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Abstract 

Respiratory failure, due to infection and concomitant inflammation is the major cause of 

morbidity and mortality in people suffering from the genetic disorder, cystic fibrosis (CF). 

Consequently, the CF Foundation currently estimates that patients with CF have a median 

predicted life expectancy of only 41.1 years. Understanding the relationship between the 

complex and diverse bacterial community present within the lower respiratory tract and 

patient outcomes has therefore become a top priority. Through the use of next generation 

sequencing technologies (Roche 454 and Illumina MiSeq) and ecological statistics and 

modelling, the complex relationships between the bacterial community within the CF lung 

and host related clinical factors were investigated.  

By first establishing guideline methodologies for the reduction of bias in the collection, 

storage and treatment of respiratory samples, this thesis aimed to use large scale spatial 

and longitudinal studies to investigate key relationships between the bacterial community 

and clinical factors. 

It has been well established that a complex and diverse bacterial community exists within the 

CF lung. Spatial sampling revealed key relationships between the bacterial community and 

other diagnostic parameters including, FEV1, gender, and clinic location.   

Longitudinal sampling aimed principally to investigate CF pulmonary exacerbations (CFPE), 

implicated in the progressive loss of lung function associated with CF lung disease. Over the 

course of a CFPE the common bacterial taxa show resistance to perturbations while the rare 

taxa show resilience. Through this investigation, Veillonella parvula was identified as a 

potential bioindicator of CFPE, introducing the potential for a rapidly testable parameter for 

clinicians to identify a CFPE. This finding could provide one of the most important recent 

developments in CF therapy. 
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“The role of the infinitely small in nature is infinitely great”  

Louis Pasteur 

 

 

 

 

 



 

Chapter 1: Introduction   13 

 
1.1 Introduction 

Lower respiratory tract infections (LRTI) are a considerable burden to human health and 

healthcare organisations. These infections represent a wide range of conditions, which 

include both, acute, short lived infections such as pneumonia and respiratory syncytial virus 

(RSV), as well as more chronic conditions, including chronic obstructive pulmonary disease 

(COPD) and the infections associated with cystic fibrosis (CF). The World Health 

Organisation (WHO) ranks LRTI as the leading cause of death due to infection (1) and as a 

result, the costs of LRTI economically, and in terms of morbidity and mortality, are immense 

(2).  

Pulmonary failure as a result of progressive lung damage from chronic infection and 

concomitant inflammation is the primary cause of morbidity and mortality in CF patients (3). 

Given the influence of infection on clinical outcome, it is by extension important to 

characterise the species in the CF airways.  In recent years advances in culture independent 

methodologies have revealed that CF lung infections are not, as previously considered, the 

result of a single or few pathogenic organism but rather comprise a complex and diverse 

microbial community (4). It is therefore important to fully understand the relationship between 

the microbial community and disease progression. To achieve this, changes in the bacterial 

community along with the factors that influence this, have to be investigated.  

The aim of this dissertation was to investigate how bacterial community composition within 

the lungs of individuals with CF relates to disease state. By employing a multidisciplinary 

approach combining medical and ecological methodologies, it was possible to investigate the 

relationship between the bacterial community and disease state. 
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1.2 The microbial world 

Microorganisms, including bacteria, archaea, viruses and fungi, are some of the most 

abundant forms of life on the planet. Current estimates suggest there are between 9.2-

31.7x1029 bacterial and archaeal cells (5), about 1031 viral particles (6). Due to the 

multicellular nature of some fungal species, no approximation of the numbers of individual 

fungal organisms exists however, it is estimated that there are around 1.5x106 species on 

Earth (7). Despite associations with health and disease, microorganisms are essential for 

maintaining the planet’s ability to sustain life through essential roles in biogeochemical 

cycling (8). Concentrations of oxygen, carbon dioxide and methane in the atmosphere are 

influenced by microbes, which regulate functions such as the global hydrogen, carbon, 

nitrogen, oxygen and sulphur cycles (8).  

Improvements to the microscope around 300 years ago opened up a new world of 

microorganisms. Robert Hooke, who published the first depiction of “microfungus” in 1665, 

stated “...in every little particle of its matter, we now behold almost as great a variety of 

Creatures, as we were able before to reckon up in the whole Universe itself.”(9). Later in 

1676, van Leeuwenhoek, using a microscope of his own design which magnified up to 250 

times, visualised and described the first bacterial cells (10).  

It was not till the 19th century that major leaps forward in the understanding of 

microorganisms and their role in disease were made. Robert Koch, considered by many to 

be the founder of modern medical bacteriology, laid out guidelines to establish the microbial 

cause of infectious diseases, known as Koch’s postulates (11, 12). These guidelines state 

that:  

1. The microorganism must be found in abundance in all organisms suffering from the 

disease, but should not be found in healthy organisms.  

2. The microorganism must be isolated from a diseased organism and grown in pure 

culture.  
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3. The cultured microorganism should cause disease when introduced into a healthy 

organism.  

4. The microorganism must be reisolated from the inoculated, disease experimental 

host and identified as being identical to the original specific causative agent.  

To do this he developed methods for the pure culture of bacterial species, which allowed 

microbes to be classified into taxonomic groups by appearance and nutritional requirements. 

These methodologies are still widely used in diagnostic microbiology, however, with 

advances in diagnostic methodologies modification to the original Koch’s postulates have 

been suggested by Fredricks and Relman (1996) (13); 

1. A nucleic acid sequence belonging to a putative pathogen should be present in most 

cases of an infectious disease. Microbial nucleic acids should be found preferentially 

in those organs or gross anatomic sites known to be diseased, and not in those 

organs that lack pathology.  

2. Fewer, or no copies of pathogen-associated nucleic acid sequences should occur in 

hosts or tissues without disease.  

3. With resolution of disease, the copy number of pathogen-associated nucleic acid 

sequences should decrease or become undetectable. With clinical relapse, the 

opposite should occur.  

4. When sequence detectiomn predates disease, or sequence copy number correlates 

with severity of disease or pathology, the sequence-disease association is more 

likely to be a causal relationship.  

5. The nature of the microorganism inferred from the available sequence should be 

consistent with the known biological characteristics of that group of organisms.  

6. Tissue-sequence correlates should be sought at the cellular level: efforts should be 

made to demonstrate specific in situ hybridisation of microbial sequence to areas of 

tissue pathology and to visible microorganisms or to areas where microorganisms 

are presumed to be located.  
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7. These sequence-based forms of evidence for microbial causation should be 

reproducible.  

While the modified poslulates are useful they do not account for established disease 

association, such as papillomavirus and cervical cancer or prion disease (13).  

DNA was first discovered in 1869 by Freidrich Miescher as a microscopic substance located 

in the nuclei of cells. Watson and Crick’s work on the structure and function of DNA (14) and 

the subsequent understanding of the role of DNA in an organisms evolutionary history (15), 

led to Carl Woese proposing the use of ribosomal RNA (rRNA) sequences to classify the 

taxonomy of microorganisms (16). The use of rRNA for the investigation of microbes began 

to reveal the enormous genetic diversity present in the microbial world (17). As work 

continued in this area it became apparent that only a fraction of the bacteria from the 

environment had been grown in the laboratory (18). 

The vast genetic diversity of microorganism is still being revealed. The Approved Lists of 

Bacterial Names (http://www.bacterio.net/-number.html) as of August 2013, included 10,599 

published species names, a more than 500% increase from those listed in 1980. This 

increase in recognised taxa is attributed largely to advances in DNA sequencing 

technologies.  

The 16S rRNA gene codes for part of the ribosomal RNA which makes up the 30S 

prokaryotic ribosomal subunit. The S in 16S refers to the Svedberg unit, which is a non-SI 

unit for sedimentation rate. The 16S rRNA gene is the most commonly sequenced section of 

the bacterial (or archaeal) genome used for identification (19). It is around 1,500 bp in length 

and contains highly conserved regions of the rRNA gene, present within different species of 

bacteria and archaea, and has nine hypervariable regions (20, 21). The conserved regions 

allow the design of universal primers that will amplify “all” bacterial or archaeal species while 

the hypervariable regions that can provide species-specific signature sequences important in 

allowing species identification (20, 21).  
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For similar reasons, the internal transcribed spacer (ITS) regions of the rRNA gene are the 

most widely used for the identification of fungal species (22). The ITS regions are lengths of 

non-functional RNA, interspersed along the conserved rRNA gene 

(18S_ITS1_5.8S_ITS2_28S). These areas have been widely sequenced due to their high 

copy number, allowing amplification from small quantities of DNA, and their high variability 

compared to other genetic regions of ribosomal DNA, thereby allowing identification of even 

closely related fungi to the species level (23).  

Unfortunately, no universal primer equivalent exists for the molecular identification of viruses 

due mainly to the variation in genetic material, single stranded DNA, single stranded RNA, 

double stranded DNA or double stranded RNA. Therefore the diagnosis of viral infections 

has relied heavily on the use of multiplex PCR, developed for panels of known viruses (24). 

In recent years however, methods have been developed using metagenomics, viral particle 

purification followed by shotgun sequencing, to identify unknown and previously 

uncharacterised viral particles from a variety of sample types (25).  

 

1.3 Microbial ecology 

Despite the diversity, ubiquity and importance of microorganisms, microbial communities are 

still poorly understood. The discipline of microbial ecology aims to address this by 

investigating microbes and their interactions with the environment. This is arguably one of 

the most important challenges for ecologists today, as understanding these communities 

may have major impacts on some of the fundamental trials facing society, such as the 

management of natural ecosystems and the mitigation of climate change (26).    

 Ecological theory is essential in order to interpret and predict interactions between species 

in a shared environment (27). However, the abundance, diversity and actions of 

microorganisms make it challenging to apply theories developed for the study of plants and 

animals to microbial communities. This is mainly due to the challenges associated with 
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assigning microorganisms to species. The traditional definition of species involves the ability 

to produce viable offspring from sexual reproduction, the biological species concept (28). 

Therefore, this cannot be applied to organisms that reproduce asexually, and hence in order 

to apply ecological theory to microorganisms it became important to determine a new 

method to differentiate between microbial species, this is explored further in Chapter 1.4.  

Despite some challenges in applying ecological theory to microbial populations, ecology has 

been able to generate predications of practical value for social, political and business needs. 

An example of this included the application of epidemiological models in predicting the 

spread of pathogens (29).  Quantitative theory has also been employed to optimise operating 

conditions for the efficienct running of wastewater treatment plants (30). On a wider scale it 

is hoped that quantitative information on microbial community structure and population 

dynamics will help assess the impact of climate change on microbial ecosystem processes.  

The challenge facing microbial ecologists is to match the appropriate theoretical approach to 

the organism, system, scale and question of interest. Until recent years lack of available 

information about the microbial community was a limiting factor of these studies, however 

the development of high throughput sequencing platforms has lead to greater use of 

ecological theories.   

In the inverstigation of human microbiota, each individual can be considered an island 

habitat, containing a diverse microbial assembalage (31). As a result ecological theories 

such as the community assembly theory (32) and metacommunity theory (33) can be 

utalised to help understand the community dynamica and variability in the human microbial 

community (31).  

1.4 Identifying bacteria 

Traditionally, microbes were clustered using phenotypic characteristics, subsequently these 

methods were soon overtaken by the use of genotypic approaches. Whole genome methods 

such as DNA-DNA hybridisation (DDH), currently considered the gold standard for species 
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identification, and average nucleotide identity (ANI), a more recent technique that uses a pair 

wise comparison of all shared sequences between two strains, are widely used. However, 

these methods are time consuming and technically demanding, compared to rapid and easy 

sequencing of signature sequences such as the 16S rRNA genes (34, 35). It is not surprising 

therefore that 16S rRNA amplicons are commonly sequenced to investigate the phylogeny 

and taxonomy of bacterial species (36). When comparing full length 16S rRNA gene 

sequencing, two microorganisms are defined as the same species if their ribosomal RNA 

gene sequences show over 98.7% similarity (37).  

The 98.7% cut off is considered appropriate for bacterial species identification as it accounts 

for a certain amount of within species variation. Variation is observed within nine 

hypervariable regions (V1-V9) found interspersed with conserved areas of the 16S rRNA 

gene. As sequencing of the entire 16S rRNA gene is not always practical, smaller regions of 

the gene may also be used for species identification. As such, the V1-V2 or the V3 to V5 

regions of the gene can be used for the taxonomic classification of bacterial sequences. By 

covering more than one hypervariable region, sensitivity, specificity and reliability are 

increased. Even so, due to reduction in the conserved areas being covered in these shorter 

reads, a 97% similarity cut off can be used as an approximation for species.  

Our ability to amplify and sequence rRNA genes is important in enabling species diversity to 

be estimated. This approach can have limitations; a study by Hong et al, 2009, using clone 

libraries of marine sediment, found that polymerase chain reaction (PCR) of 16S rRNA 

genes with ‘universal’ primers failed to amplify at least half of the microbial diversity 

regardless of taxonomic level (38). Further, Gans et al (2005) calculated that in order to 

estimate 80% of the diversity within a soil sample, containing an estimated billion bacterial 

cells, at least 1 million 16S rRNA gene reads would be required (39). Although, this may 

have previously seemed unachievable, recent technological improvements are now making 

such assessments feasible, as reviewed by Shendure and Aiden, 2012 (40). 
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DNA profiling methodologies such as Terminal Restriction Fragment Length Polymorphism 

(T-RFLP) have, and continue to, allow microbial ecologists to monitor changes in the 

structure and composition of microbial communities. T-RFLP is one of the most frequently 

used profiling techniques for culture independent studies of bacteria and fungi due to its 

speed, simplicity and reproducibility (41). T-RFLP is based on PCR amplification of a target 

gene with fluorescent labelled primers; amplicons are then digested with restriction enzymes 

to create fragments, which can be separated and detected using a DNA sequencer, thereby 

creating a profile of the community. These profiles are shown graphically as peaks, where 

the X-axis represents the fragment size and the Y-axis, the fluorescence intensity. Each 

peak is associated with a genetic variant within the original sample, while the intensity 

indicates the relative abundance within the community. The profiles created can be used to 

compare communities, by peak presence or absence, while clone libraries or peak resolving 

databases can be used to identify the species associated with each peak. This process was 

carried out by Rogers et al 2003, for the investigation of the bacterial community within the 

CF lung (42). Despite the frequency of use, T-RFLP has been criticised for its lack of 

resolution (43, 44) and therefore in recent years there has been a drive towards the use of 

high throughput or next generation sequencing technologies (45).  

The move towards next generation sequencing has not been without challenges, particularly 

as early technologies were hampered by the short read length produced, limiting taxonomic 

resolution (46). However, as technologies have improved so have read lengths, and 

therefore the use of next generation sequencing has increased exponentially. Technologies 

such as Roche 454 (47) or Illumina MiSeq (48) are now widely used and capable of 

producing hundreds of thousands of sequence reads per sample. These can be directly 

clustered into operational taxonomic units (OTU, an operational definition of species used in 

the analysis of DNA sequencing data) thereby allowing better estimates of community 

diversity to be calculated.  
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1.4.1 Human microbiota 

Humans are superorganisms composed of both human and microbial components (49). As 

more is understood about the microbiota associated with the human body, the importance of 

microbes in human health is being increasingly recognised. In fact, it is estimated that the 

microbes associated with the human body outnumber our cells by 10-fold (50).  

Since the 19th century, culture based analysis has been the principle method for the 

investigation of human associated microbes (51). However, with the vast number of 

microbes present on and within the human body, the use of culture for the investigation of 

these dense and complex microbial communities can be problematic (50). The introduction 

of DNA based analyses, in particular next generation sequencing technologies, has given us 

the ability to create vast quantities of data that can be used to investigate the composition 

and function of microbial communities associated with the humans. 

In 2008, The International Human Microbiome Consortium (IHMC) was officially launched, 

with the aim to study and understand the role of human associated microbes in the 

preservation of health and the causation of disease (http://www.human-microbiome.org). 

This work has revealed a complex community of microorganisms, where community 

composition primarily varies by anatomical site (51). Understanding the complex microbial 

community associated with the healthy individual is the first step in understanding the 

complex relationship between the microbial population and human health.   

To fully understand the relationship between the microbial community and human health 

understanding colonisation and succession is key. Inside the amniontic sac the faetus is 

considered essentially sterile, however, after vaginal delivery the microbial community is 

found to closely resemble that of the mother’s vagina (52). The predominant organisms in 

the vagina are Lactobacilli, therefore it is unsurprising that this is the first organism found in 

the gastrointestinal (GI) tract of newborn babies (52). This initial colonisation is considered to 

prepare the GI tract for further microbial colonisation and succession (52). Over time a 
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densely populated microbial community develops over the body, with changes occurring due 

to changes in the body, the eruption of teeth (53), as well as external environmental factors. 

Cho et al (2012) has been hypothesised that changes in the microbiotia in early life can 

affect host immunological, metabolic, cognative and reproductive development (52).  

A wide variety of studies have been published examining the link between microbial 

populations and disease states. These have revealed changes in the microbial community 

associated with, for example; psoriasis (54), obesity (55), asthma (56), colitis (57) and 

cardiovascular disease (58). The challenge for these studies is to identify whether there is a 

causal association in the microbial variation.  

Through the use of metagenomics, and metaproteomics the human Microbiome Project 

(HMP) is aiming to more fully understand the links between the microbial community and 

human health and disease (59).   

 

1.5 Challenges of the respiratory tract  

The respiratory system, shown in Figure 1.1, is designed for the efficient transportation of 

oxygen from the environment to the blood stream and the removal of carbon dioxide (60). In 

detail, air enters the body through the mouth or nose and travels down through the pharynx, 

into the trachea. The trachea then splits into the two bronchi, which subsequently branch into 

the bronchioles and terminate with alveoli. The alveoli are the site of gas exchange; oxygen 

is transported across the epithelial layer into the bloodstream to be transported to cells for 

respiration, while carbon dioxide is removed and travels back out the lungs to be expelled 

from the body (60). As such the lungs are the only interior organ constantly exposed to the 

exterior environment and are therefore vulnerable to any particles or organisms present in 

the air.  
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Figure 1.1 Schematic diagram of the respiratory system.   

A) The respiratory system within the human body, B) an enlarged view of the alveoli and 

surrounding capillaries, C) schematic indication the movement of gas between the alveoli 

and the blood stream.   

Reprinted in unmodified form from: http://www.nhlbi.nih.gov/health/health-

topics/topics/hlw/system.html, United States National Institute of Health: National Heart, 

Lung and Blood Institute, under Creative Commons Attribution (CC BY) licence. This work is 

in the public domain and available for public use.   
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It is estimated that the air in the Earth’s atmosphere contains around 1000 million tonnes of 

suspended particles (61). These particles range in size from 0.1-1000µm and include pollen, 

smoke, soot, dust and importantly microorganisms (62, 63). In 2007, Brodie et al used 

molecular techniques, described in detail later, to analyse the bacteria present in aerosols 

from urban areas of San Antonio and Austin (USA) over a 17 week period (64). In this study 

over 1,800 bacterial taxa were identified, including potentially pathogenic species such as, 

Burkholderia mallei (Glanders disease), Burkholderia pseudomallei (melioidosis) and 

Clostridium botulinum (botulism) (64).  

Whilst there will be some variation due to location and environmental factors (65), inside a 

building it is estimated there are between 400 and 900 individual microorganisms per cubic 

metre of air (62). Assuming an adult inhales around six litres of air per minute, this would 

mean that c. 10,000 microorganisms would be inhaled per day (61). Although the vast 

majority of these organisms are likely to be non-pathogenic, the risk of encountering 

pathogenic organisms is significantly increased in clinical environments (48). This is 

particularly true in dental surgeries where high-speed vibrating instruments have been found 

to aerosolise oral bacteria such as Staphylococci and members of the viridans streptococci 

group, the causative agents in many mouth or gingival infections as well as tooth decay (66). 

The risk of infection by the inhalation of airborne organisms is reduced further by the ability 

of the healthy airways to efficiently remove inhaled particles (61). As the air passes though 

the nasal cavity particles are filtered out, with between 70-80% of the particles that are 3-5 

µm in diameter and 60% of those around 2µm, being trapped in the hair present in the 

nostrils (60). 

With the exception of the terminal bronchioles and the alveoli, the rest of the respiratory tract 

is lined with ciliated cells, mucus secreting goblet cells and subepithelial mucus-secreting 

glands (60). The ciliated epithelium is also covered by a two-layer film known as the airway 

surface liquid (ASL), made up of a lower layer known as the periciliary fluid and an upper 

mucus gel layer (67). Particles or microorganisms breathed into the lungs become trapped in 
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the mucosal secretions and are transported by the beating cilia out of the lungs to the back 

of the throat where they can be swallowed or expectorated, this system has been described 

as a mucociliary escalator (60). It is estimated that this escalator system can move 

entrapped particles or organisms from the airways at a rate of 1 cm/minute (61).  

If particles or microorganisms make it past the mucociliary surfaces of the nasal cavity and 

the lung, the alveoli are lined with antimicrobial peptides and host defence cells, such as 

macrophages. While macrophages have the ability to phagocytose any particle or organism 

that make it past the mucociliary escalator (61), antimicrobial peptides work as natural 

antibiotics, protecting the lungs from invading microbes. Antimicrobial peptides, such as β-

defensins and lactoferrins, are produced by epithelial cells, macrophages, neutrophils and 

natural killer cells and act as natural antimicrobials against any organisms entering the 

respiratory tract (68, 69). As a result it is very difficult for microorganisms to establish 

infections in healthy individuals (70).  

It is well established that the upper airways (nasal cavity, pharynx and larynx) are colonised 

with a wide range of microorganisms which make up the “normal” microbiota (71). However, 

until recently it was thought that the lungs were a sterile environment, with no airborne 

microorganisms surviving the innate immune defences (72, 73). Work by Charlson et al 

2011, using 454 16S rRNA pyrosequencing to analyse the bacterial community from six 

healthy patients, established that the lungs of healthy individuals contains similar sequences 

to those observed in the upper respiratory tract however, in lower abundance (72). Although 

results published differ, the most commonly identified genus include; Pseudomonas, 

Streptococcus, Prevotella, Fusobacteria, and Veillonella (74-76). Differences observed may 

be the result of the different methodologies employed by these studies or the geographic 

locations at which they were carried out.  
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1.6 Lower respiratory tract infections 

The WHO lists LRTIs 3rd on the top 10 causes of death factsheet (1), with around 6% of the 

world’s total mortality being a result of these infections. This translates to 3.8% of deaths in 

high income countries and as much as 11.3% of deaths in countries with lower income.  

Importantly these figures do not include tuberculosis, which itself is ranked as the 8th biggest 

cause of death worldwide (1).  

As explained previously there are many forms of LRTI (77), as a result of this variety and 

high incidence of these infections, they represent a huge burden to national healthcare 

systems. For example, around 4% of the total National Health Service (NHS) budget is spent 

on problems associated with the respiratory system, amounting to around £4.43 billion (2). It 

is therefore both clinically and economically important to investigate better methods to 

prevent and treat LRTIs (78, 79).  

To achieve this however, we have to understand the underlying causes of disease. In recent 

years advances in culture independent technologies has led to advances in our 

understanding of human associated microbial communities in general.  

 

1.7 Cystic fibrosis 

Wehe dem Kind, das beim Kuß auf die Stirn salzig schmekt, er ist 

verhext und muss bald sterbe 

 “Woe to the child who tastes salty from a kiss on the brow, for he 
is cursed and soon must die” 18th century German literature (80).  

 

CF is the most common recessively inherited genetic disorder primarily affecting the 

Caucasian population, although it is seen in low frequencies in other populations; a study 
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carried out in 2011 revealed that 1 in 59 Hispanic, 1 in 84 African American and 1 in 242 

Asians were carriers of CF mutations (81).  

There are approximately 70,000 people suffering from CF worldwide, with around 30,000 

individuals living in the USA (82) and over 9,300 in the UK (83). Around 1 in 25 people in the 

UK carry CF causing mutations however, these numbers vary across the world (84).  

CF is a multi-systemic disorder, which has major effects on a number of body systems 

notably the gastrointestinal tract, the reproductive tract and the focus of this investigation, the 

respiratory tract. Despite medical advances, between 80 and 95% of CF patients die as a 

result of chronic lung infections and concomitant inflammation (85). Once infection has 

established, eradication of infecting species can be extremely difficult (86, 87). As a result of 

these infections and the inflammatory immune response they initiate, there is an irreversible 

loss of lung function over time, which leads to the majority of CF patients dying from 

respiratory failure (88).  

 

1.8 Cystic fibrosis history  

Although CF has been observed for centuries, it was not until 1938 that Dr Dorothy 

Andersen, a pathologist at the New York Babies Hospital, described the condition fully (89). 

Prior to this study of malnourished infants, CF was misdiagnosed as coeliac disease and 

resulted in the death of many children before they reached 6 months old. Andersen’s 

autopsy study of infants who died of this condition revealed it to be a distinct disease, termed 

“cystic fibrosis of the pancreas”.  

The disease was characterised by mucus plugging of the glandular ducts, a decreased 

ability to absorb fat and proteins, steatorrhoea (the presence of excess fat in faeces), failure 

to thrive and pulmonary infection (89). Rather than an intolerance to gluten, nutritional failure 
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was thought to be due to damage to the pancreas and lack of pancreatic enzymes, leading 

to a vulnerability to lung infections, often noted as the cause of death (89). 

In 1946, CF was recognised as an autosomal recessively inherited genetic disease (90). At 

this time, CF research focused on mucus abnormalities as the cause of CF. It was a further 

two years before Paul di Sant’Agnese observed that the levels of sodium and chloride ions in 

the sweat of patients diagnosed with CF were five times higher than that of healthy 

individuals thereby implying the mucus glands were not, as previously thought, the site of the 

basic defect (91, 92). The discovery of the ion abnormalities in the sweat of CF individuals 

lead to Gibson and Cooke developing the “sweat test” (93). This test was found to be highly 

successful due to its discriminating power, allowing easy identification of patients, even 

those with milder symptoms. 

It was not until the 1980’s that major advances in the understanding of CF came about. In 

1983 it was identified that abnormalities in ion transport, resulting in low absorption of 

chloride ions and an increased reabsorption of sodium ions, were responsible for CF (94). 

The mutated gene responsible for CF was discovered in 1989 (95-97). The gene was found 

to code for a cyclic-AMP-regulated chloride transport channel, named the cystic fibrosis 

transmembrane conductance regulator (CFTR), normally expressed in epithelial cells (95-

97).  

 

1.9 The CF mutation 

The CFTR gene, located on the long arm of chromosome seven (95), codes for a membrane 

bound ATP binding cassette (ABC) transporter protein. This protein is found in the apical 

membrane of epithelial cells (84) and maintains the osmotic balance across epithelial cells 

by controlling the transport of chloride ions (98). Mutations in both copies of the CFTR gene 

result in CF disease symptoms. These mutations translate to a wide range of physical 

manifestations including; infertility due to obstructive azoospermia, which effects 98% of CF 
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males (99); pancreatic insufficiency, leading to fat malabsorption (100); liver cirrhosis, as a 

result of ductular obstruction and abnormal bile flow (101); diabetes, as a result of 

diminished insulin production (102); and chronic inflammatory lung disease (84). However, 

there are also cases where mutations are not associated with any CF symptoms (103).   

Currently more than 1800 different mutations of the CFTR gene associated with CF have 

been identified (103). These mutations have a range of effects on the functioning of the 

CFTR and can be categorised into five different classes, resulting in a range of disease 

severities, illustrated in Figure 1.2 (104). “Classic” (class I or II) CF is characterised by a loss 

of function in both alleles resulting in no functioning CFTR. This is associated with pancreatic 

insufficiency and progressive lung disease (105). In some cases the mutation in one allele 

can result in a partially functioning CFTR associated with an improved prognosis (106). Even 

so, although some information on disease severity can be gained from information on the 

gene mutation, not all patients with the same mutation experience the same disease 

outcome (103, 106). 

The most prevalent mutation resulting in CF is the result of a deletion of phenylalanine at 

position 508 of the gene (ΔF508). It is estimated that approximately 70% of all CFTR 

mutations are due to the ΔF508 mutation (92) however, this number varies with geographic 

location as shown in Figure 1.3 (107). ΔF508 is a class II mutation resulting in misfolding of 

the CFTR protein which is then degraded in the endoplasmic reticulum and golgi body, as a 

result no functional CFTR protein is present in epithelial cells (108).  

The identification of the basic genetic defect resulting in CF has lead to the hope that gene 

therapy, inserting a functional copy of the CFTR gene into appropriate cells, could be the 

“key” to curing CF (92). Currently the UK Cystic Fibrosis Gene Therapy Consortium is 

carrying out five clinical trials using cationic lipids to carry genes into the respiratory tract of 

CF individuals. However, at this time only partial correction of the CFTR defect has been 

achieved and results still require improvement (http://www.cfgenetherapy.org.uk/).  
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Defect	  
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Figure 1.2 CFTR mutations associated with CF have been classified into five broad 

classes based on their effect on the CFTR transporter protein. 

Adapted from the original by Zielenski and Tsui, 1995 (104), illustrations reprinted from the 

image, Ratjen, F, 2007, New pulmonary therapies for cystic fibrosis, Current Opinion in 

Pulmonary Medicine, 13:541-546 (109), under copyright licence from Lippincott Williams & 

Wilkins, Inc, License Number: 3471420161666.  
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Figure 1.3 Geographical representation of the prevalence of the CFTR mutation ΔF508 

as a percentage of all CFTR mutations and recognised by country. 

The prevalence of ΔF508 is related to the incidence of CF, countries with higher CF rates 

have greater number of CF cases. Prevalence was found to be greater in more northerly 

countries, while prevalence is generally low in Mediterranean countries.  

The figure is re-used in unmodified form from, Southern, 2007, Cystic Fibrosis and Formes 

Frustes of CFTR-Related Disease, Respiration 74:241-251(107), by permission of Karger 

Publishers, licence number 3471430204165.  
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1.10 The CF lung 

1.10.1 Mucus 

Despite the multisystemic nature of CF, the maintenance of airway function is particularly 

important as between 80 and 95% of CF suffers ultimately die as a result of chronic infection 

and associated airway inflammation (85).  Improper functioning of the CFTR protein within 

the lung leads to an inability to clear microorganisms and results typically in chronic lung 

infections. Two main theories have been suggested as to how this happens; the first is 

known as the ‘high salt’ hypothesis. This theory suggests that while the healthy lung is 

protected against infection by antimicrobial peptides, in the CF lung the absence of a 

functional CFTR protein leads to a build up in the concentration of NaCl on the airway 

surface, which degrades these antimicrobial peptides (110).  

In contrast, the second hypothesis, known as the ‘low volume’ hypothesis, explains the 

chronic infections in CF by suggesting that there is too little salt on airway surfaces leading 

to airway surface dehydration. This in turn, leads to thickened mucosal secretions, 

breakdown of the mucociliary escalator and an inability to clear invading organisms from the 

lung (111).  

The ‘low volume’ hypothesis is the more widely accepted explanation for the development of 

lung disease. In more detail, the defective Cl- ion secretion, as a result of CFTR mutations, 

leads to epithelial Na+ ion channel hyperactivity, resulting in the osmotic movement of water 

out of the ASL (112). As the ASL becomes dehydrated, the cilia are compressed, unable to 

beat and move the viscous mucus from the lower respiratory tract. When the periciliary fluid 

becomes critically dehydrated mucins within the mucus layer bind to those anchored to the 

epithelial cells. As mucociliary clearance has broken down at this stage the airways become 

vulnerable to infection (111).  The failure to clear mucus from the airways, alongside the 

continual production of mucins by goblet cells and glands results in airway surface plaques 

and intraluminal plugs which ultimately lead to airway obstruction and provide the main site 

of infection (67).   
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1.10.2 Inflammation  

As well as being characterised by airway obstruction and persistent infection, a vigorous 

inflammatory response plays a key role in the progression of CF lung disease. Epithelial cells 

orchestrate the inflammatory response by producing an abundance of IL-8 (Interleukin	  8)	  and 

other proinflammatory cytokines which induce a neutrophil response (113). Unfortunately, 

the over stimulation of neutrophil activity is combined with the deficiencies in 

immunoregulatory factors, IL-10 and nitric oxide, resulting in an excessive and prolonged 

inflammatory response (113). This in turn leads to lung tissue damage, which over time 

contributes to loss of lung function (114).  	  

Inflammation is a means by which the body is able to contain and/or control infection. 

However, within the CF lung this mechanism breaks down, becoming a pathological force. 

As stated above, it is unclear if inflammation in early infection is triggered by invading 

organisms, although it has been well established that the magnitude of the inflammatory 

response is correlated with bacterial burden (115).   

Evidence suggests that with the exception of some of the sub mucosal gland ducts, infants 

with CF are born with normally developed lungs. Never the less, shortly after birth pulmonary 

symptoms start to establish, with infection and inflammation being observed soon after 

diagnosis by newborn screening. Even so, it is still unclear if the inflammatory response is 

triggered by infection or is already a factor of the CF lung (116). What is clear however is 

that airway inflammation in early life is associated with reduced lung function and structural 

lung damage (117).  

 

1.11 CF lung infections 

In childhood years, infection tends to be transient with chronic infections establishing over 

time, leading to progressive and irreversible lung damage (85). Traditionally, CF lung 
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infections have been considered to be the result of either a single or small number of species 

(118). With further investigation however, it is becoming clear that this is not representative 

of the true number of organisms present within the CF lung, which may be considered a 

complicated and diverse ecosystem (119). 

Over time the CF lung is under constant pressure from a range of factors, including, viruses, 

bacteria, fungi, allergens and irritants, creating a dynamic perturbed system (120). 

Perturbations within the lung ecosystem can lead to acute respiratory symptoms, defined as 

CF pulmonary exacerbations (CFPE) (121). Despite the importance of CFPE in CF disease 

progression no formal definition or standardised criteria exist to define them. Instead clinical 

symptoms such as; increased cough, loss of appetite, weight loss and decline in lung 

function, are used by clinicians to define the start and end of CFPE periods (121).  

In order to help maintain lung function antibiotics treatments are continually administered 

and manipulated by clinicians. During periods of CFPE clinicians intervene, generally with 

administration of intravenous antibiotic therapies (121). Understanding how the microbial 

community changes leading into, during and after exacerbation may give insight into how the 

treatment can be used to maintain lung function and slow disease progression.    

1.11.1 Sampling 

Antimicrobial therapies are an important factor in preserving lung function. It is therefore vital 

to investigate the microbial community within the CF lung.  A number of sampling methods 

are recognised for the analysis of the microbiology associated with CF lung infections. These 

include; cough swab, cough plate, oropharyngeal culture, laryngeal or nasopharyngeal 

aspirate, expectorated sputum, induced sputum, bronchoalveolar lavage (BAL) and 

bronchoscopy brush specimens (122). While all these methods are used, the most 

commonly used sampling methods are, expectorated sputum, induced sputum and BAL.  

All sampling methods introduce the risk of sampling error or bias. Sampling error occurs due 

to observing only a subset of the population rather than the whole population. It was 
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therefore important to consider the pros and cons of all sampling methods available before 

the sampling method was chosen.  

BAL is considered the gold standard for assessing the microbial community within the CF 

lung, particularly for young children who do not produce sputum, as it has been shown that 

non-BAL samples do not adequately reflect the bacterial community present in the lower 

airways in these individuals (123, 124). However, it is an invasive procedure that involves 

using a bronchoscope to infuse sterile saline into the lungs. The saline is then suctioned out 

of the lungs into a collection trap, this fluid can then be analysed to assess the microbiology 

of the lung (104). While this method has been found to be effective, its highly invasive nature 

requires patients to be anesthetised (124, 125).  

As a result the CF Trust standard laboratory procedures recommend the use of sputum for 

routine sampling. Sputum is used as an important sampling tool for the investigation of 

chronic lung disease, as it allows the investigation of protein, cellular and importantly, 

microbiological components which effect disease progression and severity (126). There are 

two methods for obtaining sputum samples, spontaneous expectoration and induction.  

Spontaneously expectorated sputum is the most widely used sampling method for CF adults 

and has been found to provide comparable microbiology results to other sampling methods, 

including induced sputum and BAL, using both culture based and molecular comparisons 

(127-129). However, not all patients are able to spontaneously produce sputum, particularly 

those with mild disease symptoms. In these cases sputum induction may be used. Sputum 

can be induced by nebulising isotonic or hypertonic saline, and has been shown to be a 

simple, non-invasive and cost effective sampling procedure (128, 130). A study by Henig et 

al (2001) revealed that induced sputum tended to show higher identification of recognised 

pathogens than BAL, while being preferred by patients, making it an important alternative to 

BAL for older children and non-sputum producing adults (130).  
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This project focused on the bacterial community present in the lung of CF adults. 

Consequently, throughout this study spontaneously expectorated sputum was used as the 

sampling method. Spontaneously expectorated sputum was chosen as the least invasive 

procedure which has also been shown to provide a comparable sample of the bacterial 

community compared with other sampling techniques.  

1.11.2 Traditional microbiology 

Routine diagnostic analysis of CF respiratory samples has traditionally involved selective 

culture, using a variety of selective media and growth temperatures, in aerobic conditions, to 

quantify and identify a number of known organisms, (131). This is generally confined to a 

small targeted group of microbes that are considered clinically important, including 

Staphylococcus aureus, Haemophilus influenzae, Pseudomonas aeruginosa, 

Stenotrophomonas maltophilia, Achromobacter xylosoxidans, Burkholderia cepacia complex 

(BCC) (3), as well as species of the filamentous fungi Aspergillus (most frequently A. 

fumigatus) and yeast (commonly Candida albicans) (132, 133). Although all these organisms 

are considered to play a role in disease progression, P. aeruginosa has been regarded by 

many to be the most significant pathogen in CF due to its prevalence and persistence within 

the lung (134).   

Diagnostic microbiology has been useful in revealing key pathogens involved in the 

establishment of chronic infections and the subsequent loss of lung function. Supporting the 

understanding that over time there is a sequential acquisition of bacterial pathogens, Figure 

1.4 (135). This model suggests that early infection is dominated by S. aureus, with other 

pathogens present in a much lower percentage of the population. However, in later years an 

increased colonisation by P. aeruginosa is observed. This soon becomes the most dominant 

pathogen, colonising the lungs of around 75% of CF sufferers (135).  

Although it is well understood that these “recognised pathogens” play a role in the 

progression of CF lung disease, more evidence is being gathered suggesting that our 
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understanding of the microbial community is incomplete. For example, the use of non-

selective culture media has indicated the presence of a diverse community of organisms not 

traditionally considered CF pathogens (infectious microorganisms considered to be the 

cause of respiratory symptoms in individuals with CF) (118). Furthermore, the discovery of a 

sharp oxygen gradient in CF lung mucus and subsequent anaerobic in vitro culturing of 

sputa has lead to the detection of still more bacterial species (132). Despite much effort, 

culture based methods have been shown to be limited (43). There are many reasons for this, 

perhaps most important is the likely under representation of microbial diversity due to the 

unknown laboratory growth requirements of bacterial and fungal species that may be present 

within the lung ecosystem (136). These requirements include; chemicals (Carbon, 

NitrogenSulphur, Phosphorus, Calcium), pH, Oxygen (aerobes, facultative aerobes, obligate 

anaerobes, Aerotolerant anaerobes, Microaerophiles), intracellular requirements and 

synergistic relationships with other organisms.   
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Figure 1.4 Age dependent bacterial colonisation of the CF lung. 

Reprinted from the 2012 Cystic Fibrosis Foundation annual data report (135). Data was 

sourced from Cystic fibrosis patients under care at CF Foundation-accredited care centers in 

the United States, who consented to have their data entered in 2012. 

Figure is reprinted with permission of the ©2013 Cystic Fibrosis Foundation.  
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1.11.3 Culture independent technologies 

Molecular techniques are revolutionising the way diagnostic tests and research is being 

carried out in relation to CF lung infections (43). In order to effectively investigate the 

microbial community using molecular methodologies, a representative sample of the nucleic 

acid from the entire microbial community is required. DNA extraction methods are an 

important route for the introduction of bias when carrying out DNA based analysis. It is 

therefore vital to select a method that minimises these effects, equally recovering DNA from 

gram positive, gram negative and fungal cells, providing a complete picture of the community 

(137). The methods employed throughout this project was modified by Rogers, et al, 2003, 

from a method described in 1989 by Pitcher et al (43, 138). This method employs physical 

disruption, in the form of bead beating, in conjunction with chemical guanidium thiocyanate-

EDTA-sarkosyl (GES) lysis. Both physical and chemical disruption were included to disrupt 

the maximum number of cells and cell types and gain an accurate representation of the 

microbial community, for full methods see Chapter 2.3.  

Techniques such as, PCR, T-RFLP and 16S rRNA gene sequencing (Sanger sequencing) 

have provided fresh insight in the analysis of both bacterial (43) and fungal (139) 

communities within the CF lung. Rogers et al, 2003, showed it was possible to rapidly 

characterise the bacterial community composition and diversity using 16S rRNA gene T-

RFLP. In 2010, Nagano et al, used a mixture of non-selective and selective fungal culture to 

provide a comparison to results obtained from direct DNA extraction and sequencing, 

demonstrating a diverse fungal community that is potentially underestimated by mycological 

culture alone. They also demonstrated that potentially important pathogenic fungi may be 

missed by culture alone (139).  

As technologies have moved on, more in depth analytical techniques for sequencing DNA; 

454 high throughput pyrosequencing (140), Illumina sequencing (141), have allowed 

increased insight into the microbial communities within the CF lung by providing large 

quantities of data on the community within a sample. Roche 454 technology works using 
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emulsion PCR and pyrosequencing. Sequences are amplified onto beads in an emulsion 

PCR before being washed onto a PicoTiterPlate, where sequences attached to a single bead 

are added to each well. Bases are washed over the PicoTiterPlate in order, as a base binds 

a phosphopyruvate molecule is released, which is used to change adenosine 5´ 

phosphosulfate (APS) to Adenosine triphosphate (ATP) in the presence of sulphurylase. This 

releases ATP, then used to change luciferin to oxyluciferin in the presence of luciferase, 

releasing light.  On the other hand Illumina Miseq is based on Solexa sequencing by 

synthesis chemistry, it uses a reversible chain termination method where a flouraphor bound 

to each nucleotide acts as a chain terminator. All bases can be added simultaneously, once 

bound lasers with filters are used to take an image for each base, before the flouraphor is 

cleaved and the new bases can be added.  

By comparing the use of 454 and Illumina sequencing technologies Maughan et al (2012) 

revealed that Illumina sequencing provided better taxonomic resolution than 454 (121). In 

comparisions of benchtop sequencers, Loman et al (2012) and Junemann et al (2013) found 

that 454 provided the longest read lengths, however, Miseq provided the highest throughput 

with the lowest error rates (142, 143).   

The use of culture independent methods for identifying and quantifying microbial species is 

increasing due to the speed and reliability of these methods for identifying unusual and 

difficult to culture organisms, as well as those in low abundance (144). However, these DNA-

based methods have their own drawbacks and areas of potential bias, which are particularly 

pertinent to the study of CF microbial community diversity. These have to be addressed in 

order to be confident in the results.  

Unlike culture based methods, DNA based analyses are unable to differentiate between 

DNA from living organisms and extracellular DNA or DNA from dead or damaged cells (145). 

This has massive implications, both for drawing ecological conclusions about the microbial 

community within an environment (146), and when considering clinical infections (147). In 

order to address this, samples can be treated with propidium monoazide (PMA), a 
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membrane impermeable dye. PMA covalently binds upon exposure to light to extracellular 

DNA or DNA within cells that have damaged cell membranes (146). Once the PMA binds to 

free DNA, the DNA is rendered insoluble and as a result it is removed during the extraction 

procedure, allowing analysis of only the viable community (145).  

1.11.4 Propidium monoazide 

Discrimination between live and dead cells is important in order to analyse microbial 

communities and understand how perturbations can effect or change the community 

dynamics within the CF lung. Membrane integrity as inferred by DNA binding dyes is 

considered the most practical method for this and is widely used in microscopy and flow 

cytometry (145).  

In some early applications ethidium monoazide (EMA) was used in live-dead cell assays as it 

intercalates with DNA, covalently bonding to the DNA when exposed to visible light (148). 

EMA can penetrate cells with compromised cell walls or membranes, allowing binding to 

DNA within compromised or non-viable cells (145). Nogva et al (2003) utilised the 

photoactivated DNA binding properties of EMA to inhibit DNA from dead bacteria from 

amplification by PCR (148). This method was found to be promising however, it had a major 

disadvantage as EMA was found to readily penetrate the membrane of some viable cells, for 

example Escherichia coli (149).    

The lack of selectivity observed with the use of EMA lead Nocker et al (2006) to test PMA as 

an alternative (145). PMA was derived from propidium iodide (PI), with the addition of an 

azide group to allow DNA cross-linking when exposed to light (145). The two positive 

charges on PMA, compared to the single charge on EMA, are thought to contribute to the 

reduction in permeability of PMA across live cell membranes resulting in significantly higher 

selectivity (145).   

PMA cross-linking, shown schematically in Figure 1.5, is carried out by exposing microbial 

cells of interest to PMA in dark conditions for a period of 5-15 min Evidence suggests that 
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incubation time does not affect DNA yield, however it was noted by Nocker et al (2006) that 

after 15min there was a loss in E. coli DNA when PMA was in high concentration (145). This 

study recommended 5 minutes incubation in the dark prior to light exposure, allowing PMA to 

covalently bind to DNA. It also showed that 120 seconds of light exposure ensured efficient 

binding of PMA. Any unbound PMA after the incubation period was also found to be 

inactivated during this time (145). 
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Figure 1.5 Representation of the selective detection of live cells using propidium 

monoazide. 

 PMA is added to the sample of interest and incubated in the dark. After incubation samples 

are exposed to light, resulting in PMA covalently binding to extracellular DNA and DNA from 

dead or damaged cells.  
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To investigate the effectiveness of PMA treatment Nocker et al, carried out a range of 

studies on microbial communities from various environmental systems including wastewater 

and marine sediment (146) and canal and seawater (150). These studies established the 

effectiveness of PMA treatment for suppressing the DNA signals from extracellular DNA and 

DNA from dead or damaged cells.  

Since the publication of Nocker’s work on PMA, this approach has been used in wide range 

of studies to investigate viable; bacterial (151), fungal (152) or viral (153) communities. Of 

particular importance is that, PMA has been widely investigated by Rogers et al, for use in 

the investigation of the microbial community in CF sputum. Rogers et al (2008) 

demonstrated that PMA effectively prevented unwanted DNA from being utilized as a 

template during PCR (144). Investigation into the effects of PMA treatment on community 

composition revealed that PMA treatment resulted in an increase in community evenness, by 

increasing community diversity (154). This study also suggested that failure to remove 

extracellular DNA and DNA from dead and damaged cells could lead to skewed results and 

misinterpretation of the microbial community composition (154).  

 

1.12 Microbial ecology and CF lung infections 

As described above, chronic respiratory infections have been the focus of CF lung disease 

research for many years. Previous studies using both culture and molecular methodologies 

have established that a complex and dynamic ecosystem exists within the lung (132, 154, 

155). Early investigations into the whole bacterial community within the CF lung were 

dominated by Rogers et al. They initially used T-RFLP and 16S rRNA gene sequencing to 

identify the composition and diversity of the bacterial community in 2003 (43). Papers 

published by the same group, in 2004 (156) and 2005 (131) confirm these results. The 

identification of species not previously identified as part of the CF lung community lead to the 
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investigation of areas of potential contamination and in 2006, Rogers et al, revealed 

evidence that members of the oral microbiota isolated from sputum were not a result of 

contamination but were in fact members of the lower respiratory community (157).  

