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ABSTRACT   

Epigenome-wide association scans (EWAS) of human complex traits are a rapidly 

growing area of research, in part due to recent advances in technology that have 

allowed for a deeper coverage of the human methylome. One of the unique features of 

the human methylome is that it is dynamic and previous studies have shown that age 

can have a strong impact on DNA methylation patterns. The dynamic nature of DNA 

methylation also influences EWAS methodology, both from a statistical and biological 

perspective. In this thesis, I explored EWAS methods and applications to ageing and 

age-related phenotypes. Firstly, I estimated EWAS power under several simulation 

scenarios and study designs, and my results suggested that the majority of recent EWAS 

studies lack statistical power to detect small DNA methylation effect sizes. I then 

applied EWAS to identify differential methylation CpG sites associated with three 

phenotypes, including ageing, birth weight and smoking. One of the novel findings 

from this thesis was that hundreds of genome-wide significant ageing-related hyper-

methylated regions were identified across multiple tissues in twins. These findings 

confirm and extend previous work showing that ageing has a strong underlying effect 

on DNA methylation. Birth weight did not yield significant differential methylation 

sites, which may be partly explained by low power to detect modest methylation 

effects.  Smoking is a well-known environmental risk factor for disease, and my 

analyses identified novel impacts of smoking on DNA methylation patterns in adipose 

tissue, which are of interest to cardiovascular and metabolic disease. I further explored 

the impacts of smoking by integrating DNA methylation and gene expression profiles in 

adipose tissue and in whole blood. In addition to identifying novel results, my findings 

also confirmed that the AHRR and F2RL3 genes showed stable and consistent changes 

related to smoking in both DNA methylation and gene expression profiles across 

tissues. My findings explored methodological issues in genome-wide methylation 

studies and showed that age and smoking have a strong and reproducible effect on DNA 

methylation across tissues in humans, which suggests that these factors should always 

be included as covariates in EWAS of human complex traits. 
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1!
1 Introduction 

In this chapter, I will introduce the background of epigenetic modifications, and the 

features of my target measurements, which is the DNA methylation. I further discuss 

about the commonly used epigenetic method, the epigenome-wide association scan 

(EWAS), and the considerations for conducting this type of study. I also discuss about 

the value of using twin study design in the epigenetic studies, and give a brief overview 

of the data and phenotypes in the TwinsUK cohort. Lastly, I have summarized my study 

aims for this thesis. 

Part of this work has been published as a review article in Epigenomics (Tsai et al., 

2012)  

 

1.1 Epigenetics 

Epigenetics was first introduced by Conrad Hal Waddington in 1942, who described it 

as a ‘branch of biology which studies the causal interactions between genes and their 

products, which bring the phenotype into being’ (Waddington, 1942). Epigenetics was 

explained as a stable mechanistic interplay between the genotype and phenotype 

without alteration to the DNA sequence. Subsequently, in 1957 (Waddington, 1957) 

Waddington proposed the idea of an ‘epigenetic landscape’ as a mathematical metaphor 

for the progression of cellular development, and a cell was analogous to a marble 

rolling from the hilltop, where some cells after a certain ‘decision-making’ process 

undergo differentiation (roll down to the valley) to eventually specialize in different 

function and expression from one another (Figure 1-1). 
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Figure 1-1. Waddington’s Epigenetic Landscape (Waddington, 1957) 

More recently epigenetics has been re-defined as a mechanism of regulating gene 

expression without changes in the DNA sequence (Holliday, 1994). The two most 

studied epigenetic modifications are the chemical alteration of the DNA, by the addition 

of a methyl group to the cytosine residues of DNA, known as DNA methylation, and 

modifications of the histone proteins and their tails that format chromatin structure 

(Qiu, 2006; Goldberg et al., 2007), known as histone modification. Other epigenetic 

modifications also exist, such as the DNA hydroxymethylation, noncoding RNA 

regulation of expression (Ponting et al., 2009) and nucleosome positioning (Portela & 

Esteller, 2010). These epigenetic modifications could interplay to modulate chromatin 

structure or regulate noncoding RNA to ultimately influence gene expression (Ponting 

et al., 2009; Kaikkonen et al., 2011). The key role of epigenetic mechanisms is to 

regulate gene expression, for example, through transcriptional-repression (Reik, 2007) 

or epigenetic silencing in cancer through demethylation of CpG islands in the promoter 

regions of tumour suppressor genes (Gonzalez-Zulueta et al., 1995; Herman et al., 

1995; Merlo et al., 1995). 

Within the past decade, epigenetics has been increasingly studied in the context of 

complex diseases. Despite the characterization of many disease-related single 

nucleotide polymorphisms (SNPs) and haplotypes, it is becoming clear that the genetic 

makeup of an individual only contributes to a fraction of the predisposition to certain 
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phenotypes. For instance, genetic variation at the BRCA1/2 in familial breast cancer is 

estimated to account for 30% of its occurrence. The missing 70% is termed the ‘missing 

heritability’ and is believed to be due to other factors, which might include epigenetic 

modifications induced by the environment of the individual. 

Variation in the epigenome of an individual could occur prenatally, during early 

development of primordial germ cells (Reik et al., 2001) or in postnatal life. It might 

involve three scenarios: (1) inherited changes that are present in all tissues (Antequera 

& Bird, 1993; Reik et al., 2001; Bird, 2002); (2) stochastic changes that occur in early 

development (Waterland et al., 2010) or arise in certain tissues during life (Fraga et al., 

2005; Z. A. Kaminsky et al., 2009; Gibbs et al., 2010; Ollikainen et al., 2010; Pai et al., 

2011); and (3) changes triggered by environmental influences, such as long-lasting 

nutritional effects (Jaenisch & Bird, 2003; Feil, 2006). 

In this thesis, I will focus on DNA methylation, as one of most studied and stable 

epigenetic processes. In the following sections, I discuss the characteristics of DNA 

methylation, its patterns in twins, and epigenome-wide association scans (EWAS) using 

DNA methylation. 

1.2 DNA methylation 

DNA methylation is currently the best understood epigenetic modification in mammals. 

It is a biochemical process where methyl groups (CH3) are added to cytosine bases by 

the enzymes DNA methyltransferases, which occurs primarily at cytosine-phosphate-

guanine (CpG) dinucleotides. Rarely, methylation could also occur at non-CpG sites 

(Ziller et al., 2011). CpGs are mostly methylated (70-80%) and have been estimated to 

comprise ~25% of the human genome, and are especially enriched around 15 base pairs 

(bp) upstream of the transcription start sites (TSS) (Saxonov et al., 2006).  Roughly 7% 

of CpGs cluster into regions known as CpG islands (CGI) (Bird, 2002) characterized as 

~1kb regions with over 50% GC content and over 60% observed to expected CpG ratio 

(Gardiner-Garden & Frommer, 1987): 

!"#!!"#$% = !"#$%&!!"!!"#
!"#$%&!!"!!×!"#$%&!!"!!×!"#$%&!!"!!"#$%&'()%* 
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CpG islands occur at ~1% of the genome and it has been estimated that 60-70% of the 

human gene promoters are enriched for CGIs, which are mainly unmethylated in 

normal cells (Weber et al., 2007; Straussman et al., 2009). DNA methylation can also 

be detected at the regions of lower CpG density that border the CpG islands, known as 

CGI shores (~2 kb). It has been shown that CGI shores are enriched for functional 

signals, such as tissue-specificity in DNA methylation profiles (Doi et al., 2009; 

Irizarry et al., 2009), where the majority of methylation changes during reprogramming 

tended to occur (Doi et al., 2009), and are highly associated with gene expression 

linked to disease (Irizarry et al., 2009). 

Although DNA methylation is one of the most stable epigenetic mechanisms, evidence 

shows that dynamic changes in methylation occur during development and 

differentiation. In the following paragraphs I discuss methylation patterns during 

development. 

1.2.1 Role of DNA methylation during early development 

DNA methylation plays a crucial role during development and normal physiological 

processes of mammals.  

1.2.1.1 Reprogramming in gametogenesis, embryogenesis and cell lineage 

differentiation 

Reprogramming predominantly occurs during the germ cell stage and pre-implantation 

(Reik & Walter, 2001a; Santos & Dean, 2004; Buganim et al., 2013; Stower, 2014). In 

the first stage, highly methylated primordial germ cells lose most of their methylation 

memory and reacquire it during the expansion phase. In the fertilization stage, the 

highly methylated primordial germ cells (PGCs) undergo another wave of de-

methylation before embryonic day 12.5 when they migrate to the genital ridges. Most of 

the methylation is erased during this time and followed by de novo methylation after the 

fifth cell cycle (Reik & Walter, 2001b; J. Lee et al., 2002; Yamazaki et al., 2003). 

Passive de-methylation occurs during DNA replication (Bestor, 2000) since the DNA 

methyltranferase DNMT1 is required for copying existing methylation patterns, its 

absence at this stage causes the newly replicated strand to fail to become methylated. 
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The first differentiation event also occurs and selectively activates the lineage specific 

genes. The first two cell lineages: the inner cell mass (ICM; embryoblast) and 

trophectoderm (TE) are established. In porcine in vivo developed latter blastocysts, the 

former becomes hyper-methylated and gives rise to somatic tissues, while latter stays 

unmethylated and forms the placenta (Santos & Dean, 2004; Morgan et al., 2005; Kwon 

et al., 2008; Huang & Fan, 2010). 

DNA methylation levels can be tissue-specific or shared across tissues (Gibbs et al., 

2010; J. T. Bell et al., 2011; Numata et al., 2012; Gamazon et al., 2013; Lokk et al., 

2014). Tissue-specificity occurs as cells transit from a pluripotent state to differential 

cell lineages during the course of early development. Cells acquire tissue-specific 

transcriptional programs from interaction with epigenetic mechanisms (Reik et al., 

2001; Albert & Peters, 2009; Hemberger et al., 2009) that target DNA regulatory 

sequences such as promoters (Maston et al., 2006). Thus there could be more 

methylation differences across tissues of the same individual than in the same cell type 

of two unrelated individuals (Eckhardt et al., 2006). For example, in 283 samples of 

human blood, brain, kidney, and skeletal muscle tissues, there were both tissue-specific 

and tissue–shared sites and regions found across tissues (Day et al., 2013). Tissue-

specificity and cell heterogeneity of methylation levels impact choice of the appropriate 

tissue for EWAS. Generally, the most accessible tissues are saliva and whole blood. It 

is still unclear whether these samples are good surrogates for methylation from other 

tissues. Since methylation levels are heterogeneous among tissues and cells (Doi et al., 

2009), cell composition should also be adjusted for, especially when using whole blood 

and methods have been proposed to resolve this (Houseman et al., 2012; Zou et al., 

2014). 

1.2.1.2 Genomic imprinting 

Genomic imprinting is defined as the allele-specific silencing of imprinted genes, where 

one parental allele is repressed (by DNA methylation) and the other is activated in a 

stable manner. The imprinted genes could be functionally different depending on the 

parental origin (McGrath & Solter, 1984; Surani et al., 1984) and subsequently can 

affect human genetic diseases differently (Nicholls et al., 1989; Henry et al., 1991). 

During methylation reprogramming of germ cells, methylation levels are erased and 
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reset on imprinted differential methylation sites at the imprinting control centres 

(Tucker et al., 1996). During fertilization, a rapid wave of de-methylation occurs on the 

paternal non-imprinted genetic sequences (Mayer et al., 2000; Oswald et al., 2000), and 

the maternal genome is de-methylated passively during the DNA replication stage of 

embryogenesis (Howlett & Reik, 1991; Reik & Walter, 2001b). The expression of 

imprinted genes is determined by whether the allele is paternally or maternally 

inherited, for example, at the H19/IGF2 region only the maternal copy of H19 is 

expressed, whereas only the paternal copy of IGF2 is expressed (Barlow et al., 1991; 

Bartolomei et al., 1991; DeChiara et al., 1991). Another similar interesting imprinting 

example in disease is the chromosome 15q11-q13 region, where two different 

neurological disorders result from imprinting errors, Angelman syndrome and Prader-

Willi syndrome (Cassidy et al., 2000). 

1.2.1.3 X-chromosome inactivation 

In females, there are two copies of the X chromosome. One of two X chromosomes is 

silenced at random, known as X-chromosome inactivation, and the silencing is 

maintained by DNA methylation. DNA methylation on the X-chromosome in females 

shows chromosome-wide hemi-methylated levels (Avner & Heard, 2001). The 

inactivated X chromosome is condensed into the ‘Barr body’ (Barr & Bertram, 1949) as 

a result of whole-chromosome silencing (Ohno et al., 1959; Lyon, 1961). 

1.2.1.4 Regulation of transcription and maintenance of genome stability 

For decades, DNA methylation has been reported to regulate gene expression by 

repressing transcription (Holliday & Pugh, 1975; Riggs, 1975). At gene promoters, a 

negative correlation between methylation and gene expression is observed across 

multiple tissues (Eckhardt et al., 2006; Ball et al., 2009; Lister et al., 2009). This might 

occur either by methylation directly blocking access of transcription binding factors to 

the binding site sequence in the promoter, or indirectly through chromatin remodelling. 

In the first approach, CpG methylation can block the chromatin boundary element 

binding protein, transcriptional repressor CTCF, access to DNA and allow deactivation 

of the promoter activity (A. C. Bell et al., 1999; Ohlsson et al., 2001). In the second 

approach, the methylated DNA can be bound by Methyl-CpG-binding Proteins, such as 
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MeCP2 (Lewis et al., 1992; Nan et al., 1997), and resulting in recruitment of histone 

deacetylase (HDAC) and inactivation of chromatin structure, therefore silencing of the 

gene (Jones et al., 1998; Nan et al., 1998; Fuks et al., 2003). 

However, the correlation between gene body methylation and gene expression is not 

fully understood. DNA methylation levels in the gene body can be positively correlated 

with gene expression levels and mid-range expressed genes appear to have the highest 

methylation levels (Zilberman et al., 2007; Zemach et al., 2010; Jjingo et al., 2012). In 

a recent study, a negative correlation between adipose DNA methylation and gene 

expression levels was observed on sites located in the gene-body or 1500 bp upstream 

of the TSS across 13,532 genes (Grundberg et al., 2013). It is still unclear whether 

methylation is driving changes in gene expression or if it is itself a consequence of gene 

regulation (Schubeler, 2012). One recent study suggested that DNA methylation could 

actively or passively associate with gene expression, depending on where it occurs in 

the genome (Gutierrez-Arcelus et al., 2013). 

1.2.2 DNA methylation variation and genetic factors 

During the development process, the methylation marks are thought to be wiped out.  

Recent evidence shows that methylation levels at different regions of genome are under 

the influence of genetic variants, suggesting that they are heritable. The heritability of 

phenotype estimates the proportion of phenotype differences among individuals that are 

contributed by their genetic differences. There are two types of heritability: broad-sense 

heritability (H2) and narrow-sense heritability (h2). Each phenotype is composed of a 

genotype (G) and an environment (E), and the variance of this phenotype is explained 

by the variance of genotype, environment, and the covariance of genotype and 

environment as: 

Var (P) = Var (G) + Var (E) + 2 Cov (G, E) 

In the broad-sense heritability, all the genetic contributions, such as additive, dominant, 

epistatic, and parental effects are considered and defined as: 

!! = !"#!(!)
!"#!(!) 
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The narrow-sense heritability, which is what I consider in the thesis, only accounts for 

the additive genetic effect, is defined as: 

ℎ! = !"#!(!)
!"#!(!) 

Using twin study, by comparing genetically identical MZ twins to DZ twins, who share 

on average 50% of germ line genetic variants, one can estimate: the genetic contribution 

(A), the shared environmental components (C), and the unique environmental 

components (E) to the phenotype (Falconer, 1996).  

The narrow-sense heritability of the genome-wide methylation in my thesis is estimated 

from the comparison of the intra-class correlation coefficients (ICC) in MZ and DZ 

twins (Figure 1-2). I assume that the common shared environment is the same for both 

MZ and DZ twins, and their heritability is calculated by: 

ℎ!"#$%&#'#$(!(ℎ!) = 2!×! !""!" − !""!"  

 

Figure 1-2. Heritability estimation using twin model  

Evidence for DNA methylation heritability comes from the observations that 

methylation is more similar within MZ twins than DZ twins (Z. A. Kaminsky et al., 

2009; J. T. Bell et al., 2012; Gordon et al., 2012) and methylation patterns segregate 

within families (Bjornsson et al., 2008). The average methylation heritability across the 

genome was estimated to be about 18% in Illumina 27k blood data (J. T. Bell et al., 

2012) and 19%-34% in Illumina 450k adipose tissue data (Grundberg et al., 2013), 

depending on the probe subset. Genetic variants can impact DNA methylation levels (or 
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methylation quantitative trait loci, meQTLs) and the majority of associations occur in 

cis (Schilling et al., 2009; Gibbs et al., 2010; J. T. Bell et al., 2011; Gertz et al., 2011; J. 

T. Bell et al., 2012; Numata et al., 2012; Drong et al., 2013; Gamazon et al., 2013). By 

comparing meQTLs identified in blood (J. T. Bell et al., 2012), lymphoblastoid cell 

lines (J. T. Bell et al., 2011) and four brain tissues (Gibbs et al., 2010), nearly 28% and 

34% of the 1,537 blood meQTLs overlapped with those in brain and lymphoblastoid 

cell lines, respectively. The overlap shows that methylation levels at these CpG sites are 

strongly heritable and conserved across tissues over time. 

It is debated whether epigenetic modifications can be passed down to offspring due to 

‘foetal reprogramming’ in early development. During stages of germ cell development 

and pre-implantation of the embryo, the genome-wide epigenetic marks are erased to 

restore the totipotency of the fertilized egg (Reik et al., 2001). The epigenetic marks 

then become mitotically stable after cell differentiation or by the end of the cell cycle 

(Reik et al., 2001; Morgan et al., 2005). Studies show that some of these epigenetic 

marks are not always erased and can be transmitted from the parents to offspring 

through the germ line (Chong & Whitelaw, 2004), which could provide the basis for 

trans-generational epigenetic inheritance (Daxinger & Whitelaw, 2012; Grossniklaus et 

al., 2013). 

An example of trans-generational epigenetic inheritance could be observed in the agouti 

viable yellow (Avy) gene in mice (Wolff et al., 1998). These agouti mice have the intra-

cisternal A particle (IAP) restrotransposon inserted upstream of the agouti gene. If the 

Avy locus were unmethylated then the agouti protein would become overexpressed and 

produce a viable yellow (Avy/a) mouse. The yellow-coated mice are obese, have shorter 

lifespan and higher risk of cancer compared to their non-yellow coated siblings 

(Miltenberger et al., 1997). The epigenetic regulation of the offspring agouti mice could 

be influenced by maternal intake of methyl-supplemented diet (Wolff et al., 1998), and 

a yellow-coated mother could pass on a higher proportion of the silenced Avy allele to 

their offspring through the germ line, thus suggesting that epigenetic modification was 

not fully erased in germ cells (Morgan et al., 1999). In humans, genetic associations 

with DNA methylation at many CpG sites, as well as DNA methylation heritability 

findings in twins, show that methylation at some genomic regions can be influenced by 
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the underlying genetic sequence, and imply that these regions may show evidence for 

heritability across generations. 

1.2.3 DNA methylation variation and environmental factors 

Here, I discuss environmental and lifestyle factors that have been linked to differential 

methylation sites and potentially disease in humans. 

1.2.3.1 Ageing 

The DNA methylation profile of an individual has been shown to change during the 

ageing process. Using twins, researchers have shown on a genome-wide scale that 

methylation changes over time, with younger monozygotic twins sharing more 

similarities in methylation than older twins (Fraga et al., 2005). This suggests that 

methylation variability arises from ageing and different lifestyles (Fraga et al., 2005). In 

another study, the methylation levels of three genes within the same subjects were 

longitudinally compared over five years. The direction of change over time was gene-

specific, and overall changes were different among individuals (Wong et al., 2010). The 

CpG sites at which methylation levels change over time are known as age-related 

differential methylation sites (a-DMRs/a-DMPs). A-DMRs/a-DMPs have been 

identified across different tissues and cells, including white blood cells (Boks et al., 

2009; B. C. Christensen et al., 2009; Rakyan et al., 2010; Teschendorff et al., 2010; 

Adkins et al., 2011; Alisch et al., 2012; J. T. Bell et al., 2012), skin (Gronniger et al., 

2010; Koch et al., 2011), saliva (Bocklandt et al., 2011), and human brain tissues 

(Hernandez et al., 2011; Numata et al., 2012). Some of these differential methylation 

sites were proposed as stable biomarkers for chronological age prediction (Bocklandt et 

al., 2011; Koch & Wagner, 2011; Burgess, 2013; Horvath, 2013). More discussion of 

age-related methylation changes is presented in Chapter 4. 

1.2.3.2 Nutrition and caloric intake 

The maternal nutritional intake in mammals, such as folate, vitamin B6 and B12, and 

betaine, or caloric restrictions during pregnancy, can influence methylation changes in 

offspring (Alegria-Torres et al., 2011; Feil & Fraga, 2011). These methylation changes 
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are often also associated with phenotype changes and metabolic-related diseases, such 

as low birth weight (see discussion in Chapter 5), obesity and type II diabetes (Seki et 

al., 2012). For example, the diet of the agouti mouse interacts with the agouti gene to 

influence coat colour (Morgan et al., 1999). After feeding the yellow-coated agouti 

mother choline, folic acid, betaine, and vitamin B12 before and during pregnancy, the 

offspring are predominantly brown and have lower susceptibility to obesity and 

diabetes (Waterland & Jirtle, 2003). Similarly, in humans, the Dutch famine study also 

reveals that nutritional insufficiency during pregnancy can influence the methylation 

status of the offspring. The children who are prenatally exposed during the Dutch 

famine of 1944-45 have lower methylation level of the imprinted IGF2 gene when 

compared to their same-sex siblings who are not exposed to famine in utero after six 

decades. Those subjects also have significantly higher rates of metabolic syndrome later 

in life (Heijmans et al., 2008). This study suggests that the methylation changes from 

early-life nutrition condition may persist throughout life. 

1.2.3.3 Air pollution, smoking, and others 

Environmental toxins, such as air pollution, benzene, dioxin, and cigarette smoking, can 

induce DNA methylation changes. Strong evidence for impacts of tobacco smoking on 

methylation changes at many genomic regions has been identified across populations 

and tissues (Breitling et al., 2011; Philibert et al., 2013; Shenker et al., 2013; Zeilinger 

et al., 2013; H. R. Elliott et al., 2014; Y. Zhang et al., 2014). Among these regions, the 

CpG sites in the AHRR gene, a mediator of carcinogenic agents PAHs which causes 

tobacco-related lung cancer, are identified to be the top associated and replicated 

regions in smoking (Philibert et al. 2013; Shenker et al. 2013; Zeilinger et al. 2013; 

Elliott et al. 2014). Other environmental agents that associated with methylation 

changes are alcohol consumption (B. C. Christensen & Marsit, 2011; H. Zhang et al., 

2013), UV radiation (Stein, 2012), pain perception (J. T. Bell et al., 2014), 

psychological stress (Groom et al., 2011), and sunlight (Gronniger et al., 2010). 
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1.3 Epigenome-Wide Association Scans (EWAS) 

Recent DNA methylation studies in humans have largely expanded from candidate gene 

studies to EWAS studies (Rakyan, Down, et al., 2011). In this section, I introduce 

EWAS and discuss analytical considerations for methylation array-based EWAS 

studies. To date, EWAS focus on characterizing DNA methylation, however in the near 

future, there is potential to examine other epigenetic processes, such as histone 

modification. There are challenges in performing EWAS on human complex traits, 

discussed below (see also (Tsai et al., 2012)).  

1.3.1 The choice of assay platform for methylation-based EWAS 

Several platforms have been developed to detect genome-wide methylation levels. They 

could be categorized into three main groups (J. T. Bell & Spector, 2011; Heyn & 

Esteller, 2012): microarray-based, enrichment-based followed by sequencing, and 

bisulfite sequence-based. The most cost-effective platform is the microarray-based 

approach, for example, Illumina Infinium® HumanMethylation27 (Illumina 27k) 

(Bibikova et al., 2009) and Illumina Infinium® HumanMethylation450 (Illumina 450k) 

(Dedeurwaerder et al., 2011) bead arrays, and comprehensive high-throughput arrays 

for relative methylation (CHARM) (Irizarry et al., 2008). On these hybridization-based 

arrays, DNA samples are first bisulfite treated followed by bead-anneal genotyping 

(Illumina system) or have restriction enzyme application for methylation detection 

(CHARM). Among the Illumina microarrays, the old version is the Illumina 

GoldenGate Methylation Cancer Panel I (Illumina GoldenGate) (Bibikova et al., 2006) 

that targeted 1,500 cancer-related CpG sites. The next version is the Illumina 27k, 

where coverage increased to 27,000 CpG sites in promoter-specific regions that were 

predominantly unmethylated. The latest version is the Illumina 450k that covers 

~485,000 CpGs that are predominantly located near genes, and represent 5% out of 

approximately 107 possible CpG sites across the genome. One potential benefit of the 

continual use of these standardized array-based platforms is to minimize variation 

caused during the methylation detection and their wide use also allows for the 

possibility of meta-analysis across studies. 
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The enrichment-based platforms captures the methylated portions of the genome by 

array or sequencing-based methods, and include methylated DNA immune-precipitation 

sequencing (MeDIP-seq), methylated DNA capture by affinity purification sequencing 

(MeCAP-seq), and methylated DNA binding domain sequencing (MBD-seq). Here, the 

methylation levels are at the resolution level of DNA fragment size (usually up to 500 

bp) instead of at a single CpG level resolution. The bisulfite sequencing-based methods 

include whole-genome bisulfite sequencing (WGBS), which is currently the gold 

standard. WGBS has the widest coverage and also gives single CpG resolution, 

however, this method is costly and cannot differentiate between 5-hydroxymethylation 

and 5-methylation. 

The choice of platforms drastically affects the coverage and resolution across the 

genome, and the sensitivity. Sample throughput and genome coverage across multiple 

platforms has previously been discussed (Laird, 2010), and cost, sample size, and 

coverage are mutually dependent. All methods have strengths and weaknesses, 

therefore, it is important to validate results using multiple methylation assays (Mensaert 

et al., 2014). 

1.3.2 Study design 

There are several study designs that can be used in an EWAS setting (Rakyan, Down, et 

al., 2011) and some are summarized in Figure 1-3 (Tsai et al., 2012). 

The two major study designs for EWAS are the cross-sectional and longitudinal 

designs. To determine causality between methylation changes and disease occurrence, 

longitudinal studies would be required. Because DNA methylation levels change over 

time, long-term monitoring of methylation changes prior to and after phenotype 

changes or disease onset would be optimal. The cross-sectional study is a widely used 

EWAS design due to sample availability. Because methylation levels are only sampled 

at one time point in the cross-sectional study (usually after disease occurs), it is difficult 

to discern if the methylation changes are the cause or consequence of the phenotype 

changes. 
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Figure 1-3. Epigenome-wide association study designs 

(A) Cross-sectional and (B) longitudinal study designs for EWAS using population- and family-
based samples. Circles and squares are females and males, where dark purple data points are 
individuals with disease. For quantitative phenotypes, the colour scale is the quantile of the 
phenotypic distribution. Lines between the MZ twin pairs show different levels of DNA 
methylation heritability at the CpG site of interest.  

DZ: Dizygotic; Meth: Methylation; MZ: Monozygotic; sib: Sibling. Reproduced from Tsai et 
al. 2012, Figure 1. 

The cross-sectional study design can further divided into population-based and family-

based. In the population-based case-control design, the disease status of cases is 

examined retrospectively and controls are typically chosen with matched age and 

gender. The methylation levels are then compared between cases and controls to 

identify diseases-related differential methylation sites. In family-based designs, the twin 

design is well-characterized (J. T. Bell & Saffery, 2012). The disease discordant MZ 

twin design is one optimal design because identical twins share nearly 100% of their 

genetic variants and are matched for age and gender, and share similar embryonic and 

early developmental environment. The purpose of using MZ twins is primarily to 

identify the environmentally driven or stochastic methylation changes in the case. This 

design can be MZ twins raised in the same environment until a certain age, or reared-

apart disease discordant MZ twins that are valuable in detecting environmental effects. 

Furthermore, the disease discordant MZ twin design is applicable to non-twin studies, 

i.e. in cancer research. The general approach is to acquire the tissue samples from both 

the cancerous region and healthy region of the same subject, then compare the 

methylation differences between samples.  
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Other family-based studies include comparisons across MZ, DZ, sibling, half-sibling, 

parent-offspring, and multigenerational families. The parent-offspring and trans-

generational comparisons are useful for detecting methylation heritable regions. 

1.3.3 Power estimation for EWAS  

The power of an EWAS study depends on the sample size, significance level, and effect 

size of the target loci. Few studies have addressed power for a case-control design or 

MZ twin design. The methylation differences of differential methylation positions 

identified in MZ pairs tend to be quite small, perhaps because twins share more similar 

methylation patterns compared to unrelated subjects. Also, in general disease discordant 

MZ twins are rare, and small samples will have low power to detect DMPs of modest 

effects. Using a simulation-based approach, I estimated power for EWAS study designs 

and found that in addition to the common determinates, other factors can also impact 

power, such as study design, test statistic, and the underlying methylation structure (see 

Chapter 2). 

1.3.4 Data quality control analysis 

Multiple methods have been proposed quality control assessment of array-based 

methylation data and several R packages were developed for normalization. To avoid 

potential batch effects, the appropriate experimental design should be used. 

Randomizing samples in the experimental design and performing analyses to adjust for 

confounders should be a routine for EWAS study. The general procedure for data 

quality control should be to firstly identify the outliers and batch effects. An initial data 

check of the raw methylation patterns is highly recommended prior to analysis, 

including an assessment of the correlation patterns in the genome-wide methylation 

estimates across entire samples, cases and controls, across genome-wide loci, within 

autosomes and sex chromosomes. 

A notable issue in EWAS analysis has been the correction for multiple testing. The 

significance level depends on the total number of CpG sites examined, for example, the 

Bonferroni adjusted P value of 10-7 is one significance threshold for the Illumina 450k 
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array. However, patterns of co-methylation across the genome indicate non-

independence in methylation levels at CpG sites that are located close together, and 

therefore the Bonferroni correction can be over-conservative. More discussion on 

quality control and multiple testing corrections are presented in Chapter 2 and Chapter 

3. 

1.3.5 Replication and validation  

Similar to GWAS study, it is important to replicate the EWAS results in an independent 

sample. This is particularly important in the context of determining whether the 

differential methylation is causal or consequential of the disease status. Replication 

guidelines for the initial stages of EWAS have previously been discussed (Tsai et al., 

2012). Briefly, the replication of identified differential methylation should be 

implemented using the same ethnic population and tissue. The validation of the DNA 

methylation signal in the region of interest should be performed using different 

technologies. Current validations for Illumina array data are typically performed using 

bisulfite sequencing or pyrosequencing on the regions of interest. Custom validation 

assays could be chosen for specific diseases or phenotypes, for example, promoter-rich 

assays, or CpG-shore-rich assays to study cancer or tissue specific regions.  

An example showing the importance of appropriate analysis and validation of high 

throughput technology results is that of recent findings of allele-specific expression and 

RNA editing. Several studies have commented on the identification of imprinting, and 

mismatch of mRNA-DNA sequence difference (RDD) sites in one individual (DeVeale 

et al., 2012; Kelsey & Bartolomei, 2012; Kleinman & Majewski, 2012; W. Lin et al., 

2012; Pickrell et al., 2012). In the original studies, researchers found an extremely high 

frequency of genomic imprinting loci and RDD sites, where subsequent studies found 

an alarmingly high proportion of false positives from the noise created by analysis 

errors (e.g. mapping error caused by sequence alignment and sequencing errors). This 

highlights the importance that appropriate efforts need to be invested into the proper 

methodological approaches to analyse large-scale high-throughput datasets. 
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1.4 Value of epigenetic studies in twins  

Studying twins allows us to better understand the biological processes underlying the 

regulation of methylation, as well as understanding the heritability of methylation. The 

evidence that DNA methylation is heritable comes from the fact that MZ twins share 

similar methylation levels compared to dizygotic (DZ) twins (Z. A. Kaminsky et al., 

2009) and from a family clustering study where methylation patterns are segregated 

within the family (Bjornsson et al., 2008).  

Phenotypic differences between MZ twins are commonly thought to be an outcome of 

environmental contributions. Accumulated phenotypic differences between MZ twins 

illustrate how environment and lifestyle can together change the susceptibility to 

disease. These might be identified using the discordant MZ twin design. Previous 

studies using discordant MZ twins aimed to find phenotype-related differentially 

methylated positions (DMPs) or regions (DMRs), such as in systemic lupus 

erythematosus (SLE), rheumatoid arthritis (RA) (Javierre et al., 2010), and multiple 

sclerosis (Handunnetthi et al., 2010). The disease discordance rates have been observed 

to vary from 5% to 75% in MZ twins (Petronis et al., 2003; Ballestar, 2010), for 

example, the discordant rate in MZ for osteoarthritis (OA) is 40% (Spector et al., 1996), 

which suggests that there is a strong environmental or epigenetic component. 

The twin study design is a powerful method to find the non-genetic risk factors in a 

study design matched for genetics, age, sex, and similar environmental exposures in 

early development (Snieder, 2010; van Dongen et al., 2012). It enables researchers to 

answer the following questions: (1) are the causes of the discordant disease status in 

genetically identical twins epigenetic, and (2) what is the heritability of epigenetic 

factors? 

1.5 TwinsUK cohort 

The TwinsUK cohort was established since 1992 to recruit MZ and DZ same-sex twins 

(Moayyeri et al., 2013). The majority of participants are healthy female Caucasians 

(age range from 16 to 98 years old). There are more than 13,000 twin participants from 

all regions across the United Kingdom and many have multiple visits over the years. 
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Participants were asked to complete health questionnaires at their visits or by postal 

service during their follow-up period. These include information about their health, self 

and family disease history, medication use, and habitual behaviours, such as smoking 

and alcohol consumption. There are collections of clinical (e.g. bone mineral density) 

and phenotype measurements (e.g. blood pressure and lung function), and biochemical 

measures from biological samples (e.g. whole blood and urine samples).  

Furthermore, there are also extensive -omic data available, such as genomic, 

epigenomic, and gene expression data in multiple tissues. The major research interest 

has been to discover the association between these -omic tools and healthy ageing, and 

with age-related phenotypes. For example, in this thesis, I have used methylation array 

data to study epigenetics in smoking and follow-up the top results with an integrative -

omics approach in order to understand the underlying mechanisms. The major study 

design is a population-based design to improve study power, as well as undertaking a 

disease discordant MZ twin design in the birth weight chapter (Chapter 5). 

1.6 Study aims 

Epigenetics has given us a better understanding of our genome, its interactions and 

functions, helping to find out the etiology and disease mechanisms that are not fully 

explained by genetic sequence changes. 

We now know that epigenetic modifications play a crucial role in prenatal/postnatal 

development and cell differentiation through various means, such as histone 

modification and differential methylation on the imprinted genes. Recent EWAS studies 

are finding associations between epigenetic modifications and phenotype changes for 

complex traits. Correspondingly more demands have been placed onto sequencing 

technology and enabled a systematic assessment of the DNA methylome, allowing 

more detailed epigenome-wide scans. The standardized platform (i.e. Illumina 450k) 

now yields a considerable amount of coverage and high-throughput scans of the 

methylome, and it has allowed for rapid replication studies and meta-analysis of 

different data resources. 
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The key focus of EWAS studies has been the identification of differential methylated 

positions or regions. These can be long-term epidemiological biomarkers for disease or 

environmental exposure indicators. Longitudinal EWAS study is an important design to 

understand the disease mechanisms, epigenetic mediation of disease, and important 

biological pathways. The outcome of this research can ultimately contribute to modern 

medicine, for example, (1) to inform prognosis; (2) find a treatment to reverse 

epigenetic changes by repressing the transcription and hence slowing the disease 

progression; (3) identify the risk factors for prediction and prevention; (4) identify the 

biomarkers for treatment efficacy. Moreover, specific differential methylation pattern 

are showing promise of profiling phenotypes quite precisely, for example, 

chronological age, gender, tissue samples, and smoking status. 

The goal of my PhD is to understand and apply EWAS analytical methodology to age, 

age-related phenotypes and disease risk. From this, I also expect to find out more the 

ways in which differential methylation can affect phenotypes along with integrating 

other –omics data, such as gene expression data. I hope to offer new insights into 

methylation studies in the related phenotype field. 

The chapters in this thesis are arranged in the following order. Firstly, an overview of 

simulation-based estimate of the power of an EWAS study, and discussions of the 

power differences under a wide range of EWAS parameter settings (Chapter 2). 

