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Abstract
Written text is considered as one of the oldest methods to represent knowledge. A
text can be defined as a logical and consistent sequence of symbols which encodes
information in a certain language. A straightforward example are natural languages,
which are typically used by humans to communicate in spoken or written form.

Other underlying examples are DNA, RNA and proteins sequences; DNA and RNA
are nucleic acids that carry the genetic instructions, specifies the sequence of the amino
acids within proteins, regulate the development and functionality of living organisms
specifies the sequence of the amino acids within proteins. Proteins are molecules con-
sisting of one or more chains of amino acids participate in virtually every process
within cells.

DNA and RNA can be represented as sequences of the nucleo-bases of their nu-
cleotides and proteins and can be represented by the sequence of amino acids encoded
in the corresponding gene. A natural problem which emerges when processing such se-
quences is determine weather a specific patterns occur within another string (known as
exact string matching problem); as far as natural language texts are concerned, an im-
portant problem in computational linguistics is finding the occurrences of a given word
or sentence in a volume of text; Similarly, in computational biology identifying given
features in DNA sequences is a important of great significance, on the other side, one
is often interested in quantifying the likelihood that two pairs of strings have the same
underlying features based on explicit similarity/dissimilarity measurement (known as
approximate string matching). Both instance of the string matching problem have been
studied thoroughly since early 1960s.

This thesis contributes several efficient novel and derived solutions (algorithms
and/or data structures), for complex problems which have been originated either out of
theoretical considerations or practical problems, and study their experimental perfor-
mance and compare the proposed solutions with some existing solutions.

Among the latter originated introduced solution several ones motivated by real-
world problems in the fields of molecular biology and computational linguistics.

Despite the fact that studied problems and their proposed solutions differs in re-
search motivation paradigm, yet still utilise similar tools and methodologies for solv-
ing the corresponding problems. For example the seminal “Aho-Corasick” Automaton
is employed for finding a set of motifs in a biological sequence and detecting spelling
mistakes in Arabic text. Similarly, employing the bit-masking trick to extend the DNA
symbols to accelerate equivalency testing of degenerate characters in the same way to
extend the Arabic alphabet to measure similarity between a stem and derived/inflected
forms a given word.
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16 INTRODUCTION

Introduction
According to the Oxford Dictionary of Word Origins (2 ed.) the word ‘algorithm’
originally meant the Arabic or decimal notation of numbers. It is a variant, influ-
enced by Greek ‘arithmos’ - ‘number’; of Middle English ‘algorism’, which came
via Old French from Mediaeval Latin; ‘algorismus’, derived from the Arabic name
‘al-kwarizmi’, which means “the man of Kwarizm” (now Khiva).

Abu Ja’far, Muhammad ibn Musa, Al-Kwarizmi (Baghdad, 780 – 850 AD) him-
self was a distinguished ninth century Muslim mathematician, astronomer, geographer
and one of the greatest scientists of his faith. He was the author of widely translated
works on algebra and arithmetic. He amalgamated Greek and Hindu knowledge and
influenced mathematical thought to a greater extent than any other Mediaeval writer.
He is considered the founder of analysis of algebra as distinct from geometry [Bre06].

His work on arithmetic was translated into Latin during the twelfth century and in-
troduced the Hindu system of numeration to the Arabs and Europeans alike. His other
work, the treatise Hisab al-jabr wal-muqabala (Algebra), which contains analytical so-
lutions of linear and quadratic equations, is equally important.

The following, simple definition of ‘Algorithm’, from The Dictionary of Comput-
ing, Oxford Reference (6th ed.) states that:

An ‘Algorithm’ is a prescribed set of well-defined rules or instructions for the
solution of a problem, such as the performance of a calculation, in a finite number
of steps. Expressing an algorithm in a formal notation is one of the main parts of a
program; much that is said about programs applies to algorithms, and vice versa. An
effective algorithm is one that is effectively computable (see effective computability).
The study of whether effective algorithms exist to compute particular quantities forms
the basis of the theory of algorithms.”

An equivalent intuitive notion of the modern algorithm is the question of whether
a problem can be solved using an effective procedure.

Problems have to be formalised in order to be tackled systematically by computa-
tional algorithms. Therefore, all the problems have to be first formally defined where
the given instance and question are stated clearly.
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There are various ways to classify algorithms, each with its own merits.

I by implementation

I by design paradigm

I by field of study

I by complexity

Algorithms analysis is the area of computer science that studies the performance
characteristics of a given algorithm and provides tools to analyze the correctness and
efficiency of different methods of solutions.

The main objective for analyzing an algorithm is to discover its characteristics in
order to evaluate its suitability for various applications in order to compare it with other
algorithms devised to solve the same problem. Moreover, the analysis of an algorithm
helps understand it better, and can suggest informed improvements.

Algorithms should be analysed by employing independent mathematical techniques
that analyze algorithms regardless of implementations, platforms, language, compiler
or input instances. It is necessary to be content with algorithm validation. This process
certifies, or verifies, that an algorithm will perform the calculation required of it. Once
we have a correct algorithm for a problem, we have to determine the efficiency of that
algorithm.

Algorithm analysis is concerned with comparing algorithms based upon the amount
of computing resources that each algorithm uses. One want to be able to consider two
algorithms and say that one is better than the other because it is more efficient in its
use of those resources or perhaps because it simply uses fewer.

One branch of this study, average-case analysis, examines the average behaviour
of the algorithm whereas worst-case analysis studies the behaviour when all circum-
stances are as unfavourable as possible (refereed as upper-bound). Meanwhile, the
best-case analysis describe an algorithm’s behavior under optimal conditions to cal-
culate lower-bound on running time of an algorithm (the case that causes minimum
number of operations to be executed).

As noted earlier, an algorithm is a generic, definite, precise step-by-step list of
instructions for solving a problem. Therefore, in order to be able to consider two
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algorithms and say that one is better than the other because it is more efficient in its
use of those resources or perhaps because it simply uses fewer. We need a convention
for analyzing and comparing algorithms based on the amount of time they require
to execute, referred to as the “execution time” or “running time” of the algorithm, and
based on the space requirements, the amount of space in memory an algorithm requires
to solve the problem.

From this perspective, efficiency measures depend on the following:
Firstly, what we define to be a ’step’ or “unit of work”, which we define here as the

number of elementary operations taken by an algorithm, or its running time, and “unit
of space” is essentially the number of memory cells which an algorithm needs.

If each of these steps is considered to be a basic unit of computation, then the
running time for an algorithm can be expressed as the number of steps required to
solve the problem. It is important to quantify the number of operations or steps that
the algorithm will require. For the analysis to measure up the actual execution time,
the time required to perform a ’step’ must be guaranteed to be bounded above by a
constant.

Often, there is a time-space-tradeoff involved in solving a problem, that is, it can-
not be solved as fast as possible using as small as possible memory consumption. A
compromise has to be made to compensate computing time for memory consumption
or vice versa, can differ significantly depending on the algorithm chosen and how it
was configured.

Secondly, acquiring a prospective for the relative growth of functions to understand
their behavior. The growth rate of a function describes the rate at which the value of the
function changes as the size of its input increases. Order of growth is always expressed
in terms of the size of the problem without stating what the problem is. The growth
rate gives the general shape of the function, rather than its specific value.

Rather than specifying the exact relation between an algorithm’s input and its run-
ning time, describing the growth rate, of the running time, for large input sizes provides
enough evidence to distinguish between a good and a bad algorithm.

An optimal algorithm is an algorithm for which both the upper-bound of the algo-
rithm and the lower-bound of the problem are asymptotically equivalent.

Meaning that one cannot hope for an algorithm that runs in time that is asymp-
totically less than the lower bound of the problem in the worst case. More formally,
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suppose that we have a lower-bound theorem showing that a problem requires Ω(f(n)),
with respect to a particular resource, to solve for an instance of that problem of size
n. Then, an algorithm which solves the problem in O(f(n)) time/space is said to be
asymptotically optimal.

In practice, other considerations beside asymptotic analysis are important when
choosing between algorithms. Although asymptotically optimal algorithms are impor-
tant theoretical results, such algorithm might not be favored one in a number of prac-
tical situations for many reasons, such as, complexity, hardware/software limitations,
there could be sub-optimal or heuristic algorithms exist that make better use of certain
aspects of the considered problem, and outperform an optimal algorithm [Gus97].

Data structures provide ways of storing and organising data, and can inhabit both
in the main and in secondary memory, in order to be used efficiently. Different kinds
of data structures are suited to different kinds of applications and some are highly
specialised to specific tasks or specific types of data. Many algorithms apply directly
to a specific data structures. Sometimes, efficient data structures are a key to designing
efficient algorithms and choice of an appropriate data structure can influence the design
of an algorithm significantly.

Two famous index data structures used for large strings are the inverted k-mer
index and the family of indexes related to suffix trees (including, most importantly,
suffix arrays [MM90, PST07] and Burrows-Wheeler index [BW94]). Inverted indexes
are very fast in practice but are less suited for approximate matching, although they
have been used for this purpose. Some data structures such as CSA (Compressed
Suffix Array) [Lip05] and FM–Index [FM05] present an improvement over classical
data structures taking into account the entropy of a sequence to produce a compressed
index of the sequence using techniques such as block addressing. Another example is
a DAWG (directed acyclic word graph), which is used to determine quickly whether
or not a particular word is in a set of words and should be considered any time a search
through a large lexicon is needed [AJ88].

One of the properties that are accepted as requirements for an algorithm is to halt
on every input, which implies that each instruction requires a finite amount of time,
and the input has a finite length [Sto72],[Knu10]. It is also required that the output has
to be unique for each input, that is, the algorithm is deterministic in the sense that when
the algorithm is re-initiated with a particular input the same set of instructions should

INTRODUCTION 19



20 INTRODUCTION

be executed, otherwise the algorithm is called non-deterministic or randomized.
There can be degrees of deterministic behavior. For instance, an algorithm that

uses random numbers is not usually considered deterministic. However if the random
numbers come from a pseudo-random number generator, the behavior may be deter-
ministic.

Different algorithms devised to solve the same problem often differ dramatically
in their efficiency. These differences can be far more significant than differences that
arise from hardware and software advancement.

The family of “string algorithms” (or “stringology”, the name was coined in 1984
by computer scientist Zvi Galil [Str13], refereed to algorithms and data structures used
for string processing) provides a generic solution of string-related algorithms without
stating what the problem is.

The main purpose of “string algorithms” is to manipulate strings of symbols, to
compare them, count them, examine attributes and properties, and to perform a variety
of format transformations in an effective and efficient way. A vital role played by
Strings Algorithms is that they exploit (hidden) characteristics of any given texts.

Through these topological hypotheses, string algorithms significantly speed up pro-
cessing cost (time/space). String algorithms are often of low complexity, but are in-
tricate and difficult to prove [Gus97]. Many algorithms archive an optimal linear-time
complexity corresponding to a single pass scanning of the input string. However, proof
of correctness for such algorithms is usually complex.

A text, whether written or spoken, is, of course, one of the oldest methods used
to represent and preserve knowledge. Text can be defined as a logical and consistent
sequence of symbols encoding information in a certain language.

Natural languages provide straightforward examples of texts used by humans to
communicate in spoken or written forms. In natural languages, text comprises a num-
ber of words. The term “word” may refer to a spoken word or to a written word, or
sometimes to the abstract concept behind either of these. Spoken words are made up
of units of sound called phonemes, and written words are made up of symbols called
graphemes, such as the letters of the English alphabet.

In linguistics, a word is the smallest element that may be uttered in isolation with
semantic or pragmatic content (with literal or practical meaning). Traditionally, words
are the smallest of the units that make up a sentence, and marked as such in writing.
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Words combine to make phrases In practice, words are established by various criteria.
They are generally the smallest units that can form an utterance on their own.

Musicology, the systematised study of music and musical style, particularly in the
realm of historical research, is another example whereby written text - a score - and
sounds, i.e., music, represents another type of text.

Other underlying examples are DNA, RNA and protein sequences.
DNA and RNA are nucleic acids that carry the genetic instructions, specify the

sequence of the amino acids within proteins and regulate the development and func-
tionality of living organisms. Proteins are molecules consisting of one or more chains
of amino acids which participate in virtually every process within cells.

DNA and RNA can be represented as sequences of the nucleo-bases of their nu-
cleotides and proteins and can be represented by the sequence of amino acids encoded
in the corresponding gene.

In computer science, a string is generally understood as a data type and is often
implemented as an array of bytes (or words) that stores a sequence of elements (treated
as a single entity), typically characters, using some character encoding [Wik14].

Despite the fact that the examples presented above seem very divergent, there is
an operation that arises in most applications handling these types of sequences. This
operation is called “text search” and consists of finding all positions on the text where
a given pattern appears. This operation serves as a basis for building more complex
and meaningful operations used in implementation of practical software running under
various operating systems. Furthermore they represent programming methodologies
that serve as paradigms in other fields of computer science. Finally, they also play an
important role in theoretical computer science by providing challenging problems.

A natural problem which emerges when processing such sequences lies in deter-
mining whether specific patterns occur within another string. This problem is known
as the “exact string matching problem” [CL04, FL10].

As far as natural language texts are concerned, an important problem in computa-
tional linguistics is finding the occurrences of a given word or sentence in a volume of
text. Similarly, in computational biology identification of conserved features in a set
of DNA or protein sequences represents a problem that is of great significance.

The problem in its most general form is to find the positions in a text where a given
pattern occurs allowing a limited number of errors in the matches. This demands that
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we have a notion of nearness or proximity between a pair of strings. This problem,
which is known as “approximate string matching”, is no less important. In this case
we have to provide a definition for the distance function which measures the similarity
between two strings [Nav01].

Various types of similarity measurement have been defined and studied in the litera-
ture, each application/domain uses a different error model which defines how different
two strings are and set the criteria to choose the “nearest” one, for example, errors
(edit distance [Lev66, Dam64, FW74, Ukk85], Hamming distance [Ham50], Long-
est Common Subsequence [NW70, San72, Sel74, Hir77]), q-gram distance [Ukk92],
wild cards (or don’t cares) [FP74, Pin85, MBY91], rotations [FNU02, FU98], scaling
[ALV90] and permutations [Knu68].

“Approximate string matching” is based on the remarkable paper by Wagner and
Fischer [FW74]. The “Exact string matching” is based on the two historical papers
by Knuth, Morris and Pratt [KMP77] and by Boyer and Moore [BM77]. While the
“Multiple string matching” was by Aho and Corasick [AC75].

The ideas behind these similarity measurements between strings is to make it small
when one of the strings is likely to be an erroneous variant of the other under the error
model in use.

The approximate occurrence can be defined using a variety of distance metrics
over strings. Some popular metrics are Hamming distance, unit-cost edit distance and
general edit distance based on a substitution cost matrix.

Depending on which string is given, the pattern or the text is available first. The
solution can be based algorithms, automaton or combinatorial properties of strings
which are usually implemented to process the pattern and solve the problem. The
notion of indexes represented by data structures, such as tree or automaton, is used in
the second types of solutions.

Both instances (exact and approximate) of the string matching problem have been
studied extensively since the early 1960s (see [BY89],[CR94],[Smy13],[Nav01] and
the references there).

The study of combinatorics on words started at the beginning of the 20th century
with the work of the Norwegian Mathematician Axel Thue [Thu06]. His paper consid-
ered the founding document of combinatorics on words, thousands of research papers
have been written by mathematicians and (over the last half-century) also computer
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scientists, many algorithms that have been proposed that relate in some way to string
regularities , or its variants, in strings since then. However, combinatorics of repetitions
remains intricate area, full of open problems.

There are several types of regularities in strings: “repetition“ (is a repeating sub-
strings (factors) that are constrained to be adjacent or otherwise those that may be
nonadjacent or overlapping (“repeat”), square, period, run (or maximal periodicity),
cover, seed, palindrome , etc (see [Smy13]).

Studying regularities in strings is important both from theoretical and practical
point of view, these are studied in Chapter II - Structured regularities on strings.

Repetitions and periods in strings constitute one of the most fundamental areas
of string combinatorics, detecting such regularities is an important element of sev-
eral fields such as pattern matching, data compression, formal language theory and
automata theory, to mention a few (see [Lot05, Gus97, CHL07] and the references
there). Particularly, string regularities play an important role of applications in musi-
cology, computational linguistics and computational biology.

Pattern matching algorithms have to cleverly exploit such regularities in order to
efficient. In Particular, we mention regularities that characterize the string as well as
(usually) all of its prefixes. These regularities are extensions of the idea of a “failure
function” [AC75], or “border array” [Smy03]) that permits all the periods of every
prefix of a given string to be compactly expressed by a single array of integers [Smy13].

Similarly, Analysing rotations of strings can be useful for algorithms whose op-
eration depends on rotations of strings and their lexicographic ordering. One such
algorithm is the block-sorting transformation known as Burrows-Wheeler transform
(BWT) [BW94] used to bring repeated characters together as a preliminary to com-
pression.

In recent times we have witnessed a rapid growth in the volume of digital infor-
mation. This growth may be ascribed to the overwhelming increase in research, de-
velopment, and investment in ICT - Information and Communication Technology -
combined with the emerging interdisciplinary field of Bioinformatics and its allied
disciplines.

The work presented in this thesis looks at data growth and new challenges, in ex-
isted and/or newly- discovered fields, that emerges as a result of such growth.

The exponential growth in the amount of digital data has resulted in the creation of
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text volume on a scale that is unprecedented. The amount of electronic data available
now is immense and continues to grow rapidly, in part due to the phenomenal growth
of the Internet, but also as a result of increases in other data sources such as high
throughput sequencing machines.

Most of this information exists in the form of text, that is, sequences of symbols
representing natural language, music, source code, time series, biological sequences
and many others.

Following on from the acquisition of data, attention has shifted to focus on analysing
and making use of the collected data.

Rapid development in DNA sequencing technologies has caused a dramatic growth
in the size of publicly available sequence databases with such data.

DNA sequencing has become incredibly fast and cost-effective to such an extent
that sequencing individual genomes will soon become a common task, making query-
ing and storing such sets of data especially important task.

The genomic revolution has changed how molecular biologists discover the struc-
ture, function and role of genes and protein sequences. Understanding relationships
between unknown gene/protein sequence and known sequences is a key to assigning
its function.

This presents interesting research challenges regarding the efficient storage and
ability to access the data due to the highly repetitive nature of the sequences.

The human genome has about 3 billion DNA base pairs (bps), consisting of 23

chromosomes with lengths ranging from about 33 to 247 million bps.
DNA sequences within the same species are highly repetitive and often will only

have a few differences. In large data sets, for example, such as genomes from a single
species, it is noted that each entry only differs from another by a very small number of
variations [CFMPN10]. This leads to a large set of data with a great deal of redundancy
and repetition.

A repetitive sequence collection is one where a base sequence is repeated many
times with small variations. Examples of such collections appear in large sets of se-
quence reads (usually obtained from Solid, Illumina or 454 sequencers) or complete
genome sequences of human individuals where the differences can be expressed by a
list of basic edit operations, the rest is common to all humans..

Algorithms that operate on molecular sequence data (strings) are at the heart of
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computational molecular biology wide spectrum of string techniques.
Algorithms and Data structures, such as the ones introduced in Chapter III - Im-

proved solutions for molecular biology of this thesis, address some of these challenges.

Many challenges in Arabic computational linguistics exist, these are studied in
Chapter IV - Challenges in Arabic computational linguistics. The influence of the
Arabic language, which belongs to the Semitic language family originated in the Ara-
bian Peninsula in pre-Islamic times, and which spread rapidly across the Middle East,
has been of great significance. Arabic has been an important source of vocabulary for
many other languages and is one of the official languages of the United Nations, is the
official language in over 29 countries and is the sixth most used language in the world,
spoken by over 360 million people. Arabic has a very rich and complex morphology.
Its appropriate Morphological processing is very important for Information Retrieval,
Text Processing, Machine Translation and Spell Checking processes.

Yet despite its importance globally, efforts to improve Arabic information search
and retrieval, compared with other languages, are limited and, at best, modest. One of
the main barriers to text processing advancements in Arabic is the language”s compli-
cated morphological structure. Arabic also has complicated syntactic properties which
make it a difficult language to master for non-native speakers.

Among these properties the complex structure of the Arabic word, the agglutinative
nature, lack of vocalisation, the segmentation of the text, the linguistic richness... all
these factors unite to create barriers.

In the context of linguistics, morphology is the study of word forms. In formal
language theory, the symbols for representing words are an inseparable part of the
definition of the language. In human languages, the concept is a little different a state-
ment can have multiple representations, depending on the means of communication
and the conventions for recording it. Arabic morphology is well-known for its rich and
complex nature.

Morphological complexity negatively affects performance of spell checking sys-
tems. Arabic morphology has a multi-tiered structure and applies non-concatenative
morphotactics. Words in Arabic are originally formed through the amalgamation of
roots and patterns.

The objective of this thesis is that it aims to develop efficient algorithms on strings
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in order to deal with pure theoretical problems or other problems encountered in such
fields as Bioinformatics and Computational linguistics.

This can be achieved by studying the problems’ statistical behaviour which will
lead to a better understanding of and eventual solution to the problems.

Despite the fact that the problems investigated, as well as their proposed solutions,
differ in research motivation paradigm, analogous mechanisms and structures are em-
ployed for solving these problems.

For example, the seminal string matching algorithm “Aho-Corasick” Automaton is
employed for finding a set of motifs in a biological sequence as well as in detecting
spelling mistakes in Arabic text.

Similarly, the bit-masking trick is used in order to extend both the DNA symbols
and Arabic alphabet: to accelerate equivalency testing of degenerate sequences in the
DNA and to measure similarity between stem and surface forms of a given word in
Arabic.

Another example, the surprisingly wide range of problems that can be tackled by
utilising Lyndon words: Lyndon words proved to be useful for constructing bases in
free Lie algebras [Reu93], constructing de Bruijn sequences [FM78], computing the
lexicographically smallest or largest substring in a string [AC95], succinct suffix-prefix
matching of highly periodic strings [NS13] and string matching [CP91, BGM11]. With
wider ranging applications include the Burrows-Wheeler transform and data compres-
sion [GS12], musicology [Che04], bioinformatics [DR04], and in relation to cryptanal-
ysis [Per05].

This thesis contributes several efficient novel and derived solutions (algorithms
and/or data structures), for complex problems which arise either out of pure theoretical
considerations (Chapter II - Structured regularities on strings) or practical application
in molecular biology (Chapter III - Improved solutions for molecular biology) and
computational linguistics in Arabic (Chapter IV - Challenges in Arabic computational
linguistics). This thesis also studies the experimental performance of these problems
and compares the proposed solutions with those that already exist.
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Organization
This dissertation is divided into five chapters as follows.

Chapter I - Notions and Definitions:

Provides the readers with the basic notions required to properly follow the work and
results presented in the subsequent chapters; in particular, it introduces the basic def-
initions and notations on alphabet and strings, string similarity metrics, asymptotic
notation and also describe some elementary data structures.

Chapter II - Structured regularities on strings:

Focuses on regularities that characterize the string as well as, usually, all its prefixes.
some of these regularities are extensions of the idea of a “failure function”, in par-
ticular, string periodicity properties. Furthermore, we study repetitive structures and
inherent patterns such as Lyndon words, Abelian strings and palindromes.

- We start by describing indeterminate strings, in the most general sense, as the ba-
sic combinatorial object and introduce the first algorithm to reverse engineer a data
structure (prefix array) to a string in its full generality. We show how to construct a
lexicographically least indeterminate string on a minimum alphabet from its analogous
prefix array.

- Next, we describe a simple linear-time/space algorithm to compute the cover array
of regular string directly from its prefix table. Then we describe extensions of these
algorithms to indeterminate strings.

- We consider the problem of finding the length of the Longest Common Abelian
Factor (LCAF) between two strings and present a quadratic running time algorithm
for the LCAF problem and a sub-quadratic running time solution for the binary string
case, both having linear space requirement. Furthermore, we present a variant of the
quadratic solution that is experimentally shown to achieve a better time complexity of
O(σ n log n), where σ is the alphabet of cardinality, i.e., O(n log n) for a constant
alphabet.

- We propose a new linear-time algorithm that computes the Maximal Palindromic
Factorization (MPF) of a string, that is a factorization of a string where the factoriza-
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tion set is the set of all center-distinct maximal palindromes of a string (the algorithms
is evaluated with respect to the length of the given string).

- We study Lyndon structures related to the Burrows-Wheeler Transform (BWT). We
compute the quadratic factorization of all rotations of an input string and the BWT of
a Lyndon substring. From the factored rotations we introduce the Lyndon fountain.

- We combine the well-known concepts of Lyndon words, borders and suffix arrays to
introduce the Lyndon Border Array (LBA) and the Lyndon Suffix Array (LSA). We
present linear time algorithms for computing these two interesting data structures.

- In the final article of this chapter we focus on a total (but non-lexicographic) ordering
of strings called V -order. We devise a new linear-time algorithm for computing the
V -comparison of two finite strings.

Chapter III - Improved solutions for molecular biology:

In this chapter we design and analyse algorithms/data structures on strings with appli-
cations in molecular biology.

- We present SimpLiSMS, a simple, lightweight and fast algorithm for searching struc-
tured motifs. We introduce the concept of a search context, and makes use of a simple
data structure (Map) to identify the valid positions of each character with respect to its
preceding character according to the distance constraints of the structured motif. Our
experiments show excellent performance of SimpLiSMS. Furthermore, We introduce
a parallel version of SimpLiSMS which runs even faster.

- The next article describes another solution to the compression of a set of genomic
sequence data-set problem, we propose an indexing structure for highly repetitive col-
lections of genomic data based on a multilevel q-gram model, utilising a differential
compression method that is based on the locations and types of differences between
each sequence in the collection and its reference sequence. In particular, the proposed
algorithm accommodates variations that may occur in the target sequence with respect
to the reference sequence.

Chapter IV - Challenges in Arabic computational linguistics:

This chapter is dedicated for exploring complex problems in the domain of Natural
Language Processing for Arabic language to present hybrid solutions by combining
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efficient computational methods and language morphological rules to build Language-
Ware software for Arabic language.

We have defined two main objectives for this study, to formalize an elegant linguistic
description of Arabic words and to develop a set of computational resources making
use of this linguistic formalization.

- The first article in this chapter describes the construction of a lexicon and a morpho-
logical description for standard Arabic. We present a large-scale system that performs
morphological analysis and generation of Arabic words.

- We propose a new stemming technique and produce software implementation (Ara-
bic Morphological Analyzer called “AMA”), for the proposed technique that tries to
determine the root and/or the stem of a word representing the semantic core of this
word according to Arabic language morphology analysis and Arabic language syntax.

- We build an expert system for Arabic spelling correction using a generative noisy
channel model, that goes beyond the primitive edit distance to compute (learnable edit
distance) - by presenting new conditioning factors - the optimal costs of a set of string
edit rules based on the morphological characteristics and letters adjacency probabilities
of Arabic words.

The algorithm learns the model parameters using a training data-set consisting of pairs
of erroneous and their correct words to build an error model. The algorithm uses
dynamic programming to calculate the characters edit distance/rules to learn the min-
imum total cost of transforming one string into another. Also we present the notion
of single candidate errors and introduce a novel method for detecting and correcting
many such errors that cannot be detected by existing techniques.

- Finally, we introduce a new model, Degenerate Finite-State Automaton (DeFSA),
aimed at facilitating the expression of various non-concatenative morphological phe-
nomena in an effective and efficient way. We show how to utilise the new data structure
and its DAWG implementation to build an Arabic lexicon.

Chapter IV - Concluding Remarks: Summarises the results of the work presented
in the previous chapters, conclusions are drawn and finally a set of related open prob-
lems are presented.
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This chapter establishes the foundation needed to read most of the following chap-
ters. It also provides an overview of the field and touches on some aspects that later
chapters will discuss in more depth. Some mathematical concepts will be used through-
out the chapters of this thesis. Therefore, this introductory chapter defines these con-
cepts. Section 1.1 introduces basic strings and alphabets characteristics. String metrics
are presented in 1.2 and some fundamental data structures are discussed in section 1.3.
Finally, section 1.4 briefly reviews some notions from complexity theory and surveys
the most important complexity classes. These notions will be frequently used in later
discussions.
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1.1 Alphabets and Strings

An alphabet Σ is a finite non-empty set whose elements are called symbols (or charac-
ters). The cardinality of an alphabet, denoted by |Σ| expresses the number of distinct
characters in the alphabet.

The set of all the strings on the alphabet Σ is denoted by Σ∗. The set of all non-
empty strings over the alphabet Σ is denoted by Σ+. The empty string is the empty
sequence (i.e., of zero length) and is denoted by ε; we write Σ∗ = Σ+ ∪ ε.

A string or sequence is a succession of zero or more symbols drawn from an al-
phabet Σ. A string s of length |s| = n is represented by s[1 . . n], where s[i] ∈ Σ for
1 ≤ i ≤ n. The i-th symbol of a string s is denoted by s[i]. We denote by s[i . . j] the
substring of s that starts at position i and ends at position j.

For clarity, we may represent a string by s1 · · sn, also denote the i-th symbol of a
string s by si, and similarly denote by si · · sj the substring of s that starts at position
i and ends at position j.

Also, some times we denote by s[i], for all 0 ≤ i < |s|, the symbol at index i of s.
Each index i, for all 0 ≤ i < |s|, is a position in s when s 6= ε. It follows that the i-th
symbol of s is the symbol at position i− 1 in s, and that s = s[0 . . |s| − 1].

A stringw is a substring (or factor) of a string s if there exist two strings u and v,
such that s = uwv, where u,v ∈ Σ∗. Conversely, s is called a super-string of w.

For a substring w of s, uwv for u,v ∈ Σ∗ is an extension of w in s if uwv is a
substring of s; wv for v ∈ Σ∗ is the right extension of w in s if wv is a substring of
s; uw for u ∈ Σ∗ is a left extension of w in s if uwis a substring of s.

We call a string y a subsequence of x (or x is a super-sequence of y) if y is
obtained by deleting zero or more symbols at any positions from x. For example ace
is a subsequence of aabcdef .

For a given set S of strings, a string x is called a common super-sequence of S if
x is a super-sequence of every string s ∈ S.

The string xy is a concatenation of two strings x and y. The concatenations of k
copies of x is denoted by xk.

For two strings x = x[1 . . n] and y = y[1 · ·m], such that x[n − i + 1 . . n] =

y[1 . . i] for some i ≥ 1, the string z = x[1 . . n]y[i + 1 . .m] is a superposition of x
and y with i overlap.
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35 1.1 Alphabets and Strings

The number of occurrences of the letter σi in string s is denoted |s|σi .
The conjugacy class [s] of string s ∈ Σn is the set of all words s[i]s[i+ 1] · · s[n−

1]s[0] · · s[i− 1], for 0 ≤ i ≤ n− 1.
If s is not the power of a shorter word, then s is said to be primitive and has exactly

n conjugates.

Definition 1 (Cyclic shift) A string y = y[0 . . n] is a cyclic rotation of x = x[0 . . n]

if y[0 . . n] = x[i . . n]x[0 . . i− 1] for some 1 ≤ i ≤ n (for i = 1,y = x).

Equivalently, we say two words x, y are conjugates if there exist words u, v such

that x = uv and y = vu.

Conjugacy is thus an equivalence relation. The conjugacy class of a word of length

n and period p has p elements if p divides n and has n elements otherwise.

Definition 2 (Lexicographical order) Consider the finite totaly ordered alphabet Σ.

The lexicographical order is defined as follows. Given two strings x, y, we have x < y

if x is a proper prefix of y or if there exist factorization x = uax′ and y = uby′ with

a, b ∈ Σ and a < b. Note that x < y in the radix order if |x| < |y| or |x| = |y| and

x < y in the lexicographical order.

A substring w of s is called repetition in s, if s = uwkv, where u,w,v are
substrings of s and k ≥ 2, |w| 6= 0.

For example if x = aababab, then a (appearing in positions 1 and 2) and ab (ap-
pearing in positions 2,4 and 6) are repetitions in w; in particular a2 = aa is called a
square and (ab)3 = ababab is called a cube.

A string u is a prefix of w if w = uv for v ∈ Σ∗, Similarly, v is a suffix of w if
w = uv for u ∈ Σ∗.

The prefix u (respectively suffix v ) is a proper prefix (suffix) of a word w = uv

if w 6= u,v.

1.1.1 Borders and Periods

A substring u is called a period of a string s (notation: u = per(s)), if s can be
written as s = uku′ where k ≥ 1 and u′ is a prefix of u. The shortest period of s is
called the period of s. For example if s = abcabcab, then abc, abcabc and the string s
itself are periods of s while abc is the period of s.
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36 1.1 Alphabets and Strings

In other words, a string u is a period of s if s is a prefix of uk for some k,or
equivalently if s is a prefix of us.

Moreover a string is said to be primitive if it cannot be be written as uk with
u ∈ Σ+ and k ≥ 2.

A set of strings that are both prefixes and suffixes of s are called borders of s. By
border(s) we denote the length of the longest border of s that is shorter than s.

Definition 3 (Border array) For a string s ∈ Σn, the border array β[1 . . n] is defined

by β[i] = |border(s[1 . . i])| for 1 ≤ i ≤ n.

A border of a non-empty string s is a proper factor u that is both a prefix and a
suffix of s. The notions of period and of border are dual. It is a known fact [CHL07]
that, for any non-empty string s, it holds.

Period(s) +Border(s) = |s| (1.1)

1.1.2 Covers and Seeds

A substring u of s is called a cover of s, if s can be constructed by concatenating or
overlapping copies of u.

We also say that u covers s. For example, if s = ababaaba, then aba and s covers
s. If s has a cover u 6= s, s is said to be quasi-periodic; otherwise, s is super-primitive.

A substring u of s is called a seed of s, if u covers one super-string of s (this can
be any super-string of s, including s itself). For example, aba and ababa are some
seeds of s = ababaab.

For set G of positive integers, we define the maxgap of G as:

maxgap(G) =

max{G[i+ 1]− G[i]: for 1 ≤ i < n} if |G| > 1

0 otherwise

By border(s) we denote the For a factor u of s, by Occ(u, s) we denote the set of
indices of starting positions of all occurrences of u in s.
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1.2 Strings similarity measurements

Definition 4 (Edit Distance) [Gus97, Dam64, Lev66] The distance δ(x,y) between

two strings x and y is the minimal cost of a sequence of operations that transform x

into y (and∞ if no such sequence exists). The cost of a sequence of operations is the

sum of the costs of the individual operations. The operations are a finite set of rules of

the form δ(u,v) = n, where u and v are different strings and n is a non-negative real

number. Once the operation has converted a string u into v, no further operations can

be done on v.

• Insertion: δ(ε, a), inserting the letter a.

• Deletion: δ(a, ε), deleting the letter a.

• Substitution: δ(a, b) for a 6= b, substituting a by b.

• Transposition: δ(ab, ba) for a 6= b, swap the adjacent letters ab and ba.

Note that δ(x,y) can be computed in O(|x| × |y|) time using dynamic programming.

using the equation (edit) score of best alignment from x1 · ·xi to y1 · · yj .

δ(i, j) =



δ(i− 1, j − 1), if xi = yj copy

δ(i− 1, j − 1) + 1, if xi 6= yj substitute

δ(i− 1, j) + 1 insert

δ(i, j − 1) + 1 delete

δ(i, j − 1) + 1 transposition

(1.2)

Definition 5 (Hamming Distance) Given two strings of equal length, the Hamming

distance between them is the number of positions for which the corresponding symbols

are different. In other words, the Hamming distance between two strings of equal

length is the minimum number of symbol substitutions required to change one string
into the other.

Hamming distance [SK83]: allows only substitutions, which cost 1 in the simplified

definition. In the literature the search problem in many cases is called “string matching
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38 1.2 Strings similarity measurements

with k mismatches”. The distance is symmetric, and it is finite whenever |x| = |y|. In

this case it holds 0 ≤ δ(x,y) ≤ |x|

δH(x,y) = |I|, I = {i|xi 6= yi, 1 ≤ i ≤ n} where |x| = |y| = n (1.3)

Definition 6 (Alignment) An alignment [CHL07] between two stringsx,y ∈ Σ∗ whose

respective lengths are n and m, is a way to visualize their similarities, Formally an

alignment A between x and y is a string z such that (Σ ∪ ε))× (Σ ∪ ε)× (ε, ε).

Given two sequences x and y such that x = 〈x1, x2, · · , xn〉 ,y = 〈y1, y2, · · , yn〉,.
Formally an alignment score between x and y is Ascore(x,y) =

∑|x′|
i=1 S(x′iy

′
i). The

problem of finding the optimal global alignment becomes that of finding the alignment

that maximizes the number of matches, assuming A score function δ(x,y) is defined

for each (x,y) ∈ Σ× Σ.

Definition 7 (Exact pattern matching problem) String matching involves finding one,

or more generally, all the occurrences of a string p (called a pattern) in a text t. The

text (a string of length n) is denoted by t = t[1..n]. The pattern (a string of length m)

is denoted by p = p[1 . .m]. Both strings are drawn over a finite alphabet Σ.

Given a string t of length n and a pattern P (a string of length m) both over an

alphabet Σ, The occurrence positions of p in t are defined as:

Occ = {|u|+ 1, ∃ u,v ∈ Σ∗; t = upv}

• exists(p, t) returns true iff p is in t, i.e., returns true iff |Occ(p, t)| > 0

• count(p, t) counts the number of occurrences of p in t, i.e., returns |Occ(p, t)|.

• locate(p, t) finds all the occurrences of p in t, i.e., returns the ordered set

Occ(p, t).

• extract(t, i, j) extracts the substring t[i..j].

We use basic notions from [HU79], which we briefly discuss below. A Finite
State Machine, alternatively, a Finite State Automaton (abbreviated as FSM or FSA
respectively) is an abstract mathematical concept of computation that is capable of
storing a status or state and changing the current state based on the input sequences.
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We are interested in deterministic finite state machines. The term “deterministic” refers
to the fact that on each input there is one and only one state to which the automaton
can transition from its current state (as opposite to non-deterministic finite automaton,
where there can be several states to transition to).

Definition 8 (Finite State Automaton) A deterministic finite state automatonA is de-

fined as a five-tuple: A = (Q,Σ, δ, s, F ), where Q is a finite set of states, Σ is a finite

set of characters (the alphabet), s ∈ Q is the initial state (element ofQ), F ⊆ Q is a set

of accepting states (subset of Q), δ is a transition (mapping) function δ : Q× Σ→ Q

that takes as arguments a state and an input character and returns a state.

For each q ∈ Q, a ∈ A such that δ(p, a) = q, we call (p, a, q), also denoted
by p

a→ q, an edge or arc of A. In the transition diagram, δ will be represented
by edges/arcs between states with input character(s) as the labels on the edges. To
elaborate, if p is a state, α is an input character, and δ(p, α) is the state q then there
exists an edge labeled α from p to q. A path is defined as a sequence of consecutive
edges. A path is accepted if its ending state is a final state. The sequence spelling the
labels of the edges constituting the path is then also assumed to be accepted. Let L be
a finite language and A is a DFA that accepts all words in L, so a wordw is in L if and
only if it is accepted by A.

Informally, A Finite State Transducer (FST) is a special type of finite state automa-
ton that works on two (or more) tapes. Rather than just traversing (and accepting or
rejecting) an input string, a transducer works like a sort of “translating machine”. It
reads from one of the tapes and write onto the other. In the translation mode, an FST
translates the contents of its input string to its output string. In the generation mode, it
accepts a string on its input tape and generates another string on its output tape.

Definition 9 (Finite State Transducer (FST)) Formally, a FST T is a 6-tuple T =

(Q,Σ,Γ, I, F, δ) where Q is a finite set of states, Σ is a finite set of characters, called

the input alphabet, Γ is a finite set of characters, called the output alphabet, I ⊆ Q is

the set of initial states, F ⊆ Q is the set of final states, and finally δ ⊆ Q× (Σ∪{ε})×
(Γ ∪ {ε}) × Q is the transition relation, i.e., δ is a mapping function from Q × Σ to

finite subsets of Q× Γ. Here, ε is the empty string.
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1.3 Fundamental Data structures

1.3.1 Graph

A graph is an abstraction used to model a system that contains discrete, interconnected
elements. The elements are represented by nodes (also called vertices) and the inter-
connections are represented by edges.

Definition 10 (Graph) Formally, a graph G is an ordered triple of sets (V,E,Ψ),

where:

• V is a nonempty set whose elements are called vertices.

• E is a collection of pair subsets of V called edges.

• Ψ : E → R is a function associated with each edge of G

Two vertices are adjacent when they are both incident to a common edge. A path is

a sequence of vertices P = (v1, v2, . . , vn) in a graph such that vi and vi+1 are adjacent

for i ≤ i ≤ n. The length of the path is the number of edges traversed.

BREADTH-FIRST SEARCH

In graph theory, breadth-first search (BFS), it derives its name from the way it expands
a “search front” from a start point (in the decision tree, as opposed to depth-first search
(DFS)), is a graph search algorithm that begins at the root node and explores all the
neighboring nodes. Then for each of those nearest nodes, it explores their unexplored
neighbor nodes, and so on, until it finds the goal. The algorithm belongs to a major
class of graph search algorithms based on a technique called “relaxation”.

The shortest path from v1  vn is the path P = (v1, v2, . . , vn) that over all possible
n minimizes the sum

∑n
i=1 Ψ(ei,i+1). When each edge in the graph has unit weight or

f : E → {1}, this is equivalent to finding the path with fewest edges.
That is, the graph is explored level by level. In fact, all shortest paths of one arc are

first computed, followed by those made up of two arcs, and so on.
Finding the shortest path between two nodes u and v using breadth-first search

(BFS) is obtained by processing edges using a queue data structure . It processes the

40



41 1.3 Fundamental Data structures

vertices in the graph in the order of their shortest distance from the vertex vs (the start
vertex).

A queue is a list of elements which supports the following operations

• enqueue: Adds an element to the end of the list

• dequeue: Removes an element from the front of the list

Elements are extracted in first-in first-out (FIFO) order, i.e., elements are picked in the
order in which they were inserted.

1.3.2 Suffix tree

The suffix tree is a fundamental data structure [Gus97] supporting a wide variety of
efficient string processing algorithms. The suffix tree of string s, denoted ST (s) or
simply ST , is a compacted trie of all suffixes of string s. Let |s| = n. It has the
following properties:

1. The tree has n leaves, labelled 1, 2, . . , n, one corresponding to each suffix of s.

2. Each internal node has at least 2 children.

3. Each edge in the tree is labelled with a substring of s.

4. The concatenation of edge labels from the root to the leaf labelled i is suff(i).

5. The labels of the edges connecting a node with its children start with different
characters.

The Suffix tree is a data structure that admits efficient on-line string searches.
Weiner [Wei73] was the first to show that suffix trees can be built in linear time

(Knuth is claimed to have called it ”the algorithm of 1973”). More space efficient
algorithm was introduced by McCreight in 1976 [McC76].

Esko Ukkonen [Ukk95] devised a linear-time algorithm for constricting a suffix
tree that may be the conceptually easiest linear-time construction algorithm. However,
Ukkonen’s method is equally fast and uses far less space (i.e., memory) in practice
than Weiner’s method
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42 1.3 Fundamental Data structures

Ukkonen’s idea [Ukk95] for computing suffix trees in linear time is a combination
of several nice insights into the structure of suffix trees and several clever implementa-
tion details - Hence Ukkonen is the method of choice for most problems requiring the
construction of a suffix tree.

Suffix trees permit on-line string searches of the type exists, to be answered in
O(|p| log |Σ|) time, where |p| is the length pattern. We explicitly consider the depen-
dence of the complexity of the algorithms on |Σ|, rather than assume that it is a fixed
constant, because can be quite large for many applications. A suffix tree is able to find
all the occurrences Occ of a pattern p of length m in time O(m + |Occ|). Suffix trees
can also be constructed in time O(n) with O(|p|) time for a query, but this requires
O(n× |Σ|) space, which renders this method impractical in many applications.

1.3.3 Suffix array

In 1990 Manber and Myers introduced suffix arrays [MM90] as a space-saving alter-
native to suffix trees and described original algorithm for suffix array construction and
use.

The suffix array of a string s of length |s| = n is a lexicographically ordered array
of the set s[i . . n], where 0 ≤ i ≤ n, of all suffixes of s. As with suffix trees, it is
common to add the end symbol s[n] = $. It has no effect on the suffix array assuming
$ is smaller than any other symbol.

More precisely, the suffix array is an array SA[0 . . n] of integers containing a per-
mutation of the set s[i . . n], where 0 ≤ i ≤ n, such that

SA(s)[0] < SA(s)[1] < . . < SA(s)[n]

Suffix array is much simpler data structure than suffix tree (see also [Gus97, PST07,
PST06]). In particular, the type and the size of the alphabet are usually not a concern.
Therefor, the size on the suffix array is linear on any alphabet, also the suffix array can
be constructed in the same asymptotic time required to sort the characters of the given
string [KS03, KA05].

Suffix array construction algorithms are quite fast in practice too. For example, the
fastest way to construct a suffix tree is to construct a suffix array first and then use it to
construct the suffix tree.
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Suffix arrays are rarely used alone but are augmented with other arrays and data
structures depending on the application. In particular, the longest common prefix (LCP)

array. It stores the lengths of the longest common prefixes between pairs of consecu-
tive suffixes in the suffix array.

Definition 11 (Longest Common Prefix array (LCP array)) is an auxiliary data struc-

ture to the suffix array.

LCP [i](s) = lcp(SA[i](s), SA[i− 1](s)),∀i ∈ [1 . . n]

LCP can be computed in linear time using the suffix array and its inverse.

1.4 Problems as Languages

In complexity theory, problem solving can be viewed as language recognition. A prob-
lem is expressed in the form of a question and has some parameter(s). Each set of
parameter(s) makes a new instance of the problem. It can be thought of as the gen-
eral problem as a template where parameters are indicated by symbols (for the sake
of description) and of an instance as replacing the symbolic parameters with actual
values.

Based on the type of expected solution, problems could be classified in to the fol-
lowing general categories:

Optimization problem is the selection of an optimal element (with regard to some
criteria) from some set of available alternatives. Usually algorithms have an
optimization goal in mind, e.g. compute the shortest path or the alignment or
minimal edit distance

Decision problem where the question statement of a problem asks whether a solution
with specific characteristics exists or not. In other words a problem is stated as a
yes or no question depending on the values of some input parameters

Another important distinction between types of algorithms is, whether the algo-
rithm belongs to deterministic or randomized group. Deterministic algorithms always
produce the same results on a given input following the same computation steps while
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Randomized algorithms (also called Monte Carlo algorithms) roll dice during exe-
cution. Hence either the order of execution or the result of the algorithm might be
different for each run on the same input.

