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KING’S COLLEGE LONDON

Abstract

School of Natural and Mathematical Sciences

Department of Physics

Doctor of Philosophy

Zhenwei Li

Material simulation using molecular dynamics (MD) at the quantum mechanical (QM)

accuracy level has gained great interest in the community. However, the bottleneck aris-

ing from the O(N3) scaling of QM calculation has enormously limited its investigation

scope. As an approach to address this issue, in this thesis, I proposed a machine-learning

(ML) MD scheme based on Bayesian inference from CPU-intensive QM force database.

In this scheme, QM calculations are only performed when necessary and used to aug-

ment the ML database for more challenging prediction case. The scheme is generally

transferable to new chemical situations and database completeness is never required.

To achieve the maximal ML efficiency, I use a symmetrically reduced internal-vector

representation for the atomic configurations.

Significant speed-up factor is achieved under controllable accuracy tolerance in the MD

simulation on test case of Silicon at different temperatures. As the database grows

in configuration space, the extrapolative capability systematically increases and QM

calculations are finally not needed for simple chemical processes. In the on-the-fly ML

force calculation scheme, sorting/selecting out the closest data configurations is used

to enhance the overall efficiency to scale as ∼ O(N). The potential application of

this methodology for large-scale simulation (e.g. fracture, amorphous, defect), where

chemical accuracy and computational efficiency are required at the same time, can be

anticipated.

In the context of fracture simulations, a typical multi-scale system, interesting events

happen near the crack tips beyond the description of classical potentials. The simulation

results by machine-learning potential derived from a fixed database with no enforced QM

accuracy inspire a theoretical model which is further used to investigate the atomic bond

breaking process during fracture propagation as well as its relation with the initialised

vibration modes, crack speed, and bonding structure.
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Chapter 1

Introduction

Quantum mechanics provides an accurate description of material properties from the

electronic level. Density Functional Theory (DFT), has become the standard approach

for performing quantum mechanical simulation of materials from first-principles and

has rendered a huge number of publications since its establishment in the 1960s [1,

2]. In the material simulation community, there is an increasing need to explore the

atomistic processes, using first-principles molecular dynamics (FPMD). As the scope of

such investigations extends, both on temporal and spacial scales, the O(N3) scaling of

FPMD typically becomes a limitation, and it is due to this that, only systems of a few

hundred of atoms and/or timescales up to pico seconds can be addressed [3, 4].

Molecular Dynamics (MD) using classical potentials has been used for a long period of

time. This method is still appealing nowadays for its efficiency and capability to describe

the atomic systems up to millions of atoms in a computer environment. Classical po-

tentials are usually derived by encoding a physical description of the atomic interactions

into an analytical functional form whose parameters are fitted with respect to experi-

mental properties, such as elastic constants, bulk modulus and lattice constants. Using

these empirical parameters, they typically have applications limited to the domain of

problems related to where the potentials were fitted to benchmark properties. Following

the work by Ercolessi and Adams in 1994 [5], there was a trend to use force-matching to

parameterise potentials. These potentials were generated by adjusting their parameters

to match the classical forces with target quantum mechanical (QM) forces derived from
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first-principles calculations. Even though parameters were involved, they did produce

good quality potentials for metals, semiconductors and oxides [6–8].

In recent years, there have approaches proposed by applying ‘machine learning’ (ML)

techniques to fit the first-principles potential energy surface (PES). These potentials

work through functional inference from a QM database ‘once-and-for-all’. Among them,

the Gaussian Approximation Potentials (GAP) adopt the Gaussian Process function

inference [9], and Neural-Networks (NN) potentials [10] use the generalised neural net-

works techniques. A number of potentials have been generated under these machine-

learning schemes with accuracy comparable to the DFT level without performing the

self-consistent electronic calculations. These potentials however, in many aspects resem-

ble classical potentials after training with QM data. The atomic forces are calculated by

analytical differentiation of the energy. Transferability of these potentials largely relies

on the set of chemical environments that can be represented in the database.

Multi-scale problems are challenging essentially because of the long-range stress field, for

which a vast number of atoms have to be incorporated into a simulation, while for the

chemically active region, quantum accuracy is mandatory for the correct description of

bond breaking/forming events. For these simulations, it was proposed to hybrid two dif-

ferent kinds of descriptions, Quantum Mechanics (QM) and Molecular Mechanics (MM).

For the mismatching of two such distinct descriptions, different strategies of mixing were

developed, such as mechanical mixing or energy mixing [11]. Time embedding schemes,

such as the ‘Learn-on-the-fly’ (LOTF) MD accelerate the MD simulations by adjusting

the classical parameters with informative QM calculations only required once every n

steps (n ∼ 10 in Silicon fracture simulation) with force accuracy further enhanced by

implementation of predictor-corrector algorithm [12, 13].

The accuracy for a large scale system is still limited when addressing completely new

chemical environments either due to the issues with the transferability or the complete-

ness of the database. In this thesis, I will describe a proposed approach that aimed

to abstract the maximum transferable knowledge from a QM-force database comprised

of computationally expensively data in order to run large-scale MD simulations where

highly accurate atomic forces are required. This approach works by performing function

inference on the QM force vectors in a straightforward way with no invocation of the

energy expressions (either atomic energy or total energy). The chemical environments

11



that are novel to the database are computed with QM routines when and only when

necessary and are used to augment the existing database to enhance the ML prediction

capability. This scheme is implemented in such a way that the ML force prediction

is always carried out ‘on-the-fly’. The QM database built from different MD runs can

be used with transferability in force prediction for relevant systems while the predic-

tion accuracy systematically increases as more QM force information is added into the

database.

To apply the machine learning of QM force while achieving the maximum ML efficiency,

an internal-vector representation for the local chemical environments which are formed

by the geometry of the interacting neighbouring atoms was proposed and constructed

taking into account the symmetries associated with the atomic force vector quantity.

This representation also makes it practical to incorporate information from additional

vectors e.g. the commonly used classical or empirical force vectors, leading to systematic

improvements with respect to the QM benchmark.

The results yielded by MLOTF in this work demonstrate a systematic increase in ef-

ficiency and accuracy as the database grows during MD simulations. Large speed-up

factors (e.g. 30 times in the case of Silicon MD at 1000K) compared with the full QM

calculations were achieved with controllable accuracy. The force prediction capability

is also largely improved upon the previous non-learning LOTF MD. As data config-

urations closer to the prediction configurations are available, force prediction using a

smaller subset of the database can be used to make predictions with desirable accuracy.

Sorting/selecting the most relevant configurations enables dynamical machine learning

and prediction even for huge database (the order of magnitude of millions of atomic con-

figurations). The MLOTF computational cost has a scaling factor close to O(N), which

makes it a promising application for large-scale MD simulations, as is to be presented

in Section 6.6.

The structure of this thesis is as follows: Background for the Quantum Mechanics

(QM) , Density Functional Theory (DFT) and Molecular Dynamics (MD) simulations

will be presented in Chapter 2. The methodologies beyond classical potentials, includ-

ing the QM/MM embedding and ‘learn-on-the-fly’ (LOTF) MD will be described in the

context of multi-scale simulations, e.g. in fracture simulations. In Chapter 3, fracture
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simulation will be explained and the work based on embedding GAP and the Stillinger-

Weber potential to investigate propagation speed will be introduced. Furthermore, a

theoretical model will also be described to further probe the mechanism associated with

bond breaking in brittle fracture. In Chapter 4, background for the Gaussian Pro-

cess function inference will be discussed as well as an overview of the machine learning

techniques. In the later part of this chapter, machine-learning (ML) potentials such as,

the Gaussian Approximation Potentials, Neural-Network potentials as well as an ML

scheme for calculating the atomisation energy in a molecular compound will be intro-

duced as background for the work described in the following chapters. In Chapter 5,

an approach to machine learning of QM forces will be proposed and constructed. This

chapter starts from the symmetrically-reduced representation for atomic environments

before moving to implementation of Gaussian Process inference into atomistic force pre-

diction. The feature of performing the force prediction will also be explained targeting

practical applications in large scale MD simulations. In Chapter 6, the methodology

developed for force calculations will be systematically tested using a static database,

including the application into phonon calculation. In Chapter 7, the force calculation

will be applied into large-scale MD in an ‘on-the-fly’ manner. As an improvement upon

the non-learning LOTF calculation, the accuracy and efficiency in our new force calcu-

lation scheme has enhanced learning capability with an dynamically updating database.

In Chapter 8, the application of the methodology will be extended into more complex

binary-system taking SiC and SiO2 as examples. Preliminary results for these systems

will be presented.
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Chapter 2

Background- I

2.1 Quantum Description

Quantum Mechanics (QM) opens possibilities to investigate the microscopic physics with

unified description of both the particle and wave natures of matter. In the following part,

I give a review of the QM description and the theorems that enable the approximately

accurate QM simulation of multi-body systems.

In QM, particle dynamics is expressed by the Schrödinger equation:

i~
∂

∂t
ψ(~r, t) = Ĥψ(~r, t) (2.1)

where ψ(~r, t) is the electronic wavefunction, t the time, ~ equals the Planck constant

divided by 2π, and Ĥ is the Hamiltonian operator which can be written as the kinetic

and potential parts:

Ĥ = T̂ + V̂ (~r, t) (2.2)

For time-invariant potential V̂ (~r), the ground state Schrödinger equation is:

Ĥψ(~r) = εψ(~r) (2.3)

where ε indicates the eigen energy value.
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2.1.1 Adiabatic Approximation

For atomic system, the Hamiltonian Ĥ is comprised of both interactions among electrons

{~ri} and ions {~RI} :

ĤBO = − ~2

2m

N∑
i=1

∇2
i +

e2

2

∑
i<j

1

|~ri − ~rj |
−
∑
i,I

ZI · e2

|~ri − ~RI |

− ~2

2MI

∑
I

∇2
I +

e2

2

∑
I<J

ZIZJ

|~RI − ~RJ |
(2.4)

where the first and forth term indicates the kinetic operators from electrons and ions

respectively, the second term corresponds to the Coulomb interaction between each pair

of electrons and the third term gives the Coulomb interaction between electrons and

ions, and fifth term the Coulomb interaction between ions. In the equation, the index i

runs over the N electrons, while ZI and ZJ correspond to the atomic number of ions I

and J . m and M are the mass of the electrons and ions, respectively. ~r and ~R indicate

the electronic and ionic coordinates, respectively.

The time-invariant Schrödinger equation is,

ĤBO|ΨBO 〉= E|ΨBO〉 (2.5)

For more complex system than Hydrogen, the exact solution for the above multi-body

equation becomes prohibitive to be attained. To address this issue, Born and Op-

penheimer proposed in 1927 that, the Hamiltonian derived from ionic and electronic

coordinates can be separated, based on the fact that their relaxation time scales usually

differ by several orders of magnitude, or to say, τe << τR (see Ref.[14]). Under the Born-

Oppenheimer (BO) approximation, the electronic states can be explicitly solved with a

Hamiltonian incorporating the potential energy determined by the stationary ionic coor-

dinate. The dynamics of the ions can be constructed according to the ground electronic

states, as in first-principles molecular dynamics to be discussed in next Chapter.

According to the BO approximation, wavefunctions are written as:

ΨBO({~ri}, {~RI}) = Ψ({~ri}, {~RI})Θ({~RI}). (2.6)
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where Ψ({~ri}, {~RI}) indicate the electronic wave-function given the ionic coordinates

{ ~RI} and Θ( ~RI) the wave-function for the ions with electrons always relaxed to the

ground state.

Under this approximation, a potential energy surface (PES) can be defined as the energy

(both from electron and ion Coulomb interactions) landscape with respect to the different

ionic configurations, and thus this PES reveals the stability of the given structure at

ambient conditions. The approximation is, however, not valid in the cases where coupling

between electrons and ions becomes significant [15–17].

2.1.2 Hartree Fock Scenario

In the Hartree scheme, the N -electron wave-functions is written as product of N single

electronic wavefunctions :

ΨH(r1, · · · , rN ) = ψ1(~r1)ψ2(~r2) · · ·ψN (~rN ) (2.7)

In this case, the Schrödinger equation becomes:T̂i + V (~ri) +
e2

2

∑
j 6=i

∫
ρj

|~ri − ~rj |
dr3
j

ψi(~ri) = εiψi(~ri) (2.8)

where single-electron density ρj ≡ 〈ψj(~rj)|ψj(~rj)〉 is the electronic density of j-th elec-

tron, and T̂i = − ~2
2m∇

2
i the kinetic operator for i-th electron, V (~ri) indicates the external

potential upon the i-th electron and the third-term gives the electrostatic potential due

to the rest of the electrons, which is known as the Hartree energy.

Instead of using the eigenstates as multiplication of single eigenstates, Fock and Slater

proposed to write the partial eigen function (ΨHF ) as an anti-symmetric determinant to

describe the N -electron system within the Pauli’s principles, as in the following equation:

ΨHF =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣

ψ1(x1) ψ2(x1) · · · ψN (x1)

ψ1(x2) ψ2(x2) · · · ψN (x2)

· · · · · · · · ·

ψ1(xN ) ψ2(xN ) · · · ψN (xN )

∣∣∣∣∣∣∣∣∣∣∣∣
=

1√
N !
det[ψ1ψ2 · · ·ψN ]
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For spin calculations, each row and column in the Slater form of the ΨHF (Eq. 2.1.2)

are expanded to describe the spin regenerated states.

The Hartree-Fock equation for single electron is written as:

[
T̂ + V (~r)− e2

2

∫
dr′3

ρ(~r′)− ρHF (~r, ~r′)

|~r − ~r′|

]
ψ(~r) = εψ(~r) (2.9)

where T̂ is the kinetic energy operator. The electron density due to the exchange of

electrons in the HF Hamiltonian is indicated by the term, ρHF (~r, ~r′).

The single-electron Hamiltonian then becomes:

ĤHF = T̂ + V (~r)− e2

2

∫
dr′3

ρ(~r′)− ρHF (~r, ~r′)

|~r − ~r′|
(2.10)

Under the Hartree-Fock approximation, the total energy is:

EHF =
〈

ΨHF |ĤHF |ΨHF

〉
=
∑
i

Hi +
1

2

N∑
i,j=1

(Jij −Kij) (2.11)

where Hi =
〈
ψi|T̂ + V (~r)|ψi

〉
and, Jij called the Coulomb integral and Kij the corre-

lation integral.

The Hartree-Fock approximation provides an accurate description of the N-electron

quantum system, however it is computationally demanding. In the Hartree-Fock equa-

tion of Eq.2.9, the weak correlation energy among electrons is not incorporated. In the

following, I introduce the Density Functional theory (DFT) which laid foundations for

most modern first-principles calculations.

2.1.3 Density Functional Theory

Density Functional Theory (DFT) has become a standard tool for electronic calculations

in quantum chemistry and material science. In 1964, Hohenberg and Kohn [1] proposed

to use the electron density ρ(~r) as single basic quantity for considering the N−electron

system located in the external potential Vext [18]. This was the later known as the

Hohenberg-Kohn theorem, which I will introduce as follows:
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Hohenberg-Kohn (HK) theorem. Let us start from writing the Hamiltonian as

Ĥ = T̂ + V̂ee + Vext, where T̂ = − ~2
2m

∑
i∇2

i is the kinetic operator, V̂ee indicates

the interaction potential yielded by the N -electrons, and Vext the external potential,

including but not only the ionic potential. The Hamiltonian above is non-disputive,

since the N - electrons and the external potential completely determine the properties of

the system, and therefore the Hamiltonian. The total energy is expressed as:

E[ρ(~r), Vext(~r)] =
〈

Ψ| T̂ + V̂ee |Ψ
〉

+

∫
dr3Vext(~r)ρ(~r) (2.12)

where ρ(~r) is the electron density corresponding to the squared modulus of the wave-

fuctions. The HK theorem states that the external potential Vext(~r) is determined,

within an additive constant, by electron density ρ(~r) [1]. Directly from the theorem,

density ρ(~r) is therefore unique feature of the N -electron system.

A simple proof is that, suppose there are two different external potentials Vext and V ′ext

that correspond to the same electron density ρ(~r). According to the variational principle,

it is known that only the Eigen wave-function minimises the associated energy. Two

ground-state energies E0 and E′0 correspond to the external potentials Vext and V ′ext,

respectively.

 E0 =
〈

Ψ|Ĥ|Ψ
〉
<
〈

Ψ′|Ĥ|Ψ′
〉

= E′0 +
∫
dr3(Vext − V ′ext)ρ(~r)

E′0 =
〈

Ψ′|Ĥ ′|Ψ′
〉
<
〈

Ψ|Ĥ ′|Ψ
〉

= E0 −
∫
dr3(Vext − V ′ext)ρ(~r)

Adding up two of the inequalities by each side, we obtain E′0 + E0 < E′0 + E0. This

contradictory result suggests that, at ground state the N -electron Hamiltonians must

be unique functional of electron density ρ.

Based on this theorem, the ground state properties, such as wavefunctions and energies

are all uniquely determined by the electron density ρ(~r). The total energy in Eq.2.12 at

ground state is thus written as:

E[ρ] = F [ρ] +

∫
dr3Vext(~r)ρ(~r) (2.13)

with F [ρ] corresponding to F [ρ] =
〈

Ψ| T̂ + V̂ee |Ψ
〉

and indicating the sum of the kinetic

energy and electron-electron interaction energy for a given electron density distribution
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of ρ. This F [ρ] is a universal functional in the sense that it is only determined by the

electron density and independent of any external potential.

V -representability. Now we know that system properties can be described using

density as a basic quantity. To obtain ground-state ρ, the minimisation of energy func-

tion, however, has to be performed on density space satisfying two requirements: (1)

N -representable (2) V -representable.

The total energy E[ρ̃] for the N -electron system with electron density of ρ̃ is:

E[ρ̃] =< Ψ̃|T̂ + Vee + Vext|Ψ̃ >= < Ψ̃|T̂ + Vee|Ψ̃ >︸ ︷︷ ︸
F [ρ̃]

+< Ψ̃|Vext|Ψ̃ >︸ ︷︷ ︸∫
ρ̃(~r)Vext(~r)dr3

and E[ρ̃] > E[ρ] for all the N -representable ρ̃, where ρ are the ground-state electron

density.

An N -representable density means that the electron density ρ̃ can be composed by

anti-symmetric wavefunctions Ψ̃(~r). Further minimisation upon the density ρ̃

E[ρ] = min
ρ̃⇒ρ

{
F [ρ̃] +

∫
Vext(~r)ρ̃(~r)dr3

}
(2.14)

the ground state energy E[ρ] can be minimised with respect to ρ̃ in the domain of

V -representable [18]. A density is V -representable if it is the density associated with

the anti-symmetric ground-state wavefunction of a Hamiltonian with some external

potential Vext(~r). Note, the V -representability of electron density ρ is important for the

validation of the minimisation procedure in Eq.2.14.

Kohn-Sham Equation. In 1965, Kohn and Sham [2] found that electronic states in the

N -electron system can further be approximated with a single electron that is located

in an effective potential Veff . This constructs the famous Kohn-Sham equation as in

Eq.2.15. The effective potential incorporates the interaction from all other electrons and

external potential while the residual interactions from the single-electron approximation

are put into the exchange-correlation term. Therefore, the KS equation is accurate in

itself from the quantum mechanical consideration.

[
− ~2

2m
∇2 + Veff

]
ψj(~r) = εjψj(~r) (2.15)
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The effective potential for the approximated single electron states is:

Veff = V (~r) + Vee + Vxc[ρ(~r)] (2.16)

In the above, the Vee = e2
∫
dr′3 ρ(~r′)

|~r−~r′|
corresponds to the Hartree-Fock interaction energy,

V is the potential fields on electrons and Vxc the exchange-correlational potential.

From the KS equation, total energy:

E =

N∑
j

εj −
e2

2

∫
dr3dr′3

ρ(~r)ρ(~r′)

|~r − ~r′|
−
∫
dr3Vxc(~r)ρ(~r) + Exc[ρ] (2.17)

with the electron density ρ(r) is calculated as Eq.2.18:

ρ(~r) =
∑
j

|ψj(~r)|2 (2.18)

The exchange-correlation term,

Vxc =
∂Exc[ρ(~r)]

∂ρ
, (2.19)

has to be derived with approximations either analytically or numerically. There is formu-

lation like, using the uniform electron gas model, as implemented in the Local-Density-

Approximation (LDA) scheme. LDA can give accurate predictions for many cases [2].