Followed by a review of the methodological considerations in EWAS study, and 

discussions of the current pipeline for the quality control and analytical methods in 

array-based methylation data (Chapter 3). The subsequent three chapters describe our 

findings and results of our EWAS study of three phenotypes: ageing and age-related 

phenotypes (Chapter 4), birth weight (Chapter 5), and smoking (Chapter 6). In my early 

work, I have performed an EWAS for osteoarthritis with preliminary results (see 

Appendix A). The last chapter is a discussion and concluding remarks of my thesis 

work (Chapter 7).  
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2!
2 Power and Sample Size 

Estimation for Epigenome-wide 
Association Scans to Detect 

Differential DNA Methylation 
Epigenome-wide association studies (EWAS) are under way for many complex human 

traits, however EWAS power has not been fully assessed. I have investigated power of 

EWAS to detect differential methylation using case-control and disease discordant MZ 

twin designs with genome-wide DNA methylation arrays. In this chapter I provide 

power estimates for array-based DNA methylation EWAS under these two study 

designs and using both parametric and non-parametric analysis, and explore the 

multiple factors that impact on EWAS power.  

This work has been published as a research article in International Journal of 

Epidemiology (Tsai & Bell, 2015) 

 

2.1 Introduction  

Statistical power refers to a statistical test to see the probability that it correctly rejects 

the null hypothesis (H0) when it is false (Figure 2-1). A sufficient study power, mostly 

suggested as 80%, represents a study having sufficient sample size to detect the 

minimum effect size between the case and control changes. Without a sufficient power, 

the chance of the false discoveries can be increased. In addition, results may only occur 

in the studied population, and not applicable to the other populations. 
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Figure 2-1. The hypothesis of statistical power 

Several factors should be taken into account when considering EWAS power, including 

EWAS study design, the effect size, and multiple testing correction. First, the 

appropriate study design will determine the analysis method and is crucial to sample 

size estimation and power. The case-control study is the most widely performed disease 

association design. However, the disease discordant MZ twin study is often considered 

to be optimal in epigenetics, because genetic contributions can be adjusted for as co-

twins share identical genetic variants over most of their genome (Rakyan, Down, et al., 

2011). The standard analyses for these designs are to compare paired or unpaired mean 

methylation differences or ranks of methylation levels between groups. Second, the 

DMP effect size is clearly a major factor determining the power of the study. In EWAS, 

effect size has typically been measured as the mean methylation difference between the 

groups (Mean Methcase – Mean MethControl), or an alternative measure, the methylation 

odds ratio (methOR), has also been proposed for discrete traits and is calculated as: 

!"#ℎ!" = !!"#$!!"#ℎ!"#$%&'!"#$ !×!(1−!"#$!!"#ℎ!"#$%&'!"#$%"&)(1−!"#$!!"#ℎ!"#$%&'!"#$)!×!!"#$!!"#ℎ!"#$%&'!"#$%"&
 

A CpG site with a 0.2 (20%) median methylation difference between groups is 

considered to be a DMP with a 99% confidence from a previous technology report 

(Bibikova et al., 2011; Touleimat & Tost, 2012). However, this threshold might be too 

stringent for the discordant MZ twin design because MZ twins share more similar 

methylation levels (J. T. Bell et al., 2012). Recent EWAS of discordant MZ twins 

identified diseases-related DMPs with effects as small as 2%, which is the identified 
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effect at the promoter of the DOK7 gene in breast cancer using 15 MZ pairs (Heyn et al., 

2013). Other studies also reported changes of a small magnitude at disease-related 

DMPs with 0.13% to 6.6% in type 1 diabetes (Rakyan, Beyan, et al., 2011), 10% in 

pain (J. T. Bell et al., 2014), and > 10% difference in SLE (Javierre et al., 2010). Third, 

the EWAS significance level requires adjustment for multiple comparisons. Adjusted 

thresholds depend in part on the methylation array coverage or the significance 

estimated by false discovery rate (FDR). With an increasing variety of arrays, there is a 

need to determine the minimum sample size required to reach sufficient power while 

incorporating all of the above factors.  

Although power plays a crucial role in EWAS studies, only few studies have addressed 

it in detail. Recently, two studies explored power for EWAS case-control studies via 

simulations. Wang (S. Wang, 2011) assumed that each methylation marker is composed 

of three distribution categories: unmethylated, hemi-methylated, and methylated levels, 

to represent Uniform distribution, Normal distribution, and Uniform distribution, 

respectively. Different parameter settings, such as the proportion of the three 

distributions, and mean and standard deviation of the normal distribution were tested 

under three scenarios. The author found that the t-test was not powered to detect small 

mean differences between cases and controls when the proportion of the three 

contributing distributions differed in the two groups. However, the t-test was adequate 

to detect large mean differences between the groups when the methylation distribution 

between the case and control group was similar. The second case-control EWAS power 

study by Rakyan et al. (Rakyan, Down, et al., 2011) proposed that the distribution of 

methylation variable positions (MVPs) should follow the beta distribution, where the 

majority of controls are methylated and cases composed of varying proportions of 

unmethylated, hemi-methylated, and methylated levels. Similar to Wang’s study, the 

authors suggested that the methylation variance can affect power and should be 

accounted for. They concluded that sufficient power is attainable if a locus is less 

variable in both case and control groups, and the methOR was suggested to be a better 

predictor of effect instead of the mean difference. 

In the twin design, most power estimates were based on array-based EWAS, and 

suggested that a sample of 10 to 25 MZ pairs was sufficient in some cases to reach up to 

80% power (E. Dempster et al., 2010b; Rakyan, Beyan, et al., 2011; J. T. Bell et al., 
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2012; Gervin et al., 2012; Hasler et al., 2012) to detect differential methylation. The 

first power estimation in twins was based on methylation changes at the DLX1 gene in 9 

MZ twin pairs (Z. Kaminsky et al., 2008) using a specific DNA methylation array. A 

spot-wise standard deviation of the methylation difference was calculated within the 

pairs, followed by power analysis performed on these standard deviation (SD) 

distributions to detect the proportion of loci that have 80% power and sample size (pairs 

of twins) required to achieve the fixed effect size. Using a significance level of 0.001 

based on the family-wise error rate and at 4.1 × 10-6 for a 1.2-fold change after 

Bonferroni correction, the authors found that 25 twin pairs were sufficient to reach 80% 

power to detect a 1.2 fold change in DNA methylation using the particular array, which 

did not provide single-CpG resolution data. More recent studies report low (35%) to 

good (> 80%) power to detect DMPs at single CpG-sites with methylation differences 

of 5-6% between affected and unaffected twins in 20-22 disease discordant twin pairs 

(E. Dempster et al., 2010a; J. T. Bell et al., 2012).   

Here, I estimate power of EWAS study to detect the differential methylation under 

methylation platforms, such as the Illumina 450k, and estimate power for the case-

control and disease discordant MZ twin study designs. I also evaluate the sample size 

that is required to achieve 80% power under a variety of methylation differences for the 

two study designs. Finally, I identify potential factors that impact EWAS power. 

2.2 Methods 

2.2.1 An epigenetic model of complex disease susceptibility 

I assume that disease risk is affected by the DNA methylation status at a single locus, l 

(Figure 2-2A, upper panel), where l represents a single CpG-site in the genome. The 

methylation status at locus l in a single cell can be represented as a biallelic marker, 

where epi-allele 1 represents the presence of the methylated mark, and epi-allele 0 

represents the absence of methylation. I assume that the disease-associated methylation 

mark occurs prior to the onset of disease and is faithfully transmitted through mitotic 

cell division. I denote DNA methylation status (epi-genotype) at locus l as ej, where the 

ej takes the value of 0, 0.5, and 1 to correspond to unmethylated, hemi-methylated, and 
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methylated states for a single cell, while the frequencies of the methylation status were 

represented as f(e0), f(e0.5), and f(e1), respectively. Each individual cell can consist of 

unmethylated, hemi-methylated, and methylated epi-genotypes with probabilities of p1, 

p2, and p3, where p1 + p2 + p3 = 1 (Figure 2-2A, upper panel). A sample from an 

individual i, represents a population of cells (Figure 2-2A, middle panel), and I assume 

that the contribution of each cell to the population is constant and without bias. The 

sample-level DNA methylation estimate is a function of the methylation levels of the 

composition of cells (Figure 2-2A, lower panel), and can be described by different 

functions or epigenetic models (Slatkin, 2009). In this study, a threshold model was 

proposed where the sample-level DNA methylation estimate reflects the allele 

frequency of the methylated epi-allele 1 in the cell population. That is, DNA 

methylation level for each sample is denoted as β, which represents the sum of its fully 

methylated cells plus half of its hemi-methylated cells. In addition to the proposed DNA 

methylation threshold model, dominant and recessive models may also be applied, for 

example, as proposed for genetic disease susceptibility risk (Risch, 1990c, 1990b, 

1990a). 
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Figure 2-2. DNA methylation pattern at (A) the cellular and individual levels and 
(B) in the proposed methylation distributions in the study  

I assumed a cell carried two methylated alleles (ei=1), one methylated allele (ei=0.5), or both 
unmethylated alleles (ei=0), and an individual carried different frequencies of these cells. The 
red cross represented as methylated allele, and the colour of each cell represents the methylation 
status: unmethylated (white), hemi-methylated (grey), and methylated (black) (Figure 2-2A, 
upper panel). The methylation in each sample/locus is represented as the summary of the 
methylated epi-allele called beta (Figure 2-2A, middle panel), which is ranged from 0 to 1 
(Figure 2-2A, lower panel). In our study, I assume cases have higher mean methylation levels 
compare to the controls on each locus, and proposed 1 control and 8 case distributions. On 
Figure 2-2B, each colour curve line represents the density of methylation levels on each 
proposed distribution. Case 1-3 represents the majority of population to be unmethylated (left 
panel), case 4-6, hemi-methylated (middle panel), and case 7-8, methylated (right panel). 
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2.2.2 DNA methylation distribution 

Multiple methods can profile DNA methylation patterns across the genome. Here I 

focus on microarray-based datasets, such as those generated by the Illumina 450k array. 

At each CpG-site, the Illumina 450k array-based DNA methylation levels are 

characterized as a finite bounded quantitative trait, represented as ß, calculated as: 

! = !"#ℎ!"#$%&!!"#$%&
!"#ℎ!"#$%&!!"#$%&!+ !"#$%ℎ!"#$%&!!"#$%& + 100) 

The methylation distribution in one subject can range from 0 (unmethylated) to 1 

(methylated). Previous work has proposed that a single or bimodal beta distribution can 

be used to describe the single-locus distribution of DNA methylation levels on the 

Illumina 450k array (Rakyan, Down, et al., 2011). I therefore propose 9 potential 

single-locus DNA methylation distributions in the context of our epigenetic disease 

susceptibility models. I assume that the absence of methylation is linked to the absence 

of disease, and propose that the locus of interest follows an unmethylated distribution in 

unaffected individuals (Control distribution, black line in Figure 2-2B), which is 

described by ß(1.5,6) with a mean methylation level of 0.2. In our model affected 

individuals will show higher levels of DNA methylation at the locus of interest relative 

to controls, and I therefore propose 8 possible single-locus methylation distributions in 

affected individuals (Case 1 – Case 8 distributions, multiple colour lines in Figure 2-

2B), with increasing levels of sample-wide DNA methylation. The 8 case distributions 

had increasing ordinal mean methylation difference with the control distribution that 

ranged from 1% to 60% in mean DNA methylation level. The 8 case distributions 

included 3 distributions (Case 1 – Case 3) with mean methylation levels ≤ 0.3 

(unmethylated), 3 distributions (Case 4 – Case 6) with mean methylation levels ≥ 0.45 

and ≤ 0.5 (hemi-methylated), and 2 distributions with mean methylation levels ≥ 0.75 

(methylated). The three proposed unmethylated case distributions, Case 1 to 3, follow 

ß(1.6,6), ß(2,6), and ß(2.6,6) with a mean methylation level of 0.21, 0.26, and 0.30 

respectively, and mean methylation difference of 1%, 5%, 10%, with the control 

distribution, respectively. Case 4 and Case 5 characterize hemi-methylated distributions 

of ß(4.9,6) and ß(6.0,6) with mean methylation levels of 0.45 and 0.5, respectively, and 

mean methylation differences of 25% and 30%. Case 6 is also hemi-methylated, but 
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follows the normal distribution N(0.5,0.1), and has the same mean methylation level as 

Case 5, but a smaller standard deviation. Case 7 follows the combination of 9% of 

ß(1.5,6) and 91% of ß(6,1.5) with a mean methylation of 0.75, and methylated Case 8 

follows the ß(6,1.5) with a mean of 0.8 that is diametrically opposed the control 

distribution. The mean methylation difference between Case 7 and Case 8 with the 

control distribution was 55% and 60%, respectively. 

2.2.3 Study Designs 

Two EWAS study designs were considered: case-control and discordant disease 

monozygotic (MZ) twins. MZ twins share nearly all of their genetic variants, and are 

also matched for age, gender, cohort effects, in utero and maternal effects, and many 

early life environmental factors. All of these factors have either been shown or are 

hypothesized to influence DNA methylation levels throughout the genome. Therefore, 

MZ twins are a much more homogeneous sample relative to genetically heterogeneous 

unrelated individuals who are exposed to different environments throughout life, and 

correspondingly MZ twins have been shown to have much more similar levels of DNA 

methylation compared to DZ co-twins and unrelated pairs of individuals (Z. A. 

Kaminsky et al., 2009; J. T. Bell et al., 2012). It is difficult to incorporate all of these 

factors in our simulation study, therefore in an attempt to minimize some of these 

effects, I assumed that all individuals in our study were the same age, gender, and were 

exposed to similar cohort effects. This will bias the case-control sample towards 

homogeneity and may give inflated power estimates for the case-control design.  

To compare power under the same parameters in the case-control and twin designs, I 

assumed that the cases were identical in both studies and their matched controls and 

unaffected co-twins were sampled based on the locus-specific correlation in DNA 

methylation levels between groups. Cases were selected from one of the 8 Case 

distributions, and for the disease discordant MZ twin design unaffected co-twins were 

sampled from the control distribution if: (1) the mean difference within the co-twins 

matched the pre-specified effect size and (2) the Spearman’s correlation coefficient 

within MZ pairs was between 0.193 and 0.616, which represented the genome-wide 

mean correlation coefficients ± 1 SD in a previously published set of 21 MZ twins 

using Illumina 27k (J. T. Bell et al., 2012). Once MZ twin pairs were selected, for each 
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affected twin (or case) I also sampled a matched healthy unrelated control sample from 

the control distribution if the mean difference between the cases and controls matched 

the pre-specified effect size. Figure 2-3 shows an example simulation procedure by 

selecting the cases from distribution 3 and both matched unrelated controls and matched 

healthy co-twins from the control distribution. 

 

Figure 2-3. Example of a simulation procedure 

In this example, cases are first drawn from the case distribution 3 and matched controls and co-
twins drawn from the control distribution. Only permutations with set effect sizes between two 
groups were kept for power calculation. The cases are identical for both designs (black dots in 
pedigree), and controls in case-control design were randomly selected from the control 
distribution. In the discordant twin design, controls correlated with cases (Spearman’s 
correlation coefficients between 0.193 and 0.616). Blue linked line in discordant twin design 
represents the coefficients between co-twins (wider: more heritable locus within co-twins; 
narrower: less heritable locus within co-twins). 

2.2.4 Simulation parameters 

A range of sample sizes of disease discordant MZ twin pairs and case-control samples 

were considered. As MZ twins are more difficult to recruit than unrelated cases and 

controls I used a smaller sample size for the twin design, specifically 10, 15, 20, 25, 30, 
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and 50 MZ twin pairs and case-control pairs. Power calculation was also performed for 

larger case-control sample sizes of 50, 100, 200, and 500 pairs of unrelated individuals 

(that is, altogether 100 to 1000 individuals in the sample). As an estimate of effect size I 

used two approaches. First, I used the mean difference in methylation levels between 

affected and unaffected individuals, which ranged from 1% to 20%, 25%, 30%, 55%, 

and 60%. The selection of effect sizes and sample sizes was based on recently 

published EWAS findings, described in the introduction, and we further extended it to 

cover a broader range. In the case-control simulation results (Tables 1a - 1c), because I 

did not have power to detect the effects at 1% methylation difference at single locus 

significant (P < 0.05) with 500 cases and controls, therefore the simulations with 

methylation differences less than 1% were not performed. The mean difference was 

used to estimate effect size for both the twin and case-control designs. For the case-

control design I also calculated effect sizes under the methOR, which previously 

(Rakyan, Down, et al., 2011) was defined as: 

!"#ℎ!" = !"#$!!"#ℎ!"#$%&!!"#$×(1 −!"#$!!"#ℎ!"#$%&!!"#$%"&)
1 −!"#$!!"#ℎ!"#$%&!!"#$ ×!!"#$!!"#ℎ!"#$%&!!"#$%"&

 

Given the pre-specified range of mean methylation differences (1% to 60%), I also 

calculated the methOR that ranged from 1.05 to 2.0, and combined these with a certain 

maximum mean difference value to minimize methylation effect variability. This was 

done because the range of mean differences tends to be narrower for larger samples. For 

example, for a methOR = 1.2, the range of mean differences is 2.63% to 3.68% in 50 

case-controls, whereas the range is 2.78% to 3.38% in 500 case-controls. To reduce the 

bias caused by the variation of mean difference, a cut-off of 3% mean difference was 

set along with methOR = 1.2. To detect potential factors that affect power, pooled 

standard deviations (pooled SD) of groups were calculated by:  

!""#$%!!"!(!"!"#$,!"#!"#$) =
!!"#$ − 1 ∗ !"!"#$! + (!!"#$%"& − 1) ∗ !"!"#$%"&!

(!!"#$ + !!"#$%"& − 2)
 

I also assessed the correlation in DNA methylation profiles between cases and controls, 

and between affected twins and healthy co-twins. I calculated the between-group 

correlation using Spearman’s correlation coefficients (ρ). The statistical significance 

was set at 0.05 for single locus gene analysis, and a P value threshold of 10-6 was used 
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for genome-wide significance. This threshold was selected using a Bonferroni 

correction based on a subset of the number of probes on the Illumina 450k array, 

because some regions show evidence for co-methylation pattern. Furthermore, because 

recent EWAS using Illumina 450k data have reported an FDR-based thresholds of 1% 

to 5% FDR with corresponding P values close to P = 1 x 10-4 (Grundberg et al., 2013; 

Nardone et al., 2014). Therefore, the stringent significance level was relaxed from 10-7 

to 10-6 in the study.  

2.2.5 Estimation of statistical power 

Power estimation was based on simulations, where for example, if 800 out of 1000 

simulations surpassed the pre-specified significance level I would estimate 80% power. 

A t-test with a prior F-test for equal variance was performed in the case-control design 

and a paired t-test was performed in the twin study design. All of the case-control 

simulations include equal and unequal variances between cases and controls with the 

exception of one case-multiple control scenario with a greater proportion of unequal 

variances. Table 2-1, Table 2-2, Table 2-3 show results from simulations with equal 

variances between cases and controls. The corresponding non-parametric analyses 

(Mann Whitney U test and Wilcoxon rank sum test) were also performed. 

2.3 Results 

2.3.1 Power of case-control EWAS using mean difference effect 

estimates 

The mean test statistics of 1000 permutations were obtained for eight case distributions 

and one control distribution, by sampling effect sizes (using the mean difference) of 1% 

to 20%, 30%, 55%, and 60% and with increasing sample sizes from 10 to 500 pairs of 

cases and controls, that is, 20 to 1000 individuals altogether. Table 2-1 shows the 

EWAS power with increasing sample sizes from 10 to 100.  
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Figure 2-4A shows the mean difference required to achieve 80% power with different 

sample sizes at P value thresholds of 0.05 (Figure 2-4A, upper left) and 10-6 (Figure 2-

4A, lower left). For example, a sample size of 100 cases and 100 controls results in over 

80% power to detect a 4.5% mean difference (mean methOR = 1.32) in methylation at 

nominal significance (P = 0.05). However, at genome-wide threshold P = 10-6 the same 

sample size gives over 80% power to detect a much larger effect size of 11% mean 

difference (mean methOR = 1.81).  

 

Figure 2-4. Power of large-scale case-control EWAS for a range of sample sizes.  

Results for mean differences (left panel, A), and methOR (right panel, B) at a significance level 
of 0.05 (upper) and 10-6 (lower). Estimates are obtained for a range of sample sizes, using (A) 
mean differences and (B) methOR effects, at nominal (upper panel) and genome-wide (lower 
panel) significance thresholds. Each line represents the power curve under different case-control 
sample sizes from 10 (grey) to 500 (black) pairs of cases and controls. 

The results of the Wilcoxon test are also shown in Table 2-1 to Table 2-4. I also 

performed power estimation under the one case – multiple controls scenario. I show the 

results from one case : two controls and one case : four controls study design (Table 2-2 

and Table 2-3) and as expected power increases when the sample size of the control 

group increases. Compared to the t-test, the Wilcoxon test was outperformed in the 
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small sample size and with the smaller mean difference or methOR. Both tests easily 

reached 80% at genome-wide significance level with larger sample sizes. 

2.3.2 Power of case-control EWAS using methOR effect estimates 

with restrictions on the mean differences 

When the methOR was the selected effect size (Table 2-4, Figure 2-4B), to achieve 

80% power to detect a methOR of 1.15 to 1.45 at P = 0.05, 50 pairs to 500 pairs of 

cases and controls were required. At a genome-wide significance level, samples greater 

than 100 pairs of cases and controls could detect methORs of 1.3 to 1.8 with over 80% 

power, but a smaller sample size of 50 had no power to detect effects within this range.  

2.3.3 Power of discordant twin and case-control designs for small 

sample sizes and mean differences 

Figure 2-5 and Table 2-5 show the mean difference required to detect 80% power in 

smaller sample sizes of 10, 15, 20, 25, 30, 50 and 100 pairs of either MZ co-twins or 

cases and controls. Generally, the twin design outperformed the case-control design to 

reach 80% power at a significance level of 0.05. A 14% mean difference was necessary 

to attain 80% power with a small sample size of 10 pairs for both co-twins and case-

controls at P < 0.05 (Figure 2-5A). However, at genome-wide significance, at least 15 

pairs of subjects were required to reach 80% power in both designs for the mean 

difference of 14% (Figure 2-5B), and over 20% mean difference was required to reach 

80% power if the sample size was smaller than 30 pairs. However, these simulations 

were not designed for a formal comparison between case-control and twin power, 

because we assume that twins and case-control samples are equally well matched for 

factors that can influence differential methylation, including age, sex, and cohort 

effects, and unrelated samples are typically more heterogeneous than MZ twins. 
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Figure 2-5. Power of small-scale discordant twin (solid lines) and case-control 
(dashed lines) designs for a range of sample sizes and mean differences  

Results at a significance level of 0.05 (upper) and 10-6 (lower). Each colour line represents the 
power curve under different sample size from 10 to 100. Solid-lines represent the power under 
discordant MZ twin design, and the dash line with the same colour represents the power under 
case-control design.  
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2.3.4 Sample size required for 80% power in discordant twin and 

case-control designs for a range of mean differences 

Table 2-6 shows the sample size required to reach 80% power with a mean difference of 

7%, 8%, 9%, 10% and 15% for both case-controls and co-twins at a significance level 

of 0.05 and 10-6. The correlation coefficients with larger sample sizes were consistently 

lower than the set correlation requirement (range 0.19 to 0.62) in the study, therefore 

simulations of the mean difference less than 7% were not considered because the 

required sample size was greater than 200 pairs of twins. Overall, compared to the case-

controls, the co-twins required a smaller sample size to reach 80% power. In general, 

sample sizes required to detect larger mean differences were similar between co-twins 

and case-controls, but quite different for smaller mean differences. For example, to 

detect a mean difference of 7% at genome-wide significance 178 pairs of MZ twins 

were required, while 211 case-control pairs were need, that is 66 additional individuals 

for the unrelated design. Similar sample sizes were found using the nonparametric 

Wilcoxon rank-sum test. 

Table 2-6. Sample size required for 80% power in EWAS twin and case-control 
designs 

Diff1 

 

Twin  Case-control 
P < 0.05 P < 1×10-6  P < 0.05 P < 1×10-6 

t-test2 Wilcox3 t-test2 Wilcox3  t-test4 Wilcox5 t-test4 Wilcox5 
  7% 30 30 178 178  37 37 211 211 
  8% 25 25 145 149  30 30 169 169 
  9% 20 20 117 117  24 24 137 137 
10% 17 18   98 102  20 21 112 110 
11% 15 15   81   83  17 18   96   95 
12% 13 13   71   71  15 16   80   80 
13% 11 12   63   69  13 13   70   70 
14% 10 11   55   62  11 13   61   63 
15% 9 10   50   57  10 11   54   57 

1Diff: Mean methylation difference between affected and unaffected individuals; 2t-test: Paired 
t-test; 3Wilcox: Wilcoxon signed-rank test; 4t-test: Two sample t-test; 5Wilcox: Wilcoxon rank-
sum test 
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2.3.5 Methylation variance and methOR affect power under the 

same mean difference in the case-control design 

For the case-control design, changes in the pooled SD and methOR can influence power 

under the same mean difference. In general, the smaller pooled SD and bigger methOR 

gives more significant P values under both the two-sample t-test and Wilcoxon rank 

sum test. In addition, permutations with smaller pooled SD tend to have higher methOR. 

To find how these two factors influenced power, permutations with 10% methylation 

mean difference and equal variances were selected and the power was detected at P = 

0.05. I categorized the pooled SD into 4 groups: 0.145-0.150, 0.150-0.155, 0.155-0.160, 

and 0.160-0.165, and the methOR was categorized into 6 groups: 1.62-1.64, 1.64-1.66, 

1.66-1.68, 1.68-1.70, 1.70-1.72, and 1.72-1.74. Figure 2-6 shows the relationship 

between power, pooled SD, and methOR for a set mean difference of 10% as calculated 

by the t-test (Figure 2-6A, left) and Wilcoxon test (Figure 2-6A, right). Under the t-test, 

the pooled SD immensely influences power such that greater pooled SD will lead to 

lower power despite methOR differences. In comparison, power of the t-test can be 

dramatically affected from the pooled SD (power range: 0%-100%), while under the 

same parameters the Wilcoxon test gives more similar power (power range: 42%-76%). 

Both the pooled SD and methOR still do have an influence on power estimated using 

the Wilcoxon test, such that greatest power can be achieved with smaller pooled SD and 

at highest methOR. 

To explore the influence of methylation variance on power, I selected permutations with 

the same 20 cases and 20 controls at a 10% methylation mean difference, but only using 

simulations where the variance of cases was not equal to that of the controls. The major 

difference between the equal and unequal variance t-test is in the denominator of the t-

statistic and the degrees of freedom. In the unequal variance test, the variance between 

groups was calculated by: 

!"!"#$!!"#$%"& = !"!"#$!
!!"#$

+ !"!"#$%"&!
!!"#$%"&
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Figure 2-6. DNA methylation variance and correlation can impact EWAS power 
Case-control power estimates (upper panel) are shown under different pooled SD and methORs 
at a fixed mean difference= 10% using parametric (left panel) and nonparametric (right panel) 
test statistics. MZ twin power estimates (lower panel) are shown under different pooled SD and 
correlation coefficients at a fixed mean difference= 9% using parametric (left panel) and 
nonparametric (right panel) test statistics. 

Power estimates in the unequal variance case-control simulations were categorized 

using this pooled standard deviation into 4 groups (0.040-0.042, 0.042-0.044, 0.044-

0.046, 0.046-0.048) and using methOR into 6 groups (1.62-1.64, 1.64-1.66, 1.66-1.68, 

1.68-1.70, 1.70-1.72, and 1.72-1.74). Furthermore, we also considered which group 

(cases or controls) had the greater variance. That is, either the variance in cases was 

greater than that in controls, or the variance in cases was smaller than that in controls. 
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Compared to the simulations with equal variances between the groups, the power 

estimations from the unequal variance results were quite similar for the t-test (Figure 2-

7A). It is easier to reach greater power when the variance in the cases is smaller than 

that in controls, and a more distinct pattern is found using the Wilcoxon test under the 

same parameter settings (Figure 2-7B).  

 

Figure 2-7. DNA methylation variances can impact case-control EWAS power. 

Power estimates are shown under different methORs in 3 groups: variances are equal in the case 
and control groups (black line), variance in cases is greater than controls (blue line), and 
variance in cases is smaller than controls (red line). Power estimates are shown under different 
variances and methORs at a fixed mean difference = 10% using parametric (left panel) and 
nonparametric (right panel). 

Similar to the equal variance results, the methOR and pooled variance impact power 

(Figure 2-8). This result also highlights the importance of choosing the appropriate 

analytical method across the equal variance t-test, unequal variance t-test, and the 

Wilcoxon test. 
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Figure 2-8. Unequal DNA methylation variances in cases and controls can impact 
EWAS power 

Power estimates are shown under different variances and methORs at a fixed mean difference = 
10% using parametric (left panel) and nonparametric (right panel) test statistics. Power 
estimates were categorized depends on the variances are greater in cases (upper panel) or 
controls (lower panel). 
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2.3.6 DNA methylation variance and twin correlation can 

influence power in the EWAS twin design 

In twin design, the pooled SD, methOR and the correlation between the co-twins, also 

influenced P values. Smaller pooled SD and greater intra-pair correlation can result in 

greater power, for a set mean difference. Both the methOR and Spearman’s correlation 

coefficients are negatively correlated with pooled SD. 

To better demonstrate the relationship between pooled SD, within-twin correlation and 

power, only permutations with a set methylation difference of 9% and methOR range 

between 1.65 and 1.70 were selected, and power was calculated at the significance level 

of 0.05. The pooled SD was categorized into 4 groups: 0.6-0.7, 0.7-0.8, 0.8-0.9, and 0.9-

1.0, and the correlation was categorized into 6 groups: 0.19-0.25, 0.25-0.30, 0.30-0.35, 

0.35-0.40, 0.40-0.45, and 0.45-0.62. Figure 2-6B shows the EWAS power under 

different combinations of pooled SD and correlation coefficients. Under the t-test 

(Figure 2-6B, left), the smallest pooled SD gives the greatest power, and under the 

same-pooled SD, permutations with higher correlation give greater power. Similar 

effects can be seen under the Wilcoxon test (Figure 2-6B, right). Compared to the t-test, 

the Wilcoxon test gives slightly lower power with moderate pooled SD, however, the t-

test cannot provide sufficient power under the bigger pooled SD whereas Wilcoxon test 

can outperform it. 
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2.4 Discussion  

I have estimated EWAS power under different sample sizes and effect sizes for the 

case-control design and disease discordant MZ twin designs. I found that compared to 

the t-test, the Wilcoxon rank sum test showed improved power if the sample size was 

big or the effect size was small. However, under large effect sizes (mean difference and 

sample size to exceed 8% and 25 pairs), there was minimal difference between the two 

statistical methods. When comparing designs, a MZ twins were slightly more powered, 

because a lower sample size was required in discordant MZ twin design to achieve 80% 

power compared to case-controls. 

Currently, power estimation relies on the magnitude of the effect size between the 

comparison groups, for example the methylation difference between cases and controls 

at one CpG position. Some EWAS studies remove probes with < 5% methylation 

difference as the first step of the selection criteria, as potential background noise. The 

problem is that this step potentially removes informative probes. One should not only 

consider the methylation difference between cases and controls, but also the 

methylation variance between groups, and the methylation odds ratio. Furthermore, a 

great majority of probes on the Illumina 450k array have small variance, which suggests 

that large differences cannot be easily observed, and in MZ twins, who share similar 

methylation levels, these differences would be even smaller. 

I think that our estimates of permutation-based power give more conservative values 

than power estimated using the traditional formula: 

! =
(!!!!! + !!!!)

!(!!! + !!!)
(!! − !!)!

 

With a sample size of 50 pairs and a 14% mean difference our simulation results 

achieved 70.6% power, whereas 90.2% was estimated using the formula in the twin 

design. Similarly a 17% mean difference in 50 case-control pairs resulted in 25.8% 

power in our study, and 42.3% power from the formula. This suggests that the power 

estimates are too optimistic when estimated by mean difference and SD alone. When I 

compared our simulation results with those from Rakyan et al. (Rakyan, Down, et al., 

2011), using similar methOR of 1.49 and md = 7.2% with 200 pairs of cases and 
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controls, our estimates show 61% and 67% power using the t-test and Wilcoxon test, 

but only 16% power was reached using the Wald’s test in their study. This divergence 

could be explained by the different composition of the distributions used, as we use a 

single beta distribution and Rakyan et al. (Rakyan, Down, et al., 2011) used two 

combined beta distributions. Compared to the previous two studies that proposed that 

the methylation distribution at one locus is composed either by a Uniform-Normal 

mixture structure (S. Wang, 2011) or single or combined Beta distributions (Rakyan, 

Down, et al., 2011), we assumed that both cases and controls at one CpG locus 

followed a single Beta distribution and the controls remained unmethylated. This 

assumption was based on the findings of a current methylation dataset of 172 healthy 

female subjects (J. T. Bell et al., 2012) measured by the Illumina 27K array, where 69% 

(N = 24641) of the autosomal CpGs were unmethylated and the majority of 

distributions on each locus followed single beta distribution with small standard 

deviation (85% of probes with SD < 0.05). Therefore, the power estimation based on a 

single beta distribution is perhaps more appropriate for most DMPs measured on the 

Illumina 27k array. 

Two types of effect size were explored: the mean difference and the methOR, which are 

often used as a measure of methylation effect size in published studies. However, 

because hemi-methylated probes tended towards larger standard deviation that could 

result in power bias, the methOR is considered a better indicator (Rakyan, Down, et al., 

2011). In our simulations, I found that both measures are useful: the mean difference is 

suitable if differences between groups are minor, whereas the methOR can better 

illustrate the association between cases and controls at one locus with large methylation 

difference. Ideally, if one could take into account both of these effect sizes that would 

result in a more precise estimate of effect. For example, if I draw identical sample sizes 

of 178 cases from Case 1 (Mean = 0.21, SD = 0.14) and Case 2 (Mean = 0.25, SD = 

0.14) and select permutations with a fixed methOR = 1.2 compared to 178 controls, the 

results show that the two permutation groups have the same methOR, mean difference, 

and sample size for 5000 permutations, however I found that 94.4% of permutations 

selected from Case 2 distributions were significant at P value = 0.05 using t-test, 

whereas only 80.5% were significant if selected from Case 1 distribution. Similar 

results are shown in other simulation results, with the same methOR and mean 

difference criteria; a smaller sample size was required when drawn from Case 3 
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distribution compared to Case 2 distribution. This difference is likely due to the 

variance in methylation: mean differences from Case 3 distribution have a narrower 

pooled SD range, but higher values than those selected from Case 2. Therefore, I further 

examined the effect of pooled SD on power under the two designs and two statistical 

methods, and found that statistical power is highly influenced by the pooled SD under 

all scenarios. In addition, I found that the methOR and Spearman’s correlation 

coefficients also affect power under different circumstances. For example, higher 

between-group correlations that may indicate a heritable methylation locus, and at such 

loci there will be greater power to detect differential methylation effects under the 

discordant twin design. I found that the methylation difference and methOR alone might 

not be sufficient for power estimation, because the pooled SD can differ greatly with the 

same mean difference and methOR, and the results give diverging power estimates. 

Furthermore, power seemed to shift dramatically under the t-test, but was relatively 

more stable under the Wilcoxon test with smaller sample sizes (N = 20 in the 

simulations).  

Heritability has been considered as a factor for power estimation in the study, that is, the 

methylation correlation between the MZ twin pair. However, there was no evidence of a 

significant pattern between Spearman’s correlation coefficient within the co-twins and 

the significance level. To test whether the range of correlation coefficients affect our 

simulation results using the same sample size, power estimations were performed on 

simulations with a much narrower correlation coefficient of 0.29 to 0.31. The co-twins 

with narrower correlation coefficients required slightly smaller sample sizes to reach 

80% power for a given mean difference. For example, with the same 11% mean 

difference, 81 pairs of twins were required to detect power at 80% under the wider 

correlation range, whereas a slightly lower 78 pairs were sufficient for twins with the 

narrower range using t-test. 

There are limitations from the study assumptions. Firstly, we assumed the methylation 

changes are causal to disease and longitudinally stable. Current studies have found that 

methylation could be dynamic and may require a longitudinal study to characterize the 

temporal methylation pattern. Secondly, we assumed the case-controls are closely 

matched as MZ twins, and this will bias the case-control sample towards homogeneity 

and advantages power estimates for the case-control. Finally, we assumed there is no 
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genetic effect on methylation levels in the study, but current studies have identified 

underlying genetic effect on the methylation levels, so this will also impact our results 

in case-control design.  

The major application of this power study is to help design an EWAS study. For 

example, one can get the effect size from the previous references or the pilot study, then 

estimate the required sample size for a study. In addition, our results can assist in 

interpreting the impact of EWAS findings. Our power estimates are potentially 

applicable to other methylation or gene expression data under the same assumption of 

data distribution.    

2.5 Conclusions 

In summary, I provide power and sample size estimation for both case-control and 

disease discordant MZ twin studies under various effect sizes. More complex 

simulations are needed to incorporate co-methylation patterns and factors such as age 

and environment. Furthermore, our results are also relevant to the power and sample 

size estimation for other case-control or twin epidemiology studies of finite quantitative 

genomic data. 
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3"
3 Materials and Methods: An 
Overview of the Methylation 

Datasets and Quality Control 
Procedure 

This chapter provides an overview of the methylation datasets that I have used, a brief 

description of the Illumina methylation arrays, and a description of the standard quality 

control procedures that I adopted using an example dataset. Lastly, because I used 

twins, I also investigated DNA methylation heritability in the example dataset. 

