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Abstract

The study of Combinatorics on words started at the beginning of the 20th century
with the work of the Norwegian Mathematician Axel Thue, who published several
articles in a relatively unknown journal. His work had primarily theoretical objectives,
but ever since many of his results have been rediscovered independently by other
researchers in relation to other problems. Although many questions have been studied
and solved in the area, there are yet many open questions left to be studied. Among
the basic discoveries of Thue are the existence of infinite words with no occurrence of
squares (words of the form uu for a nonempty word u) on an alphabet of at least three
symbols, and with no occurrence of cubes (and even overlaps) on a binary alphabet.

The constraints on repetitions in infinite words have been raised to optimality
after Dejean’s conjecture on the repetitive threshold associated with the alphabet
size, which last cases have been proved recently by Rao after the works of Carpi ,
Pansiot , Moulin-Ollagnier, Mohammad-Noori and Currie, Currie and Rampersad.
The first case says that the repetitive threshold of the binary alphabet is 2 (infinite
binary words can avoid factor of exponent larger than 2 but cannot do more) and the
second case, proved by Dejean, states that it is 7/4 for the three-letter alphabet.

The constraint studied later on by Fraenkel and Simpson is somewhat orthogonal
to the previous notion. Their parameter to the complexity of binary infinite words
is the number of squares occurring in them without any restriction on the number of
occurrences.

The analysis of repetitions in strings is primarily of combinatorial interest in
relation to the entropy of sequences. But repetitions or repeats are also of main
concerns in the domains of text compression and of pattern matching. The knowledge
of extreme situations or strongest constraints on words help analyse the behaviour of
the corresponding algorithms.

In this document, we provide a new proof for the Fraenkel and Simpson result,
we give a proof that there exists an infinite binary word which contains finitely many
squares and simultaneously avoids words of exponent larger than 7/3, which leads
us to the concept introduced hereafter. A chapter is dedicated to new notion of
Finite-Repetition threshold and some results about it.

We give some new results on the trade-off between the number of squares and the
number of maximal-exponent powers in infinite binary words.This is done in three
cases where the maximal exponent is 7/3, 5/2, and 3, that is the only cases of in-
terest. We show that there exists no infinite 3+-free binary word avoiding squares of
odd period. This study also reveals there exists no infinite binary word, simultane-
ously avoiding cubes and squares of even period. Moreover, we proof that there exists
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an infinite 3+-free binary word avoiding squares of even-period length. We investi-
gate the trade-off between the maximal period length of repetitions contained and
their number. Similarly we exhibit a trade-off between number of cubes and number
of squares occurring in an infinite word avoiding even-period squares. All bounds
provided in these cases are shown to be optimal.

Repetitions or repeats are also of main concern in the domains of text compres-
sion and of pattern matching. The knowledge of extreme situations or strongest
constraints on words helps analyse the behaviour of the corresponding algorithms.
In this document we mostly deal with the combinatorial aspects of the question.
The algorithmic part is strongly linked and it is used to explore the words satisfying
constraints on the repetitions they contain.
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1
Avoiding Redundancies in Words

The study of Combinatorics on words started at the beginning of the 20th century
with the work of the Norwegian Mathematician Axel Thue [65, 66] (see [14]) who
published several articles in a relatively unknown journal. His work had primar-
ily theoretical objectives, but ever since many of his results have been rediscovered
independently by other researchers in relation to other problems. Although many
questions have been studied and solved in the area, there are yet many open ques-
tions left to be studied.

The analysis of repetitions in strings is primarily of combinatorial interest in rela-
tion to the entropy of sequences. But repetitions or repeats are also of main concern
in the domains of text compression and of pattern matching. The knowledge of ex-
treme situations or strongest constraints on words helps analyse the behaviour of the
corresponding algorithms. In this document we mostly deal with the combinatorial
aspects of the question. The algorithmic part is strongly linked and it is used to
explore the words satisfying constraints on the repetitions they contain.

Among the basic discoveries of Thue are the existence of infinite words with no
occurrence of squares (words of the form uu for a nonempty word u) on an alphabet
of at least three symbols, and with no occurrence of cubes (and even overlaps) on a
binary alphabet.

Avoiding repetitions was explored further by Bean, Ehrenfeucht and McNulty [11]
in the form of avoidability of patterns. We discuss this topic in detail below.

Apart from their composition, repetitions are characterised by their length, their
periods, and their exponent. This latter parameter is the most prominent in previous
studies but others are also considered in this document.

A word x is a factor of y if y is uxv, where u and v are two words. A nonempty
word x has period p if its letters at distance p are equal. The exponent of a word is
the quotient of its length over its smallest period. For example alfalfa has period
3 and exponent 7/3. A string with exponent e is also called an e-power. The notion
of maximal exponent is central in questions related to the avoidability of patterns in
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infinite words. An infinite word is said to avoid e-powers (resp. e+-powers) if the
exponents of its finite factors are smaller than e (resp. no more than e).

The constraints on type of repetitions occurring in infinite words have been raised
to optimality after Dejean’s conjecture [32] on the repetitive threshold associated with
the alphabet size. The repetitive threshold (Dejean’s repetitive threshold) of order k
is the infimum of maximal exponents of factors of all (infinite) words over a k-letter
alphabet.

The first (interesting) case concerns the binary alphabet. The conjecture says
that the repetitive threshold is 2 (that is, infinite binary words can avoid factors of
exponent larger than 2 but cannot avoid squares). The second case, solved by Dejean
[32], states that it is 7/4 for the three-letter alphabet. She then conjectured that
r4 = 7/5 and rk = k

k−1
for k ≥ 5. The conjecture remained open for about fourty

years despite several partial results. The last cases have been eventually proved
recently by Rao [56] after the works of Carpi [19], Pansiot [53], Moulin-Ollagnier
[49], Mohammad-Noori and Currie [48], Currie and Rampersad [29]. All these results
contribute to the proof of Dejean’s conjecture.

The constraint studied later on by Entringer, Jackson and Schatz [34] is somewhat
orthogonal to the previous notion. Their parameterisation of the complexity of binary
infinite words is the number of squares occurring in them without any restriction
on their number of occurrences. Let g(n) be the length of a longest binary word
containing at most n squares. They showed in 1974 that there exists an infinite word
with 5 different squares, i.e. g(5) = ∞. Then, Fraenkel and Simpson [36] refined
this result by showing that there exists an infinite binary word that has only the
three squares 00, 11, and 0101, and thus g(3) = ∞. A somewhat simplified proof
of this result was given by Rampersad, Shallit and Wang [55], using two uniform
morphisms (a structure-preserving mapping from one word to another). Later, Harju
and Nowotka [38] gave a simpler proof of the same result.

It is fairly straightforward to check that no infinite binary word can contain less
than three squares, then g(0) = 3 (e.g. 010). A simple checking shows that g(1) = 7
(e.g. 0001000) and g(2) = 18 (e.g. 010011000111001101).

Contribution [3]: In Chapter 3, we provide yet a new proof that the maximal
length of binary words containing at most 3 squares is infinite. The proof is based
on an iterated morphism and a translating morphism. The second morphism used in
the proof is the simplest of its form, that can generate an infinite binary word with
at most 3 squares. Simplest in the sense that the sum of all its codewords is 24, the
smallest possible value amongst the existing morphisms satisfying the property.

Instead of avoiding squares, an interesting variation on the avoidability of repe-
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titions is to omit large repetitions. Entringer, Jackson and Schatz [34] showed that
there exist infinite binary words avoiding squares of period at least three. Following
their work, avoiding large squares has been studied by Dekking [33], Rampersad et
al. [55], Shallit [64], Ochem[50], and many others.

Contribution [7]: In Chapter 3, we provide some new results as an outcome of
studying the pattern avoidance from a different point of view. We analyse the possi-
bility of avoiding repetitions of even and odd periods, and further impose a constraint
on their maximal exponent. We show that there exists no infinite 3+-free binary
word avoiding all squares of odd period. This study reveals there exists no infinite
binary word, simultaneously avoiding cubes and squares of even period. Moreover, we
prove that there exists an infinite 3+-free binary word avoiding squares of even-period
length.

We study a trade-off between the maximal period length and number of repetitions
after a similar trade-off between number of cubes and number of distinct squares.
We succeed in reducing the number of repetitions contained in infinite binary words
without compromising the constraint on parity of their period. We conclude that in
such words the minimal number of squares is 7 when only 1 cube occurs. The number
reduces to 4 when 2 cubes are allowed in the word.

Avoiding large squares in words whose maximal exponent is constrained, has been
studied by various combinatorists. To name a few, Karhumäki and Shallit [41] showed:

(i) Every infinite 7/3-free binary word contains arbitrarily large squares.

(ii) There exists an infinite 7/3+-free binary word such that each square factor ww
satisfies |w| ≤ 13.

Later, Shallit [64] refined the result and showed: there exists an infinite 7/3+-free
binary word such that each square factor ww satisfies |w| ≤ 7.

Contribution [6]: In Chapter 4, we introduce a new constraint on infinite words
and give some results. We also state some conjectures that need further and deeper
investigations. Looking at the maximal exponent of factors in words containing a
bounded number of rk-powers introduces a new type of threshold, that we call the
finite-repetition threshold. For the alphabet of k letters, FRt(k) is defined as the
smallest rational number for which there exists an infinite word avoiding FRt(k)+-
powers and containing a finite number of rk-powers, where rk is Dejean’s repetitive
threshold. Associated with the finite-repetition threshold is the smallest number of
rk-powers (limit repetitions), Rn(k), that an infinite Dejean’s word can accommodate.

The results by Karhumäki and Shallit [41] can then be restated as FRt(2) = 7/3.
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Contribution [6, 5, 10]: In Chapter 4, we first provide a new proof for FRt(2) =
7/3 and we show that the associated number of squares is 12 (Rn(2) = 12). Second,
we show that FRt(3) = r3 = 7/4. Proofs provided in this chapter are two-fold,
because they have to show the value of FRt(k) as well as the associated number of
rk-powers. We prove on ternary words the minimum number of associated rk-powers
is 2. The result completes Dejean’s result on the 3-letter alphabet. Indeed, the only
previous proof of the 7/4 repetition threshold is due to Dejean [32], where she has
given an infinite word which is pure morphic word; generated by an endomorphism,
which readily implies the number of 7/4-powers contained in her word is not bounded.

Moreover, we show that there exists an infinite word on 4 letters containing only
2 7/5-powers and no factor of exponent more than 7/5. The only known proofs of
the 7/5 repetition threshold for 4 letters are due to Pansiot [53] and Rao [56]; both
their words contain 24 7/5-powers.

Next, we turn to the 5-letter alphabet. The only proof of the 5/4 threshold is by
Moulin-Ollagnier [49]. After showing that it provides a word with 360 5/4-powers of
periods 4, 12 and 44, we show that the number of 5/4-powers can be reduced to 60
and conjecture that it can be reduced further to 45, the smallest possible number.

Finally, revisiting the existing morphisms and proofs of Dejean’s conjecture we
show for k ≥ 5, FRt(k) = rk. Now the question worth investigation becomes: what is
the minimum number of associated rk-powers, (Rn(k)), occurring in an infinite k-ary
word complying with FRt(k)?

The idea of repetitive threshold was extended into the generalised repetition
threshold by Ilie et al. in [39] as follows. There, the notion of (β, p)-freeness is
introduced: a word is (β, p)-free if it contains no factor that is a (β ′, p′)-repetition (it
is a word w with period length p′ and exponent β ′: w = pβ

′

) for β ′ ≥ β and p′ ≥ p.
Then, a word is (β+, p)-free if it is (β ′, p)-free for all β ′ > β and the generalised rep-
etition threshold R(k, p) is defined for k-letter alphabet as the real number α such
that either

(a) there exists an (α+, p)-free infinite word and all (α, p)-free words are finite; or

(b) there exists an (α, p)-free infinite word and for all α > 0, (α − ǫ, p)-free words
are finite.

where p is the minimal avoided period.

A proof of boundary of this threshold for all alphabet sizes is also presented in
[39]. Essentially R(k, 1) is Dejean’s repetitive threshold. Karhumäki and Shallit in
[41] and Ochem in [50] have studied binary words under two constraints: maximal
exponent and the longest period.
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Contribution [2]: In Chapter 5, we provide some results that gives deeper insight
into the question of avoidable patterns in infinite binary words, by introducing another
point of view. We analyse the trade-off between the number of (distinct) squares and
the number of maximal-exponent repetitions occurring in infinite binary words when
the maximal exponent is constant. The interesting results show the behaviour of
infinite binary words when the maximal exponent varies between 3 to 7/3. The value
7/3 is called the Finite-repetition threshold as mentioned above, and the value 3 of
the maximal exponent is where the number of squares is the absolute minimum, i.e.
3. The next table summarises the results.

Maximal Allowed number Minimum number
exponent e of e-powers of squares

7/3 2 12
1 14

5/2 2 8
1 11

3 2 3
1 4

Proving that it is impossible to have less than a given number of squares when
avoiding some e-powers occurring in binary words needs a simple computation. For
every case, to generate the binary word with the desired property, we first use a pure
morphic word and we translate its corresponding fixed point to a binary word with a
second morphism.

Finding infinite words that avoid repetitions has its roots in the work of Thue, and
has been pursued, in particular, in connection with problems of algebra. The general
idea of unavoidable patterns was introduced independently by Bean, Ehrenfeucht and
McNulty [11] and by Zimin [67].

A pattern is a finite word over the alphabet of capital letters {A,B, ...}. An
occurrence of a pattern is obtained by replacing each alphabet letter with a non-
empty word. For example, the word 0111010011 is an occurrence of the pattern
ABBA where A → 011 and B → 10; it also contains another occurrence of this
pattern (i.e. 1001) as a factor. Formally, a word avoids a pattern P if it contains
no occurrence of P as a factor. The avoidability index λ(P ) of the pattern P is the
smallest alphabet size over which an infinite word avoiding P exists. Patterns such as
A,ABC,ABA,ABACBA cannot be avoided with any finite alphabet. These patterns
are said to be unavoidable, denoted as λ(P ) = ∞, and have been characterised by
Zimin [67].

A pattern, P is said to be k-avoidable if there exists an infinite word on k letters
avoiding P . Thue [65, 66] showed in fact that AA is 2-unavoidable but 3-avoidable,
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and Aβ for β > 2 is 2-avoidable. Schmidt [62] proved that every binary pattern of
length at least 13 is 2-avoidable. Later, Roth refined the result in [58] by showing
that every binary pattern of length 6 is 2-avoidable.

Thereafter,the remaining set to be examined is a finite set of patterns of length
at most 5. Cassaigne [21] completed this study by considering all the patterns in this
set and reached the conclusion:

• 2-unavoidable patterns : ǫ, A, AA,AB,AAB,ABA,AABA,ABBA,
AABB,ABAB,AABAA,AABAB;

• 2-avoidable patterns: AAA,ABAAB,AABBA,ABABA.

Note that if a pattern is unavoidable so are all its factors, therefore we can repre-
sent all 2-unavoidable patterns by the following minimal set

{ABBA,AABB,AABAA,AABAB}.

A factor of an infinite word is recurrent if it occurs infinitely often in that word.
Given a finite set P of patterns and a finite set F of words over Σk, we say that P∪F
characterises a morphic word w ∈ Σ∗

k if every recurrent word occurring in an infinite
word avoiding P ∪ F is a factor of w.

There is still no characterisation of k-unavoidable patterns, i.e. patterns that are
unavoidable over k-letter alphabet. Thue [65, 66] (see [14]) gave the characterisation
of overlap-free binary words: {ABABA}∪{000, 111}. The set characterises the fixed
point of the morphism 0 7→ 01, 1 7→ 10, the Thue-Morse word, which also avoids
AAA. Roth [58] proved the pattern ABAAB is avoidable and finally, Cassaigne [21]
proved the only remaining pattern, AABBA to be avoidable.

Although the avoidability of binary patterns on binary words is complete, Sam-
sonov and Shur [61] started a variation of this study on cube-free binary words. As
mentioned above the pattern ABABA is avoided by the Thue-Morse word. This is the
only pattern of length at most 5 that is avoidable by cube-free words. Here is the list of
all eight cube-free patterns of length 6, excluding equivalent patterns by reversal and
negation: {AABAAB,AABABA,AABABB,AABBAA,AABBAB,ABAABA,
ABABBA,ABBAAB}

The first two patterns AABAAB and AABABA are obviously avoided by the
Thue-Morse word. Samsonov and Shur show in a recent article [61] that patterns
AABBAB, ABAABA, ABABBA and ABBAAB are not avoidable by binary cube-
free words. And the pattern AABBAA is avoidable by binary cube-free word. The
only pattern with unclear avoidability status is AABABB; it is conjectured to be
avoidable by cube-free words in the same article, but this has not yet been proven.
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Cassaigne [22] partitioned all ternary patterns into 2-unavoidable patterns, 2-
avoidable patterns, and patterns with unclear status. One of the patterns with unclear
status, ABCBABC, was proved by Ilie et al. [39] to be 2-avoidable. The remaining
cases were proved to be also 2-avoidable by Ochem [50].

Contribution [9]: In Chapter 6, we prove such characterisations mostly for the
binary words considered in [2] that contain one or two 2+-repetitions and as few
squares as possible. The results are summarised in the following table. We use the
notation SQt for the pattern corresponding to squares of words of length at least t,
that is, SQ1 = AA, SQ2 = ABAB, SQ3 = ABCABC, and so on. We denote a
set of avoided factors in each infinite words by Fk, where k is the number of squares
contained in that string.

Maximal ( Number of e-powers, Avoided patterns
exponent e Minimum number of squares ) and factors

5/2 (2, 8) {SQ7} ∪ F8

7/3 (1, 14) {SQ9} ∪ F14

7/3 (2, 12) {SQ9} ∪ F12

3 (2, 3) {SQ5} ∪ F3

5/2 (1, 11) {SQ3} ∪ F11

We also give a characterisation for words avoiding the patterns AABBCC (i.e.,
three consecutive squares) as the union of SQ3 and a finite set of factors.

We now discuss the algorithmic part of the document. The exponent of a string
can be calculated in linear time using basic string matching that computes the smallest
period associated with the longest border of the string (see [25]). A naive consequence
provides a O(n3)-time solution to compute the maximal exponent of all factors of a
string of length n since there are potentially of the order of n2 factors. But a quadratic
time solution is also a simple application of basic string matching. In contrast, the
solution provided in Chapter 7 runs in linear time on a fixed-size alphabet.

When a string contains runs, that is, maximal occurrences of repetitions of ex-
ponent at least 2, computing their maximal exponent can be done in linear time by
adapting the algorithm of Kolpakov and Kucherov [44] that computes all the runs
occurring in the string. Their result relies on the fact that there exists a linear number
of runs in a string [44] (see [60, 27] for precise bounds). But this does not apply to
square-free strings.

Repeats are string of exponent at most 2. They refer to strings of the form uvu
where u is its longest border (both a prefix and a suffix). The study of repeats in a
string has to do with long-distance interactions between separated occurrences of the

7



same segment (the u part) in the string. Although occurrences may be far away from
each others, they may interact when the string is folded as is the case for genomic
sequences.

Contribution [8, 4]: In Chapter 7, we consider the question of computing the
maximal exponent of repeats occurring in a given string. Thus, we are looking for
factors w of the form uvu, where u is the longest border of w. To do so, we use two
main tools: a factorisation of the string and the Suffix Automaton of some factors.
Our solution works on overlap-free strings for which the maximal exponent of factors
is at most 2.

The Suffix Automaton is used to search for maximal repeats in a product of two
strings due to its ability to locate occurrences of all factors of a pattern. Here, we
enhance the automaton to report the right-most occurrences of those factors. Using it
alone in a balanced divide-and-conquer manner produces a O(n logn)-time algorithm.
To eliminate log factor we additionally use the f-factorisation of the string. It has
now become common to use it to derive efficient or even optimal algorithms. The
f-factorisation (see [25]), a type of LZ77 factorisation fit for string algorithms, allows
to skip larger and larger parts of the strings during an online computation. For our
purpose, it is composed of factors occurring before their current position with no
overlap. The factorisation can be computed in O(n log a)-time using a Suffix Tree
or a Suffix Automaton, but also in linear time on an integer alphabet using a Suffix
Array [28].

The running time of the proposed algorithm depends additionally on the repetitive
threshold of the underlying alphabet of the string. The threshold restricts the context
of the search for a second occurrence of u associated with a repeat uvu.

We show a very surprising property of repeats whose exponent is maximal in an
overlap-free string: there are no more than a linear number of occurrences of them,
although the number of occurrences of maximal (i.e. non extensible occurrences of)
repeats can be quadratic. As a consequence, the algorithm can be upgraded to output
all occurrences of maximal-exponent repeats of an overlap-free string in linear time.

The question would have a simple solution by computing MinGap on each inter-
nal node of the Suffix Tree of the input string. MinGap of a node is the smallest
difference between the positions assigned to leaves of the subtree rooted at the node.
Unfortunately, the best algorithms for MinGap computation, equivalent to MaxGap
computation, run in time O(n logn) (see [12, 40, 16] and the discussion in [23]).

A remaining question to the present study is to unify the algorithmic approaches
for repetitions of exponent at least 2 and for repeats of exponent at most 2.

8



2
Preliminaries

In this chapter we are defining some standard terms in combinatorics on words. Also a
review is given of essential background and related work that underpins the technique
used in thesis. This includes introducing the topic of morphisms and L-systems and
reviewing properties of a few fundamental existing systems. Later the methodology
used throughout this research is explained.

An alphabet is any set, the members of which are called letters. Let Σk denote
the alphabet of size k, that is, Σk = {0, 1, . . . , k − 1}. For the sake of clarity we also
denote the binary alphabet Σ2 = {0, 1} as B, and we use equivalently A = {a, b, c}
to represent the ternary alphabet Σ3 = {0, 1, 2}.

A word or a string is a sequence of letters drawn from an alphabet. The empty
word, denoted by ǫ is a string with no letters and is considered as a word on every
alphabet. The concatenation of two words u and v is denoted by the mere juxtapo-
sition uv. Equipped with the concatenation on words, the set of all finite words over
the alphabet Σk, namely Σ∗

k, becomes a monoid since the operation is associative and
ǫ is its neutral element. The length of the word w, denoted by |w|, is the number of
occurrences of letters in w. Hence |abaca| = 5.

The word v is called a factor of x if there exist words u and w such that x = uvw;
in such case that u = ǫ (resp. w = ǫ) then v is a prefix (resp. suffix) of x. Let x
be a non-empty string. An integer p such that 0 < p ≤ |x| is called a period of x if
x[i] = x[i + p] for i = 0, 1, ..., |x|p1. The exponent of x is the quotient of its length
over its smallest period. For example alfalfa has period 3 and exponent 7/3. If
the exponent is e and prefix period word is u (the prefix of length p), then x = ue.
Thus a square is any word with an even integer exponent. Cubes and kth powers are
defined accordingly.

The maximum exponent of a word w is the supremum of E(x), where E(x) is the
set of exponents of all factors of x. A word is overlap-free if it does not contain any
factor of the form xyxyx for a non-empty word x. In general a word is said to be
α-free if it contains no factor of the form uβ for any rational number β ≥ α. It is

9



1. BINARY MORPHISMS

α+-free if it contains no factor of the form uβ for any rational number β > α.

A morphism is a map f : Σ∗
n → Σ∗

m compatible with the structure of monoid of
both sets. This means that f(uv) = f(u)f(v) for all u, v ∈ Σ∗

n and that f(ǫ) = ǫ. As
a consequence, the morphism is completely defined by couples (a, f(a)) for a ∈ Σn.
If f(a) = ax for some letter a ∈ Σn we say that f is prolongable on a. A fixed point
of a morphism f is an infinite word w such that f(w) = w. As fn(a) is a prefix of
fn+1(a) then the limit of f i(a) exists, thus we can iterate f infinitely many times
from a to get an infinite word: f∞(a) := axf(x)f 2(x)f 3(x) · · · , that is a fixed point
of the morphism. For q ≥ 2 a morphism f is said to be q-uniform if |f(a)| = q for all
a ∈ Σn. An endomorphism is a special case of morphism for which n = m.

An endomorphism h : Σ∗
n → Σ∗

n is square-free (resp. cube-free, overlap-free) if
h(w) is square-free (resp. cube-free, overlap-free) whenever w ∈ Σ∗

n is square-free
(resp. cube-free, overlap-free). The morphism h : Σ∗

n → Σ∗
m is synchronising if for

any a, b, c ∈ Σn and v, w ∈ Σ∗
m, h(ab) = vh(c)w implies either v = ǫ and a = c

or w = ǫ and b = c. Uniform morphisms have particularly nice properties. For
example, the class of words generated by applying a coding to infinite iteration of
q-uniform morphisms coincides with the class of q-automatic sequences generated by
finite automata [1].

To exhibit infinite words we often iterate a morphism and then translate its infinite
fixed point. The translation is done with a second morphism. The process can be
translated in terms of L-systems (see [59] for example) as follows. A D0L-system is
defined as a triple (Σ, f, w) where Σ is an alphabet, f is a morphism from Σ∗ to itself,
and w is a word over Σ. An HD0L-system is defined as a 5-tuple (Σ,Σ′, f, h, w) where
Σ and Σ′ are alphabets, (Σ, f, w) is a D0L system and h is a morphism from Σ to
Σ′. In our HD0L systems (Σ,Σ′, f, h, a), a is a letter in Σ, f stands for the morphism
prolongable on a that is iterated, h stands for the translation, and we are interested
in the properties of the infinite word h(f∞(a)).