Generalised Gradient Approximation (GGA) takes into account the density gradient and

has better performance than LDA when the gradient of electron density becomes sig-

nificant [19]. Accurate exchange-correlation functionals can be parameterised by means

of Quantum Monte Carlo (QMC) sampling [20, 21] on the electron gas for a wide range

of densities. In this thesis, the first-principles calculations were done with the GGA

exchange-correlation functionals Exc.

2.1.4 Blöch Theorem

In periodic system with periodic potentials: V (~r) = V (~r+ ~Rn) where ~Rn are the lattice

vectors, Blöch’s theorem states that the electronic states ψ(~r) satisfies the following
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condition:

ψ(~r + ~Rn) = ei
~k·~Rnψ(~r) (2.20)

The wavefunction therefore can be written as multiplication between a plane wavefunc-

tion ei
~k·~r and a periodic function u(~r) as follows,

ψ(~r) = ei
~k·~ru(~r) (2.21)

2.1.5 Brillouin Zone and K-points

Periodic boundary conditions (PBC) limit the eigenvector ~k in Blöch’s scenario to dis-

crete values:

~k =
3∑
i=1

mi

Ni
·~bi, (2.22)

where ~bi indicates the reciprocal vectors of the primitive lattice and {mi} take integer

values. Ni is the number of unit cell along i-th basis directions. Therefore, k → 0 as

{Ni} → ∞, which is the basis for the ‘supercell’ method. In a supercell calculation, the

calculation performed at the Γ point (corresponds to ~k = 0) upon an N1 × N2 × N3

supercell is sufficient to yield all the electronic states for the system.

The electronic energy in the ~k space is discontinuous across the boundary : |~k| = |~k+ ~G|,

where ~G =
∑

imi
~bi. The different zones divided by the boundary are known as the

Brillouin Zones. Monckhorst-Pack k-sampling is widely used in many ab initio code

to implement the electronic states calculation with periodic boundary conditions. It

generates sets of special points and sum of properties on these special points provides

very good approximation to integration of the electron states over the entire or a portion

of Brillouin zone [22].

The Blöch’s scheme is for periodic crystals while for simulations like vacancies, defects

or amorphous phase, a supercell with large enough range of interaction is usually needed

to be constructed for the calculation. In order to study the crystal surface, we can apply

a big enough vacuum to separate the interactions from its translational images.
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2.1.6 Plane-Wave Expansion and Pseudo Potentials

When solving the KS equation (Eq.2.15) in periodic solid, plane-wave basis can be used

to orthogonally expand the wavefunctions:

ψ
n,~k

(~r) =
∑
n

C
n,~k

exp [i(~k + ~Gn) · ~r] (2.23)

During a calculation, the plane-wave basis is usually truncated at a cutoff energy Ecut,

corresponding to a sphere in the k-space centred at ~k vector, 1
2 |~k + ~G| ≤ Ecut.

Figure 2.1: A plot illustrating the scheme of pseudo-potentials. Compared with
the wavefunction (Ψv) from all-electron potential (Z/r), wavefunctions (Ψpseudo) from
pseudo-potentials (Vpseudo) are smoothed close to the nuclei. rc indicates the cutoff ra-
dius within which the pseudo potentials overtakes the real potential in pseudo-potential

calculations. Reproduced from [23].

Pseudo-potentials are a methodology developed for the efficient performance of the plane

wave expansion of the wavefunctions. As in the Fig.2.1, the real wavefunctions near the

nuclei usually have strong oscillation compared to those in the outer space. The oscilla-

tion is largely caused by the kinetic energy gained near the nuclei and the requirement of

orthorgonalisation with the core electron wavefunctions. For the oscillating area, large

22



numbers of plane waves have to be used for the convergence, which enormously increases

the computation effort.

The pseudo-potential is introduced to some extent screens the attraction from the nuclei.

The pseudo wavefunctions become smoothed within the cutoff radius but overlaps with

the real potential for the outer space. Pseudopotentials are useful for investigating the

valence electrons which are of principal interest for most of the cases and where the core

electrons are typically not so important or can be recovered. There are commonly used

ultra-soft pseudo-potential [24], norm-conserving pseudo-potential which are employed

by ab initio packages like VASP [25, 26]. In this thesis, the ultra-soft pseudopotentials

were adopted for the first-principles calculations using the VASP code.

2.1.7 Hellmann-Feynman Theorem

Due to the orthogonal properties of the eigen wavefuctions, 〈ψi|ψj〉 = δij , the Hellmann-

Feynman Theorem states that the QM force acting on ion ~RI can be computed as,

~FI = −∇~RI
E = −

〈
Ψ

∣∣∣∣∣ ∂Ĥ∂ ~RI
∣∣∣∣∣Ψ
〉

(2.24)

where E is the total energy calculated at ground state, and Ψ is the wavefunction for

the N -electron system.

2.1.8 Phonon

Phonons are elementary excitation of the crystal lattice and are fundamentally related

with a series of interesting properties or phenomena in material science, for instance,

structural transformation [27], thermal conductivity [28], and super-conductivity [29].

At the first-principles level, phonons can be computed by supercell method [30]. Su-

percell methods based on the force constant matrix derived from Hellmann-Feynman

force from finite atomic displacements (Eq.2.24) within a constructed supercell along

high-symmetric directions.
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Phonons at finite temperature T are distributed by the Bose-Einstein statistics (Eq.2.25)

where multifold occupancy is allowed.

f(εj) =
gj

exp(−εj/kBT )− 1
(2.25)

In Eq.2.25, gj corresponds to the degeneracy at energy level εj and kB is the Boltzmann

constant while T gives the temperature.

2.1.9 TB and DFTB

Tight binding (TB) was proposed by Slater [31] in the periodic crystal system and then

extended to the atomistic configurations. The tight binding (TB) expands the electronic

eigenstates semi-empirically with classical orbital basis.

Ψi =
∑
v,α

cviφv(~r − ~Rα) (2.26)

where ~Rα indicates the centre position of α-th atom. There was later the extended

non-orthogonal TB [32] using a non-orthogonal atomic orbital basis, which proved to

have better transferability. In the TB schemes, we write the total energy as the sum

of the band energy Ebs =
occ.∑
i
< Ψi|Ĥ|Ψi > and a repulsive energy Erep part due to

the repulsion from the electron pairs (Eq.2.27). The usual multi-body Hamiltonian Ĥ

is thus replaced by a Hamiltonian matrix Hµv and an overlap matrix Sµv is formed by

expansion with the atomistic basis φv(~r) (v = 1, 2, · · · , N), as in Eq.2.28.

Etotal = Ebs + Erep (2.27)

∑
v

(Ĥµv − SµvEµ)φv(~r) = 0 (2.28)

where overlapping matrix: Sµv ≡< ϕµ|ϕv > and Hamiltonian matrixHµv ≡< ϕµ|Ĥ|ϕv >

and Ĥ indicates the multi-body electronic Hamiltonian operator. In the density-functional

based tight binding scheme (DFTB), the atomistic basis {φv(~r)} can be solved self-

consistently in line with the KS equation with LDA/GGA exchange-correlation func-

tionals. The calculations are performed upon the modified free atom model, where the

extra repulsion term (r/r0)N was found to be helpful for obtaining the diagonalised basis
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set.

[T̂ + Veff [n0(~r)] + (r/r0)N ]φv(~r) = εvφv(~r) (2.29)

where T̂ indicates the kinetic operator, Veff the effective potential as in the KS equation

and n0(~r) is electronic density for the free atom model. The eigenfunctions {φv} are used

as basis for constructing the TB wavefunctions Ψ as in Eq.2.28. The repulsive term Erep

in the total energy can be parameterised based on first-principles calculation results and

the assumption of the density overlapping between electrons centred on different ions.

Recent development on TB incorporated the self-consistent charge into the Hamiltonian

matrix and has much improved performance for the ionic bonding system [33].

2.1.10 Summary

In this chapter, I have described the QM descriptions used in microscopic interpretation

of the material properties. With the advent of supercomputing capacity, DFT has

become a standard approach for the QM calculations of atomistic system up to hundreds

of atoms, with the aid of the pseudopotential and plane-wave methodology. Further

extending the scope of the investigation, however, meets the limitation arising from the

O(N3) scaling. For large scale material systems, classical molecular dynamics usually

has to be adopted instead, which will be described in the following part of this Chapter.
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2.2 Molecular Dynamics

2.2.1 Introduction

Molecular dynamics (MD) has been widely used to explore the phase space of interacting

particles at the harmonic regime or under conditions of external temperature or stress

field [34]. One advantage of MD simulation is its capability to efficiently generate ensem-

ble averages which can be linked with macroscopic observations. It is also a convenient

tool to generate a dynamics trajectory in the configurational space.

Classical MD follows Newton’s equation of motion,

mi
d2~ri
dt2

= ~Fi (2.30)

where mi is the mass of the i-th particle, ~ri the position vector. ~Fi is the force exerting

on i-th particle and corresponds to the gradient of the potential energy surface,

~Fi = −∇iV (~ri) (2.31)

where V (~ri) indicates the potential experienced by the i-th particle.

2.2.2 Ergodicity in MD

Ergodicity is a key issue in MD simulations and fundamentally determines if the correct

ensemble averages can be obtained [35]. The ergodic hypothesis states that ensemble av-

erage < A > over the phase space is equivalent to the time integral along MD trajectory,

as in Eq.2.32.

< A >= lim
∆t→∞

1

∆t

t+∆t∫
t

A(τ)dτ (2.32)

In the above equation, A(τ) represents an atomic quantity at the MD time of τ .
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2.2.3 Velocity-Verlet Algorithm

To evaluate the integration precision, a Taylor’s expansion is performed to the position

vector ~r. This however, involves large errors and is only accurate to O(∆t).

 ~r(t+ ∆t) = ~r(t) + ~v(t)∆t+
~F (t)
2m ∆t2 + 1

3!
d3~r
dt3
|t=t∆t3 +O(∆t4)

~r(t−∆t) = ~r(t)− ~v(t)∆t+
~F (t)
2m ∆t2 − 1

3!
d3~r
dt3
|t=t∆t3 +O(∆t4)

Verlet integration minimises the accumulation of error during the MD simulation by

summing up the above two equations so that both the velocity term and third-order

terms cancel out in numerical computations. The resulting ~r(t + ∆t) is accurate to

∼ O(∆t4) (Eq.2.33).

~r(t+ ∆t) = 2~r(t) + ~r(t−∆t) +
~F

m
∆t2 +O(∆t4) (2.33)

However, in the standard Verlet algorithm, the velocities are calculated by time average

of the position and is accurate only to O(∆t2). The Velocity-Verlet Algorithm, also

known as the ‘leapfrog’ algorithm [36] is used in the time integration for advancing the

MD trajectory. As a development, this algorithm treats both velocity and position at

the same precision which is accurate to the third-order in the Taylor’s expansion. In

Eq.2.34, I give expression for the velocity integration.

~v(t+ ∆t) = ~v(t) +
1

2

[
~F (t)

m
+
~F (t+ ∆t)

m

]
∆t+O(∆t4) (2.34)

2.2.4 Thermostat

Under the Velocity-Verlet integration algorithm, the total energy is conserved within

numerical precision, which yields the micro-cannonical (or NVE, which denotes constant

particle Number, Volume, and Total energy) ensemble well by this means. Due to the

practical significance of canonical ensemble (or NVT, which denotes constant particle

Number, Volume, and Temperature), different approaches have been proposed to address

the problem. However, to obtain a canonical ensemble, explicit approaches to simulate

the constant temperature T have to be used.
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• Early attempts to constrain the T usually included rescaling the velocity distri-

bution artificially. The Anderson methodology was such an approach, where the

velocity of a randomly chosen atoms are rescaled to that from the Maxwell dis-

tribution at the target temperature [37]. This rescaling scheme however, usually

causes dramatic changes to the MD trajectory. As an improvement, the Berendsen

thermostat adopts smooth rescaling of the instantaneous kinetic energy towards

the target kinetic energy [38].

• Another approach is by adding stochastic contribution into the MD process to

stimulate the ergodicity, such as Langevin dynamics [39], as expressed in Eq.2.35

where ~P indicates the momentum and V the potential energy,

~̇P = −∇V − γ ~P + ~R(t) (2.35)

It is carried out stochastically by considering a damping force γ ~P and a random

force ~R(t) which has only short-term correlation along time,

〈
~R(t), ~R(t+ ∆t)

〉
= δ(∆t) (2.36)

Based on the Stokes-Einstein fluctuation-dissipation relation, ~R has a Gaussian

distribution for time increment of ∆t while the variance can be derived as:√
2mγKBT/∆t.

In the Langevin scheme, the strength of the thermostat can be adjusted by means

of the parameter γ. By use of optimally chosen γ, fast convergence for the ensemble

average can be achieved.

• A widely used approach is by introducing a thermostat to couple the systems with

an external heat bath. This way can be applied to generate reliable MD trajec-

tories. The Nóse thermostat by rescaling the time of the subsystem to obtain the

correct NVT partition function and thus ensure the NVT conditions[40]. However

the deterministic nature of the thermostat can not assure ergodic condition for the

ensemble either and therefore cannot produce reliable ensemble averages. Com-

bining of the Nóse and Langevin thermostat in practice was also shown to have

good performance [41].
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2.2.5 Classical Force Fields

Classical potentials describe interactions in the system by function parameterisation

using either experimental or ab initio calculation results. Due to their computational

efficiency, atomistic systems containing millions of particles are able to be investigated.

Classical potentials have been widely used over the years and found applications for

studying bulk defects, vacancies or amorphous phases, etc. More than that, they also

have extensive applications in simulating bio-chemical materials.

In material simulations, there are a number of commonly used classical potentials, such

as Lennard-Jones potential, Stillinger-Weber potential, bond-order Tersoff potentials

and environment-dependent inter-atom potentials (EDIP), etc. In the following, taking

Silicon as an example, I will give a review of them.

2.2.6 Lennard-Jones Potentials
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Figure 2.2: A schematic plot illustrating the LJ potential (black solid line) with
respect to the pair distance rij .

The LJ potentials are comprised of repulsion and attraction terms. One popularly used

form is given in Eq.2.37, where (σ/rij)
12 is adopted for the repulsion while (σ/rij)

6 for

the attraction, the latter typically in agreement with decaying of the van der Waals

interaction [42],

VLJ = 4ε ·

[(
σ

rij

)12

−
(
σ

rij

)6
]

(2.37)
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In the equation, ε corresponds to the depth of the potential well and σ indicates the pair-

distance where the potential energy equals zero on the left repulsion region in Fig.2.2.

LJ potentials provide insight into many physical properties, especially useful in the case

that there is no theoretical framework to be referenced to [42]. They found application

in modelling of liquid, gas or metals, but due to the simplicity of functional form and

absence of three-body interaction, their predictive capability is very limited. For exam-

ple, they can not predict the stable phase of diamond structure in semiconductors such

as silicon.

2.2.7 Stillinger-Weber (SW) Potentials

The Stillinger-Weber potential was one of the first attempts to describe covalent bonding

in semiconductors by incorporating both two-body V2 and three-body angular interac-

tion V3 terms, as expressed by the following equation:

Vsw =
∑
i<j

V2(rij) +
∑
i<j<k

V3(rij , rik, θijk) (2.38)

where θijk indicates the angle between the bonds of rij and rik. The two terms can be

explicitly written as:

V2(rij) = ε · f2(rij/σ) (2.39)

V3(rij , rik, θijk) = ε · g
(rij
σ

)
g
(rik
σ

)
h(θijk) (2.40)

where,

f2(r) = (Ar−4 −B)fcut(r) (2.41)

and the angular function has following forms,

h(θijk) = λ(cos θ − cos θ0)2 (2.42)

The parameters A,B and λ are obtained by fitting the potential to material properties

measured by experiment or calculated using first-principles methods. The cutoff function

in Eq.2.41: fcut(r) is set 0 when r > σrc. To describe the sp3 bonding type in diamond

structure, θ0 is set to be 1/3. The radial function g(rij) also incorporates a cutoff

function which monotonously decreases as the bond length rij stretches.
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For Silicon, by fitting the parameters to reproduce the diamond structure as the most

stable phase, the SW potential yielded satisfactory thermodynamic properties for both

bulk and liquid Si and it also predicts the approximately correct melting temperature

[43]. By introducing parameters for the two- and three-body interaction terms between

Silicon (Si) and Hydrogen (H) , SW potentials were recently extended to modelling of

the interactions between H and Silicon surfaces [44]. Because SW potentials have an

analytical form close to that required by the Harrison condition [45], good agreement

with experimental and DFT results were also found for the elastic properties of diamond

structure [46]. In this thesis, SW potentials are used to calculate the classical force

vectors that are used to augment the representation of the atomic environments, which

will be presented in Chapters 5 and 6.

2.2.8 Tersoff and Brenner Potentials

The Tersoff potential was one of the reliably used empirical potentials to study material

properties like lattice dynamics, point effects or amorphous phases [47, 48]. The idea is

by deriving a potential based on the concept of bond order. It expands the potential

function with local bond order parameters {rij} as in Eq.2.43.

Vts =
∑
i<j

fc(rij)[AV
(A)

2 (rij)−BijV (R)
3 (rij)] (2.43)

In the equation, fc(rij) corresponds to a cutoff function for the interacting atoms, and

A, λ1, and, λ2 are parameters to be fit. The first term V
(A)

2 takes similar form as the two-

body interaction in SW potentials while the second term V
(R)

3 indicates the repulsion

from three-body interaction, which however, within the Tersoff potentials is a function

of the local bond order.

The parameter Bij indicates the weight of the repulsion contribution competing with the

bonding between atom pairs i and j. It depends on the local bond order environment

and at first-order approximation can be expressed as function of the local coordination

number (Z): bij ∝ Z−1/2.

In 1990, based on the Tersoff potential, Brenner potentials were introduced to incorpo-

rate radial contributions to the bond order Bij . Brenner potentials have much improved

performance for hydrocarbon systems [49].

31



2.3 First-Principles Molecular Dynamics

Applying a highly accurate electronic description into molecular dynamics is imple-

mented by the First-Principles Molecular Dynamics (FPMD), which is widely used to

explore the quantum chemistry processes. Such a description is realised in QM chem-

istry with the capability to explore the configuration space leading to the unlimited

transferability [50].

Among the FPMD schemes, the Car-Parrinello molecular dynamics (CPMD) was the

first approach to consider the dynamics within framework of the Lagrangian equation

including electronic degrees of freedoms [51], as expressed as follows:

L =
∑
i

1

2
µ

∫
Ω
d3r|ψ̇i|2 +

∑
I

1

2
MIṘ

2
I +

∑
ν

1

2
µνα̇ν

2 − E[{ψi}, {RI}, {αν}] (2.44)

where L indicates the Lagrangian of the system, {~RI} the ionic coordinates, MI the mass

of the I-th ion, ψi wavefunction occupied by the i-th electron, and the first-term and

second term correspond to the kinetic energy of the electrons and ions respectively. The

last term E[{ψi}, {RI}, {αν}] indicates the potential energy, which comes from solely

the Schrödinger equation as discussed in section 2.1.

The equations of motion can be derived as :

• For the ion:

MIR̈I = −∇IE (2.45)

• For the electronic degree of freedom :

µψ̈i = −δE/δψ∗i +
∑
k

Λikψk (2.46)

• For the external degree of freedom:

µνα̈ν = −∂E/∂αν (2.47)

Another FPMD scheme is the Born-Oppenheimer molecular dynamics, where the dy-

namics of the ionic coordinates is carried out by Eq.2.45 with −∇IE referring to the

Hellman-Feynnman forces. The electronic degrees of freedom are relaxed to its ground
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state before we advance the MD trajectory of the ionic coordinates. Compared with the

CPMD, electronic motion equation in Eq.2.46 will be replaced by solving the standard

Schrödinger equation given the ionic coordinates {~RI}. BO MD is an efficient way to

implement the DFT static calculations into the molecular dynamics and is used as good

approximation to the accuracy at first-principles level as long as the BO approxima-

tion holds. In our machine learning of quantum forces (Chapters 4-7), I will show that

useful Bayesian inference from the database containing Hellman-Feynnman forces can

significantly accelerate the computation efficiency of BO molecular dynamics.

2.4 Beyond the classical calculations

Molecular dynamics at the classical and first-principles levels have been introduced and

both of these approaches are used widely targeting different domains of problems. With

DFT accuracy, the behaviour of materials can be understood and predicted reliably from

the interaction due to the electrons, while the classical approaches extends the simulation

scale enormously and practically narrows the gap between theoretical description and

experimental observations. However, both approaches have limitations when it comes to

multi-scale simulations. The classical potentials are less suited to use in new chemical

environments beyond the fitting properties and the first-principles methods have limited

applicability typically due to its O(N3) scaling factor, arising from the need to keep

wavefunctions orthogonal in the iterative numerical procedures. Linear scaling DFT

was recently developed and can accelerate the DFT calculations, but also has limited

applications [52, 53].