Studies by Rogers et al, provided a foundation for a large number of other studies, further 

improving our understanding of the community of organisms associated with CF lung 

disease. Even so, there is still work to be done in order to translate the results of these 

studies into improved patient outcomes. Investigations into community structure, using 

recognised ecological measurements (described in detail in Chapter 2.8), are being carried 

out in order to allow us to predict how the community will react to perturbations within the 

system. For example, work carried out by van der Gast et al (2011) showed a significant 

relationship between species richness and lung function, suggesting that patients with more 

diverse bacterial communities have better disease outcomes (4). This finding was supported 

by results from Zhao et al (2012) in a longitudinal study of CF patients over the course of a 

year (140).  

Although it is clear that a diverse microbial community is present within the CF lung, we are 

yet to understand the full complexity of even the bacterial community alone. Using a 

combination of ecological measures, designed to assess species diversity and community 

composition, and mixed effects modelling, this study aimed to concentrate sequencing 

efforts on the bacterial community in an attempt to bridge some of these knowledge gaps.   

As molecular methodologies become more widely available, achieving an accurate a picture 

as possible of this bacterial community is vitally important. Understanding the optimal 

methodologies for sample handling and laboratory procedures allows us to confidently 

explore bacterial community dynamics and how these relate to disease state. Studies by 

Rogers et al (2013) have investigated the use of PMA to remove the effect of extracellular 

DNA and that from dead or damaged cells (154) however, no studies have previously 

investigated the importance of sample handling for the accurate analysis of CF sputum 
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bacterial communities. By first understanding where areas of potential bias can be 

encountered we are able to confidently explore the bacterial community from CF sputum.    

Bacterial community dynamics over time, during periods of both stability and exacerbation 

are vital in order to explore disease progression. Previous studies have looked at limited 

samples from these different disease states, however, no studies have incorporated multiple 

samples from all clinical stages. By incorporating multiple samples this study was able 

establish patterns in the data while accounting for variation both between and within patients.  

Finally, to date no large scale studies have been carried out to determine if there are any 

wider patterns in the bacterial community that may result in disease progression. A large 

scale, spatial study incorporating sputum samples from clinic across the UK and the USA 

allows us to stratify the data and identify markers that may indicate improved or worsening 

disease outcomes.    

  

1.12 Aims 

As explained in detail above, current literature has revealed the CF lung to be populated by a 

complex and diverse bacterial community. The overall aim of this study was to investigate, 

through the use of high throughput sequencing, the bacterial community diversity and 

composition within the CF lung and its relationship with patient outcomes. By investigating 

the complex relationship between the bacterial community and the host related factor this 

thesis aimed to provide insights that may ultimately influence the treatment of CF lung 

infections.  

In recent years there has been a drive towards the use of culture independent technologies 

for the investigation of bacterial community within the CF lung disease however, few studies 

have fully assess the impacts of sampling practices on detection of bacterial species. As 

such, the initial research chapters (Chapter 3, Chapter 4 and Chapter 5) will focus on 
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methodologies designed to limit bias in the investigation of the bacterial community within 

the lung. Chapter 3 aims to assess the impact of extracellular DNA and DNA from dead or 

damaged cell in the analysis of CF bacterial communities, while Chapter 4 focuses on the 

impact of the initial treatment and storage of sputum samples prior to high throughput 

sequencing. Chapter 5 aims to address the impact of multiple freeze thaw cycles on the 

bacterial community in order to minimise bias in the study of samples biobanked for use in 

multiple projects. These studies aimed to provide guidelines on sample handling allowing the 

most accurate representation possible of the bacterial community within the CF lung to be 

obtained.  

By first establishing a framework of methodologies designed to provide an accurate depiction 

of the bacterial community within the lung, these methods were then taken forward to the 

final chapters. These chapters aim was to uncover the relationship between the bacterial 

community and clinical factors related to patient disease state. Chapter 6 aims to investigate 

overall relationships between clinical factors related to CF and the bacterial community 

within the lung, using a large cohort sample set from 11 sites across Europe and North 

America. By investigating a large and diverse sample cohort this study aimed to uncover 

significant relationships between clinical factors and the bacterial community.  

While investigation of spatial samples allows insight into important clinical factors longitudinal 

sampling allows investigation into how CF lung disease progresses and ultimately leads to 

respiratory failure. Chapter 7 aims to understand the changes in bacterial community 

dynamics over the course of a CF pulmonary exacerbation, allowing novel insight into the full 

course of exacerbation as well as allowing identification of novel biomarkers of disease.  
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Chapter 2: Materials and methods 

 

 

 

Materials and methods 

 

 

“Truth has nothing to do with the conclusion, and everything to do 
with the methodology.”  

Stefan Molyneux 
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2.1 Bacterial strains  

Bacterial type strains and clinical isolates were used in this study as controls; details of 

individual bacterial strains used are shown in Table 2.1. Bacterial strains used were chosen 

due to their clinical relevance in CF and other respiratory infections.  

Strains were grown by adding one bead from a frozen stock of the strain to 5ml of Luria 

Broth (LB) (Oxoid, Hampshire, UK) for 24 hours at 37°C with shaking at 100rpm. To confirm 

strain purity 100ul of LB (Oxoid, Hampshire, UK) was streaked onto LB agar (Oxoid, 

Hampshire, UK) and grown for 24 hours at 37°C. A single pure colony was then selected and 

grown in LB (Oxoid, Hampshire, UK) for 24 hours at 37°C with shaking at 100rpm. DNA 

extractions were performed as described below.  

Mock communities were made for use as sequencing controls in order to account for 

sequencing bias. PCRs were performed, as indicated in Chapter 2.4.2, on DNA from pure 

strains of Pseudomonas aeruginosa, Achromobacter xylosoxidans, Stenotrophomonas 

maltophilia, Staphylococcus aureus and Burkholderia cenocepacia. Known concentrations 

(100 ng/µl, calculated using the NanoDrop 8000 (Thermo Fisher Scientific, Loughborough, 

UK)) of amplified DNA was then combined in sterile microcentrifuge tubes and cleaned-up as 

indicated in Chapter 2.5. Pure culture bacterial and mock communities controls were 

included in sequencing runs. 
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Table 2.1 List of bacterial control strains and sources.  

Relevant bacterial controls, isolated from CF sputum were used in all experiments to confirm 

expected results.  

Bacterial controls Isolated from Identity confirmed by Source 

 
 

  
Pseudomonas 
aeruginosa 

Adult CF 
sputum 16S sequencing Damien Rivett, 

KCL 

Achromobacter 
xylosoxidans 

Adult CF 
sputum 16S sequencing Damien Rivett, 

KCL 

Stenotrophomonas 
maltophilia 

Adult CF 
sputum 16S sequencing Damien Rivett, 

KCL 

Staphylococcus 
aureus 

Adult CF 
sputum 16S sequencing Damien Rivett, 

KCL 

    

Burkholderia 
cenocepacia (J2315) 

Adult CF 
sputum 

recA PCR/ pulse field 
electrophoresis/ 
sequencing 

Prof. John Govan, 
University of 
Edinburgh 

Burkholderia 
maltophilia (J2337) 

Adult CF 
sputum 

recA PCR/ pulse field 
electrophoresis/ 
sequencing 

Prof. John Govan, 
University of 
Edinburgh 
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2.2 Clinical samples  

All sputum samples were collected under full ethical approval, details of ethics associated 

with each chapter will be indicated in the condensed methods present in each chapter. An 

over view of ethics details are presented in Table 2.2. Numbers of samples and collection 

location varied between chapters, patient details of the exclusion criteria are included in the 

methods of individual chapters.  Patient consent was gained before the collection of all 

samples.  

Spontaneous expectorated sputum from patients with cystic fibrosis was used as the 

sampling method for all studies. Sputum samples were collected in sterile containers and 

stored at -80°C prior to further processing. In all chapters, with the exception of Chapter 7, 

sputum was collected during routine clinical visits to local CF centres. If required, the patient 

provided separate sputum samples for routine microbiology. Samples collected in Chapter 7 

were collected by patients in their home and collected by motorcycle courier and returned to 

Southampton general hospital for storage at -80°C.  

Health professionals within the hospital collected associated patient metadata at the time of 

sample collection. All data and samples were anonymised in accordance with ethical 

requirements.  
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Table 2.2 List of ethics reference numbers.  

Ethics was obtained for the collection of sputum samples from CF patients for the study of 

the microbial community within the lung.  

 

 

Hospital  Ethics Review board Reference 
number 

Southampton General 
Hospital 

Southampton and South West Hampshire 
Research Ethics Committee  06/Q1704/26 

Belfast City Hospital Office for Research Ethics Northern 
Ireland  06/NIR01/11 

Belfast City Hospital; 
Vectura, samples from 
the UK, Eire and Poland 

1. Multi-Centre Research Ethics 
Committee for Wales (UK) gave approval 
on 18th March 2008  

  VR496/005 

2. Irish Ethics Committee (St Vincent's 
Healthcare Group Ltd Ethics) approved 
the study on 11th November 2008  

3. Polish Ethics Committee (Bioethics 
Committee of the Medical University, 
Lodz) final approval gained on the 14th 
July 2009 (previously stated as the 21st 
April 2009)  

 
Geisel School of 
Medicine at Dartmouth 

Geisel School of Medicine and Dartmouth 
College Institutional Review Board CPHS # 23809 

Maine Medical Centre Maine Medical Center Institutional Review 
Board IRB # 4170  

Seattle Children’s 
Hospital 

Seattle Children’s Hospital Institutional 
Review Board  IRB #12811 

Vermont Medical centre University of Vermont Institutional Review 
Board  M13-160 

Massachusetts General 
Hospital 

Massachusetts General Hospital 
institutional review board  2011P000620 
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2.3 Sputum sample processing 

2.3.1 Sputum wash  

Based on Rogers et al (2003) (1), a sterile scalpel was used to transfer approximately 500 

µg of frozen sputum into a sterile 15 ml centrifuge tube.  Sputum samples were washed 

three times with sterile 0.8% w/v phosphate-buffered saline (PBS) (Oxoid, Hampshire, UK) to 

remove saliva. Washing was carried by vigorously shaking samples by hand, with 5 ml of 

PBS then centrifuging at 4109 x g for 5 min. The supernatant was removed and the process 

was repeated twice more with 500µl PBS. Washed sputum was re-suspended in 500 µl of 

PBS. 

2.3.2 Propidium Monoazide treatment 

PMA treatment was performed as previously described by Nocker et al (2007) and Rogers et 

al (2008) in order to exclude free DNA and DNA from non-viable cells from further analysis 

(2, 3).  

PMA (Biotium, Hayward, CA) was diluted with 20% dimethyl sulphoxide (DMSO) (Sigma-

Aldrich, Dorset, UK) to create a 20 mM PMA stock solution, which was stored in the dark at -

20°C. Sputum suspended in 500 µl of PBS was added to black 1.5 ml micro-centrifuge tubes 

(TreffLab, Degersheim, Switzerland). In a darkened room, 1.25 µl PMA stock solution was 

added to 500 µl of sample (in black micro-centrifuge tubes) to give a final concentration of 50 

µM.  Samples were vigorously mixed (10-15 sec) prior to incubation at room temperature in 

the dark for 15 min, vortexing every 2-3 mins to ensure even mixing.  After incubation, 

contents were transferred to clear micro-centrifuge tubes and placed in an LED light box 

(see Figure 2.1) for 15 min vortexing every 2-3 mins, in order ensure all PMA molecules 

were covalently bound to free DNA molecules.  
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Figure 2.1 Photograph of LED light box.  

The light box was constructed by engineering staff at the Centre for Ecology and Hydrology, 

Wallingford. A 45-LED security floodlight (product number; BB-HL119) was attached to a 

PVC base. An electoral junction box, lined with reflective tape, was modified to fit over the 

floodlight. A clear PVC plastic sheet was fitted in the top of the box and holes were drilled to 

accommodate 24, 1.5 ml microcentrifuge tubes.   
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2.3.3 DNA extraction 

The DNA extraction method used was based on Rogers et al (2008) (3). All sputum samples 

were treated with PMA prior to DNA extraction with the exception of those described in the 

methods of Chapter 3. Samples were transferred to individual 1.5 ml screw cap microtubes 

(Sarstedt, Leicester, UK) containing: a single 3 mm diameter tungsten carbide bead (Qiagen, 

Manchester, UK), 0.2 g of 0.18 mm diameter glass beads (Sigma-Aldrich, Dorset, UK) and 

300 µl of guanidinium thiocyanate (5 mol/l), ethylenediaminetetraacetic acid 

(EDTA)(100mmol/l) -Sarkosyl (0.5% v/v) (GES) (4). Samples were homogenised at 30 Hz in 

a Mix Mill 300 (Qiagen, Manchester, UK) for 2 x 30 sec, then incubated at 80˚C for 3 min, in 

order to help dissolve fats and denature proteins not disrupted by physical lysis, samples 

were then rapidly cooled by chilling at -20˚C for 5 min.  Beads and other debris were pelleted 

by spinning (12,000 X g for 5 min) and the supernatant removed and added to micro-

centrifuge tubes containing 141 µl of NaCl, to a final concentration of 0.5 mM, and 374 µl 

polyethylene glycol (PEG) (Fisher scientific, Loughborough, UK), to a final concentration of 

15%. DNA was precipitated for 1 hour at 4˚C.  Samples were then centrifuged (15,000 X g at 

4˚C for 10 min) to pellet the DNA. The supernatant was removed and the pellet was 

resuspended in 500 µl dH2O, prior to the addition of 500 µl Tris-buffered phenol (pH 8.0) 

(Invitrogen, Paisley, UK) and vigorous vortexing.  The tubes were left to stand for 1min at 

room temperature then centrifuged for 4min at 15,000 X g. The supernatant was added to 

fresh micro-centrifuge tubes with an equal volume of Tris-buffered phenol (pH 8.0)-

chloroform-isoamyl alcohol (1:1) (Sigma-Aldrich, Dorset, UK) and mixed vigorously before 

centrifugation at 15,000 X g for 4 min.  The supernatant was removed into fresh 

microcentrifuge tubes and an equal volume of isopropanol (1:1) (Fisher scientific, 

Loughborough, UK), 1:10 volume of 10 M ammonium acetate (Ambion, Paisley, UK) and 1 µl 

of linear polyacrylamide (LPA) (Sigma-Aldrich, Dorset, UK), added and mixed prior to 

incubation at -20˚C.  After 1 hour, samples were centrifuged at 15,000 X g for 10 min and the 

supernatant removed and discarded.  The pellet was washed three times with 500 µl 70% 

ethanol (Fisher scientific, Loughborough, UK). Pellets were air dried, resuspended in 50 µl of 
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sterile nuclease-free water and stored at -20˚C.  For every round of extractions, a sample 

containing nuclease-free water was extracted in parallel as a negative control. 

The presence of DNA was verified by Tris-Borate-EDTA (TBE)(Severn Biotech, Worcester, 

UK) agarose gel electrophoresis on 1% w/v TBE gels containing 1 µl of 10 mg/ml ethidium 

bromide (Sigma-Aldrich, Dorset, UK) per 100 ml (85 V, 30 min).  Gels were viewed and 

captured using ultra violet light, by a Bio-Rad image analyser with image lab software (Bio-

Rad image lab, version 2.0.1), (Bio-Rad laboratories, Hertfordshire, UK).  

 

2.4 PCR amplification for sequencing 

PCR amplification was modified for the use of 454 Titanium FLX+ and MiSeqTM Sequencing 

due to the ability of 454 sequencing to provide longer fragment lengths in comparison to 

MiSeq sequencing. The V3-V5 region of the 16S rRNA gene was used for 454 sequencing 

while the shorter V2-V3 region was chosen for MiSeq analysis. These regions were chosen 

by the Wellcome Trust Sanger centre for their ability to distinguish between taxa using the 

available sequencing length. The move from 454 to MiSeq sequencing was carried out by 

the Wellcome Sanger centre due to the increased accuracy, superior number of returned 

reads and the reduction in costs, compared with 454 sequencing, in 2014, mid way through 

the project. 

 

2.4.1 PCR amplification for Roche 454 Titanium FLX+™ sequencing 

Barcoded primers targeting the V3 to V5 regions of the 16S rRNA gene were used to 

generate 16S rRNA gene amplicons for Lib-L454 Titanium sequencing from extracted DNA.  

The primer 338F (5’-ACTCCTACGGGAGGCAGCAG) (MWG Eurofins, Ebersberg, Germany) 

and 926R (5’-CCGTCAATTCMTTTRAGT) (MWG Eurofins, Ebersberg, Germany) amplified 
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an approximately 550 base pair (bp) region of the 16S rRNA gene (5). 338F was modified at 

the 5’ end with 454 adaptor B (5’-CCTATCCCCTGTGTGCCTTGGCAGTCTCAG), while 

926R was modified with 454 adaptor A (5’-CCATCTCATCCCTGCGTGTCTCCGACTCAG) 

followed by a unique 12 base barcode.   

PCRs were performed in quadricate, with approximately 100 ng of template DNA used in 

each 20 µl reaction containing; 2 µl 10X AccuPrime™ PCR Buffer II  (Invitrogen, Paisley, 

UK), which contained dNTPs, 0.08 µl AccuPrime™ Taq High Fidelity (Invitrogen, Paisley, 

UK), 0.2 µl of each 10 µM Primer to a final concentration of 0.1 µM. The thermocycling 

conditions were optimised to; initial denaturation 94°C for 3 min; 25 cycles of denaturation 

(94°C for 30 sec) annealing (55°C for 30 sec) extension (72°C for 2 min). PCR machine 

used throughout was the G-storm thermocycler (GRI, Braintree, Essex).The presence of 

DNA was verified by Tris-Borate-EDTA (TBE)(Severn Biotech, Worcester, UK) agarose gel 

electrophoresis on 1% w/v TBE gels containing 1 µl of 10 mg/ml ethidium bromide (Sigma-

Aldrich, Dorset, UK) per 100 ml (85 V, 30 min).  Gels were viewed and captured using ultra 

violet light, by a Bio-Rad image analyser with image lab software (Bio-Rad image lab, 

version 2.0.1), (Bio-Rad laboratories, Hertfordshire, UK).  

2.4.2 PCR amplification for Illumina MiSeq™ sequencing 

Barcoded primers targeting the V1 and V2 regions of the 16S rRNA gene were used to 

generate 16S rRNA gene amplicons for Illumina MiSeq, from extracted DNA.  

16S rRNA gene was amplified using modified primers 27F (5’-

AGMGTTYGATYMTGGCTCAG) (MWG Eurofins, Ebersberg, Germany) and 338R (5’- 

GCTGCCTCCCGTAGGAGT) (MWG Eurofins, Ebersberg, Germany) (6). The 5’ end of the 

primer 27F was modified with a 29 base Illumina adapter, a 10 base forward primer pad and 

a 2 base linker sequence (5’-AATGATACGGCGACCACCGAGATCTACAC  TATGGTAATT  

CC).  The 5’ end of 338R was modified with the reverse complement Illumina adapter, a 12 

base Golay barcode, a 10 base reverse primer pad and a 2 base linker (5’- 
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CAAGCAGAAGACGGCATACGAGAT TCCCTTGTCTCC AGTCAGTCAG AA) (Underlined 

sequence represents an example Golay barcode). Primer pads are included to stop the 

formation of hairpins within the primers while primer linker regions are included to separate 

the 16S rRNA gene priming site from the unique barcode. Linker regions are required due to 

the variable barcode sequences which could potentially bind to the 16S rRNA gene 

sequence adjacent to the priming target, creating longer priming sites for some species. It is 

therefore important that the linker bases do not match the upstream 16S rRNA gene region 

for any known bacterial species. This ensures that priming occurs across the same number 

of bases for all species.  

PCRs were performed in quadricate, with approximately 50 ng of template DNA used in each 

25 µl reaction containing; 5 µl 5 X Q5 Buffer  (New England Biolabs, Ipswich, UK), 1 µl Q5 

High-fidelity polymerase (New England Biolabs, Ipswich, UK), 1.25 µl of each 10 µM Primer 

was added to a concentration of 0.5 µM, 0.5 µl 10 mM dNTPs. The thermocycling conditions 

were optimised by the Wellcomme Trust Sanger institute to; initial denaturation 98°C for 2 

min; 25 cycles of denaturation (98°C for 30 sec) annealing (50°C for 30 sec) extension (72°C 

for 1 min 30 sec), final extension 72°C for 5 min. 

The presence of product was confirmed by TBE agarose gel electrophoresis, as above 

(Chapter 2.4.1).  

 

2.5 PCR clean-up 

The four repeat PCRs carried out for sequencing were pooled and cleaned up using ethanol 

precipitation to remove salts from the extracted DNA. 0.3 volumes of 1M NaCl (Sigma-

Aldrich, Dorset, UK) was added to the pooled PCR volume, two volumes (relative to the new 

combined sample including NaCl volume) of cold 100% ethanol were then added. The 

samples were then mixed by inversion and stored at -20oC overnight. After incubation the 

samples were centrifuged at 4oC at 15,000 X g for 20 min. The supernatant was removed 
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and 600 µl of cold 70% ethanol was added. The samples were then centrifuged at 4oC at 

15,000 X g for a further 15 min. The supernatant was removed and samples were left to air 

dry. Once dry samples were re-suspended in 30 µl of Tris-EDTA (TE) (Sigma-Aldrich, 

Dorset, UK) buffer and stored overnight at 4oC. 

 

2.6 Sequencing  

All barcoded PCR products were quantified individually using a Qubit 2.0 fluorometer 

(Invitrogen, Paisley, UK) and combined into an equimolar mastermix prior to sequencing at 

the Wellcome Trust Sanger Institute (Cambridge, UK). Both 454 and MiSeq sequencing 

were performed at the Wellcome Trust Sanger Institute (Cambridge, UK). 

 

2.7 Sequencing analysis 

The Mothur sequencing analysis software platform was used to analyse the resulting data 

(7). Failed sequence reads, low quality sequence ends, tags and primers, were initially 

removed, followed by sequences shorter than 350bp (for 454 sequencing analysis) and 

270bp (for Illumina sequencing analysis) and any sequences which included ambiguous 

base calls and homopolymeric stretches longer than 8 bases. Any non-bacterial ribosome 

sequences or chimeras were removed using Chimera Perseus software (8) or Chimera 

uchime (9) as implemented in Mothur. Sequences were assembled into operational 

taxonomic units (OTUs) (clustered at 97% identity), to give an approximation of species (10), 

and identified using the Ribosomal database project (RDP) training set (for version used see 

individual chapters) reference database (11). Representative sequences were used to give 

an appropriate species level identification for the OTU using NCBI megablast and any 

suspect OTUs, those that appeared in control samples as well as single sequences identified 
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as being unlikely to be found in humans (e.g. hyperthermophiles, methanotrophs and 

rhizosome associated bacteria) were removed.   

 

2.8 Data and statistical analysis 

Statistical analysis was performed in R, unless otherwise stated (12). Details of Chapter-

specific statistical tests can be found in the corresponding methods sections. Details of 

statistical tests used throughout the study are detailed below.  

2.8.1 Diversity measures  

In order to assess the richness and evenness (equality of species distribution in an 

environment) of the bacterial community within each sample three complementary 

measurements of diversity were used. The indices chosen were species richness (S*), 

Shannon-Wiener diversity index (H’) and Simpson’s index of diversity (1-D), as described 

previously (13).   

As explained by Magurran (2004) there are no perfectly unified diversity indices as different 

indices emphasize species richness and evenness to varying degrees (14). By using three 

metrics we are able to gain an indication of bacterial diversity while acknowledging that each 

measure has inherent bias. S* indicates the total number of species but does not account for 

species abundance. H’ reflects the diversity and evenness of species. H’ is sensitive to 

changes in the frequency of common and less common species, however not rare species. 

1-D is a measure of the probability that two species randomly selected from a sample will 

differ, however it is heavily weighted towards the most abundant species. 

In order to account for sampling bias due to differing sampling depths (i.e. differing numbers 

of reads between sample, sample A may return 5,000 sequences while sample B returns 

10,000) a randomised resampling method was used to examine differences in bacterial 
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diversity between samples, based on Solow (1993) (15). OTUs derived from a single sample 

were sub sampled, with replacement, to a uniform sampling depth, this allowed comparisons 

to be made between samples with different numbers of sequences. Diversity indices were 

calculated for each sample and a mean, median, standard error and 95% confidence 

intervals were calculated after 1000 iterations.  

2.8.2 Similarity measures  

Community compositions of samples were compared using two similarity measures 

Sørensen (number of shared species) and Bray-Curtis (accounts for the number and 

abundance of shared species). Both measures are considered to be highly effective (14).  

Sørensen is considered to be one of the most effective presence absence measures (16), 

while Bray-Curtis was found to be one of the few measures which could satisfy the following 

6 criteria set out by Clarke and Warwick (2001): i) the value is one when two samples are the 

same; ii) the value is zero when samples have no common species; iii) a change of 

measurement does not affect the value of the index; iv) the value is unchanged by the 

inclusion of a species that do not occur in either sample; v) the inclusion of a third sample 

does not affect the similarity of the initial samples; vi) the index reflects differences in total 

abundance (17).   

To overcome biases created by differences in sample size the randomised resampling 

method was adapted from that used for assessing diversity, in order to compare the 

similarity of equal subsamples from two original samples. Sørensen and Bray-Curtis 

similarity measures were calculated for each subsample in 1000 iterations and the mean, 

median, standard error and 95% confidence intervals were calculated. 

2.8.3 Meta-analysis 

Meta-analysis is a statistical method for comparing the results from different studies in order 

to identify patterns and relationships that may be missed in a single study. This technique is 
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widely used in clinical trials for the investigation of healthcare interventions (18), as well as 

being used by ecologists to compare different experimental studies (19). Overall patterns 

between studies are calculated by weighting means, therefore accounting for factors such as 

study size within the analysis. In this project, meta-analysis was used to assess the variation 

between samples by using the replication within the same sample as a single study. To 

calculate the variation with a sample the randomised resampling explained above (Chapter 

2.8.1) was employed to give a mean and standard deviation. These values could then be 

used to provided a powerful tool to study between sample effects while accounting for the 

high variability between CF patients.  

Meta-analysis was carried out in R, using the metafor package (20). The per-sample effect 

size was calculated using the standardized mean difference (SMD), widely used for the 

comparing two groups (treatment and control). This method uses the difference between 

sample means (m1i-m2i) divided by the pooled standard deviation (sd1i and sd2i).  

Expressed as: 

 

Subsequently, the overall average effect size was calculated using a random-effects model 

using Hedges estimator (Hedges’ g). Weighted estimation (with inverse-variance weights) 

was used to eliminate scale differences while incorporating the effect of between patient 

variations. Out puts were plotted in R, using ggplot2 (21). 

2.8.4 Distribution abundance relationships (DAR) 

It has been established that at the metacommunity level, a dichotomy exists within species, 

in order to investigate this species within the metacommunity it can be partitioned into those 

that are common, persistent and abundant, and rare, transient and less abundant. A direct, 

positive, relationship between species persistence and abundance has been observed in the 

study of taxa at a range of spatial scales, importantly this relationship has been observed 



 

Chapter 2 

   

74 

when within the CF airways (22, 23). As with animal species this distinction in the community 

composition has been found to be related to species permanence within the ecosystem, in 

this case the CF lung (24).   

In this study we chose to use a partitioning method previously used in a study by Magurran 

and Henderson (2003) for the partitioning of fish species, from an estuarine environment 

(24). Persistence was described as the number of number of samples that contain the 

species of interest, while abundance was described as the total number of sequences from 

all samples. The log abundance was plotted against persistence to reveal a significant 

positive relationship. The most persistent and abundant organisms appearing in the upper 

quartile of the plot, i.e. in more that 75% of the total samples, these species were described 

as common, while all others were considered rare.  

2.8.5 Analysis of variance (ANOVA) 

Analysis of variance (ANOVA) is a statistical test of whether several means are equal, 

therefore providing a method of performing t-tests on more than two groups, without 

increasing the risk of type I error. After performing ANOVA tests, post-hoc Tukey honest 

significant difference (HSD) tests were then used to identify which groups in the sample were 

significantly different, P<0.05. This test allowed the comparison of OTU diversity with 

patients grouped by specific clinical factors.   

2.8.6 Analysis of similarity (ANOSIM) 

Analysis of similarity (ANOSIM) is a non-parametric test, used to test for significant 

differences between two or more groups (25). Results can be based on any distance 

measure, throughout this thesis comparisons were based on Sorensen and Bray-Curtis 

measure of similarity. This test allowed comparisons of community composition by clinical 

factors.     
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Similar to ANOVA, the ANOSIM is based on comparing distances within group to those 

between groups calculated; 

 

Where rb= the mean rank of distances between groups and rw= the mean rank of all 

distances. Significance is calculated using 10,000 permutations and pairwise ANOSIM tables 

are produced for R and P-values. Large positive R values signify dissimilarity between 

groups, while small values indicate groups are similar.  

2.8.7 Similarity percentage (SIMPER) 

Similarity percentage (SIMPER) analysis is used to assess the percentage contribution of 

taxa responsible for any observed differences between groups of samples (25). The overall 

significance of the difference in Bray-Curtis is assessed by ANOSIM.  

2.8.8 Mantel and partial Mantel tests 

Mantel tests are used to compare distance or similarity matrices. Using 9999 permutations 

the Pearson’s correlation between two matrices are calculated resulting in an r value, 

between -1 and +1 and the corresponding significance. Partial Mantel tests are calculated in 

the same way however, the correlation is calculated while controlling for the effects of a third 

matrix; 

 

where r(AB) is the correlation coefficient between A and B 

Depending on the hypothesis, Mantel tests can be calculated as, lower tailed, two way or 

upper tailed. For the purposes of this project Mantel tests are calculated using a lower tailed 
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test. This hypothesised that more similar samples, in terms of community composition, would 

be closer in distance or similarity of clinical factors.  

2.8.9 Mixed effects modeling  

Mixed effects modelling is a statistical modelling technique that contains both fixed and 

random effects. These models are used in a wide variety of disciplines and are particularly 

useful for the analysis of longitudinal studies and studies which may have missing values. 

Mixed effects models can be represented as;  

 

 is a known vector of observations, with mean ; is a unknown vector of fixed 

effects;  is an unknown vector of random effects, with mean  and variance-

covariance matrix ;  is the unknown vector of random errors and with mean  

 and the variance .  

Throughout this project mixed effects models were fitted in R, using the packages lmer (26), 

nlme (27), and GLMMADMB. Values of r2 were calculated using the R package MuMIn. 

Details of all mixed effects models used are fully explained in the materials and methods 

sections of each chapter. 
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Chapter 3: Assessing the use of propidium 

monoazide  

 

 

Assessing the use of propidium 

monoazide and its impact on the bacterial 

community within the CF lung 

 

“Everything must be taken into account. If the fact will not fit the 
theory---let the theory go.”  

 Agatha Christie, The Mysterious Affair at Styles 
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3.1  Introduction 

In order to gain ecological insight into microbial communities it is important first to define the 

bacterial taxa present. By achieving this it becomes possible to assess community 

characteristics and predict the impact of perturbations on a system, through the use of a 

range of ecological measures, described in Chapter 2.8. This approach has been used 

widely to investigate microbial communities present in natural environments (1), with a move 

to adopting these techniques to investigate clinical systems in recent years. As technologies 

improve to allow this type of investigation, it becomes more important than ever to obtain the 

most accurate representation possible of the microbial community within a system.  

Polymicrobial infections, caused by various combinations of bacteria, fungi, viruses and 

parasites, are commonplace in human disease (2). To effectively treat these infections it is 

important to increase our understanding of the roles bacteria play in disease prognosis. This 

is crucial when considering lower respiratory tract infections, particularly those associated 

with cystic fibrosis (CF). In CF, the lung damage sustained as a result of respiratory 

infections is a major driver of worsening lung function and respiratory failure in many 

individuals (3). As a consequence an improved understanding of the microbial community 

within the lungs may influence therapy and improve prognosis, by allowing targeted 

indiviualied therapies to be administered. However, in order for this to be achieved it is 

important to establish an accurate/unbiased picture of the CF lung community.   

The use of culture independent methodologies for the identification and quantification of 

microbial species is increasing for a variety of reasons. These include their speed, reliability 

and ability to identify unusual and difficult to culture organisms as well as those in low 

abundance (4). Whilst these techniques avoid the selective biases associated with culture 

based microbiology they have their own limitations. For example; the ability to lyse cells, 

primer efficiency, contaminating DNA, as well as the intrinsic error rate involved in the use of 

sequencing technologies (5, 6). Another limitation that this study aims to address is the issue 

that standard PCR based analyses are unable to differentiate between live (or viable) 
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organisms, DNA associated with dead or damaged cells (including extracellular DNA). As 

such, this DNA may be amplified leading to overestimation of the abundance of living 

organisms. This can have implications for the analysis of microbial communities, as free 

DNA is known to persist for days or even weeks, depending on the environment, after cell 

death (7). Studies carried out on environmental samples found that DNA from dead or 

damaged cells is estimated to make up 70-74% of the total bacterial counts from marine 

sediment (8), while 76% of the total bacterial cells stained from a eutrophic river was not 

considered to be viable or active (9). Further, studies of clinical samples have revealed that if 

the issue of extracellular DNA or DNA from dead of damaged cells is not addressed, PCR 

based methodologies can result in false positives. For example, Panousis et al (2005) 

revealed a positive predictive value of 34%, when PCR was used for the diagnosis of 

infections in newly fitted prosthetic joints (10). This could lead to unnessecary treatments.    

In the context of the CF lung, the exclusion of extracellular DNA and DNA from dead or 

damaged cells is immensely important as failure to identify effective treatments and therefore 

prolonged unnecessary treatment. The reduced ability to clear the airways (11), alongside 

the pressures from the host immune response (12) and antibiotic therapy (13) results in a 

highly perturbed system, where the bacterial community is under constant stress. In 

combination, these factors result in a build up of DNA not associated with viable cells within 

the lung (4, 14, 15). 

The inclusion of extracellular DNA and DNA from dead and damaged cells in molecular 

analysis can have marked effects on community characterisation. This can lead to 

overestimation of bacterial density, a distortion of the actual relative abundance of species 

and the masking of rare, low abundant species by those in higher abundance. These 

importantly include the recognised pathogens, Achromobacter xylosoxidans, Haemophilus 

influenzae, and members of the Burkholderia cepacia complex (16). It may also mask any 

changes in community dynamics as a result of treatment or exacerbation, and it is therefore 

vital to exclude non-viable DNA from analysis. Consequently, this study uses propidium 
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monoazide (PMA) treatment to investigate the impact of extracellular DNA and DNA from 

dead or damaged cells on the bacterial community composition of CF sputum samples.  

PMA is a membrane impermeable dye that covalently binds to DNA in the presence of light 

effectively reducing the amount of extra cellular DNA and DNA from dead or damaged cells 

in a sample (7). PMA treatment has been shown to be effective, in a range of contexts, for 

assessing viable microbes using molecular techniques. For example, Nocker et al (2007) 

used end-point PCR and denaturing gradient gel electrophoresis (DGGE) to assess the 

efficacy of PMA treatment on the bacterial species detected in environmental samples. PMA 

treated samples which had been previously spiked with known quantities of heat killed 

Escherichia coli O157:H7 showed PMA could successfully suppress DNA signals (17). While 

Bae et al (2009) found that PMA treatment could be effectively used to quantify viable 

Bacteroidales cells from human faeces and wastewater influent and effluent (18). Further 

Kralik et al (2010) used similar strategies to ascertain that PMA treatment, at a concentration 

of 25 µM for 5 min, followed by 2 min of light exposure, prior to qPCR could help accurately 

quantify viable Mycobacterium avium subsp. paratuberculosis as an alternative to culture 

(19).  

Importantly for this investigation, the use of PMA has been assessed in the context of CF 

airway infections. In 2008, Rogers et al, used T-RFLP in investigate the effect of PMA 

treatment on the bacterial community within CF sputum. This study highlighted the significant 

contribution of non-viable bacteria in the CF lung to the signal obtained by T-RFLP analysis 

and the importance of avoiding this bias in community analysis (4). Further work, was also 

published by Rogers et al, in 2010, and revealed that failure to remove the influence of non-

viable organisms could result in the inability to identify statistically significant changes in 

bacterial load, particularly that of Pseudomonas aeruginosa (15). In 2013, PMA was used to 

assess community changes using qPCR and 454 high-throughput pyrosequencing, revealing 

that although there were no significant changes in the overall diversity and community 

membership, when samples were partitioned into common and rare, PMA treatment 

highlighted rare community diversity which was found to be obscured by the most common 
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and abundant species (16). Importantly for clinicians and patients, this work showed that the 

detection of recognised pathogens, particularly Achromobacter xylosoxidans (undetected to 

satellite), Haemophilus influenzae (undetected to satellite), members of the Burkholderia 

cepacia complex (undetected to core) and Mycobacterium sp. (undetected to satellite), was 

significantly influenced by PMA treatment (16). Failure to identify these species may have 

considerable influence on treatment decisions and therefore patient outcomes.        

In this study 16S rRNA gene pyrosequencing was used to assess how the bacterial 

community is affected by pre-treatment of samples with PMA. This research was undertaken 

to critically evaluate the use of PMA for the exclusion of free DNA and DNA from dead or 

damaged cells from the analysis of the bacterial community from CF lung infections, while 

allowing modelling techniques for the analysis of bacterial community changes to be 

evaluated. Finally, this study allowed the results from previous studies into the effect of PMA 

treatment to be investigated and confirmed. By assessing the use of PMA and its impact on 

the bacterial community, this study can be used to underpin the results obtained throughout 

this research project, allowing confidence that the results obtained reflect the true bacterial 

community. 

 

3.2 Methods 

3.2.1 Sample collection 

Sputum samples were collected from 42 adult CF patients attending the regional Cystic 

Fibrosis Centre in Southampton General Hospital, under full ethical approval from 

Southampton and South West Hampshire Research Ethics Committee (06/Q1704/26). 

Samples were collected and stored at -80°C until processing.   

3.2.2 DNA extraction and Pyrosequencing 
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Sterile scalpels were used to divide frozen samples into two equal portions, prior to a sputum 

wash being performed as described in Chapter 2.3.1. The first portion was treated with PMA 

to exclude free DNA and DNA from non-viable cells from analysis via the method described 

in Chapter 2.3.2. The second half of the sample was left untreated prior to DNA extraction. 

DNA extraction was then performed on all samples as previously stated in Chapter 2.3.3. 

Following the method outlined in Chapter 2.4.1, bacterial Golay barcode encoded 454 FLX 

Titanium amplicon pyrosequencing was performed using the primer 338F (5’- 

ACTCCTACGGGAGGCAGCAG) and 926R (5’- CCGTCAATTCMTTTRAGT). 454 

pyrosequencing using the Lib-L kit was performed at the Wellcome Trust Sanger Institute, 

Hinxton, UK. Resulting data was analysed using the Mothur sequencing analysis platform as 

previously described in Chapter 2.7 (20). The sequence data reported in this paper have 

been deposited in the European Nucleotide Archive under Study Accession Number; 

ERP007059, and Sample Accession Number; ERS551400. The relevant barcode 

information for each sample is shown in Table A3.1.  

3.2.3 Statistical analysis 

To determine whether sample size was large enough to effectively assess the bacterial 

diversity within each sample, Mothur was used to create intra-sample rarefaction curves 

without replacement (20). All further statistical analysis was performed in R version 

3.1.1(2012-07-10) (21).  

Changes in bacterial diversity were assessed using three complementary measures; species 

richness (S*), Shannon-Wiener (H’), and Simpson’s (1-D) indices of diversity as described 

previously, Chapter 2.8.1. To avoid potential bias all measures were calculated using a 

uniform, randomised resampling, see Chapter 2.8.1 (16). Diversity measures were re-

sampled to the lowest number of sequence reads (n=202).  

Meta-analyses were used to summarise the effect of PMA treatment on measures of 

bacterial diversity and composition using Hedges estimator of effect size, as explained in 

Chapter 2.8.3. The R package Metafor, was used to compare treated to untreated samples 
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by summarising the overall effect of the 36 paired samples, each patient was treated as a 

separate independent study (22). The overall effect of treatment was calculated using the 

standardised mean difference for each sample was calculated using hedges g. 

Species were partitioned using a variety of criteria, explained below, to allow investigation of 

the effect of PMA treatment on different aspects of the bacterial community. Firstly, species 

were partitioned into common, the most persistent and abundant, and rare, transient and 

less abundant, using a distribution abundance relationship, described by Magurran and 

Henderson (2003) (23). Common species were described as those present in more that 75% 

of the total samples, while all others were considered to be rare. Bacterial species were then 

partitioned according to oxygen tolerance; the aerobic species group consisted of all aerobic 

species, facultative anaerobes and microaerophiles. The anaerobic species group contained 

only strict anaerobes. Finally members of the oral microbiota were identified using the 

human oral microbiome database (HOMD, http://www.homd.org).  

The similarity of treated samples were compared to untreated in order to assess the changes 

community composition as a result of PMA treatment using Bray-Curtis measure of similarity 

(accounting for both presence/absence and abundance of species), as described in Chapter 

2.8.2. To avoid potential bias Bray-Curtis measure of similarity was calculated using a 

modified version of the uniform resampling method previously used (n=202), see Chapter 

2.8.2 for full details (16).  

Mixed effects models, using the R package lme4 were used throughout the analysis of this 

data to allow comparisons between treated and untreated samples using a variety of 

diversity and composition measures as well as using different partitioning criteria to gain an 

overall understanding of the effect of PMA treatment in the bacterial community (24). All 

models used patient as a random effect in order to account for between patient variability. r2 

values were calculated using the MuMIn package in R (21).  
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3.3 Results 

A total of 260087 bacterial sequences (mean = 2653.9 ± SD 2196.7, n=96), were generated 

with 152818 sequences from non-PMA samples (mean = 3118.7 ± SD 2322, n=49) and 

107269 sequences from PMA samples (mean = 2189.1 ± SD 1979.6, n=49).  

The diversity and composition of bacterial communities within each of the paired samples 

(non-PMA n=42, PMA n=42) was assessed by 16S rRNA gene 454 pyrosequencing. 

Rarefaction curves were used to test whether the number of sequences per sample was 

sufficiently large to capture a robust cross-section of the bacterial diversity (Figure 3.1.1, 

Figure 3.1.2). To this end, 6 paired samples, from patient 5, 26, 28, 32, 40 and 55, were 

removed due to insufficient sampling depth, indicated by rarefaction curves not reaching an 

asymptote. This resulted in, no PMA treatment n=36 and PMA treatment n=36, (Total 

samples n=72), samples being included in the study for further analysis. Following removal 

of these samples, a total of 215649 bacterial sequence reads (mean = 2995.11 ± SD 

2012.41, n=72) identifying 41 genera and 98 bacterial species remained, a complete list is 

shown in Table A3.2. No difference was observed between the PMA and non-PMA samples 

after the removal of samples that did not have the required sampling depth.  
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3.3.1 Diversity 

As a result of varying levels of sampling depths obtained, a feature of high throughput 

sequencing, a randomised resampling method (with a uniform sub-sample size of n=202 

sequences, equating to the smallest number of sequences recovered), as described in 

Chapter 2.8.1, was applied to the samples to reduce potential bias in the comparison of 

community diversity. Three recognised metrics of community diversity were applied to the 

data, species richness (S*), Shannon-Wiener index (H’), and Inverse Simpson’s index (1-D).  

All diversity measures were found to be highly variable between individual samples, 

regardless of treatment. As shown in Figure 3.2, meta-analysis revealed both significantly 

positive and significantly negative effects of PMA treatment for each individual sample. 

However, the overall effect of each diversity measure, calculated using Hedges g, revealed 

no overall significant changes, indicated by the confidence intervals crossing 0, in any of the 

3 diversity measures, shown in detail in Figure 3.3. Mixed effect models confirmed the 

findings of the meta-analysis, S*, P=0.542, r2=0.0004, H’, P=0.070, r2=0.008, 1-D, P=0.051, 

r2=0.012. Changes in overall species richness were observed between the treated and non-

treated samples, with 81 species observed in the non-treated samples compared with 91 in 

the treated however, this was not significant when between patient variability was accounted 

for.   
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Figure 3.2 The effect of PMA treatment on the bacterial community diversity using 

weighted mean differences.   

A) species richness (S*), B) Shannon-Wiener index (H’) and C) Inverse Simpson’s (1-D). 

The overall effect of PMA treatment on each diversity measure was calculated using 

Hedges’ g effect size measure, error bars represent 95% confidence intervals of the effect 

size (n=36). Negative values indicate lower diversity in PMA treated samples. Error bars 

crossing zero indicate no significant effect of PMA treatment.  
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Figure 3.3 The overall effect of PMA treatment on the diversity measure. 

Species richness (S*), Shannon-Wiener index (H’) and Inverse Simpson’s (1-D) using 

Hedges’ g effect size measure, error bars represent 95% confidence intervals of the effect 

size (n=36). Error bars crossing zero indicate no significant effect of PMA treatment.  
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A distribution abundance relationship (DAR), was employed to partition the species in those 

considered to be common (both persistent and abundant) and those considered to be rare 

(transient with low abundance). The log species abundance was plotted against the sample 

persistence (the number of samples in which a particular species appears) showing a 

significant positive relationship for both the untreated (n=36, F(1,83)=310.6, P<0.001), and 

treated (n=36, F(1,89)=243.6, P<0.001) samples. This direct relationship between species 

persistence and abundance indicates a coherent metacommunity. Species present in more 

than 75% of the samples were denoted as common, all others were deemed rare.  As shown 

in Figure 3.4, the DAR revealed 5 species present in more than 75% of both the treated and 

untreated samples, Prevotella melaninogenica, Veillonella dispar, Streptococcus 

pneumoniae, S. parasanguinis and Pseudomonas aeruginosa.  Gemella morbillorum was 

categorised as common in the untreated samples and rare in those exposed to PMA 

treatment.  

Mixed effect models were used to investigate the effect of PMA treatment on the species 

identified as common. These changes were found to be variable by species, a significant 

positive effect of PMA treatment was observed in the relative abundance of the OTUs, S. 

pneumoniae (P<0.001, r2=0.07) and S. parasanguinis (P<0.001, r2=0.05). While PMA 

treatment was found to have a significant negative effect on the abundance of; P. aeruginosa 

(P=0.004, r2=0.03).  No significant change in relative abundance was observed for P. 

melaninogenica (P=0.024, r2=0.02) or V. dispar (P=0.03, r2=0.04). G. morbillorum was the 

only species to be classified as both common and rare, being common in the untreated 

samples but rare in the treated, despite this no significant difference in abundance was 

observed (P=0.058, r2=0.01). Of the rare species present in more than 50% of the samples 

(but <75%), PMA was found to result in significant increase in the abundance of; Bacteroides 

acidifaciens (P=0.01, r2=0.03), Shuttleworthia satelles (P=0.04, r2=0.01), Granulicatella 

adiacens (P<0.001, r2=0.05), and Porphyromonas catoniae (P=0.006, r2=0.06).   
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Figure 3.4 Persistence abundance curves.   

A) Untreated samples (n=36, F(1,83)=310.6, P<0.001), B) PMA treated samples (n=36, 

F(1,89)=243.6, P<0.001).  Common species were defined as those that fell in the upper 

quartile (right of the vertical line), all species that fell below the line were considered to be 

rare, These OTUs are shown in Table S2.  
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3.3.2 Aerobic and anaerobic species 

Recent studies have revealed a steep oxygen gradient within the mucus of the CF lung and 

as a result anaerobic species have been repeatedly isolated from the lung of CF patients 

through both culture and culture independent methodologies (25-27). To investigate the 

contribution of anaerobes to the bacterial community within the CF lung all species were 

partitioned into either aerobic or anaerobic species. All species able to grow in aerobic 

conditions, including facultative anaerobes and microaerophiles, were considered aerobic. 