1 Binary Morphisms

In 1906, Thue [65] established that the squares are avoidable on 3-letter alphabets
and cubes are avoidable on 2-letter alphabets. Iterating the endomorphism m defined
by:

m(0) = 01,
m(1) = 10.

starting with the word 0 gives Thue-Morse sequence:

TM = 011010011001011010010110...

10



2. TERNARY MORPHISMS

which is overlap-free [65] (see also [47]). Pansiot [52] observed that the only morphisms
generating the Thue-Morse word are powers of m. This was extended by Séébold as
follows.

Theorem 1 ([63]). Let x be an infinite overlap-free binary word that is generated by
iterating some morphism h. Then h is a power of m.

Let u(n) be the number of overlap-free binary words of length n, Restivo and
Salemi [57] gave a polynomial upper bound to u(n).

Theorem 2 ([57]).
u(n) ≤ C ∗ nr

with C > 0 and r = log215 ≃ 3.906 .

Kobayashi [43] improved these bounds:

C1 ∗ n
1.155 ≤ u(n) ≤ C2 ∗ n

1.587

The lower bound is obtained by counting the overlap-free words that are infinitely
extensible on the right.

Moreover, Cassaigne [20] gave an upper bounds and lower bounds for α and β
where

C1 ∗ n
α ≤ u(n) ≤ C2 ∗ n

β

He showed α and β are distinct and together with Kobayashi’s result 1.155 < α <
1.276 < 1.332 < β < 1.587. Finally, Carpi [18] proved that a finite automaton can be
used to compute u(n) and demonstrated a method to find upper bounds C ∗ nr with
r arbitrarily close to the optimal value.

Later, Currie and Rampersad [30] showed there are k-uniform cube-free binary
morphisms for k ≥ 1. The empty morphism and the identity morphism are obviously
cube-free and Thue-Morse morphism is cube-free since it is overlap-free. For all
k > 2 Currie and Rampersad [30] demonstrated how to build k-uniform cube-free
morphisms.

2 Ternary Morphisms

The infinite word of Thue-Morse contains squares and in fact its only binary square-
free factors are: ǫ, a, b, ab, ba, aba, bab. In Thue-Morse word between two consecutive
0s there is either ǫ or 1 or 11, therefore the following morphism, t is well defined.

11



2. TERNARY MORPHISMS

The string derived from Thue-Morse sequence by taking its inverse image with the
morphism t:

t(a) = 011,
t(b) = 01,
t(c) = 0.

is square-free [66] (see also [47]), and is the fixed point of the morphism f defined
from Σ∗

3 to itself by:
f(a) = abc,
f(b) = ac,
f(c) = b.

Since the letter a is a prefix of f(a), the infinite word f = f∞(a) is well defined. It
is known that this word is square-free (see [47, Chapter 2]). However, the morphism
f is not square-free since f(aba) = abcacabc contains the square caca while aba is
square-free. A morphism whose fixed point is square-free is called weakly square-free.
It can additionally be checked that all square-free words of length 3 occur in f except
aba and cbc.

These results were independently rediscovered by Arshon in 1937 and by Morse
and Hedlund around 1940. Little is known about the characterisation of weakly
square-free morphisms.

There are many square-free morphisms and in order to show that a morphism is
square-free on 3-letter alphabet, it is sufficient to show that the images of the twelve
words: {aba, abc, aca, acb, bab, bac, bca, bcb, cab, cac, cba, cbc} are square-free [11].

Corollary 1. [66] The endomorphisms h and g defined respectively by:

h(a) = abcab,
h(b) = acabcb,
h(c) = acbcacb.

and by
g(a) = abacb,
g(b) = abcbac,
g(c) = abcacbc.

are both square-free.

Indeed, these two morphisms are the simplest and only square-free morphisms
whose codewords, images of letters, have lengths smaller than eight. Carpi [17] has
shown that square-free morphisms over three letters must have size at least 18, where
size of a morphism is the sum of the lengths of the images of its letters.

12



3. MORPHISMS ON LARGER ALPHABETS

Later, Pleasants [54] established an identical map to the above morphism h and
Leech in [46] introduced the 13-uniform morphism L from Σ∗

3 to itself defined by:

L(a) = abcbacbcabcba,
L(b) = bcacbacabcacb,
L(c) = cabacbabcabac.

Their results are both independent of Thue’s work.

Next, Brandenburg [15] gave an example of 11-uniform square-free ternary mor-
phism and stated that there are no smaller uniform square-free ternary morphisms.
Currie and Rampersad [30] stated this open problem: do there exist k-uniform square-
free ternary morphisms for all k ≥ 11?

The number of square-free words of length n on a 3-letter alphabet seems to grow
as a polynomial, but the result due to Brandenburg shows that this is in fact an
exponential growth.

Theorem 3 ([15, 13]). Let c(n) be the number of square-free words of length n on a
three letter alphabet. Then

6 ∗ cn1 ≤ c(n) ≤ 6 ∗ cn2

where c1 = 1.032 and c2 = 1.38.

3 Morphisms on Larger alphabets

One of the basic questions is whether a given morphism from Σ∗
m to Σ∗

n is square-free.
Several people have investigated the problem and derived conditions for morphism
square-free-ness, the simplest and most precise one is due to Crochemore [24], who
introduced the notion of a pre-square with respect to a morphism h:

Let w be a square-free word in Σ∗
m and u a factor of h(w); an occurrence of u

in h(w) is given by words α, β in Σ∗
m such that h(w) = αuβ ; that occurrence of u

is called a pre-square if u 6= ǫ and if there exists a word w in Σ∗
m satisfying: ww is

square-free and u is a prefix of βh(w) or ww is square-free and u is a suffix of h(w)α.
In that case we also say that h(w) contains a pre-square, and that w′ duplicates the
pre-square u of h(w).

Theorem 4 ([24]). Let h be a morphism from Σ∗
m into Σ∗

n with Σm having at least
three letters. Then h is square-free iff the following conditions hold:

• h(x) is square-free for square-free words x ∈ Σm of length 3;

• No h(a), for a ∈ Σm, contains an internal pre-square (occurs within the word).

13



3. MORPHISMS ON LARGER ALPHABETS

Crochemore introduces a boundary on the length of words that must be square-
free in order to have a square-free morphism. Let us define:

m(h) = min{|h(a)| : a ∈ Σm},

M(h) = max{|h(a)| : a ∈ Σm}.

Theorem 5 ([24]). Let h be a morphism from Σ∗
m into Σ∗

n then h is square-free iff h(x)
is square-free for all square-free words x of length k = max {3, ⌈(M(h)−3)/m(h)+1⌉}.

If the morphism is uniform this bound is 3, the next Corollary is then a conse-
quence of the previous theorem.

Corollary 2 ([24]). Let h be a morphism from Σ∗
3 into Σ∗

n Then h is square-free iff
h(x) is square-free for all words x of length 5.

Bean et al. [11] generalise the existence of square-free morphisms from Σ∗
n to Σ∗

3

and of cube-free morphisms from Σ∗
n to B∗. A different characterisation of square-free

morphisms is also given in the same paper.

Theorem 6 ([11]). Let h be a morphism from Σ∗
m into Σ∗

n. If h(w) is square-free
whenever w ∈ Σm is square-free and of length no greater than three, and if a = b
whenever a, b ∈ Σm with h(a) a factor of h(b), then h(u) is square-free whenever u is
a square-free word on Σm.

Furthermore, they characterise morphisms which are kth power-free.

Theorem 7 ([11]). Let h be a morphism from Σ∗
m into Σ∗

n, where Σm and Σn are
alphabets. Let k > 2. If

• h(w) is kth power-free whenever w is a kth power-free word on Σm with length
no greater than k + 1,

• a = b whenever h(a) is a factor of h(b), and

• if a, b, c ∈ Σm and uh(a)v=h(b)h(c) where u and v may be empty then either u
is empty and a = b or else v is empty and a = c,

then h is kth power-free.

In addition, they showed that not all square-free morphisms are cube-free, then
by the next theorem they gave sufficient conditions for a square-free morphism to be
kth power-free morphism.
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Theorem 8 ([11]). Let h be a morphism from Σ∗
m into Σ∗

n. If

• h is square-free,

• a = b whenever h(a) is a factor of h(b), and

• no proper prefix of h(a) is a suffix of h(a) for all a ∈ Σm,

then h is kth power-free for all k > 1.

4 Methodology

Throughout this document, in order to prove the existence of an infinite word com-
plying with some properties, several methods are used. The main technique is to
design an HD0L system, which means finding two morphisms generating an appro-
priate infinite word. One of the experimental techniques that we used consists of the
following steps.

• First, we generate a long enough word satisfying the pre-defined constraints
using a backtracking strategy.

• Second, we search for its most repetitive motifs.

• Third, using selective elements of the set of motifs, we try to decode the word
to find its pre-image according to the morphism defined by the motifs.

• Fourth, we iterate the previous two steps with the new word (pre-image of the
first word).

Backtracking is a general algorithm for finding all (or some) solutions to some com-
putational problem. It incrementally builds candidates to the solutions, and abandons
each partial candidate as soon as it determines it cannot possibly be completed to a
valid solution [42].

For example, to prove there exists an infinite 7/3+-free binary word containing
one 7/3-power and at most 14 squares, applying a backtracking technique we get the
following 2000-bit long binary word satisfying the desired properties:

110100110010011010010110010011001011010010110010011010010110011010011001

00110100101100100110010110100110010011010010110011010011001011010010110010

01101001011001101001100100110100101100100110010110100101100100110100101100

11010011001011010010110010011001011010011001001101001011001001100101101001
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01100110100110010011010010110010011001011010011001001101001011001101001100

10110100101100100110010110100110010011010010110010011001011010010110010011

01001011001101001100100110100101100100110010110100110010011010010110011010

01100101101001011001001101001011001101001100100110100101100100110010110100

10110010011010010110011010011001011010010110010011001011010011001001101001

01100110100110010110100101100100110100101100110100110010011010010110010011

00101101001100100110100101100110100110010110100101100100110010110100110010

01101001011001001100101101001011001001101001011001101001100100110100101100

10011001011010011001001101001011001101001100101101001011001001101001011001

10100110010011010010110010011001011010010110010011010010110011010011001011

01001011001001100101101001100100110100101100100110010110100101100100110100

10110011010011001001101001011001001100101101001100100110100101100110100110

01011010010110010011001011010011001001101001011001001100101101001011001001

10100101100110100110010110100101100100110010110100110010011010010110011010

01100101101001011001001101001011001101001100100110100101100100110010110100

11001001101001011001101001100101101001011001001100101101001100100110100101

10010011001011010010110010011010010110011010011001001101001011001001100101

10100110010011010010110011010011001011010010110010011010010110011010011001

00110100101100100110010110100101100100110100101100110100110010110100101100

10011001011010011001001101001011001101001100101101001011001001101001011001

One of the most frequent factors of this word is 101001:

110100110010011010010110010011001011010010110010011010010110011010011001

00110100101100100110010110100110010011010010110011010011001011010010110010

01101001011001101001100100110100101100100110010110100101100100110100101100

11010011001011010010110010011001011010011001001101001011001001100101101001

01100110100110010011010010110010011001011010011001001101001011001101001100

10110100101100100110010110100110010011010010110010011001011010010110010011

01001011001101001100100110100101100100110010110100110010011010010110011010

01100101101001011001001101001011001101001100100110100101100100110010110100

10110010011010010110011010011001011010010110010011001011010011001001101001

01100110100110010110100101100100110100101100110100110010011010010110010011

00101101001100100110100101100110100110010110100101100100110010110100110010

01101001011001001100101101001011001001101001011001101001100100110100101100

10011001011010011001001101001011001101001100101101001011001001101001011001

10100110010011010010110010011001011010010110010011010010110011010011001011

01001011001001100101101001100100110100101100100110010110100101100100110100

10110011010011001001101001011001001100101101001100100110100101100110100110

01011010010110010011001011010011001001101001011001001100101101001011001001

10100101100110100110010110100101100100110010110100110010011010010110011010

01100101101001011001001101001011001101001100100110100101100100110010110100

11001001101001011001101001100101101001011001001100101101001100100110100101

10010011001011010010110010011010010110011010011001001101001011001001100101

10100110010011010010110011010011001011010010110010011010010110011010011001

00110100101100100110010110100101100100110100101100110100110010110100101100

10011001011010011001001101001011001101001100101101001011001001101001011001
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Using the above factor we can see that the whole word can be decoded with the
following factors 101001100101, 1010011001001, 101001011001, 101001011001001,
and 101001011001001100101.

When renamed as a, b, . . . , e we get the translation morphism h defined by:

h(a) = 101001100101

h(b) = 1010011001001

h(c) = 101001011001

h(d) = 101001011001001

h(e) = 101001011001001100101

The pre-image of the above word by the morphism h is:

bedcbebcadcbedcaebecbebc

aebedcbebcadcbedcaebcadc

bebcaebedcbebcadcbedcaeb

edcbebcaebedcaebcadcbebc

aebedcbebcadcbedcaebcadc.

Iterating the same procedure on a long enough part of the last word, we find the
following factors: adcbebc, adcbedc, aebc, aebedc, aebedcbebc. A brute-force try of
the 5! permutations of possible mappings reveals the following morphism (see Chapter
5):

f4(a) = adcbebc,
f4(b) = adcbedc,
f4(c) = aebc,
f4(d) = aebedc,
f4(e) = aebedcbebc.

This is the morphism that is iterated to get a fixed point. The two morphisms found
by the method constitute the essential part of the HD0L system proving the existence
of an infinite word satisfying the initial conditions.

Several other methods are exploited in this document, in order to make conjectures
and also to discover morphisms. While some are based on clever computations and
search techniques, others require deep analysis of the words and careful decomposition
of longer words into their smaller factors.

In the last chapter, we exploit a type of data structure called suffix automaton
and a type of string factorisation called L-Z factorisation. The definitions are given
in Chapter 7 where some other well known pattern matching techniques are also
employed.
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3
Infinite binary words containing few

squares

The number of repetitions in infinite words is a classic problem in combinatorics on
words which, for the last century, has been studied in depth. Let g(n) be the length
of a longest binary word containing at most n squares. Then g(0) = 3 (e.g. 010),
g(1) = 7 (e.g. 0001000) and g(2) = 18 (e.g. 010011000111001101).

The question of behaviour of this function was posed by Erdös [35]. Entringer,
Jackson, and Schatz [34] showed in 1974 that there exists an infinite word with 5
different squares, g(5) = ∞. Later Fraenkel and Simpson [36] showed that there
exists an infinite binary word that has only three squares 00, 11, and 0101, and thus
g(3) =∞. A somewhat simplified proof of this result was given by Rampersad, Shallit
and Wang [55], using two uniform morphisms. Later, in 2006, Harju and Nowotka
[38] gave a simpler proof of this result. We give a new proof that the maximal length
is infinite if 3 squares are allowed to appear in a binary word. Our proof is simpler
than the original proof in [36] and uses a morphism simpler than the proofs of [55]
and [38].

Instead of avoiding just squares, an interesting variation on this problem is to
avoid large repetitions. Entringer, Jackson, and Schatz [34] showed that there exist
infinite binary words avoiding squares of period at least three. Furthermore, avoiding
large squares has been studied by Dekking [33], Rampersad et al. [55], Shallit [64],
Ochem[50], and many others.

In this chapter we provide some new results as an outcome of studying the pattern
avoidance from a different point of view. We analyse the possibility of avoiding
repetitions of even and odd periods, and further impose a constraint on their maximal
exponent.

We show that there exists no infinite 3+-free binary word avoiding all squares of
odd period. This study reveals there exists no infinite binary word, simultaneously
avoiding cubes and squares of even period. Moreover, we prove that there exists an
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1. THE INFINITE BINARY WORD BY FRAENKEL AND SIMPSON

infinite 3+-free binary word avoiding squares of even-period length.

The trade-off as there is between the maximal period length and number of repe-
titions contained will follow a similar trade-off between number of cubes and number
of distinct squares. We succeed in reducing the number of repetitions contained in
infinite binary words without compromising the constraint on parity of their period.
We conclude that in such words the minimal number of squares is 7 when only 1 cube
occurs. The number reduces to 4 when 2 cubes are allowed in the word.

1 The infinite binary word by Fraenkel and Simpson

Here we recall the morphism f from Chapter 2: The morphism f is defined from Σ∗
3

to itself by:
f(a) = abc,
f(b) = ac,
f(c) = b.

Since the letter a is a prefix of f(a), the infinite word f = f∞(a) is well defined. It is
well known [37] that f is square-free and avoids aba and cbc.

To construct an infinite binary word with the desired property, Fraenkel and
Simpson first transform f into q by replacing every occurrence of cb in f by cdb, and
every occurrence of bc by bec. Then they translate the infinite word q ∈ Σ∞

5 to an
infinite word with the following morphism:

hfs(a) = 011000111001,
hfs(b) = 011100011001,
hfs(c) = 011001110001,
hfs(d) = 01100010111001,
hfs(e) = 01110010110001.

Lemma 1 ([36]). The infinite word hfs = hfs(q) contains the 3 squares 00, 11, and
0101 only.

The following theorem is a direct consequence of Lemma 1.

Theorem 9. There exists an infinite binary word containing only three squares.

2 The infinite binary word by Rampersad et al.

In 2005, Rampersad et al. [55] constructed an infinite binary word avoiding all squares
except 00, 11, and 0101. They use two uniform morphisms, one on 5 letters to be
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3. THE INFINITE BINARY WORD BY HARJU AND NOWOTKA

iterated in order to generate a fixed point and the second morphism to translate the
5-ary fixed point of the first morphism to a binary word. The 24-uniform morphism
from Σ∗

5 to itself is defined by frsw:

frsw(0) = 012321012340121012321234,
frsw(1) = 012101234323401234321234,
frsw(2) = 012101232123401232101234,
frsw(3) = 012321234323401232101234,
frsw(4) = 012321234012101234321234.

In the article they first prove that if w ∈ Σ∗
5 is square-free and avoids the factors

02, 03, 04, 14, 20, 30, 41, then frsw(w) is square-free and avoids the factors 02, 03,
04, 13, 14, 20, 24, 30, 31, 41, 42, 010, 434.

Next they consider the following 6-uniform morphism, hrsw from Σ∗
5 to B∗:

hrsw(0) = 011100,
hrsw(1) = 101100,
hrsw(2) = 111000,
hrsw(3) = 110010,
hrsw(4) = 110001.

Lemma 2 ([55]). If w is square-free and avoids the factors 02, 03, 04, 13, 14, 20,
24, 30, 31, 41, 42, 434, and 010 then the only squares in hrsw(w) are 00, 11, 0101.

The corollary is Theorem 9.

3 The infinite binary word by Harju and Nowotka

Later, in 2006, Harju and Nowotka [38] produced yet another proof for the result.
Unlike the previous proofs, the pure morphic word w ∈ Σ∗

3 needs to be square-free
and no other pattern need to be avoided.

They consider the morphism hhn from Σ∗
3 to B∗ defined by

hhn(a) = 101100011100101100111000,
hhn(b) = 101110010110001110010111000,
hhn(c) = 110010110001011100101100111000.

Lemma 3 ([38]). For any square-free word w, w ∈ Σ∞
3 , the infinite word hhn =

hhn(w) contains the 3 squares 00, 11 and 0101 only. The cubes 000, and 111 are the
only factors of exponent larger than 2 occurring in hhn.
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4. A SIMPLE MORPHISM

Here we mention a few properties of this morphism:

1. the codewords hhn(a), hhn(b), and hhn(c) are border-free or, equivalently, their
smallest periods are their lengths;

2. they are pairwise overlap-free;

3. the longest common prefix (suffix, resp.) of two codewords is 1011 of length 4
(011100101100111000 of length 18, resp.);

4. the images by hhn of all square-free words of length 3 contain only the three
squares 00, 11, and 0101, and the two cubes 000 and 111.

Fact 1. For letters a0, a1, a2 ∈ Σ3, a1 6= a2, if hhn(a0) is a factor of hhn(a1a2) then
either a0 = a1 and the only occurrence of hhn(a0) in hhn(a0a2) is as a prefix, or a0 = a2
and the only occurrence of hhn(a0) in hhn(a1a0) is as a suffix.

Fact 1 is a direct consequence of properties of morphisms hhn, which leads to
Lemma 3 and Theorem 9.

In the next section we present another morphism that can construct an infinite
binary word containing only 3 squares. This morphism is the simplest of its form, that
can generate an infinite binary word with at most 3 squares. Simplest in this sense
that sum of all its codewords lengths is 24; shortest amongst the existing morphisms
satisfying the property.

4 A simple morphism

This section is dedicated to the new proof of Theorem 9. The proof relies on two
morphisms, f also used by Fraenkel and Simpson (see Section 1), and g1 from Σ∗

3 to
B∗ defined by

g1(a) = 01001110001101,
g1(b) = 0011,
g1(c) = 000111.

Lemma 4. The infinite word g1 = g1(f) contains the 3 squares 00, 11, and 1010

only. The cubes 000 and 111 are the only factors of exponent larger than 2 occurring
in g1.

The codewords of the morphism g1 form a prefix code, which implies that the
morphism itself is an injective function. Therefore the word g1 can be parsed uniquely
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4. A SIMPLE MORPHISM

Table 3.1: The gaps between consecutive occurrences of z = 000 are 1101, 11010011,
1110100111, and 11100110100111.

g1(ac) = 01001110001101 000111 4
g1(abc) = 01001110001101 0011 000111 8
g1(ca) = 000111 01001110001101 10
g1(cba) = 000111 0011 01001110001101 14

to recover the square-free word f . Proof of Lemma 4 relies on parsing g1 by locating
the occurrences of the triplet z = 000 in g1. z occurs only within g1(a) or g1(c).
Indeed, any occurrence of z preceded by 111 determines an occurrence of a in f , and
otherwise it is followed by 111 and determines an occurrence of c.

Gaps between occurrences of specific factors. For the purpose of the proof we
define the gap function gap related to g1 as follows. For any factors u and v of g1:

gap(u, v) = {|w| | uwv factor of g1 and only one occurrence of v in wv}.

Although gap is only used in the proof in a very restricted way, note that the gap
between any two factors of g1 is well defined. Table 3.1 shows all the incidents of two
consecutive occurrences of zs in g1 therefore gap(z, z) = {4, 8, 10, 14}.

Here, we present proof of Lemma 4:

Proof. We assume that w2 occurs in g1 for some non-empty word w and distinguish
three cases: where w2 contains at most one occurrence of z = 000, an even number
of occurrences of it, or an odd number.

The square w2 contains at most one occurrence of z. Under this hypothesis,
the only factors of g1 that we have to consider are images by the morphism g1 of
square-free words in which sum of occurrences of a and c is at most three times,
therefore images of these square-free words contain all factors containing at most one
occurrenceof z (because g1(a) and g1(c) contain each an occurrence of z). Table 3.2
shows these words, which contain only the three expected squares.

The square w2 contains an even number of occurrences of z. In this situation
and after the first case, w2 contains 2k occurrences of z for an integer k > 0. These
occurrences are evenly distributed between the first half and the second half of w2;
w contains exactly k occurrences of z.
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4. A SIMPLE MORPHISM

Table 3.2: Squares in short factors of g1.

g1(aca) = 01001110001101 000111 01001110001101

g1(acba) = 01001110001101 000111 0011 01001110001101

g1(abca) = 01001110001101 0011 000111 01001110001101

g1(abcba) = 01001110001101 0011 000111 0011 01001110001101

g1(cac) = 000111 01001110001101 000111

g1(cabc) = 000111 01001110001101 0011 000111

g1(cbac) = 000111 0011 01001110001101 000111

g1(cbabc) = 000111 0011 01001110001101 0011 000111

The word w can be decomposed as u0z1u1 . . . zkuk where z1 = · · · = zk = z
and u0, . . . , uk ∈ {0, 1}

∗. In addition, zk and z1 are consecutive occurrences of z
in w2. Here, we examine these occurrences according to gap(zk, z1), in other words,
possibilities of |uku0| (see Table 3.1). It can be noted that the zk and z1 occur in w2

in different contexts (if one indicates the occurrence of g1(a) the other indicates the
occurrence of g1(c)) and certainly not in the same context.

Gap of length 4. Here, uku0 = 1101.

Using the Table 3.1 and knowing the fact thatgap(z, z) is injective we deduce
that zkuku0z1 is a factor of g1(ac). Therefore, zk indicates an occurrence of
g1(a) and z1 indicates an occurrence of g1(c). This implies that w2 is a factor
of g1(αcvacva) for some word v in f and α ∈ {a, b, c} , which is impossible
because f is square-free.

Gap of length 8. Here, uku0 = 11010011. Therefore, zkuku0z1 is a factor of g1(abc).
Either |uk| > 6 or |u0| > 1, if the former is true then w2 is a factor of
g1(αcvabcvab), which indicates occurrenceof a square cvabcvab in f , contradic-
tion. In the second case; (|u0| > 1), w2 is a factor of g1(αbcvabcvaβ) for some
word v in f and α, β ∈ {a, b, c} , which is impossible because f is square-free.