Beyond the classical description, methodologies such as QM/MM [11], ‘learn-on-the-fly’

(LOTF) MD [12, 54], have been developed and successfully employed into the multi-scale

simulations, for instance, to model the fracture, defects or dislocations, to be reviewed

in the following sections.

2.4.1 QM/MM Embedding

QM/MM embedding was first proposed by Warshel and Levitt in 1976 to simulate the

reaction taking place between the enzymes and substrates together with the surrounding

solvent [55]. The long-range electrostatic interaction between the enzyme and subtract
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as well as the polarisation energy of the environmental water has to be treated with

classical potentials. The bond cleavage and charge redistribution in the subtract however

were evaluated with QM calculation. The embedding of QM/MM for the entire system

developed in this work was later widely used in simulations both for bio-chemical system

[56] or multi-scale physics system [11]. Due to their excellent work in this area, along with

Karplus, Warshel and Levitt were awarded the Nobel prize for Chemistry in 2013. In

literature [56], the application of the QM/MM embedding into the enzymatic reactions

(such as in methane monooxygenase) were reviewed and among these systems it is

explained that the coupling between two distinct potential energy surfaces using QM

and MM were challenging to address.

For simulation of multi-scale system like fracture, atomic bonding behaviour or chemo-

mechanical process near the crack tip exhibit much scientific interest under the stress

from the loading, while the vast majority surrounding atoms stays within roughly the

same area of configurational space throughout one simulation. QM treatment is thus

assigned to the region where the electronic behaviour is of significant interest, while for

the less-pertinent environmental configurations, molecular mechanics (MM) is employed

during the calculations. The two parts are coupled in the way that the MM part pro-

vides a long range stress field which effects the inner QM atoms substantially while the

accurate configuration of the QM part, in return, determines the dynamics of the outer

part. In a QM/MM calculation for Silicon fracture, around 100 atoms in the inner part

are treated with QM and embedded with the outer MM part via a buffer region. The

QM part is thus greatly reduced to the range accessible to the full DFT calculation.

Different QM/MM hybrid schemes have been proposed to treat the chemically active

part to QM accuracy, while the less relevant part are evaluated with the MM description

[11, 46].

• The energy mixing scheme. One popular approach is called ONIOM [57]. This

mixing scheme is performed based on a total energy written as,

Etot = EMM
sys + EQMcluster − E

MM
cluster

In the above equation, EMM
sys the total energy of the entire system calculated with

MM approach, EQMcluster the passivated cluster energy calculated with QM, and

EMM
cluster indicates the energy for the passivated cluster which are calculated with
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MM method. The dangling bonds for the carved cluster are usually passivated

by hydrogen or pseudo-atoms upon the boundary atoms. Forces are accordingly

calculated as the derivative of the energy formula in Eq.2.48 during the simulations.

• The force mixing scheme. A boundary region is usually marked to connect the

two descriptions, i.e. QM and MM, using a smooth transition parameter : λ, the

force in the boundary regions takes the form for instance: ~Fλ = λ~FQM+(1−λ)~FMM,

where the parameter λ moves from 0 to 1 for forces on atoms from the MM zone

till the QM zone. LOTF MD (to be discussed in next section) also adopts force

embedding and QM forces are calculated for carved clusters with buffer region,

but differs from other force mixing in that the inaccurate QM forces in buffer part

are discarded when mixing with the MM region. The dynamics of the system is

however, advanced by an adjustable potential upon the MM forces, incorporating

the information of the QM forces, while the momentum conservation is exerted for

the entire system in the mixing [11].

• The electrostatic mixing scheme. For the long-range Coulomb interactions such

as in the systems of Silica, Silicon-Carbide and ever more importantly for biological

systems, the mixing between two descriptions are more challenging. In this case, a

proper embedding should prevent the electron density escaping from the QM region

to the MM region, which is the so-called ‘spilling out’ effect. Laio et al. proposed a

scheme to address that issue by introducing a Hamiltonian term explicitly coupling

the Coulomb multi-pole interaction between the QM charge distribution and the

MM points charges thus the interactions between the QM atoms and the distant

MM atoms can be modelled in MD simulations [58].

2.4.2 LOTF Molecular dynamics

The ‘Learn-on-the-fly’ (LOTF) method proposed by De Vita and Car in 1998 [54] ad-

dresses the mismatching between QM and MM descriptions and the transferability prob-

lem met when using empirical interatomic potentials in molecular dynamics.

In the LOTF MD, a classical force field is augmented by a simple, adjustable potential

Vadj., whose parameters can be updated with newly computed QM forces during the

simulation [12]. The overall potential that is informed by QM calculation results and
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used for advancing the MD trajectory is:

VLOTF(R, α) = VMM(R) + Vadj.(R, α) (2.48)

where VMM indicates the classical potential, for instance, the Stillinger-Weber Potential

[43] when simulating Silicon. Vadj.(R, α) corresponds to the parameterised adjustable

potential.

Vadj.(R, α) =
∑
i<j

αij ·Rij (2.49)

One of the most recent implemented parameterisation form for Vadj. takes the form of

Eq.2.49. In the equation, Rij indicates the bonding distance between atom-i and atom-

j while {αij} are the parameters to be fit to the QM results. Based on the potentials

in Eq.2.48, forces are derived as the negative gradient of the potential energy, and are

written as:

~FLOTF = ~FMM + ~Fadj. (2.50)

Regarding the QM fitting part, the adjustable parameters of the potential are dynam-

ically optimised by minimising the discrepancy between QM forces and MM forces at

an interval of n-step MD simulation. The minimisation is expressed by the following

equation:

min
{α}
‖(~FMM + ~Fadj.)− ~FQM‖ (2.51)

The optimised parameters {α} are used to make calculations for the next cycle of n-

step MD simulation. At the end of this cycle, a new QM calculation is performed and

the parameters set {αij} is again optimised and updated. The MD is carried out in

such a way that the computationally expensive QM calculations are only performed at

every n simulation steps and therefore, the overall speed of the calculation is accelerated

straightforward by a factor of n compared to the full QM calculations.

Predictor-corrector algorithms are employed in the standard LOTF MD simulation

to make best use of the optimised potential VLOTF, which I will explain in the following.

We know that the predictor cycle is an n-step run with the updated parameter set {α1}.

At the end of each predictor cycle, QM force are calculated and the parameter set are

refitted to be {α2}. A corrector is a recalculation from the initial configuration of the
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predictor cycle but with VLOTF which is interpolated using two parameter set obtained at

two successive QM calculation points, i.e. {α1} and {α2}. The interpolated parameter

set is :

α = λα1 + (1− λ)α2 (2.52)

where index λ runs from 0 to n across the corrector cycle.

Figure 2.3: Reproduced from [46]. LOTF Force errors during the predictor and
corrector cycles from a number of independent MD runs, the RMS error were marked
by the red lines. The test system is 64-atom bulk Si at 2000 K with the QM Hamiltonian

under the DFTB framework.

A systematic plot about the predictor and corrector errors during the LOTF MD is

plotted in Fig. 2.3. During the predictor cycles, un-updated potentials were used to do

the force calculation therefore, the error shows linear dispersion from the benchmark of

DFT forces. The predictor error reaches a maximum at the end of the cycle, where in

the LOTF scheme, new QM forces are computed and the potentials are updated with

the new set of parameters {α}.

The corrector cycle is a recalculation of the predictor cycle from the same starting

configuration but with now the updated VLOTF potential. The error therefore has its

minimum at the beginning and end points of the cycles where the QM fitting was

performed, while the maximum at the middle point of the cycle. The end configuration

during the predictor cycle however are slightly different from the predictor cycle so care

should be taken not to extrapolate too far outside the domain. In Fig.2.3, the error
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curves corresponding to the test on the trajectories at independent MD runs, and the 10

step predictor-corrector calculation in most of the tests assured a chemically desirable

accuracy that is below 0.1 eV/Å, and a factor of 3 − 4 times smaller than that in the

predictor cycles.

2.4.3 Summary

LOTF MD drops the energy conservation of other QM/MM approaches and instead, it

enforces the force toward the QM accuracy by use of adjustable potentials. Using LOTF

MD together with the embedded QM/MM, Kermode et al. successfully investigated the

low-speed fracture of Silicon and correctly described the brittle nature of the fracture

system [13]. A key advantage of LOTF MD is that the QM region can move in the

on-the-fly way, unlike the conventional QM/MM embedding.

The limitation of these methods is however, that the accuracy can only be guaranteed

on the condition that a good classical potential is available beforehand while as we

know, the derivation of good classical potential is usually a demanding task both in

terms of physical intuition and skills. Also, even during the interpolation corrector,

accuracy diverges very fast as the complexity of the configurations becomes broad on

range and the method is usually valid for a limited amount of simulation steps ∼ 10.

These methods are useful where the complexity is localised.

In Chapters 4-7, I will introduce a new approach aiming for the use in large-scale molec-

ular dynamics, where force are predicted by Machine-learning (explicitly, Gaussian Pro-

cesses) from QM database which is updated in an ‘on-the-fly’ fashion. Typical advantage

of this methodology is that, no parameterisation is involved in this learning scheme, thus

the prediction and learning process becomes valid in a broad range of structural vari-

ation. In this methodology, minimal amount of QM calculations are called for and

large steps of interpolation and extrapolation can be achieved in the dynamics, and the

boundary problems associated with the QM/MM embedding are naturally lifted. Be-

fore introducing the ML of force calculation in next Chapter, I will present a model to

study the typical multi-scale system, e.g. fracture, which is one of the most interesting

playgrounds for all these developed algorithms.
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Chapter 3

Fracture Modelling

3.1 Introduction

In this section, I will introduce some general background knowledge relevant to the

fracture simulations. Fracture is the lifetime limiting failure mode of many materials

and is of tremendous technological concern, from mining to ceramics and the glass. The

fracture in materials can be divided into two broad classes: ductile and brittle fractures.

For the former, enormous plastic deformation accompanies the fracture process while

for the latter, the crack propagates along energetically-favoured cleavage planes [59, 60].

Brittle fracture as one of the most typical multi-scale problems has attracted much re-

search interest, especially recently, from physicists in the computational material science

community [13]. In this kind of fracture system, bonding events in a concentrated area

and stress field from long-range distance comes into a mutual play. The long-range

interaction nature requires the incorporation of a number of atoms which can only be

dealt with a classical approach, while for the short range chemical related events, DFT

is most desirable for an accurate description.

3.2 Griffith’s Criterion

The first theoretical work on fracture was carried out by Griffith in 1921 from the point

of view of thermodynamics [61]. Crack propagation involves two processes: creation of

new crack surfaces and release of elastic energy due to the applied stress field. Suppose
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Figure 3.1: A schematic plot showing the theoretical model in fracture. σ is the
applied stress field, v the propagation velocity and 2L the crack length.

the crack propagation by a length of dL, the released elastic energy is dEc and the energy

consumed to create new surfaces dEs. The following inequality must be satisfied for the

crack to propagate,
dEs
dL

+
dEc
dL
≤ 0 (3.1)

For crack model with the specific geometry illustrated in Fig.3.1, the above energies are

calculated as:  Es = 4γL

Ec = −πL2σ2/E′

where L is the crack length, γ the surface energy density and E′ is the effective Young’s

Modulus defined as follows:

E′ =

 E for plane stress

E/(1− ν2) for plane strain

The effective Young’s modulus is the usual Young’s Modulus E for in-plane stress and

E/(1− ν2) for the plane strain case with ν the Poisson ratio.

Substituting the energy expression into the Griffith’s relation in Eq.3.1, we obtain the

criterion for the crack to propagate. The applied stress σ should exceed the critical

loading stress σc expressed as follows:

σc =
√

2E′γ/πL (3.2)
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In the study of crack propagation, an elastic energy release rate to the crack tip is usually

introduced,

G = −∂Ec/∂L (3.3)

Using critical elastic energy release rate Gc, the Griffith criterion can be expressed as,

Gc = 2γ (3.4)

which means that, the critical loading is the twice the surface energy density. This is a

more generally used form in the community of fracture research. However, the critical

energy release rate Gc for the crack to propagate in both experiment and atomistic

simulations are typically higher than the prediction by the Griffith criterion at the

continuum limit (Eq.3.4). This is attributed to the energy barrier for bonds to break at

the atomistic level, which is known as lattice trapping. The concept was introduced by

Thomson and Rana from their analytical model [62].

3.3 Velocity of the Crack Propagation

According to linear elastic fracture mechanics (LEFM) for semi-infinite crack model [63]

where a linear relation is adopted between the stress and strain, the velocity of the crack

under loading G is given by :

v = cR

[
1− Γ(v)

G

]
(3.5)

In the above equation, cR is the Rayleigh wave speed, equal to the velocity of acoustic

surface waves, Γ(v) the velocity-dependent fracture energy which is approximately equal

to the Griffifth’s critical loading Gc at low speed crack regime, and G is the strain energy

release rate defined as before [13].

There is a discrepancy between this theoretical prediction and experimental measure-

ments. For instance, typically from Eq.3.5, the maximum velocity is the Rayleigh wave

speed cR while the maximum velocity observed in experiment is usually less than the

Rayleigh wave speed, about ∼ (20%−80%)cR [64]. The explanation for this discrepancy

lies in the crack instability above some critical velocity [65]. Models that additionally

consider the phonon dissipation energy in the crack propagation improved their agree-

ment [66].
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Classical Approach. Different classical approaches were among the early attempts to

address the fracture simulations at the atomistic scale. With potentials such as SW, TS,

and EDIP, Silicon fracture however is incorrectly predicted to be ductile [67–69]. This

discrepancy between these predictions and other accurate atomistic simulation as well

as experiments are largely due to the fact that stress concentration diverge as ∼ 1/
√
r

near the crack tip, leading to anharmonic bond activity that is barely captured by the

classical potentials [59, 69, 70].

Figure 3.2: In panel (a), the Silicon fracture profile from a classical trajectory cal-
culated uniformly using the SW potentials. The crack surface is typically observed to
be ductile. In panel (b) gives the snapshot of the crack from the QM/MM embedding

scheme. The Figure was reproduced from [59].

Regarding the crack propagation velocity, there was a long-standing yet unconfirmed

prediction that under continuously increasing loading, the crack start propagating only

at a finite velocity v0. The forbidden velocity band between 0 and v0 is called the

‘velocity gap’, which was ever reported in the experiment work of [71, 72]. However,

there was also other experimental work suggesting that no sign of the ‘velocity gap’ were

actually observed [73]. These distinct results make the velocity gap a topic of debate

in the fracture community. A systematic study of this issue was thus motivated and

described below.

Simulations of Silicon fracture were performed by my collaborators with a machine-

learning potential: GAP potentials 1 [74]. Before application, this GAP potential was

carefully trained with 400 reference configurations that were sparsified from a database

of ∼1500 bulk configurations and ∼1500 configurations from the (111) fracture surface.

The crack in these simulations, was performed on the (111) cleavage plane of Si crystal,

1A detailed description of the ML potentials and GAP is found in Section.4.2 of this thesis.
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Figure 3.3: A schematic plot illustrating the velocity gap. The dotted line and the
rectangle indicates the forbidden velocity region: [0, v0] in the fracture velocity curve
with respect to the loading rate. The range of the velocity gap in the plot is arbitrary

and can varied depending on the specific material.

Figure 3.4: A snapshot near the Si crack tip at temperature of 300 K with dif-
ferent colours marking the GAP part (inner region, light blue), the MM part (outer
region, dark blue) by SW potential and the buffer region between them (intermedi-
ate region, cyan), respectively. This snapshot was from the crack simulation within a
LOTF GAP/SW model, where GAP calculation replaces the QM calculations in the

conventional QM/MM embedding.
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while the crack propagates in the [112] direction, under several different temperatures

from 5 K to 500 K.

Though hugely advantageous in terms of efficiency compared to the DFT, dealing with a

system with 111,000 atoms on the fracture system, the cost to use full GAP potential is

still prohibitive, 100 ∼ 1000 times more expensive than the SW classical potential, with

the dominant cost on the calculation of the descriptor for the atomic configurations

(details in section 4.2.3). GAP/MM embedding was used in the simulations. The

chemically active region near the crack tip was calculated using GAP potential and the

long-range stress concentration is calculated with the SW potentials. A snapshot of the

embedded GAP/MM scheme was shown in Fig.3.4, with a buffer region to obtain the

correct GAP forces on the inner part and discarded during the mixing with MM forces

(see Section. 2.4.1).

Figure 3.5: The crossover plot of crack under loading at different temperatures.
The velocities for the lowest energy release rate G = 2.5 J/m2 were from process of
slowing down a running crack. In the Figure, A and C refer to thermally activated and

catastrophic region, respectively. The plot is from [74].

As one way of validation, the use of GAP potential was verified on the brittle surface of

the crack and reproduced the Pandey surface reconstruction of 5- and 7- atoms rings,

which is formed due to the energetically-favoured π-bonding type on the (111) surface
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[75]. This reconstruction was also reported using QM/MM embedding calculation with

the QM forces calculated within the DFT framework. [13].

The velocities under different energy release rates G and temperatures T were explored,

as shown in Fig.3.5. For the low loading part, thermally activated fracture modes were

revealed (denoted as A in Fig.3.5) and is attributed to the lattice trapping. The higher

kinetic energy favours the overcoming of the energy barrier due to the lattice trapping

and thus higher propagation velocity. Above a critical loading rate, higher kinetic energy

starts slowing down the crack propagation, and this renders a crossover in the plot in

Fig.3.5. This effect becomes much pronounced in the catastrophic regime (C in Fig.3.5).

An autocorrelation calculation of the bond breaking between each bond-breaking sites

along the propagation direction was performed for the different temperature cases and

only very weak autocorrelation was ever found, suggesting the relatively independent

breaking process for each sites [74]. In the following section, I describe a simple model

approximate the bond breaking process near the crack tip and further understanding of

the mechanism is possible.

3.4 Results: Brittle Bond Breaking

During the atomistic simulation using the GAP/SW embedding method, the reversed

contribution from temperature to the crack propagation velocity was found for the ther-

mally activated and catastrophic loading regions. The GAP potential in the simulation

has no chemical accuracy confirmed (see section 4.2.3) and thus the question is still open

as to the bond breaking process. In the case of no experimental observation available to

confirm about the findings, a theoretical model is thus designed to provide a different

perspective to the underlying mechanism, which motivated the work to be described

below.

In this simplified atomic model with LJ interaction potential as depicted in Fig.3.6, we

ignore the site correlation of bond breaking near the crack tip in the crack propagation

directions, which is appropriate according to the result in GAP/SW. Pulling forces

exerted on the edge atoms are used to atomically simulate the stress fields near the

crack tip and separation of the bonding structure is carried out at a relative velocity of

v . Due to the general atomistic features, this model is not restricted to Silicon and is
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designated to address the description for bond breaking in a group of brittle fracture

system. As one of the significant factors affecting the bond breaking, the stiffness of

the back bonds compared to the central bonds was also explored with the stiffness ratio

defined as the proportion of the bond energy between the back bonds and the central

bond. We adopted uniform bonding which corresponds to the stiffness ratio of 1.0 as

shown in panel (a) of Fig.3.6 and triple back bonding with stiffness of ∼ 4/3, as in panel

(b), in analogy to the tetrahedral bonding type in Silicon.

Figure 3.6: A schematic plot showing the bond-breaking model with different back
bond strength ratio with respect to the central bonding as illustrated in (a) and (b),
respectively. The edge atoms in both case are considered to be moving with constant

velocities.