Problems have to be formalized in order to be tackled systematically by computa-
tional algorithms. Therefore, all the problems have to be first formally defined where
the given instance and question are stated clearly.

These algorithmic problems are then classified according to their computational
complexity where problems having the same computational complexity (typically de-
fined in terms of space and time resources required to solve the problem) are said to
belong to the same complexity class.

By knowing the performance of an algorithm under each of these cases, you can
judge whether an algorithm is appropriate for use in your specific situation.

1.4.1 The Computational Complexity of a Problem

Algorithms are compared by evaluating their performance and how they respond (e.g.,
in their processing time or working space requirements) to changes in input data size.

In particular, the order of growth of the running time of an algorithm gives a simple
characterization of the algorithm’s efficiency and also allows us to compare the relative
performance of alternative algorithms.

This methodology is the standard means developed over the past half-century for
comparing algorithms called “asymptotic notation” or Bachmann - Landau notation
(after Edmund Landau and Paul Bachmann). By doing so, we can determine which
algorithms scale to solve problems of a non-trivial size by evaluating the running time
and space memory needed by the algorithm in relation to the size of the provided input.

The running time of an algorithm is defined as the number of steps that the algo-
rithm requires to solve the problem.

Basic operations such as single addition, subtraction or multiplication are consid-
ered to take unit time. The notion of algorithm run-time adopted in complexity theory
does not regard the type of machine used or time elapsed in usual units of minutes and
seconds, the assumption here is that the run-time depends only on the algorithm and
the input.

The following definitions from [CLRS09].
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Assume two functions f and g, such that f : N→ N and g : N→ N.

Definition 12 (Θ−notation) The θ-notation asymptotically bounds a function from

above and below. For a given function g(n), we denote by theta(g(n)) the set of

functions.

θ(g(n)) = {f(n) : there exist a positive constants c1, c2 and n0,

such that 0 ≤ c1 g(n) ≤ f(n) ≤ c2 g(n)∀n ≥ n0}.

Definition 13 (O−notation) For a given function g(n), we denote by O(g(n)) (pro-

nounced ”big-oh of g of n” or sometimes just ”oh of g of n”) the set of functions

O(g(n)) = {f(n) : there exist a positive constants c and n0, such that

0 ≤ f(n) ≤ c g(n)∀n ≥ n0}.

Definition 14 (Ω−notation) Just as O-notation provides an asymptotic upper bound

on a function, Ω-notation provides an asymptotic lower bound. For a given function

g(n), we denote by Ω(g(n)) (pronounced @big-omega of g of n” or sometimes just

”omega of g of n”) the set of functions

Ω(g(n)) = {f(n) : there exist a positive constants c and n0, such that

0 ≤ c g(n) ≤ f(n)∀n ≥ n0}.

Finally, we list some commonly used adjectives describing classes of functions. We
say a function f is:

• Constant, if f(n) ∈ θ(1).

• Logarithmic, if f(n) ∈ O(log n).

• Poly - Logarithmic, if f(n) ∈ O(n× logk n),∀k ∈ N.

• Linear, if f(n) ∈ O(n).

• Quadratic, if f(n) ∈ O(n2).

• Exponential, if f(n) ∈ O(2n).
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Structured regularities on strings
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Article: # 1

Inferring an Indeterminate String
from a Prefix Graph

An indeterminate string (or, more simply, just a string) x = x[1..n] on an alphabet
Σ is a sequence of nonempty subsets of Σ. We say that x[i1] and x[i2] match (written
x[i1] ≈ x[i2]) if and only if x[i1]∩x[i2] 6= ∅. A feasible array is an array y = y[1..n]

of integers such that y[1] = n and for every i ∈ 2..n, y[i] ∈ 0..n−i+1. A prefix table
of a string x is an array π = π[1..n] of integers such that, for every i ∈ 1..n, π[i] = j

if and only if x[i..i+j−1] is the longest substring at position i of x that matches a
prefix of x. It is known from [CRSW14] that every feasible array is a prefix table of
some indetermintate string. A prefix graph P = Py is a labelled simple graph whose
structure is determined by a feasible array y. In this article, we show, given a feasible
array y, how to use Py to construct a lexicographically least indeterminate string on a
minimum alphabet whose prefix table π = y.
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1.1 Introduction

In the extensive literature of stringology/combinatorics on words, a “string” or “word”
has usually been defined as a sequence of individual elements of a distinguished set Σ

called an “alphabet”. Nevertheless, going back as far as the groundbreaking paper of
Fischer & Paterson [FP74], more general sequences, defined instead on subsets of Σ,
have also been considered. The more constrained model introduced in [FP74] restricts
entries in a string to be either elements of Σ (subsets of size 1) or Σ itself (subsets of
size σ = |Σ|); these have been studied in recent years as “strings with don’t cares”
[IMM+03], also “strings with holes” or “partial words” [BS08]. The unconstrained
model, which allows arbitrary nonempty subsets of Σ, has also attracted significant
attention, often because of applications in bioinformatics: such strings have variously
been called “generalized” [Abr87], “indeterminate” [HS03], or “degenerate” [IMR08].

In this article, we study strings in their full generality, hence the following defini-
tions:

Definition 15 Suppose a set Σ of symbols (called the alphabet) is given. A string x
on Σ of length n = |x| is a sequence of n ≥ 0 nonempty finite subsets of Σ, called

letters; we represent x as an array x[1..n]. If n = 0, x is called the empty string and

denoted by ε; if for every i ∈ 1..n, x[i] is a subset of Σ of size 1, x is said to be a

regular string.

Definition 16 Suppose we are given two strings x and y and integers i ∈ 1..|x|,
j ∈ 1..|y|. We say that x[i] and y[j] match (written x[i] ≈ y[j]) if and only if

x[i] ∩ y[j] 6= ∅. Then x and y match (x ≈ y) if and only if |x| = |y| and x[i] ≈ y[i]

for every i ∈ 1..|x|.

Note that matching is not necessarily transitive: a ≈ {a, b} ≈ b, but a 6≈ b.

Definition 17 The prefix table (also prefix array)1 of a string x = x[1..n] is the

integer array πx = πx[1..n] such that for every i ∈ 1..n, πx[i] is the length of the

longest prefix of x[i..n] that matches a prefix of x. Thus for every prefix table πx,

πx[1] = n. When there is no ambiguity, we write π = πx.

1 We prefer “table” because of the possible confusion with “suffix array”, a completely different data
structure.
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The prefix table is an important data structure for strings: it identifies all the borders,
hence all the periods, of every prefix of x [CRSW14]. It was originally introduced to
facilitate the computation of repetitions in regular strings [ML84], see also [Smy03];
and for regular strings, prefix table and border array are equivalent, since each can be
computed from the other in linear time [BKS13]. For general strings, the prefix table
can be computed in compressed form in O(n2) time using Θ(n/σ) bytes of storage
space [SW08], where σ = |Σ|. Two examples follow, adapted from [CRSW14]:

1 2 3 4 5 6 7 8

x1 = a c a g a c a t

π1 = 8 0 1 0 3 0 1 0

(1.1)

1 2 3 4 5 6 7 8

x2 = {a, c} {g, t} {a, g} {a, c, g} g c {a, t} a

π2 = 8 0 4 2 0 3 1 1

(1.2)

Since clearly every position i ∈ 2..n in a prefix table π must satisfy 0 ≤ π[i] ≤
n−i+1, the following definition is a natural one:

An array y = y[1..n] of integers is said to be a feasible array if and only
if y[1] = n and for every i ∈ 2..n, y[i] ∈ 0..n−i+1.

An immediate consequence of Definition 17 is the following:

Lemma 1.1.1 ([CRSW14]) Let x = x[1..n] be a string. An integer array y = y[1..n]

is the prefix table of x if and only if for each position i ∈ 1..n, the following two

conditions hold:

(a) x
[
1..y[i]

]
≈ x

[
i..i+ y[i]− 1

]
;

(b) if i+ y[i] ≤ n, then x
[
y[i] + 1

]
6≈ x

[
i+ y[i]

]
.

Then the following fundamental result establishes the important connection be-
tween strings and feasible arrays:

Lemma 1 ([CRSW14]) Every feasible array is the prefix table of some string.

Inferring an Indeterminate String from a Prefix Graph 49



50 1.1 Introduction

In view of this lemma, we say that a feasible array is regular if it is the prefix array
of a regular string. We are now able to state the goal of this article as follows: for
a given feasible array y = y[1..n], not necessarily regular, construct a string x on a
minimum alphabet whose prefix table πx = y — the “reverse engineering” problem
for the prefix table in its full generality. In fact, we do somewhat more: we construct a
lexicographically least such string, in a sense to be defined in Section 1.2.

The first reverse engineering problem in stringology was stated and solved in [FLR+99,
FGL+00], where an algorithm was described to compute a lexicographically least reg-
ular string whose border array was a given integer array — or to return the result
that no such regular string exists. Many other similar constructions have since been
published, related to other stringological data structures but always specific to regu-
lar strings (see [BIST03, DLL05, FS06, MNRR13], among others). [NRR12] was the
first paper to consider the more general problem of inferring an indeterminate string
from a given data structure (specifically, border array, suffix array and LCP array).
Although solving such problems does not yield immediate applications, nevertheless
solutions provide a deeper understanding of the combinatorial many-many relationship
between strings and the various data structures developed from them (see for example
[MSM99], where canonical strings corresponding to given border arrays are identified
and efficiently generated for use as test data).

For prefix tables and regular strings, the reverse engineering problem was solved
in [CCR09], where a linear-time algorithm was described to return a lexicographi-
cally least regular string x whose prefix table is the given feasible array y, or an error
message if no such x exists. A recent paper [BSBW14] sketches two algorithms to
compute an indeterminate string x on a minimum alphabet (not necessarily lexico-
graphically least) corresponding to a given feasible array y, but the algorithms are
theoretical in nature: one requires the determination of the chromatic number of a cer-
tain graph, an NP-hard problem, while the other depends on somehow identifying the
minimum “induced positive edge cover” of a graph. However, [BSBW14] proves an
important result that we use below to bound the complexity of our algorithm: that the
minimum alphabet size σ of a string corresponding to a given feasible array of length
n is at most n+

√
n. In this article, we use graph-theoretic methods developed from

[CRSW14] to compute a lexicographically least string, regular or not, corresponding
to the given y, in time O(σn2).
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Section 1.2 of this article provides background material for an understanding of our
algorithm; Section 1.3 presents the algorithm itself; Section 1.4 briefly discusses these
results and suggests future work.

1.2 Preliminaries

Following [CRSW14], for a given feasible array y = y[1..n], we define a correspond-
ing graph P = Py , on which our algorithm will be based:

Definition 18 Let P = (V,E) be a labelled graph with vertex set V = {1, 2, . . . , n}
consisting of positions in a given feasible array y. In P we define, for i ∈ 2..n, two

kinds of edge (compare Lemma 1.1.1):

(a) for every h ∈ 1..y[i], (h, i+h−1) is called a positive edge;

(b) (1+y[i], i+y[i]) is called a negative edge, provided i+y[i] ≤ n.

E+ and E− denote the sets of positive and negative edges, respectively. We write

E = E+ ∪ E−, P+ = (V,E+), P− = (V,E−), and we call P the prefix graph Py

of y. If x is a string having y as its prefix table, then we also refer to P as the prefix
graph Px of x.

1

2

3

4

5

6

7

8

Figure 1.1: P+
y4 for y4 = 80103010
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4

5

6

7

8

Figure 1.2: P−y4 for y4 = 80103010
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Figure 1.3: P+
y4 for y4 = 80420311
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Figure 1.4: P−y4 for y4 = 80420311

Observe that E+ and E− are necessarily disjoint. Figures 1.1–1.4 show the prefix
graphs, as given in [CRSW14], for the example strings (1.1) and (1.2). Again, in
Figures 1.5–1.8 we present the prefix graphs of two different indeterminate strings
(1.3) and (1.4) given below.

From Definition 18, we see that |E+| can be as small as 0 (for example, when
s = abn−1) or as large as

(
2
n

)
(where s = an). We see that every edge (i, j) ∈ E−

determines the value y[ji + 1] of a position ji + 1 in y. Thus a simple scan of y can
identify all positions h that are not determined by E−; for all such h, it must be true
that y[h] = nh+ 1.

Remark 1.2.1 ([CRSW14]) The prefix array and the negative prefix graph provide

the same information and so determine the same set of (regular or not) strings s.

1 2 3 4 5 6 7 8

x3 = {a, b} {a, c} c {a, b} b c {a, c} b

π3 = 8 2 0 1 4 0 1 1

(1.3)

1 2 3 4 5 6 7 8

x4 = {a, b} {a, c} {a, d} {c, e} a {b, e} c d

π4 = 8 2 4 0 1 3 0 0

(1.4)
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Figure 1.5: P+
y3 for y3 = 82014011
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Figure 1.6: P−y3 for y3 = 82014011
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Figure 1.7: P+
y4 for y4 = 82401300
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Figure 1.8: P−y4 for y4 = 82401300

In what follows the following notion of a regular table (or regular array) will be
useful. In particular, a feasible array that is a prefix array of a regular string is said to
be regular. The following lemma characterizes a regular table/array and will be useful
for the analysis of our algorithm:

Lemma 2 ([CRSW14]) Let Py = (V,E) be a prefix graph of a feasible array y. Then

y is regular if and only if every edge of P−y joins two vertices in disjoint connected

components of P+
y .

So as to discuss the lexicographical ordering of strings on an ordered alphabet Σ,
we need first of all a definition of the order of two letters:

Definition 19 Suppose two letters λ and µ are given, where

λ = {λ1, λ2, . . . , λj}, µ = {µ1, µ2, . . . , µk},
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with λh ∈ Σ for every h ∈ 1..j, µh ∈ Σ for every h ∈ 1..k. We assume without loss of

generality that j ≤ k, also that λh < λh+1 for every h ∈ 1..j−1 and µh < µh+1 for

every h ∈ 1..k−1. Then λ = µ if and only if λh = µh for every h ∈ 1..k and j = k;

while λ ≺ µ if and only if

(a) λh = µh for every h ∈ 1..j < k; or

(b) λh = µh for every h ∈ 1..h′ < j and λh′+1 < µh′+1.

Otherwise, µ ≺ λ.

Note that (λ = µ)⇒ (λ ≈ µ), but that λ ≈ µ implies neither equality nor an ordering
of λ and µ. We remark also that the definition of letter order given here is not the only
possible or useful one. For example, it would require {a, b, w, x, y, z} ≺ {a, c}, thus
arguably not placing sufficient emphasis on economy of letter selection in the alphabet.

Definition 20 Now suppose that two strings x1 = x1[1..n1] and x2 = x2[1..n2] on Σ

are given, where without loss of generality we assume that n1 ≤ n2. Then x1 = x2 if

and only if x1[h] = x2[h] for all h ∈ 1..n2 and n1 = n2; while x1 ≺ x2 if and only if

(a) x1[h] = x2[h] for every h ∈ 1..n1 < n2; or

(b) x1[h] = x2[h] for every h ∈ 1..h′ < n1 and x1[h′+1] ≺ x2[h′+1].

Otherwise, x2 ≺ x1.

To better illustrate the relation of strings defined and used in this article we present
the following examples:

• x1 = {a, c} {g, t} a ≺ x2 = {a, c} {g, t} {a, g}

• x1 = a {g, t} {a, c} {a, c, g} ≺ x2 = a {g, t} {a, t} a

• x1 = a {a, c, g} {a, c, g} {a, t} ≺ x2 = {a, c} g g {a, t}

where a < c < g < t.
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1.3 Algorithm REVENG

1.3.1 The Algorithm

The basic strategy of Algorithm REVENG, that constructs a lexicographically least
string x (initially empty) corresponding to a given feasible array y = y[1..n], is ex-
pressed by the main steps given below. Initially the alphabet Σ is empty (σ = 0), as
are the sets x[i], 1 ≤ i ≤ n.

(S1) Consider the edges (i, j) of E+ in increasing order of ni+j in order to add a
single letter to x[i], x[j], or both based on the following steps;

(S2) if, by virtue of previous assignments, x[i] ≈ x[j] (so neither is empty), there is
nothing to do — (i, j) can be skipped;

(S3) otherwise, for the current (i, j), determine a sequence

C = (λ1, i1), (λ2, i2), . . . , (λr, ir)

of all candidate assignments, where for every h ∈ 1..r, ih = i (respectively, j) if
λh ∈ x[j] (respectively, x[i]), and λ1 < λ2 < · · · < λr;

(S4) for the current h, determine whether or not the assignment

x[ih]← x[ih] ∪ {λh}

is “allowable” (that is, compatible with the neighbourhood of ih in E−) (detailed
illustration to follow in (DS4)) — if so, then perform the assignment, maintain-
ing the elements of x[ih] in their natural order;

(S5) if for no h is the assignment allowable, then assign a least new letter (drawn
WLOG from the set of positive integers) to both x[i] and x[j];

(S6) since it may be that after Steps (S1)-(S5) have been executed for every (i, j) ∈
E+, there still remain unassigned positions in x (that is, corresponding to iso-
lated vertices in P+), a final assignment of a least possible letter for these posi-
tions is required (see function LEAST(i, λmax) and Lemma 1.3.1).
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In order to implement this algorithm, several data structures need to be created,
maintained, and accessed:

(DS1) The edges of E+ are made accessible in increasing order for Step (S1) by a
radix sort of the positive edges (i, j) into a linked list L+ (i.e., the linked list L+

contains the edges of E+ in increasing order), whose entries occur in increasing
order of i and, within each i, in increasing order of j. The time requirement
is Θ(|E+|), thus O(n2) in the worst case, since E+ can contain Θ(n2) edges
[CRSW14].

(DS2) In order to implement Step (S4) of Algorithm REVENG, we need, for each po-
sition i ∈ 1..n, to have available a linked list of positions j such that (i, j) is
an edge of E−. This can be done by using E− to form a set of negative edges
that includes each (i, j) twice, both as (i, j) and as (j, i). Then in a preprocess-
ing step the entries in this set are radix sorted into an array N− = N−[1..n] of
n linked lists, such that for every i ∈ 1..n, N−[i] gives in increasing order all
the vertices j for which (i, j) ∈ E− (in other words, the neighbourhood of i in
E−). Since E− contains O(n) edges [CRSW14], this preprocessing step can be
accomplished in O(n) time.

(DS3) Steps (S2)-(S5) require that for each i ∈ 1..n, a linked list x[i] be maintained
of letters λ that have so far been assigned to x[i]. Each list is maintained in
increasing letter order, so that update, intersection, and union each require O(σ)

time, where σ = |Σ| is the (current) alphabet size. Since for regular strings each
x[i] has exactly one element, in this case processing time reduces to O(1).

(DS4) In Step (S4), in order to determine whether a proposed assignment of a let-
ter λh to a position i′h in x is allowable or not, we form a “forbidden” matrix
F [1..n, 1..σ] in which F [i, λ] = 1 if and only if λ ∈ x[i] is forbidden. F is
updated and used as follows:

– for each new letter λmax introduced in Step (S5), F [i, λmax] is initialized to
zero for all i ∈ 1..n;

– whenever an assignment x[i]
+← λ is made in Steps (S4) & (S5), set

F [j, λ]← 1 for every j ∈ N−[i] (procedure UPDATE F(i, λ)).
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Figures 1.9, 1.10 and 1.11 give pseudocode for Algorithm REVENG, function
LEAST and function UPDATE F, respectively.

procedure REVENG (P,x, n)

λmax ← 0; x← ∅n; F [1..n, 1..σ]← 0nσ

while top(L+) 6= ∅ do
(i, j)← pop(L+); C ← ∅ . i < j; ni+j a minimum
if x[i] ∩ x[j] = ∅ then

∀λ ∈ x[i] do C1
+← (λ, j) . ordered by λ

∀λ ∈ x[j] do C2
+← (λ, i) . ordered by λ

. Merge C1 and C2 into a single sequence ordered by λ.
C ← MERGE(C1, C2)

SET ← false

while top(C) 6= ∅ and not SET do
(λ, h)← pop(C)

if F [h, λ] 6= 1 then
x[h]

+← λ . maintain λ ordering
SET ← true; UPDATE F(h, λ)

if not SET then
λmax ← λmax+1

for h← 1 to n do F [h, λmax]← 0

x[i]
+← λmax; UPDATE F(i, λmax)

x[j]
+← λmax; UPDATE F(j, λmax)

for i← 1 to n do
if x[i] = ∅ then
. Identify the least letter λ that does not occur
. in any x[j] for which j ∈ N−[i].

λ← LEAST(i, λmax); λmax ← max(λ, λmax)

x[i]← λ

Figure 1.9: Given the preprocessing outlined in (DS1)-(DS2), Algorithm REVENG

computes x[1..n], the lexicographically least string corresponding to a given prefix
(feasible) graph P on n vertices.
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function LEAST(i, λmax)
B[1..λmax]← 0λmax

∀j ∈ N−[i] do
∀λ ∈ x[j] do

B[λ]← 1
λ← 1
while λ ≤ λmax and B[λ] = 1 do

λ← λ+1

Figure 1.10: Identify the least letter λ that does not occur in any x[j] for which j ∈
N−[i].

function UPDATE F(F, i, λ)
∀j ∈ N−[i] do

F [j, λ]← 1

Figure 1.11: Update the “forbidden” matrix F [1..n, 1..σ], whenever an assignment
x[i]

+← λ is made, set F [j, λ]← 1 for every j ∈ N−[i].

1.3.2 Correctness

Consider first the main while loop of Algorithm REVENG, in which the edges of E+

are considered in strict increasing (i, j) order. We see that new letters λmax are first
introduced at the leftmost possible positions in x. Thereafter, whenever a letter is
reused (λmax not increased), it is always the minimum possible letter consistent with
the least possible currently unfilled positions (i, j) that is used — by virtue of the fact
that the entries in C are maintained in increasing order of λ. Thus any automorphism
of the alphabet Σ other than the identity would yield a larger string. We conclude
that within the main while loop the assignments maintain lexicographical order ≺ as
defined in Section 1.2.

It may happen, however, that certain positions i in x remain empty, those corre-
sponding to isolated vertices i in P+. Assignments to these positions are handled by
the final for loop, which we now consider.

Lemma 1.3.1 A vertex i ∈ 1..n is isolated in P+ if and only if

(a) y[i] = 0 or i = 1; and
(b) for every j ∈ 2..n, y[j] < i; and
(c) for every j ∈ 1..i−1, j+y[j] ≤ i.
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Proof. First suppose that i is isolated. Then (a) must hold; otherwise, for i > 1

and y[i] > 0, there exists an edge (1, i) ∈ E+, a contradiction. If (b) does not hold,
there exists j > 1 such that y[j] = r ≥ i, implying x[1..r] ≈ x[j..j+r−1], hence
x[i] ≈ x[j+i−1], so that (i, j+i−1) ∈ E+, again a contradiction. Similarly, if (c)
does not hold, there exists j ∈ 1..i−1 such that y[j] = r with j+r > i. Consequently,
x[j..j+r−1] ≈ x[1..r] implying x[i] ≈ x[i−j+1], so that (i−j+1, i) ∈ E+, a
contradiction that establishes sufficiency.

Suppose then that conditions (a)-(c) all hold. If we assume that i = 1 in (a), then (b)
implies that for every j ∈ 2..n, y[j] = 0, so that E+ = ∅ and so every position i is
isolated. Otherwise, if y[i] = 0 for some i > 1, conditions (b) and (c) ensure that
position i is not contained in any matching range within x and is therefore isolated in
P+, as required.

Since in the main while loop new maximum letters λmax are introduced into pairs i
and j > i of positions in x that are determined by entries in y, it is an immediate con-
sequence of Lemma 1.3.1 that i must be less than any isolated vertex, in particular the
smallest one, imin, say. In other words, every letter assigned during the execution of the
main while loop occurs at least once to the left of imin in x. It follows that lexicograph-
ical order will be maintained if any required additional letters λmax+1, λmax+2, · · · are
assigned to an ascending sequence of positions in x determined by the isolated vertices
in P+. We have

Lemma 1.3.2 Given a prefix graph Py corresponding to a feasible array y, Algorithm

REVENG constructs a lexicographically least indeterminate string on a minimum al-

phabet whose prefix table π = y.

1.3.3 Asymptotic Complexity

The main while loop in Algorithm REVENG will be executed exactly |E+| times.
Within the loop the construction of C requires time proportional to |C| = |x[i]|+|x[j]|,
thus O(σ) in the worst case. The processing of C then also requires O(σ) time in the
worst case, except for the time required for UPDATE F. Each of the three calls of
UPDATE F corresponds to the assignment of a letter λ to a vertex i of P− and the
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ensuing update of F [i, λ], an event that can occur at most σ times for each edge in E−,
thus at most (σ × |E−|) times overall. Similarly, the for loop that initializes the F
array requires Θ(n) time for each of at most σ values of λmax.

We conclude that the worst-case time requirement for the while loop (Figure 1.9)
is O

(
σmax(|E+|, |E−|)

)
. As illustrated by the examples y = n0n−1 and y = n|n−

1| . . . |1, the bounds on these quantities are as follows: 0 ≤ |E+| ≤
(
n
2

)
and 0 ≤

|E−| ≤ n−1, while |E+|+|E−| ≥ n−1. As noted earlier, it was shown in [BSBW14]
that σ ≤ n+

√
n, with a further conjecture that σ ≤ n.

Turning our attention to the terminating for loop of Algorithm REVENG, we ob-
serve that for at most n executions of function LEAST, the binary array B of length
at most σ must be created, thus overall consuming O(σn) time. The nested ∀ loops
in LEAST set positions in B λ times for at most every edge in E−, again requiring at
most O(σn) time over all invocations of LEAST. Thus

Lemma 1.3.3 Algorithm REVENG requiresO(σn2) time in the worst case, where σ ≤
n+
√
n.

1.3.4 Example

Suppose y = 50210, so that E+ = 13, 14, 24 and E− = 12, 15, 25, 35.

• In E+ first consider edge 13, leading to assignments x[1] ← a, x[3] ← a, with
F [2, a] = F [5, a] = 1 since 12, 15 and 35 are edges of E−.

• Edge 14 of E+ leads to x[4] ← a and no new values in F , since vertex 4 is
isolated in E−.

• Edge 24 of E+ requires a new letter because F [2, a] = 1. Therefore we assign
x[2]← b and x[4]

+← b, while setting F [1, b] = F [5, b] = 1 because of the edges
21 and 25 in E−.

• Finally we deal with the isolated vertex 5 in E+ by setting x[5] ← c since
15 ∈ E− and x[1] = a, while 25 ∈ E− and x[2] = b.

The lexicographically least string is x = aba{a, b}c.
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1.3.5 Computational Experiments

To get an idea of how the algorithm behaves in practice, we have implemented Algo-
rithm REVENG and conducted a simple experimental study. A set of 1,000 feasible
arrays having lengths 10, 20, .., 100 has been randomly generated as follows. For each
feasible array y we randomly select a value for y[i], i ∈ [1..n] from within the range
[0..n − i + 1]. The experiments have been run on a Windows Server 2008 R2 64-bit
Operating System, with Intel(R) Core(TM) i7 2600 processor @ 3.40GHz having an
installed memory (RAM) of 8.00 GB. We have implemented Algorithm REVENG in
C# language using Visual Studio 2010. As is evident from Figure 1.12, the experi-
ments suggest that average case time also increases by a factor somewhat greater than
n2.
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Figure 1.12: Timing results for randomly-generated feasible arrays y.

1.4 Discussion

The high worst-case time complexity of the algorithm described here suggests room for
improvement. On the other hand, it is difficult to imagine an algorithm that could do
the same computation without considering all the edges of E+ and thus necessitating
Θ(n2) time for many instances of the prefix table π. Similarly, the requirement to
achieve a lexicographically least solution leads to a recurring dependence on alphabet
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size σ that expresses itself in the time complexity. Even though it may be true that
σ ≤ n, nevertheless it seems clear that σ can be much larger than in the regular case,
where it has been shown [CCR09, CRSW14] that σ ≤ dlog2 ne.

We have tried approaches that focus on E− rather than E+ as the primary data
structure, but without success. In particular, we have considered “triangles” i1ji2,
where both (i1, j) and (i2, j) are edges in E+, while (i1, i2) ∈ E−, a situation that
forces a string to be indeterminate. It turns out, however, that the number of such trian-
gles isO(n2). Similarly, the ingenious graph proposed in [BSBW14], whose chromatic
number is the minimum alphabet size σ of a string corresponding to a given prefix ta-
ble, has O(n2) vertices in the worst case.

At the same time, we have no proof that our algorithm is asymptotically optimal;
for example, an algorithm that could eliminate the σ factor in the complexity would
be of considerable interest. Also interesting would be an algorithm for indeterminate
strings that would execute in Θ(n) time on regular strings as a special case, thus match-
ing the algorithm of [CCR09]. More generally, we propose the study of indeterminate
strings (“strings” as we have called them here), their associated data structures (such
as the prefix table), and their applications as a promising research area in both combi-
natorics on words and string algorithms.
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Article: # 2

Computing Covers Using Prefix Tables

An indeterminate string x = x[1..n] on an alphabet Σ is a sequence of nonempty
subsets of Σ; x is said to be regular if every subset is of size one. A proper substring
u (a substring of x is a proper substring if it is not the empty word or x itself) of regular
x is said to be a cover of x iff for every i ∈ 1..n, an occurrence of u in x includes x[i].
The cover array γ = γ[1..n] of x is an integer array such that γ[i] is the longest cover
of x[1..i]. Fifteen years ago a complex, though nevertheless linear-time, algorithm was
proposed to compute the cover array of regular x based on prior computation of the
border array of x. In this article, we first describe a linear-time algorithm to compute
the cover array of regular x based on the prefix table of x. We then extend this result
to indeterminate strings.
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2.1 Introduction

The idea of a quasiperiod or cover of a string x was introduced almost a quarter-
century ago by Apostolico & Ehrenfeucht [AE90]: a proper substring u of x such that
every position in x lies within an occurrence of u. Thus, for example, u = aba is a
cover of x = ababaababa. In [AFI91] a linear-time algorithm was described to com-
pute the shortest cover of x; this contribution was followed by linear-time algorithms
to compute

• the shortest cover of every prefix of x [Bre92];

• all the covers of x [MS94, MS95];

• all the covers of every prefix of x [LS02].

A border of a string x is a possibly empty proper prefix of x that is also a suffix
of x. (Thus a cover of x is necessarily also a border of x.) In the border array
β = β[1..n] of the string x = x[1..n], β[i] is the length of the longest border of
x[1..i]. Since for β[i] 6= 0, β[β[i]] is the length of a border of x as well as the length
of the longest border of x[1..β[i]] [AHU74, Smy03], it follows that β provides all the
borders of every prefix of x. For example:

1 2 3 4 5 6 7 8 9 10

x = a b a b a b a a b a

β = 0 0 1 2 3 4 5 1 2 3

(2.1)

As shown in [LS02], the cover array γ has a similar cascading property, giving the
lengths of all the covers of every prefix of x in a compact form:

1 2 3 4 5 6 7 8 9 10

γ = 0 0 0 2 3 4 5 0 0 3

Here x[1..7] has covers u1 = x[1..5] = ababa and u2 = x[1..3] = aba, while
the entire string x has cover u2. The main result of [LS02] is an algorithm that com-
putes γ = γ[1..n] from β = β[1..n] in Θ(n) time, while making no reference to the
underlying string x.
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The results outlined above all apply to a regular string — that is, a string x such
that each entry x[i] is constrained to be a one-element subset of a given set Σ called
the alphabet. In this article, we show how to extend these ideas and algorithms to an
indeterminate string x — that is, such that each x[i] can be any nonempty subset of
Σ. Observe that every regular string is indeterminate.

The idea of an indeterminate string was first introduced in [FP74], then studied
further in the 1980s as a “generalized string” [Abr87]. Over the last 15 years Blanchet-
Sadri has written numerous papers on the properties of “strings with holes” (each x[i]

is either a one-element subset of Σ or Σ itself), together with a monograph on the
subject [BS08]; while other authors have studied indeterminate strings in their full
generality, together with related algorithms [BRS09, NRR12, HS03, HSW08, SW08,
SW09b, SW09a, CRSW14]. In the specific context of this article, Voráček & Melichar
[VM05] have done pioneering work on the computation of covers and related structures
in generalized strings using finite automata.

For indeterminate strings, equality of letters is replaced by the idea of a “match”
[HS03]: x[i] matches x[j] (written x[i] ≈ x[j]) if and only if x[i] ∩ x[j] 6= ∅, while
x ≈ y if and only if |x| = |y| and corresponding positions in x and y all match. It is
important to note that matching is nontransitive: b ≈ {b, c} ≈ c, but b 6≈ c.

It is [CRSW14] that provides the point of departure for our contribution, as we now
explain. The prefix table π = π[1..n] of x[1..n] is an integer array such that π[1] = n

and, for every i ∈ 2..n, π[i] is the length of the longest substring occurring at position
i of x that matches a prefix of x. Thus, for our example (2.1):

1 2 3 4 5 6 7 8 9 10

x = a b a b a b a a b a

π = 10 0 3 0 3 0 1 3 0 1

It turns out [BKS13] that the prefix table and the border array are “equivalent”
for regular strings; that is, each can be computed from x in linear time, and each can
be computed from the other, without reference to x, also in linear time. However,
for indeterminate strings, this is not true: the prefix table continues to determine all
the borders of every prefix of x, while the border array, due to the intransitivity of
matching, is no longer reliable in identifying borders shorter than the longest one.
Consider, for example:
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1 2 3

x = a {a, b} b

β = 0 1 2

Here x does not have a border of length β[β[3]] = 1; on the other hand, π = 320

correctly identifies all the borders of every prefix of x.
Moreover, it was shown in [CRSW14] that every feasible array — that is, every ar-

ray y = y[1..n] such that y[1] = n and for every i ∈ 2..n, y[i] ∈ 0..n−i+1 — is a prefix
table of some (indeterminate) string. Thus there exists a many-many correspondence
between all possible prefix tables and all possible indeterminate strings. Furthermore,
[SW08] describes an algorithm to compute the prefix table of any indeterminate string,
while [ARS15] gives an algorithm to compute a lexicographically least indeterminate
string corresponding to a given prefix table.

At this point let us discuss our motivation more precisely. First, realize that to
exploit the fullest functionality of a border array of an indeterminate string we need
to resort to the extended definition of the border array which in fact requires quadratic
space [HS03, NRR12, BRS09]: unlike the border array of a regular string, which is a
simple array of integers, the border array of an indeterminate string is an array of lists
of integers. Here at each position, the list gives all possible borders for that prefix. On
the other hand, the prefix array, even for the indeterminate string, remains a simple
one-dimensional array, just as for a regular string. It thus becomes of interest to make
use of the prefix table rather than the border array whenever possible, in order to extend
the scope of computations to indeterminate strings.

In Section 2.2 of this article, we describe a linear-time algorithm to compute the
cover array γ of a regular string x directly from its prefix table π. Then, Section 2.3
describes a limited extension of this algorithm to indeterminate strings. Finally, Sec-
tion 1.4 outlines future research directions, especially making use of prefix tables to
extend the utility and applicability of other data structures to indeterminate strings.

2.2 Prefix-to-Cover for a Regular String

In this section we describe our basic Θ(n)-time algorithm PCR to compute the cover
array γ = γ[1...n] of a regular string x = x[1..n] directly from its prefix table π =
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π[1..n]. In fact, as noted in the Introduction, γ actually provides all the covers of every
prefix of x. Central to our algorithm are the following definitions:

Definition 21 If, for a position i ∈ 1..n, π[i] > 0, then Ri = [i, i+π[i]−1] is said to

be the range at i of length π[i]; the ranges Ri and Ri′ , i′ > i, are connected if and

only if i′ ≤ i+π[i] < i′+π[i′].

Notably, in what follows, for the sake of brevity, we may slightly abuse the notation
Ri = [i, i+π[i]−1] by simply saying Ri = π[i].

Definition 22 Position j in π is said to be live at position i′ > j if and only if there

exists a sequence of h ≥ 1 connected ranges Ri1 , Ri2 , . . . , Rih , each of length at least

j, such that i1 ≤ j+1, ih+π[ih]−1 ≥ i′. Otherwise, j is said to be dead at i′.

Thus x[1..n] has a cover x[1..j], j < n, if and only if j is live at n and the final
connected range Rih satisfies ih+π[ih]−1 = n.

For a positive integer n, let [1, n] = {1, . . , n}. A set {[b1, e1], . . , [bh, eh]} of sub-
intervals of [1, n] is called a cover of interval [1, n], if

⋃h
i=1[bi, ei] = [1, n]. The size of

the cover is the number h of sub-intervals in it.
The strategy of Algorithm PCR (Figure 2.1) is to perform an on-line left-to-right

scan of π, identifying connected ranges Ri. This process may be complex. Within
range Ri there may exist two (or more) positions i1 > i and i2 > i1 that define ranges
Ri1 and Ri2 , both connected to Ri; of these, PCR processes Ri first, followed by Ri1 ,
then, if Ri1 and Ri2 are connected (they may not be), by Ri2 . For example, consider

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

x = b a b a b a b b a b a b a b a b a b a

π = 19 0 5 0 3 0 1 7 0 7 0 7 0 6 0 4 0 2 0

γ = 0 0 0 2 3 4 5 0 0 3 0 5 0 7 0 7 0 7 0

(2.2)

Here the pairs of ranges (R8, R10), (R8, R12) and (R10, R12) are all connected: PCR
will process positions 8–14 in R8, followed by 15–16 in R10, then 17–18 in R12 and
finally position 19 in R14.

Algorithm PCR processes each connected range Ri twice, first in left-to-right order,
beginning at position i′ = lastlim+1, where lastlim is the current rightmost position
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procedure PCR (π,γ)
γ[1..n]← 0n; maxlive[1..n]← 0n

lastlim← 1; i← 2
while lastlim < n do

j ← π[i]
if j = 0 then
. No range extends beyond lastlim, so 1, 2, . . . , i−1 are all dead.

if i > lastlim then
maxlive[i−1]← −1; lastlim← i

else
lim← i+j−1
if lim > lastlim then

j′ ← (lastlim+1)− i
. Initial setting of maxlive and γ.

for i′ ← lastlim+1 to lim do
j′ ← j′+1
if (maxlive[j′] = 0 and i′ ≤ 2j′)
or maxlive[j′] ≥ i′−j′ then

. j′ is a cover of x[1..i′].
maxlive[j′]← i′; γ[i′]← j′

else
. j′ is ruled out as a cover.

maxlive[j′]← −1
. Reset maxlive and γ in case of multiple covers.

for i′ ← lim downto lastlim+1 do
j′′ ← γ[j′]

. A cover of x[1..j′] is also a cover of x[1..i′].
while j′′ > 0 and 0 < maxlive[j′′] < i′ do

maxlive[j′′]← i′; γ[i′]← max(γ[i′], j′′)
j′′ ← γ[j′′]

j′ ← j′−1
lastlim← lim

i← i+1

Figure 2.1: Compute the cover array γ of a regular string x from its prefix table π.
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for which γ has already been determined, and ending at i′ = lim > lastlim, the
rightmost position in Ri. Corresponding to each i′ is the length j′ = i′−i+1 of the
prefix of Ri (hence also of x) that may extend a sequence of covering substrings of
length j′. In order to determine whether or not j′ is live at i′, PCR maintains an array
maxlive[1..n], using the following values:

maxlive[j′] = 0 : initial setting: position j′ not yet considered

i′ : j′ live at i′: x[1..i′] covered by x[1..j′]

−1 : j′ is (permanently) dead

However, it can happen thatmaxlive and γ are not correctly set by the left-to-right
scan of Ri:

We will use the notion γ1[i] = γ[i], 1 ≤ i ≤ n with γj[i] = γ[γj−1[i]] for every
j ≥ 2 such that γj−1[i] is defined and 1 ≤ γj−1[i] ≤ n.

Definition 23 ([LS02]) In the cover array γ, if there exists an integer k ≥ 1 and

positions i > j > 0 such that γk[i] = j, then j is said to be the kth ancestor of i in γ.

Thus the cover array determines a cover tree.

It may be that γ[i′] is set to zero because j′ is dead at i′, even though an ancestor of
j′ in the cover tree is live at i′; on the other hand, when γ[i′] = j′, so that ancestors of
j′ may also be live at i′, the maxlive values of the ancestors may need to be adjusted.
Thus a second right-to-left scan of Ri is required, in order to ensure that these updates
are correct.

For example, in (2.2), we need to ensure that maxlive[5] = maxlive[3] = 18,
since both 5 and 3 are live ancestors of 7. A more subtle example is given in (2.3),
where at position 19 we need to recognize that both 5 and 3 are live, even though 7 is
dead, so that later, at position 22, we can recognize that 3 is live:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

x = b a b a b a b b a b a b b a b a b a b b a b

π = 22 0 5 0 3 0 1 5 0 3 0 1 7 0 5 0 3 0 1 3 0 1

γ = 0 0 0 2 3 4 5 0 0 3 0 5 0 0 3 0 5 0 5 0 0 3

(2.3)
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Consider also

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

x = b a b a b a b b a b a b a b a b b a b a b b a b a b a b

π = 22 0 5 0 3 0 1 7 0 7 0 5 0 3 0 1 5 0 3 0 1 7 0 5 0 3 0 1

γ = 0 0 0 2 3 4 5 0 0 3 0 5 0 7 0 7 0 0 3 0 5 0 0 3 0 5 0 5

(2.4)

Thus, using n additional words of storage and a double scan of each connected
range, Algorithm PCR is able to compute γ. The time requirement is Θ(2n) plus the
time required by the internal while loop; this loop updates maxlive[j′] at most once
for each ancestral position j′ in the range, thus requiring a total O(n) time overall.
Hence we have the following result:

Theorem 2.2.1 Given the prefix table π of a regular string x = x[1..n], Algorithm

PCR correctly computes the cover array γ of x in Θ(n) time using an additional n

integers of space.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

s a b a a b a b a a b a a b a b a a b a b a b a
π 23 0 1 3 0 6 0 1 11 0 1 3 0 8 0 1 3 0 3 0 3 0 1
γ 0 0 0 0 0 3 0 3 0 5 6 0 5 6 0 8 9 10 11 0 8 0 3

Figure 2.2: The prefix and cover array of s = abaababaabaababaabababa.

s[1 . . c′]c c

Ri

s[1 . . c]

Ri′

s[1 . . c]

Ri′′

s[1 . . c] s[1 . . c]

c′

Ri′′′

s[1 . . c] s[1 . . c]

c′

Ri′′′′

s[1 . . c]

Figure 2.3: Showing two covers from γ(x), x = abaababaabaababaabababa (2.2)
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2.3 Extensions to Indeterminate Strings

It turns out that for indeterminate strings there are two natural analogues of the idea of
“cover”.

Definition 24 A string x = x[1..n] is said to have a sliding cover of length κ if and

only if

(a) x has a suffix v of length |v| = κ; and

(b) x has a proper prefix u, |u| ≥ |x|−κ, with suffix v′ ≈ v; and

(c) either u = v′ or else u has a cover of length κ.

A sliding cover requires that adjacent or overlapping substrings of x match, but
the nontransitivity of matching leaves open the possibility that nonadjacent elements
of the cover do not match. For example,

x = {a, b}c{a, c}{a, c}ca (2.5)

has a sliding cover of length κ = 2 because {a, b}c ≈ {a, c}{a, c} ≈ ca, even though
{a, b}c 6≈ ca.

However, note that the very concept of “regularity of a string” in some sense breaks
down when we consider the concept of a sliding cover: now the “cover” need not
actually “match” the area it is covering. In fact, the above concept even allows for a
string to be a cover of an indeterminate string without being a substring of the latter
at all! This motivates the idea of a rooted cover of length κ, where every covering
substring is required to match, not the preceding entry in the cover, but rather the prefix
of x of length κ. A rooted cover is defined simply by changing “suffix” to “prefix” in
part (b) of Definition 24. The example string (2.5) has no rooted cover, but the string
x′ = {a, b}c{a, c}{a, c}ac has both a sliding cover and a rooted cover of length 2.
Notably, in the literature, the concept of rooted cover is in fact used as the cover for an
indeterminate string [BRS09].
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2.3.1 Computing Rooted Covers

In this section we describe Algorithm PCInd (Fig. 2.4) to compute the set of rooted
covers Γ of a given indeterminate string x ∈ Σn directly from its prefix table. As will
be shown below, the algorithm runs in linear time on average and O(n2) time in the
worst case.

Algorithm PCInd maintains a list L to store the candidate rooted covers. The al-
gorithm also maintains an auxiliary push-down store D, which stores the list of dead
covers at each iteration i ∈ [2..n]. The push-down store D will be used for marking the
dead covers so as to delete them at the end of each iteration. Lastly, in order to deter-
mine whether or not the cover of length v is live at position i, the algorithm maintains
an array maxlive[1..n] the same as in Algorithm PCR.

Exploiting the fact that the rooted cover of an indeterminate string x is also a border
of it, the algorithm starts by identifying the set of candidate (rooted) covers as defined
below.

Definition 25 Let x ∈ Σn and let π[1..n] be its prefix array. Then the set of candidate

(rooted) covers L of the whole string x is:

L ⊆ π : where π[i] + i− 1 = n for 2 ≤ i ≤ n (2.6)

To populate the list of candidate covers, we start by computing the value max =

max(π[2..n]). Then the algorithm initializes the list L with the filtered entries from the
set {1, 2, ...,max}, such that L will only store the values that satisfies y[i] + i− 1 = n

for i ∈ [2..n].
During the execution of the main for loop, at each position i ∈ [2..n]. The algo-

rithm tests, for each candidate cover v in list L, whether or not v is active. Based on
the result of this test the algorithm appropriately updates the corresponding entry in the
maxlive array and marks the dead covers at position i, by storing those in D which
will be deleted at the end of each iteration using a while loop.

After computing the array maxlive (at the end of the main for loop), we can easily
identify and report the set of rooted covers of the whole string x simply by finding
all the entries in the array maxlive that have the value n (i.e., all entries of the list of
candidate covers that are still active).

