
This electronic thesis or dissertation has been 

downloaded from the King’s Research Portal at 

https://kclpure.kcl.ac.uk/portal/  

Take down policy 

If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing 

details, and we will remove access to the work immediately and investigate your claim. 

END USER LICENCE AGREEMENT 

Unless another licence is stated on the immediately following page this work is licensed 

under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International 

licence. https://creativecommons.org/licenses/by-nc-nd/4.0/ 

You are free to copy, distribute and transmit the work

Under the following conditions: 

 Attribution: You must attribute the work in the manner specified by the author (but not in any
way that suggests that they endorse you or your use of the work).

 Non Commercial: You may not use this work for commercial purposes.

 No Derivative Works - You may not alter, transform, or build upon this work.

Any of these conditions can be waived if you receive permission from the author. Your fair dealings and 

other rights are in no way affected by the above. 

The copyright of this thesis rests with the author and no quotation from it or information derived from it 

may be published without proper acknowledgement. 

Combined systems approaches to understand host-pathogen interactions

Kozlowska, Justyna

Awarding institution:
King's College London

Download date: 15. Jan. 2025



King’s College London

PhD Thesis

Combined systems approaches to

understand host-bacterial

interactions

Author:

Justyna Kozlowska

Supervisor:

Dr. A. James Mason

Dr. Ken D. Bruce

A thesis submitted for the degree of

Doctor of Philosophy

in the Institute of Pharmaceutical Science

of the Faculty of Life Sciences & Medicine



Acknowledgements

I would like to take this opportunity to express my deepest appreciation to all the

people who have helped me out over the last four years. I am fortunate enough

to have the support of so many people and without them my project would not

be where it is now. Some people helped on the project directly, while others gave

me a push in the right direction. To every one of them I am eternally grateful

for their help and support.

This work was supported by BBSRC CASE studentship awarded to Dr A.

James Mason at King’s College London and Dr Michael McArthur at Procarta

Biosystems, so firstly I want to thank them, as without them this project wouldn’t

have happened. The most instrumental person for this thesis was my supervisor

Dr James Mason, whose patience and guidance know no bounds and who con-

stantly encourages me to go beyond my aims. I have worked with him for the

last 5 years, first as a MRes project student, and now as a PhD student. I would

also like to thank him for all the hours he has spent proof reading my reports,

drafts of this thesis and also for our chats about life in general while having a

drink every now and then. The work presented in this thesis owes much to his

enthusiasm and careful guidance. I would like to thank also my second supervisor

Ken D. Bruce for his advice and expertise and a great input in my publications

and this thesis.

I wanted to thank the person I worked with on a daily basis for the first year

of my PhD, Dr Louic Vermeer, for sharing so freely his time, knowledge and

expertise which have been invaluable for the project even long after he left KCL.

In the IPS department I also worked with Dr Geraint Rogers who shared his

time and expertise in working with RNA and later when we started a collabo-

ration, which led to two publications and a deepening of my faith in my own

abilities.

i



Thanks goes to great colleagues on the 5th floor of Franklin-Wilkins Building

for stimulating conversations, dinners, evenings in the pub. I am particularity

thankful for the time spent with Beatriz Padilla and Min Kim-our lunches, tea

breaks, getaways and cycling trips, which will hopefully continue long after I leave

King’s College London. Also, a big thank you to Francesca Di Giuseppe, who

once was a member of the lab and remains a great friend still. I also acknowledge

Dr Andrzej Tkacz who I met while working with the industrial sponsor of my

PhD and who has become a close friend always willing to cheer me up and give

advice in times of doubt. A big thank you to Magda Swedrowska, who is a

colleague, a flatmate and a friend and the last two years wouldn’t be the same

without her.

In the last 4 years I was fortunate to supervise many talented students whose

work was included in my publications: Sara-Beth Amos, Kiran Shafiq, Nabila

Rehnnuma and it was a real pleasure to work with them.

Also, a thank you to the NMR facility manager, Dr Andrew Atkinson, always

so helpful and willing to answer NMR-related queries. In addition thank you

to staff members in the King’s Genomics Centre for help with processing and

analysis of the GeneChips, especially Dr Matthew Arno, and staff members in

the The Centre for Ultrastructural Imaging (CUI) who have also been extremely

helpful and accommodating.

There are also other people who do not work with me but have been friends

for many years and I would also like to thank them for their support - Hanna Rys,

Bogdan Sciezka, Natalia and Alexei Matveyev and friends in Poland who stayed

close despite the distance between us-Malgorzata Myczek, Monika Pietryka, Pi-

otr Guzinski, Kasia Olczyk and Slawomir Michalowski. My flatmates and ex

flatmates who put up with my moods, have supported me in my endeavours and

provided a welcome distraction from work, particularly Gemma Glover, who re-

mains a great source of inspiration despite living 10,000 miles away from London.

I would like to thank my mum, my grandmother and sister for supporting

me for the last 28 years. It is through their encouragement that I have made it

through all the steps to reach this point in life.

In summary, I would like to thank everyone for putting up with me for the

past four years. I hope that this project will make a real contribution to the field

and I hope that everyone that reads this thesis in its final shape finds it useful

in their work.

ii



Abstract

Systems biology studies are becoming increasingly important as the need to study

organisms in a holistic manner, instead of looking at processes in isolation, is be-

ing recognised. This is especially true for the study of host-pathogen interactions

where the responses from bacteria are complex and overlap extensively. This

thesis explores the application of 1H NMR metabolomics to the study of bacteria-

host interactions and seeks to identify its strengths and weaknesses with a view

to integrating this technique into a combined approach that can provide an un-

precedented, sophisticated understanding of host-pathogen interactions that we

believe is intractable by other methodologies.

The BBSRC CASE studentship that supported this work was awarded in

conjunction with Procarta Biosystems Ltd who have produced a new generation

of antibiotics with a novel mechanism of action. The final objective for the

studentship therefore, was to develop a validated systems approach capable of

defining the mechanism of action of this new class of antibiotics; transcription

factor decoys (TFDs). By understanding how the target bacteria respond to

antibiotic threats, the future development of new targets, delivery systems and

formulations can be undertaken in a rational manner. The thesis builds towards

this ultimate goal in three stages by showing, in a stepwise manner, how three

increasingly complex scenarios can be interrogated by NMR metabolomics, either

as a standalone technique or in combination with biophysical or genomic tools.

In the first stage we investigated how the growth of different Pseudomonas

aeruginosa isolates from Cystic Fibrosis patients might influence airway secre-

tions. Growth and NMR analysis of the spent media was technically challenging,

highlighting the need for improved data pre-processing techniques and exper-

imental design. Nevertheless multivariate analysis of changes in spent media

composition could be related to univariate clinical measures of respiratory dis-
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ease.

In the second stage we undertook a murine faecal microbiome study to show

how different gut microbial communities affect the host gut metabolome. Faecal

pellets were extracted into aqueous buffer and 1H NMR spectra obtained in the

solution state. Clear differences in the amino acid and short chain fatty acid

complement of the mouse gut were related to divergence in the gastrointestinal

microbiota in the mice. The study required comparison of two separate sets of

multivariate data and showed how, with application of Hierarchical Cluster Ana-

lysis, relationships between microbiota can be simplified to generate hypotheses

that can be tested using metabolomic approaches. In this study the metabolomic

technique was capable of identifying a link between divergence of gut microbiota

and the nutritional performance of the mouse gut.

In the third and final stage, we investigated whether a whole organism view

could provide a bacterial perspective to enable a better understanding of how bac-

teria respond to antibiotic challenges. Here we combined 1H NMR spectroscopy,

now of solid, bacterial cell samples (using high resolution magic angle spinning),

with electron microscopy and transcriptomics to characterise the effect on Es-

cherichia coli of four structurally and physically related antimicrobial peptides

with suspected differences in their mechanisms of action. Bacterial responses

characterised by the NMR metabolomic study could be detected at sub-lethal

antimicrobial peptide concentrations and were qualitatively different according

to the antimicrobial peptide. The technique was sufficiently sensitive and high-

throughput to allow both a range of antimicrobial peptide concentrations to be

probed as well as the bacterial response to be followed over time. Using the NMR

technique to identify optimal conditions for GeneChip experiments allowed the

antimicrobial peptide mechanism of action to be inferred from analysis of the

ontological profile of those genes whose expression is altered in response to the

antibiotic challenge. This study provided a fresh, novel perspective for previ-

ous functional and biophysical studies and shows that, with better integration

with transcriptomic and other systems data, 1H NMR metabolomics will have

considerable value in the study of host-pathogen interactions.
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1.1 Introduction

The human body contains 10 times more microorganisms than its own cells and

researchers now estimate that more than 10,000 microbial species occupy the

human ecosystem [3]. Some bacteria are beneficial or even vital for a healthy

population, whereas others are linked to disease and it is important to learn

how this correlates with changes in the microbiome. The study of complete sys-

tems using approaches that provide a holistic view of host-bacterial, in particular

host-pathogen, interactions is becoming an essential tool in the battle against

antimicrobial resistance. Given the complexity of host-bacterial interactions a

systems biology approach is regarded as necessary to move forward in our un-

derstanding of biological processes involved [4–6]. Host-bacterial interactions are

considered dynamic, complex and multifactorial and a combination of advanced

-omics technologies is required to access the level of detail necessary to resolve

the key interactions in their entirety. Therefore, the broad aim of this work is to

develop new ways of investigating how bacteria interact with their environment

and host: how they cope with environmental changes that confer stressful stim-

uli such as a challenge by antimicrobial peptides, but also how bacteria influence

their environment. In this chapter, and each of the results chapters, it is argued

that host-bacterial interactions are complex and deriving meaningful biological

information from such systems is challenging. This thesis suggests that metabolo-

mics techniques (here based on NMR spectra of bacteria or their products) might

be a cost-effective and high-throughput means of characterising these complex

interactions. The key advantage of metabolomics over other -omics approaches

is that it allows reduction of the overall complexity of the system, while retaining

the ability to maintain an overview of the complete system. This is due to the

fact that, in a bacterial cell, metabolites should be less abundant than genes and

proteins [7]. The challenge in applying metabolomics techniques to host-bacterial

interactions is to retain the ability to understand biological function while reduc-

ing the number of reporters from biological processes in the cell. Our ultimate

goal is to combine two existing techniques, metabolomics and transcriptomics,

in a novel approach that provides a platform to probe host-bacterial interactions

yielding mechanistic understandings that are not tractable through other means.

Our approach here has been to relate NMR metabolomic data to, first, univari-

ate measures of patient outcomes, a simplified but multivariate analysis of gut

microbiota and ultimately the highly multivariate data available from GeneChip.

At each step the strengths and weaknesses of the NMR metabolomic method are

2



considered, as is the ability to effectively relate this data to a biological under-

standing of host-bacterial interactions.

Understanding the functional connections between genes, proteins and metabo-

lites is one of the greatest challenges in the postgenomic era and -omics ap-

proaches are often applied simultaneously in an integrative approach coupled

with improved performance of bioinformatics. Proteomics is a direct method of

analysing the function of genes by systematic identification and quantification

of its associated proteins. However, such studies are complex and the results

not always discriminatory, since one gene can give rise to more than one pro-

tein through alternative splicing or post-translational modifications in eukarotes.

Post-translational modifications can also lead to profound alterations in protein

activities and characteristics [8]. Another molecular strategy, transciptomics,

measures the expression level of mRNA in a given cell population. Although

transcriptome and proteome analyses provide important aspects regarding phys-

iology of a cell, much is still unknown and it has been argued that the generation

of hypotheses through these -omics data alone, is incomplete and may lead to in-

correct interpretations [8]. Recently metabolomics has emerged as an important

tool in understanding biological systems. Metabolites (small organic molecules)

are either the end products or currency of cellular processes, hence the metabo-

lome level should be an indicator of the transcriptomic and proteomic changes

and reflect the response of biological system to environmental changes [9]. Me-

tabolomics aims to define the complete set of metabolites for a biological system

at a specific time or a cellular state in a holistic approach and provides major

advantages over other -omic platforms:

• metabolomic data is easier to manage, as metabolites are less abundant

than genes, transcripts and proteins, therefore the complexity is reduced

(there are 2,700 metabolites in E.coli, ca. 5,000 genes with ten times greater

proteome size and a number of possible protein-protein interactions much

exceeding this number [10])

• metabolites offer a better way of discriminating between cellular states /

conditions as changes in concentrations of metabolites are faster than in

proteins and transcripts and sometimes changes in proteins and transcripts

do not result in pertinent changes to the phenotype or in metabolites [9, 11]

• with necessary infrastructure (having access to the equipment), analysis

of the metabolome is more cost-effective and high-throughput than of the
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proteome or the transcriptome

Regardless of the platform used, metabolomic data generation consists of five

essential steps outlined in the next chapter (Chapter 2 on page 18):

1. Sample preparation

2. Raw data generation e.g. LC-MS chromatogram or NMR spectra

3. Data pre-processing e.g. spectral calibration, baseline correction

4. Multivariate data analysis and integration into biologically relevant infor-

mation

5. Setting of the results into biological context

The importance of each of these steps are considered in the context of different

applications, of NMR metabolomics to host-bacterial interactions, which each

seek to obtain biologically relevant information from an overview of the main

metabolic variables of each system.

1.2 The complexity of host-bacterial interactions,

a role for metabolomics?

In the ’damage-response framework’ [12], which outlines the contributions of both

the pathogen and the host in the process of pathogenesis, the pathogen is defined

as a microbe that has the ability to cause host damage, virulence is the relative

ability of the pathogen to cause host damage, whereas the virulence factors com-

bine all the properties of the pathogen that can damage a susceptible host. Often,

it is properties of the host at a given time that will determine whether bacteria

are pathogenic or not, thus different hosts can respond differently to the attack

of the same pathogen. Moreover, the same host can have a differing susceptibil-

ity to the same pathogen at different times. Generally, there are four possible

outcomes of a bacterium interacting with a host: commensalism, colonisation,

persistence or disease depending on the ability of the bacterium to avoid, ma-

nipulate or disarm host defence responses. Furthermore, at any given moment of

host-bacterial interaction each of those states can occur at the same time [12]. In

order to survive stress conditions, including the host environment, and maintain

homoeostasis, bacterial cells respond through coordinated changes in gene expres-

sion and cellular metabolism via highly integrated regulatory networks. Bacteria
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have evolved to constantly monitor and counteract harmful environmental in-

sults and are equipped with stress sensing regulatory systems, which operate

predominantly at the level of transcription initiation [13]. This can be achieved

by regulation of gene expression or by using alternative sigma factors (σ), which

are specificity proteins that can redirect ribonucleic acid (RNA) polymerases and

initiate transcription from alternative promoters by substituting the primary σ

[14]. Also, the concentrations of certain metabolites can affect gene expression,

which in turn can regulate metabolic activity [15] (Figure 1.1 on page 9). For

example low levels of tryptophan in the environment induce the expression of

genes responsible for production of this amino acid. According to Vinson et al.

[16] despite Escherichia coli (E. coli) responding to the environmental changes

by regulating the level of enzyme expression to keep metabolite levels stable,

messenger RNA and protein levels do not change in response to most gene dis-

ruptants. Changes in the structure of the metabolic network keep the levels of

most metabolites stable. This is supported by another study [17], which reveals

emergence of an alternative pathway in central carbon metabolism in response

to 12 different nutrient conditions. It did not require changes in gene expression,

but rather relied on the accumulation of an intermediate metabolite. This study

demonstrated the robustness of bacterial metabolic pathways. Brooks et al. [18]

on the other hand postulates, using their data-driven models, that bacteria can

tailor transcriptional responses to environmental changes, despite a modest num-

ber of regulators. It is still to be explored, however, to what extent the changes

of metabolite concentrations and transcriptional response are related [15, 19] and

weather metabolomics and transcriptomics approaches can be combined to gain

insight into the coordination of these responses and their dynamics in the con-

text of host-bacterial interactions. It is also unknown whether metabolomics can

emerge as a stand-alone technique for this purpose.

1.2.1 The influence of host-bacterial interactions on pa-

tient outcomes, a role for metabolomics?

Bacteria are able to mount various stress responses to survive selective pressures

from their environment. Pathogenic bacteria are also capable of deploying vir-

ulence factors that allow them to successfully colonise host organisms [12, 20].

The immune system of the host organism poses many barriers for bacteria and

highly sophisticated virulence factors are required to facilitate entry, inactivate
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host defence systems and provide recovery from the damage suffered by bacteria

from host defences. Despite this large panel of stresses imposed by host cells or

the host organism, pathogens need to access new environmental niches to win

competition with other microorganisms and sustain growth [20]. Colonisation of

a host is beneficial for pathogenic microorganisms as compared with free living

bacteria, as abiotic conditions such as temperature, pH, pressure, osmolarity, hu-

midity among others as well as supply of nutrients is constant [12, 20]. Mounting

stress responses and activation of suitable virulence factors are often intercon-

nected and, in contrast to specific environmental stress responses, much more

complex. Bacteria are under assault from many different stressors simultane-

ously with even more signals to take into account in case of infection when the

host innate and adaptive immune responses are active. This hinders the direct

analysis of host-pathogen interactions using traditional, reductionist approaches.

Bacterial responses to host defence systems can be divided into defensive and

offensive [13]. Defensive responses facilitate survival when faced with challeng-

ing conditions. Offensive mechanisms are represented by the virulence factors

including an array of toxins, adhesins and invasins essential for active crossing

of barriers in a host organism and elimination of its defence mechanisms. When

considering defensive mechanisms, there are two ways in which bacteria can pro-

tect themselves from stress conditions and increase their chances of colonisation

and proliferation: biofilm formation and modifications to bacterial surface struc-

tures. Pathogens can modify themselves and their unique antigens or disguise

them by coating their surface with various host proteins, which results in inhibi-

tion of opsonising antibodies and any subsequent reactions such as phagocytosis

or complement activation [21]. Another variation of this defensive mechanism

is modifications to the composition of bacterial lipopolysaccharride or endotoxin

(LPS) in Gram-negative bacteria and secretion of extracellular material in form

of a slime layer or a capsule. Biofilms are multicellular agglomerations, struc-

tured communities where bacteria of distinct physiological states [22] attach to

each other as well as host surfaces or abiotic surfaces and are embedded in a

slimy extracellular matrix composed of proteins and/or carbohydrates [23]. Var-

ious persistent and destructive inflammatory processes are attributed to bacteria

living as biofilms, since they can reach resistance levels 10-1000 times higher

than planktonic bacteria, which are single-cells that may float or swim in a liq-

uid medium [23]. The high persistence and decreased sensitivity to antibiotic

treatment is caused by many factors. These include reduced metabolic activ-
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ity, insufficient penetration of antimicrobial agents into biofilms and protection

against phagocytosis, binding of effector molecules, activation of signalling path-

ways and other immune responses by the extracellular matrix. The pathogen is

not recognised as potentially dangerous, therefore the host immune system can-

not elicit the necessary response to eliminate it. This survival mechanism can

be seen in cystic fibrosis patients, whose lung infections are dominated by Pseu-

domonas aeruginosa (P. aeruginosa). Secretions from P. aeruginosa potentially

play a selective role in the overall microbiota composition in the airways and also

affect CF lung function [24]. In our study (Chapter 3 on page 48) the impact

of Pseudomonal secretions on key indicators of patient outcomes has been in-

vestigated. This study serves to highlight how a limited selection of univariate

patient data can be related to the multivariate data obtained in a metabolomic

investigation and potentially identify the key effects of bacterial colonisation.

1.2.2 Microbiome and metabolome, a causal relationship?

Deleterious effects can come also from products secreted by host cells to the

extracellular environment and bacteria have to mount a survival response by up-

regulating suitable stress responses and expression of virulence factors. These

insults can include antimicrobial peptides [25] and other antibacterial agents

such as lysozymes, bile salts, fatty acids, chloridhydric acid, but also resident

microbiota. This can be seen in the specialised microbes that have evolved to

survive the insults imposed on them by the range of niche habitats within the

gastrointestinal ecosystem, such as Bacteriodetes and Firmicutes [26]. Such spe-

cialisation of microbiota to withstand the insults and adapt to the environment

presents evolutionary advantages to the host. Lederberg [27] has emphasised the

importance of having a broad, holistic view of such relationship. The existence

of microbe and human is interdependent; the phenotype of colonising bacteria

can influence the emergent properties of the community and this in turn can be a

factor modulating e.g. nutritional extraction or susceptibility to certain diseases

in some hosts [26, 28]. Metabolites, in turn, are effector molecules and can be

the reason behind the associations between microbiome and conditions such as

obesity, allergy etc., which are associated with alteration in the composition of

the microbiota. Obese and lean humans differ in microbiota compositions [29].

It was demonstrated to modulate metabolism in germ-free mice when transferred

with microbiota from obese and lean humans, highlighting the need for greater

understanding of microbiota-host metabolic interactions. A recent publication
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[30] demonstrates that microbiome disruption early in life, for example through

exposure to antibiotics, can be linked to increased risk of obesity in adulthood.

The gut microbiota has been also shown to be critical in the homeostasis of host

metabolic and immune networks. When early microbial colonisation in mice was

delayed, the gut associated lymphoid tissues (GALT) failed to develop, leading

to persistent immune dysregulation [31]. Links between changes in microbiota

due to antibiotic use, dietary changes, and other lifestyle differences and devel-

opment of allergic diseases have also been shown [32]. Worldwide, sensitisation

rates to one or more common allergens among school children are currently ap-

proaching 40 %-50 % [33]. In Europe, 87 million people suffer from allergies [33]

and the issue and its link to gut microbiome received coverage in recent news [34].

Such a relationship between microbiome and metabolome was investigated in

the mouse gut using NMR-metabolomics. We have examined faecal pellets and

were able to detect differences in their composition which related to the diver-

gence in the mice gut microbiota (Chapter 4 on page 83). The challenge here is

to relate two sets of multivariate data (microbiome and NMR metabolome) to

each other to understand how a change in gut microbiota might effect host re-

sponses manifested in diseases processes. Here the microbiome data is simplified

by using a hierarchical cluster analysis that identified groups of mice whose gut

microbiomes were closely related. This provided groups of mice whose gut faecal

metabolomes could be compared to reveal how variation in gut microbiota can

substantially alter the small molecule complement and nutritional balance of the

animal.

1.2.3 The complexity of bacterial stress responses: Com-

bining metabolomics and transcript profiling to in-

vestigate bacterial responses to antibiotics.

Biological systems are composed of functional units that interact at multiple

levels via complex network of genes, proteins and metabolites. The interaction

is regulated primarily by signalling molecules and enzymatic inhibition or acti-

vation reactions with transcription being controlled by levels of metabolic end

products (Figure 1.1 on the following page). Therefore, in order to capture such

complex and dynamic interplay, which spans so many regulatory levels, a sys-

tems biology approach is essential. To complete this task a combination of -omic

8



Figure 1.1: Systems biology level of cellular organisation. Shows metabolic

network and feedback regulation in response to developmental and environmental

conditions. Modified from Carneiro, S.M A (2010). A Systems Biology approach for

the characterization of metabolic bottlenecks in recombinant protein production

processes. Ph.D. Thesis. University of Minho: Portugal.

methodologies supported by biophysical tools were used, which investigate bac-

terial systems at different organisational levels. Combined -omics strategies can

increase understanding of host-pathogen interactions by identifying biomarkers,

giving insights into metabolic and genetic network regulation and identifying

pathway bottlenecks and nutritional requirements. This knowledge will inform

rational development of prevention and control measures. However, to be able to

interpret such data and give it biological meaning, it is essential to differentiate

between different bacterial responses and the possible outcomes of host-pathogen

interactions at the transcriptome and metabolome level.

Bacterial stress responses can be classified into those induced by nutrient lim-

itation (general stress response, the stringent response), cell damage or exposure

to antibiotics (envelope stress, DNA damage, oxidative stress) or abiotic stress

(heat stress, osmotic stress). Each of these types of bacterial stress response

overlap and more than one stress response can be induced by the same stimulus
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and the same alternative sigma factor can be induced independently in different

types of stress response.

The general stress response is initiated by activation of alternative sigma fac-

tor RpoS (ς 38) in response to starvation and growth inhibition, but also growth

rate reduction, extreme temperature changes, high osmotic pressure and low pH

[35]. The RpoS regulon overlaps extensively with other global response networks

and directly or indirectly controls over 200 genes in E. coli [36]. Another aspect

of this response is induction of DNA polymerase (Pol) IV and Pol V. The activity

of Pol V is tightly controlled and targeted in E.coli in order to prevent sponta-

neous mutations which are usually detrimental [37], whereas Pol IV activity leads

to an increase in the spontaneous mutation rate of stressed cells. RpoS has also

been proposed to be responsible for down-regulating enzymes essential for mis-

match repair (MMR) [35]. Therefore, under stressful conditions bacterial cells

are primed for genetic change and accumulate the mutations that increase their

chances of survival via mutagenic phenomena referred to as adaptive mutation

[36].

The stringent response is the second type of response triggered by nutri-

tional limitation and amino acid starvation and its initiation is mediated by

the RelA/SpotT enzymes [38]. It is characterised by accumulation of guano-

sine 3‘-diphosphate 5‘-triphosphate (pppGpp) and guanosine 3‘-diphosphate 5‘-

diphosphate (ppGpp) nucleotides, collectively referred to as (p)ppGpp. The re-

sult of (p)ppGpp accumulation is the arrest of ribosomal translation and, in

E.coli, (p)ppGpp mediates this process by inhibiting replication initiation [38]

thereby shifting the expression of genes responsible for cell growth to expression

of stress-related genes. Little is known about the impact of the (p)ppGpp-induced

stress response on cellular metabolism, but it plays a key role in the adjustment

of the bacterial growth rate, therefore continuously balancing between growth

and survival. It facilitates the RpoH (below) and RpoS responses and multiple

studies suggest that it may be involved in many other cellular responses such as

DNA damage, osmotic, oxidative or SOS stresses [39].

Bacteria have evolved to have many ways to minimise lethal consequences of

exposure to DNA damaging agents. The SOS response is triggered by DNA dam-

age and is mediated by the LexA/RecA regulon [35]. Regions of single stranded

DNA (ssDNA), a result of DNA damage or DNA repair, are recognised and com-
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plexed with RelA, a bacterial recombinase, which in turn induces cleavage of

the LexA repressor. Cleavage of the LexA repressor results in increased activity

of enzymes essential for DNA repair, synthesis and recombination and tolerance

mechanisms including DNA polymerases-Pol IV (above), Pol V, encoded by the

umuDC genes, and Pol II, which is thought to be responsible for rescuing stalled

replication forks [35]. In total, 42 genes have been identified to be regulated by

LexA-RecA regulon including genes involved in efflux pumps, channels, mem-

brane function [40]. Other deleterious conditions activating SOS response are ex-

posure to antimicrobials, sublethal/lethal pH and hydrostatic pressure changes,

oxidative stress, metabolic intermediates and nutrient limitation [40]. Recent

studies revealed a network of genes in E.coli that play a role in modulating the

response to DNA damage whose induction is independent from LexA/RecA regu-

lon [41]. A study applying a metabolomic and transcriptomic approach to look at

the effects of agents such as antimicrobial peptides targeting DNA could perhaps

provide more insight into the regulation of those genes.

In the maintenance of homoeostasis in E.coli and other Gram-negative bac-

teria the first line of defence is the cell envelope and bacteria respond strongly

to its perturbation. Those responses are highly regulated by alternative sigma

factors and two component systems (TCSs). There are five major envelope stress

responses in E.coli : sigma factor RpoE (ς E), Cpx signalling system, Rcs (reg-

ulator of colanic acid synthesis), phage-shock protein (Psp), and Bae response

[42]. (ς E) is increased in response to a variety of conditions: heat shock, ex-

posure to ethanol, treatment with antibiotics, mutations leading to misfolding

of outer membrane (OM) and alterations in LPS. The Cpx regulon is triggered

by alterations to the composition of the inner membrane (IM) and also alka-

line pH, whereas the Rcs response is triggered by treatment with beta-lactam

antibiotics and lysosyme, which inhibit peptidoglycan synthesis [43]. Envelope

stress response pathways are therefore activated by generation and accumulation

of misfolded periplasmic or membrane proteins and loss of OM integrity and the

main aspects of the responses involve upregulation of genes encoding periplasmic

chaperones and proteases that refold or degrade those proteins alleviating the

stress response [43]. This helps in repair and biogenesis of the bacterial enve-

lope and thereby restoration of cell surface integrity. Envelope stress response

pathways also play roles in bacterial motility, colony and biofilm formation and

virulence regulation [43].
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Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are gen-

erated in the course of metabolism, exposure to antibiotics and redox-active

molecules and can also be a way of one bacterial species inhibiting growth of an-

other [44]. They can cause damage to proteins, nucleic acids, and cell membranes

and, to counter the effect of oxidative stress, bacterial cells constitutively express

a number of antioxidant enzymes that detoxify the reactive oxygen species and

repair the damage they caused. In addition to the SOS response, several ded-

icated responses to oxidative stress have been identified. Two major adaptive

responses are regulated by the redox-sensitive transcriptional activator (SoxR)

and hydrogen peroxide-inducible genes activator (OxyR) regulons in E. coli [45].

Moreover, exposure to ROS was shown to induce expression of genes required for

induction of components of multidrug efflux system promoting resistance devel-

opment [46]. Most of the cell death that occurs upon hydrogen peroxide exposure

is thought to be due to DNA damage [47], whereas some of the DNA damage

leads to miscoding and increased mutagenesis in aerobically growing cells [45].

The heat-shock response (HSR) is triggered upon activation of another alter-

native sigma factor-RpoH (ς 32) through a signal transduction system in response

to a temperature shift above the normal growth range [35]. The consequence of

the response is overproduction of proteins that increase the tolerance of bacte-

ria to such thermal insult-heat-shock proteins (HSPs). The sudden increase in

temperature leads to cytoplasmic stress and misfolded and unfolded proteins.

Among HSPs are chaperones and proteases that aid elimination of such damaged

proteins. Furthermore, in UV mutagenesis, molecular chaperone GroE, which is

controlled by RpoH-regulon, protect Pol V from degradation therefore controlling

the spontaneous mutation rates [48]. It has been suggested that GroE is impor-

tant for Pol IV-induced adaptive mutation by protecting Pol IV from degradation

[49]. The RpoH regulon can be induced by stimuli other than temperature shift:

depletion of amino acids and carbon source, phage infection, challenge with an-

tibiotics or heavy metals, DNA damage and oxidative stress [35].

Another form of stress, experienced by bacteria, that can alter cell structure,

chemistry and physics is osmotic stress. Bacteria attenuate external upshifts and

downshifts in osmotic pressure by accumulation (by de novo synthesis or uptake

from the environment) of electrolytes or small organic solutes such as potassium

ions, glutamate, proline or trehalose and release via mechanosensitive channels.

The main aspect of the response is maintenance of turgor pressure within the
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cells, by ensuring that the osmolarity of the cytoplasm is greater than the osmo-

larity of the medium [50].

To be able to thrive in a variety of habitats, bacteria had to evolve to respond

to fluctuations in their environment. Bacteria have to be able to not only handle

these nutritional and abiotic stresses, but also compete or share their environ-

ment with other organisms in their respective niches and hence may influence

their own environment. Recent studies have focused on characterising those in-

teractions and classifying them as cooperative, competitive or adaptive.

Therefore, in order to gain a comprehensive view of host-bacterial interactions

and regulation mechanisms a method is needed capable of probing such complex

responses.

1.3 Metabolomics

The metabolome is defined as the collective set of low molecular weight intermedi-

ates/metabolites in a biological system under particular physiological conditions

[9, 11, 51]. Metabolomics studies the changes in the biological state of the cell,

tissue, organ or the whole organism by non-biased identification and quantifi-

cation of all detectable metabolites in the system [9, 11, 51] and the term was

coined by Steve Oliver of University of Cambridge [9]. Its sister term, metabo-

nomics, is defined as the quantitative measurement of the time-related multi-

parametric metabolic response of living systems to pathophysiological stimuli or

genetic modification [52], however, the terms are often used interchangeably and

the term ”metabolomics” will be employed throughout this thesis.

Metabolites are both products and reactants of in vivo reactions and simul-

taneous characterisation of a number of metabolites provides a ’snapshot’ of the

dynamic state of an organism. Concentrations of metabolites play direct regula-

tory roles via feedback inhibition and allosteric mechanisms in rapid responses to

metabolic flux changes. Therefore, metabolites are key biomolecules that control

the cellular machinery, as elucidated by the central role they constitute in the

regulome illustrated in Figure 1.1 on page 9. Moreover, the flux of metabolites is

much faster (seconds) in comparison to turnover in proteome (minutes to hours)

[53] and being downstream of both transcription and translation, metabolites

might be better indicator of enzyme activity [54] making metabolomics more

13



suited for probing environmental perturbations and enabling the most current

view of the state of an organism. Apart from scientific advantages, metabolo-

mics has also major practical advantages-it is cost effective per sample and more

high-throughput than other -omics, which makes it more suited for screening of a

large number of conditions and their effects on the organisms, tissues or cells [55].

Despite being a relatively recent scientific development, metabolomics, is al-

ready emerging as an important tool in pharmaceutical discovery and develop-

ment, the food industry, medicine, plant sciences and toxicology. It is widely

used in target identification and investigation of the mechanisms of disease and

toxicity and also characterisation of phenotypes and different metabolic states

[56]. A PubMed search for the term ’Metabolomics’ shows 1,559 entries in 2013

and 1,448 in 2014, which is over two-fold increase since 2009 largely due to re-

cent experimental and technological advances. Metabolomic analysis, however,

still faces a number of challenges due to the diverse nature and the amount of

analytes present in each sample. This requires optimised protocols, particularly

sample preparation methodologies, that take into account the chemical diversity

and wide dynamic concentration range of the metabolites in a sample, and selec-

tion of a suitable analytical platform.

The metabolome comprises organic molecules such as amino acids, fatty acids,

vitamins, carbohydrates and lipids, however interactions with inorganic species

are also a subject of research [57]. The size of each metabolome varies greatly

depending on the organism under study from over 2700 metabolites for E. coli

[58] (http://www.ecmdb.ca/), 200,000 primary and secondary metabolites es-

timated for plant kingdom [51]. The Human Metabolome Database (HMDB,

http://www.hmdb.ca) currently contains 41,818 metabolite entries and it grows

each year.

Generally, the aim of metabolomic analyses is the generation of a list of

metabolites with altered concentrations from which biological meaning can be

derived. There are two general approaches that can be applied: the non-targeted

and targeted approach. The aim of a non-targeted approach is non-biased identi-

fication of as many metabolites in a biological system as possible with no a priori

knowledge of the sample nature and composition. Further multivariate analysis

provides a list of molecular features discriminating between samples, allowing

their classification according to treatment, disease, alteration and revealing po-
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Figure 1.2: Metabolomics analysis workflow. A typical metabolomics

experiment involves sample preparation, data acquisition using MS and/or NMR and

metabolite identification and quantification. Once a set of metabolites of interest have

been identified, two types of tools can be used to gain biological insight into

experimental results: (i) mapping and visualisation of pathways and (ii) statistical

enrichment analysis of metabolite annotations.
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tential biomarkers for the condition. Targeted approaches, further divided into

metabolic target analysis, metabolic profiling, metabolic fingerprinting [51] and

metabolic footprinting [59], are used for qualitative and quantitative analysis of

one of a few preselected compounds or classes of compounds in a sample, gen-

erally related to a specific metabolic pathway/metabolic reaction by selective

analysis and specialised calibration methods. This approach is often used for

drug screening and profiling of drug metabolic products [60].

Today, metabolomics applications range from finding a relationship between

phenotype and related gene function, providing biomarkers useful for identifica-

tion of early stage of certain conditions, understanding metabolic reaction net-

works and their in vivo regulation and predicting novel metabolic pathways to

engineering of metabolite fluxes and measuring flux levels of metabolites of in-

terest under varying conditions [51, 61–63].

1.4 Research objectives and thesis organisation

The first chapter of the thesis provides an introduction into the system-level

overview of biological systems and why it is becoming a necessity to understand

the multilevelled repertoire of host-pathogen interactions in biological systems.

The overview of bacterial stress responses provided is linked with the globally

increasing problem of antimicrobial resistance to antibiotics and provides an in-

troduction to antimicrobial peptides (AMPs) and metabolomics. This is followed,

in the next chapter, by an introduction to the main concepts and bottlenecks in

NMR metabolomics and an outline of the process from data acquisition to data

analysis. In Chapter 3 liquid-state NMR has been applied to study the pathogen,

Pseudomonas aeruginosa, and its different isolates colonising the lining of lungs

of cystic fibrosis patients. It has been investigated how this pathogen affects the

host, i.e. patients lung function. In Chapter 4 both host and bacterium have

been investigated in the study of the composition of a gut microbiota in mice

and how differences in gastrointestinal bacterial makeup is linked to divergence

in the host metabolome. Chapter 5 describes the main project, where multiple

-omic approaches have been combined to measure the metabolic response of E.

coli to AMP challenge along with transcriptional response and determine the

extent of correlation between them. The chapter also provides information on

physicochemical characteristics of the peptides used in this study, which were

previously investigated in detail with circular dichroism (CD) and fluorescence
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assays [64]. The ability of bacteria to initiate and coordinate changes in gene

expression and at the metabolome level as a response to varying environmental

factors is essential for successful pathogenesis and maintenance of homeostasis.

In order to gain fundamental insight into the molecular mechanisms governing

events associated with those processes the following objectives were considered

in this thesis:

• How to investigate host-bacterial interactions in a cost efficient, repro-

ducible and high-throughput manner? What are the strengths and limi-

tations of such an approach?

• How to study antimicrobial mechanisms of action of novel therapeutics in

a cost efficient, reproducible and high-throughput manner?

• Is the method sufficiently sensitive to distinguish between different bacterial

responses to sublethal concentrations of structurally and physically related

AMPs and how does this manifest in the metabolome?
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2
NMR and data analysis in metabolomics: from

data acquisition to pattern recognition and

classification
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2.1 Metabolomics workflow

2.1.1 Sample preparation

The key to a successful metabolomic experiment is the generation of high-quality

biological samples. The type of sample is dictated by the character of the ex-

periment, the target metabolites under study and the sensitivity of the method

used. In metabolomics one can study intracellular (endometabolome) and ex-

tracellular (exometabolome) metabolites. Analysing extracellular metabolites

provides information on what cells excrete into the intracellular matrix, particu-

larly at suboptimal growth conditions, and/or what they fail to assimilate from

their surroundings. While extracellular metabolites present in the extracellular

medium can be filtered or centrifuged to separate them from the cells, the en-

dometabolome sample preparation can involve considerable sample manipulation

for some metabolomic platforms (Figure 1.2 on page 15). This is very important

as, in order to provide meaningful results, it is crucial to minimise the experi-

mental variation that may arise from different stages of sample generation and

processing before the biochemical analysis. Heterogeneity and chemical com-

plexity of metabolites is the main challenge in the field, since sample preparation

methods must be non biased towards any group of metabolites be they volatile,

non volatile, polar, semi polar or non polar and at widely differing concentra-

tions. Generally this step involves quenching of metabolism and application of

time-consuming and sometimes inaccurate extraction and separation procedures.

Other factors that can greatly influence the reproducibility of the results are time

and method of sampling as well as the storage of samples. Nuclear magnetic res-

onance (NMR) spectroscopy sample preparation can also be problematic due to

presence of various buffers and viscous compounds in the sample and the dy-

namic concentration range of the metabolites under the analysis. The relatively

low sensitivity of the method requires a substantial amount of sample, which has

to be taken into account when planning the experiment to ensure a sufficient

number of sample replicates. Determining the sample size for metabolomic ex-

periments is a very important aspect, however currently there are no standard

ways of sample size estimation in metabolomics, due to the complex nature of

such experiment [65, 66]. The rule of a thumb is that one needs 3 times more

samples than the number of components, with components defined as ”indepen-

dent sources of variation in the data” [65]. Technical replicates inform whether an

outlier sample is actually biologically different, rather than the result of system

variability.

19



2.1.2 Platforms for analytical quantification

The main efforts in metabolomics focus on the development of analytical plat-

forms for metabolome quantification. Mass spectrometry (MS) is the most com-

monly used technique [51] with its variations: liquid chromatography mass spec-

trometry (LC/MS), liquid chromatography tandem mass spectrometry (LC/MS/MS),

gas chromatography mass spectrometry (GC/MS) and capillary electrophoresis

coupled to mass spectrometry (CE/MS). Other metabolome analyses technolo-

gies include: infrared spectroscopy (IR) and thin layer chromatography (TLC).

Next to mass spectrometry NMR spectroscopy is the main metabolomics analyt-

ical platform. Since the first NMR metabolomic study over 40 years ago [67], the

approach has experienced significant advancements in both instrumentation and

analysis methodology and has become recognised and used extensively in clini-

cal and pharmaceutical applications for the analysis of biofluids and tissues and

in diagnostics for identifying biomarkers and defining pathological status. The

method is powerful enough to produce reproducible and detailed spectra that

provide a linear analytical response at the molecular level. Coupled with a high

dynamic range, this allows comprehensive identification of multiple components

within the sample simultaneously as well as providing quantitative characteri-

sation in a non-targeted and non-destructive manner [56]. The method is used

typically for biofluids where it involves little or no sample manipulation and the

acquisition of the data is rapid and noninvasive [62, 68].

2.2 NMR for metabolomics

NMR is a very powerful and versatile technique that emerged in the mid-1940s

[69, 70] and since then has seen unparalleled growth as an analytical tool for deter-

mination of molecular composition, structure, probing of dynamics and molecular

reactions in areas such as chemistry, biology, materials science, medicine and ge-

ology. It can be applied to samples in the solid, liquid as well as liquid-crystal

and gas states [71]. The application of NMR to solid samples will be discussed

in detail in Section 2.2.2 on page 24.
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2.2.1 The physical background to NMR

Nuclei in magnetic fields

NMR spectroscopy is based on the application of strong magnetic fields and radio

frequency (RF) pulses to the nuclei of atoms that posses spin. The nuclei of all

atoms can be characterised by a nuclear spin quantum number (I ). It can have

a value of zero or greater than zero, with all values being multiples of 1
2
. Any

nucleus with an odd atomic number or odd mass number such as 1H or 13C will

possess nuclear spin and be therefore amendable to NMR observation. For atoms

with I =0, NMR cannot be used, as they have no nuclear spin. When an external,

static magnetic field (B0) is applied, the nuclei align themselves in a specific

number of orientations with respect to the static field. For a spin of magnetic

quantum number I, there are 2I +1 possible spin states, whereas for a spin-1
2
,

such as proton, there are two possible states: +1
2

and -1
2

and it corresponds to

the popular image of a nucleus having two spins which align parallel (α or upper

state) or antiparallel (β or lower state), denoting lower and higher energy states,

respectively [72].

Signal in NMR

If energy, hν, is absorbed, the emitted RF signal from excited nuclear spins is

detected as a time-dependent oscillating voltage that steadily decays as a result

of spin relaxation and which, after applying the procedure of a Fourier transform

(FT), gives a signal in the frequency domain, i.e. a line in the NMR spectrum.

The differences between the two population states are in the order of 1 in 104,

even when very strong field is applied, rendering NMR a relatively insensitive

technique [72]. The nuclear spins precess around the magnetic field vector and

the ν (Lamor frequency) of this precession (Lamor precession) can be measured

and is given by the equation 2.1

ν =
γB0

2π
Hz (2.1)

where γ is the magnetogyric ratio, which is a constant for any given nuclide. The

nucleus may absorb photons whose frequency matches the difference between the

low-energy and high-energy spin states, δE, according to equation 2.2:

hν = Eupper − Elower (2.2)

where h is the Planck’s constant.
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Features of NMR spectrum

Because the atomic nuclei are present in a molecule at different positions, they

experience different interactions with the surrounding atoms. Of particular im-

portance is the presence of the electron clouds, because they shield the nuclei

from the external magnetic field. A reduced field experienced by the nucleus

reduces the precession frequency of the nuclear spin, while electron withdrawing

groups deshield a nucleus. This effect is referred to as a chemical shift (δ) and is

defined as:

δ =
ν − νTMS

ν0

(2.3)

where (ν - νTMS) is the frequency difference between the resonance of the sig-

nal of interest and the reference resonance, which for 1H NMR is 2,2,3,3-D4-

3-(Trimethylsilyl) propionic acid sodium salt (TMSP) in aqueous solutions or

Tetramethylsilane (TMS) in organic solutions in units of hertz (Hz) and ν0 is the

operating frequency of the spectrometer expressed in megahertz (MHz). This is

a dimensionless property, but the ratio Hz
MHz

( 1
1x106

), therefore the units of parts

per million (ppm) are used. TMSP/TMS signal is set by convention to 0 ppm.

The ppm value is device independent, as it is given relative to the spectrometer

frequency. The ppm values based on different references provide a relative chem-

ical shift scale, which is used to distinguish between protons in a molecule and

other nuclei such as 13C, 15N or 31P in the different amino acids providing valu-

able structural information. The chemical shifts can be then assigned to specific

metabolites.

Instrumentation and detection sensitivity

The majority of NMR applications of clinical relevance, including metabolomics,

use 1H NMR. Since the vast majority of metabolites contain hydrogen atoms,

the technique is relatively non biased towards particular class of chemicals unlike

other methods discussed above. The sensitivity of NMR, however, is relatively low

and can still present an obstacle when compared to other spectrometric methods.
1H signal-to-noise depends on many factors according to equation 2.4, however,

an improvement can usually be achieved by either increasing the signal intensity

or reducing the background noise.

S

N
∞NAT−1

s B
3
2
0 γ

5
2T ∗

2 (NS)
1
2 (2.4)
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where N is the number of molecules in the observed sample, A is a term that

represents the abundance of the nuclide, Ts is the temperature of the sample and

surrounding rf coil, T∗
2 is the effective transverse relaxation time and NS is the

total number of accumulated scans. The signal intensity depends on many of the

properties of the nuclide involved, such as the natural abundance, the magneto-

gyric ratio and relaxation properties, which are independent of the instrumental

design. 1H has high magnetogyric ratio, nearly 100 % natural abundance and

favourable relaxation properties making it suited for high resolution NMR spec-

troscopy [73]. The number of molecules in the observed sample volume, N, is

directly related to the amount of sample available in the active volume region of

the coil.