At T = 0, classical dynamics of the LJ interaction system was performed for each ini-

tialised separation velocities v until bond breaking which is defined to happen whenever

the pair atomic distance exceeds 3 times of the equilibrium distance. The external work

W consumed to break (any) one of the bonds was calculated against each of the sepa-

ration velocity v under the energy conservation law by integration of force contribution

along the separation process. This work W averaged over sampling of the possible vari-

ables (e.g. phonon vibration) is thus connected with the propagation velocity of crack

tip through each of the perpendicular bonds in real crack system. Results for the con-

sumed work W against the separation velocity v is plotted in Fig.3.8. The velocity is

given in units of the sound speed vs for this LJ dimer (pair atoms with LJ interaction)

calculated as,

vs = σ/TLJ = 6
√

2ε/m (3.6)
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where σ and ε are the typical LJ potential parameters and m indicates the reduced mass

of the LJ dimer, TLJ the phonon vibrating period for the dimer.
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Figure 3.7: A plot showing the distribution of the initialised phonon energy for both
the optical and the acoustic modes. E1 and E2 mark the optical and acoustic phonon
modes, respectively. The distribution corresponds to the activation energy of kBT =

0.01 ε

To explore the influence on the bond breaking events caused by excited phonon vibration

modes at different temperature T , phonon vibrations are incorporated in calculation

together with uniform sampling in the vibrating phase. The phonon energies used to

initialise the phonon contribution were generated following the Maxwell distribution

at given temperature T . As one example for the sampled phonon energies, Fig.3.7

shows their distribution at kBT = 0.01 ε, both for the optical Eopt (upper panel) and

acoustic modes Eaco (lower panel). Two independent calculations were performed for

the activation energies of T = 0.01 ε/kB and T = 0.03 ε/kB respectively, with kB the

Boltzmann constant.

Fig.3.8 plots the consumed work W to break the bonding system against different sep-

aration velocities and panel (a) illustrates that for the near isotropic bonding case at

the range of low separation speed or in other words, low loading rate, we can see that

hot phonons helps the bond breaking to take place which corresponds to the thermo-

activated regime in Fig.3.5. At v = 0.005 vs, a spontaneous breaking is even found with

negative work consumed for the case of taking account of phonon activations. However,
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Figure 3.8: The temperature contributions to the separation velocity (in units of the
sound speed vs). In the figure plots the work W at different temperatures, which were
incorporated in the calculation by the sampled phonon energies. Different bonding

system was also tested including isotropic (a) and triple back bond system (b).

high temperatures act in the opposite direction as a resistance role when it comes to the

larger separation speed or stronger external loading, in which case, the probability of

breaking the back bond becomes overtaking that happens to the central bond and this

make the bond breaking process approaches the catastrophic regime described in Fig.3.5.

A crossover at v = 0.02 vs is found consistent with the GAP/SW simulation [74]. Note

that another crossover at v = 0.035 vs between T = 0.01 ε/kB and T = 0.03 ε/kB may

be attributed to the fact that larger convergence error is associated with the larger sep-

aration speeds v in the sampling of the phonon energies (see Fig.3.9). For the stronger

back bond case [panel (b) in Fig.3.8], the central bond tends to break before that in the

back bonds across investigated range of separation velocity. We find that temperature

48



contributes a prominent positive contribution for the overall bond-breaking process to

take place and accordingly large propagation velocity of the crack tip if we move to take

about the real crack system.
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Figure 3.9: The plot showing the consumed work W vs separation velocity v with
sampling variance included. Note that for quasi-static case (KT = 0), there is no

sampling error and for KT = 0.03 there is larger variance than KT = 0.01.

3.5 Summary

In this section, the simulation of Silicon fracture was introduced and I also reviewed the

work carried out with my collaborators during this thesis project which investigated the

crack velocity dependence on temperature under the GAP/SW embedding scheme. In

the case of no experimental observation available and chemical accuracy not assured, a

theoretical model with LJ pair interaction was further used to probe the bond breaking

mechanism. Under this model, crossover of the temperature contribution to the crack

speed was found for the isotropic bonding type, while for the system with stronger

back bonding system, the temperature favours the overall breaking process throughout

the investigated range of separation velocities. We conclude that the crossover with

respect to different temperatures, can be a typical phenomenon that exists in a domain

of systems with a relatively uniform bonding structure or a bonding structure prone to

temperature.
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Chapter 4

Background- II

4.1 Machine Learning and ML Potentials

4.1.1 Introduction

Machine learning (ML) algorithms have been developed with the advent of supercom-

puting capacity. Data analysis and pattern recognition has grown in importance to

cope with the large volume of information produced in such calculations. ML belongs

to the broad subject of artificial intelligence with many applications in daily life, for

instance, in the area of drug design, weather forecast, monitoring of ocean environment,

and robotics etc [76]. As an inter-disciplinary subject, ML is closely connected with the

development of computer science and many other modern technologies.

In the following sections, I introduce some algorithms used in machine learning, with

emphasis on those useful for functional inference. Also, recent developments for the

atomic potentials based on machine learning of the underlying potential energy surface

will be reviewed, such as Gaussian Approximation Potentials (GAP), neural-network

(NN) potentials, etc.
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4.1.2 Bayes Theorem

For two dependent events A and B, their joint probability is written as: P(A|B)P(B) =

P(B|A)P(A).

P(A|B)︸ ︷︷ ︸
posterior

=

likelihood︷ ︸︸ ︷
P(B|A)

prior︷ ︸︸ ︷
P(A)

P(B)︸ ︷︷ ︸
evidence

(4.1)

Bayes’ Theorem is an approach to derive the posterior probability: P (B|A), based on

the prior knowledge: P (A), likelihood: P (B|A) and evidence: P (B), as expressed in

Eq.4.1.

An example is given below to demonstrate the Bayesian probabilistic view of the poste-

rior probability:

suppose there is a drug test which gives a 99 % positive result to drug takers and 99

% negative results to non drug takers, and we also know that 0.5 % of people are drug

takers. The question is: after knowing that for one person, the test result is positive,

what is the probability that the person is drug taker ? To apply the Bayes’ theorem,

we consider that events A: the test person is drug taker, B : test result is positive.

P (B) = (1− 0.5 %)× (1− 99 %) + 0.5 %× 99 % = 1.49 %, P (B|A) = 99 %, the prior

P (A) = 0.5 %. The probability that the person being drug taker is calculated as :

P(A|B) =
P(B|A)P(A)

P(B)
=

99 %× 0.5 %

1.49 %
= 33.2 % (4.2)

We can see that posterior probability is much lower than that would be expected from

the individual event probabilities, 0.5 % or 99 % in the prior. This is a good example

of the sometimes counter-intuitive results of applying a Bayesian approach.

4.1.3 Gaussian Process Regression

Bayes’ theorem provides a statistical explanation of GP functional inference (the term

‘Regression’ refers to the fitting a curve across the data points even in cases where

intrinsic noise is involved). Bayes’ theorem states that the posterior probability can be

related to the prior knowledge or experimental observations via the Eq.4.1, where tN

represents the N measured observables, and tN+1 is the (N + 1)th measurement. The
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probability for the tN measurements is given by:

P (tN+1|tN ) =
P (tN |tN+1)P (tN+1)

P (tN )
=
P (tN+1, t)

P (tN )
(4.3)

4.1.3.1 Gaussian Processes

Gaussian Processes (GP) has been a useful tool for scientists to perform non-parametric

function inference for many years. Compared to the parametric approaches such as the

least-squares fitting, it is advantageous in more flexible functional form and no empirical

constraints on the amount of parameters [77].

Let us start by expanding function y = f(x) with respect to a basis set {Rnh} which

are defined as the following:

Rnh ≡ φh(xn) (4.4)

Rnh therefore indicates the h-th basis function centred on the variable xn, Accordingly,

the function y is written as :

yn ≡
∑
h

Rnhωh (4.5)

where {ωh} corresponds to the weight parameters for each of the basis function. The

prior distribution of w = {ωh} is taken to be Gaussian type with zero mean and variance

of σω:

P (w) = Normal(w, σ2
ω · I) (4.6)

Since y is the linear combination of w, its covariance matrix is :

Q =
〈
yyT

〉
=
〈
RωωTRT

〉
= R

〈
ωωT

〉
RT = σ2

ωRRT (4.7)

where R = {Rnh} indicates the basis set. The prior distribution of function y can

therefore be expressed using the covariance matrix Q:

P (y) = Normal(y, 0, Q) (4.8)
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Introducing C as the noise-included covariance matrix: C = Q + I · σ2
error , we obtain

the following probabilities for tN and tN+1:

 Prior probability : P (tN ) ∝ exp
[
−1

2tNC
−1
N tTN

]
Joint probability : P (tN+1, tN ) ∝ exp

{
−1

2 [tN tN+1]C−1
N+1[tN tN+1]T

}
In the above probabilities, CN is the covariance matrix built for the data set tN while

CN+1 also includes the covariance with (N + 1)th measurement: tN+1.

Inverting of CN+1. To make use of the inverting result for the covariance matrix CN ,

we can write the CN+1 in the partition form comprising CN . In the following matrix, K

represents the covariance between the (N+1)−th configuration and the N configurations

in the database and κ the covariance between the test configurations and itself. The

different parts of C−1
N in the partitioned form can be calculated as:


m = (κ−KTC−1

N K)−1

m = −mC−1
N K

M = C−1
N + 1

mmmT

The inverting of covariance matrix CN is a costly process for large databases with a typ-

ical cost of O(N3). To circumvent this problem, in this thesis project, I adopted a sort-

ing/selecting algorithm while keeping constantly dynamical training of large database

possible. The overall cost of the calculation can be scaled close to ∼ O(N), as to be

discussed in detail later (see Chapter 6).
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Based on the above disscusion, the posterior probability : P (tN+1|tN ) using the Bayes’

theorem is thus expressed as:

P (tN+1|tN ) =
P (tN+1, tN )

P (tN )
∝ exp

[
−(tN+1 − t̂N+1)2

2σ2
t̂N+1

]
(4.9)

where the predictive mean and variance are:

t̂N+1 = KTC−1
N tN ; σ2

t̂N+1
= κ−KTC−1

N K (4.10)

4.1.3.2 Covariance Matrix

The general form of the covariance between two random variables x(m) and x(n) is

expressed in Eq. 4.11,

Cmn = C(x(m), x(n); θ) + δmnN (x(n); θ) (4.11)

where θ refers to the hyperparameters and N is noise model which is varied for the case

of input-dependent data noise and typically constant for the case of input-independent

data noise [77].

The covariance can take different forms and the requirement for the covariance matrix

constructed upon is that it should be positive definite. In practice, a covariance func-

tional form reflecting the physical nature of the target machine-learning functional is

preferable to enhance the prediction accuracy. For instance, for machine learning of

periodic functions, the forms of sinx or cosx are usually adopted. Different covariance

functions ever emerged historically and can be found in literature while new covariance

form are also under research in the community [76–78]. Among them, one of the most

commonly used covariance at I-dimensional database takes the following form,

C(x(m), x(n); θ) = θ exp

−1

2

I∑
i=1

(
x

(m)
i − x(n)

i

)2

l2i

 (4.12)

In the above equation, x
(m)
i and x

(n)
i is the i-th component of the data x(m) and x(n),

respectively, θ is the hyperparameter, and li is the normalisation factor for the i-th

dimension. Before the application of this techniques, I introduce another example for
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the covariance which was often used in the early GP inference, i.e. the Matérn covariance.

In this covariance, there is a hyperparameter ν which is adjusted to the extend of the

required flexibility. By using different value for ν, a covariance function with different

orders of differential smoothness resulted, as shown in Fig.4.1.

C(x1,x2, l, ν) =
1

Γ(ν)2ν−1

[√
2ν

l
|x1 − x2|

]ν
Bν

(√
2ν

l
|x1 − x2|

)
(4.13)

where Bν represents the Bessel function of second kind of order ν, and l the characteristic

correlation length scale.
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Figure 4.1: the covariance by definition of Matérn Covariance, in the plot r = |x1−x2|.
In the limit of ν →∞, the Matérn covariance is equivalent to the Gaussian type which

is infinitely differentiable.

• ν = 1/2, exp
(
− r
l

)
, it is equivalent to the Laplacian covariance, which typically

governs the stochastic processes such as the Brownian motion.

• ν = 3/2, (1 +
√

3r
l ) exp

(
−
√

3r
l

)
, once differentiable. Increasing ν, the covariance

function becomes differentiable at higher order.

• ν → ∞, exp
(
− r2

l2

)
, the function is infinitely differentiable, and equivalent to the

Gaussian covariance.

Various covariance forms have been used by researchers in the area to meet their dif-

ferent needs in doing function inference, for instance, the Kriging method, and Radial

covariance, etc. in the early stage of Gaussian Processes work [78]. In this thesis,

the Gaussian processes on QM forces are performed with the following covariance form
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(Eq.4.14), where dmn is the distance between two atomic environments m and n, and

σcov and σerror are two hyperparameters (see section 4.1.3.3).

Cmn = exp

(
− d2

mn

2σ2
cov

)
+ δmnσ

2
error (4.14)

4.1.3.3 Hyper-parameters

The parameters that are present in the kernel of the covariance are called hyperparame-

ters, which is used to tune the predicted function form or regularise the function inference

process. Two hyperparameters {σcov, σerror} are involved in the covariance (Eq.4.14)
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Figure 4.2: One-dimensional Gaussian Process with the black dots mark the data
points. The solid curves marks the regressed mean function with the error bars indi-
cating the prediction variance from the GP process. σerr =0.05 eV/Å and two different

σcov= 0.5 (upper) and1.5 (lower) respectively in the plot.

used in this thesis. A demonstration of the inference for a one-dimensional function is

given in Figs.4.2 and 4.3, with several different prior hyperparameters {σerror, σcov}. The

σcov is significant in controlling the correlation length of any two data points along the

distance scale. Smaller σcov makes the prediction more accurate locally near the data

points, but increases the uncertainty in the longer extrapolation regime, in other words,

decreases the weight of distant data points in the prediction. The larger σcov tends to

put less weight on the local data points and usually yields a more general predictive

form in the long range of data space.
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Figure 4.3: Two different noise assumed for the Gaussian processes, σerror of 0.05
(upper) and 1.0 (lower) eV/Å. The other hyperparameter σcov were kept constant for

the two cases as 1.0

The noise assumed on the data is indicated by σerror. Small values correspond to the

rigid parameterisation with over fitting to the data points, which however, lack of the

extrapolation capability beyond the data points. Larger σerror enables better extrapola-

tions at a risk of losing the accuracy at the fitting data (with ‘blurring’ around the data

of the magnitude of σerror) and predicted function takes simple form rather than cross

the accurate data points. In the case of high-accuracy required calculations, suitable

hyperparameters are key and thus optimisation procedures are often needed, such as by

the maximising of the marginal likelihood to be discussed below.

As an example for 2-dimensional GP prediction, I adopted the Euclidean distance be-

tween the variable vectors to construct the covariance matrix (Eq.4.14) and the predicted

mean function is found in Fig.4.4. The mean prediction surface is seen to be a prod-

uct of the multi-variant 2D Gaussians centred on each data points and zeros values are

found where there is few data distributed. Extending to even higher-dimensional case,

the database is re-organised by the adopted covariance form and the function regression

is based on an inversion relation with respect to this constructed data topology. The

prediction becomes enormously challenging as more complexities are incorporated.
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Figure 4.4: Example plot showing the function inference in 2D data space. The
function surface (blue) was inferred from 100 noisy data points (red solid dots). The
covariance matrix was constructed using the Euclidean metric. Hyper-parameters in

this Figure are: σcov = 10. and σerror = 0.05

4.1.3.4 Hyper-parameter optimisation

The optimal hyperparameters for a given learning set can be found by maximising

the logarithm of the likelihood with prior hyperparamters: L(θ) = log(P (t|x, θ)); θ ≡

{σerr, σcov} [76].

L = log(P (t|x, θ)) = −1

2
tTC−1

N t− 1

2
log |CN | −

N

2
log(2π) (4.15)

The likelihood is comprised of two contributions, i.e., the data fitting term: −1
2t
TC−1

N t

and complexity penalty term: 1
2 log |CN |. The third term: N

2 log(2π) is associated with

dimension of the database and is constant for a fixed database. The optimal Gaussian

Process inference tends to be a balance between these two considerations.
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Figure 4.5: A schematic plot showing the NN prediction with two-dimensional input
variables (x, θ) and bias in the hidden layer [79].

To maximise L, the derivative of L with respect to the hyperparameter θ is expressed as

following and optimal hyperparameters are thus derived by numerically solving ∂L
∂θi

= 0:

∂L

∂θi
=

1

2
tTC−1

N

∂CN
∂θi

C−1
N t− 1

2
trace

(
C−1
N

∂CN
∂θi

)
(4.16)

As can be seen from Eq.4.16, the computational cost of the above procedure can be high

as the inverting of covariance matrix CN with prior hyper parameters is involved and the

optimisation usually has to be performed n runs for convergence. Different algorithms

have been developed to cope with the training in large database, one of which is the

sparisification algorithms [76].

4.1.4 NN algorithms

Neural Networks (NN) are another function inference algorithm inspired by biological

neurones. The algorithms works by mapping the data from the ‘input layer’ onto the

‘hidden layer’ with parameters iteratively optimised and used to make predictions for

new inputs. Under this algorithm, the input functions are mapped by the iterative

optimised weight parameters in the ‘hidden layer’ and used to make prediction for other

general input representing functions. Neural networks works by implementing a function

y (x, w), and optimisation of the weight parameters space w and output y as non-linear
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function of the input x space, e.g. signal function [77] as follows,

y(x,w) =
1

1 + exp (−
∑
i
wixi)

(4.17)

A schematic plot is given in Fig.4.5, prediction from two-variable inputs and a bias

exerting on the hidden layer.

4.1.5 Summary

In this part, I have introduced the Gaussian Process function inference, starting from the

point of view of Bayes’ theorem concerning posterior probability distribution. Though

the Gaussian Processes are far from new algorithm and have been widely used by scien-

tists for decades, they however, increasingly attract attentions by the work that required

with upgrading computational power. Applying the technique to material simulation

however, we can see lots of potential while the simulation scale is proceeding to higher

level and the gap between the computer calculation and real experiment observation is

narrowing. Using function inference from ML to fit the potential energy surfaces has

been adopted by several groups and resulted into a series of machine-learning potentials

and attempts to address multi-scale problem was also made in practice. In the follow-

ing section, I will review these potentials with their highlighted application in material

simulations.
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4.2 ML Potentials

4.2.1 Introduction

In the following, I will review the ML potentials which are typically free from explicit

fitting parameters. Rather, they adopt function inference from ML techniques based on

a QM database. By representing the configurations with suitable descriptors designed

for QM energy learning, these potentials are used to predict the first-principles PES,

atomisation energies or density functionals with respect to the electron density. The

procedures taken by the implementation of the ML potentials are typically: (1) repre-

senting the configurations taking into account the associated symmetries with the energy

quantity; (2) performing function inference on the PES or the atomisation energies using

the ML algorithms, such as Gaussian Processes (GP), Neural Networks (NN), Kernel

Methods; (3) hyperparameter optimisation.

4.2.2 Representation of the Atomic environments

Many representation schemes for the chemical environments are used in the characteri-

sation of the atomic structure in molecular dynamics. The local bond-orientation order

parameters were proposed by Steinhardt et al. where the rotational invariance is intrin-

sically captured by using the basis set of spherical harmonics. These parameters have

been found to be generally useful in discriminating the structure types in liquids, glasses

and solid materials [80].

Expanding the bond orientation {r̂ij} with spherical harmonics Ylm, Qlm is defined as,

Qlm(i) =
1

Nb(i)

Nb(i)∑
j=1

Ylm(r̂ij) (4.18)

In Eq.4.18, Nb(i) represents the number of nearest neighbours of the i-th atom, and

Ylm(r̂ij) corresponds to the spherical harmonic for r̂ under index of m and l and |m| < l.

The index i indicates the i-th atomic configuration and j runs over the neighbouring

atoms.
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The Steinhardt order parameters are rotationally invariant and constructed as,

Ql(i) =

√√√√ 4π

2l + 1

m=l∑
m=−l

|Qlm(i)|2. (4.19)

and

Wl(i) =
∑

m1,m2,m3

 l l l

m1 m2 m3

×Qlm1Qlm2Qlm3

Modified bond-order parameters were proposed recently based on averaged local bond

order parameters as given in Eq.4.20 and shows very good resolution in determining

crystalline structures [81],

Q̄l =

√√√√ 4π

2l + 1

m=l∑
m=−l

|Q̄lm(i)|2. (4.20)

and

W̄l(i) =
∑

m1,m2,m3

 l l l

m1 m2 m3

× Q̄lm1Q̄lm2Q̄lm3

In the above, Q̄lm = 〈Qlm〉 gives the average taken over the set of bonds for the neigh-

bouring atoms and the coefficients

 l l l

m1 m2 m3


in the third-order invariants Wl(i) are Wigner 3j symbols and produce zero unless m1 +

m2 +m3 = 0.