Computing Covers Using Prefix Tables 72



73 2.3 Extensions to Indeterminate Strings

procedure PCInd(π,Γ)
Γ← φ; L← φ; maxlive[1..n]← 0n

max← max(π[2..n])
. fill the list L with the candidate covers from {1, 2, . . . ,max}
for i← 1 tomax do

. consider only border values
if π[i] + i− 1 = |s| then

L
+←− i

for i← 2 to n do
. D stores list of dead covers at position i
D← φ
for all (v ∈ L) do

. skip values of v > π[i]
if (v > π[i]) then

break
t← i+ v − 1
if ((maxlive[v] = 0 and t ≤ 2 ∗ v)

or (maxlive[v] ≥ t− v)) then
. cover v is still live
maxlive[v]← t

else
. cover v is dead
maxlive[v]← −1
. mark cover v for deletion
push(D)← v

. remove the dead covers from L

while top(D) 6= ∅ do
r ← pop(D)

L
−←− r

. report the rooted covers
for i← 1 to n do

if maxlive[i] = n then
Γ

+←− i

Figure 2.4: Compute all rooted covers of indeterminate string from its prefix array.

A final note regarding the use of the push-down store D is in order. The standard
approach, when the programming language in use allows it, is to delete some elements
from a list while iterating through it. This can be done either: (1) by iterating back-
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wards through the list and then deleting within the for loop, or (2) by identifying all
items that need to be deleted and marking them with a flag (in the first iteration), then
(in the second iteration) removing all those items which are flagged for deletion. How-
ever, in both cases (1) and (2), the algorithm must loop through all the items in the list
L after each iteration. Alternatively, keeping track of the items to remove in another
list (e.g., in D) and then, after all items have been processed, enumerating the remove
list (D) and removing each item from the list of candidate covers (L) requires only
looping through D.

2.3.2 Analysis

Finding the value max in π[2..n] can be done with a simple linear scan of the array π.
Computing the list L of candidate covers can be done in O(n) time. The main for loop
will be executed exactly n times.

Within the loop the checking of the condition whether a cover is active or not can be
done in constant time for a particular value and hence the total testing of live or dead
for all candidate covers requires time proportional to |L|, which is O(n) in the worst
case. Note that the list L tends to get smaller and smaller as the iteration continues,
because we keep removing dead covers from it after each iteration. However, the
complexity remains O(n) in the worst case (e.g., x = an).

Turning our attention to the while loop at the end of each iteration of the main for
loop, the processing of D to remove the dead covers also requires time proportional
to D, thus O(n) in the worst case since the total number of covers is bounded by n.
We conclude that the worst-case time requirement for the main for loop is O(n2). The
final for loop to report the list of rooted covers requires time proportional to |maxlive|
which is O(n). The algorithm requires linear extra space to store the lists maxlive, L
and D. So we have the following result:

Theorem 2.3.1 Given the prefix table π of an indeterminate string x = x[1..n], Al-

gorithm PCInd correctly computes the set of rooted covers of the whole string of x in

O(n2) time and linear space.

Finally, Bari et. al. [BRS09] proved that the expected number of borders of an
indeterminate string is bounded by a constant. Since, in the beginning of Algorithm
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PCInd we include only the borders in L, this means that the size of the list L and also
D is bounded by a constant. Therefore, based on the analysis presented above we can
conclude that Algorithm PCInd runs in linear time on average.

2.3.3 An Illustrative Example

Suppose π = {12, 3, 2, 1, 1, 7, 6, 1, 0, 3, 0, 1}. We have max = 7. The simulation of
the algorithm is shown in Fig. 2.5. The algorithm initializes the set L with the set of
candidate covers. Hence, we have L = {1, 3, 6, 7}. At iteration i = 6, we can see that
cover 3 becomes non-active, so the value maxlive[3] is set to −1 and the cover 3 is
removed from the set of candidate covers. Similarly, at iteration i = 10, the cover 1

becomes non-active, so the value maxlive[1] is set to −1 and the cover 1 is removed
from the set of candidate covers. After computing the array maxlive, the list of rooted
covers can be identified as all the positions i inmaxlivewheremaxlive[i] = n. So the
covers are 6 and 7 since maxlive[6] = 12 and maxlive[7] = 12. We have Γ = {6, 7}.

i maxlive L

2 {2, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0} {1, 3, 6, 7}
3 {3, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0} {1, 3, 6, 7}
4 {4, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0} {1, 3, 6, 7}
5 {5, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0} {1, 3, 6, 7}
6 {6, 0,−1, 0, 0, 11, 12, 0, 0, 0, 0, 0} {1, 6, 7}
7 {7, 0,−1, 0, 0, 12, 12, 0, 0, 0, 0, 0} {1, 6, 7}
8 {8, 0,−1, 0, 0, 12, 12, 0, 0, 0, 0, 0} {1, 6, 7}
9 {8, 0,−1, 0, 0, 12, 12, 0, 0, 0, 0, 0} {1, 6, 7}

10 {−1, 0,−1, 0, 0, 12, 12, 0, 0, 0, 0, 0} {6, 7}
11 {−1, 0,−1, 0, 0, 12, 12, 0, 0, 0, 0, 0} {6, 7}
12 {−1, 0,−1, 0, 0, 12, 12, 0, 0, 0, 0, 0} {6, 7}

Figure 2.5: The running values of Algorithm PCInd for a given string with prefix array
π = {12, 3, 2, 1, 1, 7, 6, 1, 0, 3, 0, 1}

2.3.4 The experiment

To get an idea of how the algorithm behaves in practice, we have implemented Al-
gorithm PCInd and conducted a simple experimental study. The experiments have
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been carried out on a Windows Server 2008 R2 64-bit Operating System, with Intel(R)
Core(TM) i7 2600 processor @ 3.40GHz having an installed memory (RAM) of 8.00
GB. The algorithm have been implemented in C# language using Visual Studio 2010.
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Figure 2.6: The average running time of the Algorithm PCInd.

We have run Algorithm PCInd on a set of 100 randomly generated prefix arrays
for each length n ∈ {100, 200, . . . , 100000} (averaged over 100 runs for each length)
and counted the average number of executions of the inner loop of the algorithm. The
resulting graph (Fig. 2.6) shows the average complexity of Algorithm PCInd fluctuat-
ing around n. Note that the values n2 in the graph are scaled down by 10, 000 (i.e., the
curves are showing n2/10, 000) to have a better view of the curves. The results show
that the run time of the algorithm is close to linear confirming the average case time
complexity of O(n).
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Article: # 3

Algorithms for Longest Common
Abelian Factors

In this article, we consider the problem of computing the longest common abelian
factor (LCAF) between two given strings. We present a simple O(σ n2) time algorithm,
where n is the length of the strings and σ is the alphabet size, and a sub-quadratic
running time solution for the binary string case, both having linear space requirement.
Furthermore, we present a modified algorithm applying some interesting tricks and
experimentally show that the resulting algorithm runs faster.
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3.1 Introduction

Abelian properties concerning words have been investigated since the very beginning
of the study of Formal Languages and Combinatorics on Words. Abelian powers were
first considered in 1961 by Erdős [Erd61] as a natural generalization of usual powers.
In 1966, Parikh [Par66] defined a vector having length equal to the alphabet cardinality,
which reports the number of occurrences of each alphabet symbol inside a given string.
Later on, the scientific community started referring to such a vector as the Parikh
vector. Clearly, two strings having the same Parikh vector are permutations of one
another and there is an abelian match between them.

Abelian properties of strings have recently grown tremendous interest among the
Stringology researchers and have become an involving topic of discussion in the re-
cent issues of the StringMasters meetings. Despite the fact that there are not so many
real life applications where comparing commutative sequence of objects is relevant,
abelian combinatorics has a potential role in filtering the data in order to find potential
occurrences of some approximate matches. For instance, when one is looking for typ-
ing errors in a natural language, it can be useful to select the abelian matches first and
then look for swap of adjacent or even near appearing letters. The swap errors and the
inversion errors are also very common in the evolutionary process of the genetic code
of a living organism and hence is often interesting from Bioinformatics perspective.
Similar applications can also be found in the context of network communications.

In this article, we focus on the problem of finding the Longest Common Abelian
Factor of two given strings. The problem is combinatorially interesting and analogous
to the Longest Common Substring (LCStr) problem for the usual strings. The LCStr
problem is a Historical problem and Dan Gusfield reported the following in his book
[Gus97, Sec. 7.4] regarding the belief of Don Knuth about the complexity of the
problem:

[...in 1970 Don Knuth conjectured a linear time algorithm for this problem
would be impossible.]

However, contrary to the above conjecture, decades later, a linear time solution for
the LCStr problem was in fact obtained by using the linear construction of the suffix
tree [Wei73, McC76, Ukk95]. For Stringology researchers this alone could be the
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motivation for considering LCAF from both algorithmic and combinatorics point of
view. However, despite a number of works on abelian matching, to the best of our
knowledge, this problem has never been considered until very recently when it was
posed in the latest issue of the StringMasters, i.e., StringMasters 2013. To this end,
this research work can be seen as a first attempt to solve this problem with the hope of
many more to follow.

A trivial brute-force solution of the LCAF problem for a fixed size alphabet has
O(n3) time and constant space complexity, where n is the length of the longest string.
In this article, we present a simple solution running in O(σ n2) time, where σ is the al-
phabet size. Then we present a sub-quadratic algorithm for the binary string case. Both
the algorithms have linear space requirement. Furthermore, we present a modified al-
gorithm applying some interesting tricks and experimentally show that the resulting
algorithm complexity can be reduced to O(n log n), then to O(n) time.

The rest of the article is organized as follows. In Sec. 3.2 we state some preliminary
definitions. In Sec. 3.3 we present the quadratic time solution. In Sec. 3.5 we discuss
some tricks and modify the above algorithm. We also report some experimental results
that show that the modified algorithm in fact runs faster. Sec. 3.4 presents the sub-
quadratic solution for the binary alphabet.

3.2 Preliminaries

Given a string s over the alphabet Σ = {α1, . . , ασ}, we denote by |s|αj the number of
αj’s in s, for 1 ≤ j ≤ σ. We define the Parikh vector of s as Ps = (|s|α1 , . . , |s|ασ).

In the binary case, we denote Σ = {0, 1}, the number of 0’s in s by |s|0, the number
of 1’s in s by |s|1 and the Parikh vector of s as Ps = (|s|0, |s|1). We now focus on
binary strings. The general alphabet case will be considered later.

For a given binary string s of length n, we define an n× n matrix Ms as follows.
Each row of Ms is dedicated to a particular length of factors of s. So, Row ` of Ms
is dedicated to `-length factors of s. Each column of Ms is dedicated to a particular
starting position of factors of s. So, Column i of Ms is dedicated to the position i of
s. Hence, Ms[`][i] is dedicated to the `-length factor that starts at position i of s and it
reports the number of 1’s of that factor. Now, Ms[`][i] = m if and only if the `-length
factor that starts at position i of s has a total of m 1’s, that is, |s[i . . i+ `− 1]|1 = m.
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We formally define the matrix Ms as follows.

Definition 26 Given a binary string s of length n, Ms is an n × n matrix such that

Ms[`][i] = |s[i . . i+`−1]|1, for 1 ≤ ` ≤ n and 1 ≤ i ≤ (n−`+1), and Ms[`][i] = 0,

otherwise.

In what follows, we will use Ms[`] to refer to Row ` of Ms. Assume that we are
given two strings x and y on an alphabet Σ. For the sake of ease, we assume that (with
out loss of generality) |x| = |y| = n. We want to find the length of a longest common
abelian factor between x and y.

Definition 27 Given two strings x and y over the alphabet Σ, we say that w is a

common abelian factor for x and y if there exist a factor (or substring) u in x and

a factor v in y such that Pw = Pu = Pv . A common abelian factor of the highest

length is called the Longest Common Abelian Factor (LCAF) between x and y. The

length of LCAF is referred to as the LCAF length.

For example, given A = ababba and B = aaabab, the LCAF = 4. One of such
length factor is abba having Pabba = (2, 2).

1 0 1 0 0 1
1 1 1 0 1
2 1 1 1
2 1 2
2 2
3

1 1 1 0 1 0
2 2 1 1 1
3 2 2 1
3 3 2
4 3
4

MA=ababba MB=aaabab

In this article, we study the following problem.

Problem 3.2.1 (LCAF Problem) Given two strings x and y over the alphabet Σ, com-

pute the length of an LCAF and identify some occurrences of an LCAF between x and

y.
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As has been mentioned in the introduction, trivial brute-force solution of the LCAF
problem for a fixed size alphabet has O(n3) time and constant space complexity, where
n is the length of the longest string. The steps of such an algorithm is given below.
Assume that the strings x and y of length n are given.

1: For ` ∈ [1 . . n]

2: For i ∈ [1 . . n− `+ 1]

3: Compute the Parikh vector Px[i..i+`−1]

4: For j ∈ [1 . . n− `+ 1]

5: Compute the Parikh vector Py[j..j+`−1]

6: If Px[i..i+`−1] is equal to Py[j..j+`−1]

7: Then LCAF = `

Now, suppose that the matrices Mx and My for the binary strings x and y have
been computed. Now we have the following easy lemma that will be useful for us later.

Lemma 3.2.2 There is a common abelian factor of length ` between x and y if and

only if there exists p, q such that 1 ≤ p, q ≤ n− `+ 1 and Mx[`][p] = My[`][q].

Proof. [Lemma 3.2.2] Suppose there exists p, q such that 1 ≤ p, q ≤ n − ` + 1 and
Mx[`][p] = My[`][q]. By definition this means |x[p . . p+`−1]|1 = |y[q . . q+`−1]|1.
So there is a common abelian factor of length ` between x and y. The other way is
also obvious by definition.

Clearly, if we have Mx and My we can compute the LCAF by identifying the
highest ` such that there exists p, q having 1 ≤ p, q ≤ n − ` + 1 and Mx[`][p] =

My[`][q]. Then we can say that the LCAF between x and y is the length ` and common
abelian factors of length ` are x[p . . p+ `− 1] and y[q . . q + `− 1].

We now generalize the definition of the matrix Ms for strings over a fixed size
alphabet Σ = {α1, . . , ασ} by defining an n× n matrix Ms of (σ − 1)-length vectors.
Ms[`][i] = V`,i, where V`,i[j] = |s[i . . i+ `−1]|αj , for 1 ≤ ` ≤ n, 1 ≤ i ≤ (n− `+ 1)

and 1 ≤ j < σ, and V`,i[j] = 0, otherwise. We will refer to the j-th element of the array
V`,i of the matrix Ms by using the notation Ms[`][i][j]. Notice that the last component
of a Parikh vector is determined by using the length of the string and all the other
components of the Parikh vector. Now, Ms[`][i][j] = m if and only if the `-length
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factor that starts at position i of s has a total of m αj’s, that is |s[i . . i+ `− 1]|αj = m.
Clearly, we can compute Ms[`] using the following steps.

1: For i = 1 to n− `+ 1 do the following
2: Ms[`][i] = (|s[i . . i+ `− 1]|α1 , . . , |s[i . . i+ `− 1]|ασ−1)

because we can compute |s[i + 1 . . i + 1 + ` − 1]|αj from |s[i . . i + ` − 1]|αj in
constant time by simply decrementing the s[i] component and incrementing the s[i+`]

one.

3.3 A Quadratic Algorithm

A simple approach for finding the LCAF length considers computing, for 1 ≤ ` ≤ n,
the Parikh vectors of all the factors of length ` in both x and y, i.e., Mx[`] and My[`].
Then, we check whether Mx[`] and My[`] have non-empty intersection. If yes, then
` could be the LCAF length. So, we return the highest such `. Moreover, if one knows
a Parikh vector having the LCAF length belonging to such intersection, a linear scan
of x and y produces one occurrence of such a factor. The asymptotic time complexity
of this approach is O(σ n2) and it requires O(σ n log n) bits of extra space. The basic
steps are outlined as follows.

1: For ` = 1 to n do
2: For i = 1 to n− `+ 1 do
3: compute Mx[`][i] and My[`][i]

4: If Mx[`]
⋂

My[`] 6= ∅ then
5: LCAF = `

It is easy to establish that, for fixed length `, one can compute all the Parikh vectors
in linear time and store them in O(σ n log n) bits [Par66]. Now once Mx and My

are computed, we simply need to apply the idea of Lemma 3.2.2. The idea is to check
for all values of ` whether there exists a pair p, q such that 1 ≤ p, q ≤ n − ` + 1 and
Mx[`][p] = My[`][q]. Then return the highest value of ` and corresponding values of
p, q.
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In the binary case, a Parikh vector is fully represented by just one arbitrary chosen
component. Hence, the set of Parikh vectors of binary factors is just a one dimension
list of integers that can be stored in O(n log n) bits, since we have n values in the
range [0 . . n]. The intersection can be accomplished in two steps. First, we sort the
Mx[`] and My[`] rows in O(n) time by putting them in two lists and using the classic
Counting Sort algorithm [CLRS01, Section 8.2]. Then, we check for a non empty
intersection with a simple linear scan of the two lists in linear time by starting in
parallel from the beginning of the two lists and moving forward element by element on
the list having the smallest value among the two examined elements. A further linear
scan of Mx[`] and My[`] will find the indexes p, q of an element of the not empty
intersection. This gives us an O(n2) time algorithm requiring O(n log n) bits of space
for computing an LCAF of two given binary strings.

In the more general case of alphabet greater than two, comparing two Parikh vec-
tors is no more a constant time operation and checking for empty intersections is not a
trivial task. In fact, sorting the set of vectors requires a full order to be defined. We can
define an order component by component giving more value to the first component,
then to the second one and so on. More formally, we define λ < µ, with λ, µ ∈ Nσ, if
there exist 1 ≤ k ≤ σ such that λ[k] < µ[k] and, for any i with 1 ≤ i < k, λ[i] = µ[i].
Notice that comparing two vectors will take O(σ) time.

Now, one can sort two lists of n vectors of dimension σ−1, i.e., Mx[`] and My[`],
in O(σ n) by using n comparisons taking O(σ) each. Therefore, now the algorithm
runs in O(σ n2) time using O(σ n log σ) bits of extra space.

3.4 A Sub-quadratic Algorithm for the Binary Case

In Section 3.3, we have presented an O(n2) algorithm to compute the LCAF between
two binary strings and two occurrences of common abelian factors, one in each string,
having LCAF length. In this section, we show how we can achieve a better running time
for the LCAF problem. We will make use of the recent data structure of Moosa and
Rahman [MR10] for indexing an abelian pattern. The results of Moosa and Rahman
[MR10] is presented in the form of following lemmas with appropriate rephrasing to
facilitate our description.
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Lemma 3.4.1 (Interpolation lemma). If s1 and s2 are two substrings of a string s on

a binary alphabet such that ` = |s1| = |s2|, i = |s1|1, j = |s2|1, j > i+ 1, then, there

exists another substring s3 such that ` = |s3| and i < |s3|1 < j.

Lemma 3.4.2 Suppose we are given a string s of length n on a binary alphabet. Sup-

pose that maxOne(s, `) and minOne(s, `) denote, respectively, the maximum and

minimum number of 1’s in any substring of s having length `. Then, for all 1 ≤ ` ≤ n,

maxOne(s, `) and minOne(s, `) can be computed in O(n2/ log n) time and linear

space.

A result similar to Lemma 3.4.1 is contained in the paper of Cicalese et al. [CFL09,
Lemma 4], while the result of Lemma 3.4.2 has been discovered simultaneously and
independently by Moosa and Rahman [MR10] and by Burcsi et al. [BCFL10]. No-
tably, in [MR12], a slightly better data structure has been presented which assumes
word RAM operations. In addition to the above results we further use the following
lemma.

Lemma 3.4.3 Suppose we are given two binary strings x,y of length n each. There

is a common abelian factor of x and y having length ` if and only if maxOne(y, `) ≥
minOne(x, `) and maxOne(x, `) ≥ minOne(y, `).

Proof. Assume that minx = minOne(x, `), maxx = maxOne(x, `), miny =

minOne(y, `), maxy = maxOne(y, `). Now by Lemma 3.4.1, for all minx ≤
kx ≤ maxx, we have some `-length substrings A(kx) of x such that |x(kx)|1 = kx.
Similarly, for all miny ≤ ky ≤ maxy , we have some `-length factors y(k) of y such
that |y(ky)|1 = ky . Now, consider the range [minx . .maxx] and [miny . .maxy].
Clearly, these two ranges overlap if and only if maxy 6< minx and maxx 6< miny .
If these two ranges overlap then there exists some k such that minx ≤ k ≤ maxx

and miny ≤ k ≤ maxy . Then we must have some substring `-length factors x(k)

and y(k). Hence the result follows.

Let us now focus on devising an algorithm for computing the LCAF given two bi-
nary strings x and y of length n. For all 1 ≤ ` ≤ n, we compute maxOne(x, `),
minOne(x, `),maxOne(y, `) andminOne(y, `) in O(n2/ log n) time (Lemma 3.4.2).
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Now we try to check the necessary and sufficient condition of Lemma 3.4.3 for all
1 ≤ ` ≤ n starting from n down to 1. We compute the highest ` such that

[minOne(x, `) . .maxOne(x, `)] and [minOne(y, `) . .maxOne(y, `)] overlap.

Suppose that K is the set of values that is contained in the above overlap, that is

K = { k | k ∈ [minOne(x, `) . .maxOne(x, `)] and

k ∈ [minOne(y, `) . .maxOne(y, `)] }.

Then by Lemma 3.4.3, we must have a set S of common abelian factors of x,y such
that for all s ∈ S, |s| = `. Since we identify the highest `, the length of a longest
common factor must be `, i.e., LCAF length is `. Additionally, we have further identified
the number of 1’s in such longest factors in the form of the set K. Also, note that for a
k ∈ K we must have a factor s ∈ S such that |s|1 = k.

Now let us focus on identifying an occurrence of the LCAF. There are a number of
ways to do that. But a straightforward and conceptually easy way is to run the folklore
`-window based algorithm in [MR10] on the strings x and y to find the `-length factor
with number of 1’s equal to a particular value k ∈ K.

The overall running time of the algorithm is deduced as follows. By Lemma 3.4.2,
the computation of maxOne(x, `), minOne(x, `), maxOne(y, `) and minOne(y, `)
can be done in O(n2/ log n) time and linear space. The checking of the condition of
Lemma 3.4.3 can be done in constant time for a particular value of `. Therefore, in
total, it can be done in O(n) time. Finally, the folklore algorithm requires O(n) time
to identify an occurrence (or all of them) of the factors. In total the running time is
O(n2/ log n) and linear space.

3.5 Towards a Better Time Complexity

In this section we discuss a simple variant of the quadratic algorithm presented in the
previous section. We recall that the main idea of the quadratic solution is to find the
greatest ` with Mx[`]

⋂
My[`] 6= ∅. The variant we present here is based on the

following two simple observations:
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1. One can start considering sets of factors of decreasing lengths;

2. When an empty intersection is found between Mx[`] and My[`], some rows
can possibly be skipped based on the evaluation of the gap between Mx[`] and
My[`].

Algorithm 1 Compute LCAF of x and y using the skip trick.

1: function COMPUTELCAF(x,y)
2: set ` = n = |x|
3: while (` ≥ 0) do
4: parx = Px[1..`]

5: pary = Py[1..`]

6: for (i = 1; i ≤ (n− `+ 1); i++) do
7: if i == 1 then
8: SetMinMax(parx, pary)

9: else
10: parx = Slide(parx,x, `, i)

11: pary = Slide(pary,y, `, i)

12: push(parx, listx)

13: push(pary, listy)

14: UpdateMinMax(parx, pary)

15: sort listx, listy
16: if listx

⋂
listy 6= ∅ then

17: return `

18: ` = `− Skip(minx,maxx,miny,maxy)

19: return 0

20: end function

21: function SLIDE(par, s, `, i)
22: par[s[i]]- -
23: par[s[i+ l − 1]]++
24: return par
25: end function
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26: function SKIP(minx,maxx,miny,maxy)
27: gap = 1
28: for (j = 1; j ≤ σ; j++) do
29: if minx[j] > maxy[j] then
30: tmp = minx[j]−maxy[j]|
31: else
32: tmp = miny[j]−maxx[j]|
33: if tmp > gap then
34: gap = tmp

35: return gap
36: end function
37: function UPDATEMINMAX(parx, pary)
38: for (c = 1; c ≤ σ; c++) do
39: if parx[c] < minx[c] then
40: minx[c] = parx[c]

41: if pary[c] < miny[c] then
42: miny[c] = pary[c]

43: if parx[c] > maxx[c] then
44: minx[c] = parx[c]

45: if pary[c] > maxy[c] then
46: miny[c] = pary[c]

47: end function
48: function SETMINMAX(parx, pary)
49: minx = parx
50: miny = pary
51: maxx = parx
52: maxy = pary
53: end function

The first observation is trivial. The second observation is what we call the skip trick.
Assume that Mx[`] and My[`] have been computed and Mx[`]

⋂
My[`] = ∅ have

been found. It is easy to see that, for any starting position i and for any component j
(i.e., a letter aj), we have

Mx[`][i][j]− 1 ≤Mx[`− 1][i][j] ≤Mx[`][i][j] + 1
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Exploiting this property, we keep track, along the computation of Mx[`] and My[`],
of the minimum and maximum values that appear in Parikh vectors of factors of length
`. We use four arrays indexed by σ, namely minx,maxx,miny,maxy . Notice
that such arrays do not represent Parikh vectors as they just contain min and max
values component by component. Formally, minx[j] = min{Mx[`][i][j]}, for any
i = 1, . . `+ 1. The others have similar definitions.

We compare, component by component, the range of aj in x and y and we skip as
many rows as

maxσ−1
j=1 (miny[j]−maxx[j]),

assumingminy[j] ≥ maxx[j] (swap x and y, otherwise). The modified algorithm
is reported in Algorithm 1.

Note that the tricks employed in the modified algorithm are motivated by consider-
ing the expected value of LCAF for an independent and identically distributed (i.i.d.)
source. It is exponentially close to n according to classic Large Deviation results
[Ell85]. The same result is classically extended to ergodic source and it is meant to
be a good approximation for real life data when the two strings follow the same prob-
ability distribution. Now, we have the following conjecture.

Conjecture 3.5.1 The expected length of LCAF between two strings x, y drown from

an i.i.d. source is LCAFavg = n − O(log n), where |x| = |y| = n, and the number of

computed Rows in Algorithm 1 is O(log n) in average.

Finally, we will make use of one more trick to speed up the computation ofM rows,
except the first one, in Algorithm 2. When our algorithm moves from row M [`+ 1] to
row ofM [`], instead of computing the new row from scratch inO(n) time, we compute
the first vectorM [`][1] of the new row inO(1) time by using the first vectorM [`+1][1]

of the previous computed row. Subsequently, we slide a window of length ` through
the row in n − ` constant time steps while we compute M [`][j + 1], 1 ≤ j < n − `.
Function StepDown in Algorithm 2 is in charge of computing the first Parikh vector of
a new row. To computeM [`][1] usingM [`+1][1], we have to subtract 1 from the vector
M [`+ 1][1] at index c = s[`+ 1], that is the last character of the factor w = s[1..`+ 1]

of length `+ 1 starting at position 1 in s.
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For example, consider s = aacgcctaatcg, we have M [12][1] = (4a, 4c, 2g, 2t)

and M [11][1] = (4a, 4c, 1g, 2t), i.e., (4a, 4c, 2g, 2t) minus 1g. Then, Function Slide in
Algorithm 2 computesM [`][j+1] fromM [`][j], for 1 ≤ j < n−`, in order to compute
the whole row M [`]. Since we now use the first vector of the previous computed row
to compute a new row in M , we have to compute first vector even when we skipping
some rows. Hence, lines 24 − 29 of Algorithm 2 compute the first vector M [`][1] of
row M [`] when ` is a row that is to be skipped.

Algorithm 2 Compute LCAF of x and y using the first vector trick.

1: function COMPUTELCAF(x,y)
2: set ` = n = |x|
3: firstx = Px[1..`]

4: firsty = Py[1..`]

5: while (` ≥ 0) do
6: parx = firstx = Stepdown(firstx,x, `)
7: pary = firsty = Stepdown(firsty,y, `)
8: for (i = 1; i ≤ (n− `+ 1); i++) do
9: if i == 1 then

10: SetMinMax(parx, pary)
11: else
12: parx = Slide(parx,x, `, i)
13: pary = Slide(pary,y, `, i)

14: push(parx, listx)
15: push(pary, listy)
16: UpdateMinMax(parx, pary)

17: sort listx, listy
18: if listx

⋂
listy 6= ∅ then

19: return `
20: skip = Skip(minx,maxx,miny,maxy)
21: while skip > 1 do
22: ` - -
23: skip - -
24: firstx = Stepdown(firstx,x, `)
25: firsty = Stepdown(firsty,y, `)

26: ` - -
27: return 0
28: end function
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29: function STEPDOWN(par, s, `)
30: . We assume x and y have a terminal symbol ($).
31: if s[`] 6= $ then
32: par[s[`]] - -
33: return par
34: end function

3.6 Experiments

We have conducted some experiments to analyze the behaviour and running time of
our skip trick algorithm in practice. The experiments have been run on a Windows
Server 2008 R2 64-bit Operating System, with Intel(R) Core(TM) i7 2600 processor
@ 3.40GHz having an installed memory (RAM) of 8.00 GB. Codes were implemented
in C# language using Visual Studio 2010.

Our first experiment has been carried out principally to verify our rationale be-
hind using the skip trick. We experimentally evaluated the expected number of rows
computed in average by using the skip trick of Algorithm 1.
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Figure 3.1: Plot of the average number of rows computed executing Algorithm 1 on all
the strings of length 2, 3, . . . 16 over the binary alphabet.

Algorithms for Longest Common Abelian Factors 90



91 3.6 Experiments

Figure 3.1 shows the average number of rows computed executing Algorithm 1 on
all the strings of length 2, 3, . . . 16 over the binary alphabet. Naive method line refers
to the number of rows used without the skip trick, starting from ` = n and decreasing `
by one at each step. Notice that the skip trick line is always below the log n line. Figure
3.1 also illustrates that the computed rows, starting from ` = n to ` = n− log n, sum
up to O(log n).

On the other hand, to reach a conclusion in this aspect we would have to increase
the value of n in our experiment to substantially more than 64; for n = 64,

√
n is

just above log n. Regrettably, limitation of computing power prevents us from doing
such an experiment. So, we resort to two more (non-exhaustive) experimental setup as
follows to check the practical running time of the skip trick algorithm.
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Figure 3.2: Plot of the average number of rows computed executing Algorithm 1 on
both genomic and random datasets over the DNA alphabet.

To this end, we conduct our experiments on two datasets, real genomic data and
random data. We have taken a sequence (S) from the Homo sapiens genome (250MB)
for the former dataset. The latter dataset is generated randomly on the DNA alphabet
(i.e., Σ = {a, c, g, t}). In particular, here we have run the skip trick algorithm on
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2 sets of pairs of strings of lengths 10, 20, .., 1000. For the genomic dataset, these
pairs of strings have been created as follows. For each length `, ` ∈ {10, 20, .., 1000}
two indexes i, j ∈ [1..|x| − `] have been randomly selected to get a pair of strings
S[i..i + ` − 1], S[j..j + ` − 1], each of length `. A total of 1000 pairs of strings have
been generated in this way for each length ` and the skip trick algorithm has been
run on these pairs to get the average results. On the other hand for random dataset,
we simply generate the same number of strings pairs randomly and run the skip trick
algorithm on each pair of strings and get the average results for each length group. In
both cases, we basically count the numbers of computed rows.

Figure 3.2 shows the average number of rows computed executing Algorithm 1
on both genomic and random datasets over the DNA alphabet (i.e., Σ = {a, c, g, t}).
Notice that the skip trick line is always below the log n line. Figure 3.2 shows that the
computed rows of x,y, starting from ` = n to ` = n− log n, sum up to O(log n).
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Figure 3.3: Plot of the average number of rows computed executing Algorithm 2 on
sequences taken from the Homo sapiens genome.
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Figure 3.4: Plot of the average number of rows computed executing Algorithm 2 on
randomly generated sequences over the alphabet Σ = {a, c, g, t}.

We have further experimentally evaluated the computation of the first vector and
the expected number of rows computed in average by employing the first vector trick
(Algorithm 2). We have used the same experimental setup as the above. The average
number of rows and of the first vector are counted by executing Algorithm 2 on both
genomic and random datasets over the DNA alphabet (i.e., Σ = {a, c, g, t}). The
results are illustrated in Figures 3.3 & 3.4. In both cases, the figures report the average
count of computed rows (Number of Rows), the average count of the first vector (First
Vector) and the summation of these two counts (Total). It also shows the n log n curve.
Both of the figures suggest that the algorithm computed the first vector of the visited
rows in O(n) time and the total running time for Algorithm 2 would be O(n log n)

in practice. Since any row computation takes O(σ n), this suggests an average time
complexity of O(σ n log n), i.e., O(n log n) for a constant alphabet.
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Article: # 4

Maximal Palindromic Factorization

A palindrome is a symmetric string, phrase, number, or other sequence of units
sequence that reads the same forward and backward.

We present an algorithm for maximal palindromic factorization of a finite string
by adapting an Manacher algorithm [Man75] for detecting all occurrences of maximal
palindromes in a string in linear time to the length of the given string then using the
breadth first search (BFS) to find the maximal palindromic factorization set.
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4.1 Introduction

A palindrome is a symmetric word that reads the same backward and forward. The
detection of palindromes is a classical and well-studied problem in computer science,
language theory and algorithm design with a lot of variants arising out of different prac-
tical scenarios. String and sequence algorithms related to palindromes have long drawn
attention of stringology researchers [BG95, Gal76, HCC09, KK09, Man75, ML08,
MII+09, PB02]. Interestingly, in the seminal Knuth-Morris-Pratt paper presenting
the well-known string matching algorithm [KMP77], a problem related to palindrome
recognition was also considered. In word combinatorics, for example, studies have
investigated the inhabitation of palindromes in Fibonacci words or Sturmian words in
general [Dro95], [DP99], [Gle06].

Manacher discovered an on-line sequential algorithm that finds all initial palin-
dromes in a string [Man75]. A string s[1 . . n] is said to have an initial palindrome of
length k if the prefix s[1 . . k] is a palindrome. Gusfield gave a linear-time algorithm to
find all maximal palindromes (a notion we define shortly) in a string [Gus97]. Porto
and Barbosa gave an algorithm to find all approximate palindromes in a string [PB02].
Matsubara et al. solved in [MII+09] the problem of finding all palindromes in SLP
(Straight Line Programs)-compressed strings. Additionally, a number of problems on
variants of palindromes have also been investigated in the literature [HCC09, CHC10,
KK09]. Very recently, I et al. [ISM11] worked on pattern matching problems and
Chowdhury et al. [CHIR14] studied the longest common subsequence problem involv-
ing palindromes.

Generic factorization process plays an important role in String Algorithms. The
obvious advantage of such process is that when processing a string online, the work
done on an element of the factorization can usually be skipped because already done
on its previous occurrence [CIS08]. A typical application of this concept resides in
algorithms to compute repetitions in strings, such as Kolpakov and Kucherov algorithm
for reporting all maximal repetitions [KK99], Lyndon factorization [Mel96], have been
applied in: string matching [CP91, BGM11], the Burrows-Wheeler Transform [BW94]
and Lempel-Ziv factorization [ZL77] have been applied in: data compression [CDP05,
GS12] and indeed it seems to be the only technique that leads to linear-time algorithms
independently of the alphabet size [CIS08].
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Words with palindromic structure are important in DNA and RNA sequences, Bi-
ologists believe that palindromes play an important role in regulation of gene ac-
tivity and other cell processes because these are often observed near promoters, in-
trons and specific untranslated regions. Palindromic structure in DNA and RNA se-
quences reflects the capacity of molecules to fold [KK09], i.e. to form double-stranded
stems, which insures a stable state of those molecules with low free energy. Iden-
tifying palindromes could help in advancing the understanding of genomic instabil-
ity [Cho05b], [LSvD+09], [TBYT06]. Finding common palindromes in two gene
sequences can be an important criterion to compare them, and also to find common
relationships between them. However, in those applications, the reversal of palin-
dromes should be combined with the complementarity concept on nucleotides, where
c is complementary to g and a is complementary to t (or to u, in case of RNA). More-
over, gapped palindromes are biologically meaningful, i.e. contain a spacer between
left and right copies (see [KK09]).

Therefore, detecting palindromes in DNA sequences is one of the challenging prob-
lems in computational biology. Researchers have also shown that based on palin-
drome frequency, DNA sequences can be discriminated to the level of species of ori-
gin [LBLM11]. So, finding common palindromes in two DNA sequences can be an
important criterion to compare them, and also to find common relationships between
them.

4.2 Notations and terminology

A palindrome is a symmetric string that reads the same forward and backward. More
formally, s is called a palindrome if and only if s = s̃, where s̃ is the reverse of s.
The empty string ε is assumed to be a palindrome. Also note that a single character
is a palindrome by definition. The following is another (equivalent) definition of a
palindrome which indicates that palindrome can be of both odd and even length. A
string s is a palindrome if s = uaũwhereu is a string and a is either a single character
or the empty string ε. Clearly, if a is a single character, then s is a palindrome having
odd length; otherwise, it is of even length. The radius of a palindrome s is |s|

2
. In

the context of a string, if we have a substring that is a palindrome, we often call it a
palindromic substring. Given a string s of length n, suppose s[i . . j],with 1 ≤ i ≤
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j ≤ n is a palindrome, i.e., s[i . . j] is a palindromic substring of s. Then, the center of
the palindromic substring s[i . . j] is i+j

2
. A palindromic substring s[i . . j] is called the

maximal palindrome at the center i+j
2

if no other palindromes at the center i+j
2

have a
larger radius than s[i . . j], i.e., if s[i − 1] 6= s[j + 1]. A maximal palindrome s[i . . j]

is called a suffix (prefix resp.) palindrome of s if and only if j = n (i = 1 resp.). We
denote by (c, r)s the maximal palindromic factor of a string s whose center is c and
radius is r; we usually drop the subscript and use (c, r) when the string s is clear from
the context. The set of all center-distinct maximal palindromes of a string s is denoted
by MP(s). Further, for the string s, we denote the set of all prefix palindromes (suffix

palindromes) as PP(s) (SP(s)). We use the following result from [Man75, Gus97].

Theorem 4.2.1 ([Man75, Gus97]) For any string s of length n, MP(s) can be com-

puted in O(n) time.

In what follows, we assume that the elements of MP(s) are sorted in increasing or-
der of centers c. Actually, the algorithm of [Man75] computes the elements of MP(s)

in this order. Clearly, the set PP(s) and SP(s) can be computed easily during the
computation of MP(s).

Suppose, we are given a set of strings S = {s1, s2, . . , sk}, such that si is a sub-
string of s and 1 ≤ i ≤ k. A factorization F of s with respect to S refers to a
decomposition of s such that s = si1si2 . . si` where sij ∈ S and the number of the
factors ` is minimum. In this context the set S is referred to as the factorization set. In
this article, we tackle the following problem.

Problem 4.2.2 (Maximal Palindromic Factorization (MPF)) Given a string s, find

the maximal palindromic factorization of s, that is a factorization of s where the fac-

torization set is MP(s).

Sometimes MPF doesn’t produce any factorization for example abaca. Even when
it produces factorization, it may consist of more than the minimum number of palin-
dromic (maximal or not) substrings into which the string can be factored, for example
abbaabaabbba can be factored into abba, aba and abbba but cannot be factored into
fewer than four maximal palindromic substrings.
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4.3 The Algorithm

In this section we present an algorithm to compute the maximal palindromic factor-
ization of a given string s. We first present some notions required to present our algo-
rithm. First of all, recall that we use MP(s) to denote the set of center distinct maximal
palindromes of s. We further extend this notation as follows. We use MP(s)[i], where
1 ≤ i ≤ n to denote the set of maximal palindromes with center i.

Proposition 4.3.1 The position i could be the center of at most two maximal palin-

dromic factors, therefore; MP(s)[i] contains at most two elements, where 1 ≤ i ≤ n,

hence; there are at most 2n+ 1 elements in MP(s).

On the other hand, we use MPL(s)[i] to denote the set of the lengths of all maximal
palindromes ending at position i,where 1 ≤ i ≤ n in s.

MPL(s)[i] = {2`− 1 |s[i− `+ 1 . . i+ `− 1] ∈MP(s)}

∪ {2`′ |s[i− `′ . . i+ `′ − 1] ∈MP(s)} (4.1)

where 1 ≤ i ≤ n, with 2` and 2`′ + 1 are the lengths of the odd and even palindromic
factors respectively.

Proposition 4.3.2 The set MPL(s) (Equation 4.1) can be computed in linear time

from the set MP(s).

Now we define the list U(s) such that for each 1 ≤ i ≤ n, U(s)[i] stores the
position j such that j + 1 is the starting position of a maximal palindromic factors
ending at i and j is the end of another maximal palindromic substring.

Clearly, this can be easily computed once we have MPL(s) computed.

U[i][j] = i−MPL(s)[i][j] (4.2)

One can observe, from Proposition 4.3.1, that the sets MPL(s) and U(s) contain at
most 2n+ 1 elements.
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Given the list U(s) for a string s, we define a directed graph Gs = (V,E) as
follows. We have V = {i | 1 ≤ i ≤ n} and E = {(i, j) | j ∈ U(s)[i]}. Note that (i, j)

is a directed edge where the direction is from i to j. Now we can present the steps of
our algorithm for computing the maximal palindromic factorization of a given string s
of length n. The steps are as follows.

MPF Algorithm: Maximal Palindromic Factorization Algorithm
Input: A String s of length n
Output: Maximal Palindromic Factorization of s

1: Compute the set of maximal palindromes MP(s) and identify the set of prefix
palindromes PP(s).

2: Compute the list MPL(s).
3: Compute the list U(s).
4: Construct the graph Gs = (V,E).
5: Do a breadth first search on Gs assuming the vertex n as the source.
6: Identify the shortest path P ≡ n  v such that v is the end position of a palin-

drome belonging to PP(s). Suppose P ≡ 〈n = pk pk−1 . . p2 p1 = v〉.
7: Return s = s[1 . . p1]s[p1 + 1 . . p2] . . s[pk−1 + 1 . . pk].

4.4 Analysis

CORRECTNESS:
We now have the following theorem which proves the correctness of MPF Algorithm.

Theorem 4.4.1 (Correctness and Running time) Given a string s of length n, MPF

Algorithm correctly computes the maximal palindromic factorization of s in O(n) time.

Proof. We first focus on an edge (i, j) ∈ E of the graph Gs constructed at Step 4 of
the algorithm. By definition, this means the following:

1. There is a maximal palindrome pali having length `i (say) ending at position i.

2. There is a maximal palindrome palj having length `j (say) ending at position j.

Maximal Palindromic Factorization 99



100 4.4 Analysis

3. i > j.

4. i− `i = j.

Since, by definition, each directed edge (i, j) ∈ E is such that i > j, so, for a path
P ≡ 〈pk pk−1 . . p2 p1〉 in Gs, we always have pk > pk−1 > . . > p1. A path
P ≡ 〈pk pk−1 . . p2 p1〉 can be seen as corresponding to a substring of s formed by
concatenation of maximal palindromes as follows.

Each edge (pi, pi−1) ∈ P corresponds to a palindromic substring s[pi−1]s[pi−1 +

1]s[pi−1 + 2] . . s[pi].
Hence, following the definition of the edges, it is clear that any path would cor-

respond to a substring of s formed by concatenation of consecutive palindromic sub-
strings.

In Step 5, a breadth first tree is constructed from Gs considering the vertex n as the
source. A breadth first tree gives the shortest path from the source (in this case, n) to
any other node. Now, in Step 6, MPF Algorithm identifies the set of shortest paths (say,
SPath) between n and j, such that j corresponds to a maximal palindromic prefix of
s. Now the maximum palindromic factorization must contain exactly one palindrome
from PP(s) and exactly one palindrome from SP(s), where the length of the shortest
path is minimum. Hence, it is easy to realize that the shortest one among the paths
in SPath corresponds to the maximal palindromic factorization. This completes the
correctness proof.

RUNNING TIME:
In Step 1 the computation of MP(s) can be done using the algorithm of [Man75] in
O(n) time. Also, PP(s) and SP(s) can be computed easily while computing MP(s).
The computation of MPL(s) and U(s) in Step 2 and Step 3 can be done in linear time
once MP(s) is computed.

Now construction of the graph Gs is done in Step 4. There are in total n number
of vertices is Gs. The number of edges |E| of Gs depends on U(s). But it is easy
to realize that the summation of the number of elements in all the positions of U(s)

cannot exceed the total number of maximal palindromes. Now, since there can be at
most 2n + 1 centers, there can be just as many maximal palindromes in s. Therefore
we have |E| = O(n).
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Hence, the graph construction (Step 4) as well as the breadth first search (Step 5)
can be done in O(|V| + |E|) = O(n) time. Finally, the identification of the desired
path in Step 6 can also be done easily if we do some simple book-keeping during the
breadth first search. Next we will discuss the implementation steps for completeness.

BFS algorithm (see 1.3.1 for more details) is to traverse the graph as close as pos-
sible to the root node. Starting from the source node, the nodes at distance 1 from it,
the nodes at distance 2 from it, and so on.

Vertices are implemented as linked list. Two vertices are adjacent when they are
both incident to a common edge. A path is a sequence of vertices P = (v1, v2, . . vn)

in a graph such that vi and vi+1 are adjacent for i ≤ i ≤ n. The length of the path is
the number of edges traversed. Edges represent the connection between nodes. There
are two ways to represent edges, adjacency matrix or adjacency list representation of
graphs and queue of nodes is used in the implementation of the breadth first search.
Elements are extracted in first-in-first-out (FIFO) order, i.e., elements are picked in the
order in which they were inserted. Each vertex will enter the queue once. Then the
visited state will be set to true, and after the vertex is de-queued it can never enter the
queue again.

Nodes are implemented as objects that store: current vertex ID, predecessor node,
path length and back-pointers to other nodes.

In order to reconstruct the path to the source vertex after the destination vertex has
been found, some book-keeping has to be done as the search progresses.

One approach would be maintaining a mapping from each node to its parent, and
when inspecting the adjacent node, record its parent. This map will be populated
during the iterations of BFS. For each vertex, it contains a reference to the vertex
through which the BFS entered that vertex. If we follow these references back, once
the search is done, we will arrive at the vertex the BFS started at. Thus for every vertex
we can reconstruct the path from the start vertex to the current vertex that the BFS
took.

Note that the logical parents map can also be implemented as an array, if the ver-
tices are enumerated and we can reconstruct the path by simply going from the target
node up until we get back to the source node.