Only strict anaerobes were partitioned into the anaerobic group. Species identified as 

anaerobes are indicated in Table A3.2.   

No significant change in the relative abundance of aerobes (n=44, P=0.813, r2<0.001) and 

anaerobes (n= 54, P=0.655, r2<0.001) was found when samples were treated with PMA.  

However, when diversity measures were applied there was a significant increase in 

Simpson’s diversity index for the aerobic group (P=0.036, r2=0.021) when samples were 

treated with PMA. This was not observed for S* (P=0.121, r2=0.007) or H’ (P=0.087, 

r2=0.013). Furthermore this change was not observed in the anaerobic species; S*, P=0.108, 

r2=0.005, H’, P=0.763, r2<0.001, 1-D, P=0.606, r2=0.002. This shows that more rare aerobic 

OTUs are identified with the use of PMA, suggesting that when free DNA is removed from 

the sample a more complete picture of rare OTUs can be observed.  

3.3.3 The oral microbiota 

Using the strict criteria above, both aerobic and anaerobic species are found to make up the 

oral microbiota. Several studies have investigated the presence of members of the human 

oral microbiota in the CF lung, establishing that their presence is unlikely to be due to 

contamination, but true members of the bacterial community (25, 28). Therefore, oral species 

present within the CF lung represent potential pathogens that may be clinically important. In 

this study 75 of the bacterial species identified were known to be commonly present in the 

oral cavity, Table 3.1 (29). All species partitioned as common were identified as members of 
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the oral microbiota. Treating samples with PMA resulted in a significant decrease in the 

abundance of the total oral species detected (P<0.001, r2=0.02) and S* (P=0.026, r2=0.09), 

however, no changes in the community diversity were observed; S*, P=0.185, r2=0.003, H’, 

P=0.755, r2<0.001, 1-D, P=0.614, r2<0.001.  

3.3.4 Community composition 

In order to compare changes in community composition between treated and untreated 

samples, the Bray-Curtis measure of similarity (SBC, which accounts for the number and 

abundance of species present in each community and those that are shared) was used. To 

minimise possible bias due to sampling depth, SBC was calculated using randomised 

resampling to assess the similarity of treated to untreated samples. High variability was 

observed between samples with a range of similarities between 0.99 and 0.11, as shown in 

Figure 3.5.   

To investigate possible explanations for the variation in similarity observed, the results of SBC 

were compared to values of dominance. The Berger-Parker measure of dominance, the 

proportional abundance of the most abundant species present in the community (30), was 

calculated showing a significant decrease in dominance when samples were treated with 

PMA (P=0.028, r2=0.02). To investigate any relationship between dominance and changes in 

similarity, Berger-Parker was plotted against SBC. A significant positive relationship was 

found between change in similarity and dominance (P<0.001, r2=0.34). Samples more highly 

dominated by a single species were found to show less change in similarity with PMA 

treatment than those with a more diverse community, Figure 3.6. Dominance was also found 

to have a significant relationship with species richness (P<0.001, r2=0.48), where less 

diverse communities were found to be more highly dominated by one or a small number of 

species.  
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Figure 3.5 The effect of PMA treatment on community composition using the Bray-

Curtis measure of similarity.  

Points represent the Bray-Curtis similarity between non-treated and PMA treated samples for 

each individual patient. The closer the given value is to 1 the more similar the community is 

to the original untreated sample community. This suggests some patients show very few 

changes in community composition with PMA treatment while other show considerable 

changes in both the OTUs identified and their abundance, leading to values closer to 0.   
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Figure 3.6 The relationship between community similarity (Bray-Curtis) and 

dominance (Berger-Parker). 

The difference in similarity, between non-treated and PMA treated samples using Bray-Curtis 

similarity, plotted against the dominance measured by Berger-Parker dominance measure.  

A linear model has been fitted to the data (P<0.001, r2=0.34) in order to highlight the 

significant relationship between similarity and dominance. An arc-sine transformation was 

applied to the Bray-Curtis measure in order to make the data normal in order to correctly fit 

the model without violating assumptions.  
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3.4 Discussion 

As highlighted in the introduction (Chapter 1.5), the lower respiratory tract can be a 

challenging environment for bacterial species to colonise and persist in. Despite the lack of 

an effective mucociliary escalator in patients with CF, bacteria colonising the CF lung, 

continue to be subjected to host immune responses as well as a wide variety of antimicrobial 

therapies (16). Whilst some cells may be capable of growth in this context, the host immune 

response and use of antimicrobials mean that only a certain percentage of cells entering the 

lower respiratory tract will be viable. By conventional molecular analysis, DNA from dead 

cells, lysed cells and otherwise non-viable cells still have the potential to contribute signal to 

culture-independent studies. As such, the persistence of extracellular DNA and that from 

dead or damaged microbial cells under this perturbed system makes it challenging to define 

the bacterial community using culture independent technologies. This study aimed to 

establish the effect of pre-treating sputum samples, from patients suffering from CF, with 

PMA.  

Several previous studies have observed high variability in the bacterial communities between 

CF patients (14, 31, 32). In order to account for this high degree of inter-individual variation 

several methods are available. In this study, meta-analysis, which allows an overall effect 

size to be calculated from weighted mean differences, is compared to mixed effect 

modelling, which can be used to model any changes between the groups while accounting 

for between patient differences. Both methods showed no significant overall change in 

diversity with the use of PMA. However, the use of the meta-analysis approach supported 

the findings of Rogers et al (2013) suggesting that without the use of PMA the diversity of the 

local bacterial community in individual samples can be under or over estimated.  

Previous studies have established that there is a divide in the metacommunity, between the 

common and locally abundant species and those that are rare or transient, within the CF 

lung (32, 33). As a result failure to make the distinction between groups can result in 

important aspects of the species abundance distributions being neglected. In such studies, 
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the core-satellite group approach was established using a Poisson distribution to partition 

species into groups. This method allowed samples to be partitioned into those that were 

randomly (satellite) and non-randomly (core) distributed. However, due to a quirk in this 

analysis some species with low persistence across the dataset could be assigned as a core 

species due to their high abundance in a small number of samples. To overcome this, a 

distribution abundance relationship was employed to partition and allow only the species 

appearing in more than 75% of the samples to be considered common. This distribution 

showed a direct relationship between persistence and abundance, indicating a coherent 

metacommunity. By partitioning identified species into common and rare groups it was 

observed that the use of PMA treatment had a significant effect on the abundance of S. 

pneumoniae, S. parasanguinis and importantly the recognised pathogen P. aeruginosa. 

Significant changes in the abundance of these species could have marked consequences for 

downstream analysis of sequencing, as important community changes as a result of 

treatment or other perturbations may be masked. This could also have implications for 

treatment decisions that may be informed by misrepresentative data.  

Rogers et al (2013) observed changes in species distribution between the treated and non-

treated samples, importantly the movement of recognised pathogens were observed 

between the core and satellite groups (16). However, in this study only Gemella morbillorum 

moved between the common and rare groups with PMA treatment. No movement of 

recognised CF pathogens was observed, which may be due to the more stringent 

partitioning applied to the community, or alternatively, a result of the highly P. aeruginosa 

dominated communities observed in this study. 

It has been well established that anaerobic species make up an important part of the 

bacterial community within the CF lung (25-27). As such, all identified species were 

partitioned into anaerobes (strictly anaerobic species) and aerobes (aerobic, facultative 

anaerobes or microaerophiles) in order to establish the effect of PMA on the relative 

abundance and community diversity of each species group. While it was observed that 

treatment with PMA had no overall effect on the anaerobic community diversity, a significant 
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increase (P<0.05) in Simpson’s index of diversity was shown in the aerobic community. 

Furthermore, the fact that there was no change in the other diversity measures used 

suggests that the community shift observed was not simply to do with a change in richness 

or abundance, but rather a combination of the two factors leading to an increase in 

community diversity. One explanation may be that the antibiotic treatments used targeted the 

most abundant aerobic species, thereby allowing more of the rare community to be 

identified. 

Questions about whether the detection of members of the oral microbiota is due to sampling 

contamination rather than their presence within the lung community have been raised in 

previous studies (26, 28, 32, 34). Despite the use of PBS washes to remove saliva, and 

therefore possible oral contamination, the majority (n=75) of the species identified within our 

sample set are known to be present in the human oral cavity. This strongly suggests these 

species are true (and important) members of the lower respiratory bacterial community, 

perhaps colonising as a result of microaspiration of microbes from the oral cavity into the 

lower respiratory tract. While no change in diversity was observed, there was a significant 

decrease in the relative abundance of the members of the oral community, implying that 

PMA treatment changes the community composition allowing less abundant aerobic 

members of the community to be identified.   

Bray-Curtis measure of similarity was used to investigate changes in community 

composition. PMA treated samples were compared to the untreated sample in all cases, 

revealing a high level of variation between samples. By comparing these results to those 

generated using the Berger-Parker sample dominance measure, samples revealed to be 

more highly dominated by a single species showed less change in community composition 

with PMA treatment. Patients dominated by a single species were found to have less diverse 

bacterial communities in terms of species richness. This would explain the conserved nature 

of dominated communities, where the dominant species out competes less abundant taxa for 

space and resources. As such, similar patterns have been observed when the diversity and 

community composition of grasslands was investigated (35). Therefore, the effect of PMA 
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treatment on the diversity and community composition of highly dominated samples is 

expected to be significantly less than those with more diverse communities.  

The CF lung contains a wide range of species, making up highly variable communities under 

constant pressure from a wide range of immune and therapeutic factors (36, 37). These 

perturbations within the lung create a dynamic community that is constantly evolving. To 

investigate how the community is affected by perturbations, it is important to be able to 

differentiate between viable organisms and DNA from dead or damaged cells. This is 

particularly important when considering the effect of antibiotic treatment regimes, which may 

be masked by the presence of DNA from dead or damaged cells, resulting in skewed results 

and ultimately failure to assess the effectiveness of treatment.  

In this study it the inclusion of DNA from dead or damaged cells prevents accurate 

characterisation of the bacterial community by leading to an over or under estimation of 

diversity and significant changes in the relative abundance of the most common species, as 

well as those characterised as members of the oral microbiota. Analysis of the viable 

community can allow the identification of rare bacterial species that would otherwise be 

masked by DNA from non-viable sources. This study also highlighted the huge variation 

observed in bacterial community composition between patient samples. By using mixed 

effect models, which allow this variation between patients to be investigated, the effect of 

PMA treatment could efficiently be calculated for a range of ecological measures.  

From a clinical perspective, the use of PMA treatment for the exclusion of DNA from dead 

and damaged cells appears increasingly vital to provide accurate information on treatment 

progression and effectiveness. Therefore PMA treatment will be incorporated into the 

methodologies used to prepare samples for culture independent sequencing techniques 

throughout this dissertation.    
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3.6 Appendix 

Table A3.1 The raw sequence data reported in this Chapter have been deposited in the 

European Nucleotide Archive short read database  

Study Accession Number: ERP007059, Sample Accession Number: RS551400. A list of 

barcodes used and their associated samples are listed below. 

Barcode	  

Sa
m
pl
e	  

PM
A	  

ACAGTGCTTCAT	   10	   No	  
ACATCACTTAGC	   10	   Yes	  
ACATGATCGTTC	   11	   No	  
ACATTCAGCGCA	   11	   Yes	  
ACATGTCACGTG	   12	   No	  
ACCACATACATC	   12	   Yes	  
ACCAGCGACTAG	   14	   No	  
ACCTCGATCAGA	   14	   Yes	  
ACCTGTCTCTCT	   15	   No	  
ACGAGTGCTATC	   15	   Yes	  
ACGACGTCTTAG	   16	   No	  
ACGATGCGACCA	   16	   Yes	  
ACGCGATACTGG	   18	   No	  
ACGCTATCTGGA	   18	   Yes	  
ACGCTCATGGAT	   19	   No	  
ACGGTGAGTGTC	   19	   Yes	  
ACGGATCGTCAG	   20	   No	  
ACGTACTCAGTG	   20	   Yes	  
ACGTCTGTAGCA	   21	   No	  
ACGTGCCGTAGA	   21	   Yes	  
ACGTGAGAGAAT	   22	   No	  
ACGTTAGCACAC	   22	   Yes	  
ACTACAGCCTAT	   23	   No	  
ACTAGCTCCATA	   23	   Yes	  
ACTACGTGTGGT	   24	   No	  
ACTATTGTCACG	   24	   Yes	  
ACTCACGGTATG	   25	   No	  
ACTCGATTCGAT	   25	   Yes	  
ACTCAGATACTC	   26	   No	  
ACTCGCACAGGA	   26	   Yes	  
ACTGACAGCCAT	   28	   No	  
ACTGTACGCGTA	   28	   Yes	  
ACTGTCGAAGCT	   29	   No	  

Barcode	  

Sa
m
pl
e	  

PM
A	  

ACTTGTAGCAGC	   29	   Yes	  
AAGCTGCAGTCG	   3	   No	  
AATCGTGACTCG	   3	   Yes	  
ACTGTGACTTCA	   30	   No	  
AGAACACGTCTC	   30	   Yes	  
AGACCGTCAGAC	   31	   No	  
AGACTGCGTACT	   31	   Yes	  
AGACGTGCACTG	   32	   No	  
AGAGAGCAAGTG	   32	   Yes	  
AGAGCAAGAGCA	   33	   No	  
AGAGTCCTGAGC	   33	   Yes	  
AGATCGGCTCGA	   35	   No	  
AGATGTTCTGCT	   35	   Yes	  
AGATCTCTGCAT	   36	   No	  
AGCACACCTACA	   36	   Yes	  
AGCACGAGCCTA	   37	   No	  
AGCAGTCGCGAT	   37	   Yes	  
AGCAGCACTTGT	   38	   No	  
AGCATATGAGAG	   38	   Yes	  
AATCAGTCTCGT	   4	   No	  
ACACACTATGGC	   4	   Yes	  
AGCGACTGTGCA	   40	   No	  
AGCGCTGATGTG	   40	   Yes	  
AGCGTAGGTCGT	   41	   No	  
AGCTCCATACAG	   41	   Yes	  
AGCTATCCACGA	   42	   No	  
AGCTCTCAGAGG	   42	   Yes	  
AGCTGACTAGTC	   43	   No	  
AGGACGCACTGT	   43	   Yes	  
AGGTGTGATCGC	   45	   No	  
AGTACTGCAGGC	   45	   Yes	  
AGTACGCTCGAG	   46	   No	  
AGTAGTATCCTC	   46	   Yes	  

Barcode	  

Sa
m
pl
e	  

PM
A	  

AGTCACATCACT	   47	   No	  
AGTCTACTCTGA	   47	   Yes	  
AGTCCATAGCTG	   48	   No	  
AGTCTCGCATAT	   48	   Yes	  
ACACATGTCTAC	   5	   No	  
ACACGGTGTCTA	   5	   Yes	  
AGTGCGATGCGT	   50	   No	  
AGTGTCACGGTG	   50	   Yes	  
AGTTAGTGCGTC	   52	   No	  
AGTTCTACGTCA	   52	   Yes	  
ATACACGTGGCG	   54	   No	  
ATACGTCTTCGA	   54	   Yes	  
ATACTATTGCGC	   55	   No	  
ATAGCTCCATAC	   55	   Yes	  
ATACTCACTCAG	   56	   No	  
ATAGGCGATCTC	   56	   Yes	  
ATATGCCAGTGC	   58	   No	  
ATCACTAGTCAC	   58	   Yes	  
ACACGAGCCACA	   6	   No	  
ACACTAGATCCG	   6	   Yes	  
ATGCACTGGCGA	   67	   No	  
ATGCCTGAGCAG	   67	   Yes	  
ATGGATACGCTC	   69	   No	  
ATGGCGTGCACA	   69	   Yes	  
ACACTGTTCATG	   7	   No	  
ACAGAGTCGGCT	   7	   Yes	  
ATTATCGTGCAC	   73	   No	  
CAACACGCACGA	   73	   Yes	  
GTCGTGTGTCAA	   77	   No	  
GTCTATCGGAGT	   77	   Yes	  
GTCTACACACAT	   78	   No	  
GTCTCATGTAGG	   78	   Yes	  
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Table A3.2 Species-level identities of detected bacterial taxa identified from 36 sputum 

samples collected from CF patients. 

Given the length of the ribosomal sequences analysed (approx 350bp), these identities 

should be considered putative. Ae denotes aerobe and An, Anaerobe. Only strict anaerobes 

were classified as anaerobes, whereas aerobes, facultative anaerobes, and microaerophiles 

were classified as aerobes. O indicates members of the oral microbiota according to the 

Human Oral Microbiome database (38). Organisms  considered to be common are 

highlighted in bold.  

Class Family Species Anaerobes Oral 
Actinobacteria Actinomycetaceae Actinobaculum massiliense Ae 

 

  
Actinomyces massiliensis Ae O 

  
Actinomyces odontolyticus Ae O 

  
Actinomyces oris Ae O 

 
Corynebacteriaceae Corynebacterium durum Ae O 

 
Corynebacteriaceae 

Corynebacterium 
pseudodiphtheriticum Ae 

 

 
Microbacteriaceae Microbacterium oxydans Ae 

 

 
Micrococcaceae Rothia dentocariosa Ae 

 

 
Nocardiaceae Nocardia cyriacigeorgica Ae 

 

 
Propionibacteriaceae Propionibacterium acnes Ae O 

  

Propionibacterium 
propionicum Ae O 

 
Bifidobacteriaceae Scardovia wiggsiae An 

 

 
Coriobacteriaceae Atopobium parvulum An O 

  
Cryptobacterium curtum An O 

  
Olsenella uli An O 

  
Slackia exigua An O 

Bacteroidia Bacteroideceae Bacteroides acidifaciens An 
 

 
Porphyromonadaceae Barnesiella intestinihominis An 

 

  
Paludibacter propionicigenes An 

 

  
Porphyromonas catoniae An 

 

  
Porphyromonas endodontalis An O 

  
Tannerella forsythia An O 

 
Prevotellaceae Alloprevotella rava An 

 

  
Prevotella bivia An O 

  
Prevotella denticola  An O 

  
Prevotella loescheii An O 

  
Prevotella maculosa An O 
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Table A3.2 Continued 

Class Family Species Anaerobes Oral 
  Prevotella melaninogenica An O 

  
Prevotella nanceiensis An 

 

  
Prevotella nigrescens An O 

  
Prevotella oris An O 

  
Prevotella pallens An O 

  
Prevotella pleuritidis An O 

  Prevotella shahii An O 

  
Prevotella tannerae An O 

  
Prevotella timonensis An 

 
Flavobacteria Flavobacteriaceae Capnocytophaga gingivalis Ae O 

  
Capnocytophaga haemolytica Ae O 

  
Capnocytophaga ochracea Ae O 

  
Capnocytophaga sputigena Ae O 

Bacilli 
Bacillales Incertae Sedis 
XI Gemella morbillorum Ae O 

 
Staphylococcaceae staphylococcus aureus Ae O 

 
Aerococcaceae Abiotrophia defectiva Ae O 

 
Carnobacteriaceae Granulicatella adiacens Ae O 

 
Lactobacillaceae Lactobacillus fermentum  Ae O 

  
Lactobacillus johnsonii Ae O 

  
Lactobacillus salivarius Ae O 

 
Streptococcaceae Streptococcus parasanguinis Ae O 

  
Streptococcus pneumoniae Ae O 

  
Streptococcus sanguinis Ae O 

Clostridia Clostridiaceae Clostridium bolteae An 
 

 

Clostridiales Incertae 
Sedis XI Parvimonas micra An O 

  
Peptoniphilus lacrimalis An O 

  
Mogibacterium diversum An O 

 
Eubacteriaceae Eubacterium brachy An O 

  
Eubacterium infirmum An O 

 
Lachnospiraceae Butyrivibrio hungatei An O 

  
Catonella morbi An O 

  
Howardella ureilytica An 

 

  
Oribacterium sinus An O 

  
Shuttleworthia satelles An O 

  
Stomatobaculum longum An 

 

  
Lachnoanaerobaculum orale  An O 

 
Peptococcaceae Peptococcus niger An 

 

 
Peptostreptococcaceae Peptostreptococcus stomatis An O 
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Table A3.2 Continued 

Class Family Species Anaerobes Oral 

 
Veillonellaceae Anaeroglobus geminatus An O 

  
Dialister invisus An O 

  
Dialister micraerophilus An O 

  
Dialister pneumosintes An O 

  
Megasphaera micronuciformis An O 

  
schwartzia succinivorans An O 

  
Selenomonas noxia An O 

  
Selenomonas sputigena An O 

  
Veillonella dispar An O 

  
Veillonella ratti An O 

Fusobacteria Fusobacteriaceae Fusobacterium nucleatum An O 

 
Leptotrichiaceae Leptotrichia buccalis An O 

  
Leptotrichia wadei An O 

  
Sneathia sanguinegens An O 

Alphaproteobacteria Sphingomonadaceae Sphingomonas leidyi Ae 
 

Betaproteobacteria Alcaligenaceae Achromobacter xylosoxidans Ae O 

 
Burkholderiaceae Lautropia mirabilis Ae O 

  
Ralstonia pickettii Ae 

 

 
Comamonadaceae Comamonas testosteroni Ae 

 

 
Neisseriaceae Kingella oralis Ae O 

  
Neisseria bacilliformis Ae O 

  
Neisseria flavescens Ae O 

  
Neisseria oralis Ae O 

Epsilonproteobacteria Campylobacteraceae Campylobacter concisus Ae O 

Gammaproteobacteria Cardiobacteriaceae Cardiobacterium valvarum Ae 
 

 
Enterobacteriaceae Escherichia coli Ae O 

 
Pasteurellaceae Haemophilus haemolyticus Ae 

 

  
Haemophilus parainfluenzae Ae O 

 
Moraxellaceae Moraxella osloensis Ae O 

 
Pseudomonadaceae Pseudomonas putida Ae 

 

  
Pseudomonas aeruginosa Ae O 

 
Xanthomonadaceae Stenotrophomonas maltophilia Ae O 

Mollicutes Mycoplasmataceae Mycoplasma salivarium Ae O 
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Chapter 4: Collection to storage time affects 

respiratory samples 

 

Time between sputum sample collection 

and storage significantly influences 

bacterial sequence composition from 

Cystic Fibrosis respiratory infections 

 

Cuthbertson L, Rogers G.B., Walker A.W., Oliver A., Hafiz T., Hoffman L.R., Carroll M.P., 

Parkhill J., Bruce K.D., van der Gast C.J. (2014) Bacterial respiratory infection 

composition changes with increasing time between sputum sample collection and 

storage. Journal of Clinical Microbiology, 52(8):3011-3016 

 

As outlined in the previous chapter, accurate investigation of the microbial community within 

CF sputum is hugely important to inform treatment choices. The use of PMA allows only the 

viable community to be analysed preventing free DNA and DNA from dead or damaged cells 

from being included in analysis, therefore giving a true picture of the community within the 

lung. As a continuation of this, Chapter 4 investigates how sample handling can affect the 

bacterial community within sputum. This Chapter has been published in the Journal of 

Clinical Microbiology. 
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4.1 Abstract 

Spontaneously expectorated sputum is traditionally used as the sampling method for the 

investigation of lower airway infections. Whilst guidelines exist for the handling of these 

samples for culture-based diagnostic microbiology, there is no comparable consensus on 

their handling prior to culture-independent analysis. The increasing incorporation of culture-

independent approaches in diagnostic microbiology means it is of critical importance to 

assess potential biases. The aim of this study was to assess the impact of delayed freezing 

on culture-independent microbiological analyses, and to identify acceptable parameters for 

sample handling. Sputum samples from eight adult cystic fibrosis (CF) patients were 

collected and aliquoted into sterile Bijou bottles. Aliquots were stored at room temperature 

before freezing at -80°C for increasing intervals up to 72 hour period. Samples were treated 

with propidium monoazide, to distinguish live from dead cells, prior to DNA extraction, and 

16S rRNA gene pyrosequencing was used to characterise the bacterial composition. 

Substantial variation was observed in samples with high diversity bacterial communities over 

time, whereas low diversity communities dominated by recognised CF pathogens varied little 

regardless of time to freezing. Partitioning into common and rare species demonstrated that 

the rare species drove changes in similarity. The percentage abundance of anaerobes over 

the study significantly decreased after 12 hours at room temperature (P=0.008). Failure to 

stabilise samples at -80°C within 12 hours of collection results in significant changes in the 

detected community composition. 
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4.2 Introduction  

Next generation sequencing techniques are increasingly being used to characterise 

respiratory microbiota in many lung diseases, including cystic fibrosis (CF) lower airway 

microbiota (eg.1-4). These analyses have revealed microbial communities within the CF lung 

to be more complex and diverse than previously considered. Importantly, they have also 

detected many bacterial species that would not be reported by standard diagnostic 

microbiology (eg. 5,6), as well as identifying relationships between microbiota characteristics 

and host age, lung function, and disease progression (7-9).  

In the majority of cases, these investigations relied on spontaneously expectorated sputum 

as a means to sample the bacterial communities in the lower airways. Sputum is favoured 

due to ease of collection, and the fact that culture-based microbiological studies, of adult 

patients have traditionally used sputum samples as a basis for microbiological analysis. 

Whilst guidelines exist for the handling of respiratory samples for culture-based diagnostic 

microbiology (10), there is no consensus on how such samples should be handled to ensure 

that resulting culture-independent analyses yield results reflecting the microbes therein. With 

the increasing move towards the incorporation of culture-independent methods into 

diagnostic microbiology (11) it is increasingly important to identify and minimise areas of 

potential bias  

Post-collection sample transportation and storage represents a period during which changes 

can occur in bacterial community of clinical samples, resulting in analytical bias due to, for 

example, bacterial proliferation, cell death or degradation of nucleic acids. In order to 

minimise these biases sputum samples collected for culture-independent analyses are 

typically stored at -80°C. However, many clinical sites, including those that treat CF patients, 

lack ready access to ultra-low temperature freezers; the standard recognised method for 

maintenance of sample integrity and biobanking. As a result, sputum samples may remain at 

room temperature for extended periods, impacting both traditional and culture-independent 

analyses.  
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A prior study used 16S rRNA gene pyrosequencing of a single sample to assess the effect of 

extended periods of incubation at room temperature on bacterial community profiles, but did 

not find significant divergence in community composition over the study period (12). 

Conversely, in an earlier study, using ribosomal transcripts to examine the V3 region of the 

16S rRNA gene by quantitative PCR and denaturing gradient gel electrophoresis (DGGE), 

significant divergence in bacterial quantitation and community profiling was observed (13). 

RNA-based approaches have the advantage of limiting analysis to active cells. However, a 

related exclusion of non-viable cells and extracellular DNA can be achieved in DNA-based 

analysis through the treatment of samples with propidium monoazide (PMA), as we have 

demonstrated in previous analyses of CF sputum (14-16). 

We hypothesised that the period of time between sample collection and stabilisation by 

freezing is significantly related to the resultant bacterial community composition, as 

determined by 16S rRNA gene pyrosequencing in combination with PMA treatment. From 

this our overarching aim was to determine an appropriate window of time from sample 

collection to storage at -80°C that would allow reliable culture-independent microbiological 

analysis of sputum samples. 

 

4.3 Methods 

4.3.1 Sample collection 

Sputum samples were collected, under full ethical approval from the Southampton and South 

West Hampshire Research Ethics Committee (06/Q1704/26), from eight adult patients 

attending the regional Cystic Fibrosis Centre in Southampton General Hospital for treatment 

for clinical exacerbation. Patients were chosen for their abilities to provide sputum samples 

of 3 ml or more.  
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Samples were collected during physiotherapy and immediately aliquoted into sterile 5 ml 

Bijou bottles and stored at room temperature until freezing to -80°C at specified intervals. 

Samples at t=0 were stored at -80°C immediately. The remaining samples were held at room 

temperature before storage at -80°C, for 1, 3, 6, 9, 12, 18, 24, 36, 48, 60 and 72 hours. The 

72 hour storage period was chosen to allow investigation of changes in the bacterial 

community beyond the maximum 48 hour storage recommended by Health Protection 

England for culture-based diagnostic microbiology (10). 

4.3.2 DNA extraction and Pyrosequencing 

Sputum samples were washed three times with 1x phosphate buffered saline. Free DNA and 

DNA from non-viable cells were excluded from analysis via crosslinking with PMA (14, 15) 

prior to DNA extraction, as previously described (16). Bacterial Golay Barcode encoded FLX 

amplicon pyrosequencing was performed using the primer 338F (5'- 

ACTCCTACGGGAGGCAGCAG) and 926R (5'- CCGTCAATTCMTTTRAGT). Initial 

generation 16S rRNA gene amplicons involved a one step PCR of 25 cycles using 

AccuPrimeTM Taq DNA Polymerase High Fidelity (Invitrogen, Carlsbad, CA). 454 

pyrosequencing using the Lib-L kit was performed at the Wellcome Trust Sanger Institute, 

Hinxton, UK. 

4.3.3 Sequence analysis 

The mothur sequencing analysis platform was used to analyse the resulting data (17). Failed 

sequence reads, low quality sequence ends, tags and primers, were initially removed, 

followed by sequences below 400bp and any sequences that included ambiguous base calls 

and homopolymers longer than 8 bases.  Chimeras were removed in mother using the 

Perseus software program (18). Sequences were assembled into operational taxonomic 

units (OTUs) clusters at 97% identity, to give an approximation of species (19), and identified 

using the RDP reference database. Representative sequences were used to give an 

appropriate species level identification for OTUs using NCBI BlastN.  The raw sequence data 
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generated within the current study have been submitted to the NCBI Short Read Archive 

database under the study accession number SRP036061, Table S2. 

4.3.4 Statistical analysis 

All statistical analysis was performed in R (20). Three complementary measures of diversity 

were used as previously described (9) to identify changes in bacterial diversity in the same 

sample kept at room temperature for different durations; species richness (S*), Shannon-

Wiener (H’), and Simpson’s (1-D) indices of diversity (21). The Bray-Curtis similarity index 

(21) was calculated using randomised re-sampling to compare changes in community 

composition over time at room temperature. To avoid potential biases due to sampling depth, 

randomised re-sampling with a uniform resample size (n=200 to match smallest sample size) 

was carried out (22), as described previously (9, 23). 1000 iterations of each resampling 

were performed to obtain the mean diversity and similarity coefficients and standard 

deviation of the mean. The Berger-Parker (d) measure of dominance was calculated using 

the BiodiversityR package (24). 

Bacterial species at t=0 for each patient were partitioned into common and rare species 

using the inflection point method from rank abundance curves as previously described (25). 

A one-way ANOVA was calculated with two independent categorical variables, time and 

partition (common or rare), to compare the difference in similarity between common and rare 

species (20). The post-hoc Tukey honest significant difference (HSD) test was used in 

conjunction with the ANOVA to compare treatment means in order to find significant 

differences (20).  

Change in anaerobe abundance over time was investigated using nlme (26) to fit mixed 

effect models, r2 values were calculated using the MuMIn package (27). 



 

Chapter 4  116 

4.4 Results  

Sputum samples were collected from eight patients and then aliquoted into 12 equal portions 

and stored at room temperature (mean ± standard error of mean (SE), 20.1°C±0.1) for 

specified intervals over a 72hour study period. Of the 96 sample aliquots sequenced, 12 

were excluded from further analysis due to insufficient number of sequences (i.e. fewer than 

200 sequences). A total of 182,989 bacterial sequences (n=84, 2178±250SE/sample) were 

generated from 84 samples, identifying 51 genera and 78 distinct OTUs classified to species 

level (Table S1). 

4.4.1 Bacterial diversity  

Changes in bacterial diversity were assessed over the study period using the recognised 

measures of diversity, species richness (S*, the total number of species), Shannon-Wiener 

index (H’, a metric accounting for both number and relative abundance of species) and 

Simpson’s diversity index (1-D, a measure of the probability that two species randomly 

selected from a sample will differ).  S*, H’ and 1-D were calculated for each sample from 

each patient over the 72 hour study period, using randomised re-sampling as previously 

described (23), as pairwise comparisons are affected by large differences in sample size (n) 

(28). 

High levels of variation were observed when examining diversity measures, both between 

and within patients. In order to investigate this variation, sample diversity at t=0 was plotted 

for S*, H’ and 1-D (Fig. 1). 
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Fig 4.1 Comparison of diversity and dominance of bacterial communities across patients at 

t=0.  Values  of (a) species richness (S*), (b) Shannon-Wiener index of diversity (H’), and (c) 

Simpson’s index of diversity (1-D) as shown.  The three diversity indices were calculated 

with a uniform re-sample size following 1000 iterations in each instance. Error bars represent 

the standard deviation of the mean (n = 1000). In each instance, the overall mean (solid line) 
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and the standard deviation of the mean (dashed lines) across patients are shown. Also given 

is (d) Berger-Parker index of dominance (d).   

Typically, low diversity communities are dominated by a few highly abundant species 

whereas high diversity communities are characterised by species that are more evenly 

distributed in their abundances (29). In order to explain the observed variation in diversity in 

the current study, the Berger Parker index of dominance (d, the proportional abundance of 

the most abundant organism) was calculated for all t=0 samples (Fig. 1) and for samples at 

all time points (Fig. S1). Here, we also observed that low diversity (as defined by S*, H’ and 

1-D) was related to high dominance (d) in sample communities: for example, the t=0 

community of patient 6 was dominated by Pseudomonas aeruginosa (S*= 4, d= 0.96), and 

the t=0 communities of Patients 2 and 7 were dominated by Achromobacter xylosoxidans 

(Patient 2; S*= 3, d= 0.88, Patient 7; S*= 4, d= 0.80), while Patient 1 showed a much more 

diverse t=0 community (S*= 14, d= 0.51), Figs. 1 and S1.  Given the high level of variation in 

diversity between patients, linked to species dominance, these measures were unsuitable as 

metrics to indicate changes over time, suggesting that comparisons of community similarity 

over time would be more appropriate. 

4.4.2 Bacterial community membership 

The Bray-Curtis measure of similarity (SBC, which accounts for the number and abundance of 

species present in each community and those that are shared) was used to compare 

changes in community composition between samples, resulting in a value between 0 and 1 

(higher values indicating greater similarity).  As with the diversity measures, community 

composition were compared between the sample at t=0 and each subsequent sample. Using 

randomised re-sampling, total change in SBC similarity was assessed (22). 

For both PCR and sequencing, sampling bias can result in variation between repeat samples 

of the same community (12).  In order to evaluate whether changes in similarity across the 

sampling period were due to true community changes or within sample variation, a cut off 
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value for similarity was calculated using eight samples each sequenced in triplicate. The 

overall mean SBC similarity between sample replicates was 0.782±0.1(SE) (n=24), therefore 

similarity values, below 0.682 (0.782-0.10SE), between t=0 and subsequent samples were 

judged to be different from the original sample.  

The mean change in similarity over the study period was not judged to be significant, when 

accounting for within sample variation (Fig. 2(A)). When diversity measures were examined 

for individual patients, high levels of variation were observed (Fig. 3).  These results were 

compared to the value of dominance calculated previously using d (Fig. 1). The greater the 

relative abundance of the dominant species, the lower the variation in community similarity 

over the study period (P=0.03, r2=0.05). This finding indicated that samples more highly 

dominated by a single species, and hence having low overall diversity, were less likely to 

show a significant change in community similarity with longer time at room temperature prior 

to freezing.  

To further examine how dominant species affect community similarity, rank abundance 

curves were used to partition sample communities at t=0 into common and rare species 

groups (Fig. S2)(25). Change in SBC similarity was calculated, from t=0, for the partitioned 

groups revealing much greater variation in species characterised as rare Fig 2. Using 

ANOVA a significant difference in similarity was observed between the common and rare 

species (F(1,148)=77.93, P<0.001). Post-hoc Tukey HSD testing revealed that the difference in 

similarity between t=0 and the rare species were on average 30.93% lower than the 

differences observed in the common species.  
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Fig. 4.2 Mean changes in bacterial community composition, from t=0 across patients over 

time using the Bray-Curtis index of similarity for (a) whole communities, (b) common and (c) 

rare species groups. Error bars represent the standard deviation of the mean (n = 8). 
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0, for each patient over time 

Fig. 4.3 Changes in community composition from t=0, for each patient over time, using the 

Bray-Curtis index of similarity.  Solid lines represent the overall mean similarity from within 

sample replicates and dashed lines represent the standard error of the mean (n = 24). 
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4.4.3 Differential impact on aerobic and anaerobic species 

Over the study period, samples were aliquoted and stored in sterile sample containers, it 

was expected that this would result in a decrease in anaerobic species due to prolonged 

exposure to atmospheric oxygen resulting in preferential conditions for aerobic populations. 

To that end, bacteria were partitioned into aerobic/facultative anaerobes and strict anaerobic 

species. A mixed effects model was used to investigate the change in percentage 

abundance of anaerobic species present in each sample over the study period. The best-fit 

distribution was a second order polynomial relationship (r2=0.08, P=0.004) (Fig. 4). This 

distribution indicated a consistent decline in the relative abundance of anaerobic species 

over the first 48 hours, followed by an increase during the following 24 hours. Using mixed 

effect models, the decline in anaerobes was found to represent a significant divergence from 

the original sample after 18 hours (P=0.008). This decline continued until after 48 hours of 

storage at room temperature, at which point the percentage abundance of anaerobes started 

to increase. This finding suggests that changes in anaerobe abundance was due to sputum 

storage in sealed containers allowing anaerobic organisms to proliferate after available 

oxygen had been depleted, resulting in community divergence.  
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Fig. 4.4 Changes in anaerobic species abundance for all patients over time. Solid circles 

represent percentage abundance of anaerobic species for each patient at a given time point. 

A second order polynomial model has been fitted to the data (r2 = 0.08, P = 0.004). 
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4.5 Discussion 

The handling and storage of respiratory samples can substantially bias the results of 

microbiological analyses. The aim of the current study was to determine an acceptable 

period of time between sputum sample collection and storage prior to using next generation 

sequencing to characterise CF lower airway microbiota. Previous studies based on 

diagnostic bacterial culture suggest that 48 hours can elapse from specimen collection to 

either freezing or processing and still provide comparable results (10). However, with the 

increasing incorporation of culture-independent approaches to diagnostic microbiology (11) it 

is vital to identify and mitigate all potential biases relevant for these more sensitive, culture-

independent techniques. 

Changes in bacterial diversity, as a result of storage at room temperature for different 

intervals prior to freezing, were assessed within samples from each patient.  We found that 

diversity was highly variable across patients at t=0 (Fig. 1) and within patients over storage 

time, post collection (Fig. S1).  This variability could be attributed to differences in dominance 

within sample communities.  Freshly collected (t=0) samples with low species diversity were 

found to be highly dominated by recognised CF pathogens; conversely, those samples with 

a more diverse communities were not dominated by a particular bacterial species. 

Furthermore, communities dominated by fewer species changed less with increasing time at 

room temperature compared to those with higher diversities.  Given the differences in 

diversity between and within patient samples, commonly used measures of diversity, e.g. 

species richness, Shannon-Wiener diversity index and Simpson’s diversity index, were 

unsuitable as a metric of change in the bacterial communities during storage.  

Using the Bray-Curtis index of similarity, we assessed how community composition changed 

from the original (t=0) sample. As previous studies have indicated that bacterial communities 

within the CF lungs are not homogenously distributed (30), this may result in a variation 

within different portions of a single sample (12). In order to account for within sample 

variance, eight CF sputum samples were sequenced in triplicate, using different sample 
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aliquots for each replicate, and the similarity between replicates was calculated. Then, we 

analysed all samples for all subjects, finding that the shortest period of sample storage within 

which a change in similarity was observed, beyond that expected for within-sample variation, 

was 1 hour after sputum collection (Fig. 2). In addition where a community was dominated by 

few or one species, the variation in community similarity was found to be significantly lower 

than in more diverse communities. However, since it is difficult to guess the microbial 

diversity in a sputum sample a priori, our results suggest that sputum samples should be 

frozen within 1 hour of collection in order to obtain the best possible representation of the 

true community using culture independent analyses.   

Previous studies have demonstrated the value of partitioning bacterial communities in 

respiratory infections into common and rare species groups (9).  Categorization of 

component species provides useful insights into communities that would be neglected 

without such a distinction (3, 9). When samples were partitioned into common and rare 

species in the current study, a greater level of community stability with difference in storage, 

was associated with species defined as common compared to rare species, suggesting that 

characterisation of the latter group will be most affected by a delay in sample freezing. This 

effect accounted for the greater change in similarity observed in more diverse communities 

that have a wider range of rare species present within the community (Fig. 2). 

We hypothesised that prolonged exposure to atmospheric levels of oxygen would result in a 

decrease in the relative abundance of viable, strictly anaerobic species within the sputum 

samples. Despite high variability in anaerobe relative abundance between samples, a 

statistically significant 2nd order polynomial relationship was found between storage duration 

at room temperature and anaerobe abundance, with the latter decreasing for up to 48 hours, 

followed by an increase after that time (Fig. 4).  A potential explanation for this relationship is 

the reduction in oxygen tension as a result of growth of aerobic and aerotolerant species in 

the sealed Bijou containers.  Furthermore, the decline in anaerobe abundance, which 

represents a major shift in the community, was found to be significantly different from t=0 

after 12 hours (Fig. 4). This effect could potentially lead to under- or over-estimation of the 
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importance of anaerobic species in disease progression depending on the period elapsed 

between storage and freezing.  

Sputum samples are one of the most widely used ways of sampling lower respiratory tract 

infections. With the moves toward incorporating culture independent techniques to analyse 

the microbial determinant of these conditions and make informed treatment choices.  In the 

current study, we found that the optimal window for sample storage at room temperature 

before freezing at -80°C is within 1 hour of collection.  In practical terms it may not be 

possible to store a sample within 1 hour of collection. In this event, our results indicate an 

acceptable window of up to 12 hours without significant divergence in community 

composition. Whilst this work has focused on CF airway infections, these findings are 

important for the analysis of microbiota from other respiratory conditions.  

 

4.6 Acknowledgements 

This study was supported by the UK Natural Environment Research Council (NE/H019456/1) 

to CJvdG, by the Wellcome Trust (WT 098051) to AWW and JP, and by the US National 

Institute of Health (K02HL105543 and P30 DK089507) to LRH.  

 

 



 

Chapter 4  127 

4.7 References 

1. Tunney MM, Field TR, Moriarty TF, Patrick S, Doering G, Muhlebach MS, 
Wolfgang MC, Boucher R, Gilpin DF, McDowell A, Elborn JS. 2008. Detection of 
anaerobic bacteria in high numbers in sputum from patients with cystic fibrosis. Am J 
Resp Crit Care 177:995-1001. 

2. Zhao JC, Schloss PD, Kalikin LM, Carmody LA, Foster BK, Petrosino JF, 
Cavalcoli JD, VanDevanter DR, Murray S, Li JZ, Young VB, LiPuma JJ. 2012. 
Decade-long bacterial community dynamics in cystic fibrosis airways. P Natl Acad Sci 
USA 109:5809-5814. 

3. Rogers GB, van der Gast CJ, Cuthbertson L, Thomson SK, Bruce KD, Martin ML, 
Serisier DJ. 2013. Clinical measures of disease in adult non-CF bronchiectasis 
correlate with airway microbiota composition. Thorax 68:731-737. 

4. Price K, Hampton T, Gifford A, Dolben E, Hogan D, Morrison H, Sogin M, O'Toole 
G. 2013. Unique microbial communities persist in individual cystic fibrosis patients 
throughout a clinical exacerbation. Microbiome 1:27. 

5. Rogers GB, Daniels TW, Tuck A, Carroll MP, Connett GJ, David GJ, Bruce KD. 
2009. Studying bacteria in respiratory specimens by using conventional and molecular 
microbiological approaches. BMC pulmonary medicine 9:14. 

6. Sibley CD, Parkins MD, Rabin HR, Duan K, Norgaard JC, Surette MG. 2008. A 
polymicrobial perspective of pulmonary infections exposes an enigmatic pathogen in 
cystic fibrosis patients. P Natl Acad Sci USA 105:15070-15075. 

7. Cox MJ, Allgaier M, Taylor B, Baek MS, Huang YJ, Daly RA, Karaoz U, Andersen 
GL, Brown R, Fujimura KE, Wu B, Tran D, Koff J, Kleinhenz ME, Nielson D, 
Brodie EL, Lynch SV. 2010. Airway Microbiota and Pathogen Abundance in Age-
Stratified Cystic Fibrosis Patients. Plos One 5. 

8. Klepac-Ceraj V, Lemon KP, Martin TR, Allgaier M, Kembel SW, Knapp AA, Lory 
S, Brodie EL, Lynch SV, Bohannan BJM, Green JL, Maurer BA, Kolter R. 2010. 
Relationship between cystic fibrosis respiratory tract bacterial communities and age, 
genotype, antibiotics and Pseudomonas aeruginosa. Environ Microbiol 12:1293-1303. 

9. van der Gast C, Walker A, Stressmann F, Rogers G, Scott P, Daniels T, Carroll 
M, Parkhill J, Bruce K. 2011. Partitioning core and satellite taxa from within cystic 
fibrosis lung bacterial communities. Isme J 5:780 - 791. 

10. Health Protection Agency. 2012. Investigation of Bronchoalveolar Lavage, Sputum 
and Associated Specimens. UK Standards for Microbiology 
Investigations:http://www.hpa.org.uk/SMI/pdf. 

11. Pattison SH, Rogers GB, Crockard M, Elborn JS, Tunney MM. 2013. Molecular 
detection of CF lung pathogens: Current status and future potential. Journal of Cystic 
Fibrosis 12:194-205. 

12. Zhao JC, Li J, Schloss PD, Kalikin LM, Raymond TA, Petrosino JF, Young VB, 
LiPuma JJ. 2011. Effect of Sample Storage Conditions on Culture-Independent 



 

Chapter 4  128 

Bacterial Community Measures in Cystic Fibrosis Sputum Specimens. Journal of 
Clinical Microbiology 49:3717-3718. 

13. Nelson A, De Soyza A, Bourke SJ, Perry JD, Cummings SP. 2010. Assessment of 
sample handling practices on microbial activity in sputum samples from patients with 
cystic fibrosis. Lett Appl Microbiol 51:272-277. 

14. Nocker A, Sossa-Fernandez P, Burr MD, Camper AK. 2007. Use of propidium 
monoazide for live/dead distinction in microbial ecology. Appl Environ Microbiol 
73:5111-5117. 

15. Rogers GB, Stressmann FA, Koller G, Daniels T, Carroll MP, Bruce KD. 2008. 
Assessing the diagnostic importance of nonviable bacterial cells in respiratory 
infections. Diagn Microbiol Infect Dis 62:133-141. 

16. Rogers GB, Marsh P, Stressmann AF, Allen CE, Daniels TV, Carroll MP, Bruce 
KD. 2010. The exclusion of dead bacterial cells is essential for accurate molecular 
analysis of clinical samples. Clin Microbiol Infect 16:1656-1658. 

17. Schloss PD, Gevers D, Westcott SL. 2011. Reducing the Effects of PCR 
Amplification and Sequencing Artifacts on 16S rRNA-Based Studies. Plos One 6. 

18. Quince C, Lanzen A, Davenport RJ, Turnbaugh PJ. 2011. Removing noise from 
pyrosequenced amplicons. Bmc Bioinformatics 12:38. 

19. Schloss PD, Handelsman J. 2006. Toward a census of bacteria in soil. Plos Comput 
Biol 2:786-793. 

20. The R Development Core Team. 2013. R: A language and environment for statistical 
computing. R Foundation for Statistical Computing, Vienna, Austria. 

21. Oksanen J, Guillaume Blanchet F, Kindt R, Legendre P, Minchin PR, O'Hara RB, 
Simpson GL, Solymos P, Henry M, Stevens H, Wagner H. 2013. vegan: 
Community Ecology Package. R package version 2.0-7. 

