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Abstract 

 

Oral cancer is one of only four major cancers whose predicted mortality rate will 

significantly increase in the next 15 years. Many patients have potential precursor lesions 

but the methods for predicting the small number at high risk of cancer do not have 

sufficient predictive value or are labour intensive. The aim of this project is to 

investigate tests capable of predicting malignant transformation through detection of 

chromosomal instability.   

Image-based DNA image-based cytometry (‘ploidy analysis’) has been used 

routinely in the diagnostic Oral Pathology Unit but has not been tested on lesions 

clinically suspected as having high risk and its predictive values are not known for 

targeted use. Follow up data was compiled for 252 patients with risk lesions from local 

databases and cancer registries and a follow up study of malignant transformation was 

performed.  Over than half of the dysplastic lesions, which transformed into cancer 

were aneuploid.  

Real time qPCR and QuantiGene Plex DNA assays were applied to samples of oral 

none dysplastic and dysplastic lesions to detect alterations in gene copy number using 

markers identified in previous studies in the laboratory.  Discrepancies between 

methods were found, with inconsistent results caused by normalised to different 

housekeeping genes; RnaseP for qPCR, TPM1 for QGPlex and TERT in both 

techniques.  Both these techniques were found to be insufficiently reliable for clinical 

use.  
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Fluorescence in situ hybridization (FISH) was applied against Cen3/TP63, 

Cen7/EGFR, Cen8/PTK2, Cen11/CCND1 and 20ptel/MMP9. This proved almost as 

effective as image based ploidy analysis but was too labour intensive and time 

consuming for routine use.  FISH revealed previously unrecognized zones of variation 

within dysplastic lesions and variation in clonal structure within them.  

Our data show that DNA image-based ploidy analysis combined with dysplasia 

assessment is the most predictive technique for use in a diagnostic setting and should be 

considered the reference standard. 
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 : General Introduction CHAPTER 1

 

1.1 Oral Squamous Cell Carcinoma 

1.1.1 Definition  

Oral cancer is a subgroup of head and neck malignant neoplasms that includes 

carcinomas arising from the mucosal lining of the lips, the buccal mucosa, the 

retromolar trigone, the alveolar ridges, the anterior two- thirds of the tongue, the floor 

of the mouth, and the hard palate. Although oropharynx refers to the posterior third of 

the tongue, the soft palate and uvula, the tonsils, and the upper part of the posterior 

pharyngeal wall, malignant neoplasms involving oral cavity and oropharynx have been 

categorized together in the codes C00-C14 in the World Health Organization (WHO) 

International Classification of Diseases, 10th Revision (ICD-10). Numerous types of 

malignant neoplasms affect the oral cavity and oropharynx, but squamous cell 

carcinoma that arises from the mucosal epithelial lining, accounts for more than 90% of 

cases (Warnakulasuriya, 2009). 

1.1.2 Epidemiology 

The oral cavity and oropharynx together are ranked sixth most common cancer 

worldwide (Warnakulasuriya, 2010).  The number of new cases is projected to reach 

300,000 per year for these sites (Ferlay et al., 2015). It is alarming to note that the 

estimated number of deaths from cancer of the oral cavity was 145,000 in 2012 and this 

is expected to increase in the next 15 years despite easy accessibility to this site of the 

body for diagnosis (Ferlay et al., 2010; Jemal et al., 2011; Ferlay et al., 2015).  
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Disparities between nations are evident through epidemiology, age and gender 

distributions, aetiology and risk factors, pathogenesis, anatomical site of lesion and 

socioeconomic status, reflecting differences in populations across the world.  

In the United Kingdom (UK), approximately 6800 cases of oral cancer were 

diagnosed in 2011 accounting for 2% of all cancer cases and making it the 16th most 

common cancer with a male to female ratio of 2:1, the 12th commonest cancer in man 

and 16th in women (Cancer Research UK). Oral squamous cell carcinoma (OSCC) is 

diagnosed primarily between the age of 50 to 74 with the age-specific incidence rate for 

men peaking in the 60-64-year-old age group while for women the highest rate is in 

those aged 85 years (Figure 1.1). The mortality rates have risen by 10% over the last 10 

years and 2.6 per 100,000 was recorded in the UK in 2012 (Table 1.1).  

 

Figure 1.1 Incidence rates by gender in UK 
Average number of new cases per year and age-specific incidence rates by gender in the UK 
2009-2011. (source: Cancer Research UK, http://www.cancerresearchuk.org) 

 

 

 

Oral Cancer (C00-C06,C09-C10,C12-C14): 2009-2011 
Average Number of New Cases Per Year and Age-Specific Incidence Rates per 100,000 Population, UK

Age Range Male Cases

Female

Cases Male Rates

Female

Rates

0 to 04 1 1 0.1 0.1

05 to 09 1 0 0.1 0.0

10 to 14 1 1 0.1 0.1

15 to 19 4 3 0.2 0.2

20 to 24 5 4 0.2 0.2

25 to 29 17 11 0.8 0.5

30 to 34 23 18 1.1 0.9

35 to 39 60 31 2.8 1.5

40 to 44 154 74 6.7 3.2

45 to 49 339 123 15.0 5.3

50 to 54 536 207 27.0 10.3

55 to 59 704 264 39.5 14.4

60 to 64 784 314 42.5 16.4

65 to 69 593 272 41.5 17.8

70 to 74 451 259 39.0 20.0

75 to 79 323 224 36.1 20.3

80 to 84 207 189 34.4 21.5

85+ 140 221 31.7 23.6

All Ages 4,341 2,216 14.1 6.9

Please include the citation provided in our Frequently Asked Questions when reproducing this chart: http://info.cancerresearchuk.org/cancerstats/faqs/#How 

Prepared by Cancer Research UK

Original data sources:
1. Office for National Statistics. Cancer Statistics: Registrations Series MB1. http://www.ons.gov.uk/ons/search/index.html?newquery=series+mb1 
2. Welsh Cancer Intelligence and Surveillance Unit. http://www.wcisu.wales.nhs.uk 
3. Information Services Division Scotland. Cancer Information Programme. www.isdscotland.org/cancer 
4. N. Ireland Cancer Registry. www.qub.ac.uk/nicr. 
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Table 1.1 Incidence and mortality rates in the UK  
(source: Cancer Research UK) 
 
Year Oral cancer statistics Males Females Persons 

2011 Number of new cases per year 4510 2257 6767 

 Incidence rate per 100,000 population 12.8 5.4 9.0 

2012 Number of deaths per year 1426 693 2119 

 Mortality rate per 100,000 population 3.8 1.4 2.6 

 

There are distinctive geographical differences in incidence across the world reaching 

20-fold the mean incidence in high incidence countries such as India, Sri Lanka, 

Pakistan and Bangladesh in the South Asia region (Warnakulasuriya, 2010). India has 

annual registration of more than 100,000 cases and the majority occur in individuals 

who chew tobacco and areca nut in betel quid (Warnakulasuriya, 2010). The age-

standardised rate of mortality from mouth cancer in south Central Asia was calculated at 

6.3 in men and 3.0 for woman per 100,000 individuals (Ferlay et al., 2015).  

 

 
Figure 1.2 Estimated number of new cancer cases and deaths in more and less 
developed world in 2012  
(source: Ferlay J et al. 2015) 
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1.1.3 Clinical and histopathological features 

Long-standing lumps, ulcers, speckled white, red or mixed red-white oral mucosa 

that persists for more than 3 weeks should prompt suspicion of squamous carcinoma. 

There may or may not be symptoms. Risk of these presentations being carcinoma 

increases when lesions are hard or firm to palpation. Other signs include post-extraction 

non-healing tooth socket, inexplicable tooth loss and numbness. Particular sites at risk 

are floor of mouth, ventral tongue, lateral tongue, soft palate and the retromolar areas 

but the buccal mucosa and gingiva are more frequently affected in those who chew betel 

quid.  

The key histological feature is epithelial cells with squamous differentiation that 

invade the underlying connective tissue. Carcinoma grading into well-, moderately- and 

poorly-differentiated cancers is based on the degree of resemblance to normal 

squamous epithelium but is a poor predictor of outcome. Other histologic parameters 

that taken together have more prognostic significance include nuclear pleomorphism, 

mitotic figures, pattern of invasive front and vascular and perineural invasion.  These 

features are not specific to carcinoma, other than the features of invasion, and may be 

seen in potentially malignant lesions.  

1.1.4 Risk factors 

Tobacco smoking and alcohol abuse, consumed either alone or together, and betel 

quid chewing with or without tobacco are the major, well-recognised risk factors for 

oral cancer. Recently, attention has been drawn to Human Papillomavirus (HPV) 

infection as the most important aetiological factor for oropharyngeal squamous cell 

carcinoma (Gillison et al., 2000) and also possibly for a small proportion of oral 

carcinomas. This group of HPV-associated carcinomas exhibits different patterns of 
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clinical presentation, age distribution, risk factors and prognosis in comparison with 

conventional OSCC. Affected individuals are slightly younger, and often non-smokers 

and it is of note that this group of patients’ respond well to treatment and have a much 

better prognosis (Gillison, 2007; Syrjanen et al., 2011). 

Other risk factors include genetic predisposition, radiation exposure, 

immunocompromise, poor nutrition and low socioeconomic status. A family history of 

head and neck cancer, suggesting a hereditary genetic basis, has been shown to increase 

individuals’ susceptibility to developing cancer. Both developed and developing regions 

showed higher cancer risk in individuals of low educational level and income. 

1.1.5 Treatment and Prognosis 

Surgery with or without post-operative chemotherapy and radiation remain the 

standard treatment approaches, although several factors including the site, size, depth of 

infiltration and proximity to bone would determine final treatment choice. In general, 

late diagnosis at advanced stage in the majority of patients requires a combination of 

surgery, radiotherapy or chemotherapy. Early stage tumours are often treated with either 

surgery or radiation alone, depending on site, or combined surgery and/or 

chemotherapy followed by close monitoring post-operatively for recurrences and 

second primary tumours. Concurrent chemoradiation or induction chemotherapy prior 

to local treatment is employed for locally advanced disease whilst in recurrent and/or 

metastasis, radiotherapy or chemotherapy can be administered as palliative treatment. 

The emergence of targeted molecular treatment towards specific molecules involved in 

cell growth control, angiogenesis and apoptosis, is beneficial when used in combination 

with chemotherapy agents and/or radiation but at present is reserved primarily for 

adjuvant or palliative therapy (Lorch et al., 2009; da Silva et al., 2011).   
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Advances in surgical and chemoradiotherapeutic techniques in addition to recent 

organ-preservation protocols have been reported to increase the quality of life after 

treatment (Vergeer et al., 2009). However, there is a disproportion between 

improvement in quality of life and 5-year survival rate, which remains relatively stable at 

40-50% of cases, predominantly due to development of loco-regional recurrence, distant 

metastases and second primary tumours (Leemans et al., 2011). Well-defined prognostic 

indicators are tumour size, nodal and distant metastases, collectively forming the TNM 

cancer staging system. Advanced presentation at time of detection and diagnosis with 

lymph node metastases carries a poor prognosis. In contrast, approximately one third of 

patients seek treatment at early stage of disease allowing effective management and have 

a favourable prognosis (Leemans et al., 2011). Because size and stage at diagnosis are so 

critical to outcome, detection at an early stage is the most effective method to control 

oral cancer and the best outcome would result if oral cancer could be detected at a 

preinvasive stage. Like many other cancer types, oral cancer may be preceded by a long-

standing preinvasive stage termed oral potentially malignant disorders.   
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1.2 Oral Potentially Malignant Disorders 

1.2.1 Terminology 

Oral potentially malignant disorders (OPMD) form a family of clinical or 

histological morphological alterations of epithelium that indicate a risk of 

transformation into squamous cell carcinoma (Speight, 2007). Some oral cancers, the 

exact number is unclear, are preceded by a potentially malignant disorder.   

Several nomenclatures including precancerous, premalignant and precursor lesions 

have been used interchangeably to signify a tissue that has undergone histologically 

detectable changes and may be capable of progressing into cancer. The term ‘oral 

potentially malignant disorders’ was recommended following a workshop coordinated 

by the WHO Collaborating Centre for Oral Cancer and Precancer held in London in 

May 2005 to replace various designations formerly used (Warnakulasuriya et al., 2007). 

This term was considered better than those used previously because it indicates that not 

all cases will transform, allowing for the majority to either remain unchanged or even 

regress. It is also preferred because the distinction between potentially malignant lesions 

and conditions is no longer thought to be useful, accepting that all such disorders reflect 

field change (van der Waal, 2009).  

  
Table 1.2 Oral disorders with increased potential for malignant transformation 
 

Oral Potentially Malignant Disorders 

Leukoplakia 
Erythroplakia 
Palatal lesions in reverse smokers 
Proliferative verrucous leukoplakia 
Submucous fibrosis 
Actinic cheilitis 
Lichen planus 
Discoid lupus erythematosus 

              Source: van der Waal 2009 
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1.2.2 Epidemiology  

Among the OPMDs, leukoplakia and erythroplakia are the commonest and have 

been most frequently associated with cancer progression. Although the others may also 

present as red or white patches, the majority of studies and reports on OPMD have 

been based on these two conditions, after exclusion of other causes. House-to-house 

surveys conducted in India, reported annual incidence rates of leukoplakia ranging from 

5.2 to 30.2 per 1000 person per year in tobacco users, 0.6/1000 to 5.8/100 in non-users 

(Mehta et al., 1972; Bhargava et al., 1975), 1.1–2.4/1000 in males and 0.2–1.3/1000 in 

females (Gupta et al., 1980).  

The estimated prevalence of OPMD varies from 1% to 5% dependent upon region 

studied with a global prevalence of 2.6% determined in a 2003 systematic review by 

Petti (Petti, 2003). India showed a high range from 9% to 14.6% (Smith et al., 1975) 

while in the developed countries the prevalence was lower; 4.2% in England (Lim et al., 

2003), 2.9% in the United States (Bouquot and Gorlin, 1986), 1.4% in Amsterdam 

(Hogewind and van der Waal, 1988) and 1.3% in Hungary (Banoczy and Rigo, 1991). In 

most of the world these conditions are more common in males from middle age to the 

seventh decade of life, and in tobacco smokers. Conversely, the habit of areca nut and 

tobacco chewing popular in India and East Asia shows female dominance and 

development of changes between the ages of 30 to 50 (Barnes et al., 2005).  

1.2.3 Aetiology 

Even though the causative role of tobacco in OSCC is well documented, its 

association with oral leukoplakia has been relatively weak in epidemiological studies. 

This may be attributable to study design, as the majority of studies have been cross-

sectional, often lacked a clear definition of leukoplakia and other risk factors were 



OPMD 

 

 26 

overlooked (Arduino et al., 2013). However, a positive association has been 

demonstrated by the habit of smokeless tobacco (Winn, 2001). Higher prevalence 

(Mehta et al., 1972; Roed-Petersen, 1982; Banoczy and Rigo, 1991), anatomical 

distribution of oral leukoplakia (Schepman et al., 2001) and dose-response relationship 

have been demonstrated among smokeless tobacco users (Gupta, 1984b; Banoczy and 

Rigo, 1991; Tomar et al., 1997). Regression and/or disappearance of oral leukoplakia in 

individuals who ceased smoking also support the causative role of tobacco (Roed-

Petersen, 1982; Silverman et al., 1984; Gupta et al., 1995; Roosaar et al., 2007). 

Studies on the role of alcohol in development of OPMDs have produced 

conflicting results; some finding a strong causal relationship while others refute the link. 

Controlled for tobacco use, a prospective study of 41,458 participants has suggested 

that alcohol was an independent risk factor even in non-tobacco users (Maserejian et al., 

2006). However, the link was weak compared with tobacco and would only have a 

noticeable effects when associated with other risk factors (Gupta, 1984a). While Jaber 

(Jaber, 2010) reported that the notion of alcohol as an independent risk factor was at 

best unproven, others were more definitive in finding alcohol alone to have no role in 

development of OPMD (Lee et al., 2003; Dietrich et al., 2004; Cebeci et al., 2009).  

It was noted above in section 1.1.4 that HPV is an aetiological factor for most 

oropharyngeal and some oral carcinomas.  Whether HPV-associated carcinomas go 

through a long precancerous phase is not yet known, but high risk HPV subtypes, 

usually 16 and 18, can occasionally be found in oral mucosa.  These zones of epithelium 

that can be recognised histologically are termed koilocytic dysplasia and the risk of 

transformation is unclear (Fornatora et al., 1996; Woo et al., 2013). Because this potential 
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aetiological feature is of uncertain significance, lesions of koilocytic dysplasia have been 

excluded from the lesions studied in this work.  

1.2.4 Clinical appearances of OPMD 

OPMD appear clinically as areas of white or red mucosa, sometimes in combination 

forming a ‘speckled’ lesion. Oral leukoplakia is defined as ‘white plaque of questionable 

risk having excluded (other) known diseases or disorders that carry no increased risk for 

cancer’.  Erythroplakia is the designation for the equivalent red patch and combined red 

and white lesions are termed erythroleukoplakia (Warnakulasuriya et al., 2007). Other 

disorders that appear white and/or red should be excluded before the diagnosis of 

leukoplakia, erythroplakia or erythroplakia can be made (Table 1.3). 

Table 1.3 Differential diagnoses of white and red oral lesions 
 

White lesions Red lesions 

Frictional keratosis 

Morsicatio buccarum 

Leukoedema 

Linea alba 

Candidosis, pseudomembranous 

Chemical burn 

Hairy leukoplakia 

Lichenoid reaction 

Lupus erythematosus 

White sponge naevus 

Desquamative gingivitis 

Pemphigoid 

Hypersensitivity reaction 

Candidosis, erythematous 

Lupus erythematosus 

 

Clinical presentation gives some information about the degree of risk of 

transformation (Silverman et al., 1976; Gupta et al., 1980). Non-homogenous leukoplakia 

and erythroplakia, meaning those associated with both red and white, or lesions with 

nodularity or a verrucous surface are reported to progress to carcinoma more frequently 

(Pindborg et al., 1963; Silverman et al., 1984; Holmstrup et al., 2006). However, these 
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features are not specific and the resemblance of clinical presentations of OPMD to 

other reactive or inflammatory mucosal lesions restricts the predictive value of the 

clinical descriptions and often prevents confident diagnosis on clinical examination 

alone.  

Adjunct tools for detection of genuine risk lesions have been developed with the 

intention of aiding the clinician to distinguish abnormal or dysplastic mucosa from other 

innocuous lesions. Such devices often do not necessarily have a defined plausible 

scientific basis for their claimed effect. Examples include light-based (optical) 

technology that measure the tissue autofluorescence, marketed as VELscope (Lane et al., 

2006; Awan et al., 2011) or chemiluminescence, available commercially as ViziLite, 

ViziLite Plus, MicroLux/DL (Ram and Siar, 2005; Kerr et al., 2006) and vital staining 

with toluidine blue, TBlue and OraBlu (Epstein and Guneri, 2009; Awan et al., 2012). 

Absorbance and reflectance properties of neoplastic and pre-neoplastic tissues following 

abnormal metabolic and structural changes that may differ from normal cells form the 

claimed basis of light-based technology. Toluidine blue is a metachromatic dye 

preferentially binds to nuclear DNA and is claimed to reflect cell division.  However, 

none of these adjunctive tests has been assessed in a well-controlled clinical trial and the 

low specificity of these tests currently precludes their use in routine clinical applications 

(Lingen et al., 2008; McIntosh et al., 2009; Mehrotra et al., 2010; Farah et al., 2012; Rashid 

and Warnakulasuriya, 2015). 

1.2.5 Histopathology 

Microscopic examination to identify the presence of epithelial dysplasia in a biopsy 

sample is currently the reference standard in the assessment of OPMD to assess the risk 

of the patient developing squamous carcinoma.  
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1.2.5.1 Dysplasia 

Dysplasia, meaning abnormal growth, is the term given to the histopathological 

changes associated with an increased risk of malignant transformation. Oral mucosal 

dysplastic changes are characterised by disturbance to the epithelial stratification and 

maturation (architectural features) accompanied by cellular atypia (cytological features). 

Diagnosis of oral epithelial dysplasia is made base on the presence, degree and 

significance of individual criteria of these two broad categories detailed in Table 1.4.  

Atypical cytology or architectural changes can also be seen in reactive, regenerative 

or reparative epithelium in response to trauma, inflammation, irradiation or ulceration 

(Macdonald and Rennie, 1975) and can be difficult to distinguish from true dysplasia. 

However, cellular changes in those conditions are less prominent and may be more 

easily recognised in conjunction with the clinical history.  

 

Table 1.4: Features used for diagnosis of dysplasia  
(source: WHO Classification Head and Neck Tumours 2005) 
 

Architecture Cytology 

Irregular epithelial stratification 

Loss of polarity of basal cells 

Drop-shaped rete ridges 

Increased number of mitotic figures 

Abnormal superficial mitoses 

Premature keratinization in single cells 
(dyskeratosis) 

Keratin pearls within rete ridges 

Abnormal variation in nuclear size (anisonucleosis) 

Abnormal variation in nuclear shape (nuclear 
pleomorphism) 

Abnormal variation in cell size (anisocytosis) 

Abnormal variation in cell shape (cellular 
pleomorphism) 

Increased nuclear-cytoplasmic ratio 

Increased nuclear size 

Atypical mitotic figures 

Increased number and size of nucleoli 

Hyperchromasia 
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1.2.5.2 Dysplasia grading 

A number of grading systems have been described that divide dysplasia into mild, 

moderate and severe changes, of which the WHO classification system is the most 

commonly applied. (Barnes et al., 2005). According to this system, oral dysplasia is 

graded based on the degree of architectural and cytological atypia. The severity of 

dysplastic changes is dependent on how many of those features could be observed in a 

given lesion (Table 1.5). Mild cases are those in which cytological atypia is minimal and 

only the lower third of the epithelium is involved; moderate cases are those with 

between one and two thirds of the epithelial thickness affected; and severe cases are 

those in which marked atypia is evident with or without architectural disturbances to 

more than two-thirds of the epithelial thickness.  Despite consensus on the features, the 

use of a third-based grading system is new in this classification and the system is based 

on little experimental data, despite its widespread use in clinical practice.  Though 

frequently cited, the WHO classification is not a defined scoring system.  The list of 

features has no formal evidence base and there is no guidance on how the various 

features should be recognised and combined.  The pathologist remains able to 

compensate up or down the grading scale without defined criteria.   

Recently, a two-tier categorization has been suggested to reduce interobserver and 

intraobserver disagreement and this is claimed to improve prediction of malignant 

transformation (Kujan et al., 2006b). However, the prognostic ability of this system was 

found to be only on a par with the WHO classification and could only be minimally 

improved by refining the diagnostic threshold (Nankivell et al., 2013).  
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Table 1.5: Criteria used for dysplasia grading  
(source: Dionne et al., 2015) 
 
Architecture Cellular atypia Dysplasia grading 

No changes None No dysplasia 

Lower third Mild Mild 

Middle third Moderate Moderate 

Upper third Prominent Severe 

Upper third Moderate Moderate 

Middle third Prominent Severe 

Full thickness Prominent Carcinoma in situ 

 

 

1.2.6 Prognosis of OPMD 

Despite intense focus on the clinical importance of OPMD, the great majority are 

never followed by development of OSCC. The lesion may persist but remain unchanged 

in size and appearance throughout a patient’s lifetime; it may persist showing mucosal 

alterations that look suspicious with or without any changes in size; it may expand to 

involve more of the oral mucosa with or without changes in clinical appearance. On the 

other hand, a lesion may spontaneously reduce in size or entirely disappear (Banoczy 

and Sugar, 1972; Mehta et al., 1972; Gupta et al., 1980).  

The largest epidemiological outcome study has a 10-year follow-up and was 

conducted by Gupta and co-workers in 3 districts of India. In that study 42% of 

leukoplakias had reduced in size or disappeared, 47% of lesions persisted while 4% 

progressed to cancer over 10 years (Gupta et al., 1980). The findings must be taken in 

the context of the very high oral cancer rates in India and the high prevalence of risk 

habits. In Hungary, of the 520 patients that were treated by eliminating the causative 

factors and followed up for 25 years, lesions disappeared in 176 patients (33.8%), 
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improved in 131 patients (25.3%), remained unchanged in 135 (26%) and only 47 

patients (9%) had increased in lesion size (Banoczy and Sugar, 1975). Progressive 

changes in clinical features were seen in 19 out of 66 leukoplakias (3.7%) and changes 

from more worrying to less worrying type occurred in 47 cases (9%) (Banoczy and 

Sugar, 1975). Lesions that appeared red, located on the tongue or floor of the mouth 

were more likely to progress (Banoczy and Sugar, 1975). 

From the histopathological standpoint, dysplasia may behave correspondingly; it 

may persist at the same grade; it may advance to a higher grade, regress or even 

completely resolve regardless of clinical progression or resolution. However, 

interpretation of these changes must take into account sampling error.  The excised 

specimen cannot undergo transformation and may or may not be representative of the 

surrounding tissue that remains in the patient.    

1.2.7 Malignant transformation 

The majority of reports regarding annual malignant transformation rates for OPMD 

have been derived from study of leukoplakia, and the rates reported vary widely from 

0.13% to 36.4% over a period ranging from 1 to 30 years (Table 1.6). Higher rates were 

found in smaller series of hospital referral cases with higher degrees of dysplasia, in 

studies primarily performed in the developed nations.  

Rates of malignant transformation in India were relatively low ranging from 0.13% 

to 2.2% per year, in studies carried out in large-scale community-based surveys and with 

long follow-up periods (Mehta et al., 1972; Pindborg et al., 1977; Gupta et al., 1980).  

However, there remain slight variations between studies due to differences in tobacco 

habits, geographical distribution within India and follow-up times. 
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Table 1.6: Selected studies on malignant transformation of OPMDs 
 

References  Country 

Malignant transformation (%) 
Follow-up  

(Years) 
Dysplastic 

Cases 

Non-Dysplastic 

Cases 

Mincer et al, 1972 USA 11 - Up to 8 

Mehta et al, 1972 India - 0.8 10 

Silverman et al, 1976 India 0 0.13 2 

Banoczy, 1977 Hungary 13.2 4.7 1-30 

Pindborg et al, 1977 India 6.6 - Up to 7 

Gupta et al, 1980 India - 0.3 1-10 

Silverman et al, 1984 USA 36.4 15.7 Mean 8.1 

Lumerman et al, 1995 USA 16 - Up to 9 

Cowan et al, 2001 UK 15 1 20 

Saito et al, 2001 Japan 7.7 7.8 Mean 4 

Holmstrup et al, 2006 Denmark 9 4 1-20 

Amagasa et al, 2006 Japan 13.3 3.0 1-29 

Liu et al, 2010 China 17.9 - Mean 5.3 

Warnakulasuriya et al, 2011 UK 11.8 1 Mean 9.04 

Dost et al, 2014 Australia 4.7 - More than 17 

 

A recent meta-analysis (Mehanna et al., 2009) has shown significant heterogeneity 

between the 14 follow-up studies included in the analysis indicating bias in the studies. 

When the 3 outliers, Silverman et al. 1976, Silverman et al. 1984 and Lee et al. 2000, were 

excluded (Figure 1.3), the pooled estimate for the mean malignant transformation rate 

for all studies decreased slightly from 12.1% (CI: 8.1%, 17.9%) to 11.3% (CI: 8.4%, 

15.1%). Notably, referral to a single-centre and short follow up contribute to the biases 

in those studies. A lack of high quality studies and differences in the design, inclusion 
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criteria, population studied, length of follow up and risk factors further complicate 

systematic reviews and meta-analysis (Mehanna et al., 2009).  

 

Figure 1.3 Meta-analysis of oral dysplasia studies 
Funnel plot showing 3 studies (outliers) located outside the 95% confidence interval lines and 
an overall mean transformation rate around 0.3-0.4%. Source Mehanna et al., 2009. 

 

1.2.8 Treatment 

Consensus on management of premalignant lesions has so far not been achieved 

and there are differences in approach between treatment centres. In general, surgical 

excision based on the severity of dysplasia is the common practice despite sparse clinical 

evidence on the success of this modality at preventing cancer developing. Surgical 

margin with inclusion of 3-5mm clinically adjacent normal mucosa is recommended for 

the surgical treatment of moderate to severely dysplastic lesions, but without good 

experimental support. Other surgical interventions include laser surgery (van der Waal, 

2009, 2010). Leukoplakia with mild dysplasia or non-dysplastic but clinically suspicious 

lesions are usually managed by regular 6-month follow up.  
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Other treatment modalities are non-surgical; topical or systemic retinoids, 

mouthwash-delivered therapy containing an attenuated adenovirus, photodynamic 

therapy and change of lifestyle risk habits such as tobacco cessation and alcohol 

moderation (van der Waal, 2010). Molecular based chemopreventative trials are 

currently in progress, targeting COX-2 (Mulshine et al., 2004; Papadimitrakopoulou et 

al., 2008) and EGFR upregulation in dysplasia (EPOC, NCT00402779), but these 

treatments remain unproven. 
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1.3 Progression from OPMD to OSCC  

1.3.1 Clinical manifestations 

The currently accepted concept of progression is evolution through dysplasia to 

carcinoma through a sequence of dynamic stepwise alterations evident at phenotypic 

level with underlying cumulative molecular changes. In the field of head and neck 

cancer, Califano et al. proposed a genetic progression model linked to a series of 

histological stages with increasing severity from dysplasia to invasive state based on the 

earlier theory of multiphase pathogenesis for colorectal adenocarcinoma (Califano et al., 

1996). This has been proposed to be evident clinically as changes on mucosal 

colouration and appearance.   

However, there is little evidence to support the idea that progression is always 

evident clinically.  A high proportion of erythroplakia are already presentations of 

carcinoma on first biopsy as are a much smaller proportion of white lesions.  The 

features described as features of progression may simply reflect development of 

carcinoma rather than worsening of dysplasia and, in addition, the features are not 

specific and can resemble other oral mucosal lesions.  One significant defect in the 

progression concept as shown in Figure 1.4 is that it fails to take into account that the 

great majority of risk lesions, including dysplastic lesions, do not progress and may often 

resolve (Banoczy and Sugar, 1975; Gupta et al., 1980). The only OPMD in which there is 

evidence of a long-term progression in clinical appearance culminating in carcinoma is 

proliferative verrucous leukoplakia (PVL) (Silverman and Gorsky, 1997) and in this 

condition, dysplasia is often not evident.  
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Figure 1.4 Model of progression of oral squamous cell carcinoma  
Progression evident clinically as changes in mucosal colouration and appearances whilst 
microscopically with increasing severity of cellular morphology. 

 

1.3.2 Genetic alterations  

Dysplastic and non-dysplastic OPMDs are known to harbour a variety of genetic 

changes.  Genetic alterations result in inactivation of tumour suppressor genes by 

mutations or deletions and activation of proto-oncogenes by mutations, chromosomal 

translocations or gene amplifications (Choi and Myers, 2008). Accumulation of these 

alterations is proposed to lead to dysregulation of cell division, cellular differentiation, 

proliferation and death, DNA repair and cellular immunity (da Silva et al., 2011; Shen, 

2011). Frequent observations of loss of heterozygosity at 3p, 9p and 17p in dysplasia 

appear to be early cytogenetic changes in oral carcinogenesis whereas chromosomal 

alterations at 11q, 4q and chromosome 8 are late events (Califano et al., 1996). Loss of 
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9p21 chromosomal region is the most common genetic event, and this locus contains 

the gene CDKN2A that encodes p16 and p14 responsible for G1 cell cycle regulation 

(van der Riet et al., 1994; Mao et al., 1996). 

Studies on gene expression profiles have defined sets of genes that may contribute 

to conversion from normal to malignant cells, in particular activation of oncogenes that 

promote cell proliferation or inactivation of tumour suppressor gene (TSG) that 

typically transduce negative growth-regulatory signals. Based on level of evidence in 

association with aetiological factors, those genes are divided into established and 

candidate cancer genes for head and neck carcinoma (Leemans et al., 2011). The 

established oncogenes are EGFR, PIK3CA, MET and CCND1 whereas CDKN2A, 

PTEN, TP53 and SMAD4 are established tumour suppressor genes (Leemans et al., 

2011). EGFR overexpression increases progressively from oral potentially malignant 

lesions to invasive OSCC and is overexpressed in 80-100% of HNSCC (Shin et al., 1994; 

Kalyankrishna and Grandis, 2006; Reuter et al., 2007). The p53 tumour suppressor gene 

that is located at chromosome 17p13 is found mutated in 25-69% of oral cancer and has 

been claimed to be a marker of late stage in the progression from a non-invasive to 

invasive phenotype.  However, this is probably incorrect because in OPMD samples it 

appears to be an early and non-critical change (Boyle et al., 1993).   

Other events implicated in carcinogenesis are gene methylation, tumour-stroma 

interactions, angiogenesis and expression of microRNA. Gene methylation is an 

epigenetic alteration resulting in gene inactivation has been seen involving 

CDKN2A/p16, CDH1, MGMT and DAPK1 (López et al., 2003; Ha and Califano, 

2006). Matrix metalloproteinase family members, MMP2, MMP3 and MMP9 have been 

related to tumour invasion in OSCC (Campo-Trapero et al., 2008). Angiogenic growth 
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factors play role in development of the new blood vessels and neoangiogenesis may also 

contribute. Many studies have shown that VEGF (vascular endothelial growth factor) 

expression is an unfavourable prognostic factor for patient survival in oral cancer 

(Kyzas et al., 2005).  

Despite considerable data on the molecular changes associated with dysplasia, there 

is no consensus on a stepwise progression model as has been validated in colorectal and 

some other cancer types.  Different research groups have proposed different specific 

changes as predictive.  Over the last few years it has become apparent that a simple 

stepwise progression model is probably not correct and its basis in cancer biology has 

been questioned.  All such models are based on the somatic mutation theory of 

carcinogenesis, as summarised and promoted by Hanahan and Weinberg’s seminal 

reviews (Hanahan and Weinberg, 2000). However, recently the validity of this theory 

has been questioned and a competing theory based on evolutionary theory and 

relationship to normal developmental or wound healing functions has been proposed 

(Sonnenschein and Soto, 2013).  This theory is more compatible with the apparently 

random patterns of genetic changes in OPMDs generated by chromosomal instability 

and provides a better biological framework to explain field change, clonal selection and 

progression of a minority of lesions   

Recently, a revised version of the stepwise progression model has been proposed in 

which HPV related tumour carcinogenesis and discrimination between high and low 

numerical genetic changes of HPV negative tumour were incorporated (Leemans et al., 

2011).  Though this model is widely quoted, the evidence for the order and specificity of 

genetic changes at each stage of dysplasia remains sparse and it appears that HPV is very 

infrequently found in OPMDs (Jayaprakash et al., 2011). 
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Figure 1.5 Genetic progression model of multistep oral carcinogenesis.  
The accumulated genetic changes that occur in oral carcinogenesis include activation of EGFR, 
alterations of tumor suppressors p53 and p16, and cyclin D1 overexpression. Source: Choi and 
Myers 2008.  

 

1.3.3 Predictors of progression 

1.3.3.1 Clinical factors 

Factors that have been related to the likelihood of developing carcinoma, regardless 

of OPMD, include patients’ age, gender and risk habit(s), along with lesion-related 

predictors including grade of dysplasia, clinical appearance, duration, anatomical site and 

size of lesions (van der Waal, 2009; Warnakulasuriya et al., 2011). It is generally accepted 

that these risk factors apply to those with OPMD as well as those who develop 

carcinoma without OPMDs.   