Since we already have computed the sets PP(s) and SP(s) in Step 1. Hence the
total running time of the algorithm is O(n). And this completes the proof.
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4.4.1 An Illustrative Example

Suppose we are given a string s = addcbbcbbbcbb. We will proceed as follows:
First we compute the set MP(s). For example, there is a palindrome of length

9 centered at position 9 of s and at position i = 7 there is a palindrome of length 5

centered at position 7 of s .
Secondly, we compute the set MPL(s). For example, at position i = 9 there are 2

palindromes of lengths 2 and 5 ending at position 9 of s.
Finally, we compute U(s) (Table 4.1 shows full steps for s = addcbbcbbbcbb).
Now, we can construct the graph Gs easily as shown in Figure 4.1. For example, we

can see that from vertex i = 9 we have 2 directed edges, namely, (9, 7) and (9, 4). Our
desired shortest path is P = 〈13, 4, 3, 1〉 (corresponding edges are shown as dashed
edges). So, the maximal palindromic factorization of s = addcbbcbbbcbb is as follows:

s[1..1]s[2..3]s[4..4]s[5..13] = a dd c bbcbbbcbb

.

13 12 11 10 9 8 7 6 5 4 3 2 1

Figure 4.1: The graph Gs for s = addcbbcbbbcbb
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Table 4.1: Steps for computing U(s) and MPL(s) for s = addcbbcbbbcbb

i MPL[i] U[i] = i−MPL[i]

1 MPL[1] = {1} U[1] = {0}

2 MPL[2] = {1} U[2] = {1}

3 MPL[3] = {1, 2} U[3] = {2, 1}

4 MPL[4] = {1} U[4] = {3}

5 MPL[5] = {1} U[5] = {4}

6 MPL[6] = {1} U[6] = {5}

7 MPL[7] = {4} U[7] = {3}

8 MPL[8] = {1} U[8] = {7}

9 MPL[9] = {2, 5} U[9] = {7, 4}

10 MPL[10] = {1, 2} U[10] = {9, 8}

11 MPL[11] = {.} U[11] = {.}

12 MPL[12] = {1} U[12] = {11}

13 MPL[13] = {1, 2, 5, 9} U[13] = {12, 11, 8, 4}

Maximal Palindromic Factorization 103



104 4.5 Maximal Biological palindromic factorization

4.5 Maximal Biological palindromic factorization

DNA in its natural, double-stranded form may contain palindromes, sequences which
read the same from either side because they are identical to their reverse complement
on the sister strand. It is not surprising that biological palindromes are of particular
importance in genome biology due to the fact that they are the only sequences which
are unique in double-stranded DNA.

Definition 28 The following definition from [Gus97] complemented (biological)palindromes

can refer to back-to-back DNA segments, that is, a DNA or RNA string that becomes

a palindrome if each character in one half of the string is changed to its complement

character in DNA, A - T are complements and C - G are complements; in RNA A - U

and C - G are complements). For example, GAATTC, AAGCTT , GCCCGGGC

and AGCTCGCGAGCT are a complemented palindrome.

The algorithm presented in Section 4.3 can be extended to biological palindromes,
where the word reversal is defined in conjunction with the complementarity of nu-
cleotide letters: c ↔ g and a ↔ t (or a ↔ u, in case of RNA). The main part of the
algorithm is extended in a straightforward way: when computing MP(s) one has to
use the complementarity relation, i.e., each time the algorithm compares two letters,
this comparison is replaced by testing their complementarity.
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Lyndon Fountains and the
Burrows-Wheeler Transform

In this article, we study Lyndon structures related to the Burrows-Wheeler Trans-
form with potential application to bioinformatics. Next-Generation Sequencing tech-
niques require the alignment of a large set of short reads (between dozens to hun-
dreds of letters) on a reference sequence (millions of letters). The Burrows-Wheeler
Transform has been used in various alignment programs which generally compute the
Lyndon factorization of the reference sequence as a preprocessing step. We compute
the quadratic factorization of all rotations of an input string and the Burrows-Wheeler
Transform of a Lyndon substring. From the factored rotations we introduce the Lyndon

fountain.
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5.1 Introduction

A Lyndon word is defined as a (generally) finite word which is minimal for the lex-
icographic order of its conjugacy class; the set of Lyndon words permits the unique
maximal factorization of any given string [CFL58, Lot83]. Lyndon words have been
applied in: string matching [CP91, BGM11], the Burrows-Wheeler Transform [BW94]
and data compression [CDP05, GS12], musicology [Che04], bioinformatics [DR04],
cryptanalysis [Per05], string combinatorics [Duv83, Smy03], Free Lie algebras [Reu93].
Our focus here is novel combinatorial properties of Lyndon words with potential appli-
cations to bioinformatics in the context of Next-Generation Sequencing (NGS) tech-
niques. In NGS, large unknown DNA sequences are fragmented into small segments (a
few dozens to several hundreds of base pairs long). This generates masses of data, typ-
ically several million “short reads”. In order to reconstruct the original DNA sequence,
alignment programs attempt to align or match these reads to a reference genome.
Alignment programs first used hashing or the suffix tree/array data structures; sub-
sequently, efficiency in memory requirement was achieved by using the compression
related Burrows-Wheeler Transform (BWT) [ABM08, SLLM09]. Implementations
based on the BWT include: SOAP2 [LYL+09], BWA [LD09], and Bowtie [LTPS09].
Further, word-level parallelism has been applied to NGS technologies [ADI+09]. The
input to the BWT is a reference genome, comprising in the case of the human genome
of about 3 billion DNA base pairs (from {A,C,G,T}). Space saving techniques with
the BWT are achieved by first factoring the string into Lyndon words [Duv83]. In this
note we study structural properties of the factorization of a set of rotations of a Lyndon
word. In particular, we propose algorithms for factoring this set of rotations, and for
obtaining the BWT of a Lyndon sub-word on the fly while computing the BWT of a
Lyndon word.

5.2 Burrows-Wheeler Transform

As described in [BW94] the algorithm transforms a string T (text) of n characters
by forming the n rotations (cyclic shifts) of T , sorting them lexicographically, and
extracting the last character of each of the rotations. A string L (last) is formed from
these characters, where the i-th character of L is the last character of the i-th sorted
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rotation. In addition toL, the algorithm computes the index I of the original string T in
the sorted list of rotations. Given only L and I , there is an efficient algorithm [BW94]
to compute the original string T . The transformed text TBWT is the last column L
(last). Notice that every row and every column of M , hence also the transformed text
L is a permutation of T . In particular the first column ofM , call itF (first), is obtained
by lexicographically sorting the characters of T (or, equally, the characters of L). The
transformed string L usually contains long runs of identical symbols and therefore can
be efficiently compressed using a simple locally-adaptive compression algorithm (see
Figure. 5.1 for example).



1 2 3 4 5 6 7

F L

1 B A N A N A $

2 A N A N A $ B

3 N A N A $ B A

4 A N A $ B A N

5 N A $ B A N A

6 A $ B A N A N

7 $ B A N A N A



sort⇒



1 2 3 4 5 6 7

F L

7 $ B A N A N A

6 A $ B A N A N

4 A N A $ B A N

2 A N A N A $ B

1 B A N A N A $

5 N A $ B A N A

3 N A N A $ B A



Figure 5.1: BWT example, using T = BANANA. First, we append a unique (end-
of-string) symbol $ (lexicographically the smallest character in Σ) to T to get T ′ =
BANANA$, and consider all its rotations, then we sort these rotations to obtain the
BWT matrix. By taking the last column, we get the TBWT : ANNB$AA.

5.3 Lyndon fountain

Let L be the set of Lyndon words over an alphabet Σ. For ` ∈ L, where ` = `1`2...`n,
let R(`) be the set of n cyclic rotations of ` (to avoid trivialities we assume that n > 1).
These rotations are organized as an n × n matrix: the first row r1 in the matrix is the
Lyndon word `, and the i-th row, ri, is the i-th rotation. If row ri ∈ R(`) and ri =

r1r2...rn (with ri in position i), we cycle clock-wise, that is, ri+1 = rnr1r2...rn−1.
Consider the set (matrix) R(`)< of cyclic rotations of ` ordered in lexicographic order.
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The BWT is the last right hand column of R(`)<. We first give some results related
to factoring every row of R(`), and then introduce the concept of the Lyndon fountain,
followed by outlining the algorithms.

For a string s, let f(s) be the Lyndon factorization of s. Further, let F (R(`)) be
the set of Lyndon factorizations of R(`), that is, the set {f(ri), 1 ≤ i ≤ n}. The
first row f(r1) in F (R(`)) is f(r1) = f(`) = (`1`2...`n), and from Lyndon properties
we have `1 < `n. Thus f(r2) = f(`n`1`2...`n−1) = (`n)f(`1`2...`n−1), that is, the
factorization commences with the unit factor (a factor of length one) (`n). Similarly,
since each factor in f(rn) starts with a letter ` ≥ `1, the factorization of the last row
ends with the unit factor (`1). The diagonal of F (R(`)) consists of the sequence of
Lyndon factors `i, 1 ≤ i ≤ n, such that `i starts at position i in f(ri); hence each `i
starts with the letter `1. We now show that no Lyndon word in F (R(`)) crosses the
diagonal, and any Lyndon factors adjacent to but on opposite sides of the diagonal are
distinct:

Observation 5.3.1 Let ` be a Lyndon word (` ∈ L) where ` = `1`2 . . `n (to avoid

trivialities we assume n > 1), then

(i) border(`) = 0,

(ii) `1 < `n,

(iii) `1 ≤ `i|`i ∈ {`2, . . , `n−1},
(iv) ` < `i · · · `n, for 1 < i ≤ n.

Lemma 5.3.2 Let ` = `1`2...`n ∈ L, and let `′, `′′ ∈ F (R(`)).

(i) Suppose `′ ∈ ri and `′ = `s`s+1...`t. If `s is in position j, j < i then the position

k of `t is such that k < i.

(ii) If `′ = `1`2...`s and `′′ = `t`t+1...`n for some 1 ≤ s ≤ n, 2 ≤ t ≤ n then

`′ 6= `′′ and `′`′′ ∈ L.

Proof. [Lemma. 5.3.2]

(i) Suppose that k ≥ i. Then `′ = vu, where v,u are a suffix, prefix of ` respec-
tively. Using the fact that a Lyndon word precedes any of its suffixes, we have
u < ` < v < vu < u, a contradiction.
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(ii) Suppose that `′ = `′′. If s < t then this implies that ` is bordered contradict-
ing Lyndon properties (Observation 5.3.1). If s ≥ t then `′, `′′ have both prefix
and suffix `t`t+1...`s, contradicting that the Lyndon words `, `′, `′′ are border-
free (Observation 5.3.1). So we have `′ ≤ ` < `′′, hence `′`′′ ∈ L and also
`′``′′, ``′′ ∈ L.

Note that the above lemma re-expresses known Lyndon properties in our frame-
work, which leads to a partition of the set F (R(`)) into those Lyndon factors above or
on the diagonal, and those below the diagonal. That is, a Lyndon factor `′ = `s`s+1...`t

is a prefix factor if, `′ ∈ ri and the position j of `s is such that j ≥ i, otherwise `′ is
a suffix factor. We denote the set of all prefix factors as Prefix, and the set of all suffix
factors as Suffix. Furthermore, we now show that `1 does not occur as a unit factor in
Suffix, and `n does not occur as a unit factor in Prefix, while every factor in Prefix starts
with `1.

Lemma 5.3.3 Suppose `′ ∈ F (R(`)) is a unit factor.

(i) If `′ ∈ Prefix then `′ 6= `n.

(ii) If `′ ∈ Suffix then `′ 6= `1.

(iii) If `′ ∈ Prefix where `′ = `s...`t then `s = `1.

Proof. [Lemma. 5.3.3]

(i) Suppose that `′ = `n is a unit factor in row ri in Prefix. Since n > 1 and `1 < `n

in `, and since every factor on the diagonal starts `1, then there is a first factorw
to the left of `′ in ri in Prefix starting `1. If `n belongs to w then `′ is not a unit
factor; otherwise, by Lyndon properties, w`′ is a Lyndon word but non-unit.

(ii) Suppose that `′ = `1 is a unit factor in Suffix. Since n > 1 and `1 < `n in `, then
the rightmost factor in row ri in Suffix ends `n. Let w be the first factor right
of `′ in row ri in Suffix ending `n. Either w starts with `1, or `1w is a Lyndon
factor (which does not cross the diagonal), contradicting `′ is a unit factor.

(iii) Let the factorization of row ri in Prefix be `1 ≥ `2 ≥ ... ≥ `k, then `1 com-
mences with `1. Since ` is a Lyndon word then there is no letter less than `1 in
the factorization. So suppose that `2 commences with a letter `2 > `1, then `1`2

Lyndon Fountains and the Burrows-Wheeler Transform 109



110 5.3 Lyndon fountain

is a Lyndon word contradicting the factorization.

Similarly we see that a maximal letter `s cannot occur in Prefix as a unit factor;
a unit factor in Prefix can only be `1. Further, from Lemma 5.3.3 (iii) above, we can
deduce that a factorization `p ≥ `p+1 ≥ · · · ≥ `m of a row in Prefix is in a sense
‘periodic’ with period `p.

Lemma 5.3.4 Suppose the factorization of row ri is `1 ≥ `2 ≥ · · · ≥ `p ≥ · · · ≥ `p′
where `p is the diagonal factor. Then `p+t = `p for 1 ≤ t < p′ − p and `p′ is a prefix

of `p.

Proof. [Lemma. 5.3.4]
Since `p is the diagonal factor, we have `p ∈ Prefix and `p−1 /∈ Prefix. By the

factorization we have `p ≥ `p+t, so suppose that `p > `p+t. If | `p |=| `p+t |, then
since the given Lyndon word ` commences with `p, this contradicts that ` is a Lyndon
word. If | `p |>| `p+t | then similarly ` cannot be a Lyndon word. Finally suppose that
| `p |<| `p+t |. If `p is a proper prefix of `p+t then this contradicts `p > `p+t, so some
ith letter of `p (with minimal i) must be greater than the ith letter of `p+t contradicting
that ` a Lyndon word. Hence `p = `p+t. Note that `p′ is not necessarily a proper prefix
of `p. If we suppose that | `p′ |≥| `p |, then the above argument shows that `p′ = `p.
Otherwise, if | `p′ |<| `p | then by the factorization `p > `p′ , and since ` is a Lyndon
word then there is no ith letter in `p′ which is less than the ith letter in `p. Hence all
corresponding ith letters are equal, and so `p′ is a proper prefix of `p.

Defining the sets Prefix and Suffix leads to an extension of Lemma 5.3.2.

Lemma 5.3.5 Let ` = `1`2...`n ∈ L, and let `′, `′′ ∈ F (R(`)). If `′ ∈ Prefix and `′′ ∈
Suffix then `′ 6= `′′ and `′ < `′′.

Proof. [Lemma. 5.3.5]
If `′ = `, then since | `′ |>| `′′ | then clearly `′ 6= `′′. So suppose that `′ = `′′.

By Lemma 5.3.4, `′ is a proper prefix of `. Let the factorization containing `′′ in Suffix

be `1 ≥ `2 ≥ ... ≥ `k, then `′′ ≥ `k. Since `k is a (proper) suffix of `, then by
Lyndon properties we have `′ < `k ≤ `′′ and we conclude that `′ and `′′ are distinct
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with `′ < `′′.

It follows that if Prefixlex, Suffixlex are the sets Prefix and Suffix in lexicographic
order respectively, then
Prefixlex < Suffixlex. We now relate a well-known property, that any Lyndon word
can be split into two ordered Lyndon words, with the number of factors in F (R(`)).

Lemma 5.3.6 Let ` ∈ L, and let k ≥ 1 be the number of ways of splitting ` into two

Lyndon words. Then in F (R(`))

(i) there is exactly one row with only one factor,

(ii) there are exactly k rows with only two factors.

Proof. [Lemma. 5.3.6]

(i) By definition of the uniqueness of a Lyndon word, the first row (only) of F (R(`))

is Lyndon and hence consists of exactly one factor.
(ii) Let ` = uv, then the | v |th rotation, giving the | v | +1th row, consists of the

two factors v > u, where v ∈ Suffix and u ∈ Prefix. This holds for each of the
k distinct splits of `.

For ` = `1`2...`n, from Lyndon properties we have `1 < `n, and so we consider the
occurrences of `1, `n in F (R(`)).

Lemma 5.3.7 Let j, k be the frequency of `1, `n in ` respectively. Then j rows end

with the unit factor `1, and if `n is maximal in ` then k rows start with the unit factor

`n.

Proof. [Lemma. 5.3.7]
Consider the j rotations which end `1, hence `1 is in position n in each of these

rows. Since `1 is minimal in `, then the Lyndon factor to its left starts with a letter
greater than or equal to `1, and so we cannot extend the last letter `1 leftwards. Hence,
`1 must occur at the end of a row as a unit factor, with the last occurrence being in row
n. Similarly consider the k rotations which commence with `n. If `n is maximal in
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`, then if the Lyndon factor to its right starts with a letter less than `n then we cannot
concatenate `n with this factor; if the factor to the right is `n again we cannot concate-
nate as it would form a repetition. Hence each of the k occurrences of `n at the start
of rows comprise a unit factor, with the first occurrence being in row 2. Similarly, if
`s 6= `n is maximal in ` and occurs with frequency i, then i rows start with the unit
factor `s, while the second row still commences with the unit factor `n followed by a
factor starting with `1.

The following lemma shows that we can start constructing F (R(`)) iteratively from
Lyndon sub-words (substrings):

Lemma 5.3.8 Let `, `′ ∈ L with ` < `′.Then

(i) Suffix(F (R(`′))) ⊂ Suffix(F (R(``′))),

(ii) Prefix(F (R(`))) ⊂ Prefix(F (R(``′))).

Proof. [Lemma. 5.3.8]
From Lemma 5.3.2 we know that no Lyndon word crosses the diagonal, so we can

construct the Prefix and Suffix sets independently. Hence the rows, r2 to r|`′| in Suf-

fix(F (R(``′))), are given by the corresponding rows in Suffix(F (R(`′))), while r|`′|+1

is `′. Similarly the rows, r
n−|`|+1

to rn in Prefix(F (R((``′)), are given by the rows r1

to r|`| in Prefix(F (R(`)).

It follows that for Lyndons ` < `′, if `lex, `′lex is the lexicographic order of all the
factors in F (R(`)), F (R(`′)) respectively, then `lex < `′lex. Consider the behaviour of
a Lyndon factor as it moves down F (R(`)) one row at a time. If it belongs to Suffix

it may get bigger but never smaller, hence it is largest in the bottom row rn. Whereas
if it belongs to Prefix, then it never gets bigger but may itself be factored. So we can
think of Prefix as the factorization set, and Suffix as the concatenation set. We further
see that factors form diagonal strips in F (R(`)), that eventually get narrower in Prefix

but wider in Suffix. Clearly if ` = λ1...λj is a Lyndon word, then `′ = λ1...λj−1 may
either also be Lyndon, or it factors as (`′1)(`′2)...(`′t). However, the next lemma shows
that if the Lyndon factors `, `′ are in row ri in Prefix with ` ≥ `′, and if the last letter
in `′ is rotated reducing `′ to `′′, then the factor ` is unchanged in row ri+1.
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Lemma 5.3.9 Let `, `′ ∈ L where ` = λ1...λj and `′ = µ1...µk with ` ≥ `′. Let

`′′ = µ1...µk−1 and f(`′′) = (`′′1)(`′′2)...(`′′t ) then ` > `′′ ≥ `′′1.

Proof. [Lemma. 5.3.9]
If `′ is equal to ` or a proper prefix of `, then ` ≥ `′ > `′′ ≥ `′′1 (note `′′ may be

ε). Otherwise, let i be minimal such that λi 6= µi, hence λi > µi. If i = k, then `′′

is a proper prefix of ` (`′′ may be ε) and so ` > `′′ ≥ `′′1. Otherwise, if i < k then
` > `′ > `′′ ≥ `′′1.

We now show that the Lyndon factors over consecutive rows in Suffix can become
concatenated as the next letter λ is rotated around, so that the number k of factors in
Suffix in row rn is 1 ≤ k ≤ n−1; since no factor crosses the diagonal, the total number
of factors k′ in both Suffix and Prefix in row rn is 2 ≤ k′ ≤ n.

Lemma 5.3.10 Let `1, `2, ..., `k ∈ L with `1 ≥ `2 ≥ ... ≥ `k. If `1 is the first letter of

`1, s is the index such that λ`1...`s ∈ L and λ ∈ Σ, then

(i) if λ ≤ `1 then f(λ`1`2...`k) = (λ`1...`s)(`s+1)...(`t) where 1 ≤ t ≤ k,

(ii) if λ > `1 then f(λ`1`2...`k) = λ > `1 ≥ `2... ≥ `k.

Proof. [Lemma. 5.3.10]

(i) If λ < `1 then λ`1 ∈ L. Let s be the index such that λ`1...`s ∈ L, and λ`1...`s ≥
`s+1, that is at least the first factor is extended. If λ = `1, hence `1 is a unit factor,
then f(λ`1`2...`k) = λ ≥ `1 ≥ `2 ≥ ... ≥ `k. Note that from concatenation
properties of Lyndon words, λ`1...`s does not “overlap” any of the prefixes of
the factors `1, `2, ..., `k, that is, entire factors may be concatenated but not split.

(ii) This is obvious, and no factors are concatenated.

Using the preliminary results above, we can introduce the Lyndon fountain. Let
D be the diagonal in reverse sequence, that is given F (R(`)), D is the sequence of
Lyndon factors `n...`1, such that `i starts at position i in f(ri). Also, if k is the number
of unit factors `1 in Prefix, let P ′ denote the Prefix set minus all of the k factors `1.
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Lemma 5.3.11 Given F (R(`)), let π be any permutation (possibly empty) of the fac-

tors in the Suffix set. Then

(i) `π ∈ L.

(ii) D`jπ ∈ L for j ≥ 0.

(iii) `k1P
′
`π ∈ L.

Proof. [Lemma. 5.3.11]

(i) This follows from the Lyndon property that a Lyndon word precedes any of its
proper suffixes in lexicographic order. Suppose `′ ∈ Suffix is adjacent to the di-
agonal in row ri, then `′ is a proper suffix of ` and so ``′ ∈ L. Suppose `′′ ∈
Suffix is also in row ri and does not end in position i − 1, that is, it is not ad-
jacent to the diagonal. Then by the factorization of row ri, we have `′′ ≥ `′,
hence ``′′, ``′′`′, ``′`′′ ∈ L. This argument extends naturally to any permuta-
tion of factors, including those from distinct rows, in Suffix. (Note that these
concatenations do not form a repetition.)

(ii) The factors `n...`2 in D (which all begin `1) are all proper prefixes of `, starting
with `n = `1, and D ends with `1 = `; further, applying Lemma 5.3.9, `i is
either equal to or a proper prefix of `i−1, giving `n ≤ `n−1 ≤ `n−2 ≤ ... ≤ `2 <

`1 = `. Hence, the factors in D are in lexicographic order, which also do not
form a repetition. The rest follows from part (i).

(iii) Clearly `k1 is a maximal run of minimal letters (note that k is greater than or equal
to the number of occurrences of `1 in `). We then concatenate any permutation
of remaining prefix factors followed by (any repetitions of) ` followed by suffix
factors. Again due to the run of minimal letters at the start then this does not
generate a repetition.

So we see that starting with the word `, the factorization set of this Lyndon word
behaves like a fountain yielding many more Lyndon words over the restricted alphabet
Σ given by `; similarly we also get the Lyndon words `k1D, `k1π (if π is non-empty),
basically any permutation of any factors after the run `k1, and many more by taking
factors from subsets of the sets Prefix and Suffix.
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We conclude by outlining two related algorithms. First consider computing the set
F (R(`)). For this we can use Duval’s linear Lyndon factorization algorithm [Duv83]:
a naive application is O(n2); we explain a more efficient implementation where com-
puting Prefix is linear while Suffix is quadratic. When scanning the input Lyndon word
` = `1`2...`n from left to right, intermediate Lyndon factors are detected (each begin-
ning with `1). As each factor is found, then the set Prefix can be constructed from row
rn to row r1, where of course r1 is the given word `. The set Suffix is also constructed
from row rn to row r2, starting with rn = f(`2...`n) = (x1)(x2)...(xm). As we
work up the rows we need only re-factor the current leftmost word as it is repeatedly
being decremented; the other factors are unchanged (by the monotonicity of factor-
izations and a Lyndon word precedes its suffixes). Let x1 = x11x12 ...x1j , then row
rn−1 is given by f(x12 ...x1j)(x2)...(xm) (with complexity O(n)), and we continue re-
factoring the shrinking x1 until row rn−|x1| = (x2)...(xm); similarly proceed up to
row r2 to complete the factorization of Suffix.

Next we show how to obtain the BWT of a Lyndon substring x of `. Start by
identifying x = xi...xj and its starting and ending positions x[i], x[j] in ` using a
linear scan. Similarly associate each letter in x with its position. The first letter in
BWT(x) is xj . Subsequently consider those rows of F (R(`)) which start with a suffix
of x and hence end with a prefix of x. That is, for each row in R(`)< starting with
a letter which is in position x[i] < k ≤ x[j], then taking those rows in their order of
occurrence, the BWT(x[k]) is the rightmost letter of that row. Since the relevant rows
are in lexicographic order in R(`)<, then this gives the required order for the letters in
BWT(x). Note that the rows can be sorted in linear time due to a clever suffix array
technique [KA03].

Also note that not every Lyndon substring of a Lyndon word necessarily occurs in
F (R(`)), for example, if ` = abccad then the factor bc does not occur inF (R(abccad)).
Some future lines of inquiry are: to characterize the factors that do occur in F (R(`));
to apply the structure F (R(`)) for efficiently computing the BWT; and to consider the
structures presented here for Lyndon subsequences of strings.
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Specialized Border and Suffix Arrays

We consider the problem of finding repetitive structures and inherent patterns in
a given string s over a finite totally ordered alphabet. We combine the well-known
concepts of Lyndon words, borders and suffix arrays to introduce the Lyndon Border
Array and the Lyndon Suffix Array. We present linear time and space algorithms for
computing these two interesting data structures.
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6.1 Introduction

Understanding complex patterns and repetitive structures in strings is essential for ef-
ficiently solving many problems in stringology [CR02]. For instance, Lyndon words
are increasingly a fundamental and applicable form in the study of combinatorics on
words [Lot83], [Lot05], [Smy03] - these patterned words have deep links with alge-
bra and are rich in structural properties. Another important concept is a border u of a
string s defined to be both a prefix and a suffix of s such that u 6= s. The computation
of the border array of a string s, that is of the borders of each prefix of s, is strongly
related to the string matching problem: given a stringw, find all of its occurrences in a
string s. It constitutes the “failure function” of the Morris-Pratt (1970) string matching
algorithm [MP70].

Lyndon words were introduced under the name of standard lexicographic se-
quences [Lyn54, Lyn55] in order to construct a basis of a free abelian group. Two
strings are conjugate if they differ only by a cyclic permutation of their characters; a
Lyndon word is defined as a (generally) finite word which is strictly minimal for the
lexicographic order of its conjugacy class. For a non-letter Lyndon word w, the pair
(u, v) of Lyndon words such that w = uv with v of maximal length is called the
standard factorization of w.

The set of Lyndon words permits the unique maximal factorization of any given
string [CFL58, Lot83]. In 1983, Duval [Duv83] developed an algorithm for standard
factorization that runs in linear time and space – the algorithm cleverly iterates over a
string trying to find the longest Lyndon word; when it finds one, it adds it to the result
list and proceeds to search in the remaining part of the string.

Lyndon words proved to be useful for constructing bases in free Lie algebras
[Reu93], constructing de Bruijn sequences [FM78], computing the lexicographically
smallest or largest substring in a string [AC95], succinct suffix-prefix matching of
highly periodic strings [NS13]. Wider ranging applications include the Burrows-Wheeler
transform and data compression [GS12], musicology [Che04], bioinformatics [DR04],
and in relation to cryptanalysis [Per05]. Indeed the uses, and hence importance, of
Lyndon words are increasing, and so we are motivated to investigate specialized Lyn-
don data structures.
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The key contributions of this article are as follows.

• By combining the important concepts of Lyndon words and borders of strings,
we introduce here the Lyndon Border Array Lβ of s, whose i-th entry Lβ(s)[i]

is the length of the longest border of s[1 . . i] which is also a Lyndon word. We
present an efficient linear time and space algorithm for computing the Lyndon

Border Array Lβ for a given string (Section 6.4).

• In order to achieve the desired level of efficiency in the Lyndon Border Array
construction we also present some interesting results related to Lyndon combi-
natorics, which we believe is of independent interest as well (Section 6.3).

• A complementary data structure, the Lyndon Suffix Array, which is an adaptation
of the classic suffix array, is also defined; by modifying the linear-time construc-
tion of Ko and Aluru [KA03] we similarly achieve a linear construction for our
Lyndon variant (Section 6.5). We also present a simpler algorithm to construct
a Lyndon Suffix Array from a given Suffix Array (Section 6.5.1). The latter
algorithm also runs in linear time and space.

6.2 Basic Definitions and Notations

Consider a finite totally ordered alphabet Σ which consists of a set of characters (equiv-
alently letters or symbols). The cardinality of the alphabet is denoted by |Σ|.

For a substring w of s, the string uwv for u,v ∈ Σ∗ is an extension of w in s if
uwv is a substring of s; wv for v ∈ Σ∗ is the right extension of w in s if wv is a
substring of s; uw for u ∈ Σ∗ is a left extension of w in s if uw is a substring of s.
Words that are both prefixes and suffixes of w are called borders of w. By border(w)

we denote the length of the longest border of w that is shorter than w.
A word w is periodic if it can be expressed as w = pkp′ where p′ is a proper

prefix of p, and k ≥ 2. Moreover, a string is said to be primitive if it cannot be written
as uk with u ∈ Σ+ and k ≥ 2, i.e., it is not a power of another string. When p is
primitive, we call it “the period” of u. It is a known fact [CHL07] that, for any string
w, per(w) + border(w) = |w|, where the period per of a nonempty string is the
smallest of its periods.
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Definition 29 (Border array) For a string s ∈ Σn, the border array β(s)[1 . . n] is

defined by β(s)[i] = |border(s[1 . . i])| for 1 ≤ i ≤ n.

Proposition 6.2.1 [MP70] The border of a string s (or the table β(s) itself) can be

computed in time O(|s|).

A string y = y[1 . . n] is a conjugate (or cyclic rotation) of x = x[1 . . n] if
y[1 . . n] = x[i . . n]x[1 . . i − 1] for some 1 ≤ i ≤ n (for i = 1, y = x). A Lyn-
don word is a primitive word which is minimal for the lexicographical order of its
conjugacy class (i.e., the set of all words obtained by cyclic rotations of letters). Fur-
thermore, a non-empty word is a Lyndon word if and only if it is strictly smaller in lexi-
cographical order (lexorder) than any of its non-empty proper suffixes [Duv83, Lot83].

Throughout this article, L will denote the set of Lyndon words over the totaly
ordered alphabet Σ, and Ln will denote the set of Lyndon words of length n; hence
L = {L1 ∪L2 ∪L3 . . .}. We next list several well-known properties of Lyndon words
and border arrays which we later apply to develop the new algorithms.

Proposition 6.2.2 [Duv83] A word w ∈ Σ+ is a Lyndon word if and only if either

w ∈ Σ or w = uv with u, v ∈ L, u < v.

Theorem 6.2.3 [CFL58] Any word w can be written uniquely as a non-increasing

product w = u1u2 · · ·uk of Lyndon words.

Theorem 6.2.3 shows that there is a unique decomposition of any word into non-
increasing Lyndon words (u1 ≥ u2 ≥ · · · ≥ uk).

Observation 6.2.4 Let ` be a Lyndon word (` ∈ L) where ` = `1`2 . . `n (to avoid

trivialities we assume n > 1), then

(1) border(`) = 0,

(2) `1 < `n,

(3) `1 ≤ `i|`i ∈ {`2, . . , `n−1},

(4) ` < `i · · · `n, for 1 < i ≤ n.
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Observation 6.2.5 Given a string s, then

(1) β(s)[1] = 0,

(2) if b is a border of s, and b′ is a border of b, then b′ is a border of s,

(3) 0 ≤ β(s)[i+ 1] ≤ β(s)[i] + 1, for 1 ≤ i < n.

We now introduce the Lyndon Border Array and associated computation, illustrated
in Example 6.2.6 below.

Definition 30 (Lyndon Border Array) For a string s ∈ Σn, the Lyndon border array
Lβ(s)[i] is the length of the longest border of s[1 . . i] which is also a Lyndon word.

Definition 31 (Lyndon suffix array) For a string s ∈ Σn, the Lyndon Suffix Array of

s is the lexicographically sorted list of all those suffixes of s that form Lyndon words.

Given a string s of length n, associated computational problems are: compute the
Lyndon border and Lyndon suffix arrays; we address these problems in this article.

Example 6.2.6 Consider the string s = abaabaaabbaabaab. The following table il-

lustrate the border array β of s, the Lyndon border array Lβ of s, the suffix array A

of s and the Lyndon suffix array LS of s.

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

s[i] a b a a b a a a b b a a b a a b
β[i] 0 0 1 1 2 3 4 1 2 0 1 1 2 3 4 5

Lβ[i] 0 0 1 1 2 1 1 1 2 0 1 1 2 1 1 2
A[i] 5 13 2 10 6 14 3 11 0 7 15 4 12 1 9 8

LS[i] 5 13 14 15 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

6.3 Lyndon Combinatorics

This section introduces some new interesting combinatorial results on Lyndon words.
In relation to the computation of the Lyndon Border Array, we here show how to find
the shortest prefix of a string that is both border-free and not a Lyndon word. So as-
sume that for a given string s of length n, we have s[1] = γ. If f1, . . ,fq are factors of
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s, we use start(fi) (end(fi)) to denote the index of fi[1] (fi[|fi|]) in s, and say that
j is an index of fi if start(fi) ≤ j ≤ end(fi). An outline of the steps of the algorithm
is as follows:

Algorithm Shortest non-Lyndon Border-free Prefix (SNLBfP).

1. Compute the Lyndon factorization of s.

2. Apply binary search to find the first Lyndon factor fµ in the factorization starting
with the largest letter µ which is strictly less than γ (if it exists).

3. Consider the maximal prefix p of s in which every factor f1, . . ,fq starts with
γ; compute the border array β(p) of p.

4. Compute i, the smallest index of p, such that i > end(f1) (i is not an index of
f1) and β(p)[i] = 0;

(a) if i does not exist then i = end(fq) + 1 (if p exists)

(b) if q = 1 then i = end(f1) + 1 (if p exists).

5. Return s[1 . . i].

Claim 6.3.1 Suppose s[1 . . i] is the shortest prefix of s that is both border-free and

non-Lyndon. Then i > end(f1), i.e., Algorithm SNLBfP is correct in skipping the first

Lyndon factor.

Proof. [Proof of Claim 6.3.1] The proof is by induction. Assume that the first Lyn-
don factor f1 is of length m (with m ≥ 2 otherwise the Claim holds trivially). By
Observation 6.2.4((1)) and Observation 6.2.5((1)) we have β(f1)[1] = β(f1)[m] = 0.
The smallest j after 1 where β(f1)[j] = 0 must index a Lyndon word x of the form
x = γj−1ν, where ν > γ. Hence, after the first letter (which is a Lyndon word), the
next border-free prefix is also a Lyndon word.

Assume now that all border-free prefixes up to index t of f1 are Lyndon words
(and hence nested), and suppose that the next border-free position is t′. Then we need
to show that y = f1[1 . . t′] is a Lyndon word; we proceed to show that y is less than
each of its proper suffixes. Let wk = f1[t′ − k + 1 . . t′] for 1 ≤ k < t′. Since f1
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is a Lyndon word and minimal in its conjugacy class, then f1[1 . . k] ≤ wk; further,
since β(f1)[t′] = 0 we cannot have equality and so f1[1 . . k] < wk which implies that
y < wk as required.

In other words, we have shown that any border-free prefix of f1 is a Lyndon word
and the result follows.

Corollary 6.3.2 Any border-free prefix of a Lyndon word is a Lyndon word.

Lemma 6.3.3 Algorithm SNLBfP is correct.

Proof. (Lemma 6.3.3) In Step 2 we identify the factor fµ which starts with the letter
µ < γ. From Lyndon principles, Observation 6.2.4((2)),((3)), it follows that no factor
to the left of fµ contains the letter µ. Hence the prefix s[1 . . start(fµ)] is both border-
free and non-Lyndon. However, it may not be the shortest one and so the algorithm
continues to check through the prefix p.

Now, consider the index i of p computed in Step 4. Suppose that i is an index of
the factor ft; by Claim 6.3.1 we have t > 1. Let k be the length of the prefix pt of ft
that ends at i, and p1 be the prefix of f1 of length k. By the Lyndon factorization we
have p1 ≥ pt (in lexicographic order). If p1 = pt then this contradicts β(p)[i] = 0.
Hence p1 > pt and so the prefix s[1 . . i] is both border-free and not a Lyndon word.
Hence Algorithm SNLBfP correctly returns s[1 . . i].

Lemma 6.3.4 Algorithm SNLBfP runs in O(n) time.

Proof. [Proof of Lemma 6.3.4] Step 1 can be computed in O(n) time [Duv83, Lot05].
Step 2 applies an O(log n) binary search. In Step 3 we compute the border array of the
prefix p of s. Clearly Steps 3 and 4 can be completed in O(n) time. Hence, the result
follows.

A binary Lyndon word can also be expressed in terms of Lyndon properties of the
integer parameters (exponents) given by its Run Length Encoding. For a binary string
`, let RLE(`a) denote the encoding (as a string) of the subsequence of ` consisting of
all letters a but no letter b (p′, p1; . . ; pm), similarly RLE(`b) denotes the encoding of
the subsequence of ` consisting of all letters b (q′, q1; . . ; qm).
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Lemma 6.3.5 Let ` be a binary word with `[1] = a, `[n] = b and associated encodings

RLE(`a) and RLE(`b). Then ` is a Lyndon word if and only if, either

(i) RLE(`a) is a Lyndon word on the alphabet {1 > 2 > 3 > · · · }, or

(ii) RLE(`a) is a repetition of a Lyndon word as in (i) and RLE(`b) is a Lyndon word

on the alphabet {1 < 2 < 3 < · · · }.

Proof. (Lemma 6.3.5) First we consider necessity. So suppose that (i) holds. Con-
sider any rotation `ra of `a (including those with split runs of a’s). Then RLE(`a) <

RLE(`ra) in lexorder over {1 > 2 > 3 > · · · }. Now suppose that (ii) holds. Then for a
rotation `ra of `a, either RLE(`a) < RLE(`ra) in lexorder over {1 > 2 > 3 > · · · }, or
RLE(`a) = RLE(`ra) and RLE(`b) < RLE(`rb) in lexorder over {1 < 2 < 3 < · · · }.

For sufficiency, the conditions guarantee that ` ∈ L.

Lemma 6.3.6 (Lyndon invalid point for border-free word) Given a string ` ∈ Σn,

n > 1, such that border(`) = 0, if ` is not a Lyndon word (` 6∈ L), then all the right

extensions ``′ of `, such that `′ ∈ Σ+, are not Lyndon words either.

— We refer to this condition as the L-fail condition and to the point (index) of

where it occurs as the Lyndon invalid point.

Proof. (Lemma 6.3.6) Since ` is border-free (border(`) = 0) but not a Lyndon word,
then let r be the rotation of ` which is the Lyndon word of the conjugacy class. Write
` = pq such that r = qp and qp < pq.

Case (1) - If |p| = |q|, then since r is border-free and a Lyndon word, q 6= p. Further,
since qp < pq, we have q < p. It follows that q`′p < pq`′ and so ``′ cannot
be a Lyndon word.

Case (2) - If |q| > |p|, then r[1..|p|] < p (i.e., q[1 . . |p|] < p), we have q < p. It
follows that q`′p < pq`′ and so ``′ cannot be a Lyndon word.

Case (3) - If |q| < |p|. We have r = qp ∈ L, where q = q1q2 · · · qj , p =

p1p2 · · ·pk. We are required to show that r′ = pq`′ /∈ L; so suppose that
r′ ∈ L. From r we have that q1 ≤ p1, while from r′ we have p1 ≤ q1, which
together implies q1 = p1. From the rotation of r starting p1p2 we have q2 ≤ p2,
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while from the rotation of r′ starting q1q2 we find that p2 ≤ q2 giving q2 = p2.
We continue this argument for |q| elements which shows that the given word pq
has a border.

In the first two cases the order is decided within the first |p| elements.

Lemma 6.3.7 (Lyndon invalid point for bordered word) Given a string ` ∈ Σn,

n > 1, such that border(`) > 0, let {`′1, `′2, `′3 · · · } be right extensions of ` by

{1, 2, 3, · · · } characters in Σ respectively. Then ` and all its right extensions are not

Lyndon words if `′1[|`′1|] < `′1[border(`) + 1].

— Similarly to Lemma 6.3.6, we refer to this condition as the L-fail condition and

to the point (index) of where it occurs as the Lyndon invalid point.

Proof. (Lemma 6.3.7) The lemma follows from the following two cases:

(1) ` /∈ L, this is immediate from the hypothesis that border(`) > 0 and Observa-
tion 6.2.4(1).

(2) Consider the right extension `′m of `, where m ≥ 1. Then the suffix `′m[n −
border(`)+1 . . n+m] of `′m is lexicographically less than `′m[1 . . border(`)+

1] and consequently less than `′m, contradicting the property that a Lyndon word
is strictly smaller than any of its proper suffixes. Hence no right extension of `
is a Lyndon word.

In case (2) the order is decided within the first border(`) + 1 elements.

Fact 6.3.8 For a given string s ∈ Σn, suppose we have computed β(s). Then, for

1 ≤ i ≤ n, the following holds true:

Lβ(s)[i] ∈ {β(s)[i], β(s)[β(s)[i]], β(s)[β(s)[β(s)[i]]], . . , 0}.

Definition 32 Consider a bounded alphabet Σ, for a given string s ∈ Σn, we denote

by Ψ(s) the list (array) of length n that is defined as: the i-th element Ψ(s)[i] = true

if the prefix s[1 . . i] is a Lyndon word, otherwise Ψ(s)[i] = false, for 1 ≤ i ≤ n.
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6.4 Lyndon Border Array Computation

In this section we develop an efficient algorithm for computing the Lyndon Border Ar-
ray. We first recall an interesting relation that exists for borders which we refer to as
the Chain of Borders henceforth. Since every border of any border of s is also a border
of s (Observation 6.2.5 (2)), it turns out that, the border array β(s) compactly de-
scribes all the borders of every prefix of s. For every prefix s[1 . . i] of s, the following
sequence

β(s)1[i], β(s)2[i], . . , β(s)m[i] (6.1)

is well defined and monotonically decreasing to β(s)m[i] = 0 for some m ≥ 1 and
this sequence identifies every border of s[1 . . i]. Here, β(s)k[i] is the length of the
k-th longest border of s[1 . . i], for 1 ≤ k ≤ m. Sequence (6.1) identifies the above-
mentioned chain of borders. We will also be using the usual notion of the length of the
chain of borders. Clearly, the length of the chain in Sequence (6.1) is m. Also we use
the following notion and notations. In Sequence (6.1), we call β(s)m[i] = 0 the last

value and β(s)m−1[i] the penultimate value in the chain. We now present the following
interesting facts that will be useful in our algorithm.

Fact 6.4.1 The length of the chain of borders for a Lyndon Border is at most 2.

Proof. The result follows, because, if a border is a Lyndon Word, then it cannot itself
have a border (Observation 6.2.4 (1)).

Fact 6.4.2 Suppose Lβ(s)[i] = x. Then Lβ(s)[x] = 0.

Proof. Immediate from Fact 6.4.1.

Now we are ready to propose a straightforward naive algorithm to compute the
Lyndon Border Array Lβ(s) for s[1 . . n] as follows.

The correctness of the algorithm follows directly from Facts 6.4.1 and 6.4.2. Now
we discuss an efficient implementation of the algorithm. When we traverse through the
chain of borders, we reach the penultimate value k and then the last value 0. Clearly,
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1: Compute β(s)[1 . . n]
2: for i = n→ 1 do
3: Find the penultimate value k of the chain of borders for β(s)[i]
4: if s[1 . . k] is a Lyndon word then
5: Set Lβ(s)[i] = k
6: else
7: Set Lβ(s)[i] = 0

Figure 6.1: Algorithm Naive Lyndon Border Array Construction

all we need is to check for each such chain, whether s[1 . . k] is a Lyndon word. So, we
are always interested in finding whether s[1 . . k] is a Lyndon word where β(s)[k] = 0.
At this point the computation of SNLBfP (Section 6.3) will be applied. To give an
example, by Corollary 6.3.2, we know that any border-free prefix to the left of SNLBfP
is a Lyndon word and any border-free prefix to the right of SNLBfP is non-Lyndon.
This gives us an efficient weapon to check the If statement of Line 4 of the above
algorithm. Finally, as can be seen below, we can make use of a stack data structure
along with some auxiliary arrays to efficiently implement the above algorithm. In
particular, we simply keep an array Done[1 . . n] initially all false, using a stack and
the SNLBfP index (say r). The algorithm is presented in Figure 6.2.

Clearly, the time complexity of the above algorithm depends on how many times a
chain of borders is traversed. If we can ensure that a chain of borders is never traversed
more than once, then the algorithm will surely be linear. To achieve that we use another
array Pval[1 . . n], initially all set to −1. This is required to efficiently compute the
penultimate value of a chain of borders. The difficulty here arises because we may
need to traverse a part of a chain of borders more than once through different indices
because two different indices of the border array, β(s), may have the same value. This
may incur more cost and make the algorithm super-linear. To avoid traversing any part
of a chain of borders more than once we use the array Pval[1 . . n] as follows. Clearly,
we only need to traverse the chain of borders to compute the penultimate value. So,
as soon as we have computed the penultimate value k, for a chain, we store the value
in the corresponding indices of Pval. To give an example, suppose we are considering
the chain of borders β(s)1[i], β(s)2[i], . . , β(s)m−1[i], β(s)m[i], where β(s)m[i] = 0,
and suppose that the penultimate value is k, i.e., β(s)m−1[i] = k. Now suppose further
that the indices involved in the above chain of borders are i = i1, i2, . . , im−1, im.
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1: for i = 1→ n do
2: Set Done[i] =FALSE
3: Compute β(s)[1 . . n]
4: Compute SNLBfP using Algorithm SNLBfP. Say, s[1 . . r] is the SNLBfP.
5: for i = n→ 1 do
6: if Done[i] = TRUE then
7: continue . i.e., skip what is done below
8: Compute the chain of β(s)[i] and push each onto a stack S.
9: Compute the penultimate value k of the chain of β(s)[i].