22. Solow AR. 1993. A Simple Test for Change in Community Structure. Journal of 
Animal Ecology 62:191-193. 

23. Rogers GB, Cuthbertson L, Hoffman LR, Wing PA, Pope C, Hooftman DA, Lilley 
AK, Oliver A, Carroll MP, Bruce KD, van der Gast CJ. 2013. Reducing bias in 
bacterial community analysis of lower respiratory infections. Isme J 7:697-706. 

24. Kindt R, Coe R. 2005. Tree diversity analysis. A manual and software for common 
statistical methods for ecological and biodiversity studies. World Agroforestry Centre 
(ICRAF), Nairobi:ISBN 978-992-9059-9222-9058. 

25. Siqueira T, Bini LM, Roque FO, Couceiro SRM, Trivinho-Strixino S, Cottenie K. 
2012. Common and rare species respond to similar niche processes in 
macroinvertebrate metacommunities. Ecography 35:183-192. 

26. Pinheiro J BD, DebRoy S, Sarkar D, and the R Development Core Team. 2013. 
nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-110. 

27. Barton K. 2013. MuMIn: Multi-model inference. R package version1.9.5. 



 

Chapter 4  129 

28. Gihring TM, Green SJ, Schadt CW. 2012. Massively parallel rRNA gene sequencing 
exacerbates the potential for biased community diversity comparisons due to variable 
library sizes. Environ Microbiol 14:285-290. 

29. Ager D, Evans S, Li H, Lilley AK, van der Gast CJ. 2010. Anthropogenic 
disturbance affects the structure of bacterial communities. Environ Microbiol 12:670-
678. 

30. Goddard AF, Dowd SE, Staudinger BJ, Wolcott RD, Aitken ML, Fligner CL, Singh 
PK. 2010. Analysis of Microbial Diversity in Cystic Fibrosis Lung Explants Using 
Pyrosequencing. Pediatr Pulm:357-357. 



 

Chapter 4  130 

4.8 Supplementary information 

 

Fi
g.

 S
1.

 C
ha

ng
es

 in
 d

iv
er

si
ty

 a
nd

 d
om

in
an

ce
 o

f b
ac

te
ria

l c
om

m
un

iti
es

 w
ith

in
 in

di
vi

du
al

 p
at

ie
nt

s 
ov

er
 ti

m
e.

 V
al

ue
s 

of
 (

A
) 

sp
ec

ie
s 

ric
hn

es
s 

(S
*)

, (
B

) S
ha

nn
on

-W
ie

ne
r i

nd
ex

 o
f d

iv
er

si
ty

 (
H

’),
 a

nd
 (C

) S
im

ps
on

’s
 in

de
x 

of
 d

iv
er

si
ty

 (1
-D

) a
re

 s
ho

w
n.

 

Th
e 

th
re

e 
di

ve
rs

ity
 in

di
ce

s 
w

er
e 

ca
lc

ul
at

ed
 w

ith
 a

 u
ni

fo
rm

 re
-s

am
pl

e 
si

ze
 fo

llo
w

in
g 

10
00

 it
er

at
io

ns
 in

 e
ac

h 
in

st
an

ce
. E

rr
or

 

ba
rs

 r
ep

re
se

nt
 th

e 
st

an
da

rd
 d

ev
ia

tio
n 

of
 th

e 
m

ea
n 

(n
 =

 1
00

0)
. A

ls
o 

gi
ve

n 
is

 (
D

) 
th

e 
B

er
ge

r-
P

ar
ke

r 
in

de
x 

of
 d

om
in

an
ce

 

(d
). 

In
 e

ac
h 

in
st

an
ce

, t
he

 o
ve

ra
ll 

m
ea

n 
(s

ol
id

 li
ne

) a
nd

 th
e 

st
an

da
rd

 d
ev

ia
tio

n 
of

 th
e 

m
ea

n 
(d

as
he

d 
lin

es
) a

re
 s

ho
w

n.
 

A
 

B
 

C
 

D
 



 

Chapter 4  131 

 

 

Fig. S2. Rank abundance curves for each patient bacterial community at t=0. Abundances 

are expressed as percentage of total abundance within each community. The arrows 

indicate the inflection point of each curve. Species to the left of the arrow were classified as 

common, and those at the right side were classified as rare. 
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Table S2. The raw sequence data reported in this paper have been deposited in the NCBI 

Short Read Archive database (Accession number. SRP036061). A list of barcodes used and 

their associated sample are listed below.  

Table A4.1 The raw sequence data reported in this paper have been deposited in the NCBI Short Read Archive database

Barcode P
at

ie
nt

 

H
ou

r 
AGATGTTCTGCT 1 0 

AGCTATCCACGA 1 1 

AGTGCGATGCGT 1 3 

ATCTGAGCTGGT 1 6 

AGTTAGTGCGTC 1 9 

ATACAGAGCTCC 1 12 

AGAACACGTCTC 1 18 

ATCCGATCACAG 1 24 

ATCTACTACACG 1 36 

AGCTCCATACAG 1 48 

ATCACGTAGCGG 1 60 

ATCTGGTGCTAT 1 72 

ATATGCCAGTGC 2 0 

ATCCTCAGTAGT 2 3 

ATACACGTGGCG 2 6 

ATCTCTGGCATA 2 9 

ATCGTACAACTC 2 12 

ATCAGGCGTGTG 2 24 

ATGGATACGCTC 2 36 

ATGGCAGCTCTA 2 48 

ATGCACTGGCGA 2 60 

ATGCAGCTCAGT 2 72 

ACCACATACATC 3 0 

ACATGTCACGTG 3 1 

ACCTGTCTCTCT 3 3 

ACTGATCCTAGT 3 6 

ACGAGTGCTATC 3 18 

ACGCTCATGGAT 3 24 

Barcode P
at

ie
nt

 

H
ou

r 

AGACCGTCAGAC 3 36 

ACAGTTGCGCGA 3 48 

ACACTGTTCATG 3 60 

ACAGCTAGCTTG 3 72 

ACTACGTGTGGT 4 0 

AGTCTCGCATAT 4 1 

AGACGTGCACTG 4 3 

ATAATCTCGTCG 4 6 

ACGCAACTGCTA 4 9 

AGCTTGACAGCT 4 12 

AGGTGTGATCGC 4 18 

AGAGAGCAAGTG 4 24 

AGCGCTGATGTG 4 36 

AGAGCAAGAGCA 4 48 

ACGTGAGAGAAT 4 60 

AGTGTTCGATCG 4 72 

AGTACGCTCGAG 6 0 

ATGAGACTCCAC 6 3 

AGTGTCACGGTG 6 6 

AGTGAGAGAAGC 6 12 

ATATCGCTACTG 6 18 

ATCGCGGACGAT 6 24 

ATAGGCGATCTC 6 36 

ATGCCTGAGCAG 6 60 

ATGACTCATTCG 6 72 

ACGGATCGTCAG 7 0 

ACGCTATCTGGA 7 1 

AGTACTGCAGGC 7 3 

Barcode P
at

ie
nt

 

H
ou

r 

AGATCGGCTCGA 7 6 

AGCACACCTACA 7 9 

ACGTCTGTAGCA 7 12 

AGCGAGCTATCT 7 18 

ACTCACGGTATG 7 24 

AGCAGCACTTGT 7 36 

AGTCTACTCTGA 7 48 

ACTGTGACTTCA 7 60 

ACTCAGATACTC 7 72 

ACGTACTCAGTG 9 0 

AGCACGAGCCTA 9 3 

AGCCATACTGAC 9 6 

ACTAGCTCCATA 9 18 

ACGCGCAGATAC 9 36 

ACTTGTAGCAGC 9 48 

ATCGATCTGTGG 9 60 

ACGTTAGCACAC 9 72 

ACACTAGATCCG 11 0 

ACAGAGTCGGCT 11 1 

ACGCGATACTGG 11 3 

ACTGACAGCCAT 11 6 

ACCGCAGAGTCA 11 9 

ACAGCAGTGGTC 11 12 

ACCAGACGATGC 11 18 

ACCTCGATCAGA 11 24 

ACGGTGAGTGTC 11 36 

ACCAGCGACTAG 11 48 

ACAGACCACTCA 11 72 
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Chapter 5: Effects of sputum freeze-thawing on 
CF mictobiota 
 

 

Implications of multiple freeze-thawing on 

respiratory samples for culture 

independent analysis 

Cuthbertson L., Rogers G.B., Walker A.W., Oliver A., Carroll M.P., Parkhill J., Bruce K.D., 

van der Gast C.J. (2014) The effects of freeze thaw cycles on the microbial community 

present in sputum samples from the CF lung. Journal of Cystic Fibrosis, 

doi:10.1016/j.jcf.2014.10.004	  

.  

 

The use of biobanking for long term storage of respiratory samples for the use in multiple 

studies is increasing. It was established in the previous chapter that sample handling and 

storage has marked effects on bacterial community composition. As a result of these findings 

this chapter aimed to assess the effect of freeze-thaw cycles on the bacterial community 

within CF sputum.  This chapter has been published in the Journal of Cystic Fibrosis.   
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5.1 Abstract 

Background 

Best practice when performing culture-independent microbiological analysis of sputum 

samples involves their rapid freezing and storage at -80°C. However, accessing biobanked 

collections can mean material has been passed through repeated freeze-thaw cycles. The 

aim of this study was to determine the impact of these cycles on microbial community 

profiles.  

Methods  

Sputum was collected from eight adults with cystic fibrosis, and each sample was subjected 

to six freeze-thaw cycles. Following each cycle, an aliquot was removed and treated with 

propidium monoazide (PMA) prior to DNA extraction and 16S rRNA gene pyrosequencing. 

Results  

The impact of freeze-thaw cycles was greatest on rare members of the microbiota, with 

variation beyond that detected with within-sample repeat analysis observed after three 

cycles.  

Conclusion 

Four or more freeze thaw cycles results in a significant distortion of microbiota profiles from 

CF sputum. 

 



 

141 

Chapter 5 

5.2 Introduction  

The application of next-generation sequencing technologies for the investigation of lower 

respiratory tract infections in patients with cystic fibrosis has revealed complex and highly 

diverse microbial communities [1, 2]. As technologies have improved and the associated 

costs have fallen, it is becoming possible to use these platforms, not only for research but 

also for diagnostic microbiology [3], making it more important than ever to identify and 

minimize the introduction of bias. 

Spontaneously expectorated sputum is one of the most common specimen types used to 

investigate the microbial community responsible for lower respiratory infections in adults with 

CF. In order to perform culture-independent analysis on a representative airway sample, the 

methods used to collect and store specimens are hugely important. Current best practice 

involves the rapid stabilisation of sputum samples by freezing at -80°C within 12 hours of 

collection [4]. To allow profiling of the viable microbial community, samples can be treated 

with propidium monoazide (PMA) to remove the impact of extracellular DNA or DNA from 

dead and damaged cells, prior to DNA extraction and DNA sequencing [5]. Received wisdom 

suggests that once defrosted, respiratory samples may not be refrozen and sub-sampled 

again at a later date without incurring significant changes in the microbial community. 

There is an increasing awareness of the importance of in-depth analysis for the investigation 

of the microbial communities responsible for infection. This has lead to many clinics 

collecting large detailed sample biobanks in ultralow temperature freezers, which can be 

accessed in order to address a wide range of clinical questions. However, biobanked 

samples may be accessed multiple times for culture independent analysis, thus passing 

though several freeze thaw cycles, a process that could result in changes to the microbial 

community. To date, no studies have used next-generation sequencing technologies to 

define how multiple freeze-thaw cycles affect the microbial community within collected 

sputum. We hypothesized that microbial community profiles would be significantly altered 
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with each additional freeze-thaw cycle when analysed using 16S rRNA gene 

pyrosequencing. 

 

5.3 Methods 

5.3.1 Sample collection 

Sputum samples were collected, under full ethical approval from the Southampton and South 

West Hampshire Research Ethics Committee (06/Q1704/26), from eight patients attending 

the regional Cystic Fibrosis Centre in Southampton General Hospital. All patients were 

chronically colonised with Pseudomonas aeruginosa.  Patients were selected based on their 

ability to typically produce more than 2 mls of sputum. Sputum samples were collected and 

frozen at -80°C within 1 hour. Each sputum sample was subjected to six freeze-thaw cycles. 

Samples were removed from the -80°C freezer, a 250 µl aliquot removed for DNA extraction, 

and the remaining sample allowed to completely thaw at room temperature for 30 min before 

being returned to -80°C for 24 hours.  

5.3.2 DNA extraction and Pyrosequencing 

Sputum samples were washed three times with 1x phosphate buffered saline to remove 

saliva, as previously described [1]. Extracellular DNA and DNA from non-viable cells were 

excluded from analysis via crosslinking with PMA [6, 7] prior to DNA extraction, as described 

previously [8]. Bacterial Golay barcode-encoded FLX amplicon pyrosequencing was 

performed using the primer 338F (3’- ACTCCTACGGGAGGCAGCAG) and 926R (3’- 

CCGTCAATTCMTTTRAGT). Initial generation of 16S rRNA gene amplicons involved a one 

step PCR of 25 cycles using AccuPrimeTM Taq DNA Polymerase High Fidelity (Invitrogen, 

Carlsbad, CA). 454 pyrosequencing using the Lib-L kit was performed at the Wellcome Trust 

Sanger Institute, Hinxton, UK. 
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Resulting data were analysed using the Mothur sequencing analysis platform [9] as 

described previously [4]. The raw sequence data generated within the current study have 

been submitted to the NCBI Short Read Archive database under the study accession 

number SRP040968. The barcodes associated with each sample are shown in Table S1. 

Two aliquots were excluded due to insufficient number of sequence reads generated. 

5.3.3 Statistical analysis 

Statistical analysis was performed in R [10]. Changes in bacterial diversity were assessed 

using three complementary measures: species richness (S*,the total number of species), 

Shannon-Wiener (H’, a metric accounting for both number and relative abundance of 

species), and Simpson’s (1-D, a measure of the probability that two species randomly 

selected from a sample will differ) indices of diversity as described previously [4, 11]. The 

Bray-Curtis (SBC, which accounts for the number and abundance of species present in each 

community and those that are shared), resulting in a value between 0 and 1 (higher values 

indicating greater similarity) measure of similarity was used to assess changes in community 

composition with each freeze-thaw cycle.  

To avoid potential bias, all measures were calculated using randomised resampling to a 

uniform number of sequence reads per sample [5]. Mean diversity measures were calculated 

from the re-sampling of the reads from each specimen to the lowest number of sequence 

reads among all specimens (n=261) for 1000 iterations. SBC was calculated by re-sampling 

to the minimum number of sequence reads per specimen within each patient and comparing 

community composition to the original sample for 1000 iterations. Bacterial species detected 

at the first point for each patient were partitioned into common and rare species using rank 

abundance curves [12]. The R package nlme [13] was used to fit mixed effect models to 

investigate the relationships between measures of diversity, similarity, and number of freeze 

thaw cycles. r2 values were calculated using the MuMIn package [14].  
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5.4 Results  

To test the study hypothesis, sputum samples from eight CF patients were subjected to six 

freeze-thaw cycles. Aliquots of sputum were removed for DNA extraction and 16S rRNA 

gene pyrosequencing to assess the bacterial community after each cycle, and the remaining 

sample was allowed to defrost completely before being returned to -80°C. All samples were 

treated with PMA prior to DNA extraction to focus the analysis on the viable bacterial 

community. A total of 106,065 sequences (mean ± standard error (SE) per sample 2306 

±239) were generated from 46 samples, identifying 49 genera and 76 distinct operational 

taxonomic units (OTUs) classified to species level (Table S2). 

5.4.1 Bacterial diversity 

Species richness, S*, was found to be highly variable between patients (max= 49, min=4), no 

pattern in raw richness values was observed over the freeze-thaw cycles either within 

patients (P=0.6, r2=0.0004) or when using randomised resampling to calculate mean S* (P 

=0.7, r2= 0.0001). High levels of variability in bacterial diversity were also observed between 

patients as measured by H’ and 1-D. However, as with S*, no pattern in either of these 

diversity measures was observed over the 6 freeze-thaw cycles (H’ (P=0.4, r2=0.001), 1-D 

(P=0.1, r2=0.003) (Fig 1).    
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Fig 1. Boxplots from each patient showing variation in diversity over the 6 freeze-thaw 

cycles. Values  of (A) species richness (S*), (B) Shannon-Wiener index of diversity (H’), and 

(C) Simpson’s index of diversity (1-D) were calculated with a uniform re-sample size 

following 1000 iterations in each instance. Lines in boxplot represent mean and standard 

deviation of the mean (n=6); whiskers represent 25th and 75th percentiles.   
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5.4.2 Bacterial community membership 

Changes in community composition were compared using the SBC measure of similarity.  A 

significant decrease in similarity was observed over the 6 cycles (P < 0.0001, r2= 0.40) (Fig 

2). Variation in intra-sample composition could contribute to the effect associated with 

freeze-thaw cycles [4, 15]. Therefore, to account for within-sample variation, a cut off value 

for similarity was calculated by comparing the within-sample similarities of triplicate 

sequence datasets of eight samples that were published previously [4]. Based on this data, 

Bray-Curtis similarity values below 0.682 were judged to differ significantly from the original 

sample.  

To minimise bias, changes in similarity were measured using randomised resampling to a 

uniform subsample size. Analysis showed that, despite a significant trend of decreasing 

similarity between aliquots within each sample over the six freeze-thaw cycles, none of these 

changes in within-sample similarity fell below the cut-off value of 0.682 for significant within-

sample variation.  

To investigate the drivers of this trend in community composition, we partitioned the 

community into common and rare species using rank abundance curves, indicating the 

breakpoint between the common and rare using the inflection point (Fig. S1) [12]. Once 

partitioned, the Bray-Curtis similarity was calculated for the common and rare species. The 

common and abundant species were most important in determining the overall trend in 

community similarity, while the rare species were shown to be more variable (Fig 2). Over 

the six cycles, the common species were not found to fall below the cut-off value for within-

sample variation. In contrast, however, substantial variation was observed in the detection of 

rare species, for which the mean change in similarity among aliquots from each sample 

dropped below the expected level for within-sample variation after four freeze-thaw cycles.  
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Fig 2. Mean changes in bacterial community composition over six freeze-thaw cycles, using 

Bray-Curtis index of similarity for (A) whole communities, (B) common and (C) rare species 

groups. Error bars represent the standard error of the mean (n = 6). Whole community 

similarity was calculated with a uniform re-sample size following 1000 iterations. Solid lines 

represent the overall mean similarity for within sample replicates and dashed lines represent 

the standard error of the mean (n = 24). 
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5.5 Discussion 

The handling of respiratory samples for culture-independent analysis is vital if an unbiased 

picture of the microbial community is to be obtained. Storage of samples at -80°C is the 

standard recognised method for maintenance of sample integrity during biobanking. 

However, whether repeated sub-sampling of these specimens, which will require repeated 

thawing and freezing, leads to sample degradation and changes in community composition 

detected has not been reported.  

In searching for changes in bacterial diversity due to freeze-thaw cycles, no significant 

overall trend was observed. A significant negative trend in community similarity was 

observed using the Bray-Curtis measure of similarity. Despite this observation, over the 6 

cycles the change in similarity never fell below the expected level for within-sample variation, 

indicating that repeat freeze-thaw cycles will not affect the overall bacterial community 

composition. However, the rare community fell below the level of within sample variation 

from 4 freeze-thaw cycles.   

Our results challenge the long-held view that the microbial community within respiratory 

samples will significantly change once samples have been defrosted during subsampling. 

More than three freeze-thaw cycles will result in significant divergence of the rare community 

from the original sample. If the sample is subjected to four or more cycles community 

analysis may be carried out on the common community but the rare should be interpreted 

with care. In practical terms, these findings support the aliquoting of samples to avoid 

unnecessary freeze-thaw cycles. 
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5.3 Supplementary information 

Fig S1. Rank abundance curves for each patient’s bacterial community after a single freeze 

thaw cycle. Abundances are expressed as percentage of total abundance within each 

community. The arrows indicate the inflection point of each curve.  Species to the left of the 

arrow were classified as common, and those at the right side were classified as rare. 

 

a single freeze thaw cycle  
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Table S1. The raw sequence data reported in this paper have been deposited in the NCBI 

Short Read Archive database (Accession number PRJNA243349 ). A list of barcodes used 

and their associated sample are listed below. 

Table A5.1The raw sequence data reported in this paper have been deposited in the NCBI Short Read Archive database

Barcode Patient 
Sub-
sample 

ATGGCGTGCACA 1 1 
CAACACGCACGA 1 2 
GTCTATCGGAGT 1 3 
GTGAGGTCGCTA 1 4 
GTGTGTGTCAGG 1 5 
TAAGCGCAGCAC 1 6 
ATGGTCTACTAC 2 1 
CAACTATCAGCT 2 2 
GTCTCATGTAGG 2 3 
GTGATAGTGCCG 2 4 
GTGTTGCAGCAT 2 5 
TACACACATGGC 2 6 
ATGTACGGCGAC 3 1 
CAACTCATCGTA 3 2 
GTCTCTCTACGC 3 3 
GTGCAATCGACG 3 4 
GTTAGAGCACTC 3 5 
TACACGATCTAC 3 6 
ATGTCACCGTGA 4 1 
CAAGATCGACTC 4 2 
GTCTGACAGTTG 4 3 
GTGCACATTATC 4 4 
GTTCGCGTATAG 4 5 
TACAGATGGCTC 4 6 

  
 

Barcode Patient 
Sub-
sample 

ATGTGCACGACT 5 1 
GTCGCTGTCTTC 5 2 
GTCTGGATAGCG 5 3 
GTGGCGATACAC 5 4 
GTTGACGACAGC 5 5 
TACAGTCTCATG 5 6 
ATGTGTCGACTT 6 1 
GTCGTAGCCAGA 6 2 
GTCTTCGTCGCT 6 3 
GTGTACCTATCA 6 4 
GTTGTATACTCG 6 5 
ATTATCGTGCAC 7 1 
GTCGTGTGTCAA 7 2 
GTGACCTGATGT 7 3 
GTGTCTACATTG 7 4 
TAACAGTCGCTG 7 5 
ATTCTGTGAGCG 8 1 
GTCTACACACAT 8 2 
GTGACTGCGGAT 8 3 
GTGTGCTATCAG 8 4 
TAACTCTGATGC 8 5 
TACGATGACCAC 8 6 
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Table S2. Bacterial taxa samples across eight sputum samples from adult CF patients. 

Species-level identities of detected taxa are reported here. However, given the sequence 

read length of the ribosomal sequences analysed, these identities should be considered 

putative 

Table A5.2 Bacterial taxa samples across eight sputum samples from adult CF patients 

Class Family Taxon name 

Actinomycetales Actinomycetaceae Actinomyces odontolyticus 

  
Actinomyces oris 

 
Corynebacteriaceae Corynebacterium durum 

  
Corynebacterium matruchotii 

 
Micrococcaceae Rothia mucilaginosa 

 
Propionibacteriaceae Propionibacterium propionicum 

Bacillales Bacillales  Gemella morbillorum 

 
Staphylococcaceae Staphylococcus aureus 

Bacteroidales Bacteroidaceae Bacteroides acidofaciens 

  
Bacteroides vulgatus 

 
Porphyromonadaceae Porphyromonas catoniae 

  
Porphyromonas endodontalis 

  
Tannerella forsythia 

 
Prevotellaceae Alloprevotella rava 

  
Prevotella denticola 

  
Prevotella histicola 

  
Prevotella loescheii 

  
Prevotella maculosa 

  
Prevotella melaninogenica 

  
Prevotella nanceiensis 

  
Prevotella nigrescens 

  
Prevotella oralis 

  
Prevotella oris 

  
Prevotella pallens 

  
Prevotella pleuritidis 

  
Prevotella salivae 

  
Prevotella tannerae 

 
Rikenellaceae Alistipes finegoldii 
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Table S2 Continued 

Class Family Taxon name 

Burkholderiales Alcaligenaceae Achromobacter xylosoxidans 

 
Burkholderiaceae Lautropia mirabilis 

 
Sutterellaceae Sutterella wadsworthensis 

Campylobacterales Campylobacteraceae Campylobacter concisus 

Clostridiales Clostridiaceae Clostridium sp.  

 
Clostridiales  Parvimonas micra 

 
Eubacteriaceae Eubacterium brachy 

  
Eubacterium sulci 

 
Lachnospiraceae Butyrivibrio fibrisolvens 

  
Catonella morbi 

  
Lachnoanaerobaculum orale 

  
Oribacterium sinus 

  
Shuttleworthia satelles 

  
Stomatobaculum longum 

 
Peptostreptococcaceae Peptostreptococcus stomatis 

Coriobacteriales Coriobacteriaceae Atopobium parvulum 

  
Olsenella uli 

Enterobacteriales Enterobacteriaceae Escherichia coli 

Flavobacteriales Flavobacteriaceae Capnocytophaga granulosa 

  
Capnocytophaga haemolytica 

  
Capnocytophaga ochracea 

  
Fusobacterium nucleatum 

 
Leptotrichiaceae Leptotrichia buccalis 

  
Leptotrichia wadei 

  
Sneathia sanguinegens 

Lactobacillales Aerococcaceae Abiotrophia defectiva 

 
Carnobacteriaceae Granulicatella adiacens 

 
Lactobacillaceae Lactobacillus fermentum 

  
Lactobacillus johnsonii 

 
Streptococcaceae Streptococcus mutans 

  
Streptococcus parasanguinis 

  
Streptococcus salivarius 

Mycoplasmatales Mycoplasmataceae Mycoplasma salivarium 

Neisseriales Neisseriaceae Kingella denitrificans 

Pasteurellales Pasteurellaceae Haemophilus parainfluenzae  

Pseudomonadales Moraxellaceae Acinetobacter johnsonii 

  
Moraxella osloensis 

 



 

Chapter 5  155 

Table S2 Continued 

Class Family Taxon name 

 
Pseudomonadaceae Pseudomonas aeruginosa 

  
Pseudomonas putida 

Rhizobiales Hyphomicrobiaceae Hyphomicrobium sp. 

Selenomonadales Veillonellaceae  Selenomonas noxia 

  
Anaeroglobus geminatus 

  
Dialister invisus 

  
Megasphaera micronuciformis 

  
Selenomonas artemidis 

  
Selenomonas noxia 

  
Selenomonas sputigena 

  
Veillonella parvula 
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Chapter 6: The complex relationships between 

the bacterial community and clinical factors in 

cystic fibrosis 
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6.1 Introduction 

In recent years, through a range of culture independent techniques, the complex and diverse 

nature of the bacterial community associated with cystic fibrosis (CF) lung infections has 

been recognised (1-6). However despite this insight, chronic infection and concomitant 

inflammation are still the major cause of morbidity and mortality in individuals with CF (7). 

Therefore, in order to improve patient management it is important to increase our 

understanding of the bacterial community within the CF lung in relation to clinical factors for 

example; gender, age, body mass index (BMI), lung function, liver disease, diabetes, 

pancreatic insufficiency and genotype.  

Over the last few years, the importance of relating clinical outcomes to changes in the 

bacterial community has been recognised. In 2010, Klepac-Ceraj et al examined the 

influence of clinical factors on the bacterial community present in 45 CF children using 

PhyloChip hybridization (8). This study examined the relationship between the community 

composition and clinical factors including age, CFTR genotype, and antibiotic therapy; as 

well as examining the effect of Pseudomonas aeruginosa colonisation (8). While this study 

found no relationship between bacterial diversity and lung function, bacterial diversity was 

found to decrease with age (8). Further, a study by Cox et al (2010) used an age stratified 

patient cohort to reveal a significant negative relationship between age and lung function of 

patients from 0 -72 years old. They identified that older patients tended to have a more 

conserved bacterial community than younger individuals (3). 

The lack of association of the bacterial community with lung function, observed by Klepac-

Ceraj et al (2010), was considered to be a result of CF children having lung function scores 

comparable with healthy individuals. Therefore, it was unsurprising that in a study of 14 adult 

CF patients, van der Gast et al (2011) using full length 16S rRNA gene sequencing to 

investigate the metacommunity within the CF lung, revealed a significant positive relationship 

between bacterial diversity and lung function (9). This result was also observed in a study by 

Delhaes et al (2012) who found that bacterial diversity was correlated with lung function and 
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poor clinical status (6). Despite the significant relationship observed, the variance associated 

with this relationship was shown to be high in both these studies (6, 9).  As a result, to 

establish if this relationship could be used in order to predict clinical outcomes a much larger 

sample set would be required (6).  

While the effect of relationship between the bacterial community and lung function is clearly 

important, it cannot account for all the variance observed between patients, so other clinical 

factors must be considered. It has been established that different cystic fibrosis 

transmembrane regulator (CFTR) genotypes result in different clinical outcomes for CF 

patients (10). By grouping patients into high and low risk CFTR mutation categories, McKone 

et al (2006) found significantly different survival rates as a result of mutation type (11). 

ΔF508 is the most common CFTR mutation associated with CF and is classified as one of 

the severe mutations associated with disease. In order to investigate if differences in CFTR 

genotype influence the bacterial community within the CF lung, Klepac-Ceraj et al (2010) 

partitioned their samples into 3 distinct groups, ΔF508 homozygote’s, ΔF508 heterozygote’s 

and other non-ΔF508 mutations (8). Their results suggested that the ΔF508 mutation may 

have a marked effect on the environment within the CF lung, resulting in a distinct bacterial 

composition (8). However, they do accept that a larger cohort study would be required to 

investigate this relationship further (8).  

Several large prospective studies have demonstrated that there is a gender gap in CF, 

resulting in significantly poorer prognosis for female CF patients compared to males (11, 12).  

Early studies showed that between the ages of 1 and 20 years, females were 60% more like 

to die than males (12). With improvements in treatment regimes and increase in patient 

survival rates, Verma et al (2006) investigated if differences in disease prognosis were still 

an issue despite advances in patient care (13). This study concluded that with modern 

treatments, no significant difference was observed between the lung function of male and 

female patients however, females tended to show poorer growth rates than males. This 

study did not investigate changes in the bacterial community between the two sexes and 
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therefore was unable to uncover if the differences in growth rate observed were related to 

patient gender.  

The course of disease progression may also be affected by the centre attended by an 

individual patient. This could be explained by differences in treatment regimens or simply by 

the environmental microbiota present in different geographical regions. In 1998, Johansen et 

al undertook a study to investigate differences in clinical status between two CF centres, one 

in Toronto, Canada and the other in Copenhagen, Denmark (14). This study found that 

despite differing treatment regimes between centres, pulmonary and nutritional statuses 

between the two cohorts was not significantly different (14). A similar study was carried out 

by Stressmann et al (2011), using T-RFLP to investigate differences in bacterial community 

composition between samples collected from Southampton, United Kingdom and those 

originating from Chapel Hill, United States (15). This study revealed geographical differences 

between the presence and relative abundance of species identified (15). The most common 

organisms identified were found to be common to both sites (15) however, while this study 

showed that the community present in the US samples were less diverse than those in the 

UK, changes in the metacommunity between centres was not investigated.  

As indicated above, although some evidence has been obtained linking the bacterial 

community to clinical factors the studies have been limited by participation. Typically, these 

studies have been carried out using samples from a small number of patients (ca. less than 

50 patients) attending a single CF centre. In this study over 300 sputum samples were 

collected from 11 different sites across Europe and North America, making this the largest 

study of its kind, and resulting in statistical power unrivalled by the currently published work. 

This dataset therefore results in a unique opportunity to test the relationships previously 

observed in much smaller datasets and whether previously unobserved associations can be 

revealed.  
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6.2 Materials and methods 

6.2.1 Sample collection 

Sputum samples were collected from CF patients attending CF clinics across Europe and 

the United States of America. For full details of clinics and associated ethics see Table 2.2. 

Single samples were collected from each patient alongside associated clinical metadata. 

Once collected, samples were stored at -80°C prior to transport on dry ice to the Centre for 

Ecology and Hydrology in Wallingford. Clinical metadata associated with each sample was 

collected at the time of sampling, a summary is shown in Table 6.1.  

A total of 379 individual samples were sequenced. After processing in Mothur a total of 44 

technical control samples, including reference strains (shown in Table 2.1), were used to 

remove contaminating OTUs. All controls used are shown in Table 6.2. Due to a lack of 

sequences, or as a consequence of contamination, 24 samples were removed from the final 

analysis. As a result, a total of 292 CF sputum samples were included in the analysis of this 

dataset. Additionally, 19 non-CF healthy controls, sampled by sputum induction using 

inhalation of hypertonic saline, at Belfast city hospital were also included.   
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Table 6.1 Patient data and samples. 

Variable  n 
Non-CF healthy controls 9 male 10 female 

Patients 292 
Sex 170 male 122 female 

BMI, n [min-max] 183 [14.4-43.8] 

FEV1, n [min-max] 276 [0.43-4.93] 

Age, n [min-max] 254 [14-71] 

CFTR genotype, n (%) 252 
ΔF508/ΔF508 135 (54) 

ΔF508/other 98 (39) 

other/other 19 (8) 

Clinical Status, n (%)* 216 
Stable 162 (75) 

Exacerbation 54 (25) 

Pancreatic sufficient, n (%) 225 
Sufficient 86 (38) 

Insufficient 139 (62) 

Liver disease, n (%) 225 
Yes 37 (16) 

No 188 (84) 

Diabetes, n (%) 287 
Yes 98 (34) 

No 189 (66) 

Location, n (%) 292 
Belfast, UK 60 (21) 
Southampton, UK 35 (12) 
London, UK 14 (5) 
Dublin, Eire 6 (2) 
Warsaw, Poland 17 (6) 
Dartmouth, Bedford, NH 17 (6) 
Dartmouth, Lebanon, NH 4 (1) 
Portland, ME 22 (8) 
Boston, MA 15 (5) 
Seattle, WA 75 (26) 
Vermont, ME 27 (9) 

 Bold text indicate the total number of samples with available metadata relating to particular 

clinical variables, square brackets indicate the sample range, round brackets indicate the % 

of the total number of samples with data for the specified variable. * Patients diagnosed and 

in current treatment for a CF pulmonary exacerbation (CFPE) were defined as having a 

clinical status of “Exacerbation”. 



 

Chapter 6  162 

Table 6.2 Technical control samples included in sequencing analysis. 

Mock communites contained equal quanties of Achromobacter xylosoxidans, Burkholderia 

cenocepacia, Burkholderia multivorans, Pseudomonas aeruginosa, Staphylococcus aureus 

and Stenotrophomonas maltophilia. Extraction controls were carried out using sterile water 

during every extraction protocol and sequenced to identify extraction contaminants. A mock 

community was included in each run, the PCR controls were carried on sterile water.  

Controls  n 
Achromobacter xylosoxidans 3 
Burkholderia cenocepacia 3 
Burkholderia multivorans 3 
Pseudomonas aeruginosa 3 
Staphylococcus aureus 3 
Stenotrophomonas maltophilia 3 
Mock communities 9 
Extraction controls 14 
PCR controls 3 
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6.2.2 DNA extraction and pyrosequencing 

All samples were stored at -80°C until processing. A sterile scalpel was used to transfer 

approximately 250µl of frozen sputum into a 15ml centrifuge tube, as described in Chapter 

2.3.1, to allow a sputum wash to be performed. Using the method described in Chapter 

2.3.2, washed sputum was then treated with propidium monoazide (PMA) prior to DNA 

extraction; Chapter 2.3.3.  

Extracted DNA was amplified using modified primers 27F (5’-

AGMGTTYGATYMTGGCTCAG) (MWG Eurofins, Ebersberg, Germany) and 338R (5’- 

GCTGCCTCCCGTAGGAGT) (MWG Eurofins, Ebersberg, Germany) for 16S rRNA gene 

sequencing using Illumina MiSeq, and as described in Chapter 2.4.2. 16S rRNA gene 

amplicons were initially generated using a one step PCR of 25 cycles using Q5® High-

Fidelity DNA Polymerase (New England Biolabs, Ipswitch, UK). Illumina MiSeq sequencing 

was performed at the Wellcome Trust Sanger Institute, Hinxton, UK. 

6.2.3 Sample processing and sequence analysis 

Resulting data was analysed using the Mothur sequencing analysis platform using a 

modified version of the method described in Chapter 2.7. Before analysis the two sets of 

output reads for each sample were combined to create contigs. Sequences shorter than 270 

bases and longer than 400 bases were removed, along with any sequences that included 

ambiguous base calls and homopolymeric stretches longer than 7 bases. Any non-bacterial 

ribosome sequences or chimeras were removed using Chimera uchime software, as 

implemented in Mothur (16). Sequences were classified using the Ribosomal database 

project (RDP) training set version 9 and any lineage identified as chloroplast, mitochondria, 

unknown, archaea or eukaryote were removed (17). Prior to creating a distance matrix and 

clustering OTUs, each barcoded sample was subsampled to 2000 sequences. Sequences 

were then assembled into operational taxonomic units (OTUs) (clustered at 97% identity), to 

give an approximation of species (18), and identified using the RDP reference database 

version 9 (2012) (17). Representative sequences were used to give an appropriate species 
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level identification for the OTU using NCBI multiblast and any suspect OTUs, those that 

appeared in control samples as well as single sequences identified as being common 

contaminants (e.g. hyperthermophiles, methanotrophs and rhizosome associated bacteria), 

were removed (19). 

6.2.4 Statistical analysis 

Statistical analysis was performed in R version 3.1.1(2012-07-10) (20), PAST (version 2.17) 

and XLSTAT (version 2014.3, Addinsoft, USA).  

Species were partitioned using a distribution abundance relationship (DAR), described by 

Magurran and Henderson (2003) (21). The most persistent and abundant species, those 

present in more that 75% of the total samples, were described as common, while all others 

were considered to be rare.  

Three recognised measures of bacterial diversity were used to assess bacterial richness and 

evenness; species richness (S*), Shannon-Wiener diversity index (H’) and Simpson’s index 

of diversity (1-D), as described in Chapter 2.81. Randomised resampling was carried out 

while assessing diversity measures in order to standardise the effect of variable read 

numbers returned by sequencing each sample. Diversity measures were calculated with the 

resulting data using the vegan package in R (22). The relationship between diversity and 

continuous metadata was assessed using linear regression in R. Alternatively analysis of 

variance (ANOVA) was used to assess differences in categorical variables and Tukey HSD 

tests were used to compare differences between categories.   

Community composition was investigated using Sørensen and Bray-Curtis measures of 

similarity, see Chapter 2.8.2 for full details. Analysis of similarity (ANOSIM) was used to 

assess the similarity between continuous variables, using PAST (version 2.7) (23). This 

method uses similarity measures to investigate similarity within variables and compares the 

allowing differences to be assessed. R values are on a scale of +1 to -1; values of +1 

indicating the most similar samples are within the same group, and -1 that the most similar 

samples are outside the group. Significant R values indicate that the community similarities 
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are more similar within the disease period and therefore can be considered significantly 

different.  

The contribution of each OTU to the observed Bray-Curtis similarity between significant 

variables was assessed using Similarity of Percentages (SIMPER) analysis. This was done 

in order to identify those OTUs that are important in creating the observed pattern of 

similarity. SIMPER analyses were performed as previously described by Clarke (1993) (24), 

using PAST (version2.7) (23). 

Mantel tests were used to relate the variability in bacterial community similarity to the clinical 

factors shown in Table 5.1 (25). Bray-Curtis similarity matrices were created in using PAST 

(version 2.7), and similarity matrices were generated by calculating absolute differences 

between variables. Similarity matrices for categorical data were created by assigning 0 to 

samples which were in the same category and 1 to those that were different, this avoided 

any weighting associated with the categories. Lower tailed Mantel and partial Mantel tests 

were conducted using XLSTAT (version 2014.3) with P-values based on 9999 permutations 

(9, 26).  

 

6.3 Results  

Sputum samples collected from CF patients across Europe and North America were 

collected with complementary clinical information. The bacterial diversity and community 

composition was assessed for each sample by 16S rRNA gene sequencing using Illumina 

MiSeq. A total of 311 sputum samples were included in this analysis. Each sample was 

subsampled to 2000 sequences in Mothur and any contaminating OTUs were removed post 

Mothur analysis. As a result a total of 577,889 bacterial sequences (mean± standard 

error/sample 1858±11, n=311), comprising of 240 genera and 444 distinct OTUs were 

classified to species level (Table A6.1).  
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6.3.1 Partitioning of species  

A DAR was used to partition species into common, most persistent and abundant, and rare, 

transient taxa found in low abundance. The log abundance of each OTU was plotted against 

persistence (the number of samples in which a particular species appeared) showing a 

significant positive relationship (F(1,433)=29.32, P<0.001), presented in Figure 6.1. Species 

present in more than 75% of the samples were considered to be common, while the 

remaining species were rare.  

A total of five OTUs representing distinct species were considered to be common when the 

whole data set was considered; Prevotella melaninogenica, Rothia mucilaginosa, 

Streptococcus mitis, Veillonella parvula, Pseudomonas aeruginosa. These OTUs were found 

to make up over 55% of the total sequences in the study (318,866 sequences), while the 

rare OTUs made up just over 44% of the total sequences (259,023 sequences).  
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Figure 6.1 Persistence abundance curve of all OTUs.  

All OTUS were plotted with Persistance, the number of samples in which they appear, 

against log abundance, total number of sequences, in order to partition OTUs into those that 

are common and those that are rare. Common OTUs were defined as those that fell in the 

upper quartile (right of the vertical line), all OTUs that fell below the line were considered to 

be rare (n=311, F(1,433)=29.32, P<0.001).   
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6.3.2 Diversity 

Three recognised measures of community diversity were applied to the data, species 

richness (S*), Shannon-Wiener index (H’), and inverse Simpson’s index (1-D). As varying 

levels of sampling depth in this study were accounted for during the sequencing analysis 

step, resampling, as performed in previous chapters, was not carried out on these data. 

Bacterial diversity was found to be highly variable between samples. In order to investigate if 

clinical factors were influencing this variation, linear relationships between bacterial diversity 

and clinical factors were investigated, these are highlighted below.  

6.3.2.1  Lung function (FEV1) 

Published data suggests that a significantly positive linear relationship exists between 

diversity and lung function. To investigate if this result was not purely an artefact of the small 

sample sets used, the relationship between bacterial diversity (as measured by S*, H’ and 1-

D) was modelled against lung function. Lung function data was available from 95% of the 

sequenced sputum samples.  As shown in Figure 6.2, a significant positive relationship was 

seen between lung function, forced expiratory volume in 1 second (FEV1), and the 3 

measures of diversity investigated. Model results are show in Table 6.3.  

6.3.2.2 Age 

It was hypothesised that this relationship would be mirrored with patient age. Patient age at 

the time of sample collection was available for 87% of the CF samples sequenced. However 

no significant relationship was found between diversity and patient age for any of the 

diversity measures investigated, as shown in Table 6.3.  
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Figure 6.2 The relationship between diversity and lung function (FEV1).  

A significant positive linear relationship was observed using a linear regression model, fitted 

to the data for each of the following measures of diversity; A) Species richness (P<0.001, 

r2=0.22, F(1,293)=82.8) B) Shannon-Wiener index (P<0.001, r2=0.21, F(1,293)=79.92) C) Inverse 

Simpson’s index (P<0.001, r2=0.17, F(1,293)=61.95). 
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Table 6.3 Summary of linear regression statistics between bacterial diversity and 

continuous clinical factors. 

Linear regressions were calculated to predict the relationship between bacterial diversity, 

species richness (S*), Shannon-weiner (H') and Inverse Simpson’s (1-D), and continuous 

clinical factors, forced expiratory volume in 1 second (FEV1), Age and  body mass index 

(BMI). Significant relationships (P-value <0.001) are indicated in bold. n; number of samples 

included in each analysis, df; degrees of freedom, F; F-statistic describes the explained 

variation over the unexplained varation, r2; the proportion of variation in the y-variable due to 

variation in the x-variable  

Clinical	  factor	   Diversity	   n	   df	   F	   r2	   P	  

FEV1	  

All	  
S*	   276	   1,274	   43.11	   0.136	   <0.001	  
H'	   276	   1,274	   41.8	   0.132	   <0.001	  
1-‐D	   276	   1,274	   36.53	   0.12	   <0.001	  

Common	  
S*	   276	   1,274	   43.11	   0.133	   <0.001	  
H'	   276	   1,274	   37.11	   0.119	   <0.001	  
1-‐D	   276	   1,274	   29.51	   0.097	   <0.001	  

Rare	  
S*	   276	   1,274	   35.03	   0.113	   <0.001	  
H'	   276	   1,274	   11.28	   0.04	   <0.001	  
1-‐D	   276	   1,274	   9.32	   0.034	   0.002	  

Age	  

All	  
S*	   254	   1,252	   0.006	   <0.001	   0.94	  
H'	   254	   1,252	   <0.001	   <0.001	   0.998	  
1-‐D	   254	   1,252	   0.01	   <0.001	   0.92	  

Common	  
S*	   254	   1,252	   0.006	   <0.001	   0.939	  
H'	   254	   1,252	   0.524	   0.002	   0.47	  
1-‐D	   254	   1,252	   0.805	   0.003	   0.37	  

Rare	  
S*	   254	   1,252	   0.017	   <0.001	   0.897	  
H'	   254	   1,252	   2.959	   0.012	   0.086	  
1-‐D	   254	   1,252	   2.458	   0.01	   0.118	  

BMI	  

All	  
S*	   183	   1,181	   7.252	   0.039	   0.008	  

H'	   183	   1,181	   4.583	   0.02	   0.03	  
1-‐D	   183	   1,181	   3.002	   0.02	   0.08	  

Common	  
S*	   183	   1,181	   7.252	   0.039	   0.008	  
H'	   183	   1,181	   5.278	   0.028	   0.023	  

1-‐D	   183	   1,181	   5.196	   0.028	   0.02	  

Rare	  
S*	   183	   1,181	   8.517	   0.045	   0.004	  
H'	   183	   1,181	   1.72	   0.009	   0.191	  

1-‐D	   183	   1,181	   0.866	   0.005	   0.353	  
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6.3.2.3 Body mass index 

The relationship between body mass index (BMI) and bacterial community diversity was 

investigated using linear regression. BMI at the time of sample collection was recorded from 

63% of patients and was modelled against each of the three diversity measures. As shown in 

Table 6.3, using analysis of variance, a significant relationship (P-value <0.001) was seen 

between BMI and species richness and the Shannon-Wiener index however, no significant 

relationship was observed between BMI and the Inverse Simpson’s index. 

6.3.3 Analysis of variance (ANOVA) 

To investigate relationships between bacterial diversity and categorical clinical factors 

ANOVAs were employed, results are shown in Table 6.4. Bacterial diversity was not found to 

be related to patient gender, liver disease, pancreatic insufficiency, diabetes or CFTR 

genotype. Significant differences in diversity were only observed as a result of clinical status 

(stable, exacerbation or control) and location. 

Clinical status was found to be significant for the whole community as well as the partitioned 

common and rare groups. Post-hoc Tukey HSD test revealed that the bacterial diversity of 

control samples was significantly different from the diversity observed between stable and 

exacerbating patients (P<0.001) as illustrated in Figure 6.3. While the variability in diversity 

in both CF groups was found to be high, the change in diversity between stable and 

exacerbating patients was also significant (P=0.009). 
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Table 6.4 Summary statistics of ANOVA comparing bacterial diversity to categorical 

clinical data. 

Analysis of the changes in diversity, species richness (S*), Shannon-weiner (H') and Inverse 

Simpson’s (1-D) of the whole bacterial community, common and rare taxa groups associated 

with clinical factors, including; gender, diabetes and liver disease. P- values of <0.05 are 

considered significant and shown in bold.    