Gap of length 10. Here, uku0 = 1110100111. Therefore, zkuku0z1 is a factor of
g1(ca). So, zk indicates an occurrence of g1(c) and z1 indicates an occurrence
of g1(a). This implies that w2 is a factor of g1(αavcavcβ) for some word v in f
and α, β ∈ {a, b, c} , which is impossible because f is square-free.

Gap of length 14. Here, uku0 = 11100110100111. Therefore, zkuku0z1 is a factor
of g1(cba). The arguments of the previous cases apply similarly either |uk| > 4
or |u0| > 9 and derive to the same contradiction.

Therefore, w2 cannot contain an even number of occurrences of z.
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4. A SIMPLE MORPHISM

The square w2 contains an odd number of occurrences of z. Here, w2 con-
tains an odd number k, k > 2, of occurrences of z, in which case w is of the form
0y00 or 00y0. From the gap analysis we also deduce that |w| ≥ 8, which implies that
the central occurrence of z, overlapping the junction between the two occurrences of
w, is followed and preceded in w2 by at least 7 letters. We treat the form 0y00, the
other form can be dealt with symmetrically.

The central occurrence of z is either followed by 111 or preceded by it. In the first
case 111 is not followed by 000 and so identifies g1(c). This implies that 00 precedes
w2 in g1 and that 00ww(00)−1 occurs in g1. In the second case 111 and its preceding
letters identify g1(a), which implies that 0 follows w2 in g1 and that 0−1ww0 occurs
in g1. In both cases, the central occurrence of z disappears in the resulting conjugate
of w2 and we are taken back to the case where z occurs an even number of times.
Therefore, w2 cannot contain an odd number > 1 of occurrences of z.

From the above we deduce that the only squares in g1 are those occurring in the
words of Table 3.2. They are 00, 11, and 1010. Factors having a rational exponent
larger than 2 are prefixed by a square. Thus, the only factors of this type occurring
in g1 are 000 and 111 of exponent 3. This concludes the proof of Lemma 4.

We do not know if the morphism g1 is the simplest possible to satisfy the desired
property, but note that the morphism h′ defined by

h′(a) = 01,
h′(b) = 0011,
h′(c) = 000111.

does not work because h′(bcacb) = 0011000111010001110011 contains four squares:
02, 12, 102, and (10001110)2.

Cubes are unavoidable. One can ask whether an infinite word can contain fewer
factors of exponent at least 2. We show that an infinite binary word that contains
only three squares cannot avoid cubes. This is done by exploring the trie of binary
words satisfying the condition, which appears to be finite. Without loss of generality
we consider words starting with 001. Branches of the trie end when adding a letter to
their label produces an occurrence of a cube or of a fourth square. The trie is displayed
in Figure 3.1 and answers the question. The trie also shows that the maximal length
of binary words containing no cube and 2 squares is 12.
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PERIOD

001

0
0 1

0
1 0

0
1

1
0 0 1
1 0 0 1

0 1
1

1 0
0 1

0
0
1 1 0 0

1

1
0 0 1 1 0 0
1

Figure 3.1: Trie of binary words starting with 001 and containing at most 3 squares
and no cubes. Their maximal length is 12.

5 Words containing only squares of odd-length period

Here, we study further the infinite binary words and the squares they contain. Looking
at the parity of the periods of the squares reveals interesting properties. A simple
computer check similar to the method illustrated in Figure 3.1 verifies the following
facts:

Fact 2. There exist no infinite 3+-free binary word avoiding all squares of odd period.

Note that the only infinite binary words omitting 00 and 11 are (01)∞ or (10)∞

both contain 3+-powers.

Fact 3. There exist no infinite binary word, simultaneously avoiding cubes and square
xx with |x| = 2k for k > 0. The maximal length of a cube-free binary word containing
only squares of odd period is 21.

The remaining of this chapter is dedicated to demonstrate if the constraint on
the maximal exponent is relaxed, so that the word may contain cubes, then avoiding
squares of even-period becomes possible.

The following technique is used to proof all the theorems in the remaining of this
chapter. To demonstrate how this technique works, a step by step proof is given for
Proposition 1 as an example to make it easier for the reader.

Proof Technique. Suppose we are given a synchronising morphism g : Σ∗
3 → B∗,

if s is an infinite square-free word on Σ∗
3 then the only squares occurring in g(s) also

occur in the images of square-free words of length 3. In this section s is any infinite
square-free ternary word.

Theorem 10. There exists an infinite 3+-free binary word avoiding squares of even-
period length.
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PERIOD

The proof relies on the following synchronising 8-morphism g2 from Σ∗
3 to B∗

defined by
g2(a) = 11011001,
g2(b) = 11001001,
g2(c) = 00011000.

Proposition 1. The infinite word g2 = g2(s) contains no repetition with exponent
greater than 3 and no square uu with |u| = 2k for k > 0 for any square-free s.
Furthermore, g2 contains 12 squares only: Sq = {00, 11, (001)2, (010)2, (011)2,
(100)2, (110)2, (00011)2, (00110)2, (01100)2, (10001)2, (11001)2}. And 3 cubes:
000, 111 and (100)3.

Here, we demonstrate how the proof technique works for Proposition 1, the fol-
lowing step by step proofs in this chapter are omitted.

Proof. Let assume that g2(s) contains a square uu /∈ Sq, then either |u| > 16 or uu
is a factor of image of w ∈ s for w ≤ 3.

• Case |u| > 16:

uu =
︷ ︸︸ ︷
u1 · · ·︸︷︷︸ v1

︷ ︸︸ ︷
u1 · · ·︸︷︷︸ v1

where v1u1 is codeword. Then v1 is not longer than the longest common prefix
between two different codewords (otherwise it refers to the same letter in s
and shows an existance of a square in s), that is, |v1| ≤ 3. Symmetrically,
u1 is not longer than the longest common suffix of two different codewords,
that is, |u1| ≤ 4. But then |v1u1| ≤ 7 and cannot be a complete codeword, a
contradiction.

• Case |u| ≤ 16: Here, it is enough to look at images of all w ∈ s for w ≤ 3
and a simple computer check verifies the fact that all squares contained in these
images are in Sq. Since a cube is an extension of a square, one can easily count
the number of cubes to be 3.

The proof of Theorem 10 is a direct consequence of the above proposition, since
the set Sq contains only squares of odd period (1, 3 and 5).
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6 Avoiding long repetitions

Looking at the length of periods of squares contained in g2 (Section 5), one may ask
if it is possible to reduce the length of the longest squares in an infinite word without
compromising the other conditions imposed on the word. It is trivial to see that there
exist no infinite binary words containing only squares of period 1. However the next
theorem shows that we can reduce the longest period to 3.

Theorem 11. There exist an infinite 3+-free binary word containing only squares of
period 1 or 3.

The proof relies on the following synchronising 11-morphism g3 from Σ∗
3 to B∗

defined by
g3(a) = 11001001101,
g3(b) = 11001001110,
g3(c) = 11001001000.

Proposition 2. The infinite word g3 = g3(s) contains no repetitions with exponent
greater than 3 and no squares uu with |u| = 2k for k > 0. Furthermore, g3 contains
only 7 squares: 00, 11, (001)2, (010)2, (011)2, (100)2 and (110)2, and 3 cubes: 000,
111 and (100)3.

The proof is very similar to the proof of Proposition 1, therefore omitted and
Theorem 11 follows.

The following synchronising morphism g4 also generates an infinite 3+-free binary
words containing squares of period 1 and 3 only. Therefore g4 could also be exploited
to prove Theorem 11. Furthermore the infinite binary word generated by g4 omits
the third cube in g3. Thus it contains less cubes.

The word with 7 squares and 2 cubes. To generate an infinite word with these
properties we use the following synchronising 12-morphism g4 from Σ∗

3 to B∗ defined
by

g4(a) = 110110001110,
g4(b) = 110111000100,
g4(c) = 110111001000.

Proposition 3. The infinite word g4 = g4(s) contains no repetitions with exponent
greater than 3 and no squares uu with |u| = 2k for k > 0. Furthermore, g4 contains
only 7 squares: 00, 11, (001)2, (011)2, (100)2, (101)2 and (110)2, and 2 cubes: 000
and 111.

The proof is very similar to the proof of Proposition 1 and as explained earlier
the step by step proof is omitted.
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7 Reducing the number of repetitions

It is natural to ask if there exists an infinite binary word avoiding squares of even-
length period and containing less that 7 squares or 2 cubes.

Fact 4. A binary word avoiding squares of even-length period that contains at most
6 squares and only one cube has length at most 57.

Although this fact shows that simultaneously reducing the number of squares and
cubes is not possible, the following two theorems show that there exist infinite binary
words avoiding squares of even-length periods either containing only 1 cube and 7
squares, or 2 cubes and less than 7 squares.

Theorem 12. There exists an infinite 3+-free binary word with at most one cube,
avoiding squares of even-length period and containing 7 squares only.

The proof relies on the following synchronising 73-morphism g5 from Σ∗
3 to B∗

defined by

g5(a) = 110110001001101100100011011000100100011

01100100110001001000110010011011001000,
g5(b) = 110110001001101100100110001001000110010

01101100010010001101100100110001001000,
g5(c) = 110110001001101100100110001001000110110

01001101100010010001100100110001001000.

Proposition 4. The infinite word g5 = g5(s) contains no repetitions with exponent
greater than 3 and no squares uu with |u| = 2k, for k > 0.
Furthermore, g5 contains only 7 squares: 00, 11, (001)2, (010)2, (011)2, (100)2, and
(110)2, and only one cube 000.

Theorem 13. There exists an infinite 3+-free binary word with at most two cubes,
avoiding squares of even-length period and containing only 4 squares.

The proof relies on the following synchronising 39-morphism g6 from Σ∗
3 to B∗

defined by

g6(a) = 111000100110001110010001100100111001000,
g6(b) = 111000100111001000110010011100011001000,
g6(c) = 111000100111001001100010011100011001000.

Proposition 5. The infinite word g6 = g6(s) contains no repetitions with exponent
greater than 3 and no squares uu with |u| = 2k for k > 0.
Furthermore, g6 contains only 4 squares: 00, 11, (001)2, and (100)2, and only two
cubes: 000 and 111.
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The following result is verified by computer check:

Fact 5. A binary word avoiding squares of even-length period that contains at most
3 squares has length at most 29.

Here, it is worth mentioning if we remove the constraint on the parity of the
squares period then in Chapter 5 we show:

• There exists a 3+-free infinite binary word with only one cube that contains no
more than 4 squares 24.

• There exists a 3-free infinite binary word with at most 8 squares 21.

We also in Chapter 5 show that these numbers are minimal.

8 Conclusion

In this chapter we presented a new proof of Fraenkel and Simpson’s result [36] and
further studied the infinite binary words whose squares have odd-length periods. The
tables below summarises these results.

Longest allowed Number of Number of Length of the
period cubes squares morphism

Proposition 1 5 3 12 8
Proposition 2 3 3 7 11
Proposition 3 3 2 7 12
Proposition 4 3 1 7 73
Proposition 5 3 2 4 39

Note that all the infinite binary words considered in these proofs are 3+-free
and avoid squares of even-length period. So all the propositions mentioned above
imply Theorem 10. The morphisms in Propositions 2, 3 and 4 generate binary words
containing 7 squares of period 1 or 3. The only differences between them are the
number of cubes they contain and the morphisms length. The longer morphism
contains fewer cubes.

Similar comparison was made between two morphisms used in Propositions 3 and
5. Both generate binary words with only 2 cubes, the longer one (length 39) contains
fewer squares than the shorter one (length 12).
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8. CONCLUSION

Allowed number Minimum number
of cubes of squares

Theorem 13 2 4
Theorem 12 1 7
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4
Finite-repetition threshold

The constraints on the exponents of repetitions in infinite words have been raised to
optimality after Dejean’s conjecture [32] on the repetitive threshold associated with
the alphabet size. The repetitive threshold (Dejean’s repetitive threshold) of order k
is the infimum of maximum exponents of all (infinite) words over a k-letter alphabet.

The first case says that the repetitive threshold of the binary alphabet is 2 (infinite
binary words can avoid factor of exponent larger than 2 but cannot avoid squares)
and the second case states that it is 7/4 for the three-letter alphabet [32], Dejean
conjectured that r4 = 7/5 and rk = k

k−1
for k ≥ 5. The last cases have been proved

recently by Rao [56] after the works of Carpi [19], Pansiot [53], Moulin-Ollagnier
[49], Mohammad-Noori and Currie [48], Currie and Rampersad [29]. All these results
contribute to the proof of Dejean’s conjecture.

The idea of repetitive threshold was extended into the generalized repetition
threshold in [39] as follows. There, the notion of (β, p)-freeness is introduced: a
word is (β, p)-free if it contains no factor that is a (β ′, p′)-repetition (it is a word w
with period length p′ and exponent β ′: w = pβ

′

) for β ′ ≥ β and p′ ≥ p. Therefore
a word is (β+, p)-free if it is (β ′, p)-free for all β ′ > β and the generalized repetition
threshold R(k, p) is defined for k-letter alphabet as the real number α such that either

(a) there exists an (α+, p)-free infinite word and all (α, p)-free words are finite; or

(b) there exists an (α, p)-free infinite word and for all α > 0, (α − ǫ, p)-free words
are finite.

where p is the minimal avoided period.

Proof of boundary of this threshold for all alphabet sizes is also presented in [39].
Essentially R(k, 1) is Dejean’s repetitive threshold.

In this chapter we introduce a new constraint on infinite words and give some
results. We also state some conjectures that need further and deeper investigations.
Looking at maximal exponent of words containing bounded number of rk-powers
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introduces a new type of threshold, that we call the finite-repetitions threshold. For the
alphabet of k letters, FRt(k) is defined as the smallest rational number for which there
exists an infinite word avoiding FRt(k)+-powers and containing a finite number of rk-
powers, where rk is Dejean’s repetitive threshold, and FRt(k) is∞ if no such exponent
exists. Associated with the finite-repetitions threshold is the smallest number of
factors of rk-powers (limit repetitions), Rn(k), that an infinite Dejean’s word can
accommodate.

Karhumäki and Shallit [41] showed:

(i) Every infinite 7/3-free binary word contains arbitrarily large squares.

(ii) There exists an infinite 7/3+-free binary word such that each square factor ww
satisfies |w| ≤ 13.

These results imply that FRt(2) = 7/3.

In Section 1 we provide a new proof for FRt(2) = 7/3 and we show that the
associated number of squares is 12 (Rn(2) = 12).

In Section 2, we show that, for k = 3, FRt(k) = rk = 7/4. Proofs provided in
this chapter are two-fold, because they have to show the value of FRt(k) as well as
the associated number of rk-powers. We prove on ternary words minimum number of
associated rk-powers is 2. The only proof of 7/4 repetition threshold is due to Dejean
[32], where she has used a pure morphic word, therefore the number of 7/4-powers
contained in her infinite word is not bounded.

In Section 3, we show that there exists an infinite word on 4 letters containing
only 2 7/5-powers and no factor of exponent more than 7/5. The only known proofs
of the 7/5 repetition threshold for 4 letters are due to Pansiot [53] and Rao [56]; their
both words contain 24 7/5-powers.

In Section 4, we show on 5 letters, the only proof of the 5/4 threshold by Moulin-
Ollagnier [49] provides a word with 360 5/4-powers of periods 4, 12 and 44. We show
that their number can be reduced to 60 and conjecture that it can be lower down to
45, the smallest possible number.

Finally, in Section 5, revisiting the existing morphisms and proofs of Dejean’s
conjecture we show for k ≥ 5, FRt(k) = rk. Now the question worth investigation
is what is the minimum number of associated rk-powers, (Rn(k)), in infinite k-ary
words complying with FRt(k).
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1 Finite-repetition threshold for k=2

In this section we consider infinite binary words in which a small number of squares
occur.

It is impossible to avoid 2+-powers and keep a bounded number of squares. As
proved by Karhumäki and Shallit [41], the exponent has to go up to 7/3 to allow the
property. The constraint on the number of squares imposed on binary words in this
section slightly differs from the constraint considered by Shallit [64]. The squares
occurring in his word have period smaller than 7. Our word contains less squares but
their maximal period is 8. Here, we define two morphisms and derive the properties
that we need to prove the next statement.

Theorem 14. There exists an infinite binary word whose factors have an exponent
at most 7/3 and that contains 12 squares, the fewest possible.

Our infinite binary word contains 12 squares: 02, 12, (01)2, (10)2, (001)2, (010)2,
(011)2, (100)2, (101)2, (110)2, (01101001)2, (10010110)2, and two words 0110110

and 1001001 of exponent 7/3.

Proving that it is impossible to have less than 12 squares in the previous statement
results from the next table. The table gives the maximal length of binary words whose
factors have an exponent at most 7/3, for each s number of squares, 0 ≤ s ≤ 11.

s 0 1 2 3 4 5 6 7 8 9 10 11
ℓ(s) 3 5 8 12 14 18 24 30 37 43 83 116

The above table is constructed by generating all binary words containing at most
s squares and recording the the maximal length of such words for all s such that
0 ≤ s ≤ 11

A weakly square-free morphism on six letters: In order to prove the Theo-
rem 14, we consider a specific morphism, f1 defined from Σ∗

6 to itself by:

f1(a) = abac,
f1(b) = babd,
f1(c) = eabdf,
f1(d) = fbace,
f1(e) = bace,
f1(f) = abdf.

We prove below that the morphism is weakly square-free in the sense that f1 =
f∞
1 (a) is an infinite square-free word, that is, all its finite factors have an expo-
nent smaller than 2. However, f1 is not a square-free morphism since for example
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f1(cf) = eabdfabdf contains a square (abdf)2. This fact prevents us from using
characterisation of square-free morphisms, or equivalently of the fixed points of such
morphisms. As far as we know only an ad hoc proof is possible.

The set of codewords f1(a)’s (a ∈ Σ6) is a prefix code and therefore a uniquely-
decipherable code. Note also that any occurrence of abac in f1(w), for w ∈ Σ∗

6,
uniquely corresponds to an occurrence of a in w. The proof below relies on the fact
that not all doublets and triplets (words of length 2 and 3 respectively) occur in f1,
as the next statements show.

Lemma 5. The set of doublets occurring in f1 is

D = {ab, ac, ba, bd, cb, ce, da, df, ea, fb}.

Proof. Note that all letters of Σ6 appear in f1. Then doublets ab, ac, ba, bd, ce, df,
ea, fb appear in f1 because they appear in the images of one letter. The images of
these doublets generate two more doublets, cb and da, whose images do not create
new doublets.

Lemma 6. The set of triplets in f1 is

T = {aba, abd, acb, ace, bab, bac, bda, bdf, cba, cea, dab, dfb, eab, fba}.

Proof. Triplets appear in the images of a letter or of a doublet. Triplets found in
images of one letter are: aba, abd, ace, bab, bac, bdf, eab, fba. The images of
doublets occurring in f1, in set D of Lemma 5, contain the extra triplets: acb, bda,
cba, cea, dab, dfb.

To prove that the infinite word f1 is square-free we discard squares containing less
than four occurrences of the word f1(a) = abac.

The word abac is chosen because its occurrences in f1 correspond to f1(a) only,
so they are used to synchronise the parsing of the word according to the codewords
f1(a)’s.

Lemma 7. No square in f1 can contain less than four occurrences of abac.

Proof. Assume by contradiction that a square ww in f1 contains less than four occur-
rences of abac. Let x be the shortest word whose image by f1 contains ww.

Then x is a factor of f1 that belongs to the set a((Σ6 \ {a})
∗a)5. Since two

consecutive occurrences of a in f1 are separated by a string of length at most 4 (the
largest such string is indeed bdfb as a consequence of Lemma 5), the set is finite.

The square-freeness of all these factors has been checked via an elementary im-
plementation of the test, which proves the result.
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Table 4.1: Gaps of abac: words between consecutive occurrences of abac in f1. They
are images of gaps between consecutive occurrences of a.

f1(b) = babd 4
f1(cb) = eabdfbabd 9
f1(bd) = babdfbace 9
f1(ce) = eabdfbace 9
f1(bdfb) = babdfbaceabdfbabd 17

Proposition 6. No square in f1 can contain at least four occurrences of abac.

Proof. Let k be the maximal integer for which fk
1 (a) is square-free and let ww be

a square occurring in fk+1
1 (a) and containing at least 4 occurrences of abac. Dis-

tinguishing several cases according to the words between consecutive occurrences of
abac (see Table 4.1), we deduce that fk

1 (a) is not square-free, the contradiction.

The square ww can be written

v0(abac · · · abac)u1︸ ︷︷ ︸ v1(abac · · ·abac)u2︸ ︷︷ ︸

where v0, u1, v1, and u2 contain no occurrence of abac. The central part of w starting
and ending with abac is the image of a unique word U factor of fk

1 (a) due to the code
property:

f1(U) = v−1
0 wu−1

1 = v−1
1 wu−1

2 .

We split the proof into two parts according to whether abac occurs in u1v1 or not.

No abac in u1v1. We consider five cases according to the value of u1v1, the gap of
abac (see Table 4.1).

1. u1v1 = babd corresponds to f1(b) only. If either u1 or v1 is empty, then v0 or
u2 is f1(b), in either case we get bUbU or UbUb that are squares. Else v0 has
a suffix d so it belongs to f1(b), and again bUbU is a square.

2. u1v1 = eabdfbabd corresponds to f1(cb) only. An occurrence of cb always
belongs to f1(ab) therefore U has a prefix abd and a suffix aba, and the letter
after aba is c. If v1 is empty, u2 has a prefix eabdfbabd so it is f1(cb) and again
UcbUcb is a square. If v1 is not empty then v0 has a suffix d, suffix of f1(b),
therefore bUcbUc is a square.
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3. u1v1 = babdfbace corresponds to f1(bd). The word abda is a factor of f1(ba)
only so U has a prefix aba and a suffix ba. If |u1| = 0, v0 = babdfbace can only
be f1(bd) so bdUbdU is a square. Otherwise u2 must have a prefix b; since U
has a suffix ba the next letter after it is either b or c; as only f1(b) is prefixed
by b the letter is b so u2 has a prefix or is a prefix of f1(b), and we know that
bab is always followed by d thus UbdUbd is a square.

4. u1v1 = eabdfbace corresponds to f1(ce) only. If u1 is empty, v0 is f1(ce) so
ceUceU is a square. Otherwise, u2 has a prefix or is a prefix of f1(c); the next
letter after f1(c) is either b or e; (see Lemma 5); if it is b the right-most U has
a suffix aba but the left-most U has a suffix fba, which cannot be. Therefore
the letter after c is e and UceUce is a square.

5. u1v1 = babdfbaceabdfbabd. If |v1| > 12, v0 has a suffix f1(dfb) and the letter
before it is b, so bdfbUbdfbU is a square. If 0 < |v1| ≤ 12, then |u1| ≥ 5, so u2

has a prefix or is a prefix of f1(bd) so the next letter is either a or f. If it is a the
right-most U has a suffix ba but v0 is a suffix of or has a suffix f1(b); the letter
before it is either f1(c) or f1(f); if it is c then U has a prefix abd and bdfbabd

is from the concatenation of f1(c) and f1(b) or f1(dfb); in either case the left
occurrence of U will have ea as a suffix, a contradiction since fbUbdfbUbd and
UbdfbUbdfb are both squares.

An occurrence of abac in u1v1. Then the suffix of u1 is either aba, ab or a while
the respective prefix of v1 is c, ac or bac.

Note that c is followed either by b or e (Lemma 5) and that cb occurs only in
the image of ab. Then if the occurrence of abac is followed by b, the occurrence of
cb in v0 is preceded by aba, and then there is a square starting 1, 2 or 3 positions
before the occurrence of ww, which brings us back to the first case. Therefore, abac
is followed by e.

The occurrence of abace comes from f1(ac), and by Lemma 6 u1v1 contains an
occurrence of f1(bac). So, the occurrence of abace is preceded by d, and since da

occurs only in the image of ba, the occurrence of da in u2 is followed by bac, which
yields a square starting 1, 2 or 3 positions after the occurrence of ww. Again this
takes us back to the first case.

In all cases we deduce the existence of a square in fk
1 (a), which is a contradiction

with the definition of k. Therefore there is no square in f1 containing at least four
occurrences of abac.

The next corollary is a direct consequence of Lemma 7 and Proposition 6.
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ba cba bda

cea bdfba

Figure 4.1: Graph showing immediate successors of gaps in the word f1: a suffix of it
following an occurrence of a is the label of an infinite path.

Corollary 3. The infinite word f1 is square-free, or equivalently, the morphism f1 is
weakly square-free.

Binary translation: The second part of the proof of Theorem 14 consists in show-
ing that the special infinite square-free word on 6 letters introduced earlier can be
transformed into the desired binary word. This is done with a second morphism g7
from Σ∗

6 to B∗ defined by
g7(a) = 10011,
g7(b) = 01100,
g7(c) = 01001,
g7(d) = 10110,
g7(e) = 0110,
g7(f) = 1001.

Note that the codewords of g7 do not form a prefix code, nor a suffix code, nor
even a uniquely-decipherable code! We have for example f1(ae) = 10011 · 0110 =
1001 · 10110 = f1(fd). However, parsing the word g7(y) when y is a factor of f1 is
unique due to the absence of some doublets and triplets in f1 (see Lemmas 5 and 6).
For example fd does not occur, which induces the unique parsing of 100110110 as
10011 · 0110.