10: while S is nonempty do
11: Pop the value j from the stack
12: if k < r then . i.e., s[1 . . k] is a Lyndon word
13: β(s)[j] = k
14: else
15: β(s)[j] = 0

16: Done[j] =TRUE

Figure 6.2: Algorithm Efficient Lyndon Border Array Construction.

Then as soon as we have got the penultimate value, we update Pval[i1] = Pval[i2] =

. . = Pval[im−1] = k. How does this help? If the same chain or part thereof is
reached for computing the penultimate value, we can easily return the value from the
corresponding Pval[1 . . n] entry, and thus we never need to traverse a chain or part
thereof more than once. This ensures the linear running time of the algorithm.

Theorem 6.4.3 For any given string s of length n, Algorithm Efficient Lyndon Border
Array Construction computes Lyndon Border Array in O(n) time and linear space.

6.5 Lyndon Suffix Array Computation

The well-known suffix array of a string records the lexicographically sorted list of all
of its suffixes. Our next contribution is to show how the Lyndon Suffix Array, like the
original suffix array, can be constructed in linear time; for a string of length n it follows
that the indexes in the Lyndon variant will be a subset of {1, 2, . . . , n}. We will exploit
the elegant fact that Lyndon suffixes are nested:
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Fact 6.5.1 If the given string s is a Lyndon word, by Lyndon properties of Lyndon

suffixes (Observation 6.2.4(4)), the indexes in the Lyndon Suffix Array will necessarily

be increasing.

In order to efficiently construct the Lyndon suffix array we could directly mod-
ify the linear-time and space efficient method of Ko and Aluru [KA03] given for the
original data structure – this would involve lex-extension ordering (lexorder for sub-
strings, see [DS14]) along with Fact 6.5.1. We note that the Ko-Aluru method has
also recently been adapted to non-lexicographic V -order and V -letters, and applied in
a novel Burrows-Wheeler transform [DS14], and hence is quite a versatile technique.

Let an L-letter ` = `1`2 . . `m substring denote the simple case of a Lyndon word
such that `1 < `i for 2 ≤ i ≤ m, assumed to be of maximal length, that is, `1 = `m+1

(if `m+1 exists); hence |`| ≥ 1.
Since, apart from the last letter, there may not be Lyndon suffixes of a string, we

perform a linear scan to record the locations of the minimal letter `1, say, in the string
s. Observe also that either an L-letter is a Lyndon suffix, or it is the prefix of a Lyndon
suffix - the point is that an L-letter is a well-defined chunk of text, a substring of the
input s, as opposed to the classic single letter approach. In order to sort chunks of text
lexicographically, we will apply lex-extension order defined as follows .

Definition 33 Suppose that according to some factorization F, two strings u, v ∈ Σ+

are expressed in terms of nonempty factors: u = u1u2 · · ·um,v = v1v2 · · · vn. Then

u <LEX(F) v if and only if one of the following holds:

(i) u is a proper prefix of v (that is, ui = vi for 1 ≤ i ≤ m < n); or

(ii) for some i ∈ 1 . .min(m,n), uj = vj for j = 1, 2, . . , i − 1, and ui < vi (in

lexicographic order).

First, using a linear scan we apply the Lβ to record the indexes of all the Lyndon
suffixes of s. The factorization F which we will use is that of decomposing the input
into substrings of L-letters; in the case of unit length L-letters we concatenate them so
that F has the general form:

u`i11 `1`
i2
1 `2 · · · `it1 `t

where u ∈ Σ∗ does not contain `1, t ≥ 1, each ij ≥ 0, every `j is an L-letter and
|`t| ≥ 1 – in practice this just entails keeping track of occurrences of the letters `1 in
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s. Since we are computing Lyndon suffixes we can ignore u and hence assume that F
has the form `i11 `1`

i2
1 `2 · · · `it1 `t.

An `-suffix is a suffix of F commencing with `
ij
1 . We now apply the Ko-Aluru

linear method, consisting of three main steps, to the `-suffixes: which we first outline
followed by further detail for each.

• Using a linear scan of the input string s and lex-extension ordering, divide all
`-suffixes of s into two types: those Smaller (S) and those Larger (L) than their
right-hand adjacent `-suffix. We assume that |S| ≤ |L|, although the method
also holds otherwise. That is, let si denote the suffix starting at index i, so
si = s[i . . . n]. Then the type S Lyndon suffixes are the set {si|si < si+1} and
the type L Lyndon sufixes are the set {sj |sj > sj+1}.

• Sort by lex-extension all `-suffixes of type S in O(n)-time using a modified
Bucket Sort followed by recursion on at most half of the string.

• Using a linear scan obtain the lex-extension order of all remaining `-suffixes (as-
sumed to be type L) from the sorted ones. This step is obtained from observing
that the type L `-suffixes occurring in s between two type S `-suffixes, Si and
Sj where i < j, are already ordered such that Ll <LEX(F) Lk for i < k < l < j.

At this stage we have computed an `-suffix array. There are two final steps for
computing the Lyndon suffix array. Firstly, the classic suffix array for the last L-letter
`t (without the prefix `1) is processed directly using the Ko-Aluru method and the
indexes inserted into the `-suffix array. Then we perform a linear scan of the `-suffix
array, and applying Fact 6.5.1, by selecting only the sequence of increasing integers
yields the Lyndon suffix array.

The last suffix is both type S and L. The modification from lexicographic to lex-
extension order follows from, firstly the linear factorization of the input into L-letters,
and secondly that lex-extension ordering applies lexicographic order pairwise to L-
letter substrings which each requires no more than time linear in the length of the
L-letters – hence O(n) overall. The space efficiency follows from the original method
[KA03].
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6.5.1 A Simpler algorithm for computing a Lyndon Suffix Array
from a Suffix Array

We present an alternative simple algorithm, derived from the classic suffix array, which
also exploits the nested structure expressed in Fact 6.5.1. Suppose we are given the
suffix array of the string s. Now our algorithm finds the largest suffix (max), and
then searches inside it to find the second largest one and so on, taking advantage of
the fact that the suffixes are already sorted in the suffix array. Repeatedly finding the
max value can be implemented efficiently using the Range Minimum Query (RMQ)
[BFC00], which requires O(n) time pre-processing and then O(1) time for each query.

Lemma 6.5.2 (Maximum range suffixes are Lyndon words) Suppose we are given

the suffix array A of a string s. Let the set M be the set of maximum values of the

range of suffixes A[0 . . i], where i is the index of the i-th suffix `i. Each suffix ` ∈M is

a Lyndon word.

Proof. (Lemma 6.5.2) Suppose ` is a max range suffix (` ∈ M) at index i with order
value SA[i] = m. Suppose there exists a suffix `′′ of ` at index i′′ (w.r.t. to A) with
order value A[i′′] = m′′, and also suppose `′′ < `. Hence m′′ > m (A[i′′] > A[i])
where i′′ < i, which contradicts the fact that m is the maximum value in the range
A[0 . . i]. Therefore, ` is strictly smaller than all of its proper suffixes – we conclude
that ` is a Lyndon word.

The linear-time method for computing the Lyndon suffix array is very simple. Be-
low, we first outline the steps followed by the pseudo-code.

1. Compute the suffix array A of s$.

2. Find the value max = MAX(A[0 . . n]) and its index i in the suffix array, then
add the value max to Lyndon Suffix array LS.

3. Find the value max and its index i in the range A[0 . . i], max = MAX(A[0 . . i])

and i = Indexof(max,A), then add the value max to LS.

4. Repeat step 2 until the set A[0 . . i] is empty.
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procedure COMPUTELSA(s)
n← |s|; L[1 . . n]← (−1)n

. compute the suffix array of s$
A← SA(s$)

i← n; j ← n; max← 0

while (A[0 . . i] 6= ∅) do
. find the maximum value (and its index) in the range A[0 . . i].
(max, i)← (A[idx], idx) | idx = arg maxidx(A[idx]) for 0 ≤ idx < i

j ← j − 1

L[j]← max

return L

Figure 6.3: Computing the Lyndon Suffix Array from a Suffix Array.

Theorem 6.5.3 For any given string s of length n, Algorithm ComputeLSA com-

putes the Lyndon Suffix Array of string s from its Suffix Array in O(n) time and space.

Specialized Border and Suffix Arrays 131



Article: # 7

Simple Linear Comparison of Strings
in V-order

In this article, we focus on a total (but non-lexicographic) ordering of strings called V -
order. We devise a new linear-time algorithm for computing the V -comparison of two
finite strings. In comparison with the previous algorithm in the literature, our algorithm
is both conceptually simpler, based on recording letter positions in increasing order,
and more straightforward to implement, requiring only linked lists.
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7.1 Introduction

An important task required in many combinatorial computations is deciding the relative
order of two members of a totally ordered set [KS99, Rus03], for instance organizing
words in a natural language dictionary. Binary comparison of finite strings (words)
thus arises as a primitive operation, a building block, in more complex procedures,
which therefore requires efficient implementation.

We first discuss some known techniques for totally ordering sets, and then intro-
duce our contribution: a new linear string comparison algorithm using V -order.

Given an integer n ≥ 1 and a nonempty set of symbols Σ (bounded or unbounded),
a string x (written in math bold) of length n is a sequence of letters x1, x2, . . . , xn

(written in regular math mode), with each xi ∈ Σ. We will often represent x as an array
x[1..n] with entries x[1],x[2], . . . ,x[n]. The classic and commonly used method for
organizing sets of strings is lexicographic (dictionary) order. Formally, if Σ is a totally
ordered alphabet then lexicographic ordering (lexorder) u < v with u,v ∈ Σ+ is
defined if and only if either u is a proper prefix of v, or u = ras, v = rbt for some
a, b ∈ Σ such that a < b and for some r, s, t ∈ Σ∗.

Lexorder is a very natural method for deciding precedence and organizing infor-
mation which also finds many uses in computer science, typically in constructing data
structures and related applications:

• Building indexes for information retrieval, particularly self-indexes which re-
place the text and support almost optimal space and search time [NM07].

• Constructing suffix arrays, which record string suffix starting positions in the
lexorder of the suffixes, and thus support binary search [KA03, KSB06, NZC09].

• The Burrows-Wheeler Transform (BWT), which applies suffix sorting, and ex-
hibits data clustering properties, hence is suitable for preprocessing data prior to
compression activities [ABM08, CDP05].

• The application of automata for bioinformatics sequence alignment. The BWT
is extended for finite automata representing the multiple alignment problem - the
paths in the automaton are sorted into lexorder thus extending the suffix sorting
framework related to the classic BWT [SVM11].
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• An important class in the study of combinatorics on words is Lyndon words

[Lot83] – strings (words) which are lexicographically least amongst the cyclic
rotations of their letters (characters) – see also [Smy03]; furthermore, any string
can be uniquely factored into Lyndon words [CFL58] – Duval’s algorithm clev-
erly detects the lexicographic order between factors in linear time [Duv83, Day11].
The Lyndon decomposition allows for efficient ‘divide-and-conquer’ of a string
into patterned factors; numerous applications include periodic musical structures
[Che04], string matching [BGM11, CP91], and algorithms for digital geometry
[BLPR09].

• Hybrid Lyndon structures, introduced in [DDS13], based on two methods of
ordering strings one of which is lexorder.

Naively, lexorder u < v can be decided in time linear in the length of the shorter
string, and space linear in the length of the longer string; various data structures may
be used for enhancing this string comparison. In [DIS94] the Four Russians tech-
nique [IS92] is proposed to compare strings of length n on a bounded alphabet in
O(1) time, while for an unbounded alphabet the parallel construction of a merged suf-
fix tree using the CRCW PRAM model [IS92] is proposed that can be constructed in
O(log n log log n) time using O(n/ log n) processors; using this tree, sequential com-
parison requires O(log log n) time.

A class of lexorder-type total orders is easily obtained from permuting the usual
order 1, 2, . . . n of pairwise comparison of letters, along with interchanging < with >
and so on; for example relex order (reverse lexicographic) [Rus03], and co-lexorder

(lexorder of reversed strings) studied and applied to string factorization in [DEDS09].
Non-lexicographic methods include deciding precedence by minimal change such

as Gray’s reflected binary code, where two successive values differ in only one bit,
hence well-suited for error correction in digital communications [Gra53, Sav96]. A
more recent example is V -order [Day85, DD96, DD97] which is the focus of this
paper: we first introduce this technical method for comparing strings and then consider
it algorithmically.

Let Σ be a totally ordered alphabet, and let u = u1u2...un be a string over Σ.
Define h ∈ {1, . . . , n} by h = 1 if u1 ≤ u2 ... ≤ un; otherwise, by the unique value
such that uh−1 > uh ≤ uh+1 ≤ uh+2 ≤ ... ≤ un. Let u∗ = u1u2...uh−1uh+1...un,
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where the star * indicates deletion of the letter uh. Write us∗ for (...(u∗)∗...)∗ with
s ≥ 0 stars 1. Let g = max{u1, u2, ..., un}, and let k be the number of occurrences
of g in u. Then the sequence u,u∗,u2∗, ... ends gk, ..., g2, g1, g0 = ε. In the star tree

each string u over Σ labels a vertex, and there is a directed edge from u to u∗, with
the empty string ε as the root.

Definition 34 We define V -order ≺ between distinct strings u,v. First v ≺ u if v is

in the path u,u∗,u2∗, ..., ε. If u,v are not in a path, there exist smallest s, t such that

u(s+1)∗ = v(t+1)∗. Put c = us∗ and d = vt∗; then c 6= d but |c| = |d| = m say. Let j

be the greatest i in 1 ≤ i ≤ m such that c[i] 6= d[i]. If c[j] < d[j] in Σ then u ≺ v.

Clearly ≺ is a total order.

Example 7.1.1 Over the binary alphabet with 0 < 1: in lexorder, 0101 < 01110; in

V -order, 0101 ≺ 01110.

Over the naturally ordered integers: in lexorder, 123456 < 2345; in V -order, 2345 ≺
123456.

Over the naturally ordered Roman alphabet: in lexorder, eabecd < ebaedc; in V -order,

ebaedc ≺ eabecd.

String comparison in V -order ≺ was first considered algorithmically in [DDS11,
DDS13] – the dynamic longest matching suffix of the pair of input strings, together
with a doubly-linked list which simulated letter deletions and hence paths in the star
tree, enabled deciding order; these techniques achieved V -comparison in worst-case
time and space proportional to string length – thus asymptotically the same as naive
comparison in lexorder.

Currently known applications of V -order, utilizing linear-time V -comparison, and
generally derived from lexorder or Lyndon cases are as follows:

• A V -order structure, an instance of a hybrid Lyndon word and known as a
V -word [DD03], similarly to the classic Lyndon case, gives an instance of an
African musical rhythmic pattern [CT03].

1Note that this star operator, as defined in [DD96], [DD03] etc, is distinct from the Kleene star
operator: Kleene star is applied to sets, while this V -star is applied to strings.
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• Linear factorization of a string into factors (V -words) sequentially [DDS11] and
in parallel [DDIS13] – yielding factors which are distinct from the Lyndon fac-
torization of the given string [DDS13].

• Modification of a linear suffix array construction [KA03] from lexorder to V -
order [DS14] thus allowing efficient V -ordering of the cyclic rotations of a
string.

• Applying the above suffix array modification to compute a novel Burrows-Wheeler
transform (V -BWT) using, not the usual lexorder, but rather V -order, in θ(n)

time and space, when it is known that the input string is a V -word [DS14] –
achieving instances of enhanced data clustering.

These initial avenues suggest that further uses of V -order, analogous to the practical
functions listed for lexorder and Lyndon words, will continue to arise, including for
instance those for suffix trees – thus necessitating efficient implementations of the
primitive V -comparison.

We introduce here a new algorithm for computing the V -comparison of two finite
strings – the advantage is that it is both conceptually simpler, based on recording letter
positions in increasing order, and more straightforward to implement, requiring only
linked lists. The time complexity is O(n + |Σ|) and similarly the space complexity is
O(n + |Σ|). However, in computational practice the alphabet, like the input, can be
assumed to be finite - at most O(n) – and so the algorithm runs in essentially linear
time.

7.2 V -order String Comparison Algorithm

In this section, we present a novel linear-time algorithm for V -order string comparison.
Before going into the algorithmic details, we present relevant definitions and results
from the literature useful in describing and analyzing our algorithm, starting with a
unique representation of a string.

Definition 35 ([DD03, DDS11, DDS13]) The V-form of a string x is defined as

Vk(x) = x = x0gx1g · · ·xk−1gxk
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for strings xi, i = 0, 1, . . . , k, where g is the largest letter in x – thus we suppose that

g occurs exactly k times. For clarity, when more than one string is involved, we will

use the notation g = Lx.

The following lemma is the key to our algorithm.

Lemma 7.2.1 ([DD96, DD03, DDS11, DDS13]) Suppose we are given distinct strings

v and x with the corresponding V-forms as follows:

v = v0Lvv1Lvv2 · · ·vj−1Lvvj

x = x0Lxx1Lxx2 · · ·xk−1Lxxk

Let h ∈ {0 . . .max(j, k)} be the least integer such that vh 6= xh. Then v ≺ x if,

and only if, one of the following conditions holds:

1. Lv < Lx

2. Lv = Lx and j < k

3. Lv = Lx, j = k and vh ≺ xh.

Lemma 7.2.2 ([DDS11, DDS13]) Suppose we are given distinct strings v and x. If

v (x resp.) is a subsequence of x (v resp.) then v ≺ x (x ≺ v resp.).

We will use some simple data structures, which are initialized by preprocessing
steps. We use Mapu(a) to store, in increasing order, the positions of the character a in
a string u. Mapu(Σ) records the ‘maps’ of all a ∈ Σ. To construct Mapu(Σ) we take
an array of size Σ. For each a ∈ Σ, we construct a linked list that stores the positions
i ∈ [1..|u|] in increasing order such that u[i] = a.

Example 7.2.3 Suppose we have a string u as follows:

1 2 3 4 5 6 7 8 9 10 11

u = 8 5 8 2 1 8 7 6 5 4 3

Mapu(Σ) is shown below for the string u defined above.
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1 2 3 4 5 6 7 8

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
5 4 11 10 2 8 7 1

↓ ↓
9 3

↓
6

This leads to the following lemma.

Lemma 7.2.4 Given a string u of length n we can build Mapu(Σ) in O(n + |Σ|) time

and space.

Proof. As mentioned above, we realize Mapu(Σ) as an array of linked lists; in par-
ticular, we maintain a linked list Mapu(a) for each a ∈ Σ. Initially, for all a ∈ Σ,
Mapu(a) = NULL, i.e., each list is empty. We simply traverse the string u, and at
each position i do the following. Assume that u[i] = α, then we append i to the
list Mapu(α). Clearly this simple algorithm is correct and runs in linear time, i.e.,
O(n). Since, we need to initialize the |Σ| size array, the total running time becomes
O(n+ |Σ|). The space requirement is also clearly O(n+ |Σ|).

We will now prove a number of new lemmas that will be used in the string compar-
ison algorithm – first we will introduce some notations. Let firstMiss(u,v) denote
the first mismatch entry between u,v. More formally, we say ` = firstMiss(u,v) if
and only if u[`] 6= v[`] and u[i] = v[i], for all 1 ≤ i < `. In what follows, the notion
of a global mismatch and a local mismatch is useful in the context of two strings u,v
and their respective substrings u′,v′. In particular, firstMiss(u,v) would be termed
as the global mismatch in this context and firstMiss(u′,v′) would be termed as a lo-
cal mismatch, i.e., local to the corresponding substrings. For this global/local notion,
the context C is important and is defined with respect to the two strings and their cor-
responding substrings, i.e., the context here would be denoted by C〈(u,u′), (v,v′)〉.
Also, for the V -form of a string u we will use the following convention: Lu,` denotes
the `-th Lu in the V -form of u and pos(Lu,`) will be used to denote its index/position
in u. With this extended notation, the V -form of u can be rewritten as follows:
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u = u0 Lu,1 u1 Lu,2 u2 · · · uj−1 Lu,j uj.

Moreover, within the context C, the strings u,v are referred to as the superstrings

and u′,v′ as the substrings.

Lemma 7.2.5 Suppose we are given distinct strings v and x with the corresponding

V -forms as follows:

v = v0Lvv1Lvv2 · · ·vj−1Lvvj

x = x0Lxx1Lxx2 · · ·xk−1Lxxk

Assume that Lv = Lx and j = k. Let h ∈ {0 . . .max(j, k)} be the least in-

teger such that vh 6= xh. Now assume that `h = firstMiss(vh,xh) and `f =

firstMiss(v,x). In other words, `h is the index of the first mismatch entry between

the substrings vh,xh, whereas `f is the index of the first mismatch entry between the

two strings v and x. Then we must have `f =
∑h−1

i=0 (|vi|+ 1) + `h. (Or equivalently,

`f =
∑h−1

i=0 (|xi|+ 1) + `h).

Proof. This lemma basically claims that the first mismatch of vh and xh would in fact
be the first mismatch globally. We prove this by considering two cases.

Case 1: Mapv(Lv) = Mapx(Lx). In this case, all the positions of Lv and Lx in v and
x respectively are identical. So, definitely, the first global mismatch and the first
local mismatch in the context C〈(v,vh), (x,xh)〉 would have to be identical.
And hence the result follows.

- - v`−3 Lv,`−2 v`−2 Lv,`−1 < · · · · · · v`−1 · · · · · · > Lv,` - -
↑
`f
↓

- - x`−3 Lx,`−2 x`−2 Lx,`−1 < · · · · · · · · ·x`−1 · · · · · · · · · > Lx,` - -

Figure 7.1: The case when Mapv(Lv) 6= Mapx(Lx)
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Case 2: Mapv(Lv) 6= Mapx(Lx). It would be useful to follow the arguments with ref-
erence to Figure 7.1. Recall that according to our hypothesis, Lv = Lx, j = k.
Since, Mapv(Lv) and Mapx(Lx) differ with each other, assume that the first dif-
ference occurs between Lv,` and Lx,`, i.e., between the `-th entries. So, we have
v[pos(Lv,`)] = Lv = Lx = x[pos(Lx,`)]. However, pos(Lv,`) 6= pos(Lx,`) and
this is the first/least such position. Assume w.t.l.o.g. that pos(Lv,`) < pos(Lx,`).

Now, if the first global mismatch position, i.e., `f < pos(Lv,`−1), then the situa-
tion is identical to Case 1. So, let us assume that `f > pos(Lv,`−1). Note that we
cannot have `f = pos(Lv,`−1), for otherwise we would have Lv,`−1 6= Lx,`−1,
contradicting our assumption above. In this case, we must have h = ` − 1,
and clearly v[pos(Lv,`)] 6= x[pos(Lv,`)]. So, we must have `f ≤ pos(Lv,`);
further, the first global mismatch and the first local mismatch in the context
C〈(v,vh), (x,xh)〉 would have to be identical, and hence the result follows.
Note that we also have |vh| < |xh|.

Corollary 7.2.6 If in Case 2 of Lemma 7.2.5 we have `f = pos(Lv,`), then vh is a

proper prefix of xh.

Interestingly, we can extend Lemma 7.2.5 further if we consider the (inner) con-
texts within (outer) contexts as the following lemma shows. In other words V -form can
be applied recursively and independently as shown in [DDS11]. In what follows, for
given distinct strings v andxwith corresponding V -forms, the condition that Lv = Lx,
j = k will be referred to as Cond-I(v,x).

Lemma 7.2.7 Suppose we are given distinct strings v and x with corresponding V -

forms, and assume thatCond-I(v,x) holds. Now consider the (outer) context C0〈(v,vh0), (x,xh0)〉,
where h0 is the least integer such that vh0 6= xh0 .

Now similarly consider the V -forms of vh0 andxh0 and assume thatCond-I(vh0 ,xh0)

holds. Further, consider the (inner) context C1〈(vh0 ,vh1), (xh0 ,xh1)〉, where h1 is the

least integer such that vh1 6= xh1 .

Then the global mismatch of the context C0 coincides with the local mismatch of

the context C1.
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Proof. Basically, the result follows by applying the arguments of Lemma 7.2.5 to
form a chain of arguments between the inner and the outer contexts.

Corollary 7.2.8 Given nested contexts Ci, 0 ≤ i ≤ k satisfying the hypotheses of

Lemma 7.2.7, the global mismatch of context C0 coincides with the local mismatch of

context Ck.

Corollary 7.2.8 establishes that the first global mismatch will always be the first mis-
match as we go further within inner contexts through the chain of outer and inner
contexts.

Now we can focus on the string comparison algorithm: Algorithm CompareV. (See
Example 7.2.12 at the end of this section.) Suppose we are given two distinct strings p
and q, then the algorithm performs the following steps.

Step 1: Preprocessing Step. Compute Mapp(Σ) and Mapq(Σ). We also compute the
first mismatch position `f between p and q. This will be referred to as the global
mismatch position and will be independent of any context within the iterations
of the algorithm.

Then we repeat the following sub-steps in Step 2. During different iterations
of the execution of these stages we will be considering different contexts by
proceeding from outer to inner contexts. Initially, we will start with the outer-
most context, i.e., C0〈(p,ph0), (q, qh0)〉, where h0 is the least integer such that
ph0 6= qh0 . At each iteration, we will be considering the largest α ∈ Σ that
is present within one of the superstrings in the context. In other words, if the
current context is C0, as is the case during the initial iteration, we will consider
the largest α such that α ∈ p or α ∈ q.

Step 2: Throughout this step we will assume that the current context is C〈(v,vh), (x,xh)〉,
where h is the least integer such that vh 6= xh. So, initially we have C = C0.
Suppose we are now considering α ∈ Σ, then it must be the largest α ∈ Σ such
that either α ∈ v or α ∈ x. We proceed to the following sub-steps:

Step 2.a: We compute Mapv(α) from Mapp(α) where Mapv(α) contains the positions
that are only within the range of v in the current context C. Similarly, we com-
pute Mapx(α) from Mapq(α) where Mapx(α) contains the positions that are only
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within the range of x in the current context C. Now we compare Mapv(α) and
Mapx(α), which yields two cases.

Step 2.a.(i): In this case, Mapv(α) = Mapx(α).

This means that within the current context C, considering the V -form of the
superstrings v and x, we must have Lv = Lx and j = k. So, we need to check
Condition 3 of Lemma 7.2.1. We identify h such that h is the least integer with
vh 6= xh. By Lemmas 7.2.5, 7.2.7 and Corollary 7.2.8 we know that this h can
be easily identified because it is identical to the global mismatch position `f .

Then we iterate to Step 2 again with the inner context C1〈(vh,vh1), (xh,xh1)〉,
where h1 is the least integer such that vh1 6= xh1 . In other words, we assign
C = C1 and then repeat Step 2 for β ∈ Σ where β < α.

Step 2.a.(ii): In this case, Mapv(α) 6= Mapx(α).

[C1] If Mapv(α) = ∅ (Mapx(α) = ∅ resp.), we have Condition 1 of Lemma 7.2.1
satisfied (ε is the least string in V -order) and hence we return v ≺ x (x ≺
v resp.). Note that this effectively decides p ≺ q (q ≺ p resp.) and the algo-
rithm terminates.

[C2] If |Mapv(α)| < |Mapx(α)| (|Mapx(α)| < |Mapv(α)| resp.), we have Con-
dition 2 of Lemma 7.2.1 satisfied and hence we return v ≺ x (x ≺ v resp.).
Similarly, this effectively decides p ≺ q (q ≺ p resp.) and the algorithm termi-
nates.

[C3] Otherwise, we have Lv = Lx and j = k. So, we need to check Condition
3 of Lemma 7.2.1, and identify h such that h is the least integer such that vh 6=
xh. By Lemmas 7.2.5, 7.2.7 and Corollary 7.2.8 we know that h can be easily
identified because it is identical to the global mismatch position `f . Now we do
a final check as to whether vh is a subsequence (in fact, a prefix) of xh according
to Corollary 7.2.6. If so, then by Lemma 7.2.2 (v (x resp.) is a subsequence of
x (v resp.)) we return v ≺ x (x ≺ v resp.), which decides that p ≺ q (q ≺
p resp.) and the algorithm terminates. Otherwise, we return to Step 2 with the
inner context C1〈(vh,vh1), (xh,xh1)〉, where h1 is the least integer such that
vh1 6= xh1 . In other words, we assign C = C1 and then repeat Step 2 again.
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To prove the correctness of the algorithm we need the following lemmas.

Lemma 7.2.9 Step 2 of Algorithm CompareV can be realized through a loop that con-

siders each character α ∈ Σ in decreasing order, skipping the ones that are absent in

both v and x or in the current context.

Proof. In Step 2, we basically iterate from one (outer) context (say Ci) to the next
(inner) context (say, Ci+1). Note that the substrings of Ci become the superstrings of
Ci+1. Recall that the substrings of a context are defined with respect to the V -forms of
the superstrings. Now, by the definition of V -form, the largest letter in the superstrings
cannot be present in the substrings. Hence, if we work with αi and αi+1 while we are
considering Ci and Ci+1 respectively, then we must have αi > αi+1. Hence the result
follows.

Lemma 7.2.10 Algorithm CompareV terminates.

Proof. Note that Algorithm CompareV can terminate only by conditions [C1] and
[C2] of Step 2.a.(ii). Also recall that the input of the algorithm is two distinct strings.
Furthermore, we have computed a global mismatch position `f . Hence, clearly at some
point we will reach either [C1] or [C2] of Step 2.a.(ii). Therefore, the algorithm will
definitely terminate.

The correctness of the algorithm follows immediately from Lemmas 7.2.1, 7.2.2,
7.2.9 and 7.2.10. Finally we analyze the running time of Algorithm CompareV as
follows.

Lemma 7.2.11 Algorithm CompareV runs in O(n+ |Σ|) time and space.

Proof. The preprocessing in Step 1 of Algorithm CompareV builds the initial map in
O(n+|Σ|) time and space (Lemma 7.2.4), and then identifies the first global mismatch.
So, clearly, the preprocessing requires O(n+ |Σ|) time and space.

The main algorithm revolves around Step 2, efficiently implemented as follows.
Recall that, throughout this step we assume that the current context is C〈(v,vh), (x,xh)〉,
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where h is the least integer such that vh 6= xh. We consider all α ∈ Σ in decreasing or-
der (Lemma 7.2.9). If a particular letter is absent in both the superstrings of the current
context, we proceed to the next letter. So suppose we are currently considering α ∈ Σ.
Checking whether α is absent in both the superstrings v,x of the current context can
be done by traversing the two lists Mapp(α) and Mapq(α) in tandem. Note that we will
always traverse the maps of the strings p and q, although we may be considering dif-
ferent strings, v and x, while we are within a particular context during the iterations
of the algorithm. This works perfectly because, always, v and x would have to be
substrings of p and q: all we need is to keep track of the positions (range) of v and x
in p and q, i.e., some simple book-keeping information suffices to serve our purpose.

Once it is found that α is present in at least one of the superstrings, some work is
necessary; note that most of this work is also simple book-keeping in order to map the
positions in substrings to positions in the superstrings and vice versa. Undoubtedly,
the most important task is to identify h. However, by Lemmas 7.2.5, 7.2.7 and Corol-
lary 7.2.8, this index h basically coincides with the global mismatch position `f , and
hence can also be identified easily through some simple book-keeping.

The algorithm terminates after traversing the two lists Mapp(α) and Mapq(α) in tan-
dem. So, in total, the time required to complete this traversal and the tasks in Step 2 is
O(n). Hence the result follows.

We illustrate the algorithmic concepts with the following example.

Example 7.2.12 Let v = 712734576 and x = 71275174. With respect to their V -

forms: Lv = Lx = 7 and j = k = 3; therefore Cond-I(v,x) holds. We have

v0 = x0 = ε; v1 = x1 = 12; v2 = 345 6= 51 = x2, and hence h = 2.

The outer context is C0〈(v,v2), (x,x2)〉 and the inner context relates to the distinct

substrings 345 and 51 giving C
′〈(v2,v0), (x2,x0)〉, with Lv2 = Lx2 = 5 and v0 =

34 6= ε = x0.

The algorithm preprocessing step computes the maps and mismatch position as

follows.
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Mapv(Σ)

1 2 3 4 5 6 7

↓ ↓ ↓ ↓ ↓ ↓ ↓
2 3 5 6 7 9 1

↓
4
↓
8

Mapx(Σ)

1 2 3 4 5 6 7

↓ ↓ ↓ ↓ ↓ ↓ ↓
2 3 8 5 1
↓ ↓
6 4

↓
7

The global mismatch position is `f = 5 and α = Lv = Lx = 7. Proceeding to Step

2. the current context is C〈(v,v2), (x,x2)〉. Step 2.a yields the sub-maps:

Mapv2(7)

3 4 5
↓ ↓ ↓
5 6 7

Mapx2(7)

1 5
↓ ↓
6 5

For the inner context C′〈(v2,v0), (x2,x0)〉 we have β = 5 and identify v0 = 34 6=
ε = x0. Iterating, we find Mapvh2

(4) = 6 6= Mapxh2
(4) = ∅, and hence we conclude

that x ≺ v.
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Article: # 1

SimpLiSMS: A Simple, Lightweight
and Fast Approach for Structured
Motifs Searching

A Structured Motif refers to a sequence of simple motifs with distance constraints.
Searching for such motifs is important, among others, in the context of identifying
conserved features in biological sequences. We present SimpLiSMS 1 , a simple,
lightweight and fast algorithm for searching structured motifs. We introduce the con-
cept of a search context, character with respect to its preceding character according to
the distance constraints of the structured motif. Our experiments show excellent per-
formance of SimpLiSMS. Furthermore, we introduce a parallel version of SimpLiSMS
which runs even faster. SimpLiSMS does not use any sophisticated data structure,
which makes it simple and lightweight. And we believe it would be extremely useful
for searching structured motifs in different contexts.

1Availability: SimpLiSMS is freely available for use by anyone (including the source codes) at the
following address: http://www.ekngine.com/SimpLiSMS/.
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1.1 Introduction

A Structured Motif (alternatively, a structured pattern) is defined by a list of simple
(as opposed to structured) sub-patterns (or seeds) separated by variable length gaps
defined by a list of intervals [MPVZ05, CS04]. In other words, a structured motif
imposes a sort of variable constraint on the relative distances among its sub-patterns:
between two consecutive sub-patterns, a structured motif allows any gap within the
minimum and maximum limit provided as part of the definition. It is also referred to
as “compound patterns” in [MPVZ05, CS04]. More formally, a structured motif can
be defined as a pair (S,G), where S = (S1, ..., Sk) is a sequence of seeds (i.e., patterns)
and G = ([a1, b1], ..., [ak−1, bk−1]), with ai, bi ∈ Z and ai ≤ bi for 1 ≤ i < k is a
sequence of closed intervals characterizing the gaps between the consecutive seeds.

Structured motifs find interesting and useful applications in computational biology
and bioinformatics. For example, the PROSITE database [HBB+06, SdCC+13] sup-
ports searching for structured motifs. Different application scenarios for structured
motif pop up during different biological experiments. This is especially useful in the
identification of conserved features in a set of DNA or protein sequences.

To motivate the readers, the structured motif of the form

MT [115, 136]MTNTAY GG[121, 151]GTNGAY GAY

reported in [MPVZ05] may be cited. In particular, the authors in [MPVZ05] refer to
a biological experiment, where the exact goal was to localize several LTR retrotrans-
posons 2 and to establish, by multiple alignment, a number of conserved features. And
they report that the experimental data from about 10% of the rice genome identified
the above-mentioned structured motif in many retrotransposons belonging to the Ty1-
copia group in correspondence to the gene encoding the reverse transcriptase 3. The
structured motif mentioned above consists of three seeds (sub-patterns), namely, MT ,
MTNTAY GG and GTNGAY GAY written in IU-PAC alphabet4, and two intervals

2Retrotransposons (also called transposons via RNAintermediates) are genetic elements that can am-
plify themselves in a genome and are ubiquitous components of the DNA of many eukaryotic organisms.

3Reverse transcriptase, also called RNA-directed DNA polymerase, an enzyme encoded from the
genetic material of retroviruses that catalyzes the transcription of retrovirus RNA (ribonucleic acid) into
DNA (deoxyribonucleic acid).

4IU-PAC alphabet will be discussed later in the context of a degenerate string. The reader may refer
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imposing constraints on the relative distances between adjacent patterns. In particular,
this means that the gap between the first and second (second and third) seeds is greater
than 114 bps (120) but less than 137 bps (152).

As another motivation, we cite the application and usefulness of structured mo-
tif search in the context of protein matching as mentioned in [NR03, NR01]. Con-
sider the PROSITE database [HBB+06, SdCC+13] which contains protein site descrip-
tions. For each protein site, the database contains an expression containing character
classes (i.e., more than once character in a position) and bounded sized gaps. Clearly,
this expression is essentially a structured motif. To elaborate, we borrow the exam-
ple cited in [NR03]. Consider the expression of the protein site number PS00007:
[RK][2, 3][DE][2, 3]Y . This expression gives us a structured motif comprising three
sub-patterns: the first sub-pattern is a single character which could be either R (i.e.,
the amino acid Arginine) or K (i.e., the amino acid Lysine), the second one is also a
single character which could be either D (i.e., the amino acid Aspartic acid) or E (i.e.,
the amino acid Glutamic acid), and the third and last one is another single character
Y (i.e., the amino acid Tyrosine). And from the distance constraints it is clear that the
gap between the first and second (second and third) sub-patterns is greater than 2 but
less than 3.

We note here that the concept of a structured motif is somewhat different from a re-
lated concept of “metamotifs” or “motifs of motifs”, which refers to an expression that
specifies a particular arrangement of motifs [GBEB97, JPB01, BBB+09, BWML06].
Also, note that, in the literature the terms ‘motif’ and ‘pattern’ are sometimes used
interchangeably and sometimes for slightly different meanings. For example, pattern

searching usually refers to the problem of locating a given pattern in one or more given
texts. On the the other hand, motif searching in many contexts refers to the problem
of identifying patterns that are found frequently (and possibly with some more specific
properties) in the given text(s). Note that in the latter case, the pattern is not part of the
input whereas in the former it is. To this end, the problem we handle belongs to the
former group of problems.

The problem of structured motif search has received significant attention in the
literature. The simplest approach is to solve this problem using a regular expression
matching (REM) algorithm. But as has been argued by [BGVW12], such approach

to Columns 1, 2 and 3 of Table 1.1 at this point.
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cannot be efficient unless some special care is taken in the translation of the problem
to REM. Among theoretically efficient algorithms for this problem using REM, the
recent work by [BT10] is notable. [NR03, NR01] presented a very fast and practical
implementation of an REM algorithm to solve the problem exploiting bit parallelism.
However, there algorithm becomes less efficient as gaps get longer [BGVW12]. Also,
bit operations are more costly when they have to be performed on several computer
words instead of one. An alternative approach, suggested independently by [MPVZ05]
and [RIL+06], is to design algorithms in two phases. In the first phase, the occur-
rences of the seeds of the structured motif are computed and in the second, the inter-
vals are considered to identify the occurrences of the complete structured motif. In
what follows, the algorithms handling this problem using the 2-phase approach will
be referred to as 2-φ-algorithms. Additionally, [MPVZ05] performed extensive ex-
periments to examine the usefulness of this approach. In the implementation of the
algorithm of [MPVZ05], suffix trees were used in the first phase to compute the occur-
rences of the seeds. One of the problem of this approach is the huge space requirement
due to the summation of the number of occurrences of all the seeds, many of which
ultimately may turn out to be useless in the context of the actual occurrences of the
complete structured motif. Apart from the above we are aware of two more works
namely, SMOTIF [ZZ06] and a follow up work on SMOTIF in [HS08] as a conference
paper. Notably the work of [HS08] almost resembles the 2-φ-algorithms mentioned
above and it uses suffix tree as the index and hence suffers the same problem suffered
by [MPVZ05] as mentioned above. Unfortunately most of the prior works including
[MPVZ05, RIL+06] were not cited in [HS08].

In this article, we present SimpLiSMS (pronounced “Simply SMS”), a simple,
lightweight and fast algorithm for searching structured motifs. SimpLiSMS exploits
an idea of a search context (to be defined, shortly) and combines the two phases of
2-φ-algorithms into one. It identifies the occurrences of the seeds, mostly through a
character by character matching, rather than a seed by seed matching and thereby re-
frains from using a heavy-weight data structure like a suffix tree. As a result, not only
that SimpLiSMS is lightweight, as it turns out, it is also extremely fast in practice.
Moreover, SimLiSMS lends itself easily to a parallel implementation which makes the
searching even faster.
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1.2 Preliminaries

In this work, unless otherwise specified, the underlying alphabet is assumed to be the
DNA alphabet, i.e., Σ = {A,C,G, T}.

Definition 36 A structured motif can be defined as a pair (S,G), where S = (s1, . . , sk)

is a sequence of seeds (i.e., patterns) and G = ([a1, b1], . . , [ak−1, bk−1]), with ai, bi ∈ Z
and ai ≤ bi for 1 ≤ i < k is a sequence of closed intervals characterizing the gaps

between the consecutive seeds. So, in an occurrence of a structured motif, the dis-

tance between two consecutive seeds sk−1 and sk must be within the close interval

[ak−1, bk−1]. A structured motif M is usually expressed in the following form:

M = s1 [a1, b1] s2 [a2, b2] . . . sk−1 [ak−1, bk−1] sk. (1.1)

Problem 1.2.1 (Structured Motif Search)

We are given a sequence x and a structured motif M = (S,G). We need to find the

occurrences of M in x.

We exploit the idea of a search context which is defined as follows.

Definition 37 (Search Context). Given a sequence x, a search context is the smallest

factor of x that starts with an occurrence of the first seed s1 and has the maximum

length equal to
∑k−1

i=1 (|si|+ bi) + |sk|.

We use the following notations, with respect to a search context. We use Lmin(Lmax)

to denote the minimum (maximum) possible length of a search context. More formally,
we have the following:

Lmin =
k=i−1∑
k=1

|si|+ ai + |sk|

Lmax =
k=i−1∑
k=1

|si|+ bi + |sk|.

We maintain a data structure called Map which is defined as follows.
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Definition 38 (Map). Given a structured motif M, assume that y = s1s2 . . sk and let

|y| = `. Then Map[1 . . `] is an array of length ` where Map[i], 1 ≤ i ≤ ` is the pair

(A,B) as defined below:

Map[i].A =


i; if i = 0

Map[i− 1].A+ ak′ + 1; if i =
∑k′

j=1 |sj|, for some k′ < k.

Map[i− 1].A+ 1; otherwise

Map[i].B =


i; if i = 0

Map[i− 1].B + bk′ + 1; if i =
∑k′

j=1 |sj|, for some k′ < k.

Map[i− 1].B + 1; otherwise

In other words, given a position i, the range [Map[i].A,Map[i].B] gives us the valid
positions for M[i]. Example 1.2.2 computes the Map for M = CATA[1, 3]TACA[0, 2]GGG.

Example 1.2.2 Given the pattern (structured motif) M=CATA[1,3]TACA[0,2]GGG, Algo-

rithm ConstructMap (Figure 1.12) our algorithm will construct the Map as follows:

M = CATA[1, 3]TACA[0, 2]GGG

i 0 1 2 3 4 5 6 7 8 9 10

y C A T A T A C A G G G

Map [0,0] [1,1] [2,2] [3,3] [5,7] [6,8] [7,9] [8,10] [9,13] [10,14] [11,15]

1.3 Methods

As has been mentioned by [RIL+06], there could be an explosive number of occur-
rences of a structured motif especially because different occurrences of it can exist
having exactly the same start and end positions. This happens because of the so called
‘elasticity’ of the gaps, i.e., variable length gaps. To avoid reporting such explosive
number of occurrences we exploit the concept of a search context. Given a sequence
x, a search context is the smallest factor of x that starts with an occurrence of the first
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seed s1 and has length equal to
∑k−1

i=1 (|si| + bi) + |sk|. In other words, the longest
possible pattern corresponding to the structured motif can (barely) fit in the search
context.

SimpLiSMS takes a simple approach. It identifies all possible search contexts in x
and consider each of those one after another. In each search context it checks whether
there is indeed an occurrence of the structured motif in it and if yes, it identifies and
report the start position of that structured motif. Notably, the start position of the search
context is the start position of the structured motif that exists in it. Then it moves to the
next search context and so on. Since a search context is defined by the occurrence of
the first seed, SimpLiSMS uses an exact pattern matching algorithm (e.g., the famous
KMP algorithm for exact matching [KMP77]) to identify all the occurrences of the
first seed and thereby identify all the search contexts. To facilitate the search process
within a search context, it makes use of a data structure called Map that keeps track
of the valid positions for a particular character in the structured motif with respect to
its preceding character. Map is constructed as a preprocessing step before the actual
search in a search context can begin.

A parallel version of the SimpLiSMS, referred to as SimpLiSMS-P, is also imple-
mented as follows. The sequence x is first divided into f overlapping subsequences
{x1,x2, ...,xf} of length ` each, except possibly for the last one, xf , which may have
a lesser length. The overlapping is done so that no search context is missed due to the
cutting of the sequence into subsequences. Each subsequence xi, 1 ≤ i ≤ f is then
handled as a separate thread or process in a multi-processor/multi-threaded machine.

1.4 SimpLiSMS Algorithm outline

Recall that the input of our problem is a sequence x and a structured motif M. An
outline of the SimpLiSMS algorithm is as follows.

1. PREPROCESSING PHASE

Step 1. [Preprocessing the sequence x]: SimpLiSMS segments the sequence
x into overlapping factors of length `, called `-factors, where ` > Lmax,
such that each consecutive `-factors overlap with each other by Lmax. The
overlap is to cover all possible search contexts in x.
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Step 2. [Preprocessing the pattern M]: In this step, SimpLiSMS constructs
Map Algorithm ConstructMap (Figure 1.12) for the structured motif M.

Step 3. [Preprocessing for exact string matching]: SimpLiSMS uses an exact
string matching algorithm, e.g., the KMP algorithm, to identify the start
positions of the first seed s1. For the KMP algorithm, it needs to compute
the so called failure function table π (Figure 1.15) for the first seed s1 of the
structured motif M. We have also implemented SimpLiSMS with Boyer-
Moore (BM) algorithm [BM77] (Figure 1.20). For BM algorithm, it needs
to build the bad character shift array (Figure 1.17) and good suffix shift

array (Figures 1.19 and 1.18). Such preprocessing is done during this step.