Clinical factor Diversity n df F r2 P 

Gender 

All 
S* 292 1,290 31.18 0.01 0.078 
H' 292 1,290 2.871 0.01 0.091 

1-D 292 1,290 43.652 0.02 0.032 

Common 
S* 292 1,290 3.118 0.01 0.079 
H' 292 1,290 1.493 0.005 0.223 

1-D 292 1,290 0.706 0.002 0.402 

Rare 
S* 292 1,290 0.372 0.001 0.542 
H' 292 1,290 0.102 <0.001 0.749 

1-D 292 1,290 0.266 <0.001 0.606 

Diabetes 

All 
S* 287 1,285 0.584 0.02 0.445 
H' 287 1,285 0.268 <0.001 0.605 

1-D 287 1,285 0.908 0.005 0.908 

Common 
S* 287 1,285 0.584 0.002 0.445 
H' 287 1,285 0.464 0.002 0.496 

1-D 287 1,285 0.173 <0.001 0.678 

 Rare 
S* 287 1,285 2.668 0.009 0.104 
H' 287 1,285 0.131 <0.001 0.717 

1-D 225 1,285 0.047 <0.001 0.829 

Liver 
disease 

All 
S* 225 1,223 0.606 0.003 0.437 
H' 225 1,223 0.226 0.001 0.635 

1-D 225 1,223 0.357 0.005 0.551 

Common 
S* 225 1,223 0.606 0.003 0.437 
H' 225 1,223 0.031 <0.001 0.861 

1-D 225 1,223 0.241 0.112 0.624 

Rare 
S* 225 1,223 0.045 <0.001 0.832 
H' 225 1,223 0.56 0.003 0.455 

1-D 225 1,223 0.373 0.002 0.542 
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Table 6.4 Continued  

Clinical factor Diversity n df F r2 P 

Pancreatic 
insufficiency 

All 
S* 225 1,223 0.467 0.002 0.495 
H' 225 1,223 0.13 <0.001 0.709 

1-D 225 1,223 0.835 0.003 0.362 

Common 
S* 225 1,223 0.467 0.002 0.495 
H' 225 1,223 1.012 0.004 0.315 

1-D 225 1,223 0.915 0.004 0.34 

Rare 
S* 225 1,223 2.233 0.01 0.137 
H' 225 1,223 0.455 0.002 0.501 

1-D 225 1,223 0.131 <0.001 0.718 

Clinical status 

All 
S* 269 1,232 31.53 0.204 <0.001 
H' 269 1,232 32.01 0.216 <0.001 

1-D 269 1,232 20.18 0.148 <0.001 

Common 
S* 269 1,232 45.69 0.164 <0.001 
H' 269 1,232 8.826 0.037 0.003 

1-D 269 1,232 5.265 0.022 0.023 

Rare 
S* 269 1,232 52.51 0.312 <0.001 
H' 269 1,232 28.72 0.199 <0.001 

1-D 269 1,232 13.44 0.104 <0.001 

Genotype 

All 
S* 254 1,249 1.045 0.008 0.353 
H' 254 1,249 1.144 0.009 0.32 

1-D 254 1,249 1.125 0.009 0.326 

Common 
S* 254 1,249 1.045 0.008 0.353 
H' 254 1,249 0.356 0.003 0.701 

1-D 254 1,249 0.493 0.004 0.59 

Rare 
S* 254 1,249 0.763 0.006 0.218 
H' 254 1,249 0.191 0.002 0.558 

1-D 254 1,249 0.012 <0.001 0.989 

Location 

All 
S* 292 1,281 4.012 0.12 <0.001 
H' 292 1,281 3.371 0.107 <0.001 

1-D 292 1,281 3.005 0.097 <0.001 

Common 
S* 292 1,281 4.012 0.125 <0.001 
H' 292 1,281 2.36 0.077 0.011 

1-D 292 1,281 2.14 0.071 0.022 

Rare 
S* 292 1,281 4.325 0.133 <0.001 
H' 292 1,281 1.685 0.057 0.084 

1-D 292 1,281 1.098 0.037 0.364 
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Figure 6.3 Changes in diversity associated with clinical status.  

Each point represents the mean value of diversity for each clinical state, lines indicate the 

standard error of the mean. Clinical status 0; Non CF healthy controls, 1; Stable, 2; Cystic 

fibrosis pulmonary exacerbation (CFPE). Results of the associated ANOVA are shown in 

Table 6.4.   
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The relationship of bacterial diversity with geographical location was investigated using 

ANOVA, considering each unique site as a different variable. This analysis therefore did not 

account for the differences in distance between sites. As shown in Table 6.4, bacterial 

diversity was found to be significantly different between sample collection sites. These 

differences in bacterial diversity between sites are visualised in Figure 6.4, and show high 

variability between sites. A post-hoc Tukey HSD test was then used to assess the statistical 

differences between each centre. This analysis revealed that while the overall difference by 

location was significant, the difference in diversity between most centres was not significant.  

Difference in species richness between, Southampton, UK and Belfast, UK (P=0.02), 

London, UK and Belfast, UK (P=0.005), Portland, ME and London, UK (P=0.04), Boston, MA 

and London, UK (P=0.02) were shown to be significant. When considering Shannon’s 

diversity index, only Southampton, UK and Belfast, UK (P=0.03) and Belfast, UK and 

Vermont, ME (P=0.02) were found to be significantly different. Further, the significant 

difference observed between and Belfast, UK and Vermont, ME (P=0.03) observed using 

Shannon’s diversity index was also observed using the inverse Simpson’s index. 
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Figure 6.4 Changes in diversity associated with Location.  

Each point represents the mean value of diversity for each location, lines indicate the 

standard error of the mean. Location 1; Belfast, UK, 2; Southampton, UK, 3; London, UK, 4; 

Dublin, Eire, 5; Warsaw, Poland, 6; Dartmouth, Bedford, NH, 7; Dartmouth, Lebanon, NH, 8; 

Portland, ME, 9; Boston, MA, 10, Seattle, WA, 11; Vermont, ME. Results of the associated 

ANOVA are shown in Table 5.4. 
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6.3.4 Mantel and partial Mantel tests 

To examine which clinical factors were related to community similarity, lower tailed Mantel 

and partial Mantel tests were employed. These tests compared the Bray-Curtis similarity of 

the whole community, as well as the common and rare groups, to distance matrices created 

for each clinical factor. It was hypothesised that patients with more similar communities 

would have more similar clinical outcomes and therefore a lower tailed Mantel test was used 

for every comparison.  All clinical factors were compared to each other using a two-tailed 

Mantel test, this analysis allowed us to account for auto-correlation in the partial Mantel tests 

(Table A6.2). Factors shown to be auto-correlated were then examined using the lower-tailed 

test, with autocorrelation accounted for in subsequent analyses.   

6.3.4.1 Mantel tests 

Continuous clinical variables were compared to the similarities of the whole, common and 

rare taxa groups. It was hypothesised that patients with more similar lung function (FEV1), 

age and BMI would have more similar bacterial communities. This relationship was 

confirmed by the Mantel test (Table 6.5) which showed a significant negative relationship 

between community similarity and all continuous clinical factors (P<0.001).  

Categorical clinical variables were also compared to community similarity using Mantel test, 

shown in Table 6.5. In order not to weight the categories, matrices were calculated so that 

samples falling into the same categories were coded as 0 and those that were different were 

coded as 1. Genotype, was found to show no significant relationship with community 

composition (whole; P=0.92,	   common;	   P=0.972,	   rare; P=0.282). Table 6.5 also shows that 

diabetes, gender and pancreatic insufficiency were found to only relate to significant 

differences in community composition when compared to the rare taxa group. Conversely 

the relationship between community composition and both liver disease and clinical status 

(whether a patient is considered clinically stable or experiencing a CF pulmonary 

exacerbation (CFPE)) were found to be significant in all groups (Table 6.5).  
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Table 6.5 Mantel test analyses for the association between bacterial community 

composition and clinical factors.  

The P-values have been calculated using the distribution of the Mantel test statistic (r) 

estimated for 9999 permutations. N= number of samples, n= number of pair wise 

comparisons between groups. Significant P-values are indicated in bold. 

Clinical	  Factor	   N	   n	   	  	   r	   P	  

Location	   292	   42486	  

All	   -‐0.024	   <0.001	  
Common	   -‐0.022	   <0.001	  
Rare	   -‐0.044	   <0.001	  

FEV1	   276	   37950	  

All	   -‐0.098	   <0.001	  
Common	   -‐0.106	   <0.001	  
Rare	   -‐0.035	   <0.001	  

Clinical	  status	   217	   23436	  
All	   -‐0.031	   <0.001	  
Common	   -‐0.04	   <0.001	  
Rare	   -‐0.069	   <0.001	  

Age	   255	   32385	  
All	   -‐0.022	   <0.001	  
Common	   -‐0.021	   <0.001	  
Rare	   -‐0.015	   <0.001	  

BMI	   182	   16471	  

All	   -‐0.066	   <0.001	  

Common	   -‐0.07	   <0.001	  
Rare	   0.028	   1	  

Diabetes	   287	   41041	  

All	   -‐0.003	   0.318	  
Common	   0.001	   0.724	  
Rare	   -‐0.032	   <0.001	  

Gender	   292	   42486	  
All	   0.001	   0.575	  
Common	   0.001	   0.579	  
Rare	   -‐0.022	   <0.001	  

Genotype	   252	   31626	  
All	   0.006	   0.92	  
Common	   0.008	   0.972	  
Rare	   -‐0.002	   0.282	  

Liver	  Disease	   226	   25425	  

All	   -‐0.094	   <0.001	  
Common	   -‐0.092	   <0.001	  
Rare	   -‐0.041	   <0.001	  

Pancreatic	  
insufficiency	   225	   25200	  

All	   0.029	   1	  
Common	   0.03	   1	  
Rare	   -‐0.013	   <0.001	  
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To examine how geographical location affected the bacterial community composition 

samples were partitioned by centre. The data was split into 11 geographical locations, shown 

in Table 6.1. Coordinates, shown in Table 6.6, from each of the clinics who provided 

samples were collected and the distances between centres were calculated. It was 

hypothesised that the bacterial community composition would be more similar in clinics 

closer in geographical distance whereas those further apart would be more distinct. Mantel 

tests were used to investigate this relationship, revealing a significant correlation between 

community similarity and geographical distance (P<0.001). This result was observed for the 

whole community and the common and rare groups, Table 6.5.  

6.3.4.2 Partial Mantel tests 

Partial Mantel test were used to further investigate the observed relationship between FEV1 

and bacterial community composition. FEV1 was compared to community composition for the 

whole community as well as the common and rare groups, controlling for each clinical factor 

in turn; shown in Table 6.7. As a result of some values being unavailable for all clinical 

factors a subset of the data was investigated using partial Mantel test. This subset consisted 

of 79% of the total samples, from 9 of the original 11 centres. Consequently, all samples 

from Belfast and Seattle were removed due to a lack of associated clinical metadata.  

This analysis revealed that for the whole community and common group, only clinical status 

(P<0.001), BMI (P<0.001) and liver disease (P<0.001) were correlated with FEV1 and 

bacterial community composition (Table 6.7). However, the rare OTU group was found to 

correlate with location (P<0.001), clinical status (P=0.008), gender (P<0.001) and pancreatic 

insufficiency (P<0.001).  
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Table 6.6 List of clinic locations and co-ordinates. 

Exact clinic locations were not available for samples collected in UK, Eire or Poland. 

Therefore co-ordinates relate to central locations in each of the county capitals. 

Reference Location Clinic Coordinates 

1 Belfast, UK Belfast city 
hospital 

54.5875° N, 
5.9408° W 

2 Southampton, UK Southampton 
general hospital 

50.9330° N, 
1.4340° W 

3 London, UK Belfast city 
hospital 

51.5000° N, 
0.1167° W 

4 Dublin, Eire Belfast city 
hospital 

53.0000° N, 
8.0000° W 

5 Warsaw, Poland Belfast city 
hospital 

52.2167° N, 
21.0333° E 

6 Dartmouth, 
Bedford, NH 

Children's 
Hospital at 
Dartmouth-
Hitchcock 

43.6761° N, 
71.4228822° W 

7 Dartmouth, 
Lebanon, NH 

Dartmouth–
Hitchcock 

Medical Center 

43.6761° N, 
72.2733° W 

8 Portland, ME Maine Medical 
Center 

43.6530° N, 
70.2760° W 

9 Boston, MA Massachusetts 
General Hospital 

42.3628° N, 
71.0686° W 

10 Seattle, WA Seattle general 
hospital 

47.6628° N, 
122.2817° W 

11 Vermont, ME Vermont Medical 
centre 

44.479794°N 
73.194119°W 
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Table 6.7 Partial Mantel test analyses for the association between bacterial community 

composition and clinical factors.  

A) The correlation with the whole community, B) the correlation with the common OTU group 

and C) the correlation with the rare OTU group. The P-values have been calculated using 

the distribution of the Mantel test statistic (r) estimated for 9999 permutations. N= number of 

samples, n= number of pair wise comparisons between groups. Significant P-values are 

indicated in bold.  

A	   	  	  
	   	   	   	   	   	  Clinical	  

factor	  
Control	  for	  	   r	   P	   Clinical	  factor	   Control	  

for	  	  
r	   P	  

FEV1	  

Location	   -‐0.145	   <0.001	   Location	  

FEV1	  

0.016	   0.961	  
status	   -‐0.145	   <0.001	   clinical	  status	   -‐0.075	   <0.001	  
Age	   -‐0.146	   <0.001	   Age	   0.025	   0.996	  
BMI	   -‐0.145	   <0.001	   BMI	   -‐0.038	   <0.001	  

Diabetes	   -‐0.146	   <0.001	   Diabetes	   0.007	   0.771	  
Gender	   -‐0.146	   <0.001	   Gender	   -‐0.004	   0.33	  

Liver	  disease	   -‐0.14	   <0.001	   Liver	  disease	   -‐0.109	   <0.001	  

Pancreatic	  
insufficiency	   -‐0.146	   <0.001	  

Pancreatic	  
insufficiency	   -‐0.004	   0.315	  

	   	  
	   	  

	   	  
	   	   

B	  
	   	  

	   	  
	   	  Clinical	  

factor	  
Control	  for	  	   r	   P	   Clinical	  factor	   Control	  

for	  	  
r	   P	  

FEV1	  

Location	   -‐0.15	   <0.001	   Location	  

FEV1	  

0.019	   0.98	  
status	   -‐0.15	   <0.001	   clinical	  status	   -‐0.085	   <0.001	  
Age	   -‐0.15	   <0.001	   Age	   0.015	   0.952	  
BMI	   -‐0.149	   <0.001	   BMI	   -‐0.05	   <0.001	  

Diabetes	   -‐0.15	   <0.001	   Diabetes	   0.007	   0.778	  
Gender	   -‐0.15	   <0.001	   Gender	   0.001	   0.555	  

Liver	  disease	   -‐0.144	   <0.001	   Liver	  disease	   -‐0.107	   <0.001	  
Pancreatic	  
insufficiency	   -‐0.15	   <0.001	  

Pancreatic	  
insufficiency	   0.004	   0.669	  
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Table 6.7 Continued 

C	   	  	  
	   	  

	   	  
	   	  Clinical	  

factor	  
Control	  for	  	   r	   P	   Clinical	  factor	   Control	  

for	  	  
r	   P	  

FEV1	  

Location	   -‐0.055	   <0.001	   Location	  

FEV1	  

-‐0.104	   <0.001	  
status	   -‐0.053	   <0.001	   clinical	  status	   -‐0.022	   0.008	  
Age	   -‐0.053	   <0.001	   Age	   -‐0.001	   0.45	  
BMI	   -‐0.054	   <0.001	   BMI	   0.028	   0.999	  

Diabetes	   -‐0.053	   <0.001	   Diabetes	   -‐0.012	   0.104	  
Gender	   -‐0.053	   <0.001	   Gender	   -‐0.041	   <0.001	  

Liver	  disease	   -‐0.053	   <0.001	   Liver	  disease	   -‐0.009	   0.17	  

Pancreatic	  
insufficiency	   -‐0.053	   <0.001	  

Pancreatic	  
insufficiency	   -‐0.036	   <0.001	  
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6.3.5 Analysis of similarity (ANOSIM)  

Using both Sørensen and Bray-Curtis similarity, ANOSIM’s were carried out to further 

investigate the relationship between genotype and bacterial community composition. No 

significant difference was observed using Sørensen similarity index, however results 

comparing Bray Curtis similarity showed a significant difference in the whole bacterial 

community when homogeneous ΔF508 genotype was compared to heterogeneous ΔF508 

genotype (P=0.0379) (Table A6.3). 

Using Mantel tests it was revealed that when comparing genders, there was a significant 

change in the community composition of the rare OTU group. ANOSIMs, using both 

Sørensen and Bray-Curtis similarity, were used to further investigate this relationship. No 

significant difference was observed between males and females using Sørensen for the 

whole community (R=0.008, P=0.202) or the common OTU group (R=0.002, P=0.403) 

however, a significant difference was observed between genders in the rare OTU group 

(R=0.029, P=0.021). When using Bray-Curtis similarity index, a significant difference was 

observed in the whole community (R=0.026, P=0.029). From partitioning it was clear that this 

difference in community composition was driven by the rare taxa (R=0.032, P=0.01) as no 

significant difference was observed in the common OTU group (R=0.003, P=0.331).  

Mantel tests revealed that the community composition from samples collected from sites 

closer in geographic distance were more similar than those from geographically distinct 

locations. Analysis of similarity (ANOSIM) was used to back up these results and determine 

how the community composition changed between centre using both the Sørensen (Table 

6.8) and Bray-Curtis (Table 6.9) measures of similarity.  

The non CF healthy control group was included in this analysis as a distinct location. Using 

Sørensen similarity coefficient, the control group was found to be significantly different from 

all centres with the exception samples from of Southampton (R=0.049, P=0.161). However, 

when examining changes in OTU presence and abundance using Bray-Curtis similarity, the 

control samples were found to be significantly different from all centres. While Sørensen 

similarity showed the common taxa group to be similar to all centres apart from Poland 
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(R=0.075, P=0.009) and Bedford, Dartmouth (R=0.073, P=0.009), all centres were found to 

be significantly different when accounting for species abundance using Bray-Curtis similarity 

measure. When the rare group was explored, similar community composition was observed 

with both Sørensen and Bray-Curtis similarity measures, revealing similar composition in the 

control samples as those from Belfast (Sørensen; R=-0.045, P=0.711, Bray-Curtis, R=-

0.0143, P=0.992), Southampton (Sørensen; R=-0.0131, P=0.552, Bray-Curtis, R=-0.0088, 

P=0.514) and Seattle (Sørensen; R=0.059, P=0.206, Bray-Curtis, R=-0.007, P=0.517). 

ANOSIMs performed using Sørensen measure revealed the common taxa to be conserved 

between groups, with only samples from Seattle, WA (e.g. Belfast, UK; R=0.042, P=0.007) 

and Vermont, ME (eg. Portland, ME; R=0.109, P=0.004) showing significant differences from 

other clinic locations, Table 6.8B. On the other hand, significant differences in rare taxa were 

found to occur when compared to least one other CF centre, Table 6.8C. Belfast, UK, was 

the only centre to be found to be significantly different from a single other location, in this 

case Seattle, WA (R=0.134, P<0.001). Comparison of the differences in whole community 

composition and the common and rare groups indicated that the rare community was driving 

differences between centres.  

A similar pattern was observed when comparing community composition between CF 

centres using Bray-Curtis measure of similarity. However, when considering OTU 

abundance, more significant differences were observed in the common OTU group. This was 

particularly prevalent between samples from Belfast, UK, which were shown to have 

significantly different community composition from 4 other sites (Dartmouth, Bedford, NH, 

Portland, ME, Seattle, WA and Vermont, ME) and Vermont, ME, which was shown to be 

significantly different from 6 other sites (Belfast, UK, Warsaw, Poland, Dartmouth, Lebanon, 

NH, Portland, ME, Boston, MA and Seattle, WA), Table 6.9B. When the rare OTU group was 

compared more significant differences were observed, again suggesting that the rare 

community is responsible for driving the changes in community composition between CF 

centres.   
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Table 6.8 Comparison of community composition using analysis of similarity 

(ANOSIM) for each centre location. 

ANOSIMs were carried out using Sorensen measure of similarity, for the A) whole, B) 

common and C) rare communities. Matrices below show R values in the lower half and P 

values on the upper. Significant R values indicate the samples within a group are more 

similar than would be expected by random chance, therefore the two groups can be 

considered significantly different. 1) Belfast, UK, 2) Southampton, UK, 3) London, UK, 4) 

Dublin, Eire, 5) Warsaw, Poland, 6) Dartmouth, Bedford, NH, 7) Dartmouth, Lebanon, NH, 8) 

Portland, ME, 9) Boston, MA, 10) Seattle, WA, 11) Vermont, ME. 

P values less than 0.05 were considered significant. Significant P values are highlight in 

green.   

A 

  1 2 3 4 5 6 7 8 9 10 11 12  
 1 r2       P 0.22 0.8542 0.3681 0.6404 0.3345 0.444 0.0995 0.0703 0.0001 0.6653 0.0473  
 2 0.0261 r2       P 0.9242 0.4748 0.1288 0.0648 0.2457 0.0006 0.007 0.0008 0.0563 0.1605  
 3 -0.087 -0.097 r2       P 0.0001 0.0092 0.0003 0.005 0.0008 0.0003 0.1137 0.0392 0.0001  
 4 0.031 -0.002 0.535 r2       P 0.1721 0.0044 0.0049 0.0352 0.2279 0.0453 0.0382 0.0002  
 5 -0.031 0.0693 0.139 0.1057 r2       P 0.0045 0.1397 0.0003 0.0199 0.0003 0.0023 0.0001  
 6 0.0254 0.0887 0.3126 0.3603 0.1526 r2       P 0.6166 0.7063 0.0648 0.0005 0.1968 0.0001  
 7 0.0025 0.0966 0.595 0.7381 0.1727 -0.047 r2       P 0.5933 0.9171 0.0416 0.2987 0.0016  
 8 0.0814 0.1795 0.2957 0.2301 0.2075 -0.025 -0.052 r2       P 0.0734 0.0002 0.0293 0.0001  
 9 0.1238 0.1952 0.2354 0.0834 0.1083 0.0679 -0.208 0.0764 r2       P 0.0002 0.0064 0.0001  
 10 0.1338 0.164 0.0972 0.2094 0.2711 0.2824 0.2817 0.2738 0.3703 r2       P 0.0326 0.0024  
 11 -0.024 0.048 0.1286 0.2427 0.1904 0.0339 0.0695 0.0704 0.2044 0.1078 r2       P 0.0001  
 12 0.1208 0.0496 0.5099 0.8882 0.548 0.5801 0.6969 0.5013 0.6073 0.2227 0.3464 r2       P  
               

	  1	  

 

 
 
B 
 

  1 2 3 4 5 6 7 8 9 10 11 12  
 1 r2       P 0.9215 0.887 0.8222 0.6527 0.5663 0.3859 0.0312 0.1369 0.0073 0.8519 0.9926  
 2 -0.053 r2       P 0.6037 0.677 0.2041 0.1365 0.1409 0.0009 0.017 0.2836 0.2853 0.9174  
 3 -0.108 -0.025 r2       P 0.4542 0.2532 0.336 0.0678 0.9069 0.1029 0.4902 0.654 0.0642  
 4 -0.154 -0.083 -4E-04 r2       P 0.8587 0.7934 0.2364 0.9854 0.9845 0.5141 0.596 0.4344  
 5 -0.037 0.0533 0.0095 -0.14 r2       P 0.9655 0.3601 0.7324 0.1333 0.0631 0.1787 0.0099  
 6 -0.021 0.076 0.0053 -0.142 -0.025 r2       P 0.4158 0.9269 0.18 0.0484 0.1954 0.0099  
 7 0.0343 0.1966 0.3141 0.1548 0.0628 0.0269 r2       P 0.8198 0.6739 0.0957 0.1532 0.0673  
 8 0.1421 0.1885 -0.064 -0.236 -0.025 -0.04 -0.154 r2       P 0.6523 0.0001 0.0037 0.0386  
 9 0.1024 0.192 0.0311 -0.221 0.0278 0.019 -0.099 -0.026 r2       P 0.0018 0.0241 0.0023  
 10 0.0419 0.0232 -0.006 -0.048 0.1314 0.1462 0.2639 0.3568 0.3117 r2       P 0.2731 0.9171  
 11 -0.058 0.009 -0.035 -0.081 0.0448 0.042 0.2031 0.1089 0.1536 0.031 r2       P 0.9621  
 12 -0.155 -0.063 0.0529 0.0739 0.0748 0.0729 0.373 0.0525 0.1532 -0.1 -0.046 r2       P  
               

	  1	  
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Table 6.8 Continued. 
 
C. Comparison of rare community composition using analysis of similarity (ANOSIM) for 

each centre location. 

1) Belfast, UK, 2) Southampton, UK, 3) London, UK, 4) Dublin, Eire, 5) Warsaw, Poland, 6) 

Dartmouth, Bedford, NH, 7) Dartmouth, Lebanon, NH, 8) Portland, ME, 9) Boston, MA, 10) 

Seattle, WA, 11) Vermont, ME. 

 
 1 2 3 4 5 6 7 8 9 10 11 12  

1 r2       P 0.6024 0.9939 0.6388 0.5378 0.5001 0.609 0.2607 0.0819 0.0001 0.8722 0.7112  
2 -0.014 r2       P 0.9478 0.487 0.0683 0.0516 0.2564 0.0006 0.0056 0.0082 0.0344 0.5518  
3 -0.185 -0.118 r2       P 0.0001 0.0225 0.0005 0.0041 0.0006 0.0008 0.3873 0.0839 0.0001  
4 -0.057 -0.013 0.5505 r2       P 0.2948 0.0121 0.005 0.0196 0.2963 0.1453 0.068 0.0002  
5 -0.012 0.1028 0.1016 0.0629 r2       P 0.0008 0.2337 0.0002 0.0134 0.0009 0.0017 0.0001  
6 -0.005 0.1081 0.2854 0.3212 0.1739 r2       P 0.7071 0.6067 0.046 0.0015 0.1786 0.0001  
7 -0.063 0.1101 0.6116 0.7857 0.123 -0.086 r2       P 0.4731 0.9549 0.062 0.3559 0.0016  
8 0.0349 0.1939 0.3102 0.2664 0.2642 -0.015 -0.018 r2       P 0.0186 0.001 0.0299 0.0001  
9 0.1178 0.2233 0.2102 0.0502 0.1184 0.0772 -0.235 0.1266 r2       P 0.0001 0.0029 0.0001  
10 0.1342 0.1235 0.0198 0.1395 0.2807 0.2653 0.261 0.2463 0.3729 r2       P 0.0576 0.2062  
11 -0.059 0.0539 0.0984 0.2087 0.2078 0.0398 0.0494 0.0685 0.2202 0.0945 r2       P 0.0003  
12 -0.045 -0.013 0.4979 0.9086 0.4836 0.5331 0.7048 0.4711 0.5514 0.0595 0.2746 r2       P  

	  1	    
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Table 6.9 Comparison of community composition using analysis of similarity 

(ANOSIM) for each centre location. 

ANOSIMs were carried out using Bray-Curtis measure of similarity, for the A) whole, B) 

common and C) rare communities. Matrices below show R values in the lower half and P 

values on the upper. Significant R values indicate the samples within a group are more 

similar than would be expected by random chance, therefore the two groups can be 

considered significantly different. 1) Belfast, UK, 2) Southampton, UK, 3) London, UK, 4) 

Dublin, Eire, 5) Warsaw, Poland, 6) Dartmouth, Bedford, NH, 7) Dartmouth, Lebanon, NH, 8) 

Portland, ME, 9) Boston, MA, 10) Seattle, WA, 11) Vermont, ME. 

P values less than 0.05 were considered significant. Significant P values are highlighted in 

green.   

A 
 

  1 2 3 4 5 6 7 8 9 10 11 12  
 1 r2       P 0.0003 0.0295 0.7071 0.977 0.0305 0.0919 0.0295 0.173 0.0002 0.0016 0.0001  
 2 0.169 r2       P 0.7363 0.8735 0.3203 0.0576 0.1413 0.0195 0.133 0.0527 0.2608 0.0122  
 3 0.1763 -0.044 r2       P 0.0649 0.001 0.3053 0.0308 0.0325 0.0267 0.0611 0.201 0.0001  
 4 -0.087 -0.135 0.1615 r2       P 0.0159 0.7382 0.0047 0.6338 0.936 0.7903 0.5422 0.0001  
 5 -0.136 0.0207 0.2943 0.365 r2       P 0.0108 0.0193 0.0721 0.024 0.6996 0.0118 0.0001  
 6 0.1574 0.0847 0.0109 -0.085 0.116 r2       P 0.3516 0.7966 0.37 0.0025 0.1156 0.0001  
 7 0.2316 0.1644 0.2386 0.5159 0.4841 0.036 r2       P 0.3307 0.3389 0.0273 0.0403 0.001  
 8 0.1319 0.0953 0.117 -0.062 0.0619 -0.032 0.0651 r2       P 0.4035 0.0105 0.0898 0.0001  
 9 0.0765 0.0725 0.1197 -0.176 0.0881 0.0028 0.0565 0.0005 r2       P 0.0276 0.0204 0.0001  
 10 0.108 0.0582 0.1021 -0.079 -0.031 0.1849 0.2605 0.1356 0.1324 r2       P 0.1123 0.0002  
 11 0.1811 0.012 0.0405 -0.02 0.1391 0.0516 0.2478 0.0443 0.1267 0.0493 r2       P 0.0008  
 12 0.4491 0.131 0.3909 0.8571 0.8583 0.4659 0.8103 0.4288 0.6368 0.1954 0.2139 r2       P  

	  1	  
 

 
 
 
B 
 

  1 2 3 4 5 6 7 8 9 10 11 12  
 1 r2       P 0.0012 0.0349 0.8561 0.9881 0.044 0.1651 0.0307 0.2119 0.0003 0.0021 0.0001  
 2 0.1439 r2       P 0.3899 0.8974 0.0543 0.1522 0.1286 0.0217 0.1066 0.2422 0.313 0.0073  
 3 0.1717 0.0125 r2       P 0.2129 0.0008 0.2324 0.1168 0.167 0.0526 0.0841 0.263 0.002  
 4 -0.152 -0.119 0.0656 r2       P 0.0454 0.7379 0.0377 0.8074 0.9663 0.954 0.226 0.0001  
 5 -0.154 0.0885 0.3099 0.264 r2       P 0.0088 0.0199 0.1955 0.0193 0.7474 0.0065 0.0001  
 6 0.1415 0.0433 0.022 -0.072 0.1487 r2       P 0.5728 0.73 0.2858 0.0844 0.1052 0.0001  
 7 0.1732 0.1312 0.1602 0.3333 0.4677 -0.027 r2       P 0.4662 0.3707 0.0914 0.0496 0.0007  
 8 0.1365 0.0904 0.0491 -0.122 0.0254 -0.027 -0.02 r2       P 0.569 0.0178 0.0419 0.0001  
 9 0.0662 0.0718 0.0945 -0.188 0.1015 0.0105 0.0255 -0.018 r2       P 0.0675 0.0104 0.0001  
 10 0.0806 0.0177 0.0766 -0.132 -0.036 0.0646 0.138 0.11 0.0916 r2       P 0.4138 0.0008  
 11 0.1769 0.0071 0.0249 0.0558 0.1768 0.047 0.1811 0.0642 0.1469 0.0049 r2       P 0.0085  
 12 0.4539 0.1416 0.2248 0.9312 0.8343 0.3571 0.73 0.3187 0.5677 0.1604 0.1291 r2       P  

	  1	    
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Table 5.9 Continued. 
 
1) Belfast, UK, 2) Southampton, UK, 3) London, UK, 4) Dublin, Eire, 5) Warsaw, Poland, 6) 

Dartmouth, Bedford, NH, 7) Dartmouth, Lebanon, NH, 8) Portland, ME, 9) Boston, MA, 10) 

Seattle, WA, 11) Vermont, ME. 

 
 
C 
 

  1 2 3 4 5 6 7 8 9 10 11 12  
 1 r2       P 0.4969 0.9935 0.7131 0.6179 0.36 0.2517 0.1755 0.1199 0.0001 0.6784 0.992  
 2 -0.003 r2       P 0.8774 0.2307 0.0313 0.0022 0.089 0.0003 0.0051 0.0418 0.0036 0.514  
 3 -0.176 -0.087 r2       P 0.0005 0.5108 0.0012 0.0058 0.0014 0.0056 0.2154 0.0691 0.0001  
 4 -0.079 0.0918 0.4319 r2       P 0.1258 0.0001 0.0032 0.0217 0.6996 0.031 0.1305 0.0001  
 5 -0.024 0.1201 -0.011 0.131 r2       P 0.0027 0.0789 0.0003 0.0278 0.0002 0.0004 0.0001  
 6 0.0205 0.1963 0.2332 0.4437 0.1686 r2       P 0.1543 0.9635 0.0279 0.0001 0.2081 0.0001  
 7 0.0973 0.249 0.4842 0.6746 0.1929 0.1607 r2       P 0.1903 0.6506 0.0059 0.0689 0.0002  
 8 0.0512 0.2217 0.246 0.2672 0.2013 -0.054 0.1466 r2       P 0.0217 0.0001 0.0945 0.0001  
 9 0.0916 0.2202 0.1173 -0.08 0.0899 0.0869 -0.084 0.118 r2       P 0.0001 0.0014 0.0001  
 10 0.1699 0.0774 0.06 0.2312 0.3142 0.3368 0.4424 0.2976 0.3682 r2       P 0.0028 0.517  
 11 -0.026 0.0951 0.1006 0.14 0.2325 0.0365 0.2583 0.0408 0.2223 0.1637 r2       P 0.0007  
 12 -0.143 -0.009 0.4512 0.5974 0.5051 0.5467 0.8201 0.42 0.4652 -0.007 0.1888 r2       P  

	  1	    
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6.3.6 Similarity percentage (SIMPER) 

Similarity percentage analysis (SIMPER) was carried out in order to examine the taxa 

responsible for the changes in community composition between genders, observed using 

ANOSIM.  Using Bray-Curtis measure of similarity SIMPER tables were created to examine 

the contribution of species from the whole community as well as the common and rare 

groups, between genders (Table 6.10). Pseudomonas aeruginosa was found to contribute 

the most to the whole community and common group similarity between genders. Of the rare 

group, Staphylococcus aureus was observed to have the biggest contribution to community 

similarity.    

The mean abundance of the recognised CF pathogens; Pseudomonas aeruginosa, 

Staphylococcus aureus, Burkholderia cepacia complex and Stenotrophomonas maltophilia, 

were all found to be higher in female patients than males.     
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Table 6.10 Similarity of percentages (SIMPER) analysis of the bacterial dissimilarity 

(Bray-Curtis) of the bacterial community between genders. 

Given is the mean % abundance of sequences for each OTU present in females and males. 

In addition, the average dissimilarity between genders is given. Percentage contribution is 

calculated from the mean contribution divided by the mean dissimilarity between genders. A) 

SIMPER analysis of the whole community, B) SIMPER analysis of the common OTU group 

C) SIMPER analysis of the rare OTU group. *Indicates organisms partitioned as common; 

organisms in bold are considered to be recognised CF pathogens.  

 
A 

Taxon	  	  

%	  Mean	  abundance	   Average	  
dissimilarity	  

Contribution	  
%	  

Cumulative	  
%	  Female	   Male	  

Pseudomonas	  aeruginosa*	   801	   686	   22.47	   30.37	   30.37	  
Prevotella	  melaninogenica*	   101	   150	   5.169	   6.987	   37.36	  
Staphylococcus	  aureus	   120	   93.1	   4.992	   6.747	   44.11	  
Burkholderia	  cepacia	  
complex	   113	   67.7	   4.484	   6.061	   50.17	  

Prophorymonas	  catoniae	   74.4	   101	   3.935	   5.318	   55.48	  
Haemophilus	  influenzae	   53	   90.3	   3.572	   4.827	   60.31	  
Veillonella	  parvula*	   69.7	   96.3	   3.096	   4.185	   64.5	  
Stenotrophomonas	  
maltophilia	   64.8	   30.9	   2.462	   3.328	   67.82	  

Streptococcus	  mitis	  *	   60.5	   54.2	   2.28	   3.082	   70.91	  
Prevotella	   39	   44.4	   2.048	   2.768	   73.67	  
Rothia	  mucilaginosa*	   31.6	   41.4	   1.513	   2.045	   75.72	  
Prevotella	  oris	   39.8	   19.7	   1.359	   1.837	   77.55	  
Neissaria	  flavescens	   20.3	   28	   1.212	   1.639	   79.19	  
Prevotella	  denticola	   20.8	   16.7	   0.9569	   1.293	   80.49	  
Streptococcus	  parasanguinis	   14.5	   17.8	   0.7596	   1.027	   81.51	  
	  1	  
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Table 6.10 Continued 
B 
 

Taxon	  	  

%	  Mean	  abundance	   Average	  
dissimilarity	  

Contribution	  
%	  

Cumulative	  
%	  Female	   Male	  

Pseudomonas	  aeruginosa*	   801	   686	   40.26	   59.45	   59.45	  
Prevotella	  melaninogenica*	   101	   150	   10.99	   16.23	   75.68	  
Veillonella	  parvula*	   69.7	   96.3	   7.261	   10.72	   86.41	  
Streptococcus	  mitis*	   60.5	   54.2	   5.539	   8.179	   94.58	  
Rothia	  mucilaginosa*	   31.6	   41.4	   3.667	   5.415	   100	  

	   	   	   	   	   	  	  

	  1	  

 
 
C 

Taxon	  	  

%	  Mean	  abundance	   Average	  
dissimilarity	  

Contribution	  
%	  

Cumulative	  
%	  Female	   Male	  

Staphylococcus	  aureus	   120	   93.7	   10.9	   12.02	   12.02	  
Prophorymonas	  catoniae	   74.4	   102	   9.14	   10.09	   22.11	  
Burkholderia	  cepacia	  
complex	   113	   68.1	   7.622	   8.41	   30.52	  

Haemophilus	  influenzae	   53	   90.8	   7.217	   7.963	   38.48	  
Stenotrophomonas	  
maltophilia	   64.8	   31	   4.562	   5.033	   43.51	  

Prevotella	   39	   44.6	   4.319	   4.765	   48.28	  
Prevotella	  oris	  	   39.8	   19.9	   3.26	   3.597	   51.88	  
Neissaria	  flavescens	   20.3	   28.1	   2.539	   2.801	   54.68	  
Granulicatella	  adiacens	   7.82	   24.9	   2.188	   2.414	   57.09	  
Prevotella	  denticola	  	   20.8	   16.8	   2.146	   2.368	   59.46	  
Streptococcus	  parasanguinis	  	   14.5	   17.9	   2.067	   2.281	   61.74	  
Fusobacterium	  nucleatum	   6.92	   18.6	   1.976	   2.18	   63.92	  
Porphyromonas	  catoniae	  	   9.75	   17.7	   1.633	   1.802	   65.72	  
Porphyromonas	  
endodontalis	   1.98	   19.4	   1.418	   1.565	   67.29	  

Leptotrichia	  wadei	   15.9	   11	   1.405	   1.55	   68.84	  
Actinomyces	  meyeri	   7.56	   13.8	   1.394	   1.538	   70.37	  
Prevotella	  pallens	   12.5	   8.22	   1.35	   1.49	   71.86	  
Megasphaera	  
micronuciformis	   9.13	   9.82	   1.214	   1.339	   73.2	  

Haemophilus	  parainfluenzae	   8.9	   10.4	   1.156	   1.275	   74.48	  
Prevotella	  nanceiensis	  	   5.25	   10.6	   0.9745	   1.075	   75.55	  
Streptococcus	  infantis	  	   10.2	   6.46	   0.9417	   1.039	   76.59	  

	   	   	   	   	   	  	  1	  
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6.4 Discussion 

Culture independent technologies have provided a wealth of previously unconsidered 

information on the bacterial community within the CF lung. However, the power of these 

studies has been limited by the number of samples investigated. To date studies have relied 

on small sample sets of less than 50 samples, typically collected from a single centre (3, 6, 

8, 9). In their paper published in 2012, Delhaes et al, acknowledge that the cohort size they 

use is small, 45 CF individuals, making it difficult to understand the underpinning 

relationships between the bacterial community and disease state (6).  

Despite the limitations of previous studies, researchers have recognised the importance of 

understanding how the bacterial community relates to clinical factors and patient well being. 

Studies by Klepac-Ceraj et al (2010), Cox et al (2010), van der Gast et al (2011) and 

Delhaes et al (2012), investigated the relationship between bacterial diversity, age and lung 

function (3, 6, 8, 9). While Klepac-Ceraj et al (2010) found that in children, although diversity 

is not correlated with lung function, they did find a strong relationship between bacterial 

diversity and age using throat swabs from children between 2 and 16 years, analysed using 

Phylochip hybridisation (8). This suggests that as children age, bacterial diversity decreases 

(8). Similar findings were seen by Cox et al (2010) using a cohort of 51, age stratified 

patients (from 1 to 72 years old) observing a decrease in lung function with age (3). Smaller 

sample sets of 14 and 4 patients, van der Gast et al (2011) and Delhaes et al (2012) failed to 

show a correlation between age and lung function, however they did identify a strong 

correlation between bacterial community diversity and lung function (6, 9).  

The relationship between age, lung function and bacterial diversity could potentially be an 

important marker of disease progression in CF patients. However, a high degree of variation 

was observed in the previously published studies. By investigating this relationship with the 

much larger cohort of patients involved in this study a more complete understanding of these 

relationships could be gained. It followed that using the three recognised measures of 

bacterial diversity; species richness, the Shannon-Wiener index and the inverse Simpson’s 

index, no significant pattern in diversity was observed with age.  
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Although, no significant trend in diversity was observed with age (mean age 29.9± SD 9.74, 

max 71, min 14.24), a significant positive relationship was found between diversity and lung 

function. The failure to identify a significant pattern between diversity and age, in this adult 

CF cohort is perhaps surprising as longitudinal studies have previously demonstrated that 

lung function decreases over the life of CF patients (4). However the rate of this decline has 

been demonstrated to be dependent on the nature of the CF symptoms experienced by an 

individual patient; with some individuals experiencing a more progressive disease phenotype 

than others (4). This interpatient variation results in age being a poor predictor of bacterial 

diversity and lung function; while older patients are in theory likely to have worse lung 

function and therefore a less diverse microbial community than younger individuals, a patient 

who survives beyond the average age of mortality (~37 years of age) is likely to have a 

milder disease phenotype than other individuals. As such, while lung function may be a 

better predictor of bacterial diversity than age, a more longitudinal approach may be required 

for individual patients in order to be confident in the results.  

Despite the failure to observe any pattern in diversity with age, the relationship between 

bacterial diversity and lung function has been observed in previous studies. However, while 

van der Gast et al (2011) reports r2 values of over 0.4 when describing this relationship (9), 

the variance observed using a significantly larger data set resulted in r2 values of 0.22, 0.21, 

0.17 (for species richness, the Shannon-Wiener index and the inverse Simpson’s index 

respectively). Despite the fact that lung function (as measure by forced expiratory volume in 

1 second (FEV1)) has been found to be the single best predictor of mortality in CF patients 

(27), the high degree of variation implies that single point measurements of lung function 

alone are unable to give a satisfactory indication of species diversity.  

To further examine the relationship between, age, lung function and the bacterial community, 

Mantel and partial Mantel test were utilized. Using the Mantel test it was found that 

community composition, as measured by Bray-Curtis measure of similarity, showed a 

significant correlation with both age and lung function for the whole community as well as for 

the common and rare groups. This result suggests that patients with similar bacterial 
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communities were more likely to be similar in age or lung function. To investigate if these two 

variables were correlated partial Mantel tests were used, revealing that while controlling for 

age, FEV1 was correlated with lung function, this was not the case when FEV1 was used to 

control for age. Importantly no autocorrelation was observed between age and lung function 

(r=0, P=0.965). This suggests that similarities in lung function are related to bacterial 

composition. The observed correlations between lung function and community composition 

adds weight to the results of the diversity data, and suggests that lung function is strongly 

associated to the bacterial community and that this is irrespective of age. 

Despite relationships observed between the bacterial community and lung function, the 

variance explained by FEV1 was still found to be low, suggesting that other clinical factors 

were involved. In order to investigate additional clinical factors influencing the correlation 

observed between FEV1 and community composition partial mantel tests were used. These 

tests revealed that FEV1 and clinical status (stable or being treated for CFPE), BMI and liver 

disease were correlated with similarity in bacterial community composition. Correlation 

between FEV1 and clinical status was not surprising as it has previously been shown that 

CFPE have negative effects on lung function (28). This relationship between the bacterial 

community and CFPE is further explored in Chapter 7.  

The relationship between the bacterial community and clinical status has been explored in 

several publications (5, 29, 30) however, it is unclear how liver disease is related to the 

bacterial community within the lung. Investigation into changes in bacterial diversity as a 

result of this showed no significant relationship, suggesting that although liver disease did 

not correlate with bacterial diversity it did with community composition. Liver disease may 

therefore be an area which requires further examination.  

Patients with similar heights and weights would be expected to have similar lung capacities. 

Further, it has also been shown in previous studies that increases in BMI are associated with 

increases in FEV1 (31). It therefore makes clinical sense for BMI and FEV1 to be correlated 

with community composition. Investigation of the relationship between bacterial diversity and 

BMI revealed that BMI had a significant positive relationship between the common group 
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bacterial diversity. This relationship however, explained very little of the variance (S*;  

r2=0.039, H’; r20.028 ,1-D; r2=0.028), suggesting that while changes in BMI are associated 

with changes in the bacterial community other factors are effecting this relationship, one of 

these is likely to be FEV1.   

The high levels of interpatient variation observed when considering the bacterial community 

in relation to age and lung function, suggests that other factors may be playing a significant 

role in patient outcomes. Previous studies have implied that CFTR genotype may have 

potentially important consequences for disease progression (10). While the majority of 

patients were found to ΔF508 homozygous, the huge variation in other mutations seen in the 

non-homozygous individuals resulted in it being impossible to look for trends due to specific 

mutations. As a result, and following the convention outlined by Klepac-Ceraj et al (2010), 

data was partitioned into 3 groups; ΔF508 homozygotes, ΔF508 heterozygotes and other 

mutations.  Whilst results of the investigation by Klepac-Ceraj et al (2010) suggested a 

significant difference in the bacterial community between patients with ΔF508 mutations and 

other mutations (8), our results show no significant change in bacterial diversity between 

genotype groups. Although ANOSIM, using Bray-Curtis similarity index revealed a significant 

difference (P=0.03) in community composition between patients with homozygous and 

heterozygous ΔF508 mutations. This was only observed when the whole community was 

investigated. Mantels tests on the other hand, revealed no difference in bacterial 

composition. While there is still a probability that genotype plays a role in disease 

progression, our results suggest that it does not have a significant effect on bacterial 

diversity, although some evidence was observed that there might be some changes in 

community composition. In order to advance our understanding of the impact genotype plays 

on the bacterial community a much larger cohort of rare genotypes would be required.    

Historically the survival rates of CF patients have shown that female patients are likely to die 

before male (11, 12). In recent years this gap has been shown to close (13) however, there 

still remains the question of what causes this disparity between genders. In order to 

investigate if the bacterial community differs between male and female patients samples 
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were partitioned by gender and bacterial diversity and composition. The comparison of 

bacterial diversity using ANOVA revealed only a significant difference in the inverse 

Simpson’s index, indicating that female patients have a lower diversity when accounting for 

species presence and abundance. Even so, this finding accounted for very little of the 

variance observed (r2=0.02).  