Factors specifically associated with increase in risk in OPMD are female gender, 

older age, duration of a lesion, non-smokers, intraoral sub-site, size of more than 

200mm2, non-homogenous clinical appearance and higher grade of epithelial dysplasia 

(Schepman et al., 1998; Napier et al., 2003; Holmstrup et al., 2006; Warnakulasuriya et al., 

2011). 
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Although many reports from Europe, United States and Japan (Banoczy, 1977; 

Silverman et al., 1984; Schepman et al., 1998; Amagasa et al., 2006) have shown that 

transformation occurred more frequently in females, studies in India found the contrary 

(Mehta et al., 1972; Gupta et al., 1980). This may have been due to sex differences in risk 

habits that influence the outcomes.  

The incidence of OSCC arising from leukoplakia has been shown to be greater in 

those aged 70-89 years (Banoczy and Sugar, 1972; Mehta et al., 1972; Amagasa et al., 

2006). An age group of over 65 years was reported showing higher rate of 

transformation (Warnakulasuriya et al., 2011). Long follow-up studies reported higher 

number of transformed lesions (Schepman et al., 1998) suggesting that longer period of 

exposure or period of persistence might increase the risk of malignant change.  

Size of lesion is thought to have an effect on malignant development to some 

degree. Increased risk of transition was 5.4 times greater for lesions exceeding 200 mm2 

in size in a study from Denmark (Holmstrup et al., 2006). In a study of 50 patients from 

Northern Ireland (Napier et al., 2003), large lesions indicated by the extension over more 

than one anatomical site were the only factor associated with conversion to cancer when 

other significant factors on their own (duration and clinical appearance) were controlled. 

 Intraoral sub-site, particularly the tongue, floor of the mouth and soft palate are 

believed to carry a particularly high risk of malignant transformation (Banoczy, 1977; 

Silverman et al., 1984). Although site on the tongue has been shown to be associated 

with malignant progression in a meta-analysis by Mehanna et al. (2009), no definite 

association has been identified in several individual studies (Schepman et al., 1998; 

Holmstrup et al., 2006; Liu et al., 2011; Brouns et al., 2014). 
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Several recent studies have assessed the above-mentioned risk factors with 

conflicting results. An extensive study evaluating all risk factors has been carried out in 

the Regional Oral Dysplastic Clinic, Liverpool with 2 and 5 year followed-up (Ho et al., 

2012). In order of the most statistically significant factors, smoking status (non-smoker), 

clinical appearance (non-homogenous), site (lateral tongue), size of lesion (≥ 200 mm2) 

and severity of dysplasia were shown to be strong predictors in that study. Gender, age, 

number of lesions and alcohol consumption did not predict malignant transformation. 

In the Netherlands, only size of the lesion of ≥ 4cm diameter was a significant predictor 

while gender, age, tobacco, alcohol, clinical appearance, oral subsite and presence of 

dysplasia were not associated with malignant transformation (Brouns et al., 2014).  

Unfortunately such studies may not reflect the situation in the population, because 

all such referral series are biased by inclusion of high-risk cases, particularly the 

inclusion of disproportionate numbers of patients with PVL who are often elderly 

female non-smokers and who may have extensive lesions, minimal dysplasia but develop 

several separate primary carcinomas (van der Waal and Reichart, 2008). This may 

account for the counterintuitive results generated in some studies. There are no 

epidemiological studies outside the Indian subcontinent, which as noted above has 

different risk factors from developed countries (Cabay et al., 2007) .  

1.3.3.2 Histopathology 

There are many reports on the relationship between malignant transformation and 

OPMD with or without dysplasia. Silverman et al reported 36% of leukoplakia with 

dysplasia and 15.7% without dysplasia had transformed into carcinoma (Silverman et al., 

1984). A retrospective study in Northern Ireland found that 15% of dysplastic lesions 
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(n=165) subsequently developed carcinoma compared with only 1% of non-dysplastic 

lesions (n=1182) (Cowan et al., 2001).  

Cancer risk in different grades of dysplasia has also been evaluated in several studies 

(Mincer et al., 1972; Banoczy and Csiba, 1976; Pindborg et al., 1977; Lumerman et al., 

1995). Severely dysplastic lesions are generally considered to have a higher propensity 

for malignant transformation, although this finding was not consistent. This notion may 

have originated from the documented transformation rate that increased with the grade 

of dysplasia; mild, moderate and severe/carcinoma in situ being less than 5%, 3-15%, 

and 7-50%, respectively (Jaber et al., 2003; Bouquot et al., 2006; Napier and Speight, 

2008). The cancer risk in moderate or severe dysplasia was reported to be double (OR 

2.3) relative to mild or non-dysplastic lesions (Lee et al., 2000). In a study of 1357 

OPMDs patients from South East England of which 204 had dysplastic epithelium, 

patients with severe grade had a higher risk of transition to oral cancer (HR 35.95% CI 

14.2-88.3) and a significant trend between dysplasia grades was evident 

(Warnakulasuriya et al., 2011).  

When dysplasia was assessed in a binary system, in an attempt to increase 

reproducibility, the prognostic value of the binary system was found to be similar to that 

of the three-tier WHO system (Nankivell et al., 2013). That study found similar 

percentages of patients who developed cancer in both the high-risk (36%) and the low 

risk (31%) groups. In contrast, Kujan et al. who introduced the 2-tier system showed 

that 80% of transformed cases were from high-risk lesions with positive predictive value 

of 80% and negative predictive value of 85% (Kujan et al., 2006b). This finding is 

supported by a study in China, which reported that high-risk dysplasia was associated 

with a 2.78 fold increased risk of transformation compared to the low-risk group (Liu et 
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al., 2011).  However, in these studies on referral populations the low risk dysplasia 

group often have a relatively high risk of transformation rate, reducing the clinical value 

of the low-grade diagnosis for planning treatment.  

Somewhat surprisingly, there are several studies that have found no correlation at all 

between malignant transformation and degree of dysplasia. A similar proportion of 

cases that progressed to cancer from all grades was demonstrated in a study from 

Denmark (Holmstrup et al., 2006) where non-dysplastic (11% transformed) mild 

dysplasia (11%-14% transformed), moderate dysplasia (9% transformed) and severe 

dysplasia (9% transformed) showed no statistical difference in transformation, indicating 

that dysplasia grading was not a good predictor. In an attempt to assess the ‘real-world’ 

situation, Dost et al. evaluated patients with 368 dysplastic lesions retrospectively 

without reinterpretation of the original diagnosis reported by the pathologist and found 

no association between severity of oral dysplasia and risk of progression to cancer (Dost 

et al., 2014).  

Inherent subjectivity in the grading system of dysplasia with substantial 

interobserver and intraobserver variability in the interpretation of presence, degree and 

significance of the individual cytological and architectural criteria may contribute to the 

conflicting correlation between dysplasia grade and transformation rates or risk of 

cancer (Abbey et al., 1995; Karabulut et al., 1995; Fischer et al., 2004).  Lack of 

reproducibility is frequently blamed for the failure of dysplasia detection and grading to 

be an accurate predictor of transformation.  However, reproducibility, while an 

important factor in any histological grading system, is not the critical factor it is often 

assumed to be. Outcome studies on large series are required to assess properly the value 
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of grading systems and there are only a few of these (Warnakulasuriya et al., 2011; 

Sperandio et al., 2013; Dost et al., 2014). 

Recently, a large outcome study performed in our department showed that dysplasia 

grading was predictive and that each grade of a three grade system was statistically 

significantly different.  It also illustrated the importance of the negative predictive value 

of the ‘no dysplasia’ and mild dysplasia grades in producing a clinically useful result 

(Sperandio et al., 2013).   

Overall, it remains generally accepted that the presence of dysplasia, regardless of 

grade, is the most accurate predictive factor, though the evidence to support this 

remains incomplete.  

1.3.4 Molecular biomarkers 

An appealing approach to circumvent the limitations of clinical and 

histopathological prediction of malignant transformation in OPMD is the use of 

molecular biological markers. Many markers have been proposed to indicate risk for 

disease progression and these have been reported at the DNA, RNA and protein levels. 

A very large number of studies and reviews including meta-analyses have assessed the 

predictive ability of molecular markers to determine those lesions at highest risk of 

malignant transformation (Reibel, 2003; Brennan et al., 2007; Pitiyage et al., 2009; Smith 

et al., 2009; Lingen et al., 2011; Nankivell and Mehanna, 2011) and not all can be 

discussed here. It is clear that numerous biomarkers claimed to possess predictive ability 

for malignant transformation in oral dysplasia have been reported to date; none of these 

have proved useful in clinical practice (Reibel, 2003; Pitiyage et al., 2009; Smith et al., 

2009; Lingen et al., 2011).  
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1.3.4.1 Tumour suppressor genes 

1.3.4.1.1 p53 and family 

p53 is a tumour suppressor gene located on 17p13 that regulates cell cycle arrest, 

senescence and apoptosis. Its loss results in cells losing their response to stress such as 

hypoxia or DNA damage, subsequently leading to genomic instability. p53 is the most 

common genetic alteration found in human cancer through mutations, loss of 

heterozygosity or interaction with oncogenic viral proteins (Vousden and Lane, 2007).  

A few investigators have found a positive correlation between p53 mutation or 

stabilisation detected by immunohistochemistry with the distribution, percentage, 

intensity of positive cells and dysplasia grades (Schoelch et al., 1999; Brennan et al., 2000; 

Vered et al., 2009).  Others suggest otherwise (Cruz et al., 1998; Murti et al., 1998). 

Although Cruz et al. (1998) found no correlation between p53 expression and grade of 

dysplasia, they showed that suprabasal expression of p53 could serve as a predictor of 

malignant transformation (p = 0.002). p53 ‘overexpression’ (often mistaken for 

stabilisation) has been associated with increased risk of progression to cancer (OR = 

6.63; p = 0.0001) in dysplastic lesions (Shah et al., 2007). However, a meta-analysis of 

reported studies on biomarkers in oral dysplasia has shown that the pooled relative risk 

for cancer progression in p53 immunopositive cases was 0.96 (CI 0.65, 1.42) indicating 

lack of prognostic ability for p53 expression assessed by immunostaining (Smith et al., 

2009).  

Contradictory results on the role of p53 in the prognosis of oral dysplasia probably 

arise because of the complexity of p53 function with multiple redundancies in its cellular 

pathways, making it difficult to interpret the biological significance of 
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immunocytochemical stains. Many studies have simplistic designs and insufficient cases 

to provide the necessary statistical power.  

Investigators have extended their studies to assess the diagnostic utility of p63 and 

p73, other members of p53 family (Bortoluzzi et al., 2004; Chen et al., 2004). p63 has 6 

isoforms divided into two types, TAp63 and ΔNp63 that function similar to p53 and as 

an oncoprotein respectively.  ΔNp63 isoform is primarily expressed in the skin and oral 

epithelial basal layer (Romano et al., 2009) while TAp63 is normally restricted to the 

oocytes of ovary (Laurikkala et al., 2006). Expression of ΔNp63 was significantly higher 

(P < 0.01) in oral leukoplakia that progressed to carcinoma compared to the group that 

did not (Matsubara et al., 2011). Oral cancer risk was increased with hazard ratio of 3.31 

(CI 1.66-6.58; P = 0.0007) for dysplastic lesions that expressed ΔNp63 protein 

(Saintigny et al., 2009). 

1.3.4.2 Oncogenes 

1.3.4.2.1 Cyclin D1 

Cyclin D1, encode by CCND1, gene, regulates the cell cycle transition from G1 to S 

phase through formation of complexes with cyclin dependent kinases (CDKs). 

Overexpression of cyclin D1 via gene rearrangement or amplification accelerates the G1 

phase transition. Several reports have demonstrated that Cyclin D1 expression increased 

with the degree of severity of dysplasia to OSCC (Raju et al., 2005; Kovesi and Szende, 

2006). Amplification of this oncogene has been associated with an eightfold risk of 

malignant progression from OPMD (Poh et al., 2012). 
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1.3.4.2.2 EGFR 

Epidermal growth factor receptor (EGFR), a member of the ErbB/HERs family of 

transmembrane receptor kinases, plays roles in cell proliferation and differentiation, 

apoptosis, invasion and metastasis. EGFR copy number gain and amplification were 

shown to associate with, and have statistically significant ability to predict, malignant 

transformation (Taoudi Benchekroun et al., 2010; Poh et al., 2012). Increased protein 

expression of both EGFR and transforming growth factor- (TGF), a growth factor 

binds and activates ErbB receptors, have been observed in dysplasia that increased with 

the histologic grade (Srinivasan and Jewell, 2001). This was supported by Grandis et al. 

who found increased mRNA expression of TGF and EGFR in dysplasia and OSCC 

and suggested that these may provide early markers for oral carcinogenesis (Grandis and 

Tweardy, 1993). However, more studies are required to validate its usefulness as 

biomarker and the high levels of expression in normal oral mucosa and dysplasia are 

different from the expression seen in other carcinomas arising at other body sites, so 

that it is unclear whether EGFR alterations will have the value seen in studies of other 

cancer types.  

1.3.4.3 Loss of heterozygosity  

Loss of heterozygosity (LOH) refers to loss of one of allele pairs at a constitutional 

(germline) heterozygous locus. LOH that involved regions containing tumour 

suppressor genes has been shown to be useful as an early predictor of cancer transition 

from oral premalignant lesions (Partridge et al., 1998; Zhang and Rosin, 2001). LOH on 

chromosomes 3p, specifically at 3p13-21.1, 3p21.3-25 and 3p25 (Roz et al., 1996) as well 

as chromosomes 9p, 13q and 17p were frequent early cytogenetic changes detected in 

oral dysplasia (Califano et al., 1996; Partridge et al., 2000).  Mao et al. have demonstrated 
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that 37% of patients with precancerous lesions showing loss of heterozygosity on 9p21 

and 3p14 at either one or both loci were subsequently diagnosed with carcinoma in 

contrast to only one of 18 cases without (Mao et al., 1996). The association of risk of 

progression with LOH at chromosome arms 3p and 9p has been further supported by 

several other studies (Partridge et al., 1998; Jiang et al., 2001; Zhang et al., 2001). 

A study on 116 dysplastic lesions of all grades obtained from patients without prior 

history of cancer further supports that LOH at 3p and/or 9p is a prerequisite for 

progression (Rosin et al., 2000). In that study, 97% of lesions that progressed had LOH 

in those two regions, however a significant number of non-progressing lesions also 

harboured LOH on 3p (25%) and 9p (46%), reducing the predictive value. Additional 

LOH at other chromosomal arms increased the cancer risk; 3p and/or 9p had a 3.8-fold 

relative risk for developing cancer while additional LOH on 4q, 8p, 11q, or 17p 

increased in relative cancer risk 33-fold (Rosin et al., 2000). By classifying patients 

according to progression, the same group of patients has been recently reviewed and 

showed that the high-risk lesions (3p and/or 9p LOH) had a 21.1-fold increase in risk (p 

= 0.003) compared to the low-risk group (3p and 9p retention) (Zhang et al., 2012).  

A new classification model has been developed by Zhang et al. using 9p, 17p and 4q 

as covariates. Lesions that retained chromosome arm 9p were designated as low-risk 

lesion, intermediate-risk lesions had 9p LOH only or with either 17p LOH or 4q LOH 

but not both while high-risk lesion had LOH on all chromosomes 9p and 4q and 17p 

(Zhang et al., 2012). Based on this model, the hazard ratios (HR) for intermediate- and 

high-risk categories were 3.4 (95% CI, 1.4–8.2; P = 0.006) and 11.2 (95% CI, 3.3–38.6; 

P<0.001) over the low-risk lesions, respectively (Zhang et al., 2012). Additionally, Zhang 

et al. (2012) have also included another prospective cohort  (n=296) in that study. The 
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prospective cohort validated that the high-risk lesions (3p and/or 9p LOH) had a 22.6-

fold increase in risk (P = 0.002) relative to the low-risk lesions (3p and 9p retention). 

Using the new classification model, the intermediate- and high-risk groups had 11.6-fold 

and 52.1-fold increase in risk (P < 0.001) respectively, compared to the low risk group 

(Zhang et al., 2012). 

1.3.4.4 DNA ploidy 

Evaluation of individual cell DNA content (DNA ploidy) allows a gross 

measurement of chromosomal instability, as abnormal DNA content must indicate 

whole or part chromosome copy number changes.  DNA ploidy has been shown to be a 

predictor of cancer transition with 53% aneuploid dysplasia transformed to OSCC 

within 5 years versus 25% of diploid cases (Torres-Rendon et al., 2009; Bradley et al., 

2010). Further details are described in DNA ploidy chapter. 

1.3.4.5 Podoplanin 

Podoplanin is a mucin-type transmembrane glycoprotein that has multiple roles in 

development as well as in the initiation and progression of neoplasms (Swain et al., 

2014). It is specifically expressed in lymphatic but not vascular endothelial cells and by 

keratinocytes in epithelial dysplasia, and further overexpressed in OSCC (Inoue et al., 

2012). To date, podoplanin is among the most studied markers in oral dysplasia and has 

been shown to be a significant predictor of malignant transformation in a recent meta-

analysis (Nankivell and Mehanna, 2011). Several studies have shown that expression of 

podoplanin was strongly associated with risk of progression to oral cancer (Kawaguchi 

et al., 2008; Inoue et al., 2012; Kreppel et al., 2012). In one Japanese study, podoplanin 

was an independent factor for predicting oral cancer progression from oral leukoplakia 

(HR = 3.09; CI 1.5-6.2; P = 0.002) (Kawaguchi et al., 2008). A group from Spain has 
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shown that positive immunoexpression of podoplanin in oral dysplasia indicated an 8.7 

times (P = 0.007) increased risk of developing cancer (de Vicente et al., 2013). 

1.3.4.6 microRNA 

MicroRNAs are non-protein-coding RNA molecules of 20–25 nucleotides. To date, 

more than 1000 microRNAs have been identified, with each playing a role as gene 

regulators by targeting mRNA.  They have been extensively investigated in human 

neoplasms including oral squamous cell carcinoma but the number of studies on oral 

dysplasia is limited. Increased expressions of miR-21, miR-181b and miR-345 has been 

associated with the increasing degree of dysplasia during progression to OSCC 

suggesting potential use to identify leukoplakia at risk of malignant transformation 

(Cervigne et al., 2009). 

1.3.4.7 Other markers 

MMP11 and VEGF in combination were commonly seen in dysplastic lesions that 

transformed into cancer in one study (Arora et al., 2005). The pattern of expression of 

cytokeratin gene family members has also been evaluated as a potential marker for 

dysplastic progression to SCC.  Expressions of cytokeratin-4 (K4), K13 and 

transglutaminase 3 (TG3) have been found to be suppressed while K14 and K17 were 

elevated in SCC and severe dysplasia (Ohkura et al., 2005). Poorer prognosis of dysplasia 

has also been linked to the loss of expression of CD44v7-8, which belongs to the CD44 

cell surface glycoproteins family (Kuo et al., 1998). Expression of granulocyte colony-

stimulating factor receptor (GCSFR) was higher in dysplasia and SCC than normal and 

hyperplastic tissue (Sunaga et al., 2001). However, none of these markers have proved 

promising enough to merit large scale outcome studies and their value remains 
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speculative.  Other markers that have been suggested as reliable predictors have been 

reviewed recently by Nankivell et al. (2011) and are listed in Table 1.7. 

 
Table 1.7 Potential predictive markers of malignant transformation  
(adapted from Nankivell et al. 2011) 
 

Marker RR OR 95% CI P value Reference 

Survivin 30.00 - 4.25-197.73 < 0.001 Lo Muzio et al., 03 

MMP9 mRNA 19.00 - 1.56-209.38 0.02 Jordan et al., 04 

p16 methylation - 3.73 1.72-8.10 0.002 Hall et al., 08 

EGFR copy no. HR 3.62 - 1.44-9.10 0.006 
Taoudi Benchekroun et 

al., 10 

ΔNp63 HR 3.31 - 1.66-6.58 0.0007 Saintigny et al., 09 

Podoplanin HR 3.09 - 1.53-6.23 0.02 Kawaguchi et al., 08 

LOH 3p ± 9p 

(pooled) 
3.92 - 1.50-10.25 0.006 

Rosin et al., 00 

Zhou et al., 05 

LOH 11q (pooled) 2.86 - 1.11-7.39 0.02 
Rosin et al., 00 

Zhou et al., 05 

Allelic index (>2) 3.20 - 1.49-6.33 0.004 Partridge et al., 98 

DNA content 12.00 - 1.17-82.10 0.03 Hogmo et al., 98 

DNA ploidy 3.90 - 1.30-11.62 0.01 Torres-Rendon et al., 09 

RR relative risk; OR odds ratios 
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1.4 Chromosomal Instability 

1.4.1 Chromosomal instability as an early change in carcinoma 

Genomic instability is a hallmark of cancer (Hanahan and Weinberg, 2011) 

characterised by gross genetic alterations resulting from a series of mutations that 

facilitate acquisition of adaptive traits to drive tumourigenesis. Though this mutation 

centred view of carcinogenesis has been challenged (Sonnenschein and Soto, 2013), it 

remains the currently accepted model of carcinogenesis. Evidence for the role of genetic 

alterations in tumour initiation has been demonstrated by the detection of genomic 

changes in precancerous lesions reviewed above. There are various forms of genotypic 

aberrations leading to disturbances of genome integrity and the main categories studied 

are chromosomal and microsatellite instabilities (Negrini et al., 2010). 

Chromosomal instability (CIN) is loss of cells’ control of their chromosomal 

complement, which is normally tightly regulated.  A cell with chromosomal instability 

will exhibit gain and/or loss of chromosomal segments or whole chromosomes and this 

is a common feature of many solid cancers. The state of having an abnormal cell 

chromosomal complement is termed aneuploidy; this results from chromosomal 

instability and the two usually occur together.  

Microsatellite instability (MIN or MSI) cause DNA base changes, of which defects 

in base excision repair, mismatch repair and nucleotide repair genes result in expansion 

and contraction of short nucleotide repeats present in microsatellite sequences (Pikor et 

al., 2013), a smaller scale change in the genome than chromosomal instability. Both CIN 

and MIN often co-exist in the initial phase of tumorigenesis and increase with cancer 

progression. However, though MIN can be a route to carcinoma, notably in colon, CIN 
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is the dominant instability phenotype in cancers compared to MIN (Lengauer et al., 

1997; Pikor et al., 2013). 

The main mechanism that causes aneuploidy is missegregation of chromosomes 

during cell division, generating an unequal number of chromosomes in the daughter 

cells. These may be whole chromosomes if the parent cell had a normal chromosome 

complement, but structural rearrangements including deletions, duplications, 

translocation, inversions, and isochromosomes can also be transferred to daughter cells 

mitosis when the normal complement of chromosomes is not present in the parent cell. 

This happens after deregulation of DNA damage checkpoints and/or DNA repair 

pathways (Gollin, 2005). Several studies have generated evidence that the chromosomal 

instability signature predicts the clinical course of multiple human tumours, including 

breast carcinomas, soft tissue sarcoma, colorectal, lung and ovarian cancer (Carter et al., 

2006; Chibon et al., 2010; Mettu et al., 2010).  In early cancer, aneuploidy probably 

results first from mutations in genes controlling cell division and DNA repair, and once 

established, chromosomal instability is progressive, self-amplifying and affected cells 

show increasing alterations in gene copy number at multiple loci as whole chromosomes 

or parts of them are amplified or deleted (Negrini et al., 2010).   
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Figure 1.6 The two types of CIN, numerical and structural.  
To illustrate mechanisms causing CIN, a normal cell with 3 pairs of chromosomes (left panel) 
undergo certain errors (labelled arrows) to generate various types of genetic alterations (right 
panel). Source: (Bayani et al., 2007). 

 

1.4.2 Methods of detection  

Numerous sensitive, high-resolution genomic and molecular methods are available 

to detect CIN at a single or multicellular level. However, measuring the actual rate of 

chromosomal alterations that occur throughout the cancer progression is not 

straightforward because this would require repeated measurement over time 

(McGranahan et al., 2012). Hence, to determine CIN on a static tumour cell population 

obtained from clinical tumour tissue, variation in number and structure of 

chromosomes is taken as evidence of progressive chromosomal instability 

(McGranahan et al., 2012). Work is in progress to improve existing methods further and 

only selected methods will be discussed here.  
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1.4.3 Single cell based methods 

Aneuploidy and intra-tumour heterogeneity detected by measuring cell-to-cell 

variability in chromosome number and structure has been used to describe CIN.  Such 

methods usually depend on culture and karyotypic analysis, either using conventional 

banding or chromosome painting.   

1.4.3.1 Fluorescence in situ hybridisation (FISH) 

FISH is a method that has the ability to determine copy number in individual cells 

within tissue sections or larger cultured populations and allowing quantification of rate 

inferred from variation of chromosome changes from one cell to DNA or RNA 

hybridisation in situ allows spatial analysis of tissues. This is discussed further in chapter 

3 on FISH. 

1.4.3.2 Spectral Karyotyping (SKY) 

SKY is a FISH-based technique that utilises multiple fluorescent colour painting to 

visualise all 24 chromosomes at once by a single hybridization with a probe cocktail. 

This technique is capable of identifying a subtle, complex interchromosomal 

rearrangement such as a single translocation. However, the need for metaphase spreads 

to perform SKY renders it unsuitable for fixed tissue tumour specimens.  

1.4.4 Cell population methods 

Whole genome analyses of tissues or cell populations allow screening of the 

complete set of genomic aberrations present in a tumour sample in a single experiment. 

These techniques require a population with uniform genetic changes and convey no 

direct evidence of cell-to-cell heterogeneity or rates of chromosome alterations.  They 

provide an overview of the genetic complexity in cancer.  
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1.4.4.1 Array Comparative Genomic Hybridization (CGH) 

Array-CGH measures gains and losses at specific chromosomal loci on a population 

of cells relative to a control. The array contains DNA fragments either cloned (for 

example bacterial artificial chromosomes [BACs]) or synthesized (such as 

oligonucleotides [‘oligos’]) complementary to specific chromosomal loci distributed 

across the genome (Gresham et al., 2008). Genomic DNA from a lesion and normal 

control are labelled with either green or red fluorochrome respectively, which are then 

co-hybridized onto a microarray. Differences in fluorescence intensity between the test 

and reference indicate copy number changes. The spatial resolution of array-CGH is 

determined by the density and size of the clones and this is a limiting factor for the 

technique. Although the array design can be customized, array-CGH is of little use for 

detecting balanced chromosomal rearrangement such as translocations or inversions.  

Array CGH can be performed on paraffin embedded tissue but with reduced accuracy 

and the requirement for a normal control from the same patient further limits its 

applicability to assessing CIN in OPMD.  
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Figure 1.7 Principles of array-CGH.  
Sample and control genomic DNA are differently labelled; patient with a green fluorescence dye 
while the reference DNA is labelled with red fluorochrome. The two samples are mixed and 
competitively co-hybridized to an array containing genomic DNA targets that have been spotted 
on a glass slide. The resulting ratio of the fluorescence intensities is proportional to the ratio of 
the copy numbers of DNA sequences in the test and reference genomes. Green indicates extra 
chromosomal material (duplication) in the test sample at that particular region. Red indicates 
relatively less test DNA (deletion) in the sample at that specific spot. Adapted from (Shinawi 
and Cheung, 2008). 
 
 
 

1.4.4.2 Single Nucleotide Polymorphism (SNP) arrays 

SNPs are a form of genetic variation in the human genome characterised by a single 

base polymorphism in the DNA, with population frequency of >1% (Dutt and 

Beroukhim, 2007). SNPs almost always have only two alleles and tend to be found in 

microsatellite DNA.  Detection of the presence or absence of SNPs between lesional 

tissue and control can be used to measure copy number and thus CIN.  

 In comparison with array-CGH, SNP arrays offer greater resolution delivered by 

high density of markers ranging from 500,000 to >2.5 million SNP loci across the 

genome, all of which can be hybridized on one chip (Chen et al., 2013). The principle of 

this method is based on the fact that the signal intensity depends on the amount of the 

sample target DNA and the affinity of a single base that mismatched between target and 
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probe will result in decrease fluorescence signal (Gresham et al., 2008; LaFramboise, 

2009). Only tumour DNA is labelled with fluorochrome and hybridized to an array that 

consists of small oligonucleotides of 20-60 base pairs (bp) in size. Prior to hybridization, 

genomic DNA is digested by restriction enzymes to generate PCR products of specific 

sizes that are then ligated to adaptors, amplified and fragmented before being labelled 

with fluorescent dye (Affymetrix SNP 6.0 method). Copy number changes are 

established by comparing signal intensities of each SNP locus with corresponding signal 

intensities from normal genome. This method also detects loss of heterozygosity (LOH) 

including copy-neutral LOH and allele genotype for each SNP.  

 

Figure 1.8 Principles of SNP array  
In SNP array, only patient DNA is labeled and hybridized to the array of oligonucleotides 
(purple dots) each represented by its two alleles. To obtain copy number information, the 
intensity of each oligonucleotide on the patient array is compared with the intensity of the same 
oligonucleotide in a set of standard controls. In addition to copy number analysis based on 
fluorescence intensity, individual oligonucleotide-genotyping calls are obtained (homozygous for 
one or the other allele or heterozygous). Adapted from (Rajcan-Separovic, 2012). 
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1.4.4.3 DNA Flow and Image Cytometry  

Cell ploidy determined by flow and image cytometry is based on total cell DNA 

content and the cell cycle stage measured by fluorescence dyes or Feulgen-Schiff stain 

that bind stoichometrically to DNA respectively.  Flow cytometry (FCM) can only be 

applied to cells or nuclei in suspension whereas image cytometry assesses either tissue 

sections, cultured cells in monolayer or separated nuclei on a glass slide. CIN can be 

inferred from an aneuploid histogram stemline or other abnormalities (Pentenero et al., 

2012). This method is further discussed in Chapter 4. 
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1.5 Aims of study 

 

1.5.1 Rationale 

Early detection or prevention of carcinoma are the most effective interventions to 

reduce mortality and morbidity from oral squamous carcinoma. No biomarker can yet 

predict malignant transformation in oral potentially malignant diseases. A reliable 

method is required for routine clinical application, which almost always must be 

applicable to formalin-fixed and paraffin wax-embedded tissue.   

Previous studies in our group have established that ICM DNA ploidy analysis 

shows promise as a predictive test.  Alone it has proved as good as the best reported 

dysplasia grading and in combination with dysplasia grading it adds diagnostic value. 

Ploidy abnormalities indicate chromosomal instability and a molecular marker of this 

could prove more sensitive and be more economical, cost effective and feasible to 

perform in an automated high throughput fashion.  

 

1.5.2 General aim 

To investigate alternative tests of copy number variation for routine application to 

oral dysplasia and non-dysplastic oral mucosa and compare them with DNA ploidy 

analysis. 
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1.5.3 Specific objectives 

i. To identify potential candidate chromosomal loci as markers for copy 

number variation associated with the transition from dysplasia to carcinoma 

using data already obtained in the laboratory and from published studies.  

ii. To identify a patient group with OPMD and obtain and validate follow up 

data on cancer development and death registrations from the NHS 

Information Centre and cancer registries. 

iii. To test TaqMan Copy Number Assays (Applied Biosystems) and 

QuantiGene Plex DNA (Affymetrix) assays to detect copy number variation  

iv. To test fluorescence in situ hybridization to detect copy number variation 

v. To test DNA image-based ploidy analysis on a series of oral potentially 

malignant tissue as the reference standard 

vi. To compare and evaluate each test against DNA image-based ploidy 

analysis and outcome 
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Figure 1.9 Overall experimental plan 
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 : QuantiGene Plex and Real Time PCR CHAPTER 2

 

2.1 Investigative plan for QGPlex and qPCR experiments 

To investigate QuantiGene Plex (QGPlex) (section 2.2.3.1) and real time 

quantitative PCR (qPCR) (section 2.2.3.2) as alternative tests of copy number variation, 

an initial group of 10 chromosomal loci (Table 2.5 and 2.6) was selected from a list of 

26 target markers generated based on previous SNP array data, loci that have been most 

frequently associated with aberrations in OPMD in the literature and availability of the 

target gene in the QuantiGene Plex DNA assay (section 2.3.1).  QGPlex and TaqMan 

qPCR assays were designed to detect these targets.   

Samples of dysplastic epithelium and a range of control tissues, two cell lines and 

blood were selected for analysis (section 2.3.2) and DNA extracted from each (section 

2.3.4) and checked for quality.  The samples were run in the two assays QGPlex (section 

2.3.6.2) and qPCR (section 2.3.6.3) and results were normalised against three reference 

genes RNaseP, Tert and TPM1 to reduce single control normalisation error.  

The results are shown in section 2.4. It was immediately apparent that both assays 

showed considerable variation (summarised in table 2.11) and had not performed as 

expected.  Reasons for this were explored including reference genes, calibrators and 

sample quality and these are discussed in section 2.5.  The high cost of the QGPlex 

assay and conclusion that the variation in both assays could not be reduced quickly, led 

us to halt these experiments and move to FISH-based assays and these more successful 

experiments are reported in chapter 3. 
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2.2 Background 

2.2.1 DNA copy number terminology  

Many terms referring to change in chromosome copy number have been used 

interchangeably. Multiplication of the entire set of homologous chromosomes is termed 

polyploidy. Aneuploidy refers to an unbalanced number of chromosomes, either more 

or less than the diploid number. When gain or loss involves entire chromosomes, it is 

known as whole chromosome aneuploidy. Partial or segmental aneuploidy denotes copy 

number changes in subchromosomal regions that are visible under light microscopy. 

Copy number alterations (CNA) of 1 Kbp to 1 Mbp in length are referred to as copy 

number variations (CNV) while those ranging from 1 bp to 1 kbp in size are called 

insertions or deletions when the segments are amplified or deleted respectively (Feuk et 

al., 2006; Lupski, 2007).  

Changes in copy number generally result in changes of gene expression and 

individual genes that may generate new or modified functions and phenotypes (Tang 

and Amon, 2013). In many instances, a change in gene copy number leads to genomic 

disorders (Lupski, 1998). Aberrations in the number of chromosomes and the 

significance of gaining or losing whole chromosomes vary between species and cell 

types.  Human cells can be polyploid physiologically, as in osteoclasts or myocytes, but 

changes in copy number usually result from genome instability, a dominant feature and 

a hallmark of cancer.  

2.2.2 Copy number aberrations in OPMDs  

Studies on copy number aberrations in OPMDs have been evaluated either alone 

but mostly in comparison with oral squamous cell carcinoma using various methods. 

Array CGH is the most frequently applied technique, giving an overview of all genomic 
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alterations, usually with the intention of discovering new markers for early detection, 

predictors of malignant transformation or therapy.  Other methods were discussed in 

section 1.4.2. 

The most common copy number alterations detected in OPMDs have been gains 

on 3q, 7p, 8q, 11q and both arms of chromosome 20 whilst losses have been reported 

most frequently on 3p, 8p and 9p (Noutomi et al., 2006; Tsui et al., 2009; Bhattacharya et 

al., 2011; Cha et al., 2011; Giaretti et al., 2012). Sequential increment in genetic alterations 

from dysplasia to invasive carcinoma were evident by the size of the alteration, affecting 

the whole chromosome arm in advanced stages of disease compared to smaller regions 

or loci in dysplasia (Garnis et al., 2009; Tsui et al., 2009).  