In the last decade, significant advances have been made to boost the per-

formance of NMR spectrometers and increase the detection limit in NMR spec-

troscopy, which is generally in the low micromolar range for less crowded parts

of the spectrum. The magnetic field strength is one of the factors and a sig-

nificant advance has been made in the development of more powerful magnets

that also improve spectral resolution, as well as processing capabilities of new

instruments. Moreover, the introduction of cryogenically cooled probes for high-

resolution NMR spectroscopy offers 3-4 fold improvement in detection sensitivity

[74]. Cryoprobes not only reduce the thermal noise by lowering the temperature of

the rf detection coil, but also improve the signal-to-noise by amplifying the signal

detected via inbuilt preamplifier, also kept cooled [74]. Spectra of large molecules

not only suffer from excessive signal overlap, but also from poor sensitivity, be-

cause of their slow tumbling rate, which results in fast relaxation time i.e. signal

loss and effectively broader lines. The introduction of pulse field gradients allows

to selectively detect only the signal of interest and/or discard signals of no interest

improving the optimal dynamic range of the experiment. A significant improve-

ment in sensitivity has been also possible due to application of solvent suppression

techniques with excitation sculpting [75], water suppression through gradient tai-

lored excitation (WATERGATE) [76], presaturation being commonly used. In

NMR metabolomics the most common NMR pulses used for metabolomic profil-

ing are 1D nuclear nuclear Overhauser effect spectroscopy (NOESY) with presat-

uration (1D NOESY-presat) [77] and Carr-Purcell-Meiboom-Gill spin-echo NMR

sequence (CPMG) spin-echo NMR sequence [78], because of high quality water

suppression they offer. Moreover, CPMG allows removal of the broad resonances

associated with macromolecules and slow tumbling compounds, by refocusing the
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signal, therefore enhancing signal from low molecular weight metabolites. Also,

the 2D 1H-1H J-resolved (JRES) NMR pulse sequence with water presaturation

is sometimes used as it allows generation of much less congested spectrum via the

JRES projection (p-JRES). JRES projections are effectively a proton-decoupled

1D 1H NMR spectra (without the multiplicities) achieved by projecting the JRES

spectrum (composed of chemical shift-F2 and spin-spin coupling-F1) along the

F1 axis. This increases the chances of observation of better resolved peaks and

therefore metabolite identification. The limitation of the method is longer acqui-

sition times, approximately 20 min [79].

Field strength

A higher field strength of the magnet (B0) offers improvement of signal-to-noise,

but also an improvement in terms of resolution, as implied by equation 2.2 on

page 21, where the signal-to-noise in an NMR experiment is enhanced as the num-

ber of nuclei in the lower energy state relative to the upper energy state increases

and by equation 2.4 on page 22, hence the total signal-to-noise is proportional to

(B0 new/ B0 old)3/2. Therefore, using 800 MHz NMR instead of 500 MHz NMR

doubles the signal. Even a modest increase in the field strength when comparing

800 MHz and 900 MHz instruments gives an advantage of almost 20 % in the

signal-to-noise ratio. The frequencies of peaks are also directly proportional to

the magnetic field strength. One ppm on 50 MHz NMR instrument is actually

50 Hz from resonance position of TMS, whereas on a 500 MHz NMR instrument,

1 ppm in 500 Hz from the TMS resonance position, which allows for acquisition

of spectra with much better resolution.

The theory described in this section is oversimplified and a detailed introduc-

tion to NMR theory is beyond the scope of this work, however, there are many

books that provide detailed discussion of the principles of NMR such as [73, 80]

or more advanced [72] and [81].

2.2.2 High-resolution magic angle spinning NMR

NMR can also be used in live cells and intact tissues, often giving uniquely power-

ful insights [82, 83]. The method allows for non-invasive observation of different

groups of metabolites and cellular processes. Similarly to liquid state NMR,

this knowledge can be used in diagnostic, toxicological or environmental studies

[84–87]. Tissue extracts can be analysed by high-resolution liquid state NMR
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spectroscopy or mass spectrometry, however, the information on localisation of

metabolites is destroyed, and targeting of groups of specific metabolites depends

on the selection of solvents employed. High-resolution magic angle spinning NMR

(HR-MAS NMR) spectroscopy of tissues and whole cells has shown to be valu-

able in assessing tissue metabolite profiles non-destructively.

In conventional liquid state NMR, molecules can tumble due to fast isotropic,

or orientation independent, motion and sample all possible orientations with

respect to B0 and effectively experience the same magnetic field. In (liquid-)

crystalline samples or solids, however, such motion is restricted and therefore

the Larmor precession frequency becomes orientation dependent or anisotropic.

Effectively, molecules present in the sample at different orientations will give dif-

ferent signals, where the observed spectrum is a sum of all possible orientations

for each nucleus [72]. This effect, referred to as chemical shift anisotropy (CSA),

gives rise to broad peaks with a characteristic shape and is presented in Figure 2.1.

Figure 2.1: NMR patterns simulated for different kinds of molecular

motions. B0 is the applied static magnetic field. Modified from Dr Louic Vermeer.

In solid samples there are also sources of magnetic fields internal to the sample

which may result in a number of interactions. The full NMR Hamiltonian may

therefore be expressed as:

Ĥ = ĤZeeman + ĤJ + ĤCS + ĤDD + ĤQ (2.5)

where HZeeman is the Zeeman interaction (energy level splitting in atomic nu-

cleus when placed in a magnetic field with the magnitude proportional to the
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strength of the magnetic field), HJ is the J coupling, HCS is the chemical shift

coupling, HDD is the dipolar coupling, and HQ is the quadrupolar coupling.

J-coupling, also known as scalar coupling or spin-spin coupling, is a through

bond coupling of nuclei. The chemical shift in NMR spectra can provide informa-

tion on the structure of the molecule. Since each nucleus can be thought of as a

small magnet, the orientation of that magnet has an effect on the local magnetic

field experienced by other nuclei, which is mediated through bonds. An NMR

peak will split into n+1 peaks, where n is the number of NMR active nuclei within

3 chemical bonds. Magnetically equivalent nuclei do not cause splitting. This

situation is pictured below (Figure 2.2 ) using ethyl acetate as an example. The

blue methyl hydrogens show a peak at 1.3 ppm. These 3 hydrogens are J-coupled

to the 2 red hydrogens resulting in 3 peaks (triplet) methyl peaks (blue). The

peak at 4.2 ppm for red hydrogens is split into 4 peaks, by 3 blue hydrogens

(3+1).

Figure 2.2: Simulated NMR spectrum of ethyl acetate showing the

splitting pattern due to J coupling. Modified from: Wikimedia Commons, the

free media repository.

The most important interaction between the spin and its surrounding spins

is the dipolar interaction. It is the dominant broadening factor in organic solids.

Dipolar coupling is a through-space coupling of two NMR active nuclei. It is the

magnetic effect on nucleus I due to the magnetic field generated by nucleus S. The

dipolar coupling of spins is either between two of the same nuclei (homonuclear
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dipolar coupling) or between two different nuclei (heteronuclear dipole coupling).

The natural abundance of the NMR active nuclei and the space between the

nuclei directly influence the size of the dipolar coupling in solid systems. For

less abundant nuclei, such as 13C, the dipolar coupling can be neglected as the

chance that the nuclei are close together is small. Also, as the distance between

two NMR active nuclei is increased, the interaction between them diminishes.

For the case of two spins, I and S, the approximate dipolar Hamiltonian can be

written as:

Hd =
1

2

γHγ
h̄2
C

rHC

(1− 3 cos2 θ)(3IzSz − IS) (2.6)

where Hd is the size of the interaction, r is the inter-nuclear distance, γC is

the gyromagnetic ratio of the nuclei and the last term describes orientation of the

inter-nuclear vector. Study of tissues and intact cells becomes possible using high

resolution magic angle spinning NMR (HR-MAS NMR). The method effectively

allows use of almost any solid sample, because dipolar couplings and chemical

shift anisotropy are reduced according to the term:

(3 cos2 θ − 1) (2.7)

where θ is the angle between the long axis of the ellipsoid (principal tensor)

with the field B0, by spinning the sample about its own axis at the frequency of

3-5 KHz and at the magic angle (the diagonal through the cube) of 54.7◦ with

respect to the B0 as seen in Figure 2.3 on the next page. At this angle any vectors

aligned along the z axis will be rotated through both the x and y axes, effectively

making the x, y and z axes equivalent. The anisotropy is therefore removed and

only the isotropic chemical shift is observed.

Andrew et al. [88] and Lowe [89] were first to show that spinning solid samples

at the magic angle reduces line-broadening effect and results in highly resolved

NMR spectra as per example from our laboratory shown in Figure 2.4 on page 29.

As with liquid state NMR, simple sample preparation protocols minimise the

differences between preparations. Also, due to the rapid turnover time of some

intracellular metabolites, a simple protocol without an extraction step is of great

advantage for metabolomic study. In this thesis, high resolution magic angle spin-

ning NMR (HR-MAS NMR) has been applied to bacterial cell pellet (Chapter 5

on page 107), which is a novel way of probing the bacterial metabolome.
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Figure 2.3: The distribution of the electrons about the nucleus is

non-spherical; the magnitude of the shielding depends on the relative

orientation of the nucleus with respect to the static field. Modified from Dr

Louic Vermeer.

2.2.3 Two-dimensional NMR spectroscopy

Despite many advantages that NMR spectroscopy presents, for some samples

severe spectral congestion can hinder the analysis, the identification of spectral

features and assignment of the compounds. In NMR spectroscopy pulse sequences

can be applied to further separate 1D NMR spectra into additional dimensions,

in order to help unravel complex 1D spectra.

In two-dimensional (2D) spectroscopy, intensity is plotted as a function of two

frequencies (F1 and F2), which map out interactions within the molecules and

also between the molecules of interest. The spectrum is usually represented as a

contour map with intensity peaks represented as contour lines at chosen intervals.

The position of the peaks is dictated by the frequency coordinates correspond-

ing to F1 and F2. Depending on the method used and the interactions probed,

2D NMR methods can be divided into three categories: through-bond coupling,

through-space coupling and chemical exchange. Heteronuclear correlation exper-

iments, such as heteronuclear single-quantum correlation spectroscopy (HSQC),

are particularly useful NMR experiments where a two-dimensional spectrum is

recorded in which the co-ordinate of a peak in one dimension is the chemical

shift of one type of nucleus (e.g. 1H) and the co-ordinate in the other dimension

is the chemical shift of another nucleus (e.g. 13C) which is coupled to the first
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Figure 2.4: A comparison of a static (red) and a high speed MAS (blue)
1H NMR spectra of human breast carcinoma sample acquired at 37 ◦C on a Bruker

Avance 400 MHz spectrometer equipped with a 4 mm 1H/ 13C HR-MAS probe using

1H cpmg pulse sequence.

nucleus. Figure 2.9 on page 33 shows and example of 1H/13C HSQC spectrum

with cross peaks for amino acid valine assigned. In homonuclear experiments,

such as homonuclear correlation spectroscopy (COSY), the cross-peak indicates

the position of two interacting nuclei, e.g. 1H-1H. In COSY cross-peaks arise due

to magnetisation transfer between two nuclei that are within one to three bond

lengths through J-coupling. Figure 2.10 on page 34 shows an example of a COSY

spectrum with cross peaks assigned for the amino acid valine.

Two-dimensional 1H J-resolved NMR spectroscopy (JRES) NMR spectroscopy

has the benefits of 1H 1D NMR, but has an additional dimension which allows to

eliminate the congestion problem and overlapping signals, increasing the resolu-

tion and specificity of the spectral information. This method allows for visualisa-

tion of chemical shifts but also J-couplings along the second axis (Figure 2.5, C),

which is instrumental for identification of metabolites in overcrowded spectra, as

it provides the multiplicity and magnitude of coupling. Another advantage of

JRES over other 2D techniques is that its acquisition time is much shorter (ca

20 min) to provide the same sensitivity as a comparable 1D spectrum, making

it amendable for metabolomic study. If required an optional projection of 2D

JRES spectrum along F2 can be conducted, which is similar to 1D 1H NMR

spectrum (Figure 2.5, A), but each proton appears as singlet irrespective if its

multiplicity. Such a simplified 1D spectrum has obvious advantages in congested
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A

B

C

Figure 2.5: 1H NMR data of malignant human melanoma cell extracts,

featuring: (A) 1D NMR spectrum acquired using cpmg pulse sequence; (B) the 1D

skyline projection (p-JRES) of (C) 2D JRES spectrum. All acquired at 37 ◦C on a

Bruker Avance 400 MHz spectrometer equipped with a 4 mm 1H/ 13C HR-MAS probe

with magic angle spinning applied at 5 kHz.
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Figure 2.6: 1D 1H NMR spectrum and the chemical structure of amino

acid valine with atom numbers and corresponding resonances and multiplicities

indicated. Taken from The Human Metabolome Database (HMDB).

spectra [79, 90] as can be seen in Figure 2.5, B.

2.2.4 Identification

Typically, compounds are identified by comparing the observed chemical shift to

those of known metabolites stored in databases such as the Human Metabolic

Database (HMBD, http://www.hmdb.ca/) [91], Biological Magnetic Resonance

Data Bank (BMRDB, http://www.bmrb.wisc.edu/metabolomics/query_metab.

php) [92] and the Escherichia coli Metabolome Database (ECMDB, http://

www.ecmdb.ca/) [58]. Chemical shift values, are not precise and deviations of

± 0.2 ppm or more for proton are expected. This is due to variations in the

solvent and temperature in which the spectrum is being recorded [93]. Due

to the nature of the metabolomic NMR spectra and the way the signals arise,

the spectra of biological samples can be very complex with overlapping sig-
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Figure 2.7: Overlay of the 1D 1H NMR spectra of E.coli NCTC9001

challenged with different antimicrobial peptides displaying multitude of resolved peaks.

Here are shown the pellet samples acquired at 37 ◦C on a Bruker Avance 400 MHz

spectrometer equipped with a 4 mm 1H/ 13C HR-MAS probe with magic angle

spinning applied at 5 kHz. Different colours represent different samples.

nals. As a result, unambiguous identification of all individual 1D NMR traces

such as e.g. valine signal (Figure 2.6 on the preceding page) is challenging

when looking at the recorded NMR data (Figure 2.7). Unambiguous identifi-

cation of metabolites in a sample can be difficult, however the number of avail-

able databases is increasing and becoming more comprehensive. The combina-

tion of 1D spectra and multidimensional NMR techniques provides a promis-

ing framework for assignment of spectral features. Also, several commercial

products are available to aid the process such as Chenomx NMR Suite (http:

//www.chenomx.com/software/software.php?pageID=32). Below is an exam-

ple of the assignment process using amino acid valine as an example.

Some metabolites can be assigned directly by comparing the 1D NMR spec-

tra to reference spectra from databases. This is facilitated by analysis of the

signal multiplicities from 2D J-resolved spectra and experimental chemical shifts

for 1H and 13C from 2D 13C HSQC. An example of a JRES in Figure 2.8 on

the following page, HSQC in Figure 2.9 on the next page and COSY in Fig-
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Figure 2.8: Representative contour plot of a 2D 1H J-resolved (JRES)

spectrum of E.coli NCTC9001 challenged with pleurocidin at sublethal concentration

for 30 min; acquired at 37 ◦C on a Bruker Avance 400 MHz spectrometer equipped

with a 4 mm 1H/ 13C HR-MAS probe with magic angle spinning applied at 5 kHz

using the standard pulse sequence. Valine peaks are identified with atom numbers

annotations corresponding to those from The Human Metabolome Database (HMDB).

Figure 2.9: Representative contour 1H/13C HSQC spectrum of E.coli

NCTC9001 challenged with pleurocidin at sublethal concentration for 30 min and

identified valine signals; acquired at 37 ◦C on a Bruker Avance 400 MHz spectrometer

equipped with a 4 mm 1H/ 13C HR-MAS probe with magic angle spinning applied at 5

kHz using the standard pulse sequence. Valine peaks are identified with atom numbers

annotations corresponding to those from The Human Metabolome Database (HMDB).
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Figure 2.10: Representative contour COSY spectrum of mouse

adenocarcinoma cells and identified valine cross-peaks; acquired at 37 ◦C on a Bruker

Avance 400 MHz spectrometer equipped with a 4 mm 1H/ 13C HR-MAS probe with

magic angle spinning applied at 5 kHz using the standard pulse sequence. Valine peaks

are identified with atom numbers annotations corresponding to those from The

Human Metabolome Database (HMDB).

ure 2.10 are shown with signals from valine identified and annotated according to

atom numbers given in The Human Metabolome Database (HMDB) - Figure 2.6.

The statistical total correlation spectroscopy (STOCSY) analysis method is

also used to aid identification of metabolites and confirm tentative assignments.

STOCSY identifies peaks that belong to the same compound, but can also detect

intra-molecular correlations and identify metabolites involved in the same path-

way [94]. Figure 2.11 on the next page shows correlation between the two peaks

of valine at 3.75 ppm and 0.9 ppm. The chemical shifts are in rough agreement

with the chemical shifts expected from valine and provide additional confidence

that the cross peaks assigned previously in HSQC, JRES and COSY belong to

valine.
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Figure 2.11: Representative STOCSY plot of the resonances of E.coli

NCTC9001 challenged with antimicrobial peptide pleurocidin at sub-lethal

concentration from 1H NMR spectra with two valine peaks highlighted in red, therefore

showing high correlation with each other.

2.3 Data processing and multivariate data ana-

lysis

In metabolomics, collected data sets are large, highly multivariate and challenging

to interpret and derive biological meaning. Therefore various high-performance

numeric computation and visualisation methods and tools are used, collectively

known as chemometrics. Tools are being developed in order to tackle this chal-

lenge by various groups [95–102]. While there are many tools focused on inter-

pretation of human metabolic experiments, the availability of options for other

organisms is still limited [103]. Moreover, there is no widely accepted consen-

sus on how to computationally process and interpret metabolic data [104–106].

The areas of disagreement include the strategy for model cross-validation, infer-

ence of class differences, number of samples necessary, parameters used to assess

classification or ways to choose the overall model [107].

2.3.1 Data pre-processing

Before data exploration, spectra have to be subjected to pre-processing to make

them amenable to multivariate statistical analysis. In our laboratory, software

was developed using the Python programming language with numpy and scipy

for calculations, and matplotlib for visualisation. The nonlinear iterative par-

tial least squares algorithm (NIPALS) algorithm [108] was used for orthogonal

PLSDA (OPLSDA) analysis (see Section 2.3.2 on page 42). A manual for data
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processing using our software is included in Appendix A on page 177.

First, spectra have to be calibrated to the internal reference peak which is set

to 0 ppm, phase and baseline corrected (see Appendix A on page 177), in order

to avoid distortions to data analysis and also metabolite quantification. Next,

NMR spectra are read into the software, aligned to a chosen peak and unwanted

spectral features such as solvent peaks, residual water resonance, and reference

peak are removed, by excluding the data points from the analysis. This is fol-

lowed by bucketing (binning) spectra into evenly-spaced, user defined segments

usually of 0.01-0.04 ppm size, in order to correct any minor, global peak shifts

(as opposed to local), decrease the noise and reduce the number of data points to

increase the speed. The intensities inside each bin are summed, so that the area

under each spectral region is used instead of individual intensities. The downside

of this approach is that it may reduce spectral resolution, while some peaks may

appear in two or more bins, splitting the chemical information due to a lack of

flexibility of the boundaries. This can be somewhat overcome by applying man-

ual bucketing to problematic spectral regions that are not crowded. Bucketing

is, nevertheless, a commonly applied pre-processing procedure. Various binning

algorithms have been proposed recently [109–112], however, their applicability

has not been tested in our laboratory.

Sometimes complex spectra cannot be aligned by the binning method or the

peak shifts are larger than the bin size. This can be due to instrumental in-

stabilities, temperature variations, or variations in pH and ionic strength, both

of which influence the ionisation state of basic or acidic groups and thus their

associated chemical shifts. It has been demonstrated that peak shifts can be

beneficial to discern between different groups of samples under certain circum-

stances, however, this effect is unwanted for most applications [113]. Shifting

peaks have to be corrected or excluded from the analysis as they can hamper the

discovery of patterns in the data and lead to incorrect interpretation of the re-

sults. Peak alignment methods are more elaborate than bucketing and generally

require use of commercially available software. Giskeodegard et al. [114] reviewed

the five most prominent warping methods: interval correlation shifting (icoshift)

[115], correlation optimised warping (COW) [116], fastpa [117], variable penalty

dynamic time warping (VPdtw) [118] and parametric time warping (PTW) [119].

In our laboratory a freely available COW-based method adopted for use with
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Figure 2.12: An example of 1H NMR spectra of E.coli NCTC9001

challenged with pleurocidin at sublethal concentration before (top panel)

and after (bottom panel) alignment using COW; acquired on a Bruker Avance

400 MHz spectrometer equipped with a 4 mm 1H/ 13C HR-MAS probe with magic

angle spinning applied at 5 kHz using the standard cpmg pulse sequence.

Python [120] is used (see Appendix A on page 177), based on the original paper

by Niels-Peter Vest Nielsen et al. [116]. Previous packages used in this project

have been freely available and we wanted to maintain this and the software also

allows for adjustment of many parameters in order to achieve the best results.

It uses two input parameters based on the width of the peaks-m, which is the

segment length and t, which is the amount of slack, i.e. the maximum range or

degree of warping in segment length. It has been suggested that parameter m

should be at least equal to the width of the smallest peak that has to be aligned

and that lower values may result in the alignment of noise and distortions in

peak shapes [116]. For each set of spectra, optimal combination of these param-

eters has to be established. Figure 2.12 shows an example of spectra aligned

using this method. Notably, spectral warping can distort spectra and introduce

artefacts, thus absolute quantification should be performed on unaligned spectra.
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This is followed by normalisation, in which spectra are scaled to the same

overall concentration to account for differences in amount of material per sam-

ple, overall variations in sample concentration or for technical reasons in order to

make the samples directly comparable and amendable to multivariate analysis.

Generally, normalisation involves multiplication of every row ( i.e. sample) by a

constant specific to each sample. In the total integral normalisation method the

constant is the total integrated intensity across the whole spectrum or part of it

so that each data point is expressed as a fraction of the total spectral integral.

Total integral normalisation is the standard method used in most metabolomic

studies [121–123], however, it is not optimal for spectra with extreme concen-

trations of certain metabolite in the sample, as this will skew the total integral

and hamper the subsequent scaling and analysis. This issue is overcome by the

probabilistic quotient normalisation (PQN) [124] method, which is currently the

method of choice in our laboratory. Here the spectra are normalised using the

most probable quotient. The most probable quotient can be calculated from the

distribution of signals in a spectrum divided by the reference signal (e.g. median

or mean spectrum from the study or a reference spectrum) [124] so that it is not

affected by the peaks with large changes.

The last step in data pre-processing is scaling. Metabolite intensities have to

be scaled to adjust for variations between high- and low-concentrated metabo-

lites in a sample. The more abundant metabolite will give rise to higher peak,

which will be considered more significant in data analysis, as higher intensity is

generally linked to higher variation. A number of scaling methods are in use.

Mean-centering moves the centre of the data to around zero, instead of the mean

of each intensity, calculates the average spectrum of the data set and subtracts

this from each spectrum. Mean-centering is usually insufficient, particularly for

data of bivariate/multivariate distribution and it is often used in combination

with other scaling methods, as it moves the origin of all the components in prin-

cipal component analysis (PCA) (see Section 2.3.2 on page 40) to the centroid

of the data giving a parsimonious model. Another widely used form of scaling

is autoscaling, where mean-centering is followed by division of each column (in-

tensity) by the standard deviation of that column. In some cases, autoscaling is

applied in order to amplify signals of low intensity which can carry important

information but are obscured by high intensity peaks. This process, however,

also amplifies the noise and therefore should be used with caution and the results

always checked against the original spectra. Pareto scaling is considered as a
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compromise between mean-centering and autoscaling. In the process of Pareto

scaling, data are mean-centered and divided by the square root of the standard

deviation. In this work, the input variables are preprocessed by autoscaling with

a few exceptions where Pareto scaling is used (with justification).

There is no optimum pre-processing method and a combination of processes

described above has to be applied depending on the experiment, sample origin

and analytical method used for data acquisition. The procedures described above

highlight the importance of a good sample preparation protocol due to the nature

of the NMR spectroscopy (low sensitivity, crowding of spectra, line broadening

due to viscosity of the sample) and also the need for spectral reproducibility,

which is essential for metabolomic study.

2.3.2 Model construction and data classification

Despite considerable progress made in the field of metabolomics, the extremely

large and highly correlated datasets still remain a challenge to analyse and inter-

pret. Typically, in a metabolomic dataset there are more variables than samples

(100-100,000s) and the data are highly correlated and non-normally distributed.

Unlike in e.g. microarray data, the number and identity of compounds is not

known. For these reasons different multivariate data analysis tools have been de-

veloped. They enable extraction of information from the data in order to visualise

the trends and relationships between the samples and variables and subsequent

generation of predictive models. This can determine which molecular entities are

’associated’ with specific disease, perturbation, condition etc. It is also possible

to determine which subset of thousands of chemically diverse compounds present

within a cell provides a unique signature for a specific disease, perturbation, con-

dition etc. Knowledge of how those chemical entities are functionally related and

how they respond to perturbations allows to map them onto known metabolic

pathways which can provide more comprehensive, pathway-based interpretation.

Analysis of metabolomics data involves first spectral analysis of the data

showing the overall changes in metabolite concentration. At this level, the study

is neither qualitative, nor quantitative, but should be thought of as a metabolic

fingerprint reflecting the response of the organism to the changing environment

[11]. The data is then subjected to statistical analysis and classification models

are generated. For the results of such analyses to be meaningful, they must be

reproducible over a period of time. Very often, reproducibility is degraded due to
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analytical and sample differences introduced during metabolite extraction pro-

cedure [125] therefore the simplified and straightforward HR-MAS NMR sample

preparation has an obvious advantage. Next, the changes in the metabolome are

identified and quantified. This involves dividing the datasets into classes accord-

ing to the level of variation they demonstrate and determining how well the data

fit with the predetermined classes using statistical software and identifying the

compounds that differ between classes. The final step is to assign them to spe-

cific pathways, which provides information about the intrinsic mechanisms [11].

Principal component analysis (PCA), partial least squares regression or projec-

tion to latent structures (PLS) and PLS discriminant analysis (PLSDA) are, by

and large, the most commonly used multivariate analysis methods that can be

applied to metabolomic data.

Principal component analysis (PCA)

Principal component analysis (PCA) was first introduced in 1901 by Karl Pearson

[126] and later developed and named by Hotelling [127], while a good modern

reference is Jolliffe [128]. PCA is a method used to reduce the dimensionality

of multivariate data, whilst preserving as much of the relevant information as

possible, and also to gain an initial insight into hidden patterns and relationships

in acquired data. During the PCA analysis the original measured variables are

transformed into new variables referred to as principal components (PCs), where

the greatest variance is explained by the first PC, the second greatest variance

by the second PC, and so on. Usually only two or three principle components

are sufficient to explain most of the information in the collected data. The data

can be plotted in a coordinate system based on two or three largest principle

components, that are always uncorrelated and orthogonal to each other. That

way each PC represents different type of independent information since it defines

a different direction of variance. PCA is used mainly to discern information about

the overall structure of the data i.e. similarities and differences among samples. It

is also used for identification of outliers, usually spectra of unacceptable quality

that can be potentially excluded from the analysis. PCA is an unsupervised

method, as the analysis is blind i.e. it does not require any prior knowledge, and

it relies entirely on the input data itself. This ensures an unbiased examination

of the data.

Figure 2.13 on the following page (top right panel) presents the scores plot of

PC1 and PC2 for a model with 3 classes. Each marker on the plot represents one
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Figure 2.13: A representative PCA analysis of samples containing 3 classes:

class 1 (black), class 2 (red), class 3 (blue). PC1 and PC2 account for 60.6 % of the

total variance in the data (A). PCA scores indicate the clustering pattern (B),

whereas loadings indicate the features of the NMR spectrum contributing to the

separation seen in the scores plot (C/D).

single sample. In this example, spectrum 16 is a possible outlier, as it clusters

away from other blue markers. Samples from the class 1 and 3 cluster together in

the top quadrants, therefore they influence the model in a similar way and there

is not much variation between samples of those two classes. Samples belonging

to class 2 (red markers) are separated from class 1 and 3 ( black and blue markers

along PC2 axis. The further away the sample from the origin, the more dissimilar

the sample is from samples belonging to class 1 and 3 and therefore the more

influential the sample is on the model. The loadings plot (Figure 2.13 bottom left

panel) describes the importance of the variables, which are the peaks in the NMR

spectrum. The direction in the loading plot correspond to those on a scores plot

and the loadings are the ppm values from the NMR spectrum. The loadings plot,

therefore allows interpretation of the score plot by examination of the loadings

and correlates the values to the original NMR spectra. In this example the peak

at 3.73 ppm is the main spectral feature separating classes 1 and 3 from class 2

along PC2.
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Partial least squares (PLS) and orthogonal projections to latent struc-

tures (OPLS)

PLS (also known as projection to latent structure) is the most widely used super-

vised statistical method and has been used in science and technology since 1980

[129]. The technique models the variables (X block) using a set of predictor vari-

ables (Y block), which are given by the user. PLS finds the components (latent

variables) which discriminate between two or more different groups of samples

using their covariance with the predictor variables (target class, e.g. control vs

treatment). This method is used for regression modelling when data represent

continuous variables. When variables are in a discrete form and represented as

class memberships, PLS discriminant analysis (PLS-DA) is applied. This method

is used in classification and biomarker studies. In PLS-DA the results are pre-

sented in the form of a scores plot, which gives information about class member-

ship and separation. The weights plot provides information about which peaks

in NMR spectra are responsible for the separation. PLS-DA is a latent variable

method, therefore the data can be projected onto the new space so that it max-

imises the covariance between scores in X and Y spaces, unlike in PCA, where

the algorithm is just looking at the variance in the data set. It is used for two-

class models. Orthogonal PLS (OPLS) is a modified PLS method, which divides

variation in the data into correlated and orthogonal components [107, 130]. The

predictive components are linearly related to the response, whereas orthogonal

components contain unrelated information, such as technical issues or unintended

differences in experimental conditions. The models generated using OPLS are the

same, as using PLS, and therefore the predictive power of the models is identi-

cal, however, model visualisation and subsequent interpretation of the data is

improved [131]. The method can be extended to OPLS-DA.

Hierarchical cluster analysis and generation of heatmaps

Hierarchical cluster analysis (HCA) is another unsupervised method similar to

PCA, which is routinely used to show similarities within metabolic data [132].

The samples are grouped pairwise based on the similarities between them. The

results are presented as a dendrogram where the length of the branch corresponds

to the difference between samples and their groupings. The algorithm constructs

a hierarchy from top to bottom on the basis of a self-organising tree. It dynami-

cally finds the number of clusters at each level. Figure 2.14 on the following page

shows a representative heatmap from HCA of changes in the metabolite levels in
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Figure 2.14: Representiative clustered heatmap of the metabolite yields

(columns) in E.coli NCTC 9001 challenged with different AMPs (rows).

bacteria in response to treatment with different AMPs. Different treatments are

presented in columns and in rows are metabolites that differ in yield depending

on the treatment. HCA groups metabolites based on significant differences in

relative abundance. The level and scale of clustering has to be chosen depending

on the application. Since cross-validated data is used, a Euclidean distance algo-

rithm was chosen to calculate the distance between every pair of objects in a data

set, since it computes the differences directly from the data already subjected to

the statistical analysis in the most intuitive way. Either the average linkage or

complete linkage method was used to link objects into binary clusters based on

distance information from the metric algorithm. Complete linkage computes the

distance between two clusters as the distance between the two farthest objects

in the two clusters, whereas average linkage computes the distance between two

clusters as the average distance between objects from the first cluster and objects

from the second cluster. The freely available MultiExperiment Viewer (MeV),

which is a part of the TM4 Microarray Software Suite [133], was used for hierar-

chical clustering analysis and generation of heatmaps. The details can be found

in Appendix A on page 177.

2.3.3 Model validation: OPLS cross-validation

A vital stage of classification analysis is model validation, also referred to as

cross-validation. It is a standard resampling procedure which estimates the per-

formance of a model when applied to unknown data and checks if it does not

overfit the data. It allows the overall complexity of the model i.e. the number

of PCs in a PCA model to be assessed [134]. Generally, cross-validation proce-

dures involve a series of iterations, where, in each iteration, a subset of objects

from the dataset is removed (the test set) and a model is constructed using the

remaining objects in the dataset (the model building set or training set) and
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subsequently the created model is used to predict the removed objects. Typical

cross-validation involves many iterations and in each round a different subset of

samples is chosen as a test set and training set [134]. Models are therefore tested

using a full training set by means of repeated resampling in a systematic man-

ner. Maximising, in that way, the number of data points used for testing helps

to protect against overfitting of the data. There are different cross-validation

techniques which will depend mainly on the method of sample subset selection

for each iteration [134]. The choice of cross-validation method is dictated by the

data: the number of samples in the training and test sets, the inherent correlation

in the data and ordering of the samples and the total number of variables or the

presence of replicate samples. Usually the method of choice is the one generating

the lowest predicted residual sum of squares (PRESS). In our laboratory, data are

subjected to leave-one-out cross-validation (LOOCV) [135, 136], where part of

the samples are used as a training set and the remaining samples as the test set,

ensuring that the number of samples in the test set is proportional to the total

number of samples from each class and that at least one sample from each class

is present in the test set. The selection of the optimum number of components

is performed using the lowest prediction error in cross-validation carried out on

the samples in the training set, i.e. the optimal prediction of the training set

using test set (samples excluded in the calibration step) or the highest F-1 score

selection method for the two-class models. This method finds balance between

false positives (class 1 predicted but actually class 0) and false negatives (class

0 predicted but actually class 1), as simply counting the number of correctly

predicted samples would be unfair when the number of samples between classes

is not equal. This double cross-validation is repeated 2000 times with randomly

chosen samples in the training and test set to prevent bias due to the choice of

training or test set. The size of both training and test set affects the classification

result. With small sample size only the major differences between groups will

be detected, whereas larger sample size allows for more robust model and more

representative results.

OPLS cross validation provides a scores plot, which shows whether there is any

difference between the two classes of samples and in this case dots cluster away

from each other indicating that there are features in the dataset, that allowed

discrimination between the two classes. The backscaled loadings plots present

the OPLS model that was ’back-scaled’ by plotting the variables with the colour

scale representing their respective correlation weights. This results in a loadings
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Figure 2.15: Representative cross-validated metabolomic analysis by 1H

HR-MAS NMR. In scores plot blue and red dots represent scores from two different

treatments. Plots discussed in the text.

coefficient plot [113]. The main advantage of the plot is that it shows the variables

with the discriminatory importance directly on the spectrum. The variables that

are important for discrimination between classes are mapped in red and orange,

whereas variables with negative correlation are mapped in blue. The next panel

in the plot in Figure 2.15 indicates that only 2 components were sufficient to

discriminate between the two classes of samples with low PRESS per sample

(the following panel). Histograms of the number of times that a particular Q2

(goodness of fit) value was obtained in each of the rounds of resampling is shown

on the next plot. The Q2 value was calculated as Q2 = 1 - (PRESS/TSS) where

PRESS is the sum of squared differences between the known and predicted classes,

and TSS is the sum of squared differences between the known classes and their

average ( = the total variance). A Q2 of 1 represents the perfect score, whereas a

score below 0 indicates no discriminatory power of the model and it is generally

considered to be good when its value is higher than 0.5 [107, 137]. Finally, this

procedure is repeated and the results are compared to a reference values obtained

by computing Q2 for models where the classes were assigned randomly, i.e. the

cross-validation procedure was repeated again after randomising the Y-table (the

classifiers) [107, 137]. It allows to measure the performance and stability of the

models and is referred to as permutation tests. By comparing obtained Q2 of the

model (Figure 2.16 on the next page, a) with the Q2 of the randomised model

(Figure 2.16 on the following page, b) one can see if the model performs well. The

random data should give lower Q2 than the data set and in that way one knows
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b

c

Figure 2.16: Visual evaluation of the permutation test for the significance

testing. a) Q2 distribution for the D-LAK threshold model and b) Q2 distribution for

the random class assignments, c)The red-shaded area of overlap between two

histograms.
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which Q2 value corresponds to a good discrimination between groups [107].

2.3.4 Summary

This chapter provides an overview of tools and methods used in metabolomics.

It specifically explains the applications of NMR and solid-state NMR in the con-

text of metabolomics and presents the steps involved in the pre-processing and

processing of the data. The chapter also provides an overview of the multivariate

data analysis methods used in the field and explains the rationale behind apply-

ing each of them.

Some of the key issues that researchers in the field of metabolomics are faced

with are also covered. Metabolomic data is inherently complex and biological

contextualisation difficult and requiring knowledge of metabolic networks and

tools. This is compounded by the fact that there is no single analytical method

that can detect all the metabolites within the system due to chemical heterogene-

ity and there are no standardised methods to process and interpret the data.

Some of those issues will be solved to an extent by technological advances and

development of new methodologies, while efforts in development and curation

of community databases will help metabolite identification. The final steps of

analysis, biological interpretation, have considerable potential for improvement

and the field will benefit from emerging pathway enrichment and visualisation

tools [63].
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3
Metabolomic investigation of a relationship

between Pseudomonal growth behaviour and

cystic fibrosis patient lung function
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3.1 Introduction

Cystic fibrosis (CF) is the most common autosomal recessive inherited disorder

in the Western world [138] and in UK almost 10,000 people are affected with

more than two million people being carriers of the faulty cystic fibrosis trans-

membrane conductance regulator (CFTR) gene [139]. CF is caused by loss-of-

function mutations of the CFTR gene, that results in production of abnormally

viscous secretions by epithelial cells lining the surfaces of lungs, pancreas, liver,

reproductive track and intestine of patients. Almost 2000 gene mutations have

been described in CFTR, which can be grouped according to their disruptive

mechanism on CFTR function, and association with residual function and dis-

ease severity [140]. While CF is a multi system disease, the primary cause of

death in patients with CF is respiratory failure [139]. CF is a progressive con-

dition and over time infection becomes established and chronic by adulthood.

Chronic lung infections in CF patients are typically dominated by high levels

of Pseudomonas aeruginosa (P. aeruginosa) and its presence is associated with

reduced life expectancy [141]. P. aeruginosa was cultured in specimens from 61

% of all patients, ranging from 21 % of those less than 1 year of age to more than

80 % of those aged 26 years or older [142]. P. aeruginosa is an opportunistic

pathogen and its virulence stems from a multitude of factors; it is able to form

biofilms, secrete toxins and is intrinsically resistant to various antibiotics as well

as host defences [141]. Periodic exacerbations (episodes of sub-acute worsening)

of P. aeruginosa respiratory infection in patients with CF have traditionally been

treated with antipseudomonal antibiotics. Despite frequent intravenous therapy,

patients continue to have a decline in pulmonary function of approximately 2 %

per year, and eventually 90 % of such patients die of lung disease [142]. There is

still no cure for CF, however, more than 50 % of the CF population in the UK

will now live beyond the age of 41 thanks to many treatments, including antibi-

otics, physiotherapy, exercise and nutrition, available to manage the condition.

This is a significant improvement since 1999, when only half of sufferers would

live beyond 30 years [139].

Undoubtedly, improved use of antibiotics is responsible for a substantial por-

tion of the increased survival that has occurred in patients with CF and antibi-

otic therapy remains essential component in the management of CF lung disease.

Three distinct antibiotic strategies are used depending on the stage of the infec-

tion. First, early aggressive antibiotic therapy against Pseudomonal infection has
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been advocated to delay onset of chronic P. aeruginosa colonisation [143, 144].

Once colonisation with pathogens such as Staphylococcus aureus (S. aureus) and

P. aeruginosa is established chronic maintenance antibiotics are prescribed to

minimise decline in lung function and reduce the frequency and severity of ex-

acerbations of pulmonary symptoms. During exacerbation intensive antibiotic

regimens are frequently administered to relieve symptoms and restore pulmonary

function to baseline values [143, 145]. The choice of appropriate antimicrobial

therapy should be based on review of recent cultures of airway secretions, but a

combination of an aminoglycoside and beta-lactam is recommended to provide

synergy and slow emergence of resistance [146]. Antimicrobial resistance is a

major problem in CF patients and increasing numbers of patients with chronic

P. aeruginosa infection develop multiresistant strains resistant to all drugs in

at least major classes of antipseudomonal antibiotics: beta-lactams, aminoglyco-

sides, and quinolones [145].

3.1.1 Metabolomics for diagnostics of CF

It has long been known that bacteria can influence their environment by secret-

ing a large number of metabolites. P. aeruginosa growth influences metabolite

production, consumption, and biotransformation and therefore has the potential

to play a selective role in microbiota composition in the mucus in the CF lung

influencing the course of the disease and severity of the symptoms. Therefore es-

tablishing the impact of P. aeruginosa growth on airway secretion composition is

fundamental to understanding the behaviour of this pathogen in vivo, its impact

on the host and relationship with other colonising species.

While high-throughput sequencing and microarrays have proven successful to

interrogate 16S rRNA gene sequences in defining the components of the micro-

bial community in the CF lung [147], a metabolomics approach was proposed to

determine the functional impact of isolates on the CF lung. The CF biofilm is

not a sum of its bacterial components, but a complex polymicrobial community

and the snapshot of the dynamic state of the CF lung can be obtained using

metabolomics [52]. Such variation in composition also poses technical problems

to current diagnostics which are culture-based and often unable to isolate all po-

tentially clinically significant bacterial species present in a sample. In this study

a systems biology approach will be applied utilising the research platform based

on NMR metabolomics. It was hypothesised that the phenotypes of clinical iso-

lates would be reflected in the differences in the metabolite levels in spent media
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and that those changes might correlate with patient outcome. Since the bacterial

species in CF vary markedly between patients, being able to relate the microbiota

composition, particularly the dominant P. aeruginosa strain characteristics, to

the lung function in a quick and high-throughput manner would be highly benefi-

cial. It would allow better diagnosis, treatment and, in the future could possibly

inform new strategies to tailor the composition of bacterial community in order

to promote or silence certain bacterial behaviour in vivo and predict the effects

of new therapeutic interventions. Identification of the key biochemical signatures

of P. aeruginosa at different time points of the infection and at varying viru-

lence of the pathogen would allow more effective treatment and prophylaxis; the

limitations of currently used diagnostic methods are well documented [148]. Of

particular importance is prevention of phenotypic diversification of the pathogen

and formation of biofilm by aggressive antibiotic prophylaxis [149].

3.1.2 Development of CF airway composition

The observation that the variation amongst species colonising CF airways is much

lower than in the airways of a healthy individual [147, 150] and also the presence of

a consistent microbiome pattern of the core species [151] suggests involvement of

a selective mechanism in the infection. This is supported by the relative stability

of the overall composition in the adult patient lung during antibiotic treatment

and exacerbations [152], which suggest that the colonising species have success-

fully adapted to the environment and that they are able to selectively compete

or cooperate with other species.

Van der Gast et al. identified clinical factors that can influence the composi-

tion of CF lung, which are CFTR genotype and recent antibiotic treatment [151].

Interestingly, factors such as patient age, gender or FEV1 showed no significant

correlation with the composition of CF lung microbiota [151], however, the study

ignores the input from the dominant strain P. aeruginosa. Nevertheless, this

finding emphasised the need for a new method of assessing CF patients outcome,

as forced expiratory volume in 1 s (FEV1) is currently used as the single main es-

timator of mortality and is also used as a main classifier for lung transplantation

[153], despite the fact that it does not correlate with the lung composition and

dynamics. Interestingly, preliminary data analysis of the samples showed strong

negative correlation between mean FEV1 and spent culture pH (R = -0.76, p

= 0.002) (Figure 3.1 on the next page). No significant correlation was found
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Figure 3.1: The relationship between mean FEV1 and spent culture pH

shown for each of the isolates (R = -0.76, p = 0.002). Analysis performed by Dr

Damian Rivett.

however between lung function and sputum pH (R = 0.50, p = 0.067) or between

sputum pH and spent culture pH (R = -0.37, p = 0.188). Tables 3.2 on page 56

and 3.3 on page 57 list further significant correlations. Therefore a further objec-

tive was to investigate if culture pH also correlates with the nutritional changes.

Secretory products of pathogens are known to contribute to the survival strat-

egy. Alkaline protease secreted by P. aeruginosa is involved in the activation of

the epithelial sodium channel (ENaC), leading to further impairment of mu-

cociliary clearance [154]. Another pathogen, Burkholderia cenocepacia (B. ceno-

cepacia), secretes lipase, which promotes its epithelial invasion, whereas alginate

production by P. aeruginosa mucoid phenotype enhances persistence of B. ceno-

cepacia [155]. Many bacterial pathogens are also known to secrete toxins tar-

geting their competitors residing in the same niche. Here, the differences in the

metabolic composition of the secretions will be investigated. Colonising bacteria

can influence the emergent properties of the community and this in turn can be

a modulating factor [24]. Since P. aeruginosa is the dominant isolate, its growth

will be the major factor affecting availability of certain carbon and nitrogen

sources and also production of other metabolites. Furthermore, P. aeruginosa
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isolates from different CF patients have been reported to show a broad range

of phenotypes and growth characteristics in vivo, such as planktonic growth or

biofilm formation [149] presumably providing basis for the selection strategy.