A useful combination descriptor which is sensitive to structure difference and orienta-

tional symmetries is,

Ŵ ≡Wl

/(
m=l∑
m=−l

|Q̄lm(i)|2
)3/2

The above descriptors are not complete representations, which means that for wider

spectra of structural variation, two different atomic environments may fall into the

same representation. A complete descriptor was developed by Bartok et al. based on

the bispectrum of the atomic environments and this descriptor was applied into their
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machine learning potentials (GAP, see next section) in the early stage [9], though it was

found problematic in convergence with respect to the number of neighbouring atoms

within atomic environment. The recent proposed smooth-overlap-of-atomic-positions

(SOAP) descriptor combining the bispectrum and overlap of atomic position calculation

has improved performance [82]. Other descriptors were developed for the purposes of

the different ML schemes, of which I will give a review below.

4.2.3 Gaussian Approximation Potentials

One of the ML potentials is the Gaussian Approximation Potential (GAP) developed

by Bartok and his collaborators [9] and they are specifically implemented using the

Gaussian process inference of the PES surface. In the scenario of a GAP, the total

energy Etotal is constructed to be sum of the atomic energy {εi} centred on each of the

atoms and the function relation between atomic energy and atomic environments are

the underlying target for the ML techniques to address. For localised bonding, such as

covalent bonds, this local energy concept is justified. For long-range interactions, such

as the Coulomb or dispersion, these terms are usually separated from the local energies

{εi} to assure a much better localisation for the ML to perform [9].

Etotal =

Natoms∑
i=1

εi(xi) +
∑
ij

qij
rij
. (4.21)

In the GAP potentials, the predicted atomic energy for new configurations xi are ex-

pressed as,

εi(xi) =

Ndata∑
n=1

αnk(xi,xn) (4.22)

where k(xi,xn) indicates the covariance element between the i-th test configuration

and the n-th reference configuration in the QM database. {xn} and αn are product of

inverted covariance matrix C−1 and the QM energy entries y of the database,

{α} ≡ α = C−1y (4.23)

In GAP, the learning of QM forces and/or Viral stress are technically incorporated by

the derivative of the covariance with respect to the atomic coordinates, while the force

prediction for each atomic configuration is carried out as the derivative of the predicted
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Figure 4.6: The energetics was calculated using classical force fields, GAP potential
and DFT for (a) the linear transition path and (b) the structural transformation from
rhombohedral graphite to diamond-type carbon. The figure was reproduced from[9]

energy quantity. In Fig.4.6, GAP potentials were used to calculate the structural tran-

sition path of Carbon. Accuracy comparable to the first-principles level was achieved

with a database which was generated from an MD trajectory [9]. GAP potentials have

also been used into the crack simulation of Silicon (see section 3.3) and the simulation

of molecular, condensed water and tungsten [83, 84].

4.2.4 Neural Network Potentials

Based on the Neural Network (NN) algorithm (section 4.1.4), another machine-learning

potential scheme was ever established by Behler and Parrinello in 2007 [10]. In NN po-

tentials, energies are taken as the sum of the atomic energy which functionally depends

on the local atomic configurations. The atomic configurations however, are represented

by introducing a symmetry function of the neighbouring atomic positions. The NN

prediction of PES is further performed at the approximation of high-dimensional repre-

sentation [10].

The symmetry functions includes the two-body and three-body contributions, which are

sum of Gaussians with controlling parameters of η and Rs and cutoff function fc(Rij).
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Explicitly, the two-body symmetric functions are given by,

G2 =
all∑
j 6=i

exp
[
−η(Rij −Rs)2

]
fc(Rij) (4.24)

while the symmetry function from three-body contributions is:

G3 = 21−ζ
∑
j,k 6=i

(1 + λ cos θjk)
ζ exp

[
−η(R2

ik +R2
jk +R2

ij)
]
fc(Rik)fc(Rjk)fc(Rjk) (4.25)

where θjk indicates arccos
(
~Rij ·~Rik

Rij ·Rik

)
. The cutoff function fc(Rij) takes the decreasing

form of
[
cos (

πRij

Rcut
) + 1

]
/2 within the neighbour cutoff radius Rcut, and are set to be

zeros for Rij ≥ Rcut,

fc(Rij) =


[
cos (

πRij

Rcut
) + 1

]
/2 for Rij < Rcut,

0 for Rij ≥ Rcut

Figure 4.7: The melting curve of Sodium subject to external pressures. Comparison
was shown for the NN potential (green), an effective pair potential based on jellium
model or uniform electron gas model (red), and repulsive wall of effective pair potential
(blue). At the pressure of 90 Gigapascal (GPa), a structural transition from (body-
centered-cubic) bcc to (face-centered-cubic) fcc was taken into account in the calculated

curves. The figure was reproduced from literature [85].

The NN potentials for example have been used to simulate the melting of Sodium and

exploration of the nucleation mechanism of graphite / diamond transition [85–87]. As

shown in Fig.4.7, where the abnormal melting behaviour was displayed in the study of

65



the melting process in the Sodium system under pressure. Other application includes

into the zinc oxide and water [88, 89].

4.2.5 ML Model for Atomisation Energy

Machine learning of the molecular energy quantities is of significant research interest

and challenge. In the scheme developed by Rupp et al., one of the key parts, the

representation for the molecular configurations, was constructed by a Coulomb matrix,

whose elements MIJ correspond to the atomic energy and Coulomb interaction energy

as expressed in the equation below,

MIJ =

 0.5Z2.4
I for I = J

ZIZJ

|~RI−~RJ |
for I 6= J

where the {Z} and {R} are the nuclear charge number and atomic positions, respectively.

ML performance of this scheme for organic molecular was systematically demonstrated

by calculations upon a database containing molecular configurations that are stable by

the knowledge of the criteria in organic chemistry and also accessible to the synthetically

experiments [90].

4.2.6 ML of Electron Density Functionals

Apart from the machine learning of the energy quantities, I note about function inference

on the electron density functionals. Snyder et al. made ML predictions in the prototype

case of 1-dimensional non-interacting spinless fermions and the learning of kinetic energy

functional T (n) was achieved within chemical accuracy of 1 kcal/mol (or 0.043 eV)

[91]. To calculate the functional derivative ∇nT (n) in the density space (n1, · · · ,nj),

principal component analysis (PCA) is carried out on m relevant reference density to

find the l density dimensions with the largest variation with respect to the predicting

density n. A comparison of the ML approximation and exact self-consistent result is

given in Fig.4.8, where Pm,l indicates the density projection matrix onto the l principal

density dimensions. Based on the derivative (or gradient) prediction, starting from a

guessed density, optimisation procedure can thus be performed to find the density that

corresponds to the minimal total energy. The accuracy of this derivative calculation
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however, is limited and the yielded density from the minimisation may be different,

depending on the initial guess.

Figure 4.8: Projected kinetic energy functional derivative for one-dimensional non-
interacting fermions is plotted for both the ML approximation (MLA) and the exact

self-consistent result. Figure is from [91].

4.2.7 Summary

In this chapter, machine learning algorithms to carry out function inference were intro-

duced and the schemes for ML potentials and density functional were reviewed. Pro-

viding the database containing QM energies, the potential energy surface is functionally

regressed at a high accuracy. The applications and developments were also briefly intro-

duced in the materials simulation process. The limitation of these ML potentials is that,

they still work like classical potentials (e.g. energy conserved, validation of database re-

quired, transferability limited) after the QM data training and their transferability to

different atomic environments largely relies on the completeness of the training database.

In the following Chapter, based on a philosophy different from the static ML potentials

while targeting the practical computational efficiency and applicability to large-scale

MD simulations, an accurate machine-learning scheme for QM force calculation will be

presented.
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Chapter 5

Results II: Machine Learning of

QM Forces

5.1 Motivation for ML of QM Forces

ML potentials have been introduced in the previous chapter and it was shown that they

essentially work like classical potentials after teaching with QM database. Accordingly,

during MD simulations, configurations which turn out to be beyond the knowledge rep-

resented within the teaching database will be predicted with much less reliability. To

address this problem, instead of adopting a ‘once-and-for-all’ learning methodology, we

will construct a dynamic learning approach. The database in this new learning approach

is dynamically updated when and only when novel configurations beyond the reliable

regime of the Bayesian inference prediction are encountered. With a database grow-

ing when chemical novelty is encountered, the predicted atomic forces will be typically

bounded closer to the first-principles target. Significantly, the prediction variance which

comes naturally along with the ML procedure will also be made use of to regulate the

QM-database augmentation during dynamics. This machine learning force calculations

work ‘on-the-fly’, for which, we denote as MLOTF.

The prediction of force by analytical differentiation of the predicted total energy E

results in much amplified uncertainty. A plot illustrating this statement is given in

Fig.5.1 including the error comparison between predicted energy and its differential

product, atomic forces. From the plot, we can see that, large force errors are also present
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Figure 5.1: In the plot, the energies were calculated under the machine learning
potential of GAP model, and forces by analytical differentiation upon the ML energies.
From top to bottom, the plots give the energy error, maximum (Max) and root-mean-

square (RMS) force error against the corresponding first-principles results.

where the predicted energy is over precise, for instance, the 25-th atomic configuration

has a prediction energy error ∆E close to 0, while the corresponding force error is higher

than 0.25 eV/Å. In this case, much more QM data for the configurations deformed from

the 25-th configuration would be required for an accurate description of the forces.

MLOTF methodology to be discussed below, is an approach aiming for high-precision

force prediction by directly machine learning from the QM force database, without

invocation of the energy quantities. The target learning function is thus not constrained

to the PES. Instead, particular emphasis is put onto the force, or the gradient from

the PES. Significantly under this new scheme, the implementation into large-scale MD

simulation can be elevated by the on-the-fly machine learning.

5.2 Possibility for ML of QM Force

In most covalent materials, quantum mechanical force exerted on atom depend on the

local atomic environment formed by the neighbouring atoms. Such QM force can gener-

ally be approximated within a certain precision by the calculation upon a finite cluster
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with a cutoff number of neighbouring atoms. As displayed in panel (a) of Fig.5.2 for

Silicon, for local cluster calculation around a centre atom with neighbouring atoms cut-

off at above 8 Å in spherical radius (around 4 bond hops), the DFTB forces converge

within a precision of 0.05 eV/Å in magnitude, or less than 4% in relative error. At 10

Å or 5 bond hops, the relative error decreases to 1% or ∼ 0.01 eV/Å in magnitude. In

Panel (b) the force convergence is tested on more general structural forms. Similarly,

for cluster above cutoff radius of 8 Å, forces convergence with error less than 0.05

eV/Å. For the MLOTF in this thesis work, we will typically adopt a cluster cutoff at

8 Å for Si calculations, while a Gaussian noise σerror = 0.05 eV/Å is assumed for the

QM force data. Force convergence at a cutoff cluster size suggests it is computationally

robust to derive a scheme only taking into account the atomic environments pertinent

to the QM force. Especially in the non-periodic large system calculations, such kind of

cluster calculation within a reasonably cutoff radius is usually used instead of doing the

self-consistent calculation treating the system as a whole [12, 13].

Therefore, ML of QM forces can be performed by function inference from its relation

with the local atomic environments. To this end, it is desirable to derive a descriptor

to account for the features of the local atomic environment as completely as possible to

achieve the best accuracy. As is well known, the higher the dimensionality incorporated

in the simulation, the more computationally costly it becomes. Also the famous ‘curse’

of high dimensionality in data learning makes it worthwhile effort to derive a pertinent

and dimension-reduced atomic description [93]. This forms the topic for the following

part.

5.3 Representation for the Atomic Environments

The necessity of developing representations for atomic environments has been discussed

in Chapter 4. To our knowledge, there is no available representation scheme for doing

machine learning on forces, in which case, typical descriptor developed for ML of energy

quantity does not work.

The local atomic environment associated with the QM force embraces the SO(3) sym-

metry group. However, if described in the usual Cartesian coordinate, the orientation
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Figure 5.2: Convergence of DFTB forces in Silicon systems with respect to the atomic
cluster size. (a) convergence of the force magnitude and its Cartesian components. The
forces converge within ∼ 0.05 eV/Å at a cutoff radius of 8.0 Å. The test configuration
comes from a typical MD trajectory run at 1000 K using DFTB Hamiltonian. (b) shows
the convergence of the DFT forces on the configurations sampled for bulk Si512 and
Si surface terminated with Hydrogens (Si1000H200). In comparison with the accurate
PBC calculation, the forces converge within the precision 0.05 eV/Å for cutoff radius

above 6 Å. The lower plot was reproduced from Reference[92].

of force depends on the specific choice of the reference frame. The more general the in-

formation can be represented, the better accuracy and efficiency can be achieved in the

prediction calculations. Intrinsic symmetries like rotational, reflection, inversion, and
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permutation should be incorporated into the representation for atomic environments.

Apart from the symmetry reducibility, the representation should be complete in terms

of capturing features of the atomic environments associated with the QM force, as well

as having a smooth relationship with respect to variations in the atomic positions. As

one of the key results, I will describe two schemes that were developed during this the-

sis work: (1) the overlapping measurement of atomic environments (2) internal-vector

representation.

5.3.1 Distance by Overlapping Measurement

This representation scheme works by distance mapping according to the overlapping

measurement of neighbouring atoms and was developed with my collaborators at King’s

College London. In this section, I present force calculation results with this method. In

this representation, the position of the neighbouring atoms {~ri} are placed by centred

delta functions, an atomic density function ρ is the sum of these delta functions with a

cutoff function fcut:

ρ(~r0) = δ(~r0) +
∑
i

δ(~ri − ~r0)fcut(|~ri − ~r0|), (5.1)

where ~r0 indicates the centre atom and can be shifted to the origin when comparing two

atomic density functions. The fcut(r) corresponds to the cutoff function and a form is

given below

fcut(r) =


0 r > rcut

1
2

[
cos π(r−rcut+rtran)

rtran
+ 1.

]
rcut − rtran ≤ r ≤ rcut

1 r < rcut − rtran

The meaning of the above cutoff function lies in that only the neighbouring atoms within

the cutoff rcut are taken into the overlap measurement between the atomic configurations.

The introducing of the parameter rtran ensures the smooth transition associate with the

atomic movements across the cutoff radius rcut.
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The overall distance is constructed by integration of the overlapping measurement of

two sets of Gaussians in the rotational space, as expressed in Eq.5.2:

d2(ρ1, ρ2) =

∫
|ρ1(~r)− ρ2(~r)|2dr3 (5.2)

To combine the rotationally-equivalent images in one representation, the distance is

always minimised with respect to the rotation on one of the configurations to achieve

the minimum distance.

D1,2 = min
R̂
d2(ρ1, R̂ρ2), (5.3)

where R̂ indicates the rotational operator. Accordingly, the covariance is constructed

as:

cov(ρ1, ρ2) = θ · exp

[
− D1,2

2σ2
cov

]
, (5.4)

where θ is the normalisation factor.
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Figure 5.3: The density overlap distance (Eq.5.3) was used for constructing the co-
variance matrix in the Gaussian Process prediction of QM forces. The accuracy test
was performed on MD trajectory of bulk Silicon at 1000 K in the predictor/corrector
way. Different number of teaching configurations: 10 (black), 20 (blue), and 50 (red)
were used from the past trajectory with time interval of 30 fs. However, it is noted
that alignment was not problematic in this plot because of the limited time range of

the trajectory.

Based on the distance in Eq.5.2, force machine learning was tested on configurations

along the bulk MD trajectory (Fig.5.3) and good results were obtained for a relatively
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small teaching database. For large database, where rotation becomes frequent issue,

the method may not work due to the fact that it involves numerically minimising the

overlap distance D12 with respect to all the rotational images. The rotations are numer-

ically represented in the 4-dimensional quaternions space [94] and distance in Eq.5.2 is

calculated by searching for the global minimum. This minimisation process becomes a

bottle neck in computation and can be stuck in the local minima, in analogy to that in

the structure-searching research [95]. In the following, I will introduce an information-

efficient approach which represents the system with symmetrically-reduced internal vec-

tors.

5.3.2 Internal Vector Representation

As illustrated in Fig.5.4, instead of describing the system with external Cartesian coor-

dinates which are made up of {~Ui} (i=1, 2, and 3), we can derive a set of internal vectors

{~Vi}(i = 1, 2, · · · , and k) following the same symmetries as the QM force and the atomic

environment. A symmetrically-reduced representation can be further constructed using

these internal vectors, explicitly by describing all the vectors in this coordinate system

comprised of k vectors. For k > 3, this typically forms an over-determined coordinate

system. Machine learning techniques, e.g. GP, can be further applied on the predictions

of the force components on each of the internal directions.

To satisfy the symmetry requirement, the internal vectors can take simple form as the

linear sum of the bond direction vectors in the real space. We further smoothly screen

the interactions from neighbouring atoms above the cutoff inter-atomic distance: rij ≥

rcut (Eq.5.5) by using a radially-dependent weight factor ωi = e
−
(

ri
r0

)m
which reflects

the decaying contribution from the neighbouring atoms with respect to the increased

distance ri. Since the weights {ωi}(i = 1, · · · , Nneighb.) only involve the magnitude of

the vectors, it can be demonstrated that these internal vectors intrinsically satisfy the

same symmetries as the target QM force.

~V =

Nneighb.∑
i=1

r̂i · wi =

Nneighb.∑
i=1

r̂i · e
−
(

ri
r0

)m
(5.5)

By varying the parameters r0 and m in the weight function, a set of internal vector can

be derived from Eq.5.5. These vectors have two notable features: (i) they share the

74



Figure 5.4: Two dimensional schematic plot showing an atomic environment within
a spherical cutoff radius rcut. Both external coordinate (~x, ~y) and internal coordinate

(~U(r01,m1), ~U(r02,m2)) are shown for comparison. Force ~F on the target central atom
(green ball) is indicated by the thick black arrow. The internal vectors are functions of
the displacement vectors of the neighbouring atoms (red balls) while the parameters of
(r0, m) are both adjustable to generate internal vectors accounting for different shells

of neighbouring atoms.

same symmetry group with QM force and the atomic environment (ii) when ~V = 0 for

all pairs of (r0,m), so is the target force due to the directional correlation. Force can

well be predicted to be zero without the explicit performing the GP regression. This is

especially meaningful when dealing with the highly symmetric configurations, as to be

explored in Section 5.8.

5.3.3 Weight Function

The introducing of an appropriate weight function for each of the neighbouring atoms

is the basis for the derivation of a covariance between the configurations to meet the

requirement of high-precision prediction by Gaussian Processes. In Fig. 5.5, the weight

functions ωi = e
−
(

ri
r0

)m
are illustrated by the radial cutoff curves where a pair of tune-

able parameters (rcut,m) are adopted to generate a set of correlated internal vectors.

From the plot, it can be seen that r0 corresponds to a critical point after which the

weight function smoothly decreases from weight of 1 to 0 while the parameter m con-

trols the steepness of the transition zone. Instead of using a sharp cutoff for the atomic
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environments, we introduce a smooth weight function to geometrically screen the inter-

actions from far-away neighbouring atoms. It is noted however, that r0 is not the rigid

cutoff for the local environments, but a transition point above which the neighbouring

atom contributes much less significantly.
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Figure 5.5: A plot showing the weight functions adopted to obtain internal vectors.
Two tuneable variables (r0,m) are adjustable while they are physically related to the
cut-off set for the atomic environments and decaying power of the contribution from
far-away neighbouring atoms. The vertical (dotted) and horizontal (dashed) lines mark

the critical points r = r0.

5.4 The Feature Matrix

So far, we have derived the set of internal vectors by symmetrically representing the fea-

tures of the atomic environments. However, when numerically measuring the distance

between two sets of vectors, the dependence of these vectors on the Cartesian reference

frame is still problematic. To diminish the dependence while at the same time maintain-

ing the feature-representing nature, we further construct the projection matrix from the

internal vectors and use it to measure the difference between two atomic environments.

We denote this projection matrix as ‘feature matrix’ in this thesis, and it is expressed
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as M ≡ V TA where

V T =


| | |

V1 . . . Vk

| | |

 , AT =


| | |

V̂1 . . . V̂k

| | |

 . (5.6)

In the above equation, V T contains the set of internal vectors while AT gives the cor-

responding internal directions. The superscript T marks transpose operation on the

matrix. Both vector sets are expressed by the Cartesian components. Feature matrix

M derived in this way has the same symmetry as the atomic environments and the force

vector. All the elements in M give an complete correlation between the internal vectors.