2. PATTERN MATCHING PHASE

Step 1. The algorithm searches the `-factors obtained in Step 1.1. For each `-
factor the algorithm finds α, the list of starting positions of all occurrences
of the first seed s1 of the structured motif M within the given `-factor Algo-
rithm KMPSearch (Figure 1.16) and Algorithm BoyerMooreSearch (Fig-
ure 1.20).

Step 2. For each match of s1 we calculate the boundaries of the search context
(Lmin and Lmax) relative to the position of s1 in the sequence x.

Step 3. Now SimpLiSMS determines whether there exist at least one occurrence
of the structured motif M in the current search context. The algorithm (Fig-
ure 1.14) performs a guided search for M in the current search context SC
with the help of Map computed during the pre-processing. Suppose the
start position of the current search context is p. Recall that, y = s1s2 . . sk

and the occurrence of s1 coincides with the start of the search context. So,
SimpLiSMS starts checking for a valid match from y[|s1|+ 1]. Now, sup-
pose we have valid matches up to x[i1] = y[j], j > |s1|. Now we are going
to check y[j + 1]. Suppose we have x[i2] = y[j + 1]. Then, SimpLiSMS
only needs to check whether i2 − p + 1 ∈ [Map[i2].A,Map[i2].B]. If yes,
then we continue to check y[j+1]. Otherwise, we need to start re-checking
from y[|s1|+ 1] all over again.

Step 4. If M is found in the current searching context, then SimpLiSMS reports

SimpLiSMS: Structured Motifs Searching 154



155 1.5 Handling Degenerate Strings

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

x[i] a a [abc] a [ac] b c a a [ac] b a c [abc] a [bc]

Figure 1.1: An example of a degenerate string.

the start position of the search context and proceed to the next search con-
text.

1.5 Handling Degenerate Strings

A degenerate string (also referred to as the indeterminate string in the literature) is a
sequence x = x[1 . . n], where x[i] ⊆ Σ for all i. A position of a degenerate string
may match more than one elements from the alphabet Σ; such a position is said to have
a non-solid symbol (also called a character class). If in a position we have only one
element of Σ, then we refer to this position as solid. The length of a degenerate string
is defined in the same way as it is for a regular string: a degenerate string x has length
n, when x has n positions, where each position can be either solid or non-solid. We
represent non-solid positions using [..] and solid positions omitting [..]. The example
in Figure 1.1 identifies the solid and non-solid positions of a degenerate string.

For degenerate strings the definition of a matching relation is extended as follows.
A degenerate character (or character class) s1 is said to match another degenerate char-
acter s2, if and only if s1

⋂
s2 6= ε.

Problem 1.5.1 (Degenerate Structured Motif Search)

Given a degenerate sequence x and a structured motif M, compute all starting posi-

tions of M in x.

Note that there could be 2σ − 1 possible subsets of Σ and hence there are in total
as many degenerate characters including the σ solid characters. For example, for DNA
alphabet there are 4 letters, namely A,C,G and T . Hence there could be 15 degener-
ate characters including the 4 solid characters. In order to efficiently match degenerate
characters, we represent each degenerate character as a sequence of |Σ| bits. We main-
tain an array of bit masks U of length 2σ − 1 in a way such that the bit mask of any
given degenerate symbol (solid or non-solid) can be accessed in constant time.
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For each character of the DNA alphabet, i.e., {A,C,G, T} the conversion to the
corresponding 4 bit mask is done as follows:

• U(A) = 0001

• U(C) = 0010

• U(G) = 0100

• U(T ) = 1000

Then, the bit mask of each non-solid symbol s can be computed as follows. Sup-
pose s contains the characters ai1 , ai2 , ..., aik where k ≤ 4 and aij ∈ Σ, 1 ≤ j ≤ k.
Then the bit mask of s, namely, U(s) = U(ai1) OR U(ai2) OR . . . OR U(a1k).
Clearly, given two degenerate characters s1 and s2, now we can say that s1 and s2

(degenerate) match if and only if U(s1) AND U(s2) > 0. With these bit masks de-
fined for each (solid/non-solid) character, we can easily check whether two degenerate
characters match using the following easy lemma.

Lemma 1.5.2 Given two degenerate characters s1 and s2, we say s1 and s2 (degener-

ate) match if and only if

U(s1) AND U(s2) > 0.

For example, to determine whether [AC] matches with [CD] (and vice versa), first
we convert the symbols into corresponding bit masks as follows: [AC] ≡ 0011 and
[CG] ≡ 0110. Then we perform AND operation on the bit masks as follows:

0011 AND 0110 = 0010 > 0

Since, we have a non-zero result, we can conclude that [AC] matches with [CD].
Notably, the match is due to C which is the common symbol between the two degen-
erate characters considered above.

Degenerate characters or character classes can be found in biological sequences
and are ubiquitous in PROSITE database [SdCC+13, HBB+06]. This is why, search in
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Symbol Description Bases Code
A Adenine A 0001
C Cytosine C 0010
G Guanine G 0100
T Thymine T 1000
R puRine A or G 0101
Y pYrimidine C or T 1010
K Keto G or T 1100
M aMino A or C 0011
S Strong C or G 0110
W Weak A or T 1001
B not A C or G or T 1110
D not C A or G or T 1101
H not G A or C or T 1011
V not T A or C or G 0111
N aNy base A or C or G or T 1111

Table 1.1: IU-PAC Extended DNA Alphabet and corresponding bit masks.

PROSITE database supports the use of character classes. Notably, the IU-PAC alphabet
is the extended DNA alphabet to capture this notion of degenerate characters (Table
1.1).

Now, SimpLiSMS can be extended for degenerate structured motif searching by
simply plugging in the isEquivelent function (Figure 1.13) for checking the degener-
ate matching as described above.

1.6 Results

We have evaluated the performance of SimpLiSMS through extensive experiments.
We have used 4 sequences, namely, a sequence taken from the Homo sapiens genome
(size: 256,053,182 bytes), the Arabidopsis thaliana DNA sequence (size: 321,118,972
bytes), the Oryza sativa DNA sequence (size: 634,849,961 bytes) and finally a ran-
domly generated sequence (size: 104,8576,000 bytes). We have followed the ex-
perimental strategy of [MPVZ05]. A set of 1000 structured motifs were randomly
generated by randomly choosing, for each one, the number k ∈ [3, 8] of simple mo-
tifs, the length ` ∈ [5, 10] of each motif and k − 1 intervals of [0, 100] as variable
length gaps. The experiments were run on a Windows Server 2008 R2 64-bit Operat-
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Name Searching Algorithm (for S1) Sequential/Parallel

SimpLiSMS-KMP-S KMP Sequential

SimpLiSMS-KMP-P KMP Parallel

SimpLiSMS-BM-S Boyer-Moore Sequential

SimpLiSMS-BM-P Boyer-Moore Parallel

Table 1.2: Different Variants/Implementations of SimpLiSMS.

ing System, with Intel(R) Core(TM) i7 2600 processor @ 3.40GHz having an installed
memory (RAM) of 8.00 GB. We have implemented SimpLiSMS in C# language us-
ing Visual Studio 2010. To compare the performance we have also implemented the
2-φ-algorithm of [RIL+06] and [MPVZ05] using the Aho-Corasick pattern matching
machine of [AC75] to implement the first phase (i.e., search phase). Due to the huge
space requirement of suffix tree we did not use the suffix tree in the search phase of the
2-φ-algorithm. We also slightly modify Phase 1 of the 2-φ-algorithm to incorporate
the concept of a search context to ensure a level-playing ground with SimpLiSMS.

We do not compare SimpLiSMS with the work of [NR03, NR01] because the
length of the structured motif we use in our experiments are larger than computer
words, for which their algorithm is reported to be quite slow. This is why their algo-
rithm was not considered in the experimentation of [MPVZ05] as well.

Although originally we devised SimpLiSMS using KMP algorithm, we also im-
plemented a variant where KMP algorithm was replaced by the famous Boyer-Moore
algorithm [BM77] (Figure 1.20). Our motivation for this comes from the fact that de-
spite much better theoretical running time, the Boyer-Moore algorithm outperforms
KMP algorithm in practice. And indeed as will be reported shortly, the performance
of SimpLiSMS with Boyer-Moore algorithm performs better in most cases. Table 1.2
describes the different implementations of our algorithm.

The results are illustrated in Figures 1.2 through 1.11. These figures basically
present two different types of comparisons. Since the size of the structured motif
largely depends on the gap length, in Figures 1.2, 1.4, 1.6 and 1.10 the time required
to compute the occurrences of the set of structured motifs are reported against the gap
lengths in those. On the other hand, the number of occurrences also affect the search
time significantly. Hence, in Figures 1.3, 1.5, 1.7 and 1.11, the time vs. number of
occurrences are plotted. In particular, in Figures 1.2 and 1.3, we present the com-
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parison among the 2-φ-algorithm, SimpLiSMS-KMP-S and SimpLiSMS-KMP-P. On
the other hand, in Figures 1.4 and 1.5, we present the comparison among the 2-φ-
algorithm, SimpLiSMS-BM-S and SimpLiSMS-BM-P. Finally, in Figures 1.6 and 1.7
we put SimpLiSMS-KMP-S and SimpLiSMS-BM-S against each other. From the fig-
ures, performance superiority of SimpLiSMS over the 2-φ algorithm is clearly evident.
It is also clear that SimpLiSMS-P runs even faster as expected. Also, in most cases,
SimpLiSMS-BM outperforms SimpLiSMS-KMP.

At this point a brief discussion on SimpLiSMS-P is in order. We note that SimPliSMS-
P can be configured depending of the length of the input sequence and the machine
resources (RAM size). For example to run a search on a sequence of length 600MB,
we configure SimpLiSMS to segment the sequence into 75 smaller segments each of
length 8MB. So the queue contains 75 threads and we set the concurrent thread limit
to 25 (the number of threads running at anytime).

We have also made an attempt to compare SimpLiSMS with SMOTIF [ZZ06].
However the implementation available for SMOTIF turned out to be a bit problematic
and was crashing for long motifs. As a result we could not run the experiments for
longer gap length. However, as is evident from Figures 1.8 and 1.9, the run-time
of SMOTIF remains almost invariant with regards to the changing gap length or the
number of occurrences. And clearly, the performance of SimpLiSMS is better than
SMOTIF.

We also have considered degenerate motifs. As a second experiment, we compared
the performances of SimpLiSMS-BM, SimpLiSMS-KPM and the 2-φ algorithm by
processing the same data-set used in the first experiment to search for a set of 1,000 de-
generate structured motifs over the IUPAC alphabet, randomly generated by randomly
choosing, for each model, the length ` ∈ [5, 10] of each motif and k − 1 intervals of
[0, 100] as variable length gaps. The results, averaged over 10 trials, are illustrated in
Figures 1.10 and 1.11. As expected, the performance superiority of SimpLiSMS over
2-φ algorithm is clearly evident from the figures.

SimpLiSMS: Structured Motifs Searching 159



160 1.6 Results

0 

20 

40 

60 

80 

100 

120 
4

 

9
 

1
4

 

1
9

 

2
3

 

2
8

 

3
3

 

3
8

 

4
3

 

4
8

 

5
3

 

5
8

 

6
3

 

6
8

 

7
3

 

7
8

 

8
3

 

8
8

 

9
3

 

9
8

 

1
0

3
 

1
0

9
 

1
1

5
 

1
2

0
 

1
2

9
 

1
3

8
 

ti
m

e
 (

se
c)

 

gap length 

SimpLiSMS-KMP comapred to 2-φ algorithm 

2-Φ 

SimpLiSMS-KMP-S 

SimpLiSMS-KMP-P 

Figure 1.2: Comparison of SimpLiSMS-KMP-S, SimpLiSMS-KMP-P and 2-φ-
algorithm (time vs. gaps length).
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Figure 1.3: Comparison of SimpLiSMS-KMP-S, SimpLiSMS-KMP-P and 2-φ-
algorithm (time vs. number of occurrences).
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Figure 1.4: Comparison of SimpLiSMS-BM-S, SimpLiSMS-BM-P and 2-φ-algorithm
(time vs. gaps length).
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Figure 1.5: Comparison of SimpLiSMS-BM-S, SimpLiSMS-BM-P and 2-φ-algorithm
(time vs. number of occurrences).
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Figure 1.6: Comparison of SimpLiSMS-BM-S and SimpLiSMS-KMP-S (time vs.
gaps length).
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Figure 1.7: Comparison of SimpLiSMS-BM-S and SimpLiSMS-KMP-S (time vs.
number of occurrences).
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Figure 1.9: Comparison of SimpLiSMS and sMotif (time vs. number of occurrences).
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Figure 1.10: Comparison of SimpLiSMS-BM, SimpLiSMS-KMP and 2-φ-algorithm
for degenerate structured motifs (time vs. gaps length).
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Figure 1.11: Comparison of SimpLiSMS-BM, SimpLiSMS-KMP and 2-φ-algorithm
for degenerate structured motifs (time vs. number of occurrences).
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1.7 Pseudocode

procedure CONSTRUCTMAP((S,G))
Map[1..n, 1..2]← 0n×2; index← 0; Lmin,Lmax ← 0
for (i← 1 to |S|) do

Lmax = Lmax + |Si−1|+ G[i][1]
Lmin = Lmin + |Si−1|+ G[i][0]

for (i = 0→ i < |S|) do
for (j = 0→ j < |S[i]|) do

a, b← 0
if (index > 0) then

if (j = 0) then
a = Map[index− 1][0] + G[i][0] + 1
b = Map[index− 1][1] + G[i][1] + 1

else
a = Map[index− 1][0] + 1
b = Map[index− 1][1] + 1

Map[index]← (a, b)
index← index+ 1

return Map

Figure 1.12: Construction of the Map dictionary.

requires The bits mask array U(Σ) of the alphabet Σ
procedure ISEQUIVALENT(d1, d2)

s1, s2 ← 0
. perform bitwise or operation on d1 and d2 characters
for i← 1 to |d1| do

s1 ← s1 | d1[i]

for i← 1 to |d2| do
s2 ← s2 | d2[i]

. perform bitwise and operation between s1 and s2 characters
z ← U[s1] & U[s2]
return z

Figure 1.13: Determine whether the degenerate symbols d1 and d2 are equivalent or
not.
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procedure SIMPLISMS(αi)
. Build the string Y, the concatenation Si, for 1 ≤ i ≤ |S|
Y← S1S2 . . . Sk
. Initialize the lists of occurrences, candidate matches and previous matches
O← ∅; C← ∅; H← ∅
start, end,H[|H|]← αi
C[|C|]←M

for (j = 1→ j < |Map|) do
found← false

start← start+ Map[j].a−Map[j − 1].a
end← min(start+ Map[j].b−Map[j].b+ 1, |F| − Lmax)
pos← ∅
for (q = start→ q < end) do

if (Y[j] = F[q]) then
for all (g ∈ C[j − 1]) do

if (Map[j].a−Map[j − 1].a ≥ q − g)
and (Map[j].b−Map[j − 1].b ≥ q − g) then
H[|H|]← q
found = true

if found = false then
break

else
C[|C|]←M

if |C| = |Map| then
O[|O|]← C[0][0])

return O

Figure 1.14: Determine whether or not the structured motif M exists in the search
context starting at position αi.
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procedure π-TABLE(S1)
π ← 0|S1|; k ← 0; π[0]← −1
for i← 1 to |S1| do

k ← π[i− 1]
while k ≥ 0 do

if S1[k] = S1[i− 1] then
break

else
k ← π[k]

π[i]← k + 1

return π

Figure 1.15: Compute the failure function table π for the first seed S1 of the structured
motif M.

requires the table π
procedure KMPSEARCH (F, S1)

α← ∅; i← 0; k ← −1
while i < |F| − Lmax do

if k = −1 then
i← i+ 1; k ← 0

else if F[i] = S1[k] then
i← i+ 1; k ← k + 1
if k = |S1| then

[|α|]← i− S1

k ← π[k − 1]

else
k ← π[k]

return α

Figure 1.16: Compute the list α of starting positions of the first seed S1 of the struc-
tured motif M in the `-factor F of the sequence X (KMP).
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procedure BUILDBADCHARACTERSHIFT(p)
badCharacterShift← 0|Σ|

for c = 0→ c < |badCharacterShift| do
badCharacterShift[c]← |p|

for i = 0→ i < |p| − 1 do
badCharacterShift[p[i]]← |p| − i− 1

return badCharacterShift

Figure 1.17: Build Bad Character Shift Array of pattern p.

procedure FINDSUFFIXES(p)
f ← 0; g ← |p| − 1
suffixes← 0|p|+1; suffixes[|p| − 1]← |p|
for i = |p| − 2→ i ≥ 0 do

if (i > g) and (suffixes[i+ |p| − 1− f ] < i− g) then
suffixes[i]← suffixes[i+ |p| − 1− f ]

else
if i < g then

g ← i

f ← i
while (g ≥ 0) and (p[g] = p[g + |p| − 1− f ]) do

g ← g − 1

suffixes[i]← f − g
return suffixes

Figure 1.18: Find suffixes of pattern p.
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requires The suffixes array suffixes
procedure BUILDGOODSUFFIXSHIFT(p)

goodSuffixShift← 0|p|+1

for i = 0→ i < |p| do
goodSuffixShift[i]← |p|

j ← 0
for i = |p| − 1→ i ≥ −1 do

if i = −1 or suffixes[i] = i+ 1 then
for (j = 0→ j < |p| − 1− i do

if goodSuffixShift[j] = |p| then
goodSuffixShift[j]← |p| − 1− i

for i = 0→ i ≤ |p| − 2 do
goodSuffixShift[|p| − 1− suffixes[i]]← |p| − 1− i

return goodSuffixShift

Figure 1.19: Build Good Suffix Shift Array of the pattern p.

procedure BOYERMOORESEARCH(F, S1)
α← ∅
index← 0
while (index ≤ |F| − |S1|) do

for unmatched = |S1| − 1 down to(unmatched ≥ 0) do
if S1[unmatched] = F[unmatched+ index] then

if unmatched < 0 then
α[|α|]← index
index← index+mgoodSuffixShift[0]

else
t← |p|+ 1 + unmatched
a← goodSuffixShift[unmatched]
b← badCharacterShift[F[unmatched+ index]]− t
index← index+ max(a, b)

Figure 1.20: Compute the list α of starting positions of the first seed S1 of the struc-
tured motif M in the `-factor F of the sequence X (Boyer-Moore).
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Article: # 2

On the Repetitive Collection Indexing
Problem

In large data sets such as genomes from a single species, large sets of reads, and
version control data it is often noted that each entry only differs from another by a
very small number of variations. This leads to a large set of data with a great deal of
redundancy and repetitiveness.

In this article, we propose an indexing structure for highly repetitive collections
of sequence data based on a multilevel q-gram model. In particular, the proposed
algorithm accommodates variations that may occur in the target sequence with respect
to the reference sequence.
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2.1 Introduction

Sequencing the whole Human Genome was a major challenge in biological research
and was a celebrated breakthrough when it was completed. The goal was to obtain a
consensus sequence accounting for the common parts of the genomes of all humans.

Storing genetic sequences of many individuals of the same species promises new
discoveries for the whole field of biology, and the low cost acquisition of an individual
human genome gives way to “personalized medicine”, making use of one’s individual
genetic profile to tailor treatment to specific needs.

The human genome consists of around 3 billion base pairs (bps), consisting of 23

chromosomes with lengths ranging from about 33 to 247 million bps [HHXZ10]. If a
researcher or physician is dealing with many human genomes, then there is a challenge
to store, communicate, and manipulate those genomes. Data structures such as the
one introduced in this paper can address the storage and querying challenges. DNA
sequences within the same species are highly repetitive, for instance, the mutation rate
between two random individuals is limited to 1% on average for humans [AIW11,
JW04], and with a large set the global difference will only be around 10% including
non-coding segments [HHXZ10].

This poses interesting research challenges to efficiently store and access the data.
Due to the highly repetitive nature of the sequences, a delta (difference) representation
that encodes the differences between two human genomes can be quite small; although
a reference sequence is still required to retrieve the information from delta representa-
tions. Most classic data compression techniques are not well prepared to deal with the
tremendous redundancy found in genomes of the same species.

Flexible and efficient data analysis on such data sets is possible using suffix trees.
However, suffix trees occupy O(n log n) bits, which very soon inhibits in-memory
analysis. Recent advances in full-text self-indexing reduce the space of suffix tree to
O(n log σ) bits, where σ is the alphabet size and n is the cardinality of the sequence
(also see [BYG96] and [FM00]).

In practice, the space reduction seen on a Human Genome is more than 10-fold
[MNSV09]. However, this reduction factor remains constant when more sequences
are added to the collection. This causes problems if you wish to store and query a large
number of sequences.
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Methods like those in ppmdi, gzip and bzip2 will not take advantage of the repeti-
tiveness if the repeats are large as they search for repetitions in a bounded window of
the text. Other algorithms, like p7zip, use a larger buffer and are very successful, yet
are unable to decompress individual sequences [CFMPN10].

Classical compression methods tailored for DNA, such as GenCompress , Biocom-

press, Fact and GS Compress have only moderate success [CFMPN10].
Finding matches with an LZ77 variant with a sliding window would require a multi-

gigabyte buffer, not counting the match-finding structures. Using a context-based sta-
tistical coding (e.g., PPM) may efficiently exploit the repetitions only if the considered
context is long enough [GD11].

Our method is based on the observation that two sequences share a certain number
of q-grams if the edit distance between them is within a certain threshold. Moreover,
since there are only four letters in the DNA alphabet, we know that the number of all
combinations of q-grams in a DNA sequence is 4q.

In particular, the proposed algorithm accommodates variations that may occur in
the target sequence with respect to the reference sequence.

2.2 Our approach

In this study, we describe another solution to the compression of a set of genomic
sequence data set which compresses the data set based on comparing it with a reference
sequence.

We assume that each target string Sti in the given collection is aligned with the refer-
ence sequence Sr, e.g., two sequences Sr and Sti can be represented as µ1α1µ2 · ·µkαkµk+1

and λ1α1λ2 · ·λkαkλk+1, respectively, where αi’s are common chunks and µi’s and λi’s
are chunks different from the other string.

A differentially compressed set is a set where a single reference sequence is stored,
along with information about the difference between this sequence and the rest of the
set. To evaluate the suggested selection method, the compression of the differences
type, locations and the size of the compressed set are examined, as is explained in the
next section. Although the general framework of relative differential compression is
not new in this context, we add some new ideas to the existing algorithms. Our study
defines an efficient data structure for storing genomic sequences and a fast algorithm
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to randomly access sub-sequences.
The proposed data structure is built through the following steps, which we will

describe in more detail in the following section.

(1) Create the empty variations lookup table and q-gram dictionary.

(2) Partition the reference sequence Sr into fixed length sub-sequences.

(3) For each subsequence we generate the set of q-grams.

(4) Update the variations lookup table of the sub-sequences.

(5) For each q-gram we generate a computer word (signature).

(6) Update the q-grams dictionary.

(7) Repeat the steps (2) - (6) for each target sequence Sti in the collection.

2.3 Definitions

Definition 39 (q-gram) For a given alphabet Σ, let s be a string, where s ∈ Σ+ and

q is a positive integer number, a q-gram of s is a pair (g, i), where g is the factor (of

length q) of s starting at the i-th position, that is gi = s[i . . i+q−1], the set of q-grams

of s, denoted by G(s, q), is obtained by sliding a window of length q over the the string

s. There are total of |s| − q + 1 q-grams in G(s, q).

A filter is an algorithm that quickly discards some parts of the text based on some
filter criterium, leaving the remaining part to be checked with a proper (online) ap-
proximate string matching algorithm.

The q-gram similarity of two strings is the number of q-grams shared by the strings,
which is based on the following lemma.

Lemma 2.3.1 (The q-gram lemma [Ukk92]) Let x and y be strings with the edit dis-

tance δ(x,y). Then, the q-gram similarity ofx and y is at leastQsim = max(|x|, |y|)−
q+1− (q×δ(x, y)). Given strings x and y, let an occurrence of x[1 . . i] with at most

k differences end at position j in y. Then at least i + 1 − (k + 1) × q of the q-grams

in x[1 . . i] occur in the substring y[j − i+ 1 . . j].
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The valueQsim in the lemma is called the threshold and gives the minimum number
of q-grams that an approximate match must share with the pattern, which is used as the
filter criterium [JU91].

Given two strings s and s′, and threshold h such that δ(s, s′) ≤ h, similarly as in
[UW93]. We denote the list (array) of differences as H[0 . . h − 1], where 0 < h < n

and h << n. Array H stores triplets such that for each triplet (o, p, c) ∈ H[i], where
0 ≤ i < h, H[i] � o represents the edit operation (0 for replacement, 1 for insertion, −1

for deletion) applied in position H[i] � p of s. In the case of replacement or insertion,
H[i] � c represents the new symbol (base). The array is constructed in such a way that
it is already sorted by H[i] � p, i.e., H[i] � p ≤ H[i+ 1] � p, for all 0 ≤ i < h− 1. As an
example, see Figure 2.1. Notice that H describes how sequence s can be transformed
to s′. The array H can be computed in O(hn) time and space [GBL95].

Problem 2.3.2 (Repetitive Collection Indexing Problem) Given a collection C of m

sequences where Si ∈ C such that |Si| = n′ for each 1 ≤ i ≤ m and
∑m

i=1 |Sk| = n,

where each sequence S2, S3, . . , Sm (we call them the target sequences Stk) contains h

mutations from the base sequence S1 (we call it reference sequence Sr), this means

δ(Sr, Stk) ≤ h for 1 < k ≤ m. The repetitive collection indexing problem is to

store C in as small amount of space as possible such that the following operations are

supported as efficiently as possible:

Given a pattern p of length |p| = ` over an alphabet Σ and integer threshold h > 0,

find whether p′ occurs in the collection C (Si, for 1 ≤ i ≤ m), where δ(p′,p) ≤ h.

The set of positions of p′ occurrences in S are defined as:

Occ(p, S) = {1 + |u, ∃ u, v, S = up′v , where δ(p′, p) ≤ h|}

• exists(p, S) returns true iff Occ(p, S) 6= ∅.

• count(p, S) returns |Occ(p, S)|.

• locate(p, S) returns the ordered set Occ(p, S).

• extract(S, `, `′) extracts the substring S[` . . `′].
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2.4 Algorithm

2.4.1 Index construction algorithm

Step 1. The algorithm extracts the factors of length `, called `-factors, from the set of
sequences such that consecutive `-factors overlap with each other by q − 1. The
overlap is to cover all the q-grams gi, where q is the length of the each q-gram
extracted in the next step.

Step 2. The algorithm processes the `-factors obtained in Step 1. For each `-factor s
occurring f times in a sequence Stk at offsets {o1, . . , of}, a posting 〈k, {o1, . . , of}〉
is appended to the posting list of the `-factor s.

Step 3. The algorithm extracts q-grams from the set of `-factors obtained in Step 1 by
using the sliding window technique, for each `-factor s of length ` of Sr extract
the q-grams gi = s[i . . i+ q − 1].

Step 4. The algorithm builds the q-grams dictionary, using the q-grams obtained in
Step 3. For each extracted q-gram, g, generate the signature ς(g).

Step 5. The algorithm fills the q-gram dictionary, using the q-grams obtained in Step
3. For each q-gram g occurring f times in `-factor s at positions {p1 . . pf} an
entry 〈s, {p1 . . pf}〉 is appended to the entry list of ς(g) in the q-gram dictionary.

Processing the Reference Sequence

We will use word-level parallelism by packing the q-grams into computer words. These
words will be referred to as signatures. The signature ς(s) of a string s is obtained by
transforming the string to its binary equivalent. This is done by using 2-bits-per-base
encoding of the DNA alphabet, and storing its decimal value in a computer word.

We extract a set of factors of length ` of Sr (the first sequence in the collection),
Sri = Sr[i . . i + ` − 1] such that consecutive `-factors overlap with each other by
q − 1). For each factor t of length ` of Sr, we extract the v equal factors of length j of
tji = t[i+j `

v
. . i+(j+1) `

v
−1], for all 0 ≤ i < n−`+1, 0 ≤ j < v. We build an array

of linked lists L[s], for all 0 ≤ s < 22 `
v . We compute ς(tji ), the signature of tji , and

insert the pair (u, b) in L[ς(tji )], where u represents the offset of tji in t and b indicates
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whether the factor is mapped to the reference sequence (v = 1) or not (v = 0). Thus,
the pairs (u, v) ∈ L[ς(tji )], for all 0 ≤ ς(tji ) < 22 `

v , are sorted by u.

Processing the Target Sequences in the Collection

Similarly, for the next (target) sequence Stk, where 1 < k ≤ m, we extract the set of
factors of length ` of Stk, then we compute the array H and a new array OP , where

OP[i] =
i−1∑
j=0

H[j] � o represents the operation sum of H[i] � o, for all 0 ≤ i < h. An

example of this can be seen in Figure 2.1 which shows how to change the sequence t
into t̃.

Assume that we have an edit operation H[λ] � o, for some 0 ≤ λ < h, in position
H[λ] � p = p of t. We compute the signatures of all the `

v
factors (smaller grams) of

t, affected by operation H[λ] � o. Let ςj be the signature of the j-th affected factors
(q-gram), and L[sj][q] the q-th element of the linked list L[sj]. For each edit operation
H[λ] � o, for all 0 ≤ λ < h, the affected factors are defined as follows.

• Replacement: Sr[p− `

v
+ 1 + i . . p+ i], for all 0 ≤ i <

`

v
.

• Insertion: Sr[p− `

v
+ 1 + i . . p+ i], for all 0 ≤ i <

`

v
− 1.

• Deletion: Sr[p− `

v
+ 1 + i . . p+ i], for all 0 ≤ i <

`

v
.

Then we insert the newly created signatures in the variations dictionary, we build a an
array of liked lists M[ς(s)], where s = tji , to hold the q-grams affected by operation
H[λ]�o. We compute ς(s), the signature of s and insert the pair (u, b) in M[ς(s)], where
for each (u, b) ∈M[ς(s)], u represents the offset of tji in Sr and (b = 0) indicates that
the factor is not mapped to the reference sequence. Thus, the couples (u, b) ∈ M[s],
for all 0 ≤ s < 22`, are sorted by u.

Compressing the Index: We store the relative distance for the posting list (com-
press each list separately to enable partial decompressing). We use grammar based
compressing to compress q-grams to enable detecting repetition in the text and allow
fast local compression.
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i 0 1 2 3 4 5 6 7 H.p H.o OP

string t C A T G G A C A 1 0 0
C G T G G A C A 2 -1 -1
C G G G A C A 7 1 0

string t̃ C G G G A C G A

Figure 2.1: Operation Sum Table for changing sequence t to t̃

2.4.2 Pattern Matching

The filter we use is based on counting the number of q-grams common to both the
pattern and the current text window. A pattern of lengthm has (m−q+1) overlapping
q-grams. Each error can alter at most q of these q-grams and therefore (m−q+1−k×q)
pattern q-grams must appear in any occurrence for it to be valid [Nav01].

In the index, for each q-gram g of the sequence Stk in the collection C, we have an
inverted list of the id’s of all the `-factors that contain this gram. If a gram appears in
a `-factor multiple times (with different positions), the factor id will appear multiple
times on the inverted list of this gram, with the different positions.

Let s and p be strings of length n and m respectively, such that δ(p, s) = k. Then
any substring of s (including the string s) have at least m − q + 1 − δ × q common
q-grams with p. Finding the set of q-grams can be done in O(|G(p, q)| log v), where v
is the number of unique signatures in the index and G(p, q) is the set of q-grams of p
(From Definition 39, |G(p, q)| = |p| − q + 1). Then using the q-gram lemma (Lemma
2.3.1) we can tell if there is a match with edit distance δ ≤ k by simply checking the
number of common q-grams which occur in each sequence in the collection.

2.5 Complexity analysis

The proposed algorithm consists of two main steps:

1. Compute the edit transcript between the reference sequence and each other se-
quence in the collection.

2. Creating a dictionary of the computed differences.
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The q-gram index is constructed in O(n). The array H of the edit operations can
be computed in O(nh) [FHIP10].

The array OP of the operations sums can be computed in O(h) time from H.
By using a technique similar to Karp-Rabin [KR87] when generating the signatures

for every q-gram the total expected time is kept as O(n) instead of O(nq) as the signa-
ture of the next q-gram can be obtained in O(1). The next signature can be computed
by performing a left shift on the previous signature and appending the extra character
to the end of the signature, taking O(1).

The main components in the proposed structure are the vocabulary list and occur-
rences lists. The vocabulary list stores the list of distinct q-grams that appear in the
collection of sequences, while the occurrences list contains, for each q − gram found
in the vocabulary, the list of the positions where that q − gram appears.

First, we will consider the size the vocabulary list, to determine the number of
different q-grams in an arbitrary text, consider that there are |Σ|q different possible q-
grams and n q-grams in the given text (of length n). The probability of a q-gram to be
found is 1/|Σ|q. Therefore, the probability of a q-gram not being selected in n attempts
is ((1− 1/|Σ|q)n). Hence, the average number of q-grams selected in the n attempts is
|Σ|q(1− (1− 1/|Σ|q)n) = θ(|Σ|q(1− e−n/|Σq |)) = θ(min(n, σq)).

Second, we consider the lists of occurrences. Since we index all positions of all
q-grams, the space requirements are O(n). If block addressing is implemented (blocks
of size `, the number of blocks is b = n/`), we consider that there is an entry in the
list of occurrences per different q-gram mentioned in each different block. So, each
block has (min(`, |Σq|)) different q-grams. To get the total for all blocks, we multiply
this by the number of blocks b = n/`, we have the total size of the occurrence lists
is O(n min(1, |Σq|/`)), The occurrences are found in ascending order, hence each
insertion takes O(1) time. Therefore, the q-gram index is built in O(n). Similarly the
variation index can be built in O(h).

The reduction in space requirements, that is obtained from utilizing block address-
ing, comes at the expense of extra search costs, to retrieve the exact pattern positions
in the collection of sequences a sequential search over the qualifying blocks becomes
necessary. The structure is therefore used as a filter to avoid a sequential search over
the non-qualify blocks, while the others (qualifying blocks) need to be searched.
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Article: # 1

Arabic Morphology Analysis and
Generation

This article describes the construction of a lexicon and a morphological description
for standard Arabic language. We present a large-scale system that performs morpho-
logical analysis and generation of Arabic words. The result, Arabic Morphological
Analyzer AMA, is a Finite State Transducer, it is based on direct implementation of
a comprehensive list of Arabic roots, a dictionary of Arabic morphological patterns
and a set of Phonological/Orthographical alternations rules. The output of the system
is a large-scale lexicon of inflected/derived forms. Also the system accepts Modern
Standard Arabic words and returns morphological analyses and glosses.
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1.1 History

From rock walls and clay tablets through paper to e-book tablets, writing is a system
of linguistic symbols which permits one to transmit and conserve information. Writing
appears to have developed between the 7-th millennium BC and the 4-th millennium
BC, Clay tablets were used in Mesopotamia in the third millennium BC.

Arabic language ( �éJ
K. QªË@) is a central Semitic language, most closely related to
Aramaic, Hebrew, Ugaritic and Phoenician, However, not all Semitic languages have
equally preserved the features of their common ancestor language. In this respect, Ara-
bic is unique; it has preserved a large majority of the original Proto-Semitic features.
In fact, many linguists consider Arabic the most Semitic of any modern Semitic lan-
guages in terms of how completely they preserve features of Proto-Semitic, Arabic has
lent many words to other languages and borrowed words from many languages.

Figure 1.1: Arabic epitaph of “Imru-l-Qays, son of ’Amr, king of all the Arabs”, in-
scribed in Nabataean script. Basalt, dated in 7 Kislul, 223, viz. December, 7 328 AD.
Found at Nemara in the Hauran (Southern Syria).

Uncovering the statistics and dynamics of human language helps in characterizing
the universality, specificity and evolution of cultures. These days new texts are for the
most part created directly in digital form. Also, the explosive growth of the Internet
content have resulted in a massive amount of data that is available for research. Apart
from the informational content of the texts collected, whether they are created recently
or centuries ago, the texts themselves also provide great material for the investigation
of human language and its structures.

The influence of Arabic language has been most important around the globe. Ara-
bic is an important source of vocabulary for many languages. Arabic language be-
longs to the Semitic language family originated in the Arabian Peninsula in pre-Islamic
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times, and spread rapidly across the Middle East, it is one of the official languages of
the United Nations, the sixth most used language in the world, spoken by over 360

million people (in 2014) and the official language for over 29 countries, in addition to
which there are native Arabic speakers scattered all over the world. However, The ef-
forts to improve Arabic information search and retrieval compared to other languages
are limited and modest, The barrier to text processing advancements in Arabic is its
complicated syntactic and morphological properties which makes it a difficult language
to master and explain the lack in the processing tools for that language. Among these
properties the complex structure of the Arabic word, the agglutinative nature, lack of
vocalization, the segmentation of the text, the linguistic richness, etc...

Because there is not a modern linguistic model for Arabic grammar within the
frame of computational linguistics, the results achieved are not comparable with that
achieved on other languages.

The Semitic languages are notable for their non-concatenative morphology. Arabic
language is a highly inflected language, it has much richer morphology. This raises
the need to study the key statistics of Arabic language and the statistical differences
between Arabic and other languages on a large scale.

Unlike most languages, Arabic has virtually no means of deriving words by adding
prefixes or suffixes to words. Instead, they are formed according to a finite (but fairly
large) number of templates applied to roots.

1.2 Motivation

In this article, we are primarily concerned with Arabic language. The motivation for
working on Arabic is as follows. In formal language theory, the symbols for represent-
ing words are inseparable parts of the definition of the language. In human languages,
the concept is a little different: an assertion, for example, can have multiple represen-
tations, depending on the means of communication and the conventions for recording
it.

In the context of linguistics, morphology is the study of word forms. Arabic mor-
phology 	­K
Qå��JË @ is well-known for its richness and complex nature. It has a multi-
tiered structure and applies non-concatenative morphotactics. In fact, the Arabic mor-
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phological complexity is known to have negatively affected the performance of spell
checking systems! Words in Arabic are originally formed through the amalgamation
of roots and patterns.

To illustrate the complexity of Arabic morphology, inflectional/derivational sys-
tems for Arabic words are shown in Figure 1.2. Figure 1.3 shows possible affixes,
classifications and morphological templates, all affixes and clitics are optional, and
they can be connected together in a series of possible scenarios.

A root in Arabic is a sequence of three or four letters and the pattern is a template of
vowels (and non-root letters) with slots into which the radicals of the root are inserted.
This process of insertion is called interdigitation [BK03]. The resulting lemmas are
then passed through a series of affixations (to express morpho-syntactic features) and
clitic attachments (as conjunctions and prepositions, for example, are mostly joined
to adjacent words in writing) until they finally appear as surface forms. Due to the
richness and complexity of Arabic language, there is no corpus, no matter how large,
that contains all possible word forms. Given a word in Arabic, one can change its form
by adding or removing yet another prefix, suffix, proclitic or enclitic. This is why a
morphological generator/analyser is essential in creating an adequate list of possible
words in Arabic.

1.3 Aspects of Arabic language

Arabic is written and read horizontally from right to left. There are 18 distinct letter
shapes (There are no capital letters), which vary slightly depending on whether they
are connected to another letter before or after them. The full alphabet of 29 letters is
created by placing various combinations of dots above or below some of these shapes.
The letters are divided into two groups, called the sun letters (or solar letters) and moon
letters (or lunar letters), based on whether or not they assimilate the letter (Laam È) of
the preceding definitive article. There are three long vowels included in the 29 letters
and six short vowels indicated by marks (Diacritics, or Harakat, �HA¿QmÌ'@) above and
below other letters. The Arabic alphabet letters have up to 4 forms (Isolated, Initial,
Medial or Final), the form that a letter takes depends on its position in a given word,
and the difference most of the time is very small, like a longer tail to allow it connect
with another letter following it, as shown in Figure 1.2.
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 ر ذ د خ ح ج ث ت ب ا
Alif Baa Taa Thaa Jeem Haa Kha Daal Thaal Raa 
 ف غ ع ظ ط ض ص ش س ز

Zaay Seen Sheen Saad Dhaad Taa Dhaa Ayn Ghayn Faa 
  ء ي و ه ن م ل ك ق

Qaaf Kaaf Laam Meem Noon Haa Waaw Yaa Hamza  
  Arabic alphabet 

 
 الشدة ـــّ

 السكون ـــْ

 الكسرة ـــِ

 الضمة ـــُ

 الفتحة ـــَ

 تنوين كسر ـــٍ

 تنوين ضم ـــٌ

 تنوين فتح ـــً

List of  Harakat  

 
 ء
ـئ  

 أ = ء  
 إ = ء  
 ؤ = ء  
 ئ = ء  

List of Hamza 
 
Verb/Noun prefix combination 
Prefix Meaning V/N 

 in”, “at” N“ ب
 therefore” N & V“ ف
 will” V“ س
 like" N" ك
 for”, “to” N & V“ لـ
 and” N & V“ و

 therefore in” N“ فب
 then will” V“ فس
 like” N“ فك
 therefore to” N & V“ فل
 and in, N وب
 and will” V“ وس
 and like” N“ وك
 and for” N & V“ ول

Verb/noun prefix 
Sound verb سالم 

Hamzated مهموز 

Doubled مضعّف 

Weak معتل 

Assimilated مثال 

Hollow أجوف 
Defective ناقص 

Verb kinds 

 
The definitive article + prefix 
Prefix Combination Meaning 

 ”the“ ال ال
 ”in the“ ب + ال بال
 ”then the“ ف + ال فال
 ”like the“ ك + ال كال
 ”and the“ و + ال وال
 ”for the“ ف + ل + ل فلل
 ”and for the“ و + ل + ل ولل
 ”and in the“ ف + ب +ال فبال
 ”and like the“ ف + ك + ال فكال
 ”and like the“ و + ك + ال وكال

The definitive article prefix 
أا    = ٱ = آ لوص ألف   

خنجرية ألف  ـ  ـ  = ا  
مقصورة ألف ى  

List of Alif 
 الرباعي وزن الفعل

ل ل   المجرد فعلل-ي ف ع ل ل  –ف ع   

 المزيد

ل ل   ل ل  -تف ع  ل ل  -ي ت ف ع  ت ف ع   

ل ل  -ي ف ع ن ل ل  -اف ع ن ل ل   اف ع ن   

اف ع ل ل  -ي ف ع ل ل  -اف ع ل ل    

Quadrilateral verb forms 

  
المزيدل الثلاثي  وزن الفع     

 المزيد

 بحرف

ل  -أف ع ل   ل  -ي ف ع  أف ع   

ف عِّل  -ي ف عِّل  -ف ع ل    

ل   ل  -ف اع  ل  -ي ف اع  ف اع   

 المزيد

بحرفين   

ل  -ان ف ع ل   ل  -ي ن ف ع  ان ف ع   

ل  -ي ف ت ع ل  -اف ت ع ل   اف ت ع   

اف ع ل  -ي ف ع ل  -اف ع ل    

ل   ل  -ي ت ف اع ل  -ت ف اع  ت ف اع   

ت ف ع ل  -ي ت ف ع ل  -ت ف ع ل    

 المزيد

 بثلاثة

أحرف   

ت ف ع ل   ل  -اس  ت ف ع  ل  -ي س  ت ف ع  اس   

ل   ل  -اف ع و ع  ل  -ي ف ع و ع  اف ع و ع   

ل   ل  -اف ع و  ل  -ي ف ع وِّ اف ع وِّ  

اف ع ال  -ي ف ع ال  -اف ع ال    

Trilateral unaugmented verb 
المجرد ل الثلاثيوزن الفع   

اف ع لل فع ل  ي فع    
ل    اف ع ل فع ل  ي فع 
   اف ع ل فع ل  ي فع ل
ل  ي فع ل    اف ع ل فع 
   اف ع ل فع ل  ي فع ل
ل ل  ي فع     اف ع ل فع 

Trilateral augmented verb  

 
  الضمير

 أ أنا
 أ أنا

 ن نحن
 ن نحن
 ن نحن
 ن نحن
 ت أنت  
 ت أنت  
 ت أنتما
 ت أنتما
 ت أنتم
 ت أنتنّ 
 ي هو
 ت هي

هما 
 ي )مذكر(

هما 
 ت )مؤنث(

 ي هم
 ي هنّ 

Pronouns list 

Figure 1.2: Arabic language structure.
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In Arabic, sentences are composed of a number of types (ÐC¾Ë@ ÐA��̄ @) of words (or
part of speech). A word in Arabic can be a noun, a verb, or a particle.

• Noun (Õæ� @), includes nouns, pronouns, adjectives and adverbs, etc..;

• Verb (Éª 	̄ ), all different kinds of verbs and their conjugations including both
unaugmented and augmented forms;

• Particle (
	¬Qk), particles, articles and conjunctions, etc..;

Words in Arabic (whether verbs or nouns), so as in Semitic languages, are generally
based on a root (P 	Yg. ) which uses a sequence of consonants (or radicals, also sometimes
referred to as the base letters) to define the underlying meaning of the word.

In Arabic, roots convey a basic meaning which then allow for more complex se-
mantic concepts to be constructed, whether these are verbs or nouns.

Words are formed out of roots not so much by adding prefixes or suffixes, but
rather by filling in the vowel and non-root letters between the root radicals to create
the required inflection of meaning. They are formed according to a finite (but fairly
large) number of morpho-phonological templates/rules.

Roots are classified based on the number of radicals it contains, and often referred
to as Triliteral ( �éJ
�KC�JË @) for 3 letters root and Quadriliteral ( �éJ
«AK. QË @) for 4 letters roots.
Triliteral roots form the overwhelming majority 7, 889 (5, 184 unique combinations),
and to a lesser extent, Quadriliteral approximately 2, 000.

The Arabic letters Faa, Ayn and Laam are typically used as placeholders (È ¨
	¬) for Triliteral and ((È È ¨ 	¬) for Quarilatrial roots) in morphological patterns to

denote three different base (radical) letters, the word (Éª 	̄ ) is a prototypical verb that
means “to do” or “to act”.

Roots where both the second and third radicals are identical are called doubled.
Roots containing one or more of the radicals Hamza (Z), Waw (ð) or Yaa (ø
 ) are called

weak roots (É�JªÖÏ @ Éª 	®Ë @) (in contrast to the sound roots (iJ
j�Ë@ Éª 	®Ë @)), verbs that
derived from such roots are also called weak verbs, the paradigm of such roots must be
given special attention, often require special phonological/orthographical rules because
these radicals can be influenced by their surroundings/positions.
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Some roots fall into more than one of the following main categories, resulting in
30 sub-types in total according to the position and number of the weak radicals in the
root.

• Sound roots (ÕËA�Ë@ iJ
j�Ë@ Éª 	®Ë @).

