechanismen und der Mammakarzinom-Zell-
biologie hervorgehoben und damit die seit langem akzep-
tierte Verbindung zwischen Immunität und Krebs betont. 
Die Erforschung von Genen des Immunsystems hat nicht 
nur die Stratifizierung der vielfältigen pathologischen For-
men des Mammakarzinoms erweitert, sondern auch neue 
zelluläre Einblicke in die komplexe Heterogenität des Mam-
makarzinoms gegeben. In Anlehnung an die Tatsache, dass 
antitumoröse Therapien die Wirt-Tumor-Interaktion modi-
fizieren können, haben Forscher den Fokus ihrer Aufmerk-
samkeit auf den prädiktiven Wert von Immunparametern als 
Marker des Ansprechens auf die Krebstherapie gerichtet. 
Wir diskutieren den aktuellen Stand auf dem Gebiet der 
 Immunsignaturen beim Mammakarzinom sowie einige der 
fundamentalen Limitationen, die es zu überwinden gilt, um 
diese Entdeckungen in die Klinik zu überführen.

Keywords
Genomic biomarkers · Immune stromal interface ·  
Breast cancer

Summary
Advances in DNA sequencing technologies, as well as re-
fined bioinformatics methods for interpretation of complex 
datasets, have provided the opportunity to comprehen-
sively assess gene expression in tumours and their sur-
rounding microenvironment. More recently, these advances 
have highlighted the interplay between the immune effector 
mechanisms and breast cancer cell biology, emphasizing 
the long-recognized link between immunity and cancer. 
Studying immune-associated genes has not only resulted in 
further stratification within the broad pathological types of 
breast cancers, but also provided further biological insights 
into the complex heterogeneity within breast cancer sub-
groups. On the basis that anti-cancer therapies can modify 
the host-tumour interaction, investigators have focused 
their attention on the predictive value of immune parame-
ters as markers of therapeutic anti-tumour response. We 
 discuss the current status of immune signatures in breast 
cancer and some of the fundamental limitations that need 
to be overcome to move these discoveries into clinic.

Introduction

A decade from the first draft of the human genome sequence 
[1, 2], our increasing understanding of the genetic aberrations 
that drive human malignancies has provided an impetus 
 towards achieving more personalized cancer care. Genome 

sequence analysis (genomics) is beginning to reveal how 
DNA sequences vary from individual to individual: epidemio-
logical genome-wide association studies have identified a 
number of single nucleotide polymorphisms (SNPs) related to 
disease susceptibility and breast cancer survival [3–5], and 
within the tumour a catalogue of sequence polymorphisms 
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and chromosomal aberrations exhibit variations between indi-
viduals [6, 7]. Additionally, recent advances in mRNA and 
microRNA gene expression profiling (transcriptomics) in 
 tumours have helped identify prognostic and predictive 
 biomarkers in many types of human malignancies [8–10]. No 
cancer type has seen as much attention to the layers of its 
 genomic background as breast cancer, and early work by 
Perou et al. [11] showed that transcriptional data generated 
using microarrays could stratify patients into distinct mole-
cular ‘intrinsic subtypes’ relating to tumour biology and 
 behaviour. 5 groups were identified and named Luminal A, 
Luminal B, Basal-like, Normal-like and the HER2-enriched 
subgroups. This classification has since seen further adapta-
tion and evolved to include a 6th subgroup based on the low 
expression level of tight junction (claudin) genes – the 
 claudin-low group [12–14]. These seminal publications re-
sulted in an explosion of interest in the field of cancer genom-
ics with countless publications attempting to unravel the 
 complexities of both the inter-patient and intra-tumour 
 heterogeneity of breast tumours at DNA copy number, 
 sequence and transcriptional levels [15–17].

In parallel, recent years have seen a growing appreciation 
of the concept of ‘cancer immunoediting’ describing the inte-
gration of the immune system’s dual but opposing impacts: 
host-protection and tumour promotion [18]. Cancer immu-
noediting consists of 3 successive steps whereby immune cells 

in the tumour microenvironment are thought to interact 
 intimately and actively with the transformed cells [18–20]. In 
the ‘elimination’ phase, various components of the immune 
response work together to destroy developing tumours long 
before they become clinically apparent. During the ‘equili-
brium’ phase, a balance is established between the tumour 
and the immune system, shaping each other reciprocally. 
 Finally, the immune system contributes to the selection of 
 tumour variants that enter the ‘escape’ phase, in which their 
outgrowth is no longer blocked by immunity resulting in clini-
cally apparent disease [18–22]. The cells playing a key role in 
this process have been identified in both the innate (e.g. natu-
ral killer cells, natural killer T-cells, macrophages and den-
dritic cells) and the adaptive (e.g. CD4+ T helper type 1 (TH1) 
and CD8+ T-cells) immune ‘arms’. While the exact interplay 
between these components remains to be fully elucidated, the 
extensive transcriptomics information of breast cancers has 
provided novel insights into the interaction between the 
 immune and breast cancer cell biology. Figure 1 gives a 
 schematic illustration of the development of immunological 
gene expression signatures, and highlights that the relevance 
of early transcriptomics discoveries for identification of im-
mune predictive and prognostic biomarkers is only now being 
fully appreciated. There remain some fundamental limita-
tions, however, that need to be overcome to move these excit-
ing discoveries from the bench to the bedside.

Fig. 1. Prognostics.
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ate neo-antigens with higher immunogenicity [34]. Similarly, 
other studies have reported that p53 abnormalities and in-
creased immune cell infiltrates are significantly more common 
in high-grade serous ovarian cancers with germline and 
 somatic mutations in BRCA1 or BRCA2, compared with 
 tumours lacking BRCA abnormalities [35, 36]. In ER-nega-
tive breast cancers, a clear anti-correlation between prolifera-
tion genes and an immune signature of 14 genes involved in 
proinflammatory cytokine/chemokine signalling has been 
 observed [37]; on the other hand, the observed correlation be-
tween tumour growth and immune microenvironment [28] 
raises the possibility that a slow growing tumour is associated 
with a different tumour-host interaction (e.g. a humoral re-
sponse to the tumour and its antigens) than a fast growing 
one. Studies report the enhancement of metastatic potency of 
breast cancer cell lines enriched with stromal cells [38], lend-
ing support to the concept of a symbiotic relationship between 
tumours and its microenvironment. In contrast, highly pro-
liferative tumour cells may produce different signals which 
will in turn influence the microenvironment down a different 
path. Thus, the proliferation rate of a tumour [39] might be a 
surrogate indicator of the tumour’s stromal environment as 
well as the intrinsic properties within the tumour cell that 
 influence that environment. Unravelling the complexity of 
this association would be valuable information for targeted 
therapeutic strategies with potential to target both tumour 
cells and their interface with an immunologically active and 
cytokine-rich stroma and might shed further light on the 
 signals influencing tumour growth and its microenvironment.

There has been an increasing focus on the potential for 
immune-related features for further stratification of breast 
cancers, alongside proliferation and associated gene expres-
sion signatures (genomic grade index [40], 70-gene signature 
[41] and 76-gene signature [42]) which appear to be successful 
in particular for stratifying ER-positive tumours where cell 
proliferation is a key element for outcome prediction. Using a 
test-and-validation strategy on a comprehensive collection of 
breast tumours, Hu et al. [43] were the first to report that in-
terferon (IFN)-a and regulators of STAT1-based immunity 
may have an anti-tumour effect. IFNs are a family of structur-
ally related cytokines and possess a wide range of immune 
properties including antiviral activity, promotion of antigen 
presentation as well as inhibition of cell growth and prolifera-
tion. This study provided the first suggestion that the expres-
sion of multiple immune-related genes had an influence on 
the outcome of breast cancers of non-ER-positive type. It was 
shortly followed by a publication interrogating 3 publicly 
available microarray data sets, comprising 186 adjuvant ther-
apy-naïve ER-negative breast cancers, and thereby identify-
ing 7 immune-responsive genes capable of specifying tumours 
with reduced risk for distant metastasis [44]. Interestingly, a 
correlation between the so-called immune response (IR+) 
module and the previously determined IFN-regulated cluster 
was observed. The small overlap of genes (including STAT1) 

Immune Signatures in Breast Cancers

The presence of a prognostic impact of lymphocyte infiltra-
tion in breast cancer has long been debated and remains con-
troversial. Several lines of evidence support the hypothesis 
that lymphocytic infiltration is a marker of host anti-tumour 
immune response. Even the first applications of microarray 
analysis to whole tumour sections revealed variations in the 
expression of several genes associated with immune cells; 
 including for example, the interferon-regulated genes [23, 24], 
B-lymphocyte markers [24], as well as T-lymphocyte-associ-
ated genes [23]. Laser-captured microdissection of stromal 
components identified a good-outcome signature of 26 genes 
enriched for elements of the TH1 immune response [25]. Rody 
et al. [26] identified 7 clusters of immune system-related 
 metagenes by large-scale microarray analysis and demon-
strated an association with different immunological cell types. 
A strong positive prognostic value for the T-cell surrogate 
marker (lymphocyte-specific kinase (LCK) metagene) was 
observed among all oestrogen receptor (ER)-negative 
 tumours and amongst ER-positive tumours with HER2 over-
expression, whereas an IgG metagene as a marker for B-cells 
had no significant prognostic value. Another earlier study 
 reported that increased expression of TH1-associated genes 
was protective in breast cancer patients, but only in patients 
under 45 years of age [27]. The importance of subtle varia-
tions in the expression levels of immune cell-associated genes 
within breast tumours is evident. Schmidt et al. [28] demon-
strated that the IgG metagene outperformed the T-cell meta-
gene as a favourable prognostic factor in highly proliferating 
specimens, while a further study reported that among ER-
negative and ER-positive highly proliferative cancers, a sub-
set of tumours with high expression of a B-cell/plasma cell 
metagene carries a favourable prognosis [29]. In HER2-over-
expressing breast cancers, the expression of genes associated 
with the immunoglobulin pathway correlated with tumour- 
infiltrating lymphocytes and predicted favourable clinical 
 outcome among highly proliferating tumours [30]. These 
 immunoglobulin genes are likely to be co-regulated, and 
therefore the prominence of an immunoglobulin pathway 
does not necessarily imply that the lymphocytic infiltrate is 
composed mostly of a particular immune cell subset such as  
B cells. Interestingly, in ovarian cancer, the causal nature of 
relationship between the strong association of T-cell infiltrate 
with good patient outcome has been debated: it may be due to 
the T-cell infiltrate effectively eliminating tumour cells, or 
might reflect indolent tumour cell biology characterized by 
slower growth, thus increasing the opportunity for immune 
cell infiltration into the tumour microenvironment [31]. How-
ever, this is challenged by the observation that highly prolifer-
ating tumours are more likely to be associated with higher  
T-cell infiltrates [32], possibly due to mitotically active cancers 
exhibiting high genomic instability [33]. It can therefore be 
hypothesized that a higher mutational rate is likely to gener-
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and the difference in their clinico-pathological features (IFN-
expressing tumours encompassed more cases with positive 
lymph node metastasis) strengthened the IR+ module as a 
key gene signature for subtype classification. Focusing on 
 basal-like breast cancers – the majority of which are ER-nega-
tive tumours – revealed a positive relation to outcome with 
the presence of either a module encompassing 28 kinases or a 
gene signature derived from medullary breast cancers [45, 46]. 
Medullary breast carcinomas are highly proliferative breast 
cancers showing increased lymphocytic infiltration and having 
an overall good prognosis. Genes involved in the IL15 and 
IL12 pathway appear to be the main players in the medullary 
breast cancer signature and indicated a better prognosis [45]. 
In agreement with this immunological pathway was the ex-
pression pattern of the kinome-gene module in basal-like 
breast cancers, which also pointed to an activation of TH1- 
biased lymphocytic infiltration in good prognostic cancers 
[46]. Characterisation of a comprehensive transcriptomic 
 dataset of triple-negative breast tumours, by definition also 
ER-negative and with significant clinically and biologically 
overlap to the basal-like subtype, could further dissect their 
tumour-host interaction. A specific relationship between indi-
vidual components of an immune response such as the ratio of 
a high B-cell content to a low IL8 expression seem to infer  
a positive prognosis for triple-negative breast cancers [47].  
A positive association of lymphocytic infiltration and out-
come in ER-negative breast tumours has recurrently and 
 robustly been observed and triggered expectation for the 
 development of new therapies based on immune response 
manipulation for breast cancer subtypes.

However, the fine print within the bulk of observations 
should not be overlooked, and novel insights into tumour im-
munology need to be cautiously evaluated. Recently, Ascierto 
et al. [48] identified among 299 immune function genes, a 
5-gene signature (IGKC, GBP1, STAT1, IGLL5 and OCLN) 
involved in B-cell development with a high predictive accu-
racy for relapse-free survival of 85%. At the same time, genes 
involved in primary immunodeficiency signalling, T-cell apop-
tosis, CTLA4 signalling and production of nitric oxide and 
 reactive oxygen species were also up-regulated in the tumour 
specimens of patients who were subsequently free of relapse. 
The authors offer an explanation for this paradoxically 
 concurrent expression of immune effector and suppressor 
genes whereby tumour-derived factors (e.g. GM-CSF, VEGF 
and MCP-1) facilitate the expression of immune suppressor 
genes as well as acting as chemo-attractants for immune cells. 
Surgical intervention may then disturb this carefully balanced 
system between immune suppressor and effector genes, lead-
ing to the different expression ratio between these 2 sides. It is 
also possible that the immune activation of cancer cells initi-
ates a positive feedback loop whereby the cancer cells not 
only invite immune cells to the tumour microenvironment but 
they are also more sensitive to pre-inflammatory factors 
 secreted by immune cells. 

Nonetheless, recent genomic studies have evidently indi-
cated that the expression of genes related to immune response 
provide important prognostic information in ER-negative, 
HER2-overexpressing or highly proliferating ER-positive 
breast cancers. The value of molecular signatures such as the 
Food and Drug Administration (FDA)-approved 70-gene 
MammaPrint® (Agendia, Amsterdam, The Netherlands) 
prognostic panel and Oncotype DX® (Genomic Health, Red-
wood City, CA, USA) in defining the role of chemotherapy in 
an intermediate prognostic risk group defined by a 21-gene 
panel, are currently tested in the context of the prospective 
randomized phase III trials, MINDACT and TAILORx, re-
spectively. However, since this first generation of gene signa-
tures has largely been focused on hormone receptor-positive 
disease and only partly includes immune-related genes [49, 
50], the integration of these elements into prognostic and pre-
dictive models for further breast cancer subgroups is the next 
step to assess validity and optimize efficacy. 