It has been postulated that the lower airways in chronically infected indi-

viduals represent a complex ecosystem where infections are driven by communi-

ties themselves by constant interplay between the host immune responses and a

pathogen as well as between bacterial species [148]. Kelpac-Ceraj et al. suggested

that looking at the composition of this ecosystem would allow better prediction

of disease progression than investigating specific pathogens [150]. In order to

identify the key selective drivers in this process the secretion characteristics of

the whole community was examined using an untargetted -omics approach, as it

requires determination of changes in the levels of a large number of metabolites.
1H NMR spectroscopy has been used previously to characterise Pseudomonal

growth (PAO1 type strain) in a standard laboratory medium [156]. Here, the

study is to be repeated with Pseudomonal CF isolates from patients cultured in

a synthetic airway model medium. The challenge for the method will be the fact

that this study investigates differences at the species level and the composition

of bacterial communities in CF individuals shows relatively low variation, there-

fore the nutritional characteristics of their secretions might exhibit only subtle

changes that only a sensitive method can detect. It was hypothesised that NMR

metabolomics of isolates from sputum samples alone from cystic fibrosis patients

will allow discovery of metabolic classifiers that would enable assessment of the

severity and course of the infection. The study investigated metabolic differences

between different Pseudomonal isolates, while aiming to more closely replicate

the physiochemical composition of CF airway secretions in a controlled manner

and cultured clinical isolates in a defined synthetic CF medium (SCFM).

3.2 Materials and methods

Here, P. aeruginosa strains isolated from sputum samples collected from 13 adult

CF patients were subjected to 1H NMR metabolomics analysis. For patients 12

and 13 two dominant morphotypes were selected. Table 3.1 on the following

page lists the details of isolates, phenotypic characteristics, and corresponding

patients.
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Table 3.2: Relationships between the sample characteristics and strain

cluster membership. Assessment of significance was performed using a one-way

ANOVA unless stated (#) whereby a Kruskal-Wallis test was used. Asterisk denotes

significant (p <0.05). R2 indicates the amount of variance in the characteristics

accounted for by the cluster membership. Data from Dr Geraint B. Rogers.

Characteristic p-value R2

Mucoid# 0.912 0.041

Pigmentated# 0.277 0.295

Auxotrophy# 0.757 0.089

Age# 0.361 0.212

Sex# 0.188 0.368

BMI 0.429 0.232

Diabetes# 0.572 0.154

Mean FEV1 0.016∗ 0.629

CFPE 0.162 0.388

Species richness# 0.284 0.159

Culture pH 0.004∗ 0.751

Sputum pH 0.078 0.479

cfu/ml# 0.697 0.124

Firmicutres 0.337 0.276

Fusobacteria# 0.599 0.185

Actinobacteria# 0.747 0.114

Proteobacteria 0.350 0.269

Bacteriodetes 0.441 0.227
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Table 3.3: Summary of the significant (p <0.05) pairwise Spearman‘s

correlation coefficients observed between the sample characteristics. All

other correlations were found to be non-significant. Data from Dr Geraint B. Rogers.

Characteristic Rho

Mucoid: Sex -0.645

Mucoid: BMI 0.539

Mucoid: Species richness 0.652

Mucoid: Firmicutes 0.782

Mucoid: Proteobacteria -0.556

Sex: Species richness -0.559

BMI: Diabetes -0.630

BMI: Firmicutes 0.691

Mean FEV1: Culture pH -0.736

CFPE: Culture pH 0.573

Species richness: Firmicutes 0.843

Species richness: Fusobacteria 0.660

Species richness: Proteobacteria -0.955

Species richness: Bacteriodetes 0.693

Firmicutes: Proteobacteria -0.743

Fusobacteria: Actinobacteria 0.900

Fusobacteria: Proteobacteria -0.750

Fusobacteria: Bacteriodetes 0.761

Actinobacteria: Proteobacteria -0.573

Actinobacteria: Bacteriodetes 0.585

Proteobacteria: Bacteriodetes -0.823
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3.2.1 Bacterial growth conditions

Bacterial quantification and genotyping in samples has been performed by Dr

Geraint B. Rogers. P. aeruginosa density in samples at harvesting was deter-

mined by quantitative (Q) PCR enumeration of oprL gene copies in total DNA

extracts, using a protocol described previously [157]. Random Amplified Poly-

morphic DNA (RAPD) assays were performed for each P. aeruginosa isolate

as described previously [158]. A defined synthetic CF medium (SCFM) closely

replicating the physiochemical composition of CF airway secretions was used as

described previously [159–162]. The SCFM contained: 10 g/L BSA, 10 g/L

porcine gastric mucin, 1.4 g/L herring sperm DNA, 10 mM MOPS, 5 g/L egg

yolk emulsion, 3.6 µM FeSO4, 51.8 mM NaCl, 2.28 mM NH4Cl, 2.128 mM L-

lysine HCl, 14.9 mM KCl, 1.78 mM L-alanine, 1.754 mM CaCl2, 1.661 mM L-

proline, 1.609 mM L-leucine, 1.549 mM L-glutamate HCl, 1.446 mM L-serine, 1.3

mM NaH2PO4, 1.25 mM Na2HPO4, 1.203 mM L-glycine, 1.12 mM L-isoleucine,

1.117 mM L-valine, 1.072 mM L-threonine, 0.827 mM L-aspartate, 0.802 mM L-

tyrosine, 0.676 mM L-ornithine HCl, 0.633 mM L-methionine, 0.606 mM MgCl2,

0.53 mM L-phenylalanine, 0.519 mM L-histidine HCl, 0.348 mM KNO3, 0.306

mM L-arginine HCl, 0.16 mM L-cysteine HCl, 0.119 mM diethylene triamine

pentaacetic acid, 0.013 mM L-tryptophan. The pH of the medium was adjusted

to 6.8. The medium was filter sterilised using a 0.45 µm-pore-size syringe filter

with the exception of porcin gastric mucin, which was sterilised separately by

heating at 70 ◦C for 24h in 95 % ethyl alcohol as described previously [163]. Fig-

ure 3.3 on page 63 shows representative 1H NMR spectra of selected constituents.

Incubation was performed in 9 ml volumes of SCFM in 15 ml Falcon tubes

(BD Biosciences, Oxford, UK) with tight lids, for 72 hours at 37 ◦C , with in-

version every 12 hours. Following incubation, bacterial cells were pelleted by

centrifugation at 12,000 x g, 10 min at 4 ◦C , with the supernatant transferred to

fresh NMR tubes with 10 % v/v D2O added to provide a deuterium lock signal.

3.2.2 NMR

1H NMR spectra were recorded on a Bruker Avance 400 MHz spectrometer

equipped with a 5 mm QNP probe (Bruker UK Limited, Coventry, UK) with

sample isolates tested in triplicate and kept at room temperature. A zgesgp

pulse sequence (Bruker) with excitation sculpting using gradients was used [164].

The 1H 90 degree pulse was 9.75 µs. For each spectrum, 65,536 data points were
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acquired with 16 scans. To help in the assignment of the metabolite resonances,

J-resolved 2D correlation with presaturation during relaxation delay using gradi-

ents (JRES, Bruker) spectra were recorded for some of the samples, using default

pulse sequences as provided by Bruker. The spectral width was 20 ppm. Free

induction decays were multiplied with an exponential function corresponding to

a line broadening of 0.3 Hz. The spectra were Fourier transformed and calibrated

with 2,2,3,3,-D4-3-(Trimethylsilyl) propionic acid sodium salt (TSP-2,2,3,3-D4)

with reference signal at 0 ppm. Phase correction was performed manually and

automatic baseline correction was applied.

3.2.3 Multivariate analysis

A detailed explanation of the pre-processing and processing methods and param-

eters is discussed in Chapter 2 on page 18 and the software manual can be found

in Appendix A on page 177.

Regions above 9.074 ppm and below 0.116 ppm were excluded because of

excessive noise content and few signals. The water peak, ethanol and TMSP

reference signal were also excluded. The spectra were bucketed using a 0.02 ppm

bin size with additional, manual bucketing applied to adjust for peak shifting as

described below, leaving 336 data points per spectrum. Spectra were normalised

using probabilistic quotient normalisation (PQN) [124]. PCA was used to iden-

tify clustering patterns from the major variations between the 49 NMR spectra.

For this analysis, spectra were Pareto scaled after normalisation. In order to find

metabolomic classifiers for each cluster membership and provide a robust sta-

tistical analysis of the models, each possible PCA cluster was analysed against

SCFM cluster using orthogonal PLSDA (OPLSDA) in a series of binary com-

parisons subjected to cross-validation procedure. Here, spectra were autoscaled.

Both normalisation and autoscaling were included in the cross-validation. In the

process 75 % of the samples were used as a training set and the remaining 25

% as a test set, ensuring that the number of samples in the test set was propor-

tional to the total number of samples from each class. To choose the number

of components for the model, a leave-one-out cross-validation was carried out on

the samples in the training set, and the F1-score used to choose the number of

components, with the additional constraint to use a maximum of 8 components.

This was repeated 2,000 times with randomly chosen samples in the training and

test set to prevent bias due to the choice of training or test set. This leads to

4 × 2000 models. The same procedure was repeated with randomised predictor
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variables (Y table) to provide a reference Q2 value. Resonances identified as sig-

nificant from backscaled loadings were verified against the peak intensity of the

original spectra after PQN normalisation. Peaks providing the basis for discrimi-

nation between the classes were assigned by comparing chemical shift values and

multiplicities from J-resolved NMR spectra to values from the Biological Mag-

netic Resonance Data Bank (BMRB) [92] and The Human Metabolome Database

(HMDB) [91], by analysis of published P. aeruginosa metabolic data [165, 166]

and NMR spectra generated from individual medium components (Figure 3.3 on

page 63).

3.2.4 Relationships between PCA and clinical character-

istics

This statistical analysis was performed by Dr Damian Rivett using R (v.2.13.0,

www.r-project.org). One-way factorial ANOVA were performed to test for

significant relationships between the P. aeruginosa strain cluster membership and

sample characteristics, with a significance threshold of p < 0.05. Homogeneity of

variance and normality of errors were assessed using the Fligner-Killeen and the

ShapiroWilk tests respectively prior to the ANOVA. If a factor failed either test

a nonparametric Kruskal-Wallis rank sum test was performed. Factors that were

found to be significant using ANOVA were further studied using Tukey‘s honest

significant difference (HSD) as a post hoc test. Correlations between the sample

characteristics were performed using Spearman‘s rho correlations.

3.3 Results

3.3.1 1H NMR spectroscopy of Pseudomonas CF isolates

cultured in an airway model medium

1H NMR spectroscopy has been used previously to investigate the growth of

P. aeruginosa type strain PAO1 in Luria-Bertani broth, a standard laboratory

medium [156]. In that study NMR was used to demonstrate metabolic differences

between planktonic and biofilm modes of growth as reflected by the composition

of the spent medium. This study was a step further and investigated metabolic

differences between different Pseudomonal isolates, while aiming to more closely

replicate the physiochemical composition of CF airway secretions in a controlled

manner and cultured clinical isolates in SCFM.
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Figure 3.2: Representative 1H NMR spectra generated from non

inoculated SCFM, PAO1 inoculated SCFM, and representative members

of each of the four putative clinical isolate clusters. Shaded regions indicate

large regions of the 1H NMR spectra excluded on the basis of solvent or buffer

peaks-water around 4.8 ppm and MOPS peaks around 2.2, 3.0-3.3 and 3.9 ppm.
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Representative 1D 1H NMR spectra are shown for each of the isolate clusters

identified by PCA described below, revealing the effect of culturing either P.

aeruginosa PAO1 or CF clinical isolates (Figure 3.2 on the previous page). Isolate

6 was excluded from analysis due to insufficient growth in SCFM medium.

Methodological problems

1H NMR spectra generated for each isolate and for the sterile medium showed

high degree of reproducibility within replicates. This study successfully identified

metabolic changes and related them to univariate measures of patient outcomes,

however adherence to the SCFM growth protocol was problematic for the NMR

study and subsequent multivariate analysis. Since liquid-state NMR was used,

large complexes, viscous or solid constituents in the sample will give rise to broad

peaks, which obscure the signal from metabolites in the NMR spectrum. This

problem is discussed in Chapter 2 in Section 2.2.2 on page 24 and one of the

solutions for the future study is to use cpmg pulse sequence [78]. SCFM con-

tains a number of components, such as mucin and BSA, which resulted in peak

broadening and loss of resolution due to high viscosity (Figure 3.3 on the next

page). In addition, a number of the strains analysed were highly mucoid and

capable of producing large amounts of exopolysaccharide (EPS), which leads to

the same problem. Finally, although less noticeable in the SCFM spectrum, reso-

nances attributable to the, presumably, non-metabolised MOPS buffer dominate

the spectra derived from spent media (Figure 3.4 on page 64).

These components of the sample led to a number of very broad resonances,

particularly between 3.5 and 4.5 ppm, and substantial, pH dependent shifting of

both broad and sharper resonances between 3.00 and 3.30 ppm and around 2.10

ppm, (Figure 3.2 on the previous page) as expected from the pH dependence

of buffer resonance chemical shifts (Figure 3.5 on page 65). Noticeable peak

shifts were most likely due to pH- and ionic strength-induced alteration to the

ionisation equilibrium for the function groups of the MOPS buffer. To remove

the influence of MOPS buffer from the analysis, the following regions were ex-

cluded from further analysis in addition to the water and ethanol peaks (5.024.65

ppm; 3.703.76 and 1.221.15 ppm): 4.023.87 ppm; 3.502.87 and 2.271.96 ppm.

Large scale shifting of buffer resonances resulted in ineffective peak alignment

using correlation optimised warping (COW) (Figure 3.6 on page 66). Although

peak realignment could conceivably be achieved through pH adjustment of spent
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Figure 3.3: 1H NMR spectra generated for SCFM media and selected

constituents.
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A

B

C

Figure 3.4: Chemical structure of MOPS buffer (A), simulated 1D 1H

NMR spectrum of MOPS buffer (B) and fragment of NMR spectrum

showing the problem of obscuring broad MOPS buffer peak (C).
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Figure 3.5: 1H NMR spectra generated for MOPS buffer in 10% D2O at

various pH.
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Figure 3.6: Correction of peak shifting using Correlation Optimised

Warping (COW). Correction works well for the region containing between 4.20 and

3.60 ppm-MOPS buffer (A), however alignment of the multiple peaks between 2.30

and 2.00 ppm is unsuccessful-MOPS buffer (B).
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media as is done for e.g. urine samples [167], manual peak bucketing was able

to eliminate the observed peak shifts. The exclusion of large regions, consider-

able spectral overlap and the appearance of broad resonances following bacterial

growth also precluded the use of statistical correlation spectroscopy (STOCSY)

or other two-dimensional techniques to aid assignment for many resonances. For

this reason our present efforts were largely restricted to using the 1H NMR tech-

nique and multivariate analysis to divide the isolates into groups with similar

growth strategies.

3.3.2 PCA identifies putative clusters

The clustering patterns between spectra obtained for the clinical isolates (n =

41) and SCFM medium (n = 8) were identified using PCA. The representative

2D scores plots of component 1 (PC1) versus component 2 (PC2), which explain

67.7 % of the variation in the spectra, reveal four putative separate clusters rep-

resenting the different biochemical composition of the samples as detected by the

NMR spectra (Figure 3.7 on the following page). In the PCA scores plot, each

data point corresponds to one 1D 1H NMR spectrum, and the reproducibility of

the method was confirmed by the close arrangement of data points corresponding

to replicates from each isolate (Figure 3.7 on the next page). NMR spectra of

the CF clinical isolates fell into two, readily identifiable, main clusters (I and II)

that were separated by PC1, which accounted for 56.3 % of the variation in the

spectra. Cluster II is possibly subdivided into two or three further putative clus-

ters (IIa-c) separated by PC2, with groups of isolates in separate quadrants of

the PCA scores plot. The spectra from isolates in the three or four clusters were

each well separated from those of the sterile synthetic media with the exception

of isolate 1 which caused almost no change in the 1H NMR spectra of the spent

media. Cluster I was mostly separated from SCFM by PC2. Three of the four

isolates found in Cluster I (1, 10, 12b) are notable in that they lead to a very

acidic pH in the spent media (Table 3.1 on page 55). This might cause the cluster

members to be distinguished purely on the basis of pH dropping below pH 6.0

which causes MOPS resonances to shift even beyond the ranges excluded above

(Figure 3.5 on page 65) and could possibly influence the clustering of the isolates.

A broad resonance at 4.04 ppm does appear for these isolates which can be as-

signed to the MOPS resonance expected in this region, however additional MOPS

resonances expected between 3.50 and 3.87 ppm could not be discerned above

the contribution from metabolite resonances. Cluster II was further separated

from SCFM by PC1, but also along PC2 where isolates were further separated
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Figure 3.7: Scores scatter plot resulting from applying PCA to the 1H

NMR data by component 1 (PC1) and component 2 (PC2). The percentage of

variance in the data explained by each component is indicated on the relevant axis.

Strain identification numbers are shown. Ellipses are drawn to show putative clusters

of spectra. SCFM-synthetic cystic fibrosis media.

into upper and lower quadrants. Initially a three cluster model was considered

with Cluster IIa in the lower quadrant and Cluster IIb in the upper quadrant.

The existence of a fourth putative Cluster IIc, with isolates located intermediate

to Clusters IIa and IIb, was considered and tested by OPLS-DA below. Key

resonances whose variation contributes to PC1 and PC2 are shown in the corre-

sponding PC backscaled loadings plots (Figure 3.8 on page 70 - Figure 3.12 on

page 74) and Table 3.4 on the following page presents Q2 values of the models

resulting from each binary comparison.

3.3.3 OPLS-DA supports clusters identification

Orthogonal projection to latent structures discriminant analysis (OPLS-DA) was

then used to compare 1H NMR spectral data generated from sterile synthetic me-

dia with each of the four putative strain clusters and to test whether Cluster II

could indeed be considered as three separate clusters. Cross-validation was per-

formed on all models and the output plots are presented: Figure 3.8 on page 70

- Figure 3.12 on page 74. The resulting 2D scores plots show good separation
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Table 3.4: Predictive Q2 values for all models. Cluster IIa and IIb contain

isolates 4, 7, 11, 13, 14 and 2, 5, 9, 12, 13b, respectively, in the 3 cluster model and

lose isolates 2, 4, 5, 14 to Cluster IIc in the four cluster model. Q2 values for models

run with permutated class assignments are given in parentheses.

Test 3 cluster model 4 cluster model

SCFM versus cluster I 0.92 (-0.63) 0.92 (-0.63)

SCFM versus cluster IIa 0.99 (-0.44) 0.99 (-0.47)

SCFM versus cluster IIb 0.99 (-0.46) 0.99 (-0.48)

SCFM versus cluster IIc - 0.99 (-0.40)

Cluster IIa versus cluster IIb 0.71 (-0.46) 0.91 (-0.50)

Cluster IIa versus cluster IIc - 0.84 (-0.47)

Cluster IIb versus cluster IIc - 0.92 (-0.44)

between the three or four putative clusters and SCFM with Q2 values > 0.90, in-

dicating a highly reliable model as compared with an ideal score of 1 (Table 3.4).

Initially, the PCA scores plot identified two separate isolate scores clusters (Clus-

ter I and Cluster II) with Cluster I, comprising isolates 1, 3, 10 and 12b. Using

OPLS-DA, putative Clusters IIa and IIb, containing isolates 4, 7, 11, 13, 14 and

2, 5, 9, 12, 13b respectively, could be separated (Figure 3.11 on page 73) with Q2

of 0.69. However, when a further putative cluster (IIc) was considered, compris-

ing isolates 2, 4, 5 and 14 (PCA scores for these isolates show an intermediate

distribution between the upper and lower quadrants due to PC2), the apparent

separation as monitored by scores plots (Figure 3.9 on page 71 and Figure 3.10

on page 72) and Q2 (Table 3.4) indicated that a four cluster model may be useful

when greater numbers of patient isolates are available.

3.3.4 Relationships between strain cluster membership

and sample characteristics

To determine whether differences in the nutritional modifications to airway secre-

tion composition that result from the growth of P. aeruginosa may have clinical

impacts, membership of CF sputum isolate clusters, as defined based on PCA

and OPLS-DA, for both three and four cluster models, was compared with a

number of potentially key strain or sputum sample characteristics. These fac-

tors were isolate auxotrophy, mucoidy, pigmentation, spent culture pH, sputum
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Figure 3.8: LOOCV output files for the comparisons of SCFM and

putative Clusters I (A) and IIa (B). From top left to bottom right: scores plots

showing good separation between classes; back-scaled loadings plots showing 1H

resonance frequencies that discriminate between the two classes under comparison;

histograms showing number of principal components used to separate the classes;

prediction residual error sum of squares (PRESS) indicating low within-sample

variation; Q2 value histogram comparing random class assignment (grey) and the

actual class assignment (blue); comparison of model predicted for the sample

classification as compared to the actual class.
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Figure 3.9: LOOCV output files for the comparisons of SCFM and

putative Clusters IIb (A) and IIc (B). From top left to bottom right: scores

plots showing good separation between classes; back-scaled loadings plots showing 1H

resonance frequencies that discriminate between the two classes under comparison;

histograms showing number of principal components used to separate the classes;

prediction residual error sum of squares (PRESS) indicating low within-sample

variation; Q2 value histogram comparing random class assignment (grey) and the

actual class assignment (blue); comparison of model predicted for the sample

classification as compared to the actual class.
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Figure 3.10: LOOCV output files for the comparisons of Cluster IIc and

either putative Clusters IIa (A) or IIb (B) in a putative four cluster

model. Scores for Cluster IIc shown in red (A) and then blue (B). From top left to

bottom right: scores plots showing good separation between classes; back-scaled

loadings plots showing 1H resonance frequencies that discriminate between the two

classes under comparison; histograms showing number of principal components used

to separate the classes; prediction residual error sum of squares (PRESS) indicating

low within-sample variation; Q2 value histogram comparing random class assignment

(grey) and the actual class assignment (blue); comparison of model predicted for the

sample classification as compared to the actual class.
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Figure 3.11: LOOCV output files for the comparisons of Cluster IIa

(blue) and Cluster IIb (red) in a 3 (A) or 4 (B). From top left to bottom

right: scores plots showing good separation between classes; back-scaled loadings plots

showing 1H resonance frequencies that discriminate between the two classes under

comparison; histograms showing number of principal components used to separate the

classes; prediction residual error sum of squares (PRESS) indicating low

within-sample variation; Q2 value histogram comparing random class assignment

(grey) and the actual class assignment (blue); comparison of model predicted for the

sample classification as compared to the actual class.
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Figure 3.12: Leave-one-out cross-validation (LOOCV) output files for the

comparisons of Cluster I (blue) and Cluster IIb (red) in a 3 (A) or 4 (B)

class model. From top left to bottom right: scores plots showing good separation

between classes; back-scaled loadings plots showing 1H resonance frequencies that

discriminate between the two classes under comparison; histograms showing number

of principal components used to separate the classes; prediction residual error sum of

squares (PRESS) indicating low within-sample variation; Q2 value histogram

comparing random class assignment (grey) and the actual class assignment (blue);

comparison of model predicted for the sample classification as compared to the actual

class.
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pH, species richness and relative phyla abundance as defined by 16S rRNA gene

clone sequencing analysis, P. aeruginosa density as determined by quantitative

PCR, patient age, sex, genotype, BMI, diabetic status, FEV1, and the number of

respiratory exacerbations over the preceding 12 months. This analysis has been

performed by Dr Damian Rivett and the details can be found in the methods

section. Highly significant relationships were identified between cluster member-

ship and lung function (FEV1) (F(3,10) = 5.64, p = 0.0159) and between cluster

membership and spent culture pH (F(3,10) = 8.63, p = 0.004,) (Figure 3.13 on

the following page). These significant relationships were tested using Tukey‘s

honest significant difference (HSD) to assess for significant differences between

clusters. In the three cluster model, this analysis found significant differences

between Clusters I and IIb (padj = 0.020) and between Clusters IIa and IIb (padj

= 0.030) for lung function (FEV1) with patients in Cluster IIb having relatively

poor lung function (Figure 3.13 on the next page, a). In the four cluster model,

Cluster I was shown to be significantly different from both clusters IIb (padj =

0.005) and IIc (padj = 0.010) (Figure 3.12 on the preceding page). A possible rela-

tionship was also observed between sputum pH and cluster membership (F(3,10)

= 3.06, p = 0.078, pH ranged from 5.9 to 7.8). Significant differences in spent

culture pH were observed between Cluster I and both Clusters IIa and IIb in the

three cluster model (Figure 3.13 on the next page, b). Therefore, although Clus-

ter I and Cluster II are clearly separated in the PCA analysis (by PC1), the only

significant differences that were found both in FEV1 and spent culture pH were

between Cluster I and Cluster IIb with a significant difference in FEV1 also seen

between Clusters IIa and IIb. These clusters are separated in the PCA analysis

by PC2 and hence identification of resonances contributing to PC2, rather than

PC1, or OPLS-DA analyses between these clusters should identify metabolomic

changes that cause the variance in FEV1 or spent culture pH.

3.3.5 OPLS-DA identifies characteristic metabolite con-

sumption and production

The OPLS-DA comparisons of Cluster IIb with Cluster I (Figure 3.12 on the

preceding page) and Cluster IIa (Figure 3.11 on page 73) again support the clus-

tering determined above and allow identification of resonances from metabolites

that may be implicated in FEV1 and/or spent culture pH. Plotting normalised

spectra from each of the four clusters, coloured according to cluster, highlights

resonances whose intensity is consistently altered between clusters (Figure 3.15
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A

B

Figure 3.13: Box plots comparing FEV1 (A) and spent culture pH (B) for

each of the clusters in the three cluster model; * indicates p < 0.05.
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A

B

Figure 3.14: Box plots comparing FEV1 (A) and spent culture pH (B) for

each of the clusters in the four cluster model; * indicates p < 0.05.
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on the following page). Comparing the backscaled loadings plots for the com-

parisons between Cluster IIb and Cluster I and between Cluster IIb and Cluster

IIa identifies metabolites whose differing intensities correlate with the significant

differences identified above for lung function FEV1 and/or spent culture pH. No-

tably, levels of lysine or ornithine appear higher in the spent media of isolates in

Cluster I or IIa when compared with those from Cluster IIb, where lung function

was poorest, as evidenced by their characteristic resonances at 3.765 ppm (Fig-

ure 3.15 on the next page, A) and 1.465 ppm (Figure 3.15 on the following page,

B). A resonance characteristic of leucine at 1.728 ppm (Figure 3.15 on the next

page, B) is also elevated in spectra of spent media of isolates in both Clusters I

and IIa while a broad resonance that appears at 6.80 ppm (Figure 3.15 on the

following page, C), in many spectra from Cluster IIb isolates, is largely absent

from either Clusters I or IIa. Spectra from isolates in Cluster IIc are intermedi-

ate between spectra from isolates in either Cluster IIa or IIb for these features.

An additional broad resonance at 5.77 ppm is notable (Figure 3.15 on the next

page, C) but its intensity does not correlate with FEV1 and is one of the main

resonances that contributes to the separation of the isolates by PC1 in the PCA

analysis.

3.4 Discussion

Untargeted metabolic profiling was applied to the spent media (metabolic foot-

printing) to compare 15 Pseudomonal isolates from 13 CF patients and their

nutritional adaptations to chronic CF lung infections. The metabolite composi-

tion of the spent culture media was compared between isolates, patients and with

the patient lung function and various sample characteristics. The influence of the

nutritional sources on bacterial community composition has been discussed previ-

ously [168, 169] and high cell number of P. aeruginosa colonising CF lung affects

the host by selectively allowing co-infection and subsequent co-colonisation by

other bacterial species.

Bacteria influence the environment within the host by large- and fine-scale

modifications in the utilisation of compounds such as carbon and nitrogen sources

and the production of major metabolites. It was hypothesised that probing those

modifications will provide an indication of the degree to which P. aeruginosa iso-

late growth might have a differential impact on CF airway secretions and to try

to identify a composition favoured during e.g. exacerbations and used them for
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Figure 3.15: Normalised 1H spectra (with excluded regions but otherwise

untreated) of spent media coloured according to cluster membership.

(Cluster I-blue, Cluster IIa-red, Cluster IIb-green, Cluster IIc-yellow). Spectral

regions between 3.5 and 3.85 ppm (A), 5.6 and 6.9 ppm (B) and 1.4 and 1.8 ppm (C)

are shown.
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early diagnosis. Insights into nutritional composition and its role in promot-

ing or silencing communication between different species colonising CF lung and

identifying the consequences of any alterations will be helpful in treatment and

management of the condition.

The aim was to obtain a dynamic snapshot of major compositional changes

taking a systems biology approach and the method of choice was 1H NMR spec-

troscopy. It allows to monitor all the metabolites simultaneously with high re-

producibility, therefore allowing to see the between sample variation in chemical

composition.

In the experiment a defined synthetic growth medium (SCFM) was used in

order to replicate more closely the composition of CF lower airway secretions. It

was demonstrated in previous studies to be a suitable medium for in vitro model

of CF lower airway conditions [160, 162]. Adherence to the well validated SCFM

growth procedures presented some challenges for the NMR and in the future the

constituents would have to be replaced with deuterated forms or by less viscous

buffers in order to avoid pH-dependant peak shifts and peak broadening. Also,

HR-MAS NMR could be considered in order to eliminate the broad resonances.

The exometabolome (spent culture media) was analysed as this provides a

direct measure of the interaction of bacteria with the environment and addressed

the main question: ”To what degree the impact of P. aeruginosa growth dif-

fered between clinical isolates under conditions approximating those encountered

in vivo”. Metabolic profiling showed substantial differences between different

CF isolates, which were categorised into four separate clusters (Figure 3.7 on

page 68), representing four end-stage phenotypes. The clustering was driven

mainly by changes in levels of amino acids, which may be an evidence of metabolic

adaptation to the host environment. Strains could have evolved more efficient en-

ergy strategies in the low oxygen tensions in mucopurulent CF sputum. Studies

shown that amino acid levels influence the antibiotic susceptibility of P. aerugi-

nosa [170] and their growth strategies [171, 172].

Cluster membership was found to correlate with spent culture pH (Table 3.2

on page 56), despite careful exclusion of pH shifting resonances from the ana-

lysis and successful spectral alignment. However, visual inspection of the spectra

from each cluster (Figure 3.2 on page 61) shows clear variation in levels of me-
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dia constituents and metabolites produced/consumed between isolates and not

pH-induced peak-shifts. No correlation between P. aeruginosa cell count and

cluster membership was found (Table 3.2 on page 56), indicating that isolates do

not cluster according to cell numbers, but are indeed separated by divergence in

growth strategies. The cause of the change in pH of the medium could be due to

change in levels of non-pH neutral components. It could also be due to proton

extrusion into the medium, which is an important component of the adaptation

to growth at low pH. Nevertheless, the impact of P. aeruginosa growth on pH

could have major clinical implications since it has been shown to influence both

bacterial community composition [173, 174] and behaviour [175]. Innate defence

processes such as ciliary function [176] and mucus viscosity [177] have also been

shown to be affected by alterations in airway secretion pH.

A highly significant relationship was also found between the cluster member-

ship of CF isolates and the lung function of the patient from which they were

obtained (as measured by FEV1) (Table 3.2 on page 56). This demonstrates the

strong relationship between the nutritional modification of the environment by

P. aeruginosa growth and patient lung function and suggests that further re-

search to deepen our understanding of bacterial community composition in the

CF airways is needed.

The CF lung is a very heterogeneous environment with a broad range of

species [147] with nutritional requirements being the main selective pressure in

the colonisation process. Interestingly, bacterial species commonly found in oral

cavity are not reported in CF lower airway secretions and this is thought to be

due to changes in the nutritional availability which in CF lung is modified by

dominant bacterial species [178, 179]. Such interactions, however, are still poorly

understood in the CF lower airways.

3.5 Conclusion

1H NMR was applied to see the effect of P. aeruginosa growth in a model CF

medium on different isolates. NMR divided isolates into 4 clusters, based mainly

on divergence in metabolite production, which suggests that P. aeruginosa iso-

lates are able to adopt different growth strategies in response to changing envi-

ronment. Highly significant relationships between P. aeruginosa isolate, patient

lung function (FEV1) and spent culture pH suggests future application in pre-
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dicting patient lung function via characterisation of P. aeruginosa growth.

This study is an example of how NMR metabolomics offers a way of imple-

menting personalised healthcare protocols. It measures the metabolite levels in

an organism and models the changes in its levels in biological fluids and tissues

and links those variables to health and/or diseased status. The altered levels

of certain metabolites can be then used as predictors of susceptibility to dis-

ease or likely effectiveness of the treatment. Such systems (of the whole human

organism) measurements and modelling approaches unravel human complexity

and meet the medical requirements of today’s market; the methodologies are ro-

bust, cost efficient and high-throughput. Nevertheless, this study highlights the

importance of experimental planning and shows the main limitations of liquid

state NMR methodology. The SCFM growth medium contains a number of large

and viscous components which could not be eliminated and resulted in the pres-

ence of broad, peak-obscuring metabolic changes. The most difficult problem to

overcome was pH-sensitive peaks from non-metabolised MOPS buffer. In this

study peak alignment and exclusion successfully mitigated this effect, however,

in future pH adjustment of spent media would be recommended as well as use of

deuterated solvent forms.
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4
Application of NMR metabolomics in

investigation of the effects of gastrointestinal

microbiota divergence in genetically identical

mice
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Work described in this chapter has been published as:

Rogers, G.B., Kozlowska, J., Keeble, J., Metcalfe, K., Fao, M., Dowd,

S.E., Mason, A.J., McGuckin, M.A. & Bruce, K.D. Divergence in gas-

trointestinal microbiota in physically-separated genetically identical mice. Sci-

entific Reports 2014 (4) 5437
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4.1 Introduction

The microbial diversity in a human ecosystem is high and estimated to be occu-

pied by more than 10,000 microbial species [3]. Human distal gut represents the

highest density natural bacterial ecosystem known and contains more bacterial

cells than all of other microbial communities within human ecosystem combined

[180]. The human colon ecosystem alone has been estimated to contain more

than 400 bacterial species the vast majority of which belong to two phyla of

bacteria-the Bacteroidetes (48 %) and the Firmicutes (51 %) [180, 181]. These

complex microbial communities are believed to contribute to health maintenance

and, when in imbalance, to the development of diseases. Despite being an integral

part of human biology, the development and evolution of intestinal microbiota

and how its composition relates to human physiology is still considered poorly

understood [160, 181, 182]. The gut microbiota has been linked to immunity [183]

and nutrient intake, as well as cardiovascular health [184], obesity [29, 30, 185], di-

abetes [186], metabolic abnormalities [187], inflammatory bowel conditions [188],

hepatic function [189] nervous system development [190], carcinogenesis [191]

and recently allergy [32, 33]. Microbiome sequencing studies showed that the

microbiota composition correlates with characteristic changes and health and

disease risk [192, 193]. However, a new consensus emerged which suggests that

bacterial community composition changes should be accompanied by studies of

community function and understanding at the molecular level [194]. This can

be accomplished by investigating host metabolism, modulation of host signalling

pathways and synthesis of metabolites inferred from metabolomic studies. Only

such a detailed understanding of host-microbiota interactions would reveal how

microbiome relates to disease [194]. Metabolites are effector molecules and simul-

taneous analysis of a large number of metabolites in a host gut will highlight the

differences in function of gut microbial communities and will allow to link them

with disease characteristics which can perhaps be modulated by perturbations

from small molecule drugs or pre- and probiotics [195]. Moreover, the phenotype

of colonising bacteria can influence the emergent properties of the community

and this in turn can be a factor modulating e.g. nutritional extraction or sus-

ceptibility to certain diseases in some hosts [26, 28]. Therefore divergence in the

microbiota and metabolome of genetically-identical mice could have a significant

impact on research and possibly confound the experimental findings of such stud-

ies.
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Consequently researchers are becoming increasingly aware of the way gut mi-

crobial communities might influence host physiology, yet its impact on research

using genetically-identical animals is not known. Using genetically homogeneous

mice theoretically enables reproducible studies in animals. The genetic back-

ground of mice is stable and so is the reproducibility of that background in

different laboratories and through time [196]. The objective of this study was to

compare the microbiomes and the metabolomes of mice caged in four separate

rooms and look for possible links between microbiota composition and various

conditions.

In this chapter, 1H NMR metabolomics has been applied to investigate the

faecal metabolome of genetically-identical mice, housed in four separate units.

Faecal samples from 20 mice housed in four separate barrier rooms, within the

same facility, who were fed the same chow were used in this study. Samples

consisted of individual faecal pellets taken from individual mice. After collection,

pellets were placed into separate collection tubes and frozen prior to analysis.

4.1.1 Gastrointestinal microbiota composition in host

From the view point of a damage-response framework [12], a host is born sterile

and the acquisition of the gut microbial flora can be considered an infection,

which is later considered commensal through colonisation that does not lead to

host damage due to the infection. Microbes living in the gut environment have to

pass a strict selection by surviving the action of digestive enzymes, the presence

of cell-surface molecular paraphernalia, attack by bacteriophages and the immune

system of the host. The network of adaptive stress responses when entering a

new host resulting in adaptive mutations and the ability to grow rapidly enable

some microbes to survive such constant interplay of the resident gut microbial

communities and the host microbiome [197, 198]. Mice provide an experimentally

tractable model to investigate how resident microbial communities impact small

molecule metabolites present in host biofluids and how this divergence can impact

research using animal models.

4.1.2 Gastrointestinal microbiota composition discrimi-

nation in mice

16S rRNA genetic analysis, performed by Dr Geraint B. Rogers, identified bacte-

rial species in the faecal samples obtained for this study and revealed the faecal
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Figure 4.1: Variation in microbiota phyla based on the bacterial identities

derived from 16S ribosomal RNA gene sequencing Provided by Dr Geraint B.

Rogers.

microbiota to be dominated by the phyla Bacteroidetes and Firmicutes (62.4 ±
22.4 (SD) % and 34.7 ± 23.9 %, respectively) (Figure 4.1) with marked variation

between mice. A range of diversity and richness measures were used to assess

changes in microbiota composition, including taxa richness, Chao1, Shannon in-

dex, Simpson index 1-D [199] and the results are summarised in Table 4.1 on the

following page. All the measures were significantly lower for mice from room 4

as compared with mice from other room groups.

Analysis of the predominant genera, shown in Table 4.2 on page 89, identified

the twenty genera with the highest mean relative abundance. They were similar

to genera reported elsewhere [200]. Most samples were dominated by Prevotella,

(39.0 ± 20.2 % of sequences). Controlled ANOVA tests identified significant

differences between room groups (Table B.1 on page 186). Hierarchical clus-

ter analysis divided the samples into three clusters based on predominant genera

(Figure 4.2 on page 90). Again, marked differences between room groups, but also

within the groups were detected. Cluster I comprised samples from all animals

from room 3 and additional animals from rooms 1 and 2, cluster II comprised all

animals from room 4 and cluster III included all of the remaining animals from

87



Table 4.1: Bacterial alpha diversity assessed using the Chao1 richness estimate,

OTU richness, and Shannon Index, with Kruskall-Wallis test of K samples with a

controlled multiple pair-wise comparison. Significant differences in measures are

indicated using standard notation; samples that share a letter are not significantly

different, while samples that do not share a letter are significantly different. Room 4

is significantly different than rooms 1, 2 and 3 for all measures (p <0.001). Provided

by Dr Geraint B. Rogers.

Chao1

Sample Mean Std. deviation significance

Room 1 257.84 27.03 B

Room 2 282.94 58.70 B

Room 3 311.44 88.59 B

Room 4 168.43 18.52 A

OTU richness

Sample Mean Std. deviation significance

Room 1 354.80 17.00 B

Room 2 421.40 151.13 B

Room 3 706.40 342.38 B

Room 4 208.00 23.67 A

Shannon index

Sample Mean Std. deviation significance

Room 1 7.74 2.23 B

Room 2 10.23 1.71 B

Room 3 9.10 1.22 B

Room 4 4.45 0.38 A
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Table 4.2: The 20 genera identified with the highest mean abundance in

the faecal samples collected from 20 genetically-identical mice hosted in four

different rooms. Provided by Dr Geraint B. Rogers.

Phylum Genus Mean abundance (%)

Bacteroidetes Prevotella 38.96

Firmicutes Coprococcus 16.37

Bacteroidetes Bacteroides 7.07

Bacteroidetes Parabacteroides 6.39

Firmicutes Lactobacillus 4.38

Firmicutes Oscillospira 3.82

Bacteroidetes Alistipes 3.55

Bacteroidetes Tannerella 3.54

Firmicutes Clostridium 3.47

Firmicutes Roseburia 1.91

Bacteroidetes Pedobacter 1.86

Firmicutes Ruminococcus 1.52

Firmicutes Blautia 1.41

Proteobacteria Sutterella 0.72

Bacteroidetes Sphingobacterium 0.63

Proteobacteria Rhodospirillum 0.50

Proteobacteria Novispirillum 0.50

Proteobacteria Nautilia 0.45

Firmicutes Butyrivibrio 0.34

Firmicutes Eubacterium 0.27
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Figure 4.2: A hierarchical cluster diagram showing relative percentage of

the associated genera in each sample. The main differences were observed

between Prevotella, Caprococcus, Bacteroides and Parabacteroides. Room group 1

and room group 2 exhibit some co-clustering indicating differences within the groups.

Provided by Dr Geraint B. Rogers.
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rooms 1 and 2. Notable is the absence, or very low abundance, in room group 4

of a number of genera including Sutterella, Sphingobacterium, Novispirillum and

Porphyromonas. Taken together, the bacterial microbiota showed marked diver-

gence that was, in most cases, linked to room occupancy with the microbiota

composition allowing classification of the samples into three clusters.

This is interesting since all mice received the same standard diet, mouse chow,

which is composed of carbohydrates readily fermented in the colon to short

chain fatty acids (SCFA), primarily acetate, butyrate, lactate and propionate

[201, 202]. SCFA levels have been demonstrated to be important in determin-

ing the species composition of colonic microbiota, prevention of the growth of

pathogens [174, 203] and modulate nutrition, adipose tissue deposition, immu-

nity and cancer amongst other conditions [202, 204].

It was therefore investigated whether differences in microbiota composition in

genetically-identical mice with identical diet could lead to distinct metabolomic

characteristics and what is the overall relationship between gut microbiota and

metabolome of the host. The complexity of the microbial communities, however,

hampers identification of the functional connections. Studies using both mice

and humans aim to show what effect the gut microbiota has on the host meta-

bolome [198, 205–208]. Thorough understanding of the mechanisms involved in

the interactions between the microbiota and its host and between metabolism of

the gut microbiota and metabolic outcomes of the host are necessary to develop

new treatments for metabolic diseases.

4.2 Materials and methods

4.2.1 NMR

Samples consisted of individual faecal pellets taken from individual mice. Af-

ter collection, pellets were placed into separate collection tubes and frozen prior

to analysis. For the NMR study, pellets of mouse faeces were resuspended by

vortexing in 500 µlof phosphate buffer saline. The sample was then centrifuged

at 13,000 ×g for 10 min and the supernatant transferred to a fresh tube. Cen-

trifugation was repeated and the resulting supernatant lyophilised overnight and

resuspended in 500 µlof D2O. Samples were prepared in triplicate and 1H NMR

spectra were acquired on 400 MHz on a Bruker Avance spectrometer (Bruker,
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Coventry, UK) equipped with a 5 mm QNP probe using a zgesgp pulse sequence

incorporating water suppression via excitation sculpting with gradients. The
1H 90 degree pulse was 9.75 µs. The spectral width was 20 ppm. Free induc-

tion decays were multiplied with an exponential function corresponding to a line

broadening of 0.3 Hz. The spectra were Fourier transformed and calibrated to

a 2,2,3,3,-D4-3-(Trimethylsilyl) propionic acid (TSP) reference signal at 0 ppm.

Phase correction was performed manually and automatic baseline correction was

applied. To help in the assignment of the metabolite resonances, J-resolved 2D

correlation was performed with pre-saturation during the relaxation delay using

gradients (J-Res, Bruker).

4.2.2 Multivariate analysis

Pre-processing and orthogonal projection to latent structures discriminant ana-

lysis (OPLS-DA) were carried out with software that was developed in our lab-

oratory for a previous study [209] using the Python programming language with

numpy and scipy for calculations, and matplotlib for visualisation. The nonlinear

iterative partial least-squares (NIPALS) algorithm [108] was used for OPLS-DA

analysis. Regions above 8.5 ppm and below 0.45 ppm were excluded from the

analysis because of noise content. The water peak and TSP reference signal were

also excluded. Spectra were bucketed using 0.005 ppm bin size leaving 1588 data

points per spectrum. These spectra were normalised [124] and auto-scaled (vari-

ance of every data point normalised to 1). Cross-validation was performed where

75 % of the samples were used as a training set and the remaining 25 % as a

test set, ensuring that the number of samples in the test set was proportional to

the total number of samples from each class, and that at least one sample from

each class was present in the test set. To choose the number of components for

the model, a leave-one-out cross-validation was carried out on the samples in the

training set, and the F1 score selection method was used to choose the number of

components, with the additional constraint to use a maximum of 8 components.

A double cross-validation was repeated 2000 times (or 100 times) with randomly

chosen samples in the training and test set to prevent bias due to the choice of

training or test set. This led to 4 × 2000 models (or 100 models). Finally, this

procedure was repeated with randomly generated class assignments to provide

a reference Q2 value. Peaks provide the basis for discrimination between the

classes were assigned by comparing chemical shift values and multiplicities from

J-resolved NMR spectra to values from the Biological Magnetic Resonance Data

Bank (BMRB) [92] and The Human Metabolome Database (HMDB) [91].
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4.3 Results and Discussion

Analysis of the composition of the gut microbial communities, associated with

health and disease, and the gene content has been done extensively using se-

quencing [210–212]. The experimental evidence, however, shows that functional

similarities are found between divergent communities and, conversely, distinct

functional attributes can result from microbiota of similar composition [195, 213].

This highlights the importance of investigating the function of gut communities

and not only the composition as only then we will be able to understand host-

microbial interactions in depth and identify the compounds that mediate the

resulting function.

Metabolomics allows simultaneous measurement of a large number of metabo-

lites in a sample and the resulting data provide a fingerprint of the function of a

given microbiota. Comparing NMR profiles of samples allows to cluster them ac-

cording to the levels of metabolites in them. Such grouping of samples/microbial

communities based on changes in metabolome allows to link them to changes in

function over time or in response to a specific treatment or a condition [214].