• Doubled roots ( 	­ª 	�ÖÏ @ Éª 	®Ë @).

• Hamzated roots ( 	PñÒêÖÏ @ Éª 	®Ë @).

• Assimilated roots (ÈA�JÖÏ @ Éª 	®Ë @).

• Hollow roots (
	¬ñk.



B@ Éª 	®Ë @).

• Defective roots (��̄A 	JË @ Éª 	®Ë @).

Arabic language has six categories ( 	à@ 	Pð


B@) based on the vowel symbol (Diacritic

mark) (Éª 	®Ë@ 	á�
« �é»Qk) on the second radical letter (Éª 	®Ë@ 	á�
«). These categories

( 	à@ 	Pð


B@) play a crucial role in classifying each word in its appropriate context and

usually memorized by the following verse (Qª �� �I�
K.).

	àA�KQå�» Õæ 	� Õæ 	� i�J 	̄ Qå�» 	àA�Jj�J 	̄ Qå�» i�J 	̄ Õæ 	� i�J 	̄

Verbs that derived from roots consisting of three or four radicals (Triliteral or
Quadriliteral roots) are called Unaugmented verb forms. Furthermore, Arabic mor-
phology includes augmentations of the roots, augmentation is the procedures for cre-
ating Augmented Forms, the procedures for creating new verb Forms by adding (1, 2, or
3) letters and (1 or 2) letters to the Triliteral and Quadriliteralverb forms respectively.
There are 12 (identified as I - XII Forms) augmented forms for the Triliteral roots and
3 (identified by QI, QII and QIII Forms) augmented forms for the Quadriliteral roots,
these augmented forms are not just inflections of unaugmented form of the verb – they
are independent verbs in their own right.

It has to be said that not all augmented Forms exist for all roots, and the sugges-
tion that each Form has its own meaning (e.g., that Form II is always causative) is
arguable. However, there is agreement that there is a standard procedure for creating
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each Form, and that each Form is a new word of different or the same meaning from
the unaugmented form of the verb.

Verbs (ÈAª 	̄ B@): in Literary Arabic are marked for person (first, second and third),
gender(masculine and feminine), number (singular, dual and plural), tense (past, present
and imperative) and six moods (indicative, imperative, subjunctive, jussive, shorter en-
ergetic and longer energetic).

Verbs cab be Transitive ø
 Yª�JÓ, so that they require an object (or two) to convey

complete meaning or Intransitive Ð 	PB, means that the verb does not need an object to
make sense. However it is possible to a verb which is both (Transitive and Intransitive)
depending on the context.

Verb conjugation is the study of how verbs are derived from a set of base letters and
how they conjugate in the different tenses to reflect different grammatical categories,
such as gender, plurality, voice, and other aspects. The set of grammatical categories,
and the procedures for and the procedures for expressing them, are the same for all
forms.

Nouns (ZAÖÞ�B@), the terms actually mean the broader part of speech than it means in
English. Similar to verbs, nouns can be assigned into categories, and inflicted, based on
many considerations such as gender, plurality, mode, state and more. Inflected nouns
can be attached to the definite article and/or list of conjunctions, prepositions, particles
and pronouns prefixes.

Furthermore, nouns can be divided based on derivational categories.

− Derived noun ( ���J ��Ó): is a word derived from a verb

− Verbal nouns (or gerund ) (PY�Ó): is a word that indicates the occurrence of an
action and is free of tense

− Static nouns (YÓAg. ): is neither a derived noun nor a gerund, these are not derived
from anything and nothing is derived from them.

There are 4 types gerunds and 7 types of derived nouns, each one of these types
(derived noun and gerunds) comes with 2 sets of (standard and non-standard) patterns
and comes with sets of morphological rules that tell us how to construct them.

Particles (
	¬ðQmÌ'@)) are the third type (parts-of-speech) in Arabic, include prepo-

sitions, conjunctions, interjections, question particles and answer particles, they dont
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fall into the morphological templatic system (i.e., they have no patterns) nor do they
undergo any morpho-phonemic changes. There are relatively few of them and they
must be maintained in special dictionary. For more details about Arabic grammars see
[AJ87] and [AB07].

�éJ
K. QªË@ �é 	ªÊË @

�é�®�J ��ÖÏ @ Z AÖÞ�


B@

Nouns

�éJ
�KC�JË @ ÈAª 	̄ 

B@

Triliteral

É«A 	®Ë @ Õæ� @
Active

Participle

�é 	ªËAJ. ÖÏ @ Õæ� @
Resembling
Participle

Èñª 	®ÖÏ @ Õæ� @
Passive

Participle

�éËB@ Õæ� @
Instrument

	¬Q 	£
	àA¾ÖÏ @ð 	àAÓ 	QË @

Adverb

ÉJ
 	� 	®�JË @ Õæ� @
Elative

�éîD. ��ÖÏ @ �é 	®�Ë@
Resembling
Participle

�éJ
�KC�JË @ ��ñ 	̄

Quadriliteral

É«A 	®Ë @ Õæ� @
Active

Participle

Èñª 	®ÖÏ @ Õæ� @
Passive

Participle

	¬Q 	£
	àA¾ÖÏ @ð 	àAÓ 	QË @

Adverb

PXA�ÖÏ @
Gerunds

�éJ
�KC�JË @ ÈAª 	̄ 

B@

Triliteral

ú
Î�


B@ PY�ÖÏ @

Gerund 1

ù
 ÒJ
ÖÏ @ PY�ÖÏ @
Gerund 2�èQÖÏ @ PY�Ó

Gerund 3

�é
JJ
êË @ PY�Ó
Gerund 4

�éJ
�KC�JË @ ��ñ 	̄

Quadriliteral

ú
Î�


B@ PY�ÖÏ @

Gerund 1

ù
 ÒJ
ÖÏ @ PY�ÖÏ @
Gerund 2

�èQÖÏ @ PY�Ó
Gerund 3

ÈAª 	̄ 

B@

Verbs

�éJ
�KC�JË @ ÈAª 	̄ 

B@

Triliteral

�èYK
 	QÖÏ @
Augumented

ÐñÊªÖÏ @
Active

ú
æ
	�AÖÏ @

Past ¨PA 	�ÖÏ @
Present

QÓB@
Future

Èñêj. ÖÏ @
Passive

ú
æ
	�AÖÏ @

Past

¨PA 	�ÖÏ @
Present

QÓB@
Future

�èXQj. ÖÏ @
Unaugemented

ÐñÊªÖÏ @
Active

ú
æ
	�AÖÏ @

Past

¨PA 	�ÖÏ @
Present

QÓB@
Future

Èñêj. ÖÏ @
Passive

ú
æ
	�AÖÏ @

Past¨PA 	�ÖÏ @
Present

QÓB@
Future

�éJ
�KC�JË @ ��ñ 	̄

Quadriliteral

�èYK
 	QÖÏ @
Augumented

ÐñÊªÖÏ @
Active

ú
æ
	�AÖÏ @

Past

¨PA 	�ÖÏ @
Present

QÓB@
Future

Èñêj. ÖÏ @
Passive

ú
æ
	�AÖÏ @

Past

¨PA 	�ÖÏ @
Present

QÓB@
Future

�èXQj. ÖÏ @
Unaugemented

ÐñÊªÖÏ @
Active

ú
æ
	�AÖÏ @

Past

¨PA 	�ÖÏ @
Present

QÓB@
Future

Èñêj. ÖÏ @
Passive

ú
æ
	�AÖÏ @

Past¨PA 	�ÖÏ @
Present

QÓB@
Future

Figure 1.3: Arabic word formation (derived/inflected) tree
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1.4 Arabic Morphological analyzer (AMA)

In language processing, an Finite State Automaton (FSA) can be used to recognize or
generate a specific language defined by all possible combinations of characters (con-
ditional labels) on each of the edges generated by traversing the FSA from the initial
state to the end state. Each path from the initial state to a final state can be seen as a
mapping between a surface form and its lexical form.

Using an FSA to recognize a morphological realization of a word is useful. How-
ever, we also want to return an analysis of that word. To be able to do this, we need a
Finite State Transducer (FST).

A finite state transducer (FST) is a special type of finite state automaton that works
on two (or more) tapes. Rather than just traversing (and accepting or rejecting) an input
string, a transducer works like a sort of “translating machine”. It reads from one of the
tapes and writes onto the other. In the translation mode, an FST translates the contents
of its input string to its output string. In the generation mode, it accepts a string on its
input tape and generates another string on its output tape.

In our proposed Arabic Morophological Analyzer AMA, the creation of the surface
forms from the roots is best thought of as a three-stage process:

First stage: The root and the morphological template are merged together, this is done
mainly by replacing the placeholders slots in the template with the root letters;

Secound stage: Then prefixes and suffixes for each form are attached to reflect person,
gender, number, voice, tense, aspect, mood and state;

Third stage: Finally, phonotactic constraints and orthographic normalization rules are
applied to produce the final surface forms.

First and second stages are carried out in a systematic way, these two stage are
almost identical for all roots. Also the set of grammatical categories, and the pro-
cedures for embodying them, are the same for all forms. In the third stage, some
additional complications arise with so-called weak roots, at this point, deep phonolog-
ical/orthographical alterations are carried out, such as gemination, vowelization and
substitution.

Now we briefly review the main components of our proposed Arabic morphological
analyzer AMA.
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I Template dictionary. This module stores a set of morphological templates formed
according to the Arabic language grammars (see [AJ87] and [AB07] for more details).
The pattern morpheme is an abstract template to represent a word as a string of letters
including special symbols to mark where root radicals and vocalization are inserted
and occupy specified places.

A pattern can include additional consonants and vowels letters usually represented by
Cn where 1 ≤ n ≤ ` where ` is the length of the pattern.

Note that the morphological template dictionary, contains the templates that surface
forms of the words are generated from (and not the words itself as seen in text). It
only contains the morphotactic (rules governing the combination of morphemes) and
orthographic (spelling) rules. The template dictionary stores all the forms of word
structures represented by a template in which roots are accompanied by a sequence of
slots in fixed positions, filled by mutually exclusive systems of contrasting affixes.

For example, the template [∀ + ∀ + �H + ∀ + @] represents the X-Form of Triliteral-

verb augmented by two letters, in the past tense. Similarly, the template [∀ + ∀ �H
+ ∀+ ø
 ] represents the X-Form of Triliteral-verb augmented by two letters in present
tense. The symbol ∀ in the above templates represents the set of letters associated with
each template. Thus, by the interdigitation of a root and a pattern surface forms are
created.

I Rules Engine. The Rules Engine was designed to provide automation based on
external rules. The rules were to govern behaviour of verb/noun in response to gemi-
nation, vowelization and substitution. De-coupling the rules of the application helps to
maintain the list of rules independently. In Arabic when a word is formed (derived or
inflicted) from the so-called weak root, some letters may be dropped, changed, doubled
or replaced by other letters.

The rules engine whose responsibility is enforcing the rules applies the changes to
variables at the generation stage and reverses those changes at the matching stage. An
example of such changes is as follows. The conjugation of verbs containing the letter
Waw (ð@ð) will often require replacing the letter Waw (ð@ð) by the letter Alef ( 	­Ë@) in
the inflicted/derived form.

The main causes of these irregularities are phonological constraints on the letters Alef
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( 	­Ë@), Waw (ð@ð) and Yaa (ZAK
). Words derived from roots- containing at least one
or more of these letters typically present phonological alterations to make the word
pronunciation easier. Another cause of these presence of two identical is the presence
of two identical adjacent letters in the root(the second and third letters), resulting in
what so called doubled roots. Also this phenomena, in some cases, is related to the so-
called hamzated roots (roots that contain Hamza ( �è 	QÒêË @)), forms that derived from these
verbs exhibit different orthographical shapes depending on the surrounding context.

Despite these irregularities, the set of surface forms can be related to a single underly-
ing semantic category.

At this stage, all derived/inflected forms are going through a series of rewrite-rules in
the form of regular expressions. The set rules are organized so that the form which
requires various phonological alterations are all applied in the correct order.

In summary, AMA is basically a finite state transducer (FST), was obtained by
directly implementing a comprehensive list of Arabic roots, a dictionary of Arabic
morphological patterns and a set of Phonological/Orthographical alternations rules. It
contains a list of 7,889 (5,184 unique radicals combinations) Triliteral roots. The total
number of generated words (surface-forms) is 260,922,024 as described below:

• 58,463,856 verb, split in to 15,336,216 generated from unaugmented forms and
43,127,640 generated from augmented forms;

• 73,621,152 gerunds;

• 128,837,016 derived nouns.

The preformace of morphological analyzers is evaluated on the generated analysis,
where an analysis is considered complete all of its identification and notations is fully
correct. Note that the analyses, conserns word types, captures the degree of under/over
generation of analysis generation. The learnt rules from training (morphologically
annotated) data set is then applied to unknown word types in the un-annotated corpus.

The evaluation process quatitivly measures the preformance of morphological an-
alyzers in terms of the most common metrics such as precission, recall, accuracy and
F-score.
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Another typical approach is to perform application oriented evaluation to predict
how the morphological analyzer acts in the context of various kinds of applications,
the benchmark presneted in the next article to evalueate the performance of “AMA” as
stemmer is an example of such approach.

In both case, the main purpose of the evaluation process is to compare results re-
turned by morphological analyzers implementations using known annotated corpora.
This operation gives an idea about the relevance of the results according to the selected
corpus.
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Novel Arabic Language Stemmer

Arabic information retrieval can be enhanced when the roots (or stems) are used
in indexing and searching. Arabic language exhibits a very rich and complicated mor-
phological structure, its unique structure presents many difficult challenges in the stem-
ming process.

Existing Arabic stemmers suffer from high stemming error-rates because it is hard
to differentiate between base and affix letters in a word, most of the existing stemmers
blindly stem all types of word (verbs and nouns) in the same fashion by stripping
off prefixes, infixes and suffixes and using pattern matching with the aid of look up
dictionary for identifying the roots.

We present a new stemming technique by augmenting the Arabic Morphology An-
alyzer AMA [AI12a] with new stemming model, derived from morphological and
phonological representation of the language in order to minimise both stemming er-
rors and stemming cost.

The proposed stemmer determines the root of a given word, which represents
the semantic core of this word, based on comprehensive study of Arabic morpho-
phonology with its basics and intricacies. The proposed stemmer efficiency and ef-
fectiveness are evaluated by comparison with a superior root-based Khoja stemmer

and stem-based Light-10 stemmers.
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2.1 Introduction

In linguistic morphology and information retrieval, stemming is the process for reduc-
ing inflected (or derived) words to their stem, base or root form (generally a written
word form). The stem need not be identical to the morphological root of the word; it
is usually sufficient that related words map to the same stem, even if this stem is not
in itself a valid root. Algorithms for stemming have been studied in computer science
since 1968 [FF03].

Stemming is defined as the process of conflating of all variations (surface forms)
of specific words to a single form called the root or stem for example, “stemmer”,
“stemming”, “stemmed” will be reduced to “stem”.

Many search engines treat words with the same stem as synonyms as a kind of
query broadening, a process called conflation [SAB11]. Stemming programs are com-
monly referred to as stemming algorithms or stemmers.

Stemming algorithms are an intrinsic component in document retrieval systems,
they have been applied and tested in building of information retrieval systems, for
many languages among which for English is the well known Porters stemmer.

The process of selecting the representation or index terms constitutes a major op-
eration and technique applied in information retrieval systems.

The main advantages of applying word stemming in the indexing process is that it
helps in reducing the size of the index terms, improving the morphological search, and
also help in improving the degree of relevancy in retrieving documents.

Practical stemming algorithms for the Arabic language are not widely available.
The existing algorithms are either generic in nature, derived from algorithm originally
designed for other languages (such as “Suffixes-Striping” or “Soundex”) or lack in the
morphological aspect of getting to the correct root/stem or word in Arabic laguage.

2.2 Prior work

Root indexing and light stemming are the most widely used indexing mechanisms
in Arabic Information Retrieval (See [AF02] for in details comparison). Extensive re-
search was conducted to investigate the effect of these two approaches (Root based and
Light stemming), adopted as an indexing mechanism, on improving Arabic Informa-
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tion Retrieval . As a result, several versions of Arabic light stemmers with various com-
binations of suffixes and prefixes were discussed in the literature. Many researchers
debated that roots were the best way of indexing Arabic documents.

A well-known root-based stemmer is the Khoja stemmer, presented by Khoja [Kho01].
The Khoja algorithm removes suffixes, infixes and prefixes and uses pattern matching
with the aid of a dictionary to extract the roots.

Although the algorithm suffered from problems especially with proper nouns, bro-
ken plurals (i.e., nouns that do not follow any rule for pluralizing), and verbs, the
Khoja’s algorithm showed superiority over previous work in root detection algorithms
[AF02].

The Khoja stemmer needs constant maintenance to track newly discovered words,
thus many attempts were made to enhance the Khoja stemmer. Taghva et.al [TEC05]
presented an improvement to the Khoja stemmer by eliminating the need of a dic-
tionary; the new stemmer performed equivalently to the Khoja stemmer in the same
environment. However, scholars did not adopt the ISRI system due to its complicated
nature.

The Khoja stemmer (root-based) tends to stem morphologically related words (but
not necessarily semantically related words) and as a result, has a high over-stemming
error rate. Additionally, when dealing with nouns, the Khoja stemmer fails to conflate
the words in the same conceptual group causing a high under-stemming error.

Another category of Arabic stemming algorithms are the stem-based (Light) algo-
rithms [LBC02] created a group of light stemmers including Light-1, 2, 3, 8 and Light-
10. The latest, Light-10 stemmer, is shown to outperform the previous versions of
light stemmer. Light stemming does not deal with patterns or infixes, it simply strips
off prefixes and/or suffixes. However, the brutal stripping off of a fixed set of prefixes
and suffixes causes many stemming errors, especially where it is not easy to differen-
tiate between the root letters and the attached letters. Therefore, the Light10 stemmer,
achieved a very low recall average because it could not retrieve all the documents in
many cases because of the unsupervised removal of a fixed set of prefixes and suffixes.

Tengku Mohd T. et.al, [SAB11] presented a rule-based Arabic stemming algorithm.
This algorithm will try to find all the valid possible roots for a given word. The algo-
rithm will check for the root validity by using the hashing technique to search for it in
the root dictionary.

Novel Arabic Language Stemmer 195



196 2.3 Definitions

Darwish et.al, [DO07] presented a modified light stemmer “Al-stem” with an ex-
tended prefixes and suffixes lists. In a monolingual IR environment, the Light-10 had
a higher average precision in comparison to the “Al-stem”.

Al-Shammari et.al, [ASL08] presented novel algorithm automatically creates it is
own list of proper nouns, and compound words based on the processed corpus to reduce
both stemming error and stemming cost.

2.3 Definitions

Recall, the Hamming distance (Definition 5) between two strings of equal length is the
number of positions with mismatching characters.

Definition 40 (Masked Hamming Distance) Given two strings, u and v, of equal

length n where u, v ∈ Σn, we denote by “∗” a don’t care symbol, “∗” has the property

of matching any single character α such that α ∈ Σ.

Assume that u and v contain some occurances of “∗”. We define the Masked
Hamming Distance between u and v as follows. We say that two symbols u[i], v[i], for

i ∈ [1..n], match if and only if

• u[i] = v[i] or

• either u[i] or v[i] is a don’t care character.

In other words, the Masked Hamming distance between two strings u and v is the
number of mismatching characters after excluding all the positions i, for i ∈ [1..n],
where u[i] = ∗ or v[i] = ∗. In this way, the pattern approximately matches the text at
given locations.

2.4 Our approach

Words constructed from the same root constitute what is traditionally called a morpho-
semantic field, where semantic attributes are assigned through patterns governed by
morphological rules. The meaning that is inherent in the root is shared by all words
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in this field. However, the patterns that produce these words make them semantically
distinguished.

In Arabic, the word is split into four morphological segments: a prefixing con-
junction, the main stem (a verb or noun form), and two suffixes (an attached subject
pronoun and an attached object pronoun). In morphology, one usually has to model
two principally different processes:

• Morphotactics (how to combine word forms from morphemes).

• Phonological/Orthographical alternations rules (when a word is formed (derived
or inflicted) from a root, some letters may be added, dropped or replaced by
other letters).

Typically, stemmers work by either relying on a lookup table that consists of sur-
face forms and root form relations or by applying suffix/prefix stripping approaches
guided by some grammatical rules. Instead, in our proposed stemmer, we take a differ-
ent approach, the proposed stemmer works by identifying the morphological template
that the input word form, to be stemmed, belong to, once the template (of the given
input word) is identified, it becomes easier to identify the base letter from the attached
letters in the word. In another words, we reduce the problem of stemming a given word
(surface form) to, simply, finding the morphological template of the given word.

Here we list several determined (though very useful) rules for identifying the mor-
phological template of a given word from Arabic language grammars.

• the root and the template length.

• the set of letters that can form the root.

• the set of letters that can be attached ( �èYK
 	QÖÏ @ 	¬ðQmÌ'@), not every letter in the
alphabet may act as extra (can be attached). In fact, the letters that can are
memorized the following words: ( AîD
	KñÒ�JË



A�)

• letters proximity/distance.

• combination of prefix/suffix (with verbs or nouns).

• the number and locations of don’t care letters.
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Furthermore, Arabic language exhibits a restricted morphological system on how
words are structured, based on their type (noun or verb). Generally, words are con-
structed according to one of the following two templates:

Verb forms structure

• prefix (verb) ÈAª 	̄ B@ ��K. @ñ� and/or

• the present tense attachment letters �é«PA 	�ÖÏ @ 	¬ðQk and

• verb form Éª 	®Ë@ �é 	ªJ
� and/or

• enclitic pronouns (subject) suffix © 	̄QË @ Q
KAÖÞ 	� and/or

• enclitic pronouns (first/second object) suffix I. �	JË @ Q
KAÖÞ 	� and/or

• person/gender/number suffix XYªË@ð �	�m.Ì'@ð ÕÎ¾�JÖÏ @ �HA�®jÊÓ.

Noun forms structure

• prefix (noun) ZAÖÞ�B@ ��K. @ñ� and/or

• the definitive the 	­K
Qª�JË @ È@ and

• derived or verbal noun form PY�ÖÏ @ ð@ ���J ��ÖÏ @ Õæ�B@ �é 	ªJ
�and/or

• enclitic pronouns suffix © 	̄QË @ Q
KAÖÞ 	� and/or

• enclitic pronouns suffix Qm.Ì'@ ð I. �	JË @ Q
KAÖÞ 	� and/or

• enclitic pronouns (proposition) suffix �é 	̄ A 	�B@ Q
KAÖÞ 	� and/or

• person/gender/number suffix XYªË@ð �	�m.Ì'@ð ÕÎ¾�JÖÏ @ �HA�®jÊÓ.

Now, let’s go through the process of determining the root for a few examples and
see how we can employ some of the aforementioned rules. As you’ll see, determining
the root is not always obvious without some knowledge of Arabic language grammars.

Example 1 (©¢�J�̄ @): Here is a simple scenario: A word with five letters, also we know
that the first and third letters belong to the extra letters group. So, we search the
template dictionary for a template of length 5 where the first and third letters are ( @)
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and ( �H) respectively. Indeed we have the augmented verb form V (Éª�J 	̄ @), knowing

this, we can determine that the second, fourth and fifth letters form the root (©¢�̄).

Example 2 (Qå�º	K @): Similar to Example 1, a word with five letters, also we know that
the first and second letters belong to the extra letters group. So, we search the template
dictionary for a template of length 5 where the first and second letters are ( @) and ( 	à)

respectively. Indeed we have the augmented verb form VI (Éª 	® 	K @), knowing this, we

can determine that the third, fourth and fifth letters form the root (Qå�»).

Example 3 ( �HAÓñÊªÓ): A word with seven letters, a quick search in the template dic-

tionary returns the template ( �HBñª 	®Ó)(matching the template for derived noun passive
participle for feminine/plural)

�H@ + c3 + ð + c2 + c1 + Ð = ( �HBñª 	®Ó)

So, we determine that the second, third and fifth letters form the root (ÕÎ«).

Example 4 (ÐAJ
�Ë@): The word consists of 6 letters, the first two letters matches the

“definitive the” prefix ( 	­K
Qª�JË @ È@) also we know that the forth and fifth letters belong
to the extra letters group. So, we search the template dictionary for a template of length
6 and starting with the “definitive the” prefix ( 	­K
Qª�JË @ È@). The search will return the

template (ÈAª 	̄ ). However, the job is not quite done yet, the roots dictionary doesn’t

contain such a root (Õæ
�), therefore, we have one more step to do, that is the applying

the normalization rules, in particular the rule that replaces the letter (ø
 ) by (ð). Now

we have the root (Ðñ�) which is a valid root.

In the previous article (Article 1) we presented Arabic morphological analyzer
AMA. The proposed stemmer can be implemented by extending the Arabic morpho-
logical analyzer AMA [AI12b, AI12a] by a fourth module “stemming module”.

2.4.1 Stemming Module

This module will try to find all valid possible roots for a given word. First the mod-
ule will search the template dictionary, using the Masked Hamming Distance, to find
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and return a list of matching templates with the minimum Masked Hamming Distance.
Then the module will normalize the list of roots by consulting the “Rules Engine Mod-
ule” then accordingly the module will return a list of all the candidate roots for the
input word. In Arabic when a word is formed (derived or inflicted) from a root. Some
letters may be added, dropped, changed or replaced by other letters, during the nor-
malization process we reverse these changes to its original state. Finally the stemming
module returns the highest ranked root in the list of candidates or returns the entire list
candidates, if requested.

2.5 Performance metrics

There are several criteria for judging stemmers: correctness, retrieval effectiveness,
and performance. There are two error measurements in stemming algorithms, over-
stemming and under-stemming. Over-stemming is an error where two separate in-
flected words are stemmed to the same root, but should not have been (a false positive).
Under-stemming is an error where two separate inflected words should be stemmed to
the same root, but are not (a false negative). Stemming algorithms attempt to mini-
mize each type of error, although reducing one type can lead to increasing the other.
It is possible to compare two separate stemming algorithms by comparing the output
they produce. This provides a measure of the similarity (or conversely, the distance)
between the two algorithms.

To conduct of our experiment. We have used data set taken from “KACSTAC”
(King Abdulaziz City for Science and Technology Arabic Corpus) [KAC14]. “KAC-
STAC” consists of 869, 800 documents (total number of words is 732, 780, 509 and
total number of unique words 7, 464, 396). This corpus is classified into: 200 topics
covering 20 time period, from 28 countries, collected from 10 mediums (see [KAC14]
for more information).

We have evaluated the performance of the new stemmer through extensive exper-
iments. In order to assess our algorithm strength, first we conducted experiments
based on [FF03], in their paper they listed the following measures to evaluate stem-
mers strength.

Suppose that B and A are the numbers of unique words before and after the stem-
ming process respectively.
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• W.C.C. is the Mean number of words per conflation class, W.C.C. = A/B.

• I.C.F. is the index compression factor, I.C.F. = (B−A)/B.

• W.C.F. is the word changing factor: the proportion of the words in the corpus
that have been changed by the stemming process.

To get an idea of how the algorithm behaves in practice, we have implemented Al-
gorithm REVENG and conducted a simple experimental study. A set of 10,000 words
has been randomly selected from the set of unique keyword of our dataset (averaged
over 10 runs) and counted the average values of W.C.C., I.C.F. and W.C.F. for each one
of the three stemmers.

As is evident from the results Table 2.1, Khoja’s stemmer generated the the least
number of conflation classes with average of 3.82 words per class, the high average
ratio is caused by over-stemming error and the conflation of unrelated words together
in one class. The Light-10 stemmer, on the other hand, achieved an average 1.55 words
per conflation class, hence the lowest index compression factor ratio (only 0.35) among
the three stemmer.

Table 2.1 shows summary descriptive statistics for the results of testing the three
stemmers on our dataset.

Stemmer B A W.C.C. I.C.F. W.C.F.

Light-10 10,000 6,428 1.55 0.35 91.97%

Khoja 10,000 2,611 3.82 0.73 97.28%

AMA 10,000 5,289 1.89 0.47 93.98%

Table 2.1: AMA stemmer performance assessment

In the second experiment, we compared the new AMA stemmer to two superior
stemmers, the root-based Khoja stemmer and the Light-10 stemming algorithm, the
three stemmers were adopted as an indexing mechanism. The effect in increasing the
F-measure was measured and compared between the three stemmers, using the Naive
Bayes [Ris01, NEGH10] classifier in the evaluation. In machine learning, naive Bayes
classifiers are a family of simple probabilistic classifiers based on applying Bayes’
theorem with strong (naive) independence assumptions between the features.
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F-1 =
precision× recall
precision+ recall

Precision and recall are the basic measures used in evaluating search strategies.
Recall and precision measure the quality of your result. Recall is the ratio of the
number of relevant records retrieved to the total number of relevant records in the
database. Precision is the ratio of the number of relevant records retrieved to the total
number of irrelevant and relevant records retrieved. Recall and Precision are usually
expressed as a percentage.

Recall =
|{relevant documents} ∩ {retrieved documents}|

|{relevant documents}|
=

TP

TP + FN

Precision =
|{relevant documents} ∩ {retrieved documents}|

|{retrieved documents}|
=

TP

TP + FP

Where TP (true positive) is a document which is relevant (positive) that was indeed
returned (true), TN (true negative) is a document which is not relevant (negative) that
was indeed NOT returned (true), FP (false positive) is a document which is not relevant
but was returned and FN (false negative) is a document which is relevant but was not
returned.

We run the experiment as follows: a data set of 100 document were randomly
selected by randomly choosing medium, domain, time period and topic. The results,
averaged over 10 trials. The experiments were run on a Windows Server 2008 R2 64-
bit Operating System, with Intel(R) Core(TM) i7 2600 processor @ 3.40GHz having
an installed memory (RAM) of 8.00 GB. We have implemented the new stemmer in
C# language using Visual Studio 2010.

In Summary, Arabic information retrieval can be enhanced when the roots or stems
are used in indexing and searching. Stemming reduces the vocabulary size by reducing
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Stemmer Recall Precision F-1 Measure

Light-10 48.44% 75.61% 59.05%

Khoja 71.88% 45.10% 55.42%

AMA 65.38% 72.34% 68.69%

Table 2.2: F1-measure comparison between Khoja stemmer, Light-10 stemmer and
AMA stemmer.

variant words to a single form (stem or root), In our experiment, using Khoja’s stemmer
for indexing achieved an average F-1 measure of 55.42% with low precision values
45.10% caused by over-stemming and the conflation of unrelated words. The Light-10

stemmer, on the other hand, achieved an average F-1 measure of 59.05% with a very
low recall average 48.44% therefore, it could not retrieve all the documents in many
cases. The results, are illustrated in Table 2.2. In comparison with the other stemmers,
the performance superiority of the proposed stemmer is clearly evident.
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Improved noisy channel model for
Arabic spelling correction

We propose an expert system for Arabic spelling correction based on a generative
Noisy Channel Model that goes beyond the primitive edit distance by presenting new
conditioning factors, to compute the costs of a set of (learnable) string edit distance
based on morphological characteristics and letters adjacency probabilities of Arabic
words. The algorithm acquires the model parameters from a comprehensive train-
ing data-set, built for this purpose, consisting of pairs of erroneous and their correct
words. The algorithm uses dynamic programming to calculate the edit distance/rules
to learn the minimum total cost of transforming one string into another. Furthermore,
we present the notion of “single candidate errors” and introduce a novel method for
detecting and correcting many such errors that cannot be detected by currently existing
techniques.
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3.1 Background

Error correction and normalization generally are useful for a variety of tasks, including
Text Authoring, Optical Character Recognition, Information Retrieval and Machine
Translation. Algorithmic techniques for detecting and correcting spelling errors in text
has a long history in computer science [BM00]. Fundamentally, a spell checker is made
out of three components: An error detector that detects misspelled words, a candidate
spellings generator that provides spelling suggestions for the detected errors, and an
error corrector that chooses the best correction out of the list of candidate spellings.
The majority of spell checking approaches can be thought of as calculating a distance
between the misspelled words and each word in the dictionary. The shorter the dis-
tance, the higher the dictionary word is ranked as a good correction. The correction
candidate set is selected by checking that each candidate satisfies the constraint that the
edit distance between the word and its correction candidate is below certain thresholds,
then only consider further those candidates that are sufficiently close to the best candi-
date. This can be done either by considering only the n-best candidates, or considering
all those candidates whose frequency distribution analysis lie within a given value of
the best candidate. Finally, the selection of the best correction strategy is based on the
degree of confidence: The system will auto correct if it is very confident in the sug-
gested correction, if it is confident only to a certain degree, then it produces the n-best
corrections, otherwise, the system just highlights a word as a potential error without
providing a correction. In general, spell checking techniques can be divided into these
categories:

• Edit Distance Techniques [FW74, BM02].

• Phonetics Based Techniques [TM02, PZ83].

• Similarity Key Techniques [Dav62].

• N-Gram Based Techniques [Kuk92, DHK94, KDHT98].

• Probabilistic Techniques [CG91, KCG90].

Of course, these techniques are not completely independent from each other; rather
they may have some overlaps.
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In general, Spell checker can be divided based on the type of errors that can be de-
tected and corrected into two broad categories: (1) non-word errors, words that cannot
be found in a pre-compiled dictionary (a set of words typically lexicon or confusion
set), such words are considered to be misspelled [ZPZ81] and (2) real-word errors,
is also referred to as context sensitive spelling correction [MDM91], these are valid
words in the dictionary but invalid with respect to their context.

The problem with generic methods is that they ignore important factors affecting
the error patterns. Morphologically rich languages are characterized by a large number
of morphemes in a single word, where morpheme boundaries are difficult to detect
because they are fused together. At the same time all the methods that provide ranking
mechanism by using a vast corpus and a language related training set, unfortunately,
are not suitable for languages like Arabic because such corpora are not available so far,
so these techniques cannot work efficiently alone while the rich morphological nature
of such languages makes a morphology-based approach more suitable.

A morphology based spell checker has other advantages such as its ability to handle
the name-identity problem, i.e., it can absorb new words and foreign words that are not
included in the dictionary. New words may be absorbed by categorizing them into
appropriate paradigms.

The fact that Arabic is a highly inflected language makes the correction of spelling
errors extremely difficult because collecting all the possible word-forms in a lexicon is
a relentless task.

The simplicity of inflection system in some languages, allows for reduced interest
in research on morphological analysis in developing spell checking systems for such
languages. In English, for example, the most common practice is to use a lexicon
of all of the inflected forms with minimum set of morphological rules. That means, a
great many language independent tools have been developed for syntactic and semantic
analysis, the same cannot be said for morphological tools [AAA+92].

For the purpose of this work we use the the Arabic morphological analyzer AMA
[AI12b, AI12a], to generate the segmentation rules (to be defined, shortly) and generate
the training data set.

Improved noisy channel model for Arabic spelling correction 206



207 3.2 Prior Art

3.2 Prior Art

Several attempts was conducted to design error detection methods or to improve ex-
isting methods and investigate the effect of these methods on improving Arabic Infor-
mation Retrieval. As a result, several versions of error detection methods have been
developed. The naive (direct) way for detecting and correcting spelling errors is to
match words in an input text against a list of correct words: if it is in the set it is cor-
rect, otherwise it is a mistake, such a words-list in Arabic can run into several millions
[AI12a]. A space saver solution is to only store root-forms of words. That is, suffixes
and/or prefixes are removed from the dictionary entries, an immediate problem with
this approach is that its accuracy will depend very much on the stemmer used. The sec-
ond problem, with such approach, is that the solution will be language specific since
creating a version of this spell checker for another language would require a new stem-
ming algorithm for that language or may not be possible depending on the language’s
morphology.

Another solution, adopted by [MS04a], is using a ternary search tree data structure
for storing the dictionary, the solution combines the time efficiency of tries with the
space efficiency of binary search trees, together they are faster than hashing for many
typical search problems, and support a broad range of useful operations, like finding
all keys having a given prefix, suffix, or infix, or finding those keys that closely match
a given pattern. The proposed algorithm attempts to select the best choice among all
possible corrections for a misspelled term using word frequency counts as a popularity
ranking, together with other information such as meta-phone keys.

Shaalan et. al. [SAG03] introduced a tool that is capable of recognizing and sug-
gesting correction of ill-formed input for common spelling errors. It is composed
basically of Arabic morphological analyzer, lexicon, spelling checker, and spelling
corrector.

Rytting et. al. [RRB+10] employed a modular approach, developing separate mod-
ules for mistypings, phonetic confusions, and other dialectal confusions, each mod-
elled through a weighted finite state transducer (FST). The resulting FSTs are com-
posed with a finite state machine. Accepting all strings corresponding to entries in an
electronic dictionary. The composed finite state transducer calculates the best paths
yielding unique, valid strings, i.e., the dictionary entries most likely to have been the
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intended query given the misheard, transliterated, or mistyped input text.
In dictionary based methods, we have to deal with another problem, namely, “out-

of-vocabulary” problem or “false-positives” (a word marked as a mistake when in fact
it is correct), false-positives are words such as proper nouns, special domain terms
or foreign words borrowed from other languages, such words are not found in tra-
ditional dictionaries. Spelling mistakes involving valid out-of-vocabulary words are
uncorrectable. The system will either make false-corrections or have no suggestions at
all.

In order to minimize the out-of-vocabulary problem a comprehensive word list
covers all domains have to be used (if such list can be collected), So far so good,
however this will cause in some mistakes to be considered as correct words. These are
called “false-negatives” (a mistake that is judged to be correct) –also called a word-to-
word mistake, false-negatives will increase as a result of a including many rare words
in the dictionary since the mistake also happens to be a dictionary word.

An q-gram model is a sequence of q adjacent letters in a word. The more q-grams
two strings share the more similar they are.

similarity coefficient δ =
number of common q-grams

total number of q-grams

A formal definition of the n-gram and the n-gram similarity is as follows: For a
given string s, of length n, drown over a finite alphabet Σ and q is a positive integer
number, a q-gram of s is a pair (g, i), where g is the q-gram of s starting at the i-th
position, that is gi = s[i . . i + q − 1], the set of q-grams of s, denoted by G(s, q),
is obtained by sliding a window of length q over the the string s. There are total of
|s| − q + 1 q-grams in G(s, q).

The q-gram similarity of two strings is the number of q-grams shared by the strings,
which is based on the following lemma.

Lemma 3.2.1 (The q-gram lemma) [Ukk92] Let x and y be strings with the edit dis-

tance δ(x,y). Then, the q-gram similarity ofx and y is at leastQsim = max(|x|, |y|)−
q+1− (q×δ(x, y)). Given strings x and y, let an occurrence of x[1 . . i] with at most

k differences end at position j in y. Then at least i + 1 − (k + 1) × q of the q-grams

in x[1 . . i] occur in the substring y[j − i+ 1 . . j].
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Q-gram technique doesn’t exhibit good performance on short words. For example
when using tri-grams, the words of length 3 will share no tri-gram between themselves
if they contain a single-character error. q-gram similarity measure works best for in-
sertion and deletion errors, well for substitution errors, but very poor for transposition
errors. The use of q-gram model instead of a dictionary based is a very space-efficient
method for detecting mistakes. Simply, it works by looking for words with unusual
character sequences. Therefore, q-gram is by no means accurate and its generally
considered inadequate for spelling correction. Especially, due to the high graphemic
nature (all of the letters and letter combinations that represent a phonem) of Arabic
words. It is more often used in Optical Character Recognition (OCR), where errors are
more likely to result in unusual letter sequences. A more refined method is detection
through language modelling, this method has been used frequently for the purpose of
spelling correction. Based on Markov chain [Mar13], Markov assumption, that is the
future behaviour of a dynamical system only depends on its recent history. In particu-
lar, in the k-th order Markov model (Equation. 3.1), the next state only depends on the
k most recent states, by calculating probabilities of each k-th-gram and computing the
probability of the word with some threshold for when an improbable word is judged as
a mistake.

Assuming that we have a sequence s = w1, w2, · · ·wn of random variables (more
specifically, sequence of words in the case of language modelling) then the probability
of producing the sequence is

P (wn1 ) = P (w1, w2, · · ·wn)

P (wn1 ) = P (w1)P (w2|w1)P (w3|w2
1) · · ·P (wn|wn−1

1 )

P (wn1 ) =
n∏
i=1

P (wi|wi−1
1 )

Pk(w
n
1 ) =

n∏
1

P (wi|wii−k)

(3.1)

However, the observations in [AI14] suggested that Arabic language suffer from
data sparseness which usually leads to high rate of false-positive and false-negative
errors. Also the set of experiments conducted by Zribi and Ahmed in [ZA03] showed
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that the average number of forms that are lexically close for Arabic language (without
vowel marks) is 26.5. Thus, Arabic words would be much more closely than French
and English words (3 for English and 3.5 for French), such phenomenas make the
detection of errors using language modelling performance to be unsatisfactory.

A hybrid approach, introduced in [HY07], by utilizing morphological knowledge in
form of consisting root-pattern relationships, and some morpho-syntactical knowledge
based on affixation and morpholo-graphemic rules, to deliver the word recognition and
non-word correction process. Then, based on probabilistic measures, the system com-
plete the task of the correction by locating, reducing and ranking of the most probable
correction candidate for Arabic words.

A system of analysis of Arabic texts based on the approach of multi-agents was
introduced in [AB12]. It consists of a set of agents, using a direct communication by
sending messages. These agents work together in order to make syntaxes’ analysis of
a sentence, given by the user, by determining its syntax composition. The major draw-
back of such system is the time taken by the agents for communication and interaction.

Arabic “GramCheck”, introduced in [Sha05], is another syntax-based grammar
checker for modern standard Arabic. The system is based on deep syntactic analysis
and relies on a feature relaxation approach for detection of ill-formed Arabic sentences.

Shaalan et. al. [SAP+12] presented a context-independent spelling correction tool
using a finite-state automaton that measures the edit distance between input words
and candidate corrections and the noisy channel model and knowledge-based rules for
scoring.

3.2.1 Noisy Channel Model

The concept behind the noisy channel model [Sha48] is to consider the process that is
causing a misspelling as a noisy signal which has been distorted in some way during
communication. Based on this assumption, it is then straightforward to deduce the
actual correction, if one could identify how the original word was distorted.

Typically, a language model (source model) is used to capture contextual informa-
tion, while an error model (channel model) is considered to be context free in that it
doesn’t take into account any contextual information in modelling word transformation
probabilities. This approach was first employed for spell checking [KCG90].
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Pr(t|c) =



del[cp−1, cp]

chars[cp−1, cp]
if deletion

add[cp−1, tp]

chars[cp−1]
if substitution

sub[tp, cp]

chars[cp]
if insertion

trn[cp, cp+1]

chars[cp, cp+1]
if transposition

(3.2)

The intended correction, c, can often be recovered from the typo, t, by finding the
correction c that maximizes Pr(c)Pr(t|c), where first factor, Pr(c), is the prior model
of word probabilities; the second factor, Pr(t|c), is the noisy channel model that ac-
counts for spelling transformations (insertions, deletions, substitutions and transposi-
tions) on letter sequences, where cp is the p-th character of c, and likewise tp is the p-th
character of t.

The model formalizes the task of selecting the most likely candidate as an instance
of Bayesian Inference [Bay63]. Probabilities are estimated from these matrices by
dividing by chars[x, y] and chars[x], the number of times that xy and x appeared in
the training set, respectively. At heart, the Bayesian model is a probabilistic model
based on statistical assumptions which employs two types of probabilities: the prior
probability P (S) and the likelihood probabilityP (Ŝ|S) which can be calculated using
Bayes’ Rule. All the influences of word frequency, context, and word similarity are
required to be computed so that they can be evaluated quantitatively on a probabilistic
scale and can be easily combined.

Formally, we wish to find the intended S∗ that has the highest likelihood given the
observed sentence Ŝ:

S∗ = arg max
S∈V

P (S|Ŝ)

Applying Bayes’ Rule.

P (S|Ŝ) =
P (Ŝ|S)× P (S)

P (Ŝ)
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S∗ = arg max
S∈V

P (Ŝ|S)× P (S)

P (Ŝ)

And dropping the constant denominator.

S∗ = arg max
S∈V

P (Ŝ|S)× P (S)

The term P (S) is the language model and P (Ŝ|S) is the error model, where S∗ is
the best estimate of S. In order to to overcome the sparse data problem, the system
have to assign non-zero probabilities to unseen words, to improve the accuracy of the
estimated language model, we have to shrink the probabilities of the observed words in
the vocabulary so that it will distribute the borrowed probabilities value to the unseen
words.

P (word) =
occ(word) + k

N + k × V
(3.3)

Where occ(w) is the number of time the word w occurs in the data set, N is the number
to tokens in the data set, k is the smoothing parameter and V is the size of the vocabu-
lary (number to token types). A simple technique called the additive smoothing, which
gives all the unseen words equal probabilities. A better smoothing method should give
different words different probabilities. Notice that the noisy channel model offers the
possibility of correcting misspellings without a dictionary, as long as sufficient data is
available to estimate the source model factors.

3.3 Our Approach

For the noise channel model, we need some way to learn the parameters for the spelling
mistakes probabilities. Using this model, we can find the highest likelihood error-
free suggestions for an observed word by tracing all possible paths from the language
model through the noise model and ending in the observed word as output. For our
noise model, we created a weighted finite state transducer which accepts error-free
input, and outputs erroneous sentences with a predefined error types and probability.
To model various types of human errors, we created several different noisy models
and merge them together, resulting in a layered noise model. Beside the dictionary of
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inflected/derived forms, the morphological analyzer makes use of a set of dictionaries
that contain all affixes and applies a set of predefined rules of all possible partitions in
prefixes, stems and suffixes. These dictionaries and grammatical rules shall be used
in the process of segmentation of words and the generation of errors as described in
Section 3.8.

3.4 Error Categories in Arabic

In classifying the spelling errors, there is a primary distinction between “spelling mis-
takes” and “typing errors”. Spelling mistakes (or competence errors) are caused when
the author genuinely believes that a word is spelt in a particular incorrect way. Spelling
mistakes are systematic errors that are due to language influence. Within the category
of spelling mistakes, we distinguished errors according to language influence (phono-
logical, morphological, lexical and orthographic), for instance, phonological spelling
mistakes often involve phonological proximity, particularly, with vowels being substi-
tuted for each other.

In contrast, typing errors (performance errors) are caused when the author intends
to type a particular word of key-strokes and fails. Typing errors are, random, unsys-
tematic errors that capture the specific deviation from the target spelling. For instance,
the typist try to hit the letter “a” but instead hit the adjacent letter in the keyboard “s”.
Typing errors were subdivided into single and multiple letters violations (additions,
deletions, substitutions, and transpositions), and word boundary violations.