Predictive Immune Biomarkers in Breast Cancer

The development of predictive immune signatures to help 
guide the use of anti-tumour therapy is still in its infancy. 
However, on the basis that anti-cancer therapies can modify 
the host-tumour interaction, cancer genomic experts have 
 focused their attention on the predictive value of immune 
 parameters as markers of therapeutic anti-tumour response. 
Gianni et al. [51] have shown that immune-related genes, such 
as CD3, are linked to response to chemotherapy in a cohort of 
89 breast cancers, of which 11 had a pathological complete re-
sponse (pCR). More recently, Sabatier et al. [46] investigated 
the link between an immune cell-derived 28-kinase metagene 
and response to anthracycline-based neoadjuvant chemother-
apy for basal-like breast cancers. ‘Immune-High’ patients ex-
perienced more pCR (59%) than ‘Immune-Low’ patients 
(43%), and although this was not significant (p = 0.29), similar 
trends have been observed with modest predictive value for 
neoadjuvant chemotherapies: high expression of both IgG 
and LCK metagenes in ER-negative breast carcinomas [26], 
and a high B-cell/low IL8 ratio for triple-negative breast can-
cers [47]. Similarly, gene expression profiling of breast tumour 
cell lines and mouse models exposed to single-dose (10 Gy) 
versus fractionated (2 Gy × 5) radiation have revealed that 
only the fractionated regimen induced an interferon-related 
gene signature, including STAT1 [52]. Taken together, these 
model systems illustrate that chemotherapeutic agents may 
restore the immunological equilibrium not only due to the 
‘debulking’ of the tumour mass but also due to direct or indi-
rect effects on the immune system. In fact, anthracycline-
based chemotherapies have been shown to induce a vigorous 
infiltration of anticancer immune effectors in mice [53]. A re-
cent clustering analysis of the neoadjuvant (EORTC) cohort 
defined an 8-gene lymphocyte mRNA expression signature 
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(including CD19, CD3D, CD48, GZMB, LCK, MS4A1, PRF1 
and SELL) to examine the association between tumour-infil-
trating lymphocytes (TIL) and short-term response to neoad-
juvant chemotherapy in ER-negative tumours (n = 113) [54]. 
TIL-enriched tumours significantly predicted anthracycline 
sensitivity with an odds ratio of 6.3 for HER2-positive and 
triple-negative tumour phenotypes. Additionally, Denkert et 
al. [55] reported a significant relationship between TIL (iden-
tified by a combination of H and E assessment, and expres-
sion analysis of several TIL genes by polymerase chain reac-
tion) and pathologic response to neoadjuvant anthracycline/
taxane therapy in a large group of 1,058 patients (one fourth 
of whom were ER-negative).

Several studies have suggested possible mechanisms of 
 tumour-immune interaction in response to chemotherapy. 
Appropriate preclinical models have shown that 2 receptors 
present on dendritic cells, namely TLR4 (a toll-like receptor) 
and P2RX7 (a purinergic receptor), are essential for their 
cross-talk with a dying cell. They recognise 2 soluble mole-
cules released from the dying tumour cells, HMGB1 and 
ATP, respectively. In the absence of TLR4 or P2RX7, the im-
mune system fails to mount an antitumor immune response 
after chemotherapy [56, 57]. A loss-of-function polymorphism 
of the TLR4 is an independent predictive biomarker for re-
sponse to anthracycline chemotherapy in breast cancer pa-
tients [56]. Similarly, anthracycline-treated  individuals with 
breast cancer carrying a loss-of-function  allele of P2RX7 de-
veloped metastatic disease more rapidly than individuals 
bearing the normal allele [57]. A comprehensive analysis of 
publicly available gene expression studies evaluating anthra-
cycline with or without taxane-based neoadjuvant chemother-
apy has reported that high immune module scores were asso-
ciated with increased probability of achieving pCR in all 
breast cancer subtypes with varying degree of significance 

Fig 2. A Inherent complexities of interpreting immune gene signatures. B Triple-negative  tumours show a different degree of lymphocytic contents: 
I minimal non-malignant (stromal and lymphocytic) enrichment; II small presence (< 10%); III moderate presence (10–30%), and IV strong enrich-
ment (> 30%) (images courtesy of Patrycja Gazinska).

[58]. Although the data with regards to predictive immune re-
sponse gene sets is still very sparse, the above data provide 
preliminary validation of the concept that selective immune 
defects can influence the efficacy of anticancer chemo-
therapies. Hence studies exploring the possibility of predict-
ing therapeutic outcome by assessing dynamic variables such 
as changes in the frequency, composition, activation status 
and repertoire of TIL, the expression of immune-relevant me-
tagenes (in repeated lymph node biopsies), or the generation 
of tumour-specific antibodies (in patient sera) after chemo-
therapy need to be encouraged.

Discussion

While multigene prognostic and predictive gene signatures 
were once expected to replace clinicopathological parameters 
for therapy decision-making, a complete transition has not yet 
taken place. This is partly due to inherent problems of techni-
cal robustness and experimental as well as analytical stand-
ardization [14]. Likewise, the inherent complexity of immune 
gene signatures (fig. 2 A), heterogeneous assay protocols be-
tween laboratories, and the use of different statistical strate-
gies are proving to be rate-limiting steps for the development 
of immune-related biomarkers for clinical application. The 
high data variability and poor reproducibility complicate 
meta-analyses comparing results across laboratories, however, 
efforts are being made internationally to minimize these ob-
stacles. For example, 2 large immunological consortia (the 
Cancer Immunotherapy Consortium (CIC) in the US and the 
Association of Cancer Immunoguiding Program (CIP) in 
 Europe) have recently addressed the issue of immune assay har-
monization across laboratories with the objective of accelerating 
immune biomarker identification and drug development [59].

A B
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PBMC-based biomarkers of immune response in patients 
 receiving cancer immunotherapy [64] need to be further ex-
plored as means to guide therapy and prognosis.

Conclusion

In conclusion, recent genomic approaches provide an oppor-
tunity to evaluate the tumour microenvironment (including 
stromal, endothelial and immune cells) and offer the possibil-
ity of identifying cytokines and signalling molecules that  
are important for limiting pro-tumourigenic responses and 
 enhancing anti-tumour immune responses. Whilst the major-
ity of the ER-positive breast cancer prognostic signatures are 
associated with proliferation signals, genes related to immune 
response appear to provide important prognostic information 
in other breast cancer subtypes (e.g. ER-negative, HER2-
overexpressing or highly proliferating ER-positive breast can-
cers). Moreover, accumulating evidence indicates that chemo-
therapy can stimulate anticancer immune responses, and im-
mune-related genes are linked to chemotherapy response and 
patient outcome. Large-scale studies exploring the composi-
tion, intra- and peritumoural distribution, architecture, and 
functional articulation of the immune infiltrate along with its 
context are needed to fully comprehend the immune readouts 
in breast cancer. As massive amounts of biological and immu-
nological data are generated, technological and advances in 
the biostatistical analysis of genomics represent a remarkable 
opportunity to fine-tune breast cancer classification, progno-
sis and treatment prediction.
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Abstract The triple-negative breast cancer (TNBC) pheno-
type, defined as the lack of estrogen and progesterone hormone
receptors and the HER2 receptor, represents approximately
15% to 20% of all breast cancer cases. Challenges faced in
management of these patients arise from the heterogeneity of
TNBC and the absence of well-defined molecular targets.
Subgroups derive significant benefit from cytotoxics however,
patients with TNBC have higher rates of distant recurrence and
a poorer prognosis than women with other breast cancer sub-
types overall. Currently, cytotoxic chemotherapy is the only
systemic treatment option at all stages of disease, and rational
drug selection based on tumor biology remains an aspiration.
In the context of relapse, the most efficacious regimens remain
undefined and the typical clinical picture is one of rapid disease
progression and little durable benefit to therapy. This article
reviews current approaches in metastatic TNBC and considers
novel therapies in development that may improve the outlook
for those with this disease.

Keywords Triple negative breast cancer . Metastasis .

Targeted therapy . Epidermal growth factor receptor . PARP
inhibitor . Platinum . Angiogenesis

Introduction

Triple-negative breast cancer (TNBC) describes the 15% to
20% of breast cancers that are negative for estrogen and
progesterone hormone receptors and the human epidermal
growth factor receptor 2 (HER2). Challenges faced in man-
agement of these patients arise from the heterogeneity of
TNBC and the absence of well-defined molecular targets.
Subgroups derive significant benefit from cytotoxics with
achievement of pathological complete response (pCR) in the
neoadjuvant setting predicting excellent long-term outcome
[1]. However, patients with TNBC have higher rates of
distant recurrence and a poorer prognosis overall than women
with other breast cancer subtypes [2]. Currently cytotoxic
chemotherapy is the only systemic treatment option at all
stages of disease, and rational drug selection based on tumor
biology remains an aspiration. In the context of relapse, the
most efficacious regimens remain undefined and the typical
clinical picture is one of rapid disease progression and little
durable benefit to therapy [3••]. In this article, we review
current approaches in metastatic TNBC and consider novel
therapies in development that may improve the outlook for
those with this disease.

The Metastatic Triple-Negative Challenge

The approach to the patient with relapsed or metastatic
TNBC shares the goal common to all settings of incurable
advanced cancer relapse, namely improving both quantity
and quality of life. Improvements in breast cancer survival
are not solely attributable to better systemic therapy for early
breast cancer. Through the early and late 1990s, cohort
studies in metastatic breast cancer have demonstrated
improvements in survival of nearly 30% reflecting use of
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newer cytotoxics and targeted therapies in this setting [4].
However these gains appear limited to the hormone and/or
HER2-positive breast cancer populations that have
benefited from targeted therapies such aromatase inhib-
itors or trastuzumab [5]. Additionally, population-based
studies report patterns of metastasis that differ in TNBC
from that seen in the receptor-positive tumors. Relapses
occur early, peaking at 2 to 3 years after diagnosis but
subsequently decline and plateau with little risk of
relapse and death after 5 years [2, 6]. Emerging data
suggests that even small, node-negative, early TNBC
may have disproportionately greater loco-regional and
distant relapse risk than comparable tumors of other
biological subtypes [7, 8]. Distant relapse is more likely to be
visceral, with particular predilection for lung and brain [1], the
latter being present in 14% to 25% of patients at first metastatic
diagnosis and in nearly half prior to death [3••, 9]. Median
duration of disease control on first- to third-line systemic
therapy is brief (only 13, 9, and 4 weeks, respectively), and
the median overall survival of only 13 months reflects the
aggressive tempo of progression [3••].

Gene expression profiling has led to the identification
of at least five breast cancer subtypes [10, 11]. Although
molecular subtyping cannot yet guide rational treatment
selection in routine clinical practice, it is helping to
unravel the heterogeneity within TNBC. Approximately
80% of TNBCs are “basal-like” (BL), sharing features
with tumors arising in BRCA1 carriers [12], and its
detection can be enhanced by use of additional immu-
nohistochemical tests demonstrating CK5/6 and/or epidermal
growth factor receptor (EGFR) positivity [13]. pCR rates
following neoadjuvant taxane/anthracycline chemotherapy
are usually greatest in the BL subgroup, and these patients
have an excellent long-term prognosis [14]. However, the
overall poor prognosis associated with TNBC is predominate-
ly driven by those within the BL subpopulation who have
significant residual disease despite neoadjuvant chemotherapy
[1, 11] and relative chemo-insensitivity in these patients is
evident from the poor survival patterns following metastatic
relapse [3••]. Next-generation sequencing indicates that a
metastatic tumor derives from a selected subset of cells from
the primary tumor that contain pre-existing mutations and that
they also develop a small number of de novomutations [15••].
Pragmatically, significant residual disease indicates high-
risk of early relapse, but in the absence of a mainte-
nance therapy strategy this prognostic insight does not
translate into a means of improving outcomes. “Post-
neoadjuvant” novel targeted therapy or alternative che-
motherapy trials might well be focused on this very high-
risk early TNBC population, but better understanding of the
biology of residual disease and the heterogeneity of response
to standard chemotherapy is required to develop treatment
strategies that can positively impact on outcomes.

Rational Approaches in Relapsed TNBC

There is no global consensus regarding the optimal strategy
for the treatment of metastatic breast cancer, and regional
differences in availability and regulatory approval of newer
agents further diversifies treatment patterns. In the context
of adjuvant anthracycline therapy, recent cytotoxic guide-
lines recommend taxane-based first-line therapy (level 1
evidence) for metastatic TNBC, but there is no standard
approach for subsequent lines of treatment [16]. Capecita-
bine is commonly prescribed following prior anthracycline
and taxane exposure [17]. However, although this is a
regulatory-approved standard of care and some patients
derive benefit [18], analysis of a TNBC subset treated with
this agent in the control arm of prospective trials provides
little evidence supporting significant delay in progression in
this population [19].

The relative efficacy of anthracycline and taxanes with
regard to other cytotoxics in TNBC is controversial. For
example, retrospective analysis of MA5 (adjuvant cyclo-
phosphamide/methotrexate/5-FU [CMF] versus cyclo-
phosphamide/epirubicin/5-FU [CEF]) suggested BL-
breast cancers may not derive particular benefit from
anthracyclines [20]. However, significant activity of clas-
sical CMF has been reported within the TNBC subset
[21, 22], and lower cyclophosphamide exposure in the
CEF arm potentially confounds attribution of differences.
Furthermore, data from a meta-analysis of anthracycline
versus nonanthracycline regimens in early breast cancer
suggests benefits to anthracyclines in the TNBC subset
[23]. There is a significant body of data from adjuvant
trials incorporating taxanes suggesting that their addition to
anthracycline- or anthracycline/cyclophosphamide-con-
taining regimens particularly benefits node-positive dis-
ease [24–27], and in a neoadjuvant setting single-agent
taxanes may be more active than anthracyclines in BL-
breast cancer [28]. However, preclinical [29] and some
clinical data in BRCA1-associated tumors indicate that
these may be less taxane sensitive [30, 31]. Application
of a BRCA1-associated defective DNA repair gene expression
signature appears to differentiate sporadic TNBCs that are
sensitive to anthracyclines and resistant to taxane-based che-
motherapy [32], and a paclitaxel response metagene has been
proposed as a paclitaxel-specific predictor of pCR in TNBC
[33]. However, no validated signatures are yet available that
can predict response to initial or subsequent chemotherapy or
relapse risk overall.

Exploiting an Impaired DNA Damage Response

Gene expression microarray confirms molecular similarity
between BL-TNBC and>90% of BRCA1-associated breast
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cancer [34, 35]. Through the homologous recombination
(HR) pathway, BRCA1 plays an important role in DNA
double-strand break (DSB) repair, contributing to the main-
tenance of genome stability. Disrupted HR arising as a result
of either germline or functional inactivation would be
expected to confer particular sensitivity to DNA damaging
cytotoxics. Furthermore, tumors deficient in one DNA
repair pathway will be more dependent on alternative
DNA repair pathways, providing an opportunity for
targeted therapy. Poly-ADP ribose polymerases (PARPs)
are a family of enzymes that catalyze polymerization of
poly-ADP ribose chains on target proteins, thereby modifying
their action [36]. Nuclear PARPs have a key role in maintain-
ing genomic integrity, in particular single-strand DNA break
(SSB) repair through the base excision repair (BER) pathway.
In the context of PARP inhibition, SSBs degenerate into
DSBs, requiring repair through HR or alternative more error-
prone DSB repair pathways. A BRCA-like phenotype can be
found in over 50% of TNBC, and the mechanisms accounting
for this include impairment of DNA damage induced by
RAD51 protein focus induction, BRCA1-like array compara-
tive genomic hybridization, and promoter methylation or
reduced mRNA expression [37•, 38]. This overlap between
BRCA1-associated tumors and sporadic TNBC is guiding
investigational approaches in both early and advanced disease
settings, where the focus has centered on the role of platinum
and PARP inhibition.