Proposition 7. The infinite word g7 = g7(f
∞
1 (a)) contains no factor of exponent

larger than 7/3. It contains only 12 squares 02, 12, (01)2, (10)2, (001)2, (010)2,
(011)2, (100)2, (101)2, (110)2, (01101001)2, (10010110)2. Words 0110110 and 1001001
are the only factors with an exponent larger than 2.

The proof is based on the fact that occurrences of 10011 in g7 identify occurrences
of a in f1 and on the unique parsing mentioned above. It proceeds by considering
several cases according to the gaps between consecutive occurrences of 10011 (see
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Table 4.2: Gaps between consecutive occurrences of 10011 in g7.

g7(b) = 01100 5
g7(cb) = 0100101100 10
g7(bd) = 0110010110 10
g7(ce) = 010010110 9
g7(bdfb) = 0110010110100101100 19

Table 4.2), associated with gaps between consecutive occurrences of a in f1, which
leads to path analyses in the graph of Figure 4.1.

Proof. We show that if g7 contains a square with at least two occurrences of 10011,
it corresponds to a square in f1, which cannot be since f1 is square-free (Corollary 3).

Let w2 be a potential square in g7. It is a factor of g7(f
k
1 (a)), for some integer k.

Since occurrences of 10011 correspond to g7(a), therefore w2 can be written in the
following form v0(g7(a) · · · g7(a))u1︸ ︷︷ ︸ v1(g7(a) · · · g7(a))v2︸ ︷︷ ︸. The central part of w is the

image of a unique square-free factor U of fk
1 (a) due to the unique parsing mentioned

above:
g7(U) = (g7(a) · · · g7(a)) = v−1

0 wu−1
1 = v−1

1 wu−1
2 .

We proceed through different cases as in the proof of Proposition 6. We are using
tries to demonstrate how we find a factor of f1 whose image by g7 contains w2. The
tries have at each branching part two possibilities according to Figure 4.1.

No g7(a) in u1v1.

1. u1v1 = 01100 corresponds to g7(b) only.

If |v1| > 1, then v0 belongs to g7(b), bUbU is a square. Else |u1| ≥ 4 so
v2 belongs to g7(b), it cannot belong to g7(e) since ae is not a factor of f1,
therefore UbUb is a square of f1.

2. u1v1 = 0110010110 corresponds to g7(bd).

v0 (g7(a) · · · g7(a))︸ ︷︷ ︸ g7(bd) (g7(a) · · · g7(a))︸ ︷︷ ︸ v2

the word abda is a factor of f1(ba) only, so U has a prefix abac and a suffix ba

(Note that U cannot be aba since ababdaba is not a factor of f1).

v0 (g7(abac) · · · g7(ba))︸ ︷︷ ︸ g7(bd) (g7(abac) · · · g7(ba))︸ ︷︷ ︸ v2
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If v2 comes from or has a prefix g7(b) then the letter after bab is always d so we
have the square UbdUbd. Then v2 is a prefix of or has a prefix g7(c), the LCP
of g7(c) and g7(b) is 01, so v0 has a suffix 10010110, which is a suffix of g7(bd)
or g7(ce). If v0 comes from g7(bd) then we have the square bdUbdU . So v0 is a
suffix of g7(ce)

g7(ce) (g7(abac) · · · g7(ba))︸ ︷︷ ︸ g7(bd) (g7(abac) · · · g7(ba))︸ ︷︷ ︸ g7(c).

cea ba

cba

bda baX

bdfba

bdaX

cea

ba XX

bdfba...

cea XX

bda ba

cba

bda baXX

bdfba

bdaXX

cea

ba X

bdfba...

cea X

The sign XX shows that the particular branch of the trie terminates because
either a square occurs or the sequence is not a factor of f1. The sign X on the
other hand represents the termination of a particular branch as a consequence of
the discontinuation of the corresponding branch in the other trie. If we continue
these tries we will have:

ce abac babd fbace abdf babd abac eabdf bace abac babd abac eabdf . . . ba︸ ︷︷ ︸

bd abac babd fbace abdf babd abac eabdf bace abac babd abac eabdf . . . ba︸ ︷︷ ︸c

which is the image of

eabdf bace abac . . . abac︸ ︷︷ ︸babd fbace abac . . . abac︸ ︷︷ ︸ e

itself image of
ce a . . . a︸ ︷︷ ︸bd a . . . a︸ ︷︷ ︸c
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so we have the same situation as at the starting point; but U is shorter in this
case, therefore if we continue this process we should have

ce abac babd fbace abdf babd abac babd fbace abdf bace a

but abdf bace is the image of fe that is not in D (Lemma 5).

3. u1v1 = 0100101100 corresponds to g7(cb).

The word acba is a factor of f1(ab) only, so U has a prefix abd and a suffix aba:

v0 (g7(abd) . . . g7(aba))︸ ︷︷ ︸ g7(cb) (g7(abd) . . . g7(aba))︸ ︷︷ ︸ v2

The word v2 comes from or has a prefix g7(c). If the letter after it is b, we have
the square UcbUcb.

Otherwise v2 comes from or has a prefix g7(ce). If v0 comes from or has a suffix
g7(b) then we have the square bUcbUc.

Therefore the letter before U is e preceded by c, i.e. the string before the left
U is ce:

g7(ce) (g7(abd) . . . g7(aba))︸ ︷︷ ︸ g7(cb) (g7(abd) . . . g7(aba))︸ ︷︷ ︸ g7(ce).

cea bdfba

bda X

cea

ba

cba

bda...

bdfbaX

ceaX

bdfbaXX

cba bdfba

bda XX

cea

ba

cba

bda...

bdfbaXX

ceaXX

bdfbaX

Now we have the same situation as in the previous case

g7(f1(ce)) (g7(f1(abac)) . . . g7(f1(ba)))︸ ︷︷ ︸ g7(f1(bd)) (g7(f1(abac)) . . . g7(f1(ba)))︸ ︷︷ ︸ g7(f1(c)).
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4. u1v1 = 010010110 corresponds to g7(ce) only.

Before c is always ba (Lemma 6) and after e is ab (Lemma 6), so ab is a prefix
of U and ba is a suffix of U :

v0 (g7(ab) . . . g7(ba))︸ ︷︷ ︸ g7(ce) (g7(ab) . . . g7(ba))︸ ︷︷ ︸ v2.

(i): v2 belongs to g7(cb) since we cannot have UceUce and the letter after c is
b or e (Lemma 5):

v0 (g7(ab) . . . g7(ba))︸ ︷︷ ︸ g7(ce) (g7(ab) . . . g7(ba))︸ ︷︷ ︸ g7(cb)

The letter before bacb is a so:

v0 (g7(ab) . . . g7(aba))︸ ︷︷ ︸ g7(ce) (g7(ab) . . . g7(aba))︸ ︷︷ ︸ g7(cb).

NOTE: U is not aba since abaceabacb is not a factor of fk
1 (a).

Now abace is a prefix of the image of ac so U has a prefix abdf and the word
before it is either ce or b; the first choice gives the square ceUceU and the
second choice:

g7(b) (g7(abdf) . . . g7(aba))︸ ︷︷ ︸ g7(ce) (g7(abdf) . . . g7(aba))︸ ︷︷ ︸ g7(cb).

ba bdfba

bda XX

cea

ba

cba

bda ba

cbaX

cea

baXX

bdfba...bdfbaXX

ceaXX

bdfbaX

cea bdfba

bda X

cea

ba

cba

bda ba

cbaXX

cea

baX

bdfba...bdfbaX

ceaX

bdfbaXX
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Now if we continue the above tries we get:

b abd fbace abac babd abac eabdf babd abac babd fbace abdf ba . . . ba︸ ︷︷ ︸
ce abdf bace abac babd abac eabdf babd abac babd fbace abdf ba . . . ba︸ ︷︷ ︸cb

which is the image of

bd abac babd fbace abdf . . . ba︸ ︷︷ ︸ce abac babd fbace abdf . . . ba︸ ︷︷ ︸b.

This is the same situation as the next case and we will see that after going one
step back it brings us back to this case again. Now we are exactly in the same
situation as at the beginning except that the length of the word X = abdf . . . a
is shorter than U . Repeating this process enough times we should see that

babd fbace abac babd abac eabdf bace abac babd aba

which is the image of bdabaceaba is not a factor of fk
1 (a).

(ii): v2 belongs to g7(b) (the LCP of g7(c) and g7(b) is 01) so v0 must have
a suffix 0010110, which belongs to g7(bd) because if it belongs to g7(ce) then
ceUceU is a square.

g7(bd) (g7(ab) . . . g7(ba))︸ ︷︷ ︸ g7(ce) (g7(ab) . . . g7(ba))︸ ︷︷ ︸ g7(b).

bda ba

cba

bda baXX

bdfba

bdaX

cea...

cea

baX

bdfbaXX

cea ba

cba

bda baX

bdfba

bdaXX

cea...

cea

baXX

bdfbaXX
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Continuing this trie we have

bd abac babd fbace a . . . ba︸ ︷︷ ︸ce abac babd fbace a . . . ba︸ ︷︷ ︸bd.

This is factor of f1(b abdf . . . a︸ ︷︷ ︸ce abdf . . . a︸ ︷︷ ︸cb) which is the previous case.

5. u1v1 = 0110010110100101100 corresponds to g7(bdfb) only. This case is dealt
with by the same method.

u0 (g7(a) . . . g7(a))︸ ︷︷ ︸ g7(bdfb) (g7(a) . . . g7(a))︸ ︷︷ ︸ v2.

If v2 belongs to g7(c), the LCP of g7(c) and g7(b) is 01 so u0 must have a suffix
10010110100101100, therefore u0 belongs to g7(bdfb). But bdfbUbdfbU is a
square and a factor of fk

1 (a); a contradiction, so v2 belongs to or has a prefix
g7(b). We have two choices here.

(i): the next word after the right occurrence of U is ba. The LCP of g7(bd)
and g7(ba) is 10, u0 has suffix of 110100101100, so it either belongs to g7(dfb)
or g7(acb). The first case gives that dbfUbdbfUb is a square and a factor of
fk
1 (a), a contradiction. So u0 belongs to g7(acb):

g7(acb) (g7(abda) . . . g7(a))︸ ︷︷ ︸ g7(bdf b) (g7(abda) . . . g7(a))︸ ︷︷ ︸ g7(ba).

Prefixes and suffixes of U are determined only by looking at D and T .

cba bda ba

cba XX

cea

baX

bdfba

bdaX

cea...

bdfba bda ba

cba X

cea

baX

bdfba

bdaXX

cea...

We have:
abac babd abac eabdf bace . . . abac︸ ︷︷ ︸babd fbace

abdf babd abac eabdf bace . . . abac︸ ︷︷ ︸ babd fbace abac
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which is the image of

ab ace . . . a︸ ︷︷ ︸bdfb ace . . . a︸ ︷︷ ︸bda.

Now this is the next case so if we go back enough steps we should see that the
length of U decreases and at the end we get

ac babd abac eabdf babd abac eaba

but this is not a factor of fk
1 (a), a contradiction.

(ii): the word after U is bd. Now here the only possible letter after abd is a since
if it is f it is a prefix of fb so we have UbdfbUbdfb, a contradiction. As the
LCP of g7(bdfb) and g7(bda) is 01100101101001 u0 must have a suffix 01100

so it can belong to g7(ab) or g7(acb).

(I):
g7(ab) (g7(a) . . . g7(a))︸ ︷︷ ︸ g7(bdfb) (g7(a) . . . g7(a))︸ ︷︷ ︸ g7(bda).

Only using D, T and the Figure 4.1 we can continue building U ,

g7(ab) (g7(ace) . . . g7(ba))︸ ︷︷ ︸ g7(bdfb) (g7(acea) . . . g7(ba))︸ ︷︷ ︸ g7(bda).

Continuing further we get:

g7(abac eabdf babd abac . . . abac︸ ︷︷ ︸ babd fbace abdf babd abac . . . abac︸ ︷︷ ︸babda).

This is the image of

g7(f1(acb a . . . a︸ ︷︷ ︸bdfb a . . . a︸ ︷︷ ︸ba))

and we are back to the case above.

(II):
g7(acb) (g7(a) . . . g7(a))︸ ︷︷ ︸ g7(bdfb) (g7(a) . . . g7(a))︸ ︷︷ ︸ g7(bda).

Using the same method we build the word U :

ac b abd . . . ba︸ ︷︷ ︸bd fb ace . . . ba︸ ︷︷ ︸bd a.

Here we cannot go further as U cannot have abd nor ace as prefixes at the same
time.
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An occurrence of g7(a) in u1v1: Looking at Figure 4.1, the images of the concate-
nation of two connected nodes (distance 1 arrow) are the possibilities for u1v1g7(a),
but note that the second period of the square must start within g7(a), starting point
of the arrow, otherwise it is one of the cases above. If the lengths of both nodes are
larger than 2 then by unique parsing we are bound to have a square in fk

1 (a) and get
a contradiction. So we have to consider only the four cases where one of the nodes is
ba:

1. u1v1 = g7(bacb) = 01100100110100101100, so v2 must have a prefix g7(b) and
u0 a suffix of g7(cb), before cb is always a, so acbUbacbUb is a square in fk

1 (a).

2. u1v1 = g7(bace) = 0110010011010010110, so v2 must have a prefix g7(b) and
u0 a suffix g7(ce), before ce is always a, so aceUbaceUb is a square in fk

1 (a).

3. u1v1 = g7(ceab) = 0100101101001101100, so v2 must have a prefix of g7(ce)
and u0 a suffix of g7(b), after ce is always a, so bUceabUcea is a square in fk

1 (a).

4. u1v1 = g7(bdab) = 01100101101001101100, so using tries as before shows that
after enough backward iteration we should have

fbace abdf babd abac babd abac eabdf babd abac babd

which contains a square.

In all cases the conclusion is that we get a square in fk
1 (a), a contradiction with

the definition of k. Here, we showed there is no square in g7 containing at least
one 10011 Looking at the factors of g7 with no occurrences of 10011 shows the only
squares in g7 are the ones listed in Proposition 7.

Theorem 14 follows immediately from Proposition 7.

2 Finite-repetition threshold for k=3

The longest 7/4-free ternary word has length 38. Dejean’s showed that repetition
threshold for ternary words is 7/4 using the following 19-uniform morphism:

D(0) = 0120212012102120210,
D(1) = 1201020120210201021,
D(2) = 2012101201021012102,

then D∞(0) is (7/4)+-free [32]. However, since it is a pure morphic word, it contains
infinitely many 7/4-powers.
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Computation shows that the maximal length of (7/4)+-free ternary word with only
one 7/4-repetition is 102. Here, we show this length is infinite with two 7/4-powers.

Theorem 15. The finite-repetition threshold of the 3-letter alphabet is its Dejean’s
repetition threshold, that is, 7/4.
The smallest number of 7/4-powers occurring in a 7/4+-power free infinite ternary
word is 2.

Since the repetition threshold for a 3-letter alphabet is 7/4, to prove this ratio is
also its finite-repetition threshold it is sufficient to show (contrary to the binary case)
that there exists a 7/4+-free infinite ternary word with finitely many 7/4-powers. To
do so, we use the fact that the repetition threshold of 4-letter alphabets is 7/5 and
provide a translation morphism from 4 letters to 3 letters with suitable conditions.

Proposition 8. The following 160-uniform morphism g8 maps any infinite 7/5+-free
word s on 4-letter alphabet to infinite 7/4+-free ternary word containing only two 7/4-
powers, the fewest possible. The 7/4-powers occurring g8(s) are {(1020)

7/4, (2101)7/4}.

g8(a) = 010210120210201021012102012021012010212012102012021012102

120102101210201021201210201202101210201021012021020121021201021

0121020120210120102120121020102101210212,
g8(b) = 010210120210201021012102012021012010212012102012021012102

010210120210201210212010210121020102120121020120210121021201021

0121020120210120102120121020102101210212,
g8(c) = 010210120210201021012102012021012010212012102010210120210

201210212010210121020102120121020120210121020102101202102010212

0121020120210120102120121020102101210212,
g8(d) = 010210120210201021012102012021012010212012102010210120210

201021201210201202101210201021012021020121021201021012102010212

0121020120210120102120121020102101210212.

Another presentation of the morphism g8 is:

g8(a) = uv02120121020120210121020102101202102012102120102101yz,
g8(b) = uv21021201021012102010212012102012021012102010210120yz,
g8(c) = uw01021012021020121021201021012102010212012102012021xz,
g8(d) = uw12010210121020102120121020120210121020102101202102xz,

where u, v, w, x, y and z are:
u = 01021012021020102101210201202101201021201210201,
v = 2021012102, w = 0210120210201, x = 2102010212, y = 0121021201021,
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z = 0121020120210120102120121020102101210212.
The word u is the longest common prefix of the codewords, |u| = 47, and z is their
longest common suffix, |z| = 40.

The codewords of the above morphisms were determined by generating long ternary
words and partitioning and testing whether they satisfy and preserve the properties
required. This has been achieved by computer programming.

Direct proof of Proposition 8: Let us assume that g8(s) contains a non-extensible
repetition, excluding the two 7/4-powers 0121012 and 2010201, with exponent at
least 7/4. The repetition can be written pq where |p| is the period. Then |pq|/|p| ≥
7/4. A simple computation verifies that no image of a 7/5+-free word with length at
most 3 contains such repetition. Therefore the repetition is long and occurs in the
image by g8 of a word of length at least 4.

We consider two cases.

• Case |p| ≤ |q|. The word pq is of the form

pq =
︷ ︸︸ ︷
u1 · · ·︸︷︷︸ v1

︷ ︸︸ ︷
u1 · · ·︸︷︷︸ v1 · · ·

where v1u1 is a codeword. Indeed pq starts with the square pp of the form

︷ ︸︸ ︷
u1g8(s

′)v1
︷ ︸︸ ︷
u1g8(s

′)v1

where s′ ∈ {a, b, c, d}∗.

Note that s′ cannot be the empty word because pq does not occur in the image
of a triplet.

Let α ∈ {a, b, c, d} be such that g8(α) = v1u1. Therefore s′αs′ is a factor of s.
The letter occurring before s′ in s and the letter occurring after it must differ
from α to avoid the squares αs′αs′ or s′αs′α (since s is 7/5+-power free).

Then u1 is not longer than the longest common prefix between two different
codewords, that is, |u1| ≤ |uw| = 60. Symmetrically, v1 is not longer than the
longest common suffix of two different codewords, that is, |v1| ≤ |yz| = 53. But
then |v1u1| ≤ 113 and cannot be a complete codeword, a contradiction.

• Case |p| > |q|. The word pq is of the form

pq =
︷ ︸︸ ︷
u1 · · ·︸︷︷︸ v1 · · ·

︷ ︸︸ ︷
u1 · · ·︸︷︷︸ v1

Let a0 be the letter before p and b1 the letter after q, then a0pqb1 is of the form

a0 u1g8(s
′)v1︸ ︷︷ ︸a1 · · · b0 u1g8(s

′)v1︸ ︷︷ ︸ b1
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where s′ ∈ {a, b, c, d}∗, a0, a1, b0, b1 ∈ {0, 1, 2} and a0 6= b0 and a1 6= b1, because
pq is non-extensible. It rewrites as

a0u1g8(s
′)g8(s

′′)g8(s
′)v1b1

where g8(s
′′) = v1q

−1pu1 because the morphism is synchronizing (no codeword
occurs in the concatenation of two codewords). Therefore g8(s

′)g8(s
′′)g8(s

′) is a
factor of g8(s) thus s

′s′′s′ is a factor of s and since s is 7/5+-free we get

|s′s′′s′|

|s′s′′|
≤

7

5

and
3|s′| ≤ 2|s′′|

and eventually

3|g8(s
′)| ≤ 2|g8(s

′′)|
✞

✝

☎

✆4.1

because the morphism g8 is uniform.

Furthermore pq = u1g8(s
′)g8(s

′′)g8(s
′)v1 and p = u1g8(s

′)g8(s
′′)u1

−1 so its expo-
nent satisfies

|u1g8(s
′)g8(s

′′)g8(s
′)v1|

|g8(s′)g8(s′′)|
≥

7

4

which rewrites as

|g8(s
′)|+ 4|u1v1| ≥ 3|g8(s

′′)|
✞

✝

☎

✆4.2

Using Equations 4.1 and 4.2 we get

9|g8(s
′)| ≤ 6|g8(s

′′)|
≤ 2(|g8(s

′)|+ 4|u1v1|)

and then

|g8(s
′)| ≤

8

7
|u1v1|.

But since |u1v1| ≤ 113 as in the first case, this implies that s′ is empty. Therefore
the repetition pq is a factor of the image of a triplet, a contradiction.

This completes the direct proof of Proposition 8.

48
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Proof based on Ochem’s result:

Lemma 8 ([50]). Let α, β ∈ Q, 1 < α < β < 2 and p ∈ N∗. Let h : Σ∗
s → Σ∗

e

be synchronizing q-uniform morphism (with q ≥ 1). If h(w) is (β+, p)-free for every

α+-free word w such that |w| < max{ 2β
β−α

, 2(q−1)(2β−1)
q(β−1)

}, then h(t) is (β+, p)-free for

every (finite or infinite) word α+-free word t.

Here we split the proof into two parts, first we show the g8(s) is 7/4+-free then
we show the only 7/4-powers are the ones mentioned above.

Let β = 26/15 and p = 5, here α = 7/5 and q = 160. Therefore, we can
show that the morphism is (26/15+, 5)-free if g8(w) is (26/15+, 5)-free for all |w| <

max{ 2β
β−α

, 2(q−1)(2β−1)
q(β−1)

}, |w| < 11, this set is finite and a simple computation can verify
this claim.
since every (7/4+, 5)- repetition is also (26/15+, 5) then we can claim the morphism
is (7/4+, 5)-free. So the only possible 7/4-repetitions with period less that 5 are:
{(0121)7/4, (0212)7/4, (1020)7/4, (1202)7/4, (2010)7/4, (2101)7/4}. Any of which must be
either a factor of a codeword or a factor of the image of a doublet, it immediately
concludes the existence of only {(1020)7/4, (2101)7/4} as factors of g8(s).

2.1 Infinite ternary word containing one square

If we increase the threshold to e < 2, the maximal length of words containing only one
e-power stays at 102 . However, if we relax the maximal exponent constraint further,
it can be shown that there exists an infinite ternary word in which occur only one
square, namely 00 up to a permutation of letters, and no e-power with 7/4 ≤ e < 2.

Proposition 9. The following 12-uniform morphism, g9, is such that for any 7/5+-
free word s on 4-letter alphabet g9(s) is overlap-free ternary word with only one square,
00 and no e-power with 7/4 ≤ e < 2

g9(a) = 002012021012,
g9(b) = 002010210012,
g9(c) = 002102012001,
g9(d) = 002120102001.

Proof. The proof is based on Ochem’s result (Lemma 8). Let β = 17/10 and p = 2 ,
here α = 7/5 and q = 12 therefore we can show that the morphism is (17/10+, 2)-free

if g9(w) is (17/10+, 2)-free for all |w| <max{ 2β
β−α

, 2(q−1)(2β−1)
q(β−1)

}, |w| < 12, this set is
finite and a simple computation can verify this claim.
So the only possible 17/10+-repetitions with period less that 2 have one of the fol-
lowings as a prefix:
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{00, 11, 22}, any of which must be either a factor of a codeword or a factor of the
image of a doublet, it immediately concludes the existence of only 00 as a factor of
g9(s).

3 Finite-repetition threshold for k=4

Pansiot proved that the repetition threshold for 4-letter alphabet is 7/5. In order
to prove the result, Pansiot used a construction that codes ak−1

k−2
-free word over the

alphabet Σk into a binary word. Let k ≥ 3 and w be a k−1
k−2

-free word over Σk, of length
at least k−1. Then every factor of length k−1 consists of k−1 different letters. The
Pansiot code of w is the binary word Pk(w) such that for all i ∈ {1, ..., |w| − k + 1}
(for all i ≥ 1 if w is infinite):

Pk(w)[i] =

{
0 w[i+ k − 1] = w[i]

1 w[i+ k − 1] /∈ {w[i], ..., w[i+ k − 2]}

Note that w is uniquely defined by Pk(w) and w[1..k − 1]. One can define an
inverse operation: for a binary word w, Mk(w) is the word on the alphabet Σk such
that:

Mk(w)[i] =





i i < k

Mk(w)[i− k + 1] i ≥ k and w[i− k + 1] = 0

α otherwise

where {α} = Σk \{Mk(w)[i−k+1], ..., Mk(w)[i−1]}. Note that if w[i] = i for all i < k,
then Mk(Pk(w)) = w.

We shall denote by Sk the symmetric group on k elements, therefore the elements
of this set are the permutations of the set Σk = {1, 2, ..., k}.

Let Ψ : Σ∗ → Sk be a morphism. We identify sometimes the repetition by (p, e),
where p is non empty, and e is a prefix of pe. A repetition (p, e) in w over the alphabet
Σk is a short repetition if |e| < k − 1, otherwise it is a kernel repetition. A repetition
(p, e) is a Ψ-kernel repetition if p ∈ ker(Ψ).