1H NMR spectroscopy was performed on buffered saline extracts from faecal

samples numbered blindly from 1 to 20. It was hypothesised that there would

be differences when comparing the metabolome of faeces from mice whose faecal

microbiota were distinct. Initial examination of 1D 1H NMR spectra from dif-

ferent clusters showed marked differences between metabolite levels (Figure 4.3

on the preceding page). PCA of spectra allowed comparison of all of the spec-

tra simultaneously. The top panel in Figure 4.4 on the next page shows all the

samples prepared in triplicate and recorded. Close clustering of the replicates

indicates good reproducibility of the experiment and robustness of the method.

The bottom panel shows the same samples coloured according to the cluster

membership from the hierarchical cluster analysis of gut microbiomes: Cluster I,

Cluster II and Cluster III. The samples are not grouped perfectly by cluster mem-

bership based on microbiota, which suggests that there are other discriminating

factors such as contributions from the room group membership. To see which

metabolites separate clusters from each other, further analysis involved a series of

pairwise orthogonal partial least squares discriminant analysis (OPLS-DA) tests.

Each comparison analysed spectra according to classes suggested by clustering

according to the microbiota composition (Figure 4.2 on page 90) determined by
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Figure 4.4: Scores plots from unsupervised PCA analysis (spectra normalised

using auto-scaling as used in OPLS-DA analysis). Samples are colour coded according

to randomly assigned sample number (top) or cluster (bottom) from the hierarchical

cluster analysis of gut microbiomes with black, blue and red representing, respectively,

Cluster I, II, and III.
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16S sequencing.

Figure 4.5 on the next page presents scores plots which show a separation

between clusters in the left panel: Cluster I vs Cluster II, Cluster I vs Cluster

III, and Cluster II vs Cluster III. Cluster I and Cluster III show some degree

of overlap, meaning that the metabolic differences between these two clusters

were not as great as between other comparisons. This can be also seen from the

Q2, which for this comparison was 0.52 (Table 4.4 on page 104). Such a score

indicates an effective separation of class members, however, it is lower than the

other two comparisons and far from the ideal score of 1. The right side of the

panel shows identified key drivers of the differences in the metabolomic data from

the back-scaled loadings plots and assigned resonances with high variance and

high weight, indicated by greater intensity and yellow/red color respectively (Fig-

ure 4.5 on the next page-right panels). Table 4.3 on page 98 lists all the peaks seen

in the spectra along with tentative chemical shift assignments. Resonances were

assigned based on multiplicities derived from JRES, the size of J-coupling and
1H chemical shifts with reference to the E. coli metabolome database [58]. The

analysis indicate that samples in Cluster II had higher levels of valine, alanine,

isoleucine, phenylalanine and tyrosine as compared to faecal samples in Cluster

I, samples in Cluster II had higher levels of butyrate, lactate and acetate as com-

pared to Cluster I, whereas Cluster III had higher levels of acetate, butyrate,

propionic acid and lower levels of valine and alanine as compared to samples in

Cluster II. Notably, samples in Clusters I and II were distinguished by the greater

abundance of a number of amino acids in the faecal metabolomes in Cluster II

whereas the faecal metabolomes of mice from Cluster III were distinguished from

those in Cluster I and II on the basis of short chain fatty acids which were more

abundant for those in Cluster III.

4.3.1 PCA vs OPLS-DA

OPLS-DA was also carried out for comparisons dividing samples according to

room occupancy or dominant phyla and the results are presented in Figure

4.6. Q2 values obtained for each test were compared with a reference Q2 value,

obtained after repeating cross-validation with randomly generated class assign-

ments and are presented in Table 4.4 on page 104. As shown, Q2 values for the

metabolomic data pairwise analysis performed when separated according to these

clusters were > 0.50 which is considered a good model [107, 137]. As expected,
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A

B

C

Figure 4.5: OPLS-DA scores plots (left panels) and back-scaled loadings

plots (right panels) with resonances with high variance and high weight highlighted

in red for comparisons between the faecal metabolomes as clustered according to

microbiome community. From the top: Cluster I vs Cluster II (A), Cluster I vs

Cluster III (B), Cluster II vs Cluster III (C). Distinguishing metabolites that could be

unambiguously assigned are annotated in each back-scaled loadings plot and the

cluster with increased metabolite yield is indicated with an arrow.
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Table 4.3: Tentative chemical shift assignment in 1H NMR spectra of faecal samples.

assignment ppm multiplicity J coupling peak

acetate 1.92 s

butyrate 0.89 t 7.49 Hz

2.16 t 7.49 Hz

1.57 q 7.50 Hz

proprionic 1.06 t 7.82 Hz

2.17 q

lactate 1.34 d 7.06 Hz

valine 1.05 d 7.14 Hz

1 d

3.7 d

2.25 m small

isoleucine 0.94 t

1.02 d

3.66 d

1.97 m small

1.24 m very small

1.45 m very small

alanine 1.49 d 7.37 Hz

3.79 q

fatty acids 0.729 broad s

dihydrothymine (?) 1.2 d 6.2 Hz

2.06 d

2.14 s

2.18 d

2.3 q or d

2.291 s

succinate (?) 2.41 s

3.248 ?

glycine (?) 3.551 s

lysine (?) 3.08 t small

3.74 t

1.91 m small

1.75 m small

1.5 m very small

glycolic acid (?) 3.945 s

phenylalanine 7.43 t 7.47 Hz

7.33 dd

3.98 dd small

3.1-3.3 m small

tyrosine 6.9 d 8.2 Hz

7.2 d 8.2 Hz

3.93 dd very small

3.02-3.19 dd+dd small
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Figure 4.6: Leave-one-out cross-validation (LOOCV) output files for the

comparisons between room groups (A-F): room 1 vs room 2 (A), room 1

vs room 3 (B), room 1 vs room 4 (C), room 2 vs room 3 (D), room 2 vs

room 4 (E), room 3 vs room 4 (F) and samples with high vs low

percentage of Bacteroidetes (G), Firmicutes (H), Proteobacteria (I). From

top left to bottom right: scores plots showing separation between classes; back-scaled

loadings plots showing 1H resonance frequencies that discriminate between the two

classes under comparison; histograms showing number of principal components used

to separate the classes; prediction residual error sum of squares (PRESS) indicating

low within-sample variation; Q2 value histogram; comparison of model predicted for

the sample classification as compared to the actual class. A double cross-validation

was repeated 2000 times for comparisons A-F and 100 times for comparisons G-I.
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Table 4.4: Predictive Q2 values for all models. Q2 values for models run with

randomised class assignments are given in parentheses.

Model Q2

Cluster I vs Cluster II 0.88 (-0.15)

Cluster I vs Cluster III 0.52 (-0.15)

Cluster II vs Cluster III 0.81 (-0.18)

Room 1 vs Room 2 0.93 (-0.14)

Room 1 vs Room 3 0.90 (-0.15)

Room 1 vs Room 4 0.85 (-0.15)

Room 2 vs Room 3 0.67 (-0.09)

Room 2 vs Room 4 0.80 (-0.12)

Room 3 vs Room 4 0.86 (-0.15)

High Bacteroidetes vs low Bacteroidetes 0.41 (-0.15)

High Firmicutes vs low Firmicutes 0.41 (-0.17)

High Proteobacteria vs low Proteobacteria 0.66 (-0.18)

clear metabolomic differences were observed between samples based on clusters

defined by the composition of the bacteria present. Diet can influence microbial

composition [215], however, in this study all mice received the same standard

diet. One study [216] points out that the microbiome composition is unstable

and can exhibit detectable changes within 24 h of changing the diet. Here and

in other studies the selective mechanisms for divergence in bacterial composition

remain largely unclear [195, 217] but could be driven by competition, inhibition

and niche specialisation of bacteria or a combination of all these factors [214].

The relative contribution of Bacteroidetes, Firmicutes and Proteobacteria to

each of the samples tested was also assessed using OPLS-DA. Here, Q2 scores

were lower (Table 4.4), which indicates poor models, i.e. the discriminating

factor between the metabolite composition of samples was not (solely) the con-

tribution from different phyla. OPLS-DA indicated significant differences in the

metabolome of faeces from mice housed in different room groups with Q2 scores

all > 0.67, which indicates that housing alone may contribute to divergent gut

metabolomes.

The best separation and the highest Q2 was obtained for comparison between
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rooms 1 and 2 and rooms 1 and 3, whereas the most overlap and the lowest Q2

was obtained when comparing high and low Bacteroidetes content and low and

high Firmicutes content. Nevertheless, the models separated the spectra and the

backscaled loadings revealed similar patterns for comparisons between rooms 1

and 2, rooms 1 and 3, rooms 1 and 4, and also between high and low Bacteroidetes

and Firmicutes content content. A similar pattern of discriminatory metabolite

changes could be seen when comparing Cluster I and Cluster III (Figure 4.5 on

page 97, B) and also Cluster II and Cluster III (Figure 4.5 on page 97, C). Other

comparisons presented different pattern of altered metabolite levels again show-

ing that the room membership is an additional factor in clustering seen in PCA

(Figure 4.4 on page 95).

PCA of metabolomes extracted from faeces of mice hosted in different rooms

found additional factors other than microbiota composition that drive the clus-

tering pattern. Separation seen in PC1, which represents the main source of

metabolome variation in the data set, in this case is not linked to OPLS-DA

analysis, i.e. the discriminatory features in OPLS-DA are not the same as the

features giving separation in PCA. This reveals that the room membership is

an important factor differentiating between metabolome of mice hosted in dif-

ferent rooms. In the previous chapter, a study of P. aeruginosa strains isolated

from sputum samples from cystic fibrosis patients, univariate patient data has

been related to multivariate NMR data to show the functional effects of bacte-

rial colonisation in a host. Here, two sets of multivariate data are presented-a

hierarchical cluster analysis showing relative percentage of the associated genera

in each sample and OPLS-DA showing differences in the metabolite composition

between the samples. This allowed investigation of differences in host metabo-

lome and align it with microbiota variation at the genus level.

4.4 Conclusion

Mouse models are commonly used in biomedical research and in order to avoid

potentially confounding differences in genetic backgrounds, mice are taken from

inbred populations to ensure homogeneity. When purchased for research, individ-

ual mice are considered identical and are expected to provide a uniform platform

for study. The potential of the gut microbiota to influence the host in relation

to health and a wide range of clinical syndromes is being increasingly recognised.
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The variation in gastrointestinal microbiota composition is likely to be more sig-

nificant when mice are moved between facilities, experience changes in diet, and

are exposed to other animals or in experimental facilities, that are not highly

controlled. Therefore, the divergence of mice gut microbiota identified in our

metabolomic study, that was due to mice being housed in separate controlled

units require further consideration and efforts are needed to ensure that mice

used in research are indeed equivalent.
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5
Combined systems approaches to understand

pathogen-antibiotic interactions

107



Work described in this chapter has been published as:

Kozlowska, J., Vermeer, L.S., Rogers, G.B., Rehnnuma, N., Amos,

S-B.T.A., Koller, G., McArthur, M., Bruce, K.D. & Mason, A.J. Com-

bined systems approaches reveal highly plastic responses to antimicrobial peptide

challenge in Escherichia coli. PLoS Pathogens 2014 (10)
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5.1 Introduction

5.1.1 Antibiotic Resistance

Antimicrobial agents have been used for more than 70 years in the treatment of

infectious diseases [218] and resistance development is a natural process. Most

pharmaceutical antibiotics are derived from naturally occurring bacterial defences

manufactured by fungi, bacteria, and algae against other fungi, bacteria, and al-

gae. Natural antibiotics and the bacteria they are targeting have co-evolved over

millions of years. During these battles bacteria have developed counter-measures

in the form of genes necessary to produce and resist enemy antibiotics. Such

arms races allowed bacteria to accumulate genes for bacterial resistance. How-

ever, the incorporation of antibiotics into animal feeds and the uncontrolled use

of antibiotics in the clinical setting is likely to have led to loss of the balance

and development of antimicrobial resistance [219–221]. Manufactured antibiotics

have not been able to counteract bacterial adaptive responses and evolving new

defences [220]. This has become an important concern in multiple healthcare

contexts and is compounded by the scarcity of new therapeutic agents. The

world is faced with drug-resistant bacterial infections, which cannot be treated

by any of the current antibacterial options hence there is an urgent need for

novel agents [222]. According to the Centers for Disease Control and Preven-

tion (CDC) rates of infection due to both Gram-positive and Gram-negative

pathogens are increasing [223]. Infectious diseases are known as one of the most

life-threatening disabilities worldwide. Approximately 13 m deaths related to in-

fectious diseases are reported each year [218]. Indeed, currently more people die

in US hospitals due to meticillin-resistant Staphylococcus aureus (MRSA) infec-

tions than of HIV/AIDS and tuberculosis combined [224]. This is compounded

by the emergence of panresistant Gram-negative bacteria such as Acinetobacter

species, multidrug-resistant (MDR) P. aeruginosa, carbapenem resistant Kleb-

siella species as well as E. coli in most geographical areas [225]. According to

the European Centre for Disease Prevention and Control (ECDC) infections due

to these drug-resistant bacteria in the EU result in extra healthcare cost each

year of at least e 1500 m. Of particular concern is the increased percentage of

Klebsiella pneumoniae (K. pneumoniae) resistant to carbapenems, current last-

line antibiotics against these bacteria. In contrast, the percentage of (MRSA)

isolates appears stable, and seems to be decreasing in some countries. However,

MRSA remains a public health priority, as the percentage of MRSA continues to

be high in several countries, especially in southern Europe.
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It is therefore crucial to establish antibacterial strategies that will not only

be able to treat drug resistant infections but, more importantly, foresee how re-

sistance evolves. There is significant uncertainty, however, that such need will be

met in the foreseeable future as, from 13 pharmaceutical leaders in the market

of anti-infective drug discovery and development today, only a few big pharma-

ceutical companies (GlaxoSmithKline, AstraZeneca and Merck & Co) are still

actively researching antibiotics. In the last 50 years, bacteria have developed re-

sistance to every antibiotic within only few years of its release [226]. Since 2000,

five new antibiotics have been launched, however, all of them were limited to

treatment of Gram-positive infections [227]. It is therefore noteworthy that the

overall number of compounds in development to treat Gram-negative infections,

in particular, is very low. This reflects the challenge of developing treatments

against Gram-negative bacteria, because of the presence of an outer membrane

permeability barrier, multiple efflux pumps, and antibiotic- and target-modifying

enzymes [228, 229]. There is ongoing effort to highlight the potentially disastrous

outcomes of such situation, including the well-publicised annual report of the

Chief Medical Officer of the United Kingdom in March 2013, which addressed

the threat of antimicrobial resistance and called for antimicrobial resistance to

be put on the national risk register [230].

Mechanisms of antimicrobial resistance

Interactions between bacteria and their environment, and host in the case of

pathogens or commensals, provide a selection pressure for bacterial adaptation

that supports increased survival [231]. The network of interconnected and tightly

controlled stress responses not only protects bacteria, but also affects their an-

timicrobial susceptibility via modifications to the cell at a cellular, metabolic and

genetic level. The common characteristic of many stress responses is activation

and upregulation of error-prone DNA polymerases and simultaneous downregula-

tion of enzymes responsible for DNA damage repair and movement of transposons

(mobile genetic elements) leading to point mutations and recombination [231].

The SOS response to antibiotic treatment has been demonstrated in numer-

ous studies to induce toxin production [232–235], propagation of virulence factors

and antibiotic resistance genes. In Gram-negative bacteria, resistance determi-

nants are carried in the mobile gene casettes (integrons), which are controlled

by the SOS response and LexA-RecA regulon in E. coli and Vibrio cholerae (V.
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cholerae) [236]. Moreover, the SOS response stimulates high mutation rates,

which might relieve the stress but also facilitate acquisition of antibiotic resis-

tance genes.

Exposure to different classes of antibiotics can induce resistance development

via different mechanisms. Penicillin and other β-lactam antibiotics induce the

SOS response by interfering with cell wall synthesis [237], therefore cells be-

come temporarily resistant by inhibiting cell division. Resistance upon exposure

to β-lactam antibiotics can be also a result of a lack of autolytic enzymes, se-

cretion of β-lactamase, activation of efflux pumps and also modifications to its

target-penicillin binding proteins (PBPs) due to accumulation of (p)ppGpp and

subsequent induction of the stringent stress response [238, 239]. Antibiotics of

the quinolone class have been demonstrated to be mutagenic [240]. Their primary

target is topsoisomerase IV and gyrase and mutations to the genes encoding these

enzymes could be responsible for the rise of antimicrobial resistance, therefore

exposure to them could induce resistance as demonstrated by Cirz et al. [241].

Furthemore, Beaber et al. [242] showed that V. cholerae exposed to quinolone,

acquired resistance to antibiotics not by mutagenesis, but via movement of in-

tegrating conjugative elements (ICEs). ICEs are one of the three main types of

selftransmissable mobile genetic elements and key mediators of horizontal gene

flow in bacteria. Similarly to plasmids, they transfer during the process of con-

jugation, however, they are able to integrate into the host chromosome, replicate

and excise to transfer again, which is typical of bacteriophages [243]. Sublethal

doses of streptomycin, on the other hand, produce mutations in bacteria via an

SOS-independent fashion, mainly by interfering with ribosomal translation [244].

Aminoglycoside resistance in strains of P. aeruginosa is a result of exposure to

the treatment and ribosome disruption, which activates the MexXY-Opr mul-

tidrug efflux system [245]. In a recent study by Dalebroux [246] it was shown

that Salmonella typhimurium (S. typhimurium) becomes resistant to polymixin

B and the mammalian antimicrobial peptide C18G after exposure by making

modifications to the component of LPS, Lipid A, and also glycerophospholipids

(GPLs) in the inner leaflet of the OM. It has also been shown that exposure of E.

coli to sublethal doses of a range of antibiotics regardless of their mechanism of

action resulted in multidrug resistance [247] and one of the proposed mechanisms

was increased mutation rate due to raised levels of ROS [248].

However, antimicrobial exposure is not the only way in which bacteria can
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acquire antimicrobial resistance. Research shows that bacterial natural envi-

ronment and the stress responses that are triggered in response to environmental

changes are sufficient to diminish innate antimicrobial susceptibility and generate

resistant mutants even without exposure to antimicrobials due to e.g. oxidative

stress [245, 249], nitrosative stress, nutrient limitation, membrane damage, heat

and ribosomal stress [245] or selective pressure exerted by the host [46]. This

can be an indirect effect, merely due to growth inhibition or bacteria entering a

dormant state [237, 250], or a direct result of inducing a myriad of bacterial stress

responses. They may result in changes promoting antibacterial resistance such as

activation of efflux pumps [245], remodelling of antimicrobial targets [238, 251],

induction of resistant growth modes such as biofilms [252] and generation of mu-

tations leading to increased resistance [35].

The ability to suppress bacterial stress responses, mainly the SOS response,

has become of interest and seems a likely goal for treatment of some of the bac-

terial infections. There is also evidence that diversifying antibiotic prescription

patterns can help increase bacterial susceptibility to certain antimicrobials [253].

5.1.2 Antimicrobial peptides and innate immunity

Faced with multidrug antimicrobial resistance researchers turned towards agents

with broad-spectrum activity and mechanisms of action with proposed lower

propensity for resistance development: antimicrobial peptides (AMPs). The rea-

son to study AMPs is twofold. First, both bacteria and AMPs are ancient; they

have evolved together and studying bacterial responses to a wide range of AMPs

can provide insight into the inherent ability of bacteria to respond to challenges

and the adaptive mechanisms available to overcome them. The second reason is

that AMPs have prospects to be developed into anti-infective therapeutic agents

as antimicrobials, adjuvants for synergistic effect or as immunomodulatory and/or

endotoxin-neutralising compounds [254–258].

AMPs are polypeptide antimicrobial substances with fewer than 100 amino

acid residues, that are secreted from various cells and tissues of many inverte-

brates, plants or animals but also archaea, eubacteria, protista. They have shown

direct activity against Gram-negative and Gram-positive bacteria, fungi, viruses

and protozoa [25, 259].

AMPs represent a large and diverse group of molecules that can be classified
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according to their amino acid composition or structure. It is the class of cationic

antimicrobial peptides that offers potential in treatment of microbial infections,

but also as antivirals, immunomodulators and antitumoral drugs [260]. The dis-

advantage of anionic antimicrobial peptides is that they often require cationic

moieties such as synergistic cationic antimicrobial peptides or cations such as

zinc (Zn+2) to act as cationic linkage between the anionic antimicrobial peptide

and the anionic microbial cell membrane [261]. As of October 2013 over 2000

different antimicrobial peptides and synthetically created peptides are known and

their number is constantly increasing [262]. Several databases exist that catalogue

antimicrobial peptides on the basis of the source organism, biological activities

and specific peptide features. Currently the largest database is maintained by

the Wang group http://aps.unmc.edu/AP/main.php [262].

There is little structure and sequence homology between peptides recovered

from different species, even those that are closely related [254]. Despite such

variability, there are a few common features including: small size (12-50 amino

acids long), hydrophobicity and nominal cationic charge ranging from +2 to +9

[263]. Some antimicrobial peptides are secreted constitutively, while others are

secreted in response to invading microbes and the presence of bacterial signalling

molecules e.g. LPS and lipoteichoic acid (LTA) and bacteria [25].

Despite being exposed to AMPs for millennia, bacteria have not yet devel-

oped full resistance to broad spectrum AMPs. Nevertheless, AMPs can still

represent a trigger for resistance development via alteration of cell surface charge

and electrostatic repulsion of AMPs, activation of efflux pumps to extrude AMPs,

production of proteases to cleave AMPs or trapping proteins [264, 265]. More-

over, unlike antibiotic resistance genes which are located on laterally transferable

elements such as plasmids or transposons, most genes involved in resistance to

AMPs are on the chromosome, close to housekeeping genes, and are considered

as the integral part of the genome of some bacteria [266]. Knowledge of the

molecular basis of bacterial AMPs resistance may therefore provide new targets

for antimicrobial therapeutics.

AMPs are currently considered to act mainly at the level of cytoplasmic mem-

brane and outer membrane as pore-forming molecules, but have also been re-

ported to disrupt nucleic acids, affect protein synthesis, inhibit enzymes and

sequester nutrients essential for the bacteria [25]. A number of leading review
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articles [267–270] suggest that they may also have other immunomodulatory ac-

tivities important for the anti-infective host defence. Immunomodulatory prop-

erties of AMPs reported in recent studies include the modulation of the levels of

proinflammatory cytokines and chemokines by altering gene expression of host

cells, activation of host immune cells (monocytes, macrophages, neutrophils) and

ROS and RNS, stimulation of angiogenesis and wound healing and recruitment of

leukocytes to the site of infection. These activities are not directly antimicrobial,

nevertheless, they result in protection of the host against infection and allow

selective control of the infection and immune responses [258, 271, 272]. They

play important roles in preventing infection, but also in the clearance of infection

and are thus often referred to as host defence peptides in contrast with peptides

acting directly on bacteria and having a microbicidal effect.

Structural classes of AMPs and determinants of antimicrobial activity

The multidimensional properties of AMPs described above and a broad-spectrum

antimicrobial activity are possible due to tremendous structural, and thus func-

tional, diversity of those molecules. At least four structural groups have been

proposed for AMPs according to their conformations: amphipathic α-helices,

β-sheet structures stabilised by disulfide bridges, extended structures with one

or more amino acids being predominant and loop peptides with only one disul-

fide bridge. Despite the differences at the primary and secondary structural

level, most cationic antimicrobial peptides are amphipathic, i.e. they have a

hydrophobic region, but also a positively charged hydrophilic structural domain

and therefore can exist at the interference between polar and non-polar environ-

ments. The positive charge allows peptides to interact with negatively charged

targets including DNA, RNA etc. and also bacterial membranes, as the initial in-

teractions are electrostatically driven due to the negatively charged membranes,

whereas amphipathicity facilitates binding and insertion of the peptide into the

hydrophobic core of the lipid membranes [273].

Several studies have demonstrated the importance of an α-helical structural

domain, showing that the increase in the amount of α-helical structure is related

to enhanced antimicrobial activity [274, 275] or broadening of the spectrum of

activity [276]. In contrast, more disordered peptides that have the ability to

disorder the lipids in their vicinity perform better than peptides that remain

structured (manuscript in preparation). This was also observed in a molecular
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dynamics simulation study where α-helical conformation was not required for

pore formation and peptides were not highly structured. Indeed, experimental

studies involving stabilised α-helical peptides have shown reduced antimicrobial

activity [277] and that partial unfolding might facilitate pore formation [278].

Consequently, despite being very intensively studied experimentally, relatively

little is known regarding the mechanism of pore formation or the structure of

the pore itself. It is commonly accepted that many antimicrobial peptides form

toroidal pores and this molecular dynamics simulation study demonstrated that a

threshold concentration is required to create enough stress in the membrane and

that pore formation is facilitated by aggregation of the peptide on the membrane

[278].

Other features known to be important determinants of antimicrobial activity

are amphipathicity, hydrophobicity and charge [279]. The parameters are inter-

correlated and modification to one can be compensated by changes in others,

hence the optimal antimicrobial efficiency is a result of balanced coordination of

all those factors [280, 281].

The lipid composition of the cell membrane of multicellular animals plays an

important role in the selectivity of AMPs for their target. First the negative

charge on the bacterial surface allows preferential binding of polycationic antimi-

crobial agents such as AMPs. In the mammalian cell the bilayer is asymmetric-the

outer leaflet is composed of mainly phosphatidylcholine (PC) and sphingomyelin

(SM) with zwitterionic head groups and the cytoplasmic surface is composed of

the negatively charged lipids such as phosphatidylserine (PS), phosphatidylinosi-

tol (PI) and zwitterionic phosphatidylethanolamine (PE). The cholesterol present

in mammalian membranes reduces the activity of AMPs, by stabilising the lipid

bilayer and interacting with the peptide [254, 282]. Although the asymmetry

of the E. coli inner membrane is unknown it is principally composed of zwitte-

rionic PE (80%) and at least 15% of negatively charged phospholipids such as

phosphatidylglycerol (PG) or cardiolipin (CL) allowing formation of strong elec-

trostatic interactions with polycationic antimicrobial agents [254, 283].

Modes of action of AMPs

Despite the vast number of known AMPs, their exact mode of action remains

unclear or controversial in many cases. One of the reasons for this is that con-
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centrations of AMPs used in some studies exceed the concentration needed to

see a bacterial response. AMPs, as any other antibiotic, require a minimum

concentration to have a growth inhibiting effect against a given bacterial strain,

which is often expressed in terms of minimum inhibitory concentration (MIC).

The concentrations above the MIC usually have an immediate macroscopic effect

such as loss of viability or membrane lysis. It is not clear, however, what are the

molecular mechanisms that induce inhibition when crossing the threshold divid-

ing proliferating bacterial populations from nonproliferating ones. Possibilities

include enzyme inhibition leading to disruption of bacterial metabolism or AMPs

acting in a cooperative manner due to the increased concentration [278, 284].

A study by Huang el al. [284] exposed alterations in the behaviour of AMPs

when certain molecular threshold concentrations were reached including confor-

mational changes and differences in the association state as well as changes in the

membrane topology such as poration. Such events associated with reaching the

threshold concentration are potentially bactericidal, however, so far they were

observed only in model lipid bilayers, with some AMPs reaching full membrane

saturation, and not in in vivo studies. Those considerations apply to the AMPs

with a membrane disruptive mechanism of action. For non-disruptive AMPs,

where the primary aim is cytoplasmic invasion, parameters such as the partition

constant, aqueous phase and membrane-bound peptide concentration do not cor-

relate directly with the disruptive action of the peptide in the cytoplasm [285].

Since AMPs are cationic, they likely cause partial or complete neutralisation

of the bacterial membrane upon binding and indeed a number of AMPs dis-

play membrane charge neutralising properties with other concomitant threshold

effects [285–287] implying that membrane charge neutralisation and membrane

saturation could constitute the main killing strategy for some AMPs. Another

problem is that quantitative structure-activity relationship (QSAR) studies look

at isolated processes in much simplified systems and the findings may not be

reflected in in vivo studies [288]. Modifications to an AMP to promote one activ-

ity may inhibit another. This emphasises the need for a novel high-throughput

method that would allow to probe the activity of AMPs in the whole bacterial cell.

Until recently, the existing dogma was that most cationic AMPs kill through

membrane disruption or pore formation [289]. The initial interaction between

peptide and the OM is thought to occur due to electrostatic attraction between

cationic peptides and either negatively charged LPS in Gram-negative bacteria

or LTA in Gram-positive bacteria (Figure 5.1 on page 118). Lipopolysacchar-
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ride (LPS), also known as endotoxin, is the main constituent of the OM found

in Gram-negative bacteria. It is a highly conserved, amphiphilic lipid that con-

sists of three regions: O-polysaccharide (the O- or somatic-antigen), the core

polysaccharide known as 2-keto-3-deoxyoctonic acid (KDO) and lipid A. Lipid A

is anchored in the OM [290]. AMPs distort the integrity of the OM by breaking

the non-covalent associations between LPS and divalent cations such as calcium

(Ca2+) and magnesium (Mg2+), facilitating insertion of the peptide into the mem-

brane by a process known as self-promoted uptake [279].

Different killing mechanisms have been proposed that can occur at the mem-

brane including: fatal depolarisation of the membrane, pore formation by various

models and subsequent cellular leakage, formation of transient channels, micel-

larisation of the membrane or activation of deadly processes such as production

of hydrolases that degrade the cell wall, thereby distorting lipid distribution be-

tween leaflets of the lipid bilayer [279]. Experimentally, it has not been possible to

directly determine the number of peptides within the pore. The commonly cited

number of 4-7 peptides [291, 292] has been indirectly inferred from a combination

of neutron scattering data and oriented circular dichroism (OCD) measurements.

There is considerable evidence, however, that some peptides target intracellular

components upon entry to the interior of the cell rather than the membrane itself

[289]. Having tools that enable to study how AMPs achieve their killing effect

and in what conditions is of particular importance as this can potentially lead

to better understanding of the pathologies and inform the development of AMP-

based therapeutic agents.

In this study structurally and physically related AMPs were applied: maga-

inin 2, pleurocidin and buforin II. Also, based on understanding of these three

naturally occurring peptides a range of D-peptides have been designed comprising

D-amino acids only in an attempt to circumvent the effect of proteases secreted

by target pathogens [293], and incorporate structural features, including high

cationicity and propensity for adopting α-helix rich conformation [294–296] and

proline kink. Incorporation of proline on the hydrophilic face of the amphipathic

α-helical AMPs increases the conformational flexibility and has been linked to

improvement of antibacterial activity and reduction of the hemolytic effect [297–

299]. Each of those peptides have been described to operate by different killing

mechanism while the opportunity was taken to understand the mechanism of ac-

tion of D-LAK120-AP13 for the first time. As described in the previous chapter,
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Figure 5.1: The structure of the cell wall of Gram-positive and

Gram-negative bacteria. Modified from Fierke Research Group

(http: // www. umich. edu/ ~ caflab/ lpxc2. htm ).

bacteria are able to harness a vast range of stress responses in order to overcome

or adapt to the threat posed by AMPs and choosing peptides with various mech-

anisms of action was an attempt to probe the variety of these responses.

Considering their bactericidal strategies, peptides can be generally categorised

as membrane disruptive and membrane non-disruptive, with the former being the

dominant mechanism [25]. Magainin 2 [300], a cationic α-helical antimicrobial

peptide (Figure 5.2 on the next page, a) isolated from the skin of African Clawed

frog Xenopus laevis, is considered to have a membrane disrupting activity towards

both Gram-positive and Gram-negative bacteria. It is thought to bind preferen-

tially to negatively charged phospholipids present in bacterial membranes with

the formation of a dynamic peptide-lipid pore and subsequent cell permeabili-

sation by a mechanism known as the toroidal pore model where the lipid bends

back on itself. The detailed molecular mechanism of this model has been de-

scribed [291]. Apart from the toroidal pore model there are at least three other

proposed models by which peptides are able to aggregate and/or re-orient in the

membrane and disrupt its integrity: the barrel-stave [259], the aggregate [301]

and the carpet model [302].

Membrane non-disruptive peptides have alternative mechanisms of action that

involve the interaction of the peptide with the membrane which does not nec-

essarily result in membrane disruption; their main targets are polyions such as
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a b

Figure 5.2: Structures of SDS-bound magainin and pleurocidin solved in our

laboratory showing side chain orientation and backbone topology. Images created with

MOLMOL software and rendered with POVRay. The typical conformers from the

ensembles closest to the average structure are shown. PDB entries for magainin

2-2LSA and pleurocidin-2LS9.

DNA or RNA. Once they penetrate the bacteria, they can potentially kill by

interfering with bacterial metabolic processes [259, 289, 303]. An example of a

well studied membrane non-disruptive peptide is buforin II, a 21-amino acid long

cationic peptide derived from the Asian toad Bufo gargarizans, which is known

to form an extended helical structure [304]. It was shown to have the ability

to translocate through bacterial membranes and bind to DNA in a cooperative

manner with high affinity forming peptide-DNA complex [64, 304]. The proline

kink in buforin II is known to be crucial for enabling translocation into the E.

coli cytosol [305]. However Buforin II has only barely detectable antibacterial

activity against planktonic E. coli cultures [64].

Pleurocidin is a naturally occurring peptide showing antimicrobial activity

against Gram-negative as well as Gram-positive bacteria. It was isolated from

the skin and intestine of the winter flounder Pleuronectes americanus [306]. This

25-mer peptide has an amphipathic helical structure very similar to that of ma-

gainin 2 [306] (Table 5.1 on the following page). The study by Yoshida et al.

[307] showed that pleurocidin, similarly to magainin, was able to translocate

across the model membrane and to cause dye-leakage, however, when lower lev-

els of peptide were used (at MIC50) a pleurocidin analogue was demonstrated

to act on RNA and protein synthesis by inhibiting histidine incorporation with-

out concomitant membrane permeabilisation [308] suggesting that the peptide

has multiple modes of activity. Pleurocidin was also shown to associate strongly
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Table 5.1: Comparison of physical and biological features of peptides used

in this study. Hydrophobicity (H) and mean hydrophobic moment (µH) are shown

according to the Eisenberg scale [1] and were calculated using the HydroMCalc Java

applet made available by Alex Tossi [2]. Proline residues are underlined. Peptides in

italics are D-amino acids. *Mean hydrophobic moment assuming formation of ideal

α-helix.

Peptide Sequence Charge (H) (µH)*
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Buforin II TRSSRAGLQFPVGRVHRLLRK 7 -0.37 0.30 >26.30 >26.30

Magainin 2 GIGKFLHSAKKFGKAFVGEIMNS 4 -0.03 0.28 6.86±1.58 10.60±2.21

D-LAK120-AP13 KKLALALAKKWLPLAKKLALALAKK 9 -0.10 0.21 1.08±0.62 1.22±0.19

Pleurocidin GWGSFFKKAAHVGKHVGKAALTHYL 5 -0.02 0.22 0.66±0.22 1.65±0.87

with anionic lipid head groups, where it forms ion channels in planar lipid bi-

layers most probably by formation of toroidal pore [273]. Proton decoupled 15N

solid state NMR spectroscopy showed that at neutral pH pleurocidin is oriented

parallel to the membrane surface, whereas 2H solid state NMR revealed that it

disrupts membranes containing anionic lipids (phosphatidylglycerol (PG)) more

effectively than zwitterionic (phosphatidylethanolamine (PE)) [309]. Moreover,

intrinsic fluorescence measurements showed that pleurocidin insertion into lipid

membranes occurs exclusively in the presence of anionic lipids as does strong

dye leakage and increased peptide translocation across the membrane [307, 309].

In the presence of sodium dodecyl sulfate (SDS) micelles the peptide adapts α-

helical conformation (Figure 5.2 on the previous page, b).

A number of AMPs while having membrane disruptive activity, have been

shown to operate through intracellular modes of killing, such as binding nucleic

acids [304, 310] or inhibiting nucleic acid or protein synthesis [308, 311, 312] and

the exact modes of action of AMPs remains an area of controversy [256, 313].
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This again highlights the need for a new method which would allow to investigate

the mechanisms of action of AMPs using a holistic approach.

5.1.3 Systems biology: omics metodologies

The understanding of how AMPs function is therefore far from complete. At-

tempts to optimise AMP potency in the laboratory, that focus on only one pos-

sible bactericidal mechanism, ignore the possibilities offered by taking a holistic

approach that can reveal the true source(s) of bactericidal potency along with a

better understanding of bacterial counter-measures. The purpose of combining

metabolomics and transcriptomics is to obtain a more comprehensive insight on

system level adjustments in bacteria under stress from AMPs. The full power of

-omics based research tools has yet to be brought to bear in antibiotic research

[314] and the detailed mechanistic analysis of host-pathogen systems, encom-

passing all aspects of such a complex interaction is still in its infancy. Examples

of previous studies include those that focus on Gram-positive bacteria (Bacil-

lus subtilis [315], Staphylococcus aureus [316], Streptococcus pneumoniae [317])

which have demonstrated the existence of complex regulatory patterns in which

several signal transduction pathways were induced. In our laboratory the focus is

on trying to understand the relative difference in antibacterial potency of struc-

turally related AMPs to Gram-negative bacteria such as Escherichia coli and

Pseudomonas aeruginosa [64, 318–320]. Since these peptides act at widely dif-

fering effective concentrations it was hypothesised that studying their effects at

sub-lethal concentrations would provide a detailed overview of the mechanisms of

action of each AMP. Therefore, a method has been devised that could efficiently

identify conditions where bacteria responded to AMP challenge without intro-

ducing possible, non-specific complications that might result from large scale cell

death. 1H high resolution magic angle spinning (HR-MAS) NMR was used to

identify the lowest AMP concentration that elicited a response from metabolically

active, challenged bacteria. A robust, cross-validated, multivariate analysis iden-

tified metabolites whose levels were altered in response to AMP challenge. These

were used to classify the AMP according to the elicited response whilst providing

a first indication of whether E. coli responded in a generic or specific manner

to AMP challenge. Having identified sub-lethal conditions where a response was

confirmed, electron microscopy and transcript profile analyses enabled a detailed

description of the E. coli response to AMP challenge.
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5.2 Materials and methods

5.2.1 Materials

Peptides (Table 5.1 on page 120) pleurocidin, magainin II, buforin 2 were pur-

chased from Pepceuticals Ltd (Nottingham, UK) as desalted grade and further

HPLC purified using water/acetonitrile gradients using a Waters SymmetryPrep

C8, 7 m, 19300 mm column. D-LAK120-AP13 was synthesised by V. Abbate

(King’s College London). Escherichia coli (E. coli) NCTC 9001 was a gift from

K. D. Bruce (King’s College London). All other reagents were analytical grade

or better.

5.2.2 Bacterial culture and challenge

Cultures of Escherichia coli NCTC 9001, a strain isolated from a patient with

cystitis, were grown overnight in Mueller-Hinton broth (MH) at 37 ◦C . Once the

OD620 reached≈1.0, 1 ml aliquots of bacterial suspension were transferred into 1.5

ml microcentrifuge tubes and aqueous solutions of peptides - magainin 2, buforin

II, pleurocidin and D-LAK120-AP13 were added at the following concentrations:

250 µg/ml, 125 µg/ml, 62.5 µg/ml, 15.6 µg/ml, 3.9 µg/ml and incubated for

30 min at 37 ◦C . In order to be able to monitor the microbial recovery and

growth, 10 µl of each suspension was sampled in 190 µl fresh medium onto a 96-

well microplate. The OD620 was measured at time 0 and after 4 h of incubation

at 37 ◦C . The microcentrifuge tubes were centrifuged at 5000 × g for 5 min

and the bacterial pellets were snap frozen in liquid nitrogen, lyophilised and

kept at -20 ◦C until further use. Pellets from triplicate tubes were combined for

subsequent HR-MAS analysis. Each challenge was independently repeated nine

times.

5.2.3 HR-MAS NMR

High-resolution magic angle spinning (HR-MAS) experiments were performed on

a Bruker Avance 400 MHz spectrometer equipped with a 4 mm 1H/13C HR-MAS

probe. The lyophilised cell pellets were thawed at room temperature, trans-

ferred to an NMR rotor inserts and rehydrated with 30 µl of D2O 2 hours before

the acquisition. 1D spectra were recorded at a constant temperature of 310 K

with magic angle spinning applied at 5 kHz. 1D 1H spectra were recorded using

a standard cpmgpr1d spin echo pulse (cpmgpr; Bruker) with water presatura-

tion during recycle delay of 1 second and a total of 128 scans were acquired.
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The spectral width was 16.02 ppm and 1H 90 pulse length was 7.81 µsec. The

free induction decay was multiplied with an exponential function correspond-

ing to a line broadening of 0.3 Hz. Phase correction was performed manually

and automatic baseline correction was applied. A total of 120 samples were

analysed with between 6 and 13 samples per treated condition and 17 control

samples (no AMP treatment). A number of 2D experiments were run to fa-

cilitate identification of the compounds: homonuclear J-resolved 2D correlation

with presaturation during relaxation delay using gradients (J-Res; jresgpprqf),
1H/13C correlation via direct inept transfer, phase sensitive using states, with

decoupling during acquisition (HSQC 13C; AA-hsqcwg-13C), 2D homonuclear

shift correlation with presaturation during relaxation delay (COSY; cosyprqf)

all acquired using standard Bruker pulse sequences. Spectra were Fourier trans-

formed, manually phase and automatically baseline corrected and calibrated with

2,2,3,3-D4-3-(Trimethylsilyl) propionic acid sodium salt (TMSP-2,2,3,3-D4) with

the reference signal at 0 ppm.

5.2.4 Assignment

Resonances were assigned based on J-coupling partners revealed by COSY, mul-

tiplicities derived from JRES, statistical correlation spectroscopy (STOCSY) [94]

and both 1H and 13C chemical shifts with reference to the E. coli metabolome

database [58].

5.2.5 Multivariate data analysis

Spectra were analysed by PCA and OPLS-DA. Details of the method can be

found in Chapter 2.3 on page 35 and the software manual can be found in Ap-

pendix A on page 177. First, the spectra were aligned to the reference peak and

spectral regions such as water and reference peak (4.8 ppm and 0 ppm, respec-

tively) and regions of no interest and/or no spectral information were removed.

Spectra were then normalised using probabilistic quotient normalisation (PQN)

[124] and autoscaled but not bucketed. Cross-validation was performed where 66

% of the samples were used as a training set and the remaining 33 % as a test set,

ensuring that the number of samples in the test set was proportional to the total

number of samples from each class, and that at least one sample from each class

was present in the test set. To choose the number of components for the model, a

leave-one-out cross-validation was carried out on the samples in the training set,

and the F1-score used to choose the number of components, with the additional
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constraint to use a maximum of 10 components. This double cross-validation was

repeated 2000 times with randomly chosen samples in the training and test set

to prevent bias due to the choice of training or test set. This leads to 3 × 2000

models, each of these models leads to a point on the scores plot, but loadings and

weights are presented as averages over all these models. The chosen number of

components minus one was then used as an OPLS filter and a PLS-DA analysis

with two components was carried out on the filtered data to yield one predictive

and one orthogonal component. Finally, this procedure was repeated with ran-

domly generated class assignments to provide a reference value for Q2. In each

case, genuine or permutated class assignments, the Q2 value quoted is the mean

of all models. Back-scaled loadings plots [113] were used to identify resonances

with high variance and high weight, therefore the discriminating resonances, and

verified against the peak intensity of the original spectra after PQN normali-

sation. Freely available MultiExperiment Viewer (MeV) which is a part of the

TM4 Microarray Software Suite [133] was used for hierarchical cluster (HCL)

analysis and generation of heatmaps. The euclidian distance algorithm was used

to compute the differences between two gene expression levels (metabolite level

changes) and the average linkage method was used to define the distances.

5.2.6 Scanning and transmission electron microscopy

Both SEM and TEM were used to examine the structural changes in bacteria

induced by AMPs. Samples for the imaging were prepared in parallel with the

samples used for HR-MAS NMR and hence represent bacteria in stationary phase.

SEM sample preparation was performed by the author, whereas TEM samples

were prepared by Centre for Ultrastructural Imaging (CUI) at King’s College

London. For SEM, the pellet obtained after centrifugation was fixed in 25 µl

of 2.5 % (v/v) glutaraldehyde in 0.2 M sodium cacodylate buffer and kept at

4 ◦C until further use. In 24-well tissue culture plates 20 µl aliquots of vortexed

bacterial pellet was smeared on 12 mm round poly-L-lysine (BD Biosciences,

Bedford) cover slips with adjacent chambers filled with sufficient amount of 0.2

M sodium cacodylate to prevent drying of the slides and kept in a hydration

chamber for 2 h. Cover slips were then washed with 0.2 M sodium cacodylate

buffer followed by rinsing with 30 %, 70 %, 100 %, 100 %, and 100 % ethanol

and incubating for 10 min between each wash. Hexamethyldisilazane (HMDS)

was used for drying of the specimen by washing cover slips in 50/50 100 %

ethanol/HMDS for 10 min followed by the final wash in HMDS for 10 min.

The coverslips with dehydrated cells were mounted on the specimen stubs and
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sputter coated with gold. Micrographs were acquired with FEI Quanta 200F

FEG scanning electron microscope. Bacterial pellets for TEM processing were

prepared as described above. Cells were pelleted by centrifugation and the pellet

was post fixed in 1 % osmium tetroxide in 0.1 M phosphate buffer for 60 min

an RT. The pellet was dehydrated by exposure to a graded series of ethanol (10

%, 70 % for 10 min each) followed by four washes in 100 % ethanol for 15 min

each. Next, the pellet was subjected to two washes in propylene oxide, 10 min

each. Tubes containing pellets were constantly rotated during the washes and

the following procedures and the washes were performed in the fume hood. The

supernatant was removed and the pellet placed into a mixture of 50 % resin

and propylene oxide for 90 min and transferred to 100 % resin overnight before

polymerisation at 60 ◦C for 24 hours. The resin blocks were sectioned with Leica

Ultra-cut ultramicrotome to semi-thick sections (0.75 µM- 2 µM) and stained

with toluidine blue and used to determine the areas for thin sectioning (90 nm).