Deletion of the chromosome 3 short arm is the most frequently reported alteration 

both in dysplastic epithelium and OSCC (Mao et al., 1996; Tsui et al., 2008; Zhang et al., 

2012). A comprehensive study of chromosome 3p has identified recurrent losses at 

3p25.3-p26.1, 3p25.1-p25.3, 3p24.1, 3p21.31-p22.3, 3p14.2, and 3p14.1 in dysplastic 

lesions that underwent malignant transformation (Tsui et al., 2008). Loss of 

chromosomal region 3p14 and 9p21, which both harbour tumour suppressor genes, has 

been claimed to be an early event in dysplasia and oral squamous cancer (Mao et al., 

1996). The FHIT (Fragile Histidine Triad) that resides in 3p14.2, influences control of 

apoptosis and is commonly deleted in epithelial cancers including oral carcinoma and its 

precursor lesions (Tanimoto et al., 2000; Kujan et al., 2006a). Chromosome 3q contains 

other cancer related genes, among which TP63 located on 3q26 was found to be highly 

expressed in transition from epithelial dysplasia to carcinoma, most likely as a result of a 

chromosomal gain (Saintigny et al., 2009; Matsubara et al., 2011).  
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Gains on multiple loci of chromosome 8 including 8q11-q21, 8q24-qter and 8q22.3 

are often observed in mild dysplasia.  This has been interpreted as suggestive of an early 

event in oral carcinogenesis (Garnis et al., 2004a) though this assumes a sequential 

progression through grades of dysplasia that is now thought unlikely to occur. Other 

candidate genes that may have roles in oral carcinogenesis in 8q24 are PTK2, LY6K, 

MYC and LRP12 in 8q22 (Garnis et al., 2004a; Garnis et al., 2004b). 

Using various methods other than CGH, such as FISH and real-time PCR, EGFR, 

which resides in 7p11.2 and CCND1 in 11q13.2 were shown to be amplified in high-

grade dysplasia and were significantly associated with the progression to OSCC (Taoudi 

Benchekroun et al., 2010; Poh et al., 2012). Whole chromosome gain on both arms of 

chromosome 20 was frequently observed in dysplastic lesions that progress to cancer 

(Garnis et al., 2009; Bhattacharya et al., 2011).  

Information on genomic alterations gathered by array CGH has provided the basis 

for specific chromosomal analyses that might be used to predict outcome in OPMDs. 

The number of studies attempting to predict malignant transformation in OPMDs 

based on cytogenetic profile and suitable for routine application is very limited. Further 

research employing methods suitable for diagnostic pathology such as fluorescence in 

situ hybridization and real time PCR or new multiplexing techniques is required to assess 

these and other chromosomal loci as markers of cancer development.  
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Table 2.1 The main studies reporting gains and losses in OPMDs 
 

Studies Platform Samples Gain* Loss* 
Weber et al., 
1998 

CGH 
 

8 OED, 4 CIS, 14 OSCC 
 

8q24, 16p 
 

3p25–p26, 4q, 5q11.2–q23, 8p, 9p21–pter, 
13q21-q31 

Noutomi et al., 
2006 

CGH 35 OED adjacent to 
OSCCs 

3q26-qter, 5p15, 8q11–q21, 8q22–23, 8q24-qter, 
11q13, 17q11–22, 14q, 20q 

18q22-qter, 9p 

Tsui et al., 2008 aCGH 2 hyperplasia, 47 OED, 22 
CIS, 23 OSCC 

Not available 3p25.3-p26.1, 3p25.1-p25.3, 3p24.1, 3p21.31-
p22.3, 3p14.2, 3p14.1 

Tsui et al., 2009 aCGH 64 OED, 23 OSCC 2q11.2; 4q12; 7p11.2; 8q11.21; 8q22.3; 9p13.3; 
11q13.2-q13.4 

9p22.3, 9p21.1-p21.2, 9q33.1, 9q33.1-q33.2, 
15q15.1, 16q23.1 

Bhattacharya et 
al., 2011 

aCGH 39 OED, 152 OSCC 3q24-qter, 8q12-q24.2, chromosome 20 8pter-p23.1 

Giaretti et al., 
2012 

aCGH 8 OED, 11 non-dysplastic 
OL 

5p13.33-pter, 16q24.2-qter, 20q13.31–q13.33  9p21.3 

Cha et al., 2011 aCGH 
 
 
 

OED from the margins of 
7 OSCC 

3q, 5p, 6p, 7p, 8q, Xq.  
Amplified: 1q24.1-q25.3, 3q25.31, 3q26.3, 
3q26.31, 5p13-p12, 7p21.1, 7q21.1-q21.2, 8q24.1-
q24.2, 12p12.3, 12q23.1, 13q22, 15q21.1, Xq22.3, 
Xq24  

1p, 2p, 3p, 5q, 9q, 12q, 17q, 22q 
Deleted: 1p34.3, 1p13.2, 2p13-p12, 2q13, 
3p21.3, 3p14, 4q22, 11p13, 12q13.2, 17q24.3 
 

MLPA  Amplified=1p22, 2q24, 3q26.3, 6q22, 8q24, 9p21, 
11q13, 13q14.3, 13q32, 17p13.3, 17q21.2, 21q11 

Deleted: 6p21.3, 15q13, 15q26, 16q22.1, 
20q13.12, Yq11.21 

Cervigne et al., 
2014 

aCGH 16 OED, 9 non-dysplastic 
OL, 5 OSCC 

1q32, 1p35–36, 2p14, 5q31, 6p21, 6q25, 7p13, 
10q24, 11q13.4, 12p13, 14q22, 19q13 and 22q12.3 

3p26.2, 8p23.2, 9q33.1–9q33.2, 17q11.2 and 
18q21 
  

*Results included in this table were from dysplastic samples including carcinoma in situ only 

CGH: comparative genomic hybridization; aCGH: array CGH; MLPA: multiplex ligation-dependent probe amplification 

OED: oral epithelial dysplasia; CIS: carcinoma in situ; OSCC: oral squamous cell carcinoma
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2.2.3 Methods used to detect copy number changes 

Methods that are used to identify copy number changes were discussed in section 

1.4.2. In this study, two methods were evaluated, a new proprietary multiplexing method 

of branched DNA assay and real time quantitative polymerase chain reaction.  As both 

techniques detected the same targets and should produce comparable results, these two 

sets of experiments are reported together.  

2.2.3.1 Multiplex Branched DNA Assay 

This novel assay was released just before the start of the work reported in this thesis 

and only a few publications and a technical note were available for its use as a copy 

number variation assay.  It is based on a combination of branched DNA signal 

amplification and bead-based multiplexing, xMAP technology developed by Luminex 

and is marketed commercially as the QuantiGene Plex DNA assay by Affymetrix.  The 

manufacturers claim advantages for the measurement of copy number direct from tissue 

homogenates and only a small sample is required.  This method appeared ideal for this 

study and potentially for future clinical use (Flagella et al., 2006). 

The power of branched DNA resides in the omission of DNA extraction or a 

reverse transcription step.  It is therefore less labour-intensive and avoids biases 

associated with DNA isolation and PCR amplification by augmenting the reporter signal 

through “sandwich” cooperative hybridization of multiple probes that generate strong 

chemiluminescence signals (Collins et al., 1997; Horn et al., 1997; Tsongalis, 2006). The 

branched DNA assay has been used successfully in clinical applications including 

monitoring the viral load in HBV, HCV and HIV patients’ and has been adapted for 

drug discovery research (Tsongalis, 2006).  
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The xMAP technology allows simultaneous analyses of several targets by utilizing 

discrete fluorescent-labelled beads that can be coupled with a capture reagent including 

antigens, oligonucleotides, antibodies, enzyme substrates or receptors.  The multiple 

beads can be quantified in a mixture using multicolour fluorescence by the Luminex 

platform (Dunbar, 2006).  

In the QuantiGene Plex DNA Assay, outlined in Figure 2.1, a series of beads is 

used, each coupled to a specific oligonucleotide capture probe (CP) that provides the 

binding site for the second probe (capture extender, CE) complementary to a sequence 

extending across both the capture probe and the target nucleic acid.  The third set of 

probes, label extenders (LE), hybridize to contiguous regions on the target of interest 

and concurrently provide sites for hybridization of the branched DNA preamplifier 

oligonucleotide, on which multiple branched DNA molecules hybridise, forming the 

branched structure that gives the assay its name. The resulting branched tree-like 

structure offers numerous binding sites and allows capture of multiple biotinylated label 

probes that amplify the intensity of light generated after binding of Streptavidin-

conjugated R-Phycoerythrin (SAPE) to it. The blocker probes (BL) play a vital role in 

maintaining an intact and stable hybridization product. The Luminex flow cytometer is 

used to measure the resulting fluorescence signal associated with individual capture 

beads and reports median fluorescence intensity (MFI), which is proportional to the 

number of target DNA molecules present in the sample.  Target chromosomal sites can 

thus be quantitated direct from a cell or tissue lysate.  
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                   Step 1 

 

 

 

 

 

 

Figure 2.1 Overview of the multiplex branched DNA assay 
(1) capture of the specific DNA molecules to their corresponding beads through CP–CE 
hybridization interactions, (ii) three serial hybridizations that capture the DNA preamplifier, 
DNA amplifier with biotinylated label probe molecules, and (iii) binding of SAPE to 
biotinylated label probe. The SAPE fluorescence signal measured by Luminex from each bead is 
proportional to the number of captured DNA molecules. Adapted from Flagella et al. 2006.  
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2.2.3.2 Real time quantitative PCR 

Over the last decade, real time quantitative polymerase chain reactions (qPCR) has 

become the most commonly used technique for analysis of gene expression and 

quantitation. It is frequently employed as a validation assay for findings obtained from 

array-based or other high-throughput genotyping platforms (Ginzinger, 2002). The 

ability to accurately quantify the amount of amplicon accumulates at every cycle in real 

time using fluorescence, and is responsible for its superiority in quantitation over other 

methods. Quantitation, either absolute or relative, is calculated using information 

extracted from the rate of amplification in a time course plot of amplification 

constructed from detection of the fluorescence probes incorporated into PCR product. 

The most frequently used are SYBR Green and TaqMan probes (Ginzinger, 2002; 

Kubista et al., 2006).  

TaqMan Copy Number Assays (Applied Biosystems) are based on the use of the 5’ 

nuclease activity of DNA polymerase to hydrolyse a target-specific, fluorogenic 

hybridization probe. The application of FAM dye-labelled TaqMan probe for detection 

of target and VIC dye-labelled TaqMan probes for detection of reference genes allows 

these assays to be run in duplex. The copy number of each target sequence is 

determined by relative quantification of the gene of interest by extrapolation from the 

results for a reference gene of known copy number, usually determined from a diploid 

sample. The highly specific hybridization of TaqMan probes to the target sequence 

provides a level of discrimination that is better than conventional qPCR with SYBR 

Green. The main weakness of SYBR Green is that it binds to any double-stranded 

DNA in the reaction including primer-dimers and other spurious products, hence being 

unsuitable for DNA obtained from formalin-fixed paraffin-embedded tissues. In 
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addition, the specificity of TaqMan probes requires less optimization and allows 

multiple DNA sequences to be measured in the same sample by designing each probe 

with a spectrally unique fluor/quench pair. This permits co-amplification of internal 

controls in single-tube.  

 

 

 
Figure 2.2 TaqMan copy number and reference assays in duplex reactions 
Assays are run together in a duplex PCR reaction, which utilise FAM and VIC reporter dyes for 
detection of target and reference genes, respectively. Minor groove binder (MGB), a component 
of copy number assay probe increases the melting temperature without increasing probe length, 
allowing the design of a short probe. Each set of assay primers anneals to its specific target 
sequences when the genomic DNA denatures. During each PCR cycle, the target and reference 
sequences are simultaneously amplified by AmpliTaq Gold DNA Polymerase. As this 
polymerase enzyme extends the primers, it cleaves the 5’ end of the probe releasing free reporter 
dye into solution. The reporter starts to fluoresce when it separates from the quencher. 
Accumulation of PCR products is detected in real time by monitoring the increase in 
fluorescence of each reporter dye at each PCR cycle. Adapted from TaqMan Copy Number 
assays protocol (Figure by Applied Biosystems) 
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2.3  Materials and Methods 

2.3.1 Selection of candidate chromosomal loci and genes  

Selection of the chromosomal regions for assessment of amplifications and 

deletions was based on previous data obtained from a series of multiple samples from 

individual patients with up to 15 year histories of dysplastic lesions prior to 

development of cancer that were obtained in our laboratory prior to the start of this 

work (Stokes et al., 2011). In this previous study, dysplastic epithelia were laser capture 

microdissected (LCM) and screened for amplifications, deletions and loss of 

heterozygosity using whole genome Affymetrix single nucleotide polymorphism (SNP) 

6.0 array. Data showed that more than 5 years prior to cancer (defined in that study as 

‘early’ dysplasia), the epithelium had limited genomic changes, and that the number of 

abnormalities increased with time (unpublished). Using this SNP array data in 

combination with published genetic biomarkers of transformation in the literature, a 

total of 26 chromosomal locations were selected for further studies in conjunction with 

Dr A Stokes (Table 2.2). 

Almost all studies of this type focus on specific genes, but because this data was 

SNP based, it identified chromosomal regions of copy number variation by 

demonstrating sequential strings of SNPs that were deleted or amplified and not specific 

genes.  Within these sometimes large stretches of copy number-altered DNA, genes 

were selected for probe design based on their implication in the literature for oral 

premalignant lesions or the development of oral or head and neck squamous cell 

carcinoma. Gene sequences were selected, as they were better characterised than non-

coding DNA.  As sometimes no gene had been characterised corresponding to the 

selected region, an immediately adjacent locus that contained a gene related to cancer 
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development was included as alternative.  Though the experiments that follow use these 

specific gene targets, they are used only a markers of the target loci and not because 

their gene products are considered important for carcinogenesis.   

Only genes previously found to be amplified were selected, for several reasons.  

Firstly, detecting deletions can result in a maximum copy number variation of -2 but 

amplified genes can produce much higher number variation, providing a higher signal to 

noise ratio.  Secondly, DNA ploidy analysis shows that malignant transformation and 

dysplasia is almost exclusively associated with gain of DNA.  While this is a 

combination of gains and losses, amplification is the more appropriate change to detect 

overall.  
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Table 2.2 Initial DNA target list 
Markers of changes in OPMD associated with malignant transformation 
 
Chromosome 

Location 

Gene Markers Genomic changes References 

1p33 MKNK1 Del or LOH Saintigny et al., 2011 

1q25.2 FAM163a Amp or Del Saintigny et al., 2011 

Cha et al.,  2011 

3p15 FHIT (3p14.2) Del Tsui et al., 2008 

3p20 RASSF1A (p21.3) Del Leemans et al., 2011 

3p25 EMC3, FANCD2 

IL17RC, CRELD1 

PRRT3, CIDECP 

Del or CNLOH Tsui et al., 2008 

3q22 PIK3R4 Amp Stokes et al., 2011 

3q25 CCNL1 Amp Leemans et al., 2011 

3q27-9 deltaNp63 Amp Saintigny et al., 2011 

4p16.1 CNO Del Saintigny et al., 2011 

Cha et al., 2011 

4q13.3 CSN1S2A Del Saintigny et al., 2011 

4q21.1 DSPP or SPP1 Del or CNLOH Saintigny et al., 2011 

4q32 MAP9, MFAP3L Del or CNLOH Stokes et al., 2011 

5q23.2 LOX Del Stokes et al., 2011 

7p12 EGFR Amp Benchekroun et al., 2010 

8p23 CSMD1, CUB Del Partridge et al., 1998 

Ma et al., 2009 

8q23-24 DDEF1 or PTK2 Amp Saintigny et al., 2011 

Leemans et al., 2011 

9p23 PTPRD Del Ambatipudi et al., 2011 

9q34 USP20 Amp Cha et al., 2011 

11p13 FBXO3 Amp Cha et al., 2011 

12q13.2 NEUROD4, GLS2, 

CDK2 

CNLOH Stokes et al., l 2011 

13q12.3 BRCA2 Del Stokes et al., 2011 

14q12 PAX9 Amp Stokes et al., 2011 

18q23 GALR1 Del Kanazawa et al., 2009 

20q13.12 MMP9 Amp Jordan et al., 2004 

21q21.1 SYNJ1 (21q22.2) Del Cha et al., 2011 

22q13.2 DIA1 Del Stokes et al., 2011 

Amp: amplified; Del: deleted; LOH: loss of heterozygosity 
CNLOH: copy neutral LOH  
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2.3.2 Selection of tissue samples and cell lines 

Oral epithelial dysplasia and normal tissues diagnosed between 2004 and 2007 were 

identified from pathology reports issued by the Department of Oral Pathology, King’s 

College London. Haematoxylin and eosin (H&E) stained slides were retrieved and re-

examined for histological diagnosis whilst simultaneously assessed to ensure sufficient 

amount of tissue remained in the block specimens and suitable for this study. A total of 

86 cases were screened encompassing all grades of dysplasia with priority given to 

moderate and severe dysplasia. 21 cases were excluded due to an insufficient amount of 

tissue left and/or because formalin fixed paraffin embedded (FFPE) blocks were 

unobtainable. A final total of 20 dysplastic samples were selected for study. 10 normal 

tissues were evaluated as controls, of which 6 were selected for further use on the same 

basis. In addition, 2 samples of oral squamous cell carcinoma paired with normal 

matched tissues, 4 blood samples obtained from normal subjects and 2 cancer cell lines 

(HSC3 and MCF7) were used to compare results (Table 2.3). 

      Table 2.3 Samples selected to evaluate copy number variation assays  

 
 

 
Number  
(n=36) 

FFPE samples Dysplasia Mild 3 

  Moderate 4 

  Severe 13 

 OSCC  2 

 Normal matched - OSCC  2 

 Histologically normal tissue  6 

Cell lines HSC3  1 

 MCF7  1 

Normal blood samples   4 
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To select control cell lines of known copy number variation at our targeted 

chromosomal loci (Table 2.2), we accessed a published data set (Rothenberg et al., 2010) 

for which copy number measurements were available (NCBI GEO accession number 

GSE20306 250K SNP array data) on six cancer cell lines available in our laboratory 

(Table 2.4).  MCF7 and HSC3 cell lines were included in this study following data 

analysis of copy number changes using Partek software with the aid of Dr A Stokes.  

Cell lines were obtained from department stocks, having originally been obtained 

from Dr K Tominaga, Department of Oral Pathology, Osaka Dental University, Japan 

(HSC3) and The American Type Culture Collection  (MCF7).  These cell lines were in 

use for other studies in our laboratory and had been confirmed as epithelial and 

mycoplasma free by other workers and identity confirmed by SNP chip analysis [data 

published in (Suh et al., 2014)].  MCF7 is known to be a previously misidentified cell 

line, actually of ovarian origin rather than breast, as originally described.  Origin was not 

crucial for the purposes of these experiments and this line was selected because is well 

characterised karyotypically.  Lines were checked against the Public Health England list 

of misidentified and contaminated cell lines (Public Health England). 

 

Table 2.4 Copy number present in selected control cell lines  
(Rothenberg et al. 2010) 
 

Chromo-
somal loci 

Expected 
HNSCC 
change 

MCF7 
Breast 
cancer 

HCT116C
olon 
cancer 

A431 Skin 
SCC 

HSC3 
Tongue 
SCC 

OSC20To
ngue SCC 

SCC4 
Tongue 
SCC 

1p33 Del/LOH Del  

1.46 

None  

2.09 

Amp 

2.49 

Amp  

2.56 

None  

2.39 

None 

2.39 

1q25.2 Amp or 
Del 

Amp  

3.63 

None 

 2.01 

Amp  

2.48 

None  

2.51 

None  

2.41 

Amp  

2.98 

3p15 Del Partial 
gene 
deletion 

Partial 
gene 
deletion 

Del 

1.48 

Del  

1.58 

Del  

1.69 

Del  

1.63 
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3p21.3 Del Del  

1.47 

None 2.01 Del 1.48 Del  

1.58 

Del  

1.69 

Del  

1.63 

3p25.3 Del or 
CNLOH 

Amp 2.67 None  

2.0 

Del 1.48 Del  

1.58 

Del  

1.69 

Del  

1.63 

3q22 Amp None 2.06 None 2.03 Amp 2.99 None 2.52 Amp 2.96 Amp 2.69 

3q25 Amp Amp 2.72 None 2.03 Amp 2.99 None 2.52 Amp 2.96 Amp 2.69 

3q27-9 Amp None 2.11 None 2.01 Amp 3.07 None 2.52 None 2.44 Amp 3.35 

4p16.1 Del None 2.03 None 2.05 Del 1.49 Del  

1.72 

Del  

1.63 

None 2.18 

4q13.3 Del None 2.03 None 1.97 None 1.93 Del  

1.74 

Del  

1.63 

None 2.18 

4q21.1 Del or 
CNLOH 

None 2.05 None 2.04 None 

1.93 

Del  

1.75 

Del  

1.63 

None 2.18 

4q32 Del or 
CNLOH 

None  

2.05 

None 2.01 None 1.90 Del  

1.72 

Del  

1.63 

None 2.18 

5q23.2  Amp 2.42 None 2.01 None 1.89 None 2.48 None 2.44 Del  

1.62 

7p12 Amp Del  

1.47 

None 1.99 Amp 6.33 Amp 4.54 Amp 5.16 Amp 3.83 

8q23 Del Del  

1.50 

None 2.03 Del 1.47 Del  

1.72 

None 2.26 None 2.15 

8q23-24 Amp Amp 3.44 Amp 2.85 Amp 3.09 Amp 2.60 Amp 3.14 Amp 2.88 

9p23 Del Del  

1.45 

None 1.96 Del 0.72 Amp 2.94 None 2.21 Del  

1.62 

9q34 NA None 2.05 None 2.05 Amp 2.59 Amp 3.19 Amp 3.26 None 2.29 

11p13 NA Del  

1.50 

None 2.05 Amp 2.68 Amp 3.22 None 2.46 None 2.31 

12q13.2 Amp 

CNLOH 

None 2.03 None 2.04 None 2.01 None 2.50 None 2.38 None 2.30 

12p13.32 NA None 1.97 None 2.06 None 1.98 None 2.5 None 2.43 None 2.20 

13q12.3 NA Amp 2.70 None 2.00 Del 1.45 None 2.46 Del  

1.72 

None 2.27 

14q12 NA Amp 2.74 None 2.02 None 1.98 Amp 3.20 Del  

1.70 

None 2.74 

18q23 NA Del  

1.31 

None 1.94 None 1.84 Del  

1.00 

Del  

1.27 

None 2.26 

20q13.12 Amp None 2.15 None 2.01 Amp 2.79 Amp 2.56 Amp 3.18 Amp 3.03 

21q21.1 Del Del  

1.62 

None 1.94 Del 1.49 Del  

1.71 

None 2.30 Del  

1.62 

22q13.2 NA Del  

1.47 

None 2.05 Amp 2.43 Del  

1.72 

Del  

1.65 

None 2.31 

Chrom: chromosome; Del: deletion; Amp: amplification 
CNLOH: copy neutral loss of heterozygosity 
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2.3.3 Tissue and cell line sample preparation 

2.3.3.1 Epithelium and matched control tissue 

To ensure minimum contamination of the targeted epithelium by connective tissue, 

which could dilute the copy number variations in the epithelium with additional diploid 

cells, samples were pre-processed by melting the paraffin blocks at 56°C for 40 minutes. 

Epithelium from areas of interest (dysplasia) was macro-dissected using a scalpel to 

separate the epithelial layer from the underlying connective tissue portion, guided by 

H&E stained slides and the appearance of the tissue, epithelium appearing whiter and 

more opaque after processing. Epithelium and connective tissue were re-embedded 

separately in paraffin wax, generating 2 blocks, one of each different tissue type from 

each sample. Paraffin blocks consisting of connective tissue component were sectioned 

and stained with H&E to verify correct dissection, conserving the small amount of 

epithelial tissue for analysis. When complete separation of epithelium was uncertain 

from the section of the connective tissue alone, H&E slides were prepared and 

examined from the blocks containing the dissected epithelium to verify the presence of 

the least 80% lesional epithelium. Connective tissue was used as matched known diploid 

control for comparison with the epithelial sample. 

2.3.3.2 Cell lines 

HSC3 and MCF7 cells were thawed and cultured using 75cm2 flasks in Dulbecco’s 

modified Eagle’s medium (DMEM) containing 10% foetal bovine serum (FBS) and 100 

μg/ml penicillin/streptomycin and 5ml sodium pyruvate at 37 °C in humidified 5% CO2 

incubator. Cell pellets were prepared when cell growth was 70-80% confluent.  After 

removing the medium, cells were washed with 5ml Versene and incubated with 1x 

trypsin at 37 °C in humidified 5% CO2 incubator for 5 to 10 minutes. When cells 
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appeared round and detached from the plates, they were re-suspended in fresh medium 

and transferred to a 20ml centrifuge tube, spun at 900x g for 5 minutes, and the 

supernatant was then discarded. Cell pellets were either frozen or stored at -20°C or 

DNA extraction was done immediately. 

2.3.4 Extraction of genomic DNA 

2.3.4.1 FFPE tissues 

For real time PCR assays, total DNA was extracted from FFPE samples with the 

Qiagen DNeasy blood and tissue kit (Qiagen, Valencia, CA), using a modified protocol 

developed in our laboratory. Four to five 15μm thick sections were cut from each 

paraffin block and collected in an autoclaved 1.5ml microtube. Deparaffinization was 

performed by vigorously vortexing the sample in 1200μl xylene before 5 minutes 

centrifugation at 13,000 rpm. This was followed by rehydration through 2 sequential 

washes in 1200μl of 100% ethanol that were spun in a microcentrifuge at 13,000 rpm 

for 5 minutes after each wash. At each step of centrifugation, supernatant was removed 

by pipetting prudently so as not to disturb the pellet. After removal of the final ethanol 

wash, the tubes containing the tissue samples were incubated at 37°C for 15 minutes 

using an Eppendorf ThermoStat Plus Incubator to evaporate the ethanol. The tissue 

pellet in each tube was resuspended in 180μl Buffer ATL and 20μl of prediluted kit 

proteinase K was added, vortexed to mix and were then incubated at 56°C for 3 days 

with daily addition of a further 20μl of prediluted kit proteinase K. On the fourth day, 

all tubes were vortexed prior to adding 200μl of kit Buffer AL, and again vortexed for 

15 seconds followed by addition of 200μl of 100% ethanol. The mixture was transferred 

into the mini spin column provided by the manufacturer, centrifuged at 8000rpm for 1 

minute and the flow through discarded. Sequential wash steps with kit solutions AW1 



QGPlex & qPCR 

 

 82 

and AW2 of 500μl each were carried out in accordance with the standard 

manufacturer’s protocol and tubes centrifuged at 8000rpm for 1 minute and 13000rpm 

for 5 minutes respectively. After placing the spin column in a new collecting tube, 

samples were incubated in 100μl kit Buffer AE for 5 minutes at room temperature and 

then spun for 1 minute at 8000rpm. To increase the overall DNA yield, the first elute of 

DNA collected in the tube was transferred back into the spin column and spun again in 

the same manner as the first centrifugation.  

2.3.4.2 Cell lines 

Genomic DNA extracted from cell lines was used in both QuantiGene Plex and 

real time PCR assays. Extraction from HSC3 and MCF7 cell lines was carried out on 

frozen cell pellets that were thawed at room temperature in accordance with the 

standard Qiagen DNeasy blood and tissue protocol. After resuspension in 200μl 

phosphate buffered saline (PBS), 20μl of kit Proteinase K and 200μl kit Buffer AL 

solutions were added, vortexed to mix and incubated for 10 minutes at 56oC using an 

Eppendorf ThermoStat Plus heating block. 200µl ethanol was added before the mix was 

transferred into DNeasy mini spin columns, which were centrifuged at 8000rpm for 1 

minute.  Sequential wash steps with kit buffers AW1 and AW2 of 500μl each were 

carried out in accordance to standard manufacturer’s protocol and centrifuged at 

8000rpm for 1 minute and 14000rpm for 3 minutes respectively. Final elution was 

carried out by adding 200µl Buffer AE into the mini spin column, incubated for 1 

minute at room temperature and spun at 8000rpm for 1 minute. This step was repeated 

to increase overall DNA yield. 
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2.3.4.3 Control Blood 

Using a 2.5ml microcentifuge tube, 20µl proteinase K was added to 50µl blood 

followed by PBS that was adjusted to reach a final volume 220µl. After mixing by vortex 

with 200µl kit Buffer AL, tubes were placed in a thermoblock (Eppendorf ThermoStat 

Plus) and incubated at 56oC for 10 minutes. 200µl ethanol was added before the mixture 

was transferred into mini spin columns placed in a 2ml collection tube and centrifuged 

for 1 minute at 8000rpm. The flow through was discarded and a new collection tube 

placed. The mini spin column centrifugation step for 1 minute at 8000rpm was repeated 

twice by first adding 500µl kit buffer AW1 followed by 500µl kit buffer AW2 and the 

flow through was discarded. The mini spin columns were then placed in new 2 ml 

collection tubes, 200µl kit buffer AE was pipetted directly onto the spin column 

membrane and left at room temperature for 1 minute and columns were then 

centrifuged for 1 minute at 8000rpm. The eluate was transferred back into the spin 

column and centrifuged again for 1 minute at 8000rpm to increase overall DNA yield. 

2.3.4.4 Quality assessment 

Nucleic acid quantity, quality and purity obtained from FFPE tissues, cell lines and 

blood samples were determined using a NanoDrop ND-1000 spectrophotometer 

(NanoDrop Technologies, Wilmington, DE).  

To conserve DNA, only samples that failed to amplify or were available in the 

largest quantity were tested for degradation, using a 2100 Bioanalyzer (Agilent 

Technologies, Palo Alto, CA) and these experiments were run as a service by the 

Genomic Centre, King’s College London Core Facility.  11 samples were tested. 
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2.3.5 Experimental design 

From the potential target list shown in Table 1.2, an initial group of 10 markers was 

selected for assessment in a preliminary study as shown in Table 2.5. This selection was 

based on loci that have been most frequently associated with aberrations in oral 

premalignancy and was also subject to the availability of the target gene in the 

QuantiGene Plex DNA assay and the maximum number of samples that could be 

analysed in one experiment. When the selected chromosomal regions and/or genes 

were not readily available from the manufacturer, a gene at an adjacent chromosomal 

location within the target amplification was selected as alternative (Table 2.5).  

Three reference genes were included in this set of markers to reduce single control 

normalisation error, RNaseP, Tert and TPM1. Reference genes were selected based on 

recommendation and availability from the manufacturer. RNaseP and Tert were 

commercially available with TaqMan Copy Number Reference assays (Applied 

Biosystem) while TPM1 was the recommended housekeeping gene for the QuantiGene 

Plex assay (Affymetrix). For these initial assays, and to compare the results generated by 

the QuantiGene technique, real-time PCR (qPCR) was run concurrently assessing six 

genes out of the ten markers (Table 2.6) on HSC3, MCF7, one squamous cell carcinoma 

with its normal matched and one normal tissue.  
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Table 2.5 Reduced 10 target probe set for QuantiGene Plex assay  
 

Target List Alternative targetb Chromosome Regionc Bead 

Number 

FHIT - 3p15  59710075-61212163 25 

TP63/dNp63 - 3q27-9 PIK3CA - 3q26.3 180349004-180435193                                             56 

EGFR - 7p12  55054218-55242524                                         48 

PTPRD - 9p23  8304245-10602508                                           44 

BRCA2 - 13q12.3 FGF9 - 13q11-q12 21143874-21174186                                             34 

PAX9 - 14q12 MYH7 - 14q12 22951786-22974709                                    30 

MMP9 - 20q13.12 CYP24A1 - 20q13 52203394-52223930                                          43 

DIA1 - 22q13.2 CYP2D6 - 22q13.1 40852444-40856826                                   20 

TPM1a - 15q22.1  61121890-61151166                                       33 

TERTa - 5p15.3  1306281-1348161 21 

a Reference gene 
b Alternative gene from the selected chromosomal locus when the primary target was unavailable 
c Manufacturer provided genome location.  Sequences omitted because of length.  

 

 

Table 2.6 Reduced 7 target set for for TaqMan Copy Number Assay  
 

Gene 

Symbol 

Cyto Band Location on 

NCBI 

Genome 

Assembly 

Sequence 

FHIT 3p14.2 59713630 TTCCTGAGTTATGCCTTTCAGAGAC 

PIK3CA 3q26.3 178878315 GAGAAACTGCTGTTTGGGCTTGCTG 

TP63 3q28 189349409 AAAACTTAATTGAAGTGCCTTGTGT 

EGFR 7p11.2 55088177 TTCTCCTCAAAACCCGGAGACTTTC 

PTPRD 9p24.1 8314554 AAGCCACATAACGGATGGATAGAAT 

CYP24A1 20q13.2 52770529 CACAGATCCTAAATCAAGTACTGCA 

TPM1 15q22.2 63334936 CTGGGAGAAGCAGGCGGCTCCGCGC 
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2.3.6 QuantiGene Plex DNA Assays 

2.3.6.1 Tissue homogenates 

Following manufacturer’s instructions to perform QGPlex assays, between two and 

four 15µm thick sections were cut from each paraffin block to achieve a tissue area of 

25-100mm2 or 100-225mm2 and a combined thickness of 50-60µm. Cut sections were 

collected into an autoclaved 1.5ml microtube. A combination of 300µl homogenizing 

solution (Affymetrix) and 3µl of Proteinase K or 600µl of homogenizing solution with 

6µl Proteinase K were added to the tissue sizes of 25-100mm2 or 100-225mm2 

respectively. This was followed by incubation of the samples at 65°C for 30 minutes to 

1 hour with occasional brief vortex mixing and samples were then left in the incubator 

overnight at 65°C (16–20 hours). The samples were then centrifuged at 13,000 rpm for 

5 minutes at room temperature in a microfuge to pellet the cellular debris and the 

homogenate was transferred using a pipette to a fresh microfuge tube, avoiding any 

residual paraffin and debris. Centrifugation at 13,000 rpm for 5 minutes at room 

temperature was repeated at least one to three times to ensure that debris was 

completely removed. Tissue homogenates were stored at -20C for later use with 

QGPlex assays. 

2.3.6.2 Assays procedures 

QGPlex DNA assays were performed according to the QuantiGene Reagent 

System instruction manual. Procedures carried out on the first day involved capturing 

target DNA to the probe set on the magnetic beads in each well of a 96-well plate. 

Frozen tissue homogenates were thawed at room temperature followed by incubation at 

37 °C for 30 minutes, vortexed and left at room temperature until use. Concurrently, 

total extracted DNA from MCF7 and HSC3 cell lines were thawed on ice, vortexed 
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briefly before dilution to 150ng with nuclease free water to produce sufficient DNA to 

be run in triplicate at 40µl /assay per well. In a 1.5ml microtube, each sample was 

sheared to an average size of 500 base pairs using a Misonix 4000 sonicator with a 1/8 

inch probe tip immersed approximately 5mm below the solution level applying power 

output of 6, and sonicated for 10 seconds. Shearing was performed to increase the 

sensitivity of the assays. The tip was washed in between samples by sonicating the tip in 

sterile distilled water for 10 seconds. 40µl of each sonicated sample was dispensed into 

individual wells of hybridization plates and mixed with 18µl Lysis Mixture, 5µl Probe Set 

and 5µl of 2.5 M NaOH solution. Triplicate samples for background control were 

prepared by replacing tissue homogenate with homogenizing solution. After 30 minutes 

incubation at room temperature, 12µl Neutralization Buffer was added to each well 

followed by 20µl Working Bead Mix that had been prepared earlier by combining 1.8µl 

nuclease-free water, 15µl Lysis Mixture, 2µl Blocking Reagent, 0.2µl prediluted kit 

proteinase K and 1µl Capture Beads, mixed by vortex for 30 seconds. The assay plate 

was then sealed with a pressure seal and left overnight in the shaking incubator at 54°C 

± 1°C (18-22 hours) at 180 shaking rpm.  