Platinum

An observational study in 101 BRCA1 carriers reported
greater pCR following neoadjuvant cisplatin than other reg-
imens (pCR 83% following cisplatin monotherapy com-
pared to 22%, 21%, 8%, and 7% for AC, FAC, AT, or
CMF, respectively) [30]. Platinum sensitivity is further sup-
ported by a small prospective study in 25 BRCA1 carriers
that reported 72% pCR following 4 cycles of cisplatin
75 mg/m2 [39]. Using the same regimen in sporadic TNBC,
22% (6 of 28) achieved pCR and a further 50% achieved
good pathological response (defined by Miller-Payne score
of 3–5) [40]. Of six patients achieving pCR, two were
subsequently found to be germline BRCA carriers, and both
promotor methylation and low BRCA1 expression correlat-
ed with platinum response, supporting overlap between
germline BRCA1 carriers and at least a subset of those with
sporadic TNBC. To date, no validated tests can predict
platinum sensitivity in sporadic TNBC, but a BRCA1-like
comparative genomic hybridization profile may discrimi-
nate a highly platinum sensitive subset [41]. In metastatic
disease, retrospective data from several groups also support
potentially greater platinum sensitivity and benefit over
conventional regimens in the TNBC subtype [42–44]. The
TBCRC009 prospective trial reported overall response rates

(RR) of 30.2% (95% CI, 22.1%–39.4%) following first-line
or second-line platinum using either cisplatin 75 mg/m2 or
carboplatin AUC6 selected according to investigator discre-
tion [45]. Exploratory subgroup analysis of RR favored
cisplatin over carboplatin (RR of 37% and 23%, respective-
ly); however, this study cannot address questions regarding
the optimal platinum agent. Both agents exceeded previous
reports in comparable populations treated with cisplatin±
cetuximab (RR of 10% and 20%, respectively) [46], and
carboplatin with cetuximab (RR of 18%) [47]. The UK TNT
trial (NCT00532727, Table 1) prospectively compares car-
boplatin AUC6 with docetaxel 100 mg/m2. Powered to
detect a 15% improvement in RR with carboplatin, this
study will provide the first randomized data specifically
evaluating platinum against an accepted standard in the
relapsed TNBC and BRCA1-associated disease setting.
Importantly, the study design integrates exploratory biolog-
ical substudies that seek to identify predictive biomarkers of
response.

PARP Inhibitors

PARP inhibitors (PARPi) are thought to exert their antican-
cer effects through at least two distinct but potentially com-
plementary effects. Firstly through a synthetic lethal effect,
whereby an accumulation of PARPi-induced SSBs increase
DSBs, causing subsequent death in tumor cells deficient in
HR, and secondly sensitizing tumor cells by exploiting a
postulated differential reliance on the BER pathway for
repair of therapeutic damage between malignant and normal
tissues [48–50]. Early phase testing provided clinical proof
of concept with sustained responses observed in BRCA1/2
carriers, including>50% of patients with TNBC [51•].

PARP1 levels are commonly increased in TNBC and the
BL subtype, and high levels adversely correlate with out-
come. It is uncertain whether this reflects high rates of tumor
proliferation or is secondary to the profound underlying
DNA damage seen in TNBC, but it supports the premised
importance of the BER pathway in breast cancer and a
potential therapeutic role for PARPi [52–54]. In sporadic
TNBC, the greatest body of clinical data comes from che-
motherapy combinations with the agent iniparib (BSI-201).
This agent initially described as a PARPi by BIPAR sciences
is now thought to have substantially lower activity against
PARP 1 [55] and is no longer described as a PARPi by
Sanofi-Aventis. In metastatic TNBC, a randomised phase 2
study (n0123) compared gemcitabine 1000 mg/m2 and car-
boplatin AUC 2 (days 1 and 8) (GC) alone or in combina-
tion with iniparib (5.6 mg/kg on days 1, 4, 8, and 11) given
until disease progression, after which cross-over was per-
mitted [56•]. The addition of iniparib improved clinical
benefit rate from 34% to 56% (P00.01), overall RR from
32% to 52% (P00.02), and median progression-free
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survival (PFS) from 3.6 to 5.9 months (hazard ratio [HR] for
progression 0.59; P00.01). Although not powered to detect
a survival benefit, a significant improvement in median
overall survival (OS) from 7.7 to 12.4 months was observed

(HR for death 0.57; P00.01). A subsequent phase 3 study
using the same study arms with cross-over permitted at
centrally confirmed progression supports the favorable safe-
ty profile observed in phase 2 and provides further evidence

Table 1 Current active trials with focus in metastatic triple-negative breast cancer subset

NTN Phase
(accrual
target #)

Primary
endpoint

Therapeutic target Targeted agent Cytotoxic TE Study
completion
date

NCT00532727 3 (400) ORR Docetaxel vs carboplatin Yes Jan 2014

NCT01207102 2 (70) PFS Abraxane/carboplatin Dec 2014

NCT01287624 3 PFS Gemcitabine/cisplatin vs
gemcitabine/taxol

Jan 2014

NCT 01238952 1 (35) MTD Carboplatin /NK012 July 2011

NCT00951054 2 (61) ORR NK012 Nov 2012

NCT01251874a 1 (42) Tolerability PARP1 / PARP2 Veliparib Carboplatin Yes Nov 2012

NCT01104259 1 (36) DLT PARP1 / PARP2 Veliparib Cisplatin/vinorelbine Yes May 2012

NCT00647062a 1 (101) Safety+
biochemical
changes

PARP1 / PARP2 Olaparib Carboplatin Yes Dec 2009

NCT01173497 2 (40) TTP PARP1 / PARP2 Iniparib Irinotecan Jan 2013

NCT01176669 2 (60) PFS VEGFR-2 Aptinib N/A May 2012

NCT00472693 2 (37) PFS VEGF-A Bevacizumab Abraxane Dec 2011

NCT00479674 2 (70) PFS VEGF-A Bevacizumab Abraxane/carboplatin May 2015

NCT00691379 1/2 (46) ORR VEGF-A Bevacizumab Paclitaxel/carboplatin Dec 2011

NCT01069796 2 (62) ORR VEGF-A Bevacizumab Paclitaxel/capecitabine Dec 2015

NCT01207102 2 (70)_ PFS VEGF-A Bevacizumab Gemcitabine/carboplatin Dec 2014

NCT00608972 2 (50) PFS VEGF-A Bevacizumab Liposomal doxorubicin /
carboplatin

Jun 2014

NCT01094184 4 (50) Safety VEGF-A Bevacizumab Taxane (investigator’s
choice)

April 2013

NCT00733408 2 (63) PFS VEGF-A+EGFR Bevacizumab+
erlotinib

Paclitaxel albumin
stabilised nanoparticles

Yes Apr 2014

NCT00633464 2 (80) ORR EGFR Cetuximab Ixabepilone May 2011

NCT01009983 2 (32) ORR EGFR Panitumomab Carboplatin/paclitaxel Yes June 2016

NCT00597597 2 (43) PFS EGFR Erlotinib N/A April 2011

NCT01272141 2 (43) ORR EGFR+mTOR Lapatinib+
everolimus

N/A Feb 2013

NCT00998036 1 (18) MTD EGFR+mTOR Erlotinib+
temsirolimus

Cisplatin Sept 2014

NCT01186991 rPh2
(180)

PFS VEGF-A+MET Bevacizumab±
metMAb

Paclitaxel Apr 2014

NCT01147484 2 (38) ORR Met, VEGFR2 Foretinib N/A Yes May 2013

NCT01127763 2 (28) ORR/toxicity mTOR Everolimus (Rad001) Carboplatin May 2015

NCT01111825a 1/2 (60) MTD/ ORR mTor+multitargeted TKI
(EGFR, HER2, HER4)

Temsirolimus+
neratinib

N/A Yes Apr 2013

NCT01333137 2 (140) PFS Cdk 4 D1, Cdk1 B, and
Cdk9 T inhibitor

± PF276-00 Gemcitabine/carboplatin Sep 2012

NCT01333423 1 (40) DLT CDK 2,7 & 9 inhibitor Seliciclib Liposomal doxorubicin May 2014

NCT01307891 2 (60) ORR Death receptor 5 Tigituzumab Abraxane Yes Oct 2014

NCT01151449 2 (50) ORR Gamma secretase R04929096 N/A Yes Mar 2011

NCT01194908 2 (39) MTD Methylated estrogen
receptor

Decitabine, LBH589
and Tamoxifen

N/A Yes Nov 2012

a Trial has planned subset analysis of triple-negative breast cancer

DLT dose-limiting toxicity, PFS progression-free survival, MTD maximum tolerated dose, ORR overall response rate, TE translational endpoints
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of activity for the addition of iniparib to GC with improved
PFS (5.1 vs 4.1 months; HR 0.79 (95% CI, 0.65–0.98]; P0
0.027) [57•]. However, this study failed to meet the prespe-
cified effect size for the co-primary PFS and OS endpoints
(HR of 0.66 and 0.65, respectively) and exploratory analysis
showed differences significant only in the second- or third-
line setting. A potentially confounding enrichment for
patients with shorter progression-free interval in the exper-
imental arm was noted, and data are lacking on BRCA
carrier status and potential for enrichment in either arm.
Evaluation of gene expression signatures and central pathol-
ogy review is awaited to facilitate understanding of these
data. In line with the change in description by the sponsor,
the activity of iniparib against PARP1 has recently been
questioned, with a preclinical pharmacodynamic study
showing absence of inhibition of poly-ADP ribose on target
proteins, but the suggestion that that iniparib might suppress
genes functioning in telomere maintenance pathways with
PARP5/6 postulated as potential targets [55].

It is important to note that as iniparib is now thought to
have very little PARP 1 inhibitory activity, questions regard-
ing the role of potent PARPi in combination with chemo-
therapy in TNBC remain untested by any randomized phase
3 trial, and available efficacy and tolerability data are
limited. Veliparib (ABT 888) in combination with temozolo-
mide appears to be a tolerable where temozolomide dose is
reduced, but a small single-arm study showed little initial
evidence of efficacy in patients with sporadic TNBC [58].
The combination of olaparib with weekly paclitaxel for
relapsed TNBC was evaluated in a single-arm initial safety
cohort report. Synergistic toxicity with non–DNA-damaging
taxane therapy was not predicted from this combination, but
dose-limiting myelosuppression impervious to the addition of
G-CSF prophylaxis and dose reduction following protocol
amendment necessitated early closure of the trial. However,
this combination achieved RR of 33% and 40% in the two
cohorts, supporting the premise that the addition of PARPi to
chemotherapy may improve response in the sporadic TNBC
population [59]. Ongoing trials testing PARPi in advanced
TNBC are included in Table 1.

Minor Groove Binders

A novel class of anticancer agents, DNA minor groove
binders (MGBs) have recently been shown to be potent
inducer of apoptosis in in vitro and in vivo preclinical tumor
models. Moreover, brostallicin, a second-generation MGB,
has been reported to retain sensitivity in chemo-resistant
DNA mismatch repair-deficient cells [60–62] and demon-
strated synergy in combination with cisplatin [63–65],
suggesting its potential value in cancer treatment. Its
unique mechanism of action and the promising results
from phase 1 and phase 2 clinical trials [65–67] involving

more than 230 patients led to a phase 2 study of brostallicin
(NCT01091454, currently suspended) in combination with
cisplatin in patients with refractory metastatic TNBC. Others
agents examined in early phase analysis have shown some
activity in HER2-positive and BRCA1/2 mutation-associated
breast cancer, but not particular efficacy in unselected
TNBC [68].

Targeting Angiogenesis

Angiogenesis plays an essential role in breast cancer devel-
opment, invasion, and metastasis, and elevated levels of
vascular endothelial growth factor (VEGF) correlate with
poor outcome [69]. VEGF can be targeted by the monoclo-
nal antibody bevacizumab, preventing its interaction with
the VEGF receptor. VEGF is more commonly overex-
pressed in TNBC than other breast cancer subtypes [69].
In unselected metastatic breast cancer, three randomised
phase 3 trials have demonstrated improvements in PFS and
ORR in combination with taxane, anthracycline, or capeci-
tabine chemotherapy agents [70–72]. Although no statisti-
cally significant benefit was seen, pooled OS data from
these trials indicates an early benefit at 1 year (1-year
survival control arm, 76.5%; bevacizumab/chemotherapy
arm, 81.6%; P00.003) [73] and suggests maximum benefit
in TNBC, where PFS increased from 5.4 to 8.1 months with
the addition of bevacizumab (stratified HR 0.68; 95% CI,
0.56–0.83, log rank P<0.001) [74].

Therapy-associated toxicity, such as hemorrhage risk,
is of concern, particularly in the metastatic setting where
impact of therapy on quality of life is an important
consideration. Meta-analysis based on 16 randomized
control trials, demonstrated that the addition of bevacizumab
is associated with an increased risk of fatal adverse events,
with an RR of 1.33 (incidence 2.9% vs 2.2%) [75].
Although risk appears greatest in tumors of pulmonary
origin, metastatic TNBC characterized by pulmonary and
cerebral disease is theoretically a breast cancer population at
greater potential risk of complications from bevacizumab-
associated haemorrhage. Following concerns regarding
the balance of safety and efficacy, in December 2010
the FDA withdrew its licence in unselected metastatic
breast cancer, but further evaluation in TNBC continues
(Table 1) [76].

Antitubulin Agents

Two novel mitotic inhibitors, ixabepilone and eribulin, may
be of benefit in taxane-resistant metastatic TNBC. Ixabepi-
lone binds the beta-tubulin subunit, stabilizing microtubules
and causing extended cell cycle arrest and apoptosis with
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lower susceptibility to taxane resistance mechanisms, in
particular β-tubulin III isoform over-expression [77]. Two
randomized phase 3 studies have investigated capecitabine±
ixebepilone in anthracycline and taxane pretreated breast
cancer. Pooled analysis of the 443 patients with metastatic
TNBC found improved ORR (31% vs 15%) and PFS (4.2 vs
1.7 months; HR 0.63 [95% CI, 0.52–0.77]), a trend toward
OS (10.3 vs 9.0 months, respectively; HR 0.87 [95%
CI, 0.71–1.07]) with the addition of ixabepilone [19].
Toxicity was considered acceptable with the most common
adverse toxicities, comprising reversible peripheral neuropa-
thy and neutropenia. The randomised phase 2 trial
(NCT00633464, Table 1) will provide further data for ixepe-
bilone in metastatic TNBC.

Eribulin is a non-taxane microtubule inhibitory agent
with preclinical activity in paclitaxel-resistant cell lines
[78]. The randomized phase 3 Eribulin Monotherapy versus
Treatment of Physician's Choice in Patients with Metastatic
Breast Cancer (EMBRACE) study compared eribulin mono-
therapy with investigator’s choice in 762 patients with
heavily pretreated metastatic breast cancer, including
19% with TNBC [79]. This is the first agent to dem-
onstrate an OS benefit in unselected metastatic breast
cancer (median OS 13.1 vs 10.6 months, HR 0.81 [95%
CI, 0.66–0.99]) and had a toxicity profile no worse than
the comparator arm. Eribulin has both FDA and Euro-
pean Medicines Agency (EMEA) approval for use in
anthracycline- and taxane-pretreated breast cancer where
patients have received at least two agents in the metastatic
setting, but it requires further investigation to explore specific
efficacy in TNBC. No trials are currently proposed in the
metastatic setting, but using a 2-year DFS primary endpoint,
NCT01401959 will evaluate adjuvant eribulin following fail-
ure to achieve pCR following neoadjuvant therapy in triple-
negative, hormone receptor-positive/HER2-negative, and
HER2-positive cohorts.