To further investigate any relationship between the bacterial community and gender, analysis 

of similarity was employed. ANOSIM of the whole community revealed significant differences 

in bacterial similarity as calculated by Sørensens similarity index however, this was not 

observed when Bray-Curtis similarity index was used. This result suggests that while the 

members of the bacterial community may be similar, bacterial abundances vary between 

genders. To investigate if the common or rare taxa groups were responsible for these 

changes ANOSIMs were carried on the partitioned data. This revealed no significant 

difference in the common group OTUs between females and males using either Sørensens 

or Bray-Curtis similarity indices. However importantly, when the rare group was considered 

both similarity indices revealed significant differences in bacterial community composition 

between genders.  

Similarity percentage analysis allowed the percentage contribution of OTUs to the female 

(mean age 28.7± SD 9.76, max 67, min 14.24) and male (mean age 30.7± SD 9.68, max 71, 

min 17.38) communities to be calculated. Pseudomonas aeruginosa was shown to contribute 

most to bacterial similarity; it was however shown to have a higher mean abundance in 

females than males. Interestingly Staphylococcus aureus, which was found to be the third 

biggest contributor to the whole community similarity (6.7%) and largest contributor to the 

rare group similarity (12.02%), were also found to have a larger mean abundance in females 

than males, suggesting that these recognised CF pathogens are more abundant in female 

CF patients. This relationship requires further investigation as it has been shown that co-

infection of P. aeruginosa and S. aureus may be related to worse disease outcomes (32). 

The relationship between gender and the bacterial community may be an important avenue 

for further study as it may signify the requirement for gender tailored antibiotic intervention.  
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A published study by Stressmann et al (2011) comparing the bacterial community between 2 

distinct CF centres, showed that while the common bacterial community was found to be 

similar between sites, samples collected from the US centre was significantly less diverse 

(15). The large number of samples and centres involved in this project allowed the 

investigation of between centres differences. By investigating diversity and composition at 

the metacommunity level across all study centres, this work could identify the effect of centre 

and geographic location on the bacterial community within the lung. Investigation of the 

whole community diversity alongside that of the common and rare groups revealed a 

significant difference in bacterial diversity in the whole and common groups, although the 

rare community showed only a significant change in the values of richness. However, while 

overall changes in diversity by centre are shown to be significantly different, post-hoc testing 

found few significant differences between centres. This suggests that while centre may be a 

contributing factor to bacterial diversity, differences in interpatient variation is likely to be 

more to account for more of the observed changes.  

Mantel tests showed community composition, as measured by Bray-Curtis similarity index, 

was significantly correlated with distance between centres. Showing that centres closer 

together geographically showed more similarity in community composition. To further 

investigate these changes ANOSIMs were carried out, using both Bray-Curtis and Sørensen 

indices of similarity, revealing significant changes in bacterial composition between centres. 

Despite the significant result of the Mantel tests, ANOSIMs on the whole community as well 

as the common and rare groups revealed significant differences between centres. In most 

cases this was irrespective of geographical distance. The common OTU group was found to 

be more conserved between centres than the rare group, suggesting that differences due to, 

centre, geographical distance or ethnic origin, were driven by the rare community. These 

results indicate that while geographical difference is a contributing factor to differences in the 

bacterial community, centre related differences such as treatment regimes also play a 

significant role in bacterial community composition.  
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 This study has revealed a range of clinical factors associated with differences in the 

bacterial community of the CF lung. The basic statistical analyses carried out here have 

provided an overview of the potentially important relationships which warrant further 

investigation. Previous studies have suggested that relationships between clinical factors 

such as, age, FEV1, CFTR genotype and gender could have potential clinical implications 

however, the sample sizes involved in these studies have failed to observe the true level of 

interpatient variation.  

This study is an initial investigation into a large and complex dataset, the size of which has 

never before been used in the exploration of the microbial community within the CF lung. As 

such, this data has the potential to be further mined as important clinical relationships are 

revealed. This study aimed to validate previously observed relationships between clinical 

factors and the bacterial community within the CF lung by testing them against this 

unparalleled dataset. While the size of this dataset provides unrivalled statistical power, it 

also adds levels of complexity to the analysis. Results from this study have so far revealed 

that no single clinical factor can explain the variance observed between patients.  

The size of this dataset, and the associated metadata collected alongside, provides the 

potential for a wide range of further investigations. Some of the future work on this data will 

include the use of more in depth and multivariate analyses in an attempt to explain the 

bacterial community within the lung and how this affects disease progression. On top of this, 

the role antibiotic regimes play in the bacterial community observed will be investigated to 

identify if particular antibiotic combinations result in better patient outcomes. In addition, 

further investigation into the role gender plays in bacterial community composition will be 

carried out. To gain a greater understanding of poor disease outcomes in female CF patients 

their bacterial community needs to be investigated further, particularly the presence of 

Pseudomonas aeruginosa and Staphylococcus aureus in the lower airways. This will be 

discussed more fully in Chapter 8. 
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6.6 Appendix  

Table A6.1 Species-level identities of detected bacterial taxa identified from 311 

sputum samples.  

Sputum collected from CF patients (n=292) and Non-CF controls (n=19). Given the length of 

the ribosomal sequences analysed (approx 350bp) these identities should be considered 

putative. Taxa partitioned as common are shown in bold.  

Class Family Taxon name 

Acidobacteria Acidobacteria Gp1 family 
incertae sedis Granulicella mallensis 

 
Acidobacteria Gp16 family 
incertae sedis Acidobacteria 

  Dehalococcoides ethenogenes  

  Paenibacillus taichungensis 
Actinobacteria Acidimicrobineae Aciditerrimonas ferrireducens 

 Actinomycetaceae Actinomyces 

  Actinomyces cardiffensis 

  Actinomyces dentalis 

  Actinomyces graevenitzii 

  Actinomyces hongkongensis 

  Actinomyces israelii  

  Actinomyces johnsonii  

  Actinomyces massiliensis 

  Actinomyces meyeri 

  Actinomyces naeslundii 

  Actinomyces odontolyticus 

  Actinomyces oris 

  Actinomyces radicidentis  

  Actinomyces viscosus 

  Arcanobacterium haemolyticum 

 Actinomycetales Micromonospora 

 Bifidobacteriaceae Alloscardovia omnicolens 

  Bifidobacterium animalis 

  Bifidobacterium breve 

  Bifidobacterium dentium 

  Bifidobacterium longum 

  Bifidobacterium subtile 

  Bombiscardovia coagulans 
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Table A6.1 Continued 

Class Family Taxon name 

  Parascardovia denticolens 

  Scardovia wiggsiae 

  Brevibacterium epidermidis 

  Brevibacterium massiliense 

  Brevibacterium otitidis 

  Brevibacterium sanguinis 

 Cellulomonadaceae Cellulomonas 

  Tropheryma whipplei 

 Conexibacteraceae Conexibacter woesei  

 Coriobacteriaceae Atopobium parvulum 

  Atopobium rimae 

  Cryptobacterium curtum 

  Olsenella uli 

 Corynebacteriaceae Corynebacterium afermentans 

  Corynebacterium amycolatum 

  Corynebacterium casei 

  Corynebacterium diphtheriae 

  Corynebacterium durum 

  Corynebacterium lipophiloflavum 

  Corynebacterium matruchotii 

  Corynebacterium mucifaciens 

  
Corynebacterium 
pseudodiphtheriticum 

  Corynebacterium striatum 

  
Corynebacterium 
tuberculostearicum 

  Corynebacterium ureicelerivorans 

  Corynebacterium variabilis 

  Turicella otitidis  

 Demequinaceae Demequina aestuarii 

 Dermacoccaceae Dermacoccus nishinomiyaensis 

  Kytococcus sedentarius 

 Dietziaceae Dietzia maris 

 Geodermatophilaceae Geodermatophilus  

 Intrasporangiaceae Janibacter 

  Knoellia melonis 

  Ornithinimicrobium murale 

  Phycicoccus 

 Microbacteriaceae Curtobacterium  
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Table A6.1 Continued 

Class Family Taxon name 

  Curtobacterium flaccumfaciens 

  Leifsonia bigeumensis 

  Leucobacter 

  Leucobacter albus  

  Leucobacter chromiiresistens 

  Microbacterium arborescens 

  Microbacterium sediminicola 

  Plantibacter flavus 

 Micrococcaceae Arthrobacter 

  Kocuria palustris 

  Kocuria rhizophila 

  Micrococcus luteus  

  Rothia dentocariosa 

  Rothia mucilaginosa 

 Micromonosporaceae Catellatospora bangladeshensis 

 Mycobacteriaceae Mycobacterium massiliense 

  Mycobacterium obuense 

 Nakamurellaceae Humicoccus flavidus 

 Nocardiaceae Gordonia terrae 

  Nocardia farcinica 

  Rhodococcus 

 Nocardioidaceae Nocardioides 

 Promicromonosporaceae Promicromonospora  

  Xylanibacterium ulmi 

 Propionibacteriaceae Brooklawnia massiliensis 

  Microlunatus phosphovorus 

  Propionibacterium acidifaciens 

  Propionibacterium acnes 

  Propionibacterium propionicum 

  Propionicimonas paludicola 

 Sanguibacteraceae Sanguibacter inulinus 

 Solirubrobacteraceae Patulibacter medicamentivorans 

 Streptomycetaceae Streptomyces  

 Thermomonosporaceae Thermomonospora  
Alphaproteobacteria Acetobacteraceae Acidomonas methanolica 

  Asaia 

  Granulibacter bethesdensis 

  Roseomonas mucosa 
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Table A6.1 Continued 

Class Family Taxon name 

  Roseomonas riguiloci 

 Beijerinckiaceae Methylocella palustris 

 Brucellaceae Bacillus malacitensis 

  Ochrobactrum intermedium 

 Caulobacteraceae Brevundimonas 

  Caulobacter fusiformis 

  Caulobacter vibrioides 

 Erythrobacteraceae Erythrobacter  

  Porphyrobacter 

 Hyphomicrobiaceae Devosia riboflavina 

  Rhodomicrobium vannielii 

  Shinella  

 Methylobacteriaceae Methylobacterium 

 Phyllobacteriaceae Shinella zoogloeoides 

 Rhodobacteraceae Leisingera aquaemixtae 

  Paracoccus alcaliphilus 

  Paracoccus aminophilus 

  Paracoccus aminovorans 

  Paracoccus denitrificans  

  Paracoccus homiensis 

  Paracoccus yeei 

  Rubellimicrobium mesophilum 

  Rubellimicrobium roseum  

 Rhodospirillaceae Azospirillum amazonense 

  Inquilinus limosus 

 Rhodospirillales Reyranella massiliensis 

 Sphingomonadaceae Novosphingobium acidiphilum  

  
Novosphingobium 
pentaromativorans 

  Sphingomonas 

 Xanthobacteraceae Orientia tsutsugamushi  
Bacilli Aerococcaceae Abiotrophia defectiva 

 Bacillaceae 1 Bacillus circulans 

  Bacillus longiquaesitum 

  Bacillus pumilus 

 
Bacillales Incertae Sedis 
XI Gemella bergeri 

  Gemella haemolysans 

  Gemella morbillorum 
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Table A6.1 Continued 

Class Family Taxon name 

  Gemella sanguinis 

  Exiguobacterium  

 Carnobacteriaceae Dolosigranulum pigrum 

  Granulicatella adiacens 

  Granulicatella elegans 

 Enterococcaceae Enterococcus 

  Enterococcus faecalis  

  Enterococcus faecium 

  Enterococcus malodoratus 

  Enterococcus moraviensis 

  Enterococcus saccharolyticus 

 Lactobacillaceae Lactobacillus acidophilus  

  Lactobacillus amylolyticus 

  Lactobacillus casei 

  Lactobacillus delbrueckii  

  Lactobacillus fermentum 

  Lactobacillus gasseri  

  Lactobacillus helveticus  

  Lactobacillus iwatensis 

  Lactobacillus kimbladii 

  Lactobacillus melliventris 

  Lactobacillus mucosae 

  Lactobacillus mucosae 

  Lactobacillus nantensis 

  Lactobacillus nasuensis 

  Lactobacillus oris 

  Lactobacillus plantarum 

  Lactobacillus rhamnosus 

  Lactobacillus salivarius 

  Lactobacillus vaginalis 

  Pediococcus acidilactici 

 Leuconostocaceae Fructobacillus 

 Listeriaceae Brochothrix thermosphacta 

 Planococcaceae Lysinibacillus fusiformis 

 Staphylococcaceae Staphylococcus aureus 

  Staphylococcus auricularis 

  Staphylococcus epidermidis 

  Staphylococcus pasteuri 
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Table A6.1 Continued 

Class Family Taxon name 

 Streptococcaceae Lactococcus lactis  

  Streptococcus 

  Streptococcus agalactiae 

  Streptococcus anginosus  

  Streptococcus australis 

  Streptococcus constellatus 

  Streptococcus cristatus 

  Streptococcus dysgalactiae 

  Streptococcus gordonii  

  Streptococcus infantis  

  Streptococcus intermedius  

  Streptococcus mitis  

  Streptococcus mutans 

  Streptococcus oralis 

  Streptococcus parasanguinis  

  Streptococcus pyogenes 

  Streptococcus salivarius  

  Streptococcus sobrinus 
Bacteroidetes Flavobacteriales Sediminibacter 
Bacteroidia Bacteroidaceae Bacteroides 

  Bacteroides acidifaciens 

 Bacteroidalesincertaesedis Phocaeicola abscessus 

 Porphyromonadaceae Butyricimonas faecihominis 

  Coprobacter fastidiosus 

  Dysgonomonas mossii 

  Odoribacter splanchnicus 

  Parabacteroides goldsteinii 

  Porphyromonas asaccharolytica 

  Porphyromonas bennonis 

  Porphyromonas catoniae  

  Porphyromonas endodontalis 

  Porphyromonas gingivalis 

  Porphyromonas macacae 

  Porphyromonas somerae  

  Prophorymonas catoniae 

  Tannerella forsythia  

 Prevotellaceae Alloprevotella rava 

  Gordonia jinhuaensis 
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Table A6.1 Continued 

Class Family Taxon name 

  Prevotella 

  Prevotella bivia 

  Prevotella buccae 

  Prevotella dentalis 

  Prevotella denticola  

  Prevotella enoeca 

  Prevotella fusca 

  Prevotella histicola 

  Prevotella intermedia  

  Prevotella loescheii 

  Prevotella melaninogenica 

  Prevotella micans 

  Prevotella multiformis 

  Prevotella nanceiensis  

  Prevotella nigrescens 

  Prevotella oralis 

  Prevotella oris  

  Prevotella oulorum 

  Prevotella pallens 

  Prevotella saccharolytica 

  Prevotella salivae  

  Prevotella scopos 

  Prevotella shahii 

  Prevotella tannerae 

  Prevotella veroralis 

 Rikenellaceae Alistipes shahii  

  Rikenella microfusus 
Betaproteobacteria Alcaligenaceae Achromobacter xylosoxidans 

  Alcaligenes faecalis 

  Bordetella petrii 

  Parapusillimonas granuli 

  Pusillimonas 

 Burkholderiaceae Burkholderia cepacia complex 

  Cupriavidus respiraculi 

  Ralstonia 

  Ralstonia mannitolilytica 

  Ralstonia pickettii  

 Comamonadaceae Acidovorax wautersii 
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Table A6.1 Continued 

Class Family Taxon name 

  Lautropia mirabilis 

  Ottowia  

  Ramlibacter tataouinensis 

  Variovorax paradoxus 

  Methylotenera versatilis 

 Neisseriaceae Eikenella corrodens  

  Kingella denitrificans 

  Kingella oralis  

  Neissaria flavescens 

  Neisseria bacilliformis 

  Neisseria elongata 

  Neisseria flavescens 

  Neisseria lactamica 

  Neisseria mucosa 

  Neisseria oralis 

  Neisseria pharyngis 

  Neisseria sicca 

 Oxalobacteraceae Herbaspirillum huttiense 

  Massilia aurea 

  Massilia timonae 

 Rhodocyclaceae Dechloromonas agitata 

  Methyloversatilis universalis  

  Propionivibrio  

 Sutterellaceae Sutterella parvirubra 
Clostridia Clostridiaceae 1 Clostridium paraputrificum  

 Clostridiales  Clostridiales  

 
Clostridiales Family XI. 
Incerta Sedis Peptoniphilus 

 
Clostridiales Family XIII. 
Incertae Sedis Eubacterium sulci 

  Mogibacterium timidum 

 
Clostridiales Incertae 
Sedis XI Anaerococcus 

  Parvimonas micra 

  Peptoniphilus lacrimalis  

  Peptoniphilus tyrrelliae 

 
Clostridiales Incertae 
Sedis XIII Mogibacterium diversum 

 Eubacteriaceae Eubacterium brachy 

  Eubacterium infirmum 
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Table A6.1 Continued 

Class Family Taxon name 

  Eubacterium nodatum 

  Eubacterium saphenum 

  Eubacterium uniforme 

 Incertae Sedis XI Peptoniphilus asaccharolyticus 

 Lachnospiraceae Butyrivibrio fibrisolvens 

  Butyrivibrio hungatei 

  Catonella morbi 

  Clostridium algidixylanolyticum 

  Clostridium clostridioforme 

  Clostridium hathewayi  

  Clostridium symbiosum 

  Clostridium xylanovorans 

  Eubacterium oxidoreducens 

  Howardella ureilytica 

  Johnsonella ignava 

  Lachnospiraceae 

  Moryella indoligenes 

  Oribacterium sinus 

  Shuttleworthia satelles 

 Peptococcaceae Peptococcus 

 Peptostreptococcaceae Clostridium metallolevans 

  Clostridium rectum 

  Eubacterium yurii 

  Filifactor alocis 

 Ruminococcaceae Clostridium methylpentosum 

  Clostridium orbiscindens 

  Faecalibacterium prausnitzii 

  Oscillibacter ruminantium 

  Ruminococcus 
Cyanobacteria Chroococcales Synechococcus elongatus 
Deferribacteres Deferribacteraceae Mucispirillum schaedleri 
Deltaproteobacteria Cystobacteraceae Cystobacter miniatus  

 Desulfobulbaceae Desulfobulbus 

 Desulfomicrobiaceae Desulfomicrobium orale 

 Polyangiaceae Chondromyces apiculatus 

  Sorangium cellulosum 
Epsilonproteobacteria Campylobacteraceae Campylobacter concisus 

  Campylobacter gracilis 
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Table A6.1 Continued 

Class Family Taxon name 

  Campylobacter mucosalis 

  Campylobacter rectus 

  Campylobacter showae 

  Campylobacter sputorum  

 Helicobacteraceae Sulfuricurvum kujiense 
Erysipelotrichia Erysipelotrichaceae Bulleidia extructa 

  Coprobacillus catenaformis 

  Erysipelothrix tonsillarum 

  Lactobacillus catenaformis 

  Solobacterium moorei 
Flavobacteria Cryomorphaceae Salinirepens amamiensis 

 Flavobacteriaceae Bergeyella zoohelcum  

  Capnocytophaga gingivalis 

  Capnocytophaga granulosa 

  Capnocytophaga haemolytica 

  Capnocytophaga leadbetteri 

  Capnocytophaga ochracea 

  Capnocytophaga sputigena 

  Chryseobacterium anthropi 

  Elizabethkingia miricola 

  Flavobacterium 

  Kocuria rosea 

  Myroides odoratus 

  Wautersiella falsenii  

  Myroides odoratimimus 

  Myroides profundi 
Fusobacteria Fusobacteriaceae Fusobacterium necrophorum  

  Fusobacterium nucleatum 

  Fusobacterium periodonticum 

 Leptotrichiaceae Leptotrichia buccalis 

  Leptotrichia goodfellowii 

  Leptotrichia hofstadii 

  Leptotrichia hongkongensis 

  Leptotrichia shahii 

  Leptotrichia trevisanii 

  Leptotrichia wadei 

  Sneathia sanguinegens 

  Streptobacillus moniliformis 
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Table A6.1 Continued 

Class Family Taxon name 
Gammaproteobacteria Aeromonadaceae Aeromonas 

 Cardiobacteriaceae Cardiobacterium hominis 

 Coxiellaceae Legionella spiritensis 

 Enterobacteriaceae Arsenophonus nasoniae 

  Erwinia rhapontici 

  Escherichia coli 

  Klebsiella oxytoca 

  Morganella morganii  

  Pantoea ananatis 

  Proteus mirablis 

  Providencia alcalifaciens 

  Providencia rettgeri 

  Serratia marcescens 

 
Gammaproteobacteria 
family incertae sedis Orbus hercynius 

  Orbus sasakiae 

  Psychromonas marina 

 Halomonadaceae Halomonas 

 Legionellaceae Legionella fairfieldensis 

 Moraxellaceae Alkanindiges illinoisensis 

  Enhydrobacter aerosaccus 

  Moraxella catarrhalis 

  Moraxella macacae 

  Moraxella nonliquefaciens 

 Pasteurellaceae Aggregatibacter 
actinomycetemcomitan 

  Aggregatibacter segnis 

  Haemophilus haemolyticus 

  Haemophilus influenzae 

  Haemophilus parahaemolyticus 

  Haemophilus parainfluenzae 

  Haemophilus sputorum 

 Pseudomonadaceae Pseudomonas aeruginosa 

 Sinobacteraceae Povalibacter uvarum 

 Xanthomonadaceae Ignatzschineria ureiclastica 

  Stenotrophomonas maltophilia 

  Thermomonas hydrothermalis 

  Xanthomonas 
Gemmatimonadetes Gemmatimonadaceae Gemmatimonas aurantiaca 
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Table A6.1 Continued 

Class Family Taxon name 
Ignavibacteria Ignavibacteriaceae Ignavibacterium album 
Mollicutes Mycoplasmataceae Mycoplasma faucium 

  Mycoplasma feliminutum 

  Mycoplasma salivarium 
Negativicutes Veillonellaceae Anaeroglobus geminatus 

  Centipeda periodontii  

  Dialister invisus 

   
  Dialister micraerophilus 

  Dialister pneumosintes 

  Megasphaera micronuciformis 

  Mitsuokella 

  Schwartzia succinivorans 

  Selenomonas 

  Selenomonas artemidis 

  Selenomonas dianae 

  Selenomonas flueggei 

  Selenomonas infelix 

  Selenomonas noxia  

  Selenomonas sputigena  

  Veillonella atypica 

  Veillonella dispar 

  Veillonella parvula 
Planctomycetacia Planctomycetaceae Gemmata obscuriglobus 

  Telmatocola sphagniphila 

Spartobacteria Spartobacteria family 
incertae sedis Chthoniobacter flavus 

Sphingobacteria Chitinophagaceae Chitinophaga 

  Chitinophaga niastensis  

  Sediminibacterium 

 Cytophagaceae Hymenobacter 

 Sphingobacteriaceae Pedobacter cryoconitis 

  Pedobacter heparinus 

  Sphingobacterium 
Spirochaetes Spirochaetaceae Treponema 

  Treponema amylovorum 

  Treponema denticola 

  Treponema maltophilum  

  Treponema putidum 
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Table A6.1 Continued 

Class Family Taxon name 

  Treponema socranskii 

  Treponema vincentii  
SR1 class incertae 
sedis SR1 family incertae sedis SR1 bacterium human oral taxon  

Synergistetes Synergistetes Synergistetes 
TM7 class incertae 
sedis TM7 family incertae sedis TM7 phylum sp. oral taxon 
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Table A6.2 Mantel test analyses for the investigation of autocorrelation. 

The P-values have been calculated using the distribution of the Mantel test statistic (r) 

estimated for 9999 permutations. N=152, n= 11476 pair wise comparisons between groups. 

Significant P-values are indicated in bold. A, Mantel tests carried out using a two tailed test, 

B, Mantel tests carried out using a lower tailed test 

A 

Matrix	  A	   Matrix	  B	   r	   P	  

Age	   BMI	   -‐0.045	   <0.001	  
Age	   Clinical	  status	   -‐0.037	   <0.001	  
Age	   Diabetes	   0.044	   <0.001	  
Age	   Pancreatic	   0.013	   0.168	  
Age	   Gender	   0.005	   0.559	  
Age	   liver	  disease	   0.012	   0.212	  
BMI	   Clinical	  status	   -‐0.021	   0.027	  
BMI	   diabetes	   -‐0.002	   0.829	  
BMI	   Liver	  disease	   0.097	   <0.001	  
BMI	   Pancreatic	   0.001	   0.947	  
Clinical	  status	   Diabetes	   -‐0.001	   0.897	  
Clinical	  status	   Liver	  disease	   -‐0.006	   0.564	  
Clinical	  status	   Pancreatic	   0.039	   <0.001	  
Diabetes	   Liver	  disease	   0.025	   0.008	  
Diabetes	   Pancreatic	   0.063	   <0.001	  
FEV1	   Age	   0	   0.965	  
FEV1	   Gender	   0.017	   0.071	  
FEV1	   BMI	   0.026	   0.005	  
FEV1	   Clinical	  status	   0.014	   0.142	  
FEV1	   Diabetes	   0.029	   0.002	  
FEV1	   Pancreatic	   0.011	   0.23	  
FEV1	   Liver	  disease	   0.062	   <0.001	  
Liver	  disease	   Pancreatic	   -‐0.004	   0.644	  
Location	   BMI	   -‐0.005	   0.616	  
Location	   Clinical	  status	   0.009	   0.352	  
Location	   Diabetes	   0.107	   <0.001	  
Location	   FEV1	   -‐0.012	   0.216	  
Location	   Liver	  disease	   -‐0.002	   0.878	  
Location	   Pancreatic	   0.255	   <0.001	  
Location	   Gender	   0.008	   0.401	  

 



 

Chapter 6  216 

 

Table A6.2 Continued 

A  

Matrix	  A	   Matrix	  B	   r	   P	  

Gender	   BMI	   0.02	   0.038	  
Gender	   Diabetes	   0	   0.99	  
Gender	   Liver	  disease	   -‐0.011	   0.237	  
Gender	   Pancreatic	   -‐0.006	   0.541	  
Gender	   Clinical	  status	   0	   0.99	  

 

B 

Matrix	  A	   Matrix	  B	   r	   P	  

FEV1	   Liver	  disease	   0.062	   1	  
FEV1	   BMI	   0.026	   0.997	  
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Table A6.3 Comparison of community composition using analysis of similarity 

(ANOSIM) for each CFTR genotype. 

ANOSIM was carried out using both, A, Sørensen and, B, Bray-Curtis measures of similarity, 

for the whole, common and rare communities. Matrices below show R values in the lower 

half and P values on the upper. Significant R values indicate the samples within a group are 

more similar than would be expected by random chance, therefore the two groups can be 

considered significantly different. P values less than 0.05 were considered significant. 

Significant P values are highlight in green.   

A 

Whole	   Homozygous	   Heterozygous	   Other	  
Homozygous	   r	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  P	   0.5548	   0.2777	  
Heterozygous	   -‐0.002862	   r	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  P	   0.281	  
Other	   0.0397	   0.04064	   r	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  P	  
Common	   Homozygous	   Heterozygous	   Other	  
Homozygous	   r	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  P	   0.3812	   0.5845	  
Heterozygous	   0.003042	   r	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  P	   0.6543	  
Other	   -‐0.02109	   -‐0.03657	   r	  	  	  	  	  	  	  	  	  	  	  	  	  	  P	  
Rare	   Homozygous	   Heterozygous	   Other	  
Homozygous	   r	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  P	   0.5336	   0.3389	  
Heterozygous	   -‐0.002539	   r	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  P	   0.3181	  
Other	   0.0263	   0.03184	   r	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  P	  

B 

Whole	   Homozygous	   Heterozygous	   Other	  
Homozygous	   r	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  P	   0.0379	   0.9763	  
Heterozygous	   0.02338	   r	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  P	   0.9972	  
Other	   -‐0.1143	   -‐0.1527	   r	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  P	  
Common	   Homozygous	   Heterozygous	   Other	  
Homozygous	   r	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  P	   0.1385	   0.9709	  
Heterozygous	   0.01179	   r	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  P	   0.9919	  
Other	   -‐0.1047	   -‐0.1131	   r	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  P	  
Rare	   Homozygous	   Heterozygous	   Other	  
Homozygous	   r	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  P	   0.2566	   0.5269	  
Heterozygous	   0.007679	   r	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  P	   0.6378	  
Other	   -‐0.007451	   -‐0.02893	   r	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  P	  
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7.1 Introduction 

It is well established that chronic lung infections are the main cause of morbidity and 

mortality in cystic fibrosis (CF) patients (1). In recent years, increased use of culture 

independent molecular technologies has enhanced our understanding of the complex and 

diverse polymicrobial community associated with CF lung infections (2-5). This improved 

understanding has lead to better patient management (6), however, there are still gaps in our 

understanding of how the microbial community relates to disease progression.  

Pulmonary symptoms in CF begin in early life, over time a combination of impaired 

mucociliary clearance, innate immune responses and microbial infection lead to a 

progressive loss of lung function (7). This gradual decline in pulmonary function is 

interspersed with periods of acute worsening of respiratory symptoms known as CF 

pulmonary exacerbations (CFPE) (8). These periods of CFPE are associated with more 

rapid disease progression and reduced survival, as well as a recognised reduction in quality 

of life and an increase in overall healthcare costs (9). 

Despite efforts, no strict guidelines are in place to describe when patients are experiencing a 

CFPE. This lack of consensus is mainly due to inconsistency in the symptoms experienced 

by CF individuals of different ages and disease state, thus making it challenging for 

paediatricians and adult physicians to come to an agreement (10). Although no consensus 

for a generally applicable definition has been reached, clinical features include; decreased 

exercise tolerance, increased cough, increased sputum production, shortness of breath, 

chest pain, absence from school or work, increased adventitial sounds on lung examination, 

decreased appetite or weight loss and a decline in lung function. Surprisingly a study by 

Rosenfeld et al (2001) revealed that a change in lung function showed little effect on the 

sensitivity or specificity of CFPE diagnosis, however, it is still widely relied upon as an 

indicator of worsening symptoms (11).  
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The dynamic nature of CF lung disease makes the identification of CFPE particularly 

challenging, ultimately it is the job of the treating clinician to determine if the patient is 

experiencing a CFPE and therefore requires intervention. CFPE are treated with aggressive 

antibiotic therapy, which in the majority of cases involves high dose intravenous (IV) 

antibiotics targeted at the most abundant organism within the lung; in many cases this is 

Pseudomonas aeruginosa (10).  

Efficient intervention is important, as it has been well established that CFPE have important 

negative effects on pulmonary function, with lung function tests failing to recover to baseline 

after treatment in one in four cases (12). However, Sanders et al (2012) found that quick 

efficient management of CFPE results in improved prognosis and increased likelihood of 

lung function recovery, thus underlining the need to efficiently recognise CFPE (12).  

To date the majority of studies carried out have involved cross-sectional sampling, where a 

single sample is taken from each patient within the study (2, 13, 14). These studies have 

been invaluable for investigating the microbial community within the lung, revealing high 

levels of microbial diversity and increasing our understanding of the correlations between the 

lung community and disease progression. Although extremely useful, these studies reveal 

little of the how community dynamics over time relates to clinical outcomes. For this reason 

more studies are being carried out using longitudinal sampling with multiple samples from 

each patient (5, 15-19).  By examining the microbial community over time, insights into how 

the community relates to factors that result in poor clinical outcomes, such as pulmonary 

exacerbation (18) and its treatment (15) can be investigated. 

Longitudinal studies provide useful information about how community changes relate to 

disease state and provide information on potential targets and biomarkers that could lead to 

more effective treatment options. In a 10 year study, Zhao et al (2011) using 16S rRNA gene 

pyrosequencing, revealed that bacterial community diversity within the CF lung can be 

maintained in over prolonged periods in patients with mild disease symptoms. However, in 

those with more progressive lung disease, diversity is found to decrease significantly over 
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time (5). Over the shorter scale of one year, Stressmann et al (2012) used terminal 

restriction fragment length polymorphism (T-RFLP) to reveal that the bacterial community 

was conserved over time and resistant to perturbations (16). 

These long term studies have provided valuable information about how changes in the 

bacterial community composition relate to disease state over time. However they give no 

indication of how perturbations within the lungs, such as CFPE, relate to patient well being in 

the short term. Studies by Fodor et al (2012) and Carmody et al (2013) used high throughput 

sequencing to investigate changes in bacterial community composition as a result of CFPE 

(15, 18). Both studies relied on paired samples (two samples obtained at defined times from 

the same patient), however while Fodor et al, (2012) examined the changes from initiation of 

treatment for CFPE to completion (15), Carmody et al (2013) compared baseline samples, 

before the onset of respiratory symptoms associated with CFPE to those samples taken 

when the exacerbation had been confirmed, but prior to the start of treatment (18). A study 

by Price et al (2013) attempted to address changes in the community over the entirety of a 

CFPE by collecting a single sample from each of the following periods; baseline, 

exacerbation, treatment and recovery. However, this study failed to recognise trends in the 

bacterial community over the course of the disease (19). Although these studies provided 

insights into changes in community composition, they were limited by the sampling strategy, 

which did not allow any indication of short term variation within the airway community to be 

accounted for. These studies highlight the need to examine community changes using 

multiple samples per clinical period in conjunction with detailed patient metadata.  

In order to address the knowledge gap identified by these studies, FLX Titanium 454 

pyrosequencing was used to examine changes in the bacterial community dynamics of 12 

patients, over the course of one year. During this period ten of the twelve patients were 

treated for a CFPE, multiple sputum samples were collected throughout the full cycle of 

CFPE and back to baseline. This full cycle approach has, as yet, not been explored and 

therefore this study provides novel insight into the changes in the bacterial community 
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dynamics between disease states. From this, patterns in the bacterial community over time 

could be identified, while detecting potential biomarkers for clinical exacerbations.   

 

7.2 Materials and methods 

7.2.1 Sample collection 

This study was undertaken with the local ethical approval from Southampton and South 

West Hampshire Research Ethics Committee (06/Q1704/24). Sputum samples were 

collected from 12 adult CF patients attending the Southampton General Hospital, 

Southampton, UK (Table 7.1). Subjects were selected due to their persistent production of 

sputum and history of CFPE. All patients were chronically colonised with Pseudomonas 

aeruginosa.   

Samples were collected from patients during periods of stability, defined as periods where 

patients were only receiving maintenance doses of antibiotics. During the study period 10 of 

the 12 patients were treated for a CFPE. The start and end of CFPE were identified by 

treating clinicians, and were defined for the purpose of this study as the period of time where 

patients received clinical intervention in the form of aggressive antibiotic treatment. 

Decisions to initiate treatment were based on worsening clinical symptoms (20), stabilisation 

or improvement of these symptoms lead to the termination of this treatment. Samples were 

retrospectively partitioned into 5 periods; 1a) Stable pre-CFPE, 2) 30 days prior to antibiotic 

treatment for CFPE, 3) period of time patients were receiving treatment for pulmonary 

exacerbation, 4) 30 days post treatment for CFPE, 1b) Stable post-CFPE.  
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Table 7.1 Clinical characteristics for individual patients 

Patient	   Age	  
(Years)	  

Gender	   CFTR	  
genotype	  

BMI	   Diabetes	   CFPE	  Antibiotics*	  

1	   30	   Male	   ΔF508/NK	   29	   No	   Ciprofloxacin	  PO	  

2	   45	   Female	   ΔF508/NK	   18.2	   Yes	   Colomycin	  IV	  +	  
Tobramycin	  IV	  

3	   47	   Male	   ΔF508/NK	   19.9	   Yes	   	  

4	   22	   Female	   ΔF508/ΔF508	   18	   No	  
Cirprofloxacin	  PO,	  

then,	  Meropenem	  IV	  +	  
Amakacin	  IV	  

5	   55	   Male	   ΔF508/G58E	   23.9	   No	   Ceftazidime	  IV	  +	  
Gentamicin	  IV	  

6	   21	   Female	   ΔF508/ΔF508	   20.3	   No	   Ciprofloxacin	  PO	  
7	   40	   Male	   ΔF508/ΔF508	   19.4	   Yes	  

	  

8	   22	   Male	   ΔF508/ΔF508	   18.4	   Yes	   Meropenem	  IV	  +	  
Colomycin	  IV	  

9	   17	   Female	   ΔF508/ΔF508	   22.5	   No	   Ceftazidime	  IV	  +	  
Gentamicin	  IV	  

10	   24	   Female	   ΔF508/G542X	   21	   No	   Clarithromycin	  PO	  

11	   20	   Male	   ΔF508/ΔF508	   20.4	   No	  
Ciprofloxacin	  PO	  +	  
Metronidazole	  

12	   20	   Male	   ΔF508/ΔF508	   28.5	   No	  
Ceftazidime	  IV	  +	  
Gentamicin	  IV	  

Abbreviations: BMI, body mass index (kg /m2); CFTR, cystic fibrosis transmembrane 

conductance regulator; NK, genotype not known; * Antibiotics administered as intervention 

for a clinically defined CFPE; PO, Oral; IV, intravenous. 
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7.2.2 Clinical information 

Clinically relevant symptoms were monitored throughout the sampling period. Lung function 

was assessed using a Koko PeakPro home spirometer (Ferraris Cardiorespiratory, 

Louisville, CO, USA) at the time of each sample collection. Patients were also required to 

assess respiratory symptoms; cough, breathlessness, sputum production and general 

wellbeing, using a visual analogue scale (VAS) scored 0-100, with 0 being the worst and 100 

the best. 

7.2.3 DNA extraction and Pyrosequencing 

Samples were stored at -80°C until processing. A sterile scalpel was used to transfer 

approximately 250µl of frozen sputum into a 15ml centrifuge tube for a sputum wash to be 

performed, as described in Chapter 2.3.1. Washed sputum was then treated with propidium 

monoazide (PMA) using the method described in Chapter 2.3.2 prior to DNA extraction, 

Chapter 2.3.3 

7.2.4 Sample processing and sequence analysis 

The primers 338F (5'-ACTCCTACGGGAGGCAGCAG) and 926R (5'-

CCGTCAATTCMTTTRAGT) were used to perform bacterial Golay Barcode encoded FLX 

Titanium amplicon pyrosequencing following the method outlines in Chapter 2.4.1. 16S rRNA 

gene amplicons were initially generated using a one step PCR of 25 cycles using 

AccuPrimeTM Taq DNA Polymerase High Fidelity (Invitrogen, Carlsbad, CA). 454 

pyrosequencing using the Lib-L kit was performed at the Wellcome Trust Sanger Institute, 

Hinxton, UK. 

As previously described in Chapter 2.7, resulting data was analysed using the Mothur 

sequencing analysis platform.  The sequence data reported in this paper have been 

deposited in the European Nucleotide Archive under Study Accession Numbers ERP005251 
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and ERP007059, and Sample Accession Numbers ERS421603 and ERS551400. The 

relevant barcode information for each sample is shown in Table A7.1.  

7.2.5 Statistical analysis 

All statistical analysis was performed in R version 3.1.1(2012-07-10) (21).  

Species were partitioned using a distribution abundance distribution, described by Magurran 

and Henderson (2003) (22). The most persistent and abundant species, those present in 

more that 75% of the total samples, were described as common, while all others were 

considered to be rare.  

The rate of species turnover between consecutive samples was calculated using the method 

described by Brown and Kodric-Brown (1977) (23).  

Analysis of similarity (ANOSIM) was used to assess the similarity between disease periods, 

using PAST (version 2.7) (24). This method uses the Bray-Curtis measure of similarity to 

assess the similarity within periods. Results were compared between periods to allow 

differences to be assessed. R values are on a scale of +1 to -1, values of +1 indicates the 

most similar samples are within the same period, while -1 indicates the most similar samples 

are outside the period. Significant R values indicate that the community similarities are more 

similar within the disease period and therefore can be considered significantly different.  

Similarity of Percentages (SIMPER) analysis was used to assess the contribution of each 

species to the observed similarity between disease periods, in order to identify those species 

that are important in creating the observed pattern of similarity using the Bray-Curtis 

measure of similarity. SIMPER analyses were performed as previously described by Clarke 

(1993) (25), using PAST (version2.7) (24). 

To analyse species level changes over the five disease periods, outlined above, mixed effect 

models (GLMMADMB) with negative binomial errors were used as data was found to be over 
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dispersed (data showed greater variability than would be expected based on a Poisson 

distribution). For each species the change in abundance, across all patients, was measured 

using the disease period as the fixed effect and variation between patients was accounted 

for by including patient as a random effect. The model fits the changes in abundance on the 

logit scale. The null hypothesis for each species was that there would be no change in 

species abundance between periods.  

 

7.3 Results 

Sputum samples were collected from 12 adult CF patients over the course of 12 months 

along with complementary clinical information (Table 7.1). The diversity and composition of 

bacterial communities was assessed using 16S rRNA gene pyrosequencing. A total of 237 

samples were sequenced resulting in a total of 386,002 bacterial sequences (mean± 

standard error/sample 1628±84, n=237), comprising 92 genera and 163 distinct Operational 

taxonomic units (OTUs) classified to species level (Table A7.2).  

In order to examine how bacterial community changes were associated with disease state, 

data was partitioned into distinct clinical periods, in line with those defined and used by Zhao 

et al (2012) (5) and Price et al (2013) (19). The data was partitioned into 5 clinical periods; 

1a) stable pre-CFPE (n=56, 1845±247), 2) 30 days prior to CFPE treatment (n=41,	  

1357±136), 3) treatment for clinical exacerbation (n=67, 1643±127), 4) 30 days post CFPE 

treatment (n=32, 1845±151), 1b) stable post-CFPE (n=41, 1449±212). In this study the 

course of a single exacerbation was followed allowing the addition of a fifth category, stable 

post-CFPE, to investigate the resistance of the bacterial community to perturbations within 

the system.  

During periods 1a, 2, 4 and 1b, patients received their standard doses of maintenance 

antibiotics. During period 3, defined as the period of treatment for CFPE, patients were 
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hospitalised and received increased antibiotic intervention, in the majority of cases through 

IV antibiotic treatment, see Table 7.1.  

Periods 2 and 4 were defined as 30 days pre- and post- antibiotic intervention. These 

periods were chosen to investigate how the bacterial community changed leading into and 

out of pulmonary exacerbation. Period 2 was chosen to investigate how the bacterial 

community changed in the run up to clinical intervention becoming necessary, while period 4 

was defined to investigate how the bacterial community recovered after antibiotic 

intervention. The 30 day period allowed any residual effect of antibiotic treatment to be 

completely removed from the system prior to the post CFPE baseline period. 

7.3.1 Partitioning OTUs 

A distribution abundance relationship (DAR) was used to partition the common, most 

persistent and abundant OTUs, and the rare, transient OTUs found in low abundance. The 

log OTU abundance was plotted against the sample persistence (the number of samples in 

which a particular OTU appears) showing a significant positive relationship, see Figure 7.1. 

This direct relationship between OTU persistence and abundance indicates a coherent 

metacommunity. OTUs present in more than 75% of the samples were considered common, 

all remaining OTUs were considered rare, Figure 7.1. Five OTUs were found to be present in 

more than 75% of the samples and were therefore considered to be common. These 

common OTUs derived from; Pseudomonas aeruginosa, Streptococcus pneumoniae, S. 

sanguinis group, Prevotella melaninogenica and Veillonella parvula, were found to add up to 

over 84% of the total sequences in this study (327,133 sequences). On the other hand, the 

rare group was comprised of 158 OTUs, and accounted for just over 15% of the total 

sequences (58,869 sequences).  
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Figure 7.1 The persistence and total abundance of bacteria taxa present in all 

longitudinal samples and at each of the five partitioned periods.  

Common taxa were defined as those that fell within the upper quartile (vertical line), all taxa 

that fell below the line were considered rare. All) The total from samples collected from the 

12 CF patients, irrespective of disease state, within the study (n=237, r2=0.7, F(1,182)=425.7, 

P<0.001). 1a) Stable pre-CFPE (n=56, r2=0.8, F(1,106)=429.3, P<0.001), 2) 30 days prior to 

antibiotic treatment (n=41, r2=0.8, F(1,121)=415.1, P<0.001), 3) period of time patients were 

receiving treatment for pulmonary exacerbation (n=67, r2=0.7, F(1,140)=363.3, P<0.001), 4) 30 

days post treatment (n=32, r2=0.8, F(1,86)=316.7, P<0.001), 1b) Stable post-CFPE (n=41, 

r2=0.7, F(1,92)=221.1, P<0.001) 
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When samples were divided up by clinical state and partitioned it was found that the 

Veillonella parvula and Prevotella melaninogenica OTUs fell below the upper quartile, 

resulting in those OTUs being considered rare during the treatment period (Figure 7.1, 3). 

Importantly however, these OTUs were found to return to the common group after the 

conclusion of the treatment period, Figure 7.1. All other OTUs were consistently partitioned 

into either the common or rare group.  

7.3.2 OTU turnover 

The rate of OTU turnover, the number of OTUs eliminated and replaced over time, was 

assessed based on for each patient over the study period using the Brown and Kordric-

Brown (1977) measure of species turnover, Figure 7.2 (23). Changes in the rate of OTU 

turnover were observed showing more variation in the periods surrounding and during 

treatment for CFPE. 

By partitioning the turnover data into 5 periods it was found that during period 1a and 1b the 

rate of OTU turnover was relatively consistent, this was particularly evident for patients 3 and 

7 who did not experience a CFPE over the study period, Figure 7.2. However, during periods 

2, 3 and 4 greater levels of variation in this rate were observed, meaning that no statistically 

significant trend was observed as changes in turnover rates were not consistent between 

individual patients. 

The turnover rates of the partitioned groups were plotted and displayed on Figure 7.1. This 

revealed that the rate of turnover of the common OTUs was much lower than the rare 

category. Most turnover of common OTUs occurred during period 2, 3 and 4 however, this 

was not the case for all patients. The rate of rare OTU turnover was greater than that 

observed for the common OTUs and showed high levels of variability. This suggests that the 

rare group members were driving the observed changes in the rate of community turnover 

over time.  
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Figure 7.2 Changes in the rate of OTUs turnover for each patient.  

Solid vertical lines indicate the start and end of treatment for CFPE, Dashed lines indicate 

the start and end of the 30 day period either side of the treatment period. 1a; stable pre-

CFPE, 2; 30 days prior to CFPE treatment, 3; treatment for clinical exacerbation, 4; 30 days 

post CFPE treatment, 1b; stable post-CFPE. Black line represents the total community 

turnover, green represents the common and blue the rare.  

 



 

Chapter 8: Discussion   232 

7.3.3 Analysis of similarities (ANOSIM) 

Analysis of similarity was used to determine how the community composition changed 

between the 5 disease periods using Bray-Curtis measure of similarity. ANOSIMs were 

carried out on the whole community and the common and rare groups (Table 7.3). No 

significant change was observed between disease periods within the whole or common 

communities. However, significant differences in the community composition of the rare 

community were seen between; period 1a (stable pre CFPE) and periods 3 (P=0.002) and 4 

(P=0.04), period 2 (30 days pre treatment) and period 4 (P=0.009) and 1b (P=0.04), period 4 

(30 days post treatment) was also significantly different from 1b (P=0.009). Importantly no 

significant difference in community composition was observed between the two stable 

periods, pre and post CFPE (P=0.5).  These results support the observations made 

previously when examining changes in the rate of OTU turnover.   
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Table 7.2 Comparison of community composition using analysis of similarity 

(ANOSIM) for each disease period. 

ANOSIM was carried out using Bray-Curtis measure of similarity, for the whole, common and 

rare communities. Matrices below show R values in the lower half and P values on the 

upper. Significant R values indicate the samples within a group are more similar than would 

be expected by random chance, therefore the two groups can be considered significantly 

different.  

P values less than 0.05 were considered significant. Significant P values are highlight in 

green.   