5.5 The Correlation between Vi and ~FQM

In this section, I present an analysis of the correlation between ~Vi and ~FQM . In statis-

tics, correlation is a quantitated measurement of the dependence or concurrence of two

random variables [96]. The internal vectors captures the property of QM forces in terms

of both symmetry and locality, and interesting correlations exist between them. It is

possible to incorporate using of any available, well-tested classical force vectors into

the representation, which can further improve the efficiency and accuracy of the ML

prediction, as to be discussed in detail in Chapter 6.

Figure 5.6: A table showing the scheme used to derive internal parameters based on
the pair of parameters in the weight functions. The table shows the internal vectors
corresponding to different pairs of (r0,m), while the ∗ indicates those that have signifi-
cant contributions from distant neighbouring atoms and are not suited for construction
of the representation M . The vectors which have length smaller than a numerical

threshold (10−6 in this table) are reset to be zeros.

I investigated the directional correlation between the vectors of {~Vi} and the QM force

~FQM by using the correlation coefficient: corr(~Vi, ~F ) =
∑Ndata

j=1 |V̂
(j)
i · ~F (j)

QM|/
∑

j |~F
(j)
QM |.
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The correlation is calculated as the force projection onto the individual internal direc-

tions and target first-principles force vectors then averaged over an entire database,

containing 4000 QM data configurations which were generated from canonical MD tra-

jectory of Si at 1000 K, each marked with index j. The QM forces were calculated

within DFT framework as implemented in the VASP package [25, 26] with the ultra-

soft pseudo-potential approximation [24]. The calculated correlation factor is plotted in

Fig.5.7 for a range of r0 and m.

With quantitated correlations, procedures to optimise the representation can be per-

formed and this favours the force machine learning accuracy. When choosing the rep-

resenting internal vectors, two preliminary factors must be considered: (1) those corre-

lating with the QM force are favourable (light-colored region in Fig.5.7). This helps to

reduce the total representation dimensionality and accordingly increase the computa-

tional efficiency. (2) those independent from the influence of the far-away neighbouring

atoms are favourable. Other consideration are regarding the completeness of the repre-

sentation as well as the independence between two internal vectors.
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Figure 5.7: A plot shows the correlations between internal vectors and corresponding
QM forces ~FQM , calculated upon a database containing 4000 configurations of Silicon,
generated from the MD trajectory at 1000 K. The value of the correlation is scaled with

respect to the corr(~FTB , ~FQM ).
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5.6 Configuration Similarity

The distance between two atomic configurations (labelled as α and β) is evaluated by

the distance of their feature matrix as expressed in Eq.5.7. In the equation Vi is the

magnitude of the i-th internal vector with k being the number of internal vectors. Xα
ij

indicates the projection of j-th vector ~Vi onto the i-th direction V̂i for configuration α.

The same applies for configuration β. Under this distance metric, two atomic configu-

rations are considered to be identical (zero distance) only if they have strictly the same

representation, in other words the same set of internal vectors.

d2
α,β =

1

k

k∑
i,j=1

[
Xα
ij

χi
−
Xβ
ij

χi

]2

(5.7)

The weighting factors {χi}(i = 1, · · · , k) introduced in Eq.5.7 for each of the internal

directions are meant to normalise the projections so that each of the internal vectors

give equally weighted contribution to the distance measurement, as expressed by the

following equation (N gives the number of configuration in the database):

χ2
i =

N∑
α,β

k∑
j=1

(Xα
ij −X

β
ij)

2

N2
. (5.8)

They can be derived by statistical procedures upon a given QM database, and their val-

ues depend on the domain of the configuration complexity. A complete representation

of the geometry of neighbouring atoms is essential in this work, as any ambiguity in

distinguishing two configurations could bring in large systematic error for the predic-

tions. However, balance should be made between the completeness and cost of higher

dimensionality. While less internal vectors cannot completely captures the difference

between configurations, using more internal vectors risks to separate all the data points

to be distant from each other. The fitted curves for them using an ‘Kernel Density

Estimation’ (KDE) algorithm [97, 98] are seen in Fig.5.8.
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Figure 5.8: The pair distance are defined as the sum of each individual distance as in
Eq.5.7. As the squared sum of each Gaussian distribution, the overall distance shows

χ-squared-type distribution.

5.7 Over-determined Force Components

The k force components along each of the internal directions are predicted via the GP

function inference with the same covariance matrix, however, based on the force compo-

nent data on the corresponding internal directions. The predicted internal components

do not make a single vector quantity in the external reference frame, but with Bayesian

variance on each of the components. By the GP calculation, each component is of

Gaussian distribution. From all the predicted components, the most-likely force vec-

tor can be computed by minimising the square residuals on all the internal projections

min
X
‖AX− F‖, where A is the internal direction transformation matrix, X the force

vector in Cartesian coordinate to be determined, and F contains the force components

on all the internal directions. Under this least-square procedure, X can be expressed as,

X ' (ATA)−1ATF (5.9)

A simple illustration of the proposed procedure is given in Fig.5.9. The error made

by GP prediction on each of the force components are different on each of the internal

directions {V̂i} where i = 1, 2, · · · , and k. The integrated force vector however, has

better precision than the large individual errors. The significance is that the predicted
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force vectors are not misled even though some predicted components may be far from

the ideal value.
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Figure 5.9: In panel (a): force error on each of k = 23 internal components. The
23-th components corresponds to the SW force direction, while the RMS error between
the predicted force and the target QM force was marked by the horizontal line (see text
for details). In panel (b): test along 20 fs MD trajectory, the force error from different
internal directions and the Max force error derived from the least-squares solution of
the over-determined equation. The error along the SW vector direction are also shown.

With the force components {Fi} from ML predictions, the most-likely force vector ~F in

the original Cartesian Coordinate can be derived from the mean value along with the
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prediction variance which can be used as a proper weight bias on each of the internal

directions. Alternatively, the certainty level on each of the internal directions can be

assessed via a weight counting procedure. We have seen that the overall force error

is much lower than the individual component error, which shows that the least-square

approach can give good prediction precision and avoid the bad predictions on some

individual directions. Knowing the correlation weight factor in each internal direction,

in the further procedures, higher weight can be assigned to that direction while less on

the others.

5.8 Highly Symmetric Configurations

Under the internal-vector representation, two associated problems have to be addressed,

i.e. (1) degeneracy of the internal vectors (2) flipping of some internal directions.

The degeneracy of the internal vectors presents a hidden systematic error for the predic-

tion. In this case, the procedure done using least-squares approach in Eq.5.9 does not

work, as the direction transformation matrix A becomes lower-ranked and inverting of

the geometry matrix G = (ATA) involves singular value (numerical overflowing) for the

degenerated dimensions. Therefore the predicted force components are not adequate to

restore the force vector in the 3D Cartesian space. In phonon calculation, for the dis-

torted configurations from equilibrium crystal structure, this issue becomes prominent

and thus significant to be solved.

We can consider the directional correlation between {~Vi} and target QM force as dis-

cussed in Section.5.3. This provides a good foundation to infer that their distributions

are expanded in the same dimensionality and the internal-direction degeneracy problem

can thus be addressed with the numerical procedure as follows. A threshold is set to

indicate the dimensionality reduction after the Principal Component Analysis (PCA)

on the internal-vector set {Vi}, and the force component on the degenerated dimensions

are accordingly set to be zero with no significant accuracy loss.

1. Find three orthogonal principal axis by PCA computation on the internal-vector

set {~Vi}: explicitly calculate the covariance matrix of (V− V̄)T (V− V̄) where V

is the matrix containing the internal vector set and V̄ indicates the corresponding
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mean vectors. Three principal basis X = (X1, X2, X3)T are generated in the

decreasing order of the eigenvalues λi(i = 1, 2, 3).

2. In the PCA coordinates, dimensions with the eigenvalue λi smaller than threshold

δ are artificially reduced while force components in those dimensions are set to be

zeros. The non-trivial dimensions become solvable in either 2D plane or 1D line.

Both internal vectors and forces are expressed in the new coordinates system of

X.

3. For the 1D case, forces are taken as average over the components along the single

principal dimension. For the 2D case, the least squares solution is performed but

on the two reduced dimensions, by which the force vectors in the Cartesian space

can be extracted from the predicted 2D force components.

The other issue is the directional flipping of the internal vectors with trivial magnitude.

Accompany with the flipping of internal direction(s), dramatic change can be seen in the

projection components in the flipping direction(s) and thus the representation, while the

variation of the actual atomic configuration undergoes insignificant changes. The GP

prediction within this regime may have to involve large uncertainty due to the abrupt

function relation. Numerical way to solve this problem by diminishing the contributions

of the vector ~Vj to the feature matrix whenever its magnitude ‖~Vj‖ becomes smaller

than a threshold δ, as expressed below, where suitable value for the threshold can be

obtained by testing on a given database.

~Vi · V̂j =

 0 if ‖~Vj‖ ≤ δ

‖~Vi‖ cosϕij if ‖~Vj‖ > δ

As been noted, the above numerical procedures are only valid provided good correlation

between the internal vectors and the learning target ~FQM in terms of both direction

and magnitude. This in return adds constraints to the internal vectors we adopt in

constructing the representation for the atomic environment.
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5.9 Summary

In this chapter, an internal-vector representation for the atomic configurations was

established incorporating the hidden symmetries of the machine learning target, i.e.,

Hellmann-Feynman forces. These requirements from symmetry, completeness, high-

dimensional data space and smooth correlations between the internal-vector representa-

tion and the QM force were addressed. The data topology is determined by the explicit

representation scheme adopted and also relates to the accuracy that can be inferred from

the GP predictions. In the following chapters, implementation of this force calculation

scheme into the large-scale MD calculations will be explored.
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Chapter 6

Results III: Machine Learning

‘On The Fly’

6.1 Introduction

In this chapter, the ML force calculation scheme introduced in Chapter 5 will be tested

on static configuration databases which are generated from the MD trajectory within

the framework of DFTB (see Section.2.19) or accurately DFT, with the internal rep-

resentation additionally incorporating the empirical or semi-empirical force vectors. In

the later part of this Chapter, this force calculation scheme will be implemented into the

MD simulation and the associated errors comparing to the first-principles benchmark

will be analysed to reveal the predictive capability until a large size of QM database was

formed.

6.2 Static Learning Accuracy

We first investigate the accuracy of our ML force calculation in the interpolation domain.

To do this, a database is built using consecutive configurations spanned by a reasonable

time interval along the MD trajectory while force prediction is performed upon the test

configurations chosen from the middle point of two consecutive data configurations, as

shown in Fig.6.1. With test configuration sampled in such a way, the measured force
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errors provide an evaluation of the maximum error of the force calculation during the

predictor-corrector cycle, in analogy to the ‘LOTF’ force errors shown in Fig.2.3.

Figure 6.1: A schematic plot for generating the database from an MD trajectory run
on the 64-atom bulk Si system. Data configurations in the database were collected
at 20 fs intervals and test configurations from the middles of two consecutive data

configurations.

For the calculations in Fig.6.2, 2000 data configurations from the MD trajectory 1 with

time interval of 20 femtoseconds (fs) was used to make the database at the temperatures

of 1000 K and 2500 K, respectively. The test configurations are from the middle points

of two consecutive data points in the trajectory. In panel (a), the ML force accuracy is

plotted for Silicon with respect to the teaching database size Nteach at the two tempera-

tures. The teaching database are increased by the order of the similarity distance to the

test configurations as calculated from Eq.5.7. Typically from the plot, the force error

converges to 0.1 eV/Å, or relative error of 5 % at 1000 K and 0.25 eV/Å, or relative error

of 10% for molten Si at 2500 K. It should be noted that, in the plot, the prediction errors

at Nteach = 0 are equivalent to the average force magnitudes at two temperatures, as in

this case of zero database, the predicted force for all configurations are constantly zero.

We can see that, the average force magnitudes are |~F | ∼1.8 and 2.7 eV/Å for T = 1000

and 2500 K, respectively. In both temperature cases, the ML forces have much better

accuracy than otherwise using classical Stillinger-Weber potential [43], which yields the

error of 0.5 eV/Å or 30 % in relative error at 1000K and 0.9 eV/Å or 35 % in relative

error at 2500 K, as marked by the dotted horizontal lines in the plot. The errors made

by SW potential are literally close to those made by ML prediction only with several

closest teaching configurations. Significant improvement upon this classical accuracy

is thus achievable by adding more QM configurations into the teaching database. This

1The NVT MD simulation was run with 64-atom Si cell under PBC conditions with a 1 fs time step
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data-based improvement makes the ML force calculation scheme differ from the function

form fitting methods and is typically one of advantages holding by GP prediction.
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Figure 6.2: The ML-force accuracy test on DFTB force database. In panel (a) shows
the error evolution for each test configurations with respect to the teaching database
size, Nteach. The blue squares and black sphericals correspond to the temperatures of
1000K and 2500 K respectively, while the dotted horizontal lines indicate the average
force error made by the SW classical potential at two temperatures (blue: 1000 K
and black : 2500K). In panel (b) compares the different convergence rate of prediction
accuracy with respect to increasing Nteach by sorted / randomised order of distance to
the test configuration. Note that the classical SW force vectors were incorporated into
the representation to achieve the best machine learning accuracy and efficiency (see

Section 6.3 for force-vector augmentation).

The overall force accuracy from ML prediction systematically increases with respect to

increasing the size of teaching database, for both hot bulk Silicon (1000 K) and melting

Silicon at 2500 K. Snapshot of two data configurations at temperature from T = 1000 K

and 2500 K are depicted in Fig.6.3. At 1000 K, the Si bulk system is distorted from the

diamond structure while at 2500 K, there are significant changes in coordination type,

enriching the database with much more three-fold coordinated atomic configurations.

From our point of view of performing ML force calculation, this is a good example to show

the learning capability for MD ensemble at different temperatures, which corresponds

to the different sizes of accessible phase space.

In panel(b) of Fig.6.2, I give for comparison the increasing of teaching database size

by completely randomised order in distance. The random ordering presents oscillated

contribution fromNteach. By sorting the teaching data according to distance with respect

to the test configuration, more controllable accuracy was achieved and the accuracy

typically plateaus at Nteach = 500 teaching database. Considering the machine learning

processes, there are two major factors that are related to the prediction accuracy: (1)
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Figure 6.3: Snapshot from the database at 1000K (a) and 2500K (b) of Si for the
ML force calculation. The different colors indicates the different types of coordination
numbers. Grey indicates the four-fold coordination type, while green balls the three-fold

coordination type.

the average distance of the test configuration to the data configurations (2) the size

of training database Nteach. The convergence with respect to database size Nteach is

found in the regime of smaller database, independent of the distance with respect to

the test configuration. This is connected with the Bayesian nature of the prediction,

i.e. posterior distribution has great dependence on the unveiled prior QM knowledge.

However, optimal learning rate, d(∆F )/d(Nteach) can be achieved in the case of sorted

data. Oscillation of the convergence takes place when the distance is in the randomised

order, which signals the different weight of the contributions from close to far-away.

This is derived from the correlation range between data points which is intrinsic for a

given database. In our later ML force calculation, the sorted subdata are always used

to replace the entire database to do the force teaching of the technique.

From Fig.6.2, we can see that the learning accuracy converges at Nteach ∼ 500. This

reflects the local learning feature associated with the Gaussian kernel used to construct

the covariance between configurations. It suggests that, for a given test configuration,

a number of its closely relevant data configurations are sufficient to represent the entire

database in the framework of GP prediction. In the MLOTF force prediction, espe-

cially when applied to the large-scale MD simulation, using sub-database sorted/selected

(linear scaling factor) from a growing data repository are favourable in computational

efficiency while having the best possible accuracy. These are very meaningful in the
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dynamical ML and will be addressed in detail in the following chapters. In Fig.6.2, the

accuracy converges at a typical value, which can be attributed to the following factors :

1. The correlation between the N -th teaching configuration and test configuration

tends to zero as their distance increases. This is associated with the local learning

feature, that the data configurations has less correlation with the test configura-

tions becomes less weighted for the prediction accuracy.

2. The representation itself has approximations. This may include the cutoff radius

for the atomic cluster (8 Å in this test case for Silicon) and the completeness of

internal vector representation. This error can be evaluated by a cross-validation

upon the database. For a poor representation, the reproducing error (the error

made on the teaching database itself) is much larger than the magnitude of the

data noise assumed. However, this error prevents the further improvement on

accuracy for the test configurations.

3. The error introduced on the QM database which is rooted in the DFT force ac-

curacy itself, and was systematically smoothed out through a noise term: σerror =

0.05 eV/Å that was used in these calculations, which is ultimate limit for the

further improvement of the accuracy.

6.2.1 Hyper-parameters and Maximising Likelihood

There are two hyper-parameters we used to construct the covariance matrix for carrying

out the Gaussian Processes, i.e. σerror and σcov. Following the same interpretation of

σerror and σcov as in the standard Gaussian Processes [76], we illustrate the meaning of

these two hyper-parameters in this context of ML force calculations. The topology of

the database incorporating high-dimensional atomic environments is determined by the

internal-vector representation as well as the hyper-parameters involved.

σcov gives the correlation length for the data pattern. As can be seen from Fig.6.4,

larger σcov (σcov = 5.0) corresponds to longer correlation in the configuration distance

and therefore more data points are required to obtain the converged learning accuracy.

σerror corresponds to an uncertainty exerted on each of the QM data and it is typically

where Gaussian Processes differs from functional fitting. σerror statistically is related to

the variance associated with the predicted function from given database, as expressed
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Figure 6.4: Plot (a): The accuracy of force prediction with respect to a chosen number
of σcov for Silicon database at 1000 K. Plot (b) shows prediction accuracy with respect

to a number of σerror.

in Eq.4.10. Larger σerror involves larger uncertainty but gives smoother prediction mean

functional form. For smaller σerror, the prediction is more similar to the over-fitting

of data points, which is less useful for inference beyond the discrete data knowledge.

The accuracy becomes diverged with respect to increasing the teaching database size,

typically indicating the overused regulation from the data points, as seen from plot (b)

in Fig.6.4.

Typically different from the empirical parameter fitting process, the hyper-parameters

can also be numerically optimised by the approach of maximising the marginal likelihood.

The hyper-parameters derived by Lagrangian parametric for the minimum problem as in

(Eq.4.16) gives overall good performance in the calculations. For a given physical system,

the optimal hyper-parameters are relatively localised and the optimisation can well be

performed only when it is necessary. For large database, maximising the likelihood
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can be costly. By selecting out the most closest subset of the database, dynamical

optimisation of the hyper-parameters becomes feasible.

6.3 Acceleration for DFT Force calculations

In this section, I will give the prediction results upon a DFT database. Machine Learning

of DFT or DFTB as the target learning object are equivalent in terms of function

inference. However, they have underlying difference in the complexity of two different

PESs, and smoothness of the two different force functions with respect to the represented

configurations. The ML force accuracy is investigated further with augmentation of

empirical force vectors into the representation.
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Figure 6.5: A plot showing the interpolation accuracy of MLOTF by testing the
prediction error on configurations generated from the middle points of the data con-
figurations during the interpolation cycles. A comparison is shown in the plot among
different representation constructed with (1) Pure Internal Vectors (IVs) (2) Internal
Vectors plus Stillinger-Weber Force vectors (IVs + SW) (3) Internal Vectors plus DFTB
force vectors (IVs+DFTB) (4) Internal vectors plus DFTB force vectors and Stillinger-

Weber force vectors (IVs+SW+DFTB).

The DFT database were generated using self-consistent plan-wave method, as imple-

mented in the VASP package [25, 26]. In the ML process, the data configurations

are sorted according to the distance with the test configuration. The predicted force

error systematically decreases with respect to increasing the teaching database size,
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Nteach. Similarly, ML force accuracy can be controlled around chemical accuracy of 0.1

eV/Å during the interpolation cycle, where data points are at time interval of 20 fs

along the NVT trajectory of Silicon at 1000 K. In contrast, the average force error made

by DFTB scheme is at 0.25 eV/Å while the average force error by SW is 0.5 eV/Å.

As a feature of our internal-vector representation, classical force vectors that have good

matching with the target learning force can also be incorporated into the representation

to improve the prediction accuracy. For ML of DFT database, this representation aug-

mentation is studied incorporating non-DFT force vectors, for instance, the empirical

SW force vector, or the semi-empirical DFTB force vector, or incorporating both them

(SW + DFTB force vectors). The force accuracy for all of them are plotted in Fig.6.5

for comparison. The inclusion of ~FMM vectors resulted in much faster convergence of

the prediction accuracy d(∆F )/d(Nteach) with respect to the teaching database size,

even in the case of augmentation with the less accurate force vector of ~FSW which itself

can be substantially deviates from the DFT benchmark. Further improvements are seen

including in the representation more accurate vector: ~FTB or including both SW and

DFTB force vectors at the same time.