Let ϕ : {0, 1} → Sk be the morphism such that ϕ(0) = (1...k − 1) and ϕ(1) =
(1...k). The following Lemma by Moulin-Ollagnier gives a strong relation between
kernel repetitions in a word on a k-letter alphabet and ϕ-kernel repetitions in its
Pansiot code.

Lemma 9 ([49]). Let w be a k−1
k−2

-free word w on a k-letter alphabet. Then w has
a kernel-repetition (p, e) if and only if Pk(w) has a ϕ-kernel-repetition (p′, e′) with
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|p′| = |p|, p′e′ = Pk(pe) and |e
′| = |e′| − k + 1.

Since the repetition threshold for 4-letter alphabet is 7/5, it suffices to show that
there exists a 7/5+-free infinite word on Σ4 with finitely many 7/5-powers. There are
two proofs of Dejean’s conjecture for k = 4, by Pansiot [53] and Rao [56]. In both
cases the number of 7

5
-powers contained in the infinite words is 24. This proves that

the finite-repetition threshold of 4-letters is 7
5
. Here, we prove the following:

Theorem 16. The finite-repetition threshold of 4-letter alphabets is 7
5
and the mini-

mal number of 7
5
-powers is 2.

A computer check showed that a word on a 4-letter alphabet for which the maximal
exponent of factors is 7/5 and that contains at most one 7/5-power has maximal length

230. We give a construction of an infinite 7
5

+
-free word with only two 7

5
-powers,

consequently we prove Theorem 16.

Let:
f2(a) = abc,
f2(b) = cda,
f2(c) = adc,
f2(d) = cba.

g10(a) = aacbbaaccbaabcabc,
g10(b) = aacbacbaabbcaabbc,
g10(c) = cbaaccbbaccabcabc,
g10(d) = aacbaccaabbcaabbc.

h4(a) = 101101010110110101101101010110101011011010101101101010110101

011011010101101101010110101011011010101

h4(b) = 101101010110110101101101010110110101011010101101101010110110

101011010101101101010110110101011010101

h4(c) = 101101010110110101101101010110110101011011010101101010110110

101011011010101101010110110101011011010

Theorem 17. w0 = M4(h4(g10(f
∞
2 (a)))) is 7/5+-free infinite and it contains only

two 7
5
-powers: (3421432412, 3421) and (1423412432, 1423).

A computer check shows that the Pansiot code of every infinite Dejean word with
at most two limit repetitions( repetitions of exponent repetitive threshold) contains a
h4(x) as factor, for a x ∈ {a, b, c}, Moreover, every Pansiot code of an infinite Dejean
word with at most two limit repetitions starting with a h4(x) (for x ∈ {a, b, c}) must
be followed by a h4(y), for a y ∈ {a, b, c}. Thus the morphism h4 in our construction
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is unavoidable, i.e. for every Dejean word w which proves Theorem 16, P4(w) must
be the image by h4 of a ternary word w′.

From now on, we say that a repetition (p, e) is forbidden if its exponent is
greater that rk, or if it is a limit repetition different from (3421432412, 3421) and
(1423412432, 1423). Thus a ϕ-kernel repetition in a Pansiot code is forbidden if
|pe|+k−1

|p|
≥ rk. A computer check showed that w0 has no small forbidden repetition.

We show now that w1 = h4(g10(f
∞
2 (a))) has no forbidden ϕ-kernel repetition. The

following properties come from simple checks:

• f2 is 3-uniform, g10 is 17-uniform and h4 is 99-uniform. Thus g10 ◦ h4 is 1683-
uniform.

• f2, g10, h4 and g10 ◦ h4 are synchronizing.

• The longest common prefix in {g10 ◦ h4(a), g10 ◦ h4(b), g10 ◦ h4(c), g10 ◦ h4(d)}
has size 635 and the longest common suffix has size 990.

The following proposition is easily checked by computer:

Fact 6. ϕ(h4(x)) = (13) for every x ∈ {a, b, c}, thus ϕ(h4(g10(x)) = (13) and
ϕ(h4(g10(f2(x))) = (13) for every x ∈ {a, b, c, d}.

Let ϕ′ : {0, 1, 2, 3}∗→ S4 such that ϕ′(u) = (13)|u|. Note that ϕ′(u) = ϕ(h4(g10(u)) =
ϕ(h4(g10(f2(u)))) since f2 and g10 are uniform and of odd size. Thus (p, q) is a ϕ′-
kernel repetition if (p, q) is a repetition, and |p| is even. Applying Lemma 9, we
get:

Corollary 4. Let (p0, e0) be a repetition in w0. If |e0| ≥ 3, then w1 = h4(g10(f
∞
2 (a)))

has a ϕ-kernel-repetition (p1, e1), with |e1| = |e0| − 3.

Lemma 10. Let (p1, e1) be a ϕ-kernel-repetition of w1 = h4(g10(f
∞
2 (a))). If |e1| ≥

3365, then w2 = f∞
2 (a) has a ϕ′-kernel-repetition (p2, e2) with |e2| ≥

⌈
|e1|−1625

1683

⌉
and

|p1| = 1683 · |p2|.

Proof. Suppose w.l.o.g. that (p1, e1) is a maximal repetition, i.e. there is an oc-
currence of p1e1 in w1 which cannot be extended to the left or to the right without
loosing the property of being a repetition with the same period. If |e1| ≥ 3365, either
g10 ◦h4(a), g10 ◦h4(b) or g10 ◦h4(c) appear as a factor in e1. Since g10 ◦h4 is synchro-
nizing and 1683-uniform, |p1| is a multiple of 1683. Let |p1| = 1683× k. Then there
is a factor u = a1 . . . al in w2 such that g10 ◦ h4(u) = vp1e1v

′, v is a proper prefix of
g10 ◦h4(a1) and v′ is a proper suffix of al. Since (p1, e1) is a repetition of size k×1683,
for every k < i < l, ai = ai−k. Since p1e1 is maximal on the left, if |v| < 693, then
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a1 = ak, and since p1e1 is maximal on the right, if |v′| < 1048, then al = al−k. If
a1 6= ak and al 6= al−k, then (a2 . . . ak, ak+1 . . . al−1) is a repetition of w2 of period k,

and l − k − 1 ≥
⌈
|e1|−1625

1683

⌉
. If a1 = ak and al 6= al−k, then (a1 . . . ak−1, ak . . . al−1)

is a repetition of w2 of period k, and l − k ≥
⌈
|e1|−635
1683

⌉
. If a1 6= ak and al = al−k,

then (a2 . . . ak, ak+1 . . . al) is a repetition of w2 of period k, and l − k ≥
⌈
|e1|−990
1683

⌉
. If

a1 = ak and al = al−k, then (a1 . . . ak−1, ak . . . al) is a repetition of w2 of period k, and

l − k + 1 ≥
⌈

|e1|
1683

⌉
. In all cases, w2 has a repetition (p2, e2) of period |p2| = k = |p1|

1683

and with |e2| ≥
⌈
|e1|−1625

1683

⌉
.

The proof of the following Lemma is also similar, and is omitted.

Lemma 11. If (p2, e2) is a ϕ′-kernel repetition of w2 = f∞
2 (a) with |e2| ≥ 5, then w2

has a ϕ′-kernel-repetition (p′2, e
′
2) with |e

′
2| ≥

⌈
|e2|−2

3

⌉
and |p2| = 3 · |p′2|.

Lemma 12. Suppose that w2 has a ϕ′-kernel-repetition (p2, e2) with |e2| ≥ 5 and
|e2|+1
|p2|

≥ 2
5
. Then there exists a (p′2, e

′
2) ϕ′-kernel-repetition with |p2| = 3 · |p′2| and

|e′
2
|+1

|p′
2
|
≥ 2

5
.

Proof. By Lemma 11,

2

5
≤
|e2|+ 1

|p2|
≤

3 · |e′2|+ 3

3 · |p′2|
=
|e′2|+ 1

|p′2|
.

One can check by computer that:

Fact 7. There is no ϕ′-kernel-repetition (p2, e2) with 2 ≤ |e2| < 5 and |e2|+1
|p2|
≥ 2

5
in

w2.

Thus by Lemma 12:

Corollary 5. There is no ϕ′-kernel-repetition (p2, e2) with 2 ≤ |e2| and
|e2|+1
|p2|
≥ 2

5
in

w2.

Lemma 13. w1 has no ϕ-kernel-repetition (p1, e1) with |e1| ≥ 3 · 1683 and |e1|
|p1|
≥ 2

5
.

Proof. Suppose that w1 has a ϕ-kernel-repetition (p1, e1) with |e1| ≥ 3 · 1683 and
|e1|
|p1|
≥ 2

5
. By Lemma 10, w2 has a ϕ′-kernel repetition (p2, e2) with |e2| ≥ 2 and

2

5
≤
|e1|

|p1|
≤

1683 · |e2|+ 1625

1683 · |p2|
<
|e2|+ 1

|p2|
.

By Corollary 5, w2 has no such ϕ′-kernel repetition. Contradiction.
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To show that w0 has no forbidden kernel repetition, it suffice to show that w1 has
no forbidden ϕ-kernel repetition (p1, e1) with |p1| ≤ 12622, which has been done by a
computer check.

4 Finite-repetition threshold for k=5

The only proof of Dejean’s conjecture for k = 5 is by Moulin-Ollagnier [49]:

hm(0) = 010101101101010110110

hm(1) = 101010101101101101101

then M5(hm
∞(0)) is 5

4

+
-free, however it contains 360 of such powers, of which a third

have period 4, a third period 12 and the remaining period 44. This proves that the
finite-repetition threshold of 5-letter alphabets is 5

4
.

This section is devoted to the minimum number of limit repetitions in a Dejean
word on k-letters. We construct a Dejean word with only 60 limit repetitions, and
we conjecture that the minimal number of limit repetitions in a Dejean word is 45.
Similarly to the proof of Theorem 16, here we are looking for a morphic word w1

such that w0 = M5(w1) has the desired property. This can be done by the following
construction:

f3(a) = aaabbababbaaabbaabb

f3(b) = aabbbaababaabbbaabb

g11(a) = aaaababbbbababaaaababbb

g11(b) = bbbbabaaaabababbbbabaaa

h5(a) = 110110101010110110101010110110101011011010101101101101010110

11011011010101011011010101101101010110110110101010110

h5(b) = 110110101011011010101101101010101101101101101010110110110101

01101101010110110101010110110101010110110110101010110

Theorem 18. w0 = M5(h5(g11(f
∞
3 (a)))) is 5

4

+
-free and it contains only 60 of such

powers, all of which have period 4.

The following properties will help the proof of the Theorem 18:

• f3 is 19-uniform, g11 is 29-uniform and h5 is 113-uniform. Thus g11 ◦ h5 is
3277-uniform.

• f3, g11, h5 and g11 ◦ h5 are synchronizing.

• The longest common prefix in {g11◦h5(a), g11◦h5(b)} has size 11 and the longest
common suffix has size 24.
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• ϕ(h5(x)) = (12)(354) for every x ∈ {a, b}, thus ϕ(h5(g11(x)) = (12)(345) and
ϕ(h5(g11(f3(x))) = (12)(345) for every x ∈ {a, b}.

Let ϕ′ : {0, 1, 2, 3, 4}∗ → S5 such that ϕ′(u) = [(12)(345)]|u|. Thus (p, q) is a
ϕ′-kernel repetition if and only if (p, q) is a repetition, and |p| is divisible by 6.

Lemma 14. Let (p1, e1) be a ϕ-kernel-repetition of w1 = h5(g11(f
∞
3 (a))). If |e1| ≥

6553, then w2 = f∞
3 (a) has a ϕ′-kernel-repetition (p2, e2) with |e2| ≥

⌈
|e1|−34
3277

⌉
and

|p1| = 3277 · |p2|.

Lemma 15. If |e2| ≥ 37, then w2 = f∞
3 (a) has a ϕ′-kernel-repetition (p′2, e

′
2) with

|e′2| ≥
⌈
|e2|−8
19

⌉
and |p2| = 19 · |p′2|.

Here we adapt the same approach as the Section 3 (Lemma 12 and Proposition 7)
with cooperating the size of the morphism f and the exponent 5/4, the next Corollary
follows:

Corollary 6. There is no ϕ′-kernel-repetition (p2, e2) with 6 ≤ |e2| and
|e2|+1
|p2|
≥ 1

4
in

w2.

Lemma 16. w1 has no ϕ-kernel-repetition (p1, e1) with |e1| ≥ 6 · 3277 and |e1|
|p1|
≥ 1

4
.

The proof is a direct consequence of Lemma 14 and 15, therefore it is sufficient to
check that w0 has no forbidden repetition (p0, e0) with |p0| ≤ (6 · 3277 · 4) = 78648.
This claim can be verified by a basic computation which also reveals that there are
only 60 limit repetitions (p0, e0) in w0, and for every limit repetition, |e0| = 1.

The following facts have been verified by computer check.

Fact 8. • A Dejean word on a 5-letter alphabet that contains at most 44 limit
repetitions has size at most 4648.

• A Dejean word on a 5-letter alphabet that contains at most 45 limit repetitions,
and such that every limit repetition has period 4, has size at most 7330.

Still based on computer checks, we conjecture the following:

Conjecture 1. • There exists an infinite Dejean word on a 5-letter alphabet with
only 45 limit repetitions.

• There exists an infinite Dejean word on a 5-letter alphabet with only 46 limit
repetitions, and such that every limit repetition has period 4.
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5 Finite-repetition threshold for k > 5

Looking at the existing proofs for Dejean’s conjecture shows in fact FRt(k) = rk for
k ≥ 6, that is, the known constructions of Dejean’s words for k ≥ 5 have finitely
many limit repetitions.

• 6 ≤ k ≤ 11 (cases are by Moulin-Ollagnier [49]), and 12 ≤ k ≤ 38 (cases are
by Rao [56]). In both proofs, authors show that if the Pansiot’s code of the
constructed word w contains a ϕ-kernel repetition (p, e) with e markable, then

the word has a ϕ-kernel repetition of smaller period (p′, e′) with |e|
|p|
≤ |e′|

|p′|
([49,

Section 3.5], [56, Corollary 9]). By Lemma 9, (p, e) (resp. (p′, e′)) corresponds
to a kernel repetition of period |p| and size |pe|+ k− 1 in w (resp. |p′| and size

|p′e′|+k−1). Since |pe|+k−1
|p|

< |p′e′|+k−1
|p′|

≤ RT (t), (p′, e′) does not correspond to
a limit repetition. Thus w cannot have arbitrary long limit kernel repetitions,
and we have FRt(k) = rk. Moreover, a simple computer check reveals that in
each of these cases, all limit repetitions have period k − 1, and thus there are
at most k! of limit repetitions.

• k > 38. Theses cases are done by Carpi. A close inspection of [19, Proposition
8.2] shows this proposition remains valid if the factor is a long enough limit rep-
etition. Thus Carpi’s construction cannot have arbitrary long limit repetitions,
and we have FRt(k) = rk.

6 Conclusion

In this chapter, we introduced the notion of finite-repetition threshold. This notion
is a bound the maximal exponent of infinite words on k-letter alphabet containing
bounded number of rk-powers, where rk is Dejean’s repetitive threshold.

For all k we studied this threshold, and concluded that FRt(k) = rk for k > 2. For
the case where k = 2 this threshold is 7/3, we presented a new proof of this result.

With this constraint comes a function Rn(n), the minimum number of rk-powers
(limit repetitions) in infinite words on k letters complying with FRt(k).

In this chapter we showed that Rn(2) = 12, Rn(3) = 2, Rn(4) = 2 and Rn(5) ≤
60. We conjecture Rn(5) = 45.

We finish this chapter by two straightforward open questions.

• Is it possible to construct Dejean’s words such that the only allowed limit rep-
etitions have period k − 1, for every k > 38 ? Maybe a closer inspection of
Carpi’s construction will give the result.
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• Can we find a lower or an upper bound for Rn(k) when k > 5?
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5
Fewest repetitions vs maximal-exponent

powers in infinite binary words

In this chapter, we provide some results that deepen the question of avoidable patterns
in infinite binary words by introducing another point of view. We analyse the trade-
off between the number of (distinct) squares and the number of maximal-exponent
repetitions occurring in infinite binary words when the maximal exponent is constant.
The interesting results show the behaviour of infinite binary words when the maximal
exponent varies between 3 to 7/3. The value 7/3 is called the finite-repetition thresh-
old in Chapter 4. And the value 3 of the maximal exponent is where the number of
squares is the absolute minimum. The next table summarises the results.

Maximal Allowed number Minimum number
exponent e of e-powers of squares

7/3 2 12 Theorem 14
1 14 Theorem 20

5/2 2 8 Theorem 21
1 11 Theorem 22

3 2 3 Lemma 1
1 4 Theorem 24

Proving that it is impossible to have less than 12 squares when avoiding 5/2 powers of
binary words needs a simple computation. The next table shows the maximal length
ℓ(s) of binary words that both avoid 5/2 powers and contain at most s squares,
0 ≤ s ≤ 11.

s 0 1 2 3 4 5 6 7 8 9 10 11
ℓ(s) 3 5 8 12 14 18 24 30 37 43 83 116

This leads to the following fact.
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Fact 9. There is no 5/2-free infinite binary word containing less than 12 squares.

Similarly, proving that it is impossible to have less than 8 squares when avoiding
cubes needs another simple computation. The next table displays the maximal length
ℓ(s) of binary words that simultaneously avoid cubes and contain at most s squares,
0 ≤ s ≤ 7.

s 0 1 2 3 4 5 6 7
ℓ(s) 3 5 8 12 29 41 57 73

Consequence of this, results in the following fact.

Fact 10. There is no cube-free infinite binary word containing less than 8 squares.

The next table summarises the minimum number s of squares that an infinite
e-free binary words should contain for the significant values of the exponent e.

e 3 5/2 7/3
s 8 12 ∞

Each section is devoted to showing that each of the exponents, 7/3, 5/2 and 3, are
truly thresholds. Proofs are two fold; first we show that there exists an infinite binary
word complying with the threshold and the claimed number of squares. Second, we
show this claimed number is in fact minimal.

For each case in order to generate the binary word with the desired property, we
first use a pure morphic word and by a second morphism, translate the corresponding
fixed point to a binary word. In order to show the number of squares is minimal,
simple computations are exhibited. We generate all binary words containing less
squares. For all of the following cases in this chapter these sets are final which proves
the minimality of the corresponding repetitions.

1 Binary words with Maximum Exponent 7/3

In this section, we recall for completeness Theorem 14, from Chapter 4 that the
Finite-repetition threshold of binary alphabet, FRt(2), is 7/3 and that its associated
minimal number of squares is 12. We then show that number of squares goes up to
14 if the number of maximal-exponent powers is reduced to 1.

Theorem 19 ([6]). There exists an infinite binary word whose factors have an expo-
nent at most 7/3 and that contains 12 squares, the fewest possible.
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As defined in Chapter 4, 7/3 is the Finite-repetition threshold for the binary
alphabet since there is no infinite binary word that avoids 7/3 powers and simultane-
ously contains finitely many squares [64]. To show that there exists an infinite binary
whose factors have maximum exponent 7/3 and that contains only 12 squares we used
two morphisms f1 and g7 in Chapter 4. The first morphism f1 is defined from Σ∗

6 to
itself by:

f1(a) = abac, f1(b) = babd,
f1(c) = eabdf, f1(d) = fbace,
f1(e) = bace, f1(f) = abdf.

And the second morphism g7 from Σ∗
6 to B∗ is defined by:

g7(a) = 10011, g7(b) = 01100,
g7(c) = 01001, g7(d) = 10110,
g7(e) = 0110, g7(f) = 1001.

Then the infinite word g7 = g7(f1
∞(a)) has the desired property. Finally, that 12 is

the fewest number of squares is a consequence of Fact 9.

Our infinite binary word g7 contains 12 squares {02, 12, (01)2, (10)2, (001)2,
(010)2, (011)2, (100)2, (101)2, (110)2, (01101001)2, (10010110)2}. It also contains
only two words 0110110 and 1001001 of exponent 7/3.

Under the same constraint on the maximal exponent (7/3) of factors in infinite
words, but allowing only one factor of that exponent, the number of squares jumps to
14. This is the smallest possible number of squares as a consequence of a computation
displayed in the table below, which gives the maximal length ℓ(s) of 7/3+-free binary
words that contain only one 7/3-power and at most s squares, 0 ≤ s ≤ 13.

s 0 1 2 3 4 5 6 7 8 9 10 11 12 13
ℓ(s) 3 5 8 12 14 18 24 30 36 39 50 70 100 167

Theorem 20. There exists a 7/3+-free infinite binary word with only one 7/3-power
and that contains no more than 14 squares.

The proof is a corollary of Proposition 10 stated after a series of lemmas. As for
previous proof, we generate the infinite word by morphism iteration and translation.
We consider the specific morphism, f4, defined from Σ∗

5 to itself by:
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1. BINARY WORDS WITH MAXIMUM EXPONENT 7/3

f4(a) = adcbebc,
f4(b) = adcbedc,
f4(c) = aebc,
f4(d) = aebedc,
f4(e) = aebedcbebc.

Then we translate f∞
4 (a) to binary using the second morphism g12 from Σ∗

5 to B∗

defined by:
g12(a) = 101001100101,
g12(b) = 1010011001001,
g12(c) = 101001011001,
g12(d) = 101001011001001,
g12(e) = 101001011001001100101,

and denote f4 = f4
∞(a), g12 = g12(f4

∞(a)).

Lemma 17. The set of doublets occurring in f4 is

D = {ad, ae, bc, be, ca, cb, dc, eb, ed}.

Proof. Note that doublets appear in the images of single letters or of doublets. Then
doublets ad, ae, bc, be, cb, dc, eb, ed appear in f4 because they appear in the images
of single letter, and ca appears in the image of any doublets.

Lemma 18. The set of triplets in f4 is

T = {adc, aeb, bca, beb, bed, cad, cae, cbe, dca, dcb, ebc, ebe, edc}.

Proof. Triplets appear in the images of single letter or of a doublet. Triplets found in
images of one letter are: adc, aeb, beb, bed, cbe, dcb, ebc, ebe, edc. The images of
doublets occurring in f4, in set D of Lemma 17, contain the extra triplets: bca, cad,
cae, dca.

Lemma 19. Let P = {αsasb, dsbsd, asbsa, bsdsα, csesα, asesα} where s is a factor
of f4 and α ∈ Σ5. If fk

4 (a) is square-free, it avoids the set P .

Proof. The basis of the proof is to exhibit the letters of s. This is done from both
ends, from left and from right, using the sets D and T iteratively and also by looking
at the codewords. In any of the six cases below, only one s is possible and we show
here that considering the word fk

4 (a) is a finite word and square-free the existence of
such s is impossible.

1. Assume that αsasb is not avoidable in fk
4 (a) then:
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α · · · ca · · · cb
α · · ·dca · · · dcb

α · · · edca · · · edcb
α · · · ebedca · · · ebedcb

Notice that we have not yet exhibited s fully, because αebedcaebedcb is a factor
of f4(de) and de /∈ D. Therefore, we continue completing s. f4(c) must follow
f4(d):

αebc · · ·aebedcaebc · · · aebedcb

therefore α is b, we continue

bebc · · · aebedcaebc · · · aebedcb

therefore it’s a factor of image of α1s1dcs1e where s1 is not empty and α1 is
either a or e. Similarly we try to build s1

α1 · · · adc · · · ae
α1be · · · adcbe · · · ae

therefore α1 is e

ebedc · · ·adcbedc · · · ae

Note that · · · is not empty, so we continue:

ebedcaebc · · · aebedcbebcadcbedcaebc · · · aebedcbebcae

is a factor of image of dcs2ebcs2ed and s2 is not empty, which is case 2.

2. Assume that dsbsd is not avoidable in fk
4 (a) then:

dca · · · bca · · · d
dca · · · dcbebca · · · dcbed

This is a factor of image of αsasb which is case 1, note that · · · is not empty.
Now we have a loop where · · · decreases at least 4 times each time, thus at
some point this word should be a factor of image of a triplet in T . There exist
no w ∈ T such that image of w has a factor in the form of case 1 or 2.

3. Assume that asbsa is not avoidable in fk
4 (a) then:
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aeb · · · cbeb · · · ca
aebc · · · aebedcbebc · · · aebedca

this is a factor of image of cs1es1dc where s1 is not empty, look at case 5.

4. Assume that bsdsα is not avoidable in fk
4 (a) then:

bca · · · dca · · ·α
bcaebedcbebc · · · adcbedcaebedcbebc · · · adcbeα

therefore α is b. The word above is a factor of image of as1bs1a case 3.

5. Assume that csesα is not avoidable in fk
4 (a) then:

cbe · · · ebe · · ·α
cbedca · · · aebedca · · · aα

now this is a factor of image of bsdsα, case 4.

6. Assume that asesα is not avoidable in fk
4 (a) then:

adcbe · · · edceb · · ·α
adcbebc · · ·aebedcebc · · · aebα

the · · · is not empty, this is a factor of image of as1es1α where we started case
6, but each time |s1| < 4|s| and at no point · · · is empty. Contradiction to
finiteness of fk

4 (a).

Therefore we show here at no point the missing part of s is empty and this contradicts
the finiteness of fk

4 (a), thus if f
k
4 (a) is square-free, it avoids the set P .