 

3.1 Methylation datasets 

I have used five methylation datasets in this thesis: three derived from blood (Dataset 1-

3), one from adipose tissue (Dataset 4), and one from skin tissue (Dataset 5, Table 3-1). 

The first dataset from blood was generated on the Illumina 27k array (Bibikova et al., 

2009) and was previously published (Rakyan et al., 2010; J. T. Bell et al., 2012) and the 

other two blood datasets were based on the Illumina 450k array (Bibikova et al., 2011; 

Dedeurwaerder et al., 2011) and have not yet been published. The skin and adipose data 

were generated in a subset of individuals from the MuTHER study (Grundberg et al., 

2012). The adipose methylation dataset (Dataset 4) has been published (Grundberg et 

al., 2013) while the skin methylation dataset (Dataset 5) has not yet been published. All 

subjects were twins from the TwinsUK cohort (Moayyeri et al., 2013), and in some 

cases data were only available for one twin per pair.  
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Table 3-1. Summary of the five methylation datasets 

Dataset Array Tissue Subjects1 Mean age (range) Chapters2 

1 27k Blood 172 57 (32, 80) 4 
2 450k Blood 449 55 (28, 78) 4, 5, 6 
3 450k Blood 50 55 (39, 72) 5 
4 450k Adipose 648 59 (39, 85) 4, 6 
5 450k Skin 469 59 (39, 85) 4 

1Total subjects, including some with cancer or other diseases (such as type 2 diabetes); 
2Chapters that have used these datasets: Chapter 4 (methylation and age); Chapter 5 
(methylation and birth weight); Chapter 6 (methylation and smoking). 

Some datasets are used in the multiple chapters either using the full dataset or a subset. 

Further details about the samples will be given in each chapter where they are used 

(Table 3-1).  

3.2 Illumina Infinium HumanMethylation assays 

In this section, I briefly discuss the two Illumina Infinium HumanMethylation arrays 

(Illumina Infinium HumanMethylation27k and Illumina Infinium HumanMethylation 

450k; Illumina Inc, San Diego, CA) used in this study. Prior to running the arrays, DNA 

samples should be first bisulfite converted. This changes the unmethylated cytosines 

into uracils while the methylated cytosines remain unchanged.  

3.2.1 Illumina 27k array 

On the Illumina 27k array each CpG locus is represented by two probes of length 50 

base pairs (bp), representing unmethylated and methylated bead types. The 

unmethylated probe perfectly matches the unmethylated version of the CpG, while the 

methylated probe matches the methylated version of the CpG. The DNA sample is first 

bisulfite converted and denatured into single strands, and hybridized to the array by 

annealing to the bead probes. Only the perfectly matched one will continue to base 

extension with hapten labelled dideoxynucleotides, and only ddCTP is labelled with 

biotin. The labelled ddNTPs (2’,3’ dideoxynucleotides, including ddGTP, ddATP, 

ddTTP, and ddCTP) will be fluorescence stained multiple times to distinguish the two 

bead types, and the chip will be scanned for intensities. More details will be discussed 

in the following Illumina 450k section. 
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The intensity of the unmethylated and methylated beads is detected. The degree of 

methylation at a single locus is measured as a beta value, which is calculated as the ratio 

of intensity of methylated beads over the total intensity at the locus (sum of the 

methylated and unmethylated intensities). The range of beta is between 0 

(unmethylated) and 1 (methylated).  

A single Beadchip covers 12 samples and assays 27,578 CpG dinucleotides in the 

promoters of 14,495 genes. I used 26,690 probes that mapped to the genome within 2 

mismatches and in the promoters of ~13,000 genes using Ensembl annotations (J. T. 

Bell et al., 2011). Of the 26,690 probes 25,690 are located on autosomes and 1,000 

probes on the X-chromosome. For a single subject in dataset 1, the distribution of beta 

values on the autosomes and X-chromosome shows distinct shapes (Table 3-1). The 

distribution for autosomes is concentrated around methylated and unmethylated signals 

(approximately 70% of probes were unmethylated). The pattern on the X chromosome 

should be hemi-methylated due to the random inactivation of one X-chromosome in 

females, which is methylated. The observed X-chromosome distribution indeed has a 

peak at hemi-methylated probes (beta of 0.5), along with some unmethylated and 

methylated probe signal in the tails, that might be due to certain stretches of the X-

chromosome containing genes that have similar inheritance mechanisms as the 

autosomal genes, known as pseudoautosomal regions (PAR). In my analysis using 

Illumina 27k, I excluded sex chromosomes and missing probes. In the end, I used 

24,641 probes for downstream analysis. 
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Figure 3-1. Beta values for the genome-wide DNA methylation of (A) autosomes 
and (B) X-chromosomes of a single subject in the Illumina 27k 

3.2.2 Illumina 450k array 

The Illumina 450k array offers a wider coverage of genome-wide methylation. The 

array consists of two types of probes: the Illumina 27k Infinium I probes (type I 

probes), and the new Illumina 450k Infinium II probes (type II probes). Unlike the two-

bead design for type I probes, only one bead per locus is required to detect the 

methylation levels in the type II probes. Here, if the target CpG site is unmethylated 

(base A or T), the red fluorescent labels will be detected, and a green fluorescent label 

will only be detected at a methylated locus. On type I probes the fluorescent labels are 

extended on the next bp past the CpG site (51st bp), and on type II probes the fluorescent 

labels are extended on the last bp (50th bp, the actual C/G position). The design of the 

two probe types and the detection process is shown in the Figure 3-2.  
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Figure 3-2. Probe designs for type I (Infinium I) and type II (Infinium II) probe 

 Reproduced from the datasheet on Illumina website (www.illumina.com) 

The Illumina 450k array assays 485,836 sites and 27.9% of these are detected by type I 

probes. There should be a 98% concordance rate of methylation levels detected between 

two assays, according to the Illumina technical report (Bibikova et al., 2011; 

Dedeurwaerder et al., 2011). In a single subject, the methylation distribution is 

composed by two asymmetric beta distributions (Figure 3-3A). It is complicated by the 

fact that type I probes have a wider methylation distribution compared to type II probes 

(Figure 3-3B) suggesting that type II probes might not be as sensitive as type I probes 

for extreme values (Dedeurwaerder et al., 2011). It has been suggested that the two 

probe types distributions should be made comparable, prior to between subject 

normalization, because without such adjustment, there would be an enrichment bias on 

type I probes to have a more extreme rankings than type II probes (Teschendorff et al., 

2013). 

To correct for this bias, two methods are currently commonly used, implemented in the 

Subset-quantile Within Array Normalization method (SWAN; (Maksimovic et al., 

2012)) and Beta Mixture Quantile dilation (BMIQ; (Teschendorff et al., 2013)). The 

SWAN method is based on a quantile-normalization of a subset of type I and II probes 
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and adjusting the intensities of the remaining probes based on the subset probes. The 

BMIQ method is based on the interpolation of the distribution of type II probes to type I 

probe. 

 

 

Figure 3-3. Density of methylation levels of a single subject from the Illumina 
450k 

(A) Overall density and (B) density of two assays: Infinium I assay (type I probe, purple) and 
Infinium II assay (type II probe, cyan) 

3.3 Quality control of the Illumina array data 

Many approaches have been proposed in analysis of Illumina array methylation data 

(Bock, 2012; Warden et al., 2013; Morris et al., 2014). The approach I used involves 

the following steps: (1) the identification of probes that map incorrectly or to multiple 

locations in the reference sequence; (2) the identification of individuals who are 

outliers, that is, their methylation profiles are not consistent with the methylation 

density in the remainder of the sample; (3) the identification of batch effects and 

covariates that affect methylation levels in the sample; and (4) the application of data 

normalization and adjustment for covariates. I explain these in detail below, with an 

example using Dataset 1 and 2. 

3.3.1 Identification of probes mapping to multiple locations  

There were two things to consider when deciding whether probe should be excluded 

prior to even exploring the actual beta values. First, all probes were designed to anneal 
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to 50 base pairs at a single location in the genome. We checked for probes that mapped 

to multiple locations within 2 mismatches (based on the hg18 for the Illumina 27k and 

hg18 and hg19 for the Illumina 450k). Due to this reason, 888 probes were removed in 

the Illumina 27k (J. T. Bell et al., 2011), and 17,651 probes were excluded from the 

Illumina 450k array (these works were done by Idil Yet and Dr. Wei Yuan in the 

department).  

Secondly, I carefully considered probes that may contain genetic variants (SNPs or 

CNVs) that might impact hybridization due to incomplete annealing. Two studies have 

suggested that probes with SNPs located on the CpG site affect the quality of 

hybridization and influence methylation levels (Price et al., 2013; Naeem et al., 2014). 

This might be problematic since ~1/3 of all probes on the 450k array overlap known 

SNPs. However, the SNP in the probe should only impact DNA methylation if the 

individual has a “non-reference allele” (the SNPs designed on the Illumina probe).  In 

this thesis, all these probes were kept from the analyses, and only probes in the top 

results were assessed to see if they contained a SNP in the probe or at the CpG site. 

3.3.2 Identification of outliers 

In the following 3 sections, I use the Illumina 27k data as an example for the outlier 

identification and batch effect identification. This step involved visual inspection of 

plots to identify outliers, which show extremely skewed or abnormal distribution of beta 

values, or have high rates of missing data. First, a boxplot and density plot of genome-

wide beta values within a subject could identify subjects with different methylation 

patterns relative to the remainder of the sample. Second, the pair-wise methylation 

correlation matrix was computed and visualized using a heatmap and a dendrogram, to 

identify outliers that were dissimilar from the other individuals. Figure 3-4 shows the 

beta values of the autosomes from Dataset 1. The methylation levels of subjects were 

detected at two time points, which I defined as batch 1 data (N = 96, including outliers) 

and batch 2 data (N = 79, no outliers). By ordering the subjects according to their 

position on the plate, differences and batch effects could be observed. For example, 

from batch 1, subject 55751 had much missing data while subjects 55752 and 60322 

showed different means and ranges compared to other subjects (red arrows, Figure 3-
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4A). I considered these three subjects as outliers. Batch 2 showed a more similar 

distribution for each subject (Figure 3-4B). 

 

 

Figure 3-4. Beta values in the autosomes from (A) batch 1 and (B) batch 2 

Subjects are ordered by their positions on the plate and each plate is distinguished by a different 
colour. 

I then computed the pairwise correlations in genome-wide beta values using Pearson’s 

correlation. Figure 3-5 shows the heatmap of the correlation matrix for all pairs of 

subjects after excluding the three outliers in batch 1, which shows minimal structure in 

the data. 
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Figure 3-5. Heatmap of beta values in (A) batch 1 and (B) batch 2 

Yellow colour indicated the methylation correlation between two individuals was similar and 
red indicated dissimilarity. 

3.3.3 Identification of the batch effects and covariates 

I applied a quantile-quantile normalization (across subjects) to the probe-level data to 

ensure that the data followed the Normal distribution. Subsequently, I used principal 

component analysis (PCA) to find potential batch effects. The PCA is a method of 

reducing multidimensional data by transforming the variables into a smaller number of 

uncorrelated (orthogonal) variables or Principal Components (PCs). The first PC 

captures the majority of the variance in the data. To determine potential covariates 

(biological, such as age, zygosity; or systematic, such as batch effect), I correlate each 

potential covariate with the first several PCs and assessed the significance of the 

correlation. I then selected the nominally significant variables for inclusion as 

covariates in downstream analyses. 

An example of this approach in Dataset 1 is shown in Figure 3-6. Here, PC1 and PC2 

explained 19.31% and 16.56% of the genome-wide methylation variance. Each plate 

has 12 positions (lettered A-L) on the Illumina 27k and within batch 1, the L position 

from several plates clustered together to indicate a ‘position on the plate’ effect (orange 

circle), since the assumption was that the positions on plate should not adhere to any 

pattern. There is also a ‘plate’ effect (red circle) as a plate from batch 1 clustered with 
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batch 2. These two effects are due to systematic technical noise introduced during the 

experiment. Therefore, we considered batch, plate effect, and position on the plate 

effect as covariates in all analyses. Similar findings were observed for the Illumina 450k 

data therefore these technical covariates were adjusted for in all downstream analyses 

for both the Illumina 27k and on the Illumina 450k array datasets. 

 

 

Figure 3-6. Estimating batch effects using PC1 and PC2 

Each grey dot (batch 1) or blue triangle (batch 2) represents one subject (total = 172 subjects). 
There are two batches representing two experiments performed at different times. 

3.3.4 Data normalization and adjusting for batch effects 

A normalization step was necessary to make subjects comparable because each subject 

may have a different methylation distribution. Therefore, I applied quantile-

normalization (within subjects across probes) to the raw data. Figure 3-7 shows the 

methylation density of subjects from the two batches, prior (grey dashes) and post 

quantile-normalization (black lines). The quantile-normalization has been widely 

applied in gene expression array data analysis (Bolstad et al., 2003). Consequently, 

subjects in the same array would have similar distribution of methylation density. 
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Figure 3-7. Density of methylation levels prior and post quantile-normalization 
in (A) batch 1 and (B) batch 2 

However, the direct quantile-normalization used in Illumina 27k data would be less 

suited to normalize the two probe types with different distributions on the Illumina 450k 

data. To overcome the issue with probe types and their distribution, several R packages 

are available for array data normalization, such as the BMIQ (Teschendorff et al., 

2013), SWAN (in R “minfi” package) (Maksimovic et al., 2012), and DASEN (in R 

“wateRmelon” package) (Pidsley et al., 2013). 

To make type II probes more comparable to the type I probes, I used BMIQ 

(Teschendorff et al., 2013) to first normalize the methylation betas. The purpose of 

BMIQ was to transform the beta distribution of type II probes to fit that of type I 

probes. Both types of probes were categorized into unmethylated, hemi-methylated, and 

methylated, and the type II probes were transformed to fit the quantiles of type I probes 

using the inverse of the cumulative beta distributions in each category. 

Figure 3- 8 shows the data distribution before and after the BMIQ normalization. Before 

normalization, the methylation distribution showed variation between subjects, and the 

median differed across plates Figure 3-8A), and by position on the plate (subjects at the 

beginning of the plate have lower methylation levels compared to those at the end of the 

plate). After BMIQ transformation, the type II probe distribution was transformed, and 

the methylation range between subjects became more similar but their medians were 

relatively unchanged (Figure 3-8B). 
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For downstream analysis using linear regression, the methylation levels on each probe 

were further quantile-quantile normalized to fit a standard normal distribution. 

 

 

Figure 3-8. Example of dataset (A) before and (B) after BMIQ transformation in 
an Illumina 450k array  

The upper panels are the beta distributions of different subjects, and the lower panel are the 
boxplot of betas. On the boxplot, each box is a single subject and the same colours show the 
subjects are on the same experiment plate and ordered by their position on the plate. 

3.4 Methylation heritability and patterns in twins 

Because the datasets contained twins, I wanted to explore structure in the data and 

evidence for heritability in DNA methylation itself. Previous studies have shown 

evidence for methylation heritability and genetic influences at a subset of probes (Z. A. 

Kaminsky et al., 2009; J. T. Bell et al., 2012; Grundberg et al., 2013). To study this, I 

categorized the subjects in the Illumina 27k dataset (Dataset 1) into two batches based 

on the date that their methylation levels were measured. Batch 1 included 12 MZ pairs 

and 17 DZ pairs and batch 2 included 9 MZ pairs and 14 DZ pairs. 
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3.4.1 DNA Methylation Patterns in Twins 

I found that the methylation patterns of MZ twins were more correlated than those of 

DZ twins, and that twins shared more similar patterns compared to unrelated subjects in 

both batches. This result was consistent with a previous study (Z. A. Kaminsky et al., 

2009). Figure 3-9 shows the correlation between a random pair of MZs, DZs, and two 

unrelated subjects. Despite the fact that correlation coefficients were high between 

unrelated subjects, they were still lower than those within twin pairs. 

 

 

Figure 3-9. Correlation of genome-wide methylation levels between a random 
MZ and DZ twin pair, and unrelated subjects 

I then calculated the Pearson’s correlation coefficients for all twins and between 

unrelated singletons from the two batches. Again, the methylation levels within MZ 

pairs were more similar than those within DZ twins, and twins were more correlated 

than pairs of unrelated individuals (Figure 3-10). The correlation patterns are similar in 

both batches (Figure 3-10A: batch1; Figure 3-10B: batch2). This trend indicated that 

certain methylation regions could be heritable, and therefore family and zygosity should 

be included as covariates in the study of twins.  
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Figure 3-10. Pearson’s correlation coefficient (r) in MZ, DZ, and singletons for 
(A) batch 1 and (B) batch 2 

Orange, blue, and white boxes represents MZ, DZ, and singletons, respectively. 

3.4.2 Heritability of DNA methylation  

I calculated the intra-class correlation coefficients (ICC) to compare the genome-wide 

methylation patterns within and between MZ and DZ twins. The intra-class correlation 

is used for data with paired structure and can account for the resemblance of units in the 

same group (Fisher, 1954). The heritability of methylation is calculated as twice the 

difference of ICC in MZ and DZ. 

The genome-wide heritability was estimated using the ICC for both batches (Figure 3-

11). The MZ twins had a higher ICC than DZ twins, and the average heritability 

estimated over the 24,641 CpG sites was 0.176 in batch 1 and 0.188 in batch 2. 
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Figure 3-11. Density of ICC in MZ and DZ for (A) batch 1 and (B) batch 2 

The orange area is the density of MZ, and blue area is that in DZ. 

In summary, the methylation patterns in twins showed more similarity than those in 

unrelated individuals, as previously observed (Z. A. Kaminsky et al., 2009). I also 

found that methylation was more similar in MZs than DZs, and twins had more similar 

methylation levels than unrelated subjects. On average, my estimate of genome-wide 

heritability of methylation was 0.18 using Illumina 27k data. This value is higher than 

the Kaminsky et al. estimate of 0.014 using Human 12K CpG island microarray in 

whole blood (Z. A. Kaminsky et al., 2009). In a recent study using 344,092 probes in 

Illumina 450k array, Grundberg et al. used 97 MZ and 162 DZ twin pairs in adipose 

tissue, and reported that methylation heritability was 0.19 (Grundberg et al., 2013). An 

alternative method of calculating the heritability is to use the OpenMX tool (Boker et 

al., 2011). Using a subset of 349,237 probes in 94 MZ and 25 DZ pairs, a mean 

heritability rate of 0.22 was found in blood sample (Table 1, Dataset 2; work done by 

Juan Edgar Castillo-Fernandez in the department). Only focused on a subset probes 

from the Illumina 450k array that overlapped with the Illumina 27k, there was a slightly 

lower heritability rate of 0.2, which was approaching my value of 0.18. It could be that 

the genome-wide heritability in the Illumina 27k array is lower than that estimated on 

the Illumina 450k array because more probes are located on CpG islands, which are 

generally unmethylated and have low levels of methylation variability. 
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4 DNA Methylation Associates 

with Age and Age-Related 
Phenotypes 

The aim of this chapter is to identify the DNA methylation changes that associate with 

age and age-related phenotypes. This chapter is divided into two sections based on the 

array platforms used. In the first section, I will present my analysis of age-related 

differential methylation sites of Illumina 27k data in whole blood. The second section 

extends my results to the Illumina 450k platform in whole blood, and two other tissues 

(adipose and skin), to identify tissue-shared effects.  

Part of this work has been published as a research article in PLoS Genetics (J. T. Bell et 

al., 2012). To gain a comprehensive overview on this subject, I prepared a review of the 

published epigenome-wide association scans (EWAS) of age and age-related complex 

human traits, and this has been published as a review article in Epigenomics (Tsai et al., 

2012). 

 

4.1 Introduction 

Age-related methylation changes have not been fully characterized. An initial study 

observed that older monozygotic (MZ) twins aged 50 years old have more methylation 

differences than younger twins aged 3 years old (Fraga et al., 2005). On the other hand, 

methylation might not dramatically change over time, as a study looking at methylation 

levels in two age groups (26 and 68 years old) across three chromosomes of different 

tissues reported only a 0.275% difference between the groups (Eckhardt et al., 2006). 

Since the same subjects were not traced longitudinally, both findings remain somewhat 
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inconclusive. One longitudinal study sampled the same subjects, at ages 5 and 10 years 

old, and showed that longitudinal changes in DNA methylation exist, as methylation 

levels of three genes (DRD4, SERT, MAOA) varied among subjects and were unstable 

over time (Wong et al., 2010). 

Moving away from candidate gene studies, recent studies have increasingly focused on 

EWAS, and continue to report strong correlations between methylation and age - firstly, 

using the Illumina GoldenGate methylation (Boks et al., 2009), and from 2010 onwards, 

using the Illumina 27k platform (Gibbs et al., 2010). I have compared age-related 

findings from the Illumina 27k platform across several studies (see Table 1 from (Tsai 

et al., 2012)). Some of the first studies that used the Illumina 27k to investigate a-DMPs 

include two genome-wide studies published in 2010 (Rakyan et al., 2010; Teschendorff 

et al., 2010). One of these found 231 CpG sites hyper-methylated with age and 147 

CpG sites hypo-methylated with age in 31 twin pairs and 31 singletons in whole blood 

samples (Rakyan et al., 2010). The authors replicated the a-DMPs in CD4+ and CD14+ 

cells, suggesting that changes had occurred in the precursor hematopoietic stem cells, 

prior to their divergence into the myeloid and lymphoid lineages. They also reported 

that a-DMPs were enriched at bivalent chromatin domain promoters at the precursor 

stage. The second study assessed methylation patterns of 491 subjects at varying stages 

of ovarian cancer and identified 69 CpGs hyper-methylated with ageing using different 

cell lines (Teschendorff et al., 2010), suggesting that the ageing process might silence 

genes that were suppressed in stem cells and contribute to carcinogenesis. A hypothesis 

was proposed that age-related methylation changes might induce cells into a ‘stem-like’ 

state and predisposes an individual towards carcinogenesis (Rakyan et al., 2010; 

Teschendorff et al., 2010). 

Subsequent studies have explored age effects on the Illumina 450k array and more CpG 

sites differentially methylated with age have been identified (Horvath, 2013; Martino et 

al., 2013; Florath et al., 2014; Tserel et al., 2014; Zykovich et al., 2014). However, 

most array-based EWAS continue to be cross-sectional studies. One of a few notable 

longitudinal studies followed the methylation changes of 67 individuals free of age-

related diseases during 8 years (Florath et al., 2014). The authors identified 155 a-

DMPs from the observatory and confirmatory cross-sectional datasets, in a total of 

nearly a thousand subjects. They found that methylation levels at these a-DMPs 
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persistently changed after 8 years, suggesting that methylation changes on certain CpG 

sites could be good ageing markers. 

Recent studies have also explored the methylation-age effects across different tissues 

related to ageing, such as whole blood/leukocytes (B. C. Christensen et al., 2009; 

Rakyan et al., 2010; Teschendorff et al., 2010; Adkins et al., 2011; Alisch et al., 2012; 

J. T. Bell et al., 2012), brain (Hernandez et al., 2011; Numata et al., 2012), skin 

(Gronniger et al., 2010; Koch et al., 2011), saliva (Bocklandt et al., 2011), skeletal 

muscle (Zykovich et al., 2014) and others (Koch & Wagner, 2011). Several a-DMPs 

overlapped across studies, indicating that the age effect is not only highly replicable, but 

can also be shared across tissues. 

The methylation changes at a-DMPs might reflect an individual’s true biological age. 

Several recent studies have successfully used different sets of a-DMPs to construct 

models for estimating the DNA methylation age (Hannan et al., 2009; Bocklandt et al., 

2011; Hannum et al., 2013; Horvath, 2013; Florath et al., 2014). In two studies, 

researchers have found that the methylation age was accelerated in the disease-related 

tissues, exclusively in cancerous ones, suggesting that methylation age might be 

associated with biological processes (Hannum et al., 2013; Horvath, 2013). 

In this chapter, I will first present my results identifying a-DMPs using Illumina 27k, 

and compare these with the results of Rakyan et al (Rakyan et al., 2010), because one of 

the datasets in my chapter (Dataset 1, batch 1) were previously studied by Rakyan et al. 

Secondly, I extend a-DMP identification to the Illumina 450k, and identify shared a-

DMPs across tissues. Lastly, to test the hypothesis that methylation age could be 

associated with biological ageing, I examine the correlation between age-related 

phenotypes and methylation age acceleration changes in multiple tissues. 

  



-82- 

4.2 Materials and methods 

4.2.1 Illumina 27k dataset 

Twin volunteers were recruited from the TwinsUK cohort and their methylation levels 

were measured by Illumina 27k using DNA from whole blood samples. The subjects 

were Caucasian female twins aged from 32 to 82 years old. There were 172 subjects 

who passed quality control. Table 4-1 shows the 172 subjects who were further divided 

into 93 (batch 1) and 79 (batch 2). For batch 1, a subset of 64 subjects as unrelated, 

which comprised of a single individual from each twin pair and all the singletons, and 

similarly for batch 2 there were 56 selected unrelated individuals. These data have 

previously been published (Rakyan et al., 2010; J. T. Bell et al., 2012) 

Table 4-1.Summary of Illumina 27k datasets 

Dataset Total samples (N) MZ pairs DZ pairs Unrelated 

Batch 1   93          12 17 64 
Batch 2   79 9 14 56 
Combined 172  43*   33*   20* 

*Some of co-twins are selected into batch 1 and batch 2 as internal controls 

4.2.2 Illumina 450k dataset 

DNA methylation levels were obtained in three tissue datasets using the Illumina 450k, 

to investigate cross-tissue a-DMPs and predict the DNA methylation age. Table 4-2 

shows the total samples from datasets that were filtered, for example, for the blood 

dataset, 306/449 and 383/449 subjects were used in the a-DMPs and age acceleration 

analysis. The filtering was due to missing covariate data, such as white cell count, 

which was only available for 306 individuals with blood for a-DMPs analysis. For the 

age acceleration analysis I did not require these covariate data and so all the 449 

subjects could be used, however, I selected 383 subjects with no age-related or severe 

disease. 
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Table 4-2. Summary of Illumina 450k datasets 

Dataset Total 
sample (N) 

a-DMP 
analysis (N) 

Mean age 
(range) 

Age 
acceleration 
Analysis (N) 

Mean age 
(range) 

Blood 449 306 53 (33, 78) 266 58 (37, 82) 
Adipose 648 551 59 (39, 85) 542 59 (39, 85) 
Skin 469 469 59 (39, 85) 469 59 (39, 85) 

The adipose methylation dataset has previously been published (Grundberg et al., 2013) 

and the individuals in the skin methylation dataset are a subset of the 648 individuals in 

the adipose methylation dataset. 

The DNA methylation datasets passed the quality control procedure as described in 

Chapter 3. For the samples used in this chapter, the following covariates were used in 

all analyses: age, BMI, family, zygosity, methylation chip, order of the sample on the 

chip, and bisulfite conversion levels. Additional covariates included blood cell counts 

(whole blood samples), and bisulfite efficiency (adipose tissue). 

4.2.3 Ageing-related clinical measurements 

A total of 36 quantitative indicators of ageing were included in the analysis, Table 4-3 

list the mean and standard deviation of these age-related phenotypes in three datasets. 

Some of the phenotypes have been normalised and therefore the mean value is close to 

0. I tested for the correlation between age-related DNA methylation variables and these 

age-related phenotypes, as well as age-related disease status, such as type 2 diabetes, 

obesity, and high blood pressure. The age-related phenotype data were obtained from 

biochemical measures from blood and anthropometric and physical measurements 

during clinical twin visits (Moayyeri et al., 2013). The findings that passed nominal 

statistical significance are discussed in the results of this chapter. 
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Table 4-3. List of ageing-related indicators 

Phenotypes      Blood 
     (Mean ± SD) 

     Adipose 
     (Mean ± SD) 

        Skin 
      (Mean ± SD) 

Haematological values 
Haemoglobin (Hgb)1 -0.01 ± 1.05 -0.01 ± 1.01 -0.04 ± 0.99 
Mean corpuscular volume (MCV)1 -0.01 ± 1.02 -0.04 ± 0.98 -0.01 ± 0.99 
Packed cell volume (PCV)1 0 ± 1.06 0 ± 1.00 -0.05 ± 0.98 
Platelet count (PLT)1 -0.05 ± 1.03 0.05 ± 0.92 0.04 ± 0.94 
Red blood cell (RBC) 4.31 ± 0.35 4.32 ± 0.33 4.30 ± 0.34 
White blood cell (WBC)1 -0.07 ± 1.00 0.01 ± 1.01 -0.01 ± 1.00 
Heart function test 
Heart rate (HR) 68.19 ± 11.61 67.26 ± 10.71 67.36 ± 10.83 
RR interval 906.29 ± 159.45 914.8 ± 146.33 914.1 ± 148.52 
QT interval 405.54 ± 30.28 408.41 ± 29.06 407.06 ± 28.69 
Liver function test    
Albumin 41.29 ± 2.81 41.08 ± 2.90 41.2 ± 3.02 
Total Bilirubin 8.24 ± 4.75 8.8 ± 3.87 8.68 ± 3.82 
Apolipoprotein A-1 (ApoA1) 1.67 ± 0.26 1.66 ± 0.253 1.66 ± 0.26 
Apolipoprotein B (ApoB)1 -0.14 ± 0.26 -0.12 ± 0.26 -0.13 ± 0.26 
Gamma glutamyl transferase (GGT) 27.82 ± 26.08 25.26 ± 21.45  24.97 ± 18.81 
Type II diabetes-related markers    
HOMA-insulin resistance1 0.31 ± 0.76 0.25 ± 0.69 0.25 ± 0.65 
HOMA-beta cell1 3.00 ± 0.79 2.97 ± 0.73 2.97 ± 0.70 
Glucose1 5.00 ± 0.50 4.95 ± 0.47 4.93 ± 0.50 
Insulin 3.75 ± 0.70 3.70 ± 0.64 3.71 ± 0.61 
Morphological measurements    
Height 161.3 ± 6.23 161.56 ± 5.92 161.52 ± 5.94 
Weight 69.08 ± 14.10 69.99 ± 14.05 69.45 ± 13.49 
Body mass index (BMI) 26.56 ± 4.75 26.77 ± 4.91 26.58 ± 4.74 
Waist 79.7 ± 9.95 79.94 ± 10.53 80.07 ± 10.37 
Hip 101.16 ± 9.03 101.39 ± 9.83 101.4 ± 9.35 
Waist-Hip-ratio (WHR) 0.79 ± 0.057 0.79 ± 0.05  0.79 ± 0.06 
Blood lipid profile    
Total cholesterol1 5.50 ± 1.02 5.60 ± 1.06 5.61 ± 1.07 
Triglycerides1 0.06 ± 0.98 -0.02 ± 1.01 -0.05 ± 1.04 
Low density lipoproteins (LDL)1 4.20 ± 1.21 4.27 ± 1.20 4.31 ± 1.22 
High density lipoproteins (HDL)1 -0.04 ± 1.04 -0.04 ± 0.98 -0.01 ± 0.98 
Leptin 2.59 ± 0.59 2.54 ± 0.66 2.59 ± 0.68 
Adiponectin 1.95 ± 0.51 1.94 ± 0.49 1.95 ± 0.51 
Other biochemistry    
C-reactive protein (CRP) 2.95 ± 4.71 3.13 ± 5.41 3.31 ± 7.16 
Uric acid1 0.05 ± 1.03 0.03 ± 1.00 0.07 ± 0.98 
Bicarbonate 24.81 ± 2.47 24.87 ± 2.59 25.03 ± 2.69 
Creatinine1 4.28 ± 0.156 4.28 ± 0.16 4.29 ± 0.16 
Urea1 1.14 ± 0.150 1.12 ± 0.15 1.12 ± 0.14 
Other physical measurements    
Blood pressure (systolic) 126.34 ± 14.68 128.2 ± 15.67 128.5 ± 15.42 
Blood pressure (Diastolic) 77.42 ± 9.26 77.54 ± 9.58 77.81 ± 9.42 
Lung function (FVC) 3.18 ± 0.58 3.22 ± 0.61 3.23 ± 0.60 
Lung function (FEV) 2.50 ± 0.51 2.54 ± 0.56 2.56 ± 0.54 
1Normalized phenotypes 
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4.2.4 Statistical analyses 

4.2.4.1 Age-differential methylation sites analyses 

Based on the previous findings and my results, the age-related differential methylation 

could occur at single position and in a region. I will then use a-DMPs for the whole 

chapter.  Two methods were used to help identify the a-DMPs: permutation-based and 

linear mixed effect regression (LMER) model. 

4.2.4.1.1 Permutation-based analysis (used on Illumina 27k) 

The raw beta values were quantile-normalized within each subject, and then normalized 

to normal distribution on each probe. The normalized data were fitted to a linear mixed 

effect model to correct for batch effect and covariates. The residuals of each probe were 

correlated with age using the Spearman’s correlation coefficient rho (ρ). The true ρ 

(observed ρ) between methylation levels and age was calculated. Age was shuffled to 

calculate the ρ for each permutation (permuted ρ). Permutations were performed 1000 

times. Permutations with more extreme values than the true coefficient ρ observed were 

counted then divided by 1000. 

!!!"#$%!!"!!"#ℎ!!"#$%! = !!!"#$%&!!"!( !"#$%&"'!!| !> ! |!"#$%&$'!! )1000  

Probes with P value ≤ 0.01 were considered as a-DMPs. The analysis was performed on 

the Illumina 27k dataset only. 

4.2.4.1.2 Linear mixed effect regression (LMER) model (used on Illumina 27k and 

450k) 

A linear mixed effect regression model adjusted for the family structure and twin 

structure as the data contained MZ and DZ twins. The covariates, such as fixed-effect 

terms (age, plate, position on the plate) and random-effect terms (family structure and 

zygosity, i.e. MZ, DZ and singleton) were included. For each probe, a full model that 

regressed the raw beta values on all of the covariates was compared to a null model that 

excluded age. The models were compared using the ANOVA F statistic in R. An a-

DMP was accepted if the P value passed the Bonferroni correction or false discovery 
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rate. In the dataset of unrelated subjects, I replaced the LMER model with a simple 

linear regression model where the random-effects were not considered. 

4.2.4.2 Analysis of Illumina 27k data 

Three blood datasets were used to identify a-DMPs. Specifically, (1) 93 subjects from 

batch 1 (the same subjects from Rakyan et al. (Rakyan et al., 2010)), (2) 64 unrelateds 

from batch 1, and (3) 172 subjects, combined from batch 1 and batch 2. The 

methylation levels at each probe were compared to age across all individuals using 

permutations and LMER. I obtained a more precise measure of age at DNA extraction 

of the sample, rather than chronological age at present, as the timing of the sample 

collection varied.  

4.2.4.3 Analysis of Illumina 450k data 

The first Illumina 450k analysis focused on the identification of tissue-shared a-DMPs. 

The significant a-DMPs were determined using LMER (including two significance 

criteria: Bonferroni adjusted P value and false discovery rate). Because the comparison 

of a-DMPs by the Bonferroni adjusted P value could be too conservative and influenced 

by the sample size, tissue-sharing was then assessed using the ‘proportion of true 

positives from the P value distribution’ (from the ANOVA P values), a method first 

introduced by Storey and Tibshirani (Storey & Tibshirani, 2003) and recently applied to 

assess tissue-sharing in gene expression data (Nica et al., 2011). There were two values, 

π0 and π1 (π1 = 1 - π0), which represented the proportion of false positive and true 

positive associations in the P value distribution of the dataset. These two values could 

be calculated in the R package ‘qvalue’ (Dabney et al.). The idea was to check whether 

the proportion of significant hits from one dataset was also significant in the other 

dataset. The following is an example of how this analysis was performed: I took the 

significant a-DMPs found in the blood dataset and obtained the P values of these exact 

probes in the adipose dataset. Using the qvalue package I calculated π1 based on the P 

values in the adipose subset. If the π1 was 0.5, this indicated there was 50% tissue 

sharing of a-DMPs in blood with a-DMPs in adipose tissue.  
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4.2.4.4 Age acceleration analysis in Illumina 450k data 

The second Illumina 450k analysis focused on age acceleration. Firstly, the predicted 

DNA methylation age was calculated using R code kindly provided by Dr. Steve 

Horvath (Horvath, 2013). For each of the Illumina 450k datasets, I extracted 21,369 of 

CpGs then BMIQ transformed them following his pipeline. The 353 ‘clock’ CpGs 

(Horvath, 2013) were extracted and used to the predict methylation age using a 

penalized regression model, which was built from publicly available datasets. After the 

methylation age was estimated, two age accelerations were calculated as (1) ‘Age 

acceleration difference’, which is defined as the difference between the DNA 

methylation age and chronological age; and (2) ‘Age acceleration residual’, which is 

defined as residual from regressing DNA methylation age on chronological age (Figure 

4-1). The recommended age acceleration estimate is the age acceleration residual, 

because it adjusts for the effect of the age contribution. 

 

Figure 4-1. Age acceleration estimates for (A) age acceleration differences and (B) 
age acceleration residuals 

Positive age acceleration indicates greater methylation age than true age, suggesting a 

faster ageing process in the individual. The age acceleration was compared against a 

number of clinical phenotypes and quantitative traits (Table 4-3). Ideally, subjects with 

faster ageing were expected to have less good healthy ageing indicators. The 
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comparisons were performed using Pearson’s correlation and the results were reported 

at a significance level of P < 0.05. 