One further notable point from the plot is that, in the case of using ~FSW , accuracy is

better at the small teaching database regime, while typically worse than using ~FTB for

the regime of large teaching database size (Fig.6.5 at Nteach ∼ 150). As SW force fields

for Silicon are only two-body accurate. For the small teaching database, or equivalently

saying, for data configurations close to the test configurations, SW forces have very good

correlation with DFT target. While the correlation is blunted as the data configurations

from farther distance with the test configuration, usually three-body or higher terms

dominate, randomness comes into disrupting the correlation between SW and DFT. We

therefore see the accuracy get converged much faster than otherwise using DFTB which

however, has better accuracy for longer range of interactions.

This systematic improvement of the prediction accuracy by incorporating additional

force vectors into the representation is however not obvious, as the use of these appar-

ently good vectors is no more than augmenting the existing set of internal vectors derived

by Eq.5.5. In practical large-scale MD simulations at first-principles accuracy level, those

well-validated classical or semi-classical force fields are desirably useful to enhance the
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ML accuracy toward the ideal first-principles descriptions, with trivial increase on the

computation cost than otherwise.

6.4 ML at Different Temperatures and Database Density

The transferability of any classical potentials or forces fields are a focused topic. Specif-

ically for ML force calculation scheme, the transferability of the teaching database gen-

erated from different simulation projects or even under different chemical or mechanical

conditions, is of importance in practical applications. To explore this point with this

current force calculation scheme, the force accuracy was cross-validated with two inde-

pendent databases collected from MD trajectory run at temperatures of 1000 K and

2500 K, respectively.

In Fig.6.6 plot the calculation results for comparison. For the test consideration, both

the two independent databases are made up of 2000 atomic configuration. For the

high-T (T = 2500 K) database, the data configurations are distributed over a larger

area of the phase space than for the low-T (T = 1000 K) case. In Fig.6.6, high-T

database evidently yields much better performance for force predictions on the low-T

test configurations than the other way around (see the black dotted line in Fig.6.6).

Significantly, this accuracy (0.12 eV/Å) has reached the level very close to that was

achieved by prediction using the database from the same low-T trajectory. For the

prediction on high-T configuration with low-T database, much larger errors are made

than using high-T database, because of the inadequate QM knowledge in the database

about the test configurations. This is consistent with the fact that GP function inference

proves better performance in interpolation predictions than in the extrapolation for the

configurations far beyond the knowledge of the existing database. This also explains

the significant drop of force error in Figs.6.2 and 6.5 even with a few less correlated or

extensive data configurations than the unmeaningful prediction from zero knowledge.

A more systematic calculation for the machine learning and predicting along the MD

processes with alternating temperatures can be found in Section 7.3.

Since the density of the data configurations in phase space is one key factor for the

accuracy and efficiency of the force calculation, it was further investigated through cal-

culation using a database sampled from different time spacings along the MD trajectory
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while the size of teaching database is kept constant at Nteach = 400. The results in panel

(b) of Fig.6.6 show that in the case of coarser sampling density, the overall force accuracy

is not seen dramatically worse. The prediction accuracy is thus, not a single function

of one or two closest data configurations (either in time scale or space scale), in which

case, the prediction is more associated with the linear function inference. The contri-

bution from the distant data configurations becomes lost in the case of sufficient close

configurations, which is a general result consistent with all the above accuracy-testing

plots. However, when less than enough close configuration are available, the knowledge

inferred from the distant data becomes more significant, as suggested by the Fig.6.6.

Moreover, in panel (b) of Fig.6.6, one anomaly point in the curve is seen for the data

interval at 60 fs (although variance is much larger), where the average prediction accu-

racy notably better than that at 40 fs. This means that the close data configurations to

the test configuration in distance can well emerge from the configuration far-away along

the time scale in the trajectory. This from different perspective supports the idea of

using dynamical database across the MD simulation scale, which induces the later parts

of this Chapter 7.
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Figure 6.6: In panel (a), ML force accuracy was evaluated using databases from inde-
pendent MD trajectories at two different temperatures, T = 1000 K (Low T) and T =
2500 K (High T). In panel (b), The ML force accuracy is explored for different teaching
databases that are collected at different time intervals in the MD trajectory. The calcu-
lation was performed on the same test configurations for the reason of comparison. For
each database (Nteach = 400), average force error (black squares) and their standard

deviations (blue dots) are plotted.
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6.5 Phonon Calculation

Phonons are of fundamental importance for studying material properties at quantum

mechanical level (see Section 2.1.8). Applying the ML force calculation into the phonon

calculations, we have to technically deal with numerical problems, as for all the represent-

ing configurations, internal vectors can be close to zeros in this case. Vector ‘flipping’

typically happens and brings into disruptive discontinuity by the sudden rotations of

some small representing vectors. This problem was addressed and can be found in detail

in Section 5.4.
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Figure 6.7: Comparison of the phonon spectra calculated by MLOTF (red, a=5.474
Å) and DFTB(blue, relaxed lattice constant a=5.474 Å), SW(black, a=5.44 Å).
MLOTF phonon were calculated using σerror = 5 × 10−4 and 1 × 10−3 eV/Å. For
the MLOTF calculation, database was 200 configuration generated from MD trajec-
tory of Si at 300K. In phonon calculations, σerror can be optimised by calculation at

the Γ points.

The phonon dispersion curves are computed with the finite displacement supercell method

using the PHONOPY package[99] to perform Parlinksi-Li-Kawazoe Fourier interpola-

tion [30]. Phonons for the diamond-type Si at room temperature are depicted in Fig.6.7.

Much better agreement were achieved with the DFTB benchmark than when using the
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classical SW potential instead. The accuracy level with respect to varied hyperparame-

ter of σerror was also explored. It is worth noting that the hyper parameter σerror, which

controls the ‘blurring’ term used for regularisation of the prediction process. For high-

precision force calculation like in phonon, smaller σerror has to be used and at the same

time, finer sampled database is usually needed for the required precision. Due to the

limitation of using internal vectors, longer range interactions are in larger approxima-

tions thus harder to be described, which explains the larger discrepancy in the acoustic

phonon modes than the optical phonon modes.

At the first-principles level of accuracy, phonon calculations are very expensive in terms

of computer time, because self-consistent forces have to be computed for all the distorted

configurations required by symmetries. This becomes particularly demanding for phonon

calculations during MD simulation. Therefore, the application of MLOTF force into is

worthwhile effort for accelerating the atomic force and accordingly phonon calculations.

Also the incorporation of the technique into other alike research questions, such as time-

dependent DFT, thermo-conductivity, heat diffusion etc is significant.

6.6 Computational Scaling

For Gaussian Process prediction with a dynamically growing database, a pronounced

problem is the computational effort required to invert the large-dimensional covariance

matrix CN , which typically scales as O(N3), where N is the rank of CN . To address this

problem, one suggested approach is to use selected sub-database, keeping in mind the fact

that the sorting/selecting algorithms have optimal scaling factor of O(Ndata logNdata),

with Ndata being the overall size of the teaching database. The database can be sorted

in such way that only the most relevant configurations are selected for the GP teaching

process. Since only Nteach-dimensional (typically around 500 in our calculation) matrices

are involved in the inverting calculation, the force prediction becomes robust. There are

three parts which are majorly involved in the time cost of the MLOTF force calculation:

T = Tdist + Tsort + Tinvt.

1. Calculating the pair distance: Tdist ∼ O(Ndata). This explicitly including two

parts: the first is the pair distance of sub-database for constructing the covari-

ance, which can be expensive as the number of pair distances to calculate is:
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Figure 6.8: The efficiency of the Machine-leaning force calculation with respect to the
number (N) of paralleled CPUs. Sub-database containing 500 configurations selected
from the database were used for the Gaussian Processes. It is noted that, the calculation
of Tdist dominants the times cost, as listed in comparison with other parts in Table 6.1.

Nteach(Nteach − 1)/2. This can be in the order of magnitude of ∼ 105 pairs for in-

stance using Nteach = 500. This part of time cost however, can be diminished if we

store the calculated pair-distance matrix into the computer memory, throughout

the MLOTF force prediction process. The second part of pair-distance calcula-

tion is between test configuration and data configurations in the existing database.

This part however has small pre-factor and linear scaling (see Fig.6.8).

2. Inverting the covariance matrix, Tinvt ∼ O(N3
teach) which can be very expensive

for large teaching database, but for selected sub-database with typical size of

Nteach ∼ 500 , the cost is insignificant.

3. Sorting the database and extracting Nteach most relevant configurations, Tsort ∼

O(Ndata logNdata) with Ndata being the size of the total database, and can be

around the order of magnitude of 106. However, with optimal sorting algorithms,

the process can be accomplished with no significant time cost compared to Tdiscs

and Tinvt, as listed in Table.6.1.
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NCPU 1 2 4 8

Tdist(I)/s 6.96 5.38 3.194 1.86

Tdist(II)/s 0.112 0.058 0.029 0.022

Tinvt/s 0.086 0.086 0.086 0.086

Tsort/s 0.001 0.001 0.001 0.001

Table 6.1: The table gives the time cost for each parts of the MLOTF calculations as
explained in the main text for comparison. Tdist are further divided into two parts: the
pair-distance calculation between the data configurations (Tdist(I)) and that between
the test configurations and each of the data configuration (Tdist(II)). In the calcula-
tions, only the dominant cost Tdist was parallelised and its scaling with respect to the

number of processors was plotted in Fig.6.8.

Also worth noting is the algorithm for constructing the memorable relation for the

database with the numerical strategy as implemented in the concept of K-D tree among

the database with the computation time scaling as O(N logN) [100] (or sparcification of

the database by constructing the hierarchy-clustering relation). The advantage is that,

the relation can be stored and used generally for the existing database, and thus reduces

the time in recalculating during each run of the force prediction. This is especially

important for a database in the order of magnitude of millions. Based on the sub-

database, optimisation of the hyper-parameters, for instance, ‘maximising the marginal

likelihood’ can be performed without much computation time. The overall scaling for the

MLOTF is ∼ O(N) and easy to be paralleled for calculations on large atomic systems.

6.7 Summary

In this chapter, the accuracy of the MLOTF on a static database from MD trajectory

were tested and sorting/selecting the closest data configurations according to the simi-

larity distance was adopted for the dynamical training for the large size of database. The

incorporation of well-tested empirical force vector into the representation can enhance

the ML prediction accuracy dramatically without significant cost of computational cost.

In the above framework of prediction procedures, the overall scaling factor close to be

linear and the calculation can be trivially paralleled. In the following chapter, applica-

tion of MLOTF will be explored and the QM learning rate with rolling database across

MD will be highlighted.
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Chapter 7

Results IV: MLOTF Dynamic

Learning

7.1 Introduction

The static machine learning accuracy has been explored in Chapter 6. During MD

simulations, the incompleteness of the database and the renewability during the pro-

cesses motivates the MLOTF in the MD simulations with a possible error indicator to

update the database whenever necessary. In the following sections, systematic results

concerning the MLOTF accuracy will be presented.

7.2 Application in MD Simulation

The flowchart in Fig.7.1 shows the scenario of the MLOTF molecular dynamics. Dur-

ing the simulation, efficient ML forces are used to replace the QM forces as long as

the confidence level for the prediction is above a certain threshold δ, or predicted error

smaller than threshold δerror. For the configurations that are not predicted reliably (or

predicted error ≥ δerror), the QM routine will be called for to recalculate the forces and

to augment the existing database. All the ML forces are thus predicted based on the

best prior QM data available. Sub-databases are selected out from the sorting/selecting
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procedure before performing the GP prediction. Under this scheme, dynamically up-

dating the QM database is possible even up to the size of the order of magnitude of 106

configurations.

MD Con-
figuration

Update
Database

ML Force
Calculation

Error Lower
than

Threshold ??

Performing
QM Cal-
culation

Advance MD
Trajectory

no

yes

Figure 7.1: A flowchart showing the MLOTF MD calculations.

As an example to explore the MLOTF and the accuracy for the ML forces, MD sim-

ulations for a 64-atom bulk Si under PBC was set up. The QM learning target forces

in these calculations are carried out by using the DFTB Hamiltonian for testing. The

DFTB forces are calculated along with the ML calculation for each configuration to

obtain a real error |~FML− ~FQM|, which is used as indicator for QM routines. In the later

part of this chapter, I will introduce the possible approaches to derive the applicable

prediction error, by using which, we can reduce the calling for the QM calculation to

the point only when necessary. In Fig.7.2, MLOTF MD under different error thresholds

were performed with database growing from scratch at t = 0 at the temperature of 1000

K. The QM calling rate R(t) at each time step t was calculated by numerically averaging

over the past trajectory from t = 0. This gives an evaluation of the overall efficiency

that can be achieved by the MLOTF.

R(t) = 1/t
t∑

τ=0

A(τ) (7.1)

where A(τ) = 1 if a QM calculation is needed at time τ and A(τ) = 0 otherwise. The

QM calling rate R(t) dramatically decreases at the initial stage of the MLOTF MD for
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Figure 7.2: ‘Machine Learning On The Fly’ with real error monitored as the indicator
to call the QM routines and feed the existing force database. DFTB Hamiltonian was
used to perform the calculation of QM part as an efficient approximation to DFT. The
converged QM calling rate signals the data coverage of the configuration space and

highlights the existence of a typical core database representing the system.

all the thresholds. The smaller threshold produces higher precision ML forces along the

MD and trajectories closer to the learning target. However in the case of using the error

threshold of δ = 0.06 eV/Å, the QM calling rate R(t) falls to much higher value than

using other thresholds δerror ≥ 0.09. This is because the threshold 0.06 eV/Å has a

value close to the data noise: σerror = 0.05 eV/Å assumed in the GP inference and

the prediction accuracy is informatively unattainable by simply adding more relevant

data into the database. To achieve higher precision, a smaller σerror has to be used

and at the same time, more close teaching configurations are required to make the ML

prediction, which however, limits the extrapolation capability of the overall MLOTF

process. For a threshold δerror around 0.1 eV/Å, as can be seen, averaged extrapolation

time of 30 fs was obtained in the MD calculations up to 5 ps. This is a significant

improvement with respect to the predictor calculation in previous non-learning LOTF.

In these MLOTF calculations, we start from database each time from scratch, while

in practice, the database can be cross-used from different simulation runs, thus the

accuracy/efficiency can be further enhanced.

A plot for the ML efficiency at two different temperatures are given in Fig.7.3, where the
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Figure 7.3: The average and instantaneous QM calling rates during the ML-force
driven molecular dynamics. The QM calculation sites are marked by the red dots for
T=200 K (upper panel). Both average and instantaneous rate are plotted for T=1000

K (lower panel). The error threshold is 0.1 eV/Å in the MLOTF calculations.

individual QM training sites in the MD trajectory are also marked by the red stars (upper

panel in Fig.7.3). The instantaneous QM rates (black dots) are calculated as the inverse

extrapolation time between each training site and the last training site in the trajectory.

It gives an evaluation of the ML capability at the local part of the trajectory. At each

of machine learning sites, all 64 atomic configurations in the periodic crystal cell are

calculated quantum mechanically and added into the database. The average rate of QM

calls fall to ∼ zero for T = 200 K after the initial pico-second (ps). The instantaneous

rate of QM calls show that ML force calculation sustaining up to 2.6 ps with no need to

perform new QM calculation can be seen in the MLOTF calculation, e.g. from 2.6 - 4.2

ps in the plot. For higher temperature T = 1000 K, the structural complexity becomes

more significant and the QM calculations are more frequently required. The average

ML extrapolation steps better than 30 fs were obtained, even though the instantaneous

QM rates suggests that the structural complexity can be significantly and continually

increases beyond the knowledge of the existing database till 4ps.
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With a reliable error indicator in MLOTF, expensive QM calculations can be performed

no more frequently than that required by a certain threshold in the practical MD simu-

lations. The force calculations along the MD can be mainly carried out by the efficient

ML process while the database is trained by QM routine. Under this scheme, the force

accuracy in the MD is bound to the target QM level. Also interestingly, a useful represen-

tative database for a specific trajectory is resulted by the MLOTF procedure, which can

be transferrablely used to simulations of relevant yet more complex chemical situations.

Noteworthily and significantly, quantifying of degree of chemical novelty / complexity is

provided by the rate of the QM calls revealed from the MLOTF simulations.
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Figure 7.4: The upper panel indicates the temperature associated with the MD trajec-
tory, including both the instantaneous temperature T and average temperature < T >
around 1000 K. The lower panel shows the ML force error for predicting on the given
DFTB trajectory, with the real error used as an indicator for where to update the
database. The dotted horizontal line gives an idea of the level of continuously 30 fs ML

force calculation with no need to call for QM calculation.

Extended to longer time scale, MLOTF calculations were performed upon an NVT MD

trajectories which were generated under the DFTB Hamiltonian at the temperature of T

= 1000 K. The ML force accuracy was computed against the target forces for each step

and the force errors were used as indicator for the QM calling. The results are plotted

in Fig.7.4 where two different error thresholds are adopted: 0.15 and 0.2 eV/Å. In the

plot for error threshold of 0.15 eV/Å, the average QM rate: R(t) systematically de-

creases during the 7 ps trajectory, which indicates that the machine-learning capability
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is dynamically improvable with more training data, and which is sign for the promising

applicability of the methodology till very large database scale. As mentioned in Section

6.2, the limits from different channels (e.g. limits in representation, σerror, the correla-

tion, etc) become prominent for large-scale database, thus, optimisation procedure will

be necessary to achieve better performances in this situation. Under even higher error

thresholds (0.2 eV/Å), a rapid decreasing of the QM calling rate can be found during

the initial 1.5 ps and QM calculations are thus not needed till really novel structural

complexities are encountered in the future part of the simulation (> 7 ps).
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Figure 7.5: Snapshot from the prediction along the DFTB trajectory of Silicon at 1000
K and the extrapolation forces were predicted with sub-data set and error threshold of
0.15 eV/Å (indicated by the red dotted line), at a teaching database size Nteach=500.
The typical zigzag (or sharp dropping down) shape in the error curve is a feature of
this dynamic machine-learning scheme. Time scale (x axis) for this plot corresponds to

a snapshot of that in Fig.7.4.

Due to the dynamical machine learning feature, the predicted forces are not smoothly

evolving as from one single PES, so does the force error with respect to the QM bench-

mark. For T= 1000 K, a snapshot of the error evolution of the ML calculation along the

MD is given in Fig.7.5. As seen, during the extrapolation region using only ML force,

the average force error evolves with an oscillating fashion. For each force error above

the threshold, QM training was performed to update the database. With the refreshed

database, the ML force error restores to the minimum, which are around 0.1 eV/Å and

typically larger than the σerror used in GP prediction. This is due to the variation of the

atomic environments under kinetic distribution along T = 1000 K along the dynamics

trajectory.
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7.3 MLOTF at Alternating Temperatures

The transferability of the QM teaching database to different atomic conditions is vital

in large-scale simulations. In the static test given in Section 6.4, we have seen the

prediction capability using the MLOTF at different temperatures. In this section, I

describe a model using MLOTF upon trajectory segments generated from NVT MD

under two alternating temperatures. The machine learning of QM forces during this

process is depicted in Fig.7.6, along with the plotted alternating temperatures between

low-T (T = 300 K) and high-T (T = 800 K) regimes. Note that the MLOTF calculation

was performed with a single database both for high and low-T cases.
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Figure 7.6: MLOTF calculation on the Si system to test the ‘memory’ and trans-
ferability of the learning informations across the different temperatures. In the upper
panel gives the simulation temperatures and the lower panel illustrates the QM sites
and both average and instantaneous QM calculation rates. The stars indicate the in-
stantaneous learning rate, and the solid blue lines marks the number of learning points
for each of the temperature segments. The error threshold for the MLOTF was chosen

at 0.15 eV/Å for both the high and low temperature segments.

Each of the low and high temperature segments are 3 ps in duration after the first round

of MLOTF calculation. We can see that intensive QM training takes place during the

first round both for low- and high-T, while the database grows from scratch. Consistent
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with the MLOTF for the static trajectory (Fig.7.4), the QM database gets saturated

for the low temperature case (T = 300 K) rapidly after the first round of data training

(around 50 trajectory frames, each containing 64 or equivalently in total 320 atomic

environments). In the figure, the blue lines in the lower panel indicate the total number

of QM training points needed for each of the temperature segments. For the second

round of calculation, both for high and low-T cases, the number of QM learning points

drops down rapidly, as a large amount of data configurations were ever learned from the

previous round.