EGFR Inhibitors and Other Kinase Inhibitors

The epidermal growth factor receptor (EGFR) is strongly
expressed in TNBCs, especially in the sporadic and BRCA-
associated BL-subgroups, and this is associated with an
inferior outcome [13, 80, 81]. Preclinical studies have
shown synergy of anti-EGFR compounds and agents caus-
ing DNA damage [82]. The claudin low molecular subgroup
is characterized by the low to absent expression of luminal
differentiation markers, high enrichment for epithelial-to-
mesenchymal transition (EMT) markers, immune response
genes, and cancer stem cell-like features in addition to
hormone and HER2 negativity [83]. EMT plays a major
role in invasion and metastasis of TNBC [84, 85], which
can be reversed in vitro by the EGFR inhibitor, erlotinib

[86]. In metaplastic cancer, a rare but typical TN subgroup,
EGFR gene amplification has been shown to be present in
approximately 25% of cases [87]. These studies, along with
others, have provided the impetus for a series of clinical
trials evaluating EGFR inhibitors for patients with TNBC,
alone and in combination with chemotherapeutics.

A phase 2 study, TBCRC-001, randomized patients
with significantly pretreated metastatic TNBC to receive
cetuximab 250 mg/m2 either alone or in combination
with weekly carboplatin AUC2. The cetuximab-alone
arm showed a modest 6% response compared with a
response rate of 18% in the combination arm [47]. In
the randomized phase 2 BALI-1 trial, the addition of
cetuximab to cisplatin was associated with an increase
in the RR to 20% from 10% for the cisplatin-alone arm
but did not achieve statistical significance (P00.11) [46].
Subset analysis from another phase 2 study conducted by
the US Oncology Group (225200 trial) showed a higher
RR but no improvement in PFS with the addition of
cetuximab (250 mg/m2) to irinotecan (90 mg/m2), carbo-
platin (AUC2) than to the same chemotherapy alone in
patients with TNBC [88]. In phase 2 evaluation, the EGFR
inhibitor gefitinib failed to show single-agent efficacy in ER-
negative disease [89], and in the neoadjuvant setting the
benefit of erlotinib appears limited to the ER-positive group
only [90]. None of these cited trials required EGFR positivity
as an eligibility criterion, and recent evidence indicates dis-
crepancy between EGFR positive immunostaining and the
presence of EGFRmutations in TNBC. Trials evaluating other
EGFR inhibitors in TNBC are ongoing (Table 1), but to date a
role in unselected TNBC appears limited, indicating the need
for EGFR expression testing and identification of appropriate
companion diagnostic in future studies [91].

Although a proportion of high-expressing EGFR tumors
promote cell proliferation via the activation of the RAS/
MAPK/MAPK kinase, a number of other tumor-promoting
mechanisms that impact EGFR and downstream pathways
are seen in TNBC, and rationally designed clinical trials
targeting multiple pathways may be required to achieve
synergistic efficacy [92–96]. In TBCRC001 trial, serial
biopsies of tumors prior to and following cetuximab therapy
demonstrated that whereas the majority of the patients had
tumors with EGFR pathway activation by gene expression
array, cetuximab was only effective in 25% of cases, and all
clinical benefit was seen in this group [47]. The approach of
using multityrosine kinase inhibitors, such has dasatinib or
sunitinib, is being evaluated in TNBC. A phase 2 study of
dasatinib, an orally bioavailable multi-tyrosine kinase inhib-
itor of src and abl, in patients with advanced TNBC reported
a modest (< 5%) response [97]. The main targets of dasati-
nib are yet to be fully validated, although an ongoing study
(NCT00780676) is evaluating a predictive gene signature
for as a single agent in different breast cancer subtypes.
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Sunitinib, a multi-tyrosine kinase inhibitor with antiangio-
genic properties was reported a response rate of 15% in a
subset with TNBC [98]. However phase 3 evaluations of
sunitinib as monotherapy and in combination with chemo-
thrapy were all negative in patients with advanced HER2-
negative breast cancer [99, 100]. An ongoing adjuvant study
evaluating sunitinib in combination with carboplatin and
paclitaxel in TNBC is awaited (NCT00887575).

Recent interest has also focused on targeting the c-MET
oncogene, which encodes the tyrosine kinase receptor for
hepatocyte growth factor in BL breast carcinoma [52, 101,
102]. MET appears to be a key regulator of EGFR tyrosine
kinase inhibitor resistance in cancer due to trans-
phosphorylation via an MET/Src-mediated signaling path-
way; thus, clinical benefit is likely to require simultaneous
inhibition of EGFR and MET signals [103]. In TNBC, a
high prevalence of loss of the tumor suppressor protein
tyrosine phosphatase PTPN12, which interacts with another
tyrosine kinase, platelet-derived growth factor receptor-b
(PDGFR-b), has been reported. Dual blockade with lapati-
nib and sunitinib slows the growth of xenografted TNBC
tumors in preclinical evaluation [94]. Additionally, preclin-
ical data demonstrate that inhibition of the mitogen-
activated protein kinase (MEK), a component of the MAPK
pathway, in TNBC cells leads to constitutive activation of
the phosphatidylinositol b-kinase (P13K) pathway, with
increased activation of the downstream targets AKT and
mTOR [104]. Combined inhibition of MEK and P13K
pathways have been shown to result in increased cellular
effect in TN cells, suggesting combined inhibition may
be a rational approach for a future clinical trial [96].

Loss of the tumor suppressor phosphatase and tensin
homolog on chromosome 10 (PTEN) appears frequently
in patients with TNBC, and a significant negative corre-
lation has been seen between low PTEN expression and
activation of a downstream P13K targets, mTOR and
AKT [105]. Two randomized trials evaluating the role
of an oral mTOR inhibitor, everolimus (RAD001), in
patients with either metastatic (NCT00827567) or locally
advanced TNBC (NCT00930930) are ongoing.

High throughput tumor profiling technologies have iden-
tified a number of new targets that are beyond the scope of
this review; however, some of the more promising targets
are summarized in Table 2. Identification of predictive bio-
markers and simultaneous blockade of multiple signalling
pathways is likely to be required for optimal therapeutic
benefit in patients with TN disease.

Opportunities to Do Better

Management of those with metastatic TNBC requires an
integrated approach. There are no data from any RCTs to
support a specific follow-up strategy for breast cancer [106],
but it is possible that patients with TNBC may benefit from
follow-up better related to the clinical behavior associated
with this biological subtype. The characteristic rapid tempo
of progression may detrimentally impact fitness for therapy
and clinical trial eligibility. The majority of TNBC relapses
occur in the first 3 years [3••]; therefore, in individuals
predicted to be at high risk of relapse, such those with
significant residual disease after neoadjuvant therapy, it

Table 2 Other targets in triple-negative breast cancer

Target Rationale in TNBC Drug development

Androgen receptor Between 10% and 35% of TNBC express the
androgen receptor [113, 114].

Ongoing phase 2 trial using bicalutamide, an
antiandrogen, in the treatment of
androgen-positive TNBC (NCT00468715)

Ongoing phase 1/2 using abiraterone
(NCT00755885) in ER-positive or ER-negative
and androgen receptor-positive tumors

Fibroblast growth receptor 2 (FGFR2) Amplified in up to 4% of TNBC [115] Phase 2 of an FGFR inhibitor (TKI258) reported
antitumor activity in this heavily pretreated breast
cancer population [116]

Heat shock protein (HSP)-90 PU-H71, novel purine scaffold HSP-90
inhibitor, has shown preclinical activity
in TNBC [117]

The first-in-human phase 1 trial of PU-H71 in
patients with advanced malignancies
has recently been initiated (NCT01393509)

Tumor necrosis factor-related
apoptosis-inducing ligand (TRAIL)

TRAIL functions as a metastasis suppressor by
activating pro-apoptotic TRAIL receptors and a
subset of TNBCs; those with mesenchymal
features have been reported to be sensitive to
TRAIL-mediated apoptosis [118]

TNBC triple-negative breast cancer
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may be appropriate to maintain active oncologic follow-up
in the highest risk period.

Patients with TNBC are at particular risk of pulmo-
nary and central nervous system metastasis [1]. Survival
following diagnosis of cerebral metastasis (CM) differs
according to breast cancer subtype and is poorest in
those with TNBC [107, 108]. A study reported the brain
to be the first site or only site of metastasis in 32% of patients
with TNBC, with 35% of immunohistochemistry-defined
BL-breast cancer subset having CM [109]. Survival reflected
clinical parameters relating to underlying fitness, age,
and systemic disease control but not biological markers
(CK5/6, EGFR, c-kit) differentiating between basal and
non-BL breast cancer subtypes. The propensity for CM
in TNBC requires further investigation to understand the
driving biology and facilitate identification of those at
highest risk with a view to preventive or early detection
screening and intervention activities. Unlike other breast
cancer subtypes, those with TNBC derive little benefit
from systemic therapy after diagnosis of CM, likely
reflecting both poor patient fitness and activity of sys-
temic therapy in the context of pretreated advanced
disease [108]. Proactive use of CNS imaging to screen
the brain at time of metastatic presentation remains
untested but approaches directed at those with signifi-
cant residual disease after neoadjuvant chemotherapy
who have the highest risk might include trials incorpo-
rating CNS screening and/or prophylaxis with a rational
comparable to small cell lung carcinoma. In patients
with TNBC brain metastasis, NCT01173497 will evaluate
iniparib+irinotecan following and in place of radiotherapy
(Table 1).

Tumors arising in BRCA1 carriers are typically of TN phe-
notype and although early evidence of activity of potent PARPi
[51•, 110, 111] and of platinum salts [30] is most apparent in
BRCA-associated cancers, genetic testing is currently routinely
performed to guide primary cancer risk-reduction strategies but
not systemic therapy selection or clinical trial entry. Diagnostic
BRCA testing is generally offered to “high-risk” sporadic sub-
populations, including those diagnosed at younger age, with
bilateral presentation, or developing second primary cancers in
addition to those with a significant family history. Definitions
of “low age” vary, but expanding access to genetic testing to
include all women with TNBC diagnosed younger than
50 years of age has been estimated to be both cost-effective
and reduce subsequent breast and ovarian cancer risks by 23%
and 41%, respectively [112].

Conclusions

Metastatic TNBC remains a heterogeneous disease charac-
terized by rapid progression and poorer survival outcomes

when compared with other breast cancer subtypes, and
effective therapy remains an area of significant unmet need.
Diagnosis does not describe a single disease entity but a
collection of molecular subtypes currently unified by
absence of predictive markers for endocrine and anti-
HER2 therapy. Better characterization of molecular determi-
nants of chemo-sensitivity and resistance and identification of
targeted agents with associated positive companion diagnos-
tics will be required to improve outcomes. In the current
setting of modest activity of standard therapy for advanced
TNBC, patients should be encouraged to participate in clinical
trials. Optimal evaluation of current agents and those in
development will require an integrated and co-operative
approach to TNBC-specific clinical trial design, thus
permitting rapid accrual and trial evolution in this breast
cancer subtype.
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Molecular heterogeneity of triple-negative breast cancer and its
clinical implications
Sheeba Irshada, Paul Ellisb and Andrew Tutta,b

Introduction
Breast cancer is recognized as a heterogeneous disease
with subgroups that exhibit substantial differences in
terms of presentation, morphology, molecular profile
and response to therapy. A clinical shorthand classifi-
cation divides breast cancer into three major subtypes
based on the expression of oestrogen (ER), progesterone
(PgR) hormone receptors, human epidermal factor recep-
tor 2 (HER2) and grade or Ki67 staining: luminal (ER/
PgR-positive disease) divided into low (A) and high
proliferation (B) forms, HER2-amplified tumours and
triple-negative breast cancers (TNBCs) [1]. TNBC
describes a subset of breast cancers that lack expression
of oestrogen and PgR as defined by immunohistochem-
istry (IHC), as well as HER2 overexpression or gene
amplification of HER2 by IHC or in-situ hybridization,
respectively. Given that no targeted therapies are
licensed for treatment, TNBC represents a significant

clinical challenge. Advances in molecular profiling stu-
dies suggest that TNBC encompasses several biological
entities. This review will focus on this molecular hetero-
geneity and the therapeutic implications of this subclas-
sification.

Triple-negative breast cancer
TNBC is currently a diagnosis of exclusion accounting for
approximately 15–20% of all breast cancer diagnoses,
depending on the thresholds used to define oestrogen
and PgR positivity on IHC and the methods used for
HER2 assessment [2–4]. Although the ASCO–CAP
guidelines for IHC testing recommend that oestrogen
and progesterone assays be considered positive if at least
1% of the tumour cells are positive, there is considerable
variation in the IHC cut-offs usedworldwide. In 2000, the
Stanford group classified breast cancer into four subtypes
based on gene-expression profile: Luminal (A and B),
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Purpose of review
Triple-negative breast cancer (TNBC) is defined by a lack of expression of hormone
receptors, oestrogen and progesterone, as well as human epidermal factor receptor 2.
This review focuses on the increasing understanding of the molecular heterogeneity of
TNBC subtypes and the therapeutic implications of this subclassification.
Recent findings
Emerging evidence clearly indicates that TNBC is a heterogeneous disease with varying
prognosis according to clinical, pathological and genetic factors. Some distinct
histological special types within this clinically defined collection of entities have been
shown to have a particularly good prognosis (e.g. medullary carcinomas), and others
very poor outcome (e.g. metaplastic carcinomas), whereas the broader
immunohistochemically defined ‘core-basal-like’ or gene expression defined ‘basal’
groups generally have a poor prognosis. This molecular subclassification has implicated
several biological processes as potential therapeutic targets: the DNA damage
response, drivers of deregulated proliferation, angiogenesis, epithelial–mesenchymal
transition and immune deregulation.
Summary
Molecular stratification of these prognostic groups has been critical in identifying novel
therapeutic targets for future drug development. The development of poly-(ADP)ribose
polymerase inhibitors for BRCA1-mutation carriers with TNBC has led the ongoing
efforts to translate fundamental biological insights into improved therapies for a difficult-
to-treat breast cancer subgroup.
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HER2-enriched, normal-like and basal-like [5]. The lat-
ter group is dominated by the TNBC phenotype and
some investigators have suggested that the TNBC and
basal-like phenotypes are effectively synonymous [6]. A
diagnosis of TNBC requires low or absent levels of the
expression of only three genes using primarily protein-
based assays (IHC), whereas rigorous definition of basal-
like breast cancer (BLBC) depends on assessment of
mRNA expression from around 500 genes [7]. Many
researchers have proposed IHC-based surrogates to
define the genomic BLBC subtype, with the addition
of positive detection of one or more of the following: basal
cytokeratins (CK5/6, CK14 and CK17); epidermal growth
factor receptor (EGFR); and C-kit to define a basal-like
phenotype [8,9]. The use of oestrogen and progesterone
negative with EGFR and/or CK5/6 positivity had 76%
sensitivity and 100% specificity for the identification of
BLBCs defined by microarray expression profiling
analysis [10]. At present, evaluation of these basal mar-
kers has not been standardized for routine clinical prac-
tice.