Lemma 20. The morphism f4 is weakly square-free, i.e. f∞
4 (a) is square-free.

Proof. Letter a appears in f∞
4 (a) only as a prefix of the codewords therefore any

factor of f∞
4 (a) starting and ending with a is uniquely decipherable. Set of all factors

of f∞
4 (a) containing at most 3 occurrences of a is finite. A simple computation can

verify that no word in this set contains a square.

Let k be the maximal integer such that fk
4 (a) is square-free and ww contains at

least 4 occurrences of a and it is a factor of fk+1
4 (a), so the square ww can be written

as:
u0

︷ ︸︸ ︷
a · · · a v0︸ ︷︷ ︸u1

︷ ︸︸ ︷
a · · · a v1︸ ︷︷ ︸

where a does not occur in v0u1, therefore av0u1 is one of the codewords. Distinguishing
several cases according to the possibilities of v0u1 we deduce that f

k
4 (a) is not square-

free or ww that is not a factor of fk+1
4 (a) for any k, contradiction.
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Case av0u1 = f4(a):

u0

︷ ︸︸ ︷
a · · · a dcbebc

︷ ︸︸ ︷
a · · · a v1︸ ︷︷ ︸

u0 has bc as a suffix therefore it’s either a suffix of f4(c) or f4(e) so ww is a factor of
f4(csasb). By Lemma 19 case 1, csasb does not occur in fk

4 (a), Contradiction.

Case av0u1 = f4(b):

u0

︷ ︸︸ ︷
a · · · a dcbedc

︷ ︸︸ ︷
a · · · a v1︸ ︷︷ ︸

u0 has a suffix dc, otherwise v1 has dcbed as a prefix and therefore ww is a factor
of f4(sbsb), contradiction to square-freeness of fk

4 (a). So u0 is a suffix of f4(d) and
similarly v1 has ad as a prefix therefore it’s a prefix of f4(a), thus ww is a factor of
f4(dsbsa) since the only letter proceeded by a is c and also the only letter after d is
c therefore s has suffix and prefix f4(c)

f4(dc
︷︸︸︷
· · · cbc

︷︸︸︷
· · · ca) but cbc is not a factor of fk

4 (a).

Case av0u1 = f4(c):

u0

︷ ︸︸ ︷
a · · ·a ebc

︷ ︸︸ ︷
a · · ·a v1︸ ︷︷ ︸

Looking at the set of triplets we can see that c is always followed by a or proceeded
by d. Therefore if the first case is true the only letter proceeded by a is c so we have
ww is a factor of f4(cascasα) and cascas is a square in fk

4 (a), a contradiction. In the
second case the only letter followed by d is c so we have ww is a factor of f4(αsdcsdc)
and sdcsdc is a square in fk

4 (a), a contradiction.

Case av0u1 = f4(d):

u0

︷ ︸︸ ︷
a · · · a ebedc

︷ ︸︸ ︷
a · · · a v1︸ ︷︷ ︸

so ww is a factor of f4(α0sdsα1) where α0, α1 ∈ {a, b, c, e}, d is followed by c therefore
α0 is b and bc is followed by a always, therefore dca is preceded by e thus α1 is b. So
we have ww a factor of f4(bca · · · edca · · · eb) but this string could not contain any
squares as no concatenation of no prefix and suffix of f4(b) is the same as f4(d).

Case av0u1 = f4(e):

u0

︷ ︸︸ ︷
a · · · a ebedcbebc

︷ ︸︸ ︷
a · · · a v1︸ ︷︷ ︸

we have ww a factor of f4(asesd) the common letter followed by both e and a is d
and the only letter proceeded by ed is b so we must have f4(ad · · · bed · · · bd) but bd
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is not in the set of doublets.

Now if ww contains at most 3 occurrences of a: therefore ww is a factor of f4(s)
where |s| < 5 this is simple to investigate and confirm image of all s with length at
most 4 is square-free.

Proposition 10. The infinite word g12 = g12(f
∞
4 (a)) contains no factor of expo-

nent larger than 7/3. It contains 14 squares {02, 12, (01)2, (10)2, (001)2, (010)2,
(100)2, (101)2, (0110)2, (1001)2, (100110)2, (0100110)2, (0110010)2, (10010110)2},
and only one 7/3-power, 1001001.

Proof. The factor 101001 appears in g12(f4
k(a)) only as a prefix of the codewords,

therefore any factor starting and ending with 101001 is uniquely decipherable. If
there is a square ww that contains 2n occurrences of 101001, where n ≥ 2 and it is a
factor of g12(f4

k(a)) where f4
k(a) is square-free, so the square ww can be written as:

u0

︷ ︸︸ ︷
α1 · · ·αn v0︸ ︷︷ ︸u1

︷ ︸︸ ︷
α1 · · ·αn v1︸ ︷︷ ︸

where α1, ...αn are occurrences of 101001, n ≥ 2 and v0u1 contains no 101001 as a
factor therefore αnv0u1 is one of the codewords.

Similar to the proof of Lemma 20, we study different cases of possible v0u1.

Case αnv0u1 = g12(a): So ww is a factor of g12(αsasβ) where s is not empty and
α, β ∈ Σ5. The letter before a is always c so s has a as a suffix. Since β is a letter
occurring after s, therefore β must be b. Thus ww is a factor of g12(αsasb) where
αsasb is a factor of square-free f4

k(a). Contradiction to Lemma 19 Case 1.

Case αnv0u1 = g12(b): So ww is a factor of g12(αsbsβ) where s is not empty and
α, β ∈ Σ5. If |v0| > 6 then v1 is a prefix of g12(a) and β is a. So the last letter of s
is a possible letter before a and b; ( see set D) so s has c as a suffix. Similarly the
first letter of s is a possible letter after cb so it’s e. Therefore α is a, however, asbsa
is not a factor of square-free fk

4 (a), by Lemma 19 Case 3.

If |v0| ≤ 6 then u0 is a suffix of g12(d), very similar to the proof above, we deduce
that α is d and β is d. However, dsbsd is not a factor of square-free f4

k(a), by Lemma
19 Case 2.

Case αnv0u1 = g12(c): So ww is a factor of g12(αscsβ) where s is not empty and
α, β ∈ Σ5. If the letter after c is a consequently α is bound to be letter c. Then
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ca · · · ca · · · is a square and contradiction to square-freeness of f4
k(a). So the only

possible letter after c is b and considering that the only possible letter before cb is d,
and β is a letter after d we deduce that β is c. Then b · · · dcb · · · dc is a square and
contradiction to square-freeness of f4

k(a).

Case αnv0u1 = g12(d): So ww is a factor of g12(αsdsβ) where s is not empty and
α, β ∈ Σ5. The only possible letter after d is c, so s has c as a prefix. In addition α
occurs before s, so α must be b. However, bsdsβ is not a factor of square-free f4

k(a),
by Lemma 19 Case 4.

Case αnv0u1 = g12(e): So ww is a factor of g12(αsesβ) where s is not empty and
α, β ∈ Σ5. if the letter after e is b, then s has b as a prefix. Thus α is c, however,
csesβ is not a factor of square-free fk

4 (a), by Lemma 19 Case 5.

If the letter after e is d, then s has d as a prefix. So α is a, however, asesβ is not
a factor of square-free f4

k(a), by Lemma 19 Case 6.

If ww contains odd number of 101001, it means one occurrence of 101001 is
overlapping between the two ws. Note that 1010 also occurs in g12(f4

k(a)) as a prefix
of the codewords only, thus 1010 is also overlapping the junction between the two
occurrences of w. We can easily deduce that this central occurrence of 101001 belongs
to image of a. Since no other codeword has a common suffix with other codewords
having length at most 3 letters less than itself. So ww is a factor of g12(dsαasβ)
where s is not empty and α, β ∈ Σ5. Immediately we conclude that α is c. However,
β is a letter whose image has g12(c)1 as a prefix, such letter does not exist.

Now, if ww contains at most three 101001 then ww is a factor of g12(s) where s is
a factor of f4

k(a) and |s| ≤ 4, it is computationally verifiable to confirm that images
of all s factors of f4

k(a) and |s| ≤ 4 do not contain a square that is not in the list.

2 Binary words with Maximum Exponent 5/2

In this section we show the minimum number of squares drops from 12 if we re-
lax the constraint on the maximal exponent and allow 5/2-powers in infinite bi-
nary words. Additionally the number of squares varies according to the number of
maximal-exponent powers: if there is only one 5/2-power the minimum number of
squares is 11, and if there are two 5/2-powers, it becomes 8. The next table shows
that this number is minimum by giving the maximal length ℓ(s) of 5/2+-free binary

66



2. BINARY WORDS WITH MAXIMUM EXPONENT 5/2

words that contain at most s squares, 0 ≤ s ≤ 7.

s 0 1 2 3 4 5 6 7
ℓ(s) 3 5 8 12 29 41 55 72

Theorem 21. There exists a 5/2+-free infinite binary word with only two 5/2-powers
that contains no more than 8 squares.

The proof is a consequence of Proposition 11 below, which states a property of
the infinite word g13 = g13(f

∞
4 (a)) where g13 is defined by:

g13(a) = 001100101,
g13(b) = 0011001011,
g13(c) = 001101,
g13(d) = 001101011,
g13(e) = 00110101100101.

Proposition 11. The infinite word g13 contains no factor of exponent larger than
5/2. It contains 8 squares {02, 12, (01)2, (10)2, (0110)2, (1001)2, (011001)2, (100110)2},
and two 5/2-powers 01010, 10101.

Proof. The method we used to prove Proposition 10 is also valid for this proof, as we
go through the cases for v0u1 we will see that the only case that is slightly different
is when v0u1 = g13(b). Here, we change the boundary on the length of the common
prefix, |v0| > 5, the rest follows identically to the proof of Proposition 10.

Continuing with the same constraint on the maximal exponent, we consider the
situation when only one 5/2-power is permitted. Then the number of squares is at
least 11 as a result of the computation reported in the next table, which displays the
maximal length ℓ(s) of 5/2+-free binary words that contain only one 5/2 power and
at most s squares, 0 ≤ s ≤ 10.

s 0 1 2 3 4 5 6 7 8 9 10
ℓ(s) 3 5 8 12 19 23 31 40 59 90 109

Theorem 22. There exists a 5/2+-free infinite binary word with only one 5/2-power
that contains no more than 11 squares.

For the proof, corollary of Proposition 12, we consider the morphisms f (see
Chapter 3) and g14. The morphism f is defined from Σ3 to itself by

f(a) = abc,
f(b) = ac,
f(c) = b.

67



2. BINARY WORDS WITH MAXIMUM EXPONENT 5/2

It is known that this morphism is weakly square-free (see [47, Chapter 2]).

Here, we translate f∞(a) to binary using the second morphism g14 from Σ∗
3 to B∗

defined by:

g14(a) = 1001001101011001101001011001001101100

101101001101100100110100101100110101,
g14(b) = 100100110100101,
g14(c) = 1001001101100101101001101.

and denote g14 = g14(f
∞(a)).

Proposition 12. The infinite word g14 is 5/2+-free. It contains only 11 squares {02,
12, (01)2, (10)2, (001)2, (010)2, (011)2, (100)2, (101)2, (110)2, (0110)2}, and only
one 5/2-power, 10101.

Proof. If there is a square ww in g14 and it’s not one of the 11 squares listed above
and each w contains at least 1 complete codeword we can write ww as:

u0

︷ ︸︸ ︷
g14(α1) · · · g14(αn) v0︸ ︷︷ ︸u1

︷ ︸︸ ︷
g14(α1) · · · g14(αn) v1︸ ︷︷ ︸

where n ≥ 1 and αi ∈ {a, b, c}, 1 ≤ i ≤ n. And v0u1 is one of the codewords:

• If it is g14(a), note that the longest common prefix of g14(a) and other codewords
has length 11 (10010011010) and longest common suffix of g14(a) and other
codewords has length 4 (0101). And length of g14(a) is 73, thus, we would
either have ww as a factor of g14(asasαn+1) or g14(αn+1sasa). Either way it’s a
contradiction to square-freeness of f .

• If v0u1 is g14(b) then using the longest common prefix and suffix with other
codewords we must have u0 =10010011010 and v1= 0101, thus ww is

0101
︷ ︸︸ ︷
g14(α1) · · · g14(αn) 10010011010︸ ︷︷ ︸0101

︷ ︸︸ ︷
g14(α1) · · · g14(αn) 10010011010︸ ︷︷ ︸

which is a factor of g14(aα1 · · ·αnbα1 · · ·αna) then α1 and αn are c but cbc is
not a factor of f .

• If v0u1 is g14(c) =1001001101100101101001101 then using the longest common
prefix and suffix with other codewords we would either have ww is a factor of
g14(cscsαn+1) or g14(αn+1scsc). Either way it is a contradiction to square-
freeness of f .
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3. BINARY WORDS WITH MAXIMUM EXPONENT 3

If ww occurs in g14 and not each w contains at least 1 complete codeword then
ww belongs to the list. Since the set of words with this property is bounded simple
computation can confirm this. Furthermore, any 2+-repetition contains a square
therefore the proof of non existence of squares that are not in the set is also valid for
2+-repetitions.

3 Binary words with Maximum Exponent 3

In this section we deal with infinite binary words whose factors have maximal expo-
nent 3. We first recall Fraenkel and Simpson theorem [36] that shows the existence
of infinite binary word containing only 3 squares and 2 cubes. Chapter 3 is dedicated
to this result and proofs by various morphisms. Next we show the number of squares
increases to 4 if only one cube is allowed in the infinite word.

Theorem 23 ([36]). There exists a 3+-free infinite binary word with only two cubes
that contains no more than 3 squares.

The proof given in [3] and discussed in detail in Chapter 3. We build the infinite
binary word by iterating the weakly square-free morphism f from a and translating
the obtained word with the morphism g1 from Σ3 to B defined by:

g1(a) = 01001110001101,
g1(b) = 0011,
g1(c) = 000111.

The infinite word g1 = g1(f
∞(a)) contains only 3 squares 00, 11 and 1010. The cubes

000 and 111 are the only factors of exponent larger than 2 occurring in g1.

When only one cube is allowed to appear, the minimum number of squares be-
comes 4, the smallest possible value as shown by the computation reported in the
next table. The table shows the maximal length ℓ(s) of 3+-free binary words that
contain only one cube and at most s squares, 0 ≤ s ≤ 3.

s 0 1 2 3
ℓ(s) 3 7 12 21

Theorem 24. There exists a 3+-free infinite binary word with only one cube that
contains no more than 4 squares.

Proof. Immediate consequence of Proposition 13, relies on the next result stated as
a Lemma 8 by Ochem in [50].
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4. CONCLUSION

The lemma is used to prove that the morphism g15 defined by:

g15(a) = 1100010110010100,
g15(b) = 1101000110010100,
g15(c) = 0110101100010100,

produces a 3+-free binary word from any 7/4+-free word on Σ3.

Proposition 13. The infinite word g15 = g15(w), where w is any infinite 7/4+-free
ternary word, is 3+-free and contains 4 squares {00, 11, 0101, 1010}, one cube 000.

Proof. Using Lemma 8, if β = 1.99, n = 3 and α = 7/4 then it’s sufficient to look
at g15(t) for all t ≤ 16 to verify that g15 is (1.99+, 3)-free, consequently, it does not
contain any square that is not in the list. Furthermore, the cubes that we could have
as a factor of g15 are: 000, 111, 010101, 101010 because of their period length they
must be a factor of g15(w

′) for |w′| ≤ 2 this could simply be done by computation,
deducing the existence of 000 only.

4 Conclusion

In this chapter we analysed the behaviour of infinite binary words under a constraint
on their maximal exponent. The study revealed the minimum number of squares
contained in these words reduces as the maximal exponent increases.

This chapter showed the key thresholds are 7/3, 5/2 and 3. As each case was
studied the concluding remark was made that if one repetition of maximal exponent
is permitted, then the number of squares are more than when 2 maximal exponent
repetitions are permitted. The summary of results for each case is shown in the next
table:

Maximal Allowed number Minimum number
exponent e of e-powers of squares

7/3 2 12
1 14

5/2 2 8
1 11

3 2 3
1 4

The fact that these thresholds are the only key numbers to be studied is a direct
consequence of a simple computation. A 7/3+-free word is 5/2-free, however 5/2-free
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word may contain many e-powers with e > 7/3. Computation shows that if the
infinite word is e-free, where e is between 7/3+ and 5/2, then the word contains at
least 12 squares. Similarly, if the infinite word is e-free, where e is between 5/2+ and
3, then the word contains at least 8 squares.

71



6
Characterising binary words with few

squares

The concept of avoidable patterns was introduced by Bean, Ehrenfeuch and McNulty
[11] and independently by Zimin [67]. A pattern is a finite word over the alphabet
of capital letters {A,B, ...}. An occurrence of a pattern is obtained by replacing
each alphabet letter with a non-empty word. For example, the word 0111010011 is
an occurrence of the pattern ABBA where A → 011 and B → 10; it also contains
another occurrence of this pattern (i.e. 1001) as a factor. A word avoids a pattern
P if it contains no occurrence of P as a factor. The avoidability index λ(P ) of
the pattern P is the smallest alphabet size over which an infinite word avoiding P
exists. Patterns such as A,ABC,ABA,ABACBA cannot be avoided with any finite
alphabet. These patterns are said to be unavoidable, denoted as λ(P ) =∞, and have
been characterised by Zimin [67].

A pattern, P is said to be k-avoidable if there exists an infinite word on k letters
avoiding P . Thue [65, 66] showed that AA is 2-unavoidable but 3-avoidable, and Aβ

for β > 2 is 2-avoidable. Schmidt [62] proved that every binary pattern of length
at least 13 is 2-avoidable. Later, Roth [58] refined the result by showing that every
binary pattern of length at least 6 is 2-avoidable.

Thereafter, remained a finite set of patterns of length at most 5 to be studied.
Cassaigne [21] completed this study by considering all the patterns in this set:

• 2-unavoidable patterns : ǫ, A, AA,AB,AAB,ABA,AABA,ABBA,
AABB,ABAB,AABAA,AABAB;

• 2-avoidable patterns: AAA,ABAAB,AABBA,ABABA.

To prove a pattern is unavoidable it is sufficient to compute the longest word avoiding
the pattern.
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Given a finite set P of patterns and a finite set F of words over Σk, we say that
P ∪ F characterises a morphic word w ∈ Σ∗

k if and only if every recurrent factor of
an infinite word avoiding P ∪ F is a factor of w.

There is still no characterisation of k-unavoidable patterns, that is, patterns that
are unavoidable over a k-letter alphabet. Thue [14, 65, 66] gave the characterisation
of overlap-free binary words: {ABABA} ∪ {000, 111} characterises the fixed point of
the morphism 0 7→ 01, 1 7→ 10. Thue-Morse word also avoids AAA. Roth [58] proved
the pattern ABAAB to be avoided in hr(f

∞(0)) where f and hr are defined by:

f(0) = 012,
f(1) = 02,
f(2) = 1.

hr(0) = 000,
hr(1) = 111,
hr(2) = 010101.

Finally, Cassaigne [21] proved the only remaining pattern, AABBA to be avoided
in hc(f

∞(0)) where hc is defined by:

hc(0) = 00,
hc(1) = 010,
hc(2) = 0111.

Although the avoidability of binary patterns on binary words is complete, Sam-
sonov and Shur [61] started a variation of this study on cube-free binary words. As
mentioned above, the pattern ABABA is avoided by the Thue-Morse word. This is
the only pattern of length at most 5 which is avoidable by cube-free words. Here is the
list of all eight cube-free patterns of length 6, excluding equivalent patterns by reversal
and negation: {AABAAB,AABABA,AABABB,AABBAA,AABBAB,ABAABA,
ABABBA,ABBAAB}

The first two patterns AABAAB and AABABA are obviously avoided by the
Thue-Morse word. Samsonov and Shur show that patterns AABBAB,ABAABA,
ABABBA, and ABBAAB are not avoidable by binary cube-free words. They also
show the pattern AABBAA is avoidable by the binary cube-free word generated by
iterating the following morphism.

fss(0) = 001,
fss(1) = 011.

The only pattern with unclear avoidability status is AABABB; it is conjectured
to be avoidable by cube-free words in the same article [61], but have not yet been
proven.

Cassaigne [22] partitioned all ternary patterns to 2-unavoidable, 2-avoidable and
unclear status. One of the patterns with unclear status, ABCBABC was proved
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by Ilie et al. [39] to be 2-avoidable, and the remaining cases were proved to be also
2-avoidable by Ochem [50].

Concerning ternary square-free words, Thue proved that

• {AA} ∪ {010, 212} characterises the fixed point of f (Chapter 2),

• {AA} ∪ {010, 020} characterises the morphic word T1(f
∞
T (0)),

• {AA} ∪ {121, 212} characterises the morphic word T2(f
∞
T (0)),

where the morphisms fT, T1, and T2 are given below.

fT(1) = 0432,
fT(2) = 0134,
fT(3) = 013432,
fT(4) = 0434.

T1(0) = 01210212,
T1(1) = 01210120212,
T1(2) = 01210212021,
T1(3) = 012102120210120212,
T1(4) = 0121012021.

T2(0) = 021012,
T2(1) = 02102012,
T2(2) = 02101201,
T2(3) = 0210120102012,
T2(4) = 0210201.

To obtain the last two results, Thue first proved that {AA} ∪ {02, 03, 10, 14,
21, 23, 24, 30, 31, 41, 42, 040, 132, 404, 1201, 2012} characterises f∞

T (0).

Another characterisation has been obtained by Ochem [51]:
{AABBCABBA} ∪ {0011, 1100} characterises ho(f

∞(0)), where ho is given below.

ho(0) = 0010110111011101001,
ho(1) = 00101101101001,
ho(2) = 00010.

Here, we prove such characterisations mostly for the binary words considered in
[2] (Chapter 5) that contain one or two 2+-repetitions and as few squares as possible.
The results are summarised in the following table. We use the notation SQt for the
pattern corresponding to squares of words of length at least t, that is, SQ1 = AA,
SQ2 = ABAB, SQ3 = ABCABC, and so on.

Maximal ( Number of e-powers, Avoided patterns
exponent e Minimum number of squares ) and factors

5/2 (2, 8) {SQ7} ∪ F8 Proposition 15
7/3 (1, 14) {SQ9} ∪ F14 Proposition 16
7/3 (2, 12) {SQ9} ∪ F12 Proposition 20
3 (2, 3) {SQ5} ∪ F3 Proposition 22
5/2 (1, 11) {SQ3} ∪ F11 Proposition 21
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1. PROOF TECHNIQUE

We also give, in Proposition 18, a characterisation of words avoiding the patterns
AABBCC (i.e. three consecutive squares), SQ3, and a finite set of factors.

The proofs are obtained by computer using the technique described in the next
section. An example of proof by hand is given for Proposition 15.

1 Proof technique

Two types of characterisations are obtained in this section.

• For a given morphism f : Σ∗
k → Σ∗

k and a finite set of factors Fp ⊂ Σ∗
k, the pure

morphic word f∞(0) is characterised by {AA} ∪ Fp

• For a given morphism g : Σ∗
k → Σ∗

k′ and a finite set of factors Fm ⊂ Σ∗
k′, the

morphic word g(f∞(0)) is characterised by {SQt} ∪ Fm.

Here, we omit the avoidability part, since for all cases this part has been proven in
previous chapters; that the morphic word actually avoids the corresponding patterns
and factors (Chapter 5). We now explain how to show the characterisation part, that
every finite recurrent factor in an infinite word avoiding both the patterns and the
factors is a factor of the morphic word.

1.1 Characterising a pure morphic word

We compute the set S4 of binary words u such that there exists a word pus ∈ Σk

avoiding squares and Fp with |u| = l and |p| = |s| = 4l, where l ≥ max{|f |, f ∈
Fp} ×max{|f(a)|, a ∈ Σk}. So S4 contains the set S3 of k-ary words of length l that
are prolongable into an infinite word avoiding squares and Fp. We also compute the
set S1 of factors of length l of a long enough prefix of f∞(0). So S1 is a subset of the
set S2 of all factors of length l of f∞(0). Since we assume the avoidability part, we
have S1 ⊂ S2 ⊂ S3 ⊂ S4.

“Long enough” means that S1 and S4 are actually identical, so that S1 = S4

and S2 = S3. This means that prolongable k-ary words avoiding squares and Fp are
factors of the f -image of some k-ary word w, and moreover that w avoids squares and
Fp too. Thus, prolongable k-ary words avoiding squares and Fp are factors of f

∞(0).

1.2 Characterising a morphic word

We assume the fact {AA} ∪ Fp characterises f∞(0) and we similarly prove that
{SQt} ∪ Fm characterises g(f∞(0)).
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2. A 5-ARY PURE MORPHIC WORD

We compute the set S ′
4 of binary words u such that there exists a word pus ∈ Σ∗

k′

avoiding {SQt} ∪ Fm with |u| = l and |p| = |s| = 4l, where l ≥ max{|f |, f ∈
Fp} × max{|g(a)|, a ∈ Σk′}. So S ′

4 contains the set S ′
3 of binary words of length l

that are prolongable into an infinite binary word avoiding {SQt}∪Fm. We have also
computed the set S ′

1 of factors of length l of a long enough prefix of g(f∞(0)). So S ′
1

is a subset of the set S ′
2 of factors of length l of g(f∞(0)).