 

Whole	   1a	   2	   3	   4	   1b	  
1a	   R	  	  	  	  	  	  	  	  	  	  	  	  P	  	   0.21	   0.0919	   0.4133	   0.5622	  
2	   0.01194	   R	  	  	  	  	  	  	  	  	  	  	  P	   0.2757	   0.177	   0.342	  
3	   0.01848	   0.01222	   R	  	  	  	  	  	  	  	  	  	  P	   0.7783	   0.3957	  
4	   0.0003736	   0.01658	   -‐0.03389	   R	  	  	  	  	  	  	  	  	  	  P	   0.1993	  
1b	   -‐0.006949	   0.000646	   0.002817	   0.01431	   R	  	  	  	  	  	  	  	  P	  

	   	   	   	   	   	  
	   	   	   	   	   	  Common	   1a	   2	   3	   4	   1b	  

1a	   R	  	  	  	  	  	  	  	  	  	  	  	  	  P	   0.1909	   0.1428	   0.4776	   0.5337	  
2	   0.01142	   R	  	  	  	  	  	  	  	  	  	  	  P	   0.2592	   0.2117	   0.4807	  
3	   0.01162	   0.01288	   R	  	  	  	  	  	  	  	  	  	  	  	  P	   0.8338	   0.413	  
4	   -‐0.005413	   0.01251	   -‐0.03924	   R	  	  	  	  	  	  	  	  	  	  	  P	   0.1394	  

1b	   -‐0.006063	   -‐0.00388	   0.001393	   0.02168	   R	  	  	  	  	  	  	  	  	  	  P	  

	   	   	   	   	   	  
	   	   	   	   	   	  Rare	   1a	   2	   3	   4	   1b	  

1a	   R	  	  	  	  	  	  	  	  	  	  	  	  	  	  P	   0.1469	   0.0016	   0.0361	   0.5339	  
2	   0.02272	   R	  	  	  	  	  	  	  	  	  	  	  	  P	   0.9613	   0.0094	   0.0394	  
3	   0.05551	   -‐0.04503	   R	  	  	  	  	  	  	  	  	  	  	  	  P	   0.3131	   0.2543	  
4	   0.07463	   0.07108	   0.01644	   R	  	  	  	  	  	  	  	  	  	  	  P	   0.0086	  
1b	   -‐0.0041	   0.02845	   0.01742	   0.07378	   R	  	  	  	  	  	  	  	  	  	  	  	  P	  
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7.3.4 Similarity percentage (SIMPER) 

Similarity percentage (SIMPER) tables allow the investigation of the contribution of individual 

OTUs to the community similarity. Using the Bray-Curtis measure of similarity SIMPER 

tables were made to examine the contributions of OTUs from the whole (Table 7.4.1), 

common (Table 7.4.2) and rare (Table 7.4.3) communities, between each of the 5 disease 

periods. Table 7.4.1 indicates that P. aeruginosa contributed the most to the whole 

community similarity between all disease states; this was backed up by the result of the 

common groups (Table 7.4.2). Of the rare group, Porphyromonas catoniae was found to 

provide the biggest contribution to community similarity in all disease periods, with the 

exception of the comparison between the CFPE treatment period and 30days post-CFPE, 

where Fusobacterium nucleatum provided the largest contribution.  
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Table 7.3.1 Similarity of percentages (SIMPER) analysis of the bacterial dissimilarity (Bray-

Curtis) of the whole bacterial community between disease states. 

Given is the mean % abundance of sequences for each OTU across the periods they were 

observed to occupy. In addition, the average dissimilarity between periods is given. 

Percentage contribution is calculated from the mean contribution divided by the mean 

dissimilarity between periods. A) SIMPER analysis of the whole community between period 

1a and 2, B) SIMPER analysis of the whole community between period 2 and 3, C) SIMPER 

analysis of the whole community between period 3 and 4, D) SIMPER analysis of the whole 

community between period 4 and 1b, E) SIMPER analysis of the whole community between 

period 1a and 1b. *Indicates organisms partitioned as common; organisms in bold are 

considered to be recognised CF pathogens.  

A	  
	   	   	   	   	   	  

	   Taxon	  	  

%	  Mean	  
abundance	   Average	  

dissimilarity	  
Contribution	  

%	  
Cumulative	  

%	  
	  

1a	   2	  

	  
Pseudomonas	  aeruginosa*	   53.9	   49	   22.03	   37.44	   37.44	  

	  
Streptococcus	  pneumoniae*	   8.22	   12.9	   7.056	   11.99	   49.42	  

	  
Streptococcus	  sanguinis	  group*	   8.53	   9.5	   5.603	   9.521	   58.95	  

	  
Prevotella	  melaninogenica*	   9.35	   5.12	   5.128	   8.714	   67.66	  

	  
Porphyromonas	  catoniae	   4.91	   2.99	   3.142	   5.339	   73	  

	  
Veillonella	  parvula*	   1.21	   5.41	   2.605	   4.426	   77.42	  

	  
Fusobacterium	  nucleatum	   2.03	   2.76	   2.215	   3.763	   81.19	  

	  
Enterobacter	  cowanii	   0.0144	   2.51	   1.262	   2.144	   83.33	  

	  
Stenotrophomonas	  maltophilia	   2.37	   0.141	   1.225	   2.082	   85.41	  

	  
Prevotella	  enoeca	   0.559	   0.915	   0.7029	   1.194	   86.61	  

	  
Prevotella	  oris	   1.22	   0.315	   0.6859	   1.165	   87.77	  

	  
Staphylococcus	  aureus	   0.0172	   1.13	   0.5699	   0.9683	   88.74	  

	  
Bacteroides	  oleiciplenus	  	   0.784	   0.546	   0.5613	   0.9537	   89.7	  

	  
Megasphaera	  micronuciformis	   0.729	   0.352	   0.4751	   0.8072	   90.5	  
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Table 7.3.1. Continued 
B	  

	   	   	   	   	   	  

	   Taxon	  	  

%	  Mean	  
abundance	   Average	  

dissimilarity	  
Contribution	  

%	  
Cumulative	  

%	  
	  

2	   3	  

	  
Pseudomonas	  aeruginosa*	   49	   57.2	   21.81	   37.33	   37.33	  

	  
Streptococcus	  pneumoniae*	   12.9	   12	   8.164	   13.97	   51.3	  

	  
Streptococcus	  sanguinis	  group*	   9.5	   3.37	   4.57	   7.823	   59.13	  

	  
Prevotella	  melaninogenica*	   5.12	   4.5	   3.452	   5.91	   65.04	  

	  
Veillonella	  parvula*	   5.41	   4.07	   3.387	   5.798	   70.84	  

	  
Enterobacter	  cowanii	   2.51	   3.95	   3.061	   5.239	   76.07	  

	  
Fusobacterium	  nucleatum	   2.76	   2.09	   2.259	   3.867	   79.94	  

	  
Porphyromonas	  catoniae	   2.99	   0.89	   1.726	   2.954	   82.9	  

	  
Staphylococcus	  aureus	   1.13	   1.66	   1.339	   2.293	   85.19	  

	  
Prevotella	  enoeca	   0.915	   1.04	   0.9239	   1.582	   86.77	  

	  
Achromobacter	  xylosoxidans	  	   0.19	   1.03	   0.5872	   1.005	   87.77	  

	  
Haemophilus	  parainfluenzae	   0.381	   0.828	   0.546	   0.9346	   88.71	  

	  
Barnesiella	  intestinihominis	   0.269	   0.844	   0.5298	   0.9069	   89.62	  

	  
Stenotrophomonas	  maltophilia	   0.141	   0.904	   0.5051	   0.8647	   90.48	  

 1 

 

C	  
	   	   	   	   	   	  

	   Taxon	  	  

%	  Mean	  
abundance	   Average	  

dissimilarity	  
Contribution	  

%	  
Cumulative	  

%	  
	  

3	   4	  

	  
Pseudomonas	  aeruginosa*	   57.2	   61.9	   21.2	   38.84	   38.84	  

	  
Streptococcus	  pneumoniae*	   12	   9.4	   7.706	   14.12	   52.96	  

	  
Fusobacterium	  nucleatum	   2.09	   6.92	   4.206	   7.706	   60.67	  

	  
Prevotella	  melaninogenica*	   4.5	   3.53	   3.247	   5.949	   66.62	  

	  
Veillonella	  parvula*	   4.07	   4.2	   2.974	   5.45	   72.07	  

	  
Streptococcus	  sanguinis	  group*	   3.37	   3.37	   2.319	   4.249	   76.32	  

	  
Enterobacter	  cowanii	   3.95	   0.0414	   1.987	   3.64	   79.96	  

	  
Porphyromonas	  catoniae	   0.89	   3.15	   1.842	   3.374	   83.33	  

	  
Prevotella	  enoeca	   1.04	   1.84	   1.323	   2.424	   85.76	  

	  
Staphylococcus	  aureus	   1.66	   0.0042	   0.8324	   1.525	   87.28	  

	  
Achromobacter	  xylosoxidans	  	   1.03	   0.309	   0.6343	   1.162	   88.45	  

	  
Stenotrophomonas	  maltophilia	   0.904	   0.0233	   0.4585	   0.8402	   89.29	  

	  
Haemophilus	  parainfluenzae	   0.828	   0.116	   0.449	   0.8227	   90.11	  

	  
Barnesiella	  intestinihominis	   0.844	   0.0338	   0.4308	   0.7894	   90.9	  
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Table 7.3.1. Continued 
D	  

	   	   	   	   	   	  

	   Taxon	  	  

%	  Mean	  
abundance	   Average	  

dissimilarity	  
Contribution	  

%	  
Cumulative	  

%	  
	  

4	   1b	  

	  
Pseudomonas	  aeruginosa*	   61.9	   53.5	   20.4	   37.42	   37.42	  

	  
Streptococcus	  pneumoniae*	   9.4	   9.45	   6.589	   12.08	   49.5	  

	  
Fusobacterium	  nucleatum	   6.92	   3.94	   4.838	   8.872	   58.38	  

	  
Streptococcus	  sanguinis	  group*	   3.37	   9.44	   4.448	   8.157	   66.53	  

	  
Prevotella	  melaninogenica*	   3.53	   4.78	   3.238	   5.939	   72.47	  

	  
Porphyromonas	  catoniae	   3.15	   2	   2.154	   3.951	   76.42	  

	  
Veillonella	  parvula*	   4.2	   1.3	   2.133	   3.912	   80.34	  

	  
Prevotella	  enoeca	   1.84	   1.69	   1.539	   2.823	   83.16	  

	  
Stenotrophomonas	  maltophilia	   0.0233	   1.79	   0.8973	   1.646	   84.8	  

	  
Staphylococcus	  aureus	   0.0042	   1.76	   0.8823	   1.618	   86.42	  

	  
Neisseria	  mucosa	   0.155	   1.44	   0.766	   1.405	   87.83	  

	  
Nocardia	  cyriacigeorgica	   0.00775	   1.27	   0.6387	   1.171	   89	  

	  
Prevotella	  oris	   0.598	   0.742	   0.5766	   1.058	   90.06	  

	  
Sneathia	  sanguinegens	   0.706	   0.49	   0.5459	   1.001	   91.06	  

 1 

 

E	  
	   	   	   	   	   	  

	   Taxon	  	  

%	  Mean	  
abundance	   Average	  

dissimilarity	  
Contribution	  

%	  
Cumulative	  

%	  
	  

1a	   1b	  

	  
Pseudomonas	  aeruginosa*	   53.9	   53.5	   21.43	   37.7	   37.7	  

	  
Streptococcus	  pneumoniae*	   8.22	   9.45	   5.889	   10.36	   48.06	  

	  
Streptococcus	  sanguinis	  group*	   8.53	   9.44	   5.508	   9.689	   57.75	  

	  
Prevotella	  melaninogenica*	   9.35	   4.78	   5.048	   8.879	   66.63	  

	  
Porphyromonas	  catoniae	   4.91	   2	   2.72	   4.785	   71.41	  

	  
Fusobacterium	  nucleatum	   2.03	   3.94	   2.717	   4.779	   76.19	  

	  
Stenotrophomonas	  maltophilia	   2.37	   1.79	   1.953	   3.436	   79.63	  

	  
Prevotella	  enoeca	   0.559	   1.69	   1.049	   1.846	   81.47	  

	  
Neisseria	  mucosa	   0.717	   1.44	   1.004	   1.766	   83.24	  

	  
Veillonella	  parvula*	   1.21	   1.3	   0.8938	   1.572	   84.81	  

	  
Staphylococcus	  aureus	   0.0172	   1.76	   0.8881	   1.562	   86.37	  

	  
Prevotella	  oris	   1.22	   0.742	   0.8703	   1.531	   87.91	  

	  
Nocardia	  cyriacigeorgica	   0.00321	   1.27	   0.6369	   1.12	   89.03	  

	  
Parvimonas	  micros	   0.333	   0.685	   0.4852	   0.8535	   89.88	  

	  
Bacteroides	  oleiciplenus	  	   0.784	   0.321	   0.476	   0.8373	   90.72	  
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Table 7.3.2 Similarity of percentages (SIMPER) analysis of the bacterial dissimilarity 

(Bray-Curtis) of the common taxa group between disease states. 

Given is the mean % abundance of sequences for each OTU across the periods they were 

observed to occupy. In addition, the average dissimilarity between periods is given. 

Percentage contribution is calculated from the mean contribution divided by the mean 

dissimilarity between periods. A) SIMPER analysis of the common group between period 1a 

and 2, B) SIMPER analysis of the common group between period 2 and 3, C) SIMPER 

analysis of the common group between period 3 and 4, D) SIMPER analysis of the common 

group between period 4 and 1b, E) SIMPER analysis of the common group between period 

1a and 1b. Organisms in bold are considered to be recognised CF pathogens. 

A	  
	   	   	   	   	   	  

	   Taxon	  	  

%	  Mean	  
abundance	   Average	  

dissimilarity	  
Contributio

n	  %	  
Cumulative	  

%	  
	  

1a	   2	  

	  
Pseudomonas	  aeruginosa	   53.9	   49	   27.55	   51.44	   51.44	  

	  
Streptococcus	  pneumoniae	   8.22	   12.9	   8.933	   16.68	   68.11	  

	  

Streptococcus	  sanguinis	  
group	   8.53	   9.5	   7.075	   13.21	   81.32	  

	  
Prevotella	  melaninogenica	   9.35	   5.12	   6.701	   12.51	   93.83	  

	  
Veillonella	  parvula	   1.21	   5.41	   3.304	   6.167	   100	  

 1 

 

B	  
	   	   	   	   	   	  

	   Taxon	  	  

%	  Mean	  
abundance	   Average	  

dissimilarity	  
Contributio

n	  %	  
Cumulative	  

%	  
	  

2	   3	  

	  
Pseudomonas	  aeruginosa	   49	   57.2	   28.05	   52.72	   52.72	  

	  
Streptococcus	  pneumoniae	   12.9	   12	   10.4	   19.54	   72.26	  

	  

Streptococcus	  sanguinis	  
group	   9.5	   3.37	   5.866	   11.02	   83.28	  

	  
Veillonella	  parvula	   5.41	   4.07	   4.461	   8.383	   91.66	  

	  
Prevotella	  melaninogenica	   5.12	   4.5	   4.437	   8.338	   100	  
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Table 7.3.2. Continued 

C	  
	   	   	   	   	   	  

	   Taxon	  	  

%	  Mean	  
abundance	   Average	  

dissimilarity	  
Contribution	  

%	  
Cumulative	  

%	  
	  

3	   4	  

	  
Pseudomonas	  aeruginosa	   57.2	   61.9	   28.3	   57.46	   57.46	  

	  
Streptococcus	  pneumoniae	   12	   9.4	   9.852	   20	   77.46	  

	  
Prevotella	  melaninogenica	   4.5	   3.53	   4.152	   8.431	   85.89	  

	  
Veillonella	  parvula	   4.07	   4.2	   3.919	   7.957	   93.85	  

	  

Streptococcus	  sanguinis	  
group	   3.37	   3.37	   3.03	   6.152	   100	  

 1 

 

D	  
	   	   	   	   	   	  

	   Taxon	  	  

%	  Mean	  
abundance	   Average	  

dissimilarity	  
Contributio

n	  %	  
Cumulative	  

%	  
	  

4	   1b	  

	  
Pseudomonas	  aeruginosa	   61.9	   53.5	   27.59	   56.28	   56.28	  

	  
Streptococcus	  pneumoniae	   9.4	   9.45	   8.492	   17.32	   73.61	  

	  

Streptococcus	  sanguinis	  
group	   3.37	   9.44	   5.907	   12.05	   85.66	  

	  
Prevotella	  melaninogenica	   3.53	   4.78	   4.211	   8.59	   94.25	  

	  
Veillonella	  parvula	   4.2	   1.3	   2.82	   5.753	   100	  

 1 

 

E	  
	   	   	   	   	   	  

	   Taxon	  	  

%	  Mean	  
abundance	   Average	  

dissimilarity	  
Contributio

n	  %	  
Cumulative	  

%	  
	  

1a	   1b	  

	  
Pseudomonas	  aeruginosa	   53.9	   53.5	   28.16	   54.87	   54.87	  

	  
Streptococcus	  pneumoniae	   8.22	   9.45	   7.685	   14.97	   69.84	  

	  

Streptococcus	  sanguinis	  
group	   8.53	   9.44	   7.275	   14.17	   84.02	  

	  
Prevotella	  melaninogenica	   9.35	   4.78	   6.892	   13.43	   97.44	  

	  
Veillonella	  parvula	   1.21	   1.3	   1.311	   2.555	   100	  
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Table 7.3.3 Similarity of percentages (SIMPER) analysis of the bacterial dissimilarity 

(Bray-Curtis) of the rare taxa group between disease states. 

Given is the mean % abundance of sequences for each OTU across the periods they were 

observed to occupy. In addition, the average dissimilarity between periods is given. 

Percentage contribution is calculated from the mean contribution divided by the mean 

dissimilarity between periods. A) SIMPER analysis of the rare group between period 1a and 

2, B) SIMPER analysis of the rare group between period 2 and 3, C) SIMPER analysis of the 

rare group between period 3 and 4, D) SIMPER analysis of the rare group between period 4 

and 1b, E) SIMPER analysis of the rare group between period 1a and 1b. Organisms in bold 

are considered to be recognised CF pathogens 

A	  
	   	   	   	   	   	  

	   Taxon	  	  

%	  Mean	  
abundance	   Average	  

dissimilarity	  
Contribution	  

%	  
Cumulative	  

%	  
	  

1a	   2	  

	  
Porphyromonas	  catoniae	   4.91	   2.99	   17.67	   19.48	   19.48	  

	  
Fusobacterium	  nucleatum	   2.03	   2.76	   6.669	   7.352	   26.84	  

	  
Stenotrophomonas	  maltophilia	   2.37	   0.141	   5.237	   5.773	   32.61	  

	  
Enterobacter	  cowanii	   0.0144	   2.51	   4.923	   5.428	   38.04	  

	  
Prevotella	  oris	   1.22	   0.315	   3.649	   4.023	   42.06	  

	  
Bacteroides	  oleiciplenus	  	   0.784	   0.546	   3.486	   3.843	   45.9	  

	  
Megasphaera	  micronuciformis	   0.729	   0.352	   3.429	   3.78	   49.68	  

	  
Haemophilus	  parainfluenzae	   0.0138	   0.381	   2.926	   3.226	   52.91	  

	  
Gemella	  sanguinis	   0.183	   0.489	   2.905	   3.203	   56.11	  

	  
Capnocytophaga	  sputigena	   0.123	   0.506	   2.786	   3.071	   59.18	  

	  
Prevotella	  maculosa	   0.74	   0.255	   2.584	   2.849	   62.03	  

	  
Prevotella	  pallens	   0.471	   0.401	   2.427	   2.676	   64.71	  

	  
Staphylococcus	  aureus	   0.0172	   1.13	   2.413	   2.66	   67.37	  

	  
Prevotella	  nanceiensis	   0.305	   0.349	   2.09	   2.304	   69.67	  

	  
Neisseria	  mucosa	   0.717	   0.177	   2.064	   2.275	   71.95	  

	  
Granulicatella	  adiacens	   0.308	   0.199	   2.049	   2.259	   74.21	  

	  
Capnocytophaga	  granulosa	   0.17	   0.409	   2.043	   2.253	   76.46	  

	  
Prevotella	  enoeca	   0.559	   0.915	   1.722	   1.898	   78.36	  

	  
Oribacterium	  sinus	   0.257	   0.139	   1.593	   1.757	   80.12	  

	  
Achromobacter	  xylosoxidans	  	   0.028	   0.19	   1.323	   1.459	   81.57	  

	  
Prevotella	  loescheii	   0.283	   0.123	   1.251	   1.379	   82.95	  

	  
Nocardia	  cyriacigeorgica	   0.00321	   0.181	   1.243	   1.37	   84.32	  

	  
Parvimonas	  micros	   0.333	   0.521	   1.117	   1.232	   85.56	  

	  
Porphyromonas	  endodontalis	   0.416	   0.0559	   1.026	   1.132	   86.69	  

	  
Lachnoanaerobaculum	  orale	   0.218	   0.149	   0.9714	   1.071	   87.76	  

	  
Actinomyces	  odontolyticus	   0.282	   0.0664	   0.9427	   1.039	   88.8	  

	  
Barnesiella	  intestinihominis	   0.00679	   0.269	   0.7411	   0.8171	   89.62	  

	  
Prevotella	  nigrescens	   0.242	   0.112	   0.7262	   0.8007	   90.42	  

 1  



 

Chapter 8: Discussion   241 

Table 7.3.3 Continued 

B) SIMPER analysis of the rare group between period 2 (30 days prior to antibiotic treatment 

for CFPE) and 3 (Treatment) 

B	  
	   	   	   	   	   	  

	   Taxon	  	  

%	  Mean	  
abundance	   Average	  

dissimilarity	  
Contribution	  

%	  
Cumulative	  

%	  
	  

2	   3	  

	  
Porphyromonas	  catoniae	   2.99	   0.89	   11.28	   12.19	   12.19	  

	  
Enterobacter	  cowanii	   2.51	   3.95	   9.412	   10.17	   22.36	  

	  
Fusobacterium	  nucleatum	   2.76	   2.09	   6.643	   7.177	   29.53	  

	  
Haemophilus	  parainfluenzae	   0.381	   0.828	   4.675	   5.051	   34.58	  

	  
Staphylococcus	  aureus	   1.13	   1.66	   4.652	   5.026	   39.61	  

	  
Achromobacter	  xylosoxidans	  	   0.19	   1.03	   4.033	   4.357	   43.97	  

	  
Prevotella	  pallens	   0.401	   0.559	   3.035	   3.279	   47.25	  

	  
Prevotella	  enoeca	   0.915	   1.04	   2.904	   3.137	   50.38	  

	  
Capnocytophaga	  sputigena	   0.506	   0.0623	   2.851	   3.08	   53.46	  

	  
Gemella	  sanguinis	   0.489	   0.147	   2.801	   3.026	   56.49	  

	  
Barnesiella	  intestinihominis	   0.269	   0.844	   2.748	   2.968	   59.46	  

	  
Capnocytophaga	  granulosa	   0.409	   0.263	   2.61	   2.819	   62.28	  

	  
Prevotella	  nanceiensis	   0.349	   0.404	   2.494	   2.694	   64.97	  

	  
Megasphaera	  micronuciformis	   0.352	   0.196	   2.404	   2.598	   67.57	  

	  
Bacteroides	  oleiciplenus	  	   0.546	   0.183	   2.34	   2.528	   70.1	  

	  
Prevotella	  oris	   0.315	   0.347	   2.176	   2.351	   72.45	  

	  
Stenotrophomonas	  maltophilia	   0.141	   0.904	   2.135	   2.306	   74.75	  

	  
Neisseria	  mucosa	   0.177	   0.228	   1.901	   2.054	   76.81	  

	  
Prevotella	  maculosa	   0.255	   0.294	   1.856	   2.005	   78.81	  

	  
Granulicatella	  adiacens	   0.199	   0.0668	   1.5	   1.621	   80.43	  

	  
Nocardia	  cyriacigeorgica	   0.181	   0.00366	   1.283	   1.386	   81.82	  

	  
Oribacterium	  sinus	   0.139	   0.0538	   1.263	   1.365	   83.18	  

	  
Lachnoanaerobaculum	  orale	   0.149	   0.252	   1.144	   1.236	   84.42	  

	  
Prevotella	  loescheii	   0.123	   0.2	   0.9566	   1.033	   85.45	  

	  
Parvimonas	  micros	   0.521	   0.107	   0.7968	   0.8607	   86.31	  

	  
Prevotella	  nigrescens	   0.112	   0.114	   0.6742	   0.7283	   87.04	  

	  
Clostridium	  cellobioparum	   0.017	   0.192	   0.6735	   0.7276	   87.77	  

	  
Atopobium	  parvulum	   0.0605	   0.0537	   0.5502	   0.5944	   88.36	  

	  
Actinomyces	  odontolyticus	   0.0664	   0.0785	   0.5133	   0.5545	   88.92	  

	  
Haemophilus	  influenzae	   0.0569	   0.00545	   0.5119	   0.553	   89.47	  

	  
Clostridium	  lavalense	   0.066	   0.125	   0.4467	   0.4825	   89.95	  

	  
Sneathia	  sanguinegens	   0.177	   0.163	   0.4276	   0.4619	   90.41	  
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Table 7.3.3 Continued 

C) SIMPER analysis of the rare group between period 3 (treatment) and 4 (30 days post 

treatment for CFPE) 

C	  
	   	   	   	   	   	  

	   Taxon	  	  

%	  Mean	  
abundance	   Average	  

dissimilarity	  
Contribution	  

%	  
Cumulative	  

%	  
	  

3	   4	  

	  
Fusobacterium	  nucleatum	   2.09	   6.92	   11.65	   12.39	   12.39	  

	  
Porphyromonas	  catoniae	   0.89	   3.15	   11.09	   11.79	   24.19	  

	  
Achromobacter	  xylosoxidans	  	   1.03	   0.309	   5.699	   6.062	   30.25	  

	  
Enterobacter	  cowanii	   3.95	   0.0414	   5.65	   6.01	   36.26	  

	  
Haemophilus	  parainfluenzae	   0.828	   0.116	   4.529	   4.818	   41.08	  

	  
Prevotella	  enoeca	   1.04	   1.84	   4.412	   4.693	   45.77	  

	  
Barnesiella	  intestinihominis	   0.844	   0.0338	   3.267	   3.475	   49.25	  

	  
Capnocytophaga	  granulosa	   0.263	   0.336	   3.238	   3.444	   52.69	  

	  
Prevotella	  oris	   0.347	   0.598	   2.748	   2.923	   55.61	  

	  
Prevotella	  pallens	   0.559	   0.122	   2.705	   2.877	   58.49	  

	  
Staphylococcus	  aureus	   1.66	   0.0042	   2.653	   2.822	   61.31	  

	  
Neisseria	  mucosa	   0.228	   0.155	   2.499	   2.658	   63.97	  

	  
Prevotella	  maculosa	   0.294	   0.242	   2.438	   2.594	   66.56	  

	  
Capnocytophaga	  sputigena	   0.0623	   0.518	   2.262	   2.406	   68.97	  

	  
Prevotella	  nanceiensis	   0.404	   0.167	   2.183	   2.323	   71.29	  

	  
Gemella	  sanguinis	   0.147	   0.248	   2.093	   2.226	   73.52	  

	  
Stenotrophomonas	  maltophilia	   0.904	   0.0233	   1.942	   2.066	   75.58	  

	  
Megasphaera	  micronuciformis	   0.196	   0.156	   1.787	   1.901	   77.49	  

	  
Lachnoanaerobaculum	  orale	   0.252	   0.127	   1.526	   1.623	   79.11	  

	  
Granulicatella	  adiacens	   0.0668	   0.131	   1.485	   1.58	   80.69	  

	  
Bacteroides	  oleiciplenus	  	   0.183	   0.241	   1.392	   1.48	   82.17	  

	  
Sneathia	  sanguinegens	   0.163	   0.706	   1.102	   1.172	   83.34	  

	  
Prevotella	  loescheii	   0.2	   0.0527	   1.034	   1.1	   84.44	  

	  
Prevotella	  nigrescens	   0.114	   0.154	   1.014	   1.079	   85.52	  

	  
Oribacterium	  sinus	   0.0538	   0.0814	   0.6996	   0.7442	   86.26	  

	  
Atopobium	  parvulum	   0.0537	   0.0531	   0.6717	   0.7145	   86.98	  

	  
Actinomyces	  odontolyticus	   0.0785	   0.079	   0.6314	   0.6716	   87.65	  

	  
Clostridium	  cellobioparum	   0.192	   0	   0.6281	   0.6682	   88.32	  

	  
Haemophilus	  influenzae	   0.00545	   0.0212	   0.5675	   0.6036	   88.92	  

	  
Parvimonas	  micros	   0.107	   0.295	   0.4805	   0.5111	   89.43	  

	  
Pseudomonas	  fragi	   0.00966	   0	   0.38	   0.4042	   89.84	  

	  
Prevotella	  oralis	   0.137	   0.0829	   0.377	   0.401	   90.24	  

	  
Clostridium	  lavalense	   0.125	   0	   0.3739	   0.3977	   90.64	  

 1 
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Table 7.3.3 Continued 

D) SIMPER analysis of the rare group between period 4  (30 days post treatment for CFPE) 

and 1b (Stable post-CFPE) 

D	  
	   	   	   	   	   	  

	   Taxon	  	  

%	  Mean	  
abundance	   Average	  

dissimilarity	  
Contribution	  

%	  
Cumulative	  

%	  
	  

4	   1b	  

	  
Porphyromonas	  catoniae	   3.15	   2	   14.6	   15.95	   15.95	  

	  
Fusobacterium	  nucleatum	   6.92	   3.94	   13.11	   14.32	   30.27	  

	  
Prevotella	  enoeca	   1.84	   1.69	   4.462	   4.873	   35.14	  

	  
Achromobacter	  xylosoxidans	  	   0.309	   0.338	   4.239	   4.63	   39.77	  

	  
Nocardia	  cyriacigeorgica	   0.00775	   1.27	   4.105	   4.483	   44.25	  

	  
Granulicatella	  adiacens	   0.131	   0.446	   3.765	   4.112	   48.37	  

	  
Stenotrophomonas	  maltophilia	   0.0233	   1.79	   3.392	   3.704	   52.07	  

	  
Gemella	  sanguinis	   0.248	   0.54	   3.378	   3.689	   55.76	  

	  
Prevotella	  oris	   0.598	   0.742	   3.094	   3.379	   59.14	  

	  
Neisseria	  mucosa	   0.155	   1.44	   3.035	   3.315	   62.45	  

	  
Oribacterium	  sinus	   0.0814	   0.358	   2.458	   2.685	   65.14	  

	  
Staphylococcus	  aureus	   0.0042	   1.76	   2.185	   2.387	   67.53	  

	  
Bacteroides	  oleiciplenus	  	   0.241	   0.321	   2.16	   2.359	   69.88	  

	  
Capnocytophaga	  sputigena	   0.518	   0.0937	   2.059	   2.249	   72.13	  

	  
Prevotella	  maculosa	   0.242	   0.225	   1.97	   2.152	   74.29	  

	  
Capnocytophaga	  granulosa	   0.336	   0.0911	   1.794	   1.959	   76.24	  

	  
Haemophilus	  parainfluenzae	   0.116	   0.295	   1.669	   1.822	   78.07	  

	  
Actinomyces	  odontolyticus	   0.079	   0.247	   1.662	   1.815	   79.88	  

	  
Sneathia	  sanguinegens	   0.706	   0.49	   1.506	   1.644	   81.53	  

	  
Prevotella	  nanceiensis	   0.167	   0.221	   1.381	   1.508	   83.04	  

	  
Megasphaera	  micronuciformis	   0.156	   0.238	   1.378	   1.505	   84.54	  

	  
Parvimonas	  micros	   0.295	   0.685	   1.197	   1.307	   85.85	  

	  
Atopobium	  parvulum	   0.0531	   0.102	   1.119	   1.222	   87.07	  

	  
Prevotella	  nigrescens	   0.154	   0.493	   1.086	   1.186	   88.26	  

	  
Prevotella	  denticola	   0.0059	   0.135	   0.9884	   1.08	   89.33	  

	  
Lachnoanaerobaculum	  orale	   0.127	   0.122	   0.9742	   1.064	   90.4	  

 1 
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Table 7.3.3 Continued 

E) SIMPER analysis of the rare group between period 1a (Stable pre-CFPE) and 1b (Stable 

post-CFPE) 

E	  
	   	   	   	   	   	  

	   Taxon	  	  

%	  Mean	  
abundance	   Average	  

dissimilarity	  
Contribution	  

%	  
Cumulative	  

%	  
	  

1a	   1b	  

	  
Porphyromonas	  catoniae	   4.91	   2	   16.61	   18.35	   18.35	  

	  
Fusobacterium	  nucleatum	   2.03	   3.94	   8.157	   9.008	   27.36	  

	  
Stenotrophomonas	  maltophilia	   2.37	   1.79	   7.242	   7.998	   35.35	  

	  
Prevotella	  oris	   1.22	   0.742	   4.451	   4.915	   40.27	  

	  
Granulicatella	  adiacens	   0.308	   0.446	   3.744	   4.135	   44.4	  

	  
Nocardia	  cyriacigeorgica	   0.00321	   1.27	   3.696	   4.082	   48.49	  

	  
Neisseria	  mucosa	   0.717	   1.44	   3.25	   3.589	   52.07	  

	  
Bacteroides	  oleiciplenus	  	   0.784	   0.321	   3.107	   3.431	   55.51	  

	  
Gemella	  sanguinis	   0.183	   0.54	   3.045	   3.362	   58.87	  

	  
Prevotella	  enoeca	   0.559	   1.69	   3.042	   3.36	   62.23	  

	  
Achromobacter	  xylosoxidans	  	   0.028	   0.338	   2.668	   2.946	   65.17	  

	  
Prevotella	  maculosa	   0.74	   0.225	   2.551	   2.818	   67.99	  

	  
Oribacterium	  sinus	   0.257	   0.358	   2.506	   2.768	   70.76	  

	  
Megasphaera	  micronuciformis	   0.729	   0.238	   2.393	   2.643	   73.4	  

	  
Staphylococcus	  aureus	   0.0172	   1.76	   2.237	   2.47	   75.87	  

	  
Actinomyces	  odontolyticus	   0.282	   0.247	   1.832	   2.023	   77.89	  

	  
Prevotella	  pallens	   0.471	   0.156	   1.654	   1.827	   79.72	  

	  
Prevotella	  nanceiensis	   0.305	   0.221	   1.431	   1.58	   81.3	  

	  
Parvimonas	  micros	   0.333	   0.685	   1.307	   1.443	   82.74	  

	  
Atopobium	  parvulum	   0.0627	   0.102	   1.167	   1.288	   84.03	  

	  
Porphyromonas	  endodontalis	   0.416	   0.072	   1.108	   1.223	   85.26	  

	  
Prevotella	  nigrescens	   0.242	   0.493	   1.081	   1.193	   86.45	  

	  
Prevotella	  denticola	   0.0533	   0.135	   1.036	   1.145	   87.59	  

	  
Capnocytophaga	  granulosa	   0.17	   0.0911	   0.977	   1.079	   88.67	  

	  
Lachnoanaerobaculum	  orale	   0.218	   0.122	   0.9638	   1.064	   89.74	  

	  
Prevotella	  loescheii	   0.283	   0.00487	   0.8468	   0.9352	   90.67	  

 1 
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7.3.5 Mixed effect models 

Despite observing no significant changes in the core group by disease period (Table 7.3), 

SIMPER analysis revealed possible changes in the percentage contribution of individual 

OTUs within the core group. To investigate how the abundance of individual OTUs changed 

between disease periods mixed effect models were used. These models allow the inclusion 

of both fixed (disease period) and random effects (Patient) allowing the variation between 

patients to be accounted for within the model. The five taxa partitioned into the common 

group were modelled to examine how the relative abundance of these changed over the 5 

disease periods, Figure 7.3.  

As shown in Figure 7.3, there was no significant difference in the proportional abundance of 

P. aeruginosa prior, or during intervention for CFPE. A significant increase was observed in 

the proportional abundance of P. aeruginosa (100%) after the treatment period (period 4) 

however, this returned to baseline after the 30 day period. No significant change in the 

proportional abundance of S. pneumonia was observed over the five disease periods. A 

significant decrease in the proportional abundance of S. sanguinis group (82%) and P. 

melaninogenica (59%) was observed during the treatment period (3). However, V. parvula 

was found to show a significant increase in proportional abundance prior to the start of 

treatment (264%). The proportional abundance remained significantly higher for period 3 

(129%) and 4 (400%), with a slight decrease being observed during treatment.  

SIMPER analysis indicated the percentage contribution of P. catoniae, the most 

proportionally abundant of the rare group, decreased during the treatment period. This was 

also supported by the results of the mixed effect modelling, which revealed the proportional 

abundance of P. catoniae significantly decreased (60%) during the treatment period, before 

recovery leading into the post CFPE stable period. 
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Figure 7.3 Trends in the relative abundance of bacterial taxa with change in disease 

period.  

Parameters are extracted from mixed-effects models based on 237 samples from 12 

patients. 1a) Stable pre-CFPE, 2) 30 days prior to antibiotic treatment, 3) period of time 

patients were receiving treatment for pulmonary exacerbation, 4) 30 days post treatment, 1b) 

Stable post-CFPE. ** P<0.001, *=P<0.05. ‡ indicates OTU was partitioned as rare.  
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7.4 Discussion 

Spatial studies have informed our understanding of the bacterial community within the CF 

lung, revealing a complex and highly variable system. However, in order to understand the 

progressive nature of CF lung disease and how this relates to changes in bacterial 

community dynamics, it is important to investigate how the community changes over time. 

Several recent studies have been published that attempt to understand the bacterial 

community dynamics within the CF lung (5, 15-19). While these investigations have provided 

valuable information, they have several limitations, typically, they have relied on point 

samples to be representative of a given disease state (e.g. baseline or exacerbation), which 

fails to account for variation in microbiota structure and composition within a disease period. 

By collecting samples and associated metadata at more frequent intervals this study was 

able to not only account for variation within the bacterial community over time but also 

investigate how this relates to changes in disease state.         

Despite efforts to investigate change in the bacterial community due to CFPE, the findings of 

studies by Fodor et al (2012) Carmody et al (2013) Price et al (2013) and Zhao et al (2012), 

were limited (5, 15, 18, 19). Fodor et al (2012) and Carmody et al (2013) compared paired 

samples from patients, leading into or during treatment for CFPE (15, 18). While Fodor et al 

(2012) showed no significant change in the bacterial density or composition from the start to 

the end of treatment for CFPE (15), Carmody et al (2013) revealed that changes in the 

bacterial community, from baseline leading into CFPE was highly variable depending on 

bacterial diversity and composition (18). While these studies are informative they have been 

shown to have inherent limitations. Carmody et al (2013) state the limitations of their study, 

including the frequency of the sample collection, which failed to allow fluctuations in the 

airway microbiota to be accounted for (18). On top of this, both these studies fail to 

investigate bacterial changes across an entire CFPE, concentrating instead on the treatment 

period and lead in respectively, they fail to address the issues of how treatment effects the 

bacterial community and if the community returns to its baseline state post treatment. 
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Studies by Zhao et al (2012) and Price et al (2013), aimed to examine changes in the 

bacterial community over the course of an exacerbation using the “BETR” classification; 

baseline (B), exacerbation prior to treatment (E), treatment (T) and into recovery (R) (5, 19). 

While Zhao et al, 2012, used these clearly defined parameters of each disease period (5), 

Price et al (2013) failed to clearly define the recovery period, simply collecting samples at the 

next routine quarterly visit (19). These studies provided a more complete picture of changes 

in the bacterial community over the course of CFPE. However, Zhao et al (2012) failed to 

follow a single exacerbation from start to finish for any given patient and therefore revealed 

little about specific changes in the bacterial community (5). Whereas Price et al (2013) 

examined changes in community composition over a single exacerbation, revealing a stable 

bacterial community this study. Even so, this work neglected to account for the fluctuations in 

the community identified previously (19).  

In order to address how the bacterial community changes from baseline and across the full 

cycle of CFPE back to baseline, which has not been previously studied, samples were 

collected from CF patients over the course of a year. This collection regimen included 

several samples collected when patients were considered to be stable as well as multiple 

samples that were collected leading into, during and out of a CFPE, giving a more complete 

picture of the exacerbation event. The collection of multiple samples allows a more complete 

assessment of short term variation within the community, therefore allowing true shifts in the 

bacterial community composition to be observed.  

It has been well established in previous studies that the metacommunity within the CF lung 

shows a distinct divide between common and locally abundant species and those that are 

rare or transient (3, 26). As explained in Chapter 3.4, such studies used a Poisson 

distribution to establish the core-satellite groups within the community. However, due to the 

tendency for this analysis to assign some species with low persistence but uniform 

abundance as core, a more intuitive approach based on the positive persistence abundance 

relationship was employed. This approach partitioned only the species appearing in more 

than 75% of the samples into the common group. Partitioning all samples revealed five 
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species common OTUs; Pseudomonas aeruginosa, Streptococcus pneumonia, S. sanguinis 

group, Prevotella melaninogenica and Veillonella parvula. This common group was found to 

account for the majority of the sequence abundance. However, the majority of diversity was 

accounted for by the rare group. Interestingly, over the five clinical periods the common 

group was found to be relatively stable, with only V. parvula   and P. melaninogenica falling 

into the rare group during the treatment period. However, none of the members of the rare 

group were found to move into the core.   

As expected, bacterial community turnover within the lung was never completely stable 

however, rates of OTU turnover were found to be more consistent over the stable periods, 

and show more variation surrounding, and throughout the treatment for CFPE. Changes in 

species richness were hypothesised to drive the changes in the rate of turnover. To explore 

this further the turnover rates for the common and rare taxa were calculated. While the 

common OTUs were found to be conserved over the study period, the much more diverse, 

rare group was found to be highly variable, driving the turnover rates observed in the whole 

community.  

The Bray-Curtis measure of similarity was used to compare changes in community 

composition over the study period, allowing a quantitative measure of similarity to be 

calculated. Over the five clinical periods, no change in similarity was observed when either 

the whole community or common group were examined. However, significant differences 

were seen within the rare group. Importantly these changes occurred leading into, during 

and out of CFPE. However, no significant differences in similarity between the stable 

periods, pre and post CFPE were observed. These findings underline the importance of 

partitioning the data, as the contribution of the rare taxa to community composition would be 

neglected without this distinction. If partitioning had been carried out by Stressmann et al 

(2012), more variation in the community composition may have been observed (16).   

Failure of the common group to show any significant change over the study period indicates 

resistance of that group to perturbations within the lung. Resistance of ecological 
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communities to change is defined as the degree to which a microbial community can resist 

change as a result of community perturbations (27). The abundance of these common taxa 

results in this pattern of resistance being reflected in the whole community, and as a result 

masks changes in the rare group. While the common group shows resistance to 

perturbations the data suggests that the rare group shows resilience. Resilience of 

ecological communities to change is defined as the rate at which the microbial community 

composition returns to the baseline after perturbation (27). This resilience indicates that over 

the short term the bacterial community within the lung can, despite the influence of CFPE 

and interventions, recover to the previous baseline community composition. These findings 

are reflected in the results observed when examining rates of taxa turnover. 

There are two plausible explanations of how the rare taxa can return to baseline after the 

initiation of CFPE and treatment. The first is that species recolonise the lung through 

immigration from the upper airways and/or oral cavity, the second is that populations of rare 

taxa are not totally eradicated by antibiotic intervention and have fallen below the detection 

threshold, thereby allowing the species to re-establish after the termination of antibiotic 

intervention. It is probable that both of these explanations will be the case for different rare 

taxa. 

From the community level analysis it is clear that the common group shows high resistance 

to community perturbations. However, the changes in individual species influence on 

percentage dissimilarity indicated that subtle changes in the abundance of individual species 

could be occurring. In order to investigate this mixed effect models, with a negative binomial 

error structure, were used to examine how individual species from the common group were 

affected by perturbation at the population level. The most persistent of the rare species 

group was included also in this analysis due to their high abundance, observed in the 

persistence abundance plots, along with the high percentage contribution to community 

similarity, shown in the SIMPER analysis.  
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Infection with P. aeruginosa has been highlighted by numerous studies to be a key factor in 

poor clinical outcomes and is one of the main targets for treatment. It is therefore surprising 

that its abundance remained high across all clinical periods, even showing a significant 

increase in abundance after the treatment period. While the relative abundance from high 

throughput sequencing data of a given taxa may not be considered strictly quantitative, Price 

et al (2013) clearly demonstrated a highly significant correlation for P. aeruginosa between 

the results of qPCR analysis and sequencing data (19). Therefore, coupled with the PMA 

treatment, ruling out artefacts of cell death as a result of antibiotic intervention, confidence 

can be taken that this represents a true reflection of the P. aeruginosa population over all 

disease periods. One possible explanation for the increase in abundance of P. aeruginosa 

observed after the conclusion of treatment is that antibiotic treatment has lead to a reduction 

in the abundance of other taxa, thereby allowing P. aeruginosa to take advantage of newly 

available niche space. Even so, the abundance in P. aeruginosa returns to baseline after the 

30 day post treatment period, due to the resilience of members of the rare group.    

Similarly, no change in the abundance of Streptococcus pneumoniae was observed over the 

disease period. However, members of the Streptococcus sanguinis group were found to 

significantly decrease during the treatment period. This abundance only returned to baseline 

after the 30 day post treatment period, suggesting that the initiation of treatment is having an 

effect on the abundance of the members of the Streptococcus sanguinis group but that the 

group is resilient and is able to re-establish and return to previous baseline abundance.  

This resilience of individual taxa to CFPE is also observed when examining the changes in 

Porphyromonas catoniae, Prevotella melaninogenica and Veillonella parvula. However, while 

the abundance of Porphyromonas catoniae simply decreases significantly during treatment 

and then returns to baseline levels, the abundance of Prevotella melaninogenica and V. 

parvula significantly changed prior to the initiation of intervention. During the lead in to 

exacerbation, a significant decrease in the abundance of Prevotella melaninogenica was 

observed, while a significant increase was seen in V. parvula. While both these taxa are 

resilient and return to baseline during the 30 day period after the conclusion of treatment 
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period, the significant changes observed prior to the start of exacerbation makes them 

potential biomarkers of disease state.  

The lack of a generally applicable definition of CFPE is a major problem for the timely 

treatment of exacerbations. Work by Sanders et al (2010) has already established that in 

many cases patients suffering from CFPE will fail to return to baseline lung function following 

treatment however, earlier identification, and therefore treatment, can improve patient 

outcomes and increase the likelihood of lung function recovery (28). This failure to recover 

lung function after CFPE, despite the return of the bacterial community to baseline, may be a 

result to incremental lung damage due to inflammatory responses and not be associated 

directly with the bacterial community. The advances in DNA based technologies has 

promoted their use in molecular diagnostics allowing disease associated biomarkers to be 

used to identify, predict and monitor changes in infections (29). The identification of 

biomarkers for CFPE could be a potentially important route to improve the identification and 

therefore outcomes for CF patients.  

Two potential biomarkers for disease state, Prevotella melaninogenica and Veillonella 

parvula, were identified due to their significant change from baseline prior to the start of 

antibiotic intervention. While both these species may be useful, the large (264%) increase in 

the abundance of V. parvula observed in this study make it the more promising of the two 

species. More detailed work into this area is required to examine the potential of these 

species for use as a diagnostic tool. Development of targeted qPCR based analysis is 

required to check the efficacy of these species as a molecular diagnostic tool for detecting 

the onset of CFPE.  