Although 40–80% of TNBCs are basal-like, many are
nonbasal-like and biologically distinct [6,11–15]. Up to
44% of TNBCs can be completely negative for all
measured basal markers [16]. Similarly, up to 45% of
BLBC are not triple negative with 15–45% oestrogen-
positive tumours and between 6 and 35% of HER2-
positive tumours showing a basal-like gene-expression
profile [7,8,17,18]. Although these recent advances in
molecular profiling studies have led to a great deal of
interest in exploring the heterogeneity of TNBCs, it has
in fact been evident in clinical practice for a number
of years.

Although most TNBCs are reported to be invasive ductal
carcinomas, a number of other histological types (e.g.
metaplastic, medullary, secretory, myoepithelial and ade-
noid cystic tumours) can also exhibit a TNBC phenotype.
Stratification of TNBC into these specific histological
subtypes has important prognostic implications, with some
nonductal invasive TNBCs being reported as having a
more favourable prognosis [3,11,19]. Adenoid cystic,
secretory and classical medullary carcinomas have excel-
lent prognosis [20–22]. In contrast, metaplastic TNBCs
have been reported to be resistant to cytotoxic agents [23].
Similarly, although TNBCs, especially the BLBC sub-
type, are typically reported as high-grade tumours with
high mitotic indices, presence of central tumour necrosis
(and/or fibrosis), pushing borders of invasion and stromal
lymphocytic infiltrates, up to 10% of TNBCs have been
shown to be grade 1, highlighting the importance of an
accurate morphological diagnosis [4,9,17,24,25].

TNBCs, especially BLBCs, are more prevalent amongst
young African, African-American and Latino women

[3,26,27] and are known to be associated with an aggres-
sive clinical course reflected in higher rates of central
nervous system and lung metastases [7,28,29]. Cheang
et al. [12] reported that patients with BL-TNBC had a
significantly decreased overall survival (OS) compared
with patients with non-BLBC. Several studies also
demonstrate that a subgroup of TNBC patients display
remarkable sensitivity to chemotherapeutic agents.
Between 17 and 58% of patients with TNBC have been
shown to achieve pathological complete response (pCR)
after anthracycline/platinum-based neoadjuvant che-
motherapy, and these patients have an excellent prog-
nosis [30–32]. In comparison, those who fail to achieve
pCR have an exceptionally poor outcome [33]. Molecular
heterogeneity within TNBC explains this paradox of
high rates of pCR and poor OS in TNBC when taken
as a whole. Poor survival for the group taken overall being
driven by the group of patients with more chemotherapy-
resistant disease reflected in those with significant
residual disease after neoadjuvant chemotherapy.

Molecular and biological heterogeneity of
triple-negative breast cancer
Gene expression profiling identifies several different
molecular subtypes within TNBC, with 40–80% being
represented by BLBCs and the rest including normal-
like, claudin-low, interferon-rich, molecular apocrine and
HER2-enriched TNBCs [34,35]. Although this molecu-
lar stratification of TNBC and heterogeneity within
BLBC is still controversial and requires further research,
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Key points

! Triple-negative breast cancer (TNBC) is a hetero-
geneous disease with varying prognosis according to
clinical, pathological and genetic factors.

! Molecular stratification of these varying prognostic
groups is crucial to optimize current systemic
therapy and identify novel therapeutic targets for
future drug development.

! Some of the biological processes currently being
investigated as potential targets in this group of
breast cancer patients include the DNA damage
response, drivers of deregulated proliferation,
angiogenesis, epithelial–mesenchymal transition
and immune deregulation.

! Translation of the biological insight has resulted in
the development of PARP inhibitors for BRCA1
mutation carriers with TNBC and possibly for a
subgroup of sporadic TNBCs with dysfunctional
homologous recombination DNA repair.

! Other novel targeted therapies under investigation
for treatment in TNBC include antiangiogenic
agents and EGFR, MET and SRC kinase targeted
agents.



increasing evidence supports the existence of claudin-
low and interferon-rich TNBC subgroups. Furthermore,
rapid advancement in next-generation sequencing tech-
nologies has given an insight into some of the genetic
events associated with tumour progression and metasta-
sis. Ding et al. [36!!] report on a primary BLBC tumour, a
brain metastasis and a first-passage xenograft derived
from the primary tumour and suggest that the metastatic
tumour forms from a selected subset of cells from the
primary tumour that contain preexisting mutations, and
also develops a small number of de novo mutations.
Understanding the biological effects of this molecular
heterogeneity is fundamental for individualizing cancer
therapy. A number of pathway dysfunctions have been
implicated in the pathogenesis of TNBC subgroups (see
Fig. 1).

BRCA1 pathway and BRCAness
Increasing evidence suggests a link between the BRCA1-
associated DNA damage response and BLBC [37,38].
More than 75% of BRCA1 mutated (but not BRCA2)
tumours have a triple-negative phenotype, a basal-like
phenotype or both [39–42]. Like sporadic BLBCs,
BRCA1 tumours are characterized by high tumour grade,
mitotic indices and chromosomal instability, reflecting
aberrant DNA repair pathways that are common to both
subtypes of cancer [43]. Both subtypes frequently express
basal cytokeratins (particularly CK 5/6, 14 and 17), myoe-
pithelial markers [caveolins (Cav) 1 and 2, c-kit and P-

cadherin] and high levels of EGFR expression
[6,11,15,17,44]. BRCA1 tumours have been shown to
segregate together with sporadic BLBCs in hierarchical
clustering analysis [45]. This association between
tumours has been termed ‘BRCAness’ [37].

Mechanisms accounting for the BRCA-like phenotype in
sporadic BLBCs have been extensively investigated.
Somatic mutations of BRCA1 and BRCA2 genes are very
rare in sporadic cancers, although loss of heterozygosity
(LOH) of the genomic regions encompassing these genes
is not uncommon [45,46]. Despite the lack of somatic
BRCA1 mutations in BLBCs, studies demonstrate that
the BRCA1 pathway is dysfunctional in many sporadic
BLBCs [38,39,47]. Sporadic BLBCs have reduced
BRCA1 protein expression [48–50]. Promoter methyl-
ation may contribute to this reduced BRCA1 expression
occurring in 10–15% of sporadic breast cancers overall
and up to 40–50% of TNBC [51,52,53!]. High levels of a
regulator protein Id4 have also been reported to down-
regulate BRCA1 expression [54]. Regardless of the
underlying biological mechanisms, the BRCAness of
tumours has been muted as a promising therapeutic
target in some sporadic breast cancer subgroups. Recent
evidence suggests that functional assays for BRCA1-
dependent homologous recombination based on the
quantification of anthracycline and cyclophosphamide
chemotherapy-induced RAD51 focus formation may
be possible and may correlate with the TNBC phenotype
and those tumours with high pathological response to
these agents [55!,56!].

Apoptotic and proliferation pathway
abnormalities
Distinctive patterns of apoptotic and proliferation gene
abnormalities are frequently observed in TNBCs [44,57].
p53 mutations – impairing DNA damage-induced check-
point activation and apoptosis, thereby promoting gen-
ome instability – are frequently observed in BLBCs, with
one series reporting a prevalence as high as 82% [2]. The
pattern of p53 mutations observed in BLBCs is similar to
that of BRCA1-mutated tumours and differs from that
observed in sporadic breast carcinomas of luminal phe-
notype [38]. A recent study demonstrated that p53
protein expression was able to subdivide triple-negative
tumours in two prognostic subgroups: basal-like (p53-
positive) and normal breast-like (p53-negative) tumours
[58]. p53-positive tumours appear to exhibit a higher rate
of pCR (22%) when compared with both p53-negative
triple-negative (10%) and non-triple-negative tumours
(4%) [59].

Up to 57% of BLBCs are found to have high levels of
EGFR expression, and for a proportion this promotes cell
proliferation via the activation of the RAS/MAPK/
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Figure 1 Pathway dysfunctions implicated in the pathogenesis
of subgroups within triple-negative breast cancer
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MAPK-kinase pathway [60,61]. However, other cell pro-
liferation promoting mechanisms are seen in triple-nega-
tive disease. Decreased expression and LOH of the
tumour-suppressor gene Rb1 correlates with a worse
prognosis than those without Rb1 LOH [62]. Sun et al.
[63!!] report the loss of the protein tyrosine phosphatase
PTPN12 in a large proportion (60%) of TNBC and that
PTPN12 acts as a growth suppressor by antagonizing key
EGFR and HER2 tyrosine kinase pathways. Similarly, a
small heat-shock protein a-basic-crystallin is expressed in
about half of all BLBCs and its overexpression can induce
EGF-independent cell growth, migration and invasion,
along with constitutive activation of the MAP-kinase
pathway downstream of EGFR [64]. a-Basic-crystallin
expression has also been shown to be significantly associ-
ated with brain metastases amongst BLBCs [65] and
resistance of tumours to neoadjuvant chemotherapy
explaining its association with poor survival in patients
[66].

The c-MET oncogene, encoding the tyrosine kinase
receptor for hepatocyte growth factor, is implicated in
the initiation and progression of BLBC [67,68,69!]. The
overexpression of this receptor in BLBCs correlates with
high expression levels of the transcription factor Y-box
binding protein-1 (YB-1) known to interact with the
EGFR-enhancer region. In this context, resistance to
the EGFR inhibitor can occur because EGFR is trans-
phosphorylated via a Met/Src-mediated signalling path-
way. Accordingly, future clinical trials may need to be
designed to impair cell proliferation by combined
neutralization of EGFR and c-Met signals [70].

TNBCs also appear to demonstrate higher levels of AKT
activation [71]. The PI3K/AKT pathway activation

triggers cell proliferation and highly aggressive TNBC,
for example, the metaplastic subgroup more frequently
shows PI3K pathway aberrations compared with other
BLBCs [72]. A number of mechanisms are known to be
involved in PI3K/AKT pathway activation (see Fig. 2). In
one series, low pTEN expression was reported in 65.5%
of patients with TNBCs [73!]. Interestingly, pTEN
inactivation has also recently been linked to chromosome
instability due to defects in RAD51-mediated DNA
double strand break repair [74]. The biological events
triggered by AKT activation and/or AKT itself may prove
to be a treatment target.

Angiogenesis
Increased levels of vascular endothelial growth factor
(VEGF) have also been reported in patients with
TNBCs, implicating the VEGF pathway in its aetiology
[75]. This is supported further by histological examin-
ation of BLBC demonstrating the presence of glomer-
uloid microvascular proliferation [40], VEGF-2 being a
prognostic factor amongst patients with TNBC [76!] and
breast tumours with p53 mutations having higher VEGF
levels [77].

Epithelial–mesenchymal transition-
associated pathways
A putative subtype of breast cancer has recently been
described based on unsupervised clustering of gene
expression and termed ‘claudin-low’ [78]. These com-
prise only 5–10% of breast cancers and have a triple
negative and basal-like phenotype [79!]. Clustering
analysis shows that although similar to basal-like, clau-
din-low are a distinct subtype with an enriched stem-cell
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Figure 2 Mechanisms for PI3k/AKT pathway activation
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(tumour-initiating cell) signature [34]. Claudin-low
tumours show features of a process called epithelial-to-
mesenchymal transition (EMT), such as upregulation of a
mesenchymal marker, vimentin, and downregulation of
epithelial markers such as E-cadherin [80,81]. Most of
these tumours are characterized by a high grade with
minimal differentiation and a high immune cell infiltrate
[78], and are often associated with increased invasiveness
and metastatic potential, and a poorer prognosis [82,83].
Metaplastic carcinomas appear to be similar to the clau-
din-low subtype, demonstrating gene-expression pat-
terns consistent with EMT, such as downregulation of
cell-adhesion molecules, as well as high expression of
stem-cell markers [84]. Furthermore, those BLBCs show-
ing EMT features, such as overexpression of Src family
tyrosine kinase LYN, an EMT mediator, are associated
with poor survival [85!].

Expression of EMT-associated transcription factors
(FOXC2, Snail and Slug) seen in claudin-low and some
BLBC subgroups has been shown to be achieved through
activation of TGFb, Wnt and Notch pathway [81,86,87!].
A subset of TNBC cell lines with mesenchymal pheno-
type has been shown to be highly sensitive to tumour
necrosis factor-related apoptosis-inducing ligand
(TRAIL) inducing apoptosis in these cell lines [88].
The mechanism underlying the differential TRAIL sen-
sitivity of the mesenchymal TNBC cell lines is unknown,
but data indicate that TRAIL-R2 (DR2) is the predomi-
nant death-inducing receptor in the TRAIL-sensitive
triple-negative cell lines.

Immune-related triple-negative breast cancer
The interferon-rich subgroup encompasses TNBC
tumours with a considerably better prognosis. They
express high levels of genes related to inflammatory cells
and/or interferon pathways [89,90]. A German group
recently evaluated 28 breast cancer datasets and, showing
a high B-cell (immune system) and low IL-8 (inflam-
mation) metagene expression, identified a subset of
TNBC patients (32% of all tumours) with a favourable
prognosis and a 5-year event-free survival of 84% [91!].
Conversely, studies have shown that high levels of IL-8
expression are associated with a higher invasiveness
potential of cancer cells [92]. Additionally, a number of
recent studies suggest that activated tumour-associated
macrophages (TAMs) are responsible for the secretion of
proangiogenic cytokines which stimulate neovasculariza-
tion [93–95] and BLBCs have significantly higher per-
centage of alternatively activated (M2) macrophages as
compared to the luminal A subtype [96]. The investi-
gators concluded that the M2 macrophage phenotype is
associated with aggressive histopathologic features and
poor clinical outcome. Thus, developing strategies to
antagonize these chemokines and immune cell functions

may provide an opportunity to interfere with metastasis,
which is the main cause of death in most patients.

Therapeutic implications of biological
heterogeneity
The generally poor prognosis of patients with TNBC
and/or BLBC and their tendency to relapse with distant
metastases indicate a need for more effective systemic
therapies for this disease.