The sections were then placed onto 150 mesh copper grids coated with pioloform

support film. Grids were then stained with uranyl acetate and lead citrate before

viewing on Hitachi H7600 transmission electron microscope. For both techniques,

around 15 images were taken for each treatment. The following magnifications

were used and images were selected that are representative of the effect observed:

700 ×, 5000 ×, 12000 ×, 25000 ×, 70000 ×.

5.2.7 GeneChips

GeneChip experiments were performed using the Affymetrix R© (Santa Clara, CA)

E. coli Genome 2.0 Array with effective, response inducing, sub-MIC AMP con-

centrations determined from the HR-MAS metabolomic study; pleurocidin 62.5

µg/ml, buforin II 250 µg/ml, magainin 2 125 µg/ml and D-LAK120-AP13 15.6

µg/ml. Each array includes approximately 10,000 probe sets for all 20,366 genes

present in four strains of E. coli over the entire open reading frame (ORF);

K12 (MG1655 laboratory strain), CFT073 (uropathogenic), 0157:H7-EDL953

(enteropathogenic) and O157:H7-Sakai (enteropathogenic). RNA was extracted

using RiboPure and enriched using MICROBExpress Bacterial mRNA Enrich-

ment Kit after the DNA digestion step (Life Technologies, Paisley, UK). At each

step the quality of RNA was assessed using Pico100 (Picodrop Ltd, Hinxton,

UK). cDNA was synthesised from mRNA and purified using Qiagen MinElute

PCR (Qiagen, Manchester, UK). cDNA was then fragmented and labeled using

terminal transferase and biotinylated Affymerix R© GeneChip labelling reagent

according to the manufacturer’s instructions. Fragmentation and labeling were
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Figure 5.3: Flow diagram of steps in target preparation for Affymetrix R©

GeneChip system.

assessed with the 2100 Bioanalyzer (Agilent Technologies, Wokingham, UK) to

obtain the size distribution and yield. cDNA was kept at -80 ◦C until microarray

hybridisation. Target hybridisation, scanning and Affymetrix R© data analysis

and formatting was performed by the Genomic Centre at King’s College London.

Hybridisation of the target to the GeneChip was prepared according the stan-

dard Prokaryotic Target Hybridisation protocol according to the manufacturer’s

instructions. The efficiency of the hybridisation step was assessed by examining

hybridisation of Poly-A controls provided for the Affymetrix R© GeneChip. Ar-

rays were scanned on an Affymetrix R© GCS3000 microarray system and image

acquisition, quantification and data analysis were performed using Affymetrix R©

Command and Expression Console Software. Data were normalised using the Ro-

bust Multi-array Average (RMA) algorithm built into Expression Console. Pre-

selection of gene lists for each treatment was performed using Qlucore Omics Ex-

plorer (Qlucore AB, Lund, Sweden). First, ANOVA across all samples identified

the twenty most differentially expressed genes according to each replicated treat-

ment. These were then assessed by principal component analysis to confirm that

independently replicated experiments produced consistent results. Signal intensi-

ties for gene expression were then averaged across technical duplicates/triplicates

and log transformed. For the gene annotation enrichment analysis, differentially
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expressed genes in treatment versus control samples were selected by a paired, ho-

moscedastic t-test with a significance cutoff of p < 0.05 and lists for the four AMP

treatments were then compared using Venny [321]. Microarray data are available

in the ArrayExpress database (www.ebi.ac.uk/arrayexpress) under accession

number E-MTAB-1703. To better understand the differences between the effects

of the four treatments, significance thresholds that identified the approximate

top 200 - 250 differentially expressed genes were selected; p ≤ 0.0184 for buforin

II and D-LAK120-AP13, p ≤ 0.0425 for pleurocidin and p ≤ 0.078 for magainin

2. These lists were analysed using the GOEAST Gene Ontology Enrichment

Analysis Software Toolkit where the Benjamini-Hochberg option was selected al-

lowing an FDR up to 15 % [322]. Discriminating metabolite changes, identified

from HR-MAS NMR, were then mapped onto the KEGG pathway using Bio-

Cyc Omics Data Analysis (http://ecocyc.org/PToolsWebsiteHowto.shtml#

omicsDataAnalysis) and genes related to given metabolic pathway checked

against consistently differentially expressed genes, whether or not they had passed

the significance test described above.

5.2.8 Multiparameter viability assays

In order to assess the functionality and cellular integrity of bacteria the follow-

ing viability assays have been used: membrane potential assay, esterase activity

assay and BacLight Live-Dead stain for microscopy [323].

As previously, E. coli NCTC 9001 were grown from glycerol stocks in Muller-

Hinton broth overnight at 37 ◦C without shaking until an OD620 of 1.0 was

reached. 1 ml aliquots of culture were challenged for 30 min with four pep-

tides at and below the threshold concentrations established with NMR. Cells

were then harvested by centrifugation at 5,000 × g for 5 min and washed in 50

mM phosphate buffer (pH 7.0). For BacLight Live/Dead stain cells were diluted

to 4 × 108 CFU/ml, whereas for the remaining assays cells were diluted to 2 ×
108 CFU/ml. All experiments were performed at room temperature. Negative

controls were obtained either by treatment with 70 % isopropanol for 10 min and

removed by centrifugation at 5,000 × g for 5 min and re-suspension in PBS, or by

heat killing at 85 ◦C for 10 min on a heat block. Assays were performed in black,

flat bottom, 96-well plates and read on a Synergy HT multi-mode microplate

reader (BioTek, Winooski, VT).
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Membrane potential

25 mg of dye DiBAC4 (Anaspec, Fremont, CA) was reconstituted in 2.42 ml

ethanol to obtain a 20 mM stock solution which was stored at -20 ◦C . The stock

was diluted further with water to working concentration of 12.5 µM immediately

before use. 20 µlof 12.5 µM dye was added to a 96-well plate, covered by 180

µlbacterial suspension in PBS and mixed. The plate was incubated in the dark for

5 minutes and fluorescence emission was measured (excitation 485 nm, emission

535 nm). Since membrane damage leads to higher fluorescence intensity, values

were background corrected and expressed as a reciprocal before being normalised

with untreated cells defined as being 100 % and isopropanol treated cells defined

as 0 %.

Esterase activity

5 mg of esterase substrate 5,6-carboxyfluorescein diacetate (CFDA) was dissolved

in 1.086 ml dimethyl sulfoxide (DMSO) to obtain 10 mM stock kept at -20 ◦C

. Stock was diluted 40 × in water immediately before use to obtain working

concentration of 250 µM, which was pre-aliquoted to a 96-well plate. 180 µlof

bacterial suspension in PBS was added to the plate and mixed with the detection

solution. The plate was incubated in the dark for 30 minutes with occasional

shaking and fluorescence emission measured (excitation 485 nm, emission 535

nm).

LIVE/DEAD BacLight

This assay was performed by the author and the images were taken and processed

by Dr Garrit Koller. LIVE/DEAD BacLight kit (Life Technologies, Paisley, UK)

was used to measure membrane integrity. Harvested cells were reconstituted

with saline and 3 µlof the dye mixture (1.5 µlof SYTO9 (3.34 mM) and 1.5 µlof

propidium iodine (20 mM)) was added to each 1 ml of bacterial suspension and

mixed. Tubes were incubated for 15 minutes in the dark with occasional shaking

and fixed with 20 % paraformaldehyde (PFA) and kept at 4 ◦C . Specimens

were viewed on an Olympus BX60 microscope fitted with an Andor Ultrahigh-

resolution CCD setup. A × 20 oil immersion lens was used to obtain a 200 µm

field width. Excitation and emission filters were 480/520 nm and 515/560 nm

respectively.
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5.2.9 MIC testing

Parent strain BW25113 and Keio knockout strains [324] for ∆yejF, ∆yjjB, ∆yohN,

∆yrdB, ∆metB, ∆cyoA, ∆cyoC, ∆cyoD, ∆speB, and ∆argR were obtained from

the Coli Genetic Stock Center (Yale University, New Haven, CT). The activities

of the peptides were assessed in planktonic suspension in polypropylene 96 well

plates (Greiner Bio-one, Frickhausen, Germany) according to a modified broth di-

lution assay [325]. Bacteria were grown without shaking in 50 ml Mueller-Hinton

(MH) broth at 37 ◦C . Peptides (pleurocidin, magainin 2 and LL-37) were tested

in duplicates with two rows allocated for each peptide. In each of columns 2 - 11,

50 µlof MH broth was added under sterile conditions. In the first column of each

row, 50 µlof 256 µg/ml stock peptide solutions, prepared in distilled water, were

added and then the broth from the second column was pipetted into the first col-

umn and thoroughly mixed before being deposited again in the second column.

This process was repeated throughout the tray providing a twofold dilution of

peptide with each row. Bacteria with an OD620 of 0.001 were then added to each

well in volumes of 50 µlgiving a further twofold dilution and a final volume of 100

µlper well. The final column was used either as sterility control (100 µlbroth) or

negative control (no peptide). Plates were incubated overnight at 37 ◦C and the

OD620 read. Growth curves prepared from duplicates were fitted to determine the

peptide concentration required to inhibit growth by 50 % (MIC50). The MIC50

quoted for each peptide (Table 5.1 on page 120) is an average value from at least

two independent repeats.

5.3 Results

5.3.1 1H HR-MAS NMR metabolomics reveals threshold

AMP concentration

1H HR-MAS NMR metabolomics allowed successful differentiation between bac-

terial responses to a challenge with four distinct AMPs (Table 5.1 on page 120).

All of the cationic amphipathic AMPs chosen for this study were of similar length

and were all C-terminally amidated with nominal charge ranging from +4 to +9.

Unlike in conventional microdilution assays [325] that were used in MIC testing

(MIC50 for all peptides given in Table 5.1 on page 120), for the AMP challenge

experiments higher bacterial cell densities (8 × 108 CFU/ml) were required at

the stationary phase. At the higher bacterial titre, the relative potency of AMPs

was similar, however, the effect of the four AMPs was somewhat different from
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Figure 5.4: AMP challenge of E. coli NCTC 9001: overnight cultures were

challenged with increasing amounts of each of four AMPs for 30 minutes and the

recovery of aliquots added to fresh media was measured after 4 hours incubation at

37 ◦C (A). ∗ indicates the peptide concentration causing a significant (p <0.1)

reduction in OD620 relative to the lowest peptide concentration used. Membrane

potential of challenged bacteria as measured by the voltage sensitive dye DiBAC4 and

expressed as a percentage of untreated cell (B). Esterase activity determined by

cleavage of 5,6-carboxyfluorescein diacetate expressed as a percentage of the maximum

observed activity (C). Peptide concentrations are given in µg/ml.
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the minimum inhibitory concentrations (MICs), with D-LAK120-AP13 having a

substantially greater effect on bacterial numbers as detected in the challenge and

recovery assay (Figure 5.4 on the preceding page (A)). Magainin 2 and Buforin II

had insufficient inhibitory effect for a MIC to be determined at the higher titre.

Nevertheless, the amount of peptide causing a significant reduction in bacterial

re-growth was established with D-LAK120-AP13 effective at 15.6 µg/ml, pleu-

rocidin at 62.5 µg/ml and magainin 2 at 125 µg/ml required for a significant

effect. Buforin II had no observable effect on bacterial re-growth at any of the

peptide concentrations tested (Figure 5.4 on the previous page (A)). Addition-

ally, a multi-parameter assay was taken to assess the effect of peptide challenge

on membrane potential (Figure 5.4 on the preceding page (B)), esterase activity

(Figure 5.4 on the previous page (C)) and membrane integrity in the challenged

stationary phase bacteria. The results suggested that only the concentrations of

pleurocidin and D-LAK120-AP13 above the threshold were lethal. A dose depen-

dent response to each of the four AMPs was observed, however even at higher

peptide concentrations, the membrane potential was not completely lost while

the esterase activity was higher than in the untreated cells, which is a typical

response in E. coli to exposure to sublethal stress [323].

Both 1D and 2D NMR spectra acquired for the metabolomics study were

of good quality and major metabolites were assigned as seen from assigned

COSY 5.5 on the following page and HSQC 5.6 on page 133.

One dimensional 1H NMR spectra were obtained for all samples. PCA identi-

fied outlier spectra resulting from either poor baseline or signal to noise, whereas

either PLS regression analysis or a series of OPLS-DA tests were used to interro-

gate the spectra. The lowest concentration of each AMP that caused a significant

change in the spectra relative to spectra from untreated cells was determined us-

ing PLS-DA in a step-wise manner. The resulting Q2 values are presented in

Table 5.2 on page 138. An arbitrary value ≥ 0.6 was taken to select a reliable

model where the AMP challenge has a significant effect. This value was also

compared with the reference Q2 that was obtained with randomly assigned class

identifiers in order to show a model with no effect. 2D scores plots that resulted

from each of the cross validated OPLS-DA analyses are shown in Appendix B on

page 185 (Figure B.9 on page 195, B.10 on page 196, B.11 on page 196). Scores

plots for the threshold concentrations of AMP and for the highest AMP concen-
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Figure 5.5: Representative 2D COSY spectrum of E. coli NCTC 9001

challenged with pleurocidin at the threshold concentration and the assigned metabolic

compounds.
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Figure 5.6: Representative 2D 1H - 13C HSQC spectrum of E. coli NCTC

9001 challenged with pleurocidin at the threshold concentration and the assigned

metabolic compounds.
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tration of buforin II are presented in Figure 5.11 on page 140. A clear separation

of the OPLS-DA scores that was obtained at the indicated AMP concentration

and was accepted as an indication of a threshold concentration of AMP needed

for a response detectable in the bacterial metabolomes. This threshold concen-

tration varied considerably for the four AMPs and was directly related to the

apparent antibacterial efficacy as detected by MIC50. The growth curves (Fig-

ure 5.4 on page 130 (A)) indicated that bacterial growth remained greater than

50 % of maximum after challenge with AMPs at the threshold concentration,

while esterase activity was increased relative to untreated cells (Figure 5.4 on

page 130 (C)) and membrane potential was not completely lost (Figure 5.4 on

page 130 (B)). Taken together the threshold value corresponded to a sub-lethal

AMP concentration, therefore the NMR metabolomic technique identified condi-

tions where metabolically active E. coli were responding to the AMP challenge

without simply reporting on bacterial cell death. Comparing the backscaled

loadings for each binary comparison between untreated bacteria and those chal-

lenged with each AMP using OPLS-DA, identified metabolites whose differing

intensities correlated with the effect of each AMP. A hierarchical cluster ana-

lysis was used to reveal variation in metabolite levels when comparing bacteria

challenged at threshold concentrations (Figure 5.7 on the next page) and com-

paring above and below threshold concentrations (Figure 5.8 on page 136). Both

common and AMP specific changes in E. coli metabolite levels were observed

in response to challenge with the four AMPs. Notably, the hierarchical analysis

grouped the peptides according to their potency as seen in both dendrograms.

Assigned metabolites were used as an input to a network pathway analysis, which

was conducted using MetaboAnalyst [101, 326]. The magnitude and direction of

changes in metabolite levels were not taken into account. Metabolic pathways

were identified according to p-values obtained from pathway enrichment analysis

and pathway impact from pathway topology (Figure 5.22 on page 153). Changes

in alanine, aspartate and glutamate metabolism had the greatest impact and were

a common feature of challenge with all four peptides with changes in pyruvate,

butanoate and arginine/proline metabolism highlighted according to the distinct

challenges.

The dynamic response of E. coli NCTC9001 to challenge with pleurocidin or

magainin 2 was assessed over a period of 2 hours at the following intervals: 5

minutes, 15 minutes, 60 minutes and 120 minutes. The OPLS-DA scores plots

(Figure 5.9 on page 137) indicate that a response to AMP challenge at the level of
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Figure 5.7: Hierarchical clustered heatmap comparing loadings obtained from

cross-validated OPLS-DA comparing untreated bacteria with AMP at the threshold

concentrations indicated above.
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Figure 5.8: Hierarchical clustered heatmap comparing loadings obtained from

cross-validated OPLS-DA comparing untreated bacteria with AMP at the above and

below threshold concentrations.
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Figure 5.9: Comparison of OPLS-DA scores plot from 2000

cross-validated models for bacteria treated with 125 µg/ml magainin 2

(A) or 62.5 µg/ml pleurocidin (B), against untreated control at t = 5, t =

15, t = 60, and t = 120 minutes.
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Table 5.2: Predictive Q2 values for OPLS-DA models. Q2 values for cross

validation performed with permutated classes are provided in parentheses.

[AMP] (µg/ml) Q2

Pleurocidin Magainin 2 Buforin II D-LAK120-AP13

3.9 0.32 (-0.29) n.d n.d. 0.37 (-0.30)

15.6 0.53 (-0.31) 0.29 (-0.36) n.d. 0.59 (-0.28)

62.5 0.81 (-0.41) 0.20 (-0.31) n.d. 0.81 (-0.31)

125 0.80 (-0.29) 0.68 (-0.34) n.d. 0.83 (-0.26)

250 n.d. n.d. -0.30 (-0.39) n.d.

Figure 5.10: Hierarchical cluster analyses of metabolic responses to

pleurocidin (left) and magainin 2 (right) challenge recorded for five

different incubation periods. The responses are broadly similar over time but, in

particular for pleurocidin, there is a suggestion that a second phase can be detected

after 30 minutes.
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Figure 5.11: Metabolomic analysis by 1H HR-MAS NMR of lyophilised,

stationary phase E. coli cell pellets. OPLS-DA scores plots are shown for

challenge at the following threshold concentrations; pleurocidin at 62.5 µg/ml (A),

magainin 2 at 125 µg/ml (B), D-LAK120-AP13 at 15.6 µg/ml (C) and buforin II at

250 µg/ml (D).
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the metabolome can be detected throughout the period tested. However, when

the backscaled loadings were compared in a hierarchical cluster analysis (Fig-

ure 5.10 on page 138), modest but notable differences in the affected metabolites

were discerned. This suggested that the bacterial response detected beyond an

hour after challenge is characteristically distinct from that probed within the first

30 minutes. These conditions - 30 minutes incubation at the determined thresh-

old concentration - were therefore used for subsequent electron microscopic and

transcript profiling analyses of samples prepared in parallel to those used above.

5.3.2 Scanning and transmission electron microscopy iden-

tifies differences in the response to each AMP

Changes in E. coli internal or external morphology in response to challenge

with AMP were monitored respectively using transmission and scanning electron

microscopy (TEM/SEM) at either one or four times the sub-inhibitory AMP

threshold concentration known to induce a metabolomic response (Figure 5.14

on page 144 to 5.19 on page 149 and B.1 on page 187 to B.8 on page 194). The

bacterial response to each AMP challenge varied considerably and was in quali-

tative agreement with the metabolomic study; buforin II had no noticeable effect

when compared with untreated bacterial cell controls (Figure 5.16 on page 146

and 5.17 on page 147 D/E), with each of the three other AMPs inducing sub-

stantial changes to external and/or internal morphologies. For magainin 2, a

regular, almost circular nucleoid condensation was observed in some, but not all,

cells (Figure 5.3.2 A, B.7 on page 193) while some impairment of cell division

was evident with extended rods observed (Figure 5.15 on page 145 A). Pleuro-

cidin also induced nucleoid condensation but this was much more widespread;

observed throughout the bacterial cell population (Figure B.4 on page 190/ B.5

on page 191). This was accompanied by some possible protein aggregation and

the production of large amounts of a fibrous material (Figure 5.14 on page 144 B).

In addition to the production of the fibrous material, SEM identified moderate

vesicle production, a known envelope stress response in Gram-negative bacteria

[327]. Finally, D-LAK120-AP13 induced dramatic changes in both the internal

(Figure 5.14 on page 144 C) and external E. coli morphologies (Figure 5.16 on

page 146 C). Extensive release of outer membrane vesicles was evident which was

coincident with a loss of the normal rod shape, consistent with bacteria budding

prematurely (Figure 5.16 on page 146 C). Inside bacterial cells, extensive nucleoid

condensation and protein aggregation was observed throughout the bacterial cell
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Figure 5.12: Transmission electron micrographs at × 25,000 magnification

of AMP challenged E.coli NCTC 9001. Bacteria were challenged for 30

minutes with AMPs above the threshold concentration that elicits a bacterial response

as determined by the 1H NMR metabolomics study; 250 µg/ml magainin 2 (A), 125

µg/ml pleurocidin (B).
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Figure 5.13: Transmission electron micrographs at × 25,000 magnification

of AMP challenged E.coli NCTC 9001. Bacteria were challenged for 30

minutes with AMPs above the threshold concentration that elicits a bacterial response

as determined by the 1H NMR metabolomics study; 62.5 µg/ml D-LAK120-AP13

(C), 250 µg/ml buforin II (D).
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Figure 5.14: Transmission electron micrographs at × 25,000 magnification

of untreated E. coli NCTC 9001.

population (Figure 5.14 C; Figure B.2 on page 188, B.3 on page 189). Taken

together, although there were some qualitative similarities in the response of E.

coli cells to each of the three more potent AMPs, markedly distinct responses to

each peptide were observed overall. Transmission electron micrographs obtained

at higher magnification and with AMP added at a concentration above the de-

tected threshold value indicated that, for all four peptides, the bacterial envelope

remained intact and no release of cell contents was apparent (Figure 5.19 on

page 149).

5.3.3 Global transcriptome response

The response of E. coli to challenge with the four AMPs was then probed at

the level of the transcriptome. Transcript profile changes in the NCTC 9001

strain, a clinical isolate from a patient with cystitis, were monitored using the

E. coli Genome 2.0 Array where four strains including laboratory, uropathogenic

and enteropathogenic strains are featured. Due to the high degree of similar-

ity between strains, in the majority of cases, a single probe set represents the

equivalent ortholog in all four strains. All genes that are subsequently described

in detail are found in both laboratory (K12 substr. MG1655) and uropathoge-

nic (CFT073) strains with the majority also found in the two enteropathogenic
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Figure 5.15: Scanning electron micrographs at × 25,000 magnification of

AMP challenged E. coli NCTC 9001. Bacteria were challenged for 30 minutes

with AMPs above the threshold concentration that elicits a bacterial response as

determined by the 1H NMR metabolomic study; 250 µg/ml magainin 2 (A), 125

µg/ml pleurocidin (B).
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Figure 5.16: Scanning electron micrographs at × 25,000 magnification of

AMP challenged E. coli NCTC 9001. Bacteria were challenged for 30 minutes

with AMPs above the threshold concentration that elicits a bacterial response as

determined by the 1H NMR metabolomic study; 62.5 µg/ml D-LAK120-AP13 (C),

untreated E. coli NCTC 9001 (D).
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Figure 5.17: Scanning electron micrographs at × 25,000 magnification of

AMP challenged E. coli NCTC 9001. Bacteria were challenged for 30 minutes

with AMPs above the threshold concentration that elicits a bacterial response as

determined by the 1H NMR metabolomic study; 250 µg/ml buforin II (E).

strains. PCA of the twenty most differentially expressed genes across all groups

showed the three independent replicates of each condition clustered together indi-

cating the AMP challenge and transcript profiling assay were reproducible (Fig-

ure 5.20 on page 150). Further analysis, where either an arbitrary significance

level (p ≤ 0.05) for differential gene expression or manual manipulation of signifi-

cance levels leading to an optimal separation by principal components, generated

lists of differentially expressed genes related to each treatment. E. coli genomes

commonly encode between approximately 4,200 and 5,500 protein coding genes

[328, 329]. Of the approximately 10,000 probe positions, between 139 and 632

differentially expressed unique genes (p ≤ 0.05) were detected for each treatment

following challenge with AMP at the threshold concentration eliciting a bacterial

response. This corresponds to 2.5 - 15.0 % of the available genome. Magainin 2

induced differential expression of only 139 genes which contrasted with the much

greater number of genes whose expression was altered in response to challenge

with either buforin II or D-LAK120-AP13; 625 and 632 respectively. Pleurocidin

induced differential expression of 298 genes. The distribution of differentially

expressed genes according to each AMP treatment is represented in a Venn dia-

gram and reveals that the vast majority (76.3 %) are specific to each of the four
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Figure 5.18: Transmission electron micrographs of AMP challenged E.

coli NCTC 9001. Bacteria were challenged for 30 minutes with AMPs above the

threshold concentration that elicits a bacterial response as determined by the 1H NMR

metabolomic study; 250 µg/ml buforin II (A),125 µg/ml pleurocidin (B).
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Figure 5.19: Transmission electron micrographs of AMP challenged E.

coli NCTC 9001. Bacteria were challenged for 30 minutes with AMPs above the

threshold concentration that elicits a bacterial response as determined by the 1H NMR

metabolomic study; 250 µg/ml magainin 2 (C) and 62.5 µg/ml D-LAK120-AP13

(D).
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Figure 5.20: Output from Qlucore Omics Explorer showing three

dimensional Principal Component Analysis of 20 most differentially

expressed genes across all 14 GeneChips for E. coli NCTC 9001 as detected

by the GeneChip E. coli Genome 2.0 Array. Bacteria were challenged for 30 minutes

with AMPs at the threshold concentration that elicits a bacterial response as

determined by the 1H NMR metabolomic study; 250 µg/ml buforin II, 62.5 µg/ml

pleurocidin (B), 125 µg/ml magainin 2 (C) and 15.6 µg/ml D-LAK120-AP13 (D).

The axes (1, 2, 3) relate to principal component 1 (PC1) , PC2 and PC3 respectively

and indicate how much variance is explained by each of these first three principal

components. The plot indicates the reproducibility of the transcript profiling

experiment by showing that variance in the 20 most different differentially expressed

genes is closely related to the AMP challenge applied.

AMP challenges (Figure 5.21 on the following page). Only 32 differentially ex-

pressed genes, 2.4 % of the total, were common to at least three treatments while

there was only one, yjjB, which was common to all four treatments. Qualita-

tively therefore, transcriptomic data supported the electron microscopy findings

as, while common responses can be identified, the dominant impression was of a

largely specific response to each AMP challenge.

Discriminating metabolite changes with the most impact (Figure 5.22 on

page 153) were mapped onto their respective Kyoto Encyclopaedia of Genes

and Genomes (KEGG) pathways. This allowed identification of differentially
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Figure 5.21: Transcript profiles and role of individual genes in response to

AMP challenge. Four way Venn diagram showing the distribution of differentially

expressed genes detected by the GeneChip E. coli Genome 2.0 Array (p ≤ 0.05)

following challenge of stationary phase E. coli NCTC 9001 with each of four AMPs at

subinhibitory concentrations known to elicit a bacterial response; pleurocidin at 62.5

µg/ml, magainin 2 at 125 µg/ml, D-LAK120-AP13 at 15.6 µg/ml and buforin II at

250 µg/ml. The entries in the Venn correspond to the number of affected genes.
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Figure 5.22: Network pathway analysis by MetaboAnalyst software showing

matched pathways according to p-values from pathway enrichment analysis and

pathway impact values from pathway topology analysis based on the identified NMR

resonances distinguishing control from the treatment with 62.5 µg/ml pleurocidin (A),

125 µg/ml magainin 2 (B), 15.6 µg/ml D-LAK120-AP13 (C), 250 µg/ml Buforin II

(D).
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expressed genes that potentially participate in mediating the response to AMP

challenge. Changes in alanine, aspartate and glutamate metabolism were com-

mon to all four peptides and changes in expression of gltX, dapA and metB, coding

for respectively glutamyl-tRNA synthetase, dihydropicolinate synthase and cys-

tathionine gamma-synthase, were observed in the gene lists though these did not

always satisfy the significance thresholds used above. Knockout mutants of dapA

and gltX are not available from the Keio collection but ∆metB and five other

knockout mutants (∆cyoA, ∆cyoC, ∆cyoD, ∆speB, and ∆argR coding respec-

tively for cytochrome o uniquinol oxidase subunits II, III and IV, agmatinase

and arginine repressor), linked to changes in arginine/proline metabolism, were

tested for altered sensitivity to AMP challenge though none was found.

Up-regulated in response to challenge by all four AMPs, yjjB, encodes a 157

amino acid, conserved, inner membrane protein predicted to have four trans-

membrane helices but with no known function. Of the five genes whose expres-

sion was generically affected by the three AMPs of natural origin, three were up-

regulated in response to AMP challenge; manA codes for mannose-6-phosphate

isomerise, cysE codes for a serine acetyltransferase and yohN codes for a 112

amino acid integral membrane protein annotated and established as a periplas-

mic modulator of nickel and cobalt efflux and renamed rcnB [329]. In contrast,

yejF, part of an ABC transporter identified as a possible nickel, and probable

microcin C transporter [330], and yrdB, which codes for a highly anionic, glu-

tamine rich, 85 amino acid hypothetical protein from the DUF1488 superfamily,

are down-regulated. Comparison of the growth of parent strain BW25113 and

four knockout mutants (∆yejF, ∆yjjB, ∆yohN and ∆yrdB) obtained from the

Keio collection [324] confirmed yohN confers sensitivity to Co2+ and possibly

Ni2+ (Figure 5.23 on the following page). The growth of these strains was also

tested in the presence of AMPs (Figure 5.24 on page 157). While the MIC for

pleurocidin was not affected by the presence of any of the four deletions, a modest

but significant (p < 0.05) increase in sensitivity was observed for all four deletion

strains when challenged by magainin 2. When the experiment was repeated with

LL-37, an AMP of human origin, three of the deletions rendered the bacteria more

sensitive while deletion of yrdB had no effect. Table 5.3 on page 156 lists genes re-

lated to metal binding that were differentially expressed, such as genes involved in

nickel ion binding nikA and nikB, components of nickel ABC transporter, which

were upregulated when challenged with pleurocidin and magainin 2, but downreg-

ulated in response to the D-peptide and buforin II. A member of two-component
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Figure 5.23: Sensitivity of Wild type and four mutants from the Keio

collection to different cations: (A) MgCl2, (B) NiCl2, (C) CoCl2. (∗∗) p ≤ 0.05

relative to BW. ∆yohN confers sensitivity to Co2+ and possibly Ni2+.
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regulatory system which mediates copper tolerance, cusR was upregulated across

all challenges. Other genes involved in metal binding, which are considered iron

uptake virulence factors found were: fepC, encoding iron-enterobactin transporter

ATP-binding protein and iucD of the aerobactin operon which were substantially

downregulated in response to all four peptides, fepG encoding iron-enterobactin

transporter permease, which was upregulated for D-peptide and magainin 2, but

downregulated for pleurocidin and buforin II. Also, both genes encoding highly

conserved proteins IscU and IscA that are members of an operon iscSUA, which

provides scaffold protein for assembly and transfer of iron-sulfur clusters were

strongly repressed across all challenges. This is also evident from ontology search

of biological processes (Figure B.12 on page 197) where iron-sulfur cluster assem-

bly and metalo-sulfur cluster assembly can be found for bacteria challenged with

pleurocidin.

Table 5.3: Differentially expressed genes related to metals and metal

binding up- or downregulated in response to challenge with AMPs at

sub-inhibitory concentration. In bold p ≤ 0.05.

Fold change

Gene symbol Gene title Pleurocidin Buforin DLAK Magainin

nikA nickel-binding, heme-binding periplasmic protein 2.45 0.51 0.56 1.34

nikB nickel transporter permease 0.51 0.78 0.61 1.89

iscA iron-sulfur cluster assembly protein 0.52 0.40 0.56 0.93

iscU iron-sulfur cluster assembly scaffold protein 0.54 0.41 0.57 0.86

fepC iron-enterobactin transporter ATP-binding protein 1.08 1.06 1.19 0.45

fepE ferric enterobactin transport protein 0.21 0.18 0.26 0.51

fepG iron-enterobactin transporter permease 0.84 0.95 1.35 1.21

feoA Ferrous iron transport protein 0.78 0.43 0.43 0.32

fdoH Formate dehydrogenase-O iron-sulfur subunit 0.31 0.63 0.57 0.45

iucD IucD protein 0.50 0.53 0.63 0.79

The ontological profile related to each challenge offers another view of how

closely related the response to each AMP is to each other. Here, instead of com-

paring individual genes on the basis of their identity, the comparison is based

on the cellular component, biological process or molecular function and is less

affected by redundancy or more subtle changes in response and consequently

better reflects the fundamentals of the bacterial response. Ontological analysis,

which employed a Benjamini-Hochberg method to control false discovery rate

(FDR) and displays statistically overrepresented, differentially expressed genes

in a graphical format according to their relationships in a hierarchical tree, was

carried out on gene lists comprising the 200 - 250 most differentially expressed
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Figure 5.24: Role of individual genes in response to AMP challenge. Effect

on sensitivity of E. coli BW25113 to magainin 2, pleurocidin and LL-37 of mutations

in four of six genes commonly regulated in response to AMPs of natural origin.

genes for each of the individual AMP treatments (Figure B.13 on page 198, B.14

on page 199, B.15 on page 200 and B.16 on page 201) and for comparisons of up

to three AMP treatments (Figure 5.25 on the following page, 5.26 on page 159

and B.12 on page 197). The three AMPs derived from natural sources are sus-

pected of acting on different cellular components. Indeed, comparing gene ontol-

ogy (GO) term enrichment for cellular components (Figure 5.25 on the next page)

showed a very different profile for each of magainin 2, buforin II and pleurocidin.

Magainin 2 appears confined to affecting membrane components (Figure 5.25 on

the following page; B.13 on page 198) and had little effect on molecular functions

or biological processes. Buforin II, in contrast, did not impact on any membrane

components, instead focussing on components in the cell or cell part (Figure 5.25

on the following page; Figure B.14 on page 199 A) where 41 % of the differentially

expressed genes related to binding are found in the analysis of molecular function

(Figure B.14 on page 199 B). Pleurocidin elicited responses both in membrane

components and in the cell itself (Figure 5.25 on the next page; Figure B.15

on page 200) with biological processes, in particular polysaccharide and macro-

molecule metabolism and transport, impacted. This was reinforced by the finding

that some 35 genes related to transporter activity were differentially expressed

(Figure B.16 on page 201). These observations reinforce the view that AMPs

impact on bacterial cells in distinct and AMP-specific ways. When the top 250

genes differentially expressed in response to challenge with D-LAK120-AP13 were

analysed, very few enriched pathways were found when biological processes were
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Figure 5.25: Multi GOEAST comparison of gene ontology (GO) terms

relating to cellular component for differential gene responses in stationary

phase E. coli NCTC 9001. Challenge was induced with sub-inhibitory

concentrations of pleurocidin (red: p1), magainin 2 (blue: p2) and buforin II (green:

p3). Red arrows represent relationships between two enriched GO terms, black arrows

between enriched and un-enriched terms and black dashed arrows represent

relationships between two un-enriched GO terms. Raw p values for GO terms have

been adjusted using the Benjamini-Hochberg method allowing FDR < 15 %.
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Figure 5.26: Multi GOEAST comparison of molecular function in

differentially expressed genes of E. coli NCTC 9001 in response to challenge

with pleurocidin (red), magainin 2, (blue) and buforin II (green) as detected by the

GeneChip R© E. coli Genome 2.0 Array. Bacteria were challenged for 30 minutes with

AMPs at the threshold concentration that elicits a bacterial response as determined by

the 1H NMR metabolomic study; 250 µg/ml buforin II, 62.5 µg/ml pleurocidin and

125 µg/ml magainin 2.
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considered, with no enriched cellular components or molecular function identified.

This indicates a non-specific response for this designed peptide notwithstanding

its shared responses with buforin II observed above.

Other virulence related genes whose expression was altered in response to the

challenge are listed in Table 5.4 on the following page.

5.4 Discussion

5.4.1 Evaluation of combined -omics approach

In summary, combining the methods applied in this study, the metabolomic, elec-

tron microscopy and transcript profiling analyses, created a platform that allowed

identification of an array of both generic and specific responses to a challenge with

AMPs. The peptides chosen to be tested in this study share many physicochem-

ical features - all four peptides used were cationic, of similar lengths, and will

adopt conformations with secondary amphipathicity. Their presumed target is

the E. coli inner membrane, but they differ in their modes of action. The study

indicates that the whole cell is much more than the simple sum of its parts and

the interactions between different parts resulted in many new physiological func-

tions which cannot be observed with individual components. Together with the

strengths and weaknesses of the analytical methods that were identified in this

study, it underscores the value of a combined approach. The electron micrographs

showed distinct changes to internal structure and morphology of bacterial cell ef-

fected by each challenge at sub-inhibitory concentrations. It indicates that AMPs

induce very different responses in bacteria, however, a complementary method

was needed in order to investigate the details of the molecular mechanisms in-

volved and investigate how each AMP operates. Transcript profiling provided a

wealth of information on the bacterial response and gene ontology categorisation

of the differentially expressed genes suggested processes, functions and cellular

components and the individual gene products implicated. These findings suggest

that in order to illuminate further how bacteria attempt to fight off challenges

posed by AMPs a wide range of experiments. The results also suggest that tran-

script profiling may also be more sensitive than the other approaches used since it

alone was able to identify a significant response to buforin II which, despite hav-

ing the highest AMP concentration used (250 µg/ml) did not have a discernible

effect on either the internal or external cellular morphology nor was a response de-
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Table 5.4: Differentially expressed genes related to various virulence

factors up- or downregulated in response to challenge with AMPs at

sub-inhibitory concentration. In bold p ≤ 0.05.

Fold change

Cell division Pleurocidin Buforin DLAK Magainin

mltE 1.29 0.94 0.77 1.24

sulA 0.75 0.65 0.50 0.64

ftsA 1.49 1.91 1.88 1.81

sdiA 0.86 0.60 0.51 0.47

xerC 1.08 1.06 1.19 0.45

ftsX 0.88 1.53 1.24 0.82

fimbrie/motility

yqiH 2.07 1.68 1.38 0.84

ycbS 1.12 1.02 1.16 1.25

cheA 0.52 0.57 0.76 0.84

fliP 1.36 1.07 1.14 1.58

yhcD 0.88 0.84 0.93 0.83

fimC 0.93 0.24 0.23 0.83

flk 1.09 0.66 0.58 1.20

papK 2 0.80 0.37 0.35 0.72

fimI 1.07 0.58 0.62 0.93

csgA 0.93 1.20 0.95 1.44

focA 1.20 1.91 1.38 1.08

ydeR 0.74 0.66 0.87 0.98

ydeS 0.62 0.51 0.77 1.09

papE 2 0.79 0.24 0.20 0.68

yfcV 0.83 0.52 0.52 1.06

yadL 0.82 1.02 2.13 0.91

yadM 0.93 1.04 0.80 1.04

DNA damage/nucleoid condensation

recB 0.72 0.82 0.67 0.86

recG 0.48 0.52 0.52 0.73

dinG 0.68 0.65 0.63 0.68

ligA 0.93 1.04 0.94 1.47

recN 0.62 0.38 0.41 0.36

recE 0.81 0.82 0.88 0.88

xerC 1.08 1.06 1.19 0.45

yrdD 1.11 0.63 0.57 0.57

yjhR 1.03 0.47 0.54 1.03

Z1843 1.02 1.48 2.62 1.28

dinI 0.65 0.31 0.26 0.75

cell wall/outer membrane synthesis

mltE 1.29 0.94 0.77 1.24

rhsD 0.85 1.27 0.93 0.92

wcaA 0.72 0.58 0.61 0.83

yfbH 0.49 0.65 0.75 0.79

ECs3935 0.75 0.94 1.04 0.68

cpsB 0.71 0.73 0.71 1.09

galF 1.51 1.02 0.95 0.90

wcaJ 0.63 0.55 0.89 1.26

imp 0.81 0.81 0.98 0.73

rfaF 0.84 0.68 0.73 0.79

rspA 1.05 1.25 0.98 1.62

mraY 1.28 2.10 1.90 1.47

murG 1.68 2.67 2.50 1.27

murC 1.83 2.31 2.51 1.34

murD 1.07 1.23 1.27 1.26

lolB 1.00 0.92 1.07 1.04

pal 1.47 1.28 1.59 1.08
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tected by 1H HR-MAS NMR. The transcript profiling method remains expensive

however and the consumable costs per sample make its use in a high throughput

manner unattractive. The NMR metabolomic technique has the advantage of

having low per sample consumable costs, which enables a much greater range

of test conditions to be assessed. In this study it was possible to test a range

of peptides at increasing peptide concentrations, which would not be possible

using only transcriptomics. NMR metabolomics is also highly reproducible and

able to provide quantitative information. In view of this metabolomics could be

considered as a standalone method for interrogating bacterial responses to chal-

lenge. In the present study, however, while both generic and specific changes in

metabolites were identified in response to AMP challenge, information provided

by transcript profiling or micrographs may seem more discriminating and infor-

mative. The reason for that is that many bacterial metabolic pathways overlap

and the same metabolic pathways may underpin several stress responses. This

suggests that a study considering a larger number of AMPs, both distinct and

closely related is needed. This would allow greater weight to be afforded to cer-

tain key metabolites, known to be altered in response to a given class of AMP

with known influence on bacterial stress responses.

5.4.2 Life and death at the membrane?

The aim of this study was to investigate, whether by looking at the bacterial

stress responses to a challenge with carefully selected AMPs at sub-lethal con-

centration, a detailed systems wide view of the mechanism of action of those

AMPs can be obtained. Upon challenge, multiple interactions occur within the

cell and within the host simultaneously and sequentially in various cellular de-

partments and many AMPs that share a range of structural and physical features

that have been linked to antibacterial activity vary dramatically in their potency

towards the same bacterial target. Pleurocidin, despite having similar secondary

structure, charge and hydrophobicity to magainin 2 (Table 5.1 on page 120)

is ten times more active against Gram-negative bacteria [64]. Since their am-

phiphilicity is very similar, the difference in bactericidal activity is presumably

due to the presence of some structural elements such as flexibility around glycine

residues or high concentration of positively charged residues within the folded

structure, which would modulate biophysical properties of the peptide. The high

resolution structures of both magainin 2 and pleurocidin in the anionic detergent

SDS (PDB entries 2LSA and 2LS9 respectively) have been recently solved in our

laboratory and similar regions of flexibility have been found around the glycine
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residues in the middle section of the sequence (Gly 13/18 magainin 2; Gly 13/17

pleurocidin). Only in the membranes that most closely mimic the inner mem-

brane of Gram-negative bacteria are any differences between the two peptides

observed; here pleurocidin adopts a notably more disordered conformation un-

der these conditions [64]. The more disordered conformation of pleurocidin in

the E. coli target membrane is possibly related to pore formation [331] or the

proposed intracellular targeting strategy [308] which, in both cases, would serve

to boost its potency. This demonstrates the limitations of such artificial model

classification into very few conformational and functional paradigms. Such a

classification system does not account for all the killing mechanisms that pep-

tides exhibit and all the interactions that a peptide molecule can effect on the

bacterial cell. The structural or even functional categorisation as membrane

disruptive or membrane non-disruptive peptides is a weak indicator of peptide

activity or spectrum. This is supported by a recent molecular dynamics study of

AMPs interacting with phospholipid membrane [285], which revealed that con-

comitant, non-specific peptide interactions with other peptides or molecules take

place as well as formation of secondary structures other than simple α-helix or

β-sheet. This could be an explanation for the varying antimicrobial activity and

even different killing mechanisms of peptides with similar secondary structures

and biophysical properties. Such nonspecific, indefinite behaviour hinders bac-

terial resistance development to AMPs [332]. It is also possible that, depending

on pathogen and/or the physiological settings such as the growth phase of bac-

teria, the localisation of the infection or presence of other AMPs and immune

mechanisms of the host organism, AMPs can act on bacteria using more than

one mechanism [279]. There is therefore need for a technique which allows to

consider all mechanisms simultaneously and look at all primary and secondary

effects that the peptides have on bacterial physiology and morphology without

prior knowledge of their killing mechanisms. The interactions are still not well

understood due to their complex and dynamic nature, but also because of the

lack of suitable tools.

Previous -omics based studies comparing AMP action in Gram-positive bac-

terial species found that there was very little overlap in response between Strep-

tococcus pneumoniae that had been challenged with each of three rather different

antimicrobial peptides [317], while two earlier studies [315, 316], which focussed

on peptides with the plasma membrane as a presumed common target, found

rather more overlap. Here, a more holistic approach was applied to try to dis-
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criminate between the different modes of actions of magainin 2 and pleurocidin

and place their differing membrane activities in a wider context, enabling a more

sophisticated understanding of their respective mechanisms of action while ex-

plaining the greater potency of pleurocidin. This combined approach was readily

capable of distinguishing pleurocidin and magainin 2 on the basis of the bacterial

responses observed in their metabolomic and transcript profiles and the results

were further complemented by electron micrographs. Despite the shared proper-

ties and presumed initial target being the bacterial inner membrane, transcript

profiling identified only 19 genes whose differential expression was common to

both AMP challenges, with differential expression of some 399 genes being a

specific response to either pleurocidin or magainin 2. The results show that the

E. coli response to AMP challenge is plastic and sufficiently sensitive to detect

differing bactericidal strategies of each peptide. The changes in the internal

morphology of E. coli seen in electron micrographs suggest that each of AMPs

was able to enter Gram-negative bacteria, even at sub-inhibitory concentrations.

Pleurocidin had a more profound effect, which would support the greater potency

of this peptide. The results presented suggest that a systems approach is needed

and simply studying membrane interactions is not sufficient, particularly when

trying to increase potency of peptides.