4.3 Results 

In following paragraphs, I will separate the results into two big sections. The first 

section I present age the differential methylation results using Illumina 27k platform on 

whole blood samples. The second section, are results from all age analysis done for the 

three Illumina 450k datasets, including age differential methylation results and age 

acceleration results. 

4.3 Section A: Illumina 27k data (blood) 

4.3.1 Overall methylation patterns with age 

The overall genome-wide methylation patterns on the Illumina 27k array were 

compared to age, first using principal component analysis. The first PC (PC1) in the 

autosomal DNA methylation data captured 19.3% of the overall variance, but did not 

correlate significantly with age at DNA extraction of the sample (r = 0.039 and P = 

0.613, Figure 4-2A). PC2 to PC4 can explain 16.6%, 7.7% and 5.6% of the overall 

methylation variance, respectively, and only PC2 was significantly correlated with age 

(r = 0.239 and P = 0.002, Figure 4-2B). The combined PC1 to PC4 can explain 49.2% 

of the overall variance. This indicated that age might induce variability in a subset of 

genome-wide DNA methylation levels. 

  



-89- 

 

Figure 4-2. Scatter plot of PC1/PC2 and DNA extraction age 

Individuals from batch 1 (black) and batch 2 (blue) are shown for (A) PC1 and (B) PC2. The 
colour dash lines indicated the correlation between DNA extraction age and PCs in batch1 
(black lines), batch 2 (blue lines), and all subjects (red lines). 

4.3.2 Age-related differential methylation site: Permutation-based 

The objective here was to repeat the analysis of Rakyan et al. (Rakyan et al., 2010) and 

confirm their results using the same samples (93 subjects), approach (permutation of P 

values), and significance criteria. However, Rakyan et al used chronological age in 

2009, but there was some variability in the date of blood sample collection across these 

individuals. Therefore, I obtained a more precise estimate of age using the age at which 

DNA was extracted for the DNA methylation assay. 

4.3.2.1 Using chronological age to estimate a-DMPs 

Table 4-4 shows the 213 hyper-a-DMPs found in the previous study (131 hyper-a-

DMPs were replicated across multiple cell types, such as white blood cells, CD4+, and 

CD8+ cells) using permutations of chronological age (Rakyan et al., 2010). Similarly, I 

used chronological age and found more a-DMPs: 419 hyper-a-DMPs and 374 hypo-a-

DMPs, and also confirmed the 131 hyper-a-DMPs. All of the 213 previously reported 

hyper-a-DMPs were in my list of 419 hyper-a-DMPs. The increase in a-DMP likely 

occurred because I removed a number of probes in the quality control (e.g. probes 

incorrectly mapped to the genome), which relaxed the multiple testing criteria and the 

resulting significance thresholds. 
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Table 4-4. Age-related differential methylation identified with chronological and 
DNA extraction age 

Study/dataset    Hyper-a-DMPs*    Hypo-a-DMPs      Total 
Chronological age    
93 subjects [Rakyan et al, 2010] 213 (131)   147   360 
93 subjects [blood 27k data] 419 (131)   374   793 
DNA extraction age    
93 subjects [blood 27k data]   570 (127)   530 1100 
64 subjects [blood 27k data] 397 (87)   401   798 
172 subjects [blood 27k data] 1274 (114) 1236 2510 

*Parenthesis is number of validated a-DMPs (out of 131) from Rakyan et al study. 
A significance level of 0.01 was set for all permutation results. 

4.3.2.2 Using DNA extraction age to estimate a-DMPs 

Using the extraction age, there were 570 hyper-a-DMPs and 530 hypo-a-DMPs (Table 

4-4). Of the previously identified 131 hyper-a-DMPs, 127 were identified at P < 0.01 

and 4 were borderline significant (P value of 0.019 to 0.029). The same analysis was 

performed for 64 unrelated subjects and for the entire dataset of 172 subjects. A large 

proportion of the 131 previously reported a-DMPs were confirmed to have strong 

hyper-a-DMP effects across all data subsets. The total a-DMPs found in the 172 

subjects were 2,510.  

Figure 4-3 shows the consistent correlation between methylation levels and age for one 

a-DMP: cg10362475 (chromosome 11, in gene body of SHANK2). For the 93 subjects, 

the Spearman’s coefficient between methylation of the chronological age (ρ = 0.285; P 

= 0.004) and DNA extraction age (ρ = 0.298; P = 0.001) were similar. This probe was 

hyper-methylated with age and showed a significant age effect across all three datasets 

and in the previous study (Rakyan et al., 2010). 
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Figure 4-3. An example of age differential methylation at gene SHANK2 

Probe cg10362475 differentially methylated with age in the blood datasets (upper and lower 
left panels) and Rakyan et al study (lower right), figure reproduced from Figure 1A of Rakyan 
et al.’s paper (Rakyan et al., 2010) 

The permutation-based method was used solely to confirm the results from Rakyan et al 

using a more precise measure of chronological age. The LMER method to find a-DMPs 

(described below) should be more accurate in these data owing to the incorporation of 

family and zygosity structure in the model. 

4.3.3 Age-related differential methylation: LMER model 

A linear mixed effect regression (LMER) model and the permutation-based method was 

applied to the 172 subjects and identified 490 a-DMPs that passed 5% FDR threshold 

(J. T. Bell et al., 2012). All a-DMPs were positively correlated with extraction age 

(Figure 4-4, P = 3.96 × 10-4), and 75 hyper-a-DMPs overlapped between this study and 

the 213 hyper-a-DMPs from the previous study (Rakyan et al., 2010). Most a-DMPs 

demonstrated the same effect direction in both studies. Furthermore, these a-DMPs 

were concordant with other studies, such as 36/88 a-DMPs in saliva (Bocklandt et al., 

2011) and 3/10 a-DMPs in brain tissues (Hernandez et al., 2011). 
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Figure 4-4. Manhattan plot of EWAS using chronological age at 5% FDR  

A total of 490 significant a-DMPs were found pass 5% FDR (dots above red dash line) from 
172 subjects. Figure reproduced from Figure 2 of Bell & Tsai’s paper (J. T. Bell et al., 2012) 

The 490 a-DMPs were followed up in a replication cohort of 22 MZ twin pairs profiled 

on the Illumina 27k in whole blood from a previous study (E. L. Dempster et al., 2011). 

The 22 twin pairs were younger (age range 20-61, median age 28). I tested the 

correlation between methylation levels and age in the 22 twin pairs, and in a subset of 

22 unaffected unrelated individuals (using the healthy co-twin of the 22 pairs). The beta 

values of the 22 twin pairs were normalized to normal distribution) then a linear mixed 

effect model was applied along with the random effect (family) and fixed effect (plate, 

gender, and age) terms. For the 22 unrelateds, the Spearman’s correlation coefficients 

between raw methylation levels and age were calculated. In summary, for the twin pairs 

and unrelated datasets, there were 184/490 (38%) and 69/490 (14%) a-DMPs, 

respectively. These a-DMPs had the same effect direction at a nominally significant 

level (P = 0.05), and 404/490 (82%) and 369/490 (77%) a-DMPs had the same effect 

direction but no significance. 

Figure 4-5 shows the two most significant a-DMPs (cgg22736354 in NHLRC1 and 

cg05266781 in IRX5) in the discovery (black) and the replication (red) datasets. The 

correlation patterns were similar in both datasets. 
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Figure 4-5. Two most associated a-DMPs proximal to NHLRC1 and IRX5 genes  

The 172 subjects (black) and 22 twin pairs (red), and regression in each dataset (dash); figure 
reproduced from Figure 3 of Bell & Tsai’s paper (J. T. Bell et al., 2012) 

To gain insights into functional characteristics of these a-DMPs, the methylation probes 

were categorized according to whether they fell into CpG islands or histone 

modification marks (H3K9ac, H3K27ac, KH3K27me3, H3K4me1, H3K4me, and 

H3K4me3, (Rosenbloom et al., 2013)) of the human lymphoblastoid GM12878 cell 

line. Gene ontology enrichment was performed using the Gorilla tool (Eden et al., 2009) 

based on a ranked list of a-DMPs genes. The a-DMPs revealed a two-fold enrichment 

for CpG islands as compared to the total 26,690 probes (Figure 4-6). These a-DMPs 

were hyper-methylated (98%) and some were involved in the regulation of 

developmental processes and regulation of transcription. 

 

 

Figure 4-6. Functional annotation of a-DMPs 

Enrichment was calculated as a proportion of all 26,690 probes. The median and 95% 
confidence intervals (bars) are shown; figure reproduced from Figure 4A of Bell & Tsai’s 
paper (J. T. Bell et al., 2012) 
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4.3 Section B: Illumina 450k datasets (blood, skin, adipose tissue) 

4.3.4 a-DMPs analysis in three tissues 

The DNA methylation profiles of three tissue samples (blood, adipose, skin) were 

profiled using the Illumina 450k array (Table 4-3). The skin and adipose tissues were 

collected from the same biopsy, therefore shared the same DNA extraction age. The 

blood samples were collected at different times with different extraction age. Figure 4-7 

shows 120 subjects who contributed all three samples, and samples contributed two 

samples, such as in adipose and skin (N = 405), blood and adipose (N = 186), and blood 

and skin (N = 136). 

 

Figure 4-7. Tissue samples that overlapped across the three datasets 

The three tissue datasets consisted of twin pairs. The proportion of MZ and DZ twin 

pairs varied across datasets, and in blood dataset, there were markedly more MZ than 

the DZ twins (Table 4-5). This was due to the selection criteria for those pairs with no 

severe diseases and availability of covariate information. 

Table 4-5. Summary of twin pairs included in the three datasets 

Datasets 
(Tissue) All Zygosity 

(MZ, DZ) 
a-DMPs 
analysis 

Zygosity 
(MZ, DZ) 

Age 
acceleration 

analysis 

Zygosity 
(MZ, DZ) 

Blood 449 332, 70 306 160, 42 355 202, 54 
Adipose 648 194, 324 551 102, 250 648 194, 324 
Skin 469 102, 160 469 102, 160 469 102, 160 

153

66

177

16

120

285

48

Blood Adipose

Skin
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To find the tissue-shared a-DMPs from the three datasets, the Bonferroni-adjusted P 

value was used at 1.08 × 10-7, 1.35 × 10-7, 1.43 × 10-7 in blood, adipose, skin tissues, 

respectively. The highest number of a-DMPs (N = 7,183) was found in adipose tissue as 

well as the most significant a-DMP (cg16867657, EVOLV2). The skin and blood tissues 

showed a smaller number 3,142 and 1,256 of significant a-DMPs, respectively (Table 4-

6). 

Using a single P value to call a-DMPs across tissues might be misleading because the 

results would depend on the actual number of probes tested and on the sample size of 

the study, as a larger sample would have more power to identify DMPs. Therefore, I 

also used the false discovery rate to identify the a-DMPs (See Table 4-6). At an FDR = 

1% and 5% as the selection criteria for a-DMPs, there were many a-DMPs observed 

across the three sample Table 4-6), and blood and adipose tissue consistently had the 

greatest number of a-DMPs. 

Table 4-6. List of significant a-DMPs found in three datasets 
  Blood Adipose Skin 
Total CpG sites (N) 461,039 370,960 350,463 
Sites pass Bonferroni correction (N)     1,256     7,183     3,142 
Sites pass FDR 5% (N)   58,439   51,965   30,478 
Sites pass FDR 1% (N)   26,416   30,623   16,271 
P value of most significant hit 3.95×10-34 8.65×10-92 3.20×10-38 
*Number of CpG site that passed Bonferroni correction of P value at 1.08 × 10-7, 1.35 × 10-7, 
1.43 × 10-7 in blood, adipose, skin tissues, respectively. 

4.3.5 a-DMPs analysis across multiple tissues 

4.3.5.1 Using a single Bonferroni adjusted P value as the significance 

threshold 

There were 480,504 probes across the three datasets, and 108,755 a-DMPs (22.6%; 

68,515 hyper-methylated and 40,240 hypo-methylated) had the same effect directions 

across all three tissues, including the 2,665 CpG sites from the X chromosome. 

Using a single multiple testing threshold of P = 1 × 10-7 (Bonferroni correction adjusting 

for 500,000 tests), there were overlapping a-DMPs Figure 4-8) between adipose and 

skin (440 a-DMPs; 431 hyper-methylated and 9 hypo-methylated), between blood and 
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skin (313 a-DMPs; 287 hyper-methylated and 26 hypo-methylated), and between 

adipose and skin (1,745 a-DMPs; 1,726 hyper-methylated and 19 hypo-methylated). 

There were 231 a-DMPs that overlapped across all three tissues. 

 

 

Figure 4-8. Tissue-shared and tissue-specific a-DMPs found in three datasets 
with same effect direction 

4.3.5.2 Using FDR as significance criteria 

Using the a-DMP results across the three samples at FDR = 1% (Table 4-6), I then 

applied the proportion of true positive test to estimate the tissue-shared effect. At FDR 

1%, 7,263 a-DMPs overlapped between blood and adipose, 5,398 overlapped between 

adipose and skin, and 5,398 between skin and blood. 

Table 4-7 shows the result of the true positive analysis. Generally, the sharing between 

any two tissues was high (> 60% in all comparisons) suggesting that the age effect on 

methylation was more tissue-shared than tissue-specific. The highest sharing was 

between adipose and skin, at about 72-77%. 

Table 4-7. Pairwise tissue-shared a-DMPs 

Reference (FDR 1%)1 Blood2 Adipose2 Skin2 

Blood (N = 264,16) - 30,020; 62.82% 15,935; 76.45% 

Adipose (N = 30,623) 20,912; 64.34% - 13,889; 77.08% 
Skin (N = 16,271) 20,028; 66.46% 25,027; 72.16% - 
1Reference tissue; parenthesis were a-DMPs that passed FDR 1% 
2Number of target a-DMPs overlapped with reference tissue (left) and the proportion of tissue-
shared (right). 
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In total, there were 3,441 a-DMPs identified across the three tissues that mapped to 

1,892 unique genes. To understand the biological significance of these a-DMPs, a gene 

ontology analysis was performed using the WEB-based GEne SeT AnaLysis Toolkit. 

Many of the 1,892 a-DMP genes were involved in the developmental process (707 

genes, adjusted P = 1.67 × 10-47), nervous system development (394 genes, adjusted P = 

1.26 × 10-62), DNA binding in the regulatory regions (79 genes, adjusted P = 1.07 × 10-12) 

and others. Moreover, there were genes that associated with diseases, predominately 

mental disorders (113 genes, adjusted P = 1.28 × 10-39), such as schizophrenia (82 genes, 

adjusted P = 1.21 × 10-32), bipolar disorder (73 genes, adjusted P = 3.56 × 10-27), and 

anxiety disorders (48 genes, adjusted P = 1.66 × 10-25). 

4.3.6 Age acceleration analysis 

4.3.6.1 DNA methylation age and age acceleration across three tissues 

For each subject, the DNA methylation age was estimated based on the 353 ‘clock’ 

CpGs (Horvath, 2013). Age acceleration was calculated by subtracting chronological 

age from DNA methylation age. The distributions of age acceleration differences and 

age acceleration residuals in the three tissues are prone to be normally distributed 

(Figure 4-9A, Figure 4-9B). Age acceleration differences in blood showed slightly more 

variability than the other two tissues, but the methylation age seems to be a better age 

predictor than the other two tissues (Figure 4-9C). The DNA methylation age was 

highly correlated with the chronological age of each tissue sample: Pearson’s 

correlation coefficient were r = 0.82 in blood, r = 0.79 in adipose, and r = 0.79 in skin 

(Figure 4-9C). The methylation age of the extreme age groups (youngest and oldest) 

deviated more from the prediction lines in skin and adipose tissue. There was a negative 

correlation between the chronological age and age acceleration differences (Figure 4-

9D), therefore use age acceleration residuals could yield a more unbiased results (Figure 

4-9E). 
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Figure 4-9. Summary of the age acceleration in blood (red), adipose (yellow), and 
skin (green) tissues 
 (A) Distribution of age acceleration differences in three tissues; (B) distribution of age 
acceleration residuals in three tissues; (C) correlation between chronological age and DNA 
methylation age; (D) correlation between chronological age and age acceleration differences; 
and (E) correlation between chronological age and age acceleration residuals. 

Figure 4-10 shows the age acceleration changes of 107 subjects who provided all three 

tissues samples. Here, blood age acceleration was made the reference (red), while the 

relative age acceleration of adipose (yellow) and skin (green) were compared for each 

subjects. Age acceleration was more similar between adipose and skin for both the age 

acceleration estimates, and quite different when compared to blood samples.  
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Figure 4-10. Age acceleration patterns across tissues (blood, adipose, and skin) in 
(A) age acceleration differences, and (B) age acceleration residuals 

I correlated the age acceleration residuals with the age-related phenotypes in all three 

tissues. Table 4-8 shows the phenotypes associated with age acceleration at nominal 

significance of P < 0.05. In addition to the age-related phenotypes, I have tested the 

association between age acceleration and environmental effects, such as alcohol 

consumption and smoking status. I have also compared the age acceleration residuals 

with different disease statuses, for example, subjects with type 2 diabetes and those free 

from the disease. Most of correlations were observed in blood and the least was in skin. 

In blood samples, the age acceleration residuals seemed to be a good biomarker for age-

related phenotypes, and the correlations were as expected. For example, the subjects 

who were ageing faster (a higher value of age acceleration residual) had higher LDL, 

triglyceride, uric acid, and higher blood pressure, also showed lower HDL and lung 

function. Interestingly, higher alcohol consumption is significantly associated with 

faster ageing, and in current smokers there was slightly higher age acceleration 

compared to non-smokers and ex-smokers. However, I did not find any significant 

differences between the subjects with and without diseases (i.e. type 2 diabetes, and 

cardiovascular disease). This might be due to having fewer subjects in this category 

than the other two datasets, and a further analysis should be performed in a bigger 

sample size for cross-validation of these results. 
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Table 4-8. List of significant age accelerated phenotypes in three tissues 

Phenotypes      Blood 
    r (P value) 

     Adipose 
     r (P value) 

        Skin 
       r (P value) 

Haematological values    

White blood cell (WBC)1 0.22 (4 × 10-4) - - 

QT interval - -0.10 (0.032) - 
Liver function test 
Apolipoprotein B (ApoB)1 0.14 (0.019) - - 
HOMA-insulin resistance1 0.16 (0.011) - - 
HOMA-beta cell1 0.12 (0.049) - - 
Insulin 0.14 (0.007) - - 
Morphological measurements 
Height - - 0.11 (0.016) 
Weight 0.12 (0.049) - - 
Body mass index (BMI) 0.17 (0.007) - - 
Waist 0.25 (0.001) - - 
Hip 0.18 (0.021) - - 
Waist-Hip-ratio (WHR) 0.21 (0.007) - - 
Blood lipid profile 
Triglycerides1 0.20 (8 × 10-4) - - 
Low density lipoproteins (LDL)1 0.16 (0.011) - - 
High density lipoproteins (HDL)1 -0.14 (0.025) - - 
Adiponectin - -0.15 (0.017) - 
Other biochemistry 
C-reactive protein (CRP) 0.19 (0.003) - - 
Uric acid1 0.29 (0.001) - - 
Other physical measurements 
Blood pressure (systolic) 0.25 (5 × 10-5) - - 
Lung function (FVC) -0.21 (6 × 10-4) - - 
Lung function (FEV) -0.18 (3 × 10-3) - - 
Environmental effect    
Alcohol 0.16 (0.010) - - 
1Normalized phenotypes 
* Pearson’s correlation coefficients and P value 
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4.4 Discussion 

The primary goal of this chapter was to identify the DNA methylation changes with 

age. A number of age-related methylation changes were identified on the Illumina 27k 

array dataset. Most were hyper-methylated with age, suggesting that methylation levels 

at these sites increased with age. Since a-DMPs occupied < 10% of the scanned regions 

from both arrays, the vast majority of CpG sites (90%) were not strongly influenced by 

age. Age might impact a further set of CpG sites in a more complex manner, because 

the PC2 was significantly associated with age. This relationship was not observed for 

the other PCs perhaps because the vast majority of the CpGs showed only small 

variability across subjects. To study age-effects on DNA methylation in more detail a 

future strategy could be to focus on the probes that capture more variable DNA 

methylation patterns. 

One of the initial analyses that I performed in my project was to repeat the analyses of a 

previous study (Rakyan et al., 2010), using the same dataset of 93 individuals. I refined 

the measure of chronological age by obtaining DNA extraction age for each sample. I 

was able to validate the a-DMPs from the previous study, and I identified additional a-

DMPs in the set of 93 subjects and in the larger dataset of 172 subjects. 

The LMER model, which adjusted for family and zygosity using DNA extraction age, 

identified 490 a-DMPs among 172 twins. The findings had a high agreement (17-58%) 

with another five a-DMPs studies also on the Illumina 27k array (Table 4-9), but in 

different sample types. There was a high proportion of hyper-methylated a-DMPs 

across studies, and most were located on CGIs (see Table 2 of Tsai et al’s paper (Tsai et 

al., 2012)). Together, the six studies revealed 1,093 unique a-DMPs, however, but none 

overlapped across all six studies. There were 2 a-DMPs (near NTPX2 and PDE4C genes) 

found in five studies and 12 a-DMPs (near genes: GLRA1, TMEM179, GCM2, TRIM58, 

PTGER3, ATP8A2, MYOD1, BRUNOL6, GRIA2, KCNK12, B3GALT6) across four 

studies and 11/12 of these were located in CGIs, suggesting that tissue-shared a-DMPs 

were possibly enriched on CGIs. About 16% of the total unique genes overlapped in at 

least two studies. The low rate might be in part due to analysis methods, sample size, 

significance criteria, and different tissues. 
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Table 4-9. Pairwise comparison of a-DMPs across six studies (Tsai et al., 2012) 

Studies1 589  
a-DMPs 

490  
a-DMPs3 

131  
a-DMPs4 

88  
a-DMPs 

19  
a-DMPs2,4 

10  
a-DMPs4 

589 a-DMPs 
(Teschendorff et al., 
2010) 

CGIs: 379 
Non-CGIs: 
210  

81 (78, 3) 30 (30, 0) 42 (30,12) 7 (7, 0) 4 (4, 0) 

490 a-DMPs 
(J. T. Bell et al., 
2012) 

16.5% 
(92.3%, 7.7%) 

CGIs: 484 
Non-CGIs: 6 75 (75, 0) 36 (34, 2) 11 (11, 0) 3 (3, 0) 

131 a-DMPs 
(Rakyan et al., 2010) 

22.9% 
(100%, 0%) 

57.3% 
(100%, 0%) 

CGIs: 126 
Non-CGIs: 
5 

10 (10, 0) 4 (4, 0) 3 (3, 0) 

88 a-DMPs 
(Bocklandt et al., 
2011) 

47.7% 
(71.4%, 
29.6%) 

40.9% 
(94.4%, 
5.6%) 

11.4% 
(100%, 0%) 

CGIs: 73 
Non-CGIs: 
15 

9 (9, 0) 1 (1, 0) 

19 a-DMPs 
(Koch et al., 2011) 

36.8% 
(100%, 0%) 

57.9% 
(100%, 0%) 

21.1% 
(100%, 0%) 

47.4% 
(100%, 0%) 

CGIs: 19 
Non-CGIs: 
0 

0 

10 a-DMPs 
(Hernandez et al., 
2011) 

40% 
(100%, 0%) 

30.0% 
(100%, 0%) 

30.0% 
(100%, 0%) 

10.0% 
(100%, 0%) 0% 

CGIs: 9 
Non-CGIs: 
1 

1Studies are compared pairwise, each box indicates the percentage of overlapping a-DMPs, in 
parenthesis are effect directions: hyper-methylated (left) and hypo-methylated (right), and the 
study number of CGI and non-CGI are indicated (grey diagonal boxes). 
2 This study contains subjects from Rakyan et al and Teschendorff et al 
3 This study contains subjects from Rakyan et al 
4 These studies provide hyper-a-DMPs only 

I compared the platform difference between 27k and 450k at the Illumina 27k 490 a-

DMPs detected in blood. The 490 a-DMPs were 97% concordant on the two platforms 

with the direction of effect, and 37% showed genome-wide significance, on both 

platforms.  

Analysis of a-DMPs on the Illumina 450k array identified many more hits than the 

Illumina 27k array alone. In whole blood alone, there were now 1,256 significant a-

DMPs using Bonferroni correction (compared to 490 on the Illumina 27k), and 26,416 

a-DMPs at FDR 1% threshold. Since the Illumina 27k array focuses on the promoter 

regions, the new a-DMPs that were specific to the Illumina 450k array were 

predominantly located in gene body (31.3%). Apart from blood, I also extended the 

study of a-DMPs to two tissues (skin and adipose) to investigate the characteristics of 

tissue-shared a-DMPs. Using FDR 1% criteria across all tissues, 80% of 3,441 unique a-

DMPs were located on CGIs, and more than 60% of the a-DMPs identified in each 

tissue were also significantly methylated with age in the other two tissues. Combining 
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the findings with the Illumina 27k array that has low coverage outside of promoter 

regions, this suggests that many of the tissue-shared a-DMPs are outside of promoters. 

I also found evidence that some of the Illumina 450k a-DMPs identified in this chapter 

have been reported in other studies. For example, the most significant hit in this study 

was located in ELOVL2 (cg16867657), and has been reported by other studies. In at 

least four other studies, the methylation levels on CpG sites of ELOVL2 were highly 

associated with age, and this result was replicated in larger samples (Garagnani et al., 

2012; Hannum et al., 2013; Florath et al., 2014; Tserel et al., 2014). 

In a review of recent studies using the Illumina 450k array, more a-DMPs were 

identified at different age ranges (Table 4-10). All these studies provide the necessary 

evidence to show that these CpG site could be a predictor of age. 

Table 4-10. Recent EWAS using chronological age on the Illumina 450k array 

Age 
range 
(years) 

Tissue/sample 

a-DMPs 
analysis 
(significant 
threshold) 

Major findings Validation/ 
Replication Reference 

0-18 
(month) 

Buccal swabs from 
10 MZ and 5 DZ 

Paired t-test, 
FDR<0.05 and 
delta beta> 0.2 

99,198 a-DMPs 
with 3.1% 
methylation 
changes, 2,632 with 
>20% changes. 

EpiTYPER (Martino et 
al., 2013) 

0-100 82 datasets across 
multiple tissues 

Penalized 
regression 
model 

353 a-DMPs 
successfully defined 
DNA methylation 
age across multiple 
tissues.  

NA (Horvath, 
2013) 

50-75 

WBC from 400  
(observatory), 498 
(replication), and 
67 (8 years apart 
longitudinal) 
subjects  

Rank 
correlation, 
mixed linear 
regression at 
Bonferroni-
corrected P = 
2.5×10-4 

162 a-DMPs in both 
cohorts, also more 
than 96% of these 
are to the same 
effect in the 
longitudinal cohort. 

NA (Florath et 
al., 2014) 

18-27; 
68-89 

Muscle tissue from 
24 healthy younger 
and 24 older 
subjects 

Modified t-test  2,114 genes with at 
least 1 a-DMP. NA (Zykovich 

et al., 2014) 

22-25; 
77-78 

CD14+ from 8 
younger and 8 
healthy elder 
subjects (8 males 
and 8 females) 

FDR<0.05 and 
delta beta>0.2 

368 a-DMPs 
identified, 26 are 
with difference > 
0.2, and the majority 
are hypo-
methylated. 

Epityper in 
10 younger 
and 10 elder 
subjects. 3 a-
DMPs 
validated 

(Tserel et 
al., 2014) 
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One application of a-DMPs was to formulate a prediction model for chronological age. 

Several studies have developed such an age prediction model, and surprisingly with a 

few a-DMPs, the chronological age could be predicted to a high degree of accuracy. For 

example, using two CpG sites at the EDARADD and NPTX2 genes, Bocklandt et al built 

a regression model that explained 73% of the variance in age with an error of 5.2 years 

(Bocklandt et al., 2011). Another study proposed a model using 17 a-DMPs, which 

explained 78% of the variance in age with an error of 2.6 years for predicting age 

(Florath et al., 2014). Two more studies built predictive models using larger training 

samples and a penalized multivariate regression method. Using blood methylation in 

656 individuals on the Illumina 450 array, Hannum et al developed a predictive model 

using 71 a-DMPs with 96% accuracy rate and an error of 3.9 years. Horvath used 8000 

samples from 82 public Illumina methylation arrays (Illumina 27k and 450k arrays) 

using training datasets of different tissues and age ranges (Horvath, 2013). Furthermore, 

the elastic net model selected 353 so-called ‘clock CpGs’ as predictors of chronological 

age. The model was applied to multiple test datasets for age prediction (DNA 

methylation age). The chronological age and predicted methylation ages were highly 

correlated (r = 0.96) across a number of datasets. The average absolute difference 

between observed and predicted age was 3.6 years. 

The two latter studies proposed measures based on the predicted methylation age (the 

apparent methylomic aging rate (AMAR) and the age acceleration) as markers of 

biological age or age-related phenotypes (Hannum et al., 2013; Horvath, 2013). In both 

studies these methylation-based measures of biological age were higher in tumours, 

compared to control samples. These results together suggest that methylation-based 

measures of biological age could also be explored as markers of other age-related 

phenotypes or diseases. 

Therefore, I have assessed the methylation age acceleration in all the three tissue 

samples, and correlated these with the age-related phenotypes and diseases. The 

majority of age acceleration correlations with phenotypes had occurred in blood (see 

below). In the adipose tissue, an interesting result was the negative association between 

the age acceleration and adiponectin (r = -0.15, P value = 0.017). It is known that 

adiponectin is a hormone that plays an essential role in the control of type 2 diabetes 

and atherosclerosis, and there is increased risk if the adiponectin level is reduced. 
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Similarly, the subjects with lower QT level (cardiac function test -ECG) also have faster 

age acceleration 

For age-related diseases, such as type 2 diabetes and hypertension, there were no 

acceleration differences, but the samples included in this study were not selected to 

have disease, so the sample size was very small. I further compared age acceleration 

with an example of environmental exposure, smoking status, and there was higher age 

acceleration in current smokers however it did not reach nominal significance. 

It remains to be seen whether age acceleration truly serves any biological meaning as it 

was based on chronological age. Furthermore, there could be a problem using the raw 

methylation betas to predict the methylation age, without careful adjustment for batch 

effect, for example. Batch effects existed in the Illumina 450k datasets, particularly in 

the blood dataset, and likely contributed variation into the data (Figure 8). Future 

studies should address this problem and incorporate further covariates of blood (such as 

white blood cell types). 

In conclusion, thousands of a-DMPs were identified in all datasets, and 231 a-DMPs are 

persistently associate with chronological age across different tissues, and an at least 

60% of tissue-shared age effect is found between tissues. Using a subset of Illumina 

450k probes, the methylation levels can successfully predict the true age of one 

individual. I also found the age acceleration estimates are associate with several age-

related phenotypes, but the biological role in methylation age requires further research. 
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5"
5 Epigenome-Wide Association 
Scans And Longstanding DNA 

Methylation Changes Related to 
Birth Weight in Discordant 

Monozygotic Twin Pairs 

In this chapter, I have investigated MZ twin pairs with a substantial weight difference at 

birth. The hypothesis is that birth weight likely reflects intrauterine growth restriction 

and should leave a footprint on DNA methylation changes in utero and persist into 

adulthood. To test this hypothesis, I performed a discovery birth weight EWAS (BW 

EWAS) on 20 MZ pairs discordant for birth weight on the Illumina 450k array. This 

was followed by a replication in 25 female MZ pairs and further verified in a third 

dataset of 310 unrelated subjects. In twin design, I performed two EWAS: considering 

the actual birth weight difference effect or categorize the twins as cases and controls. In 

general, none of the birth weight-related differential methylations were identified in 

both twin designs or in the replication of whole population.  

I have performed a further analysis using a bigger sample size of 71 MZ BW discordant 

pairs recently and found a BW differential methylation site on IGF1R gene. I also 

validated this signal in another two independent cohorts. The results will be published 

in the Twin Research and Human Genetics journal in 2015 (Tsai et al., 2015). 
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5.1 Introduction 

Low birth weight (LBW) is defined as weight at birth lower than 2500 grams. It directly 

influences the outcome of childhood mortality (McCormick, 1985) and morbidity (Y. 

W. Wu et al., 2011) and childhood asthma (Brooks et al., 2001). It is further associated 

with disorders progressing into the adulthood, such as metabolic syndrome (Fagerberg 

et al., 2004), type 2 diabetes (Johansson et al., 2008), cardiovascular diseases (Leeson et 

al., 2001), respiratory diseases (Walter et al., 2009), and depression (Thompson et al., 

2001). The ‘foetal origins hypothesis’ postulates that nutritional exposures during 

pregnancy pre-program the foetus to develop specific diseases in adulthood (Barker, 

1992). There is as much clinical evidence in support of this view as there are many 

questions asking whether there is in fact any casual relationship (K. Christensen et al., 

1995; Williams & Poulton, 1999; Phillips et al., 2001; Rasmussen, 2001) since other 

studies report absent or weak association and a lack of replication (Skidmore et al., 

2004; Wojcik et al., 2013; Yang et al., 2013). 

Two important factors that influence birth weight are the length of gestation and 

prenatal growth rate. Other modifiable factors also exist in utero, such as maternal 

smoking during pregnancy and maternal health (e.g. caloric intake). Several genetic 

variants have also been associated with birth weight (Freathy et al., 2010; Horikoshi et 

al., 2013). However, it is estimated that genetics can only explain a modest contribution 

to the total variance in birth weight (Battaglia & Lubchenco, 1967; McIntire et al., 

1999; Barker, 2004; Jarvelin et al., 2004; Heijmans et al., 2008; Freathy et al., 2010; 

Horikoshi et al., 2013). Given its relevance in predicting health in old age, 

understanding the molecular links between birth weight and age-related disease has 

attracted much attention recently. 

Epigenetic changes may relate to low birth weight, and increasing evidence shows that 

maternal nutrition intake is a key factor. Researchers have investigated this question 

using animal models, and results suggested that nutritional changes could cause 

methylation changes and associate with the obesity and diabetes later in life (see (Seki 

et al., 2012)). In humans, DNA methylation analysis of adults born during the Dutch 

Winter Famine identified significantly lower methylation at CpG sites of IGF2 in 

subjects born during the Dutch Hunger Winter (1944) compared to same-sex siblings 
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who were not born during the famine (Heijmans et al., 2008). However, a follow-up 

study that compared the methylation levels on six genes (including IGF2) between the 

high and low birth weight subjects found no significant differences between groups 

(Tobi et al., 2009).  

Other targeted gene studies have focused on birth weight related methylation changes in 

imprinted genes, such as IGF2 and H19 (Steegers-Theunissen et al., 2009; Hoyo et al., 

2012) and glucocorticoid receptor NR3C1 (Filiberto et al., 2011; Mulligan et al., 2012). 

Supporting evidence shows an association with IGF2 methylation, but not with H19. In 

one study, an inverse relationship between IGF2 methylation changes and birth weight 

was identified, and was independent from folic acid intake during pregnancy (Steegers-

Theunissen et al., 2009). Another study showed more indirect evidence that IGF2 

methylation was negatively correlated with IGF protein levels, and IGF2 protein was 

positively associated with birth weight, suggesting that there might be a negative 

correlation between IGF2 methylation and birth weight (Hoyo et al., 2012). Two 

studies using cord blood (Mulligan et al., 2012) and placenta samples (Filiberto et al., 

2011) found increased methylation of CpG sites in the NR3C1 gene associated with low 

birth weight in infants. Another candidate was WNT2 that also reported to be 

differentially methylated with birth weight (Ferreira et al., 2011). 

Recently, several EWAS studies on birth weight were performed. Most were conducted 

on cord blood or placenta of population-based unrelated subjects using the Illumina 27k 

(Banister et al., 2011; Fryer et al., 2011; Adkins et al., 2012) and Illumina 450k (Engel 

et al., 2014). There was no clear association between birth weight and imprinted genes 

IGF2, H19 and other growth-related genes using the Illumina 27k and Illumina 

GoldenGate (Turan et al., 2012). A study found 22 birth weight-differential methylation 

sites (BW-DMPs) after comparing SGA (small for gestational age) to normal size 

newborns (Banister et al., 2011). Another found no strong association between birth 

weight and genome-wide methylation levels (Adkins et al., 2012). In a large sample of 

1,046 infants from the Norwegian Mother and Child Cohort Study using the Illumina 

450k, researchers found 19 CpG sites significantly associated with birth weight, and 

after adjusting for the leukocyte cell-type proportion, 8 CpG sites remained significant 

(Engel et al., 2014). In summary, these birth weight EWAS studies found few CpG sites 

associated with birth weight in newborns, and the magnitude of methylation changes in 
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these regions tended to be small. A potential reason was that these studies were mostly 

performed in unrelated subjects, and the maternal environment and exposures have not 

been appropriately adjusted. In this case, the methylation differences in MZ twins 

discordant for birth weight would be the ideal study design. 