Again, we notice that S ′
1 and S ′

4 are identical, which implies that S ′
2 = S ′

3. This
means that prolongable words avoiding {SQt}∪Fm are factors of the g-image of some
k-ary word w that avoids {AA} ∪ Fp. We have to check that the g-images of small
squares are forbidden if t > min{|g(a)|, a ∈ Σk′}. Thus, prolongable k′-ary words
avoiding {SQt} ∪ Fm are factors of g(f∞(0)).

2 A 5-ary pure morphic word

The following morphism is a power of the morphism f4 in Chapter 5, therefore the
fixed point of f4 can be labelled by: a → 0, b → 3, c → 2, d → 1 and e → 4 to be
the fixed point of the following morphism. We therefore use the same name f4. Let
f4 be f∞

4 (0) where f4 is defined by

f4(0) = 012,
f4(1) = 34,
f4(2) = 32,
f4(3) = 04,
f4(4) = 3412.

Lemma 21. The word f4 avoids squares and none of its factors belong to the following
set:

F = {02, 03, 10, 13, 14, 21, 24, 30, 31, 40, 42, 041, 232, 323, 0120, 1201}.

Proposition 14. If x is an infinite recurrent square-free 5-ary word, then x avoids
F if and only if it has the same set of factors as f4.

Proof. We exploit the technique explained in detail in subsection 1.1.
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2. A 5-ARY PURE MORPHIC WORD

2.1 Words containing two 5/2-repetitions and 8 squares

The following morphism has been defined and studied in Chapter 5, here we recall
this morphism. Let g13 be the morphism from Σ∗

5 to B∗ defined by:

g13(0) = 100110010,
g13(1) = 100110101,
g13(2) = 100110,
g13(3) = 1001100101,
g13(4) = 10011010110010.

and denote g13 = g13(f4
∞(0)).

In Chapter 5 g13 is studied in depth and shown to avoid SQ7. In addition, by a
simple computation, it is verifiable that g13 also avoids the following set of factors:

F13 = {000, 111, 00100, 11011, 010010, 010101, 101010, 101101, 00110011,
11001100, 0010110010, 1101001101}

Proposition 15. Every infinite recurrent binary word G13 avoiding SQ7 and F13 has
the same set of factors as g13.

The step by step proof of this proposition is given here, as an example to demon-
strate how the proof technique explained in Subsection 1.2 for characterising a mor-
phic word works.

Proof. As explained above g13 avoids SQ7 and F13.

Now, we prove the other direction of Proposition 15, that is, every factor of G13 is
a factor of g13. First we check that every factor of G13 is a factor of g13(t), where t is
a 5-ary word. We compute the set of factors of G13 of length |g13(4)|+ |g13(1)| = 24
and remove the ones that are not prolongable in G13. This set is equal to the set of
all factors of g13 of length 24, where in this set every factor with prefix g13(i) for some
i ∈ Σ5 is followed by a factor g13(j). So, a factor of G13 is a factor of the g13-image
of a 5-ary word.

Let L ⊂ Σ∗
5 denote the language of words whose g13-image is a factor of G13. Since

g13(2) = 100110 is a common prefix of g13(s), s ∈ Σ5, we note g13(s) = 100110r with
r ∈ B∗. Moreover, notice that g13(3) = g13(0)1 and g13(4) = g13(1)10010.

We assume that L contains a square uu for some u ∈ Σ+
5 , and |g13(uu)| ≤ 12

implying u must be 2. Now by prolongability, L contains p22s and g13(22s) =
1001101001101r contains 1101001101 ∈ F13.

Thus L is square-free, and now we check that L cannot contain any element of
the set F :
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2. A 5-ARY PURE MORPHIC WORD

• L contains 02: by prolongability, L contains 02s for s ∈ Σ5. g13(02s) =
100110010100110100110r, but 0100110100 is not prolongable.

• L contains 03: g13(03) = g13(0)g13(0)1, but g13(0)g13(0) is a square with period
9.

• L contains 10: g13(10) = 100110101100110010, but 11001100 ∈ F13.

• L contains 13: g13(13) = 1001101011001100101, but 11001100 ∈ F13.

• L contains 14: g13(14) = g13(1)g13(1)10010, but g13(1)g13(1) is a square with
period 9.

• L contains 21: g13(21) = 10011010011010, but 1101001101 ∈ F13.

• L contains 24: g13(24) = 10011010011010110010, but 1101001101 ∈ F13.

• L contains 30: g13(30s) = g13(0)1g13(0)10011r, but g13(0)1g13(0)1 is a square
with period 10.

• L contains 31: g13(31s) = 1001100101100110101100110r, but (010110011)2 is
a square with period 9.

• L contains 40s: g13(40s) = 10011010110010100110010100110r,
but (011001010)2 is a square with period 9.

• L contains 42s: g13(42s) = 10011001010011010110010100110100110r con-
tains 0100110100 which is not prolongable: by simple computation the longest
word with prefix 0100110100 avoiding SQ7 and F13 has length 36.

• L contains 041: g13(041) = 10011001010011010110010100110101, but
(10010100110101)2 is a square with period 14.

• L contains 323: g13(323s) = g13(32)g13(32)r, but g13(32)g13(32) is a square
with period 16.

• L contains 232: by prolongability, L contains 1232s for s ∈ Σ5. g13(1232s) =
1001101011001101001100101100110100110r, but (0101100110100110)2 is a
square with period 16.

• L contains 0120: by prolongability, L contains 201204. Now g13(201204) =
g13(201)g13(201)10010. But g13(201)g13(201) is a square with period 24.

• L contains 1201: by prolongability, L contains 120123. Then g13(120123) =
g13(120)g13(120)1. But g13(120)g13(120) is a square with period 24.
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Therefore L is square-free and does not contain a factor in F , thus it has the same
set of factors as g13 by Proposition 14.

Here, we should mention that the morphism g13 is the composition of f4 and the
morphism g′13 from Σ∗

5 to B∗ is:

g′13(0) = 0110,
g′13(1) = 01,
g′13(2) = 010,
g′13(3) = 011,
g′13(4) = 010110.

However, to prove Proposition 15, it is simpler to use the longer morphism g13.

2.2 Words containing one 7/3-repetition and 14 squares

The following morphism has been defined and studied in Chapter 5. Let g12 be the
morphism from Σ∗

5 to B∗ defined by:

g12(0) = 101001100101,
g12(1) = 1010011001001,
g12(2) = 101001011001,
g12(3) = 101001011001001,
g12(4) = 101001011001001100101,

and denote f4 = f4
∞(0), g12 = g12(f4

∞(0)).

In Chapter 5 g12 is studied in depth and shown to avoid SQ9. In addition, by
a simple computation, it is verifiable that g12 avoids the following set of minimal
forbidden factors:

F12 = {000, 111, 11011, 010101, 101010, 0010010, 0100100, 00110011, 11001100,
101001101, 101100101, 0100101101, 1100101100, 001001100100, 010011010011,
0011001001100, 1011010010110011}

Proposition 16. Every infinite recurrent binary word G12 avoiding SQ9 and F12 has
the same set of factors as g12.

Proof. We exploit the technique explained in detail in Subsection 1.2.
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2.3 Words avoiding AABBCC

Ochem [50] proved that the pattern AABBCC, i.e. three consecutive squares, can
be avoided over the binary alphabets. In particular, the proof shows that there exists
exponentially many binary words avoiding both AABBCC and SQ3. We now show,
that among such words, the word gcs defined below admits a characterisation.

Let gcs be the morphism from Σ∗
5 to B∗ defined by:

gcs(0) = 110100111001011000,
gcs(1) = 1101001110001101000101100011100101,
gcs(2) = 11010011100101,
gcs(3) = 11010011100011010001011000,
gcs(4) = 1101001110010110001101000101100011100101,

and denote gcs = gcs(f4
∞(0)).

Where the morphism f4 is weakly square-free defined and studied in Chapter 5.

Proposition 17. The infinite word gcs = gcs(f
∞
4 (a)) contains only 4 squares {02,

12, (01)2, (10)2. It contains no pattern of the form AABBCC.

Proof. The factor 11010011100 appears in gcs(f4
k(a)) only as a prefix of the code-

words, therefore any factor starting and ending with 11010011100 is uniquely deci-
pherable.

If there is a square ww that contains 2n occurrences of 11010011100, where n ≥ 2,
and it is a factor of gcs(f4

k(a)) where f4
k(a) is square-free so the square ww can be

written as:
u0

︷ ︸︸ ︷
α1 · · ·αn v0︸ ︷︷ ︸u1

︷ ︸︸ ︷
α1 · · ·αn v1︸ ︷︷ ︸

where α1, ...αn are occurrences of 11010011100, n ≥ 2 and v0u1 contains no 11010011100
as a factor therefore αnv0u1 is one of the codewords.

Similar to proof of Proposition 10 we study different cases of possible v0u1.

Case αnv0u1 = gcs(a): So ww is a factor of gcs(αsasβ) where s is not empty so
the letter before a is always c so ww is a factor of gcs(α · · · ca · · · cβ) therefore β is b
thus ww is a factor of gcs(αsasb) whereαsasb is a factor of square-free f4

k(a) this is
Lemma 19 Case 1.

Case αnv0u1 = gcs(b): If |v0| > 6 then v1 is a prefix of gcs(a) so ww is a factor
of gcs(α · · · cb · · · ca) further it’s a factor of ww is a factor of gcs(αe · · ·cbe · · · ca)
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2. A 5-ARY PURE MORPHIC WORD

therefore α is a, we have asbsa factor of square-free fk
4 (a), Lemma 19 Case 3. If

|v0| < 6 then u0 is a suffix of gcs(d therefore ww is a factor of gcs(dc · · ·bc · · ·α)
further more it’s a factor of gcs(dc · · · ebc · · · eα) therefore α is d now we have dsbsd
is a factor of square-free f4

k(a) this is Lemma 19 Case 2.

Case αnv0u1 = gcs(c): So ww is a factor of gcs(αscsβ) if the letter after c is a we
have αa · · ·ca · · ·β so α is c then ca · · · ca · · · is a square so the letter after c is b and
as a consequence the only letter before cb is d. Therefore β is a letter after d that
can be only c so b · · ·dcb · · · dc is a square.

Case αnv0u1 = gcs(d): So ww is a factor of gcs(αsdsβ) if the letter after d is c we
haveαc · · · dc · · ·β so α is b we have bsdsβ is a factor of square-free f4

k(a) this is
Lemma 19 Case 4.

Case αnv0u1 = gcs(e): So ww is a factor of gcs(αsesβ) if the letter after e is b we
have αb · · ·eb · · ·β so α is c then csesβ is a factor of square-free fk

4 (a) this is Lemma
19 Case 5. If the letter after e is d we have αdc · · · edc · · ·β so α is a then asesβ is
a factor of square-free f4

k(a) this is Lemma 19 case 6.

If ww contains odd number of 11010011100, it means one occurrence of 11010011100
is overlapping between the two ws. Note that 1010 also occurs in g12(f4

k(a)) as a
prefix of the codewords only, thus 1010 is also overlapping the junction between the
two occurrences of w. We can easily deduce that this central occurrence of 101001
belongs to image of a. Since no other codeword has a common suffix with other code-
words having length at most 3 letters less than itself. So ww is a factor of g12(dsαasβ)
where s is not empty and α, β ∈ Σ5. Immediately we conclude that α is c. However,
β is a letter whose image has g12(c)1 as a prefix, such letter does not exist.

Now if ww contains at most three 11010011100 then ww is a factor of gcs(s) where
s is a factor of f4

k(a) and |s| ≤ 4, it is computationally verifiable to confirm that
images of all s factors of f4

k(a) and |s| ≤ 4 do not contain a square that is not in the
list.

In addition by a simple computation, it’s verifiable that gcs avoids the following
set of minimal forbidden factors:

Fcs = {0000, 1111, 01010, 10101, 011001, 100110, 0011101, 1011100,
1100010, 00010111, 11101000, 0001110010110, 0110100111000,
1001011000111, 1110001101001}
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3. A 6-ARY PURE MORPHIC WORD

Proposition 18. Every infinite recurrent binary word Gcs avoiding SQ3 and Fcs has
the same set of factors as gcs.

Proof. We exploit the technique explained in detail in Subsection 1.2.

3 A 6-ary pure morphic word

The following morphism has been defined and studied in Chapter 5. Let f1 be f∞
1 (0)

where f1 is defined from Σ∗
6 to itself by:

f1(0) = 0102,
f1(1) = 1013,
f1(2) = 40135,
f1(3) = 51024,
f1(4) = 1024,
f1(5) = 0135.

Then f1 avoids squares (see Chapter 5 for the proof and properties of the fixed
point of this morphism) and the following set of minimal forbidden factors:

F1 = {03, 04, 05, 12, 14, 15, 20, 23, 25, 31, 32, 34, 41, 42, 43, 45, 50, 52, 53, 54, 213,
302, 402, 513, 40130, 51021, 01024010, 10135101}

Proposition 19. If y is an infinite recurrent square-free 6-ary word, then y avoids
F1 if and only if y has the same set of factors as f1 .

Proof. We exploit the technique explained in detail in Subsection 1.1.

3.1 Words containing two 7/3 repetitions and 12 squares

The following morphism has been defined and studied in Chapter 5. Let morphism
g7 from Σ∗

6 to B∗ is defined by

g7(0) = 10011,
g7(1) = 01100,
g7(2) = 01001,
g7(3) = 10110,
g7(4) = 0110,
g7(5) = 1001.
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4. THUE’S TERNARY PURE MORPHIC WORD

and denote g7 = g7(f1
∞(0)).

See Chapter 5 for properties of g7. Furthermore, the word g7 avoids SQ9 and the
following set of minimal forbidden factors:

F7 = {000, 111, 01010, 10101, 001100, 110011, 0010010, 0100100, 1011011,
1101101, 0011010011, 0101100101, 1010011010, 1100101100, 01001011010010}

Proposition 20. Every infinite recurrent binary word G7 avoiding SQ9 and F7 has
the same set of factors as g7.

Proof. Once again, we exploit the technique explained in detail in Subsection 1.2.

4 Thue’s ternary pure morphic word

Thue [14, 65, 66] proved that {AA} ∪ {010, 212} characterises the fixed point of

f(0) = 012,
f(1) = 02,
f(2) = 1.

In this section, we give characterisations of two words that are morphic images of
f∞(0).

It is not surprising that this word appears in the context of characterisations: as
soon as a morphism m is such that m(0) = 0x1 and m(1) = 01, the m-image of words
of the form 0u1u0, u ∈ Σ∗

3, contains a large square: m(0u1u0) = 0x1m(u)01m(u)0x1
contains (1m(u)0)2. Moreover, a ternary square-free word avoids factors of the form
0u1u0 with u ∈ Σ∗

3, if and only if it avoids {010, 212} [51].

4.1 Words containing one 5/2-repetition and 11 squares

The following morphism has been defined and studied in Chapter 5. Let g14 be the
morphism from Σ∗

3 to B∗ defined by

g14(0) = 1001001101011001101001011001001101100

101101001101100100110100101100110101,
g14(1) = 100100110100101,
g14(2) = 1001001101100101101001101.

and denote g14 = g14(f
∞(0)).

See Chapter 5 for properties of g14.and the fact that g14 avoids SQ5. Furthermore,
it is verifiable that g14 also avoids the following set of minimal forbidden factors:

F14 = {000, 111, 01010, 001100, 0010010, 0100100, 1011011, 1101101}
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Proposition 21. Every infinite recurrent binary word G14 avoiding SQ5 and F14 has
the same set of factors as g14.

Proof. We exploit the technique explained in detail in Subsection 1.2.

4.2 Words containing 3 squares

The following morphism has been defined and studied in Chapter 3, here we recall
this morphism. Let the morphism g1 from Σ∗

3 to B∗ defined by

g1(0) = 01001110001101,
g1(1) = 0011,
g1(2) = 000111.

and denote g1 = g1(f
∞(0)).

See Chapter 3 for properties of g1 and the fact that g1 avoids SQ3 . Furthermore,
by a simple computation it is verifiable that g1 avoids the following set of minimal
forbidden factors:

F1 = {0000, 0010, 0101, 1111, 01000110, 10011101, 1001101000, 1110100110}

Proposition 22. Every infinite recurrent binary word G1 avoiding SQ3 and F1 has
the same set of factors as g1.

Proof. We exploit the technique explained in detail in Subsection 1.2.

5 Conclusion

Some of the morphic words characterised in this chapter are the morphic image of a
same pure morphic word. We understand why the fixed point of f appears often in this
context (see Section 4). We also know why Thue’s words avoiding {AA}∪{010, 020}
and {AA} ∪ {121, 212} use the same pure morphic word: the latter is obtained from
the former by deleting the letter immediately after each occurrence of the letter 0.
On the other hand, we don’t yet know why the 5-ary pure morphic word of Section 2
is so useful.

Notice that a (pure) morphic word might be characterised in more than one way.
For example, the word g13 in Section 2.1 is characterised by {SQ7} ∪ {000, 111,
00100, 11011, 010010, 010101, 101010, 101101, 00110011, 11001100, 0010110010,
1101001101} and can be equivalently characterised by {SQ7, AAA,AABBAABB}∪
{00100, 11011, 010010, 101101, 0010110010, 1101001101}. It is also easy to check that
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{AA} ∪ {010,212} characterises the same ternary word as {AA} ∪ {1021,1201}.

An interesting open question is the following: suppose that P is an avoidable
pattern with avoidability index λ(P ) = k. Is it possible to find a finite set P of
patterns and a finite set F of factors such that P ∈ P and P ∪ F characterises a
morphic word over Σk ? Notice that this would be a strengthening of Cassaigne’s
conjecture [21] that there exists a morphic word avoiding P over Σk.

In particular, we now know that such characterisations exists for the patterns
AA, ABCABC, AABBCC, and AABBCABBA. In all these characterisations,
we essentially avoid large squares and some factors. We have indeed checked that
{AABBCABBA} ∪ {0011, 1100} characterises the same binary word as {SQ5} ∪
{0000, 0011, 1100, 1111, 01010, 10101, 010111, 101000, 0001001, 1110110, 00100100,
01011010, 10100101, 11011011, 0110111010, 1001000101}

It would be interesting to obtain characterisations that cannot be expressed as
{SQt} ∪ F .

85



7
Computing the maximal-exponent repeats

of an overlap-free string in linear time

We consider the question of computing the maximal exponent of factors (substrings)
of a given string. Repeats considered in this chapter are strings of exponent at
most 2. They refer to strings of the form uvu where u is its longest border (both
a prefix and a suffix). The study of repeats in a string is to do with long-distance
interactions between separated occurrences of the same segment (the u part) in the
string. Although occurrences may be far away from each others, they may interact
when the string is folded as it is the case for genomic sequences.

The exponent of a string can be calculated in linear time using basic string match-
ing that computes the smallest period associated with the longest border of the string
(see [25]). A naive consequence provides a O(n3)-time solution to compute the max-
imal exponent of all factors of a string of length n since there are potentially of the
order of n2 factors. However, a quadratic time solution is also a simple application
of basic string matching. In contrast, our solution runs in linear time on a fixed-size
alphabet.

When a string contains runs, that is, maximal occurrences of repetitions of ex-
ponent at least 2, computing their maximal exponent can be done in linear time by
adapting the algorithm of Kolpakov and Kucherov [44] that computes all the runs
occurring in the string. Their result relies on the fact that there exists a linear number
of runs in a string [44] (see [60, 27] for precise bounds). However, this does not apply
to square-free strings.

The solution presented in this chapter works on overlap-free strings for which the
maximal exponent of factors is at most 2. Thus, we are looking for factors w of the
form uvu, called repeats, where u is the longest border of w. In order to achieve our
goal, we exploit two main tools: a factorisation of the string and the Suffix Automaton
of some factors.

The Suffix Automaton is used to search for maximal repeats in a product of two
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strings due to its ability to locate occurrences of all factors of a pattern. Here, we
enhance the automaton to report the right-most occurrences of those factors. Using it
alone in a balanced divide-and-conquer manner produces a O(n logn)-time algorithm.
To eliminate the log factor, we additionally use the f-factorisation of the string. It
has now become common to employ this factorisation in order to derive efficient or
even optimal algorithms. The f-factorisation (see [25]), a type of LZ77 factorisation
fit for string algorithms, allows us to skip larger and larger parts of the strings during
an online computation. The factorisation can be computed in O(n log a)-time using
a Suffix Tree or a Suffix Automaton, where a is alphabet size, but also in linear time
on an integer alphabet using a Suffix Array [28].

The running time of the proposed algorithm depends additionally on the repetitive
threshold of the underlying alphabet of the string. The threshold restricts the context
of the search for a second occurrence of u associated with a repeat uvu.

We show a very surprising property of repeats whose exponent is maximal in an
overlap-free string: there are no more than a linear number of occurrences of them,
although the number of occurrences of maximal (i.e. non extensible occurrences of)
repeats can be quadratic. As a consequence, the algorithm can be upgraded to output
all occurrences of maximal-exponent repeats of an overlap-free string in linear time.

The question would have had a simple solution by computing MinGap on each
internal node of the Suffix Tree of the input string. MinGap of a node is the smallest
difference between the positions assigned to leaves of the subtree rooted at the node.
Unfortunately, the best algorithms for MinGap computation, equivalent to MaxGap
computation, run in time O(n logn) (see [12, 40, 16] and the discussion in [23]).

A remaining question to the present study is to unify the algorithmic approaches
for repetitions of exponent at least 2 and for repeats of exponent at most 2.

The plan of this chapter is as follows. After defining the problem in the next
section we present the general scheme of the algorithm that relies on the f-factorisation
of the input string in Section 2. The sub-function operating a Suffix Automaton
is described in Section 3 and the complexity of the whole algorithm is studied in
Section 4. In Section 5 we count occurrences of maximal-exponent repeats followed
by a conclusion in Section 6.

1 Maximal-exponent repeats

We consider a fixed overlap-free string y of length n and deal with the repeats oc-
curring within y. A repeat w in y is a factor of the form uvu. We often consider
the decomposition uvu for which u is the longest border of w (longest factor that is
both a prefix and a suffix of w). Then period(w) = |uv| and exp(w) = |uvu|/|uv| =
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2. COMPUTING THE MAXIMAL EXPONENT OF REPEATS

1 + |u|/period(w). By convention, in the following we allow a border-free factor to
be considered as a repeat of exponent 1, though this is not a repeat in the common
sense since the repeating element u is empty.

A repeat in y is said to be a maximal-exponent repeat, an MER for short, if
its exponent is maximal among all repeats occurring in y. An occurrence of a repeat
is said to be a maximal, a maximal repeat for short and abuse of terms, if it cannot
be extended to the left nor to the right with the same period. Note an occurrence of
an MER is a maximal repeat but the converse is obviously false.

2 Computing the maximal exponent of repeats

The core result of this chapter is an algorithm, MaxExpRep, that computes the
maximal exponent of factors of the overlap-free string y. The algorithm has to look
for factors that are repeats of the form uvu, for two strings u and v, u being the longest
border of uvu. The aim of this algorithm is accomplished with the help of Algorithm
MaxExp, designed in the next section, which detects those repeats occurring within
the concatenation of two strings.

Algorithm MaxExpRep relies on the f-factorisation of y (see [25]), a type of
LZ77 factorisation [68] defined as follows. It is a sequence of non-empty strings, z1,
z2, . . . , zk, called phrases satisfying y = z1z2 · · · zk and where zi is the longest prefix of
zizi+1 · · · zk occurring in z1z2 · · · zi−1. When this longest prefix is empty, zi is the first
letter of zizi+1 · · · zk, thus it is a letter that does not occur previously in y. We adapt
the factorisation to the purpose of our problem by defining z1 as the longest prefix of y
in which no letter occurs more than once. Then, |z1| ≤ a and MaxExpRep(z1) = 1.
Note that MaxExpRep(z1z2) > 1 if z1 6= y.

When the factorisation of y is computed, Algorithm MaxExpRep processes the
phrases sequentially, from z2 to zk. After z1, z2, . . . , zi−1 have been processed, the
variable e stores the maximal exponent of factors of z1z2 · · · zi−1. Then, the next
repeats to be considered are those involving phrase zi. Such a repeat uvu can either
be internal to zi or involve other phrases. However, the crucial property of the
factorisation is that the second occurrence of u is only to be searched for in zi−1zi
because it cannot contain a phrase as this would contradict the definition of the
factorisation. The reason is that if a phrase is a proper factor of second occurrence of
u then since there is another occurrence of u prior to the starting point of this phrase,
this implied that the phrase is extendible which is contradiction to the definition of
factorisation.
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z1 z2 zi−1 zi
u1 u1 (i)

u2 u2 (ii)
u3 u3 (ii) (iii)

u4 u4 (iii)

u5 u5 (iv)

Figure 7.1: The only four possible locations of a repeat uvu involving phrase zi of the
factorisation of the string: (i) internal to zi; (ii) the first occurrence of u is internal
to zi−1; (iii) the second occurrence of u is internal to zi; (iv) the second occurrence of
u is internal to zi−1zi.

We further distinguish four possible cases according to the position of the repeat uvu
as follows (see Figure 7.1):

(i) The two occurrences of u are contained in zi.

(ii) The first occurrence of u is contained in zi−1 and the second ends in zi.

(iii) The first occurrence of u starts in zi−1 and the second is contained in zi.