Buforin II is known to operate by different mechanism than pleurocidin and

magainin 2 and is also much less potent. It was therefore hypothesised that the

bacterial response to this peptide would highlight responses to pleurocidin that

are related to an intracellular targeting strategy. Neither the NMR metabolomic

nor electron micrograph studies though identified a strong response to even very

elevated concentrations of this peptide; consistent with our previous work which

identified only a very weak effect against planktonic cultures of either E. coli or

P. aeruginosa [64]. Nevertheless, a large number of significantly differentially ex-

pressed genes in response to buforin II challenge were detected by transcript pro-

filing. While around 64 differentially expressed genes were detected in common to

challenge with buforin II and pleurocidin, 33 differentially expressed genes were

common to buforin II and magainin 2 with a further 534 differentially expressed

genes identified that were not affected by either magainin 2 or pleurocidin. Only

six differentially expressed genes were identified as a common response to these

three AMPs, which further emphasises the plasticity of the E. coli response and

indicates that bacteria have a large repertoire of responses to challenges, which

is a necessary adaptive mechanism in order to survive within the host.
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Considering the ontology of the differentially expressed genes can suggest how

each individual AMP operates and which stress responses in a bacterium were

activated. Here, the ontological profiles have been used to compare the relative

importance of the properties of each AMP, which reveals and supports the view

that these three peptides adopt distinct bactericidal strategies. The ontological

profiles reveal very different changes in transcript profiles following sub-lethal

challenge with the three different AMPs. Obtained GO terms are in full agree-

ment with existing paradigms for the mode of action of each AMP. This supports

the view that such a combined approach can be applied to faithfully reveal the

mechanism of action of peptides and not simply detect the events associated with

bacterial cell death. In particular, the identification of eight GO terms linked to

membranes supports the established view that magainin 2 largely acts on the

plasma membrane of Gram-negative bacteria. In contrast, within the top 200

differentially expressed genes, no membrane GO terms were linked to the action

of buforin II which is considered to seek intracellular targets, while the effect on

binding and a host of biosynthetic pathways is acute. For pleurocidin, where

multiple bactericidal mechanisms have been proposed, there is substantial over-

lap between the cellular component GO terms with those affected by magainin 2.

This indicates that the bacterial membrane is indeed a common target. However,

in contrast with magainin 2, pleurocidin impacts on a large number of intracel-

lular biological processes, in particular macromolecule metabolic and transport

processes. This strongly indicates that a multifaceted antibacterial strategy un-

derpins the high antibacterial potency of this AMP.

5.4.3 Can understanding the bacterial response be ex-

ploited to improve AMP potency?

Since the bacterial response to AMP challenge is highly plastic, it is unlikely

that simply deleting one gene implicated in the stress response is going to have

a great impact on sensitivity. To test this hypothesis, a number of mutants were

studied and identified by mapping metabolite changes with the greatest pathway

impact onto their respective pathways. No differences in bacterial susceptibility

was detected and further work will be required to more effectively disrupt such

pathways in order to identify any relationship with sensitivity to AMPs.

Six gene products were identified that were significantly affected by the chal-
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lenge of each of the three AMPs derived from natural sources. Of these six genes,

two were down-regulated; yrdB an anionic 85 amino acid hypothetical protein

and yejF. The yejF gene codes for the ATPase in the ABC transporter YejABEF

which, when mutated, confers resistance to microcin C [330]. The speculated role

of YejABEF as a nickel transporter has been questioned as it is phylogenetically

distant from other oligopeptide transporters [330]. However, since yejF is down-

regulated in the present study in response to all three peptides obtained from

natural sources and its deletion renders E. coli more sensitive to both magainin

2 and LL-37, this behaviour does support the earlier finding that the activity of

this protein can have a considerable effect on peptide antibiotic potency. Indeed,

while mutations in yejABEF confer resistance to microcin C in E. coli, deletion

of yejF in Salmonella enterica increased sensitivity to AMPs, including both hu-

man beta defensins 1 and 2 (hBD-1 and hBD-2) [333].

Four genes were found to be up-regulated: cysE and manA, which are less

attractive as an antibiotic target, since they are widely distributed amongst taxa,

including animals and yohN and yjjB, which are mainly distributed in Enterobac-

teriaceae and although their functions are not well understood, they might be

more attractive targets for further investigation and possible targets for adju-

vants that could boost the potency of the host innate immune response. Here,

deletion of these genes caused a significant, but modest increase in sensitivity to

magainin 2 and LL-37 while the potency of pleurocidin was unaffected.

Iron plays an essential role for bacterial growth and metabolism and iron

restriction is a central aspect of host defence against many bacteria. A host

can limit availability of free iron by ion-binding proteins-ferritin, lactoferrin and

transferrin. The importance of metals in virulence has been demonstrated in

studies by Weinberg [334] and Holbein [335], which demonstrated that increased

availability of iron promotes infection, whereas other studies showed that iron

deficiency increased host resistance to infection [336] and that mutants for iron

uptake lose their virulence. Moreover, bacteria require manganase (Mn) and zinc

(Zn) and transporters for these metal ions have been associated with virulence

[337, 338]. Here, those four mutants have been tested against different divalent

cations, but only ∆yohN was found to confer sensitivity to Co2+ and possibly

Ni2+.

These results show that the combined systems approach is indeed capable
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of identifying genes that regulate resistance/sensitivity in E. coli and stress re-

sponse pathways induced but that the large number of potentially differentially

expressed genes in bacterial repertoire will mitigate the effect that silencing one

gene product may have. This also emphasises the need to understand bacterial

stress networks in detail.

Finally, one of the peptides used in the study, D-LAK120-AP13, was com-

posed of D-amino acids only and it was of interest to contrast its effect on bacteria

with the expected results for the three peptides representing naturally occurring

AMPs. The peptide was designed in an attempt to circumvent the effect of

proteases secreted by target pathogens, and incorporate structural features, in-

cluding high cationicity and propensity for adopting α-helix rich conformation

[296], therefore being able to insert into and disorder the E. coli inner membrane.

The peptide also has a proline kink, which gives conformational flexibility [295]

that facilitates penetration into bacteria [304, 305]. The peptide had a highly

robust and potent effect against E. coli, which was evident from a significant

metabolomic response even at very low peptide concentrations. Circumstantial

evidence for the ability to penetrate within bacterial cells was shown by transmis-

sion electron microscopy, with the most profound changes due to challenge with

any of the four AMPs observed, and also transcript profiling. Further underlining

the plasticity of the E. coli response, transcript profiling identifies a further 390

differentially expressed genes that were uniquely affected by D-LAK120-AP13.

Interestingly, there was a considerable degree of overlap with the response to

buforin II with 192 differentially expressed genes in common. These two pep-

tides have a greater nominal cationic charge in solution at neutral pH than either

pleurocidin or magainin 2 and both incorporate a proline induced kink in the

secondary amphipathic conformation. Taken together, the data support highly

effective entry of D-LAK120-AP13 into Gram-negative bacterial cells and it is

this that may underpin its high antibacterial potency.

Considering bacterial stress responses, in the present study differentially ex-

pressed genes (p ≤ 0.05) have only been found in response to AMP challenge that

relate to DNA damage and EvgS regulator. The response regulator EvgS was

overexpressed in response to pleurocidin, but not to other peptides. Genes related

to the DNA damage stress response were up- or downregulated in response to

pleurocidin, magainin 2, DLAK120-AP13 but not buforin II, which is in agree-

ment with electron micrographs where buforin II showed no effect with other
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peptides having an effect relative to their potency. Moreover, each AMP resulted

in differential expression of a different set of genes, which would explain different

patterns and degrees of nucleoid condensation depending on the challenge seen

in transmission electron micrographs. Also, sulA, a component of the SOS stress

response, encoding cell division inhibitor protein, was downregulated in response

to D-LAK120-AP13, which could explain round shaped cells, rather than rod

shaped, which indicates excessive division rate. This mechanism prevents the

premature segregation of damaged DNA to daughter cells during cell division.

EvgA and EvgS are components of a two-component system that controls ex-

pression of multiple genes conferring antibiotic resistance in E. coli [339], known

to modulate multidrug resistance of E. coli by increasing efflux of drugs [340].

It was also demonstrated to activate genes related to acid resistance, osmotic

adaptation, and drug resistance, such as emrK [341], which was also found to be

highly upregulated in response to challenge with pleurocidin. Interestingly, mdlB,

another gene related to multidrug resistance was substantially downregulated in

response to all challenges, pleurocidin in particular (fold change = 0.263). This

could have clinical significance, whereby multidrug (and drug-specific) exporters

could be considered a target in formulating strategies to treat drug-resistance to

agents with mechanism of action similar to pleurocidin.

The reason why genes related to other stress responses were not detected as

being differentially expressed (p ≤ 0.05) could be that our ANOVA test was too

stringent or that the sub-inhibitory concentration did not induce a sufficient re-

sponse. However, a number of genes have been identified related to virulence

factors, which could be a suitable target for antimicrobial agents. Vast amount

of genes differentially expressed across all challenges were linked to metals. This,

suggests that this could also play an important role in bacterial response to an-

timicrobial threat and warrants further research.

With four distinct but physicochemically related AMPs now tested by a com-

bined systems biology approach, a total of at least 1342 differentially expressed

genes (p ≤ 0.05) have been identified as being potential tools that can be manip-

ulated by the bacteria to overcome AMP challenge. This is equivalent to between

24 and 32 % of the total E. coli genome and suggests, with more structurally

diverse AMPs yet to be tested, that bacteria have a wide variety of means of over-

coming AMP challenges. Understanding these responses enables both the mode

of action of AMPs to be elucidated as well as suggesting strategies to overcome

168



these defences. This novel approach may find generic applicability in the study

of antibiotic-bacteria arms races.

5.5 Conclusion

AMPs have tremendous structural diversity and an impressive array of clinically

meaningful activities. This has provided a huge impetus to the development

of new synthetic peptides. Even so, despite nearly two decades of serious de-

sign efforts, there has been limited success in the clinic. This is partially due

to lack of suitable tools and the increasing antimicrobial resistance to existing

antibiotic warrants studies of AMPs, pathogens triggers and the various host

immune responses. Rational development of prevention and control measures

against infectious diseases requires an understanding of the mechanisms of such

interactions. The work flow proposed in this study utilising NMR metabolomics

coupled with electron microscopy and transcriptomics allowed accurate predic-

tion of the killing strategy of each AMP provided novel prospective for previous

functional and biophysical studies and shows that NMR metabolomics could be

used to study host-bacterial interactions as either a standalone method or in com-

bination with transcriptomics. Although some common features of the bacterial

response to AMP challenge could be identified, the metabolomes, morphological

changes and the vast majority of the changes in gene expression were specific to

each AMP. The study shows that the antibacterial mode of action of AMPs can

be accurately predicted by comparing ontological profiles generated by transcrip-

tomic analyses. The response of E. coli to AMP challenge is highly plastic, with

the bacteria capable of deploying a multifaceted response adapted to each AMP,

which depends more on mode of action rather than the physical properties of the

AMP.
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6
Conclusion and future work
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6.1 Summary

In this thesis the applicability of NMR metabolomics to study host-bacterial in-

teractions was investigated. Each of the three results chapters tackle a different

instance where an improved understanding of the interactions between bacteria

and host will result in beneficial impact on host health and disease. Having ar-

gued that a systems biology view of such interactions is necessary, its importance

is demonstrated using three scenarios where NMR metabolomics is applied to

help study complex responses.

First, in Chapter 3 NMR metabolomics was used to investigate the lung af-

fected by Cystic Fibrosis by analysing changes in spent media composition after

growth of dominant P. aeruginosa strains isolated from CF patients. The ap-

proach showed that subtle differences in airway secretions could be expected due

to growth of different isolates of the P. aeruginosa isolates. 1H NMR metabo-

lomics was able to divide samples into distinct clusters based on the changes in

metabolite production suggesting that P. aeruginosa adapts to its growth en-

vironment by altering its growth strategy. The findings were related to clinical

measures of patient lung function and, more simply, spent culture pH. This sug-

gests future applications of NMR metabolomics may succeed in predicting patient

outcome by analysing growth of P. aeruginosa isolates but also that multivariate

(NMR) data can be related to more easily measured, univariate (pH) data that

can be more easily included in diagnostic and prognostic tests in the clinic. The

chapter also highlighted some of the experimental limitations of the NMR tech-

nique but suggested solutions for future studies including application of CPMG

pulse sequence or use of HR-MAS, extraction of metabolites, use of deuterated

solvents or pH-adjustment of the media.

In the next chapter, NMR metabolomics was applied to the analysis of the

mouse faecal microbiome of animals which were genetically identical, but hosted

in different rooms. NMR metabolomics of faecal pellets extracted into aqueous

buffer detected differences in metabolome composition which was related to the

divergence in the microbiota composition of the gut. In this study two sets of

multivariate data were obtained-hierarchical cluster analysis of gut microbiota

and changes in a host metabolome. NMR metabolomics allowed for simplifica-

tion of the relationships between microbiota and identification of a link between

the microbiome and the gastrointestinal performance of a host gut.
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In the final study, a solid bacterial pellet is used for NMR metabolomics inves-

tigation of the mechanisms which bacteria might use to overcome the challenge

by antimicrobial peptides. Four different antimicrobial peptides, with suspected

differences in the mechanism of action, were used to probe changes in bacterial

genes and metabolites in response to a challenge. Here NMR metabolomics was

capable of quantitatively and qualitatively characterising the response of E. coli

to AMP challenge and was sufficiently sensitive to reveal that the bacteria had

both common and also district responses to AMPs that were structurally similar

but functionally distinct. The mechanism of action of the AMP challenge could

not be deduced from NMR data alone but aided the application of transcript

profiling techniques. Together these techniques were capable of describing the

effects of AMP challenge in unprecedented detail but indicate that more work

is required to effectively integrate these techniques for their full potential to be

realised.

Nevertheless, all studies described in this PhD thesis, NMR metabolomics

proved to be robust, cost-effective and high-throughput. Despite its limitations,

which can be alleviated by experimental planning, it meets the requirements of

an approach needed to unravel complexity of host-bacterial interactions.

Each study described in this thesis used a different type of sample material

and posed different questions. This required different pre-processing protocols

and different approaches during data analysis. It has been demonstrated that

study design is an important issue, particularly in metabolomics. The first study

demonstrated the importance of investigating buffers and solvents and assuring

their suitability for an NMR study when designing the experiment. Also, when

acquiring a high number of spectra one has to consider the acquisition time per

sample and temperature during the experiment as parameters that can introduce

between-sample variation. This can be prevented by ensuring homogeneous con-

ditions, e.g. running the experiment at low temperature to prevent any bacterial

growth, and sample randomisation. The second study was more straightfor-

ward: samples were stable, buffers compatible with NMR methodologies and the

number of samples more than sufficient for statistical analysis. In the final study,

whole bacterial pellets were used and an initial problem was establishing the right

sample amount in order to obtain satisfactory NMR spectra with the reasonable

acquisition time. The macromolecular aspects of peptide interactions with E.
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coli were examined by two main approaches: determination of the threshold

concentration for each peptide and the phenotype of peptide-dependent and/or

dose-dependent bacterial response to the challenge. The relatively low number

of samples per treatment imposed limitations during multivariate data analysis,

therefore the study was repeated with a higher number of samples to ensure the

accuracy of the classification during cross-validation procedure, as small dataset

may result in small differences being neglected. This study provided a fresh,

novel perspective for previous functional and biophysical studies and shows that

NMR metabolomics will have considerable value in the study of host-pathogen

interactions.

6.2 Transcription Factor Decoys (TFDs): a pro-

spective study

The ability of bacteria to initiate and coordinate changes in gene expression as a

response to varying environmental factors is essential for maintenance of home-

ostasis. Regulation at the transcriptional level is crucial as it is the first stage of

the series of events which result in a production of protein. Such changes eventu-

ally bring about phenotypic alterations allowing the organism to adapt to the new

conditions. Gene expression is regulated by DNA binding transcription factors

(TFs), which bind specific nucleotide sequences and direct transcription of target

genes (TGs). Stress is the main determinant of the expression pattern of the TFs

itself. In E.coli the response to stress which has the most importance is the gen-

eral stress response, which involves transcription of genes essential for survival.

The response is triggered by reduction in growth rate as a result of starvation but

also sudden variations in temperature, osmolarity or acidic pH [342]. Combina-

tions of antibiotics are commonly used in the search for a broadened antimicrobial

spectrum and synergistic effects. A combination of nonantibiotic drugs and com-

pounds with antibiotics/AMPs offers an opportunity to discover alternative and

potent therapeutics. An example of such compounds are transcription factor

decoys. Transcription factor decoys (TFDs) are synthetic oligonucleotide mimet-

ics which are an experimental class of compounds that modulate expression of

specific genes in pathogenic bacteria by interfering with the key DNA-protein

interactions that determine gene activity. TFDs work by flooding the cells with

an excess of copies of the transcription factor’s binding site, so that the protein

will bind to them instead of its genomic site and so prevent expression of the
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genes associated with the stress response and resistance. Combining TFDs with

either a bactericidal, lipidic delivery system or exogenous or endogenous AMPs

should enhance the activity and longevity of the treatment by blocking the stress

response. Bacteria are unlikely to develop resistance against TFDs as this would

require simultaneous mutations affecting both the binding specificity of the TFD

and DNA-binding site [279].

The BBSRC CASE studentship that supported this work was awarded in

conjunction with Procarta Biosystems Ltd who have produced a new generation

of TFD antibiotics with a novel mechanism of action, formulated in a propri-

etary cationic lipid. The final objective for this thesis therefore, was to develop a

systems view capable of describing the mechanism of action of TFDs. By under-

standing how the target bacteria respond to this new antibiotic threat, the future

development of new targets, delivery systems and formulations can be undertaken

in a rational manner. In the previous chapters the NMR metabolomics work-flow

was applied in a stepwise manner to different studies of increasing complexity.

A preliminary NMR metabolomics study has been carried out on the effects of

the cationic lipid delivery system and its TFD cargo E. coli metabolism at both

inhibitory and sub-inhibitory concentrations. However, due to formulation prob-

lems relating to encapsulation of the TFD cargo and incompatibility of the opti-

mal buffer formulations with NMR, the results were inconclusive. Nevertheless,

conditions where a response from metabolically active bacteria is expected were

identified and the study will be repeated in the future with a new formulation

of TFDs optimised for NMR analysis and supported by transcriptomic analy-

ses. The expected outcome will be a detailed description of the E. coli response

mechanism both to the lipidic formulation and its TFD cargo.

6.3 Future directions

In the study of bacterial responses to AMPs both generic and specific changes

in metabolites were identified in response challenge. However, the information

was not sufficient for clear discrimination of the dominant stress responses or

identification of a stress response that is fundamental to survival in face of chal-

lenge from each of the AMPs. This is caused by overlap in many of bacterial

metabolic pathways and the fact that one metabolic pathway may be involved in

many stress responses. Such compensatory mechanisms might necessitate stud-

ies introducing a larger cohort of AMPs, both closely-related and of differing
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operating mechanisms. Such a study would allow induction of a wider range of

bacterial stress responses and the ability to classify changes in gene expression

or metabolite levels according to one mode of action.

The present study identified a change in expression of a large number of genes,

related to metal binding or transport, in response to AMP challenge. This effect

was apparent for each of the four AMPs indicating a possible generic response of

Gram-negative bacteria to AMP challenge. The genes of interest from the tran-

scriptomic study can be monitored in more focussed but cost-effective manner

using qPCR following exposure to a wider variety of AMPs the stablish whether

this is a widespread mechanism of resistance. In addition, the techniques devel-

oped here can be applied to compare responses of wild-type and mutant strains

to the presence of our AMPs, metals and to a combination of both to identify

relationships and the role of the identified individual genes in this postulated

mechanism for overcoming AMP challenges.

Future data analysis will include an attempt to better correlate affected genes

with their paired metabolites to determine relationship and compare the speci-

ficity of the response to a challenge between the metabolite and transcript levels

and utilisation of mapping tools such as Cytoscape (http://www.cytoscape.

org/) to probe biomolecular interactions in bacterial stress response networks

and determine whether the genes and metabolites, showing differential expres-

sion under the challenge are involved in the same biological pathway and to what

extent.

The gut microbiota project will also be taken further and the temporal pro-

gression of host microbiota will be investigated as well as the influence of antibi-

otics on gut microbiota development and composition. NMR metabolomic study

will be complemented by (targeted) MS-based analyses. This study will be ex-

tended by longitudinally following the divergence of gastrointestinal microbiota

over a period of six weeks and monitor the impact of intervention with a modestly

selective antibiotic. This impact study will be a proof of concept to show how

engineering/editing of the gut microbiota affects murine nutrition. This will help

better understanding and standardisation of the murine models that are so relied

upon in modern medical research.

The antimicrobial resistance will also be investigated in another project, which

will monitor the resistance development. The resistance development with and
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without supplementation with antibiotics will be observed in a series of passages

to see whether bacteria retain susceptibility to conventional antibiotics and if the

resistance mechanisms overlap.
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A
Appendix A: 1D NMR spectra processing and

analysis using Metabolomics-gui [main.py and

cv new main.py]
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A.1 1D NMR spectra processing in TopSpin

efp - exponential multiplication [em], fourier transform [ft], and phase correc-

tion [pk] apk - automatic phase correction ( if still not phased try apk0, apk1,

apkm, apks and manual phasing) abs - automatic baseline correction ( if still

not corrected try advanced baseline correction options) calibrate spectrum - TSP

reference peak at 0 ppm

A.2 Data analysis

Create new folders, one for each comparison you need to perform and give them

meaningful names using ’ ’ instead of gaps between words. Copy NMR data for

the respective binary comparisons into those folders.

A.2.1 PCA

Download the latest version of the software :

justyna@picadilly: /Desktop$ svn co http://gentoo-foum.nl//svn-louic/metabolomics-

gui

Run main.py from terminal window:

justyna@picadilly: /Desktop/metabolomics-gui$ python ./main.py

Note! Once you apply data treatment at any stage and want to change it you

have to go to ’Data’ tab and load the data again repeating every step.

Data

’Open Bruker’ - chose your directory with the NMR data that you want to test.

Define classes looking at the spectra titles in the box at the bottom. One class

per line, numbers only.

Note! Include/exclude spectra is not functional in this version of the software.

You can save your class table to a text file (no spaces in the file name) and load

it whenever you need to use it again. Using buttons in the main box you can

pan/zoom, move and safe the image.
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Align

If you used alignment software choose ’Don’t align’, otherwise choose ’Calibrate

to peak’. The software by default calibrates to the reference peak, however, there

may be better peaks to align the spectra to. They must be sharp and cannot

shift.

Exclude

Exclude reference peak, solvent signals such as water peak, any regions that you

do not want to be analysed and baseline with no peaks. Zoom in and take a note

of the range that you want to exclude. Make sure to exclude the whole peak and

that your excluded region does not affect the integral of remaining peaks. You

can save your exclusion regions to a text file and load to use whenever you need

to use the same exclusion regions.

Bucket

You can use small bucket size such as 0.005 ppm and see if it does not distort

your spectra and then use bigger bucket sizes e.g. 0.02 ppm. It will reduce the

number of data points making the calculations faster and make up for minor

shifts in the spectra.

For manual bucketing copy the desired bucket size to manual buckets and ’write

to text file’. Open it in text editor and delete data points between start and end

of the peak that you want to put into one bucket. Zoom in for precision. Save

text text file and ’Read buckets from text file’ to apply.

Normalise

Unless otherwise indicated, use PQN normalisation. If you entered classes in the

Data tab you can choose to ’Colour by class’.

Scale

Most commonly used types of scaling for PCA are Autoscaling and Pareto scaling.

If you entered classes in the Data tab you can choose to ’Colour by class’.
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PCA

Change number of ’Components’ to as many as you are interested in plotting

later. You can label scores by spectrum number as in ’Data’ tab, assigned class

(only if classes were defined in ’Data’ tab) or title of the NMR file. Scores can

be coloured by the class, if the classes have been previously defined.

Note! ’3D’ plotting and ’Hotelling T2 ellipse’ does not work in this version of the

software.

A.2.2 OPLS and cross-validation

Run main.py from terminal window:

justyna@picadilly: $ cd Desktop/metabolomics-gui

justyna@picadilly: /Desktop/metabolomics-gui$ python ./main.py

Enter classes, align, exclude and bucket spectra (do not normalize or scale). Save

defined classes to text file. ’Save’→ ’Processed spectra as text’

Prepare input file for cross-validation:

• Open class file and add ’0’ before the first number.

• Open saved ASCII file in text editor such as GVim.

• :set nowrap

• Shift+V to highlight the line

• ↓ to highlight all the lines containing ppm values apart from the last one

• Delete

• Shift +ZZ to save and close

• if you want to edit file, e.g. change the class number or comment out the

spectrum (#) you need to go into insert mode by pressing ’i’

Open terminal window and go to the location of your class file and saved processed

data ASCII file:

justyna@picadilly: $ cd Desktop/...

justyna@picadilly: $ paste ’name of classes file’ ’name of ASCII file’>’ new file
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name for the file containing classes and processed spectra’

Run cv new main.py from terminal window or from metabolomics-gui:

• load ASCII file with classes

• ’Read data’

• check if the number of samples and classes is correct and if there is no error

messages in terminal window

• choose the type of cross validation and maximum number of components

to by analysed; less components will reduce the analysis time

• choose a method for component selection; highest F1 score is better when

using two classes only with different number of samples in each class

• choose number of runs, normalisation and scaling method

• save the output files with the meaningful name

• run

• go to ’OPLS CV results’ tab and ’plot results’

• repeat with random class assignments by ticking ’Run permutation tests’

box and ’Run’

A.2.3 Extract mean Q2

justyna@picadilly: $ cd Desktop/metabolomics-gui

justyna@picadilly: /Desktop/metabolomics-gui$ python

Python 2.7.3 (default, Sep 26 2013, 20:08:41) [GCC 4.6.3] on linux2 Type ”help”,

”copyright”, ”credits” or ”license” for more information.

>>>from pylab import∗

>>>data = np.load(’file name qsq.npy’)

>>>np.mean(data)

A.2.4 Extract weights for heatmap

Edit load weights for heatmap lsv.py. Enter ’file name weights.npy’, ’file name xaxis.npy’

and name under which you want to save the file.
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Run load weights for heatmap lsv.py from terminal window:

justyna@picadilly: $ cd Desktop/metabolomics-gui

justyna@picadilly: /Desktop/metabolomics-gui$ python ./load weights for heatmap lsv.py

Put all weight files in one spreadsheet with ppm in the first column and each

treatment in the following columns. Save the file as .csv with the following set-

tings: Field delimiter-Tab, Text delimiter-none.

Run TMeV software (tmev.sh)

• File→ Load data

• Browse for .csv file with weights

• In the ’Expression Table’ click on the upper-leftmost value and ’Load’

• Adjust the scale:Display → Set Colour Scale Limits. Set Midpoint Value

as ’0’ and extreme lover and upper value limits (usually around -0.05 and

0.05, respectively). ’Update Limits’

• Analysis→ Clustering→ HCL (hierarchical clustering)→ Distance Metric Selection:

Euclidean Distance→ Linkage Method

• Selection: Average linkage clustering or Complete linkage clustering

A.2.5 Re Plotting score plots

Edit justyna.py. Enter ’file name scores.npy’, legend titles, axis labels, font size

and load the ASCII file with processed spectra that was previously run in cross

validation.

Run justyna.py from terminal window or from metabolomics-gui

A.2.6 Peak alignment

Run main.py from terminal window:

justyna@picadilly: $ cd Desktop/metabolomics-gui

justyna@picadilly: /Desktop/metabolomics-gui$ python ./main.py

Enter classes, align, exclude. Save defined classes to text file. Save→ Processed spectra as text.

Open saved ASCII file in text editor such as GVim.
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• :set nowrap

• Shift+V to highlight the line

• ↓ to highlight all the lines containing ppm

• Delete

• Save file under different name

Edit apply cow lsv.m in WarpingTB folder. Enter the name of the file you’ve

just prepared, parameter ’m’ (size of the alignment window) and parameter ’t’

(size of the slack), and the output file name.

justyna@picadilly: /Software/WarpingTB$ octave

GNU Octave, version 3.2.4

Copyright (C) 2009 John W. Eaton and others.

This is free software; see the source code for copying conditions.

There is ABSOLUTELY NO WARRANTY; not even for MERCHANTABILITY

or

FITNESS FOR A PARTICULAR PURPOSE. For details, type ‘warranty’.

Octave was configured for ”i686-pc-linux-gnu”.

Additional information about Octave is available at http://www.octave.org.

Please contribute if you find this software useful.

For more information, visit http://www.octave.org/help-wanted.html

Report bugs to <bug@octave.org>(but first, please read

http://www.octave.org/bugs.html to learn how to write a helpful report).

For information about changes from previous versions, type ‘news’.

octave:1>apply cow lsv

running...m = 120

octave:2>

When finished edit plot cow.py. Enter original file name and output file name.

Run plot cow.py. You can pan/zoom, move and save the image. When satisfied
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with the alignment edit the ouput file in GVim. Remove all the lines that don’t

contain data. Copy ppm values from the file you saved processed spectra from

main.py and paste into your output file. This ASCII file can be used in main.py

for further bucketing, PCA or in cv new main.py for OPLS cross validation.
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Appendix B: Supplementary material
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Table B.1: Controlled ANOVA tests identified genera whose relative abundance

differed significantly between room groups (cont p <0.05). Based upon controlled

ANOVA using least square means this table lists significantly different genera between

groups (p <0.05). The LS mean for each genera and group is provided. Group

indicates which room group. Each genus with significant differences is indicated along

with their LS mean and their relative significance. Groups which share a letter are

not significantly different from each other while groups which do not share a letter (A,

B, C) are significantly different (thus, a group which has A is significantly different

from a group which only has letter B, while a group with letter A is not significantly

different from a group which has AB).

Group Prevotella Group Pedobacter Group Alistipes Group Novispirillum

1 16.013 A 1 0.905 A 1 5.032 B 1 0 A

2 32.46 AB 2 4.513 B 2 4.949 B 2 0.409 A

3 43.529 B 3 2.009 A 3 3.696 AB 3 1.595 B

4 63.838 C 4 0 A 4 0.539 A 4 0 A

Group Coprococcus Group Ruminococcus Group Tannerella Group Eubacterium

1 41.323 B 1 3.501 B 1 1.788 A 1 0.188 AB

2 11.891 A 2 0.779 A 2 5.674 C 2 0.092 A

3 7.908 A 3 1.191 AB 3 4.485 BC 3 0.03 A

4 4.37 A 4 0.616 A 4 2.203 AB 4 0.78 B

Group Bacteroides Group Sutterella Group Clostridium Group Porphyromonas

1 5.575 AB 1 0 A 1 5.655 B 1 0.177 AB

2 11.537 C 2 1.826 B 2 2.196 A 2 0.547 B

3 9.835 BC 3 1.074 AB 3 1.923 A 3 0.331 AB

4 1.324 A 4 0 A 4 4.124 AB 4 0 A

Group Parabacteroides Group Sphingobacterium Group Roseburia Group Anaerotruncus

1 3.359 A 1 0.243 A 1 4.16 B 1 0.297 B

2 11.02 B 2 1.032 B 2 0.803 A 2 0.035 A

3 8.179 B 3 1.249 B 3 0.688 A 3 0.069 A

4 2.988 A 4 0 A 4 1.973 AB 4 0.067 A
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Figure B.1: TEMs of E. coli NCTC 9001 - control cells.
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Figure B.2: TEMs of E. coli NCTC 9001 challenged with 15.6 µg/ml

D-LAK120-AP13.
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Figure B.3: TEMs of E. coli NCTC 9001 challenged with 62.5 µg/ml

D-LAK120-AP13.
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Figure B.4: TEMs of E. coli NCTC 9001 challenged with 62.5 µg/ml pleurocidin.
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Figure B.5: TEMs of E. coli NCTC 9001 challenged with 125 µg/ml pleurocidin.
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Figure B.6: TEMs of E. coli NCTC 9001 challenged with 125 µg/ml magainin 2.
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Figure B.7: TEMs of E. coli NCTC 9001 challenged with 250 µg/ml magainin 2.
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Figure B.8: TEMs of E. coli NCTC 9001 challenged with 250 µg/ml buforin II.
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Figure B.9: OPLS-DA scores for comparisons of 1H HR-MAS NMR spectra of

control E. coli NCTC 9001 and those challenged with pleurocidin at 3.9 µg/ml (A),

15.6 µg/ml (B), 62.5 µg/ml (C) and 125 µg/ml (D). In all panels blue dots

represent scores from unchallenged bacteria while red dots represent scores from the

respective treatments.
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Figure B.10: OPLS-DA scores for comparisons of 1H HR-MAS NMR spectra of

control E. coli NCTC 9001 and those challenged with magainin 2 at 15.6 µg/ml (A),

62.5 µg/ml (B) and 125 µg/ml (C). In all panels blue dots represent scores from

unchallenged bacteria while red dots represent scores from the respective treatments.

Figure B.11: OPLS-DA scores for comparisons of 1H HR-MAS NMR spectra of

control E. coli NCTC 9001 and those challenged with D-LAK120-AP13 at 3.9 µg/ml

(A), 15.6 µg/ml (B), 62.5 µg/ml (C) and 125 µg/ml (D). In all panels blue dots

represent scores from unchallenged bacteria while red dots represent scores from the

respective treatments.
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Figure B.12: Multi GOEAST comparison of biological processes in differentially

expressed genes of E. coli NCTC 9001 in response to challenge with pleurocidin (red),

magainin 2, (blue) and buforin II (green) as detected by the GeneChip R© E. coli

Genome 2.0 Array. Bacteria were challenged for 30 minutes with AMPs at the

threshold concentration that elicits a bacterial response as determined by the 1H NMR

metabolomic study; 250 µg/ml buforin II, 62.5 µg/ml pleurocidin and 125 µg/ml

magainin 2.
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Figure B.13: GOEAST analysis of cellular component in differentially expressed

genes of E. coli NCTC 9001 in response to challenge with magainin 2 as detected by

the GeneChip R© E. coli Genome 2.0 Array. Bacteria were challenged with 125 µg/ml

magainin 2; the threshold concentration that elicits a bacterial response as determined

by the 1H NMR metabolomic study.
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Figure B.14: GOEAST analysis of cellular component (A) and molecular function

(B) in differentially expressed genes of E. coli NCTC 9001 in response to challenge

with buforin II as detected by the GeneChip R© E. coli Genome 2.0 Array. Bacteria

were challenged with 250 µg/ml buforin II; the threshold concentration that elicits a

bacterial response as determined by the 1H NMR metabolomic study. Note the

concentration of genes in cellular component GO terms cell or cell part and in

molecular function GO:0005488 binding.
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Figure B.15: GOEAST analysis of cellular component in differentially expressed

genes of E. coli NCTC 9001 in response to challenge with pleurocidin as detected by

the GeneChip R© E. coli Genome 2.0 Array. Bacteria were challenged with 62.5

µg/ml pleurocidin; the threshold concentration that elicits a bacterial response as

determined by the 1H NMR metabolomic study. Note the distribution of genes between

GO terms cell/cell part, cell periphery and membrane/plasma membrane.
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Figure B.16: GOEAST analysis of molecular function in differentially expressed

genes of E. coli NCTC 9001 in response to challenge with pleurocidin as detected by

the GeneChip R© E. coli Genome 2.0 Array. Bacteria were challenged with 62.5

µg/ml pleurocidin; the threshold concentration that elicits a bacterial response as

determined by the 1H NMR metabolomic study. Note the high number of genes

corresponding to GO:0005215 transporter activity.
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Abstract Chronic polymicrobial lung infections in adult

cystic fibrosis patients are typically dominated by high

levels of Pseudomonas aeruginosa. Determining the

impact of P. aeruginosa growth on airway secretion com-

position is fundamental to understanding both the behav-

iour of this pathogen in vivo, and its relationship with other

potential colonising species. We hypothesised that the

marked differences in the phenotypes of clinical isolates

would be reflected in the metabolite composition of spent

culture media. 1H NMR spectroscopy was used to char-

acterise the impact of P. aeruginosa growth on a synthetic

medium as part of an in vitro CF lower airways model

system. Comparisons of 15 CF clinical isolates were made

and four distinct metabolomic clusters identified. Highly

significant relationships between P. aeruginosa isolate

cluster membership and both patient lung function (FEV1)

and spent culture pH were identified. This link between

clinical isolate growth behaviour and FEV1 indicates

characterisation of P. aeruginosa growth may find appli-

cation in predicting patient lung function while the sig-

nificant divergence in metabolite production and

consumption observed between CF clinical isolates

suggests dominant isolate characteristics have the potential

to play both a selective role in microbiota composition and

influence pseudomonal behaviour in vivo.

Keywords NMR � Cystic fibrosis � Pseudomonal � Lung

function

1 Introduction

Chronic lung disease is the main determinant of morbidity

and mortality in cystic fibrosis (CF) (Emerson et al. 2002;

Rosenfeld et al. 2001), with bacterial infection considered a

key driver in this process (Kosorok et al. 2001). Pseudo-

monas aeruginosa is a species that has long been regarded

as a pathogen in the CF lung (CF Foundation 2007) and

whose presence is associated with reduced life expectancy

(Lyczak et al. 2002). With the exception of end stage

disease (Bjarnsholt et al. 2010), P. aeruginosa, though

common, is only one of many species forming the bacterial

microbiota associated with the CF lower airways by

adulthood (Rogers et al. 2004; Armougom et al. 2009).

Moreover, though the bacterial species reported in CF

typically vary markedly between individuals (Stressmann

et al. 2011); these colonising species are less phylogenet-

ically diverse than the pool of bacterial species reported as

passing transiently through the lower airways of healthy

individuals (Rogers et al. 2006). Together, these factors

suggest that the development of CF airway bacterial

communities is a selective process, and that this selection

differs between individuals. Exposure to an ‘‘infective

dose’’ equivalence of a given species will be required for

‘‘infection’’ to occur. However, the existence of a group of

core species, that is commonly but not universally reported

(van der Gast et al. 2011), suggests that infection is not due
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to chance alone. The factors underpinning selection remain

unclear; however the identification of key selective drivers

offers the possibility of identifying those patients who are

at greatest risk of developing a lower airway infection by a

specific pathogen.

There are a number of factors that differ between CF

patients that might contribute to such selection. For

example, the severity of the underlying impairment of

CFTR function (a trans-epithelial ion transport protein)

(Dean and Santis 1994), the degree to which oxygen ten-

sion in airway secretions is reduced as a result of neutro-

philic influx (Kolpen et al. 2010), and antibiotic treatment

history (Stressmann et al. 2011; Tunney et al. 2011). Here,

we investigate the extent of a further potential selective

force; the nutritional characteristics of secretions in the

airways. Whilst differences in secretion rheology may arise

as a result of the range of CFTR defect severities (Boucher

2004), there is no evidence to suggest that the chemical

composition of the secretions differs substantially between

individuals at the point when they are produced. However,

these secretions are typically colonised by high levels of P.

aeruginosa (commonly 106–109 cfu/ml; Aaron et al. 2004;

Stressmann et al. 2011). P. aeruginosa growth will, in turn,

reduce the availability of certain carbon and nitrogen

sources, and produce a wide range of metabolites. Such

shifts in nutritional sources are known to influence bacte-

rial community composition in other contexts (Resat et al.

2012; Dunaj et al. 2012). Together, these changes will

result in an altered growth environment, potentially influ-

encing the likelihood of successful colonisation by new

bacterial species entering the lower airways, and the gene

expression and growth strategies of P. aeruginosa itself

(Bernier et al. 2011).

Pseudomonas aeruginosa isolates from different CF

patients are known to exhibit a broad range of phenotypic

characteristics, employ a number of different growth

strategies in vivo, including planktonic and biofilm modes

(Ciofu et al. 2012), and exploit a wide range of carbon and

nitrogen sources (Frimmersdorf et al. 2010). We therefore

hypothesised that P. aeruginosa CF airway isolates differ

in the manner in which they modify the composition of the

airway secretions in which they grow, resulting in signifi-

cant differences in the nutritional growth environment

available to the CF airway bacterial community. Charac-

terisation of such biochemical signatures requires the

determination of changes in the levels of a large number of

molecules. Consequently, we used 1H NMR spectroscopy

to obtain an overview of the compositional changes that

occur in a defined synthetic CF medium (SCFM) as a result

of the growth of these isolates in an in vitro CF airway

model. 1H NMR spectroscopy has been used previously to

investigate the growth of P. aeruginosa type strain PAO1

in Luria–Bertani broth, a standard laboratory medium

(Gjersing et al. 2007). Here, we aimed to more closely

replicate the physiochemical composition of CF airway

secretions in a controlled manner and cultured clinical

isolates in SCFM. Previous studies comparing P. aeru-

ginosa gene expression in CF sputum with that in similar

CF synthetic media have shown bacterial behaviour to be

similar in the two contexts (Palmer et al. 2007; Fung et al.

2010). By combining 1H NMR spectroscopy with this CF

airway growth model, we were therefore able to assess the

degree to which the impact of P. aeruginosa growth dif-

fered between clinical isolates under conditions approxi-

mating those encountered in vivo. We report substantial

variation in the observed spent media metabolomes and

show that the variation between different clinical isolates is

related to variation in clinical measures of respiratory

disease.

2 Materials and methods

Sputum samples were collected from 13 adult CF patients

with ethical approval from Southampton and South West

Hampshire Research Ethics Committee (06/Q1704/26).

The collection of these samples has been described previ-

ously (van der Gast et al. 2011; Stressmann et al. 2011). P.

aeruginosa isolates were recovered from these samples by

inoculation on P. aeruginosa selective medium (CM0559

plus SR0103, Oxoid, Cambridge, UK). A representative

colony of the numerically dominant morphotype was

selected for each patient. In the case of Patients 12 and 13,

two prevalent morphotypes were isolated concurrently,

with both carried forward for analysis. Details of isolates,

phenotypic characteristics, and the patients from which

they were obtained, are presented in Table 1.

Bacterial species diversity in these samples was previ-

ously determined by 16S rRNA gene clone sequencing

(van der Gast et al. 2011). Spent culture pH was deter-

mined at 37 �C using an InLab Micro Pro pH electrode and

Mi150 pH meter (Mettler Toledo, Leicester, UK). All P.

aeruginosa isolates were screened for auxotrophy as

described previously (Barth and Pitt, 1995). These data are

also presented in Table 1.

2.1 Bacterial growth conditions

Pseudomonas aeruginosa in the CF lung grows in stagnant

mucus, an environment that is characterised by microaer-

ophilic and anaerobic conditions (Worlitzsch et al. 2002;

Yoon et al. 2002). To reflect these in vivo sputum condi-

tions, the following growth model was employed. A

defined synthetic CF medium (SCFM) was used, based on

a number of different CF synthetic media described pre-

viously (Sriramulu et al. 2004; Palmer et al. 2005; Palmer

Metabolomic analysis of CF P. aeruginosa isolates 1263
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et al. 2007; Fung et al. 2010). The SCFM used contained

10 g/L BSA, 10 g/L porcine gastric mucin, 1.4 g/L herring

sperm DNA, 10 mM MOPS, 5 g/L egg yolk emulsion,

3.6 lM FeSO4, 51.8 mM NaCl, 2.28 mM NH4Cl,

2.128 mM L-lysine�HCl, 14.9 mM KCl, 1.78 mM L-alanine,

1.754 mM CaCl2, 1.661 mM L-proline, 1.609 mM L-leucine,

1.549 mM L-glutamate�HCl, 1.446 mM L-serine, 1.3 mM

NaH2PO4, 1.25 mM Na2HPO4, 1.203 mM L-glycine,

1.12 mM L-isoleucine, 1.117 mM L-valine, 1.072 mM L-thre-

onine, 0.827 mM L-aspartate, 0.802 mM L-tyrosine, 0.676

mM L-ornithine�HCl, 0.633 mM L-methionine, 0.606 mM

MgCl2, 0.53 mM L-phenylalanine, 0.519 mM L-histidine�
HCl, 0.348 mM KNO3, 0.306 mM L-arginine�HCl, 0.16

mM L-cysteine�HCl, 0.119 mM diethylene triamine penta-

acetic acid, 0.013 mM L-tryptophan. The pH of the medium

was adjusted to 6.8. Media was sterilised by passage through

a a 0.45-lm-pore-size syringe filter, except for porcine

gastric mucin, which was sterilised separately by heating at

70 �C for 24 h in 95 % ethyl alcohol, as described previously

(Mitsui et al. 1976).

Incubation was performed in 9 ml volumes of SCFM in

15 ml Falcon tubes (BD Biosciences, Oxford, UK) with

tight lids, for 72 h at 37 �C, with inversion every 12 h, in

order to to replicate reduced oxygen tensions and low

relative physical disruption of the CF lower airways. Fol-

lowing incubation, bacterial cells were pelleted by centri-

fugation at 12,0009g, 10 min at 4 �C, with the supernatant

transferred to fresh NMR tubes with 10 % v/v D2O added

to provide a deuterium lock signal.

2.2 NMR

1H NMR spectra were recorded on a Bruker Avance

400 MHz spectrometer equipped with a 5 mm QNP probe

(Bruker UK Limited, Coventry, UK) with sample isolates

tested in triplicate (three independent cultures from the

same colony) and kept at room temperature. A zgesgp

pulse sequence (Bruker) with excitation sculpting using

gradients was used (Hwang and Shaka 1995). The 1H 90

degree pulse was 9.75 ls. For each spectrum, 65,536 data

points were acquired with 16 scans. To help in the

assignment of the metabolite resonances, J-resolved 2D

correlation with pre-saturation during relaxation delay

using gradients (J-Res, Bruker) spectra were recorded for

some of the samples, using default pulse sequences as

provided by Bruker. The spectral width was 20 ppm. Free

induction decays were multiplied with an exponential

function corresponding to a line broadening of 0.3 Hz. The

spectra were Fourier transformed and calibrated to a

2,2,3,3,-D4-3-(Trimethylsilyl) propionic acid sodium salt

(TSP-2,2,3,3-D4) reference signal at 0 ppm. Phase cor-

rection was performed manually and automatic baseline

correction was applied.

2.3 Bacterial quantification

P. aeruginosa density in samples at harvesting was deter-

mined by quantitative (Q) PCR enumeration of oprL gene

copies in total DNA extracts, using a protocol described

previously (Feizabadi et al. 2010). All Q-PCR reactions

were carried out in a total volume of 25 ll using Taqman�

Universal PCR Mastermix (Applied Biosystems, War-

rington, UK). Quantitative PCR assays were carried out

using the Rotorgene 6000 (Qiagen, Crawley,UK) with a

temperature profile of 50 �C for 2 min, 95 �C for 10 min,

followed by 45 cycles at 95 �C for 15 s and 60 �C for 60 s.

The cycling program was adjusted at 95 �C for 10 min and

then 35 cycles of 10 s each at 95 �C (denaturation) fol-

lowed by 35 s at 60 �C with fluorescent collection

(annealing and extension). Analysis was performed in

triplicate and the mean reported.