Weight differences in twin pairs are thought to originate from random differences in 

terms of foetal access to nutrition, which is affected by the position of the foetus in 

utero as well as the position of the umbilical cord. Generally, singletons and twins 

develop at a similar rate until the 30th week of gestation, after which uterine restrictions 

become a contributing factor (Cleary-Goldman & D'Alton, 2008). DZ twins almost 

always undergo development in two separate placentas and differences in access to 

nutrients due to foetal mass or placental lesions are usually moderate. On the other 

hand, MZ twins, who originate from the division of a single ovum post-fertilization, 

may have one or two chorions, and severe differences in nutritional intake due to 

improper positioning or umbilical cord insertion often lead to greater weight 

discrepancies. Thus, a lighter MZ twin has a greater likelihood of being genuinely 

growth restricted (Torche & Echevarria, 2011). 

At the time of writing this thesis, only two birth weight discordant MZ EWAS studies 

have been conducted. One used the Illumina 27k and birth weight discordant 22 MZ and 

12 DZ twin pairs (Gordon et al., 2012). The study examined methylation levels of three 

tissues, and found 1 BW-DMP in 14 MZ pairs (human umbilical vascular endothelial 

cells) and 7 in 9 DZ pairs (cord blood mononuclear cells) but no significance in 

placental tissue. These 8 BW-DMPs reached genome-wide significance and associated 

with metabolic disease (Gordon et al., 2012). The other study used Illumina 450k to 

compare the methylation levels of heavy and light co-twins in 17 monochorionic MZ 

adult twins in buccal samples. The study identified 3,153 BW-DMPs at P < 0.01, but 

none of these reached genome-wide significance (Souren et al., 2013). 

In this study, I have assumed that the causes of significant weight deviation in MZ twins 

are due to the competition for prenatal resources, such as nutrients. Nutrients, such as 

folate, Vitamin B are the dietary sources for methyl group. Diet rich in these methyl-

donating nutrients can rapidly alter gene expression, especially during early 

development, when epigenome is being established. Therefore, the twin who loses the 

competition of nutrients would have lower birth weight, as well as different methylation 
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patterns compared to their co-twin. I assumed that variable methylation regions occur in 

the early development could pass on until their adulthood, and potentially link to risk of 

phenotype changes in later life. 

5.2 Materials and Methods 

5.2.1 Datasets 

I used three datasets in this study: the discovery and replication datasets were used for 

the discordant MZ twin analysis and the verification dataset is used for population-

based analysis.  

5.2.1.1 Discovery dataset (BW discordant MZ twins) 

The discovery dataset included 20 female Caucasian MZ pairs discordant for birth 

weight. They were selected from a dataset of 355 subjects (Dataset 2, as described in 

Chapter 3). The discordancy was defined as a birth weight difference that exceeded the 

70th percentile (0.45 kg) in the TwinsUK birth weight distribution, based on the birth 

weight differences of 3,010 MZ twin pairs. Twin pairs where both twins weighed less 

than 2 kg at birth were considered to be extremely low birth weight and were excluded 

from my study. All subjects were free from severe disease when their blood samples 

were collected. 

5.2.1.2 Replication dataset (BW discordant MZ twins) 

The replication dataset included 25 female birth weight discordant MZ pairs, selected 

from 508 subjects in the TwinsUK cohort (Dataset 3, as described in Chapter 3). Similar 

to the observatory dataset, the MZs were selected with birth weight discordancy of 0.45 

kg. These samples were more discordant for birth weight than the observatory twins. 



-111- 

5.2.1.3 Verification dataset (unrelated female subjects) 

A verification dataset of 355 female subjects (some are twin pairs) was selected from 

the TwinsUK cohort to see if the top findings could be reproduced in a normal birth 

weight population. After excluding subjects with missing birth weight, BMI, and white 

blood cell (WBC) subtype, altogether 310 subjects were retained for analysis, and these 

included all individuals in the observatory dataset. 

5.2.2 Phenotypes 

Questionnaire data included details of birth weight, medical history, height, weight, and 

BMI at visit when the subject’s blood samples were collected. Due to the fact that DNA 

methylation levels might change over time, the age of DNA extraction has been 

carefully considered in my analysis as a covariate. Previous studies reported that the 

composition of white blood cells (WBC) might contribute to the DNA methylation 

levels (Houseman et al., 2012). So I obtained WBC counts from fluorescence-activated 

cell sorting of peripheral blood, and the sub-types of specific cell counts were calculated 

by multiplying each cell type count by the total WBC cells. The four cell types obtained 

were: eosinophils, lymphocytes, monocytes, and neutrophils. 

5.2.3 Methylation data 

The analysis was performed on 420,000 probes from Illumina 450K in all three datasets. 

To annotate each probe to a human gene, I mapped the probes to the gene body of all 

human genes (GRCh37) and extended to 30kb upstream and downstream of the gene 

start and end. The methylation levels were obtained from the Illumina 450k array as 

described in Chapter 3. 



-112- 

5.2.4 Statistical analyses 

5.2.4.1 Quality Control for Illumina 450k data 

An overview of my quality control analysis in this chapter is shown in Figure 5-1. Data 

from all subjects underwent quality control checks and normalization as described in 

Chapter 3, and briefly in Figure 5-1 below.  

 

 

Figure 5-1. Workflow of datasets and data analysis 

5.2.4.2 Birth weight differentially methylated positions (BW-DMPs) analysis 

For both twin datasets (observatory and replication) methylation levels were normalized 

to follow normal distribution at each probe. The methylation residuals were then taken 

after adjusting for all covariates using the linear model that included plate, position on 

the plate, bisulfite conversion levels, age at DNA extraction, BMI, and WBC counts. 

The bisulfite conversion levels in the replication dataset were not included in the model 

due to missing data. The residuals of the discordant twin pairs from both twin datasets 

were extracted. 
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There were two ways of approaching the birth weight analysis using MZ twins: (A) 

treat birth weight as a continuous trait; or (B) treat birth weight as a categorical trait 

(and define the high and low phenotype co-twin based on the birth weight level). Figure 

5-2 shows a simplified concept of these two types of analyses. 

In the first analysis (A), comparing methylation differences with quantitative birth 

weight differences (or ‘continuous trait analysis’; Figure 5-2A), the difference of the 

residuals, calculated within twin pairs for all probes (methylation in the higher birth 

weight twin minus methylation in the lower birth weight twin), was correlated with the 

birth weight difference (higher birth weight minus lower birth weight) to identify BW-

DMPs. The Pearson’s correlation coefficients (r) and P values were reported. 

In the second analysis (B), comparing methylation differences with qualitative birth 

weight differences (or ‘categorical trait analysis’; Figure 5-2B), the analysis overlooked 

the actual birth weight differences and considered methylation differences between the 

twins. The methylation residuals were taken between the twins (methylation of the 

higher birth weight minus the methylation of lower birth weight co-twin) and a paired t-

test was performed on these differences. 

 

 

Figure 5-2. Identification of BW-DMPs using the continuous trait and the 
categorical trait analysis 

In a continuous trait analysis, the quantitative difference of birth weight accounted for 
methylation change and in a categorical trait analysis, the birth weight was only used to 
categorize the methylation group within twin pairs. 
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Following the continuous trait analysis, I sought to observe the methylation levels of the 

BW-DMPs in the whole population. The 310 recruited subjects included the twin pairs 

from the observatory (N = 40 from 20 MZ twins) for this analysis. The raw methylation 

levels were first normalized then fitted to a full linear mixed effect model with 

methylation as an outcome and birth weight as the predictor. The full model was 

compared to the null model using a linear mixed effects model adjusting for both fixed 

and random effects (family structure, zygosity). The significant BW-DMPs were 

defined by comparing this model to the null model that excluded birth weight. The 

epigenome-wide significance was fixed at P < 1.05 × 10-7 after Bonferroni correction. 

5.2.4.3 Meta-analysis of twin datasets 

To compare the top hits from the twin datasets (observatory and replication), a meta-

analysis was performed using METAL (Willer et al., 2010), considering the sample size, 

effect direction, and P value. Among the 475,529 overlapping probes between the two 

datasets, only probes with the same direction of correlation from both datasets were 

considered as BW-DMP candidates. 

5.2.4.4 Age differentially methylated positions (a-DMPs) analysis 

The hypothesis was that substantial differences in birth weight of MZ twins have lasting 

BW-DMPs into adulthood. So the methylation levels in these regions should be 

independent of age. To test this, I used the a-DMPs results (Chapter 4) to see whether 

BW-DMPs were also a-DMPs. The a-DMPs were defined by comparing the full model 

with age to the null model without age. Only the top hits from the BW-DMP meta-

analysis were compared with a-DMPs. 

5.2.4.5 Gene clustering analysis 

To find if the top genes were enriched for disease and related to biological pathways, I 

used the following online tools: gene ontology term enrichment analysis and disease-

related enrichment analysis using WEB-based GEne SeT AnaLysis Toolkit 

(WebGestalt). 
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5.3 Results 

5.3.1 The demographic characteristics of the twin datasets 

Table 5-1 shows the sample size, age, and birth weight range of the two twin datasets. 

For the observatory dataset, the mean birth weight difference was 0.67 ± 0.29 kg. The 

relative birth weight ranged from 16.6% to 51% (relative birth weight = ratio of 

absolute birth weight difference within pair over birth weight in heavier co-twin). For 

the replication dataset, more discordant twin pairs were selected, and these had a mean 

birth weight difference is 0.83 ± 0.40 kg and the relative birth weight ranged from 12.5 

to 58.2%. The subjects with a lighter birth weight were significantly shorter in height 

than their co-twins in both datasets, which is similarly seen in previous low birth weight 

studies. No significant difference was found for weight and BMI. 

Table 5-1. Characteristics of the two twin datasets 

Dataset Discovery Replication 
N 20 25 
Age  50.70 (42, 64) 54.8 (39, 72) 
BW   2.32 (1.13, 3.49) 2.33 (1.13, 3.63) 
BW diff 0.67 (0.452, 1.475) 0.83 (0.454, 2.014) 
 Heavier Lighter P value* Heavier Lighter P value* 
BW 2.65 ± 0.36 1.98 ± 0.38 4.4×10-9 2.74 ± 0.43 1.91 ± 0.53 4.8×10-10 
Height 163.8 ± 5.7 160.8 ± 6.3 8×10-4 160.5 ± 6.3 158.7 ± 7.3 0.007 
Weight 70.1 ± 15.5 69.5 ± 12.5 0.779 75.8 ± 17.7 71.9 ± 15.5 0.103 
BMI  26.3 ± 4.2 26.7 ± 4.6 0.663 29.5 ± 6.9 28.9 ± 5.7 0.381 

Abbrev: N, number of MZ twin pairs; Age: DNA extraction age; BW, birth weight (kg); BW 
diff: birth weight difference within twin pairs (kg); Height (cm); Weight (kg); BMI: body mass 
index. Numbers in parenthesis indicates the range of the phenotype. *Result from paired t-test. 

5.3.2 Birth weight differentially methylated positions (BW-DMPs)  

5.3.2.1 Identification of BW-DMPs using ‘continuous trait analysis’ 

The methylation differences within pairs to absolute birth weight differences was 

compared using the Pearson’s correlation to test the hypothesis that prenatal conditions 

contribute to birth weight differences and changes to DNA methylation in twins. Table 

5-2 shows a summary of the BW-DMPs at varying significance in the observatory, 

replication, and meta-analysis.  
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Table 5-2. Summary of BW-DMPs discovered in the two twin datasets 
Datasets Observatory (20 MZ) Replication (25 MZ) Meta-analysis 
CpG sites Total (hyper, hypo) Total (hyper, hypo) Total (hyper, hypo)2 
Total 475,529 

(51.9%, 48.1%) 
475,529 
(45.7%, 54.3%) 

241,967 
 (47.6%, 52.4%) 

Max P 6.63×10-6 6.71×10-8 8.27×10-7 
   P<10-5 2 (0%, 100%) 13 (38.5%, 61.5%) 6 (16.7%, 83.3%) 
   P<10-4 29 (51.7%, 48.3%) 150 (34.7%, 65.3%) 51 (39.2%, 60.8%) 
   P<10-3 234 (47.9%, 52.1%) 1117 (36.6%, 63.4%) 511 (39.7%, 60.3%) 
   P<10-2 2847 (51.4%, 49.6%) 7513 (37.4%, 62.6%) 4709 (40.8%, 59.2%) 
Bonf1 0 1 0 
FDR 5% 0 4 0 
Each cell contains the number of probes that passed the significance criteria. Numbers in 
parenthesis are the percentages of hyper-methylated (left) and hypo-methylated (right) probe. In 
meta-analysis, only probes with same effect directions in both datasets were considered. 
1Number of significant probes reached Bonferroni-adjusted P value at 1.05×10-7; 2Numbers in 
parenthesis are probes that were consistently hyper- or hypo-methylated in both datasets. 
Among the 475,529 overlapped probes, only 241,967 probes were with the same effect 
direction. Max P, means most significant P value. 

In the observatory dataset, none of the probes satisfied the Bonferroni adjusted P value 

for multiple testing P = 1.05×10-7 or the 5% FDR, since the most significant locus was 

associated observed at P = 6.62×10-6 (Table 5-2). Overall, there were slightly more 

hyper-methylated probes (51.9%) in the observatory dataset than hypo-methylated 

probes (48.1%). Figure 5-3 shows the Manhattan plot of the EWAS in the observatory 

dataset. 

 

 

Figure 5-3. Manhattan plot of BW EWAS results of the observatory dataset 

Each green dot is a transformed -log10 (P value) of one CpG site, and P value of 10-4 (blue line) 
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The EWAS results in the replication dataset were similar to those in observatory 

dataset. The proportion of hyper- and hypo-methylated probes was roughly half-half. 

However, there were a higher proportion (> 60%) of hypo-methylated BW-DMPs at 

different significance levels, and nearly 5-fold increase BW-DMPs identified in the 

replication dataset, potentially due to the larger sample size and greater birth weight 

discordance on average. In total, there was one BW-DMP (cg06699564, β = -0.852; P = 

6.71×10-8; Table 5-2) that surpassed the Bonferroni-adjusted P value threshold (P = 

1.05×10-6). This CpG site is located on chromosome 8 (cg06929843) in 

LOC100288748, and about 2 kb away from the transcription start site of the ESRP1 

gene. The ESRP1 gene is a splicing regulator in epithelial cells and has been associated 

with carcinoma (Yae et al., 2012). Although the effect direction at the CpG site was the 

same (β = -0.193) in the observatory dataset, it was not significantly associated with 

birth weight (P = 0.415). Four CpG-sites surpassed the genome-wide FDR 5% 

threshold, and these included sites in LOC100288748 (cg06929843), THOC7 

(cg22134162), chromosome 5q11.2 (cg19673549; chr5:54916621; 5kb from the 3'UTR 

of SLC38A9), and chromosome 10q24.2 (cg07137429; chr10:100093476). Figure 4 

shows the Manhattan plot of the BW EWAS in the replication dataset. 

 

 

Figure 5-4. Manhattan plot of BW EWAS results of the replication dataset 

Each green dot represents -log10 (P value) of one CpG site. The two lines show significance 
thresholds at P value of 10-4 (blue line) and Bonferroni adjusted P = 1.05×10-7 (red line). 

Since both datasets were small, a meta-analysis using the effects (β) and P values of 

both BW EWASs was performed using METAL. In addition to the meta-analysis, 
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another test that combined both datasets (N = 45 pairs) was performed. In the second 

approach, the methylation residuals were taken separately from the two datasets, 

normalized to follow normal distribution separately then the methylation differences 

were taken within twin pairs. The overall methylation differences (N = 45 pairs) were 

then compared to their birth weight difference. Because the results were quite similar to 

the meta-analysis, only the meta-analysis results are reported here. 

Of all CpG sites that passed quality control in both datasets, about 50.9% (N = 241,967) 

have the same effect directions in both datasets. In the meta-analysis results (Table 5-2) 

we observed that similar to the replication dataset, about 60% of the significant probes 

were hypo-methylated, and the P value of the most significant CpG site was 8.27 × 10-7 

(Table 5-2). This CpG site is located on chromosome 2p25.3, roughly 5 kb and 10 kb 

away from the transcription end site of the TRAPPC12 and ADI1 genes. This CpG site, 

however did not reach the Bonferroni adjusted P value or the 5% false discovery rate 

threshold. 

Given this disappointing result, I next explored the potential birth weight-associated 

genes in specific biological pathways. To do so, I selected the top 51 probes (within 10 

kb of the transcription start site or in the gene body of 39 unique genes) identified in the 

meta-analysis at a less stringent significance level of P < 10-4. The details of the top 51 

probes are shown in Table 5-3 and in the Manhattan plot in Figure 5-5. 

 

 

Figure 5-5. Manhattan plot of meta-analysis results of continuous trait 

Each green dot is a transformed –log10 (P value) of one CpG site, and P value of 10-4 (blue 
line). 



-119- 

Table 5-3. Top 51 probes found in meta-analysis 
IlmnID CHR Gene Name β_Discovery β_Replication P value 
cg26174880 2 - -0.708 -0.646 8.27E-07 
cg06699564 8 - -0.193 -0.852 4.95E-06 
cg12165758 14 PRKCH -0.574 -0.677 5.71E-06 
cg22145181 3 - -0.184 -0.842 8.73E-06 
cg01324261 4 SCRG1 0.638 0.610 9.30E-06 
cg14410072 9 C8G;FBXW5 -0.786 -0.450 9.90E-06 
cg23366832 6 BACH2 0.459 0.702 1.94E-05 
cg01510588 14 C14orf183 0.756 0.443 2.38E-05 
cg12415687 7 PTPRN2 -0.588 -0.608 2.42E-05 
cg21258821 13 KBTBD6 0.722 0.481 2.52E-05 
cg26621897 X TMSB15A 0.363 0.739 2.74E-05 
cg12961733 22 - -0.515 -0.653 2.88E-05 
cg05630111 1 LASS2 -0.555 -0.620 3.24E-05 
cg06866628 9 GTF3C5 -0.350 -0.738 3.38E-05 
cg16280098 14 PABPN1 -0.667 -0.519 3.73E-05 
cg15222563 19 TRAPPC5 0.534 0.625 4.00E-05 
cg06062821 5 - 0.561 0.606 4.01E-05 
cg02120071 2 - 0.486 0.655 4.20E-05 
cg06973667 10 NEUROG3 0.473 0.663 4.22E-05 
cg15323253 6 - 0.756 0.410 4.35E-05 
cg17045635 10 ZMIZ1 0.640 0.536 4.39E-05 
cg07171024 14 DPF3 -0.595 -0.575 4.40E-05 
cg12846139 17 BAHCC1 -0.747 -0.415 4.83E-05 
cg27261733 11 LSP1 -0.540 -0.610 5.08E-05 
cg04022912 16 SLC5A11 0.362 0.716 5.18E-05 
cg05789704 8 ADAM32 -0.556 -0.596 5.27E-05 
cg02971882 4 UTP3 -0.502 -0.632 5.65E-05 
cg14333779 9 OLFM1 -0.472 -0.650 5.78E-05 
cg19880852 12 KRT71 0.370 0.707 5.97E-05 
cg10588720 6 - -0.388 -0.693 6.56E-05 
cg00416130 1 GJA4 -0.586 -0.562 6.68E-05 
cg04260557 16 VAT1L 0.464 0.648 6.71E-05 
cg17059853 11 NRXN2 -0.345 -0.713 7.02E-05 
cg15192932 X PLXNB3 -0.478 -0.637 7.06E-05 
cg17842821 5 - -0.439 -0.660 7.37E-05 
cg14975009 14 DIO2 -0.501 -0.619 7.61E-05 
cg22088518 19 ONECUT3 -0.184 -0.781 7.73E-05 
cg24569251 6 - -0.437 -0.659 7.80E-05 
cg18661237 19 MRPL54;APBA3 -0.318 -0.721 8.00E-05 
cg20421058 4 SORCS2 -0.331 -0.714 8.26E-05 
cg13526264 6 - -0.213 -0.767 8.28E-05 
cg02951274 4 RGS12 0.536 0.589 8.34E-05 
cg06602498 7 RABGEF1 -0.699 -0.442 8.40E-05 
cg26049501 13 STARD13 0.643 0.498 8.60E-05 
cg21754854 7 - 0.654 0.487 8.72E-05 
cg20718816 14 LTBP2 -0.742 -0.388 8.77E-05 
cg10840389 10 LRRC20 -0.668 -0.472 8.79E-05 
cg02738641 13 ATP4B 0.583 0.550 8.92E-05 
cg14911242 14 MTA1 0.573 0.557 9.03E-05 
cg16057262 2 ITGA4 -0.551 -0.573 9.28E-05 
IlmnID: Ilumina probe ID; CHR: chromosome; β_Discovery: beta coefficient found in the 
discovery dataset; β_Replication: beta coefficient found in the replication dataset, P value: p 
value of meta-analysis results. 
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A disease enrichment analysis was performed using web-based gene set analysis toolkit 

by comparing the top 51 hits (in 38 genes) to the Entrez gene database. Several genes 

were associated with diseases. Table 5-4 lists the top diseases and genes (at least 3 

genes were associated with each disease, adjusted P value < 0.01). Some of the genes 

were also associated with birth weight traits. For example, GJA4 and ITGA4 associated 

with infertility (adj. P value = 0.0085), and NEUROG3 and DIO2 associated with type 2 

diabetes (adj. P value = 0.0363). In the enrichment analysis, the numbers of the 

observed genes were compared to the numbers of the genes in the gene set in each 

category (traits), and the ratio was calculated to assess enrichment. Here I have only 

considered the significant traits if they surpassed the BH adjusted P value (Benjamini & 

Hochberg, 1995) from the raw P value identified using the hyper-geometric test. 

Table 5-4. Diseases associated with top BW-DMPs 

Disease Gene Adj. P 
value* 

Stroke; 
Stroke NOS; 
Cerebral Infarction 

PRKCH, GJA4, LTBP2, SORCS2 
0.0011 
0.0011 
0.0011 

Subarachnoid Haemorrhage PTPRN2, RGS12, SORCS2 0.0014 
Diabetes Mellitus; 
Endocrine disturbance NOS; 
Endocrine system Diseases; 
Endocrine disorder NOS 

PTPRN2, BACH2, NEUROG3, DIO2 

0.0022 
0.0032 
0.0032 
0.0032 

Autoimmune Disease PTPRN2, ZMIZ1, BACH2, ITGA4 0.0032 
Type I Diabetes Mellitus PTPRN2, BACH2, NEUROG3 0.0032 
Genetic predisposition to disease LSP1, GJA4, PTBP2, ZMIZ1, BACH2 0.0039 
Infarction PRKCH, GJA4, SORCS2 0.005 
Metabolic diseases PTPRN2, BACH2, NEUROG3, DIO2 0.0063 
Skin Diseases (genetic) LSP1, ZMIZ1, MTA1 0.0076 
*Adj. P value: P value adjusted by the BH test 

Figure 5-6 shows a summary of the biological categories that the 39 genes were 

involved in. Among these genes, 14 were involved in metabolic processes, and 13 were 

involved in developmental processes. 
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Figure 5-6. Top 38 genes involved in biological processes 

5.3.2.2 Identification of BW-DMPs using ‘categorical trait analysis’ 

Next, I proceeded to perform a categorical trait analysis. In this case, the methylation 

difference was calculated as the methylation in the higher birth weight twin minus the 

lower birth weight co-twin. There were no statistically significant CpG sites found in 

the observatory, replication, or meta-analysis results. In the observatory dataset, the 

hyper- and hypo-methylated sites were similar to the results of the continuous trait 

analysis. However, an increased proportion of hyper-methylated sites were seen in the 

replication dataset and in the meta-analysis results. A summary of the BW-DMPs 

discovered in all three analyses is listed in Table 5. 

Table 5-5. Summary of the BW-DMPs discovered in twin datasets 
Datasets Discovery (20 MZ) Replication (25 MZ) Meta-analysis 
CpG sites Total (hyper, hypo) Total (hyper, hypo) Total (hyper, hypo)* 

Total 475,529 
(48.6%, 51.4%) 

475,529 
(56.8%, 43.2%%) 

237,081 
 (55.1%, 44.9%) 

Max P 1.24×10-6 1.15×10-5 5.72×10-6 
P<10-5 3 (33.3%, 66.9%) 0 1 (100%, 0%) 
P<10-4 24 (54.2%, 45.8%) 29 (72.4%, 27.6%) 24 (62.5%, 37.5%) 
P<10-3 366 (44.5%, 55.5%) 408 (77.9%, 22.1%) 373 (61.4%, 38.6%) 
P<10-2 4337 (43.7%, 56.3%) 4946 (76.5%, 23.5%) 4520 (63.3%, 36.7%) 

Each cell contains the total probes that passed the significance criteria. Numbers in bracket are 
the percentages of hyper-methylated (left) and hypo-methylated (right) probe. In meta-analysis, 
only probes with same effect directions in both datasets were considered. *Numbers in bracket 
are probes that were consistently hyper- or hypo-methylated in both datasets. Among the 
475,529 overlapped probes, only 237,081 probes were with the same effect direction. Max P, 
means most significant P value.  
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The details of the top 24 probes are shown in Table 5-6 and in the Manhattan plot in 

Figure 5-7. None of the top BW-DMPs had overlapped between the ‘continuous trait 

analysis’ and ‘categorical trail analysis’. 

Table 5-6. Top 24 probes found in meta-analysis 
IlmnID CHR Gene Name β_Discovery β_Replication P value 
cg14967066 11 IFITM1 2.452 4.948 5.72E-06 
cg26384201 3 HYAL3;NAT6 -3.143 -3.887 1.17E-05 
cg19916659 2 MIR548N -3.925 -3.106 1.61E-05 
cg21476666 3 VEPH1 3.751 3.219 1.69E-05 
cg25841760 11 LDLRAD3 3.202 3.603 2.02E-05 
cg14683235 6 ZNF322A -4.267 -2.721 2.37E-05 
cg23448850 7 - -4.027 -2.806 2.92E-05 
cg19184455 2 - -2.454 -3.933 5.01E-05 
cg21200085 1 - 2.422 3.952 5.17E-05 
cg12723904 6 - 3.108 3.240 5.88E-05 
cg13273236 6 - 2.756 3.558 5.91E-05 
cg14986500 14 LTBP2 2.198 4.113 6.17E-05 
cg12991976 12 - -2.726 -3.559 6.29E-05 
cg16039142 7 - 2.772 3.496 6.57E-05 
cg03951180 7 TRIM50;FKBP6 -5.111 -1.816 7.29E-05 
cg07290552 8 FAM164A -2.666 -3.550 7.32E-05 
cg17119521 6 LIN28B 2.558 3.607 8.16E-05 
cg25083596 10 SORCS3 3.752 2.587 8.51E-05 
cg14900814 4 LGI2 -4.535 -2.060 8.97E-05 
cg17582336 17 SEBOX;VTN 2.792 3.332 9.18E-05 
cg02033206 12 FOXN4 3.698 2.596 9.18E-05 
cg03684845 16 LOC342346 4.120 2.293 9.57E-05 
cg19795151 10 - 2.835 3.274 9.60E-05 
cg03467256 2 HPCAL1 2.234 3.847 9.99E-05 

IlmnID: Ilumina probe ID; CHR: chromosome; β_Discovery: beta coefficient found in the 
discovery dataset; β_Replication: beta coefficient found in the replication dataset, P value: p 
value of meta-analysis results. 
 

 

Figure 5-7. Manhattan plot of meta-analysis results in categorical trait 

Each green dot is a transformed -log10 (P value) of one CpG site, and P value of 10-4 (blue line) 
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5.3.2.3 Identification of BW-DMPs in 310 unrelated subjects 

The analysis was conducted in an expanded sample of 310 unrelated subjects to verify 

that the top BW-DMPs identified from the continuous trait analysis could be validated 

in the normal birth weight population. Compared to the discordant twin studies, there 

were more BW-DMPs in this larger sample size, but the top findings still did not reach 

the statistical significance threshold at Bonferroni adjusted P value = 1.05 × 10-7 (Table 

5-7 and Figure 5-8). When I compared the observed effect directions here for the 51 top 

BW-DMPs from the continuous trait meta-analysis, 36 (64.3%) of the directions were 

the same, and a higher agreement (79.2%) with the BW-DMPs from the categorical 

analysis was found. 

Table 5-7. Significant BW-DMPs identified in 310 subjects 
CpG sites Total (hyper, hypo) 
Total 475,529 (53.3%, 46.7%) 
Max P 1.81×10-7 
P<10-5 20 (35.0%, 65.0%) 
P<10-4 172 (56.4%, 43.6%) 
P<10-3 631 (55.0%, 45.0%) 
P<10-2 8166 (57.1%, 42.9%) 
Each cell contains the total probes that passed the significance criteria. Numbers in bracket are the 
percentages of hyper-methylated (left) and hypo-methylated (right) probe. In meta-analysis, only probes 
with same effect directions in both datasets were considered. *Numbers in bracket are probes that were 
consistently hyper- or hypo-methylated in both datasets. Among the 475,529 overlapped probes, only 
237,081 probes were with the same effect direction. Max P, means most significant P value. 

 

Figure 5-8. Manhattan plot of BW EWAS results of 310 unrelated subjects 

Each green dot is a -log10 transformed (P value) of one CpG site. Blue line indicates P value of 
10-4. 
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For the disease enrichment analysis, many genes at the top 172 CpG sites associated 

with previously identified birth weight related diseases, such as type 2 diabetes. Table 

5-8 lists some examples of the diseases associated with the top BW-DMPs. Many of the 

BW-DMPs were associated with cancers and metabolic syndrome. Some of the genes 

were associated with neoplasms and nervous system diseases that occur during neonatal 

or childhood development. 

Table 5-8. Diseases associated with top BW-DMPs 

Disease Gene Adj. P value 

Type 2 diabetes TNFRSF1B, APOC3, ARHGEF11, HSD11B1, 
MADD 0.0231 

Carcinoma SFRP1, MLH1, HEPACAM, BMI1, MTA1, 
CRTC1, HEPN1 0.0231 

Medulloblastoma SFRP1, CASP8, BMI1 0.0231 
Cancer or viral 
infections 

HEPACAM, MTA1, MYBL2, SFRP1, BCL2L1, 
MLH1, CASP8, IDH1, BMI1, CRTC1 0.0231 

Insulin resistance TNFRSF1B, APOC3, HSD11B1, MADD 0.0293 

Breast diseases SFRP1, CASP8, BCAS2, BMI1, MTA1 0.0318 
Adj. P value: P value adjusted by BH test 
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5.4 Discussion 

The aim of this chapter was to identify the differential methylation sites related to birth 

weight in discordant identical twin pairs. The hypothesis was that there were 

longstanding prenatal-affected methylation changes that persist over time. While there 

was no birth weight related methylated regions at a genome-wide significance, there 

were still some meaningful associations from the top findings that link to metabolically 

related traits and other complex trait. These results suggested that intrauterine 

development might potentially impact the DNA methylation of certain regions and 

remain stable into later life, but larger samples are required to confirm this. 

5.4.1 Evidence of neonatal and postnatal variations in DNA 

methylation 

I did not detect BW-DMPs at genome-wide significance in the overall results from this 

chapter. This could be due to the small sample size, which was not powered enough to 

detect small effect sizes in this study. The methylation differences of older twins (Fraga 

et al., 2005) and heritability studies (Z. A. Kaminsky et al., 2009; J. T. Bell et al., 2012; 

Gordon et al., 2012) have indicated that MZ twins have very similar methylation 

patterns. This might be one of the reasons why extremely significant DMPs from the 

twin datasets were not found. Another could be that the observatory and replication 

datasets were small and so the current study was underpowered to detect modest effect 

sizes. Using the meta-analysis results from the categorical analysis as an example, I 

calculated the methylation difference between low birth weight MZ twin and their co-

twins for the top 24 CpG sites. The methylation differences ranged from 0.6% to 5.8%. 

Based on the results from Chapter 2, if I took even the largest effect observed here 

(5.8%), given the samples sizes used in this study (N = 20, 25, 45 MZ twin pairs) the 

simulation-based power estimates were null (Chapter 2, Table 3). Given the small 

differences in methylation observed in this study more than 100 MZ twin pairs would 

be required to have reasonable power to achieve epigenome-wide statistical 

significance. 

Variation in the neonatal methylome occurs in the intrauterine environment and during 

early development (Whitelaw et al., 2010). Several imprinted genes, such as the H19 
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and IGF2 were differentially methylated in newborns (Heijmans et al., 2008; Hoyo et 

al., 2012; Murphy et al., 2012). Because these studies were undertaken in unrelated 

newborns, I compared my results from the 310 subjects to these findings. I observed 

association at nominal significance (P < 0.05) at 17 (4.9% of total) BW-DMPs in the 

IGF family (that included 7 IGF genes) and 6 (10% of total) BW-DMPs in H19. A 

previous study identified 23 genes that explained 70 to 87% of the birth weight variance 

among which 6 genes (ANGPT4, CPOE, CDK2, GRB10, OSBPL5, and REG1B), 

associated with growth in vivo/vitro (Turan et al., 2012). In my data, I found 2 DMPs on 

CDK2, 8 DMPs on GRB10 (most significant with P = 2.8 × 10-3), 2 DMP on REG1B, 

and 7 DMPs on OSBPL5 (most significant with P = 2.3 × 10-3) that were correlated to 

birth weight beyond nominal significance. Therefore, my findings are consistent with 

previous candidate gene methylation studies of birth weight. 

I compared the BW-DMPs to other previous studies (Adkins et al., 2012; Gordon et al., 

2012; Mulligan et al., 2012). Several of the identified genes relate to early cell and 

embryonic development, growth, immune system, and inflammatory response, or are 

differentially methylated across tissues, such as cord blood and placenta. Many probes 

located in these genes were differentially methylated in adult blood samples. From the 

Dutch Famine study (Heijmans et al., 2008; Tobi et al., 2009), the methylation status of 

candidate genes for metabolic and cardiovascular diseases were examined and 

compared to non-exposed siblings. These results are consistent and suggest that regions 

differentially methylated with birth weight may persist and can act as a long lasting 

biomarker for metabolic syndrome. 

5.4.2 Replication of BW-DMPs in different twin datasets 

Most BW-DMP studies focus on finding DMPs that persistently change in all twins. 

Methylation differences were compared using a one-sample t-test or one-sample 

Wilcoxon test, and birth weight was used for categorizing low or high status in the twin 

pair. This is the first study to treat birth weight as a continuous trait in twins. The 

methylation differences in the less discordant twins might be modest, and the effects 

should be evident in an increased number of discordant twin pairs. 
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I compared my analysis with two published studies on birth weight discordant twins. 

All but one BW-DMP (cg02813863) that was reported in Gordon et al.’s study was also 

nominally significant in my analysis (Gordon et al., 2012). One study (Souren et al., 

2013) was most similar to my study and also conducted a BW EWAS (Illumina 450k) 

in the adult methylome using 17 MZ birth weight discordant twin pairs. However, the 

authors used saliva samples to detect methylation levels and adjusted the methylation 

using a ‘saliva specific’ marker. In total 3,153 BW-DMPs were identified at P < 0.01 

between the heavy and light co-twins, and 45 BW-DMPs further showed moderate 

mean beta differences. Among these, 8 candidates were selected for deep bisulfite 

sequencing, but failed to validate. After comparing my categorical trait analysis to their 

45 findings, one BW-DMP in particular, the RUNX2 gene (cg22768222) was found at 

nominal significance (P = 0.02 vs. P = 0.007 in Souren et al.’s study). Closer inspection 

indicates that the locus was an a-DMP using my population-based samples and occurred 

in two tissues: blood (P = 10-6) and adipose tissue (P = 0.007). In a re-evaluation of the 

51 top probes from the meta-analysis, I found about 20% of BW-DMP were also a-

DMPs at nominal P value (P < 0.05). This suggests that some of the methylation 

changes related to birth weight might change with age, and hence the prenatal effects on 

these regions might be undermined over time. Therefore, these effects will be detected 

in methylation samples from newborns, but not in adults, as in the current study. 

5.4.3 Disease-associated genes 

Out of the three types of analyses performed here (continuous trait analysis, categorical 

trait analysis, and population-based analysis) only 1 BW-DMP from the replication 

dataset in the continuous trait analysis reached genome-wide statistical significance 

within one of the datasets. The adult methylome changes during an individual’s 

lifespan, so that the birth weight effect may be weakened overtime. It was interesting 

that disease enrichment analysis revealed that many of the top genes were enriched in 

birth weight associated diseases, for example, type 2 diabetes (Johansson et al., 2008), 

metabolic diseases (Fagerberg et al., 2004), stroke (Baker et al., 2008), and multiple 

cancer types (Risnes et al., 2011; A. H. Wu et al., 2011). This suggests that quite a few 

BW-DMPs might have biological function in birth weight associated diseases. Further 
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work should focus on performing a similar analysis in an expanded sample of 

discordant MZ twins or population based dataset. 

5.4.4 Strengths and weaknesses of the current study 

The strengths of this study were using birth weight discordant MZ twin pairs, and 

EWAS of high coverage probes (Illumina 450k), and examination of birth weight as a 

continuous trait. Moreover, I have shown that some of the results also apply to the 

general population from which the twin pairs were derived having included a 

population-based dataset. 