Cytotoxic chemotherapy agent selection
Cytotoxic chemotherapy is the mainstay of systemic
treatment. The strong evidence of defectiveDNA repair
mechanisms and rapid proliferation rates in TNBCs
likely underpins the high de-novo response in many
TNBCs to chemotherapy agents [97]. More specifically,
studies have demonstrated that the activity of conven-
tional anthracycline–taxane-based regimens given in a
neoadjuvant setting is particularly high in BLBCs [98].
Dysfunctional BRCA1 pathway in TNBC, BLBC and
BRCA1 associated tumours sensitizes these tumours to
DNA-damaging agents, renewing interest in exploring
platinum agents in these patients [99]. Platinum agents
produce DNA cross-links which lead to DNA double-
strand breaks, repaired by the BRCA1/2-mediated hom-
ologous recombination repair mechanisms [100!]. Con-
sequently, BRCA1-defective cell lines have been shown
to be two-fold to three-fold more sensitive to cisplatin
compared with BRCA1 competent cell lines [101].
Recently, amolecular pathway bywhich platinum agents
may induce cell death selectively in TNBC has been
discovered [102]. Approximately one-third of TNBCs
express the p53 family members DNp63 and TAp73
forming an apoptosis inhibitory complex in the prolifer-
ating cells. Cisplatin-induced DNA damage results
in activation of the c-ABL tyrosine kinase and phos-
phorylation of TAp73, disrupting the complex which
triggers apoptosis [102]. A number of small clinical trials
have reported on the use of platinum drugs within the
TNBCpopulation (seeTable 1) [30,103–115,116!,117!].
In a retrospective study of neoadjuvant therapy for
breast cancer in BRCA1-mutation carriers, the use of
cisplatin resulted in higher rates of pCR compared to
other regimens [103]. The neoadjuvant response rates
to platinum-based chemotherapy have been reported to
be higher for patients with TNBCs compared to other
tumour types (88 vs. 51%). In the advanced setting,
response rates were also higher for patients with TNBCs
(41 vs. 31%), along with a trend for superior survival in
this group [30]. Randomized trials are currently addres-
sing the activity of platinum compounds in comparison
with conventional agents in patients with TNBC and
subpopulations within TNBC (NCT00532727 and
NCT00861705 [118,119].
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Table 1 Clinical evidence to date for platinum agents in TNBC

Level of evidence TNBC study population Results

Retrospective studies
Byrski et al. [103] Neoadjuvant, n¼101 pCR 83% following four cycles of single-agent

cisplatin compared to 22, 21, 8 and 7% for
AC, FAC, AT or CMF, respectively

Retrospective analysis of BRCA1 carriers
treated with neoadjuvant chemotherapy
with cisplatin delivered in single
prospective protocol

Sirohi et al. [30] Neoadjuvant n¼17, adjuvant n¼11,
metastatic n¼34

Neoadjuvant therapy clinical RR rates higher for
patients with TNBC

Retrospective analysis of patients
receiving platinum-based chemotherapy

Neoadjuvant: clinical CR 88% in TNBC
compared to 51% in other tumour types
(P¼0.005)
Advanced: TNBC vs. non-TNBC: ORR 41
vs. 31% (P¼0.3), PFS 6 vs. 4 months (P¼0.05)

Staudacher et al. [104] Advanced n¼143 (93 TNBC) ORR: TNBC vs. non-TNBC: 33.3 vs. 22% (P¼0.1)
Retrospective analysis of patients
receiving platinum-based chemotherapy

No significant differences in OS and PFS seen

Kim et al. [105] Advanced n¼158 (62 TNBC) Similar benefits between TNBC and non-TNBC
groups TNBC vs. non-TNBC: ORR: 27.6 vs.
22.8%, Median PFS 4.1 vs. 4.6 months,
Median OS 10.8 vs. 10.8 months

Retrospective comparison between
TNBC and non-TNBC patients receiving
platinum containing chemotherapy

Villarreal-Garza et al. [106] Advanced n¼113 Longer OS in the patients treated with platinum
chemotherapy (18 vs. 13 months, P¼0.025)Retrospective comparison of patients

receiving platinum-based chemotherapy
to conventional chemotherapy

Phase II non-randomized controlled trials
Gronwald et al. [107] Neoadjuvant n¼25 pCR – 72%

Four cycles of cisplatin 75mg/m2 to
BRCA1 carrier patients

Isakoff et al. [108] Advanced n¼86
Single-agent cisplatin 75mg/m2 or
carboplatin AUC6 selected
according to investigator discretion

First-line or second-line single-agent platinum active
and well tolerated with durable complete and
partial responses

Clinical benefit (CB) rate for platinum chemotherapy
(CRþPRþSD >6 months) 34%

Frasci et al. [109] Neoadjuvant n¼74 pCR 62%, ORR 98.3%, Median DFS 76% (5 years)
Weekly cisplatin–epirubicin-paclitaxel
þG-CSF

Ryan et al. [110] Neoadjuvant n¼51 pCR 16%, ORR 80%
Cisplatinþbevacizumab

Silver et al. [111] Neoadjuvant n¼88 pCR 21%, ORR 64%
Four cycles of cisplatin at 75mg/m2

Wang et al. [112] Advanced n¼45 ORR 62.2%, Median PFS 6.2 months
Gemcitabineþ cisplatin

Phase II randomized controlled trials
Baselga et al. [113] Advanced n¼173 Cisplatinþ cetuximab vs. Cisplatin alone

Cisplatin# cetuximab ORR: 20.0 vs. 10.3%
Median PFS: 3.7 vs. 1.5 months

Carey et al. [114] Advanced n¼102 Cetuximabþcarboplatin vs. cetuximab alone with
addition of carboplatin at progression

Cetuximab# carboplatin ORR: 18 vs. 6%
CB: 27 vs. 10%

Bhattacharyya et al. [115] Advanced n¼126 CMþ cisplatin vs. CM alone
Cyclophosphamide and methotrexate
(CM)#weekly cisplatin 20mg/m2

CB: 90 vs. 63%

Median PFS: 10 vs. 7 months
Median OS: 16 vs. 12 months

O’Shaughnessy et al. [116$] Advanced GC vs. GCI
Gemcitabine and carboplatin (GC)
# iniparib (GCI)

ORR: 32–52%
CB: 34 vs. 56%
Median PFS: 3.6 vs. 5.9 months

Phase III randomized controlled trial
O’Shaughnessy et al. [117$] Advanced n¼258 GC vs. GCI:

Gemcitabine and carboplatin
(GC)# iniparib (GCI)

Median PFS: 4.1 vs. 5.1 months
Median OS: 11.1 vs. 11.8 months

ORR, objective response rate; OS, overall survival; pCR, pathological complete response; PFS, progression-free survival; PR, progesterone; RR,
response rate; TNBC, triple-negative breast cancer.



Newer cytotoxic agents have been investigated and have
shown some limited activity in those with heavily pre-
treated advanced TNBC (see Table 2) [120–122].

Targeted therapies
Owing to the heterogeneity of TNBC discussed above, a
number of novel therapeutic targets are being evaluated
in clinical studies. Unfortunately, many have failed to
show efficacy as single agents or in combination with
chemotherapy in patients with triple-negative disease.
This is likely to reflect the lack of predictive biomarkers
available to optimally select the group of TNBC patients
mostly likely to respond. However, a few of these tar-
geted agents are rapidly moving forward through the drug
development phases and warrant further discussion.

Poly-(ADP)ribose polymerase inhibitors
Poly-(ADP)ribose polymerases (PARPs) are a family of
nuclear enzymes that play a key role in DNA repair
mechanisms, particularly the base excision repair (BER)
pathway [123]. Loss of PARP1 function leads to increased
dependence onBRCA1 andBRCA2DNA repair function,
resulting in a ‘synthetic lethality’ effect – thephenomenon
whereby amutation in either of the two genes individually
has no effect but combining the mutations leads to cell
death [124,125]. Although themajority of sporadicTNBCs
lack BRCAmutations, the overlap of sporadic subsets with
BRCA-associated breast cancer (concept of ‘BRCAness’)
provides the rationale for investigating PARP inhibitors in
the TNBC patient population.

There are currently at least eight PARP inhibitors in
clinical trial development exploring indications reliant on
both synthetic lethality targeting and chemotherapy/
radiotherapy potentiation. The majority of the available
clinical data for the TNBC population involve the drugs
iniparib (BSI-201) and olaparib (AZD2281). A phase I
trial of olaparib demonstrated a 47% objective response
rate (ORR) and 63% clinical benefit rate (defined as
radiological or tumour marker response or stable disease
for at least 4 months) amongst patients with BRCA-
mutated tumours [126]. Subsequently, two multicentre

proof-of-principle phase II studies confirmed the thera-
peutic efficacy of olaparib in BRCA1 and BRCA2-mutant
carriers in breast and ovarian cancers [127!!,128]. A small,
single-arm study of another oral PARP inhibitor, veli-
parib, in combination with temozolamide in unselected
advanced breast cancer patients reported negative
results; however, activity with a clinical benefit rate of
62% was seen in the subset limited to BRCA-mutation
carriers [129]. In 2009, iniparib became the first agent in
the class to enter phase III assessment following prom-
ising results from a randomized phase II study investi-
gating its combination with gemcitabine plus carboplatin
in patients with TNBC [116!]. This study reported that
the combination significantly improved median OS (12.3
vs. 7.7 months, P¼ 0.01) and progression-free survival
(PFS) (5.9 vs. 3.6 months, P¼ 0.01). A phase III trial with
identical treatment arms was recently reported failing to
meet the stringent prespecified criteria for significance
targeting a hazard ratio of 0.66 and 0.65 for the dual
primary endpoints of OS and PFS. Despite this, inaparib
continued to show a significant signal of efficacy [117!].
The formal publication of the results is awaited, but the
failure of the phase III trial despite the clear demon-
stration of tumour activity with this agent may have roots
in several aspects of the trial design and highlights the
need to optimize dose and patient selection with a
companion diagnostic in this highly heterogeneous sub-
group of patients. Furthermore, it is becoming clear that
this agent may not have its effect through a classic PARP1
inhibition pathway and further exploration of its mech-
anism of action is warranted.

Angiogenesis inhibitors
Bevacizumab, a humanized anti-VEGF monoclonal anti-
body, has been the most studied and has demonstrated
activity when added to chemotherapy in both neoadjuvant
and metastatic first/second-line treatments of TNBC (see
Table 3) [110,130–135]. Subset analyses have suggested a
greater degree of efficacy in TNBC patients, but it is not
clear that this is biologically driven or due to a higher event
rate in this population.The results of theBEATRICE trial
assessing the role of bevacizumab in combination with
chemotherapy in the adjuvant setting are eagerly awaited
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Table 2 Newer cytotoxic agents under investigation for TNBC subgroups

Cytotoxic agent Mechanism of action Evidence in triple-negative disease

Trabectedin Binds to the minor groove of DNA Significant sensitivity of mammalian cell lines deficient in the
homologous recombination [105]

Failed to show efficacy as a single agent in TNBC in a
nonrandomized phase II trial [120]

Ixabepilone An epothilone B analogue binds to
b-tubulin causing microtubule
stabilization and mitotic arrest

Two phase III studies report higher objective response rates
(ORR) and PFS in TNBC patients receiving ixabepilone
plus capecitabine compared with capecitabine alone,
with a trend towards improved OS for patients treated
with the combination arm [121,122]

Two adjuvant studies commenced early-stage TNBC

PFS, progression-free survival; TNBC, triple-negative breast cancer.



[134]. Ongoing studies with other antiangiogenic agents
aim to further elucidate the role of these agents in the
TNBC population.

Epidermal growth factor receptor inhibitors and other
kinase inhibitors
Given the high expression of EGFR inTNBC andBLBC,
EGFRmonoclonal antibodies have emerged as a possible
therapeutic option [10,136]. In preclinical studies, EGFR

inhibition can potentiate cisplatin-induced apoptosis in
cultured BLBC cells [137]. The data so far suggest that
EGFR inhibitors have low efficacy in patients withTNBC
when used alone but may improve the efficacy of other
agents (see Table 4) [113,114,138]. The lack of single-
agent activity may be because the expression of the recep-
tor is not itself a driver but reflects the cell of origin or
alternatively that there is constitutive activation of signal-
ling pathways downstream of EGFR in TNBC. For
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Table 4 EGFR inhibitors in patients with TNBC

Description Results

Carey et al. [114] TBCRC 001: Randomized phase II study comparing
cetuximab monotherapy at 250mg/m2 with cetuximab
combined with weekly carboplatin at AUC 2 in
patients with metastatic TNBC.

Reported a modest 6% single-agent RR
and 10% clinical benefit rate compared
with 18 and 27%, respectively, in the
combination arm.

O’Shaughnessy et al. [138] Randomized phase II study of weekly irinotecan (90mg/m2)
and carboplatin (AUC 2), with or without cetuximab
(250mg/m2) in patients with metastatic breast cancer.

A subset analysis of those with TNBC
showed an ORR rate (49% vs. 30%)
but no change in PFS (4.7 vs. 5.1 months)
after irinotecan, carboplatin and cetuximab
compared to irinotecan and carboplatin alone.

Baselga et al. [113] BALI-study: randomized phase II Trial with cisplatin with
or without cetuximab.

Cisplatin/cetuximab combination arm 20% ORR
vs. 10.3% for cisplatin alone (P¼0.11),
PFS 3.7 vs. 1.5 months (P¼0.032).

EGFR, epidermal growth factor receptor; ORR, objective response rate; RR, response rate; TNBC, triple-negative breast cancer.

Table 3 Bevacizumab in patients with TNBC

Trial Description Results Subgroup analysis for TNBC [119]

First-line metastatic E2100 Bevacizumab in
combination
with paclitaxel

Bevacizumab combination arm
significantly prolonged PFS
(11.8 vs. 5.9 months, HR 0.60,
P<0.001) and increased the
ORR (36.9 vs. 21.2%, P<0.001).
OS was similar [130]

Combination arm increased
median PFS from 4.7 to
10.2 months (HR 0.045,
95% CI 0.33–0.61)

AVADO Bevacizumab in
combination
with docetaxel

High-dose bevacizumab combination
arm (15mg) significantly prolonged
PFS (1 vs. 8.1 months, P<0.001)
and increased RR to 64% from
46% (P<0.001) [131]

Combination arm increased
median PFS from 6 to
8.1 months HR¼0.60,
95% CI 0.39–0.92)

RIBBON-1 Bevacizumab in
combination with
chemotherapy
[capecitabine/or taxane
þ anthracycline (TþAnth)]

Capecitabineþbevacizumab arm –
PFS 8.6 vs 5.7 months, RR 35.4
vs. 23.6%

Capecitabineþbevacizumab
arm – PFS improved from
4.2 to 6.1 months (HR¼0.72,
95% CI 0.49–1.06);

TþAnth arm 9.2 vs. 8 months,
RR 51.3 vs. 37.9% [132]

TþAnthþBevacizumab arm –
PFS improved from 8.2 to
14.5 months (HR¼0.78,
95% CI 0.53–1.15)

Second-line
metastatic

RIBBON-2 The addition of
bevacizumab to
chemotherapy

PFS increased from 5.1 to
7.2 months (HR 0.78 P¼0.0072),
and the study demonstrated that
ORR increased by 10%
(P¼0.0193) in the bevacizumab
arm [133]

Neoadjuvant Neoadjuvant
cisplatin and
bevacizumab

Single-arm phase II
neoadjuvant trial for
patients with operable
TNBC

Reported pathological complete
response in 15% treated with four
cycles of cisplatin in combination with
bevacizumab (three cycles), but
toxicity limited completion of
neoadjuvant therapy in 11% of
patients [110]

Adjuvant BEATRICE A randomized phase III trial
testing chemotherapy with
and without bevacizumab
for patients with
triple-negative disease [134]

Accrual complete – Results pending

CI, confidence interval; HR, hazard ratio; RR, response rate; TNBC, triple-negative breast cancer.



example, upregulation of MEK/MAPK, PI3K/AKT/
mTOR and Src family kinases and loss of PTEN may
confer resistance to anti-EGFR therapies [63!!,64,87!,
139]. In fact, MEK inhibitors in TNBC cell lines have
been shown to lead to activation of the P13K/AKT/mTOR
pathway, but combined inhibition of MEK and P13K
pathways results in synergistic efficacy [140]. Recently,
the authors reporting the frequent loss of PTPN12 in
TNBC also demonstrated that PTPN12 interacts with
andrepressesPDGFR-baswell asEGFRphosphorylation,
and combined inhibition of EGFR and PDGFR-b with
lapatinib and sunitinib slowed the growth of xenografted
TNBC-tumours [63!!]. Preclinical data have previously
suggested that BLBCs may be particularly sensitive to
dasatinib, a multityrosine kinase inhibitor of src and abl
[141]. Despite these promising laboratory data, a phase II
study evaluating single-agent dasatinib in patients with
advancedTNBCreported amodest (<5%) response [142].
Collectively, these results suggest that simultaneous inhi-
bition of thesemultiply activated signalling pathwaysmay
be required.