On the following day, signals were developed by sequential hybridizations prior to 

detection of target DNA. To remove the unbound DNA, the overnight hybridization 

mixture was washed three times with freshly prepared kit wash buffer by mixing 0.3ml 

wash buffer component 1, 5ml was buffer component 2 with 75ml nuclease free water, 

after being transferred into a fresh magnetic separation plate. This was followed by 

sequential hybridization with DNA pre-amplifier, DNA amplifier and biotinylated Label 

Probe. Each hybridization was performed by adding 100µl hybridizing solutions into 

each well and the plate was then sealed with a foil plate sealer before incubation for one 
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hour in a 600rpm shaking incubator at 50°C ± 1°C. Unbound material was removed 

using three 160µl kit buffer washes before carrying on to the next hybridization. After a 

final wash, 100µl of Streptavidin-conjugated R-Phycoerythrin (SAPE) was dispensed 

into each well, sealed with aluminium foil and incubated on the shaking platform at 

room temperature for 30 minutes. Removal of unbound SAPE was done using three 

washes in 130µl SAPE wash buffer, the plate was then covered tightly with foil plate 

sealer and left on the shaking platform for 2-3 minutes. Bead discrimination and signal 

detection were performed on a Bio-Plex 200 (Bio-Rad Laboratories, Hercules, CA, 

USA).  

By determining the amount of fluorescence signal and the identity of the beads, the 

amount of each target DNA present in a sample was evaluated. A cut-off value was 

calculated as the average background signal plus three times the standard deviation. 

Fluorescence signals reported as median fluorescence intensity (MFI) were exported to 

Excel. To calculate DNA copy number for each marker in a sample, the background 

signal was first subtracted from the average MFI and then normalised to signals 

generated by housekeeping genes (TPM1 and TERT). 

2.3.6.3 TaqMan quantitative PCR 

Total DNA was used for all TaqMan assays. Primers with size not more than 90bp 

were selected from the predesigned Applied Biosystems Copy Number Variation Assays 

to ensure efficient amplification by qPCR in the fragmented DNA extracted from 

formalin fixed tissues. Each TaqMan assay was run as a duplex real-time PCR reaction, 

utilizing a FAM dye-based assay targeted to gene of interest and a VIC dye-based assay 

for the reference gene, RNaseP (PN 4316844 from Applied Biosystems, Foster City, 

CA) and TERT (PN4403316). The assays were performed in triplicate and each tube 
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contained 2µl of 5 ng sample genomic DNA, 5µl of 2xTaqMan Universal Master Mix, 

0.5µl of TaqMan® Copy Number Assay, 0.5µl of TaqMan® Copy Number Reference 

Assay and 2µl nuclease free water forming a 10µl final volume reaction. All PCR 

reactions were prepared as master mixes and transferred to tubes before adding the 

sample genomic DNA. No template controls (NTC) were set up in parallel but without 

target DNA. PCR amplification was carried out in a Corbett Rotor-Gene 6000 (Corbett, 

Lifescience) instrument implementing hot start for 10 mins at 95C, followed by 40 

cycles of 15 secs at 95C and 60 secs at 60C. Real time fluorescence data were collected 

and cycle threshold (Ct) values were calculated using the automatic setting provided by 

the instrument software (Corbett, Lifescience). 

Relative concentration was obtained employing the 2-ΔΔCt method (Livak and 

Schmittgen, 2001), according to the manufacturers recommendation in which:  

 Ct = (Ct target gene – Ct reference gene) – (Ct sample – Ct calibrator) 

Gene copy number was estimated by doubling the relative concentration to give a 

double-stranded equivalent value (2 x 2-ΔΔCt).  
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2.4  Results 

2.4.1 QuantiGene Plex DNA Assays 

The Quantigene assay has no intermediate steps at which correct progression of the 

assay can be tested and its start material is tissue.  However, as part of each sample was 

taken for qPCR analysis, the quality of DNA present in the samples is reflected in the 

data shown in section 2.4.2.1. and other than this, no assessment of sample quality is 

possible. 

The sensitivity of the assay was evaluated by determining the limit of detection 

(LOD), a minimal signal for detection of each target at which the signal is 3 standard 

deviations above the background. This was performed on HSC3, MCF7 and 2 FFPE 

samples. Assay precision indicated by coefficient of variation (CV) ranged from 0 to 

18% (Table 2.7) for all targets.  

Results obtained from un-sonicated versus sonicated samples were determined 

separately (Table 2.8 and Figure 2.3) in an attempt to explain early negative or 

uninterpretable results. Although one of the samples, S20, failed to give signals above 

background, others that were sheared produced higher signals. Thus, subsequent 

QuantiGene Plex assays were carried out on all samples using sonicated homogenates 

and genomic DNA.  
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Table 2.7 The sensitivity and precision of the QGP assays 
The sensitivity and precision are indicated by limit of detection (LOD) and coefficient of variation (CV) for each gene of interest. Signals reported in MFI units 
 
 CYP2D6 TERT  FHIT  MYH7 TPM1 FGF9 CYP24A1 PTPRD EGFR PIK3A 

Average background (MFI)a 10.5 15.5 14.75 11.75 20 13.5 13 15.25 21.25 12.5 

Standard deviationb 0.0 2.1 1.8 1.8 2.8 2.1 0.0 1.8 3.9 1.4 

Limit of detectionc 10.5 21.9 20.1 17.1 28.5 19.9 13.0 20.6 32.9 16.7 

Coefficient variation (%) 0 13.7 12.0 15.0 14.1 15.7 0 11.6 18.3 11.3 

a  Average background was determined from replicates that contain all assay components except for the sample.  
b Standard deviation of signals obtained from assay background replicates for each target gene  
c Limit of detection (LOD) of a target is the concentration at which the signals exceed 3 standard deviation above the background signals 
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Table 2.8 Net MFI for each gene target detected in samples by QGP with and without shearing  
 

 CYP2D6 TERT  FHIT  MYH7 TPM1 FGF9 CYP24A1 PTPRD EGFR PIK3A 

HSC3 54.5 20.5 20.25 14.25 11.5 16.5 17 6.75 6.75 19.5 

HSC3 sheared 123.5 78.5 60.75 86.75 56 89 62 73.75 84.75 93.5 

MCF7 8.5 29.5 9.25 16.25 31.5 15.5 251 13.25 -2.25 48 

MCF7 sheared 90.5 186.5 75.25 136.75 196 130 1322 88.25 100.25 131.5 

S2  111.5 64 77.25 32.75 91.5 112 91 35.25 6.75 43.5 

S2 sheared 114 44.5 74.75 40.75 102 82 59 46.75 26.75 54 

S20 27 14.5 5.75 2.75 6 3 4 4.75 2.75 6.5 

S20 sheared 16 9.5 -2.25 2.25 5 14.5 9 4.25 -0.25 13.5 

Net MFI = values after subtraction from the ‘no template’ background signals 
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Figure 2.3 Comparison of copy number detected between sheared and unsheared 
samples for each target in QGP assays 
Upper panel shows higher signals produced by sheared samples. Bottom panel shows estimated  
copy number using data obtained from upper panel. Son, sonicated sample.  
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Nine samples failed to give results above background; 4 dysplasia, 1 normal tissue 

matched to carcinoma, 3 normal tissues and 1 normal blood sample. For the samples 

for which the assay produced valid data, summaries of gene copy number normalised to 

2 reference genes, TERT and TPM1 are shown in Table 2.9 and 2.10. There were 

considerable discrepancies between the gene copy number reported between samples 

normalised to TERT and to TPM1.  This data is shown graphically in Table 2.11 in 

which it can be seen that non-concordance between results with the two reference genes 

was more frequent with tissue samples.  There was agreement between copy number 

assessed against both reference genes in 7 out of 8 loci for only 6 samples, two 

dysplasias (S1 and S12), one carcinoma (S21), one normal tissue (S31), one blood 

sample (B4) and the MCF7 cell line. 
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Table 2.9 Number of cases and compiled copy number aberrations by QGP 
 Results for FHIT, PIK3CA and EGFR by QuantiGene Plex assays normalised to two reference genes, TERT and TPM1 
 

Target genes FHIT (3p14.2) PIK3CA (3q26.3) EGFR (7p12) 

Reference genes TERT TPM1 TERT TPM1 TERT TPM1 

Severe dysplasia (n=11)  Dip 4; Gain 3; Loss 

4 

Dip 4; Gain 4; Loss 

3 

Dip 3; Gain 3; Loss 

5 

Dip 4; Gain 4; Loss 

3 

Dip 6; Gain 3; Loss 

2 

Dip 6; Gain 3; Loss 

2 

Moderate dysplasia (n= 3) Dip 2; Loss 1 Dip 1; Gain 2 Dip 2; Gain 1 Gain 3 Dip 3 Dip 1; Gain 2 

Mild dysplasia (n=2) Dip 1; Loss 1 Gain 2 Dip 1; Gain 1 Dip 1; Gain 1 Loss 2 Gain 2 

SCC (n=2) Dip 1; Gain 1 Dip 1; Loss 1 Dip 1; Gain 1 Dip 2 Dip 1; Loss 1  Loss 2 

Normal tissue matched to SCC 

(n=1) 

Gain Dip Gain Dip Dip Loss 

Normal tissue (n=3) Loss 3 Dip 1; Loss 2 Gain 3 Gain 3 Dip 2; Loss 1 Gain 2; Loss 1 

HSC3 Loss Loss Dip Gain Gain Gain 

MCF7 Loss Loss Dip Dip Loss Loss 

Normal blood (n=3) Gain 2; Loss 1 Gain 2; Loss 1 Dip 2; Gain 1 Dip 2; Gain 1 Dip 3 Dip 1; Gain 1; Loss 

1 

Dip: diploid 
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Table 2.10 Number of cases and compiled copy number aberrations by QGP 
Results for PTPRD, FGF9 and CYP24A1 by QuantiGene Plex assays normalised to two reference genes, TERT and TPM1 
 
Target genes PTPRD (9p23) FGF9 (13q11-q12) CYP24A1 (20q13) 

Reference genes TERT TPM1 TERT TPM1 TERT TPM1 

Severe dysplasia (n=11) Dip 5; Gain 4; Loss 

2 

Dip 6; Gain 5 Dip 6; Gain 2; Loss 

3 

Dip 4; Gain 3; Loss 

4 

Dip 6; Loss 5 Dip 3; Gain 2; Loss 

6 

Moderate dysplasia (n= 3) Dip 1; Gain 1; Loss 

1 

Dip 1; Gain 2 Dip 1; Loss 2 Dip 1; Loss 2 Dip 2; Loss 1 Dip 2; Gain 1 

Mild dysplasia (n=2) Dip 2 Gain 2 Loss 2 Dip 1; Gain 1 Loss 2 Dip 1; Gain 1 

SCC (n=2) Gain 1; Loss 1 Dip 1; Loss 1 Gain 1; Loss 1 Loss 2 Dip 1; Loss 1 Loss 2 

Normal tissue matched to SCC 

(n=1) 

Gain Loss Dip Loss Dip  Loss 

Normal tissue (n=3) Dip 3 Gain 2; Loss 1 Loss 3 Gain 1; Loss 2 Gain 1; Loss 2 Dip 1; Gain 2 

HSC3 Loss Gain Loss Loss Loss Dip 

MCF7 Loss Loss Dip Dip Gain Gain 

Normal blood (n=3) Dip 2; Loss 1 Dip 1; Gain 1; Loss 

1 

Dip 1; Gain 1; Loss 

1 

Gain 1; Loss 2 Dip 2; Loss 1 Dip 1; Gain 1; Loss 

1 

Dip: diploid 
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Table 2.11 Concordance between copy number in QGPlex by reference gene 
Concordance using reference genes TERT and TPM1 shown by sample. Compiled data was 
shown in Tables 2.9 and 2.10 above.  Text indicates G gain, D diploid, L loss. First character 
normalised to TERT, second to TPM1.  Red no concordance, green concordance 

Sample 
Dysplasia 

grade F
H

IT
 

 3
p

1
4
.2

 

P
IK

3
C

A
 

3
q
2
6
.3

 

E
G

F
R

  

7
p

1
2
 

P
T

P
R

D
  

9
p

2
3
 

F
G

F
9
 

1
3
q
1
1
-q

1
2
 

M
Y

H
7
  

1
4
q
1
2
 

C
Y

P
2
4
A

1
 

2
0
q
1
3
 

C
Y

P
2
D

6
 

2
2
q
1
3
.1

 

S1 Severe GD GG GG GG GG DD DD DD 

S2 Moderate DG DG DG DD LL LD DD DG 

S3 Severe LD LL LL LD LL LL LL DD 

S4 Severe LL DG DD GG LD DD DG DG 

S6 Moderate DG GG DD GG GD LL DG LL 

S7 Severe DG LD DD DD GD LD DD DD 

S9 Moderate LD DG DG LG LL DG LD LD 

S10 Severe GD GD DL GD DL LL DL GD 

S11 Severe DG DG LD DG DG GG DG LD 

S12 Severe DD LL GG DD DD DD LL GG 

S14 Severe GG GG GD DD DL LL LL GG 

S15 Severe DL LL DD GD DL LL DD GD 

S16 Severe LL LD DD DG LD LL LL LL 

S17 Mild LG LD LG DG LG LD LG LG 

S18 Mild DG DG LG DG LD LL LD DG 

S19 Severe LG DG DG LG GG LL LL LG 

S21 OSCC DL DD LL LL LL LL LL DD 

S23 OSCC GD GD DL GD GL DL DL GL 

S24 N-matcheda 
GD GD DL GL DL DL DL GD 

S25 Normalb 
LD GG DG DG LL LL LD DD 

S30 Normalb 
LL GG DG DG LG DG LG GG 

S31 Normalb 
LL GG LL DL LL LL GG GG 

B1 Blood LL GD DL LL DL LL DL DL 

B2 Blood GG DG DG DG GG DG LG GG 

B4 Blood GG DD DD DD LL LL DD GD 

HSC3 Cell line LL DG GG LG LL DG LD GG 

MCF7 Cell line LL DD LL LL DD LL GG LL 

             a  OSCC Normal matched to S23  
             b Histologically confirmed normal tissue 
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2.4.2 TaqMan Copy Number Assays 

2.4.2.1 Sample quality 

All samples showed 260/280 ratios above 1.8, which met the manufacturer’s 

recommendation for further analysis. An example of qPCR duplex reactions is shown in 

Figure 2.4 below.   

 

 

 
Figure 2.4 Amplification curves  
Graphs show successful duplex reactions for target gene EGFR (top panel) and reference gene, 
RNaseP (bottom panel). The number of PCR cycle is plotted on the x-axis against the 
fluorescence emitted by fluorochrome for each reaction on the y-axis. The cycle threshold (red 
line) is the PCR cycle in which the reporter fluorescence reaches above the background 
fluorescence. Each colour represents one sample performed in triplicate. 
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Bioanalyser (Agilent 2100) results for DNA used in qPCR experiments that 

matched samples that failed QGPlex assays reported in section 2.4.1 are shown in 

Figure 2.5 below. These samples amplified successfully in qPCR. 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.5. Quality of DNA in QGP failed samples 
Quality of DNA isolated from samples S27, S28, S29 FFPE tissues that were failed in the QGP 
experiment. Gel image (A) shows sample 28 is highly fragmented but sample S27 and S29 are of 
good quality. The DNA size for sample S27 is 200bp and over 17kbp for sample S29.  
Electropherograms (B-D) show degraded DNA for sample S28 (C) and no degradation 
products before the major peaks (B, D).  The same Agilent size markers (E) are shown on both 
scales, original Bioanalyser traces in seconds 

 

A. 

B.S27 

C.S28 

D.S29 

E. 
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2.4.2.2 Copy number changes in HSC3, MCF7, and OSCC with its normal 

matched and control normal tissue 

Due to the limited amount of genomic DNA obtainable from dysplasia samples, 

TaqMan copy number assays were initially performed on a reduced panel of samples 

that were also used in the QGPlex assay, HSC3 and MCF7 cell lines, one oral squamous 

cell carcinoma with its paired normal matched tissue and one normal tissue.  

 

 

 

 

Figure 2.6 Example of amplification curves  
Graphs show successful duplex reactions for PTPRD as the target gene on the upper panel and 
RNaseP as the reference gene (lower panel). The cycle threshold (red line) is the PCR cycle in 
which the reporter fluorescence reaches above the background that is used as Ct values.  Each 
colour represents one sample performed in triplicate. 
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Copy number for each target gene (FHIT, EGFR, PTPRD, CYP24A1 and TP63) 

was normalised independently to 3 reference genes; RNaseP, TERT and TPM1. The 

calibrator sample used for determination of copy number was histologically confirmed 

normal tissue. Inconsistencies of the estimated gene copy number for OSCC and its 

normal matched sample were observed when different normalisation genes were used in 

the calculation as shown in the Table 2.12 to 2.17. In contrast, gene copy number results 

for both cell lines, HSC3 and MCF7 were relatively consistent.  

 

Table 2.12 Gene copy number for FHIT by qPCR 
Results when normalised to 3 reference genes; RNaseP, TERT and TPM1. Normal tissue (S30) 
was used as a calibrator. 
 
Target gene  FHIT (3p14.2) 

Reference genes RnaseP TERT TPM1 

HSC3 (deletion)* 1.0 0.9 1.0 

MCF7 (deletion)* 1.0 0.7 0.6 

SCC 2.2 2.6 2.2 

SCC normal matched 2.5 2.8 2.7 

Normal tissue (S30) 2.0 2.0 2.0 

*expected chromosome change 
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Table 2.13 Gene copy number for PIK3CA by qPCR  
Results when normalised to 3 reference genes; RNaseP, TERT and TPM1. Normal tissue (S30) 
was used as calibrator. 
 
Target gene PIK3CA (3q26.3) 

Reference gene RnaseP TERT TPM1 

HSC3 (no change)* 1.0 1.0 2.1 

MCF7 (amplification)* 1.2 1.0 1.7 

SCC 2.2 3.0 3.6 

SCC normal matched 2.1 3.1 3.5 

Normal tissue (S30) 2.0 2.0 2.0 

*expected chromosome change 

Table 2.14 Gene copy number for TP63 by qPCR 
Results when normalised to 3 reference genes; RNaseP, TERT and TPM1. Normal tissue (S30) 
was used as calibrator. 
 
Target gene TP63 (3q28) 

Reference gene RnaseP TERT TPM1 

HSC3 (no change)* 1.4 1.6 1.8 

MCF7 (amplification)* 1.7 1.7 1.5 

SCC 2.3 3.8 2.4 

SCC normal matched 2.3 4.3 2.6 

Normal tissue (S30) 2.0 2.0 2.0 

*expected chromosome change 

Table 2.15 Gene copy number for EGFR by qPCR 
Results when normalised to 3 reference genes; RNaseP, TERT and TPM1. Normal tissue (S30) 
was used as calibrator. 
 
Target gene EGFR (7p11.2) 

Reference genes RnaseP TERT TPM1 

HSC3 (amplification)* 0.4 0.6 0.8 

MCF7 (amplification) 0.2 0.2 0.2 

SCC 1.4 2.2 1.9 

SCC normal matched 1.2 2.0 1.2 

Normal tissue (S30) 2.0 2.0 2.0 

*expected chromosome change 
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Table 2.16 Gene copy number for PTPRD by qPCR 
Results when normalised to 3 reference genes; RNaseP, TERT and TPM1. Normal tissue (S30) 
was used as calibrator. 
 
Target gene PTPRD (9p24.1) 

Reference genes RnaseP TERT TPM1 

HSC3 (deletion)* 1.1 1.2 2.3 

MCF7 (deletion)* 1.1 1.2 1.3 

SCC 2.1 3.3 2.6 

SCC normal matched 2.0 3.2 2.4 

Normal tissue (S30) 2.0 2.0 2.0 

*expected chromosome change 

 

Table 2.17 Gene copy number for CYP24A1 by qPCR 
Results when normalised to 3 reference genes; RNaseP, TERT and TPM1. Normal tissue (S30) 
was used as calibrator. 
 
Target gene CYP24A1 (20q13.2) 

Reference gene RnaseP TERT TPM1 

HSC3 (amplification)* 1.1 1.9 1.0 

MCF7 (amplification)* 13.3 17.0 10.9 

SCC 1.8 3.0 2.1 

SCC normal matched 1.6 3.1 1.7 

Normal tissue (S30) 2.0 2.0 2.0 

*expected chromosome change 
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To determine the cause of inconsistency in the results, the concentration of 

genomic DNA used for this qPCR was re-evaluated by NanoDrop and found that 

samples were at the recommended concentration of 10ng/μl. When evaluated on 

Bioanalyzer 1200, the genomic DNA samples isolated from OSCC, its normal matched 

and control normal tissue were of acceptable quality (see Figure 2.7).  

 

 

 

 

 

 

 

 

 

 
Figure 2.7 DNA isolated from OSCC, its normal matched and normal tissues FFPE 
samples  
Samples run on the Agilent 2100 Bioanalyzer. Gel image (A) shows the size of DNA was 200bp 
for OSCC, over 2,000bp for OSCC normal matched and 250bp for normal tissue.  
Electropherograms (B-D) show patially degraded DNA for OSCC (B) and no degradation 
products before the major peaks (C-D).  The same Agilent size markers (E) are shown on both 
scales, original Bioanalyser trace in seconds.     

  

A. 

B. 

C. 

D. 

E. 
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2.4.2.3 Copy number detected in blood and normal tissue  

Because inconsistency in copy number estimate was observed when normalised to 

different reference genes and appeared likely to be caused by DNA degradation, the 

performance of qPCR on genomic DNA extracted from FFPE versus unprocessed 

samples was evaluated. In addition, we attempted to identify the most appropriate 

reference gene (control gene) to be used for normalisation and to investigate the 

influence of reference sample (calibrator) on the estimation of copy number.  

Copy number changes determined in 4 normal blood samples and 6 samples of 

histologically confirmed normal tissue including the one (S30) used in the experiment 

described in section 2.4.2.2 above, were evaluated against different reference genes and 

calibrators.  

As in the experiments in tissue samples reported in section 2.4.2.2, the copy 

numbers obtained varied between the reference gene and calibrator used in the 

calculation of copy number. Discrepancies observed when different reference genes 

were used for normalisation were similar to results obtained in the experiments on 

OSCC and cell lines. Variation was clearly demonstrated in results for EGFR. It was 

highly amplified in all normal tissues and all the blood samples were diploid when 

calibrated to blood (Table 2.21 & Figure 2.8). Conversely, EGFR copy numbers were 

found to be duplicated and diploid in normal tissues but showed deletion in all blood 

samples when calculation included normal tissue as the calibrator, despite adequate 

sample quality. In general, copy numbers for all blood samples were relatively consistent 

using either blood (B1) or normal tissue (S30) as calibrator (see Table 2.18 to 2.23). 
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Table 2.18 FHIT gene copy number in normal tissue and normal blood samples using 
qPCR  
 

Calibrator Sample B1 Sample S30 

Reference 

gene 
RnaseP TERT TPM1 RnaseP TERT TPM1 

B1 2.0 2.0 2.0 2.1 1.8 2.0 

B2 1.9 2.2 2.1 2.0 1.9 2.1 

B3 1.9 2.0 2.1 2.0 1.8 2.1 

B4 1.9 2.1 2.2 2.0 1.8 2.2 

S25 1.6 3.2 2.4 1.7 2.8 2.4 

S27 1.0 1.6 5.2 1.1 1.4 5.1 

S28 1.4 1.8 2.9 1.4 1.6 2.8 

S29 0.6 2.0 1.5 0.6 1.8 1.5 

S30 1.9 2.3 2.0 2.0 2.0 2.0 

S31 1.4 2.4 1.8 1.5 2.1 1.8 

B1-B4: normal blood samples 
S25-S31: histologically normal tissue samples 
 

Table 2.19 PIK3CA gene copy number in normal tissue and normal blood samples using 
qPCR. 
 

Calibrator Sample B1 Sample S30 

Reference 

gene 
RnaseP TERT TPM1 RnaseP TERT TPM1 

B1 2.0 2.0 2.0 1.3 1.5 1.4 

B2 1.9 2.1 2.4 1.2 1.5 1.7 

B3 1.9 2.1 2.4 1.2 1.5 1.8 

B4 1.9 2.1 2.5 1.2 1.5 1.8 

S25 2.5 5.5 3.2 1.6 4.0 2.3 

S27 1.1 5.1 12.5 0.7 3.7 9.0 

S28 2.2 2.8 2.8 1.4 2.0 2.0 

S29 1.5 2.7 3.0 1.0 2.0 2.1 

S30 3.1 2.8 2.8 2.0 2.0 2.0 

S31 2.4 2.8 3.1 1.5 2.1 2.2 
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Table 2.20 TP63 gene copy number in normal tissue and normal blood samples using 
qPCR. 
 
Calibrator Sample B1 Sample S30 

Reference 

gene 
RnaseP TERT TPM1 RnaseP TERT TPM1 

B1 2.0 2.0 2.0 2.0 1.2 1.6 

B2 1.9 2.4 1.9 1.9 1.4 1.5 

B3 2.0 2.1 1.8 1.9 1.3 1.4 

B4 1.9 2.4 2.1 1.9 1.4 1.7 

S25 2.0 6.8 3.1 2.0 4.1 2.5 

S27 0.8 7.5 6.6 0.8 4.5 5.3 

S28 1.4 3.4 2.1 1.3 2.0 1.7 

S29 0.0 2.6 2.6 0.0 1.6 2.1 

S30 2.0 3.3 2.5 2.0 2.0 2.0 

S31 1.7 4.1 2.1 1.6 2.5 1.7 

B1-B4: normal blood samples 
S25-S31: histologically normal tissue samples 
 

Table 2.21 EGFR gene copy number in normal tissue and normal blood samples using 
qPCR. 
 
Calibrator Sample B1 Sample S30 

Reference 

gene 
RnaseP TERT TPM1 RnaseP TERT TPM1 

B1 2.0 2.0 2.0 0.4 0.5 0.4 

B2 2.0 2.1 2.2 0.4 0.5 0.4 

B3 2.1 2.2 2.4 0.4 0.5 0.5 

B4 1.9 1.8 2.4 0.4 0.5 0.5 

S25 8.2 16.6 11.4 1.5 4.0 2.3 

S27 13.8 19.5 24.4 2.6 4.7 4.9 

S28 16.6 11.1 23.6 3.1 2.7 4.8 

S29 12.7 18.4 28.8 2.4 4.5 5.8 

S30 10.6 8.3 9.9 2.0 2.0 2.0 

S31 10.9 11.4 13.4 2.1 2.8 2.7 
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Figure 2.8 EGFR copy number estimate using blood (upper panel) and normal tissue 
samples (lower panel) as calibrator.  
Blood samples show relatively consistent copy number compared to formalin fixed tissues (S25-
31).   
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Table 2.22 PTPRD gene copy number in normal tissue and normal blood samples. 
 
Calibrator Sample B1 Sample S30 

Reference 

gene 
RnaseP TERT TPM1 RnaseP TERT TPM1 

B1 2.0 2.0 2.0 1.4 1.4 1.7 

B2 1.9 2.1 2.1 1.3 1.5 1.8 

B3 2.0 1.8 2.2 1.4 1.3 1.9 

B4 1.9 2.1 2.6 1.3 1.5 2.2 

S25 3.3 5.2 3.8 2.3 3.7 3.2 

S27 1.8 4.0 4.6 1.3 2.9 3.9 

S28 2.5 2.7 3.2 1.8 2.0 2.7 

S29 1.8 2.2 2.7 1.3 1.6 2.3 

S30 2.9 2.8 2.4 2.0 2.0 2.0 

S31 2.0 2.5 2.3 1.4 1.8 1.9 

B1-B4: normal blood samples 
S25-S31: histologically normal tissue samples 

 

Table 2.23 CYP24A1 gene copy number in normal tissue and normal blood samples. 
 
Calibrator Sample B1 Sample S30 

Reference 

gene 
RnaseP TERT TPM1 RnaseP TERT TPM1 

B1 2.0 2.0 2.0 1.2 1.6 1.2 

B2 2.0 2.1 2.3 1.2 1.7 1.4 

B3 2.1 2.3 2.4 1.3 1.8 1.5 

B4 2.2 2.3 3.0 1.4 1.8 1.8 

S25 3.6 6.0 5.4 2.2 4.8 3.3 

S27 1.8 4.9 6.1 1.1 3.9 3.7 

S28 2.7 2.4 3.9 1.7 2.0 2.4 

S29 0.1 3.4 3.7 0.0 2.7 2.3 

S30 3.2 2.5 3.3 2.0 2.0 2.0 

S31 3.0 2.7 2.8 1.8 2.2 1.7 
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2.4.3 Comparison of QuantiGene Plex DNA and TaqMan copy number results  

Tables 2.24 to 2.28 show that the copy number results generated from QuantiGene 

and TaqMan are generally discordant as well as internally inconsistent. Control 

experiments for both techniques have demonstrated that control genes and tissue type 

were the major influence on copy number determination.  

 

Table 2.24 QuantiGene and TaqMan qPCR copy number analyses for FHIT 
 

Methods QuantiGene Plex TaqMan qPCR 

Reference genes TERT TPM1 TERT TPM1 

HSC3 (deletion)* 0.7 1.2 0.9 1.0 

MCF7 (deletion)* 0.8 0.9 0.7 0.6 

SCC 4.3 1.9 2.6 2.2 

SCC normal matched 3.5 1.8 2.8 2.7 

Normal tissue (S30) 0.4 1.0 2.0 2.0 

* expected chromosomal change 

 

Table 2.25 QuantiGene and TaqMan qPCR copy number analyses for PIK3CA 
 

Methods QuantiGene Plex TaqMan 

Reference genes TERT TPM1 TERT TPM1 

HSC3 (no change)* 2.1 3.8 1.0 2.1 

MCF7 (amplification)* 2.0 2.1 1.0 1.7 

SCC 4.0 1.7 3.0 3.6 

SCC normal matched 3.3 1.7 3.1 3.5 

Normal tissue (S30) 2.7 6.8 2.0 2.0 

*expected chromosomal change 
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Table 2.26 QuantiGene and TaqMan qPCR copy number analyses for EGFR 
 

Methods QuantiGene Plex TaqMan 

Reference genes TERT TPM1 TERT TPM1 

HSC3 (amplification)* 2.6 4.8 0.6 0.8 

MCF7 (amplification)* 1.4 1.5 0.2 0.2 

SCC 2.1 0.9 2.2 1.9 

SCC normal matched 1.8 1.0 2.0 1.2 

Normal tissue (S30) 1.5 3.9 2.0 2.0 

*expected chromosomal change 

Table 2.27 QuantiGene and TaqMan qPCR copy number analyses for PTPRD 
 

Methods QuantiGene Plex TaqMan 

Reference genes TERT TPM1 TERT TPM1 

HSC3 (deletion)* 1.5 2.7 1.2 2.3 

MCF7 (deletion)* 1.3 1.3 1.2 1.3 

SCC 4.0 1.7 3.3 2.6 

SCC normal matched 2.8 1.5 3.2 2.4 

Normal tissue (S30) 1.6 4.0 2.0 2.0 

*expected chromosomal change 

Table 2.28 QuantiGene and TaqMan qPCR copy number analyses for CYP24A1 
 

Methods QuantiGene Plex TaqMan 

Reference genes TERT TPM1 TERT TPM1 

HSC3 (amplification)* 1.3 2.3 1.9 1.0 

MCF7 (amplification)* 18.1 19 17.0 10.9 

SCC 2.5 1.1 3.0 2.1 

SCC normal matched 2.1 1.1 3.1 1.7 

Normal tissue (S30) 1.3 3.2 2.0 2.0 

*expected chromosomal change 
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2.5 Discussion 

2.5.1 Sample quality 

As noted in the introduction, any test designed for routine pathology practice must 

be able to use FFPE tissue but nucleic acids isolated from formalin fixed specimens are 

not ideal for molecular analysis.  In the experiments reported in this chapter, the 

techniques essentially failed to produce reliable copy number estimates and the quality 

and suitability of the clinical material must be considered.  

DNA fragmentation is one possible cause but this effect has been reduced by 

selecting PCR primers that produce PCR products that are as short as possible 

(Lehmann and Kreipe, 2001). In our study utilizing TaqMan Copy Number Assays, all 

primers used were of less than 90 bp in length.  Fragmentation results from crosslinking 

of DNA, DNA-to-protein and protein-to-protein caused by formaldehyde (Chaw et al., 

1980; Crisan and Mattson, 1993) and the average fragment size range isolated from 

formalin fixed tissues in reports in the literature is between 300-400 bp dependent upon 

fixation conditions, particularly pH of fixation and type of tissue (Lehmann and Kreipe, 

2001).  In our studies the fragment sizes obtained were between 150 to 500 bp. Despite 

some fragmentation the samples were suitable for both qPCR and QGPlex assays (Yang 

et al., 2006; Cukier et al., 2009). Further evidence that fragmentation was not responsible 

for failure of at least some of the QGPlex assays is seen in the comparison on sonicated 

and unsonicated DNA samples (Table 2.8).  

In this experiment (section 2.4.1), manually shearing the samples resulted in 

significantly higher signals in genomic DNA samples (Table 2.8) but only slightly higher 

for FFPE samples. This indicates that shearing was not necessary for FFPE samples as 

the DNA was already fragmented resulted from formalin fixation. Nevertheless, 
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shearing has relatively increased MFI signals and thus was applied to all samples and we 

conclude that fragmentation, though present, did not reduce DNA fragment size below 

that required for the assay. 

A second potential sample defect is the presence of cross-links, even at as low a 

level as 2.5%. This leads to errors in DNA production by polymerase enzymes in 

fragments larger than 200 bp. Lehmann and Kreipe have shown that a 300 bp fragment 

was not detectable whereas an 80 bp fragment generated strong signal on real-time PCR 

(Lehmann and Kreipe, 2001).  Neither of these two sample defects appears significant 

as all reactions amplified successfully and subsequent control stages indicated that 

amplification was successful (Figure 2.4 and 2.6).  

DNA degradation is a third unfavourable consequence of fixation that inhibits PCR 

amplification (Crisan and Mattson, 1993; Wu et al., 2002).  We carried out genomic 

DNA purification using Qiagen DNeasy Blood & Tissue Kit, a well-established method, 

with slight modification to the protocols for QGPlex, as recommended by Affymetrix 

using a prolonged 3-day treatment with Proteinase K.  As a result, all our FFPE samples 

gave a reasonably good 260/280 ratio above 1.8 considered sufficient for analysis by the 

manufacturer.  

Branched DNA methods used in the QGPlex assays have been shown to be less 

affected by formalin fixation and DNA degradation, contributing to the assay being 

more sensitive than real time PCR (Yang et al., 2006). Strong signal generated by 

sandwich nucleic acid hybridization allows detection of low concentrations of target 

molecules that are not amplifiable by normal PCR. Despite these advantages, we could 
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not determine whether branched DNA was more sensitive due to difficulties in 

identifying suitable reference gene for estimation of copy number. 