Here, examination of changes in the bacterial community across the entire span of CFPE 

has revealed valuable insight into how the bacterial community reacts to perturbations within 

the lung. While the common species are found to be resistant, the rare are resilient to CFPE 

perturbations. Examination at the common species group level has not only revealed 

potentially two novel biomarkers for changes in disease state but has also revealed that key 
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recognised CF pathogen P. aeruginosa is, in essence, unaffected by a change in disease 

state. 

While the resistance and resilience of the common and rare group is of concern with regards 

to treatment, of particular concern to clinicians will be the lack of substantial change in P. 

aeruginosa.  As antibiotics administered in response to the worsening symptoms associated 

with CFPE are predominantly targeted at P. aeruginosa. These findings suggest that 

clinicians may need to re-examine intervention regimens. From a fundamental perspective 

the bacterial community may not be the whole story. The wider microbial community needs 

to be considered through investigations into the roles of bacteria, fungi and respiratory 

viruses, alongside markers of host immune response. Studies of this nature could reveal the 

underlying cause or causes of CFPE. It may well be the case that there is no consistent 

factor (infection or host) across CFPE, within or between patients.  
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7.6 Appendix  

Table A7.1 The raw sequence data reported in this Chapter have been deposited in the 

European Nucleotide Archive short read database  

Study Accession Numbers ERP005251 and ERP007059, and Sample Accession Numbers 

ERS421603 and ERS551400. A list of barcodes used and their associated samples are 

shown below.  

Barcode Sputum ID Sample No Patient Date Exacerbation 
CAACTCATCGTA 01_006 6 1 14-Jun-06 1 
TACTACATGGTC 01_031 31 1 08-Sep-06 1 
ATGACCATCGTG 01_055 55 1 27-Oct-06 1 
AGAGTCCTGAGC 01_075 75 1 18-Dec-06 1 
ACTATTGTCACG 01_078 78 1 03-Jan-07 2 
AGAACACGTCTC 01_081 81 1 10-Jan-07 2 
AGCACACCTACA 01_084 84 1 17-Jan-07 2 
AGCTCTCAGAGG 01_087 87 1 24-Jan-07 2 
AGTCTCGCATAT 01_089 89 1 26-Jan-07 3 
ATCGATCTGTGG 01_091 91 1 28-Jan-07 3 
ATAGGCGATCTC 01_093 93 1 30-Jan-07 3 
AGTTCTACGTCA 01_095 95 1 02-Feb-07 3 
TAGTGCTGCGTA 01_096 96 1 03-Feb-07 3 
CAAGATCGACTC 01_097 97 1 05-Feb-07 3 
ATGTGCACGACT 01_099 99 1 07-Feb-07 3 
ATGCCTGAGCAG 01_100 100 1 09-Feb-07 3 
GTCGCTGTCTTC 01_101 101 1 12-Feb-07 3 
AGTTCAGACGCT 01_112 112 1 19-Mar-07 4 
ATCCTCAGTAGT 01_114 114 1 21-Mar-07 5 
ATAGCTCCATAC 01_116 116 1 26-Mar-07 5 
TAGTCGTCTAGT 01_117 117 1 28-Mar-07 5 
ACATCACTTAGC 02_003 3 2 07-Jun-06 1 
ACGGTGAGTGTC 02_020 20 2 12-Jul-06 1 
AGGCTACACGAC 02_022 22 2 24-Jul-06 1 
ACTCGATTCGAT 02_051 51 2 06-Oct-06 1 
TAGCACACCTAT 02_061 61 2 30-Oct-06 1 
CATATACTCGCA 02_073 73 2 27-Nov-06 1 
AGTTCTACGTCA 02_084 84 2 22-Dec-06 1 
ACTTGTAGCAGC 02_090 90 2 12-Jan-07 1 
AGTGAGAGAAGC 02_095 95 2 24-Jan-07 2 
ATAATCTCGTCG 02_098 98 2 31-Jan-07 2 
ATATCGCTACTG 02_101 101 2 07-Feb-07 2 
ATCGCGGACGAT 02_103 103 2 12-Feb-07 2 
ATCTTAGACTGC 02_106a 106 2 16-Feb-07 3 
GTCTTCGTCGCT 02_108 108 2 18-Feb-07 3 
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Table A7.1 Continued 

Barcode Sputum ID Sample No Patient Date Exacerbation 
ATGCGTAGTGCG 02_109a 109 2 19-Feb-07 3 
ATGTGTCGACTT 02_111 111 2 21-Feb-07 3 
TAGCGACATCTG 02_112 112 2 22-Feb-07 3 
AGTGCGATGCGT 02_115 115 2 25-Feb-07 3 
ATACACGTGGCG 02_118 118 2 28-Feb-07 3 
ATATGCCAGTGC 02_122 122 2 07-Mar-07 4 
ATCGCTCGAGGA 02_125 125 2 14-Mar-07 4 
ATGACTCATTCG 02_128 128 2 21-Mar-07 4 
AGATGTTCTGCT 02_131 131 2 28-Mar-07 5 
ACTAGCTCCATA 02_137 137 2 16-Apr-07 5 
CATCATGAGGCT 02_153 153 2 25-May-07 5 
TACCGCTAGTAG 03_017 17 3 17-Jul-06 1 
ATTCTGTGAGCG 03_030 30 3 16-Aug-06 1 
TAGACTGTACTC 03_040 40 3 18-Sep-06 1 
ATCTACTACACG 03_054 54 3 20-Oct-06 1 
ATGTCACCGTGA 03_063 63 3 17-Nov-06 1 
TAGCGGATCACG 03_072 72 3 08-Dec-06 1 
GTCTCTCTACGC 03_085 85 3 15-Jan-07 1 
AGAGTAGCTAAG 03_110 110 3 19-Mar-07 1 
GTTCGCGTATAG 03_135 135 3 25-May-07 1 
GTTGACGACAGC 05_002 2 4 14-Jul-06 1 
TACGGTATGTCT 05_012 12 4 07-Aug-06 1 
AGCTATCCACGA 05_014 14 4 30-Aug-06 2 
ACGATGCGACCA 05_016 16 4 04-Sep-06 2 
AGATCTCTGCAT 05_018 18 4 06-Sep-06 2 
ACTGTGACTTCA 05_021 21 4 13-Sep-06 3 
ACTACGTGTGGT 05_023 23 4 15-Sep-06 3 
ACGCGATACTGG 05_024 24 4 17-Sep-06 3 
ACATGTCACGTG 05_026 26 4 19-Sep-06 3 
ACACGAGCCACA 05_028 28 4 21-Sep-06 3 
AGTCACATCACT 05_030 30 4 23-Sep-06 3 
AGCGTAGGTCGT 05_034 34 4 27-Sep-06 3 
AGATCGGCTCGA 05_036 36 4 29-Sep-06 3 
ACTGTCGAAGCT 05_038 38 4 01-Oct-06 3 
ACTACAGCCTAT 05_040 40 4 03-Oct-06 3 
ACGCAACTGCTA 05_041 41 4 04-Oct-06 3 
TACACACATGGC 05_044 44 4 09-Oct-06 3 
ACACATGTCTAC 05_045 45 4 11-Oct-06 3 
AGTAGTATCCTC 05_047 47 4 13-Oct-06 3 
AGCGCTGATGTG 05_049 49 4 15-Oct-06 3 
AGATACACGCGC 05_051 51 4 17-Oct-06 3 
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Table A7.1 Continued 

Barcode Sputum ID Sample No Patient Date Exacerbation 
ACTGTACGCGTA 05_053 53 4 19-Oct-06 3 
ACGTTAGCACAC 05_055 55 4 21-Oct-06 3 
ACGATGCGACCA 05_060 60 4 27-Oct-06 4 
ACATCACTTAGC 05_062 62 4 01-Nov-06 4 
ACACACTATGGC 05_065 65 4 08-Nov-06 4 
AGTACTGCAGGC 05_068 68 4 15-Nov-06 4 
AATCGTGACTCG 05_079 79 4 01-Dec-06 5 
ATACGTCTTCGA 05_088 88 4 08-Jan-07 5 
AGAACACGTCTC 05_098 98 4 05-Feb-07 5 
GTTAGAGCACTC 05_112 112 4 01-Mar-07 5 
ACGTTAGCACAC 05_125 125 4 28-Mar-07 5 
AGCACACCTACA 05_130 130 4 27-Apr-07 5 
AACTGTGCGTAC 05_138 138 4 21-May-07 5 
ATGCCTGAGCAG 05_139 139 4 23-May-07 5 
TACATCACCACA 06_006 6 5 26-Jul-06 1 
ACGCTATCTGGA 06_021 21 5 13-Sep-06 1 
ACAGAGTCGGCT 06_030 30 5 13-Oct-06 1 
ATCGTACAACTC 06_061 61 5 10-Jan-07 1 
AGCATATGAGAG 06_067 67 5 29-Jan-07 1 
AGTCTACTCTGA 06_072 72 5 12-Feb-07 1 
AGTCCATAGCTG 06_079 79 5 28-Feb-07 2 
ACACGGTGTCTA 06_081 81 5 05-Mar-07 2 
ATCACTAGTCAC 06_082 82 5 09-Mar-07 2 
ACATTCAGCGCA 06_083 83 5 14-Mar-07 2 
ACGCGCAGATAC 06_086a 86 5 20-Mar-07 2 
ACTTGTAGCAGC 06_087 87 5 21-Mar-07 3 
AGATGTTCTGCT 06_089 89 5 23-Mar-07 3 
AGCTCCATACAG 06_090 90 5 24-Mar-07 3 
ACACTAGATCCG 06_094 94 5 28-Mar-07 3 
ACCACATACATC 06_096 96 5 30-Mar-07 3 
ACCACATACATC 06_100 100 5 13-Apr-07 4 
ACGCTATCTGGA 06_102 102 5 18-Apr-07 4 
ACTATTGTCACG 06_112 112 5 30-May-07 5 
ACGAGTGCTATC 06_125 125 5 09-Jul-07 5 
TAAGCGCAGCAC 07_015 15 6 06-Sep-06 1 
TAGCGACATCTG 07_036 36 6 13-Oct-06 1 
AGCGACTGTGCA 07_053 53 6 22-Nov-06 2 
AGAGTAGCTAAG 07_056 56 6 29-Nov-06 2 
ACTGACAGCCAT 07_059 59 6 06-Dec-06 2 
ACGTGAGAGAAT 07_062 62 6 12-Dec-06 2 
ACAGTGCTTCAT 07_065 65 6 15-Dec-06 3 
CATGGCTACACA 07_066 66 6 17-Dec-06 3 
AATCAGTCTCGT 07_067 67 6 18-Dec-06 3 
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Table A7.1 Continued 

Barcode Sputum ID Sample No Patient Date Exacerbation 
AGGTGTGATCGC 07_068 68 6 19-Dec-06 3 
AGCCATACTGAC 07_071 71 6 27-Dec-06 4 
ACTCTTCTAGAG 07_073 73 6 05-Jan-07 4 
AGAGCAAGAGCA 07_075 75 6 10-Jan-07 4 
TACTAATCTGCG 07_077 77 6 15-Jan-07 4 
ATCTGAGCTGGT 07_085 85 6 02-Feb-07 5 
CATGAGTGCTAC 07_094 94 6 23-Feb-07 5 
ATGCGTAGTGCG 07_122 122 6 20-Apr-07 5 
TAACTCTGATGC 07_137 137 6 30-May-07 5 
TAGTCGTCTAGT 08_022 22 7 18-Sep-06 1 
TAACAGTCGCTG 08_033 33 7 18-Oct-06 1 
TAGAGAGAGTGG 08_086 86 7 02-Mar-07 1 
TAGATAGCAGGA 08_097 97 7 28-Mar-07 1 
TACTTACTGCAG 08_109 109 7 30-Apr-07 1 
GTGTCTACATTG 08_121 121 7 01-Jun-07 1 
ACAGTTGCGCGA 09_005 5 8 31-Jul-06 1 
ACTGATCCTAGT 09_009 9 8 09-Aug-06 1 
ACACTAGATCCG 09_017 17 8 30-Aug-06 1 
AGTACTGCAGGC 09_027 27 8 22-Sep-06 1 
AAGAGATGTCGA 09_047 47 8 27-Oct-06 1 
ATGGCAGCTCTA 09_055 55 8 15-Nov-06 2 
ATTATCGTGCAC 09_061 61 8 29-Nov-06 2 
TAGCGGATCACG 09_064 64 8 06-Dec-06 2 
AGTGGATGCTCT 09_066 66 8 08-Dec-06 3 
ATACAGAGCTCC 09_068 68 8 10-Dec-06 3 
ATCACGTAGCGG 09_071 71 8 12-Dec-06 3 
ATCGTACAACTC 09_075 75 8 17-Dec-06 3 
ATGAGACTCCAC 09_076 76 8 18-Dec-06 4 
ATGGCGTGCACA 09_078 78 8 22-Dec-06 4 
ATTCTGTGAGCG 09_080 80 8 03-Jan-07 4 
TAGCTCGTAACT 09_082 82 8 08-Jan-07 4 
AGTGTCACGGTG 09_085 85 8 15-Jan-07 4 
AGTAGTATCCTC 09_087 87 8 22-Jan-07 5 
GTCTCATGTAGG 09_120 120 8 21-Mar-07 5 
TAGTGTGCTTCA 09_133 133 8 08-Apr-07 5 
ACCTCGATCAGA 09_156 156 8 17-May-07 5 
AGTCTCGCATAT 09_160 160 8 31-May-07 5 
ACGTACTCAGTG 09_163 163 8 06-Jun-07 5 
AGCAGTCGCGAT 09_303 303 8 27-Jun-07 5 
ATGTGTCGACTT 10_001 1 9 16-Aug-06 1 
CATATCGCAGTT 10_063 63 9 05-Jan-07 1 
ACAGCAGTGGTC 10_067 67 9 15-Jan-07 1 
CATCGTATCAAC 10_083 83 9 21-Feb-07 1 
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Table A7.1 Continued 

Barcode Sputum ID Sample No Patient Date Exacerbation 
TAGTGCTGCGTA 10_124 124 9 21-May-07 1 
GTTGTATACTCG 10_130 130 9 06-Jun-07 1 
ACCTCGATCAGA 10_138 138 9 25-Jun-07 2 
ACGTACTCAGTG 10_141 141 9 02-Jul-07 2 
ACTCGCACAGGA 10_144 144 9 09-Jul-07 2 
AGAGAGCAAGTG 10_147 147 9 15-Jul-07 3 
AGCATATGAGAG 10_149 149 9 17-Jul-07 3 
AGGCTACACGAC 10_150 150 9 18-Jul-07 3 
AAGCTGCAGTCG 10_153 153 9 23-Jul-07 3 
ACAGCTAGCTTG 10_157 157 9 01-Aug-07 4 
ACCTGTCTCTCT 10_160 160 9 08-Aug-07 4 
ACGTCTGTAGCA 10_162 162 9 13-Aug-07 4 
ATGAGACTCCAC 11_006 6 10 18-Sep-06 1 
CAACTCATCGTA 11_025 25 10 01-Nov-06 2 
ATACAGAGCTCC 11_027 27 10 06-Nov-06 2 
ATGTCACCGTGA 11_028 28 10 08-Nov-06 2 
ATGCAGCTCAGT 11_032 32 10 17-Nov-06 2 
ATCTGAGCTGGT 11_035 35 10 24-Nov-06 2 
ATCCGATCACAG 11_036 36 10 25-Nov-06 3 
ATACTCACTCAG 11_040 40 10 29-Nov-06 3 
AGTTAGTGCGTC 11_041 41 10 30-Nov-06 3 
TAGGTATCTCAC 11_045 45 10 04-Dec-06 3 
CAACTATCAGCT 11_046 46 10 05-Dec-06 3 
ATGTACGGCGAC 11_051 51 10 13-Dec-06 4 
ATGCACTGGCGA 11_055 55 10 22-Dec-06 4 
ATCTCTGGCATA 11_057 57 10 03-Jan-07 4 
TACAGTCTCATG 11_113 113 10 09-Apr-07 5 
GTGATAGTGCCG 11_127 139 10 09-May-07 5 
ATGATCGAGAGA 11_154 154 10 13-Jul-07 5 
GTCTATCGGAGT 11_163 163 10 15-Aug-07 5 
ATCTGGTGCTAT 12_002 2 11 08-Oct-06 1 
AGTGGATGCTCT 12_023 23 11 14-Nov-06 1 
ACTCAGATACTC 12_037 37 11 10-Jan-07 2 
AGCGAGCTATCT 12_038 38 11 11-Jan-07 2 
AGACGTGCACTG 12_040 40 11 17-Jan-07 2 
AGCAGCACTTGT 12_042 42 11 21-Jan-07 2 
AGCTTGACAGCT 12_046 46 11 31-Jan-07 2 
AACTGTGCGTAC 12_048 48 11 02-Feb-07 3 
ACAGAGTCGGCT 12_050 50 11 04-Feb-07 3 
ACCGCAGAGTCA 12_051 51 11 05-Feb-07 3 
ACGGTGAGTGTC 12_054 54 11 08-Feb-07 3 
ACTCGATTCGAT 12_056 56 11 10-Feb-07 3 
AGACTGCGTACT 12_058 58 11 12-Feb-07 3 
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Table A7.1 Continued 

Barcode Sputum ID Sample No Patient Date Exacerbation 
AGCAGTCGCGAT 12_061 61 11 15-Feb-07 3 
AGGACGCACTGT 12_064 64 11 22-Feb-07 4 
AAGAGATGTCGA 12_066 66 11 28-Feb-07 4 
ACTGTACGCGTA 12_067 67 11 01-Mar-07 4 
ACAGCAGTGGTC 12_069 69 11 07-Mar-07 4 
ATCACGTAGCGG 12_082 82 11 23-Mar-07 5 
ACACACTATGGC 12_083 83 11 15-Apr-07 5 
ACTCGCACAGGA 12_108 108 11 06-Jun-07 5 
ACCGCAGAGTCA 12_110 110 11 27-Sep-07 5 
AGTGTCACGGTG 12_115 115 11 10-Oct-07 5 
ACGCGCAGATAC 13_002 2 12 06-Oct-06 1 
AGTTCAGACGCT 13_011 11 12 27-Oct-06 1 
TACGTGTACGTG 13_038 38 12 20-Dec-06 1 
AGACTGCGTACT 13_051 51 12 24-Jan-07 1 
GTGGCGATACAC 13_060 60 12 14-Feb-07 1 
ATACGTCTTCGA 13_068 68 12 05-Mar-07 2 
ATCACTAGTCAC 13_071 71 12 12-Mar-07 2 
ATCCTCAGTAGT 13_072 72 12 14-Mar-07 2 
ATCTACTACACG 13_074 74 12 19-Mar-07 2 
ATGATCGAGAGA 13_077 77 12 26-Mar-07 2 
ATGGTCTACTAC 13_079 79 12 28-Mar-07 3 
CAACACGCACGA 13_081 81 12 30-Mar-07 3 
TAGCTGAGTCCA 13_083 83 12 01-Apr-07 3 
AGTGTTCGATCG 13_086 86 12 04-Apr-07 3 
AGCTCTCAGAGG 13_090 90 12 18-Apr-07 4 
ATACTATTGCGC 13_091 91 12 20-Apr-07 4 
ATCAGGCGTGTG 13_094 94 12 27-Apr-07 4 
ACGTGCCGTAGA 13_099 99 12 11-May-07 5 
TACGATGACCAC 13_106 106 12 30-May-07 5 
ATGGTCTACTAC 13_113 113 12 11-Jun-07 5 
ACATTCAGCGCA 13_142 142 12 17-Aug-07 5 
ACACGGTGTCTA 13_149 149 12 05-Sep-07 5 
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Table A7.2 Species-level identities of detected bacterial taxa identified from 237 

sputum samples collected from CF patients.  

Given the length of the ribosomal sequences analysed, these identities should be considered 

putative. Ae denotes aerobe and An, Anaerobe. Only strict anaerobes were classified as 

anaerobes, whereas aerobes, facultative anaerobes, and microaerophiles were classified as 

aerobes. 

Class Family Taxon name Common 
or Rare 

Anaerobe
/ Aerobe 

Actinobacteria Actinomycetaceae Actinobaculum massiliense Rare Ae 

  Actinomyces graevenitzii Rare Ae 

  Actinomyces naeslundii Rare Ae 

  Actinomyces odontolyticus Rare Ae 

 Bifidobacteriaceae Scardovia inopinata Rare Ae 

 Coriobacteriaceae Atopobium parvulum Rare An 

 Corynebacteriaceae Corynebacterium durum Rare Ae 

  Corynebacterium matruchotii Rare Ae 

  
Corynebacterium 
tuberculostearicum Rare Ae 

 Microbacteriaceae Microbacterium paraoxydans Rare Ae 

 Micrococcaceae Arthrobacter tumbae Rare An 

  Rothia mucilaginosa Rare Ae 

 Nocardiaceae Nocardia cyriacigeorgica Rare An 

 Propionibacteriaceae Propionibacterium acidifaciens Rare An 

  Propionibacterium acnes Rare An 

  Propionibacterium propionicum Rare Ae 

Alphaproteobacteria Brucellaceae Ochrobactrum anthropi Rare Ae 

 Caulobacteraceae Brevundimonas vesicularis Rare Ae 

 Rhodobacteraceae Paracoccus yeei Rare Ae 

 Sphingomonadaceae Sphingobium amiense Rare An 

  Sphingomonas paucimobilis Rare An 

Bacilli Aerococcaceae Abiotrophia defectiva Rare Ae 

 Bacillaceae Bacillus subtilis Rare Ae 

  Gemella sanguinis Rare Ae 

 Carnobacteriaceae Granulicatella adiacens Rare Ae 

 Lactobacillaceae Lactobacillus casei Rare Ae 

  Lactobacillus delbrueckii Rare Ae 

  Lactobacillus frumenti Rare Ae 

  Lactobacillus johnsonii Rare Ae 
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Table A7.2 Continued 

Class Family Taxon name Common 
or Rare 

Anaerobe
/ Aerobe 

  Lactobacillus salivarius Rare Ae 

 Staphylococcaceae Staphylococcus aureus Rare Ae 

 Streptococcaceae Streptococcus agalactiae Rare An 

  Streptococcus mutans Rare An 

  Streptococcus pneumoniae Common An 

  Streptococcus sanguinis group Common An 

Bacteroidia Bacteroidaceae Bacteroides acidofaciens Rare An 

  Bacteroides cellulosilyticus Rare An 

  Bacteroides intestinalis Rare An 

  Bacteroides oleiciplenus Rare An 

  Bacteroides uniformis Rare An 

 Porphyromonadaceae Barnesiella intestinihominis Rare An 

  Odoribacter laneus Rare an 

  Paludibacter propionicigenes Rare An 

  Parabacteroides distasonis Rare Ae 

  Parabacteroides goldsteinii Rare Ae 

  Porphyromonas catoniae Rare An 

  Porphyromonas endodontalis Rare An 

  Porphyromonas somerae Rare An 

  Tannerella forsythia Rare An 

 Prevotellaceae Prevotella bivia Rare An 

  Prevotella buccae Rare An 

  Prevotella copri Rare An 

  Prevotella denticola Rare An 

  Prevotella enoeca Rare An 

  Prevotella histicola Rare An 

  Prevotella loescheii Rare An 

  Prevotella maculosa Rare An 

  Prevotella melaninogenica Common An 

  Prevotella nanceiensis Rare An 

  Prevotella nigrescens Rare An 

  Prevotella oralis Rare An 

  Prevotella oris Rare An 

  Prevotella oulorum Rare An 

  Prevotella pallens Rare An 

  Prevotella paludivivens Rare An 

  Prevotella shahii Rare An 

  Prevotella tannerae Rare An 

 Rikenellaceae Alistipes finegoldii Rare An 
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Table A7.2 Continued 

Class Family Taxon name Common 
or Rare 

Anaerobe
/ Aerobe 

Betaproteobacteria Alcaligenaceae Achromobacter xylosoxidans Rare Ae 

  Advenella mimigardefordensis Rare Ae 

 Burkholderiaceae Burkholderia cepacia complex Rare Ae 

  Lautropia mirabilis Rare Ae 

  Ralstonia mannitolilytica Rare Ae 

 
Burkholderiales incertae 
sedis Aquabacterium fontiphilum Rare Ae 

 Comamonadaceae Comamonas testosteroni Rare Ae 

  Curvibacter lanceolatus Rare Ae 

  Delftia acidovorans Rare Ae 

 Neisseriaceae Kingella oralis Rare Ae 

  Neisseria mucosa Rare Ae 

  Neisseria oralis Rare Ae 

 Sutterellaceae Parasutterella excrementihominis Rare An 

Clostridia Clostridiaceae Anaerococcus octavius Rare An 

  Clostridium aerotolerans Rare An 

  Clostridium aldenense Rare An 

  Clostridium algidixylanolyticum Rare An 

  Clostridium bolteae Rare An 

  Clostridium celerecrescens Rare An 

  Clostridium cellobioparum Rare An 

  Clostridium clostridioforme Rare An 

  Clostridium hathewayi Rare An 

  Clostridium indolis Rare An 

  Clostridium lavalense Rare An 

  Clostridium orbiscindens Rare An 

  Clostridium papyrosolvens Rare  

  Clostridium piliforme Rare An 

  Clostridium populeti Rare An 

  Clostridium proteoclasticum Rare An 

  Clostridium scindens Rare An 

  Clostridium subterminale Rare An 

  Clostridium sufflavum Rare An 

  Clostridium tertium Rare An 

  Finegoldia magna Rare An 

  Mogibacterium neglectum Rare An 
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Table A7.2 Continued 

Class Family Taxon name Common 
or Rare 

Anaerobe
/ Aerobe 

  Parvimonas micros Rare An 

  Peptoniphilus lacrimalis Rare An 

 Eubacteriaceae Eubacterium brachy Rare An 

  Eubacterium sulci Rare An 

  Eubacterium ventriosum Rare An 

 Lachnospiraceae Anaerostipes butyraticus Rare An 

  Blautia obeum Rare An 

  Catonella morbi Rare An 

  Howardella ureilytica Rare An 

  Lachnoanaerobaculum orale Rare An 

  Oribacterium sinus Rare An 

  Robinsoniella peoriensis Rare An 

  Shuttleworthia satelles Rare An 

  Stomatobaculum longum Rare An 

 Peptococcaceae Peptococcus niger Rare An 

 Peptostreptococcaceae Peptostreptococcus stomatis Rare An 

 Ruminococcaceae Pseudoflavonifractor capillosus Rare Ae 

  Ruminococcus flavefaciens Rare An 

Deltaproteobacteria Bdellovibrionaceae Vampirovibrio chlorellavorus Rare Ae 

Epsilonproteobacteria Campylobacteraceae Campylobacter concisus Rare Ae 

  Campylobacter curvus Rare Ae 

  Campylobacter showae Rare Ae 

Erysipelotrichia Erysipelotrichaceae Eubacterium cylindroides Rare An 

Flavobacteria Flavobacteriaceae Capnocytophaga granulosa Rare Ae 

  Capnocytophaga ochracea Rare Ae 

  Capnocytophaga sputigena Rare Ae 

  Chryseobacterium indologenes Rare Ae 

Fusobacteria Fusobacteriaceae Fusobacterium necrophorum Rare An 

  Fusobacterium nucleatum Rare An 

 Leptotrichiaceae Leptotrichia buccalis Rare Ae 

  Sneathia sanguinegens Rare Ae 

Gammaproteobacteria Cardiobacteriaceae Cardiobacterium valvarum Rare Ae 

 Enterobacteriaceae Enterobacter cowanii Rare Ae 

  Proteus mirabilis Rare Ae 

  Yersinia frederiksenii Rare Ae 

 Moraxellaceae Acinetobacter johnsonii Rare Ae 

  Acinetobacter lwoffii Rare Ae 

  Moraxella nonliquefaciens Rare Ae 
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Table A7.2 Continued 

Class Family Taxon name Common 
or Rare 

Anaerobe
/ Aerobe 

  Moraxella osloensis Rare Ae 

 Pasteurellaceae Haemophilus influenzae Rare Ae 

  Haemophilus parainfluenzae Rare Ae 

 Pseudomonadaceae Pseudomonas aeruginosa Common Ae 

  Pseudomonas fragi Rare Ae 

  Pseudomonas pseudoalcaligenes Rare Ae 

 Xanthomonadaceae Stenotrophomonas maltophilia Rare An 

Mollicutes Mycoplasmataceae Mycoplasma hominis Rare Ae 

  Mycoplasma salivarium Rare An 

Negativicutes Veillonellaceae Anaeroglobus geminatus Rare An 

  Dialister invisus Rare Ae 

  Dialister micraerophilus Rare Ae 

  Dialister pneumosintes Rare Ae 

  Megasphaera micronuciformis Rare An 

  Schwartzia succinivorans Rare An 

  Selenomonas artemidis Rare An 

  Selenomonas noxia Rare An 

  Veillonella parvula Common An 

  Veillonella ratti Rare An 

Sphingobacteria Chitinophagaceae Sediminibacterium salmoneum Rare Ae 

 Sphingobacteriaceae Sphingobacterium spiritivorum Rare Ae 

Spirochaetes Spirochaetaceae Treponema denticola Rare Ae 
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Chronic respiratory infections are the main cause of morbidity and mortality in individuals 

suffering from cystic fibrosis. Improvements in the treatments available for CF has increased 

the median predicted survival age of these patients to 41.1 years of age (1). However, in 

order to increase this further a much greater understanding of the microbial community 

associated with this disease is required. The use of culture independent technologies in 

recent years has revealed a complex and diverse bacterial community within the CF lung, 

yet it is still unclear how this community is related to clinical outcomes.  

The main aim of this dissertation was to investigate the relationship between the bacterial 

community within the CF lung and host related clinical factors. By examining these 

relationships it was anticipated that this work would uncover potentially important factors that 

may influence treatment regimes and ultimately improve prognosis. This was achieved 

through high throughput sequencing of the bacterial community extracted from CF sputum. 

In this chapter the findings generated throughout this project will be discussed in relation to 

their potential impact on CF research.  

 

8.1 Reducing bias 

The aim of every researcher is to gain an unbiased representation of their chosen study 

system. It is possible to introduce bias at every level of sampling; from sample collection and 

storage, to DNA extraction, PCR and sequencing. As such, in order to be confident in the 

observed results efforts must be made to both understand and reduce the effect of potential 

bias. Consequently, throughout this study standard procedures including; extraction controls, 

both positive and negative PCR controls and reagent controls were included in every study 

and sequencing run (2). While these measures controlled for contamination during 

sequencing these actions alone would not account for all areas of potential bias; the most 

prevalent perhaps being the presences of extracellular DNA and sample handling.  
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8.1.1 Extracellular DNA 

The presence of extracellular DNA within the CF lung is inevitable due to immune responses 

and the continual administration of antibiotics, as well as the lack of ability to clear mucus 

from the airways. As a result, PMA was identified by Rogers et al (2008) as a potentially 

important method of reducing the impact of this extracellular DNA when investigating the 

bacterial community within the CF lung (3). Chapter 3 supports the findings of Roger et al 

(2013), confirming that failure to account for the presence of extracellular DNA or DNA from 

dead or damaged cells can result in a misrepresentation of the bacterial community either by 

an under or over estimation of the bacterial diversity (4).  

The use of PMA was also found to have significantly affected the abundance of common 

organisms, in particular the recognised CF pathogen Pseudomonas aeruginosa. These 

results show that failure to treat samples with PMA prior to culture independent analysis may 

result in the masking of important changes within the community. This in turn could lead to 

misrepresentative data and consequentially effect treatment decisions.  As a result of these 

findings, PMA treatment was used throughout this project.  

In Chapter 7, the use of PMA was particularly important as it allowed an unbiased overview 

of the effect of perturbations on the bacterial community within the lung. Without the use of 

PMA the impact of antibiotic treatment may have been masked by the amplification of non-

viable DNA from bacteria killed as a result of aggressive intervention. Consequently, studies 

such as that carried out by Fodor et al (2012), which failed to include PMA treatment, may 

have missed important changes in the overall community structure with antibiotic intervention 

for CFPE (5).    

8.1.2 Sample handling 

From the investigation of CF lung infections by culture based microbiology of sputum, it has 

been recognised that the storage and handling of clinical samples is vital to obtaining a 

representative depiction of the bacterial community (6). While studies have been undertaken 

to determine the optimal storage and transport of sputum for culture, few have investigated 
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the impact of sample handling prior to the use of culture independent techniques. As moves 

are made towards the introduction of these techniques for clinical diagnostics it is becoming 

more important than ever that samples are handled appropriately allowing the most accurate 

representation of the true bacterial community to be achieved (7).  

Due to the practicalities involved with processing samples for culture independent analysis 

samples are collected and stored at -80°C until processing. This ensures rapid stabilisation 

of the bacterial community from the time of freezing and for as long as necessary. In Chapter 

4, the bacterial community within sputum samples, frozen at intervals over a 72 hour period 

was assessed revealing significant changes the abundance of anaerobic taxa after storage 

at room temperature for more than 12 hours. Therefore, recommendations were made that 

respiratory samples should be stabilised to -80°C within 12 hours of collection in order to 

avoid significant changes in bacterial community composition.  

Obtaining large sample sets of respiratory samples with associated metadata is a huge 

undertaking both for researchers and clinicians. Consequently, the use of previously 

collected samples for multiple studies can provide a more practical option. As such, many 

clinics are collating large detailed biobanks of samples for research purposes. While these 

biobanks represent a wealth of potential information for researchers investigating a wide 

range of factors relating to CF lung infections they represent another avenue of bias.  

Once stored at -80°C, common practice dictated that sputum may be defrosted and 

subsampled once, after which they should no longer be refrozen and sub-sampled at a later 

date without occurring significant changes to the microbial community. However, no studies 

actually examined this relationship. By carrying out 6 freeze thaw cycles on sputum samples 

from eight patients, changes in the bacterial community as a result of these cycles were 

assessed in Chapter 5. No change in the whole bacterial community similarity was observed 

over 6 freeze-thaw cycles however, after 4 cycles the rare community fell below the level 

expected for within sample variation. As such sub-sampling should be carried out a 

maximum of 3 times in order to obtain an accurate representation of the bacterial community 
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within the respiratory tract. In the case of large volumes of sputum a more practical solution 

would be to aliquot the sample avoiding unnecessary freeze-thaw cycles. 

Chapters 3, 4 and 5, by assessing areas of potential bias, allowed the identification of 

guidelines for the storage and treatment of sputum samples prior to DNA based analysis. 

These guidelines directed clinicians and researchers to store samples as soon as possible 

after collection (within a 12 hour window) to only allow minimal freeze-thaw cycles when sub-

sampling sputum and to include PMA treatment in the processing of all sputum samples. 

These clearly researched guidelines provided strong evidence that the results presented in 

this thesis were a true, unbiased representation of the bacterial community.  

 

8.2 Understanding the metacommunity through data partitioning  

The idea of the metacommunity was first introduced into the analysis of bacterial 

communities within the CF lung by van der Gast et al (2011). By partitioning the bacterial 

community into the most common and abundant taxa, and those that are rare and transient, 

it became possible to uncover how the community was effected by a variety of factors. 

Throughout this work partitioning of the bacterial community has been used to identify 

patterns and determine the taxa responsible for the changes observed. Across all studies the 

use of partitioning revealed potentially important factors relating to the bacterial community 

that would have been missed had this partitioning not been implemented, this was 

particularly true of the rare OTUs.  

When considering the reduction of bias in the initial chapters discussed previously, failure to 

partition the bacterial community would have resulted in less conserved estimates of time to 

freezing and a failure to identify any change in the community over the 6 freeze-thaw cycles. 

This could have important consequences for future studies, where rare bacterial taxa may 

have been misrepresented within the community.  

The importance of partitioning data when analysing the bacterial community in relation to 

clinical factors was identified in the results of Chapters 6 and 7. For example in Chapter 6, 
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had partitioning not been undertaken the relationship between the bacterial community and 

gender would not have been identified. While this relationship requires further investigation, 

the identification of a bacterial community relationship with gender could be of enormous 

value in the treatment of CF lung disease. Further, when considering the bacterial 

community over the course of an exacerbation, partitioning of OTUs provided valuable 

insight into the dynamics of the bacterial community. It was shown that rate of species 

turnover was driven by the rare taxa, while patterns in community composition were 

controlled by the common organisms. Partitioning the data in this study allowed patterns of 

resilience in the rare to be revealed, a relationship unobserved by other studies. 

 

8.3 Relating bacterial community to clinical factors on a large 

scale 

Several relationships have been observed relating interpatient differences in the bacterial 

community to clinical factors however, the studies presenting these findings have lacked 

statistical power due the small sample sizes involved. For example both Delhaes et al (2012) 

and van der Gast et al (2011) identified a significant relationship between bacterial diversity 

and lung function however this relationship was based on the bacterial community of 4 and 

14 patients respectively (8, 9). Using bacterial community data from 292 individual CF 

patients previously described relationships, such as that between FEV1 (Forced expiratory 

volume in 1 second) and bacterial diversity, were examined to determine if these 

relationships were genuine or simply an artefact of the limited sample size used in these 

studies.  

Due to the huge size and complexity of the dataset investigated in Chapter 6, this thesis 

aimed to highlight preliminary findings. Consequently, throughout this section further work 

that could be undertaken to explore the relationships exposed by this study further are 

discussed.  

8.3.1 Bacterial diversity and lung function 
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As explained to above, a significant relationship between lung function and the bacterial 

community has previously been revealed (8, 9). Through the investigation of this relationship 

using a much larger dataset it was revealed that while a significant relationship is present 

between bacterial diversity and FEV1, the interpatient variation observed was such that the 

variance explained by this relationship was low. A significant correlation between bacterial 

community composition and lung function was also observed using Mantel tests, while partial 

Mantel tests revealed correlation between lung function and community composition when 

controlling for clinical status (stable or experiencing a CFPE), BMI and liver disease. A 

significant correlation between the rare taxa composition and FEV1 was also found when 

controlling for clinic location.  

Understanding the relationship between the bacterial community and lung function is 

important as FEV1 is considered to be the best predictor for mortality in CF individuals (10). 

As a decrease in lung function is associated with poor clinical outcomes, it is important to 

understand how this prognosis is related to the bacterial community and other clinical 

factors. By understanding this relationship it may be possible to identify risk factors to 

reduced lung function and treat patients accordingly. Further work on this area would involve 

the use of detailed multivariate analysis, where FEV1 and the 4 related clinical factors, 

identified using partial mantel testing, are used as explanatory variables. Additional 

investigation into the effect of individual bacterial taxa on the clinical factors may also reveal 

important relationships relating to disease outcomes.    

In addition to the relationships identified above, variation in the relationship between diversity 

and FEV1, could be further explained by investigating the relationship between the bacterial 

diversity, lung function and treatment regimes. This analysis could not only include 

investigation into the effect of antibiotic treatment regimes but also the effect of different 

methods for the administration as well as other treatments including, steroids and 

mucolytics.  

8.3.2 CFTR genotype and the bacterial community 
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CFTR (CF transmembrane regulator) genotype has been suggested as a potentially 

important factor in disease progression with some mutations found to correlate with more 

severe disease than others (11). In accordance with the knowledge of mutation frequency, at 

least one gene showed the ΔF508 mutation in the majority of patients, alongside this a large 

variation in other mutations were observed. As a result 3 groups were outlined; ΔF508 

homozygotes, ΔF508 heterozygotes and other mutations. However, only ANOSIM revealed 

a significant difference in community composition between patients with homozygous and 

heterozygous ΔF508 mutations (P=0.03).  

While this is not compelling evidence for genotype based differences in bacterial community, 

it does not rule out the relationship. By partitioning the ΔF508 heterozygotes into those 

associated with the severe CF phenotype and those associated with a milder phenotype, 

potential differences in the bacterial community could be uncovered.  

8.3.3 The gender gap and the bacterial community 

A so called gender gap has historically been observed been CF individuals, with females 

showing significantly worse prognosis than males (12, 13). Although this gap has become 

less pronounced more recently (14), an investigation was carried out to understand if the 

bacterial community was a factor in the disparity between genders. This analysis revealed 

that female patients had significantly lower bacterial diversity; while ANOSIM revealed a 

significant difference in the community composition of the rare taxa. Further analysis of the 

organisms responsible for the disparity between females and males revealed that the 

recognised CF pathogens Pseudomonas aeruginosa and Staphylococcus aureus had a 

higher mean abundance in female patients.  

The relationship between the bacterial community and gender warrants further investigation 

to explore the potential reasons for the differences in community diversity and composition 

observed. Firstly, the relationship between P. aeruginosa and S. aureus mean abundance 

and gender requires further study. It has been previously shown that co-infection with these 

organisms is associated with poor prognosis (15, 16), therefore examination of this 

relationship could potentially reveal an important reason for the gender gap. In addition, a 
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more in depth study of how the rare communities differ between genders may provide other 

potentially important species which contribute to the prognosis of females.  

 

8.3.4 The bacterial community by CF centre 

The relationship between the bacterial community and CF centres is complex and 

multifaceted involving geographic location, treatment regimes employed and environment 

surrounding the centre catchment area (e.g. urban or rural). As a result differences between 

CF centres are difficult to elucidate. In an attempt to identify any differences in the bacterial 

community between centres, bacterial diversity and community composition were explored. 

Although differences in bacterial diversity were observed, post-hoc testing revealed these 

differences were not consistent or ubiquitous between centres, rather they were more likely 

to be an artefact of interpatient variation than true differences between centres.  

Mantel test results suggested that patients from CF centres closer in geographic distance 

would show more similar bacterial communities. However, ANOSIM showed little evidence 

that this was the case. Even so it did reveal that the common taxa were more conserved 

between sites than those considered to be rare. These data suggested therefore that it is the 

rare community that drives differences by centre or geographical location. Further study 

would be required to determine if these transient organisms are associated with the 

surrounding environment of the centre.  

 

8.4 Bacterial community dynamics as a result of pulmonary 

exacerbation 

CF pulmonary exacerbations (CFPE) are associated with more rapid disease progression, 

aggressive antibiotic treatment and hospital stays, making them both medically and 

economically important phenomena (17). Using longitudinal sampling the bacterial 

community within the CF lung was examined over the full course of a CFPE; from baseline, 
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leading into exacerbation, treatment, leading out and back to baseline. This full cycle 

approach allowed both the lead in and the recovery to be examined for the first time.  

This study observed that the changes in the bacterial community were associated with 

changes in rare taxa. This was highlighted when investigating rates of species turnover as 

well as community composition over the study period. The rare group was shown to 

significantly change leading into, throughout and leading out of treatment for CFPE. It was 

also found to return to baseline levels within the 30 days after treatment had ceased, 

indicating resilience within the rare group.  

Taxa partitioned in the common group were found to be resistant to changes due to CFPE 

treatment however, when the relative abundance of these OTUs were examined individually 

key taxa, Prevotella melaninogenica and Veillonella parvula, were identified as potential 

biomarkers for CFPE. V. parvula was considered to be the most appropriate organism for 

further investigation due to the increase in abundance of this OTU prior to the initiation of 

treatment for CFPE.  

The association between CFPE and disease progression is a major concern in CF research, 

therefore the identification of CFPE is hugely important. With no consensus as to the clinical 

symptoms which indicate the start of CFPE, clinicians are required to make an antibiotic 

intervention judgement call based on worsening health. It is known that rapid intervention 

with antibiotic treatment results in the return of lung function to baseline states (18), however 

without a clear understanding of what causes a CFPE the initiation of rapid intervention is 

challenging. The identification of biomarkers for disease state could be the answer to this 

issue. By introducing a rapidly testable parameter for clinicians to identify a CFPE, a 

reduction in the use of unnecessary intervention could result. This in itself could provide one 

of the most important recent developments in CF therapy.    

The potential importance of these biomarkers (in particular V. parvula due to its rapid 

increase in abundance prior to the antibiotic treatment) cannot be underestimated. To 

investigate the potential of V. parvula, further work is required over the course of CFPE, this 
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includes using qPCR to track this organism, allowing a truly quantitative indication of the 

bacterial abundance, as well as large scale screening.  

 

8.5 Conclusions  

This thesis examined the bacterial community ecology within the CF lung through the use of 

next generation sequencing technologies (Roche 454 and Illumina MiSeq). This work was 

carried out in two sections, the first examined the importance of reducing bias in order to 

obtain the most representative depiction of the bacterial community. The results from the 

initial work were used to underpin work carried out in the second half of this project, which 

focused on the relationship between the bacterial community and clinical factors.  

Conclusions that can be drawn from this dissertation include; 

• The use of PMA is required to obtain a true picture of the bacterial community within 

the CF lung. 

• Sputum samples should be stored at -80°C within 12 hours of collection to avoid 

significant changes in the bacterial community. 

• Sputum samples for culture independent analysis should go through no more than 3 

freeze-thaw cycles to avoid significant changes in the rare taxa. 

• FEV1 is not a reliable indicator of bacterial diversity due to the levels of interpatient 

variation seen in CF patients. 

• Significant differences are observed in the rare bacterial community between 

females and males. 

• The common bacterial taxa are conserved between CF centres, however differences 

in the rare taxa are correlated with geographical distance.  

• Over the course of a pulmonary exacerbation the common bacterial taxa show 

resistance while the rare taxa show resilience.  

• Veillonella parvula has the potential to be a bioindicator of CFPE.  
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Through validated sampling methods this study has revealed several factors which have 

potential to inform treatment and improve prognosis. However, further research is 

required to investigate the full extent of this potential.   

 

8.6 Future work 

This project aimed to provide a greater understanding of the bacterial community within the 

CF lung. The complexity of the bacterial community throughout this investigation has 

informed the conclusion that while the bacterial community plays an important role in disease 

progression, assessment of the wider microbial diversity is required in order to understand 

CF lung disease progression more fully. Several studies have been published examining 

both bacteria and fungi within the CF lung (8, 19), however, no study to date has 

encompassed the whole microbiota including the bacterial, fungal and viral communities.  

Although a wider more microbial based assessment of the CF lung is important, there is also 

a real requirement for a more multi-disciplinary approach to assessing how the microbial 

community relates to disease state. By combining microbial data with immunological data as 

well as clinical metadata, real insight into the complexities of infection can be uncovered. 

Further, the use of metatranscriptomics to investigate gene function could potentially 

uncover important insights into microbial activates as well as diversity in response to 

perturbations within the lung.   

In order to gain meaningful data from studies of this nature, there is a requirement for large 

sample sets, to account for the degree of individual patient variation between individual 

patients. There is also a pressing need for the data sets to not just include adult patients but 

also young children (<10 years of age). Further, there is a need for large, longitudinal studies 

which sample patients over long periods, throughout times of stability and over the course of 

CFPE.  

Despite the pressing need for studies of this nature and size to be carried out, the 

organisation and time involved in collecting samples for these sorts of investigations would 
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be a huge commitment for any research group, most likely requiring several collaborating 

research centres and CF clinics in order to obtain the sample sizes required. Despite the 

work involved, CF research groups have to move towards studies of this nature in order to 

fully understand CF disease progression and ultimately it treatment.  

It must not be overlooked that CF makes up a very small percentage of the lower respiratory 

tract infections (LRTI) worldwide. LRTI and chronic obstructive pulmonary disease (COPD) 

are currently estimated by the world health organisation (WHO) to result in around 6.2 million 

deaths worldwide (3.1 million LRTI, 3.1 million COPD) (20). These numbers are staggering 

and underline the requirement for this type of research to be applied to a much wider range 

of pulmonary diseases, for example; COPD, bronchiectasis, bronchitis and severe asthma. 

Techniques and approaches presented throughout this thesis are already being applied to 

the bacterial communities of individuals with bronchiectasis and bronchitis (21, 22). The 

application of the knowledge gained in the study of CF to other respiratory disease has 

enormous potential to increase our understanding of lung disease and as a result reduce the 

associated mortality.  
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