Conclusion
Although TNBCs as a whole are considered biologically
aggressive with a poor prognosis, many are potentially
curable with conventional local-regional and chemother-
apy treatment, reflecting their heterogeneity. Advances
in gene expression profiling coupled with the knowledge
of special morphological types of breast cancer may help
further clarify a group of low-risk TNBC patients within
this high-risk, poor prognosis population. A better under-
standing of the range of genetic abnormalities seen in
TNBCs and BLBCs has revealed potential therapeutic
targets, many of which are being evaluated in clinical
trials. The correlative biology studies allied to these trials
will be crucial if we are to unravel this heterogeneity with
positive biomarkers and refine the maximum benefit
populations for promising agents such as PARP inhibitors
within this group of breast cancers.
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Breast cancer is the most common malignancy 
in women, accounting for 27% of all female 
cancers. An estimated 1 million cases of breast 
cancer are diagnosed annually worldwide and 
approximately 400,000 patients die from the 
disease every year [1]. It is estimated that the 
lifetime risk of developing breast cancer is one 
in nine for women in the UK. Although the 
survival rates from breast cancer have improved 
within the last three decades, the burden of 
metastatic disease remains high. Breast cancer 
is seen as a heterogeneous disease with sub-
groups that exhibit substantial differences in 
biological behavior. These subgroups, while 
themselves controversial, include: Luminal (A 
or B), Normal breast-like, Her2 and Basal-
like [2]. The latter is most consistently asso-
ciated with an unfavorable prognosis and 
limited therapeutic options. In recent years 
breast cancer research has made extraordi-
nary progress in understanding special types 
that include HER2-positive and hereditary 
breast cancers. Owing to this better under-
standing of the function of the hereditary 

breast cancer-susceptibility genes BRCA1 and 
BRCA2, a class of agents called poly(ADP-
ribose) polymerase (PARP) inhibitors have 
found a new therapeutic niche by exploit-
ing DNA-repair defects in these tumor cells. 
Perhaps of broader significance is the emerging 
evidence that these agents, both alone and in 
combination with chemotherapy, may have a 
role in some sporadic tumors. This article dis-
cusses the evidence available to date for the use 
of PARP inhibitors in metastatic breast cancer 
and its future implications.

Breast cancer & PARP in DNA repair
DNA is constantly challenged, both by exoge-
nous (e.g., ultraviolet or ionizing radiation and 
genotoxic chemicals) and endogenous stresses 
(e.g., cellular metabolism and free-radical gen-
eration) [3]. The major forms of DNA damage 
include single-strand breaks (SSBs), double-
strand breaks (DSBs) and alteration of bases. 
SSBs are the most common DNA aberrations 
with approximately 10,000 spontaneous SSBs 
occurring in each cell every day [4]. DSBs are 
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most cytotoxic to cells as the complementary strand is not 
available as a template for DNA repair, and the presence of 
even a small number of DSBs can be lethal. Unrepaired and 
aberrantly repaired DNA damage can lead to mutagenesis and 
thus predispose to cancer. To minimize the impact of these 
threats and maintain genomic integrity, cells have evolved var-
ious lesion-specific DNA repair mechanisms. These include 
homologous recombination (HR), nonhomologous end joining 
(NHEJ), base-excision repair (BER), nucleotide-excision repair 
(NER) and mismatch repair (MMR) pathways [5]. Although 
the dominant pathway for DSB repair is NHEJ, a high-fidelity 
HR mechanism predominates during the late S-phase, when 
a sister chromatid is available to serve as a template for resolv-
ing the DSB. Key components of this pathway are the tumor-
suppressor gene products BRCA1 and BRCA2 that are both 
necessary for efficient and accurate homologous recombination 
repair of DNA DSBs and stalled replication forks [6]. BRCA1 is 
important at a number of points in the upstream sensing and 
signaling that leads to the recruitment of DNA-repair proteins 
to sites of DNA damage, whereas BRCA2 is crucial for cata-
lyzing the formation of RAD51 filaments on ssDNA at the 
damaged sites [7,8]. 

Alterations of a single DNA strand, including SSBs, are mainly 
repaired using the intact complementary strand as a template by 
BER [5]. PARP is the critical component of this repair pathway. 
The PARP family was first described in 1963 [9]. A family of 
17 PARPs have currently been identified. Although the role of 
the most abundant nuclear enzymes PARP1 and PARP2 in DNA 
repair is well established, other family members such as PARP3 
and PARP5 (tankyrase) have more recently also been implicated 
in maintaining genomic stability [10]. PARP1 is a molecular sensor 
of DNA strand breaks, the catalytic activity of which is stimulated 
more than 500-fold on binding to DNA breaks [11]. This results 
in the formation of large branched chains of poly-ADP ribose from 
its substrate nicotinamide adenine dinucleotide (NAD+) [10]. This 
ribosylation results in the recruitment of a number of protein tar-
gets that are involved in the cellular response to DNA damage and 
DNA metabolism. PARP2, in common with PARP1, is activated 
by DNA strand interruptions and is also required for efficient 
repair of ssDNA lesions [12–14]. Any unrepaired SSBs during DNA 
replication are converted into DSBs at replication forks, resulting 
in increased HR activity capable of the error-free repair of these 
lesions [15,16].

More recent studies have demonstrated that PARP1/2 activity 
does not solely contribute to BER [17]. PARP activation appears 
to have a broader role in DNA-damage repair and replication fork 
restart, chromatin remodeling and gene transcription [18–20]. In 
contrast to its role in genome maintenance and thus as a survival 
factor, PARP1 has also been shown to promote cell death in the 
presence of extensive DNA damage via its capacity to deplete 
cellular energy pools culminating in cell dysfunction and necro-
sis [21,22]. It is therefore not surprising that the PARP family has 
become an attractive target for drug development and its phar-
macological inhibition is likely to provide significant benefits in 
a number of disorders.

PARP inhibition & synthetic lethality
Studies demonstrating a dramatic reduction in the repair of DNA 
strand breaks following PARP inhibition and increased HR activ-
ity acting as a very efficient error-free rescue mechanism have pro-
vided the basis for investigating the potential for ‘synthetic lethal-
ity’ to induce selective cytotoxicity for cancer therapy [15,16,23,24]. 
Synthetic lethality is the phenomenon whereby a mutation in 
either of the two genes individually has no effect, but combining 
the mutations leads to cell death. This effect was first described 
in 1946 and studied in genetically tractable organisms such as 
Drosophila and yeast [25]. In 1997, Hartwell et al. made the first 
suggestion that synthetic lethality could be applied to streamline 
anticancer drug discovery [26]. 

Poly(ADP-ribose) polymerase inhibitors first entered clinical 
trials in cancer patients as agents able to enhance the cytotoxic 
effects of ionizing radiation and DNA-damaging chemotherapy 
drugs. Many commonly used chemotherapeutic agents, such as 
alkylating agents and camptothecins damage DNA by causing 
single-strand breaks or lesions that lead to their formation [27]. 
In 2005, two simultaneous papers reported the single-agent 
activity of PARP inhibitors in BRCA1 or BRCA2 deficient and 
matched control cell lines [28,29]. Both these studies demon-
strated that inhibition of PARP in tumor cells with deficient 
HR repair generates unrepaired DNA single-strand breaks, 
resulting in the accumulation of DNA DSBs and collapsed 
replication forks [28,29]. In this setting, cancer cells with BRCA1 
or BRCA2 dysfunction are selectively sensitized to PARP inhi-
bition, which leads to chromosomal instability, cell-cycle arrest 
and apoptosis. Importantly, cell lines retaining a single wild-
type gene copy, a model for normal tissues in a BRCA1 or 
BRCA2 carrier, were not sensitized. Taken together, these pre-
clinical studies clearly provided the impetus to explore the use 
of PARP inhibitors in the treatment of BRCA-mutated tumors 
and classes of sporadic tumor, which share loss of homologous 
recombination function or upregulation of PARP-dependant 
functions. There are currently at least eight PARP inhibitors in 
clinical trial development exploring indications reliant on both 
synthetic lethality targeting and chemotherapy and radiation 
therapy potentiation. In order to establish appropriate inhibi-
tory doses for this novel target, the PARP inhibitor ABT-888 
(veliparib) represented one of the first compounds in oncol-
ogy to undergo a Phase 0 evaluation in humans, resulting in 
pivotal single-agent pharmocokinetic and pharmacodynamic 
data being available prior to Phase I initiation [30]. A detailed 
discussion of the individual PARP inhibitors in development 
is beyond the scope of this article, but the reader should refer 
to the following citations [31–33].

Rationale for & results of PARP inhibition in germline 
BRCA-mutated breast cancer
Hereditary forms of breast cancer constitute 5–7% of breast can-
cer cases overall and are associated with germline mutations in 
the BRCA1 [34] or BRCA2 [35] tumor-suppressor genes. Inheritance 
of one mutated BRCA1 or BRCA2 allele leads to a lifetime risk 
of breast cancer that is as high as 80% [36]. Impairment of HR 
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function in these cells forces the repair of DSBs via error-prone 
NHEJ repair, predisposing the genome to genetic aberrations that 
drive carcinogenesis [37–39]. This tumor-specific defect also causes 
the cancer cells to be selectively sensitized to inhibitors of other 
DNA-repair pathways, which include PARP-dependent base exci-
sion repair [28,29]. Nonmalignant normal tissue cells within BRCA 
mutation carriers should be relatively unaffected, because these 
cells are heterozygous for the mutation retaining a functional 
BRCA1 and BRCA2 gene product. 

Fong et al. reported the ‘first in man’ Phase I trial investigat-
ing the role of a selective and potent PARP inhibitor, olaparib 
(previously known as KU-0059436 and AZD2281), including 
BRCA1 and BRCA2 mutation carriers with advanced tumors in 
an expansion cohort [40]. A total of 60 patients were enrolled, 
15% of whom had breast cancer. Olaparib was administered 
orally and the maximum tolerated dose (MTD) was established 
at 400 mg twice daily given continuously in a 28-day cycle. 
Dose-limiting toxicities were myelosuppression and CNS side 
effects, such as grade 3 somnolence. After demonstration of an 
initial signal of efficacy in a BRCA1 carrier, an expansion cohort 
of BRCA1 and BRCA2 carriers was recruited. In this group of 
19 patients dominated by those with ovarian cancer, there was 
a 47% response rate and a 63% clinical benefit rate (defined 
as radiological or tumor marker response or stable disease for 
at least 4 months). Designed alongside the Phase I and started 
before the expansion cohort, two multicenter proof-of-principle 
Phase II studies in BRCA1 and BRCA2-associated breast and 
ovarian cancer, respectively (ICEBERG1 and ICEBERG2), had 
been initiated after establishment of MTD in Phase I. Both stud-
ies confirmed the therapeutic efficacy of olaparib in BRCA1 and 
BRCA2 mutation carriers with breast or ovarian cancer [41,42]. 
Updated results of the breast cancer study have recently been 
published (ICEBERG 1 study) [41]. This study recruited a total 
of 54 breast cancer patients with advanced heavily pretreated 
disease to two nonrandomized sequential dose cohorts of 100 mg 
twice daily (a previously established pharmacodynamically active 
dose) and 400 mg twice daily (previously established MTD) 
of olaparib. Of the 27 patients in the 400-mg cohort, 18 were 
carriers of BRCA1 mutations and nine had BRCA2 mutations. 
In the 100-mg cohort, 15 patients were carriers of BRCA1 muta-
tions, 11 had BRCA2 mutations and one carried mutations in 
both BRCA1 and BRCA2. Both dose levels demonstrated clinical 
activity; however, 400 mg twice daily appeared to be more effica-
cious with improved outcomes. The study reported an overall 
response rate (ORR) of 41% (11 out of 27) with one complete 
response (CR) and ten partial responses (PRs), and a median 
progression-free survival (PFS) of 5.7 months at 400 mg twice 
daily in contrast to an ORR of 22% (six out of 27) with six PRs 
and a median PFS of 3.8 months at the lower dose level [41]. 
Overall, olaparib was well tolerated with G1/2 fatigue being the 
most common adverse event in the cohort given 400 mg twice 
daily (41%; n = 11). 

Interestingly, the results of the Phase I trial had reported sig-
nificant PARP inhibition with olaparib in normal and tumor 
tissues from doses t60 mg, resulting in downstream DNA 

replication fork arrest (demonstrated by an increase in JH2AX 
foci in plucked eyebrow hair follicles) [40]. These findings raise 
two main considerations for future studies: 

The inferior anti-tumor activity seen in the 100-mg twice daily 
cohort may indicate that target inhibition achieved within the 
tumor differs from that achieved in surrogate tissues, such as 
hair follicle cells; 

While these DNA strand breaks may be repaired when phar-
macological inhibition is removed, they raise concerns over the 
potential consequences of continuous dosing over a long period 
or combination with chemotherapy induced DNA damage if 
there is accumulation of mutations within normal tissues. 

Nonetheless, the olaparib ICEBERG studies have provided 
proof of concept for PARP inhibition hypothesis in cancers that 
harbor defects in HR repair pathways across different tumor 
primary sites of origin. 

As reflected by the number of PARP inhibitor-related abstracts 
reported at ASCO 2010, the aforementioned studies have sup-
ported the continued enrollment of patients into clinical trials 
evaluating the role of PARP inhibitors in combination with 
chemotherapy [43–47]. Schelman et al. reported the promising 
anti-tumor activity of an orally administered PARP1/2 inhibi-
tor, MK-4827, in both BRCA-deficient and sporadic cancers [44]. 
Similarly, Isakoff et al. reported the activity of a combination 
of the PARP inhibitor, Veliparib (ABT888) with temozolamide 
in patients with metastatic breast cancer [45]. Of note, activity 
appeared restricted to the BRCA1/2 carrier subpopulation in 
this small Phase II trial. Recent clinical trials evaluating the che-
motherapy sensitivities for standard regimens in patients with 
BRCA1/2 mutation are likely to provide important information 
for establishing adequate standard treatment controls and pro-
jected study accrual targets and feasibility for PARP inhibitor 
versus best standard chemotherapy trials [48,49].