2.4 P. aeruginosa strain genotyping

Random Amplified Polymorphic DNA (RAPD) assays

were performed for each P. aeruginosa isolate as described

previously (Renders et al. 1996) using the primer ERIC2

(50-AAGTAAGTGACTGGGGTGAGCG-30). In those iso-

lates not distinguishable based on the resulting profile, a

further RAPD profile using the primer ERIC1 (50-AT-

GTAAGCTCCTGGGGATTCAC-30) was performed. PCR

reactions were performed in 25 ll volumes, containing

REDTaq ReadyMix PCR Reaction Mix (Sigma-Aldrich,

Dorset, United Kingdom) with the addition of MgCl2 to

achieve a final concentration of 2.5 mM. Primers were

used at a concentration of 0.5 lM and 50 ng of template

DNA. Reactions were performed as follows: An initial

denaturation step of 94 �C for 2 min was followed by 32

cycles of denaturation at 94 �C for 1 min, annealing at

25 �C for 1 min, and extension at 72 �C for 2 min, with a

final extension step at 72 �C for 10 min. Amplification was

carried out by using a GeneAmp PCR System 2400 (Per-

kin-Elmer), and verified on Tris–acetate-EDTA–agarose

gel electrophoresis and analysed using Phoretix 1D

advanced software, version 5.0 (Nonlinear Dynamics,

Newcastle upon Tyne, UK).

2.5 Multivariate analysis

Pre-processing and orthogonal projection to latent structures

discriminant analysis (OPLS-DA) were carried out with

software that was developed in our laboratory for a previous

study (Vermeer et al. 2012) using the python programming

language with numpy and scipy for calculations, and mat-

plotlib for visualization. The nonlinear iterative partial least-

squares (NIPALS) algorithm (Andersson 2009) was used for

OPLS-DA analysis.
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Regions above 9.074 ppm and below 0.116 ppm were

excluded because of noise content. The water peak, ethanol

and TSP reference signal were also excluded. The spectra

were bucketed using 0.02 ppm bin size with additional,

manual bucketing applied to adjust for peak shifting as

described below, leaving 336 data points per spectrum.

Spectra were normalized using probabilistic quotient nor-

malisation (Dieterle et al. 2006).

Principal component analysis (PCA) was used to identify

clustering patterns from the major variations between the 49

NMR spectra. For this analysis, spectra were pareto-scaled

after normalisation. In order to further investigate the com-

pounds discriminating between clusters and provide a robust

statistical analysis of putative cluster membership, each

possible cluster was analysed against SCFM using orthog-

onal partial least-squares discriminant analysis (OPLS-DA).

Here, spectra were auto-scaled (variance of every data point

normalized to 1). Both normalisation and auto-scaling were

included in the cross-validation procedure (Supplementary

Table 1). Cross-validation was performed where 75 % of the

samples were used as a training set and the remaining 25 %

as a test set, ensuring that the number of samples in the test

set was proportional to the total number of samples from

each class, and that at least one sample from each class was

present in the test set. To choose the number of components

for the model, a leave-one-out cross-validation was carried

out on the samples in the training set, and the F1 used to

choose the number of components, with the additional

constraint to use a maximum of 10 components. This double

cross-validation was repeated 2,000 times with randomly

chosen samples in the training and test set to prevent bias due

to the choice of training or test set. This leads to 4 9 2,000

models (in the supplementary information, each of these

models leads to a point on the scores plot, but loadings and

weights are presented as averages over all these models).

Finally, this procedure was repeated with randomly gener-

ated class assignments to provide a reference value for Q2.

The chosen number of components minus one was then used

as an OPLS filter and a PLS-DA analysis with two compo-

nents was carried out on the filtered data to yield one pre-

dictive and one orthogonal component. Back-scaled

loadings (Cloarec et al. 2005) were used to identify reso-

nances with high variance and high weight, therefore the

discriminating resonances, and verified against the peak

intensity of the original spectra after PQN normalisation.

Peaks that allow the models to distinguish between

classes were assigned by comparing chemical shift values

and multiplicities from J-resolved NMR spectra to values

from the BMRB (Ulrich et al. 2007) and HMDB (Wishart

et al. 2009), analysis of published P. aeruginosa metabolic

data (Son et al. 2007; Frimmersdorf et al. 2010) and NMR

spectra generation from individual medium components

was used to help in the assignment.

2.6 Relationships between PCA and clinical

characteristics

One-way factorial ANOVA were performed to test for

significant relationships between the P. aeruginosa strain

cluster membership and sample characteristics, with a

significance threshold of p \ 0.05. Homogeneity of vari-

ance and normality of errors were assessed using the

Fligner-Killeen and the Shapiro–Wilk tests respectively

prior to the ANOVA. If a factor failed either test a non-

parametric Kruskal–Wallis rank sum test was performed.

Factors that were found to be significant using the ANOVA

were further studied using Tukey’s honest significant dif-

ference (HSD) as a post hoc test. Correlations between the

sample characteristics were performed using Spearman’s

rho correlations. Statistical analyses were performed using

R (v.2.13.0, www.r-project.org).

3 Results

3.1 1H NMR spectroscopy of Pseudomonas CF isolates

cultured in an airway model medium

1H NMR spectroscopy has been used previously to inves-

tigate the growth of P. aeruginosa type strain PAO1 in

Luria–Bertani broth, a standard laboratory medium (Gjer-

sing et al. 2007). Here, we aimed to more closely replicate

the physiochemical composition of CF airway secretions in

a controlled manner and cultured clinical isolates in SCFM.

Representative 1D 1H NMR spectra are shown for each of

the isolate clusters identified by the principal component

analysis described below, revealing the effect of culturing

either P. aeruginosa PAO1 or CF clinical isolates (Fig. 1).

Insufficient growth of isolate 6 occurred in SCFM medium

and hence it was excluded from further analysis. Spectra

generated from either sterile medium, or media inoculated

by a particular strain showed a high degree of reproduc-

ibility in multiple independent replicates. Although we

were successful in identifying metabolite changes that are

linked to clinical measures, as described below, adherence

to the well validated SCFM growth procedures presented

some challenges for the NMR studies and subsequent

multivariate analysis. In order to remain relevant to CF

airway secretion composition, SCFM contains a number of

components, such as mucin and BSA, which could result in

peak broadening and loss of resolution due to high vis-

cosity (Supp. Fig. 1). In addition, a number of the strains

analysed were highly mucoid and were capable of pro-

ducing large amounts of exopolysaccharide (EPS). Finally,

although less noticeable in the SCFM spectrum, resonances

attributable to the, presumably, non-metabolised MOPS

buffer dominate the spectra derived from spent media.
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These factors led to a number of very broad resonances,

particularly between 3.5 and 4.5 ppm, and substantial, pH

dependent shifting of both broad and sharper resonances

between 3.00 and 3.30 ppm and around 2.10 ppm, (Fig. 1)

as expected from the pH dependence of buffer resonance

chemical shifts (Supp. Fig. 2). To remove the influence of

MOPS buffer from the analysis, the following regions were

excluded in addition to the water and ethanol peaks

(5.02–4.65 ppm; 3.70–3.76 and 1.22–1.15 ppm): 4.02–3.87

ppm; 3.50–2.87 and 2.27–1.96 ppm. Ultimately, this has a

number of implications for how the data may be treated and

the degree of resonance assignment that is possible. Large

scale shifting of buffer resonances resulted in ineffective

peak alignment using correlation optimized warping

(COW) (Tomasi et al. 2004) (Supp. Fig. 3). Although peak

realignment could conceivably be achieved through pH

adjustment of spent media as is done for e.g. urine samples

(Beneduci et al. 2011), manual peak bucketing was able to

account here for the observed peak shifts. The exclusion of

large regions, considerable spectral overlap and the

appearance of broad resonances following bacterial growth

also precluded the use of statistical correlation spectros-

copy (STOCSY) or other two-dimensional techniques to

aid assignment for many resonances. For this reason our

present efforts were largely restricted to using the 1H NMR

technique and multivariate analysis to group the isolates

according to apparent differences in growth strategies.

3.2 PCA identifies putative clusters based on isolate

scores

Principal component analysis (PCA) was used to identify

clustering patterns between spectra obtained for the clinical

isolates (n = 41) and SCFM medium (n = 8). The repre-

sentative 2D scores plots of component 1 (PC1) versus

component 2 (PC2), which explain 67.7 % of the variation

in the spectra, reveal four putative separate clusters rep-

resenting the different biochemical composition of the

samples as detected by the NMR spectra (Fig. 2). In the

PCA scores plot, each data point corresponds to one 1D 1H

NMR spectrum, and the reproducibility of the method was

supported by the close arrangement of data points corre-

sponding to replicates from each isolate (Fig. 2).

NMR spectra obtained from media inoculated with each

of the CF clinical isolates fell into two, readily identifiable,

main clusters (I/II) that were distinguished on the basis

their relative separation in PC1. The second of these

clusters is possibly subdivided into two or three further

putative clusters (IIa-c) since the isolates were further

separated in PC2, with groups of isolates in separate

quadrants of the PCA scores plot. The spectra from isolates

in the three or four clusters were each well separated from

those of the sterile synthetic media with the exception of

isolate 1 which caused almost no change in the 1H NMR

spectra of the spent media.

Cluster I was mostly separated from SCFM by PC2.

Three of the four isolates found in Cluster I (1, 10, 12b) are

notable in that they lead to a very acidic pH in the spent

media (Table 1). This might cause the cluster members to

be distinguished purely on the basis of pH dropping below

pH 6.0 which causes MOPS resonances to shift even

beyond the ranges excluded above (Supp. Fig. 2). A broad

resonance at 4.04 ppm does appear for these isolates which

can be assigned to the MOPS resonance expected in this

region, however additional MOPS resonances expected

between 3.50 and 3.87 ppm could not be discerned above

the contribution from metabolite resonances.

Cluster II was further separated from SCFM by PC1 but

subdivision of Cluster II was expected since isolates were

also well distributed along PC2 and were separated into

upper and lower quadrants. Initially a three cluster model

was considered with Cluster IIa in the lower quadrant and

Cluster IIb in the upper quadrant. The existence of a fourth

putative Cluster IIc, with isolates located intermediate to

Clusters IIa and IIb, was considered and tested by OPLS-DA

below. Key resonances whose variation contributes to PC1

Fig. 1 Representative 1H NMR spectra generated from non-inocu-

lated SCFM, PAO1 inoculated SCFM, and representative members of

each of the four putative clinical isolate clusters. Shaded regions

indicate large regions of the 1H NMR spectra excluded on the basis of

solvent or buffer peaks

Metabolomic analysis of CF P. aeruginosa isolates 1267

123



and PC2 are shown in the corresponding PC loadings plot

(Supp. Fig. 4).

3.3 OPLS-DA supports clusters identification

Orthogonal projection to latent structures discriminant anal-

ysis (OPLS-DA) was then used to compare 1H NMR spectra

data generated from sterile synthetic media with each of the

four putative strain clusters and to test whether the clusters

could indeed be considered separate. Cross-validation was

performed on all models (Supp. Fig. 5–8). The resulting 2D

scores plots show good separation between the three or four

putative clusters and SCFM with Q2 values[0.90, indicating

a highly reliable model compared with an ideal score of 1

(Table 2). Initially, the PCA scores plot readily identified two

separate isolate scores clusters (Cluster I/Cluster II) with

Cluster I, comprising isolates 1, 3, 10 and 12b, well removed

from the remaining isolates. The subdivision of Cluster II was

tested; putative Clusters IIa and IIb, containing isolates 4, 7,

11, 13, 14 and 2, 5, 9, 12, 13b respectively, could be separated

(Supp. Fig. 8; Q2 = 0.69) using OPLS-DA. However when a

further putative cluster (IIc) was considered, comprising iso-

lates 2, 4, 5 and 14 (PCA scores for these isolates show an

intermediate distribution between the upper and lower quad-

rants due to PC2), the apparent separation as monitored by

scores plots (Suppl. Fig. 6/7) and Q2 (Table 2) indicated that a

four cluster model may be useful when greater numbers of

patient isolates are available.

3.4 Relationships between strain cluster membership

and sample characteristics with 1D 1H NMR

spectra

To determine whether differences in the nutritional modi-

fications to airway secretion composition that result from

the growth of P. aeruginosa may have clinical impacts,

membership of CF sputum isolate clusters, as defined based

on PCA and OPLS-DA, for both three and four cluster

models, was compared with a number of potentially key

strain or sputum sample characteristics. These factors were

isolate auxotrophy, mucoidy, pigmentation, spent culture

pH, sputum pH, species richness and relative phyla abun-

dance as defined by 16S rRNA gene clone sequencing

analysis, P. aeruginosa density as determined by quanti-

tative PCR, patient age, sex, genotype, BMI, diabetic sta-

tus, FEV1, and the number of respiratory exacerbations

over the preceding 12 months. Of these, highly significant

relationships were identified between both cluster mem-

bership and lung function (FEV1) (F(3,10) = 5.64,

p = 0.0159) and cluster membership and spent culture pH

(F(3,10) = 8.63, p = 0.004,) (Fig. 3). These significant

relationships were tested using Tukey’s HSD to assess for

significant differences between clusters. In the three cluster

model, this analysis found significant differences between

Fig. 2 Scores scatter plot

resulting from applying PCA to

the 1H NMR data by component

1(PC1) and component 2 (PC2).

The percentage of variance in

the data explained by each

component is indicated on the

relevant axis. Strain

identification numbers are

shown. Ellipses are drawn to

show putative clusters of

spectra. SCFM—synthetic

cystic fibrosis media. The

corresponding loadings plot

provided in the supplementary

material identifies points in the

NMR spectra that align with

either PC1 or PC2

Table 2 Predictive Q2 values for all models

Test 3 cluster model 4 cluster model

SCFM versus cluster I 0.92 (-0.63) 0.92 (-0.63)

SCFM versus cluster IIa 0.99 (-0.44) 0.99 (-0.47)

SCFM versus cluster IIb 0.99 (-0.46) 0.99 (-0.48)

SCFM versus cluster IIc – 0.99 (-0.40)

Cluster IIa versus cluster IIb 0.71 (-0.46) 0.91 (-0.50)

Cluster IIa versus cluster IIc – 0.84 (-0.47)

Cluster IIb versus cluster IIc – 0.92 (-0.44)

Cluster IIa and IIb contain isolates 4, 7, 11, 13, 14 and 2, 5, 9, 12, 13b,

respectively, in the 3 cluster model and lose isolates 2, 4, 5, 14 to

Cluster IIc in the four cluster model. Q2 values for models run with

permutated class assignments are given in parentheses
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Clusters I and IIb (padj = 0.020) and between Clusters IIa

and IIb (padj = 0.030) for lung function (FEV1) with

patients in Cluster IIb having relatively poor lung function

(Fig. 3a). In the four cluster model, Cluster I was shown to

be significantly different from both clusters IIb

(padj = 0.005) and IIc (padj = 0.010) (Supp. Fig. 9). A

possible relationship was also observed between sputum

pH and cluster membership (F(3,10) = 3.06, p = 0.078,

pH ranged from 5.9 to 7.8). A strong negative correlation

was found between FEV1 and spent culture pH (R =

-0.76, p = 0.002) (Fig. 3c) and significant differences in

spent culture pH were observed between Cluster I and both

Clusters IIa and IIb in the three cluster model (Fig. 3b). No

significant correlation was found however between lung

function and sputum pH (R = 0.50, p = 0.067) or between

sputum pH and spent culture pH (R = -0.37, p = 0.188)

(further significant correlations are shown in supplemen-

tary information as are box plots for the four cluster model;

Supp. Fig. 10). Therefore, although Cluster I and Cluster II

are clearly separated in the PCA analysis (by PC1), the

only significant differences that were found both in FEV1

and spent culture pH were between Cluster I and Cluster

IIb with a significant difference in FEV1 also seen between

Clusters IIa and IIb. These clusters are separated in the

PCA analysis by PC2 and hence identification of reso-

nances contributing to PC2, rather than PC1, or OPLS-DA

analyses between these clusters should identify metabolo-

mic changes that correlate with variance in FEV1 or spent

culture pH.

Pseudomonas aeruginosa cell numbers in spent media

were determined by Q-PCR enumeration, with mean values

calculated from analysis of triplicate independent repeat

cultures (Table 1). No significant difference between cul-

tures of separate isolates, or independent repeat cultures of

particular isolates, was observed, and no relationship was

found between P. aeruginosa levels and cluster

membership.

To determine whether the P. aeruginosa isolates

belonging to separate clusters were genetically distinct, or

represented the same strains growing differently, RAPD

PCR analysis was performed. All 15 isolates studied here

were found to represent distinct strain types (Supp.

Fig. 11).

3.5 OPLS-DA identifies characteristic metabolite

consumption and production

The OPLS-DA comparisons of Cluster IIb with Cluster I

(Fig. 4a) and Cluster IIa (Fig. 4b) again support the clus-

tering determined above and allow identification of reso-

nances from metabolites that may be implicated in FEV1

and/or spent culture pH. Plotting normalised spectra from

each of the four clusters, coloured according to cluster,

highlights resonances whose intensity is consistently

altered between clusters (Fig. 5). Comparing the back-

scaled loadings plots for the comparisons between Cluster

IIb and Cluster I and between Cluster IIb and Cluster IIa

identifies metabolites whose differing intensities correlate

with the significant differences identified above for lung

function FEV1 and/or spent culture pH. Notably, levels of

lysine or ornithine appear higher in the spent media of
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Fig. 3 Box plots comparing FEV1 (a) and spent culture pH (b) for

each of the clusters in the three cluster model; *p \ 0.05. The

relationship between mean FEV1 and spent culture pH is also shown

for each of the isolates (c)
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isolates in Cluster I or IIa when compared with those from

Cluster IIb, where lung function was poorest, as evidenced

by their characteristic resonances at 3.765 ppm (Fig. 5a)

and 1.465 ppm (Fig. 5b). A resonance characteristic of

leucine at 1.728 ppm (Fig. 5b) is also elevated in spectra of

spent media of isolates in both Clusters I and IIa while a

broad resonance that appears at 6.80 ppm (Fig. 5c), in

many spectra from Cluster IIb isolates, is largely absent

from either Clusters I or IIa. Spectra from isolates in

Cluster IIc are intermediate between spectra from isolates

in either Cluster IIa or IIb for these features. An additional

broad resonance at 5.77 ppm is notable (Fig. 5c) but its

intensity does not correlate with FEV1 and is one of the

main resonances that contributes to the separation of the

isolates by PC1 in the PCA analysis.

4 Discussion

The way in which chronic colonisation by high cell num-

bers of P. aeruginosa affects the composition of airway

secretions in the CF lung is likely to be important in

selecting co-infecting bacterial species, and in modifying

the growth of P. aeruginosa itself, since nutritional sources

are known to influence bacterial community composition in

other contexts (Resat et al. 2012; Dunaj et al. 2012).

Bacterial growth results in both large- and fine-scale

modifications to the composition of the growth medium,

with the former primarily occurring through the utilisation

of compounds as carbon and nitrogen sources and the

production of major metabolites. Since the aim here was to

obtain an indication of the degree to which P. aeruginosa

isolate growth might have a differential impact on CF

airway secretions, an approach that provides a compre-

hensive overview of major compositional changes, 1H

NMR spectroscopy, was employed (Gjersing et al. 2007).

In keeping with previous studies using 1H NMR spectros-

copy, the data presented here show a high degree of

independent-replicate reproducibility, whilst allowing dif-

ferentiation of chemically divergent samples.

A defined synthetic growth medium designed to replicate

the composition of CF lower airway secretions was used as

part of an in vitro model of CF airway conditions. Previous

studies comparing P. aeruginosa gene expression in CF

sputum with that in similar CF synthetic media have shown

bacterial behaviour to be similar in the two contexts (Palmer

et al. 2007; Fung et al. 2010). By combining 1H NMR

spectroscopy with this CF airway growth model, we were

therefore able to assess the degree to which the impact of P.

aeruginosa growth differed between clinical isolates under

conditions approximating those encountered in vivo.

The P. aeruginosa clinical isolates studied here showed

substantial metabolomic differences, and were categorised

into four separate clusters. These variations, particularly in

levels of the amino acids, may reflect differences in energy

strategies employed, and the ability of strains to adapt to
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the low oxygen tensions in muco-purulent CF sputum.

Such differences may be important in vivo given that

amino acid levels have been shown to influence the anti-

biotic susceptibility of P. aeruginosa (Nguyen et al. 2011)

and the growth strategies that they adopt (Bernier et al.

2011; Shrout and Chopp 2006).

Cluster membership was found to be related to culture

pH. Care was taken to exclude the contribution of pH

induced peak shifting through the exclusion of resonances

from MOPS buffer prior to multivariate analysis and

manual bucketing of spectra following the failure of peak

alignment using COW. Visual inspection of the spectra

resulting from each cluster suggested that the observed

isolate clustering is due to differences in levels of media

constituents and metabolites produced/consumed rather

than shifting peaks. Indeed, no relationship was found

between cluster membership and P. aeruginosa cell num-

bers, further supporting divergence driven by growth

strategy rather than cell density. The mechanism by which

P. aeruginosa growth affects pH is not clear, and could

occur either through a change in levels of non-pH neutral

components of the growth media or through proton extru-

sion. However, the impact of P. aeruginosa growth on pH

could have major clinical implications since it has been

shown to influence both bacterial community composition

(Romanowski et al. 2011; Duncan et al. 2009) and

behaviour (Walker and Duncan 2005) in other clinical

contexts, and alterations in airway secretion pH could

affect a number of innate defence processes, such as ciliary

function (Clary-Meinesz et al. 1998) and mucus viscosity

(Inglis et al. 1998).

Importantly, a highly significant relationship was found

between the cluster membership of CF isolates analysed

here and the lung function of the patient from which they

were obtained (as measured by FEV1). This link between

the nutritional modification of the environment by P.

aeruginosa growth and patient lung function has clear

implications for how our understanding of bacterial com-

munity composition in the CF airways needs to develop. A

broad phylogenetic range of species have been reported in

CF respiratory secretion (Rogers et al. 2004), with a

common factor for their establishment in the airways being

access to nutrients they require for growth. However, not

all species common in associated areas, such as the oral

cavity, are routinely reported in CF lower airway secre-

tions. This may be influenced by modification of the

nutritional context of the lower airway secretions by

dominant bacterial species (Kloosterman and Kuipers

2011; Rogosa and Bishop 1964; Nakada and Itoh 2003).

Such nutritional interactions in the CF lower airways are

poorly understood, and require further investigation.

A

B

C

1H [ppm]

1H [ppm]

1H [ppm]

5.8 5.66.06.26.46.66.8

1.5 1.41.61.71.8

3.55 3.503.603.653.703.753.85 3.80

Fig. 5 Normalised 1H spectra (with excluded regions but otherwise

untreated) of spent media coloured according to cluster membership.

(Cluster I—blue, Cluster IIa—red, Cluster IIb—green, Cluster IIc—

yellow). Spectral regions between 3.5 and 3.85 ppm (a), 5.6 and

6.9 ppm (b) and 1.4 and 1.8 ppm (c) are shown (Color figure online)
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5 Conclusions

In summary, the application of 1H NMR here to deter-

mining the impact of P. aeruginosa clinical isolate growth

within a model CF system reveals substantial metabolomic

differences between isolates. Membership of isolate clus-

ters, defined through PCA, appears to be linked to diver-

gence in metabolite production, with a significant

correlation between cluster membership and spent culture

pH. These findings suggest that P. aeruginosa isolates

employ a range of growth strategies. Further, cluster

membership was found to be significantly correlated with

patient lung function, suggesting that there may be direct

clinical implications for bacterial metabolic strategy

in vivo. A more sophisticated characterisation of the met-

abolic and pH environment of the CF lower airway is now

warranted, with the potential to inform our understanding

of the chronic bacterial infections that typify cystic fibrosis

airway disease.
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Functional divergence in gastrointestinal
microbiota in physically-separated
genetically identical mice
G. B. Rogers1,2,3, J. Kozlowska2, J. Keeble2, K. Metcalfe4, M. Fao4, S. E. Dowd5, A. J. Mason2,
M. A. McGuckin1 & K. D. Bruce2

1Immunity, Infection, and Inflammation Program, Mater Research Institute – University of Queensland, Translational Research
Institute, Woolloongabba, Australia, 2King’s College London, Institute of Pharmaceutical Science, London, SE1 9NH, UK, 3SAHMRI
Infection and Immunity Theme, School of Medicine, Flinders University, Bedford Park, Adelaide, Australia, 4Charles River UK,
Manston Rd. Margate, Kent CT9 4LT UK, 5Molecular Research MR DNA, Shallowater, TX 79363, USA.

Despite the fundamental contribution of the gut microbiota to host physiology, the extent of its variation in
genetically-identical animals used in research is not known. We report significant divergence in both the
composition and metabolism of gut microbiota in genetically-identical adult C57BL/6 mice housed in
separate controlled units within a single commercial production facility. The reported divergence in gut
microbiota has the potential to confound experimental studies using mammalian models.

R
esearchers using animal models are becoming increasingly aware of possible influences of the gut micro-
biota on physiology. Murine models have been used to demonstrate relationships between the gut micro-
biota and obesity1, metabolic disease2, cardiovascular health3, nervous system development4, diabetes5, and

immune function6, hepatic function7, inflammatory bowel conditions8, and carcinogenesis9, highlighting the
potential impact that differences in the microbiome of mice from different animal facilities could have on
research. However, most researchers assume that genetically-identical mice derived from a single supplier will
have an equivalent microbiome. To test this assumption we studied the faecal microbiome and metabolome of
genetically-identical C57BL/6 mice housed in four separate controlled units within a single facility of a commer-
cial supplier of animals for research. Faecal samples were collected at eight weeks of age from twenty mice, with
five mice sampled in each of four barrier rooms. These mice were separated by no more than ten generations.

Methods
Murine faecal samples. Faeces were collected from eight week old C57BL/6 at the Charles River commercial facility (Margate, UK) under
commercial licence, with all mice kept in accordance with protocols approved by The Animal Health and Welfare Board for England.
Samples were collected from 20 mice, housed in four separate barrier rooms within the facility, fed the same chow (a VRF1 diet, SDS). The
five mice sampled in each room were housed in separate cages. The five mice from each of the four rooms were taken from separate cages i.e.
no two mice came from the same cage. Mice in this study were handled by individuals wearing gloves for cage cleaning purposes on a weekly
basis. Mice were not housed exclusively with litter mates, with 27 individuals housed per room. Samples consisted of individual faecal pellets
taken from individual mice. After collection, pellets were placed into separate collection tubes and frozen prior to analysis.

Microbiota. Nucleic acid extractions were carried out using a combination of physical disruption and phenol/chloroform extraction
methods, described previously10. 16S rRNA gene universal Bacterial primers 27F-519R (27F 59-AGRGTTTGATCMTGGCTCAG, 519R 59-
GTNTTACNGCGGCKGCTG) were used in a single-step 30 cycle PCR using HotStarTaq Plus Master Mix Kit (Qiagen, Valencia, CA)
performed under the following conditions: 94oC for 5 minutes, followed by 28 cycles of: 94oC for 30 seconds, 53oC for 40 seconds, and 72oC
for 1 minute. Amplification was followed by a final elongation step at 72oC for 5 minutes. Following PCR, all amplicon products from
different samples were mixed in equal concentrations and purified using Agencourt Ampure beads (Agencourt Bioscience Corporation, MA,
USA). Samples were sequenced utilizing Roche 454 FLX titanium instruments and reagents following manufacturer’s guidelines. A total of
165,934 16S rRNA gene sequences were obtained from the 20 faecal sample extracts. Following curation, an average of 4,356 sequences was
obtained for each of the samples. For analysis of alpha and beta diversity, samples were normalised to 2,179 sequences per sample.

Sequence data analysis was carried out. Here, the Q25 sequence data derived from the sequencing process was processed using standard
analysis pipeline processes (MR DNA, Shallowater, USA). Sequences were depleted of barcodes and primers then short sequences ,200 bp
removed, as were sequences with ambiguous base calls removed, and sequences with homopolymer runs exceeding 6 bp, sequences were
denoised and chimeras removed11–17. Operational taxonomic units were defined after removal of singleton sequences, clustering at 3%
divergence (97% similarity). Final OTUs were taxonomically classified using BLASTn against a curated databased derived from GreenGenes,
NCBI and RDP databases18. Normalized and de-noised files were then rarefied and run through QIIME19 to generate alpha and beta diversity
data. Additional statistical analyses were performed with NCSS2007 (NCSS, UT) and XLstat 2012 (Addinsoft, NY).
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A range of diversity and richness measures were used to assess changes in micro-
biota composition, including taxa richness, Chao1, Shannon index, Simpson index
1-D20. Analysis of microbiota diversity was performed using PAST - Palaeontological
Statistics, version 3.01, a program available from the University of Oslo website link
(http://folk.uio.no/ohammer/past).

1H NMR metabolomics. Portions of mouse faeces of approximately 0.02 g were
resuspended by vortexing in 500 ml of phosphate buffered saline. Particulate matter
was pelleted by centrifugation at 13,000 3 g for 10 min, and supernatant transferred
to a fresh microfuge tube. Centrifugation was repeated, with pelleted material again
discarded. Supernatant was frozen by immersion in liquid nitrogen, lyophilised at
258uC overnight, and re-suspended in 500 ml D2O. 1H NMR spectra of three
replicates were acquired at 400 MHz on a Bruker Avance spectrometer (Bruker,
Coventry, UK) equipped with a 5 mm QNP probe using a zgesgp pulse sequence
incorporating water suppression via excitation sculpting with gradients. The 1H 90
degree pulse was 9.75 ms. The spectral width was 20 ppm. Free induction decays were
multiplied with an exponential function corresponding to a line broadening of
0.3 Hz. The spectra were Fourier transformed and calibrated to a 2,2,3,3,-D4-3-
(Trimethylsilyl) propionic acid (TSP) reference signal at 0 ppm. Phase correction was
performed manually and automatic baseline correction was applied. To help in the
assignment of the metabolite resonances, J-resolved 2D correlation was performed
with pre-saturation during relaxation delay using gradients (J-Res, Bruker). Pre-
processing and orthogonal projection to latent structures discriminant analysis
(OPLS-DA) were carried out with software that was developed in our laboratory for a
previous study21 using the python programming language with numpy and scipy for
calculations, and matplotlib for visualization. The nonlinear iterative partial least-
squares (NIPALS) algorithm22 was used for OPLS-DA analysis. Regions above
8.5 ppm and below 0.45 ppm were excluded because of noise content. The water peak
and TSP reference signal were also excluded. Spectra were bucketed using 0.005 ppm
bin size leaving 1588 data points per spectrum. These spectra were normalized23,24,
and auto-scaled (variance of every data point normalized to 1). Cross-validation was
performed where 75% of the samples were used as a training set and the remaining
25% as a test set, ensuring that the number of samples in the test set was proportional
to the total number of samples from each class, and that at least one sample from each
class was present in the test set. To choose the number of components for the model, a
leave-one-out cross-validation was carried out on the samples in the training set, and
the F1 used to choose the number of components, with the additional constraint to
use a maximum of 8 components. A double cross-validation was repeated 2000 times
with randomly chosen samples in the training and test set to prevent bias due to the
choice of training or test set. This led to 4 3 2000 models. Finally, this procedure was
repeated with randomly generated class assignments to provide a reference value for
Q2. The chosen number of components minus one was then used as an OPLS filter,
and a PLS-DA analysis with two components was carried out on the filtered data to
yield one predictive and one orthogonal component. In the back-scaled loadings
analysis, peaks that allow the models to distinguish between classes were assigned by
comparing chemical shift values and multiplicities from J-resolved NMR spectra to
values from the BMRB25 and HMDB26.

Results & Discussion
Analysis of the bacterial identities derived from 16S ribosomal RNA
gene sequencing revealed the faecal microbiota to be dominated by
the phyla Bacteroidetes and Firmicutes, (62.4 6 22.4 (SD)% and 34.7
6 23.9%, respectively) although marked variation was observed in
phylum relative abundance between individual animals (Fig. S1).
Further, microbiota alpha diversity, as assessed by rarefaction and
Chao1 richness estimate, OTU richness, and Shannon Index were
significantly lower for mice of one room group (room 4) compared
with mice from other room groups (Table S1) (Kruskall-Wallis con-
trolled multiple pair-wise comparison, p , 0.001).

Analysis of microbiota at the genus level identified the twenty
genera with the highest mean relative abundance (Table S2), which
were broadly in keeping with those reported in the murine gut prev-
iously27. The most commonly numerically dominant genus was
Prevotella, (39.0 6 20.2% of sequences), a genus associated with a
long term carbohydrate-rich diet in humans28. Again however, sig-
nificant differences in the microbiota were identified between room
groups (controlled ANOVA tests, p , 0.05) (Table S3). Coprococcus,
Ruminococcus, and Anaerotruncus were significantly higher in room
1 samples, Pedobacter was significantly higher in room 2 samples,
Novispirillum was significantly higher in room 3 samples and
Prevotella was significantly higher in room 4 samples. Samples from
rooms 2 and 3 groups had significantly higher abundance of
Parabacteroides and Sphingobacterium than samples from rooms 1
and 4.

Hierarchal cluster analysis based upon the predominant genera
indicates divergence in the composition of the microbiota into three
clusters (Fig. 1). Cluster I comprised samples from all animals from
room 3 and additional animals from rooms 1 and 2, cluster II com-
prised all animals from room 4 and cluster III included all of the
remaining animals from rooms 1 and 2. Notably is the absence, or
very low abundance, in room group 4 of a number of genera includ-
ing Sutterella, Sphingobacterium, Novispirillum and Porphyromonas.
Overall therefore, the bacterial microbiota showed marked diver-
gence that was in cases linked to room occupancy, with these com-
positional differences resolving into three clusters.

Whilst all mice received the same standard diet, the differences in
constituency of their microbiota indicated a potential for distinct
metabolomic characteristics. The major constituent of mouse chow,
carbohydrates, are fermented in the colon to short chain fatty acids
(SCFA), primarily acetate, butyrate, lactate and propionate29,30.
Whilst SCFAs are just one class of compounds, they are important
in shaping the microbial community and preventing the growth of
pathogens31,32. Moreover, SCFA levels impact on the host and are
known to be important in relation to nutrition, adipose tissue depos-
ition, immunity and cancer amongst other conditions30,33. Different
SCFAs have been associated with effects on specific physiological
processes34, with the type of SCFAs varying between bacterial gen-
era35. To test for a functionally-distinct signal, we performed a meta-
bolomic analysis of the faecal material.

1H NMR spectroscopy was performed on buffered saline extracts
from the same faecal samples used for microbiota sequencing. We
hypothesised that there would be differences when comparing the
metabolome of faeces from mice whose faecal microbiota were dis-
tinct. Analysis involved a series of pairwise orthogonal partial least
squares discriminant analysis (OPLS-DA) tests using classes sug-
gested by clustering according to microbiota (Fig. 2), room occu-
pancy or dominant phyla. Scores plots for each of three pairwise
comparisons show that there are substantial differences in the meta-
bolomes extracted from faeces of mice assigned to each cluster (Fig. 2
- left panels). Q2 obtained for each test performed were compared
with a reference value for Q2, obtained after repeating cross-valid-
ation with randomly generated class assignments (Table 1). As
shown, Q2 scores for the metabolomic data pairwise analysis per-
formed when separated according to these clusters were .0.50 which
is an accepted threshold for a ‘‘good’’ model36,37. As such, we
observed clear metabolomic differences in the murine faecal samples
based on clusters as defined by the composition of the bacteria
present. Further, microbiota data were used to assess the relative
contribution of Bacteroidetes, Firmicutes and Proteobacteria to each
of the samples tested. Here, Q2 scores were all .0.41. Significant
differences were also identified in the metabolome of faeces from
mice housed in different room groups with Q2 scores all .0.67
(room 2 vs. room 3).

Next, we identified the key drivers of the differences in the meta-
bolomic data by generating back-scaled loadings plots and assigning
resonances with high variance and high weight, indicated by greater
intensity and yellow/red color respectively (Fig. 2 – right panels).
Notably, Clusters I and II were distinguished by the greater abund-
ance of a number of amino acids in the faecal metabolomes of mice in
Cluster II whereas the faecal metabolomes of mice from Cluster III
were distinguished from those in Cluster I and II on the basis of short
chain fatty acids which were more abundant in Cluster III. At the
outset of this study, we hypothesised that there would be minimal
differences between the gut microbiota as sampled in the context of
genetically identical mice. However, significant differences were
observed in the taxa detected, their relative abundance, and overall
bacterial diversity. This variation in the faecal microbiota was linked,
at least in part, to the barrier room in which the mice were housed.
Assessment of the metabolome associated with these animals showed
that microbiota and metabolome findings were largely consistent.
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Murine models are used in biomedical research to address almost
every aspect of human health. To avoid potentially confounding
differences in genetic backgrounds, mice are taken from inbred
populations with the rationale being that the resulting homogeneity
provides a uniform ‘‘platform’’ for study. By far the most common
genetic background for mice used as models of human disease is the
strain C57BL/6, as used here. When purchased for research, indi-
vidual C57BL/6 mice are commonly considered to be equivalent.
Increasingly however, the potential of the gastrointestinal microbiota
to influence the host in relation to health and a wide range of clinical

syndromes is being recognised38. In this light, the differences iden-
tified in microbiota here require further consideration. Given the
potential impact of the gut microbiota on so many important physio-
logical processes, the degree to which it is conserved between indi-
vidual animals used in biological research is arguably as important as
their genetic uniformity. Further, variation in gut microbiota com-
position is likely to be even higher in less well controlled experi-
mental facilities, and to be exacerbated when mice are moved
between facilities, experience changes in diet, and are exposed to
animals with different microbiota. The divergence in gut microbiota

Figure 1 | Heat map analysis of the predominant genera identified in this study. A hierarchal cluster diagram was constructed using Ward’s minimum

variance clustering and Manhattan distances. Room group 1 and room group 2 exhibit some co-clustering indicating differences within the groups. The

heatmap describes the relative percentage in each sample of the associated genera with a legend provided in the upper left of the figure.
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Figure 2 | OPLS-DA scores plots (left panels) and back-scaled loadings plots (right panels) for comparisons between the murine faecal metabolomes as
clustered according to microbiota data composition. Resonances with high variance and high weight are highlighted in red. The distinguishing

metabolites that could be unambiguously assigned are annotated in each back-scaled loadings plot. Q2 values for the cross-validated OPLS-DA

comparisons are provided in Table 1.
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composition, as reflected in faecal bacteria, strongly suggests that
efforts must be made to ensure uniformity of intestinal microbiota
in animals used in research.
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Table 1 | Predictive Q2 values for all models. Q2 values for models
run with permutated class assignments are given in parentheses

Model Q2

Cluster I vs Cluster II 0.88 (20.15)
Cluster I vs Cluster III 0.52 (20.15)
Cluster II vs Cluster III 0.81 (20.18)
Room 1 vs Room 2 0.93 (20.14)
Room 1 vs Room 3 0.90 (20.15)
Room 1 vs Room 4 0.85 (20.15)
Room 2 vs Room 3 0.67 (20.09)
Room 2 vs Room 4 0.80 (20.12)
Room 3 vs Room 4 0.86 (20.15)
High Bacteroidetes vs low Bacteroidetes 0.41 (20.15)
High Firmicutes vs low Firmicutes 0.41 (20.17)
High Proteobacteria vs low Proteobacteria 0.66 (20.18)
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Abstract

Obtaining an in-depth understanding of the arms races between peptides comprising the innate immune response and
bacterial pathogens is of fundamental interest and will inform the development of new antibacterial therapeutics. We
investigated whether a whole organism view of antimicrobial peptide (AMP) challenge on Escherichia coli would provide a
suitably sophisticated bacterial perspective on AMP mechanism of action. Selecting structurally and physically related AMPs
but with expected differences in bactericidal strategy, we monitored changes in bacterial metabolomes, morphological
features and gene expression following AMP challenge at sub-lethal concentrations. For each technique, the vast majority of
changes were specific to each AMP, with such a plastic response indicating E. coli is highly capable of discriminating
between specific antibiotic challenges. Analysis of the ontological profiles generated from the transcriptomic analyses
suggests this approach can accurately predict the antibacterial mode of action, providing a fresh, novel perspective for
previous functional and biophysical studies.
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Introduction

The isolation of cecropins [1], magainins [2] and defensins [3]

from insects, amphibians and mammals in the late 1980’s and early

1990’s, highlighted the potential of host defence peptides as sources

of novel antibiotics [4]. This novel antibiotic potential encouraged

researchers to develop structure activity relationships for cationic

antimicrobial peptides (AMPs), with the anionic bacterial plasma

membrane the presumed site of action for bactericidal activity [5].

There is increasing evidence however that each AMP may indeed

have multiple effects on a bacterial cell and hence may have multiple

ways of killing microbial targets. AMPs may therefore function as

‘‘dirty drugs’’ with different bactericidal strategies possible for distinct

bacterial species [4–7]. Indeed, the innate immune system may have

selected AMPs that can exert their antimicrobial activity in multiple

ways since this is less likely to lead to resistance developing as seen

with classical antibiotics that have a single, high affinity target [6].

Our understanding of how AMPs function is therefore far from

complete. Attempts to optimize AMP potency in the laboratory, that

focus on only one possible bactericidal mechanism, ignore the

possibilities offered by taking a holistic approach that can reveal the

true source(s) of bactericidal potency along with a better under-

standing of bacterial counter-measures.

The full power of ‘omics based research tools has yet to be

brought to bear in antibiotic research [8]. Nevertheless, important

insights have emerged regarding the scope of bacterial responses

by comparing challenges with distinct AMPs [8]. These studies

have focussed on the Gram-positive bacterial species Bacillus subtilis

[9], Staphylococcus aureus [10] and Streptococcus pneumoniae [11] and

have demonstrated the existence of complex regulatory patterns in

which several signal transduction pathways were induced. The

transcriptional response of Escherichia coli to cecropin A, the proline

rich Bac7(1-35) and novispirin G10 has been characterised in

separate studies [12–14]. Recent work in our laboratory has

focussed on trying to understand the relative difference in

antibacterial potency of structurally related AMPs to Gram-

negative bacteria such as Escherichia coli and Pseudomonas aeruginosa

[15–18]. Here, AMPs with structural features thought to enhance

antibacterial potency and reduce toxicity have been developed for

use against more challenging pathogens [19,20]. These peptides,

including D-LAK120-AP13, have been developed based on an

understanding of a variety of naturally occurring peptides

including magainin 2, buforin II and pleurocidin. Pleurocidin is

a 25 amino acid AMP found in the skin and gills of Pleuronectes

americanus, the Winter Flounder. Despite resembling magainin 2 in

terms of length, cationic charge, hydrophobicity and secondary
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structure in a range of membrane mimetic environments [18],

pleurocidin is typically ten times more potent against Gram-

negative species. Pleurocidin has been shown to be capable of

acting on bacterial membranes [21], with pore forming activity,

but has also been suggested to enter bacterial cells and interrupt

protein synthesis [22]. We have therefore compared its effect on E.

coli with magainin 2, which has been considered the archetypal

pore forming AMP, and with buforin II which is proposed to enter

bacteria to exert a bactericidal effect [23,24].

Since these peptides act at widely differing effective concentra-

tions we hypothesised that studying their effects at sub-lethal

concentrations would provide a detailed overview of the mecha-

nisms of action of each AMP. We therefore devised a method that

could efficiently identify conditions where bacteria responded to

AMP challenge without introducing possible, non-specific com-

plications that might result from large scale cell death. We

therefore used 1H high resolution magic angle spinning (HR-

MAS) NMR to identify the lowest AMP concentration that elicited

a response from metabolically active, challenged bacteria. A

robust, cross-validated, multivariate analysis identified metabolites

whose levels were altered in response to AMP challenge. These

were used to classify the AMP according to the elicited response

whilst providing a first indication of whether E. coli responded in a

generic or specific manner to AMP challenge. Having identified

sub-lethal conditions where a response was confirmed, electron

microscopy and transcript profile analyses enabled a detailed

description of the E. coli response to AMP challenge.

Results

1H HR-MAS NMR metabolomics reveals threshold
AMP concentration inducing a bacterial response –The

four cationic amphipathic AMPS selected to test the response of

stationary phase E. coli (Table 1) were of similar length and were

all C-terminally amidated with nominal charge ranging from +4 to

+9. For the AMP challenge experiments presented here, higher

bacterial cell densities (86108 CFU/ml) were required than is

common in the broth microdilution assays [25] used to generate

Author Summary

Antimicrobial peptides (AMP) are small proteins with often
potent antibacterial activity found in a variety of organ-
isms, including humans. Understanding how these antibi-
otics operate is challenging and often controversial since
many studies have necessarily focussed on identifying a
single major cause of bacterial cell death while, increas-
ingly, others have cautioned that AMPs are likely to have
access to multiple bactericidal features. Systems biology is
an emerging field that comprises a series of techniques
capable of giving a global view of how bacteria respond to
external stimuli. Here we have monitored changes in gene
expression and metabolism in bacteria that have been
challenged with sub-lethal concentrations of four different
AMPs. By understanding how bacteria respond to a threat
we can reveal how the bacteria perceive the AMP to be
operating. Our approach provides a sophisticated bacterial
perspective of the mode of action of each AMP and reveals
that the bacteria have a vast array of weapons that can be
marshalled to deal with distinct AMP threats. Indeed,
around a third (or even more) of the bacterial machinery
might be useful in dealing with antibiotic challenges,
highlighting why antibiotic resistance is such a persistent
problem.
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the MIC data (Table 1), in particular for HR-MAS analysis. At the

higher bacterial titre, although the relative potency is similar, the

effect of the four AMPs determined using such methods was

somewhat different from the minimum inhibitory concentrations

(MICs), with D-LAK120-AP13 having a substantially greater

effect on bacterial numbers as detected in the challenge and

recovery assay (Fig. 1A). Neither magainin 2 nor buforin II had a

sufficiently inhibitory effect for a MIC to be determined at the

higher titre. Nevertheless the amount of peptide causing a

significant reduction in bacterial re-growth can be compared with

D-LAK120AP13 effective at 15.6 mg/ml with substantially more

pleurocidin (62.5 mg/ml) and magainin 2 (125 mg/ml) required for

a significant effect. No effect on bacterial re-growth was observed

for buforin II at any of the peptide concentrations tested (Fig. 1A).