The limited amount of tissue obtained in a biopsy of OPMD also hinders analysis. 

The characteristics of the QuantiGene Plex assay should make it ideal for limited tissues 

such as OPMD. Despite some initial difficulties with this novel assay and with the help 

of the manufacturer, we were able to obtain a signal from a total of 36 samples and 

simultaneously assessed 10 genes in one experiment.  

2.5.2 Internal assay validation  

In QGPlex, as noted in the methods, there are no intermediate validation steps to 

demonstrate correct progression of the assay.  The manufacturer does not recommend 

any sample quality assessment because the assay sample is whole tissue.  However, 

experiments with cell lines and some tissue samples produced apparently valid results 

that could not have been produced had any of the intermediate stages failed completely.  

As shown in Table 2.8, 2 cell lines (HSC3, MCF7) and 2 FFPE samples (S2 and S20) 

worked sufficiently well to give a coefficient of variation within manufacturer’s limits 

and it was possible to detect the effect of sonication of samples in three cases. We 

therefore conclude that the assay was performing as expected and that the 9 failed 

samples are most likely to have failed because of inadequate or insufficient sample.  The 

latter seems likely because repeated failed assays in the early pilot stages consumed 

much of the sample available.  

The samples of normal tissue selected for qPCR were also used in QGPlex and 

extraction of DNA of good quality (section 2.4.2.1) suggests that the tissue quality in at 

least these samples was adequate.   
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No data from the QGPlex or qPCR can be compared with the FISH results 

discussed in the subsequent chapter, as the samples were independent.  It was intended 

to analyse the same samples but the high variation in the QGPlex and qPCR made 

further use of the limited tissue impractical.  

2.5.3 Normalisation and calibration of results 

In both qPCR and QGPlex the estimated gene copy number in our experiments 

was very dependent on the reference gene used for normalisation. The inclusion of a 

reference gene for normalisation serves as a method to correct for differing amount of 

DNA from each sample. Nevertheless, it has been shown here that no single gene can 

be reliably used as the internal control in either qPCR or QGPlex.  This is a well 

recognised problem (Radonic et al., 2004). Vandesompele et al. have recommended the 

use of multiple reference genes for accurate normalisation (Vandesompele et al., 2002).  

In our experiments the measurement of copy number for gene of interest was 

performed relative to control genes that were specifically recommended by the 

manufacturers and commercially available for both methods. We found significant 

differences of copy number when data were normalised independently to RNaseP, 

TERT and TPM1 suggesting that none of those genes were suitable to be used as a 

control gene in our material. One possible cause is that these genes are themselves 

amplified or deleted in the dysplasia and cancer samples. Several studies have shown 

that TERT and TPM1 can be upregulated in OSCC and may play role in the 

progression of OPMDs to carcinoma (Toruner et al., 2004; Cervigne et al., 2009; Cheong 

et al., 2009).  However, these reference genes also failed to perform effectively in normal 

samples so, while this cannot be excluded, it does not appear to be the cause of our 

variable results.    
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In the determination of the gene copy number by qPCR, a reference sample with 

known diploid copy number is included in the calculation as a reference point, also 

known as calibrator (Livak and Schmittgen, 2001). The use of more than 2 calibrator 

samples provides results that are more accurate (D'Haene et al., 2010). Accordingly, to 

address the problem, we formed a group of normal samples comprising 6 FFPE 

samples of oral mucosa that were histologically confirmed as normal tissue and 4 blood 

samples from healthy individuals and determined the copy number for all samples using 

different calibrators (Table 2.18 – 2. 23). The analyses of copy number were performed 

using 3 reference genes (RNaseP, TERT and TPM1) for normalisation and 2 calibrators; 

the normal tissue S30 used in the experiment in section 2.4.2.2 and one of the blood 

samples. The gene copy numbers were most consistent when using blood sample as 

calibrator. Cukier et al. demonstrated that notwithstanding normalisation with an 

internal control gene run concurrently in a duplex qPCR reaction, the errors of CNV 

calls were significant and this has been corroborated in other studies (McSherry et al., 

2007; Bediaga et al., 2008; Cukier et al., 2009).   This may be due to the difference in the 

quality of genomic DNA derived from blood samples compared to archival tissues, as 

the blood has not been fixed in formalin (Cukier et al., 2009). A reference sample was 

not a critical element in the estimation of copy number by the QuantiGene method, 

which gives it a theoretical advantage over qPCR.  

Results obtained from QuantiGene and real-time PCR were compared and the copy 

numbers were discordant between the two techniques. Both methods showed 

inconsistencies in gene copy number of one gene when normalised to different 

housekeeping genes and it was considered that neither analysis could be used in our 

study, in which a change of copy number from 2 to 3 would be expected. It appears that 
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the final copy number differences were caused in part by methodological differences 

and in part by failure of reference gene and calibrator, probably to a degree related to 

formalin fixation and processing. 

One final further control would be to perform sequencing to confirm the qPCR for 

target and reference products as homogeneous and the expected product.  While this 

control was previously considered essential, the consistency of qPCR using modern 

methods has made this control less important.  As all primers and probes were 

commercially available and have published confirmation, this was not performed in 

these pilot experiments but might have been considered if the experiments had 

progressed.  

2.5.4 Sample homogeneity 

One cause for error in copy number calculation would be differing degrees of 

dilution of the epithelial different samples by diploid connective tissue.  To ensure 

evaluation of copy number was restricted to epithelial tissues, all samples were macro-

dissected. Having a known pure diploid control sample was the most critical factor.  A 

small amount of contamination by connective tissue in each epithelial sample was 

inevitable because of the presence of dermal papillae and the need to ensure a pure 

connective tissue sample.  Microdissection was checked for larger samples but a 

minimum of 80% epithelium was our target and an estimate of 20% contamination by 

volume seems likely.   

Final copy number estimates must be whole integers, but the assay outputs in our 

experiments have been reported to one place of decimals and if can be seen that the 
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results are often close to half integers, so that small errors in the assays could alter 

rounding to whole numbers.  

2.5.5 Conclusion 

Neither qPCR nor QGPlex produced reproducible copy number estimates in our 

experiments.  Tissue and DNA quality were adequate despite tissue processing and 

small size of samples.  The major contributors to the variability were lack of a reliable 

control gene and failure of calibrator samples. The possible contribution of 

microdissection and small sample size cannot be assessed from our data.  
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 : Fluorescence in situ hybridization CHAPTER 3

 

3.1 Investigative plan for ICM DNA ploidy analysis experiments 

To evaluate FISH as a measure of copy number variation in OPMD and compare it 

to ICM DNA ploidy, a panel of 10 FISH probes was tested on a series of dysplastic 

tissue samples from OPMD. Sample selection was undertaken to ensure a representative 

range of dysplasia (section 3.3.1) because only a small number of cases could be 

assessed with this labour intensive technique.  From the same list of potential targets 

described for QGPlex and qPCR (section 2.3.1) a reduced set of 5 targets and 5 

matched chromosome specific probes were selected (section 3.3.2) and applied to the 

tissues (section 3.3.3 and 3.3.4).   

FISH proved reproducible (section 3.3.6) and accurate at identifying control diploid 

samples and low copy number gain in samples considered diploid by ICM DNA ploidy 

(section 3.4.2) and to identify aneuploidy in almost all known aneuploid samples (3.4.4).  

The borderline areas between diploid and aneuploid status, low copy number gain, were 

explored by analysis to determine a threshold for definition of aneuploidy by FISH to 

apply in future experiments (section 3.4.3 and 3.4.7).  FISH also revealed small foci of 

gene amplification for some targets (section 3.4.5) and there was good concordance 

between this novel FISH panel and DNA ICM ploidy analysis (section 3.4.6) but poor 

concordance with dysplasia grade (section 3.4.8). 
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3.2 Background 

In situ hybridization (ISH) has the ability to detect copy number in individual cells 

on morphologically preserved tissue sections. This allows selection of specific cells for 

analysis and direct comparison with dysplasia assessment. It provides information on 

both the number of sequences present and their localisation, the latter depending on the 

technique used to demonstrate hybridisation. Fluorescence in situ hybridization (FISH) 

has been the preferred method in cytogenetics because it generates bright fluorescent 

signals facilitating enumeration of chromosomal aberrations. 

Evaluation of total nuclear DNA content by image-based ploidy analysis has been 

shown to correlate with dysplasia and malignant transformation in oral potentially 

malignant diseases (Torres-Rendon et al., 2009; Bradley et al., 2010; van Zyl et al., 2012; 

Sperandio et al., 2013). Image-based analysis is currently preferred for routine clinical 

analysis because it can be performed on archival paraffin embedded samples, allows 

control of which areas of epithelium are analysed and provides the ability to separate 

and compare epithelial nuclei against internal control nuclei. However, the process is 

relatively slow and an automated high throughput analysis would have advantages. In situ 

hybridisation with multicolour visualisation agents is now an automated process 

available on several different laboratory platforms. We therefore undertook an 

investigation of a multiplex FISH and compared it with DNA image-based cytometry 

(ICM) ploidy analysis. 

3.2.1 Fluorescence in situ hybridization  

FISH is a robust technique that can be applied to metaphase or interphase nuclei 

allowing visualisation of chromosomes, genes and other specific DNA sequences at a 

single cell level. Its high sensitivity and specificity has made FISH a useful tool in the 
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clinical setting for screening of genetic aberrations in prenatal, paediatric and adults, to 

diagnose and monitor disease progression and to predict prognosis. In research, it has 

been widely used for gene mapping, the study of chromosome evolution and a second 

technique to confirm the findings of other molecular screening assays.  

The principle of in situ hybridization is the specific annealing of labelled DNA or 

RNA probes to complementary sequences of interest in the target tissue (Figure 3.1). 

Depending on the application, the probes may target unique or repetitive DNA 

sequences, entire chromosome arms, or whole chromosomes. Attached to the probes 

are reporter molecules, either a fluorochrome for fluorescence in situ hybridization 

(FISH) or a hapten for chromogenic in situ hybridization (CISH), which generate 

coloured signals viewed under fluorescence or bright field microscope, respectively. 

Using different colours, multiple sequences or genes can be recognised simultaneously. 

One appealing aspect of FISH when performed on interphase cells in cytological 

preparations or tissue sections is the ability to measure cell-to-cell variability, such as in 

intra-tumoural heterogeneity and to locate areas bearing a specific sequence in tissue 

sections. Disadvantages include background normal tissue autofluorescence that may 

cause difficulties in analysis and relatively rapid fading of fluorescence signals, rendering 

it unsuitable for prolonged retention of the original stained samples.  
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a. Basic elements are DNA probe and a target sequence 
b. DNA probe is either labelled directly with modified nucleotides that contain a fluorophore (right) or 

indirectly labelled with nucleotides containing hapten for CISH (left) 
c. The probe and the target DNA are denatured to yield single strandedDNA 
d. During hybridization, the probe anneals to complementary sequence in the target tissue 
e. An extra step is required for visualization of the non-fluorescent hapten that uses an enzymatic or 

immunological detection system.  
Adapted from Speicher and Carter, 2005 

 

Figure 3.1 Principles of DNA in situ hybridisation.  
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3.3 Materials and Methods 

3.3.1 Patients and tissue samples 

A sample consisting of twenty cases was selected from diagnostic histopathology 

reports on the basis of ploidy status determined by routine diagnostic DNA image-

based cytometry (ICM) and inclusion of all grades of dysplasia (Table 3.1). 9 samples 

had been diagnosed between the years 1990 to 1999 and had been used in a previous 

ploidy study from the department (Sperandio et al., 2013). 11 additional cases were 

retrieved from the year 2008 to allow at least five years outcome data of malignant 

transformation to be included. This series of samples was independent of the samples 

used for ICM DNA ploidy analysis in the present work.  Haematoxylin and eosin 

(H&E) stained slides were re-examined to confirm histological diagnosis, to select and 

mark areas of representative dysplasia to be scored and to confirm that sufficient tissue 

suitable for this study was available.    

 

Table 3.1 Dysplasia grades and DNA ploidy status of samples for FISH (n=20) 
 

 DNA Ploidy status 

Dysplasia grade Diploid Aneuploid 

Mild 2 5 

Moderate 4 6 

Severe 0 3 
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3.3.2 Selection and construction of DNA probes  

The chromosomal loci selected for assessment of amplifications were based on 

previous SNPs data that was also referred to for qPCR work (Table 3.2), in combination 

with published genetic biomarkers of transformation in the literature as discussed in 

section 2.1.2. A total of the 5 most frequently amplified chromosomal regions were 

selected for further study. By utilizing pairs of probes labelled with two fluorochromes, 

2 loci could be evaluated simultaneously on each tissue section, and we selected two 

sequences on the same chromosome including one chromosome specific probe for the 

centromere/ telomere.  

EGFR and CCND1 are among the established oncogenes involved in the head and 

neck carcinogenesis whereas oncogenic trait of TP63 and PTK2 has been recently 

reported in multiple studies. Besides its main role of degrading extracellular matrix, 

MMP9 also involves in the epithelial to mesenchymal transition and angiogenesis during 

tumorigenesis and its expression was associated with dysplastic grading (Fraga et al., 

2012; de Carvalho Fraga et al., 2014). 

Dual coloured FISH probes were purchased from Cytocell, Cambridge UK.  This 

was the only company that offered custom design probes compatible with our 

microscope filter sets for FITC/DAPI/Texas Red triple filter. The probe set for 

chromosome 7 was commercially available while the others, chromosome 3, 8, 11 and 

20 were of customized design (myProbes, Cytocell). Development of these probes 

involved close communication, meetings and documentations of the probes 

specification in particular, nucleotide locations, signal colour and suitability for formalin 

fixed tissue embedded in paraffin (Table 3.2).  
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All probes were generated by the company using multiple bacterial artificial clones 

(BAC) mapped to the Ensemble genome browser version 69 

(http://www.ensembl.org/index.html). DNA probes were labelled directly with Texas 

Red fluorochrome and fluorescein isothiocyanate (FITC)-labelled peptide nucleic acid 

was employed for the centromere and telomeric regions, viewed as red and green signals 

respectively. To confirm that each custom probe pair hybridized specifically to intended 

targets and without interference between target and chromosome-specific probes, the 

company performed hybridization to normal metaphase slides confirming specific 

binding to the same chromosome at the expected location (Figure 3.2). 

 

Table 3.2 Details on the cytogenetic band and BACs clones used to produce probes 
 

Cytoband Gene Start base End base 
Clone Length 
(bp) 

Probe Size 
(kb) 

3q28 TP63 189289309 189647536 
A=140218 

B=155847 
358 

7p11.2 EGFR 54988969 55283917 
A=174060 

B=140036 
295 

8q24.3 PTK2 141622027 142119601 

A=133107 

B=163598 

C=110681 

D=138554 

497 

11q13.3 CCND1 69449043 69676750 
A=125866 

B=126113 
228 

20q13.12 MMP9 44427553 44808231 

A=122174 

B=140036 

C=113945 

381 
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TP63 (Red) / 8cen (Green) PTK2 (Red) / 8cen (Green) 

  

CCND1(Red) / 11cen (Green) MMP9 (Red) / 20ptel (Green) 

  

Figure 3.2 Confirmation of probe targets on metaphase and interphase nuclei 
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3.3.3 Procedure 

FISH was performed according to the manufacturer’s protocol (Cytocell, 

Cambridge, UK) with some minor modifications on 5μm paraffin-embedded tissue 

sections placed on charged slides. To facilitate removal of paraffin, the slides were 

incubated first in an oven for 15 minutes at 57°C. After deparaffinization in two 5 

minutes xylene washes and rehydration in a series of graded ethanols of 100%, 90% and 

70% of 2 minutes each, pretreatment was carried out using the Aquarious tissue 

pretreatment kit to permit probe penetration and binding to the target DNA whilst 

reducing autofluorescence. This step entailed treatment with Reagent 1 from the kit, in a 

95°C waterbath using a Coplin jar for 30 minutes, and enzyme digestion with Reagent 2 

on a hot plate at 35°C for 15 minutes, followed by prompt washing with sterile distilled 

water three times, each wash for 2 minutes.  

The specimens were dehydrated consecutively in 70%, 90% and 100% ethanol for 2 

minutes each before application of 10ul of undiluted probe (concentration not 

specified) to the tissue and sealing of the coverslip with rubber solution to prevent 

drying during overnight hybridization. Denaturation and hybridisation were performed 

using the Thermobrite StatSpin hybridiser (Abbott Molecular, US) pre-programed for a 

sequence of 85°C for 5 minutes and then 37°C for 20 hours in a humid environment 

maintained by dampened humidity control cards inside the lid. After incubation, to 

remove excess probe, post-hybridization washes were performed sequentially in 

0.4xSSC (pH 7.0) followed by a stringent wash at 72°C, 2xSSC/0.05% Tween and PBS 

both at room temperature, each for 2 minutes. Slides were air-dried and mounted with 

10ul of DAPI containing premixed antifade. Slides were stored in boxes in the dark at 

4°C until image acquisition within 14 days from the day staining was completed. 
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3.3.4 Scoring and analysis 

Probe signals and nuclear counterstain were viewed using an Olympus BX61 

microscope equipped with 4,6-diamidino-2-phenylindole (DAPI), Spectrum Green and 

Spectrum Red filters. Images were captured at 600x magnification using an Olympus 

XM10 camera and Olympus Image Cell software. The entire length of epithelium on the 

section was scanned and a preliminary assessment undertaken to analyse areas showing 

the greatest copy number changes for each probe pair. Depending on the size and the 

number of tissue sections per slide, one or more areas were scored. Each area was a 

consecutive length of basal and parabasal cells.  In each case these were also the areas 

pre-selected to show the most severe morphological changes in routine stains.  Nuclei in 

the underlying connective tissue acted as a methodological and diploid control.  

Each area scored comprised 200 consecutive non-overlapping intact nuclei in the 

basal cell layer and parabasal cell layers up to 5 cell layers superficial to the basement 

membrane and the same area was scored for each probe in each pair. The number of 

red and green signals for individual nuclei was counted during the same pass, blind to 

the histological diagnosis and ploidy status. Nuclei without any signals were excluded.  

Counting of signals conformed to conventional cytogenetic practice. Signals that 

appeared doublet or triplet spots and appeared in contact with each other were counted 

as one signal only. Adjacent spots had to be at least one signal spot size apart to be 

counted as separate signals (Figure 3.3). Precise enumeration of clustered signals was 

not possible, thus each clusters were estimated to comprise of 15 signals per cell for 

statistical analysis according to the guidelines for EGFR FISH lung cancer and HER2 

breast cancer (Hicks and Tubbs, 2005; Varella-Garcia et al., 2009).  
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Figure 3.3 Guide for signal enumeration of FISH  
(source: Varella-Garcia M et al. 2009) 

 

When numerous signals clustered together as a result of gene amplification, the 

nucleus was classified as aneuploid. Variability in copy number between areas of tissue 

section in one sample was evaluated when present and the worst copy number 

aberration was selected as the sample final status. Samples were classified as aneuploid 

when at least one of the 10-targeted sequences was aneuploid. 

3.3.5 Evaluation of possible FISH copy number thresholds to define 

aneuploidy 

For initial analysis, all counts were analysed as absolute counts.  To determine 

whether a cut-off value could be defined to classify borderline cases with possible low 

copy number gain, threshold values were calculated subsequently as shown in the FISH 

results, section 3.4.3. 

3.3.6 Intraobserver variability 

All counts were performed by one operator (ZZ).  Duplicate counts were performed 

using one chromosome specific and one targeted probe on 400 cells from 2 areas in 2 

samples, a total of 4% of the total nuclei counted in all experiments. For sample S3 a 

total of 649 signals were entered into the experimental data and 629 were counted in the 

duplicate assessment. For sample S5 a total of 630 signals were entered into the 
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experimental data and 639 were counted in the duplicate assessment, making an overall 

difference of 29 signals from 2547, a percentage error of 1.14%. How these 

discrepancies were distributed between copy number are shown in Table 3.3.  

Table 3.3 Data from duplicate counting shown as copy number (CN) as a percentage of 
total cells counted (n=200)  
 

Sample Count 
Tel20p CN % MMP9 CN % Mean 

difference % 
1 2 3 1 2 3 

S3 
Test 29.0 61.5 9.5 56.0 44.0 0 

2.65 
Duplicate 32.0 60.5 7.5 61.0 39.0 0 

S5 
Test 42.0 53.5 4.5 51.0 45.5 3.5 

Duplicate 40.0 53.5 6.5 52.0 43.0 5.0 

 

3.3.7 Statistical analysis 

The percentage of nuclei containing each copy number was calculated using Excel. 

SPSS version 21 (SPSS Inc., Chicago, USA) was used to calculate the mean percentage 

of nuclei with respective copy number for each target and perform receiver-operating 

characteristic analysis. Power calculation and probability estimates for receiver operating 

characteristic (ROC) analysis were performed using MedCalc version 15.6.1 (MedCalc 

Ostend, Belgium).  The agreement between ICM DNA ploidy and FISH ploidy results 

was determined by calculating the κ-statistic. 
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3.4 Results 

3.4.1 Patterns of FISH signals 

One tissue sample was excluded after the failure of in situ hybridization. A total of 

47 tissue areas from 19 samples were evaluated in this study (3 cases with one area 

assessed, 8 cases with 2 areas, 7 cases with 3 areas and 1 case with 6 areas as size of 

tissue allowed). 1 additional area was scored for CCND1 only when amplification was 

found. In every case, all connective tissue cell nuclei were diploid. Detailed counts can 

be found in the appendix.  

3.4.2 Copy number in ICM diploid samples 

All samples that had been identified as diploid by DNA image-based cytometry 

(ICM) (n=7) had FISH results compatible with diploid status, usually with only two 

signals per nucleus for each probe. Proportion of cells presumed to be in S phase, G2 or 

mitosis, showed signal counts of three ranging from 0.5% to 14.5% of the total. Only 2 

samples (S6 and S7) showed four signals per nucleus of 1% of total cells (appendix). No 

variations were seen between areas assessed in each case for all probes and these 

patterns were consistent between all probes, whether centromeric, telomeric or at the 

specific target chromosomal loci.  

The mean percentage of nuclei with two signals or less for all 5 chromosomes 

specific (centromeric or telomeric) probes ranged from 98.3% to 99.5%. The ranges of 

mean percentage for nuclei with three and four signals were 0.5% to 1.7% and 0% to 

0.13% respectively. For all in situ probes, the mean percentage of nuclei with respective 

copy number and the standard deviation (SD) are shown in Table 3.4. 
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Table 3.4 Mean percentage nuclei positive for each FISH probe in the ICM DNA 
diploid dysplasia samples 
 Mean percentage nuclei positive for each probe in the ICM diploid dysplasia samples and 
standard deviation with copy number of 2, 3 and 4 on each targeted probe for diploid samples 
(n=7). A total of 16 areas were evaluated on all samples.  
 

Locus 
Copy number ≤ 2 Copy number 3 Copy number 4 

Mean SD Mean SD Mean SD 

Cen 3 99.03 1.12 0.84 1.01 0.13 0.29 

3q28 99.44 0.54 0.50 0.49 0.06 0.17 

Cen 7 98.28 3.63 1.66 3.51 0.06 0.17 

7p11.2 98.73 3.06 1.24 2.94 0.03 0.13 

Cen 8 98.34 1.01 1.63 0.99 0.03 0.13 

8q24.3 98.66 1.17 1.34 1.17 0 0 

Cen 11 98.56 1.90 1.41 1.82 0.03 0.13 

11q13.3 99.41 0.55 0.59 0.55 0 0 

Tel 20p 98.28 2.54 1.63 2.41 0.09 0.27 

20q13.12 99.47 1.01 0.47 1.02 0.06 0.17 

Means are given in percentage Cen: centromeric; Tel: telomeric; SD: standard deviation 

 
 

FISH copy number counts of 3 and 4, which might represent low copy number 

gain, were distributed unequally between samples.  All probes identified some nuclei 

with copy number of 3 and all samples contained some nuclei with copy number 3 with 

multiple probes (data in appendix). Probes against PTK2 and CCND1 produced no 

nuclei with 4 signals.  The distribution of copy number 4 for each probe and sample is 

shown in Table 3.5.  

Table 3.5 Distribution of nuclei with copy number 4 by FISH probe.  
The left two-column shows number of lesions for each target. The right two-column shows the 
number of probes producing a copy number of 4 for each sample 
 

Locus 
Number of samples with 

copy number 4 
Sample 

Number of probes showing 
copy number 4 

Cen 3 3 S1 5 

3q28 2 S2 2 

Cen 7 2 S3 2 

7p11.2 1 S4 0 

Cen 8 1 S5 0 

8q24.3 0 S6 3 

Cen 11 1 S7 4 

11q13.3 0 - - 

Tel 20p 2 - - 

20q13.12 2 - - 
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3.4.3 Calculation of FISH threshold to define aneuploidy 

To set a threshold value for aneuploidy based on copy number counts of 3 and 4 

(which might represent either diploid or low copy number gain) two methods were 

used. 

Initially, according to a standard method (Kearney, 2001), a percentage limit was set 

of nuclei with signal counts of 3 or more at 15%.  This was derived by calculating the 

mean percentage cells with counts of 3 or 4 and adding 3x the standard deviation for all 

ICM DNA diploid samples (original data shown in Table 3.4) and the calculated 

threshold for each probe is shown in table 3.6 below.   

 

Table 3.6 The total mean percentage nuclei plus three the standard deviation of copy 
number 3, 4 and 3 & 4 for each probe target 
 

Locus 

Mean percentage nuclei + 3SD 

Copy number 3 Copy number 4 Copy number 3 and 4 

Cen 3 3.88 0.99 4.87 

3q28 1.97 0.57 2.54 

Cen 7 12.18 0.58 12.76 

7p11.2 10.06 0.41 10.47 

Cen 8 4.60 0.41 5.01 

8q24.3 4.84 0.00 4.84 

Cen 11 6.86 0.41 7.27 

11q13.3 2.26 0.00 2.26 

Tel 20p 8.86 0.91 9.77 

20q13.12 3.54 0.57 4.12 

 

The final selected threshold was set at the highest percentage found, which was for 

probe centromeric 7 at 12.8 plus 2.7 estimate of intraobserver error as detailed in 

section 3.3.6 above, rounded to nearest whole percent. 
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The second method used to define a threshold was ROC analysis.  This was 

performed by taking the signal counts from all individual areas for the analysis and also 

by sample using data from the area with highest total count.  

Calculation of sample size required for ROC analysis showed that in order to 

achieve type 1 error rate of 0.05 (incorrect rejection of the null hypothesis) and type 2 

error at 0.2 (incorrect acceptance of the null hypothesis), a total of 105 aneuploid and 62 

diploid results would have been required.  The number of samples available can only 

achieve a probability of distinguishing diploid from aneuploid of 0.75.  Analysis by area 

provides 46 samples and has equivalent probability of 0.8.  This calculated threshold 

was therefore used for initial analysis.  

ROC analysis revealed an area under the curve of 0.988 (insufficient data to 

calculate confidence interval) based on sample data and 0.951 (95%CI 0.89-1.00) based 

on area data.  The minimum distance value to identify the optimum threshold 

(balancing sensitivity and specificity) was 0.032, providing a sensitivity of 0.833 (95%CI: 

0.73-0.94) and specificity of 0.938 (95%CI: 0.87-1.00).  
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Figure 3.4 Receiver operating characteristic curve (blue line) for 3 or more signals data 
of all sample areas scored on FISH.  

 

Table 3.7 The possible cut-off points obtained from ROC analysis to be used as a 
threshold to define FISH aneuploidy.  

Cut off points Sensitivity Specificity 

3.50 0.96 0.62 

4.25 0.93 0.68 

5.25 0.93 0.75 

6.50 0.93 0.81 

7.25 0.90 0.81 

10.25 0.83 0.93 

13.75 0.80 0.93 

14.75 0.76 0.93 

17.50 0.76 1.00 

20.50 0.73 1.00 
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3.4.4 Copy number in ICM aneuploid samples 

In contrast to ICM DNA diploid samples, heterogeneous patterns of copy number 

change were evident in ICM DNA aneuploid dysplasia samples as demonstrated by 

variation in copy number for individual probes, centromeric chromosomal probes and 

differences in the proportion of nuclei displaying them (detailed count data in the 

appendix). Compiled data is shown in Figure 3.5. 

 

Figure 3.5 Percentage of nuclei with copy number of 3 or more in the ICM DNA 
aneuploid dysplasias.  
Boxplot (horizontal line: median; box length: interquartile range; whisker: smallest and largest 
values; o; outlier). n=12. 

 

FISH against centromeric loci on chromosomes 3, 7, 8, 11 and telomeric loci on 

chromosome 20p revealed relatively frequent copy number changes of three and four 

copies, found in between 10% and 30% of cells in all samples. Cells containing 2 copies 

were predominant (Figure 3.6 and 3.7). This pattern was also seen on the corresponding 

specific target loci on all chromosomes. Signal counts of five and more per nucleus were 

found in most cases but were detected at only low frequency, with a percentage of less 

than 5%. The highest copy number for any locus per nucleus was 12 but this was a rare 
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occurrence and cells with only one or two copies of each locus were predominant in 

most samples (Figure 3.6 to 3.9). Mean copy number per nucleus ranged from 1.32 to 

11.54 (appendix). Figure 3.8 and 3.9 show example of aneuploid samples. 

 

 

 

Figure 3.6: Example of compiled data for copy number (n) detected by FISH for 
chromosome 3 
The probes against 3q28 (upper panel) and the corresponding centromeric 3 probe (lower 
panel) on ICM DNA aneuploid samples (n=12) showing the percentage of nuclei with different 
copy numbers.  
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Figure 3.7: Further example of compiled data for copy number (n) detected by FISH for 
chromosome 8 
The probes against 8q24.3 (upper panel) and the corresponding centromeric 8 probe (lower 
panel) on ICM DNA aneuploid samples (n=12) showing the percentage of nuclei with different 
copy numbers..  
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Figure 3.8: Example of FISH copy number assessment for a single dysplastic lesion. 
Results for all 10 FISH probes on sampleS16, an ICM DNA aneuploid sample showing the 
main aberrations to be copy number 3 and 4. Nuclei with signals of more than 5 per nucleus 
detected mainly on chromosomes 3, 7, and 8. Centromeric or telomeric probes (upper panel), 
gene specific probes (lower panel). 
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Figure 3.9: Second example of FISH copy number assessment for a single dysplastic 
lesion. 
Sample S18, an ICM DNA aneuploid sample showing aneuploidy defined by FISH signals of 
three and more per nucleus detected on chromosomes 8, 20 and gene amplification for 
CCND1.  Centromeric or telomeric probes (upper panel), gene specific probes (lower panel). 
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3.4.5 Gene amplification 

Gene amplification was seen as tight clusters of overlapping signals, too many to 

count accurately. This was a relatively infrequent change seen only with EGFR and 

CCND1. Of the 12 dysplastic lesions, one contained a single area that demonstrated 

amplification of EGFR that was sharply demarcated and not seen in adjacent 

epithelium, was not present in separate tissue slices on the same slide and was not in the 

area showing the most severe dysplasia in routine stains (Figure 3.10).  

CCND1 amplification was found in four lesions of which one was the same lesion 

that showed EGFR amplification. Amplification was found in all three areas scored in 

one case (S18), five out of six areas in the second case (S20), two of four areas in the 

third case (S17) and only one of three areas assessed in the fourth case (S13). A sharp 

demarcation between areas of amplification and adjacent areas without gene 

amplification was observed in two cases. CCND1 amplification was more frequent in 

the single sample (S20) that showed both EGFR and CCND1 amplification, where 

clustered signals were detected in five areas compared to only one area in which EGFR 

amplification was found (Figure 3.11). 
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Section Bi  Section Biii 

 
Section Bii 

 

Figure 3.10 The single lesion showing EGFR amplification.   
Upper panel: H&E of S20 showing the six areas for scoring. EGFR amplification was observed 
in section Bii only and on each sidet issue in Bi and Biii were FISH diploid. 
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Figure 3.11  The sample showing amplification of EGFR and CCND1  
 

Upper panel shows that sample S20 was the only sample that showed amplifications of both 
EGFR and CCND1. Lower panel shows example of CCND1 amplification seen by clustered 
FISH signals for CCND1 in section Aii of sample 20.  This area was FISH diploid as assessed 
by the probe against EGFR. Red signals CCND1, green signal centromeric C11. 
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3.4.6 Comparison between detection of aneuploidy by ICM and FISH 

The results of ICM DNA ploidy and FISH were compared to determine whether 

FISH had successfully detected the expected copy number and cell count to account for 

the total nuclear DNA content seen in the ploidy histograms. The total aneuploid cells 

detected by FISH ranged from 5% to 59%, and FISH detected fewer aneuploid cells 

from the aneuploid stem peak than ICM DNA ploidy in 8 cases.  This data is shown in 

Table 3.8 together with the values of parameters acquired from ICM DNA ploidy 

analysis.  

 

Table 3.8 Comparison between ICM DNA ploidy parameters and FISH on ICM DNA 
aneuploid 
Comparison using the calculated aneuploid threshold of 15% copy number 3 or 4.  The 
misclassified sample discussed below in section 3.4.7 is in red 
 

Case 

no. 

Diploid 

index of 

stem peak(s) 

on ICM 

% epithelial 

cells in stem 

peak on ICM 

% 5c 

exceeding 

frequency on 

ICM 

Total % 

aneuploid 

epithelial 

cells on ICM 

Total % 

aneuploid 

cells on 

FISH (all 

probes) 

No. of FISH 

probes 

showing 

aneuploidy 

S9 
1.9 

2.2 

13 

3* 
1.00 17 33.7 10 

S10 
1.88 

2.2 

47 

8* 
4.0 59 5.0 0 

S11 1.1 29 0 29 6.7 4 

S12 1.6 10 0.4 10.4 12.0 9 

S13 1.8 42 3.1 45.1 27.4 10 

S14 2.0 22 1.8 23.8 29.7 10 

S15 3.5 87 11.1 87 47.4 10 

S16 2.8 11 11.5 22.5 59.3 10 

S17 1.8 44 8.9 52.9 10.7 6 

S18 1.6 15 0.8 15.8 24.2 9 

S19 2.18 51 11 62 19.6 9 

S20 1.6 66 10.1 76.1 37.7 9 

* peaks do not meet diagnostic threshold of 10% for diagnosis of aneuploidy alone, diagnosis 
based on larger peak.  
 



FISH 

 

 145 

 

 

 
Figure 3.12 Example comparison between ICM DNA ploidy and FISH for sample S17.   
Ploidy histogram plotting number of nuclei against DNA content (as optical density) in lower 
panel; 2c indicates diploid DNA complement. An aneuploid peak comprising 44.4% of the 
epithelial nuclei is present at diploid index of 1.78 and there is a 5c-exceeding rate of 8.9% of 
the total epithelial nuclei, both of which individually define aneuploidy.  FISH on the same 
sample (upper panel) shows CCND1 FISH signals (in red) ranging from 3 to 15 signals per 
nucleus, mean signals 8.57 (raw data shown in appendix).  
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3.4.7 Evaluation of FISH threshold value to discriminate diploid and aneuploid 

samples 

When the calculated threshold of 15% of cells with copy number 3 or 4 was applied 

to the raw data, 8 cases were classified as diploid and 11 as aneuploid, misclassifying one 

aneuploid sample (S10) as diploid. All ICM DNA diploid samples were confirmed as 

diploid using all in situ probes so that the results were concordant between FISH and 

ICM in 18 out of 19 samples (94.7%, Table 3.9).  