Rationale for & results of PARP inhibition in basal-like 
& triple-negative breast cancers
Emerging evidence suggests that there is a potential therapeutic 
role for PARP inhibition in a wider subgroup of sporadic breast 
cancers that may have defective HR DNA repair pathways. Breast 
cancers arising in germ-line carriers of BRCA1 mutation, in par-
ticular those diagnosed before the age of 50 years, have been 
shown to have a characteristic phenotype that differentiates these 
from sporadic cancers [50–52]. Morphological and immunohisto-
chemical studies have clearly shown that there is an association 
between tumors derived from BRCA1 germline mutation carriers 
and those of sporadic basal-like tumors [53]. At least 80–90% 
of BRCA1-related breast cancers are basal-like [54]. Interestingly, 
BRCA2 mutation carriers do not share a predisposition for the 
basal-like phenotype but are most commonly luminal ER-positive 
cancers [55]. The clinical outcomes for women with sporadic basal-
like breast cancer compared with those with BRCA1-related can-
cers are broadly similar; notably early relapse (within 5 years), 
similar pattern of metastatic spread with a proclivity to develop 
metastatic deposits in the brain and lungs, and a poorer prognosis 
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compared with luminal-type breast cancers, particularly if the 
disease is not chemotherapy sensitive [56,57]. Morphologically, both 
BRCA1-mutated germline tumors and basal-like tumors have a 
high histological grade, high mitotic indices, pushing borders, 
conspicuous lymphocytic infiltrate and medullary/atypical med-
ullary features [58]. BRCA1 tumors have been shown to consis-
tently segregate together with sporadic basal-like breast cancers 
in hierarchical clustering ana lysis [54]. This association between 
tumors is termed ‘BRCAness’, whereby some sporadic cancers 
share characteristics with BRCA1 cancers. Profound genomic 
instability seems characteristic of both BRCA1-related breast 
cancer and sporadic basal-like breast cancer, which may reflect 
aberrant DNA-repair pathways that are common to both subtypes 
of cancer [59]. 

Mechanisms accounting for the BRCA-like phenotype in spo-
radic tumors have been under intensive investigation. Somatic 
mutations of BRCA1 and BRCA2 genes are very rare in sporadic 
cancers, although loss of heterozygosity of the genomic regions 
encompassing these genes is not uncommon [60,61]. BRCA1 mRNA 
levels have been shown to be reduced or undetectable in certain 
sporadic breast carcinomas and breast cancer cell lines [62–65]. 
Promoter methylation may contribute to this reduced BRCA1 
expression and has been implicated in up to 10–15% of sporadic 
breast cancers and up to 40–50% of so-called triple-negative 
(ER-, PR- and Her2-negative) breast cancer [66–68]. However, this 
is unlikely to be the sole mechanism, and overexpression of regula-
tory proteins such as Id4 has also been reported as downregulating 
BRCA1 expression [69]. The role of epigenetic silencing in disrupt-
ing BRCA2 protein function is less clear [70]. However, it has been 
demonstrated that the BRCA2 gene is negatively regulated by 
protein interactions with gene products of the EMSY gene, which 
has been reported as being amplified in 13% of sporadic breast 
tumors. Thus, both genetic and epigenetic mechanisms can create 
the BRCAness phenotype in some sporadic breast cancers, and 
these may therefore benefit from the therapeutic approach of syn-
thetic lethality with PARP inhibition. Likewise, the observation 
that cells deficient in other crucial homologous recombination 
proteins are sensitive to PARP inhibition provides the rationale for 
testing PARP inhibitors in other cancers; for example, recently it 
has been shown that PTEN-deficient cells are exquisitely sensitive 
to PARP inhibition [71]. This is particularly exciting considering 
the high incidence of PTEN inactivation in human tumors.

Although one of the most consistently identified types of breast 
cancer on gene-expression profiling, identification of sporadic 
breast tumors with basal-like phenotype with a convenient and 
universally agreed immunohistochemical method remains a chal-
lenge. Approximately 15% of sporadic invasive breast cancers 
are basal-like [72,73]. Basal-like breast cancers when identified 
using gene-expression arrays are characterized, among others, 
by the expression of genes associated with proliferation mark-
ers expressed in normal basal/myothelial cells and by low-level 
expression of hormone receptor- and HER2-related genes [74]. 
Identification of BRCAness within a tumor is difficult for a num-
ber of reasons: multiple genes are involved in the HR pathway, 
BRCA1 and BRCA2 are large genes, and somatic mutations do not 

seem limited to particular nucleotides or hot spots [75]. The search 
for readily applicable functional assays for homologous recombi-for homologous recombi- homologous recombi-
nation is critical for optimal implementation of these agents in 
a clinical setting. Studies recently reported the strategy of using 
epigenetic inactivation of the BRCA1 gene by CpG island hyper-
methylation as a potential predictive biomarker for the appli-
cation of PARP inhibitors to sporadic BRCA1-hypermethylated 
tumors [76,77]. Veeck et al. report that 36.7% (25 out of 68 tumors) 
of triple-negative noninherited breast cancer tumors had BRCA1 
methylation [76]. Nevertheless, this study examined the effect 
of BRCA1 promoter methylation state on PARP inhibitor sensi-
tivity on a single cell line with a BRCA1-methylated promoter, 
and hence additional work is required to demonstrate that this 
is indeed generally predictive of response to PARP inhibitors 
[78]. Graeser and colleagues have recently reported the possibility 
of the assessment of HR function by quantification of RAD51 
damage response competent proliferating cells following standard 
anthracycline and cyclophosphamide neoadjuvant breast cancer 
chemotherapy [79]. 

Owing to the lack of general acceptance of gene-expression 
profiling methodologies for identifying basal-like breast cancer in 
clinical samples, the so-called triple-negative (ER, PR and HER2) 
breast cancer – identified by immunohistochemistry and FISH – 
has become a commonly used proxy that identifies the majority of 
subtype [80]. It is worth noting that although the term ‘basal-like’ 
is often used synonymously with the term ‘triple-negative’, basal-
like subtype is a large but incompletely overlapping subset of the 
triple-negative breast cancer category. Approximately 15% of the 
triple-negative breast cancers are not basal-like [81]. Despite this, 
most current clinical trials exploring the role of PARP inhibi-
tors in sporadic breast cancers select patients according to this 
immunohistochemical surrogate of basal-like breast cancer [82]. 
In 2009, a small-molecule intravenous agent, claiming to be a 
PARP1 inhibitor, called BSI-201, or iniparib, became the first in 
its class to enter Phase III assessment. A Phase II study had previ-
ously investigated gemcitabine plus carboplatin with or without 
BSI-201 in patients with advanced triple-negative breast can-
cer. A total of 120 triple-negative breast cancer patients received 
gemcitabine 1000 mg/m2 plus carboplatin AUC2 on days 1 
and 8, with or without intravenous BSI-201 at 5.6 mg/kg on a 
twice-weekly schedule (days 1, 4, 8 and 11). Recently published 
final ana lysis reported that the combination of BSI-201 to gem-
citabine/carboplatin significantly improved median overall sur-
vival compared with patients receiving gemcitabine/carboplatin 
alone (12.3 vs 7.7 months; p = 0.01) [83]. Statistically significant 
improvements in median PFS (5.9 vs 3.6 months; p = 0.01) and 
ORR (52 vs 32%; p = 0.02) were reported in favor of the experi-
mental arm. The addition of BSI-201 to gemcitabine/carboplatin 
did not appear to potentiate toxicities seen with gemcitabine/
carboplatin alone. Currently the results await confirmation by 
a Phase III trial of similar design in the same population. Some 
regard the target dose of carboplatin at AUC2 day 1 and day 8 
an inadequate breast cancer control regimen in this study. It is, 
however, noteworthy that Phase II trials in unselected breast can-
cer patients have shown similar response rates with carboplatin 
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AUC4/5 given every 3 weeks as with AUC2 given every other 
week with gemcitabine [84–86]. Indeed, the overall response rate 
of 32% and the PFS of 3.6 months following the gemcitabine/
carboplatin control arm would be regarded as consistent with the 
results of more standard chemotherapy drugs used in the popu-
lation treated [83]. Despite the current uncertainties, this phase 
II study has supported the design and enrollment of patients 
into clinical trials evaluating the role of potent PARP inhibitors 
in combination with chemotherapy in both early and advanced 
sporadic triple-negative breast tumors. A press release by the 
sponsor has indicated the trial failed to meet its prespecified end 
points and the activity of the agent against PARP1 has been 
questioned. Further data have emerged while this review has 
been in process (see [87]).

Despite synergism between PARP inhibition and cytotoxic 
agents being intensely investigated, the optimal PARP inhibi-
tor–chemotherapy drug combination for investigation in TNBC 
remains to be established. A common theme emerging from 
Phase I combination studies of a range of potent PARP inhibitors 
has been that myelosupression is a common dose-limiting toxic-
ity [43,47,88]. Dent et al. evaluated the tolerability of olaparib com-
bined with weekly paclitaxel in patients with metastatic TNBC. 
Although the combination was well tolerated, acceptable dose 
intensity could not be maintained due to neutropenia, despite 
secondary prophylaxis with GCSF [89]. The iniparib combina-
tion study reported by O’Shaughnessy and discussed earlier did 
not report any increase in normal tissue toxicity. Although an 
intermittent PARP inhibitor dosing regimen, reduction in che-
motherapy dose intensity, or differences in intracellular or cell 
type-specific PARP inhibitor pharmacokinetics or target phar-
macodynamics may have provided protection from enhanced 
myelosupression reported in other combination trials. It seems 
likely that iniparib’s reported lack of activity against PARP1 is 
the main explanation here [90]. Thus, target inhibition, optimal 
relative dose level and scheduling of PARP inhibitor and che-
motherapeutic agent will require careful consideration in future 
PARP inhibitor and chemotherapy clinical trial design. If studies 
are to be designed in adjuvant and neoadjuvant settings, these will 
need to characterize possible long-term effects of these agents on 
marrow toxicity and induction of malignancy, especially when 
combined with DNA-damaging agents. 

Expert commentary & five-year view
The management of patients with both localized and advanced 
breast cancer continues to evolve. PARP inhibitors are a novel 
class of drugs that target DNA breakage repair mechanisms, 
and preliminary studies have shown them to have excellent 
anti-tumor activity with an acceptable toxicity profile as single 
agents and for some agents in combination with chemotherapy. 
They represent a significant advance in breast cancer research, 
translating knowledge of gene function into clinical practice by 
adding a potential targeted therapy option for BRCA deficiency-
associated breast cancers that are not usually amenable to anti-
HER2-directed therapies. Perhaps more broadly applicable is 
the clinical synergy reported in combination studies of PARP 

inhibitor and cytotoxic agents in some sporadic triple-negative 
breast cancers, a subgroup for which, at present, there is no 
targeted treatment. 

Larger studies are needed to address a wide variety of clinical 
questions in an effort to refine a putative role for PARP inhibi-
tors in patients with breast cancer. The implementation of these 
randomized Phase II/III trials in the BRCA1 and BRCA2 carrier 
community may present some challenges. Together with the small 
proportion of breast cancer patients likely to be eligible, the general 
lack of availability of rapid turnaround genetic counseling and test-
ing for BRCA1 and BRCA2 mutation poses a serious threat for the 
recruitment of patients with a known genetic breast cancer diagno-
sis. As previously demonstrated, collaboration in international inter-
groups is likely to be a prerequisite for accrual of adequate patient 
numbers [41,42]. A recent report of a study conducted in sporadic 
as well as BRCA1/2-mutated TNBC or high-grade serous ovarian 
cancers provided the tantalizing possibility of a role for single-agent 
PARP inhibition in high-grade sporadic serous ovarian cancer but 
provided less reassurance for a role for single-agent PARP inhibitor 
therapy in sporadic TNBC [91]. The lack of activity of olaparib in the 
TNBC group should be interpreted with caution, not only because 
of the small number of patients evaluated and their extensive prior 
treatments, but also owing to the fact that TNBC comprises a 
heterogeneous group of diseases where representation of a PARP 
inhibitor-sensitive BRCAness subgroup may be low in a very small 
unselected population. Identification of a convenient and accurate 
biomarker to identify PARP-inhibitor sensitive non-BRCA-mutant 
HR-deficient cancers is crucial for future clinical development of 
BRCAness targeting approaches in sporadic cancers.

A recent study has shown that hypoxia-induced HR defects can 
yield a BRCAness phenotype. It is known that the ability to repair 
DNA damage by the HR pathway is impaired in hypoxic cells. 
Chan et al. demonstrated both in vitro and in vivo that hypoxic cells 
can be selectively killed by PARP inhibition [92]. These results there-
fore expand the possibilities of PARP inhibitors in the clinic and 
support a novel treatment strategy by specifically targeting hypoxic 
tumor cells that are resistant to radiotherapy or chemotherapy.

In addition, not all patients with the BRCA1 and BRCA2 muta-
tions responded to PARP inhibitors in the Phase II studies, and 
it is imperative that further research investigates the basis for this 
difference in response. Although no clinical studies have reported 
mechanisms of resistance in patients treated with PARP inhibi-
tors, acquired resistance is a common feature of molecular targeted 
agents following prolonged drug exposure. Evidence in platinum-
refractory patients with BRCA mutations has suggested the selec-
tion for intragenic ‘reversion mutations’, whereby patients have an 
additional mutation that restores the open reading frame of the 
gene and homologous recombination functionality [93–95]. Since 
platinum salts are thought to exert their BRCA1/2-selective effects 
by a similar mechanism to PARP inhibitors, it is not surprising 
that this model of acquiring ‘reversion mutations’ is supported by 
studies of PARP inhibitor-resistant clones that acquired the ability 
to form RAD51 foci after PARP inhibitor treatment [93]. It is likely, 
however, that other resistance mechanisms independent of restora-
tion of BRCA1/2 function may also be relevant [96]. Liu et al. report 
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the upregulation of RAD51-based recombination by a resistant cell 
line with functional HR to compensate for the loss of base excision 
repair [97]. Another study reports the development of drug resistance 
following long-term treatment with a PARP inhibitor, caused by 
upregulation of p-glycoprotein efflux pumps [98]. Examining clini-
cal samples from patients on PARP inhibitors trials prior to and 
following the development of resistance should be explored. 

Although there remain several unresolved issues, PARP inhibitors 
are, both as single agents and in combination, undoubtedly making 
progress towards personalizing treatment in breast cancer. They will 
also bring the welcome challenge of discovering and implementing 
a rapid access companion diagnostic necessary to select patients 
who will most benefit.
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Key issues

Genomic instability due to defects in DNA-repair pathways is a common characteristic of many tumors.
Poly(ADP-ribose) polymerase (PARP)1 is involved in modification of DNA and recruitment of DNA-repair effectors in both ssDNA and 
replication fork-associated damage.
If PARP1 is inhibited, unrepaired damage and arrested DNA replication forks require BRCA1 and BRCA2 for repair, and the combined 
loss of function in selected tumor cells is associated with cell death, leading to single-agent effectiveness.
Combinations of PARP1 inhibitors and certain DNA-damaging agents in appropriate selected tumors, such as BRCA1/BRCA2 function-
deficient sporadic carriers, may be both synergistic and tumor selective.
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