The database becomes complete for the ML force prediction at 300 K after the first

round of QM teaching and thus no further QM points were ever found in the later

MLOTF calculations. Interestingly for the high-T case, though the overall learning

rate decreases along the MD trajectory, intensive QM training reoccurs at the points

where the temperature presents so strong oscillation that it can go much higher than

the target thermosetting temperature of T = 800 K, for instance at the simulation time

of ∼ 27 ps and ∼32 ps in Fig.7.7. This temperature fluctuations are connected with

the emergence of novel atomic configurations that are not so far predictable using the

existing database. These novel configurations have dramatic difference in the bonding

variation and/or coordination type from the data configurations. This is physically

accompanied by the local melting in the system under the strong thermostat used in

this simulation, for which we used Langevin thermostat with the damping parameter

of γ = 0.02 fs−1. A recalculation for the piece of trajectory between 24.5 and 27.5 ps,

yet with milder thermostat (γ = 0.01 fs−1) evidently smoothes out the temperature

oscillations (Fig.7.7) and accordingly requires much less training points (only one QM

learning point was found at 27.256 ps in the calculation) throughout the high-T segments.

From Fig.7.7, we can also see the revisiting of new local minima of energy landscape

which was activated by the high-T kinetics.

For the segments afterwards, as more knowledge has been gained about the phase space

at this temperature, few QM calculations are required along the MLOTF calculations

and the learning rate shows a systematic decreasing until 60 ps, where the trajectory

ends. Another perspective to look at the distribution of the temperature that QM

learning takes place is given in Fig.7.8. We can see that most of the learning points

are located at the high-T region and especially new configurations come up during the

temperature uplifting from low-T to high-T zone. During the cooling process, since
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Figure 7.7: Two thermostats with different strength were adopted for comparison
of the trajectory. The stronger thermostat γ = 1/100 fs−1 (red dotted line) case
corresponds to the region from 24.5ps to 27.5ps in Fig.7.6. Using a milder thermostat
γ=1/ 500 fs−1 (solid line), the temperature variation becomes smoothed out. Both

trajectories were calculated starting from the same initial configurations.

structures are confined to smaller area close to the equilibrium, less learning points are

thus needed during this processes.
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Figure 7.8: Distribution of the teaching points along the transient temperatures
during the switching between two temperatures (300 and 800 K).

The machine learning and predicting was all from scratch in the above tests. In practice,
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the database generated at different temperatures can all be made use of when probing

into new chemical situations. The ML forces can be implemented in a predictor-corrector

manner, where a possible future configuration along the trajectory will be calculated by

QM routine to update the database, and a corrector for the former predictor cycle are

performed with the renewed database. By this means, the overall efficiency can be

improved by an extra factor upon the previous results without the corrector while the

actual force errors can be restricted by incorporating a possible future configuration

along the trajectory into the database prior to the ML prediction.

In addition to the predictor-corrector implementation, there is the other scheme for the

MLOTF, with a prediction error navigating the new data feeding and QM calculations

are only performed whenever necessary. The key issue in this application is the derivation

of a faithful way to evaluate the prediction error, which can be from the variance term

coming from the statistical product of Gaussian processes (Eq. 4.10). In the following

section, further discussion of the prediction error will be presented.

7.4 Real Extrapolation with QM Database

In practical MD simulations, doing force extrapolation with MLOTF is appealing pro-

vided a good error indicator. One requirement for this error indicator is that it has a

good correlation with the real error, i.e, ∆F = |~FML − ~FQM |. The first possible way to

estimate the prediction error is using the variance σgp that is obtained from the Gaussian

Processes of Eq.4.10. As explained in Section 4.1.3, the Bayesian variance provides an

indication of the uncertainty associated with the predictive mean value. Machine learn-

ing with coarse error threshold finds that the overall accuracy saturates rapidly along

the MD trajectory. However, to reach higher precision, the coordinating of different

data across large areas of the configurational phase space have to be coped with subtly.

In the MLOTF force calculation, there are k projection components are predicted from

the GP process and each of them has variance of σ2
gp = κ−KTC−1

N K, so that the forces

are determined according to, Fi ∼ N(Fi, σ
2
gp) where Fi is the mean prediction along the

channel i (i = 1, · · · , k).
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Since the reconstructed force vector in the Cartesian space are written as:

~F3×1 = (ATA)−1ATFk×1 = G3×k · Fk×1 (7.2)

with G3×k corresponding to the geometry factor which is associated with the trans-

formation to reconstruct the force vectors in Cartesian Coordinates from the set of

over-determined projection components. Based on the Gaussian Processes, the poste-
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Figure 7.9: Error correlation between the prediction error and the real error with the
prediction error derived from the variance of the Gaussian Processes, i.e. σgp

rior distribution is also Gaussian distribution. By the rule of error propagation with

the linear transformation in Eq.7.2, the yielded variance for each of the three Cartesian

force components are:

σ2
fi
∼ σ2

gp

k∑
j=1

|G(i, j)|2 (7.3)

where i = 1, 2, and 3. The correlation between predicted error defined in the above

way and the real error are shown in Fig.7.9. The correlation with real error is not

satisfactory. This is rooted in the high-dimensionality of the configuration data type

which makes the error harder to predict than the one-dimensional case and each of the

projection components are not strictly uncorrelated Gaussian. Nevertheless, a typical

pattern associated with the Gaussian was confirmed: for the case of small prediction

error, the actual error is much less likely to be distributed within the very wild error

zone (or say, real error larger than 0.2 eV/Å). The prediction error can overestimate the

error more likely, while the other way can also be true, though less likely
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Figure 7.10: The correlation between the prediction error σmax and the real force
error. This can be useful in accurate atomistic simulations based on the upper bound of
the indicator for the expensive QM calculations. The red solid line marks the boundary

where prediction errors are equal to the real error.

To do force calculation with best possible prediction error in this methodology, we can

adopt the maximised variance for the predicted force derived from the Gaussian variance

σgp.

σmax = σgp · (
k∑

i,j=1

|G(i, j)|) (7.4)

The correlation between this predicted error σmax and the real force error: |~FML− ~FQM |

is shown in Fig.7.10. Blank area typically appears above the boundary read line that

marks the ideal correlation between predicted error and the real error. This plot suggests

that with the error indicator in Eq.7.4, the MLOTF force calculation can be strictly

confined to be close to the QM benchmark.

7.5 Summary

In this chapter, the developed MLOTF force calculation scheme was justified in the large-

scale MD simulations. The learning accuracy and efficiency along the MD trajectory was

explored in Si system at different temperatures. The learning accuracy is systematically

enhanced with the database growing as well as MD trajectory visit larger areas of the

phase space. Given an accuracy threshold, the learning rate decreases as the database
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grows, and new QM data learning is only needed when novel chemical environments are

encountered in the simulation run.

Though for the current calculations, the representation for atomic environments is not

completely optimised, the convergence of accuracy with respect to the number of teach-

ing data configurations is confirmed. For some configurations, the maximum force error

of MLOTF can be much bigger than the average value, however, with a prediction er-

ror indicator (either from the GP variance or from maximised prediction error), these

configurations are to be calculated with QM routine to augment the existing database.

Though an ideal prediction error is not yet available, estimation of the upper bound

of the uncertainty is possible and practical by considering all channels of error from

the Bayesian inference, which are very useful for guiding the prediction process towards

DFT accuracy. Also with predictor-corrector algorithm, MLOTF can be performed by

increased interval along the MD trajectory and also the occurrence of large force error

can be restricted in this way.
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Chapter 8

Preliminary Results on Binary

System

In the following, I will present the preliminary work carried out to extend the MLOTF

force calculations into more complex material properties, such as binary system of SiC

and SiO2.

1. SiC is prototype system in the binary crystal family and it is widely-used in industry

due to its excellent mechanical properties. There are two structure types of SiC at

ambient conditions: α − SiC is hexagonal structure type and β − SiC has structure

similar to the diamond structure type [101, 102]. We shall consider the β − SiC in the

following. For SiC, the representation has to account for two distinct species and encode

the complete information about the structure. The internal vectors {Vi} should be so

constructed that have optimal correlation with the target force vectors. To address the

problem, we derive two separate groups for each of the species, i.e., S1 for Si and S2

for C in the case of SiC, while the feature matrix is comprised of different blocks, with

the two diagonal blocks lists the contributions from the two different species and the

off-diagonal blocks represents the joint contribution of the two species, as shown in the

following:

M =

 S1 · Ŝ1 S1 · Ŝ2

S2 · Ŝ1 S2 · Ŝ2


where Si · Ŝj marks the projections of the vector set of i-th species onto the vector

direction set of j-th species. The internal vectors for species-i are the sum of the bonding
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directions from only positions of species-i with appropriate weight function depending

on the inter-atomic distance. The i-th internal vector in the vector set Sj is evaluated

by Eq.8.1, and the δ(si − sj) means that only when the neighbouring atoms of species

sj are taken into account in the sum. ω(ri) the same weight function taken as before in

Eq.5.5, and the sum takes place for neighbouring atoms within a cutoff radius.

~Vi,sj =

Neighb.∑
i=1

r̂i · ω(ri)δ(si − sj) (8.1)
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Figure 8.1: Plot shows the MLOTF force accuracy for SiC. The predictions were
performed on 2000 configuration from trajectory that was performed for a diamond-
structure SiC under the DFTB Hamiltonian. The error distribution was fitted by using

the Kernel Density Estimation (KDE) [97, 98].

The results for SiC based on a database generated from an NVT trajectory at 300 K using

the DFTB Hamiltonian. As given in Fig.8.1, comparing with the QM force magnitude,

relative force error are less than 10 %. Even with the representation of 12 internal

vectors, the learning convergence for SiC at 1000 K shows significant improvement on the

learning capability when more data configurations are incorporated into the database,

as seen in Fig.8.2. In this case, much longer range correlation between test configuration

and data configurations was found with respect to increasing the database size up to

Nteach = 2000, which is associated with the increased structural complexity and also

suggests the incompleteness of using these 12 internal vectors as a representation.

2. SiO2 For SiO2, the long-range ionic bonding nature means much more internal

vectors are needed to completely describe the local environments and high dimensionality
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Figure 8.2: The force error convergence with respect to increasing the database size
for SiC at 1000 K. As a preliminary calculation, the adopted representation includes
12 internal vectors with atomic cluster cutoff radius of 6 Å. The insert shows the
structure of SiC with grey and dark balls indicating the Si and C atoms, respectively.
Charge transfer has to be taken into account in SiC when doing ML force calculation
from carved cluster, which makes it more challenging to represent the local atomic
environments. Note that, no classical force vector was used in the representation for

this calculation.
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Figure 8.3: Error distribution of the ML force against the target QM force magnitude
in Silica and the curves are fitted using the KDE algorithm.

of the data space. When charge transfer becomes prominent properties, the ML could be

carried out upon the force after subtracting the best guess (such as the Tangney-Scandolo
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(TS) interatomic force field [8]) for the long-range electrostatics. Here, I present some

preliminary results of MLOTF calculation on this system. With atomic environments

cutoff at radius of rcut = 8 Å, forces are predicted with good accuracy compared to the

force magnitude of QM force, as seen from Fig.8.3.

Summary. In this Chapter, the MLOTF methodology is extended to the calculation

of more complex chemical environments such as binary compounds of SiC and SiO2.

With the preliminary results, it becomes clear that the machine-learning capability of

the MLOTF methodology can be transferable.
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Chapter 9

Conclusion

In this Thesis work, I proposed a novel scheme for Machine Learning of Quantum Me-

chanically computed atomistic forces, where the inference procedures necessary for force

prediction are carried out in the framework of Gaussian Process regression. Great em-

phasis has been put on force accuracy, and how to handle the information available

for force prediction as stored in a dynamically updated configuration database. A key

factor for efficiently applying the ML technique was the definition of a covariance ma-

trix between database configurations, which made it necessary to design, implement, and

validate a new, vector-based configuration representation. This captures the relevant fea-

tures of a given atomic environment via a group of internal vectors {vi}(i = 1, 2, · · · , k)

having by construction the same symmetry of the target QM force vector. Any diffi-

culty related to the challenging issue of reference frame dependence could be altogether

avoided by associating, for every configuration/internal-vector set a rotationally invari-

ant matrix of mutual projections of the internal vectors onto each other, and constructing

an appropriately conditioned metric to measure the distance between any such matrix

pair, thus defining the database topology for force prediction.

An advantage of using this two-level representation is that the internal vector set con-

structed from the atomic positions can be augmented by addition of further vector

quantities which are deemed meaningful for QM-accurate force prediction. These might

be, e.g., atomic forces calculated using a classical force field or an empirical QM Hamilto-

nian. Interestingly, while these forces may at any time deviate from the DFT-level forces
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by significantly more than the tolerance which the present method aims for, the system-

atic way these forces correlate with the DFT target one can be efficiently ”learned”

in the form of the improved database topology associated with the augmented internal

vector set. Actual testing shows that including classical and empirical QM forces in the

way just described greatly favours the accuracy of force prediction, getting remarkably

close to the QM benchmark values (a rather tight force tolerance of the order of ∼ 0.1

eV/Å is the general target of the method).

The current scheme for machine-learning-on-the-fly (‘MLOTF’) differs from ML po-

tentials -whether represented as Gaussian Approximated Potentials (GAP) or Neural

Networks- which have recently been proposed to machine-learn the system’s poten-

tial energy surface ‘once-and-for-all’, in that it is targeted at enhancing the standard

predictor-corrector ability of interpolating accurate QM forces during large-scale molecu-

lar dynamics simulations. This guarantees that the desired average accuracy is achieved

at all times, while no ‘atomic energy’ or total energy expression is ever required. At the

same time, the option is kept open to develop new information whenever a novel chem-

ical situation is encountered along the system trajectory which necessitates database

augmentation though novel QM calculations.

Ideally, the configuration database is updated only when such chemically novel configura-

tions are encountered, and to the extent that this is achieved, ideal information efficiency

and (connectedly) large acceleration factors over standard reference first-principles MD

can be achieved (e.g., a factor of ∼ 30 or more for Silicon at 1000 K). A central result

of this thesis work is that the finally produced practical implementation of the method

significantly improves on the previous ‘Learn-On-The-Fly’ (LOTF) molecular dynamics

scheme, which was a purely predictor-corrector one and thus made no attempt of storing

and re-using the valuable QM information computed at the predictor stage. A further

finding is that databases generated by MLOTF simulations are transferable to different

simulation runs, so that databases build up along projects. At the same time, an impor-

tance sampling criterion whereby only the closest Nteach ∼ 500 configurations are ever

used for force prediction keeps the prediction stage optimally fast in production calcula-

tions. The overall MLOTF methodology resulting from this work looks very promising

for use in multi-scale simulations where a large embedding portion of the system typi-

cally hosts very little new chemical activity during the simulations, while the chemically

active embedded region(s) is (are) highly localised (e.g., to the atomic region near the
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crack tip during fracture propagation by iterative bond breaking). For problems of this

kind a relatively small database is typically sufficient to describe well the chemically

inactive part, while ever finer/larger databases are developed during MLOTF dynamics

which are able to capture the subtle processes happening in the chemically interesting

area.

Investigating whether in situations like this the QM-evaluation/force learning can ever

be switched off at all times took the present work into extensive testing of a setup where

a chemically active crack tip region described by a GAP-class potential was embedded in

a larger brittle matrix described by an off-the-shelf Stillinger-Weber classical force field.

While no strict accuracy claim could be maintained in this part of the work (which

to some extent confirms that MLOTF-class open learning approaches are necessary

for ultimate accuracy), this line of investigation produced a useful qualitative physical

picture of how the crack speed can be expected to change upon varying the temperatures

and loading rates emerged from this work. This was rationalised on the basis of a very

simple model relating crack tip bond breaking process to the (temperature dependent)

initial population of local vibrational modes, the frequencies of such modes, and the

crack propagation speed.

The extending of the application of MLOTF to multi-species was carried out on binary

prototypes, SiC and SiO2. The represented atomic environments are made up of internal

vectors derived from sub-lattices of each species and the cross projections of these two

groups of internal vectors. The prediction on the preliminary test calculations already

shows good accuracy compared to the classical description and is encouraging sign for

moving to more challenging chemical situations.
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Chapter 10

Outlook of MLOTF

1. The internal-vector representation discussed in this thesis generally works for the

QM-force related atomic environments. Regarding the optimisation procedure for

generating the representing vectors, as opposed to the empirical selection of a

vector subset, it is possible to carry it out satisfying the requirements of (a) cor-

relation with the target QM force; (b) completeness in representing the atomic

environments. As for the multi-species system, the internal vector representation

expands in the complexity spectrum while the optimisation becomes key to main-

taining accuracy and efficiency, ideally with the permutational symmetries in the

system taken into account. An optimal representation only captures the pertinent

structural variation. Following this reasoning, the optimisation can be dynamically

performed for each test configuration, only in the domain of the structural changes

we are concerned with. The proposed multi-species representation scheme using

sub-lattice can be optimised to its reduced form and generalised to incorporate

any number of chemical species.

2. A rigorous system for error prediction would be enormously useful for guiding

the ML calculation to the maximum efficiency. As noted in the main text, the

derived variances from Gaussian Process are not strongly correlated with the real

error and therefore a rigorous error prediction procedure would greatly enhance

the applicability of the methodology into machine learning prediction with better

efficiency.
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3. When it comes to MLOTF prediction using a QM database with a size of the

order of magnitude of 106, the computational cost becomes prohibitive even with

the O(N) scaling. Application of the methodology requires sparsification of the

database together with construction and implementation of a hierarchical order-

ing of the distances within the database. This data-based methodology can be

advanced with more sophisticated machine-learning algorithms.

4. It would be scientifically interesting to further explore the application for use

in modelling complex chemical environments, i.e. surfaces, defects, amorphous

materials and also to investigate more challenging material behaviours (structural

phase transition, for example, analysing the melting curve of a solid). These

advanced applications of the developed methodology could be its ultimate goal.
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Appendix A

Appendix A

(I) FGP.F95 : Force Gaussian Processes (FGP) is the Fortran code that I implemented

the Gaussian Processes machine-learning of the Hellmann-Feynman forces together with

represented atomic environments. The main program is designated for performing the

GP prediction upon atomic structures, and making force prediction for any atomic

environments under the internal-vector representation.

There are a couple of points to note when deriving the internal-vector representation.

The representation is calculated based on weight functions with parameters (r0,m) from

‘GRID.DAT’ file. A group of independent vectors are generated with the different pairs

of (r0,m). The representing vectors can be selected to describe the local atomic envi-

ronments, for instance, some conditions to diminish the overlapping of representation

vectors as much as possible. Two of the conditions are:

∂|~V |
∂m

> δ

and
∂|~V |
∂r0

> δ

where, δ is increment precision for the variation of the internal vectors with respect to

the pair of built-in weight parameters, r0 and m. Under the conditions above, only

the vectors with significant variation with respect to the pair of parameters would be

incorporated into the representation. Other optimisation procedures include considering
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the dependence relation between each pair of internal vectors and correlation with the

target QM forces.

(II) The Code can also Perform Tasks as follows :,

1. Abstracting ML information from given teaching configurations, calculating the

internal Vectors and building the covariance matrix for the database. All the

data (including the Internal Vectors, and QM forces) are stored into the teaching

information

2. To construct the covariance matrix:

A. If performing sorting /selecting algorithms, the sub-database containing the

closest teaching configurations will be constructed and the covariance matrix is

calculated upon.

B. constructing the covariance between the test configurations and configurations

in the teaching database.

3. To perform the Gaussian Process prediction for the force components on each of

the internal directions, with the results including both mean predictive value and

GP variance for each predicted components

4. Based on the predicted force components to calculate the most-likely force vector

that coordinates the individual components and error evaluation for the process are

calculated which can be utilised as an indicator for the confidence level associated

with the predicted components.

5. If updating the database is provided, the information of the test configuration will

be appended to the database.
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Potentials: The Accuracy of Quantum Mechanics without the Electrons. Phys.

Rev. Lett., 104(13):1–4, 2010. doi: 10.1103/PhysRevLett.104.136403.

123



[10] Jörg Behler and Michele Parrinello. Generalized Neural-Network Representation

of High-Dimensional Potential-Energy Surfaces. Phys. Rev. Lett., 98(14):146401,

2007. doi: 10.1103/PhysRevLett.98.146401.

[11] Noam Bernstein, J R Kermode, and G. Csányi. Hybrid atomistic sim-
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