 

Table 3.9 Concordance between assessment of DNA ploidy by FISH and ICM  
Concordance with ploidy status defined by threshold count of 3 and 4 of more than 15% for 
any one probe 

 ICM (reference)  

Aneuploid (+) Diploid (-) Total 

FISH (test) 

 

Aneuploid (+) 11 0 11 

Diploid (-) 1 7 8 

Total 12 7 19 

Agreement 94.7%; κ value 0.89 

 

When a 10% threshold limit was applied following ROC analysis (see Table 3.11 

below) the ICM DNA aneuploid case misclassified as diploid by FISH using the 15% 

threshold was classified as aneuploid, in agreement with the reference test.  However, 

one sample (S1) classified as diploid at the 15% threshold was classified as aneuploid by 

FISH.   

Based on the calculated threshold of 15% (section 3.4.3), one ICM aneuploid 

sample (S10) did not show copy number imbalances at any of the chromosomal loci 
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investigated and had a borderline percentage of nuclei with 3 or more signals at 13% for 

the telomeric probe against chromosome 20 only (Table 3.10).   

When the 10% threshold was applied, the sample S10 had 4 probes producing 

aneuploid results.  Overall the data in Table 3.10 shows that ICM DNA aneuploid 

samples have high proportions of cells with FISH copy number 3 or more whichever 

threshold is applied.   

 

Table 3.10 Percentage of nuclei showing copy number 3 or more on all probes for ICM 
aneuploid samples.  
The misclassified sample S10 discussed below is shaded. 
 

Sample Cen3 TP63 Cen7 EGFR Cen8 PTK2 Cen11 
CCN

D 

Tel 

20p 
MMP9 

S9 45.5 42.5 28.0 32.0 47.5 34.0 29.5 33.0 41.5 47.5 

S10 9.0 7.5 10.5 6.0 6.5 9.5 10.5 12.0 13.0 6.0 

S11 5.0 6.0 21.5 17.5 15.5 15.5 6.5 7.5 3.5 2.0 

S12 9.5 16.0 28.0 23.5 17.0 21.0 18.5 21.0 30.5 30.5 

S13 57.3 51.5 34.5 37.5 21.5 45.0 17.5 64.0 40.0 49.5 

S14 37.5 26.0 23.5 25.0 61.0 29.0 33.5 37.0 37.5 38.0 

S15 36.5 32.0 39.5 34.5 72.5 41.5 31.5 64.0 71.0 50.5 

S16 94.0 85.0 69.0 22.5 52.0 91.0 66.0 36.5 43.0 34.0 

S17 15.5 10.0 38.0 6.0 10.0 13.0 28.2 72.9 61.5 18.5 

S18 21.5 59.5 16.5 23.0 49.5 32.5 13.5 89.7 30.0 14.0 

S19 25.7 16.4 25.0 18.5 17.0 19.5 11.5 21.0 24.5 17.5 

S20 29.5 92.0 10.0 73.0 79.0 68.5 55.0 83.0 58.5 48.5 

 

The 12 samples known to be aneuploid on ICM DNA ploidy analysis showed a 

range of copy number aberrations that varied between loci and chromosomes (Table 

3.11). Five samples were consistently aneuploid for all targeted probes. Most were 

confirmed as aneuploid by more than one in situ probe but one (S10) proved to have a 

normal diploid copy number for all probes tested in all 3 areas assessed so that FISH 

failed to detect known aneuploidy in this one lesion. In 6 ICM aneuploid samples, 
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between 1 to 6 probes showed FISH diploid. The classification result by individual 

probe is shown in Table 3.11. The effect of applying the 10% ROC threshold is shown 

by highlighting the changed results in red.  

 

Table 3.11 Application of the calculated threshold detection limit of 15% 
Application of 15% threshold to determine FISH ploidy status for all samples using all 10 
probes.  The results changed to aneuploid by applying the 10% threshold are shown in red.  
 

No 

Chromosomes 
Total 

probes 

Dx 

Cen
3 

3q2
8 

Cen
7 

7p1
1.2 

Cen
8 

8q2
4.3 

Cen
11 

11q1
3.3 

Tel
20p 

20q
13.1

2 
D A 

S1 D D D D D D D D D D 10 0 D 

S2 D D D D D D D D D D 10 0 D 

S3 D D D D D D D D D D 10 0 D 

S4 D D D D D D D D D D 10 0 D 

S5 D D D D D D D D D D 10 0 D 

S6 D D D D D D D D D D 10 0 D 

S7 D D D D D D D D D D 10 0 D 

S9 A A A A A A A A A A 0 10 A 

S10 D D D D D D D D D D 10 0 D 

S11 D D A A A A D D D D 6 4 A 

S12 D A A A A A A A A A 1 9 A 

S13 A A A A A A A A A A 0 10 A 

S14 A A A A A A A A A A 0 10 A 

S15 A A A A A A A A A A 0 10 A 

S16 A A A A A A A A A A 0 10 A 

S17 A D A D D D A A A A 4 6 A 

S18 A A A A A A D A A A 1 9 A 

S19 A A A A A A D A A A 1 9 A 

S20 A A D A A A A A A A 1 9 A 

Total 
A 

9 9 10 10 10 10 8 10 10 10 n/a n/a n/a 

No: sample number; D diploid; A aneuploid; Dx overall diagnosis;  

Cen: centromeric; Tel: telomeric 
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The ICM DNA ploidy histogram for the two borderline samples that give different 

results depending on the threshold cut off for counts of 3 and 4 are shown in Figure 

3.13.   

 

Figure 3.13 ICM DNA ploidy histograms for FISH misclassified samples 

Sample S10 left, sample S1 right 

Sample S10 has a good coefficient of variation of 2.98 for the diploid peak and a 

major aneuploid peak at diploid index of 1.88 containing 47% of the total of 610 nuclei 

classified, a minor peak at diploid index 2.2 containing 8.2% of nuclei and a 5c 

exceeding rate of 3.98.  The ICM DNA ploidy classification is aneuploid based on both 

the presence of the major peak exceeding 10% and a 5c exceeding rate above 1%.  This 

sample is clearly DNA aneuploid.   

Sample S1 has a poor coefficient of variation of 9.9 for the diploid peak and a series 

of minor peaks in total comprising 9.98% of the total epithelial nuclei with an average 

diploid index of 1.95 and a 5c exceeding rate of 0.  The high CV of the diploid peak is 

not accounted for by poor sample because the three minor peaks are well defined.  This 
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histogram is therefore borderline for aneuploidy because the aneuploid cell total just 

fails to exceed 10% of the total.   

3.4.8 Comparison between dysplasia and FISH results 

The concordance between dysplasia grade and FISH results is shown in Table 3.12 

and 3.13 in terms of the number of probes aneuploid and the final FISH diagnosis.  

 
Table 3.12 Number of probes producing aneuploid results by dysplasia grade using the 
calculated threshold of 15% and the ROC threshold of 10%.  
 

Dysplasia 

grade 

Sample 

number 

ICM DNA 

ploidy 

Number of 

FISH probes 

showing 

aneuploidy at 

15% 

threshold 

FISH 

diagnosis at 

15% 

threshold 

Number of 

FISH probes 

showing 

aneuploidy at 

10% threshold 

FISH 

probes 

diagnosis at 

10% 

threshold 

Mild S1 Diploid 0 D 2 A 

Mild S2 Diploid 0 D 0 D 

Mild S9 Aneuploid 10 A 10 A 

Mild S10 Aneuploid 0 D 4 A 

Mild S11 Aneuploid 4 A 4 A 

Mild S12 Aneuploid 9 A 9 A 

Moderate S3 Diploid 0 D 0 D 

Moderate S5 Diploid 0 D 0 D 

Moderate S6 Diploid 0 D 0 D 

Moderate S7 Diploid 0 D 0 D 

Moderate S13 Aneuploid 10 A 10 A 

Moderate S14 Aneuploid 10 A 10 A 

Moderate S15 Aneuploid 10 A 10 A 

Moderate S18 Aneuploid 9 A 9 A 

Moderate S19 Aneuploid 9 A 9 A 

Moderate S20 Aneuploid 9 A 9 A 

Severe S4 Diploid 0 D 0 D 

Severe S16 Aneuploid 10 A 10 A 

Severe S17 Aneuploid 6 A 6 A 

A aneuploid; D diploid 
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Table 3.13 Compiled data for concordance between dysplasia grading and FISH defined 
by threshold count 3 and 4 of more than 15% for any probe 
 

 
FISH  Mean FISH 

aneuploid* Diploid Aneuploid Total 

Dysplasia 

grade 

Mild  3 3 6 3.8 

Moderate 4 6 10 5.7 

Severe 1 2 3 5.3 

 Total 8 11 19 n/a 

* Mean number of FISH probes aneuploid per sample 

Agreement 57.9%; κ value 0.06 
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3.5  Discussion 

3.5.1 Samples 

In this study, cases were selected to represent all grades of dysplasia. These samples 

are independent from the sets described in the other chapters and were initially selected 

as a pilot study or training set to evaluate FISH. Information on malignant 

transformation of all cases was not known.  

3.5.2 Probes 

Previous investigators in this area have traditionally focused on genes that are 

thought to play specific roles in malignant progression or in carcinoma. In this study a 

different approach has been taken to select chromosomal loci.  We have selected 

chromosomal regions on the basis of amplification and not the genes located within 

them using data from a previous longitudinal analysis described in section 2.3.1 in 

combination with published data.  

A total of the 5 most frequently amplified chromosomal locations suitable for FISH 

were selected from our wider panel (see Table 3.2) to produce our test set of 3q28, 

7p11.2, 8q24.3, 11q13.3 and 20q13.12.  The sequences within or adjacent to these 

regions selected for probe construction were within the following genes respectively; 

TP63, EGFR, PTK2, CCND1 and MMP9. All these genes are involved in the essential 

processes in development of cancer according to Hanahan and Weinberg (2011). 

However, these genes were chosen for their good characterisation and location rather 

than any putative role in malignant transformation of oral potentially malignant diseases.  

While the genes for EGFR and CCND1 have been used in previous similar studies 

(Taoudi Benchekroun et al., 2010; Poh et al., 2012), the probes for 3q, 8q and 20q are 
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novel for this purpose. Two other studies have evaluated EGFR copy number using 

dual coloured FISH probe from Vysis, which have been used frequently in studies of 

other tumour types. These probes were incompatible with our fluorescence microscope 

photography system. However, results obtained with these probes should be 

comparable to our studies because probes are similarly sized (Vysis 303kb at 7p12; 

Cytocell 295kb at 7p11.2) though the sequences differ.  

With each specific locus, a paired probe on the same chromosome was added in an 

attempt to determine whether amplifications detected reflected duplication of large 

pieces or whole chromosomes. Four were centromeric and one telomeric. Centromere-

specific probes contain short repetitive sequences that are ideal to assess numerical 

aberrations in interphase analysis, but provide no data on presence of chromosome 

arms. Cross-hybridisation is a recognised problem with some centromeric probes 

(Kearney, 2001), thus for chromosome 20, a telomeric probe was selected. Although 

telomeres shorten with each cell division, as many as 90% of human cancer cells have 

telomeres of equivalent length to the adjacent normal tissues (Shay and Wright, 2011). 

Increase in centromeric probe copy number is normally considered to indicate 

chromosomal duplication, though this is an assumption (Werner et al., 1997; Tibiletti, 

2007).  

3.5.3 Method 

We have successfully carried out FISH, which follows the standard procedure 

commonly applied in a cytogenetic laboratory. Through a series of preliminary 

experiments, we optimized the duration of incubation in tissue pre-treatment solution 

reagent 1 (Cytocell, Cambridge UK) and enzyme digestion (section 3.3.3). These steps 

are critical for successful FISH on FFPE section to unmask the nucleic acids and allow 
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the probe to penetrate and hybridize to the target. It is highly dependent on the tissue 

types and formalin fixation times and optimization is necessary due to inter-laboratory 

variations on tissue handling (Chin et al., 2003).  

The recommended minimal number of cells scored should involve 100 nuclei 

(Summersgill et al., 2008), which we have met and exceeded by evaluating 200 nuclei in 

this study. This is a common practice in the literature and this study has counted more 

cells than 2 previous studies of oral premalignant lesions (Taoudi Benchekroun et al., 

2010; Siebers et al., 2013), and the same number as one (Poh et al., 2012).   

3.5.4 Results 

One case failed in situ hybridisation after multiple attempts using probes targeting 

chromosomes 7 and 3. Possible reasons include tissue fixation using formalin and the 

age of the specimen. Tissue fixation might had been handled differently or the use of 

non-buffered formalin as fixative.  Potential reasons for this are included in the 

discussion of DNA quality in section 2.5.1, QGPlex and qPCR chapter but the failure 

remains unexplained.  

3.5.5 ICM DNA diploid samples 

All samples had known ICM DNA status prior to FISH.  ICM DNA diploid 

samples had FISH copy number counts consistent with this reference standard diploid 

status.  Only a signal count of 5 or higher, which was not found, would be an absolute 

indicator of aneuploidy based on FISH alone.  Whether copy numbers of 3 and 4 

represent low copy number gain cannot be assessed by comparison with DNA ploidy 

data without risking a circular reasoning error. The proposed threshold for definition of 

aneuploidy is discussed in section 3.4.3.   
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3.5.6 ICM aneuploid samples 

It is striking that aneuploid samples rarely showed copy number gains of five or 

higher. In this study, counts from 10 probes have been used and these results have to be 

compiled into single diagnoses of diploid or aneuploid to apply to a single dysplastic 

lesion. The multiple areas counted and multiple probes used increased the number of 

aneuploid cells detected and the additional loci gave added confidence to the 

categorization of each sample. Amplification involved several loci for all samples that 

were aneuploid except one, which has no counts above copy number 5.   

Stem lines of aneuploid cells on ICM DNA ploidy show increases of 50% or more 

DNA content, and molecular analysis reveals this is amplification at multiple loci, so 

that it would be expected that there would be multiple chromosomes duplicated.  In our 

experiments all aneuploid samples, apart from one, were revealed as aneuploid by 

multiple probes (see Table 3.11).  Seven probes detected all 10 of these cases, two 

probes detected 9 and one 8.  In 4 of the 5 paired sets of probes both the probe against 

the arm and centromere/telomere gave the same results. Only the chromosome 11 pair 

was not concordant and the discrepancy was only seen in 2 of 10 samples.  

Siebers et al. (2013) using only two probes claimed equivalent predictive value to 

ICM DNA ploidy.  If we had used only 2 probes against the same two loci at EGFR 

and centromeric 7 we would have achieved the same results and the same results could 

have been achieved with any 2 of 7 probes.  If a reduced FISH panel were to be 

proposed to achieve the same result it would be logical to select the probes that reveal 

the highest copy number changes or gene amplification to increase the signal to noise 

ratio and allow smaller numbers of cells to be counted.  In our experiments, the three 

probes giving the highest copy number variations were, in decreasing order 
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chromosome 20, 11, 3 and the two probes revealing gene amplification were CCND1 

and EGFR.  However, these latter probes only produced high copy number in a four 

cases.  

The concordant results obtained with pairs of probes against the same 

chromosomes suggest that the karyotypic abnormality in these OPMD may well include 

duplication of whole chromosomes. This would be consistent with the suggestion that 

most chromosomal anomalies in cancer arise through non-disjunction, but amplification 

of smaller segments cannot be excluded.  Further support for our suggestion of whole 

chromosome duplication was published by Taoudi Benchekroun et al. (2010), who, 

though they did not report the results for the single centromeric 7 probe separately 

from EGFR, did comment that counts of centromeric 7 and EGFR were usually 

balanced.  

3.5.7 Gene amplification 

Amplifications involved only EGFR and CCND1. Interestingly, the sites of EGFR 

amplification in the one affected sample did not correlate with the severe dysplastic 

changes seen on routine histology and the zone of amplification was sharply demarcated 

from adjacent nuclei with normal copy number. Moreover, of 3 tissue slices that 

comprised this sample, both the others were diploid throughout, including in the area of 

severe dysplasia. Distinctive patches of gene amplification were also seen for CCND1 in 

4 samples.  In this case the sites of the changes did correlate with the location of severe 

dysplasia.   

 These sharply demarcated zones of genetically distinct cells are probably a 

reflection of a clonal structure within the epithelial dysplasia. It is generally accepted that 
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the sharply defined edges of dysplasia in epithelium seen on routine histopathology 

reflect clonal boundaries but there is little molecular evidence for this.  Heterogeneity in 

loss of heterozygosity within lesions has been shown very recently using multiple 

markers, but the study design was not able to reveal clonal structure (Gomes et al., 

2015).  However, this clonal structure seems likely has previously been suggested to 

exist in oral dysplasia using X-linked histochemical methods (Seddon, 1993). 

There are relatively few published studies on gene amplification in oral dysplasia 

(Taoudi Benchekroun et al., 2010; Poh et al., 2012). EGFR and CCND1 amplifications 

have been investigated in a retrospective study on 35 oral dysplastic lesions and high 

copy number was reported to be strongly associated with malignant transformation 

(Poh et al., 2012). That study also showed amplification of EGFR and CCND1, but in 

fewer cases than in the present study. In another study, among 20 oral premalignant 

lesions that were FISH positive for EGFR, only one had gene amplification (Taoudi 

Benchekroun et al., 2010).     

3.5.8 Threshold evaluation 

The few comparable published studies have used similar diagnostic criteria for 

aneuploidy to the present work. However, diagnostic criteria have not been standardised 

and the different approach taken to classify FISH aneuploid positive from negative cells 

and lesions in those studies reflect the lack of accepted standardised criteria.  We have 

attempted to define a threshold criterion in this training dataset to be tested in a future 

study.  
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3.5.8.1 Low level copy number gain 

All control known diploid nuclei in the connective tissue of all samples produced 

FISH copy number counts of 2 or less.  However, ICM DNA diploid dysplasia samples 

produced varying numbers of cells with counts of 3 and 4.  This supports the 

contention that the counts of 3 and 4 represent aneuploidy but with only low level copy 

number gain and that the division of samples into diploid and aneuploid by FISH might 

not be possible.  We have attempted to determine whether a single threshold value for 

the percentage of these intermediate counts can distinguish ICM DNA aneuploid from 

diploid samples.  This would rely on the percentage of cells with 3 or 4 signals being 

higher in low level copy number gain than in physiological copy number increase 

accounted for by cells in S and G2 phases.  There is no evidence to support or refute 

this hypothesis.    This is common in many studies of diagnosis by FISH and defining a 

threshold is the standard approach to devising a classification regime (Kearney, 2001). 

Other workers have described copy number of 3 or 4 as low-level copy number 

gain (Poh et al., 2012), trisomy and tetrasomy (Siebers et al., 2013) and trisomy or 

polysomy (Taoudi Benchekroun et al., 2010).  Our copy number counts of 3 and 4, 

though lower than in our ICM DNA aneuploid samples were in general higher than in 

our ICM DNA diploid samples, in which a FISH copy number count of 4 was very 

infrequent (Table 3.4 and 3.5). Trisomy, tetrasomy and polysomy are states with 

multiples of complete chromosomal complement and our data supports Poh et al. 

(2012) in defining cases with copy number variation of 3 and 4 as having low copy 

number gain.    
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3.5.8.2 Mean + 3SD Threshold 

We have attempted to calculate what percentage of cells with copy number 3 or 

with copy number 3 or 4 might be used as a definition of aneuploidy using ICM ploidy 

status as the reference standard.  We applied a threshold calculated in two ways. The 

first was the maximum mean percentage of nuclei with signal counts of 3 or 4 plus 3SD 

as described in section 3.4.3. This approach has been established and used in various 

tumours by other workers (Bentz et al., 1994; Qian et al., 1996; Veltman et al., 2000; 

Schwarz et al., 2008). Using this classification threshold, cases were classified as 

aneuploid or diploid and the results are shown in Table 3.11. One incorrect 

classification was made, a case defined as aneuploid by DNA ICM was classified as 

diploid by FISH.  Using the diagnostic criteria applied by Poh et al. (2012), this sample 

(S10) would have been classified as low copy number gain.  Data from this case shows 

that copy number counts (Table 3.4 and 3.5) were low in comparison with all other ICM 

DNA aneuploid samples and with all probes. 

In devising a threshold for a clinical test, it was the intention to ensure that no 

diploid cases were incorrectly diagnosed as aneuploid.  This might lead to patient 

overtreatment.  The threshold was therefore set at a high level based on the highest 

mean count found in any sample with any probe, with a generous margin of threefold 

SD and a counting error added (section 3.4.3).  The threshold was calculated using 

counts of 3 and 3 or 4 but both calculations produced very similar thresholds and the 

higher value was selected. 

3.5.8.3 Receiver Operating Characteristic analysis 

The second approach was to apply ROC analysis, which is based on all signal 

counts of 3 or higher.   Application of ROC to the present data risks bias because of 
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low sample numbers and the curves only apply to comparison with ICM DNA ploidy 

results as the reference standard.  The power calculation showed that there was 

insufficient data to analyse by sample.  Analysis was possible using single areas and the 

area under the curve is very high, indicating good discrimination of diploid and 

aneuploid areas by FISH, consistent with the predictive values.  Analysis indicated a 

threshold value of 10% but applying this correctly classifies all ICM DNA aneuploid 

samples but generates one false positive, by reclassifying one ICM diploid sample as 

aneuploid.  Larger numbers of cases are required to define the threshold more 

accurately but values in the range 10-15% can be tested in future studies.  A threshold 

of 10% was used by Poh et al. (2012) without calculation, adopted from earlier studies in 

lung carcinoma. There are no published data on threshold calculations in other 

publications (Taoudi Benchekroun et al., 2010; Siebers et al., 2013). Overall the ROC 

analysis shows that the FISH assay has very good concordance with ICM DNA ploidy, 

good sensitivity and specificity.   

Inspection of the DNA ploidy histograms for the two samples that were differently 

classified with the two thresholds (Figure 3.13) shows that one (S10) is a clear case of 

DNA aneuploidy with a predominant aneuploid peak, a minor aneuploid peak at DI and 

high 5c exceeding rate. The other sample (S1) was borderline and had been selected 

because of its borderline nature.  A high CV for the diploid peak is often found in 

aneuploid cases and the internal constituent peaks cannot be separated at the threshold 

of detection of the system.  This case had been diagnosed using the older camera but no 

tissue remained for re-analysis.  The broad peak across the S phase region and extending 

to 5c comprises several small peaks.  This suggests that there are several minor clones of 

aneuploid cells within the lesion.  It is not surprising that this case is borderline on FISH 
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as well.  No direct comparison between ICM DNA ploidy and FISH can be made 

because is not known whether the increased DNA content of the cells is accounted for 

by amplification of multiple chromosomes or a few chromosomes and only a small part 

of the sample has been subjected to FISH.   

3.5.9 Comparison between ICM and FISH results 

It was the intention of these experiments to develop a FISH panel to equal or better 

the predictive value of ICM DNA ploidy, taken as the reference test. The equivalent 

predictive value has been almost equalled using 5 targeted and 5 chromosomes specific.  

Although this panel of 10 probes falls slightly short of the sensitivity of DNA ICM, it 

exceeds that of conventional dysplasia grading on the basis of published literature 

(Mehanna et al., 2009).   

Analysis by FISH is always dependent on the counting technique used. In this study 

we have counted continuous runs of basal and supra-basal cells up to five cell layers 

from the basement membrane to include the stem cell compartment and transit 

amplifying population.  Including several cell layers allows shorter lengths of epithelium 

to be assessed and has allowed demonstration of some internal clonal structure within 

dysplasias. Inclusion of prickle cells would have been possible but has disadvantages 

because their nuclei are larger and would be more prone to false negative counts caused 

by partial loss of nucleus on sectioning.  Apoptotic cells are also a feature of dysplasia 

and it is possible that the most aneuploid cells undergo apoptosis in the basal layers, 

leaving more normal cells capable of maturation to form the upper layers.  For these 

reasons only basal and parabasal cells were counted.   
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Recently, Siebers et al. (2013) assessed chromosomal instability using FISH with 

centromeric probes against chromosomes 1 and 7 and showed malignant 

transformation in 47.1% of FISH aneuploid leukoplakia, a similar predictive value to the 

43.5% achieved by ICM in that centre. Using only two markers, agreement on ploidy 

status was only 63% compared to the present study at 92%, which also included a 

centromeric C7 probe. Data from the present study clearly shows the value of testing 

additional loci.  

There is a mismatch between the results seen on ICM DNA ploidy and FISH (see 

Table 3.8). In DNA ploidy many cells seem to be aneuploid but FISH sometimes 

detects fewer, sometimes more. ICM DNA ploidy has an approximate 1% detection 

threshold for the total amount of DNA amplified or deleted providing the CV of the 

diploid peak is below 5% (manufacturer’s data), a high degree of sensitivity.  In our 

experiments, some ICM DNA aneuploid samples contained very large numbers of 

nuclei with large increases in DNA content that were not seen on FISH (S10, S11, S17; 

see Table 3.8).  However, the two techniques are not directly comparable.  ICM DNA 

ploidy analysis measures total nuclear DNA as a continuous variable. FISH counts 

discrete contributions towards the total DNA content based on specific loci.  The 

amount of DNA amplified per signal may vary between samples, probes and possibly 

between cells depending on the karyotypic abnormality.  It would be expected that 

FISH would always detect fewer cells than ICM, as it assesses a limited no of loci 

whereas ICM DNA ploidy detects all abnormal cells regardless of loci sites of 

amplification.  It is possible that FISH might correlate better with ICM ploidy if only 

centromeric probes were used. Centromeric probe binding is likely to indicate larger 

duplications and amplifications than probes targeted to chromosome arms because 
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presence of a centromere usually indicates a whole or relatively intact chromosome and 

centromeric probes are widely used in cancer research to enumerate chromosomes 

(Manning et al., 2014).   

In all our samples, ICM DNA ploidy analysis has a high signal to noise ratio.  

Aneuploidy is easy to detect (Figure 3.12).  The presence of peaks is obvious and large 

numbers of abnormal nuclei are present in samples of separated nuclei.  It is possible 

that nuclear separation for ICM DNA ploidy enriches for abnormal nuclei, but this does 

not appear to have been investigated. Conversely, FISH detects very small numbers of 

abnormal cells in a smaller sample despite the fact that dysplastic lesions are considered 

to be clonal and every cell should show some degree of similarity in its karyotype.  The 

problem of low copy number gain (refer to section 3.4.2) has more of an effect on 

classification in FISH whereas in ICM DNA ploidy it only affects sensitivity.  

The method of tissue sampling may also account for part of the difference between 

techniques.  In any tissue section for FISH, the nuclei will have been sectioned leading 

to loss of DNA so that the signals detected always reflect the minimum possible copy 

number. Section thickness was chosen to produce the minimum overlapping nuclei so 

that each signal could be confidently ascribed to one nucleus, but this has a cost in loss 

of nuclear material in the thinner sections.  Only short sections of epithelium could be 

counted and these were selected based on dysplasia.  However, it is recognised that 

there is an incomplete correlation between dysplasia and ICM DNA ploidy results (refer 

to ploidy chapter, Table 4.6) and in one of our samples we demonstrated EGFR 

amplification in an area without dysplasia.  Sample preparation for ICM DNA ploidy 

uses thicker sections and much longer lengths of epithelium, usually 10mm or more and 



FISH 

 

 164 

up to 3000 cells can be assessed, providing a much more representative sample without 

the risk of selection bias.  

Addition of further loci might be thought to increase the predictive value of the 

FISH panel but with diminishing returns, as the additional probes selected would target 

less frequently amplified loci.  However, we have shown that almost all probes produce 

the same result in ICM DNA aneuploid samples (Table 3.11) and that the number of 

probes could be reduced without compromising the results.  A similar suggestion was 

made by Siebers et al. (2013) despite the fact that the correlation in that two probe study 

was lower than in the present work.  To increase predictive value, a better strategy 

would appear to be to reduce the panel but add probes deliberately targeted against less 

frequently amplified regions.   

It is not possible to extrapolate from the data comparing dysplasia grade and FISH 

results shown in Table 3.12 and 3.13 because samples were selected to include a range 

of dysplasia grades and DNA ploidy status.  The compiled results do not reflect the 

agreement found in our previous study (Sperandio et al., 2013) for this reason.  The 

number of probes producing aneuploid results per sample is similar in moderate and 

severe dysplasia but the marked differences between samples prevent any meaningful 

comparison.  ICM DNA ploidy is a better predictor of FISH ploidy status than 

dysplasia grade.   

3.5.10 Conclusion 

In summary, using a panel of 10 FISH probes we have shown that the number of 

readily identifiable and definitely aneuploid cells within even grossly aneuploid 

epithelium is relatively small and high copy number gain at any individual locus is 
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relatively rare. The detected changes appear to represent relatively large chromosome 

duplications and the majority of ICM DNA aneuploid samples showed copy number 

gains for almost all probes.  FISH was able to demonstrate sharply delineated areas 

within zones of epithelial dysplasia between which the copy number aberrations for 

individual loci differ, providing evidence of an internal clonal structure before the 

development of cancer.   

This study has used the broadest panel of FISH probes for this purpose to date.  

We suggest that larger panels may not produce better results in terms of a clinical test to 

predict transformation, but the data has provided valuable novel data on the internal 

structure and genomic variation with in oral dysplastic lesions to inform design of future 

molecular diagnostic methods. 
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 : DNA Ploidy CHAPTER 4

 

4.1 Investigative plan for ICM DNA ploidy experiments 

DNA ploidy alone has been proved as good as the best dysplasia grading reported 

in experiments performed previously in this laboratory.  The aim of this section was to 

test tissue preparation using new DNA ploidy equipment (section 4.3.4) and perform a 

new part retrospective part prospective analysis of DNA ploidy analysis against 

outcome with a 10 year follow up period.  Unlike the previous study (Sperandio et al., 

2013), that used a continuous series of low and high risk patients/lesions, the present 

work focused on clinically identified risk lesions (section 4.3.1.2) and, also unlike the 

previous study, DNA ploidy and dysplasia grading were performed on the same sample 

allowing calculation of combined predictive values (section 4.4.6).  

In comparison with the previous study, ICM DNA ploidy produced a valid result in 

many more samples using the new methods (Figure 4.4) and the methods performed 

well (section 4.4.2) and both dysplasia grading (section 4.4.4) and DNA ploidy analysis 

(section 4.4.5) were confirmed as a good predictors of malignant transformation.  It was 

possible in this study to calculate annual transformation rates (section 4.4.5.1).  The 

same methods were also used to perform ICM DNA ploidy analysis for comparison 

with FISH analyses reported in chapter 3. 
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4.2 Background 

4.2.1 The cell cycle and DNA content 

Abnormally controlled cell proliferation resulting from deregulation of cell cycle 

control is a common feature of human cancers. The control mechanisms for cell cycle, 

cell proliferation, cell division and growth are highly conserved to ensure the fidelity of 

the genome at replication. The cell cycle has two principal stages, interphase and cell 

division (Figure 4.1). While cell division involves mitosis (M phase) generating two 

identical daughter cells, the interphase is a period of preparation for division, which 

includes G1 (gap 1), S (synthesis) and G2 (gap 2) phases.  Most somatic cells are not in 

cycle and are said to be in phase G0. 

 

Figure 4.1 The cell cycle.  
Source: Biology of humans, 2nd Edition 2007; Pearson Prentice Hall 

 

With few exceptions, such as germ cells or multinucleate cells, the amount of DNA 

in each cell is uniform (Rabinovitch, 1994). In the resting G0 phase, diploid cells contain 

7.14 pg of DNA and enter the cell cycle through G1, a gap period during which the cells 

are preparing themselves for DNA synthesis (Ross et al., 2003). Cellular DNA content 
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continuously increases throughout S phase and becomes doubled to 14.28 pg per cell 

when the DNA duplication completes (Ross et al., 2003). Cells continue to grow in G2 

phase whilst DNA damage and replication errors are repaired before entering the 

mitotic cycle. A normal cell in the G0 or G1 phase has 2N or 46 chromosomes while 

those in the G2 and M phases have varying amounts with a maximum of 4N or 92 

chromosomes (Figure 4.2).  In multinucleate cells, such as muscle cells or osteoclasts 

each nucleus has a normal chromosome and DNA complement.   

4.2.2 DNA histograms and ploidy analysis 

Measurement of DNA content in individual cells provides information on DNA 

ploidy and for normal cells, indicates their position in particular phases of cell cycle 

(Darzynkiewicz, 2010). The principle of the analysis is the ability to accurately quantitate 

the DNA content of individuals cells by using dyes such as Feulgen stain, propidium 

iodine, cyanine dyes that bind DNA in a stoichiometric manner so that the amount of 

DNA within a cell can be inferred from the density of staining (Carey, 1994). Results 

from the analysis of nuclear DNA content are displayed as a frequency histogram of cell 

count versus the parameter measured (Figure 4.2). Two main techniques often used are 

image and flow cytometry that measure total dye binding through the parameters of 

integrated optical density (IOD) and fluorescence intensity respectively. Quantitation of 

nuclear DNA in image cytometry is conventionally scaled in ‘c’ units by comparison 

with DNA from reference cells (Haroske et al., 2001), where c denotes the normal 

diploid chromosomal complement, equivalent to 2N.  Though related to chromosomes, 

this is only a scaling convention indicating total DNA content, not true chromosomal 

status or chromosomal ploidy.  Image based ploidy analysis is therefore best referred to 

as DNA ploidy analysis.  
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Figure 4.2 DNA content in the phases of cell cycle and DNA histogram 
 A schematic of DNA content throughout the phases of cell cycle (left panel). A typical DNA 
histogram (right panel) plotted from the measurement of DNA content by flow cytometry. 
Debris on the left side of the histogram, derived from damaged or fragmented nuclei, outside 
the G1, S of G2 windows. (Adapted from www.phoenixflow.com) 

 

A DNA histogram is defined as DNA diploid when total DNA content clusters in 

the 2c or G0/G1 phases forming the main peak and the S, G2M phases of cell 

population are relatively small. The 2c value used in image cytometry is determined by 

measurement of an internal reference standard, commonly lymphocytes (Carey, 1994). 

The majority of cells in a non-neoplastic tissue or low-grade neoplasms have a diploid 

chromosome number and show a peak at 2c or G0/G1 phases on a DNA histogram 

with up to approximately 15% of the cells in the S and G2M phases. When another 

separate peak is found that differs substantially from the known diploid reference 2c or 

G0/G1 peak and cannot be accounted for by a 4c or G2 peak, the histogram is defined as 

aneuploid.  Aneuploidy is seen mostly in neoplasms but can also be found in occasional 

cells in apparently normal tissues. 

DNA aneuploidy is also defined by the presence of abnormal cells at 5c or higher 

DNA content, having nuclear DNA content markedly higher than the cell population in 

G2M phase (Haroske et al., 2001). Such cells likely represent non-proliferating abnormal 
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cells with different chromosomal complements and abnormally high numbers of 

chromosomes (Haroske et al., 2001).  

DNA index (DI), a ratio of mean or mode of samples’ DNA content in G0/G1 to 

the diploid reference has been described as a measure of the degree of DNA content 

abnormality (Shankey et al., 1993). However, it reflects only the relative position of 

diploid and abnormal peaks on a histogram, higher values are not ‘more aneuploid’ as 

aneuploidy is not measured on a simple scale of DNA content but depends on the 

number of peaks and their relative size in addition.  For normal tissue, the DI of cells in 

G0/G1 cell cycle is 1.0, cells in G2M phase have DI = 2.0 and the DI of the S phase is 

between 1.0 and 2.0.  