There were several limitations. Firstly, birth weight or weight in general is a complex 

phenotype, and exactly how much genetic and epigenetic variation associate with it, and 

the extent of its shared effects with many late-onset diseases remains unknown. The 

sample size was low and a valuable point would be to collect data on the same twins at 

different time points as in a longitudinal study. Also, we lack information on the 

chronicity of the twin pairs, and previous studies report that the MZ MC 

(monochorionic: twins share a single placenta) twins have more imbalanced nutrient 

supply than the MZ DC (dichorionic: twins share two separate placentas) twins (Derom 

et al., 2006). A previous study (Z. A. Kaminsky et al., 2009) suggests that some of the 

results may be diluted when I include more MZ DC twins. 

In conclusion, using DNA methylation from birth weight discordant MZ twins in 

multiple datasets, I found some longstanding epigenetic markers that may associate with 

low birth weight. However, consistent replication at genome-wide significant thresholds 

was lacking. Severe intra-uterine growth differences might have caused the methylation 

changes and birth weight differences. Further studies with more samples and robust 

design are necessary to find the association between these markers and metabolic 

disease attributed to low birth weight. 
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6"
6 Tobacco Smoking Induces 

Coordinated DNA Methylation 
and Gene Expression Changes 

Across Multiple Tissues 

Tobacco smoking is a major disease risk factor with well-known impacts on blood 

DNA methylation variation. Several studies have identified smoking-associated 

differential methylation regions, with replication and validation across populations. 

However, few studies identify the gene expression associated with smoking. It is also 

unclear whether smoking-induced DNA methylation changes are systemic effects, with 

functional impacts that can be influenced by underlying genetic variants. Here, I 

investigated the DNA methylation and gene expression profiles of 542 adipose tissues. 

In order to characterise the identified smoking effect in adipose tissues were tissue-

specific or tissue-shared effect, I also performed the genome-wide scans for methylation 

and gene expression in two additional blood datasets.  

 

6.1 Introduction 

Smoking is a significant environmental risk factor that predisposes an individual to 

premature death and the development of chronic disease and several cancers (Ezzati & 

Lopez, 2003; Thun et al., 2010). The effect of smoking is directed to the exposed 

regions of the lung. It also damages other organs of the body and causes DNA 

mutations linked to cancer (Pfeifer et al., 2002). Cotinine is a widely used biomarker for 

smoking in serum or plasma and has a half-life of about 16 hours in the human body 

(Benowitz, 2008; Hannan et al., 2009). It is a good clinical indicator, however, it is 
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largely limited to current smokers because cotinine levels in serum fall if a subject stops 

smoking for more than a day. 

Compared to cotinine, persistent smoking might have longer lasting effects on DNA 

methylation. Cigarette smoking can change DNA methylation through various 

biological pathways. Firstly, more DNMTs are recruited (Mortusewicz et al., 2005) and 

can methylate CpGs adjacent to the repaired nucleotides (Cuozzo et al., 2007), which 

are mutated as a result of DNA damage from the carcinogens in cigarette smoke, e.g. 

arsenic, chromium, formaldehyde, polycyclic aromatic hydrocarbons, and nitrosamines 

(Smith and Hansch, 2000; Suter et al., 2010). Secondly, nicotine from cigarette smoke 

has been shown to down-regulates DNMT1 mRNA and protein expression in mouse 

brain neurons (Satta et al., 2008). Third, cigarette smoke increases Sp1 expression, a 

transcription factor that binds to GC-rich motifs in gene promoters (Kadonaga et al., 

1987) in lung epithelial cells (Mercer et al., 2009; Di et al., 2012). This might affect the 

methylation of CpGs during early embryogenesis (Han et al., 2001). Lastly, hypoxia, 

which may result from competitive carbon monoxide (from cigarette smoke) binding to 

haemoglobin, might alter DNA methylation by HIF-1α-dependent up-regulation of 

methionine adenosyltransferase 2A, an enzyme that synthesizes S-adenosylmethionine 

and thus donates methyl groups required for DNA methylation processes (Liu et al., 

2011).  

Many EWAS studies have identified and replicated several smoking differentially 

methylated positions (smoking-DMPs) (Breitling et al., 2011; Joubert et al., 2012; 

Monick et al., 2012; Wan et al., 2012; Buro-Auriemma et al., 2013; Philibert et al., 

2013; Shenker et al., 2013; Sun et al., 2013; Zeilinger et al., 2013; Besingi & Johansson, 

2014; Dogan et al., 2014; H. R. Elliott et al., 2014; Markunas et al., 2014; Y. Zhang et 

al., 2014). The smoking-induced methylation changes could occur in different tissues, 

ethnic groups, and throughout stages of development. For example, maternal smoking 

during pregnancy impacts methylation levels of newborns at genes such as AHRR, 

CYP1A1 and GFI1 (Joubert et al., 2012; M. A. Suter et al., 2013; Markunas et al., 

2014). The majority of smoking-DMPs are reduced in current smokers compared to 

non-smokers. It is thought that hypo-methylated smoking-DMPs associate with the up-

regulation of genes that are differentially expressed in smoking-related diseases. 
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The first smoking EWAS was performed using the Illumina 27k array in blood samples 

from 177 subjects (Breitling et al., 2011), including 65 heavy smokers, 56 ex-smokers, 

and 56 non-smokers. They identified a single locus cg03636183 in the F2RL3 gene as a 

highly significant smoking-DMP (P = 2.68 × 10-31). In this region, methylation levels 

were lower in current smokers. The finding was replicated in 316 blood samples (95 

smokers, 97 ex-smokers, 124 non-smokers) using mass spectrometry (P = 6.33 × 10-34), 

and further replicated and validated in a number of follow-up studies (Breitling et al., 

2011; Joubert et al., 2012; Wan et al., 2012; Shenker et al., 2013; Sun et al., 2013; 

Zeilinger et al., 2013; Besingi & Johansson, 2014; Dogan et al., 2014; H. R. Elliott et 

al., 2014; Harlid et al., 2014; Y. Zhang et al., 2014). 

Subsequently, smoking EWAS have been increasingly performed on samples other than 

blood, such as placenta (M. Suter et al., 2011) and airway epithelium (Selamat et al., 

2012; Buro-Auriemma et al., 2013), and in individuals of different ethnicities (e.g. 

Africa American females (Dogan et al., 2014; H. R. Elliott et al., 2014)), and at 

different stages of development (e.g. newborns (Joubert et al., 2012)), and on different 

platforms (e.g. Illumina GoldenGate (Siedlinski et al., 2012), Illumina 27k (Breitling et 

al., 2011; Selamat et al., 2012), and Illumina 450k (Bibikova et al., 2011; 

Dedeurwaerder et al., 2011). Successful replication has consistently identified a large 

number of loci (see Table 8 at the end of chapter) with highly reproducible effects at or 

near genes AHRR, F2RL3, GFI1, and others. The largest number of smoking-DMPs 

found to date by a single study was 972 smoking-DMPs (P < 10-7) in 262 current 

smokers compared to 749 non-smokers using the Illumina 450k array in blood samples 

(Zeilinger et al., 2013), where the effects at 187 CpG sites were replicated (P < 5 × 10-5) 

in a further sample of 236 current smokers and 232 non-smokers, and at several sites 

methylation levels were also associated with smoking cessation in 782 former smokers. 

Cessation of smoking could also lead to a change in methylation levels at particular 

genes, reaching methylation levels similar to those observed in non-smokers (Shenker et 

al., 2013; Zeilinger et al., 2013; Y. Zhang et al., 2014). At multiple loci, ex-smokers 

show intermediate methylation levels, between those in non-smokers and in current-

smokers. Methylation levels at multiple loci also positively correlate with the 

cumulative dose of smoking (years) and negatively associated with the time since 

smoking cessation (years) (Shenker et al., 2013; Zeilinger et al., 2013; Y. Zhang et al., 
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2014). Two independent studies showed that the methylation levels at several smoking-

DMPs gradually become more similar to those in non-smokers in the first 20 years after 

quitting smoking, and remain stable over time (Zeilinger et al., 2013; Y. Zhang et al., 

2014). Because these results suggest that smoking induces long-term methylation 

changes, smoking-DMPs are good candidates for biomarkers of smoking. 

Only a few studies have examined smoking effects on gene expression changes. 

Smoking leads to gene expression changes in multiple tissues, such as human airway 

epithelium (Woenckhaus et al., 2006; Schembri et al., 2009), lung tissue (McLemore et 

al., 1990), and alveolar macrophages (Ito et al., 2001). In a limited study, both the 

smoking induced methylation and gene expression changes were concurrently examined 

using the Illumina 27k array and GeneChip Human Exon 1.0 ST gene expression array, 

and 72 genes were both differentially methylated and differentially expressed at a 

significance level of P < 0.01 (Philibert et al., 2013). Among these 72 genes, 50 were 

negatively correlated. In another study, conducted in 39 subjects using the HELP (HpaII 

tiny fragment Enriched by Ligation-mediated PCR) assay for methylation and HG-

U133 Plus 2.0 assay for gene expression, 35 out of 204 differentially methylated genes 

correlated with gene expression. Roughly half were inverse correlated (Buro-Auriemma 

et al., 2013). However, the platforms used in these two studies had relatively low 

genome-wide coverage. 

This chapter aims to identify the smoking-related genome-wide DNA methylation 

changes in twins using the Illumina 450k array. Most of these studies were conducted in 

blood sample, and only a few studies in other tissues. Here I preformed the first 

smoking EWAS in the adipose tissue, which is considered to store the long-term 

exposure effect than that in other tissue. Additionally, previous evidence shows there is 

an association between adipose gene expression and metabolic diseases, which smoking 

is also a risk factor for the disease progression. The first aim was to identify smoking-

DMPs in adipose tissue. The second aim was to explore whether smoking associates 

with both DNA methylation and gene expression changes. The third aim was to explore 

tissue-specific and tissue-shared effects of smoking by comparing adipose and blood 

samples. 



-133- 

6.2 Materials and methods 

In this chapter, I analysed Illumina 450k methylation and RNA-seq expression datasets 

of two tissues (adipose and blood). All subjects are Caucasian females from the 

TwinsUK cohort, and ascertained to be free from severe disease when the samples were 

collected. The subjects were recruited as part of the MuTHER study (Multiple Tissue 

Human Expression Resource; http://www.muther.ac.uk) (Nica et al., 2011; Grundberg 

et al., 2012).  

6.2.1 Datasets 

6.2.1.1 DNA methylation and RNA-seq datasets in adipose tissue 

For adipose tissue, the same adipose biopsy was used to detect methylation and 

expression levels. In total, there are 349 subjects, including 32 MZ pairs, 49 DZ pairs, 

and 187 unrelated singletons. There were 186 non-smokers, 128 ex-smokers, and 35 

current-smokers (Table 6-1). There were no significant differences in smoking status 

according to zygosity (χ2 P value = 0.48). 

All DNA methylation levels were profiled on the Illumina 450k array as previously 

described (Grundberg et al., 2013). After removing probes with missing values and 

probes that mapped to multiple loci in the human genome (hg19) within 2 mismatches, 

a final 396,025 probes were used for analysis. 

Table 6-1. Zygosity and smoking status in the adipose dataset 

Zygosity Non-smoker Ex-smoker Current-smoker Total 
MZ   28 (43.8%) 29 (45.3%)  7 (10.9%)   64 
DZ   55 (56.1%) 35 (35.7%)           8 (8.2%)   98 

Singleton 103 (55.1%) 64 (34.2%) 20 (10.7%) 187 
Total   186 (53.30%) 128 (36.68%)   35 (10.03%) 349 

6.2.1.2 DNA methylation and RNA-seq datasets in whole blood samples 

To explore the result from adipose tissue in a different cell sample, I also analysed the 

smoking with the methylation levels of 355 blood samples (Dataset 2, as described in 
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Chapter 3) (Tsaprouni et al., 2014). Because white blood cell (WBC) counts have been 

previously reported to impact methylation levels, subjects without data available for the 

four WBC counts (eosinophils, lymphocytes, monocytes, and neutrophils) were 

excluded from the study. In total, 306 subjects (186 non-smokers, 94 ex-smokers, and 

26 current-smokers) were selected for analysis, and 105 of them overlapped with the 

349 subjects in adipose dataset. A total of 461,040 probes were included for analysis in 

the blood data. 

The blood RNA-seq data were also obtained from the EuroBATS project. A smaller 

subset of 152 subjects (12 current-smokers, 55 ex-smokers, 85 non-smokers) from the 

349 subjects was included with expression data in both adipose and whole blood to 

validate the adipose findings. 

6.2.2 Phenotype collection 

During a subject’s clinical visit, basic demographic information was collected, and other 

measurements such as height and weight were also measured onsite. 

The cotinine levels were detected from serum available in a subset (N = 987) of the 

TwinsUK individuals. Cotinine and other metabolites in serum were detected by the 

non-targeted technology GC-MS (gas chromatography mass spectrometry) and LC-MS 

(liquid chromatography mass spectrometry) approach used by the Metabolon platform. 

The cotinine levels were cleaned and normalized by Idil Yet. Of the 349 subjects in the 

adipose dataset, 40 subjects had cotinine levels available. I further removed 11 subjects 

because their DNA extraction age for DNA methylation was at least 1 year away from 

the cotinine detection date. Of the remaining 29 subjects, 23 were current-smokers, 4 

ex-smokers, and 2 non-smokers. 

Preliminary analysis used cotinine levels to assess smoking status, however, there were 

many missing data and therefore the smoking phenotype was determined from a self-

reported questionnaire. There was longitudinal self-reported data on the smoking status 

of each subject, since the twins regularly visit the clinic in our department. Current 

smokers were defined as those subjects who consistently smoked cigarettes (and have 

not stopped at any point) according to their longitudinal records up to the clinical visit 

closest to the DNA extraction date for DNA methylation. Ex-smokers were individuals 
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who have not smoked cigarettes for more than one year, and non-smokers were 

individuals that never smoked according to the longitudinal questionnaire records. 

6.2.3 Statistical analyses 

6.2.3.1 Quality Control for Illumina 450k and RNA-seq data 

Quality control was performed in adipose and blood methylation datasets following 

procedures as described in Chapter 3. The visual plots for detection of outliers and 

correlation tests between the PCs and potential covariates were performed. 

For the adipose dataset, the covariates used were the same as those described by 

Grundberg et al. (Grundberg et al., 2013), and included: DNA extraction age, BMI, 

plate, bisulfite conversion, bisulfite efficiency, family structure and zygosity. For the 

blood dataset, the covariates were: DNA extraction age, BMI, plate, position on the 

plate, WBC counts, family structure and zygosity.  

The quality control and the identification of batch effect for expression datasets have 

been previously discussed (Brown et al., 2014; Buil et al., 2015). In brief, the 

sequenced paired-end reads (49 bp) were mapped to the human genome (GRCh37) by 

Burrows-Wheeler Aligner (BWA) software v0.5.9 (Li & Durbin, 2009), then genes 

were annotated as defined by protein coding in GENCODE v10 (Harrow et al., 2012). 

Samples were excluded if they failed during library preparation or sequencing. Samples 

were only considered to have good quality if more than 10 million reads were 

sequenced and mapped to exons. The expression levels were presented as the RPKM 

values (reads per kilobase of transcript per million mapped reads) and was rank normal 

transformed prior to analysis. The genotype of each subject was used for identity check 

in case of accidental sample swapping.  

6.2.3.2 Smoking differential methylation sites analysis 

Figure 1 shows the overall schematic of the data analysis for this chapter. Raw DNA 

methylation betas were first normalized using BMIQ (Teschendorff et al., 2013), and 

beta values on each probe were normalized to follow the normal distribution then fitted 
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to two linear mixed effect models (more details about quality control and normalization 

methods are described in Chapter 3 of this thesis). The linear mixed model adjusted for 

random effects (zygosity and family structure) and fixed effects (age, BMI, plate, 

position on the plate, bisulfite conversion, and bisulfite efficiency; the four blood cell 

counts were further adjusted as covariates in the blood dataset). The normalized betas 

were fitted with a full model as the outcome, and the predictors consisted of smoking 

status and all covariates. This full model was compared to the null model (without 

smoking status). A probe was defined as a smoking-DMP if it passed the false 

discovery rate of 5%. For smoking status, subjects were categorized into three groups 

(non-smoker, ex-smoker, current-smoker), and the phenotype was treated as a factor in 

the analysis. Therefore, a significant smoking-DMP in my study indicates that the 

methylation levels were different in at least two groups. To test which two groups were 

statistically significant, a post-hoc test using Tukey’s method was performed. 

6.2.3.3 Smoking differentially expressed gene analyses 

For the RNA-seq datasets, the raw expression values were first rank normalized prior to 

analysis. A full model with expression levels as an outcome, and predictors that 

included smoking status and all the other covariates were compared to the null model 

without smoking. The genome-wide significance criterion was set at 5% FDR.  

The workflow of quality control and analysis is shown on Figure 6-1 

  



-137- 

 

 

Figure 6-1. Workflow for the methylation and expression datasets 

6.2.3.4 Correlation between methylation and gene expression levels in adipose 

tissue 

The top findings of the genome-wide scans in adipose tissue for smoking-methylation 

and smoking-expression were directly compared, as these results were both obtained 

from the same 349 subjects. The raw values of methylation and expression values were 

first normalized to follow normal distribution and residuals taken after adjusting for the 

covariates. Spearman’s correlation test was used to compare the correlation between the 

residuals of methylation and gene expression levels. 

6.2.3.5 Conditional analysis between methylation and gene expression levels in 

adipose tissue 

In cases where the same gene showed both significant DNA methylation and exon 

expression changes associated with smoking, follow-up analyses were used to try to 

detect the regulatory pathway underlying the association findings. Three models were 

considered: (A) Smoking affects methylation, which modulates gene expression; (B) 

Smoking affects gene expression, which modulates methylation; and (C) Smoking 

affects methylation and gene expression independently. 
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To test which model best fits the potential regulatory pathway at the overlapping genes, 

a Bayesian information criterion (BIC) of the linear regression model was calculated for 

each of the corresponding models: 

Model (A): BIC(Expression~Methylation) + BIC(Methylation~smoking) + BIC(smoking~1) 

Model (B): BIC(Methylation~Expression) + BIC(Expression~smoking) + BIC(smoking~1) 

Model (C): BIC(Expression~Methylation) + BIC(Methylation~Expression) + BIC(smoking~1) 

On each gene, the sum of BIC values was first calculated in each model and then, 

ΔBIC, the BIC difference of the lowest two BIC values for each comparison was also 

calculated. In the end, the model with a lower BIC value was the preferred model, and 

ΔBIC was considered to be a measure of support for the preferred model. The strength 

of the evidence could be explained, following Kass and Raftery: if ΔBIC was between 0 

and 2, it was generally accepted that the support for the preferred model was not very 

different than the second preferred model. A model was considered to show much more 

evidence for support compared to the other tested models if it had ΔBIC greater than 6 

(Kass & Raftery, 1995). 

6.2.3.6 Methylation quantitative trait locus (meQTL) and expression 

quantitative trait locus (eQTL) 

There is evidence that methylation and expression are heritable and their levels in 

certain regions are influenced by the genetic structure (J. T. Bell et al., 2011). Thus, to 

exclude the possibility that smoking differentially methylated or expressed regions were 

driven by genetic contribution, genome-wide association scans (GWAS) were 

performed for the top methylated and expressed regions associated with smoking in 

both adipose tissue and blood samples. The GWAS results for methylation are referred 

to as quantitative trait loci (meQTL), and for expression are referred to as expression 

quantitative trait loci (eQTL). The genome-wide significance level was set at the 

Bonferroni adjusted P value of 2.65 × 10-8 for both meQTL and eQTL (1,880,781 SNPs). 
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6.3 Results 

6.3.1 Smoking differentially methylated positions in adipose tissue 

(smoking-DMPs) 

A smoking EWAS was performed in adipose tissue samples from 349 subjects to 

identify smoking-DMPs, using 396,025 probes. In total, there were 39 CpG sites at 23 

known genes and 2 inter-genic regions that passed the 5% false discovery rate (P < 4.7 

× 10-6). Among the 39 CpG sites, DNA methylation levels of current smokers were 

lower than those in non-smokers. Figure 6-2 shows 32 hypo-methylated smoking-DMPs 

(blue) and 7 hyper-methylated smoking-DMPs (red) were found in adipose tissue. The 

names listed next to smoking-DMPs were CpG sites identified as smoking-DMPs from 

previous studies. 

 

 

Figure 6-2. Manhattan plot of smoking EWAS results in the adipose tissue 

Each point above the 5% FDR (green dashed line) is a smoking-DMP (red is higher methylation 
in smokers, blue is the opposite effect) 

Table 6-2 lists the top 39 smoking-DMPs. The majority of post-hoc comparisons 

between the current smokers and non-smokers were significant, and half of the 

comparisons between current smokers and ex-smokers were significant as well. In 

general, the methylation levels among non-smokers and ex-smokers were similar, and 

the methylation levels of ex-smokers tended to fall in between the non-smokers and 

smokers. 



-140- 

At these 23 known genes and 1 inter-genic region, 9 genes and 1 region have been 

previously reported as smoking-DMPs, including GFI1, 2q37.1 region, AHRR, 

NOTCH1, LRP5, C14orf43, CYP1A1, LINGO3, and F2RL3 (see Discussion section, 

Table 7), and 13 genes were novel findings (CYP1B1, CYTL1, NEURL1B, GPER, SAG, 

LATS2, PMS2L11, NEDD9, PDE7B, SLC398A, CDC42EP3, HTRA1, and ACVRL1). 

The 9 previously reported smoking-DMPs were mostly identified in blood samples 

previously, and the direction of association between smoking status and methylation 

changes in the current study was consistent with these previous studies. 

Table 6-2. Top 39 smoking-DMPs in adipose tissue 
IlmnID CHR Gene Name Location E vs. N S vs. E S vs. N P value 
cg05951221 2 chr2:233284402 - -0.528 -1.048 -1.576 2.51E-25 
cg21566642 2 chr2:233284661 - -0.397 -1.210 -1.606 1.81E-24 
cg23680900 15 CYP1A1 TSS200 -0.564 -0.817 -1.381 2.37E-22 
cg26516004 15 CYP1A1 TSS1500 -0.761 -0.545 -1.306 1.95E-21 
cg14120703 9 NOTCH1 Body -0.160 -1.106 -1.266 1.96E-15 
cg23160522 15 CYP1A1 5'UTR -0.289 -0.945 -1.234 1.19E-13 
cg10009577 15 CYP1A1 TSS1500 -0.345 -0.458 -0.803 4.73E-13 
cg22418620 5 NEURL1B Body -0.160 -1.063 -1.224 6.10E-13 
cg01985595 6 PDE7B Body -0.205 -0.956 -1.161 7.81E-12 
cg07992500 2 CDC42EP3 5'UTR -0.259 -0.892 -1.152 2.90E-11 
cg12531611 6 NEDD9 Body -0.245 -0.754 -0.999 4.77E-11 
cg00353139 15 CYP1A1 TSS200 -0.389 -0.571 -0.960 4.69E-10 
cg00512031 4 CYTL1 TSS1500 -0.120 -0.786 -0.906 1.26E-09 
cg06644428 2 chr2:233284112 - -0.489 -0.341 -0.830 2.73E-09 
cg19405895 5 AHRR Body 0.016 -0.876 -0.860 5.14E-09 
cg03636183 19 F2RL3 Body -0.152 -0.677 -0.829 3.11E-08 

cg11461808 7 C7orf50;GPER 1stExon;5'UTR;B
ody;TSS1500 -0.470 -0.155 -0.625 4.96E-08 

cg14179389 1 GFI1 Body -0.236 -0.634 -0.869 5.93E-08 
cg01940273 2 chr2:233284934 - -0.065 -0.707 -0.773 9.15E-08 
cg25648203 5 AHRR Body -0.174 -0.756 -0.930 1.21E-07 
cg02162897 2 CYP1B1 Body -0.186 -0.688 -0.873 3.15E-07 
cg00378510 19 LINGO3 Body 0.114 -0.902 -0.788 3.15E-07 
cg03646542 5 NEURL1B Body -0.183 -0.686 -0.868 3.77E-07 
cg11841529 20 CD40 TSS200 -0.380 0.879 0.498 3.78E-07 
cg01727317 7 PMS2L11 Body 0.303 0.239 0.542 5.75E-07 
cg21611682 11 LRP5 Body -0.006 -0.798 -0.804 5.94E-07 
cg05575921 5 AHRR Body -0.039 -0.664 -0.703 8.16E-07 
cg04341454 2 SAG 3'UTR 0.052 -0.618 -0.567 9.92E-07 
cg22851561 14 C14orf43 5'UTR 0.003 -0.806 -0.802 1.01E-06 
cg20408276 2 CYP1B1 Body -0.202 -0.638 -0.840 1.47E-06 
cg03329539 2 chr2:233283329 - -0.179 -0.710 -0.889 1.59E-06 
cg13735704 4 SLC39A8 Body 0.162 0.539 0.701 1.68E-06 
cg05242523 19 KLK14 TSS1500 -0.287 0.841 0.554 1.92E-06 
cg25767832 6 chr6:158210955 - 0.383 -0.002 0.381 2.08E-06 
cg08447739 10 HTRA1 TSS1500 0.096 -0.849 -0.753 2.61E-06 
cg25576788 13 LATS2 5'UTR -0.291 0.665 0.374 2.68E-06 
cg24980413 5 AHRR Body 0.126 0.732 0.858 3.18E-06 
cg20131897 12 ACVRL1 TSS1500;5'UTR -0.180 -0.597 -0.776 3.28E-06 
cg04135110 5 AHRR Body 0.039 0.788 0.827 4.07E-06 

Abbrev: IlmnID, Illumina probe ID; CHR, chromosome; Location: probe location to gene; E vs. N: beta 
by comparing ex-smoker to non-smoker group; S vs. E: beta by comparing current smoker to ex-smoker 
group; S vs. N, beta by comparing current smoker to non-smoker group; P value, the global P value for 
smoking. A negative beta value indicates the methylation in the former group is less than the latter group. 
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Figure 6-3 shows an example of the methylation levels between the different smoking 

groups at the CYP1A1 gene, and the methylation levels were significantly different in 

all three groups on this CpG site (Table 6-2): lowest methylation levels are found in 

current smokers, and non-smokers have the highest methylation levels. The ex-smokers 

have intermediate levels of non-smokers and current smokers. 

 

Figure 6-3. An example of the methylation levels on different smoking groups 
on CYP1A1 gene (cg23680900) 

Sample size of each group is listed on the top of each box. The methylation levels are the 
raw values (left plot) and residuals of beta after adjusting all covariates (right plot) 

6.3.2 Smoking differentially expressed regions in adipose tissue 

The genome-wide scans comparing smoking and gene expression exon estimates were 

performed in adipose tissue samples from 349 subjects at 118,643 exons. Altogether, 48 

exons at 35 unique genes were differentially expressed with smoking at 5% FDR (P < 

2.05 × 10-5). Figure 6-4 shows the Manhattan plot of these results. Most of the 

associated exons were down regulated in smokers (blue) and fewer exons were up 

regulated in smokers (red). 
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Figure 6-4. Manhattan plot of the smoking associated exon expression in the 
adipose tissue 

 Each point above the 5% FDR (green dash) represents a significantly expressed exon, where 
expression can be higher (red) or lower (blued) in smokers. 

The full list of the 48 differentially expressed exons is listed in Table 6-3. Among these 

35 genes, there were 3 previously known smoking-expressed genes, CYP1B1, AHRR, 

and CDKN1C, and 32 novel genes (ZNF385B, EDC3, KCNJ11, PARM1, SEM13E, 

NMNAT2, MYH10, SMAD9, CYTL1, CYGB, COBL, LYST, NCAM1, F2RL3, KIF5C, 

CADM2, HHIP, PDZD4, HDAC9, TNFRSF19, PZP, DLAT, ERMAP, CD163L1, 

ENTPD3, JAM2, PGM5, TRDN, RBMXP4, LAMA3, CD163L1, and TTC9). Some of 

these genes were also found as smoking-DMPs in previous studies, e.g. AHRR, CYP1B1, 

CYTL1, and F2RL3. At the 48 differentially expressed exons, expression levels in ex-

smokers were more similar to those in non-smokers, and there was no significant 

difference between these two groups (minimum P = 2.7 × 10-4). 
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Table 6-3. Top 48 smoking-expressed exons in adipose tissue 
Exon CHR Gene name E vs. N S vs. E S vs. N P value 
ENSG00000138061.7_38294652_38298453 2 CYP1B11,2 -0.003 1.442 1.439 4.25E-18 
ENSG00000063438.12_433968_438406 5 AHRR1,2 0.198 1.074 1.272 7.92E-12 
ENSG00000144331.14_180306709_180308195 2 ZNF385B1 -0.279 -0.946 -1.225 1.96E-11 
ENSG00000138061.7_38302919_38303323 2 CYP1B11,2 0.048 0.975 1.023 1.01E-08 
ENSG00000179151.6_74922899_74925287 15 EDC32 -0.006 0.928 0.922 1.09E-08 
ENSG00000187486.5_17407406_17410206 11 KCNJ11 -0.228 -0.845 -1.073 1.18E-08 
ENSG00000169116.7_75971373_75975325 4 PARM1 0.002 -0.932 -0.930 3.56E-08 
ENSG00000170381.7_82993222_82997354 7 SEMA3E -0.181 -0.758 -0.939 7.11E-08 
ENSG00000138061.7_38301489_38302532 2 CYP1B11,2 -0.098 0.988 0.890 9.51E-08 
ENSG00000157064.6_183217372_183221878 1 NMNAT2 -0.088 -0.817 -0.906 1.53E-07 
ENSG00000133026.7_8377523_8379266 17 MYH10 -0.245 -0.729 -0.974 1.69E-07 
ENSG00000120693.9_37418968_37422956 13 SMAD9 -0.088 -0.849 -0.937 1.82E-07 
ENSG00000170891.6_5016313_5016961 4 CYTL12 0.263 0.698 0.960 2.51E-07 
ENSG00000161544.4_74523440_74524693 17 CYGB 0.189 0.694 0.883 4.22E-07 
ENSG00000106078.12_51152863_51153001 7 COBL -0.398 -0.427 -0.825 5.24E-07 
ENSG00000143669.8_235824341_235826378 1 LYST -0.028 -0.810 -0.838 7.36E-07 
ENSG00000106078.12_51095409_51097288 7 COBL -0.285 -0.654 -0.939 9.54E-07 
ENSG00000149294.11_113145989_113149158 11 NCAM1 -0.246 -0.639 -0.886 1.51E-06 
ENSG00000127533.2_17000384_17002830 19 F2RL32 -0.014 0.891 0.878 1.72E-06 
ENSG00000168280.11_149879592_149883273 2 KIF5C -0.183 -0.759 -0.942 1.81E-06 
ENSG00000175161.8_86115815_86117944 3 CADM2 -0.305 -0.465 -0.770 1.97E-06 
ENSG00000164161.5_145658916_145666423 4 HHIP 0.240 -0.935 -0.695 2.47E-06 
ENSG00000106078.12_51111080_51111389 7 COBL -0.287 -0.591 -0.878 2.75E-06 
ENSG00000067840.6_153067621_153070355 X PDZD4 -0.015 -0.791 -0.806 2.79E-06 
ENSG00000048052.14_18705836_18708466 7 HDAC9 -0.241 -0.629 -0.870 2.88E-06 
ENSG00000127863.11_24247511_24250232 13 TNFRSF19 0.080 -0.900 -0.820 2.93E-06 
ENSG00000106078.12_51092806_51093069 7 COBL -0.196 -0.681 -0.877 3.27E-06 
ENSG00000126838.5_9305721_9305939 12 PZP 0.035 -0.871 -0.836 4.41E-06 
ENSG00000150768.10_111933130_111935114 11 DLAT 0.272 0.624 0.896 4.51E-06 
ENSG00000162367.6_47681963_47685846 1 TAL1 -0.056 -0.763 -0.819 4.77E-06 
ENSG00000164010.9_43308188_43310660 1 ERMAP -0.157 -0.754 -0.911 4.98E-06 
ENSG00000106078.12_51261076_51261286 7 COBL -0.346 -0.448 -0.794 5.05E-06 
ENSG00000129757.8_2905229_2907111 11 CDKN1C1 -0.337 -0.293 -0.629 6.04E-06 
ENSG00000177675.4_7525916_7526236 12 CD163L1 -0.193 0.937 0.744 6.41E-06 
ENSG00000106078.12_51083909_51085265 7 COBL -0.223 -0.655 -0.878 7.00E-06 
ENSG00000168032.4_40464341_40464613 3 ENTPD3 -0.189 -0.639 -0.828 7.35E-06 
ENSG00000133026.7_8383428_8383636 17 MYH10 -0.205 -0.648 -0.853 7.48E-06 
ENSG00000154721.9_27066068_27066220 21 JAM2 0.134 -0.797 -0.662 9.42E-06 
ENSG00000154330.6_71098781_71098964 9 PGM5 -0.184 -0.704 -0.888 1.01E-05 
ENSG00000186439.7_123537483_123539885 6 TRDN -0.221 -0.651 -0.872 1.03E-05 
ENSG00000154721.9_27011584_27012200 21 JAM2 -0.102 -0.738 -0.839 1.09E-05 
ENSG00000133026.7_8387456_8387584 17 MYH10 -0.155 -0.687 -0.843 1.10E-05 
ENSG00000249465.1_110267482_110268615 4 RBMXP4 0.015 -0.832 -0.817 1.22E-05 
ENSG00000154721.9_27086952_27089874 21 JAM2 0.076 -0.805 -0.729 1.35E-05 
ENSG00000154721.9_27070989_27071191 21 JAM2 0.014 -0.776 -0.763 1.53E-05 
ENSG00000053747.9_21519187_21519350 18 LAMA3 0.147 -0.844 -0.697 1.54E-05 
ENSG00000177675.4_7527877_7528191 12 CD163L1 0.037 0.792 0.829 1.67E-05 
ENSG00000133985.2_71137793_71142077 14 TTC9 0.202 -0.865 -0.663 1.92E-05 

Exon, exon location on the gene; CHR, chromosome; Gene name, UCSC gene name; Beta ex-
smoker vs. non-smoker, beta by comparing ex-smoker to non-smoker group; Beta smoker vs. 
ex-smoker, beta by comparing current smoker to ex-smoker group; Beta smoker vs. non-
smoker, beta by comparing current smoker to non-smoker group; Overall P value, the global 
significance P value for smoking 
1These genes were previously identified to be differentially expressed with smoking: CYP1B1 
(Chang et al., 2003; van Leeuwen et al., 2007), AHRR (Monick et al., 2012), and CDKN1C 
(Harvey et al., 2007). 
2These genes were identified as smoking-DMPs previously 
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6.3.3 Comparison between the smoking EWAS and genome-wide 

expression results  

6.3.3.1 Four genes overlap between methylation and expression adipose results 

A comparison of the 39 smoking-DMPs and 48 differentially expressed exons showed 

that 4 genes (CYP1B1, CYTL1, AHRR, and F2RL3 genes) overlapped between the 

smoking genome-wide methylation and exon expression analyses (Figure 6-5). There 

were 8 CpG sites on the 4 genes, including 2, 4, 1 and 1 CpG sites in the gene bodies of 

CYP1B1, AHRR, and TSS1500 regions of CYTL1 and F2RL3, respectively. For the 6 

expressed exons, 3 of them were in CYP1B1, and 1 for each of the remaining 3 genes. 

Apart from 1 CpG site on AHRR, current smokers showed lower methylation levels 

compared to non- and ex-smokers, and all the exons were up-regulated in current 

smokers. 

 

 

Figure 6-5. Genome-wide smoking results in adipose tissue: comparisons 
between methylation and expression results 

Each point above the 5% FDR (green dash) represents a significantly methylated/expressed 
exons on genes, where the higher methylation/expression were shown in red and lower 
methylation/expression in blue in current smokers. 
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The next analysis focused on testing whether there was a correlation between the 

methylation and gene expression levels at these 4 genes, with the hypothesis that DNA 

methylation (particularly in the promoter region) could down regulate gene expression. 

6.3.3.2 Correlations between methylation and expression of the 4 overlapping 

genes 

Figure 6-6 shows the correlation matrix between the methylation and expression of the 

4 genes. Here, the predominant trend appears to be a weakly negative correlation 

between methylation and expression. 

 

 

Figure 6-6. Correlation matrix between methylation and expression of the 4 
genes in adipose tissue 

Each column is a single exon and each row is a single CpG site, the colour shows whether the 
exon/CpG site is up regulated/hyper-methylated (red) or down regulated/hypo-methylated 
(blue). The number and corresponding colour scale show the correlation coefficients from -1 
to 1 (blue to red). 

To explore the underlying mechanisms of smoking-associations with both methylation 

and expression at these 4 genes, a conditional analysis was performed. Figure 6-7 shows 

the 3 proposed regulation models.  
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Figure 6-7. Three proposed models of smoking effects on methylation and gene 
expression levels 

Among the 12 comparisons (Table 6-4), model (B) was the preferred model in 7 

comparisons, model (A) was the preferred model in the remaining 5 comparisons, and 

none of the results supported a model of independent effects of smoking on methylation 

and expression (model (C)). If we only consider models where the fit was ‘significantly’ 

consistent with the preferred model (that is, ΔBIC > 6), there are 8 comparisons in three 

of the loci (CYP1B1, AHRR, and F2RL3) that meet these criteria. At locus F2RL3 the 

result is consistent with the scenario where smoking affects DNA methylation, which 

regulates gene expression. On the other, at locus AHRR the results are consistent with 

the scenario where smoking affects gene expression, which has a modulatory effect on 

DNA methylation. However, at locus CYP1B1 there were multiple DNA methylation 

probes and exons that were associated with smoking, and different combinations of 

these show support for either models (A) or (B), suggesting the possibility of more 

complex regulatory processes at this region and potential alternative transcript 

regulation.  