A multi-parameter assay was taken to assess the effect of peptide

challenge on membrane potential (Fig. 1B), esterase activity

(Fig. 1C) and membrane integrity in the challenged stationary

phase bacteria and suggested that only the higher concentrations

of pleurocidin and D-LAK120-AP13 were lethal. A dose

dependent response to each of the four AMPs was observed but

the membrane potential was not completely lost while the esterase

activity was mostly higher than that observed in untreated cells; a

hallmark of exposure to sublethal stress in E. coli [26].

One dimensional 1H NMR spectra were obtained for all

samples. Principal component analysis identified outlier spectra

resulting from either poor baseline or signal to noise, and either

partial least squares (PLS) regression analysis or a series of

orthogonal PLS-discriminant analysis (OPLS-DA) tests were used

to interrogate the spectra. The latter was used in a step-wise

manner to determine the lowest concentration of each AMP that

caused a significant change in the spectra relative to spectra from

untreated bacterial cell, as determined from Q2 (Table 2) where an

arbitrary value $0.6 was taken to show a reliable model where the

AMP challenge has a significant effect. This value can be

compared with the value expected for a perfect separation of the

two groups (Q2 = 1) and that obtained when the assigned classes

(untreated or AMP challenged) are permutated as a means of

representing no effect. 2D scores plots that resulted from each of

the cross validated OPLS-DA analyses are shown in the

supplementary material (Fig. S1 in File S1) while those for the

threshold concentrations (data for the highest AMP concentration

is shown for buforin II) are described here (Fig. 2A–D). A clear

separation of the OPLS-DA scores was obtained at the indicated

AMP concentration, identified as a threshold for a response

detectable in the bacterial metabolomes. This threshold concen-

tration varied considerably for the four AMPs and was directly

related to the apparent antibacterial efficacy noted above. The

threshold value, in turn, corresponded to a sub-lethal AMP

concentration since bacterial growth remained greater than 50%

of maximum (Fig. 1A), esterase activity was increased relative to

untreated cells (Fig. 1C) while membrane potential was not

completely lost (Fig. 1B). Hence the NMR metabolomic technique

identified conditions where metabolically active E. coli were

responding to the AMP challenge without simply reporting on

bacterial cell death. Comparing the back-scaled loadings, each of

the OPLS-DA comparisons between untreated bacteria and those

challenged with each AMP, identified metabolites whose differing

intensities correlated with the effect of each AMP. A hierarchical

cluster analysis was used to reveal variation in metabolite levels

(Fig. 2E). Both common and AMP specific variations in E. coli

metabolite levels were observed in response to challenge with the

four AMPs. Notably, the hierarchical analysis grouped the

peptides according to their potency. Though not considering the

magnitude or direction of changes in metabolite levels, network

Figure 1. AMP challenge and multi-parameter assay of E. coli
NCTC 9001. Overnight cultures were challenged with increasing
amounts of each of four AMPs for 30 minutes and the recovery of
aliquots added to fresh media was measured after 4 hours incubation
at 37uC (A). * indicates the peptide concentration causing a significant
(p,0.1) reduction in OD620 relative to the lowest peptide concentration
used. The membrane potential (B) of challenged bacteria as measured
by the voltage sensitive dye DiBAC4 is expressed here as a percentage
of the membrane potential determined for untreated cells. Esterase
activity (C) determined by cleavage of 5,6-carboxyfluorescein diacetate
expressed as a percentage of the maximum observed activity. Peptide
concentrations are given in mg/ml.
doi:10.1371/journal.ppat.1004104.g001
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pathway analysis conducted using MetaboAnalyst [27,28]

matched pathways according to p-values obtained from pathway

enrichment analysis and pathway impact from pathway topology

(Fig. S2.1–S2.4 in File S1). Changes in alanine, aspartate and

glutamate metabolism had the greatest impact and were a

common feature of challenge with all four peptides with changes

in pyruvate, butanoate and arginine/proline metabolism high-

lighted according to the distinct challenges.

The dynamic response of E. coli NCTC9001 to challenge with

pleurocidin or magainin 2 was assessed over a period of 2 hours at

the following intervals: 5 minutes, 15 minutes, 60 minutes and

120 minutes. The OPLS-DA scores plots (Fig. S3 in File S1) and

corresponding Q2 (Table S1 in File S1) indicate that a response to

AMP challenge at the level of the metabolome can be detected

throughout the period tested. However, when the back-scaled

loadings were compared in a hierarchical cluster analysis (Fig. S4

in File S1), modest but notable differences in the affected

metabolites were discerned. This suggested that the bacterial

response detected beyond an hour after challenge is characteris-

tically distinct from that probed within the first 30 minutes. These

conditions – 30 minutes incubation at the determined threshold

concentration - were therefore used for subsequent electron

microscopic and transcript profiling analyses of samples prepared

in parallel to those used above.

Scanning and transmission electron microscopy
identifies differences in the response to each AMP

Changes in E. coli internal or external morphology in response

to challenge with AMP were monitored respectively using

transmission and scanning electron microscopy (TEM/SEM) at

either one or four times the sub-inhibitory AMP threshold

concentration known to induce a metabolomic response (Fig. 3;

Fig. S5.1–5.10 in File S1). The bacterial response to each AMP

challenge varied considerably and was in qualitative agreement

with the metabolomic study; buforin II had no noticeable effect

when compared with untreated bacterial cell controls (Fig. 3D–F;

Fig. S5.2/5.9/5.10 in File S1), with each of the three other AMPS

inducing substantial changes to external and/or internal mor-

phologies. For magainin 2, a regular, almost circular nucleoid

condensation was observed in some, but not all, cells (Fig. 3A; Fig.

S5.8 in File S1) while some impairment of cell division was evident

with extended rods observed (Fig. 3G). Pleurocidin also induced

nucleoid condensation but this was much more widespread;

observed throughout the bacterial cell population (Fig. S4.5/S4.6

in File S1). This was accompanied by some possible protein

aggregation and the production of large amounts of a fibrous

material (Fig. 3B). In addition to the production of the fibrous

material, SEM indentified moderate vesicle production, a known

envelope stress response in Gram-negative bacteria [29]. Finally,

D-LAK120-AP13 induced dramatic changes in both the internal

(Fig. 3C) and external E. coli morphologies (Fig. 3I). Extensive

release of outer membrane vesicles was evident which was

coincident with a loss of the normal rod shape, consistent with

bacteria budding prematurely (Fig. 3I). Inside bacterial cells,

extensive nucleoid condensation and protein aggregation was

observed throughout the bacterial cell population (Fig. 3C; Fig.

S5.3/S5.4 in File S1). Taken together, although there were some

qualitative similarities in the response of E. coli cells to each of the

three more potent AMPs, markedly distinct responses to each

peptide were observed overall. Transmission electron micrographs

obtained at higher magnification and with AMP added at a

concentration above the detected threshold value indicated that,

for all four peptides, the bacterial envelope remained intact and no

release of cell contents was apparent (Fig. S5.1 in File S1).

Global transcriptome response identifies some generic,
but largely AMP specific, responses

The response of E. coli to challenge with the four AMPs was

then probed at the level of the transcriptome. Transcript profile

changes in the NCTC 9001 strain, a clinical isolate from a patient

with cystitis with cystitis, were monitored using the E. coli Genome

2.0 Array where four strains including laboratory, uropathogenic

and enteropathogenic strains are featured. Due to the high degree

of similarity between strains, in the majority of cases, a single

probe set represents the equivalent ortholog in all four strains. All

genes that are subsequently described in detail are found in both

laboratory (K12 substr. MG1655) and uropathogenic (CFT073)

strains with the majority also found in the two enteropathogenic

strains. Principal component analysis of the twenty most differen-

tially expressed genes across all groups showed the three

independent replicates of each condition clustered together

indicating the AMP challenge and transcript profiling assay were

reproducible (Fig. S6 in File S1). Further analysis, where either an

arbitrary significance level (p#0.05) for differential gene expression

or manual manipulation of significance levels leading to an

optimal separation by principal components, generated lists of

differentially expressed genes related to each treatment. E. coli

genomes commonly encode between approximately 4,200 and

5,500 protein coding genes [30,31]. Of the approximately 10,000

probe positions, between 139 and 632 differentially expressed

unique genes (p#0.05) were detected for each treatment following

challenge with AMP at the threshold concentration eliciting a

bacterial response. This corresponds to 2.5–15.0% of the available

genome. Magainin 2 induced differential expression of only 139

Table 2. Predictive Q2 values for OPLS-DA models.

[AMP] (mg/ml) Q2

Pleurocidin Magainin 2 Buforin II D-LAK120-AP13

3.9 0.32 (20.29) n.d n.d. 0.37 (20.30)

15.6 0.53 (20.31) 0.29 (20.36) n.d. 0.59 (20.28)*

62.5 0.81 (20.41)* 0.20 (20.31) n.d. 0.81 (20.31)

125 0.80 (20.29) 0.68 (20.34)* n.d. 0.83 (20.26)

250 n.d. n.d. 20.30 (20.39)* n.d.

Q2 values for cross validation performed with permutated classes are provided in parentheses.
* Key minimum concentrations.
doi:10.1371/journal.ppat.1004104.t002
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Figure 2. Metabolomic analysis by 1H HR-MAS NMR of lyophilised, stationary phase E. coli cell pellets. OPLS-DA scores plots are shown
for challenge of E. coli NCTC 9001 at the following threshold concentrations; pleurocidin at 62.5 mg/ml (A), magainin 2 at 125 mg/ml (B), D-LAK120-
AP13 at 15.6 mg/ml (C) and buforin II at 250 mg/ml (D). Hierachical clustered heatmap comparing loadings obtained from cross-validated OPLS-DA
comparing untreated bacteria with AMP at the threshold concentrations indicated above (E).
doi:10.1371/journal.ppat.1004104.g002
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genes which contrasted with the much greater number of genes

whose expression was altered in response to challenge with either

buforin II or D-LAK120-AP13; 625 and 632 respectively. Pleur-

ocidin induced differential expression of 298 genes. The distribution

of differentially expressed genes according to each AMP treatment is

represented in a Venn diagram and reveals that the vast majority

(76.3%) are specific to each of the four AMP challenges (Fig. 4A).

Only 32 differentially expressed genes, 2.4% of the total, were

common to at least three treatments while there was only one, yjjB,

which was common to all four treatments. Qualitatively therefore,

transcriptomic data supported the electron microscopy findings as,

while common responses can be identified, the dominant impression

was of a largely specific response to each AMP challenge

Mapping those discriminating metabolite changes with most

impact (Fig. S2.1–S2.4 in File S1) onto their respective Kyoto

Encyclopaedia of Genes and Genomes (KEGG) pathways

identified differentially expressed genes with a potentially key role

in mediating the response to AMP challenge. Changes in alanine,

aspartate and glutamate metabolism were common to all four

peptides and changes in expression of gltX, dapA and metB, coding

for respectively glutamyl-tRNA synthetase, dihydropicolinate

synthase and cystathionine gamma-synthase, were observed in

the gene lists though these did not always satisfy the significance

thresholds used above. Knockout mutants of dapA and gltX are not

available from the Keio collection but DmetB and five other

knockout mutants (DcyoA, DcyoC, DcyoD, DspeB, and DargR coding

respectively for cytochrome o uniquinol oxidase subunits II, III

and IV, agmatinase and arginine repressor), linked to changes in

arginine/proline metabolism, were tested for altered sensitivity to

AMP challenge though none was found.

Figure 3. Electron microscopic analysis of E. coli response to AMP challenge. Transmission (A–E) and scanning (F–I) electron micrographs at
625,000 magnification of either untreated (E/F) or AMP challenged E. coli NCTC 9001. Stationary phase bacteria were challenged for 30 minutes with
AMPs above the threshold concentration that elicits a bacterial response as determined by the 1H NMR metabolomic study; 250 mg/ml magainin 2
(A/G), 125 mg/ml pleurocidin (B/H), 62.5 mg/ml D-LAK120-AP13 (C/I) and 250 mg/ml buforin II (D). Red arrows indicate features described in the
results.
doi:10.1371/journal.ppat.1004104.g003
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Up-regulated in response to challenge by all four AMPs, yjjB,

encodes a 157 amino acid, conserved, inner membrane protein

predicted to have four trans-membrane helices but with no known

function. Of the five genes whose expression was generically

affected by the three AMPs of natural origin, three were up-

regulated in response to AMP challenge; manA codes for mannose-

6-phosphate isomerise, cysE codes for a serine acetyltransferase

and yohN codes for a 112 amino acid integral membrane protein

annotated and established as a periplasmic modulator of nickel

and cobalt efflux and renamed rcnB [32]. In contrast, yejF, part of

an ABC transporter identified as a possible nickel, and probable

microcin C transporter [33], and yrdB, which codes for a highly

anionic, glutamine rich, 85 amino acid hypothetical protein from

the DUF1488 superfamily, are down-regulated. Comparison of

the growth of parent strain BW25113 and four knockout mutants

(DyejF, DyjjB, DyohN and DyrdB) obtained from the Keio collection

[34] confirmed yohN confers sensitivity to Co2+ and possibly Ni2+

(Fig. S7 in File S1). The growth of these strains was also tested in

the presence of AMPs (Fig. 4B). While the MIC for pleurocidin

was not affected by the presence of any of the four deletions, a

modest but significant (p,0.05) increase in sensitivity was observed

for all four deletion strains when challenged by magainin 2. When

the experiment was repeated with LL-37, an AMP of human

origin, three of the deletions rendered the bacteria more sensitive

while deletion of yrdB had no effect.

The ontological profile related to each challenge offers another

view of how closely related the response to each AMP is to each

other. Here, instead of comparing individual genes on the basis of

their identity, the comparison is based on the cellular component,

biological process or molecular function and is less affected by

redundancy or more subtle changes in response and consequently

better reflects the fundamentals of the bacterial response.

Ontological analysis, which employed a Benjamini-Hochberg

method to control false discovery rate (FDR) and displays

statistically overrepresented, differentially expressed genes in a

graphical format according to their relationships in a hierarchical

tree, was carried out on gene lists comprising the 200–250 most

differentially expressed genes for each of the individual AMP

treatments (Fig. S8–S13 in File S1) and for comparisons of up to

three AMP treatments (Fig. 5; Fig. S8/S9 in File S1). The three

AMPs derived from natural sources are suspected of acting on

different cellular components. Indeed, comparing gene ontology

(GO) term enrichment for cellular components (Fig. 5) showed a

very different profile for each of magainin 2, buforin II and

pleurocidin. Magainin 2 appears confined to affecting membrane

components (Fig. 5; Fig. S10 in File S1) and had little effect on

molecular functions or biological processes. Buforin II, in contrast,

did not impact on any membrane components, instead focussing

on components in the ‘‘cell’’ or ‘‘cell part’’ (Fig. 5; Fig. S11A in

File S1) where 41% of the differentially expressed genes related to

binding are found in the analysis of molecular function (Fig. S11B

in File S1). Pleurocidin elicited responses both in membrane

components and in the cell itself (Fig. 5; Fig. S12 in File S1) with

biological processes, in particular polysaccharide and macromol-

ecule metabolism and transport, impacted. This was reinforced by

the finding that some 35 genes related to transporter activity were

differentially expressed (Fig. S13 in File S1). These observations

reinforce the view that AMPs impact on bacterial cells in distinct

and AMP-specific ways. When the top 250 genes differentially

expressed in response to challenge with D-LAK120-AP13 were

analyzed, very few enriched pathways were found when biological

processes were considered, with no enriched cellular components

or molecular function identified. This indicates a non-specific

response for this designed peptide notwithstanding its shared

responses with buforin II observed above.

Discussion

The value of a combined approach
When taken together, the metabolomic, electron microscopy

and transcript profiling analyses reveal a combination of generic

and specific responses to challenge with AMPs that share many

physicochemical features but that differ in their modes of action.

All four peptides used were cationic, of similar lengths, and will

Figure 4. Transcript profiles and role of individual genes in response to AMP challenge. Four way Venn diagram (A) showing the
distribution of differentially expressed genes detected by the GeneChip E. coli Genome 2.0 Array (p#0.05) following challenge of stationary phase E.
coli NCTC 9001 with each of four AMPs at sub-inhibitory concentrations known to elicit a bacterial response; pleurocidin at 62.5 mg/ml, magainin 2 at
125 mg/ml, D-LAK120-AP13 at 15.6 mg/ml and buforin II at 250 mg/ml. The entries in the Venn correspond to the number of affected genes. Effect on
sensitivity of E. coli BW25113 to magainin 2, pleurocidin and LL-37 of mutations in four of six genes commonly regulated in response to AMPs of
natural origin (B).
doi:10.1371/journal.ppat.1004104.g004
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adopt conformations with secondary amphipathicity in the

supposed target of the E. coli inner membrane. For the analytical

techniques used, some strengths and weaknesses were identified, so

underscoring the value of a combined approach. The electron

micrographs provided compelling evidence of AMPs induction of

manifestly different responses in E. coli challenged at both

inhibitory and sub-inhibitory concentrations. The images however

provide only circumstantial evidence as to the mechanism of

action of each peptide. Instead, quantitative information or details

of the molecular mechanisms involved are needed to pinpoint how

each peptide operates. Transcript profiling provides a rich vein of

information on the bacterial response. The individual gene

products implicated have suggested a wide range of experiments

that will illuminate further how bacteria attempt to fight off

challenges posed by AMPs. Transcript profiling may also be more

sensitive than the other approaches used since it alone was able to

identify a significant response to buforin II which, even when

administered at 250 mg/ml did not cause any perceived effect on

either the internal or external cellular morphology or register a

response as detected by 1H HR-MAS NMR. The transcript

Figure 5. Multi GOEAST comparison of gene ontology (GO) terms relating to cellular component for differential gene responses in
stationary phase E. coli NCTC 9001. Challenge was induced with sub-inhibitory concentrations of pleurocidin (red: p1), magainin 2 (blue: p2) and
buforin II (green: p3). Red arrows represent relationships between two enriched GO terms, black arrows between enriched and un-enriched terms and
black dashed arrows represent relationships between two un-enriched GO terms. Raw p values for GO terms have been adjusted using the Benjamini-
Hochberg method allowing FDR,15%.
doi:10.1371/journal.ppat.1004104.g005
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profiling method remains expensive however and the consumable

costs per sample make its use in a high throughput manner

unattractive. The NMR metabolomic technique has the advantage

of having low per sample consumable costs which enables a much

greater range of test conditions to be assessed. NMR metabolomics

is also highly reproducible and provides quantitative information

on this greater number of test conditions. It would therefore be

attractive to consider whether it could be used as a standalone

method for interrogating bacterial responses to challenge. In the

present study however, while both generic and specific changes in

metabolites were identified in response to AMP challenge, generic

changes may appear overestimated when compared with the

information provided by transcript profiling or micrographs. This

may be due to common metabolic pathways underpinning a series

of distinct bacterial responses and a much larger scale investiga-

tion, with a larger panel of both distinct and more closely related

AMPs is now warranted. This would allow greater weight to be

afforded to certain key metabolites, known to be altered in

response to a given class of AMP with known influence on

bacterial stress responses.

Life and death at the membrane?
This study investigates whether studying bacterial responses,

when challenged with carefully defined sub-lethal concentrations

of antibiotic, provides a detailed systems wide view of the

mechanism of action. The mechanism of action of cationic

amphipathic helix forming antimicrobial peptides has received

considerable attention in the past two decades with much work

focussed on the pore forming activity of magainin 2 and related

peptides [35]. Considered an archetypal pore forming peptide,

there is nevertheless evidence that for at least one microbial target,

Saccharomyces cerevisiae, magainin 2 can enter the cell and interfere

with DNA integrity [36] while pore forming activity that causes

graded dye release is linked to a mechanism that involves

translocation of the peptide across the membrane [37]. Finally,

MD simulations have shown that magainin-H2, when forming a

disordered toroidal pore does indeed translocate to the internal

leaflet of the membrane [38]. Set against these studies are a range

of data on the structurally and physico-chemically related, but

considerably more potent, pleurocidin which is known to have

pore forming activity [21] but is also capable of entering bacteria

to interfere with the synthesis of macromolecules [22]. We have

recently solved the high resolution structures of both magainin 2

and pleurocidin in the anionic detergent SDS (PDB entries 2LSA

and 2LS9 respectively) and found similar regions of flexibility

around the glycine residues in the middle section of the sequence

(Gly 13/18 – magainin 2; Gly 13/17 – pleurocidin). Only in the

membranes that most closely mimic the inner membrane of

Gram-negative bacteria are any differences between the two

peptides observed; here pleurocidin adopts a notably more

disordered conformation under these conditions [18]. The more

disordered conformation of pleurocidin in the E. coli target

membrane may be related to possible pore formation [39] or the

proposed intracellular targeting strategy [22] which, in both cases,

would serve to boost its potency.

Previous ‘omics based studies comparing AMPs action in Gram-

positive bacterial species found that there was very little overlap in

response between Streptococcus pneumoniae that had been challenged

with each of three rather different antimicrobial peptides [11],

while two earlier studies [9,10], which focussed on peptides with

the plasma membrane as a presumed common target, found

rather more overlap. We therefore decided to test whether a more

holistic approach would succeed in discriminating between the

different modes of actions of magainin 2 and pleurocidin and place

their differing membrane activities in a wider context, enabling a

more sophisticated understanding of their respective mechanisms

of action while explaining the greater potency of pleurocidin. In

the present study, the combined approach was readily capable of

distinguishing pleurocidin and magainin 2 on the basis of the

bacterial responses observed in their metabolomic and transcript

profiles with electron micrographs bringing these differences into

sharp relief. Despite the shared physicochemical properties and

conformational propensities of the two peptides and presumed

initial target of the bacterial inner membrane, transcript profiling

identified only 19 genes whose differential expression was common

to both AMP challenges, with differential expression of some 399

genes being a specific response to either pleurocidin or magainin 2.

The E. coli response to AMP challenge is therefore highly

adaptable and is most sensitive to the differing bactericidal

strategies of each peptide. Large scale changes in the internal

morphology of E. coli, following challenge with sub-inhibitory

concentrations of each AMP, provides circumstantial evidence

that both magainin 2 and pleurocidin can enter Gram-negative

bacteria, with the more profound effects of pleurocidin suggesting

a greater proficiency. Improvements in imaging technologies and

labelling techniques may open the way, in future, for the more

precise localisation of both peptides but it is apparent that a simple

description of AMP bactericidal mechanisms that rests solely on

studying the membrane interaction in isolation is inadequate. This

is particularly relevant for the goal of increasing potency.

We have also studied the structural properties of buforin II

which is considered to operate via an intracellular targeting

strategy [18]. Buforin II has a greater affinity for nucleic acids, has

a greater nominal charge at +7 and is less hydrophobic. The

proline kink in buforin II is known to be crucial for enabling

translocation into the E. coli cytosol [24]. Notably, in all

membranes that we have studied, the peptide adopts an extended

helical conformation, rather than one rich in a-helix, and has only

barely detectable antibacterial activity against planktonic E. coli

cultures [18]. We therefore included buforin II in the present study

since we hypothesised that the bacterial response to this peptide

would highlight responses to pleurocidin that are related to an

intracellular targeting strategy. Neither the NMR metabolomic

nor electron micrograph studies though identified a strong

response to even very elevated concentrations of this peptide;

consistent with our previous work which identified only a very

weak effect against planktonic cultures of either E. coli or P.

aeruginosa [18]. Nevertheless, a large number of significantly

differentially expressed genes in response to buforin II challenge

were detected by transcript profiling. While around 64 differen-

tially expressed genes were detected in common to challenge with

buforin II and pleurocidin, 33 differentially expressed genes were

common to buforin II and magainin 2 with a further 534

differentially expressed genes identified that were not affected by

either magainin 2 or pleurocidin. Only six differentially expressed

genes were identified as a common response to these three AMPs.

This further emphasises the plasticity of the E. coli response and

indicates that bacteria have a large repertoire of responses to

challenges.

Considering the ontology of the differentially expressed genes

can suggest how each individual AMP operates but, when used in

comparison, as here, the relative importance of the properties of

each AMP is revealed and supported the view that these three

peptides adopt distinct bactericidal strategies. The ontological

profiles reveal near orthogonal changes in transcript profiles

following sub-lethal challenge with the three different AMPs of

natural origin. Comparison of GO terms with existing paradigms

for the mode of action of each AMP supports the view that the

Systems View of AMP Challenge in Escherichia coli
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present, combined approach faithfully reveals the mechanism of

action, notwithstanding the extra detail that identifies a range of

effects that may contribute to bacterial cell death. In particular, the

identification of eight GO terms linked to membranes supports the

established view that magainin 2 largely acts on the plasma

membrane of Gram-negative bacteria. In contrast, within the top

200 differentially expressed genes, no membrane GO terms were

linked to the action of buforin II which is considered to seek

intracellular targets. This is further supported by the distribution

of GO terms since the effect on binding and a host of biosynthetic

pathways is acute. For pleurocidin, where multiple bactericidal

mechanisms have been proposed, there is substantial overlap

between the cellular component GO terms with those affected by

magainin 2. This indicates that the bacterial membrane is indeed a

common target. However, in contrast with magainin 2, pleur-

ocidin impacts on a large number of intracellular biological

process, in particular macromolecule metabolic and transport

processes. This strongly indicates a multifaceted antibacterial

strategy underpins the high antibacterial potency of this AMP.

Can understanding the bacterial response be exploited
to improve AMP potency?

The high plasticity of the bacterial response to AMP challenge

suggests that deletion of one gene is unlikely to have a great impact

on sensitivity. This view is supported by the study of mutants

identified by mapping metabolite changes with the greatest

pathway impact onto their respective pathways and further work

will be required to more effectively disrupt such pathways in order

to identify any relationship with sensitivity to AMPs.

Nevertheless, six gene products were identified that were

significantly and uniformly affected by the three AMPs derived

from natural sources. Of these six genes, two were down-regulated;

yrdB an anionic 85 amino acid hypothetical protein and yejF. The

yejF gene codes for the ATPase in the ABC transporter YejABEF

which, when mutated, confers resistance to microcin C [33]. The

speculated role of YejABEF as a nickel transporter has been

questioned as it is phylogenetically distant from other oligopeptide

transporters [33]. However, since yejF is down-regulated in the

present study in response to all three peptides obtained from

natural sources and its deletion renders E. coli more sensitive to

both magainin 2 and LL-37, this behaviour does support the

earlier finding that the activity of this protein can have a

considerable effect on peptide antibiotic potency. Indeed, while

mutations in yejABEF confer resistance to microcin C in E. coli,

deletion of yejF in Salmonella enterica increased sensitivity to AMPs,

including both human beta defensins 1 and 2 (hBD-1 and hBD-2)

[40].

Of the four genes that are up-regulated, cysE and manA are

widely distributed amongst taxa, including animals, making them

less attractive as an antibiotic target. In contrast, with a

distribution that is concentrated in Enterobacteriaceae and with yet

to be tested functions, yohN and yjjB might be more attractive

targets for further investigation and possible targets for adjuvants

that could boost the potency of the host innate immune response.

Deletion of these genes caused a significant but only modest

increase in sensitivity to magainin 2 and LL-37 while the potency

of pleurocidin was unaffected. These results show that the

combined systems approach is indeed capable of identifying genes

that regulate resistance/sensitivity in E. coli but that the large

number of potentially differentially expressed genes at the disposal

of such bacteria will mitigate the effect that silencing one gene

product may have.

Finally, we were interested to contrast the expected results for

the three peptides representing naturally occurring AMPs with the

bacterial response to a peptide, D-LAK120-AP13, which was

composed of D-amino acids only. D-LAK120-AP13 was designed

in an attempt to circumvent the effect of proteases secreted by

target pathogens, and incorporate structural features, including

high cationicity and propensity for adopting a-helix rich

conformation [41] - and hence inserting into and disordering

the E. coli inner membrane - and a proline kink, affording

conformational flexibility [20] that facilitates penetration into

bacteria [23,24]. The robust and potent effect of this peptide

against E. coli was evident with a significant metabolomic

response even at very low peptide concentrations. Circumstantial

evidence for the ability to penetrate within bacterial cells was

shown by transmission electron microscopy, with the most

profound changes due to challenge with any of the four AMPs

observed, and transcript profiling. Again underlining the plastic-

ity of the E. coli response, transcript profiling identifies a further

390 differentially expressed genes that were uniquely affected by

D-LAK120-AP13 although, interestingly, there is considerable

degree of overlap with the response to buforin II with 192

differentially expressed genes in common. These two peptides

have a greater nominal cationic charge in solution at neutral pH

than either pleurocidin or magainin 2 and both incorporate a

proline induced kink in the secondary amphipathic conformation.

Taken together, the data support highly effective entry of D-

LAK120-AP13 into Gram-negative bacterial cells and it is this

that may underpin its high antibacterial potency.

With four distinct but physicochemically related AMPs now

tested by an integrated systems biology approach, a total of at least

1342 differentially expressed genes (p#0.05) have been identified

as being potential tools that can be manipulated by the bacteria to

overcome AMP challenge. This is equivalent to between 24 and

32% of the total E. coli genome and suggests, with more

structurally diverse AMPs yet to be tested, that bacteria have a

wide variety of means of overcoming AMP challenges. Under-

standing these responses enables both the mode of action of AMPs

to be elucidated as well as suggesting strategies to overcome these

defences. The approach may find generic applicability in the study

of antibiotic-bacteria arms races.

Materials and Methods

Materials
The peptides (Table 1) were all amidated at the C-terminus and

were purchased from Pepceuticals Ltd (Nottingham, UK) as

desalted grade or synthesised in house (D-LAK120-AP13) and

were further purified using water/acetonitrile gradients using a

Waters SymmetryPrep C8, 7 mm, 196300 mm column.

Bacterial culture and challenge
Cultures of Escherichia coli NCTC 9001, a strain isolated from a

patient with cystitis, were grown overnight in Mueller-Hinton

broth (MH) at 37uC. Once the OD620 reached <1.0, 1 ml aliquots

of bacterial suspension were transferred into 1.5 ml microcen-

trifuge tubes and aqueous solutions of peptides - magainin 2,

buforin II, pleurocidin and D-LAK120-AP13 were added at the

following concentrations: 250 mg/ml, 125 mg/ml, 62.5 mg/ml,

15.6 mg/ml, 3.9 mg/ml and incubated for 30 min at 37uC. In

order to be able to monitor the microbial recovery and growth,

10 ml of each suspension was sampled in 190 ml fresh medium onto

a 96-well microplate. The OD620 was measured at time 0 and after

4 h of incubation at 37uC. The microcentrifuge tubes were

centrifuged at 50006 g for 5 min and the bacterial pellets were

snap frozen in liquid nitrogen, lyophilised and kept at 220uC until

further use. Pellets from triplicate tubes were combined for
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subsequent HR-MAS analysis. Each challenge was independently

repeated nine times.

HR-MAS NMR
High-resolution magic angle spinning (HR-MAS) experiments

were performed on a Bruker Avance 400 MHz spectrometer

equipped with a 4 mm 1H/13C HR-MAS probe. The lyophilised

cell pellets were thawed at room temperature, transferred to an

NMR rotor inserts and rehydrated with 30 ml of D2O 2 hours

before the acquisition. 1D spectra were recorded at a constant

temperature of 310 K with magic angle spinning applied at 5 kHz.

1D 1H spectra were recorded using a standard cpmgpr1d spin

echo pulse (cpmgpr; Bruker) with water presaturation during

recycle delay of 1 second and a total of 128 scans were acquired.

The spectral width was 16.02 ppm and 1H 90 pulse length was

7.81 msec. The free induction decay was multiplied with an

exponential function corresponding to a line broadening of

0.3 Hz. Phase correction was performed manually and automatic

baseline correction was applied. A total of 120 samples were

analysed with between 6 and 13 samples per treated condition and

17 control samples (no AMP treatment). A number of 2D

experiments were run to facilitate identification of the compounds:

homonuclear J-resolved 2D correlation with presaturation during

relaxation delay using gradients (J-Res; jresgpprqf), 1H/13C

correlation via direct inept transfer, phase sensitive using states,

with decoupling during acquisition (HSQC 13C; AA-hsqcwg-

13C), 2D homonuclear shift correlation with presaturation during

relaxation delay (COSY; cosyprqf) all acquired using standard

Bruker pulse sequences. Spectra were Fourier transformed,

manually phase and automatically baseline corrected and

calibrated with 2,2,3,3-D4-3-(Trimethylsilyl) propionic acid sodi-

um salt (TMSP-2,2,3,3-D4) with reference signal at 0 ppm.

Assignment
Resonances were assigned based on J-couplings partners

revealed by COSY, multiplicities derived from J-Res, statistical

correlation spectroscopy (STOCSY) [42] and both 1H and 13C

chemical shifts with reference to the E. coli metabolome database

[43].

Multivariate data analysis
Spectra were analysed by principal component analysis (PCA)

and orthogonal partial least squares discriminant analysis (OPLS-

DA) using software developed in our laboratory for a previous

study [44] incorporating the nonlinear iterative partial least

squares (NIPALS) algorithm [45]. First, the spectra were aligned

to the reference peak and spectral regions such as water and

reference peak (4.8 ppm and 0 ppm, respectively) and regions of

no interest and/or no spectral information were removed. Spectra

were then normalised using probabilistic quotient normalization

(PQN) [46] and autoscaled but not bucketed. Cross-validation was

performed where 66% of the samples were used as a training set

and the remaining 33% as a test set, ensuring that the number of

samples in the test set was proportional to the total number of

samples from each class, and that at least one sample from each

class was present in the test set. To choose the number of

components for the model, a leave-one-out cross-validation was

carried out on the samples in the training set, and the F1-score

used to choose the number of components, with the additional

constraint to use a maximum of 10 components. This double

cross-validation was repeated 2000 times with randomly chosen

samples in the training and test set to prevent bias due to the

choice of training or test set. This leads to 362000 models (in the

supplementary information, each of these models leads to a point

on the scores plot, but loadings and weights are presented as

averages over all these models). Finally, this procedure was

repeated with randomly generated class assignments to provide a

reference value for Q2. The chosen number of components minus

one was then used as an OPLS filter and a PLS-DA analysis with

two components was carried out on the filtered data to yield one

predictive and one orthogonal component. The Q2 value was

calculated as Q2 = 12(PRESS/TSS) where PRESS is the sum of

squared differences between the known and predicted classes, and

TSS is the sum of squared differences between the known classes

and their average ( = the total variance). Q2 thus gives a measure

of the goodness of fit after cross validation, and although it is

generally considered to be ‘‘good’’ when its value is higher than

0.5 [47,48] we have compared it to a reference value by

computing Q2 for models where the classes were assigned

randomly [47,48]. In each case, genuine or permutated class

assignments, the Q2 value quoted is the mean of all models. Back-

scaled loadings plots [49] were used to identify resonances with

high variance and high weight, therefore the discriminating

resonances, and verified against the peak intensity of the original

spectra after PQN normalisation. Freely available MultiExperi-

ment Viewer (MeV) which is a part of the TM4 Microarray

Software Suite [50] was used for hierarchical cluster (HCL)

analysis and generation of heatmaps. Euclidian distance algorithm

was used to compute the differences between two gene expression

levels (metabolite level changes) and the average linkage method

was used to define the distances.

Scanning and transmission electron microscopy
Both SEM and TEM were used to examine the structural

changes in bacteria induced by AMPs. Samples for the imaging

were prepared in parallel with the samples used for HR-MAS

NMR and hence represent bacteria in stationary phase. For SEM,

the pellet obtained after centrifugation was fixed in 25 ml of 2.5%

(v/v) glutaraldehyde in 0.2 M sodium cacodylate buffer and kept

at 4uC until further use. In 24-well tissue culture plates 20 ml

aliquots of vortexed bacterial pellet was smeared on 12 mm round

poly-L-lysine (BD Biosciences, Bedford) cover slips with adjacent

chambers filled with sufficient amount of 0.2 M sodium cacodylate

to prevent drying of the slides and kept in a hydration chamber for

2 h. Cover slips were then washed with 0.2 M sodium cacodylate

buffer followed by rinsing with 30%, 70%, 100%, 100%, and

100% ethanol and incubating for 10 min between each wash.

Hexamethyldisilazane (HMDS) was used for drying of the

specimen by washing cover slips in 50/50 100% ethanol/HMDS

for 10 min followed by the final wash in HMDS for 10 min. The

coverslips with dehydrated cells were mounted on the specimen

stubs and sputter coated with gold. Micrographs were acquired

with FEI Quanta 200F FEG scanning electron microscope.

Bacterial pellets for TEM processing were prepared as described

above. Cells were pelleted by centrifugation and the pellet was post

fixed in 1% osmium tetroxide in 0.1 M phosphate buffer for

60 min an RT. The pellet was dehydrated by exposure to a graded

series of ethanol (10%, 70% for 10 min each) followed by four

washes in 100% ethanol for 15 min each. Next, the pellet was

subjected to two washes in propylene oxide, 10 min each. Tubes

containing pellets were constantly rotated during the washes and

the following procedures and the washes were performed in the

fume hood. The supernatant was removed and the pellet placed

into a mixture of 50% resin and propylene oxide for 90 min and

transferred to 100% resin overnight before polymerisation at 60uC
for 24 hours. The resin blocks were sectioned with Leica Ultra-cut

ultramicrotome to semi-thick sections (0.75 mm–2 mm) and stained

with toluidine blue and used to determine the areas for thin
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sectioning (90 nm). The sections were then placed onto 150 mesh

copper grids coated with pioloform support film. Grids were then

stained with uranyl acetate and lead citrate before viewing on

Hitachi H7600 transmission electron microscope. For both

techniques, around 15 images were taken for each treatment.

The following magnifications were used and images were selected

that are representative of the effect observed: 7006, 50006,

120006, 250006, 700006.

GeneChips
GeneChip experiments were performed using the Affymetrix

(Santa Clara, CA) E. coli Genome 2.0 Array with effective,

response inducing, sub-MIC AMP concentrations determined

from the HR-MAS metabolomic study; pleurocidin 62.5 mg/ml,

buforin II 250 mg/ml, magainin 2 125 mg/ml and D-LAK120-

AP13 15.6 mg/ml. Each array includes approximately 10,000

probe sets for all 20,366 genes present in four strains of E. coli over

the entire open reading frame (ORF); K12 (MG1655 laboratory

strain), CFT073 (uropathogenic), 0157:H7-EDL953 (enteropatho-

genic) and O157:H7-Sakai (enteropathogenic). RNA was extract-

ed using RiboPure and enriched using MICROBExpress Bacterial

mRNA Enrichment Kit after the DNA digestion step (Life

Technologies, Paisley, UK) At each step the quality of RNA was

assessed using Pico100 (Picodrop Ltd, Hinxton, UK). cDNA was

synthesized from mRNA and purified using Qiagen MinElute

PCR (Qiagen, Manchester, UK). cDNA was then fragmented and

labeled using terminal transferase and biotinylated Affymerix

GeneChip labelling reagent according to the manufacturer’s

instructions. Fragmentation and labeling were assessed with the

2100 Bioanalyzer (Agilent Technologies, Wokingham, UK) to

obtain the size distribution and yield. cDNA was kept at 280uC
until microarray hybridization. Hybridization of the target to the

GeneChip was prepared according the standard Prokaryotic

Target Hybridisation protocol according to the manufacturer’s

instructions. The efficiency of the hybridization step was assessed

by examining hybridization of Poly-A controls provided for the

Affymetrix GeneChip. Arrays were scanned on an Affymetrix

GCS3000 microarray system and image acquisition, quantification

and data analysis were performed using Affymetrix Command and

Expression Console Software. Data were normalized using the

Robust Multi-array Average (RMA) algorithm built into Expres-

sion Console. Pre-selection of gene lists for each treatment was

performed using Qlucore Omics Explorer (Qlucore AB, Lund,

Sweden). First, ANOVA across all samples identified the twenty

most differentially expressed genes according to each replicated

treatment. These were then assessed by principal component

analysis (Fig. S6 in File S1) to confirm that independently

replicated experiments produced consistent results. Signal inten-

sities for gene expression were then averaged across technical

duplicates/triplicates and log transformed. For the gene annota-

tion enrichment analysis, differentially expressed genes in treat-

ment versus control samples were selected by a paired, homosce-

dastic t-test with a significance cutoff of p,0.05 and lists for the

four AMP treatments were then compared using Venny [51].

Microarray data are available in the ArrayExpress database (www.

ebi.ac.uk/arrayexpress) under accession number E-MTAB-1703.

To better understand the differences between the effects of the

four treatments, significance thresholds that identified the

approximate top 200–250 differentially expressed genes were

selected; p#0.0184 for buforin II and D-LAK120-AP13,

p#0.0425 for pleurocidin and p#0.078 for magainin 2. These

lists were analyzed using the GOEAST Gene Ontology Enrich-

ment Analysis Software Toolkit where the Benjamini-Hochberg

option was selected allowing an FDR up to 15% [52].

Discriminating metabolite changes, identified from HR-MAS

NMR, were then mapped onto the KEGG pathway using BioCyc

Omics Data Analysis [53] and genes related to given metabolic

pathway checked against consistently differentially expressed

genes, whether or not they had passed the significance test

described above.

Multiparameter viability assays
In order to assess the functionality and cellular integrity of

bacteria we used the following viability assays: membrane

potential assay, esterase activity assay and BacLight Live-Dead

stain for microscopy [26].

As previously, E. coli NCTC 9001 were grown from glycerol

stocks in Muller-Hinton broth overnight at 37uC without shaking

until an OD620 of 1.0 was reached. 1 ml aliquots of culture were

challenged for 30 min with four peptides at and below the

threshold concentrations established with NMR. Cells were then

harvested by centrifugation at 5,0006 g for 5 min and washed in

50 mM phosphate buffer (pH 7.0). For BacLight Live/Dead stain

cells were diluted to 46108 CFU/ml, whereas for the remaining

assays cells were diluted to 26108 CFU/ml. All experiments were

performed at room temperature. Negative controls were obtained

either by treatment with 70% isopropanol for 10 min and

removed by centrifugation at 5,0006 g for 5 min and re-

suspension in PBS, or by heat killing at 85uC for 10 min on a

heat block. Assays were performed in black, flat bottom, 96-well

plates and read on a Synergy HT multi-mode microplate reader

(BioTek, Winooski, VT)

Membrane potential
25 mg of dye DiBAC4 (Anaspec, Fremont, CA) was reconsti-

tuted in 2.42 ml ethanol to obtain a 20 mM stock solution which

was stored at 220uC. The stock was diluted further with water to

working concentration of 12.5 mM immediately before use. 20 ml

of 12.5 mM dye was added to a 96-well plate, covered by 180 ml

bacterial suspension in PBS and mixed. The plate was incubated

in the dark for 5 minutes and fluorescence emission was measured

(excitation 485 nm, emission 535 nm). Since membrane damage

leads to higher fluorescence intensity, values were background

corrected and expressed as a reciprocal before being normalised

with untreated cells defined as being 100% and isopropanol

treated cells defined as 0%.

Esterase activity
5 mg of esterase substrate 5,6-carboxyfluorescein diacetate

(CFDA) was dissolved in 1.086 ml dimethyl sulfoxide (DMSO)

to obtain 10 mM stock kept at 220uC. Stock was diluted 406 in

water immediately before use to obtain working concentration of

250 mM, which was pre-aliquoted to a 96-well plate. 180 ml of

bacterial suspension in PBS was added to the plate and mixed with

the detection solution. The plate was incubated in dark for

30 minutes with occasional shaking and fluorescence emission

measured (excitation 485 nm, emission 535 nm).

LIVE/DEAD BacLight
LIVE/DEAD BacLight kit (Life Technologies, Paisley, UK) was

used to measure membrane integrity. Harvested cells were

reconstituted with saline and 3 ml of the dye mixture (1.5 ml of

SYTO9 (3.34 mM) and 1.5 ml of propidium iodine (20 mM)) was

added to each 1 ml of bacterial suspension and mixed. Tubes were

incubated for 15 minutes in the dark with occasional shaking and

fixed with 20% paraformaldehyde (PFA) and kept at 4uC.

Specimens were viewed on an Olympus BX60 microscope fitted
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with an Andor Ultrahigh-resolution CCD setup. A 620 oil

immersion lens was used to obtain a 200 mm field width.

Excitation and emission filters were 480/520 nm and 515/

560 nm respectively.

MIC testing
Parent strain BW25113 and Keio knockout strains [34] for

DyejF, DyjjB, DyohN, and DyrdB were obtained from the Coli

Genetic Stock Center (Yale University, New Haven, CT). The

activities of the peptides were assessed in planktonic suspension in

polypropylene 96 well plates (Greiner Bio-one, Frickhausen,

Germany) according to a modified broth dilution assay (54).

Bacteria were grown without shaking in 50 ml Mueller-Hinton

(MH) broth at 37uC. Peptides (pleurocidin, magainin 2 and LL-37)

were tested in duplicates with two rows allocated for each peptide.

In each of columns 2–11, 50 ml of MH broth was added under

sterile conditions. In the first column of each row, 50 ml of 256 mg/

ml stock peptide solutions, prepared in distilled water, were added

and then the broth from the second column was pipetted into the

first column and thoroughly mixed before being deposited again in

the second column. This process was repeated throughout the tray

providing a twofold dilution of peptide with each row. Bacteria

with an A620 of 0.001 were then added to each well in volumes of

50 ml giving a further twofold dilution and a final volume of 100 ml

per well. The final column was used either as sterility control

(100 ml broth) or negative control (no peptide). Plates were

incubated overnight at 37uC and the A620 read. Growth curves

prepared from duplicates were fitted to determine the peptide

concentration required to inhibit growth by 50% (MIC50). The

MIC50 quoted for each peptide (Fig. 4) is an average value from at

least two independent repeats.

Supporting Information

File S1 Supplementary figures and table.

(PDF)
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9. Pietiäinen M, Gardemeister M, Mecklin M, Leskelä S, Sarvas M, et al. (2005)
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