Variation in DNA binding between individual cells, sample preparation, presence of 

debris and instrument errors and precision all affect the accuracy of DNA content 

measurement. This variation is seen as the width of peaks in a histogram and is 

measured using the CV value, a measure of variation and the ratio between the standard 

deviation of the DNA content to the mean DNA content in a peak expressed as a 

percentage.  The CV is used as a measure for the quality of a histogram and the 

associated experimental procedures and is measured on the G0/G1 cell population peak, 

as these normal cells have a predictable normal distribution (Rabinovitch, 1994). A high 

CV indicates a broad peak and the CV, as a measure of variation, determines the 

confidence with which two closely placed peaks can be confidently separated and hence 

the resolution of the instrument, method and experiment in detecting abnormal peaks.  
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4.2.3 DNA ploidy in OPMDs 

In OPMDs, the role of DNA aneuploidy has been investigated in relation to its 

value as a predictor of malignant transformation (Torres-Rendon et al., 2009; Bradley et 

al., 2010; Bremmer et al., 2011; Siebers et al., 2013; Sperandio et al., 2013), association 

with the dysplasia grade (Grässel-Pietrusky et al., 1982; Saito et al., 1995; Pentenero et al., 

2009; Donadini et al., 2010; van Zyl et al., 2012) and to a lesser extent its correlation with 

other clinical parameters (Islam et al., 2010; Castagnola et al., 2011). 

Although the majority of the published studies have been retrospective involving a 

single cohort from a single centre, DNA aneuploidy has clearly been shown to be a 

potential marker of cancer progression from dysplastic epithelium (Table 4.1). More 

lesions that subsequently underwent malignant transformation were aneuploid 

compared to lesions that did not progress in all studies. In a study by Torres-Rendon et 

al., 33.3% (14/42 cases) of progressing dysplastic lesions were aneuploid compared to 

only 11.3% (5/44 cases) of non-progressing dysplastic lesions (p = 0.01). A similar 

finding was reported in another study, 45% of dysplastic lesions that underwent 

malignant transformation had abnormal DNA content versus 12% that did not (Bradley 

et al., 2010).  

Increased risk of cancer progression in OPMD has been reported with a hazard 

ratio between 3 and 7.5 in four studies and the relationship remained significant after 

adjustment to other clinical parameters suggesting its utility as an independent predictor 

of cancer development (Table 4.1) (Bradley et al., 2010; Bremmer et al., 2011; Siebers et 

al., 2013; Sperandio et al., 2013). In all studies, aneuploid OPMDs transformed to 

carcinoma in a shorter time than any diploid lesions that did so. Only a few studies have 

defined the positive and negative predictive values and reported values range from 26% 
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- 74% and 58% - 90% respectively (Torres-Rendon et al., 2009; Bremmer et al., 2011; 

Sperandio et al., 2013).  These are relatively high values for such a predictive test for 

cancer.   

The association between DNA ploidy and the presence and severity of dysplasia has 

been investigated using either image or flow cytometry on both formalin fixed and fresh 

frozen tissues (Grässel-Pietrusky et al., 1982; Saito et al., 1995; Pentenero et al., 2009; 

Donadini et al., 2010; van Zyl et al., 2012). It has been shown that aneuploidy was more 

frequent in dysplastic than non-dysplastic OPMDs (Saito et al., 1995; Pentenero et al., 

2009). Aneuploidy was significantly correlated with the degree of dysplasia as reported 

in one study (van Zyl et al., 2012); 13 % of mild, 31 % of moderate, and 54 % of severe 

dysplasia lesions were aneuploid (p=0.011). The differences in ploidy status were more 

significant when grouping the dysplasia into low-risk and high-risk categories (p = 

0.008) (van Zyl et al., 2012).  

As discussed in section 1.3.3.1, the anatomical site of OPMDs often correlates with 

the chances of finding epithelial dysplasia or malignant transition (Waldron and Shafer, 

1975; Banoczy, 1977; Kramer et al., 1978; Silverman et al., 1984). High-risk locations 

include floor of the mouth, being the site with greatest risk, followed by tongue and soft 

palate. Based on the link between DNA ploidy and malignant transformation and grade 

of dysplasia as described above, a few studies have sought to associate DNA ploidy with 

the high risk oral subsites. Higher frequencies of aneuploidy were found in dysplastic 

lesions from lateral/ ventral tongue (85%), floor of the mouth (50%) and soft palate 

(44%) compared to the gingiva (22%) and lower lip (25%) (p < 0.05) (Islam et al., 2010).  
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Table 4.1 Key studies on the association between DNA aneuploidy and malignant transformation in OPMD. 
All studies used image-based or cell cytometric methods. 
 

Sens: sensitivity; Spec: specificity  

PPV: positive predictive value; NPV: negative predictive value 
a Analysis included malignant transformation within 6 months of the index biopsy 
b Analysis excluded transformation less than 6 months of the index lesions 

 

 
Studies 

Findings Sens Spec PPV NPV 
Hazard ratio (95% CI) Time to progression 

for aneuploid samples Univariate Multivariate 

Torres-
Rendon et al. 
2009 

Aneuploidy was found in: 
14/42 (33.3%) progressed OED 
5/44 (11.3%) nonprogressed OED 
  

33% 
  

88% 74% 58%  - 
 
 
 

- 
 

Significantly shorter  
log rank, p = 0.003  

Bradley et al. 
2010 

Aneuploidy was found in: 
22/49 (45%) progressed OED 
6/50 (12%) nonprogressed OED 

     3.3 (1.5 -7.4) 
p=0.003 

Median = 49 months  
(95% CI: 34-86 months)  

Bremmer et 
al. 
2011 

7/13 progressed lesions were aneuploid  
(5 dysplastic and 2 nondysplastic) 

54%  
 

60% 26% 
 

83% 3.7 (1.1-13.0) 
p =0.04 

7.1 (1.6 -30.5)  
p =0.008 

Shorter time to 
progression 
log rank, p=0.0001  

Siebers et al. 
2013 

Cases underwent malignant transformation: 
10/23 (43.5%) were aneuploid  
6/79 (7.6%) were diploid  

    7.2 (2.61-20.03) 
p < 0.001 

5.4 (1.82-15.77)  
p =0.002 

Shorter survival  
 

Sperandio et 
al. 
2013 

Cases underwent malignant transformation: 
20/59 (34%) aneuploid  
10/161 (6%) diploid  
2/53 (4%) tetraploid 

65%  
 

75% 39% 
 

90% a 7.4 (3.4 -15.9) 

p< 0.001 
b 5.1 (1.8 -14.2) p 
=0.002 

 Transformed more 
rapidly   
log rank: x2 = 44.25  
df = 2, p < 0.0001 
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There appear to be differences in the equipment and software used for DNA ploidy 

analysis as revealed by their predictive values.  It seems all systems can identify 

aneuploidy and show a relationship to malignant transformation.  However, the negative 

predictive values differ widely.  Using one system (Bradley et al., 2010) the association 

between aneuploidy and carcinoma development was clear but the negative predictive 

value of a diploid result was not high enough to propose DNA ploidy as a clinical test 

because eventually almost all diploid and tetraploid cases underwent malignant 

transformation in a follow up period of 12 years. The best predictive values for use in a 

clinical context are reported by Sperandio et al. (2013), in which the transformation rate 

for diploid and tetraploid cases was only 5%.  This high negative predictive value is 

achieved at the cost of a slightly reduced positive predictive value for aneuploid lesions 

in comparison with the study of Bradley et al. (2010).  However, the requirement for a 

clinically valid test is the widest possible difference between negative and positive 

values.  Discrepancies between studies most likely reflect methodological differences, 

though the study populations may also account for part of the difference because the 

overall transformation rate in the study by Bradley et al. (2010) was higher. These 

differences also raise the possibility that techniques suitable for clinical use could be too 

sensitive and identify low levels of aneuploidy that do not affect transformation. The 

diagnostic criteria need to be better defined against outcome.  Currently, all studies have 

used standard diagnostic criteria for image cytometry and not defined any specific 

parameters for analysis of OPMD.   
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4.3 Materials and Methods 

4.3.1 Cases and tissue samples 

4.3.1.1 Search Strategy  

Pathology reports and original request forms for specimens submitted between the 

year 2004 and 2007 were searched by hand from the archive of the Department of Oral 

Pathology, King’s College London. Supplementary reports of ploidy analysis were also 

obtained when available.  

4.3.1.2 Inclusion Criteria 

Inclusion criteria during the search were cases with diagnosis confirmed 

histopathologically and with a clinical description provided by the clinician indicating 

clinically defined high risk of transformation, as detailed in information included in the 

pathology requests and reports detailed in Table 4.2. Reports with the diagnosis of 

normal tissue from any oral subsite were also retrieved for use as controls. 

Table 4.2 Inclusion Criteria.   
Only cases with matching clinical and pathological criteria were included 

Pathological Diagnosis Clinical Description 

Keratosis/atrophy with dysplasia Leukoplakia or Erythroplakia or White 

patch/lesion or Red patch/lesion 

Keratosis/atrophy with no dysplasia Leukoplakia or Erythroplakia or White 

patch/lesion or Red patch/lesion 

Keratosis with or without dysplasia Proliferative verrucous leukoplakia 

 

4.3.1.3 Exclusion criteria 

Patients with prior history or histological signs of squamous cell carcinoma were 

excluded. Similarly, patients were excluded if the cancer database record showed that 

they had had cancer less than 2 weeks from the date of biopsy in the histopathogical 
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report. Cases with likely diagnosis of actinic cheilitis, Epstein Barr virus infection and 

candidosis or affecting the oropharynx or lip vermillion were excluded. When the wax 

blocks were irretrievable or no tissue was left in the wax blocks, they were also 

excluded.   

4.3.2 Data collection 

The following baseline data gathered from the reports were documented; date of 

birth, gender, date of biopsy, clinical description, site of lesions, absence or presence of 

oral epithelial dysplasia including the grade and ploidy status.  

Longitudinal follow-up data was acquired from cancer registrations and causes of 

death data from the Health and Social Care Information Centre records for 1990 – 2014 

by matching the subjects’ name, date of birth and gender or National Health Service 

(NHS) registration number with address and postcode. Data included for analysis were 

the cause and date of death and the type, site and date of cancer registration.  Ethics 

approval to hold and analyse this data without individual patient consent was obtained 

under Section 60 of the Health and Social Care Act 2001 from the Patient Information 

Advisory Group (subsequently transferred to the National Information Governance 

Board for Health and Social Care) under reference PIAG 4-09(f)/2003 and to analyse 

tissue samples from the Guy’s Research Ethics Committee under reference 02/10/14.  

These approvals also covered the experiments reported in other chapters in this thesis.  

4.3.3 Samples and blocks specimens 

Wax block specimens for cases identified from the archival report but for which 

ploidy status was unknown were retrieved. H&E stained slides were reviewed for 

histological diagnosis and areas for ploidy analysis showing the worst areas of dysplasia 

https://en.wikipedia.org/wiki/National_Information_Governance_Board_for_Health_and_Social_Care
https://en.wikipedia.org/wiki/National_Information_Governance_Board_for_Health_and_Social_Care
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were outlined. Based on the size of tissue seen on H&E, cases were subgrouped into 

specimens that were suitable for routine conventional or a novel method of monolayer 

preparation. However, the final decision on whether ploidy could be performed for each 

case was dependent upon visual inspection of sufficient amount of tissue available on 

wax blocks. Multiple sections of 50μm thick equivalent to at least 50mm epithelial 

length were cut and placed into a 15ml graduated labelled polypropylene centrifuge tube 

using a microtome (Jung RM2055, Leica). 

4.3.4 Preparation of Monolayers 

4.3.4.1 Conventional method 

To remove the paraffin wax, tissues were incubated twice for 30 minutes in 4ml of 

xylene. This was followed by rehydration in a series of aqueous ethanol solutions of 

decreasing concentration; two washes of 5 minutes immersion in 4ml absolute ethanol 

and sequential incubation for 10 minutes each in 96%, 85%, 74% and 50% ethanol. 

After washing in 4ml cold PBS for 5 minutes, enzyme digestion was performed by 

incubating with 2mls 0.05% protease type XXIV (Sigma) in a 37°C high speed shaking 

water bath at 250 rpm for 90 minutes. Tubes were then transferred to crushed ice, 2ml 

of cold PBS was added and tissue pellets were briefly re-suspended using a disposable 

1ml pastette. Precipitated disintegrated cells and large debris were segregated from 

remaining nuclei by filtration through 60mesh nylon gauze into fresh 5ml polystyrene 

Falcon tubes. After 10 minutes of 3300rpm centrifugation (Immufuge II), the 

supernatant was carefully removed, and re-suspended in 0.5 to 2ml PBS depending on 

the size of the pellet. To disperse a monolayer of separated nuclei onto a glass 

microscope slide, 200ul of the cell suspension was spun for 5 minutes at 600rpm in a 

cytospin (Thermo Shandon Cytospin 4). Nuclear concentration was established under a 
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light microscope (Zeiss).  Ideally monolayers contained between 10 and 15 nuclei per 

x40 field and, failing this, a new monolayer was made from residual suspension adjusted 

accordingly. The attached nuclei were then fixed in 4% buffered formalin overnight in a 

fume cupboard.  

4.3.4.2 Modified protocol 

To increase nuclear yield, a modified protocol was used.  Paraffin wax was removed by 

incubation of tissues twice in 4 ml xylene for 15 minutes each and rehydrated as in the 

conventional method.  Tubes were centrifuged at 1000rpm for 10 minutes, supernatant 

decanted and replaced with 8ml of cold PBS. Samples were again centrifuged at 2200 

rpm for 10 minutes before enzyme treatment with 1ml 0.5mg/ml protease solution 

(Bacillus licheniformis type VIII, Sigma). Using micro-magnetic stirring bars 5 x 2 mm 

immersed in the protease, the enzyme incubation was performed at room temperature 

on a magnetic stirrer at 600rpm, constantly whirling the fleas inside the tube.  After 90 

minutes, 8ml of cold PBS was added to each sample and it was filtered through 60 mesh 

nylon gauze into a new 5ml polystyrene Falcon tube as in the conventional method. 

After 20 minutes centrifugation at 2500 rpm, the tissue pellet was re-suspended in 0.5 to 

2ml of cold PBS and monolayers prepared as for the conventional method. 
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Figure 4.3 Modified method for nuclear extraction in progress.   
Enzyme incubation was performed using micro-magnetic stirring bars rotating continuously at 
600rpm on a stirrer for 90 minutes at room temperature. 

 

4.3.5 Feulgen Staining 

Fixed monolayers were washed in distilled water for 2 minutes. Acid hydrolysis to 

remove the purine bases of DNA was carried out in 5N HCl for 1 hour at room 

temperature. After washing for 2 minutes in distilled water, nuclei were stained in 

Schiff’s reagent in the dark for 2 hours followed by three changes of sodium bisulphate 

solution for a total of 30 minutes. Slides were gently rinsed in tap water followed by 

distilled water, dehydrated through a series of graded alcohols to xylene for 5 minutes 

each, and mounted with DPX mounting medium with coverslip and dried flat in an 

oven at 60oC for 30 minutes.  

4.3.6 Measurement of DNA content 

Nuclear DNA content was measured using a PWS (Ploidy Work Station) Grabber 

system (Room4, Sussex UK). The system consists of an automated scanning Zeiss 

Axioplan II microscope (Zeiss) equipped with a 546 nm green barrier filter. Images 
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were captured with a black and AxioCam MRm digital camera (Zeiss) with 40x lens 

providing a resolution for analysis of 162 nm per pixel.  

Optical density and nuclear area of each nucleus were measured and corrected to 

the background optical density. Integrated optical density (IOD) was calculated 

automatically by integrating the measured optical density of each pixel across the area of 

each nucleus. A maximum of 3000 nuclei including lymphocytes and fibroblasts were 

automatically scanned and images were collected and grouped into different galleries for 

nuclei of interest, reference and discarded nuclei. The galleries were edited using PWS 

Classifier (Room 4, Sussex UK) to discard cut, overlapped and pyknotic nuclei. Cases 

with less than 300 nuclei of interest were repeated when possible or excluded. PWS 

Classifier created the DNA ploidy histograms from IOD of the nuclei using the 

lymphocytes and fibroblasts (reference nuclei) as internal diploid control.  All galleries 

were edited and all histograms were diagnosed by ZZ and diagnosis confirmed by 

supervisor EWO.  

4.3.7 DNA ploidy diagnostic criteria 

Histograms were classified according to previous criteria (Sperandio et al., 2013). A 

lesion was classified as DNA diploid if only one 2c peak (G0/G1) formed by epithelial 

nuclei was present, the number of nuclei at 4c peak (G2) did not exceed 10% of the total 

number of epithelial nuclei and the number of nuclei with DNA content more than 5c 

did not exceed 1%. A lesion was defined as tetraploid if a 4c peak (DI 1.9–2.1; 3.8c-

4.2c) exceeding 10% of the total nuclei was present with no other abnormality. 

Aneuploid lesions were characterized by the presence of one or more peak(s) containing 

more than 10% of the epithelial nuclei outside the range of the normal or tetraploid 

peaks, that is outside DI 0.9-1.1 (1.8 – 2.2c) for the diploid peak and DI 1.8-2.2 (3.6 – 
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4.4c) for the G2 peak or when the number of nuclei with a DNA content above 5c 

exceeded 1% of the total number of epithelial nuclei. At least 300 epithelial nuclei were 

assessed and samples with a diploid peak coefficient variation greater than 5% were 

excluded.   

4.3.8 Statistical analyses 

4.3.8.1 Comparison of enzyme digestion methods 

To evaluate reproducibility of DNA ploidy analysis using a modified enzyme 

digestion method, an independent set of 10 samples diagnosed in the year 2014 was 

selected. Comparison between conventional and novel methods were made on 

following parameters; the mean number of nuclei in each gallery, the total number of 

nuclei acquired, percentage of cells rejected from analysis and CV of the diploid peak 

using the Wilcoxon signed rank test because the data distributions were skewed and the 

sample was small (n=10). The reproducibility of DNA ploidy diagnosis was evaluated 

by using Cohen’s kappa coefficient. P-values < 0.05 were regarded as statistically 

significant. 

4.3.8.2 Malignant transformation 

The unit of analysis for malignant transformation was the patient. For univariate 

and multivariate analysis, when a patient had multiple biopsies or specimens, the earliest 

diagnosis with the most abnormal result was used as the index lesion for analysis (‘first-

worst’ dysplasia and ‘first-worst’ ploidy).  When no dysplasia or DNA ploidy 

abnormality was found, the earliest lesion was taken as the index lesion. 

A single patient was excluded from the dysplasia analysis because the worst grade of 

dysplasia was diagnosed at the same time as the carcinoma.  However, lower grades of 
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dysplasia and DNA aneuploidy preceded the carcinoma allowing the case to be included 

in the univariate analysis of DNA ploidy. Patients were grouped for separate analysis 

into those who developed a carcinoma after and those who developed carcinoma within 

6 months of their index lesion. 

The endpoint date was defined as one of four outcomes: the date carcinoma 

developed, the last follow-up date when no progression had occurred, the date of death 

if the patient had died of oral carcinoma or the date of death from any other cause.  

The association between ploidy diagnosis and dysplasia grade was calculated using 

the Pearson chi-square test. Kaplan-Meier methods were used to estimate the time to 

progression and percentage of patients who underwent malignant transformation over 

the period of follow-up by dysplasia and ploidy diagnoses. Survival curves were 

compared using the log rank test. Cox regression methods were used to investigate the 

main independent predictors of malignant transformation. Adjusting for age and gender, 

each dysplasia grade and ploidy result category was assessed separately in a univariate 

Cox proportional hazard model. In the multivariate model, adjustment involved age, sex 

and mutual adjustment between dysplasia grade and ploidy status. Hazard ratios (HR) 

with 95% confidence interval (95% CI) and p values were reported and p < 0.05 was 

considered statistically significant. Positive and negative predictive values, sensitivity and 

specificity were calculated from 2x2 tables with malignant transformation as reference. 

Annual malignant transformation rates were calculated based on actual person-years of 

follow up in order to take into account the time to transformation.  
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4.4 Results 

4.4.1 Patient characteristics and follow-up  

A total of 259 cases of OPMD were identified from the archive. The follow up data 

on malignant transformation of 7 patients were not traceable, 8 patients had prior 

history of cancer and 2 patients were diagnosed with cancer less than two weeks after 

biopsy. In two cases the cancer diagnosis returned by central UK cancer registration was 

miscoded as cancer when the original diagnosis submitted by our laboratory to the local 

registry had been carcinoma in situ.  These diagnoses were corrected on the basis of 

date of diagnosis.  

Ploidy analysis could not be carried out on 7 cases due to lack of tissue left after 

previous use or an irretrievable specimen. Insufficient nuclei resulted in failed analyses 

of ploidy on 3 cases. A total of 228 patients remained to be included in this analysis and 

Table 4.3 shows the demographic details, histological diagnosis and ploidy diagnosis for 

all patients.  A STARD diagram for the studies is shown in Figure 4.4. 
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Figure 4.4 STARD diagram showing recruitment of patients for this study.   
UADT is upper aerodigestive tract.  
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The mean age of the patients at time of diagnosis of the index lesion was 55 years 

(SD 13.9 years) and the male patients (53.5%) were slightly greater in number than 

female patients. The follow up period ranged from 5 to 9.6 years (mean = 7.61, SD = 

2.69). Nine patients developed carcinoma less than 6 months from index specimen and 

this group was excluded for a second analysis (Table 4.4). 

  
Table 4.3 Characteristics of all patients and samples including those with malignant 
transformation less than 6 months from index lesion 

 Number (%) 
Malignant transformation 

Yes (%) No (%) 

Total patients 228 24 (10.5) 204 (89.5) 

Age in years    

Mean (SD) 55 (13.9) 60.4 (10.4) 54.2 (14.2) 

    

Gender    

Male 122  (53.5) 11 (45.8) 111 (54.4) 

Female 106 (46.5) 13 (54.2) 93 (45.6) 

    

Dysplasia grade    

No 121 (53.1) 1 (4.2) 120 (58.8) 

Mild 47 (20.6) 2 (8.3) 45 (22.1) 

Moderate 32 (14.0) 7 (29.2) 25 (12.2) 

Severe 28 (12.3) 14 (58.3) 14 (6.9) 

    

DNA Ploidy    

Diploid 183 (80.3) 10 (41.7) 173 (84.8) 

Tetraploid 3 (1.3) 0 (0) 3 (1.5) 

Aneuploid 42 (18.4) 14 (58.3) 28 (13.7) 

 
 
 
 
 



DNA  ploidy 

 

 186 

 

Table 4.4 Characteristics of all patients and samples excluding those with malignant 
transformation less than 6 months from index lesion 

 Number (%) 
Malignant transformation 

Yes (%) No (%) 

Total patients 219 15 (6.9) 204 (93.1) 

Age in years    

Mean (SD) 55 (14.1) 62.2 (11.6) 54.2 (14.2) 

    

Gender    

Male 118 (53.9) 7 (46.7) 111 (54.4) 

Female 101 (46.1) 8 (53.3) 93 (45.6) 

    

Dysplasia grade    

No 121 (55.3) 1 (6.7) 120 (58.8) 

Mild 47 (21.5) 2 (13.3) 45 (22.1) 

Moderate 30 (13.7) 5 (33.3) 25 (12.2) 

Severe 21 (9.5) 7 (46.7) 14 (6.9) 

    

DNA Ploidy    

Diploid 180 (82.2) 7 (46.7) 173 (84.8) 

Tetraploid 3 (1.4) 0 (0) 3 (1.5) 

Aneuploid 36 (16.4) 8 (53.3) 28 (13.7) 

 

  



DNA  ploidy 

 

 187 

4.4.2 Comparison between conventional and modified methods for extraction 

of nuclei 

There were 8 diploid and 2 aneuploid cases included in the comparison. The 

agreement between DNA ploidy diagnosis when applying conventional and modified 

novel protocols was 100% (κ value = 1.00) indicating complete agreement so that no 

difference between the methods was evident in terms of final outcome.   

The mean total number of nuclei isolated by the conventional method was 3150 

(median 3075) compared to the modified protocol of 3792 (median 3696, see Table 4.5). 

The CVs were significantly different between these two protocols (p = 0.007) with 

lower values obtained from the routine method. Using the modified method, a 

statistically greater number of lymphocytes as reference cells was acquired in software 

galleries 1 and 2 with p = 0.01 and 0.005 respectively. However, fibroblast nuclei were 

isolated more frequently using the routine method (p = 0.03). There was no difference 

between the numbers of nuclei that were edited out as defective between both protocols  
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Table 4.5 Comparison between the number of nuclei collected and ploidy histogram 
parameters between the two different nuclear extraction methods 
 

 

Nuclei 

extraction 

method 

Mean  Median 
Standard 

deviation  
p value 

Total nuclei acquired 

before cleaning 
Routine 3149.8 3075.0 146.81 

0.14 
Modified 3792.2 3695.5 1541.24 

Total epithelial nuclei 
Routine 2196.9 2377.5 363.5 

0.06 
Modified 1892.5 2208.5 528.2 

Total small 

lymphocyte nuclei 

Routine 3.8 1.5 5.6 
0.01* 

Modified 28.0 13.0 45.9 

Total large 

lymphocyte/monocyte

/neutrophil nuclei  

Routine 94.7 49.0 106.5 
0.005* 

Modified 106.5 575.5 988.9 

Total fibroblast nuclei 
Routine 5.7 4.5 6.0 

0.03* 
Modified 2.2 1.5 1.9 

Total defective nuclei 

nuclei  

Routine 849.3 676.5 389.3 
0.22 

Modified 1009.1 839.5 555.1 

CV of 2c DNA 

stemline 

Routine 2.13 2.14 0.73 
0.007* 

Modified 2.65 2.61 0.76 

% of nuclei cleaned  
Routine 26.66 20.97 11.37 

0.96 
Modified 27.19 25.17 8.62 

*statistically significant p < 0.05 
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4.4.3 DNA ploidy and dysplasia 

Of the 228 samples, 42 (18.4%) were aneuploid, 3 (1.3%) tetraploid and 183 

(80.3%) diploid (Table 4.6). DNA aneuploidy was diagnosed mainly in lesions with 

moderate (36%) and severe (38%) epithelial dysplasia. The majority of non-dysplastic 

lesions (65.6%) were diploid (Table 4.6).  

There was a significant association between grade of dysplasia and DNA ploidy 

status (Pearson x2= 73.3, df = 3, p < 0.001). Sixteen of 28 cases with severe dysplasia 

were aneuploid (57.1%) and the remainders were diploid (12/28 = 42.9%). 

Approximately three quarters of the mildly dysplastic epithelial lesions (74.5%) were 

diploid. No non-dysplastic epithelial lesions showed abnormal DNA content.   

Table 4.6 Distribution of DNA ploidy by degree of dysplasia in all samples.   
Upper table shows % of total with each DNA ploidy result and lower table % of each dysplasia 
grade.  

DNA ploidy 
Dysplasia n (%) 

Total n (%) 
None  Mild Moderate Severe 

Diploid 120 (65.6) 35 (19.1) 16 (8.7) 12 (6.6) 183 (100.0) 

Tetraploid 1 (33.3) 1 (33.3) 1 (33.3) 0 (0.0) 3 (100.0) 

Aneuploid 0 (0.0) 11 (26.2) 15 (35.7) 16 (38.1) 42 (100.0) 

Total n (%) 121 (53.1) 47 (20.6) 32 (14.0) 28 (12.3) 228 (100.0) 
 

DNA ploidy 
Dysplasia n (%) 

Total n (%) 
None  Mild Moderate Severe 

Diploid 120 (99.2) 35 (74.5) 16 (50.0) 12 (42.9) 183 (80.26) 

Tetraploid 1 (0.8) 1 (2.13) 1 (3.1) 0 (0.0) 3 (1.32) 

Aneuploid 0 (0.0) 11 (23.40) 15 (46.9) 16 (57.1) 42 (18.4) 

Total n (%) 121 (100.0) 47 (100.0) 32 (100.0) 28 (100.0) 228 (100.0) 

  

Representative examples of ploidy histograms are shown in Figure 4.5.  

Lymphocytes appear slightly left of the diploid peak because of high nuclear density and 

refraction of light around the periphery.   
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Diploid peak only, 505 
nuclei, CV 3.6, small S 
phase/G2 phase 
Diagnosis: Diploid 
 

Diploid peak 
only, 1238 
nuclei, CV 2.8 
Diagnosis: 
Diploid  
 

Diploid peak 120 nuclei, 
CV2.6, 2 aneuploid 
peaks at diploid index 
1.14 and 1.29. No nuclei 
>5C. Diagnosis: 
Aneuploid on basis of 
stem line peaks 

Diploid peak 220 nuclei, CV 2.9, 
Aneuploid peak at diploid index 1.88 of 
46.7% nuclei and at 2.2 with 8.2% of 
nuclei.   
5C exceeding rate 3.98% 
Diagnosis: Aneuploid on basis of stem 
line peaks & 5C exceeding rate 

  
Diploid peak CV 4, 550 nuclei.  Aneuploid 
peak at diploid index 1.55 containing 15% of 
epithelial nuclei.  5C exceeding rate 0.75%. 
Diagnosis: Aneuploid on basis of stem line 
peak 

Diploid peak CV 2.4, 482 nuclei.  Aneuploid peak at diploid index 
1.78 containing 44% of epithelial nuclei.  5C exceeding rate 8.9%.  A 
small peak at 7C probably represents a G2 phase for the aneuploid 
cell line. 
Diagnosis: Aneuploid on basis of stem line peak and 5C exceeding 
rate 

 
Figure 4.5 Example ICM DNA ploidy histograms from this study.   
All x axes show integrated optical density on a scale of DNA content per nucleus.  2C diploid 
peak.  Histogram descriptive parameters are shown below each graph, together with ploidy 
diagnostic category and reasons for categorisation.  Green, epithelial nuclei, red lymphocytes 
internal diploid control.   
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4.4.4 Dysplasia and malignant transformation 

4.4.4.1 Analysis including early transformation 

Among the 24 (10.5%) of 228 patients who developed carcinoma including those 

with transformation less than 6 months from index lesion, more than half (58.3%) had 

severe dysplasia (Table 4.3). The mean transformation time was 1.95 year (SD = 2.09).  

One case was excluded in the Kaplan-Meier and Cox regression analyses because 

the worst dysplasia was on the day carcinoma developed but prior biopsies had been 

aneuploid 8 months before transformation. Adjusting for age and sex, Kaplan-Meier 

curves of progression-free estimates in Figure 4.5 shows that the time to malignant 

transformation was significantly shorter in the severely dysplastic group (log rank: x2= 

76.25, df = 3, p < 0.0001).  

Hazard ratios were highly significant (p < 0.001) implying the risk of a severely 

dysplastic lesion on developing carcinoma was 81.8 (95% CI: 10.5, 635.9) times higher 

than for a non-dysplastic lesion (Table 4.7). Multivariate analysis was conducted 

incorporating all grades of dysplasia and ploidy adjusted for age and gender, and showed 

that the HR for severe dysplasia was lower at 54.25 (CI: 6.6, 448.2) but remained highly 

significant (p < 0.001).  

The percentage estimates of transformation after 2, 5 and 9 years were detailed in 

Table 4.8. An increasing trend in cumulative malignant transformation incidence was 

observed in relation to the length of follow-up. No further transformations were 

detected after 5 years for mild and moderate dysplasia. The proportion of patients with 

severe dysplasia who progressed to carcinoma in 5 years was 45% (95% CI: 28.3, 65.1) 

compared to 23% (95% CI: 11.7, 42.6) for moderate dysplasia.  
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Table 4.7 Cox proportional hazards model on association of dysplasia grade and ploidy 
status with malignant progression including transformation within 6 months 

 N 
Univariate  Multivariate 

HR (95% CI) P value HR (95% CI) P value 

Total 
patients 

228   
 

  

Dysplasia     
 

  

No 121 1.00 - 
 

1.00 - 

Mild 47 5.13 (0.46, 56.6) 0.182 
 

3.81 (0.33, 43.96) 0.284 

Moderate 32 29.64 (3.6, 243.6) 0.002 
 

18.78 (2.1, 167.9) 0.009 

Severe 28 81.82 (10.5, 635.9) 0.000 
 

54.25 (6.6, 448.2) 0.000 

DNA 
Ploidy 

   
 

  

Diploid 183 1.00 - 
 

1.00 - 

Aneuploid 42 7.92 (3.45, 18.17) 0.000 
 

2.41(0.89, 6.52) 0.083 

HR: hazard ratio 
Univariate: adjusted for age, sex 
Multivariate: adjusted for age, sex and mutually adjusted 

 
 

 

Figure 4.6 Kaplan Meier curves of progression-free proportion by dysplasia grades 
including transformation within 6 months.  
The number of patients who were still at risk at selected time points (x-axis) is shown below. 
The difference in time to progression for different grades were statistically significant, log rank 
test p=0.000. 
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Table 4.8 Cumulative incidence of malignant transformation at 2, 5 and 9 years interval 
including progression within 6 months of index lesion 
 

 N 

Malignant transformation estimate 

2 year 
n; %(CI) 

5 year 
n; %(CI) 

9 year 
n; %(CI) 

Test for 
trend 

Dysplasia      

No 121 0 0 1; 0.86 (0.12,5.96) 

x2 = 
76.25 
df=3 
P = 

0.0000 

Mild 47 1; 2.22(0.32, 14.7) 2; 4.44(1.13, 16.6) 2; 4.44(1.13, 16.6) 

Moderate 32 4; 12.73 (4.97, 30.5) 7; 23.11 (11.7, 42.6) 7; 23.11 (11.7, 42.6) 

Severe 28 8; 29.63 (16.1, 50.6) 12; 44.69 (28.3, 65.1) 13; 55.75 (33.8, 80.0) 

Overall 227 13; 5.78(3.4, 9.74) 21; 9.45(6.27, 14.1) 23; 10.5(7.08, 15.4) 

x2= 
397.8 
df=1 
P = 

0.0000 

DNA Ploidy      

Diploid 183 6; 3.33(1.51, 7.27) 9; 5.05 (2.66, 9.49) 10; 5.64 (3.07, 10.23) x2 = 
33.15 
df=2 
P = 

0.0000 

Tetraploid 3 0 0 0 

Aneuploid 42 8; 19.25 (10.1, 34.8) 13; 31.48 (19.6, 47.9) 14; 37.19 (22.9, 56.3) 

Overall 228 14; 6.21(3.73, 10.3) 22; 9.87(6.61, 14.6) 24; 10.9(7.43, 15.8) 

x2= 
398.4 
df=1 
P = 

0.0000 
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4.4.4.2 Analysis excluding early transformation 

Excluding patients with transformation within 6 months of the index biopsy (n = 

219), the number of cases that underwent malignant transformation was reduced to 15 

in a mean time of 3.03 years (SD = 1.96). One patient (6.7%) with a nondysplastic 

lesion and 2 (13.3%), 5 (33.3%), 7 (46.7%) patients with mild, moderate and severely 

dysplastic epithelium respectively had undergone malignant transition.  