Table 6-4. Results of conditional analysis 
IlmnID Exon start Exon end CHR Gene ΔBIC BIC (A) BIC (B) BIC (C) 

cg02162897 38294652 38298453 2 CYP1B1 5.96 1485.7 1479.8 1502.8 
cg02162897 38302919 38303323 2 CYP1B1 2.85 1964.8 1967.7 1982.7 
cg02162897 38301489 38302532 2 CYP1B1 11.61 1900.9 1912.5 1920.2 
cg20408276 38294652 38298453 2 CYP1B1 7.67 1446.7 1439.1 1463.0 
cg20408276 38302919 38303323 2 CYP1B1 1.14 1925.2 1926.3 1941.6 
cg20408276 38301489 38302532 2 CYP1B1 9.90 1860.9 1870.8 1878.5 
cg00512031 5016313 5016961 4 CYTL1 0.06 1782.6 1782.6 1799.0 
cg05575921 433968 438406 5 AHRR 21.54 1548.5 1527.0 1559.1 
cg19405895 433968 438406 5 AHRR 18.95 1950.3 1931.4 1958.9 
cg24980413 433968 438406 5 AHRR 19.99 1662.5 1642.5 1662.4 
cg25648203 433968 438406 5 AHRR 15.00 1659.4 1644.4 1668.8 
cg03636183 17000384 17002830 19 F2RL3 10.57 1499.8 1510.3 1515.9 

IlmnID, Illumina probe ID; BIC (A), smoking affects methylation, which modulates gene expression; 
BIC (B), smoking affects gene expression, which modulates methylation; and BIC (C), smoking affects 
methylation and gene expression independently. Numbers in bold indicated the lower level between the 3 
models, which is the best model.  
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In the gene expression adipose-blood comparison, the only region that showed tissue-

shared results was an exon of the AHRR gene. A visualization of this region with the 

DNA methylation results is shown in Figure 6-8. If we consider all available CpG sites 

of the AHRR gene (Figure 10, TSS: chr5:304,291 to TES: chr5:438,406), we observe 

that the expressed exon is the last exon of the AHRR gene (green block on the lower 

region of the figure). The significant smoking-DMP CpG-sites in AHRR are not located 

on CpG islands, nor in the exons, they all fall within introns. 

 

Figure 6-8. The regional plot of the genome-wide results of AHRR gene 

Each point above green dash (significance threshold) is one CpG site, where the findings 
belong to adipose tissue (black) and blood (red). Dots below the green dash are non-
significant and belong to adipose (solid dots) and blood (circles). Lower part of the figure 
shows the functional annotation of the region with expressed (orange) and non-expressed 
(green) exons, and CpG islands (dark green). 

At another of the 4 overlapping regions, the inter-genic region at 2q37.1, several 

smoking-DMPs were found in both tissues. These significant CpG sites were not 

located in any genes, and were 10 kb away from the ALPPL2 gene and 35 kb away from 

the ALPI gene. Figure 11 is a visualization of these results and shows that the smoking-

methylation results between blood and adipose were very similar across this genomic 

region. There was a strong peak of association at chr2:233,284,402 and 

chr2:233,284,661. Look ups into the chromatin signature of these regions using the 
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ENCODE data in the UCSC Genome Browser (Meyer et al., 2013), shows the presence 

of H3K27m3, but not H3K27ac histone mark in GM12878 cells, suggesting there might 

be absence for transcription factor binding on the region. 

 

 

Figure 6-9. Regional plot of the EWAS results on 2q37.1 region  

Results in adipose tissue (black) and blood samples (red) are shown. 

6.3.4 Genetic contributions to methylation and exon expression 

levels 

To investigate if there were genetic contributions to methylation and expression levels 

at the smoking-associated loci, GWAS was performed on the residuals of the 

methylation and expression levels at the top adipose and blood results. Due to missing 

genotype data in a few subjects, the GWAS was performed on a reduced sample of 250 

individuals. Table 6-5 shows that at a significance level of P < 10-7 there were no eQTLs, 

but several SNPs were significantly associated with 3 methylation probes. These three 

probes were smoking-DMPs in adipose tissue (smoking-DMP minimum P = 3.5 × 10-7). 

At the LINGO3 and HTRA1 gene, all the SNPs that associated with the methylation 

sites were within 25 kb suggesting that these two sites were cis-meQTLs. 
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Table 6-5. List of meQTLs found in the top EWAS results 
IlmnID SNP Meth 

CHR 
Meth gene 
name 

SNP 
CHR 

RS gene name RS left gene RS right gene P value 
cg00378510 rs757322 19 LINGO3 19 NA SPPL2B TMPRSS9 7.32E-12 
cg00378510 rs11671 19 LINGO3 19 SPPL2B LSM7 TMPRSS9 1.19E-10 
cg00378510 rs3795039 19 LINGO3 19 SPPL2B LSM7 TMPRSS9 1.17E-08 
cg00378510 rs2074546 19 LINGO3 19 SPPL2B LSM7 TMPRSS9 1.56E-08 
cg00378510 rs3746289 19 LINGO3 19 SPPL2B LSM7 TMPRSS9 3.27E-08 
cg00378510 rs730417 19 LINGO3 19 NA LINGO3 LSM7 5.02E-08 
cg00378510 rs7251424 19 LINGO3 19 LSM7 LINGO3 LSM7 8.26E-08 
cg08447739 rs3750848 10 HTRA1 10 ARMS2 PLEKHA1 HTRA1 4.15E-10 
cg08447739 rs10490924 10 HTRA1 10 ARMS2 PLEKHA1 HTRA1 7.89E-10 
cg08447739 rs3750847 10 HTRA1 10 ARMS2 PLEKHA1 HTRA1 2.03E-09 
cg08447739 rs3793917 10 HTRA1 10 HTRA1 ARMS2 HTRA1 2.23E-09 
cg08447739 rs932275 10 HTRA1 10 HTRA1 ARMS2 DMBT1 8.69E-09 
cg11841529 rs3746226 20 CD40 19 LOC100131296 ZNF543 ZNF304 1.89E-09 
cg11841529 rs13345625 20 CD40 19 ZNF543 ZNF460 LOC100131296 3.08E-09 

IlmnID, Illumina probe ID, Meth CHR, the chromosome where methylation probe is located; 
SNP CHR, the chromosome where SNP is located  

6.3.5 Association among cotinine levels, smoking status, and 

methylation levels 

I examined the association of cotinine values in 29 subjects (2 non-smokers, 4 ex-

smokers, and 23 current-smokers) with self-reported smoking status and methylation 

levels at the 39 smoking-DMPs. In theory, there should be a negative correlation 

between the cotinine levels with methylation if the methylation was indeed lower in 

smokers. However, among the 39 smoking-DMPs, only 3 sites had nominally 

significant effects, and none of the correlation effects were consistent with the self-

reported smoking effects. This was because there were very few (only 2) non-smokers 

in the data, and their cotinine levels were in fact higher than those of most of the 

current- or ex-smokers (Figure 6-10), which indicates that the cotinine levels of the 29 

subjects were likely not representative of their smoking status. 

 

 

Figure 6-10. Cotinine levels in different smoking status 
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6.4 Discussion 

The genome-wide results from this chapter show that smoking can impact DNA 

methylation and gene expression levels in adipose tissue. To my knowledge, this is the 

first study that performed genome-wide analyses of smoking in adipose tissue DNA 

methylation and gene expression profiles. The key result was that a subset of smoking-

DMPs identified in this chapter showed tissue-shared effects with blood, while the 

remainder are novel adipose-specific smoking DMPs. 

This study found 39 smoking-DMPs and 35 smoking-differentially expressed genes (48 

exons) in adipose tissue. Together, they overlapped at 4 genes (CYP1B1, CYTL1, AHRR, 

F2RL3). Some of these genes are associated with metabolic diseases, such as type 2 

diabetes and hypertension from disease-related enrichment analysis (details in Chapter 

5). At these 4 overlapping genes, methylation levels were mostly negatively correlated 

with gene expression levels (Figure 6-5, 11 negative and 1 positive correlation). Of the 

12 methylation probes in the 4 overlapping genes, only probe cg00512031 in the CYTL1 

gene was at the gene promoter, and a negative association here is consistent with the 

expectation that promoter-based CpG-sites negatively associate with gene expression 

(Eckhardt et al., 2006; Ball et al., 2009; Lister et al., 2009). However, the majority of 

the remaining probes were in the gene body, thus a negative association with expression 

in these genes is against the expectation of a positive correlation between methylation 

and gene expression if the CpG site was located in the gene body. Some studies have 

reported both positive and negative correlations between methylation and expression on 

the gene body (Zilberman et al., 2007; Zemach et al., 2010; Jjingo et al., 2012; 

Gutierrez-Arcelus et al., 2013). An explanation for this finding could also be that DNA 

methylation sites in the gene body are in fact located in alternative promoters that 

regulate the expression of particular isoforms, as in the case of alternative splicing. 

Follow-up the adipose results, in blood, I identified some tissue-shared smoking-DMPs. 

In the blood dataset alone, there were 12 smoking-DMPs in 6 genes (AHRR, GPR15, 

F2RL3, GFI1, CCL28, PRSS23) and 2 inter-genic regions (chromosomes 2q37.1 and 

6p21.33), which were all previously identified in the literature. Tissue-shared smoking 

effects in adipose and blood methylation could be observed on 4 genes (AHRR, F2RL3, 

GFI1, 2q37.1) in our data alone. The one result that overlapped across all four datasets 
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(methylation and expression in adipose and blood) was the AHRR gene. This region 

appears to have the strongest and most stable smoking-related changes in our data, and 

the most likely model explaining the associations at this region is a scenario where 

smoking impact expression levels, which in turn modulate DNA methylation patterns. 

6.4.1 Tissue-shared and adipose-specific smoking-DMPs 

To date, many studies have performed the smoking EWAS in adult samples and in 

newborns, in order to detect the maternal smoking effects on infant methylome. The 

major findings have been smoking differential methylation sites in multiple tissues, and 

replication in different populations. Some studies also found the methylation levels are 

‘reversible’ on some of these differential sites, that is, methylation levels of ex-smokers 

could gradually change more towards to non-smokers after quitting smoking. Table 6-6 

summarise the most up to date smoking EWAS using Illumina platforms (Illumina 27k 

and Illumina 450k). 

Table 6-6. Overview of recent smoking EWASs 

Smoking Tissue Platform Key findings 

Adult1 

Whole blood, 
peripheral blood 
mononuclear cells, 
small airway 
epithelial tissue, 
lymphoblast, 
alveolar macrophage  

Illumina 27k; 
Illumina 450k; 
pyrosequencing 
(validation)  

Numerous smoking differential 
methylation sites have been identified in 
multiple tissues and in different 
populations (e.g. AHRR, CYP1B1, 2q37.1, 
GFI1, GPR15, F2RL3). Methylation levels 
of some of these sites are ‘reversible’ when 
quitting smoking (e.g. F2RL3).  

Newborn 
(prenatal)2 Cord blood, placenta 

Illumina 27k; 
Illumina 450k; 
pyrosequencing 
(validation) 

Maternal tobacco use is associated with 
newborn methylation changes on plentiful 
methylation sites. Some of these CpG sites 
showed persistently patterns into 
adolescent.  

1(Breitling et al., 2011; Monick et al., 2012; Wan et al., 2012; Buro-Auriemma et al., 2013; 
Philibert et al., 2013; Shenker et al., 2013; Sun et al., 2013; Zeilinger et al., 2013; H. Zhang et 
al., 2013; Besingi & Johansson, 2014; Dogan et al., 2014; H. R. Elliott et al., 2014; Harlid et al., 
2014; Guida et al., 2015) 
2(M. Suter et al., 2011; Joubert et al., 2012; Breton et al., 2014; Markunas et al., 2014; Ivorra et 
al., 2015; K. W. Lee et al., 2015; Richmond et al., 2015) 
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Table 6-7 summarizes 9 of our adipose smoking-DMPs that are also well-known 

smoking-DMPs from previous 27k or 450k EWAS studies (see full reference list on 

Table 6-6). These studies were mainly done in blood or lung samples and in different 

ethnic groups, suggesting that there is a consistent smoking effect on DNA methylation 

across multiple tissues in the human body. 

Table 6-7. List of well-known smoking-DMPs identified from previous studies 

CHR Gene name Studies 

1 GFI1 Joubert et al. 2012; Zeilinger et al. 2013; Besinigi and Johansson 
2014; Dogan et al. 2014; Elliott et al. 2014  

2 2q37.1 region 
Shenker et al. 2013; Sun et al. 2013; Zeilinger et al. 2013, 
Besinigi and Johansson 2014; Dogan et al. 2014; Elliott et al. 
2014; Markunas et al. 2014 

5 AHRR 
Monick et al. 2012; Philibert et al. 2013; Shenker et al. 2013; Sun 
et al. 2013; Zeilinger et al. 2013, Besinigi and Johansson 2014; 
Dogan et al. 2014; Elliott et al. 2014; Markunas et al. 2014 

9 NOTCH1 Dogan et al. 2014 

11 LRP5 Zeilinger et al. 2013; Besinigi and Johansson 2014; Dogan et al. 
2014 

14 C14orf43 Zeilinger et al. 2013; Dogan et al. 2014; Elliott et al. 2014 

15 CYP1A1 Joubert et al. 2012; Buro-Auriemma et al. 2013; Zeilinger et al. 
2013 

19 LINGO3 Zeilinger et al. 2013 

19 F2RL3 

Breitling et al. 2011; Joubert et al. 2012; Wan et al. 2012; Shenker 
et al. 2013; Sun et al. 2013; Zeilinger et al. 2013; Besinigi and 
Johansson 2014; Dogan et al. 2014; Elliott et al. 2014; Markunas 
et al. 2014; Zhang et al. 2014 

In addition to tissue-shared smoking-DMPs, our results also highlight adipose-specific 

smoking-DMPs, which are novel smoking-DMPs that have not been previously 

identified by other smoking EWAS and do not validate in the twin blood sample. There 

13 novel smoking-DMPs identified in adipose tissue in the following genes: CYP1B1, 

CYTL1, NEURL1B, GPER, SAG, LATS2, PMS2L11, NEDD9, PDE7B, SLC398A, 

CDC42EP3, HTRA1, and ACVRL1. I discuss some of these results in section 6.4.2 

below. Further studies of smoking-methylation effects in adipose samples will be 

required to replicate these results. 

Three published smoking EWAS in blood samples were further compared to better 

understand the extent of tissue-shared effects of the top 39 CpG sites found in my 

adipose smoking EWAS. These 3 studies included a large sample EWAS in Germans 

(Zeilinger et al., 2013), and two smaller sample size EWAS in Asians (H. R. Elliott et 
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al., 2014) and in African Americans (Dogan et al., 2014). The results are summarized in 

Table 6-8. The overall pattern showed that GFI1, 2q37.1 region, AHRR, LRP5, 

C14orf43, F2RL3, HTRA1, CYP1A1, and LINGO3 were consistently reported in more 

than one study. The methylation levels on several CpG sites, for example, on 2q37.1 

region (cg05951221, cg21556642, cg09140273), on AHRR (cg05575921), on LRP5 

(cg21611682), on C14orf43 (cg22851561), and on F2RL3 (cg03636183) were 

constantly lower in current smokers. 

Table 6-8. Tissue-shared smoking differential sites in adipose EWAS 

 
The column labels, separated by back slash in order, are study name, tissue, and sample size. The top 39 
probes discovered from adipose tissue are indicated in Column 3, 4, and those correspondingly validated 
in blood (column 5) and three EWAS studies (column 6, 7, 8). Directions for smoking-DMPs are 
indicated as hypo-methylation (blue) or hyper-methylation (red). Deeper colours (of blue and red) 
indicate significance for the CpG site and lighter colours indicates not significant. Parenthesis indicates 
extra probes not overlapping with adipose tissue. For example, the probe in the first row shows 
significantly hypo-methylation in adipose tissue, but not significant hypo-methylation in blood, and other 
studies reported 5, 1, and 2 extra significant probes for the GFI1 gene. In total, 5 probes across 3 genes 
(2q37.1, AHRR, F2RL3) overlapped between adipose and blood (GFI1 was significant however not 
sharing the same probe).  
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6.4.2 Highly replicated Smoking-DMPs 

In this section I discuss several of the most significant smoking-DMPs in my study that 

may also be replicated in the literature (AHRR, F2RL3, and chromosome 2q37.1). 

6.4.2.1 AHRR (aryl hydrocarbon receptor (AhR) repressor) gene 

The most-replicated smoking-DMP is in the AHRR gene. AHRR is a protein-coding 

gene for the AhR signalling cascade that mediates dioxin toxicity and cell growth and 

differentiation. Smoking might activate AhR similar to dioxin intake (Kasai et al., 

2006). AHRR is also a tumour suppressor gene, and persistent down-regulation of 

AHRR mRNA is found in multiple human malignant tissues (Zudaire et al., 2008).  

On the AHRR gene, multiple CpG sites were smoking-DMPs, including the most 

significant replicated marker cg05575921. This marker was the most significant hit that 

I identified in the blood EWAS (P = 2.42 × 10-21), and remained highly significant with 

only 26 current smokers included in our study. In the adipose EWAS, 4 smoking-DMPs 

at the AHRR have a less significant P value. The methylation levels of these 4 markers 

were weakly negatively correlated with expression despite being located on the gene 

body. One potential explanation is that smoking is associated with a particular isoform 

of AHRR, because it was the last exon of AHRR that was up regulated in non-smokers in 

both adipose and blood. It is possible that the smoking-DMPs in AHRR may regulate 

the expression of this isoform. Another study also showed a negative correlation 

between increasing methylation and expression at cg05575921 (P < 0.03) (Monick et al., 

2012). This further suggests that there might be some functional regulation between 

methylation and expression on this marker. 

Furthermore, methylation on cg05575921 was strongly associated with smoking 

cessation time (Zeilinger et al., 2013). This study found 174/187 smoking-DMPs that 

were significantly differentially methylated between ex-smokers and non-smokers. The 

methylation levels of 36 CpG sites decreased with cessation years of ex-smokers. 

Among the 36 CpG sites, cg05575921 was the most significant ‘cessation site’ (P = 

7.73 × 10-44) and cessation time could explain 21.48% of the methylation variance. On 

these cessation sites, the methylation levels in ex-smokers would gradually move closer 
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towards the methylation levels in non-smokers after quitting smoking, and in 60 years 

time the methylation could return to the same levels as that in non-smokers. Although 

the time since cessation not recorded in my dataset, 27/39 CpG sites showed the same 

trend, where the methylation levels of ex-smokers are in between the levels of non-

smokers and current smokers (Table 6-2). It suggests that methylation levels at these 27 

CpG sites might change with cessation time. 

6.4.2.2 F2RL3 (coagulation factor II receptor-like 3) gene (also known as 

PAR-4) 

The CpG site cg03636183 on F2RL3 gene was consistently identified as a smoking-

DMP in the majority of smoking EWASs. The CpG site is located on the second exon 

of the gene on chromosome 19, and is the only associated CpG site in F2RL3. A study 

reports that F2RL3 methylation is highly associated with mortality from coronary 

disease (Breitling et al., 2011). The methylation levels on cg03636183 are lower in 

smokers, and the methylation levels increased after smoking cessation (Breitling et al., 

2011; Zeilinger et al., 2013; Y. Zhang et al., 2014). In a mouse study (N = 5), the gene 

expression levels of F2RL3 increased after smoking exposure (Shenker et al., 2013), 

although the results did not reach nominal significance, they suggested that smoking 

could lead to the methylation changes on F2RL3 gene. In our data, smoking associates 

with both DNA methylation and gene expression changes, and the most likely model 

explaining this association is that smoking impacts expression via methylation. The 

pattern of association is also consistent with previous studies in both humans and in the 

mouse. 

6.4.2.3 2q37.1 region (close to ALPP/ALPPL2 genes) 

CpG-sites in the inter-genic region on chromosome 2 were the top loci in the adipose 

smoking EWAS and second top hit in the blood smoking EWAS. Several smoking-

associated CpG sites were identified in this region in many of the previous smoking 

EWAS. Three alkaline phosphatase genes surrounded this region: alkaline phosphatase 

placental-like 2 (ALPPL2), alkaline phosphatase intestinal (ALPI), and alkaline 

phosphatase placental (ALPP). However, all significant CpG sites identified in our 

EWAS are located in the 3’UTR of both ALPPL2 and ALPI, and the functional 
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significance of these methylation changes is still unknown. In my expression analysis, 

none of the exons of these genes were differentially expressed with smoking status, and 

there was no correlation between methylation and expression levels. One possible 

explanation for the methylation variation in this region might be a genetic contribution. 

Among the 5 significant CpG sites at the 2q37.1 region, 2 sites were identified as trans-

meQTLs at a marginal significance (the most significant P value for cg03329539 is P = 

2.90×10-6 and P = 3.08 × 10-6 for cg05951221). This suggests that there could be an 

interaction between genotype and smoking on the methylation levels in this region, but 

further studies are required to confirm this. 

6.4.2.4 Lung cancer related genes 

Several studies examined whether smoking-DMPs were also associated with lung 

cancer, and I also checked whether the top 39 smoking-DMPs found in adipose tissues 

and 12 smoking-DMPs found in blood samples were also candidate DMRs for lung 

cancer. In a Korean population, methylation at one of my top smoking-DMPs (CYP1B1) 

was found to correlate with smoking status by comparing 80 non-small cell lung 

carcinoma (NSCLC) tissue samples to 16 normal lung tissues (Kang et al., 2012).  

Furthermore, two of the top findings LRP5 and ACVRL1 in adipose tissue overlapped 

with their findings, and they found that gene expression levels at these genes were 

significantly associated with methylation levels. In another study, the methylation levels 

of 59 matched lung adenocarcinoma and non-tumour lung pairs were compared, and 

164 hyper-methylated smoking genes and 57 hypo-methylated smoking genes were 

identified (Selamat et al., 2012), the majority of which were negatively associated with 

gene expression. Two of my smoking-DMPs, CYTL1 and ACVRL1 overlapped with 

their findings. In addition, some of the smoking-DMPs and smoking-expressed genes 

were differentially expressed (AHRR, ZNF385B, EDC3, CYGB, COBL, and F2RL3) and 

differentially methylated (CYTL1, LRP5, and ACVRL1) in lung cancer. In conclusion, 

there is some evidence that the smoking-DMPs identified in this study are also 

smoking-DMPs in lung cancer tissue.  
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6.4.2.5 Maternal smoking effect on newborns 

Several EWAS studies have examined the prenatal maternal smoking effect on the 

newborn methylome (see full reference list on Table 6-6). One compared 1,062 

newborn cord blood methylomes to plasma cotinine levels in the mother, and identified 

26 CpG sites (that mapped to 10 genes) that were significantly associated (Joubert et al., 

2012), and 3 genes (AHRR, CYP1A1, and GFI1) were replicated in an independent 

cohort. In another study, 185 CpG sites were identified with altered methylation by 

maternal smoking in 889 infants, and the same 3 genes were validated (Markunas et al., 

2014). Two of these genes, AHRR and GFI1, were both identified as smoking-DMPs in 

adipose tissue and blood samples in my study, and CYP1A1 was identified in adipose 

tissue. Therefore, effects at these genes are not only robust across tissues in adults of 

different ethnicities, but also appear for smoking exposure at a different developmental 

stage. However, most of the smoking-DMPs from the adult samples were not found in 

the newborn studies, suggesting a distinct effect of direct smoking exposure in adult 

versus indirect exposure in utero. 

6.4.2.6 Smoking-DMPs and disease 

Apart from CYTL1, CYP1B1 and ACVRL1 genes that have been found to differentially 

methylate in the lung cancer tissues (Kang et al., 2012; Lokk et al., 2012; Selamat et al., 

2012), other novel smoking-DMPs were differentially methylated with certain diseases. 

Some genes were differentially methylated with cancers, mostly breast cancer, such as 

CYP1B1 (acute lymphocytic leukaemia and breast cancer), GPER (breast cancer), and 

HTRA1 (breast cancer). LATS2 was previously identified as a tumour suppressor gene. 

In breast cancer, smoking is considered as a risk factor because it is a carcinogen. From 

a large longitudinal cohort of 111,140 participants, the hazard ratio of breast cancer was 

1.06% in ever smokers (current- and ex-smokers) relative to never smokers (Xue et al., 

2011). This suggests that methylation on these genes, smoking, and breast cancer may 

be causally related. 
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6.4.3 Cotinine levels, smoking status, and methylation 

Serum cotinine has been a gold standard for measuring smoking status. In the TwinsUK 

cohort, cotinine was only available for limited subjects. A critical issue was that 

cotinine was not necessarily obtained on the same clinical visit date as the date of DNA 

sample for DNA methylation analysis. Another problem was that the half-life of 

cotinine is very short (< 24 hours) and in many cases did not match the date of blood 

collection. In future, I would like to extend this work by performing a cotinine EWAS 

in a larger sample of twins. 

6.4.4 Genetic contributions to smoking-DMPs and differentially 

expressed exons 

In adipose tissue, I found that 19/39 smoking-DMPs that were meQTLs and no exons 

(out of 48 exons) were eQTLs at a stringent genome-wide significance level of P < 10-7. 

Comparing this result with other studies, Grundberg et al. identified more meQTLs at 

1% FDR from 648 samples (my sample of 349 subject was a subset of their dataset) 

(Grundberg et al., 2013), and for the expression data, an on going EuroBATS eQTL 

analysis conducted by Buil et al. (Buil et al., in prep) identified 19/35 expressed exons 

as eQTLs. 

Among the 19 meQTLs, there were 4 CpG sites on the AHRR gene and 2 CpG sites on 

2q37.1 region identified as cis-meQTLs, suggesting that genetic contribution has some 

impact on the methylation changes in addition to the smoking effect. If methylation was 

affected by genetic variants, the effect should presumably be present across tissues. 

Since smoking-DMPs at these two regions were actually identified in both adipose 

tissue and blood samples, the methylation changes on these two regions could be 

influenced by the underlying genetic sequence. Future analyses will focus on 

identifying gene-by-smoking interactions of DNA methylation levels. 
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6.4.5 Smoking-DMPs or expressed genes overlap with GWAS 

results 

Several differentially methylated and expressed genes from my results were also 

associated with smoking-related diseases.  There were candidate genes for lung disease, 

for example, CYP1A1 and CYP1B1 (lung cancer), and HHIP (pulmonary function). 

Several genes were identified as candidate genes for metabolic or cardiovascular 

diseases, such as ZNF385B (sudden cardiac arrest), KCNJ1 (type 2 diabetes), NMNAT2, 

CADM2, and PZP (obesity-related traits), HDAC9 (coronary artery disease and stroke), 

LRP5 (bone mineral density), SLC39A8 (cholesterol, BMI, and blood pressure).  

6.4.6 Conclusion 

In conclusion, I have identified adipose-specific and tissue-shared DNA methylation 

changes related to smoking and corresponding gene expression associations with 

smoking. Smoking exerts a strong effect on DNA methylation and gene expression 

levels across at least two tissue types (blood and adipose tissue). These results indicate 

that DNA methylation levels at smoking-DMPs may be good biomarkers of smoking 

status and strongly suggest that smoking should be incorporated as a covariate in 

EWAS studies. 
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7"
7 Conclusions, Discussions and 

Future Perspectives  

Epigenetics is an invaluable area of biology that can bridge the gap between the study of 

genotype and phenotype. Results from 1300 GWAS studies published since 2005 show 

that the genetic contributions cannot fully explain many diseases and phenotypic traits. 

Therefore, studies have searched for unknown modifications, such as epigenetic 

modifications, to explain the ‘missing heritability’. The missing heritability typically 

refers to the phenotypic variance that cannot be fully explained by the genetic effect. To 

possibly contribute to the heritability, epigenetic changes need to be stably maintained 

throughout lifetime, and faithfully passed down to different generations (i.e. meQTLs). 

Feinberg and Irizarry suggest that the variability of phenotype can be mediated by 

epigenetic modifications (Feinberg & Irizarry, 2010). For example, the epigenetic 

modifications act as a mediator between the gene and environment, and then contribute 

to disease.  

The study of epigenetics in the context of human complex traits and environmental 

exposures has expanded rapidly in the past years. The number of publications using 

keywords related to epigenetics according to Thomson Reuters Web of Knowledge has 

quadrupled from 2000 to 8000, during 2001-2011. When my PhD began in 2010, there 

was a transition from epigenetic studies of target genes to applications of the genome-

wide Illumina 27k array. Now, in the span of four years, the most commonly used 

platforms provide a nearly twenty-fold increase in the number of probes on the Illumina 

450k, and EWAS studies are widely performed with more phenotypes, diseases and 

environmental exposures. 

My thesis covers broad aspects of EWAS studies, with applications to age and age-

related phenotypes. It involves the analysis of statistical power, exploring DNA 
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methylation quality control and methodology, finding the covariates that influence an 

EWAS study, and applying EWAS methods to the study DNA methylation changes 

related to ageing, birth weight, and smoking. Below is a brief discussion of what I 

consider to be the key findings from each of my research chapters. 

The estimation of statistical power in EWAS is very important, but has not been 

comprehensively explored. Most studies use power and sample size estimation of a 

traditional genetic epidemiology study. However, unlike the power estimation in 

epidemiological studies where power can be often increased by simply acquiring larger 

sample sizes, there are qualitative differences in an epigenetic study, since the 

epigenome changes throughout the life of an individual (Relton & Davey Smith, 2010; 

Heijmans & Mill, 2012). My power estimates in EWAS were based on a disease 

discordant MZ study and a case-control study of unrelated subjects. Under a number of 

assumptions, I simulated several scenarios of DNA methylation effects on complex 

traits, and explored the sample size needed to reach power to detect differential 

methylation, as well as the factors that influence power. I found that the power of an 

EWAS study is influenced by the sample size, the methylation effect size, the variance 

in DNA methylation within and across groups, and the correlation in DNA methylation 

levels between groups. The power estimates that I provide are informative for future 

and on-going EWAS of both discordant twins and case-control studies, and my results 

for the case-control design are consistent with previous estimates. 

One of the findings from my results on power estimation was that the methylation 

difference between groups on its own is not a very good measure of effect size, because 

the same DNA methylation difference could result in different EWAS power estimates. 

The smoking EWAS results are a good example to explain why using the mean 

methylation difference is not a good representative of effect size, as I discussed in 

Chapter 2. Here, I compared 35 current smokers and 186 non-smokers, and found 39 

smoking differential methylation positions/regions at genome-wide significant P < 4.72 

× 10-6. From the absolute mean methylation difference at these 39 smoking-DMPs, only 

11 (28.2%) had > 5% difference between smokers and non-smokers (Figure 7-1A). If I 

only focus on nominal significance (P = 0.05), there were 12,874 smoking-

DMPs/DMRs. I compared the correlation between the nominal P values (-log10 

transformed) and effect size, using the following measures of effect size: (1) the 
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absolute methylation difference between current and non-smokers (percentage); (2) 

methylation odds ratio (methOR, where all values were transformed to be greater than 1 

as ‘risk OR’); and (3) the Z score (absolute methylation difference/pooled SD of the two 

groups). Figure 1B-1D shows the correlations between the P values and the relative 

effects. The Z score had a linear relationship with significance as expected, but not the 

methylation difference or methOR. In fact, there were no significant tests found in the 

sites with large effect sizes (top 50th percentile). In addition, the majority of significant 

test results (99%) had < 5% of methylation difference. This shows the importance of 

exploring several measures to determine the methylation ‘effect size’ in an EWAS. 

Smoking is a good example to explore these concepts with, because the smoking-

DMPs/DMRs used here have been replicated by multiple studies.  

 

 

Figure 7-1. Example of association between different effect size and significant P 
values using adipose smoking EWAS results 

Figure 7-1A, frequencies of the mean methylation difference (%) of the top 39 smoking-
DMPs; DMRs with difference < 5% (grey) and DMRs with difference > 5% (blue). Figure 
7- 1B to 7- 1D, correlations between different effect size and significance level. Colour 
scales are the density of the tests, for example, the red area represents the highest density of 
test results. 
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EWAS criteria for genome-wide significance also need to be discussed. Across the 

genome, there are regions of variable DNA methylation, as well as less variable regions. 

Using a Bonferroni correction is a stringent method to account for multiple testing and 

it is questionable whether all the probes should be included in the denominator for 

Bonferroni correction. Another consideration is that methylation patterns from nearby 

probes are often co-methylated, while the Bonferroni denominator assumes 

independence. Other methods should also be used to take multiple testing into account, 

such as the false discovery rate or ideally permutation-based methods, which can take 

the correlated structure of the data into account. 

The normalization and quality control procedure in an EWAS are constantly being 

updated and refined. In this thesis, I used many iterations and tests of these procedures 

as the Illumina 27k was updated with the Illumina 450k array, and multiple methylation 

analysis packages were proposed in the literature. The major pitfalls in analysing the 

Illumina 450k data are batch effect adjustment and data normalisation. One study 

suggests that batch effect in Illumina 450k data can increase the false discovery of 

differential methylation, so it is important to randomly allocate samples during 

experiment (Harper et al., 2013). Because the Illumina 450k platform requires bisulfite-

treated DNA, the incomplete conversion of unmethylated cytosines will be detected as 

methylated cytosines and therefore lead to incorrect methylation levels. Two common 

ways to adjust for batch effects (i.e. plate number, position on the plate) are either to 

apply a surrogate variable analysis (SVA; (Leek & Storey, 2007)) or to incorporate the 

batch effects as covariates. Both of these methods have their own limitation: the former 

requires at least two samples on a single plate, while later may cause the problem of 

overfitting when using multivariable model in a dataset of low sample size. Although I 

have not included explicit tests comparing different normalization approaches to the 

same datasets, these were performed for some of the data chapters of the thesis, often 

numerous times. The final pipeline that I used included quality control steps to ensure 

that only data from reliable probes were considered, steps to ensure that there were no 

individual outliers in the sample, and several steps to identify and correct for covariates 

that may influence DNA methylation patterns. Currently, there is no consensus step-by-

step pipeline for analysing Illumina 450k data, although many packages deal with 

normalization. I have compiled what I thought were the most relevant and important 
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quality control steps for the datasets presented in this thesis. Generally, quality control 

and analyses should be customized for each dataset.  

It is worthwhile to note that there are limitations to performing EWAS on the Illumina 

450k array. Compared to sequencing-based platform, Illumina 450k shows relatively 

low coverage of 5% of 107 CpG sites across genome, therefore it might not be an ideal 

validation for sequencing-based platform. In addition, this platform was designed for 

human samples only, and cannot be used for allele-specific methylation detection. One 

should be careful to define a ‘significant’ differential methylation purely based on the 

statistical P values. In some EWAS studies, I have noticed certain differential 

methylated sites could shift back and forward of being ‘significant’ under different 

analysis model. This highlights the importance of interpreting results in context of their 

biological meanings rather than only by statistical meanings (Bock, 2012).  

My first phenotype-related chapter aimed to identify methylome changes related to the 

ageing process. I identified a large number of a-DMPs across tissues and samples, and 

found that a-DMPs shared across tissues tended to be hyper-methylated and enriched on 

CpG islands. These a-DMPs require further investigation into their biological role, as 

previous studies have suggested that a-DMPs are concentrated in bivalent chromatin 

domain promoters and polycomb group protein target genes, and hyper-methylation of 

CpG islands is implicated with gene silencing. In this study, thousands of CpG sites 

showed age-related changes in methylation. The majority of these effects were hyper-

methylated with age, a large proportion replicated in an independent sample, and some 

changes were observed in multiple tissues. These findings indicated that a-DMPs are 

less likely stochastic events, but instead associate with biological mechanisms involved 

in ageing and potential longevity. 

The consistent and replicated a-DMP results in the literature led to the development of 

prediction models using a-DMPs to predict chronological age, and translate the 

predictions into biological function by proposing the concept of ‘methylation age 

acceleration’ relative to chronological age. Among these prediction models, I selected 

Horvath's method because it was built on a large database across different tissue 

samples. Using his method on my 450k datasets, I found that methylation age generally 

correlated well with chronological age, however I detected more variation in the blood 

over skin and adipose tissues. Another central idea is that age acceleration relates to 
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age-related phenotypes. If so, methylation-based measures of age acceleration could 

become an important biomarker for age-related diseases. A further question is that if 

this 'ageing clock' can be slowed down with certain intervention, this may lead to 

treatment or amelioration of age-related diseases. In my analysis I found some 

correlations of methylation-based measures of age acceleration with age-related 

phenotypes, however, more work needs to be done to elucidate the exact meaning of 

these results. 

Birth weight is the second phenotype that I examined. My working hypothesis was that 

the maternal environment triggers changes in birth weight with corresponding changes 

to the newborn's methylome that persist and can be observed in adult life. This is the 

first study to compare the twin birth weight difference as a continuous trait with the 

difference in the adult methylome in birth weight discordant MZ twins. I did not find 

any genome-wide significant BW-DMP because the study was largely underpowered. 