(iv) The first occurrence of u starts in z1 · · · zi−2 and the second is contained in
zi−1zi.

Case (i) needs no action since the phrase zi is the longest prefix of zizi+1...zk that
occurred in z1...zi−1, so two occurrences of u or vuu has been already processed in
previous stages. Other cases are dealt with calls to Algorithm MaxExp as described
in the code below where x̃ denotes the reverse of string x. For any two strings z and
w and a positive rational number e, MaxExp(z, w, e) is the maximal exponent of
repeats in zw whose occurrences start in z and end in w, and whose exponent is at
least e; it is e itself if there is no such repeat.

MaxExpRep(y)

1 (z1, z2, . . . , zk)← f-factorisation of y
2 ⊲ z1 is the longest prefix of y in which no letter repeats
3 e← 1
4 for i← 2 to k do
5 e← max{MaxExp(zi−1, zi, e), e}
6 e← max{MaxExp(z̃i, z̃i−1, e), e}
7 if i > 2 then

8 e← max{MaxExp(z̃i−1zi, ˜z1 · · · zi−2, e), e}
9 return e
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Note that variable e can be initialised to the repetitive threshold RT(a) of the
alphabet of string y if the string is long enough. The maximal length of words
containing no repeat of exponent at least RT(a) is 3 for a = 2, 38 for a = 3, 121 for
a = 4, and a + 1 for a ≥ 5 (see [32]).

Another technical remark is that the instruction at line 6 can be tuned to deal
only with type (iii) repeats of the form u4vu4 (see Figure 7.1), i.e. repeats for which
the first occurrence of the border starts in zi−1 and ends in zi, because line 5 finds
those of the form u3vu3. However, this has no influence on the asymptotic runtime.

Theorem 25. For any input overlap-free string, MaxExpRep computes the maximal
exponent of repeats occurring in it.

Proof. We consider a run of MaxExpRep(y). Let e1, e2, . . . , ek be the successive
values of the variable e, where ei is the value of e just after the execution of lines 5–8
for index i. The initial value e1 = 1 is the maximal exponent of repeats in z1 as a
consequence of its definition. We show that ei is the maximal exponent of repeats
occurring in z1z2 · · · zi if ei−1 is that of z1z2 · · · zi−1, for 2 ≤ i ≤ k.

To do so, since ei is at least ei−1 (use of max at lines 5–8), all repeats occurring in
z1z2 · · · zi−1 are taken into account and we only have to consider repeats coming from
the concatenation of z1z2 · · · zi−1 and zi, that is, repeats of the form uvu where the
second occurrence of u ends in zi. As discussed above and illustrated in Figure 7.1,
only four cases are to be considered because the second occurrence of u cannot start
in z1z2 · · · zi−2 without contradicting the definition of zi−1.

Line 5 deals with Case (ii) by the definition of MaxExp. Similarly, line 6 is for
Case (iii), and line 8 for Case (iv).

If a repeat occurs entirely in zi, Case (i), by the definition of zi it occurs also in
z1z2 · · · zi−1, which is reported by ei−1.

Therefore, all relevant repeats are considered in the computation of ei, which is
then the maximal exponent of repeats occurring in z1z2 · · · zi. This implies that ek,
returned by the algorithm, is that of z1z2 · · · zk = y as stated.

3 Locating repeats in a product

In this section, we describe AlgorithmMaxExp for computing the maximal exponent
of repeats in zw that end in w, whose left border occurs in z, and whose exponent is
at least e. MaxExp is called in the main algorithm of previous section.

To locate repeats under consideration, the algorithm examines positions j on w
and computes for each the longest potential border of a repeat, a longest suffix u of
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zw[0 . . j] occurring in z. The algorithm is built upon an algorithm that finds all of
them using the Suffix Automaton of string z and described in [25, Section 6.6]. After
u is found, some of its suffixes may lead to a repeat with a higher exponent, but the
next lemmas show we can discard many of them.

z w
0 j

(1) u v u
(2) u′ v′ u′

Figure 7.2: When u and its suffix u′ ends at the same rightmost position on z, repeat
(1) has a larger exponent than repeat (2).

Lemma 22. Let u′ be a suffix of u. If they are both associated with the same state of
S(z) the maximal exponent of a u′v′u′ repeat is not greater than the maximal exponent
of its associated uvu repeats.

Note that a suffix u′ of u may end at a position larger than the rightmost end
position of u and lead to a repeat having a larger exponent. For example, let z =
abadba and w = cdaba. The repeat abadbacdaba with border aba has exponent 11/8
while the suffix ba of aba implies the repeat bacdaba of greater exponent 7/5.

z w
0 j k

(1) u v u
(2) u v′ u

Figure 7.3: Repeat (1) ending at position j has a larger exponent than repeat (2)
ending at position k > j.

Lemma 23. If u occurs at end positions j and k on w with k > j, the repeat uv′u
ending at k cannot be a MER.

The above properties are used by Algorithm MaxExp to avoid some exponent
calculations as follows. Let uvu a repeat ending at j on zw[0 . . j] for which u is the
longest string associated with state q = goto(initial(S), u). Then next occurrences of
u and of any of its suffixes cannot produce repeats with an exponent larger than that
of uvu. State q is then marked to inform the next steps of the algorithm that it has
been visited.

We use the Suffix Automaton of z (minimal automaton that recognizes the set of
all suffixes of z), denoted S(z), to locate borders of repeats. The structure contains
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z
0 j

a
u v u

✲✛

ℓ
✲✛

sc[q]
✲✛

j + 1

Figure 7.4: The maximal exponent of all repeats in question bordered by u, longest
factor of z ending at j, is (ℓ+ sc[q] + j + 1)/(sc[q] + j + 1).

the failure link Fz and the length function Lz both defined on the set of states. The
link is defined as follows: let p = goto(initial(S(z)), x) for x ∈ A+; then Fz(p) =
goto(initial(S(z)), x′), where x′ is the longest suffix of x for which this latter state is
not p. As for the length function, Lz(p) is the maximal length of strings x for which
p = goto(initial(S(z)), x).

We need another function, scz, defined on states of S(z) as follows: scz(p) is
the minimal length of paths from p to a terminal state; in other terms, if p =
goto(initial(S(z)), x), then scz(p) = |x′| where x′ is the shortest string for which
xx′ is a suffix of z. With this precomputed extra element, computing an exponent is
a mere division (see Figure 7.4).

Figure 7.6 illustrates a computation done by the algorithm using the Suffix Au-
tomaton of Figure 7.5.

MaxExp(z, w, e)

1 S ← Suffix Automaton of z
2 mark initial(S)
3 (q, ℓ)← (F [last(S)], L[F [last(S)]])
4 for j ← 0 to min{⌊|z|/(e− 1)− 1⌋, |w| − 1} do
5 while goto(q, w[j]) = NIL and q 6= initial(S) do
6 (q, ℓ)← (F [q], L[F [q]])
7 if goto(q, w[j]) 6= NIL then
8 (q, ℓ)← (goto(q, w[j]), ℓ+ 1)
9 (q′, ℓ′)← (q, ℓ)
10 while q′ unmarked do
11 e← max{e, (ℓ′ + sc[q′] + j + 1)/(sc[q′] + j + 1)}
12 if ℓ′ = L[q′] then
13 mark q′

14 (q′, ℓ′)← (F [q′], L[F [q′]])
15 return e

Note the potential overflow when computing ⌊|z|/(e− 1)− 1⌋ can easily be fixed
in the algorithm implementation.
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0 1 2 3 4 5 6 7 8 9

10

11 12

a b c a d b e c a

d
e

d

b

c

c

e

a

d

Figure 7.5: Suffix Automaton of abcadbeca. Suffix links: F [1] = 0, F [2] = 10,
F [3] = 11, F [4] = 1, F [5] = 0, F [6] = 10, F [7] = 0, F [8] = 11, F [9] = 12, F [10] = 0,
F [11] = 0, F [12] = 1. Maximal incoming string lengths: L[0] = 0, L[1] = 1, L[2] = 2,
L[3] = 3, L[4] = 4, L[5] = 5, L[6] = 6, L[7] = 7, L[8] = 8, L[9] = 9, L[10] = 1,
L[11] = 1, L[12] = 2. Minimal extension lengths: sc[0] = 0, sc[1] = 0, sc[2] = 7,
sc[3] = 6, sc[4] = 5, sc[5] = 4, sc[6] = 3, sc[7] = 2, sc[8] = 1, sc[9] = 0, sc[10] = 3,
sc[11] = 1, sc[12] = 0.

j 0 1 2 3 4 5 6 7 8 9
w[j] d e c a d b e c a d

q 12 5 7 8 9 5 6 7 8 9 5
ℓ 2 3 1 2 3 3 4 5 6 7 3

exp 8/5 5/4 3/2 7/4 4/3 13/9 14/9 5/3 16/9 17/14
5/4 10/9

Figure 7.6: Computing exponents when searching zw for repeats uvu. The first
occurrence of u is in z and the second ends in zw. The Suffix Automaton of z =
abcadbeca with function sc is in Figure 7.5. The search is done by parsing w =
decadbecad with the automaton. Exponents of repeats are given by the expression
(ℓ + sc[q] + j + 1)/(sc[q] + j + 1). The last line is for exponents corresponding to
suffixes of u. The maximal exponent all repeats is 7/4.
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Theorem 26. Algorithm MaxExp, applied to strings z and w and to the rational
number e, produces the maximal exponent of repeats in zw that end in w, whose left
border occurs in z and exponent is at least e.

Proof. In the algorithm, position j on w stands for a potential ending position of a
relevant repeat. First, we show that the algorithm does not require to examine more
values of j but those specified at line 4. The exponent of a repeat uvu is uvu/vu. Since
we are looking for repeats satisfying uvu/vu ≥ e, the longest possible such repeat has
period j + 1 and border z. Then (z + j + 1)/(j + 1) > e implies j < z/(e − 1) − 1
(which is +∞ if e = 1). Since j is a position on w, j < w, which completes the first
statement.

Second, given a position j on w, we show that the algorithm examines all the pos-
sible concerned repeats having an exponent at least e and ending at j. The following
property related to variables q, state of S, and ℓ is known from [25, Section 6.6]: let
u be the longest suffix of zw[0 . . j] that is a factor of z, then q = goto(initial(S), u)
and ℓ = |u|. The property is also true just after execution of line 3 for z alone due to
the initialisation of the two variables.

Then string u is the border of a repeat ending in w and whose left border oc-
curs in z. Lines 9 to 14 check the exponents associated with u and its suffixes. If
q′ is unmarked, the exponent is computed as explained before (see Figure 7.4). If
the condition at line 11 is met, which means that u is the longest string satisfying
q′ = goto(initial(S), u), due to Lemma 23 the algorithm does not need to check the
exponent associated with next occurrences of u, nor with the suffixes of u since they
have been checked before. Due to Lemma 22, suffixes of u ending at the same right-
most position on z do not have a larger exponent. Therefore the next suffix whose
associated exponent has to be checked is the longest suffix leading to a different state
of S: it is F (q′) and the length of the suffix is L(F (q′)) by definition of F and L.

Finally note the initial state of S is marked because it corresponds to an empty
string u, that is a repeat of exponent 1, which is not larger than the values of e.

This proves the algorithm runs through all possible relevant repeats, which ends
the proof.

4 Complexity analysis

In this section, we analyse the running time and memory space of the previous algo-
rithms.

Proposition 23. Applied to strings z and w and to the rational number e, Algorithm
MaxExp requires O(|z|) space in addition to inputs and runs in total time O(|z| +
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min{⌊|z|/(e− 1)− 1⌋, |w| − 1}) on a fixed size alphabet. It performs less than 2|z|+
min{⌊|z|/(e− 1)− 1⌋, |w| − 1} exponent computations.

Proof. The space is used mostly for storing the automaton, which is known to have no
more 2|z| states and 3|z| edges (see [25]). It can be stored in linear space if edges are
implemented by successor lists, which adds a multiplicative log a factor on transition
time.

It is known from [25, Section 6.6] that the algorithm runs in linear time on a fixed
alphabet, including the automaton construction with elements F , L and sc, if we
exclude the time for executing lines 9 to 14.

So, let us count the number of times line 11 is executed. It is done once for each
position j associated with an unmarked state. If it is done more than once for a given
position, then the second value of q′ comes from the failure link. A crucial observation
is that condition at line 12 holds for such a state. Therefore, since S(z) has no more
than 2|z| states, the total number of extra executions of line 11 is at most 2|z|. Which
gives the stated result.

The proof of the linear running time of Algorithm MaxExpRep additionally
relies on a combinatorial property of strings (see Chapter 4). It is Dejean’s statement
[32] proved in [56, 31] that gives for each alphabet size k, its repetitive threshold
RT(a), i.e. the maximal exponent unavoidable in infinite strings over the alphabet.
Thresholds are: RT(2) = 2, RT(3) = 7/4, RT(4) = 7/5, and RT(a) = a/(a − 1) for
a ≥ 5. Thus, if the string y is long enough the maximal exponent of its factors is at
least RT(a) where a is its alphabet size (see the note following Algorithm MaxExpRep).

Theorem 27. Applied to any overlap-free string of length n on a fixed-size alphabet,
Algorithm MaxExpRep runs in time O(n) and requires O(n) extra space.

Proof. Computing the f-factorisation (z1, z2, . . . , zk) of the input takes time and space
O(n) on a fixed-size alphabet using any suffix data structure. (It can even be done
in time O(n) on an integer alphabet, see [28].)

Next instructions execute in linear extra space from Proposition 23. Line 5 takes
time O(|z|+min{⌊|zi−1|/(e−1)−1⌋, |zi|−1}), which is bounded by O(|zi−1|+|zi−1|/(e−
1)−1), for i = 2, . . . , k. For a long enough input, e is eventually at least RT(a) where
a is the input alphabet. The time is then bounded by O(|zi−1|+|zi−1|/(RT(a)−1)−1),
then O(|zi−1|) because RT(a) > 1. The contribution of Line 5 to the total runtime is
then O(Σk

i=2|zi−1|).

Similarly it is O(Σk
i=2|zi|) for Line 6 and O(Σk

i=2|zi−1zi|) for Line 8. Thus the
overall runtime is bounded by O(Σk

i=1|zi|), which is O(n) as expected.
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5 Counting maximal-exponent repeats

In this section, we show there is a finite number of MERs in an overlap-free string.
Note that on the alphabet {a, a1, . . . , an} the string aa1aa2a . . . aana of length 2n+1
has a quadratic number of maximal repeats. Indeed all occurrences of repeats of the
form awa for a word w are non extensible. But only the n repeats of the form aca
for a letter c have the maximal exponent 3/2.

We start with a simple property of MER, which does not lead to their linear
number, but is used below to tune the upper bound.

Lemma 24. Consider two occurrences of MERs with the same border length b starting
at respective i and j on y, i < j. Then, j − i > b.

Proof. The two MERs having the same border length, since they have the same
exponent, they have also the same period and the same length. Let b their border
length and p their period.

Assume ab absurdo j−i ≤ b. The word y[i . . i+b−1] = y[i+p . . i+p+b−1] is the
border of the first MER. The assumption implies that y[i+ b] = y[i+ p+ b] because
these letters belong to the border of the second MER. It means the first MER can be
extended with the same period, a contradiction because it has the largest exponent.
Therefore, j − i > b as stated.

If we count the occurrences of MERs by their border lengths after Lemma 24 we
get an initial part of the harmonic series, quantity that is not linear with respect to
the length y.

To refine the previous lemma and get a linear upper bound on the number of
occurrences of MERs we introduce the notion of δ-MERs, for a positive real number δ,
as follows. An MER uvu is a δ-MER if its border length b = |u| = |uvu|−period(uvu)
satisfies 3δ ≤ b < 4δ. Then any MER is a δ-MER for some δ ∈ ∆, where ∆ =
{1/3, 2/3, 1, 4/3, (4/3)2, (4/3)3, . . . }. This is the technique used for example in [60, 27]
to count runs in strings.

The proof of the next lemma is illustrated by Figure 7.7.

Lemma 25. Let uvu and u′v′u′ be two δ-MERs starting at respective i and j on y,
i < j. Then, j − i ≥ δ.

Proof. Assume ab absurdo j − i < δ (see Figure 7.7).

Since both |u| ≤ 3δ and |u′| ≤ 3δ, the two occurrences overlap. Let w be the
overlap. It can be a suffix of u and a prefix of u′ as in Figure 7.7, or w can be the

96



5. COUNTING MAXIMAL-EXPONENT REPEATS

y
i j

u′ v′ u′

u v u
w w w

✲✛

< δ
✲✛

> 2δ larger exponent

y
i j

u′ v′ u′

u v u
u′

Figure 7.7: Top: two δ-MERs, uvu and u′v′u′, starting at close positions induce a
repeat with a larger exponent, a contradiction. Bottom: the last two occurrences of u′

are closer than the first two, leading to a larger exponent than u′v′u′, a contradiction.
Indeed, the case is possible only if |u′| ≤ |u|/2.
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y
i j

u′ v′ u′

u v u
u′

Figure 7.8: Second case of two δ-MERs, uvu and u′v′u′, starting at close positions:
the last two occurrences of u′ are closer than the first two, leading to a larger exponent
than u′v′u′, a contradiction. Indeed, the case is possible only if |u′| ≤ |u|/2.

shorter of u and u′ when it occurs in the longer, see Figure 7.8. In both cases we have
|w| > 2δ.

Let p = |uv| be the period of uvu and p′ = |u′v′| be that of u′v′u′. Note that the
exponent of the two repeats is e = 1 + |u|/p = 1 + |u′|/p′, which implies p′ − p =
(|u′| − |u|)/(e− 1).

Due to the periodicity of the two repeats, w occurs at both positions j + p and
j + p′. Assume for example that j + p < j + p′ (we cannot have j + p = j + p′). The
factor y[j + p . . j + p+ |w| − 1] has exponent

1 +
|w|

p′ − p
= 1 +

|w|(e− 1)

(|u′| − |u|)
.

However since |w| > 2δ and |u′| − |u| < 2δ, the exponent is larger than e, a contra-
diction with the definition of uvu and u′v′u′. Therefore j − i ≥ δ as stated.

A direct consequence of the previous lemma is the linear number of MER occur-
rences.

Theorem 28. There is a constant α for which the number of occurrences of maximal-
exponent repeats in a string of length n is less than αn.

Proof. Lemma 25 implies the number of δ-MER occurrences in y is no more than
n/δ. Since values of δ in ∆ cover all border lengths, the total number of occurrences

98



5. COUNTING MAXIMAL-EXPONENT REPEATS

y

u v u
u′ v′ u′ u′

larger exponent

Figure 7.9: The left occurrence of u′ from the MER u′v′u′ falls inside the left oc-
currence of u from the MER uvu. Then |u′| ≤ |u|/2 because the contrary induces a
repeat with a larger exponent, a contradiction.

of MERs is bounded by

∑

δ∈∆

n

δ
= n

(
3 +

3

2
+ 1 +

3

4
+

(
3

4

)2

+ . . .

)
< 8.5n.

The next statement refines the upper bound given in the proof of the previous
theorem.

Corollary 7. There are less than 3.11n occurrences of MERs in a string of length
n.

Proof. According to Lemma 24 there are less than

b=11∑

b=1

n

b+ 1
= 2.103211n

occurrences of MERs with border length at most 11.

We then apply Lemma 25 with values of δ ∈ Γ that allow to cover all remaining
border lengths of MERs: Γ = {4, 4(4/3), 4(4/3)2, . . . }, we get the upper bound

∑

δ∈Γ

n

δ
=

1

4

(
1 +

3

4
+

(
3

4

)2

+ . . .

)
n = n
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for the number of occurrences of MER with border length at least 12.

Thus the global upper bound we get is 3.11n.

Note that the border length 11 (or 12) minimises the expression

(
b=k∑

b=1

n

b+ 1

)
+

3

k + 1

(
1 +

3

4
+

(
3

4

)2

+ . . .

)
n =

(
b=k∑

b=1

n

b+ 1

)
+

12n

k + 1

with respect to k, which means the technique is unlikely to produce a smaller bound.
By contrast, experiments show that the number of occurrences of MERs is in fact
smaller than n and not even close to n, at least for small values of n. The following
table displays the maximal number of MERs for overlap-free string lengths n =
5, 6, . . . , 20 and for alphabet sizes 2, 3 and 4. It also displays (second element of
pairs) the associated maximal exponent. In the binary case we already know that it
is 2 since squares are unavoidable in strings whose length is greater than 3.

n 5 6 7 8 9 10 11 12
binary 2 3 4 5 5 6 6 8
ternary (2, 1.5) (3, 1.5) (4, 2) (5, 2) (5, 2) (6, 1.5) (6, 2) (8, 2)
4−ary (2, 1.5) (3, 1.5) (4, 2) (5, 2) (5, 2) (6, 1.5) (7, 1.5) (8, 2)

13 14 15 16 17 18 19 20
8 9 9 11 11 12 12 14

(8, 2) (9, 2) (9, 2) (11, 2) (11, 2) (12, 2) (12, 2) (14, 2)
(8, 1.5) (9, 1.5) (10, 1.5) (11, 2) (12, 1.5) (12, 1.5) (13, 1.5) (14, 1.5)

6 Conclusion

The result of Section 5 implies that Algorithm MaxExpRep can be upgraded to out-
put all the MERs occurring in the input string in the same asymptotic time. Indeed,
the only occurrences of MERs that are skipped by the algorithm when computing
the maximal exponent are those occurring inside a phrase of the f-factorisation (Case
(i) of Section 2). However, storing their previous occurrences and listing them can
be done in time proportional to their number, which does not affect the asymptotic
runtime of the algorithm and yields the next statement.

Corollary 8. All the occurrences of maximal-exponent factors of a string can be listed
in linear time with respect to its length.

The present work triggers the study of a uniform solution to compute both rep-
etitions and repeats. However, exponent 2 seems to reflect a transition phase in the
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combinatorics of studied objects. For instance, the number of repetitions in a string
can be of the order of n log n, the number of runs linear, while the number of repeats
and of their maximal occurrences can be quadratic.

An interesting question would be to select repeats which occur only a linear num-
ber of times or slightly more. An attempt has been achieved in [45] where it is shown
that the number of maximal repetitions of any exponent more than 1 + ǫ is bounded
by 1

ǫ
n lnn. See also the discussions at the end of [44] and of [26].

We have left for a future work the calculation of the number of (distinct) MERs
occurring in a string, as well as the lower bounds on these quantities.
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8
Future Work

We summarise in this chapter a series of open questions that are found in previous
chapters.

In Chapter 2, we mentioned a few well known square-free morphisms. However,
little is known about the characterisation of weakly square-free morphisms, therefore
it would be interesting to study this class of morphisms. The question raised by
Currie and Rampersad is still open: does there exist k-uniform square-free ternary
morphisms for all k ≥ 11?

In Chapter 4, we proved that there exists an infinite overlap-free ternary word
with only one square, 00 and no e-power with 7/4 ≤ e < 2. We conjecture that
there exists an infinite word on 4-letter alphabet containing 010 and no e-power with
7/5 ≤ e < 3/2 or e > 3/2. This conjecture is based on an extensive computation.
It remains to investigate infinite words on a higher alphabet and see if there exists a
class of infinite words containing only one Nk-power and no e-power with rk ≤ e < Nk

or e > Nk, where Nk is a rational number and rk is the repetitive threshold of the
k-letter alphabet.

Remaining conjectures and questions stated in Chapter 4 are:

• There exists an infinite Dejean’s word on a 5-letter alphabet with only 45 limit
repetitions.

• There exists an infinite Dejean’s word on a 5-letter alphabet with only 46 limit
repetitions, and such that every limit repetition has period 4.

• Is it possible to construct Dejean’s words such that the only allowed limit rep-
etitions have period k − 1, for every k > 38 ?

• Can we find a lower or an upper bound for Rn(k) when k > 5, where Rn(k) is
the minimum number of limit repetitions in infinite Dejean’s word ?

In Chapter 6, we studied some pattern avoidance. The study by Samsonov and
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Shur on cube-free binary words avoiding some binary patterns can be extended. The
interesting questions that remain are:

• What are the avoidability status of the binary patterns in 5/2-free binary words?
The only cases are AABBAA and AABABB.

• Is there any pattern that is unavoidable by cube-free binary words but avoidable
by 3+-free binary words?

Another interesting open question is the following:
Suppose that P is an avoidable pattern with avoidability index λ(P ) = k. Is it
possible to find a finite set P of patterns and a finite set F of factors such that
P ∈ P and P ∪ F characterises a morphic word over Σk? Notice that this would
be a strengthening of Cassaigne’s conjecture [21] that there exists a morphic word
avoiding P over Σk.

In Chapter 7, we provided a linear-time algorithm to compute the maximal ex-
ponent of factors occurring in a word. Our solution works on overlap-free strings
for which the maximal exponent of factors is at most 2. Computing the maximal
exponent of factors with exponent at least 2 can be done in linear time by adapting
the algorithm of Kolpakov and Kucherov [44]. A remaining question to the present
study is to unify the algorithmic approaches for repetitions of exponent at least 2 and
for repeats of exponent at most 2.

The results presented in this thesis have made a significant contribution to ex-
tending previous work. However, as described throughout the thesis, there remain
many open questions and directions in which this work can continue.
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