Furthermore, depending on the source of the examined text, the errors may be
dominated by one type. For example, hand-writing recognition would be free from
typing errors while a text generated by OCR applications usually contains mistaking
characters for visually similar ones, often unlike human errors (e.g. mistaking “m” for
“iii”).

Its not an easy task to assign a single group to a certain spelling error. Having said
that, in our approach, we analyzed and classified the spelling errors based on the best
method of correction rather than grouping them based on the cause or source of the
error.

In the following, we summarize six general type of spelling errors:
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• Phonetic mistakes: where the mistake sounds similar to the intended word (e.g.,
[ �HAJ
k→ �èAJ
k] and [ 	á» B→ 	áºË]).

• Typographic Errors: resulting form pressing the wrong character (e.g., the letter
to the right or to the left) on the keyboard ([H. AK
→ H. AK.] and [ AJ
k→  AJ
 	k]).

• Word boundary Error: (1) Run-on Error (missing a space between adjacent
words) (e.g., non-visible [CK
ñ£Q 	¢�J 	�K
 → CK
ñ£ Q 	¢�J 	�K
] or visible [ÑîE. QÒëPA�K

�
@ →

ÑîE. P ÑëPA�K
�
@]). (2) Splitting Errors (extra a space) (e.g., non-visible [

	¬@ Q��«@→
	¬@Q��«@] or visible [ �éJ
�®K
 ��mÌ'@→ �éJ
�®J
�®mÌ'@]).

• Morphological mistakes: resulting from the two main processes of word forma-
tion (inflection and derivation) (e.g., [ 	àñK
Y�JêÓ→ 	àðY�JêÓ] and [Qå�º	K @
→ Qå�º	K @]).

• Orthographical mistakes: such as the confusion of the different type of the glottal
stop letter Hamzaa ( �è 	Q �Ò�êË @) (e.g., [½
Kñ 	� or ¼Zñ 	�]).

• Grammatical mistakes: Such as wrong gender, person, number, voice or tense
(e.g., [�PYË@ I. �J» H. C¢Ë@→�PYË@ @ñJ. �J» H. C¢Ë@] and [ �èA�J 	®Ë @ @ 	Yë→ �èA�J 	®Ë @ è 	Yë]).

Note that existing spell checkers are more successful in handling performance er-
rors than competence errors [RH05]. This finding extends our findings of single-error
words which showed that competence errors are generally harder to correct than per-
formance errors.

3.5 String Similarity measurement

Similar to [CHO05a], most of the systems reviewed in this study we focus on two
classical and well established string matching algorithms to detect misspelled terms,
namely the edit distance and the longest common subsequence algorithms. The results,
presented in [CHO05a], showed that both algorithms can correct misspelled terms but
the degree of success varied. The edit distance was found to be more effective than
the longest common subsequence with most of the tested type of errors. Therefore, the
longest common subsequence approach will not be adapted in this study.
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Recall that the edit distance between two strings is the distance δ(x,y) between
two strings x and y is the minimal cost of a sequence of operations that transform x

into y (and∞ if no such sequence exists).

Definition 41 (Spelling Correction) The following definition from [BM00]: Given an

alphabet Σ, a dictionary D consisting of strings in Σ∗ and a string s, where s /∈ D

and s ∈ Σ∗, find the word w ∈ D that is most likely to have been erroneously input as

s. The requirement that s /∈ D can be dropped, but it only makes sense to do so in the

context of a sufficiently powerful language model.

3.5.1 Learnable Edit Distance

[RY98] demonstrates the improvements obtained using their method over Levenshtein
distance [Lev66] on the task of matching natural language strings and their different
edit operations have varying significance in different domains. In their model, a string
alignment is equivalent to a sequence of character pairs generated by edit operations
emitted by a hidden Markov model with a single non-terminal state. [RY98] defined
the stochastic edit distance between two strings x and y to be:

δ(i, j) = min


δ(i− 1, j − 1), if xi = yj

δ(i− 1, j − 1) + substitution[xi, yi], if xi 6= yj

δ(i− 1, j) + insertion[xi]

δ(i, j − 1) + deletion[yj ]


(3.4)

[CG91] introduced a new error model, allowing generic string-to-string edits rather
than single character, two improvements are made. First, instead of weighing all edits
equally, each unique edit has a probability associated with it. Second, insertion and
deletion probabilities are conditioned on context. It proved advantageous to model
substitutions of up to 5-letter sequences.

Positional information is a powerful conditioning feature for rich edit operations.
[TM02] explicitly build a separate error model for phonetic errors, using the pronuncia-
tions of the correct words and the estimated pronunciations of the misspellings to learn
phone-sequence-to-phone-sequence edits and estimate their probabilities, and build an
error model for letter strings using [TM02] learning algorithm, to train these two mod-
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els on the same data set of misspellings and correct words then combine the two models
to estimate scores as follows:

Score = logPLTR(w|r) + λ logPPHN(w|r)

Where the probability distribution of letter-based model over words is PLTR and
the probability distribution of phone-based model over pronunciations is PPHN .

Given an alphabet of symbols Σ∗ = Σ ∪ {ε}, the full set of edit operations is
E = Es ∪ Ed ∪ Ei, where Es = {(a; b)|a; b ∈ Σ} is the set of all substitution and
matching operations (a; b) and Ei = {(ε; a)|a ∈ Σ} and Ed = {(a; ε)|a ∈ Σ} are
sets of insertion and deletion operations respectively. Rather than simply counting the
number of required edit operations to change x of length |x| into y of length |y|, the
additive value 1 in Formula. 1.2 can be replaced by plugging an edit cost function in
an edit distance algorithm, ins[x(i)], del[x(i)], and sub[xi, yj], that takes into account
the nature of the symbols xi, yj ∈ Σ∗ and the position in the word involved in the edit
operation, where Σ is the alphabet. In this case, the edit distance between x and y
becomes the minimum cost of all sequences of edit operations which transform x into
y.

Bilenko and Mooney [BM02] presented an analogous generative model can be
constructed for string distance with affine gaps, the gap penalty is calculated using the
affine model: cost(g) = s+ e× `, where s is the cost of opening a gap, e is the cost of
extending a gap, and ` is the length of a gap in the alignment of two strings, assuming
that all characters have a unit cost.

The noisy channel can be modelled using a simple probabilistic finite state trans-
ducer or a Markov chain with no input memory [BJ06] modelling each edit oper-
ation corresponds to the probability of observing a pair of characters, or a single
inserted/deleted character in the alignment. A string alignment is equivalent to a
sequence of character pairs generated by edit operations emitted by a memory-less
stochastic transducer. Each edit operation corresponds to the probability of producing
a substitution p(xi, yj), an insertion p(ε, yj), or a deletion p(xi, ε), where probabilities
of all operations are normalized. [OTAT08] presented a discriminative approach for
generating candidates for string transformation modelled by logistic regression build
a binary classifier that, when given a source string s, decides whether a candidate t
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should be included in the candidate set or not.

3.6 Building Aho-Corasick Automata

Simply, we are interested in searching for all occurrences of all patterns taken from a
finite set of patterns in a given text. Trivial approach (one pattern at a time), Imagine
using a linear time method (e.g. Knuth-Morris-Pratt) that runs in O(n + m) time,
where n is the size of a single preprocessed pattern that we compare to a text of sizem.
An immediate solution to speed this up is to perform all comparisons simultaneously
against a structure that contains all the patterns. Keyword trees help us do exactly this
and can be thought of as a compressed set of patterns that we compare to the text: The
solution, in [AC75], was by creating a finite state machine to match the patterns with
the text in one pass.

The Aho-Corasick Automaton [AC75] for a given finite set P of patterns is a deter-
ministic finite automaton A accepting the sets of all words containing a word of P as a
suffix. A = (Q,Σ, g, f, q0, F ), where function Q is the set of states, Σ is the alphabet,
g is the forward transition, f is the failure link i.e. f(qi) = qj , if and only if Sj is the
longest suffix of Si that is also a prefix of any pattern, q0 is the initial state and F is
the set of final (terminal) states. The construction of the AC automaton can be done in
O(d)-time and space complexity, where d is the size of the dictionary.

3.7 Quick Match

There are however a number of situations where the noisy model is insufficiently gen-
eral. At this point, we address the related question of selecting an appropriate struc-
ture with just the right amount of trainable parameters. Hence, the Quick Match is the
component that we use to identify possible correct spellings of predefined error and we
already know the exact correct word for that error. Therefore, we present the notion
of single candidate errors and introduce and novel method for detecting and correcting
many such errors that cannot be detected by a conventional techniques.

The Quick match component is based on comprehensive dictionaries of morpho-
logical templates/rules and deep phonological/orthographical alterations rules such as
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Figure 3.1: Building Keywords tree from errors dictionary

gemination, vowelization and substitution, etc. The Quick match components, for de-
tection of misspelled Arabic words, is capable of detecting and correcting of certain
widely observed errors, such errors that cannot be detected by a conventional tech-
niques. When analyzing such error, we notice that they all share a common property
that is they all have a single candidate suggestion. We use a keywords tree to model
these errors and store them in as a dictionary, each error identified as a single candi-
date error will be added to the quick match dictionary. The quick match dictionary also
contains a set of the most common Arabic particles such as conjunctions, pronouns,
demonstratives, prepositions, conditional, exclusion, determination and negation letter,
these sets of words will be used as pairs of erroneous and their correct words to build
the error dictionary.

3.8 Improved noisy channel model

Our model works by learning tailored string to string transformations with the use
of the language morphological characteristics, along with the probabilities of each
of these transformations. In this case the model accounts for both typing errors or
spelling mistakes. This more powerful model gives significant improvements in accu-
racy, as shown in the results (Table 3.1), over conventional approaches (such as single
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error, generic, or phonic distances) to noisy channel spelling correction. Separate error
modules for keyboard mistypings, phonetic confusions, and dialectal confusions are
combined to create a weighted finite-state transducer that calculates the likelihood that
an input string could correspond to each suggestion candidates set. Results are ranked
by the estimated likelihood that a candidate could be misspelled or mistyped for the
given word. For typing errors, we allowed all spelling errors which were a Damerau-
Levenshtein distance of ([Dam64]; [Lev66]). This is as previously discussed rather
similar to the standard noisy channel model for spelling correction [BM00].

Typically, for word length `, we have ` deletion errors, 36×` substitution errors (29
unique letters in Arabic, 36 letter shapes), `− 1 transposition errors, and 36× (`+ 1)

insertion errors. Note that these numbers are derived from the possible number of edit
operations (deletion, substitution, transposition and insertion) that can be performed
on a given word of length `.Also we set the maximum word length ` to 22.

We use trainable transducers to model spelling mistakes, we specified a set of n
(total number of possible edit operations) parameters for each possible word length
`. These parameters represent the total probability of making a spelling error for a
given word length. Then, for each word length ` we distribute the probability of each
possible spelling error equally. After that, we manipulate these probabilities based on
the various conditions, these conditions are determined based on (1) comprehensive
dictionaries of morphological templates/rules and deep phonological/orthographical
alterations rules and (2) intensive analysis of the previously seen error in Arabic text.
Special considerations are made for each type of errors such as word boundaries errors,
run-on and splitting errors on the preceding and the following disconnected letters:

(X 	X P 	P ð 
ð @ Z


@ @
 
ø 
ð �è)

For example, considering the cases of an extra or missing white space following
the disconnected letters should assign a higher weight than the rest of letters.

We are not aware of any Arabic spell checker that can detect this type of error,
especially, considering the effects where white space is a factor in the edit distance.

We also condition on lexicon-based features, which are generated by checking
whether a given word and each of its correction candidates is in a relevant spelling
lexicon.
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In order to allow the model to take in the consideration the position of the error,
we segment the input words according to the morphological derivation/ inflection rules
by defining two regions as follows: given an input word w each character in w either
belong to the lexicon region or to the affix region. The lexicon region is the 3 or 4

letters in the case of trilateral or quadrilateral root/stem respectively while the affixation
region is the letters that will be added to the stem (as prefix, infix or suffix) to construct
the new form of the word according to the morphological segmentation rules [AI12a],
for example:

• [Éª 	®�J�@→ Éª 	̄
+ �I�@],

• [Éª 	® 	JK
→ Éª 	̄
+ 	áK
],

• [Éª�J 	®K
→ É« + �H +
	¬ + ø
 ],

• [Èñª 	̄ @→ È + ð + © 	̄
+ @].

Since transitions are described by a function [AI12a], the function δ specifies the
given word as a sequence of lexicon and affixation regions.

We investigated several, practical and theoretical, aspects of natural language to
learn statistics about words, lemmas and stems frequencies as well as letters distribu-
tion and relationships between word length and letters adjacency distribution, Based
on our findings we condition on the letters and affixes combination and neighbouring
statistics. By finding any irregular combination of letter that don’t follow each other in
a certain word.

Next, we allow the process to misspell the list of correct words generated using
AMA morphological analyzer. The task of generating pairs of misspelled and correct
words was done on total of over four million words, then encoded as a weighted finite-
state transducer.

3.9 Candidate Ranking

The “Morphology confusion matrix” M is a N ×N matrix, where N is the number of
segments in the morphology set. The entry M [i, j] represents the number of times the
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the i-th segment has been substituted by the j-th segment in the training set, as a factor
of the total number of total occurrences of the i-th segment. A straightforward method
to calculate the substitution penalty from the morphology confusion matrix would be
to directly use the value 1−M [i, j] as the substitution penalty for the pair of segments
i and j. However, experiments showed that the penalties obtained in this way were
very close to each other and sometimes congested. Therefore, the substitution penalty
for the segments pair i and j will be calculated as follows:

S[i, j] = log((M [i, i]/M [i, j]); i 6= j (3.5)

Since in most cases M [i, i] >> M [i, j]. Therefore, the log conversion is applied to
keep the substitution penalties within ranges. The experiment showed that the penalty
function in Equation 3.5 provides enough variance among the substitution penalties for
various segment pairs as compared to directly using the values 1−M [i, j]. It must be
noted also that M [i, j] 6= M [j, i]

For practical purposes, the substitution penalty for only the top M confusing seg-
ments may be determined while for the rest, substitution may be forbidden by setting
an infinite penalty (value of −1). All counts were smoothed using Laplace smoothing
Equation 3.3, 0.5 is added to every count, and the effective corpus size is increased
appropriately.

In a nutshell, the word segmentation process occurs during the morphological anal-
ysis, then building the set of pairs of correct and misspelled words and stored as a
weighted finite-state transducer, the correction process is carried out by finding the
sets of segments that most similar to the input word using the learnable edit distance
then selecting the top candidates is done by computing the best set of segments among
the set of suggested segments (this will be determined using the computed probabilities
of the these sets).

Improved noisy channel model for Arabic spelling correction 221



222 3.10 Experiment

3.10 Experiment

3.10.1 The Corpora

For this project, we used two data sets to conduct our experiment, the first data set
(testing data set) KACSTAC1 (King Abdulaziz City for Science and Technology Ara-
bic Corpus) [KAC14], KACSTAC consists of 869, 800 documents with 732, 780, 509

total number of words (tokens) and 7, 464, 396 total number of unique words (types),
the second data set, (training data set) of 260, 922, 024 words, is generated by the Ara-
bic Morphological Analyzer AMA [AI12a], the data set contains 58, 463, 856 verbs,
128, 837, 016 derived nouns and 73, 621, 152 verbal nouns.

3.10.2 Performance metrics

We compared our system with famous Hunspell [Hun13] spell checker, Hunspell is
the spell checker of LibreOffice, OpenOffice.org, Mozilla Firefox and Thunderbird,
Google Chrome, and it is also used by proprietary software packages, like Mac OS X,
InDesign, memoQ, Opera and SDL Trados.

In Table 3.1 Best-1, Best-5 and Best-10 accuracy represent the percentage of time
the correct answer is one of the top 1, 5 and 10 answers returned by the system.

We believe this to be the first spelling correction system designed, specifically for
Arabic, for detecting and correcting such errors that usually go undetected using ex-
isting spell checkers. To evaluate our spell checker, a series of experiments is carried
out, based on on both real errors found in the testing data set (the system hasn’t seen
these error before) and artificial errors created using the training data set (data used for
training the system), that shows that our novel weighted edit distance not only signifi-
cantly outperforms the baseline edit distance but also it has been shown to be superior
to the widely well known Hunspell spell checker as shown in Table 3.1.

1See http://www.kacstac.org.sa/ for more information
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Experiment Results

Baseline edit distance

Experiment Precision Recall Accuracy F-measure

Best-10 45.90% 71.79% 56% 56%

Best-5 38.09% 63.15% 47% 47.52%

Best-1 25.75% 44.73% 30% 32.69%

Hunspell spell checker

Experiment Precision Recall Accuracy F-measure

Best-10 91.66% 88% 90% 89.79%

Best-5 81.63% 80% 81% 80.80%

Best-1 56% 70% 65% 62.22%

Improved noisy channel

Experiment Precision Recall Accuracy F-measure

Best-10 92.30% 90% 93% 91.13%

Best-5 88.09% 92.5% 92% 90.24%

Best-1 83.72% 90% 89% 86.74%

Table 3.1: Spelling Correction Evaluation Results
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Article: # 4

Degenerate Finite State Automata for
Arabic Morphology

In this article, we propose DeFSA, a Degenerate Finite State Automaton, to facilitate
the expression of various non-concatenative morphological phenomena of the Arabic
language in an efficient way. DeFSA is a lightweight data structure which is able to
validate Arabic words efficiently. The DeFSA augments regular FSA with finite mem-
ory (auxiliary data structure) in a restricted way that saves the overall space but does
not add expressivity. We further implement DeFSA with the help of a celebrated data
structure in Stringology called Directed Acyclic Word Graph (DAWG). The experimen-
tal results show that DeFSA and its DAWG implementation are much more efficient
than their existing alternatives (e.g., regular FSA).
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4.1 Introduction

Morphology is the domain of linguistics that studies the formation of words. It is
traditional to distinguish the surface form (i.e., the actual word itself as found in the
text) of a word from its lexical forms or lemma. The latter typically consists of the
canonical dictionary citation form of the word together with the terms that convey the
list of features and morphological properties of that particular form. In the study of
linguistics, Words are typically assumed to be composed of the smallest meaningful
units called morphemes, the basic building blocks in morphology. In fact, a morpheme
can be seen as the minimal unit of grammatical analysis. A root, simply consisting of
a single morpheme, is a basis for compounding and affixation. A stem is a form of a
word, made up of one or more morphemes, before any inflectional affixes are added:
affixes are word elements attached to words that may either precede as prefixes, follow
as suffixes or get inserted inside a word stem as infixes. The study of word formation is
about the grammars that govern the combinations of stems, affixes, and other types of
morphemes.

Word formation and morphological alternations are the two central problems in
the study of morphology. Finite-state morphology is an attempt to account for these
phenomena within the context of regular sets and regular relations. Although the two
problems are certainly related, the solution for one in the finite-state domain does not
automatically imply that the other is also solved. The problem of morphological alter-
nations arises from the fact that a morpheme may have alternate realizations depending
on its phonological environment and the composition of the word. We concentrate in
this paper on morphological alternations, and put aside the question of word formation.

4.2 Preliminaries

A degenerate string x = x[1..n] on an alphabet Σ is a sequence of nonempty subsets of
Σ. We say that x[i1] and x[i2] match (written x[i1] ≈ x[i2]) if and only if x[i1]∩x[i2] 6=
∅. So, a position of a degenerate string may match more than one element from Σ;
such a position is said to have a non-solid symbol (also called a character class). If
in a position we have only one element of Σ, then we refer to this position as solid.
The definition of length for degenerate strings is the same as for regular strings: a
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degenerate string S has length n, when S has n positions, where each position can be
either solid or non-solid.

In language processing, an FSA can be used to recognize or generate a specific
language defined by all possible combinations of characters (conditional labels) on
each of the edges generated by traversing the FSA from the initial state to the end
state.

Each path from the initial state to a final state can be seen as a mapping between a
surface form and its lexical form (lemma).

Since we will be using a celebrated data structure in Stringology, namely, the Di-
rected Acyclic Word Graph (DAWG), in the rest of this section we briefly review it.

4.2.1 Directed Acyclic Word Graph (DAWG)

The DAWG1 is a deterministic finite automaton representing a set of words in which
each edge is labeled with a character. The characters along a path from the initial state
to a node form a substring that the node represents. A DAWG is an extremely useful
tool to search through a large lexicon. An important advantage of the DAWG repre-
sentation of the lexicon is its compactness; this permits extremely fast word searching
while keeping the entire lexicon in the primary memory and thereby minimizing costly
disk accesses [AJ88]. DAWGs have been used in many applications in NLP including
constructing dictionaries and transducers for spell-checking, morphological analysis,
two-level morphology, restoration of diacritics, perfect hashing, and document index-
ing [DMWW00]. A DAWG containing all the words in a dictionary can very quickly
answer the question of whether or not an input word is in that dictionary.

However, a DAWG cannot support the capability of providing suggestions for al-
ternate spellings for a given word since it does not contain any values associated with
the words. There exists however data structures that support inclusion of associated
values. One such data structure is the “Minimal Acyclic Finite State Transducers”
(see, [MM01, DMWW00]).

There is also a variant of the DAWG called a compact DAWG (CDAWG) that
further reduces the memory footprint of the structure. CDAWG can be constructed
from DAWG by removing nodes that have only one outgoing edge, and represent-

1Also referred to as the Minimal Acyclic Finite State Automaton in the literature.
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ing the deleted paths between remaining nodes with edges that are labeled with the
path’s label. CDAWG can be obtained from DAWG in linear time (for more details see
[MS04b]). In [HC03] an efficient implementation of CDAWG was proposed. While
the previous implementations of CDAWG had required from 7n to 23n bytes of mem-
ory space, this implementation required 1.7n to 5n bytes for a text T of length n.

4.3 Arabic Morphological analyzer AMA

In this section we briefly review the Arabic morphological analyzer AMA, presented
in the first article (Article 1) of this chapter.

AMA is basically a finite state transducer (FST), was obtained by directly imple-
menting a comprehensive list of Arabic roots, a dictionary of Arabic morphological
patterns and a set of Phonological/Orthographical alternations rules.

AMA has many functions. It can validate a word (accept or reject) and also can
generate different forms of a given word. It also can be used as a stemmer: give it a
word as input and AMA will return the stem of that word. Also AMA can return all
the word annotations such as morphological properties (category, type, part of speech
tags) of the input words. Another way to use AMA is to give it the annotations as input
and AMA will return all the words that match these annotations. However, the main
issue with AMA is that its very slow when matching words and the list of words is too
big in size.

In this article, we propose DeFSA, a finite state machine to validate Arabic words
that achieves a significant reduction in space requirements as compared to the regular
finite state automaton constructed for the same purpose. In DeFSA, excessive duplica-
tion of states and edges are cleverly avoided. This is done by employing the concept
of degenerate strings (to be defined shortly) to maintain useful templates rather than
actual words and by constructing the automaton based on the former (i.e., templates)
rather than the latter (i.e., actual words). As a result, DeFSA, provides an elegant so-
lution to overcome the size and speed issue of AMA. However, DeFSA cannot mimic
all the functionalities of AMA; it can only be used for validating Arabic words.

We note here that, our approach is not only limited to the Arabic Language; rather
it is supposed to work for any language that follows specific morphological rules in
the word generation process and can be represented as a set of morphological patterns
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or regular expressions. However, as has already been pointed out above that we are
motivated to work on the Arabic language and hence our experiments are tailor made
for Arabic language.

We further implement DeFSAwith the help of a celebrated data structure in Stringol-
ogy called Directed Acyclic Word Graph (DAWG). As will be reported later, DeFSA
performs much better than the regular FSA in terms of speed and memory. Finally, the
implementation of DeFSA with DAWG turns out to be even better.
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Figure 4.1: A DeFSA that accepts all the surface words derived from the patterns Éª�J 	̄ @
and É«A 	®�K, the dotted edges between two states qi and qj represent the degeneracy case

p
∗→ q, where the ∗ represent any letter α such that α ∈ S and S ⊆ Σ

4.4 DeFSA: Degenerate Finite State Automaton

In this section, we present our proposed Degenerate Finite State Automaton, i.e.,
DeFSA. We first discuss how the DeFSA is constructed. Then we discuss how the
matching process is done in DeFSA. Finally we discuss how we implement DeFSA
using a DAWG.
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4.4.1 DeFSA Construction

The DeFSA construction is identical to the standard FSA construction. However, the
DeFSA is constructed from the template dictionary rather than from the word list di-
rectly. Briefly the process is as follows. At first, the solid and degenerate characters
are identified from the template dictionary. Then an extended alphabet is constructed
considering both the solid and non-solid characters identified above. Then we simply
construct the DeFSA based on the template dictionary on the extended alphabet. An
example of the whole process is given in a later section.

4.4.2 Matching Process

Once the DeFSA is constructed the matching process is done as follows. Suppose we
want to validate a given word w. First we map w from the original alphabet to the new
extended alphabet, i.e., build the template of the word. Clearly, this can be easily done
using the AMA. But we will shortly discuss how this can be done without the help of
AMA. Suppose w′ is the transformed word. Then all we need is to check, whether w′ is
accepted by the DeFSA just like a usual FSA.

4.4.3 DeFSA Construction Example

Figure 4.1 shows the diagram of DeFSA A that accepts all the words (surface-forms)
derived from the following two templates t1 = Alif+C1 +Taa+C2 +C3 (Éª�J 	̄ @) and

t2 = Taa+C1 +Alif +C2 +C3 (É«A 	®�K). First we identify the solid characters and the
degenerate characters in the templates. Here the solid characters are Alif, Taa. The
characters C1, C2 and C3 are degenerate characters and can be written as ∗ (don’t care),
which will take any character in the (Arabic) alphabet. So t1 and t2 can be rewritten as
t1 = Alif + ∗+ Taa+ ∗+ ∗ and t2 = Taa+ ∗+ Alif + ∗+ ∗.

Next we create the new alphabet including the degenerate characters with the set
of solid characters, i.e., {Alif, Taa}. Here, we have only one degenerate character,
i.e., ∗. So, our extended character set is {Alif, Taa, ∗}. Now we can see that each of
the two templates represents a path in A (see Figure 4.1 and the transition table of A in
Table 4.1) from the start state to the accepting state. The transition table of A is given
in Table 4.1.
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To understand how the matching process is done, recall that during the construction
of A, we have used the following mapping rule: convert every letter in the original

alphabet to the newly introduced letter ∗ except for the two letters Alif and Taa. Let
us call this mapping rule R1. Now to check if a given word w exists or not, we first
apply R1 to transform the the word w from the original alphabet to the new alphabet
Σ = {Alif, Taa, ∗}. This transformation can be done simply by iterating through
each character w[i] in the word w and change the char w[i] to ∗ if w[i] 6∈ {Alif, Taa}.
The resulting word w′ can now be passed to A in the same way as is done for any
standard FSA.

Alif Taa *
→ 0 1 2 1

1 3 3 3
2 4 4 4
3 0 5 0
4 5 0 0
5 6 6 6
6 7 7 7
7 0 0 0

Table 4.1: Q = {1, 2, 3, 4, 5, 6, 7}, Σ = {Alif, Taa, ∗}, start state = 0,final state(s)
= {7}, The→ indicates the start state

4.4.4 DAWG Implementation of DeFSA

In this section, we describe the details of the DAWG implementation of DeFSA. The
main motivation for implementing DeFSA using a DAWG is to achieve high speed and
low memory footprint. So we make an effort to implement DAWG in the most effi-
cient way. To this end we employ the so called bit-counting algorithm [Knu09] in our
DAWG implementation. To implement the bit-counting algorithm efficiently, we use
table lookups based on a pre-computed table as implemented in [EQ00]. Bit-counting
method simply refers to counting the number of 1’s in the binary representation of an
integer. The concept is also known as the Hamming weight of a string, which is the
number of symbols that differs from the zero-symbol of the alphabet used. It is thus
equivalent to the Hamming distance from the all-zero string of the same length.
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However, to be able to efficiently implement the bit-counting algorithm we need to
be able to compactly represent the characters of the alphabet. While this is easy for
the English alphabet, for the Arabic alphabet this is not straightforward as discussed
below. While the English alphabet has 26 fixed letters, the Arabic alphabet consists of
42 different ligatures including 28 letters, 8 diacritics and multiple ligatures for some
of the letters (e.g., there are five different types of the letter Hamza). Also, in the
English charset page, the English alphabet (i.e., the characters A-Z) is represented in a
nice compact and continuous range starting at 65 and ending at 90 (A=65, B=66, C=67
...Z=90). But, the Arabic charset windows-1256 table is not continuous. It starts at 193
and ends at 237 with a few entries in between either unused or allocated for symbols
or chars from other languages. To alleviate these issues we first need to transform the
representation of the Arabic alphabet to a more compact form.

4.4.5 Alphabet Compaction and Mapping

The alphabet compaction is in fact achieved automatically because we construct the
DeFSA from the template dictionary rather than from the word list directly. There-
fore, the alphabet used in the DAWG is the alphabet of the template dictionary. The
following example illustrates how the alphabet gets compacted through this process.

Example 4.4.1 Consider the alphabet {A,B,C,D,E} with the following word list

{AA,AB,AC,AD,BA,BB,BC,BD}. Clearly, this word list is equivalent to the

template list {A∗, B∗}where ∗ is the degenerate character [ABCD]. The list {A∗, B∗}
represents the template dictionary of the original word list. Clearly, the alphabet of

the template dictionary is {A,B, ∗}, which is smaller than the original alphabet of the

word list: here the alphabet size is reduced from 5 to 3.

Applying this technique and using the well-researched [AI12a, AB07, AJ87] template
dictionary we can reduce the Arabic alphabet size from 42 down to 27. However,
we still need a mapping to efficiently implement the bit-counting algorithm. The bit-
counting algorithm requires that the range of the alphabet starts at zero. This is done
by a mapping of the integer values of the characters. In what follows we will refer to
this mapping as the Zero based Alphabet Mapping.

At this point, a brief discussion is in order. We have mentioned earlier that we need
to map the word to be validated from the original alphabet to the new alphabet. While
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this can be done using the AMA, the very idea of proposing and implementing DeFSA
is to avoid the use of a heavy machinery like AMA for validating the words. So, there is
no point proposing the DeFSA if we need to take the aid of AMA for validation. To this
end, we can simply avoid taking the service of the AMA by implementing a mapping as
mentioned above (i.e., Zero based Alphabet Mapping), and this is what we do in our
implementation.

In fact we need to employ a two stage mapping here. At the first stage, we have
a mapping to transform the word from the original Arabic alphabet to the alphabet of
the template dictionary. This has to be followed by the Zero based Alphabet Mapping.
Both stages can be done in one go at construction time. During the matching process
we already have the (2-stage) mapping stored so we just need to encode the given word
according to the mapping.

Experiment Results

(1) - Comparison between regular FSA and DeFSA size

verb category text (KB) keyword list (KB) FSA (KB) DeFSA (KB) no. of words

1 349,967 76,900 305,260 78,899 5,144,386

2 305,025 74,808 298,553 91,528 5,007,925

3 284,479 73,842 249,101 57,968 4,938,904

4 325,816 75,293 252,712 77,160 5,039,476

5 446,457 79,898 321,273 76,924 5,330,953

(2) - Comparison between DeFSA and D-DeFSA size

verb category DeFSA (KB) D-DeFSA (KB)

1 78,899 298

2 91,528 359

3 57,968 205

4 77,160 302

5 76,924 281

Table 4.2: Comparison between FSA, DeFSA and D-DeFSA
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4.5 Experiment

We have done experiments to investigate the performance of DeFSA and its DAWG
implementation (D-DeFSA). We have compared them with a normal FSA which is
constructed with a direct implementation of the morphological rules. The experiments
are carried out on a Windows Server 2008 R2 64-bit Operating System, with Intel(R)
Core(TM) i7 2600 processor @ 3.40GHz having an installed memory (RAM) of 8.00
GB. The FSA, DeFSA and the D-DeFSA have been implemented in C# using Visual
Studio 2010. The experiments are carried out on the Arabic verb categories 1-5. The
experiments are done by selecting randomly 100 files (word lists generated from 100

roots) from each verb category followed by the construction of the DeFSA for each
set of files. Subsequently DeFSA was converted to D-DeFSA by implementing it as a
DAWG. The results are presented in Table 4.2.

As can be seen in Table 4.2, DeFSA outperforms the alternative FSA implementa-
tion and the memory footprint reduction achieved by D-DeFSA is extraordinary.

DeFSA, and its DAWG implementation D-DeFSA, have succeeded in compactly
represent sets of strings that share common aligned parts yet differ in affixes (including
infixes), by employing the concept of degenerate symbols, the remaining characters are
replaced by degenerate symbols allowed at certain positions. In this way, a smaller set
of degenerate strings is obtained, leading to savings in the representation space. Taking
advantage of this structured degeneracy phenomenon, which is particularly relevant in
Arabic, we have been able to counter the size and speed issues of the existing and
more general purpose Arabic Morphological Analyzer, “AMA”, while analyzing and
validating Arabic words.
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- Article 1: Inferring an Indeterminate String from a Prefix Graph.

This article provides the first algorithm to reverse engineer a data structure to a
string in its full generality; we hope that future work will show how to generalize
data structures currently restricted only to regular strings, and to solve similar
problems that arise. In particular, for the reverse engineering of the prefix array,
we wonder if a more efficient algorithm can be found than the one described
here, perhaps one that reduces to O(n) for regular strings.

- Article 2: Computing Covers Using Prefix Tables:

There are several data structures related to the cover array whose computation
may now be contemplated in the context of indeterminate strings. For example,
a recent paper [FIK+13] introduces new forms of “enhanced” cover array that
are efficiently computed using the border array; using the cover array instead
would open the way for computation of variants of these structures also for in-
determinate strings. Similarly, another recent paper [CCI+11] proposes efficient
algorithms for the computation of “seed” arrays (a seed of a string x is a cover
of some superstring of x) — these algorithms also may be similarly extended.

- Article 3: Algorithms for Longest Common Abelian Factors:

In this article, we present a simple quadratic running time algorithm for the LCAF
problem for binary strings and also a sub-quadratic running time algorithm by
using the index data structure of Moosa and Rahman [MR10]. Both solution
have linear space requirement.

A variant of the above sub-quadratic algorithm can be obtained replacing the
Moosa and Rahman [MR10] index with the approximate indexing data struc-
ture of Cicalese et al. in [CLWY12] in order to compute the minOne(A, `),
maxOne(A, `), minOne(B, `), maxOne(B, `) values. Even if such computa-
tion, for a fixed `, runs in near linear time, the presence of false positive values
leads to a quadratic total time algorithm in the worst case due to a linear checking
step for any ` value. It is not trivial to obtain a better time bound for this algo-
rithm variant. Furthermore, we present a variant of the quadratic solution that
is experimentally shown to achieve a better time complexity of O(σ n log n),
where σ is the alphabet of cardinality, i.e., O(n log n) for a constant alphabet.
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An interesting idea is that introducing the idea of heaviest longest common
abelian factor: a factor u is heavier than v if |u| = |v| and one(u) > one(v).
So, suppose we have two common abelian factors of length LCAF between two
strings. Suppose these two factors are 0011100 and 1001110. Then both are
longest common abelian factors but the latter one is a heaviest longest common
abelian factor.

- Article 4: Maximal Palindromic Factorization:

We answer a recent question raised during StringMasters, Verona, Italy - 2013:
does there exist an algorithm to compute the maximal palindromic factorization
of a finite string? Namely, given a finite string, find the smallest set (minimum
number of palindromic factors), such that the string is covered by that set of fac-
tors with no overlaps. We answer the previous question affirmatively by provid-
ing a linear-time algorithm that computes the maximal palindromic factorization

(MPF) of a string (the algorithms is evaluated with respect to the length of the
given string). We wonder if MPF algorithm can be extended to find maximal
distinct palindromic factorization set. We will focus on this problem in a future
work.

Furthermore, we showed that MPF algorithm can be extended to biological
palindromes, where the word reversal is defined in conjunction with the com-
plementarity of nucleotide letters: c ↔ g and a ↔ t (or a ↔ u, in the case of
RNA).

In [AIR13], we introduced in the concept of palindromic cover of string and how
can it be computed and modeled using graphs.

Recently, [ISI+14] have extended our results in [AIR13] and presented an on-
line algorithm for computing the smallest palindromic factorizations in O(n log n)

and answered successfully to our question about the palindromic covers with
an algorithm for computing the smallest palindromic covers in linear time and
space.

- Article 5: Lyndon Fountains and the Burrows-Wheeler Transform:

We have introduced a novel concept: the Lyndon fountain related to the factor-
izations of all cyclic rotations of a given Lyndon word. These factorizations yield
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many further Lyndon words; we have analyzed combinatorial properties with re-
spect to these fountains and outlined related factorization and BWT algorithms.
We propose that applications of Lyndon fountains may arise in bioinformatics in
relation to the Burrows-Wheeler Transform.

- Article 6: Specialized Border and Suffix Arrays:

In this article, we have extended two well-known data structures in stringol-
ogy. We first have adapted the concept of a border array to introduce the Lyndon
Border Array Lβ of a string s, and have described a linear-time and linear-space
algorithm for computing Lβ(s). Furthermore, we have defined the Lyndon Suf-
fix Array, which is an adaptation of the classic suffix array. By modifying the
linear-time construction of Ko and Aluru [KA03] we similarly achieve a linear
construction for our Lyndon variant. We also present a simpler algorithm to
construct a Lyndon Suffix Array from a given Suffix Array.

The potential value of the Lyndon Border Array is that it allows for deeper bur-
rowing into a string to yield paired Lyndon patterned substrings. The Lyndon
suffix array lends itself naturally to searching for Lyndon patterns in a string. If
the given text or string has a sparse number of Lyndon words (as likely in En-
glish literature due to the vowels a, e often occurring internally in words), then
the Lyndon suffix array may offer efficiencies. Polyrhythms, or cross-rhythms,
are when two or more independent rhythms play at the same time – nested Lyn-
don suffixes can exist in these rhythms. We propose that applications of these
specialized data structures might arise in the context of the relationship existing
between de Bruijn sequences and Lyndon words [FM78].

- Article 7: Simple Linear Comparison of Strings in V-order:

Lexicographic orderings have also been considered in the case of parallel com-
putations: for instance, an optimal algorithm for lexordering n integers is given
in [Ili86], and parallel Lyndon factorization in [DIS94, DDIS13]. Analogously,
we propose future research into parallel forms of V-order-ordering strings.

- Article 1: SimpLiSMS: Structured Motifs Searching:

In this article, we have presented SimpLiSMS, a simple and lightweight algo-
rithm for structured motif searching that runs extremely fast in practice. We
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have also implemented SimpLiSMS-P, a parallel version of SimpLiSMS that
runs even faster. We augmented our algorithm with the capability to enable
search for degenerate motifs. Our immediate target is to implement a software
capable to search directly from databases like PROSITE.

- Article 2: On the Repetitive Collection Indexing Problem:

In this article, we have presented a differential compression method that is based
on the and locations and types of differences between each sequence in a ge-
nomic similar collection and its reference sequence is presented. This method is
simple, universal in that it does not depend on the statistics of the data set and
could achieve higher compression. Our algorithm differs in that we focus not
only on compression ratio only but also on:

1. Compression and decompression speed or the memory use during the com-
pression process; while other algorithms focus on compression ratio only.

2. Detecting inter-genome redundancy efficiently, while in previous work,
most effort has been put to represent a single genome considering the com-
pression ratio.

3. In our scheme, absolute position values can be reached without traversing
all previous variations, which is required of previous methods.

4. Achieving good compression ratios while efficient extraction of individual
sequences is possible.

5. Allowing users to quickly compute statistics on various types of variations
and to retrieve complete or partial genomic sequences.

- Article 1: Arabic Morphology Analysis and Generation:

AMA has many functions. It can validate a word (accept or reject) and also
can generate different forms of a given word. It also can be used as a stem-
mer (this functionality is discussed, in detail, in the next article): give it a word
as input and AMA will return the stem of that word. Also AMA can return all
the word annotations such as morphological properties (category, type, part of
speech tags) of the input words. Another way to use AMA is to give it the anno-
tations as input and AMA will return all the words that match these annotations.
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Further more. AM can be used for measuring lexical semantic relatedness, we
will investigate this aspect, in more details, in future work.

- Article 2: Novel Arabic Language Stemmer:

We have presented a new stemming technique by augmenting the Arabic Mor-
phology Analyzer AMA [AI12a] with an extra stemming model, we build an
expert system from roots + patterns + rules dictionaries derived from morpho-
logical and phonological representation of the language in order to minimise
both stemming errors and stemming cost.

Further more, we would like to extend our stemmer to include rules for broken
plurals, collective nouns, Nisba, cardinal/ordinal numerals and all other conju-
gations of irregular verbs (doubled, Weak, Assimilated, Hollow and Defective)
which don’t have standard patterns.

The experiment results, show that in comparison with the other stemmers, the
performance superiority of the proposed AMA stemmer is clearly evident.

- Article 3: Improved noisy channel model for Arabic spelling correction:

In this article, we proposed an original way to automatically learn the costs of the
edit operations, by taking into account the number of edges separating the words
in to lexicon and affixation segments. Plugging in our weighted edit distance, we
show that these edit costs allow us to improve the accuracy of the noisy channel
model for Arabic spell checking. A complete and conclusive word list of Arabic
is almost impossible to obtain due to the high morphological productivity of the
language and the many constraints which even experienced linguists might not
be able to explicitly formulate.

Furthermore, we introduce a practical component for automatically detecting
and correcting single candidate errors using Aho-Corasick automaton to store
errors dictionaries, of pairs of correct words and their erroneous matches, in a
more compact manner. The input text can then be threaded against the Aho-
Corasick automaton and verified against the valid list of words.

In this article, we proposed an expert system for spelling correction using noisy
channel model for Arabic language, by providing an algorithm to find the op-
timal costs of a set of string edit rules based on the characteristics of Arabic
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language. We follow [RY98] in using dynamic programming to find the permu-
tation of edit operations with the minimum total edit cost for a pair of strings.
The system is based on deep syntactic and semantic analysis and relies on a
feature relaxation approach capable of detecting and suggesting improvements
of spelling mistakes in Arabic words that goes undetected using conventional
methods. By studying the results obtained using the improved model, it has been
shown to be superior to the widely well known Hunspell spell checker [Hun13]
and outperformed the baseline single edit distance.

We believe this to be the first spelling correction system designed, specifically
for Arabic, for detecting and correcting such errors that usually go undetected
using existing spell checkers.

Borrowing words from other languages is an important source of new words. An
immediate goal for further work is to build similar system for correcting foreign
words borrowed from other languages.

Lastly, an interesting potential direction of spelling correction is personalization:
to tune the error model to mistakes often made by that person and adapting the
language model to the author or the topic of discourse or by people of certain
cultural backgrounds.

- Article 4: Degenerate Finite State Automata for Arabic Morphology:

In this article, we have proposed Degenerate Finite State Automaton (DeFSA),
to facilitate the expression of various non-concatenative morphological phenom-
ena in an efficient way. Our conclusion is that DeFSA implementation remains
superior to its alternative, FSA, with respect to the true representation of lin-
guistic knowledge, and is therefore more efficient for large-scale grammars. The
implementation of DeFSA with DAWG, i.e., D-DeFSA, turns out to be even
better in terms of speed and memory.

Finally, we note here that, our approach is not only limited to the Arabic Lan-
guage; rather it is supposed to work for any language that follows specific mor-
phological rules in the word generation process and can be represented as a set
of morphological patterns or regular expressions.
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specific typing of DNA based on palindrome frequency patterns. DNA

Research, 18:117 – 124, 2011. 96

[LD09] H. Li and R. Durbin. Fast and accurate short read alignment with
Burrows– Wheeler Transform. Bioinformatics, 25(14):1754–1760, July
2009. 106

[Lev66] V. I. Levenshtein. Binary codes capable of correcting, deletions, inser-
tions and reversals. Soviet Phys. Dokl., 10:707–710, 1966. 22, 37, 215,
219

[Lip05] R. Lippert. Space–efficient whole genome comparisons with Burrows
Wheeler Transforms. Journal of Computational Biology, 12(4):407–
415, 2005. 19

[Lot83] M. Lothaire. Combinatorics on Words. Reading, MA (1983); 2nd Edi-
tion, Cambridge University Press, Cambridge (1997). Addison–Wesley,
1983. 106, 117, 119, 134

[Lot05] M. Lothaire, editor. Applied Combinatorics on Words. Encyclopedia of
Mathematics and its Applications. Cambridge University Press, 2005.
23, 117, 122

[LS02] Yin Li and W. F. Smyth. Computing the cover array in linear time.
Algorithmica, 32–1, 95–106, 2002. 64, 69

[LSvD+09] Julian Lange, Helen Skaletsky, Saskia K M van Daalen, Stephanie L Em-
bry, Cindy M Korver, Laura G Brown, Robert D Oates, Sherman Silber,
Sjoerd Repping, and David C. Page. Isodicentric Y chromosomes and
sex disorders as byproducts of homologous recombination that maintains
palindromes. Cell, 138:855–869, September 2009. 96

[LTPS09] B. Langmead., C. Trapnell., M. Pop, and S. J. Salzberg. Ultrafast
and memory–efficient alignment of short DNA sequences to the human
genome. Genome Biol, 10:R25 – R25, 2009. 106

REFERENCES 258



259 REFERENCES

[LYL+09] R. Li, C. Yu, Y. Li, T. W. Lam, S. M. Yiu, K. Kristiansen, and J. Wang.
SOAP2: an improved ultrafast tool for short read alignment. Bioinfor-

matics, 25(15):1966–1967, 2009. 106

[Lyn54] R. C. Lyndon. On burnside problem i. Transactions of the American

Mathematical Society, 77:202 – 215, 1954. 117

[Lyn55] R. C. Lyndon. On burnside problem ii. Transactions of the American

Mathematical Society, 78:329 – 332, 1955. 117

[Man75] Glenn Manacher. A new linear–time on–line algorithm for finding the
smallest initial palindrome of a string. Journal of the ACM, 22:346 –
351, July 1975. 94, 95, 97, 100

[Mar13] A. A. Markov. Essai d’une recherche statistique sur le texte du ro-
man “Eugene Onegin” illustrant la liaison des epreuve en chain (exam-
ple of astatistical investigation of the text of Eugene Onegin illustrat-
ing the dependence between samples in chain). Izvistia Imperatorskoi

Akademii Nauk (Bulletin de l’Académie Impériale des Sciences de St. –
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