One explanation is that the methylation patterns between healthy co-twins are quite 

similar in the relatively modest sized datasets that I explored. My results were 

consistent with the small number of BW-DMPs identified in newborns (Gordon et al., 

2012), and with lack of genome-wide significant results from another sample of adult 

MZ twins (Souren et al., 2013). If low birth weight is epigenetically driven, the signal 

could further be reduced or wiped out during the ageing process. From the pathway 

analysis, when I loosen the significance criteria of BW-DMPs, they appear to relate to 

genes that associate with metabolism and cardiovascular diseases. 

Smoking is the last phenotype that I examined, and is considered to be the strongest 

environmental effect to the methylome identified to date. The smoking-DMPs have 

been well defined, replicated, and validated across tissues. I found previously identified 

smoking-DMPs and smoking differentially expressed genes as well as novel DMRs. 

This is the first study to identify smoking effects in the methylome and transcriptome in 

adipose tissue, which could be a highly informative for disease since both fat and 

smoking are risk factors for the cardiovascular disease. A striking finding is that many 

of the smoking-DMPs that occur in adipose tissue, have been found in blood, which 

indicates tissue-shared effects. Four of these genes were consistently methylated and 

differentially expressed with smoking status. 
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Few studies have documented the genome-wide smoking effect not only in DNA 

methylation, but also on the gene expression at the exon level. I found several 

differentially expressed genes that also harboured smoking-DMPs and were 

differentially expressed in lung cancer. The majority of smoking-DMPs were hypo-

methylated and the majority of the differentially expressed genes were up regulated, 

suggesting that there could be a biological relationship between methylation and 

expression, potentially triggered by smoking. The direct correlations between 

methylation and gene expression were lower than expected, given that the methylation 

probes were located in the gene body, where methylation typically shows a positive 

correlation with gene expression. However, in an extended analysis I found that there 

could be a trans- rather than cis- effect between the two levels. For example, the 

smoking related AHRR gene was thought to govern two smoking-related gene CYP1B1 

and CYP1A1, so the methylation of AHRR might impact on expression of CYP1B1 and 

CYP1A1. 

Current EWAS studies have progressed onto deeper coverage sequencing data, such as 

WGBS and MeDIP-seq data. These new sequencing technologies could reveal a more 

complete view of the methylome, and discover more differential methylation sites 

across the whole genome. Similar to the current array data, challenges faced by NGS 

data are the data QC and analysis. There will be even lower thresholds for multiple 

testing with more coverage, and most of these platforms are expensive so fewer samples 

can be profiled. These issues will impact power of future EWAS. 

My recommendation for future methylation studies is to integrate epigenetics with other 

'-omics' data, for example, exploring methylation and gene expression to understand 

gene regulation mechanisms, and studying the interplay between methylation and 

histone modifications and their relation to chromatin structure. Currently, many studies 

are focused on epigenetic epidemiology lack biological evidence of progression from 

methylation change to phenotype and disease. Longitudinal studies are needed to prove 

causal or a consequential association between the methylation and phenotype. 

In summary, the phenotypes that I examined in the thesis have yielded novel 

differentially methylated site, as well as replicating previous findings. One of the key 

messages of my results is that covariates, such as age and smoking, should always be 

included in EWAS studies because these a-DMPs and smoking-DMPs demonstrated a 
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strong and consistent effect across multiple population samples and cell types. The 

findings from the power estimation and BW EWAS, both showed the importance of 

effect size and sample size required for EWAS to reach statistical power to detect 

differential methylation effects in human complex traits. 
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Appendix A: Epigenome-Wide 
Association Scans in 

Osteoarthritis 
Here I present my early work using EWAS method in osteoarthritis, both with 

discordant MZ twin design and case-control design. Due to the low sample size, this 

study is under power and therefore included as an appendix. Although the differential 

methylation identified in the study does not meet genome-wide significance, some of 

the top genes are found to be associated with osteoarthritis in genetic studies, suggesting 

it might potentially have biological meanings.  

  

A1. Introduction 

Osteoarthritis (OA) has been defined as the clinical and pathological outcome of a range 

of disorders resulting in the structural and functional failure of synovial joints. It is 

characterized by the synovial inflammation, destruction of the extracellular matrix of 

articular cartilage, and bone remodelling. OA is age-related and shows a higher 

prevalence in older individuals, for example, 1 in every 5 adults, aged between 50 and 

59 has OA, and furthermore, almost 1 in every 2 adults aged 80 and above has painful 

OA in one or both knees. In terms of its anatomical distribution, OA frequently affects 

the joints of the hand, spine, hips, and knees. Previous studies have identified several 

risk factors, such as age, female gender, BMI, bone mass, history of injury/trauma, and 

genes (Valdes & Spector, 2011). For this study, we have concentrated on OA of the hips 

and knees, as they represent a considerable morbidity, to the extent that the most severe 

forms have resulted in over 100,000 total joint replacement surgeries in the UK every 

year. 

From large-scaled GWAS studies, several genes have been identified to confer OA 

susceptibility. These candidate genes are associated with the function of the cartilage, 
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and obesity. Using 1,341 cases and 3,496 controls in European population, Kerkhof et 

al. (Kerkhof et al., 2010) have found an OA candidate gene COG5 (OR = 1.14, P = 8 × 

10-8) that locates on chromosome 7q22 with replication in a separate 13,497 cases and 

40,000 controls. Residing on the same chromosome region, the DUS4L gene (OR = 

1.15, P = 6 × 10-8) is another OA candidate gene obtained using a meta-analysis of 

European and East Asian population (Evangelou et al., 2011). Aside from the genes that 

locate on chromosome 7, other OA-candidate genes have been reported: MCF2L 

(13q34, OR = 1.17, P = 2 × 10-8) (Day-Williams et al., 2011), DOT1L (19p13.3, P = 1 × 

10-11) (Castano Betancourt et al., 2012), GNL3, PBRM1, SNORD19 (3p21.1, OR = 1.09, 

P= 5 × 10-9), MIR4642, NUDT19P4 (6p21.1, OR = 1.08, P = 6 × 10-7), RIMKLBP2, 

ZC3H11B (1q41, OR = 1.07, P = 1 × 10-6), and obesity related gene FTO (16q12.2, OR 

= 1.07, P = 4 × 10-6) (Zeggini et al., 2012). Specifically, those that associated with OA 

of the knee, Valdes et al. (Valdes et al., 2008) located two candidate regions, PTGS2 

and PLA2G4A on 1q31 (OR = 1.59, P = 3 × 10-6) and PARD3B on 2q33 (OR = 1.46, P = 

6 × 10-6) in the European population. In another study, the OA of the knee candidate 

gene BTNL2 (OR = 1.31, P = 5 × 10-9) was identified in the Japanese population using 

sequencing techniques (Nakajima et al., 2010).  

The heritability in OA of hip is approximately 60% (Spector & MacGregor, 2004), and 

suggests that missing heritability could have an epigenetic component. Indeed, 

epigenetic studies have revealed several OA-DMPs and OA-DMPs. The majority of 

OA-differential methylation are known to be involved with the modelling and 

maintenance of articular cartilage that is composed of chondrocytes, collagen, and 

extracellular matrix (ECM), and signal responses to synovial inflammation and pain. 

Other OA-DMPs would likely to derive from gene expression studies. In gene promoter 

regions, evidence has shown DNA methylation can down-regulate gene expression to 

induce phenotypic changes. The promoter of some of metalloproteinase genes, such as 

MMP3, MMP9, MMP13, and ADAMTS4 are up-regulated in OA and could influence 

the transcription-binding factors (Roach et al., 2005). Other genes, such as 

proinflammatory cytokine IL-1β, growth differentiation factor GDF-5, chondrocyte 

differentiation gene SOX9, and obesity-related LEP genes are also differentially 

methylated with OA (Hashimoto et al., 2009; Barter et al., 2012). However, the 

association between methylation and expression remains unclear, and the direction of 

association is at times conflicting. For example, the genes, such as type II collagen 
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(COL2A1) and aggrecan (ACAN) are differentially expressed in OA yet the methylation 

of these genes remains non-differentially hypo-methylated in the healthy or OA subjects 

(Poschl et al., 2005; Zimmermann et al., 2008). 

Beside candidate gene studies, two epigenome-wide association studies (EWAS) have 

been undertaken for OA, osteoporosis, and healthy subjects using the Illumina 27k 

array (Delgado-Calle et al., 2013; Fernandez-Tajes et al., 2013). One study (Delgado-

Calle et al., 2013) found that the methylation levels of the bones of 27 subjects with hip 

fractures and 26 hip OA subjects have 241 CpG sites that located on the promoter 

regions of 228 genes to be differently methylated (at Bonferroni-corrected P < 0.05). 

Most of the DMRs identified (n = 217) are more methylated in the OA subjects, and 

these regions enriched for association with bone traits and involved in multiple 

functional categories, such as homeobox (HOX). In the other study, 91 OA differential 

CpG site are obtained from directly comparing the methylation levels from the cartilage 

sample of 25 OA subjects to 20 healthy controls. Furthermore, a tight cluster of 1,357 

DMRs are found in 7 OA subjects, and 450 of these genes are differentially expressed. 

These DMRs are established in biological functions, such as regulation of 

phosphorylation, the protein kinase cascade, morphogenesis and development, 

inflammatory, and lipid metabolism (Fernandez-Tajes et al., 2013). 

To date, many gene expression and methylation studies have been performed on bone 

and cartilage samples, thus subject sample sizes tend to be small due to the invasiveness 

of the procedures, which may include complications, thus are difficult to acquire 

quantity in practice. In this study, we hypothesize that the methylation levels for the OA 

patients’ blood samples that are far less invasive are also differentially methylated. 

Additionally, our study is designed with age-matched cases and controls as well as 

focus on the monozygotic twins (MZ) who are genetically identical but discordant for 

the OA presence. 
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A.2 Material and methods 

A.2.1 Datasets 

From the TwinsUK cohort, we have identified 9 OA discordant MZ pairs and 1 OA-

concordant MZ pair, and total 16 subjects with knee or hip OA. To concurrently 

examine the epigenetic and genetic association with OA, we used the discordant twin 

design and case-control design. 

In the 9 OA discordant MZ twin design, individual age ranged 57.29 to 80.90 during 

their visit to our department. In the case-control design, only unrelated subjects were 

included as cases and controls, so total 16 cases and 30 controls that had matched for 

age were included. The details of age, height, weight, and Body Mass Index (BMI) are 

presented in Table A1. When compared to healthy co-twin, the OA subjects have 

similar heights however increased weight and BMI. 

Table A1. Demographic characteristics of our two study designs 
 OA discordant MZ Case-control 

 OA-twin Healthy co-twin P1 OA (N = 16) Healthy   
(N = 30) P2 

Age 69.67 ± 7.90 69.67 ± 7.90 - 68.66 ± 7.48 68.02 ± 7.10 0.87 
Height 156.48 ± 5.00 157.10 ± 4.63 0.439 158.37 ± 5.47 160.57 ± 6.01 0.20 
Weight 74.21 ± 15.45 68.60 ± 11.35 0.024 71.47 ± 14.73 68.02 ± 12.66 0.53 

BMI 30.34 ± 6.45 27.82 ± 4.67 0.059 28.54 ± 6.06 26.36 ± 4.55 0.26 
1P: P-value from Wilcoxon paired test; 2P: P-value from Wilcoxon rank-sum test 

A.2.2 Phenotypes 

In the TwinsUK Adult Twin Registry, all twins were recruited from the general 

population with self-report of disease status. To verify their disease status, knee X-ray 

was collected. For cases, the DNA samples were obtained after disease onset, and the 

DNA samples from the matched controls were obtained within 1-year. For most of the 

cases (n = 14), we matched 2 healthy controls, however 2 of them are paired with 1 

control due to the old age. Because BMI has been associated with OA, the height, 

weight, and BMI information that close to the date for subjects’ visit date was included. 

We have considered the age in analysis as a covariate, and it is defined as the time of 

DNA extraction instead of gestational age. 
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A.2.3 Illumina Methylation450K data 

The DNA methylation levels were obtained white blood cells from whole blood. We 

excluded 17,664 probes that mapped to multiple loci in the human genome (hg19) 

within 2 mismatches (method see (J. T. Bell et al., 2011)), probes with missing value, 

and probes on sex chromosomes. Out of the initial 485,577 probes, we obtained 

454,601 probes for the discordant twin design and 432,827 probes for the case-control 

design. To confirm those genes that probes mapped to, each probe was mapped to the 

Homo sapiens genes (GRCh37) and crossed checked using the UCSC genome browser. 

A probe can be locates on one gene or with a 30 kilobase (kb) in front of the gene start 

site or after the gene end site depends on the strand direction (forward and reverse, 

respectively). The methylation distribution of Illumina 450k array has been previously 

described on Chapter 3, Table 1.  

A.2.4 Gene expression data 

The gene expression data from LCL (lymphocytes), fat, and blood tissues were 

measured by Illumina expression array HumanHT-12 V3, and the results obtained from 

the MUTHER study (previously described, see (Grundberg et al., 2012)). The 

covariates, such as age, batch, and skin concentration levels are known to be 

confounders and adjusted in the analysis. 

A.2.5 Statistical analyses 

A.2.5.1 Quality Control for Illumina 450k data 

As quality control, the methylation distribution was checked for all subjects. To identify 

outliers, heatmap of correlation of clustering among subjects and boxplot for the 

methylation distribution were produced. Probes with missing values across subjects 

were also removed. The mean, median and principle components were used to identify 

batch effect. For the final analysis, the plate and bisulfite conversion levels were 

included as the systemic batch effects and biological effect, such as age and BMI were 

also adjusted in analysis. Due to the smaller sample size of OA discordant twin pairs, 

the position on the plate was not taken into consideration as a systemic batch effect.  
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A.2.5.2 OA EWAS 

Prior to analysis, raw methylation levels were adjusted for all the covariates and 

residuals taken from linear model. To better compare between individuals, the 

methylation residuals were quantile-normalized (Bolstad et al., 2003) across subjects 

where residuals were ranked to make the overall methylation distribution the same in 

each subject. For each probe, the Wilcoxon signed rank test was applied between the 

paired discordant pairs, and the Wilcoxon rank sum test was applied between the OA 

subjects and healthy controls. Due to the small sample size of both datasets, probes 

were considered to be a candidate gene at a locus- specific P value of 0.01.  

A.2.5.3 Gene expression association with OA and methylation 

The gene expression datasets from MuTHER study have been described previously 

(Grundberg et al., 2012). Gene expression probes of genes proximal to top hits found in 

the two designs were extracted from the whole expression array. In the expression data, 

3 tissues, LCL, Fat, and Skin were included for most of the total 866 subjects. Because 

few of our cases and discordant twins from the methylation analysis also have the gene 

expression data, the new case-controls and discordant twin pairs were included in the 

analysis. In summary, there are 13, 11, and 10 OA discordant pairs in Fat, LCL, and 

skin tissues. For the case-control design, 13 unrelated cases and 26 healthy age-matched 

controls were included. To check the association between the DNA methylation and 

gene expression of the top hits, the expression levels of genes identified from the 

methylation analysis were extracted (n = 70). Gene expression levels on each probe 

were quantile-quantile normalized before fitting to a liner model adjusted for covariates 

(age, BMI, batch, skin concentration levels), and quantile-normalized across subjects. 

Wilcoxon signed rank test was applied to compare within pair differences in the 

discordant twin design. In the case-control design, the age-matched case and two 

controls were assigned to the same group, and taken as a random effect of the analysis. 

A linear mixed effect model (LMER) that comprised of group and disease status was 

applied to the methylation residuals for each probe. For differential expression with OA, 

probes with P value less than 0.05 were considered. 
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A.2.5.4 Methylation quantitative trait locus (meQTL) 

To examine the genetic contribution to the top probes we have identified from both 

designs, the association between methylation probes and SNPs within 500kb regions 

were checked using PLINK. There were 135 unrelated subjects with non-missing 

genotypes and phenotypes included in the cis-meQTL checking. The methylation levels 

on these probes were adjusted for age, BMI and other batch effects then quantile-

quantile normalized to fit the linear association model. A probe is considered to be cis-

meQTL with the genome-wide significance level of 10-8. An overall scheme of our 

analysis is shown in Fig A1. 

 

 
Figure A1. Overview of datasets and statistical analysis procedures 
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A.3 Results 

A.3.1 OA differential methylation analysis  

A.3.1.1 OA discordant MZ twin design 

To identify the OA-associated methylation regions, we have compared methylation 

differences within the 9 discordant MZ pairs. At P value < 0.01, 35 probes were 

differentially methylated with OA and their details shown in Table A2. The genotypes 

and gene expression of several genes, such as FOXO3, SAMD11, COL9A2, 

BET3L/TRAPPC3L, and FOXO4 have been previously associated with OA either in 

humans or mouse. Though not directly associated with OA, genes such as the zinc 

finger transcription factors (ZNF841 and ZNF432), RPS6KA2, ROBO3, and PMF1-

BGLAP, have been implicated in other skeletal diseases, cartilage differentiation, and 

osteoporosis. 

Table A2. Top 35 OA-DMPs found in the discordant MZ twin design  
IlmnID CHR OA-dir1 Gene2 Related disease/phenotype 

cg12801619 6 Hypo FOXO3 

The OA in both human and mice is associated with 
the changes in FOXO expression and activation, and 
therefore involved in cartilage aging. A pathway 
analysis of gene expression profile indicates the 
cluster of FOXO3, ZBTB16, and SLC6A3 genes are 
related to OA which involved reproductive process in 
a multicellular organism (B. Zhang et al., 2013) 

cg05527507 1 Hypo SAMD11, 
LOC100130417 

SAMD11 could promote cell proliferation. Compare 
subjects with AIS to non-AIS osteoblasts, SAMD11 
down-regulated gene expression. (Fendri et al., 2013) 

cg05518543 4 Hypo MAEA Lung cancer, multiple myeloma, prostate cancer 
cg27584097 19 Hyper RYR1 Central core disease, myopathy, hyperthermia 

cg18186394 1 Hypo COL9A2 

Candidate gene for hip osteoarthritis (identified by 
MRI) using 345 twins (Nakki et al., 2011) up-
regulated gene associated with loss of cells and 
abnormalities of matrix in degenerated discs (Y. G. 
Zhang et al., 2010) 

cg12020682 6 Hypo FUCA2 Gastric cancer and other carcinoma 

cg02660117 1 Hypo BCAR3, MIR760 BCAR3- breast cancer; MIR760- early detection of 
colorectal cancer 

cg09391898 11 Hypo FOXRED1, SRPR, 
TIRAP 

FOXRED1- neuropathy, breast cancer, Parkinson’s 
disease; SRPR- lung disease; TIRAP- immune 
diseases, such as RA, leukaemia, SLE, etc. 

cg22824291 11 Hypo Loc100996455  

cg01011367 10 Hypo ACADSB Hypertension, isovaleric academia, Alzheimer’s 
diseases, TB 

cg01284619 19 Hypo HCN2 Epilepsy, inflammatory and neuropathic pain 
1 
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Table A2. Top 35 OA-DMPs found in the discordant MZ twin design (continued) 

OA-dir: “Hyper” means methylation levels are higher in the OA subjects than their co-twin; “Hypo” 
means methylation levels in healthy subjects are higher than OA subjects; 2Gene: genes with bold are 
associated with OA from previous studies; genes with underlines are potential candidate genes for OA 
and other bone diseases. 

IlmnID CHR OA-dir1 Gene2 Related disease/phenotype 
cg27325460 13 Hypo TPT1-AS1  
cg12909732 7 Hypo RAMP3 Heart disease, prostate and pancreas disease 
cg17437086 5 Hypo LPCAT1 Colorectal cancer 

cg20550677 22 Hypo BIK, TTLL1 BIK- multiple cancer and carcinoma; TTLL1- ciliary 
dyskinesia, prostate cancer 

cg14379719 8 Hypo GATA4 Heart disease, tumour 
cg22849672 6 Hypo MPC1 (BRP44L) Malaria 
cg24480379 1 Hypo SELENBP1 Multiple cancers and carcinoma 

cg12354014 6 Hypo 
FAM260, 
TRAPPC3L 
(BET3L) 

TRAPPC3L and BET3L are paralogues and both of 
them are involved in the network forming collagen 
genes (e.g. COL8A2, COL10A1A) (Aldea et al., 2013) 

cg03353124 18 Hypo TMEM200C  
cg25683989 12 Hyper HVCN1 Breast cancer 

cg15309862 X Hyper FOXO4, MED12 

In cartilage from the mice with surgically induced 
OA, FOXO4 gene was activated independent of 
ADAMTS-5 activity. (Bateman et al., 2013); MED12- 
hypothyroidism, mental diseases 

cg16684846 19 Hypo ZNF841, ZNF432 

Both involved in the transcriptional regulation. 
Previously study shows one zinc finger transcription 
factor (ZFP60) a negative regulator of cartilage 
differentiation. 

cg16790416 10 Hypo RBM20 Cardiomyopathy 

cg23281382 6 Hypo RPS6KA2 

Aging of bone marrow-derived mesenchymal stem 
cell (bmMSC) may play a role in age-related skeletal 
diseases. RPS6KA2 has been reported as a tumour 
suppressor gene and likely to decrease the 
proliferation rate of human bmMSC. 

cg26694386 1 Hypo DESI2, AX747555 DESI2- malaria, adenocarcinoma 

cg06568260 X Hypo SYAP1, TXLNG SYAP1- breast cancer, hepatocellular carcinoma; 
TXLNG- scarlet fever 

cg05086956 11 Hypo ROBO3 

ROBO3 was found to expressed in synovial 
fibroblasts of both osteoarthritis (weak expressed) and 
rheumatoid arthritis patients. In the study it also 
suggest that deregulation of the ROBO3 receptor in 
synovial fibroblasts in OA (& RA) correlates with 
aggressiveness of the fibroblasts.  

cg05119316 6 Hypo HLA-F-AS1 SLE, lupus 
cg19692149 1 Hypo SYDE2 Neuron diseases 

cg25465065 1 Hyper PMF1-BGLAP, 
PMF1 

PMF-BGLAP- the locus represents the read-through 
transcription between PMF1 and BGLAP. BGLAP is 
previous found to be associated with osteoporosis, 
bone loss, and OA. This join locus might as well have 
function on OA. PMF1-Parkinson’s disease 

cg03713666 10 Hypo INPP5A Carcinoma, SZ 
cg14201544 9 Hypo NELFB, NRARP Cholangiocarcinoma, breast carcinoma 
cg05338731 22 Hyper RAB36, RTDR1 Rhabdoid tumours;  
cg25140773 5 Hypo ISOC1, MIR4633 Uterine fibroid 
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A.3.1.2 OA case-control design 

In the case-control design, methylation levels were compared between cases (N = 16) 

and controls (N = 30). At P value < 0.001, 24 probes were differentially methylated 

with OA and their details shown in Table A3. Among these genes, the knock-out of 

MMP14 gene (highlight in bold in Table A3) in mice has been reported to induce the 

arthritis-like symptoms (Holmbeck et al., 1999), and the gene expression levels of both 

MMP14 and CALCR were higher in OA subjects (Holmbeck et al., 1999; Zupan et al., 

2012). Some of butyrophilin-like genes, such as BTNL3, BTNL8, and BTNL9 were 

identified however no evidence shows how it associates with OA and furthermore, these 

genes are paralogs with the previously identified OA candidate genes BTNL2. Other 

genes, SUPV3L1 and BCL3, were associated with spinal disc degeneration and cartilage 

remodelling. 

Table A3. Top 24 OA-DMPs found in case-control analysis  
IlmnID CHR OA-dir1 Gene2 Related disease/phenotype 

cg24758392 5 Hypo BTNL3 BTNL3 is paralog for BTNL2, which has previously 
identified as an OA candidate gene.  

cg13409216 10 Hyper SUPV3L1 
Up-regulated gene associated with loss of cells and 
abnormalities of matrix in degenerated discs (Y. G. Zhang 
et al., 2010) 

cg18413710 14 Hyper 
MMP14, 
MRPL52, 
SLC7A7 

MMP14- deletion of MMP14 cause arthritis-like symptoms 
in mouse (Holmbeck et al., 1999) In HUVECs, MMP14 
expression found to be highly simulated by both OA and 
shear stress (P. Wang et al., 2013); SLC7A7- lysinuric 
protein intolerance, osteoporosis, carcinoma 

cg23994061 2 Hypo COLEC11 Hepatitis, 3MC syndrome type 2 
cg12242345 10 Hypo -  

cg16094954 19 Hyper BCL3 

BCL3 can be induced by IL-1β then activate matrix 
metalloproteinase-1, which is known to enable the 
degradation of type II collagen. (S. F. Elliott et al., 2002) 
Because it’s involved in the cartilage remodelling, it might 
associate with OA. (Palmer & Chen, 2008)  

cg02352685 5 Hypo BTNL8 BTNL8 is a paralog for BTNL2, which has previously 
identified as an OA candidate gene.  

cg25690715 17 Hyper SEPT9 Neuralgic amyotrophy, ovarian neoplasms; FAM65B- 
prostatitis 

cg04356381 6 Hyper FAM65B  

cg03422651 16 Hyper 
TBC1D24, 
NTN3, 
ATP6V0C  

TBC1D24- neuronitis, focal epilepsy; NTN3- TB, 
leukaemia, neuronitis; ATP6V0C- osteopetrosis, kidney 
disease 

cg13095704 7 Hypo CALCR, 
GNGT1 

Higher gene expression of CALCR in OA compare to 
osteoporosis subjects (human bone tissues) (Zupan et al., 
2012); GNGT1- cancer, Huntington’s disease 

cg15025536 7 Hypo CARD11 Immune disease, lymphoma 

cg13695075 14 Hypo C14ORF25, 
FOXA1 FOXA1- osteoporosis, multiple cancers 

cg00003722 10 Hypo -  
cg06129556 15 Hyper CSNK1G1 Cell growth 
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Table A3. Top 24 OA-DMPs found in case-control analysis (continued) 
IlmnID CHR OA-dir1 Gene2 Related disease/phenotype 

cg11081186 5 Hyper 
LINC00847, 
HEIH, 
MGAT1 

MGAT1- muscle disease, neuronitis, insulin resistance, 
obesity 

cg27395288 20 Hyper MAPRE1 Multiple carcinoma and cancer, neuronitis 

cg17239761 22 Hyper PI4KA, 
SNAP29 PI4KA- hepatitis, SZ; SNAP29- neuronitis, SZ 

cg22860643 10 Hyper SHOC2, 
BBIP1 

SHOC2- Noonan syndrome-like disorder with loose 
anagen hair; BBIP1- Bardet-Biedl syndrome 

cg25366315 5 Hypo BTNL3, 
BTNL9 

Both BTNL3 and BTNL9 are paralogs for BTNL2, which 
has previously identified as an OA candidate gene.  

cg26089220 11 Hyper LOC440040  
cg04211927 7 Hypo ATP6V0A4 ATP6V0C- osteopetrosis, kidney disease 

cg26219797 6 Hyper GTF3C6, 
RPF2  

cg06826283 7 Hypo PRKAR1B Multiple cancers, SLE 
1OA-dir: “Hyper” means methylation levels are higher in the OA subjects than that in 
their co-twin; “Hypo” means methylation levels in healthy subjects are higher than OA 
subjects; 2Gene: genes with bold are found to be associated with OA from the previous 
studies; genes with underlines are potential candidate genes for OA and other bone 
diseases. 

A.3.2 OA-differentially expressed genes from both designs 

For genes identified from the OA-DMP analysis, their expression levels were also 

compared using the discordant twin design and case-control design. TableA4 shows the 

significant (P value < 0.05) genes that are differentially expressed with OA among all 

three tissues. The top two OA-DMPs BTNL3 and FOXO3 shows expression differences 

in multiple tissues.  

Table A4. Differentially expressed genes in different tissues (P < 0.05) 
IlmnID Chr Gene ProbeID Design Tissue Dir Dir_Meth 

cg24758392 
cg25366315 22 BTNL3 

ILMN_2355786 
ILMN_1660446 
ILMN_1660446 

Twin 
CaCo 
CaCo 

LCL Hypo 
Hypo SKIN 

FAT 
Hyper 
Hyper 

cg12801619 6 FOXO3 ILMN_1712515 CaCo SKIN Hypo Hypo 

cg09391898 11 TIRAP 
ILMN_1776703 Twin LCL Hyper 

Hypo 
ILMN_1812432 CaCo FAT Hyper 

cg20550677 22 TTLL1 ILMN_2372795 
Twin FAT Hyper 

Hypo 
CaCo FAT Hyper 

cg03713666 10 INPP5A ILMN_1664608 Twin LCL Hypo Hypo 

cg18413710 14 MRPL52 ILMN_1713966 Twin LCL Hyper Hyper 

cg18413710 14 SLC7A7 ILMN_1810275 Twin FAT Hyper Hyper 

cg25140773 5 ISOC1 ILMN_1764861 CaCo LCL Hyper Hypo 

cg22849672 6 BRP44L ILMN_1666967 CaCo LCL Hyper Hypo 
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Table A4. Differentially expressed genes in different tissues (P < 0.05) (continued) 
IlmnID CHR Gene ProbeID Design Tissue Dir Dir_Meth 

cg27584097 19 RYR1 
ILMN_1682062 CaCo LCL Hypo 

Hyper 
ILMN_2411781 CaCo SKIN Hypo 

cg06129556 15 CSNK1G1 
ILMN_1704713 CaCo LCL Hyper 

Hyper 
ILMN_1740549 CaCo FAT Hyper 

cg14201544 9 NRARP ILMN_1697666 CaCo FAT Hypo Hypo 

cg05338731 22 RAB36 ILMN_1733045 CaCo FAT Hyper Hyper 

cg03422651 16 TBC1D24 ILMN_2060212 CaCo FAT Hypo Hyper 

cg23281382 6 RPS6KA2 ILMN_1790801 CaCo FAT Hypo Hypo 

cg12909732 7 RAMP3 ILMN_2065745 CaCo FAT Hypo Hypo 

A.3.3 meQTL test on top OA-DMP genes 

For top 59 OA-DMPs, none of them were found to be cis-meQTL locus. 

A4. Discussion 

In this study, we have analysed the large-scale epigenome-wide DNA methylation 

profile from human white blood cells using discordant MZ twin design and case-control 

design. Our result indicates that several genes previously associated with OA, cartilage 

differentiation, and other bone diseases also show differential methylation. The 

methylation changes are in the white blood cells could potentially serve as effective 

biomarker for OA detection.  

From our OA discordant analysis, we found two forkhead box class O (FOXO) genes, 

FOXO3 (or FOXO3a) and FOXO4 to be differentially methylated. The FOXO family 

members associate with longevity, cardiovascular disease, neurodegenerative disease, 

and multiple cancers. One potential pathway for FOXO members to be involved in OA 

may be through the inflammation process and neutrophil apoptosis. In particular, there 

have been few and debatable reports about the role of apoptosis of neutrophils in OA. 

One study (A. L. Bell et al., 1995; Ivanovska, 2012) shows that neutrophil survival was 

inhibited in the synovial fluid of OA patients, and as FOXO3 can regulate the apoptosis 

of neutrophils, it may associate with OA. 
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Another interesting finding is the cartilage related gene COL9A2 (collagen, TYPE IX, 

Alpha 2). Candidate gene studies and linkage analysis have shown they encode for 

structural proteins of cartilage ECM, for example, type II collagen gene COL2A1, type 

IX collagen gene COL9A1 (hip OA) (Mustafa et al., 2000), and type XI collagen genes 

COL11A1 and COL11A2 (Vikkula et al., 1995; Richards et al., 1996). COL9A2 is 

associated with many bone diseases, such as multiple epiphyseal dysplasia in two 

familial-based linkage study (van Mourik et al., 1998; Holden et al., 1999) and 

intervertebral disc disease in two case-control and one linkage study (Annunen et al., 

1999; Jim et al., 2005). From a MRI (magnetic resonance imaging)-based OA study that 

identified 99 candidate SNPs using 345 twins, the COL9A2 and COL10A1 are revealed 

to be associated with hip OA as a predisposing factor (Nakki et al., 2011). These studies 

implicate COL9A2 is involved in multiple bone diseases and as an OA candidate gene. 

Furthermore, BET3L (paralog for TRAPPC3) are linked to two bone disease related 

collagen genes COL8A2 and COL10A1 orthologues in an animal study, suggesting it 

might also play an role (Aldea et al., 2013).  

In a case-control design, osteoclast specific gene CALCR (calcitonin receptor) is 

reported to be hypo-methylated with OA, while in one study shows a higher gene 

expression of CALCR in the bone tissue of 31 OA patients (Zupan et al., 2012). The 

potential role for CALCR in OA is through calcitonin (CT). One study shows calcitonin 

to have direct protective effects on articular cartilage. It works via CALCR to activate 

the cyclic AMP (cAMP) and protect COL2A degradation and joint degenerative disease 

(Z. Lin et al., 2008). In a more recent study, CALCR is identified in the human OA 

articular cartilage, which supports the assumption that CT can have a direct anabolic 

effect on articular cartilage (Segovia-Silvestre et al., 2011). 

In this analysis, we also see many Butyrophilin-Like family genes, such as BTNL3, 

BTNL8, and BTNL9. The function of these Butyrophilin-Like family genes yet known, 

but they are all the paralogs for BTNL2, that may inactive T cells then contribute to the 

chronic inflammation in OA (Valdes et al., 2011). From the analysis, there are many 

genes involved in multiple carcinoma and cancers, which might due to the same genes 

that are also involved in the inflammatory response or pain response.  

However, not many of our top OA-DMPs overlapped with gene expressions. The reason 

may be two fold. Firstly, the target tissues we used here are LCL, fat, and skin tissues, 
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which are not the classic tissues used for identifying the OA expressed genes. Secondly, 

the discordant twins and case-controls we have included in the expression analysis 

differ from those in the methylation analysis, which might already have the baseline 

differences compared to the original subjects. Ideally, if we were to assume that 

methylation down-regulates gene expression to influence the OA occurrence, we should 

directly compare the gene expression levels to the methylation levels in those OA 

subjects. However, due to the small overlaps between the two datasets, we are not able 

to perform such analysis. 

The positive strength of this study is that we controlled for most of the genetic 

contributions using the OA discordant MZ twin pairs, which was the covariates using 

unrelated subjects. This study is also provides the whole epigenome-wide scans on the 

methylation profile in twin and case-control designs. One limitation in our study is the 

restrictive sample size. In spite of the discordant MZ twin study is often considered as 

the ideal methylation design because it can control the genetic effects to the disease, 

there is a trade-off to the study power due to lower sample size. Another important point 

is the medication intakes for OA treatment. The medication could influence methylation 

levels in blood sample, and minimizes difference of methylation between OA subjects 

and the healthy subjects.  

In summary, we have identified several OA differentially methylated genes in the 

human while blood cells that are associated with bone diseases. Further studies shall 

include more OA discordant MZ twins and simultaneously perform a direct comparison 

between the methylation from MeDIP-seq data and RNA-seq data in the same OA 

subjects. 

  



-182- 

Appendix B: Publications 
Related to My PhD work 

Here I list four first-authored publications related to the work presented in this thesis. 
My major contributions for these publications involved in data analysis and draft 
writing. 

1. Bell, J. T.*, Tsai, P. C.*, Yang, T. P., Pidsley, R., Nisbet, J., Glass, D., Mangino, 
M., Zhai, G., Zhang, F., Valdes, A., Shin, S. Y., Dempster, E. L., Murray, R. M., 
Grundberg, E., Hedman, A. K., Nica, A., Small, K. S., Dermitzakis, E. T., 
McCarthy, M. I., Mill, J., Spector, T. D., & Deloukas, P. (2012). Epigenome-wide 
scans identify differentially methylated regions for age and age-related 
phenotypes in a healthy ageing population. PLoS Genet, 8(4), e1002629. doi: 
10.1371/journal.pgen.1002629 

*My contribution to this work is analysing the differential methylation to age and 
age-related phenotypes. Related work: Chapter 4. 

2. Tsai, P. C., Spector, T. D., & Bell, J. T. (2012). Using epigenome-wide 
association scans of DNA methylation in age-related complex human traits. 
Epigenomics, 4(5), 511-526. doi: 10.2217/epi.12.45 

*I discussed the main considerations for conducting EWASs and compared the 
age differential findings from 6 studies. Related work: Chapter 1 & Chapter 4. 

3. Tsai, P. C., & Bell, J. T. (2015). Power and sample size estimation for epigenome-
wide association scans to detect differential DNA methylation. Int J Epidemiol. 
doi: 10.1093/ije/dyv041 

*I performed the permutation-based power estimation for EWAS studies and 
discuss the key factors that impact EWAS power. Related work: Chapter 2. 

4. Tsai, P. C., van Dongen, J., Tan, Q., Willemsen, G., Christiansen, L., Boomsma, 
D. I., Spector, T. D., Valdes, A., & Bell, J. T. (2015). DNA methylation changes 
in the IGF1R gene in birth weight discordant adult monozygotic twins. Twin Res 
Hum Genet, (In press). 

* I conducted the birth weight EWAS in discordant MZ twins and replicate the 
top results with other two MZ twin cohorts. Related work: Chapter 5.  
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