Patients with a higher grade of dysplasia developed carcinoma more rapidly (log 

rank: x2= 40.28, df = 3, p < 0.0001, Figure 4.6). Although the hazard ratios for 

moderate and severe dysplasia were decreased to 21.6 (2.49, 186.8) and 45.8 (5.52, 

379.6) respectively when compared to univariate analysis that included early 

transformation, they remained highly significant with p-value ≤ 0.005 (Table 4.9).  

Multivariate analysis incorporating all grades of dysplasia and ploidy, adjusted for 

age and gender showed that the hazard ratio for severe dysplasia was lower at 30.56 

(3.37, 277.4). The p value was slightly higher than in the univariate analysis, however still 

significant (p < 0.05).  

The transformation rate estimate at 9 years was 43.11% (95%CI 20.2, 75.6), at 5 

years 28.89% (95%CI: 14.1, 53.4) and 2 years for severe dysplasia 9.52% (95%CI: 2.47, 

33.0) (Table 4.10).  Progression to carcinoma from mild and moderately dysplastic 

epithelium occurred in the first five years duration from the index biopsies. 
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Table 4.9 Cox proportional hazards model on association of dysplasia grade and ploidy 
status with malignant progression excluding transformation within 6 months 

 N 
Univariate  Multivariate 

HR (95% CI) P value HR (95% CI) P value 

Total patients 219   
 

  

Dysplasia grade    
 

  

No 121 1.00 - 
 

1.00 - 

Mild 47 5.03 (0.46, 55.7) 0.187 
 

3.90 (0.33, 45.4) 0.278 

Moderate 30 21.57 (2.49, 186.8) 0.005 
 

14.11 (1.45, 137.3) 0.023 

Severe 21 45.79 (5.52, 379.6) 0.000 
 

30.56 (3.37, 277.4) 0.002 

DNA Ploidy    
 

  

Diploid 180 1.00 - 
 

1.00 - 

Aneuploid 36 6.79 (2.56, 17.9) 0.000 
 

2.39(0.72, 7.98) 0.155 

HR = hazard ratio 
Univariate: adjusted for age, sex 
Multivariate: adjusted for age, sex and mutually adjusted 
 

 

Figure 4.7 Kaplan Meier curves of progression-free proportion by dysplasia grades 
including transformation within 6 months.  
The number of patients still at risk at selected time points (x-axis) is shown below. The 
difference in time to progression for different grades were statistically significant, log rank test 
p=0.000. 



DNA  ploidy 

 

 196 

 

 

Table 4.10 Cumulative incidence of malignant transformation at 2, 5 and 9 years interval 
excluding progression within 6 months of index lesion 
 

 n 

Malignant transformation estimate 

2 year 
n; %(CI) 

5 year 
n; %(CI) 

9 year 
n; %(CI) 

Test for 
trend 

Dysplasia      

No 121 0 0 1; 0.86 (0.12,5.96) 
x2 = 
40.28 
df=3 
P = 

0.0000 

Mild 47 1; 2.22 (0.32, 14.7) 2; 4.44 (1.13, 16.6) 2; 4.44 (1.13, 16.6) 

Moderate 30 2; 6.91 (1.77, 24.9) 5; 17.98 (7.88, 38.03) 5; 17.98 (7.88, 38.03) 

Severe 21 2; 9.52 (2.47, 33.0) 6; 28.89 (14.1, 53.4) 7; 43.11 (20.2, 75.6) 

Overall 219 5; 2.33(0.98, 5.52) 13; 6.14(3.61,10.3) 15; 7.21(4.4, 11.7) 

x2=377.9 
df=1 
P = 

0.0000 
DNA 
Ploidy 

     

Diploid 183 3; 1.71 (0.55, 5.2) 6; 3.46 (1.57, 7.54) 7; 4.06 (1.95, 8.32) x2 = 
17.88 
df=2 
P = 

0.0001 

Tetraploid 3 0 0 0 

Aneuploid 36 2; 5.71 (1.46, 20.9) 7; 20.0 (10.1, 37.4) 8; 26.67 (13.4, 48.7) 

Overall 219 5; 2.34(0.98, 5.52) 13; 6.15(3.62, 10.4) 15; 7.21(4.4, 11.7) 

x2=377.6 
df=1 
P = 

0.0000 
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4.4.5 DNA ploidy and malignant transformation 

Including malignant transformation within 6 months of the index biopsy, 14 

(58.3%) aneuploid and 10 (41.7%) diploid lesions progressed to carcinoma (Table 4.3) in 

a mean time of 2.05 years (SD = 2.01). The risk of cancer transition was 7.92 times 

higher (CI: 3.45, 18.17) in aneuploid than diploid lesions (p < 0.001) (Table 4.7). 

Patients with aneuploid lesions developed cancer more rapidly than those with diploid 

(log rank: x2= 33.15, df = 2, p < 0.0001) (Figure 4.7). At year 2, 5 and 9, the 

transformation estimates for aneuploid lesions were 19.25% (CI: 10.1, 34.8), 31.48% 

(CI: 19.6, 47.9) and 37.19% (CI: 22.9, 56.3) respectively (Table 4.8). At nine years follow 

up the proportion of aneuploid lesions that underwent malignant transformation was 

significantly higher 37.19% compared to 4.06% for diploid lesions.  

Excluding patients with transformation within 6 months of the index biopsy (n = 

219), 8 (53.3%) patients with aneuploid and 7 (46.7%) diploid lesions underwent 

malignant transformation (Table 4.5). The mean transformation time was 3.05 year (SD 

= 1.93). The hazard ratio for a patient with aneuploid was 6.79 (CI: 2.56, 17.9) and was 

highly significant (p < 0.001) compared to patients with diploid lesions (Table 4.9). 

Patients with aneuploid index lesions developed carcinoma in a shorter time than 

diploid (log rank: x2= 17.88, df = 2, p = 0.0001) (Figure 4.9). Over a 5-year period, the 

transformation rate estimate was 20.0% (CI: 10.1, 37.4) for aneuploid compared to 

diploid at 3.46% (CI: 1.57, 7.54).  

In multivariate analysis, the hazard ratio for patients with aneuploid lesions was 

2.41(CI: 0.89, 6.52) and 2.39 (CI: 0.72, 7.98) when transformation of less than 6 months 

was included and excluded in the analysis, respectively (Table 4.7 and 4.9). However 

these were not statistically significantly different.  
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Figure 4.8 Kaplan Meier survival curves including (upper panel) and excluding (lower 
panel) within 6 months transformation by DNA ploidy.  
Number of patients still at risk at selected time points (shown on x-axis) is shown below. 
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4.4.5.1 Annual transformation rate 

Annual malignant transformation rates based on dysplasia grading and DNA 

aneuploidy are shown in Table 4.11 to 4.13. For dysplasia grade, total person-year of 

follow up was 1733.07 and 1731.64 when transformation within 6 months was included 

and excluded yielding an annual rate of 1.32% and 0.87% respectively. Transformation 

rates increased with the severity of dysplasia. When transformation within 6 months of 

index lesion was excluded, the rates were 0.09% for the non-dysplastic lesion, 0.53% for 

mild, 2.68% moderate and 5.77% for severe dysplasia. Annual malignant transformation 

rates for ploidy calculated with inclusion and exclusion of within 6 months malignant 

transformation were 1.38% and 0.87% cases per year respectively. By analyzing cases of 

dysplasia only (Table 4.13), the transformation rate was slightly higher at 3.2% and 

2.04% cases per year when early transformation was included and excluded respectively.   

Table 4.11 Dysplasia grade- and DNA ploidy-specific annual transformation rates 
including malignant transformation within 6 months of index biopsy  

 N n malignant  
Person-years 

follow up 

Annual 
transformation 

rate (%) 
95% CI 

Dysplasia grade      

No 121 1 1045.02 0.09 0.01 – 0.68  

Mild 47 2 378.85 0.53 0.13 – 2.11 

Moderate 32 7 187.08 3.74 1.78 – 7.85 

Severe 28 13 122.13 10.64 6.18 – 18.33 

Overall 228 23 1733.07 1.32 0.88 – 1.99 

DNA Ploidy      

Diploid 183 10 1478.24 0.68 0.36 – 1.26 

Tetraploid 3 0 22.68 0 - 

Aneuploid 42 14 234.31 5.97 3.54 – 10.1 

Overall 228 24 1735.23 1.38 0.93 – 2.06 
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Table 4.12 Dysplasia grade- and DNA ploidy-specific annual transformation rates 
excluding malignant transformation within 6 months of index biopsy 

 N n malignant  
Person-years 

follow up 

Annual 
transformation 

rate (%) 
95% CI 

Dysplasia grade      

No 121 1 1045.02 0.09 0.01 – 0.68  

Mild 47 2 378.85 0.53 0.13 – 2.11 

Moderate 30 5 186.49 2.68 1.11 – 6.44 

Severe 21 7 121.29 5.77 2.75 – 12.11 

Overall 219 15 1731.64 0.87 0.52 – 1.44 

DNA Ploidy      

Diploid 180 7 1476.69 0.47 0.23 – 0.99 

Tetraploid 3 0 22.68 0 - 

Aneuploid 36 8 232.55 3.44 1.72 – 6.88 

Overall 219 15 1731.93 0.87 0.52 – 1.44 

 

Table 4.13 The annual transformation rates of dysplasia grade determined by omitting 
the non-dysplastic samples 

 N n malignant  
Person-years 

follow up 

Annual 
transformation 

rate (%) 
95% CI 

Dysplasia grade      

Including 6 months 

Mild 47 2 378.85 0.53 0.13 – 2.11 

Moderate 32 7 187.08 3.74 1.78 – 7.85 

Severe 27 13 122.13 10.64 6.18 – 18.33 

Overall 106 22 688.06 3.20 2.10 – 4.86 

Excluding 6 months 

Mild 47 2 378.85 0.53 0.13 – 2.11 

Moderate 30 5 186.48 2.68 1.11 – 6.44 

Severe 21 7 121.29 5.77 2.75 – 12.1 

Overall 98 14 686.63 2.04 1.21 – 3.44 
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4.4.6 Predictive values for dysplasia grading combined with DNA ploidy 

The number of patients in the tetraploid group was too small for analysis, therefore 

predictive values were calculated combining diploid and tetraploid groups, justified on 

the basis our previous analysis (Sperandio et al., 2013).  

Including malignant transformation less than 6 months from index lesion (Table 

4.14), the positive predictive value (PPV) for severe dysplasia was 50% (CI: 31.5, 68.5) 

and 33.3% (CI: 19.0, 47.6) for aneuploid lesions. When lesions with both DNA 

aneuploidy and severe dysplasia were combined, the PPV was increased to 56.3% (31.9, 

80.6). Diploid or tetraploid and non-dysplastic lesions had high negative predictive 

values (NPV) of 94.6% (CI: 91.4, 97.8) and 99.17 % (97.4, 100.8) respectively. 

Excluding cases with transformation within 6 months of index lesion (Table 4.15), 

the PPV was reduced to 33.3% (CI: 13.1, 53.5) and 22.2% (CI: 8.6, 35.8) for severe 

dysplasia and DNA aneuploidy respectively. When lesions with both DNA aneuploidy 

and severe dysplasia were combined, the PPV was slightly increased to 36.4% (7.9, 

64.8). The NPV of diploid or tetraploid was 96% (CI: 93.4, 99.0) and 99% (CI: 97.4, 

100.8) for non-dysplastic lesions. 
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Table 4.14 Positive and negative predictive value of dysplasia grading and DNA ploidy 
including malignant transformation within 6 months of index biopsy  

 PPV %(95 CI) NPV %(95 CI) 

Total patients N = 228 

Dysplasia grade   

Severe  50.0 (31.5, 68.5) 50.0 (31.5, 68.5) 

Moderate  21.88 (7.5, 36.1) 78.12 (63.8, 92.4) 

Mild 4.26 (-1.5, 9.9) 95.74 (89.9, 101.5) 

No 0.83 (-0.8, 2.4) 99.17 (97.4, 100.8) 

DNA Ploidy   

Aneuploid  33.33 (19.0, 47.6) 66.67 (59.9, 73.5) 

Diploid or Tetraploid 5.38 (2.1, 8.5) 94.62 (91.4, 97.8) 

Combinations   

DNA ploidy Operator Dysplasia   

Aneuploid AND Severe 56.3 (31.9, 80.6) - 

Aneuploid AND  Severe OR moderate 45.2 (27.6, 62.7) - 

Aneuploid AND Any grade 33.3 (19.1, 47.6) - 

Aneuploid OR Severe 35.2 (22.4, 47.9) - 

Aneuploid OR  Severe OR moderate 29.2 (18.7, 39.7) - 

Aneuploid OR Any grade 21.5 (13.7, 29.3) - 

Diploid or 

Tetraploid 
AND No dysplasia - 99.2 (97.6, 100.8) 

Diploid or 

Tetraploid 
AND 

No dysplasia OR 

mild dysplasia 
- 98.1 (95.9, 100.2) 

Diploid or 

Tetraploid 
AND Any grade - 94.6 (91.4, 97.9) 

Diploid or 

Tetraploid 
OR No dysplasia - 94.6 (91.4, 97.9) 

Diploid or 

Tetraploid 
OR 

No dysplasia OR 

mild dysplasia 
- 94.9 (91.9, 98.0) 

Diploid or 

Tetraploid 
OR Any grade - 89.5 (85.5, 93.5) 

PPV positive predictive value; NPV negative predictive value 
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Table 4.15 Positive and negative predictive value of dysplasia grading and DNA ploidy 
excluding malignant transformation within 6 months of index biopsy 

 PPV %(95 CI) NPV %(95 CI) 

Total patients N = 219 

Dysplasia grade   

Severe  33.33 (13.1, 53.5) 66.67 (46.5, 86.9) 

Moderate  16.67 (3.4, 30.0) 83.33 (70.0, 96.6) 

Mild 4.26 (-1.5, 9.9) 95.74 (89.9, 101.5) 

No 0.83 (-0.8, 2.4) 99.17 (97.4, 100.8) 

DNA Ploidy   

Aneuploid  22.22 (8.6, 35.8) 77.78 (64.2, 91.4) 

Diploid or Tetraploid 3.83 (1.0, 6.6) 96.17 (93.4, 99.0) 

Combinations   

DNA ploidy Operator Dysplasia   

Aneuploid AND Severe 36.4 (7.9, 64.8) - 

Aneuploid AND  Severe OR moderate 32.0 (13.7, 50.3) - 

Aneuploid AND Any grade 22.2 (8.6, 35.8) - 

Aneuploid OR Severe 23.9 (11.6, 36.2) - 

Aneuploid OR  Severe OR moderate 19.4 (9.5, 29.2) - 

Aneuploid OR Any grade 14.3 (7.4, 21.2) - 

Diploid or 

Tetraploid 
AND No dysplasia - 99.2 (97.6, 100.8) 

Diploid or 

Tetraploid 
AND 

No dysplasia OR 

mild dysplasia 
- 98.1 (95.9, 100.2) 

Diploid or 

Tetraploid 
AND Any grade - 96.2 (93.4, 99.0) 

Diploid or 

Tetraploid 
OR No dysplasia - 96.2 (93.4, 99.0) 

Diploid or 

Tetraploid 
OR 

No dysplasia OR 

mild dysplasia 
- 96.4 (93.8, 99.0) 

Diploid or 

Tetraploid 
OR Any grade - 93.2 (89.8, 96.5) 

PPV positive predictive value; NPV negative predictive value 
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4.5 Discussion 

4.5.1 Methods 

In this study, a novel nuclear separation technique was applied that required only 

half as much tissue as the conventional protocol (section 4.3.4). OPMDs tissues mainly 

derive from small biopsies and it is not always feasible to obtain the 50mm epithelial 

length required to yield 3000 nuclei for DNA ploidy analysis using the conventional 

separation method.  The proportion of nuclei exceeding 5c and 9c can be determined 

more precisely when at least 1000 nuclei remain after editing and included in the analysis 

(Pradhan et al., 2006). Total nuclei obtained by the modified protocol were more 

numerous than the routine method (section 4.4.2), overall similar numbers being 

isolated form samples half the size used conventionally. Interestingly, more lymphocytes 

were acquired by the modified method (p < 0.001). Although there was no statistical 

difference between these methods in the CVs of the diploid peak on analysis, the 

routine method produced lower CV values.  

We have analysed outcomes for dysplasia grades and DNA ploidy diagnoses with 

and without early transformation. Most studies have applied a 6-month cut off for 

exclusion of early transformation in their analyses. The reason is that most investigators 

are intending to define transformation rates in OPMD and must ensure carcinomas are 

not included in error.  Transformation within 6 months of biopsy is assumed to result 

from sampling error at the stage of biopsy and to indicate that the carcinoma was 

already present at the time.  However, in clinical practice it would be required that a test 

could identify the risk of concurrent as well as subsequent carcinoma. In addition, the 

experiments might reveal diagnostic information capable of identifying lesions with a 

risk of early transformation.  In order to reduce the risk that any samples comprised 
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carcinoma, we excluded cases where a carcinoma was diagnosed at the site within 2 

weeks of the index biopsy. Our study in general has showed that early transformations 

often found in moderately or severely dysplastic lesions that were aneuploid (refer to 

Table 4.8 and 4.10) as in the previous study from our laboratory (Sperandio et al., 2013).  

It is not possible to comment on whether these early transforming cases did have 

concurrent carcinoma, but if so it was not appreciated clinically.  

4.5.2 Samples 

The samples selected in these experiments were from a sequential series of patients 

who had lesions considered at high risk of malignant transformation on the basis of 

both clinical description and pathological diagnosis (Table 4.2). This study population 

differs from that in the study published previously by our group (Sperandio et al., 2013) 

in which all red and white lesions were included and low risk lesions were included, a 

much larger population. Other studies that used DNA image cytometry have selected 

samples confirmed histologically as dysplastic in a case-control design (Torres-Rendon et 

al., 2009; Bradley et al., 2010) while two others included only cases of leukoplakia 

(Bremmer et al., 2011; Siebers et al., 2013). The intention of this study was to provide an 

evaluation of ploidy analysis and dysplasia grading on a more focused group of risk 

patients to evaluate the predictive value of the test when used in a hospital referral 

population and in routine pathology diagnosis. This and our previous study have 

approximately the same size sample, but the present cases were selected from a shorter 

time period.  This was possible because experience in ICM DNA ploidy and the new 

sample method allowed a higher proportion of eligible cases to be successfully analysed.   

Follow-up data on 240 patients was obtained for this study. We were surprised to 

discover that some carcinoma-in-situ codes had been miscoded as carcinoma at the 
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national registry but were able to confidently exclude these as non-invasive dysplasia on 

the basis of dates of diagnosis matching exactly those in our local pathology database 

that are transferred to the cancer registry, lack of subsequent cancer codes and outcome.  

It is unclear at what stage of cancer registration the miscoding occurred.  Miscoding is 

an issue in all cancer registration and in one audit of a UK central cancer registry, a 

miscoding rate of 2.4% was found after data cleaning for primary skin squamous 

carcinoma (Maudsley and Williams, 1999), similar to our findings.  In situ carcinoma is 

considered synonymous with severe dysplasia in the WHO classification and by the 

pathologists reporting cases for this study.  However, the term causes problems in 

cancer registration.  The Office for National Statistics defines carcinoma in situ as “the 

cancer is in its earliest stages (not yet spread from the surface layer of cells in an organ 

or other tissue) and is usually curable” implying that the in situ stage is a cancer (Office 

for National Statistics).  

In every case where nuclear suspensions were obtainable, a DNA ploidy analysis 

result could be produced.  Three samples that were very thin and small with size of less 

than 3mm in length yielded insufficient nuclei and were excluded from analysis (section 

4.4.1). Excluded samples and cases were few in number and would appear to carry little 

risk of sample bias (refer to Figure 4.4).  Excluded cases comprised 1 patient without 

dysplasia, 3 with mild and 4 with moderate or severe dysplasia.  

The distributions of age and gender, grades of dysplasia and presence of aneuploidy 

are comparable to other similar studies.  The mean age of this study population is 

similar to Bremmer et al. (2011) and Sperandio et al. (2013). Comparing to studies that 

evaluated OPMDs without DNA ploidy analysis, the mean age is also similar (Napier et 

al., 2003; Brouns et al., 2014; Dost et al., 2014). When all patients were grouped into 
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those who had undergone malignant transformation and those who had not, the mean 

age was slightly higher in the former group. This pattern is seen in both sets of analyses 

regardless of whether transformation in less than 6 months was included or excluded 

(Table 4.3 and 4.4). Nevertheless, the mean age of population that had malignant 

transformation in this study is consistent with previous similar studies (Torres-Rendon 

et al., 2009; Bradley et al., 2010; Siebers et al., 2013). 

The male to female ratio follows most Western population studies with higher 

numbers of male than female patients (Torres-Rendon et al., 2009; Bradley et al., 2010; 

Siebers et al., 2013) though there is no consensus on the expected ratio and others have 

reported the opposite (Napier et al., 2003; Bremmer et al., 2011). A low male to female 

ratio in the subgroup who developed carcinoma is also consistent with previous studies 

(Napier et al., 2003; Warnakulasuriya et al., 2011; Brouns et al., 2014) though this has also 

not been consistent in the literature and differs from others with similar experimental 

designs using selected patients rather than sequential series (Torres-Rendon et al., 2009; 

Bradley et al., 2010; Bremmer et al., 2011; Siebers et al., 2013). 

4.5.3 Dysplasia and DNA ploidy 

Our data shows that, of the clinically suspicious lesions, almost half had a 

histological diagnosis of dysplasia. This is similar to previous dysplasia-ploidy studies 

(Bremmer et al., 2011; Siebers et al., 2013).  Again, there is no consensus on the expected 

prevalence of dysplasia in such series.  Some have shown dysplasia to be relatively 

infrequent in high-risk lesions in population-based studies (Banoczy, 1977; Silverman et 

al., 1984; Cowan et al., 2001). A study in Northern Ireland (Cowan et al., 2001) revealed 

that only 12% of ‘worrying’ intra-oral mucosal lesions selected for biopsy were 

dysplastic. These differences highlight that study design and sample size and selection 
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can bias studies by altering the proportion of high risk cases and number with dysplasia.  

The features of our study population are supported as representative by data from a 10-

year follow-up study in the South-East London population (Warnakulasuriya et al., 

2011), the source of most of samples diagnosed in this institution.  

Surprisingly, in view of different case inclusion criteria, we have found similar 

proportions of DNA ploidy abnormalities in our study population as in our previous 

study (Sperandio et al., 2013).  Approximately 20% of cases showed aneuploidy in both 

studies. Tetraploidy was reported more frequently in the earlier study and this may be a 

result of poorer preparation quality, a lower number of nuclei included in the analysis 

and acceptance of a higher diploid peak CV in the diagnostic criteria.  

A significant correlation between DNA ploidy and dysplasia grade shown in this 

study was consistent with previous reports (Saito et al., 1995; Pentenero et al., 2009; 

Torres-Rendon et al., 2009; Bradley et al., 2010; Sperandio et al., 2013). Among the 

aneuploid lesions, approximately 40% were severely dysplastic and the proportions 

decreased with lower degree of dysplasia (refer to Table 4.6). None of our non-

dysplastic lesions were aneuploid.  As in the previous studies cited above, diploid status 

was found in 43% of severely dysplastic lesions and half of moderately dysplastic lesions 

and 23% of mild dysplasia lesions harboured aneuploidy.  As the positive predictive 

value of dysplasia exceeds that of aneuploidy alone, it can be concluded that severe 

dysplasia does transform when ICM DNA diploid and this raises the possibility of 

whether diagnostic criteria or higher definition techniques might identify these extra 

cases at risk.  It can also be concluded that ICM DNA ploidy has value in identifying 

high risk lesions from among apparently low risk cases with mild dysplasia.   
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4.5.4 Dysplasia and malignant transformation 

As noted in the introduction, most studies have failed to show a good correlation 

between dysplasia grade and malignant transformation. Among the recent studies that 

reported lack of association between dysplasia grade and malignant transformation, the 

approach taken by Dost et al. (2014) to model a ‘real-world’ setting appears attractive 

because it uses the original diagnostic report.  This approach accepts that diagnosis in 

routine practice is less standardized that it would be in a research setting or with a 

consensus diagnosis.  In the present study and previous study (Sperandio et al., 2013) we 

also opted to use the original diagnostic dysplasia grade, which according to local 

protocol at the time of diagnosis was a consensus of two pathologists views, with a third 

opinion sought in the event of disagreement.  This approach has recently been 

suggested as best practice for research studies (Speight et al., 2015). 

Without re-diagnosing any cases in this study, we applied a prospective research 

design and found a significantly higher risk of malignant transformation with higher 

grade of dysplasia (Table 4.7 and 4.9). Each grade remains statistically significant even 

when DNA ploidy was considered simultaneously and was true whether or not early 

transformation was included, which concurs with the findings of our previous study on 

cases from the previous decade (Sperandio et al., 2013). These results support that 

dysplasia grade is a strong independent indicator of malignant transformation. Bremmer 

et al. (2011) grouped mild or no dysplasia together and moderate or severe dysplasia 

together as a second group and showed a significant association with risk of 

progression. These combinations may be in keeping with recently recommended binary 

classification but we show a statistically significant trend between dysplasia grades, 

which justifies distinguishing three grades. Our results are supported by a meta-analysis 
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on 14 follow-up studies of oral dysplasia that demonstrated a clear distinction in 

transformation rates between all three grades (Mehanna et al., 2009). 

In this series, carcinomas arising in mild and moderate dysplasia arose in the first 2 

years of follow up, while those arising in severe dysplasia continued to develop 

throughout the 9.6 years study duration (Table 4.8 and 4.10).  Our findings concur with 

other studies showing that malignant transformation in all grades was greatest in the 

first 5 years of follow up and decreased thereafter, though risk remained (Pindborg et al., 

1968; Silverman et al., 1984; Lind, 1987; Schepman et al., 1998). One reason why the few 

diploid samples that progressed transformed early could be sampling error.  Areas of 

moderate or severe dysplasia might have been present in adjacent mucosa but not 

sampled, resulting in an erroneously mild grade of dysplasia.  Alternatively, this may just 

be random clustering of a small number of events.  

Our group has shown that oral epithelial dysplasia indicates a 10-year risk of 

developing carcinoma (Warnakulasuriya et al., 2011; Sperandio et al., 2013). A 20-year 

population-based follow-up study has demonstrated that the proportion of 

transformation in dysplastic lesions for the first and second 10-year periods was similar 

(Cowan et al., 2001). Moreover, the author of a systematic review on follow up studies 

of oral dysplasia concluded that the time to transformation range from 0.5 to 16 years 

(Mehanna et al., 2009) and it seems likely that cases would continue to transform in a 

longer follow-up period.   

4.5.5 DNA ploidy 

The quality of DNA ploidy histograms obtained from the samples was very good 

and better than in our previous studies. This might be due to the use of samples that 
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had been stored for fewer years than those used by Sperandio et al. (2013), though 

considerably more experience has been gained in the analysis since that study was 

completed. An upgraded camera and improved cell sorting software was used in the 

current experiments. In the present work, the CV of the diploid peak was often very low 

around 1-2%, providing the system with high resolution to detect minor aneuploid 

peaks and matching the CV obtained in high resolution ultraviolet flow cytometry 

(Brouns et al., 2012). Diagnostic criteria require a CV less than 5% and our much lower 

CVs lend confidence to the accuracy of the present data.  The number of nuclei 

retrieved, a mean of 3150 nuclei per sample, was much higher than in previous studies, 

which report counts ranging from 1000 to 2000 (Torres-Rendon et al., 2009; Bremmer et 

al., 2011; Siebers et al., 2013). The higher the number of nuclei the better the coefficient 

of variation would be expected to be. 

The ploidy diagnostic criteria used in these experiments are the same as used 

previously (Sperandio et al., 2013) and the same as in routine diagnostic use in our 

pathology service. These were originally validated by the Oslo group on other tissues, 

but are also used in general ploidy research by others. They differ from those used by 

Bradley et al. (2010) in which the cytology of the nuclei is also incorporated into the 

result by a diagnostic cytologist, though in an undefined way. The Oslo diagnostic 

criteria have proved effective in our previous work (Sperandio et al., 2013) and have also 

been adopted by others (Torres-Rendon et al., 2009; Siebers et al., 2013). Using these 

criteria we were able to classify all ploidy histograms. 

In agreement with our previous studies (Sperandio et al., 2013) we have shown that 

DNA ploidy analysis predicts malignant transformation (Table 4.7). Outcomes for 

aneuploid and diploid lesions were statistically significantly different and, like dysplasia, 
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indicated a long-term risk of malignant transformation whether or not early 

transformation was excluded from the analysis. One similar study (Siebers et al., 2013) 

analysed excluding early transformation produced a similar risk of transformation to the 

present study including early transformation. This difference is most likely to be due to 

differences in sample selection as discussed above (section 4.5.2).  In a study of 

randomly selected patients presented with leukoplakia, Bremmer et al. (2011) found a 

lower hazard ratio.  

We found that the statistical significance of DNA aneuploidy was lost when 

dysplasia grade was considered simultaneously in multivariate analysis (Table 4.7 and 

4.9). This has not been shown by others (Bradley et al., 2010; Bremmer et al., 2011; 

Siebers et al., 2013). However, those analyses were performed on smaller case series 

(Bremmer et al., 2011), using different DNA ploidy analysis system (Bradley et al., 2010), 

and incorporating only aneuploid lesions that were dysplastic (Bradley et al., 2010; 

Bremmer et al., 2011; Siebers et al., 2013). Conclusions on the predictive superiority of 

DNA ploidy over traditional dysplasia for malignant transformation should therefore be 

made with caution. Our data suggests that ploidy results should be considered along 

with other established parameters when predicting the outcome of OPMDs and 

possible combinations of results are discussed below.   

4.5.6 Malignant transformation 

No follow up study has yet reported patterns of malignant transformation for DNA 

ploidy diagnoses over such a long period.  In this study, the proportion of cases that 

underwent malignant transformation in the ICM DNA aneuploid group was greatest in 

the first 5 years, similar to rates for lesions with severe dysplasia (Table 4.11 to 4.13). 

This similarity was expected, as most aneuploid lesions were also severely dysplastic. All 



DNA  ploidy 

 

 213 

cases that transformed in the ICM DNA diploid group developed carcinoma during the 

first 6 years of follow up. 

There is significant variation in the literature regarding the transformation rate of 

dysplasia, as discussed earlier (see section 1.2.7). Disparities in the literature often arise 

following simplistic calculations of the proportion of cases in a study population that 

developed carcinoma without taking into account differences in follow up period 

between subjects (Warnakulasuriya et al., 2011). We have calculated rates taking time to 

transformation for each individual into account and the annual transformation rates for 

oral epithelial dysplasia in our series were 1.32% and 0.87%, including and excluding 

transformation within 6 months of index lesions respectively.  These results are in 

keeping with the rates reported by previous studies calculating results correctly (Dost et 

al., 2014). Higher rates were observed with greater severity of dysplasia (see Table 4.11 

to 4.13). A lower annual malignant transformation rate for ICM DNA aneuploid lesions 

(5.97%) was observed than was found for severe dysplasia (10.64%).  

Non-dysplastic samples from oral leukoplakia and other OPMD have been included 

in the majority of published studies on malignant transformation. There are however, a 

few studies that have focused on lesions with epithelial dysplasia only and these have 

reported that 13.2% (Banoczy and Csiba, 1976), 6.6% (Pindborg et al., 1977), 36% 

(Lumerman et al., 1995), 22% (Ho et al., 2012) (Ho et al) and 4.7% (Dost et al., 2014) of 

their cases underwent malignant transformation.  This is a very broad range and the 

variation is probably accounted for by the factors discussed above such as case selection 

and risk habits.  When we limited our analysis to the lesions with dysplasia only, the 

proportion of cases that developed carcinoma was 21% and 14%, when early 

transformation was included and excluded respectively (Table 4.13). These figures are 
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within the reported range, but the correctly calculated transformation rates provide 

more meaningful data and would be a more comparable statistic to compare different 

studies, as pointed out by Warnakulasuriya et al. (2011).  

4.5.7 Predictive values compared 

We have shown that severe dysplasia but not moderate dysplasia is a better 

predictor of malignant transformation than ICM DNA aneuploidy (Table 4.14 and 

4.15). Both absence of dysplasia and ICM DNA diploid had an equivalent positive and 

negative predictive value. This is true whether or not early transformation is included in 

the analysis. This appears to suggest that ICM DNA ploidy analysis has no added 

advantage for clinical practice. However, it is noteworthy that only this work and our 

previous published studies show good correlation between dysplasia and malignant 

transformation. Therefore, in other centres where dysplasia grading is less predictive, 

DNA ploidy analysis would appear to have great potential. Even in our present study 

DNA ploidy analysis has identified aneuploidy in almost a quarter of cases that showed 

only mild dysplasia (Table 4.6). 

It was not possible to combine the results of ICM DNA ploidy analysis with 

dysplasia grade in our previous study (Sperandio et al., 2013) because the two analyses 

were performed on different study populations. In the present work, we have been able 

to combine the two sets of results in a more meaningful fashion. As shown in previous 

study (Sperandio et al., 2013) the predictive values of ICM DNA diploidy and tetraploidy 

were not significantly different, and so they were combined for this analysis (see Table 

1.14). The combination of severe dysplasia and ICM DNA aneuploidy has increased 

predictive value over both aneuploidy and severe dysplasia alone and a similar 

relationship holds with moderate dysplasia. In contrast, adding diploid or tetraploid to 
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the absence of dysplasia showed no benefit to the negative predictive value. These 

predictive values of combined results are the basis to derive a clinical diagnostic 

algorithm for implementation of ICM DNA ploidy analysis in routine diagnosis that will 

form part of future work.   

4.5.8 Conclusion 

In conclusion, the results of this study provide support for the hypothesis that ICM 

DNA ploidy analysis is a good predictor of malignant transformation in OPMD when 

applied to oral lesions assessed as having a risk of transformation on clinical grounds.  

The results also complement the sparse data supporting the efficacy of dysplasia grading 

to predict malignant transformation in routine clinical practice. The highest predictive 

values are produced by combinations of the two techniques and the predictive values 

reported here exceed those from published studies to date.   
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 : Conclusions and Future Work CHAPTER 5

 

5.1 Summary and conclusion 

The aims of this study were to improve the diagnosis and predictive tests for 

patients with OPMD. We set out to evaluate ICM DNA ploidy analysis to predict 

malignant transformation and compare the results to dysplasia grading, and to assess 

FISH, QGPlex and qPCR as alternative methods to detect aneuploidy, using DNA 

ploidy as the reference test.  

The main conclusions of this work are that DNA image-based ploidy analysis 

proved to be an effective technique for routine clinical analysis of archival paraffin 

embedded samples.  Compared to other techniques it was rapid, gave control of tissue 

localisation and used internal controls. We have shown ICM DNA ploidy analysis to 

have a positive predictive value of 33% for development of cancer in a large referral 

series of 228 patients.  This was not as high as severe dysplasia grading in our studies 

but considerably higher than in other published studies.  The combination of aneuploidy 

and severe dysplasia had a PPV of 56%. We suggest that ICM DNA ploidy merits 

further evaluation as a routine clinical test with potential patient benefit.  

The advantages of FISH were no requirement for reference gene or intact DNA 

and tissue localisation and FISH proved successful.  We have demonstrated that copy 

number increase at 10 amplified loci in OPMD and shown that that even small numbers 

of probes would be sufficient to identify aneuploidy.   Only a very small number of 

aneuploid cells were detected in any lesion. FISH also revealed clonal patterns and gene 

amplification in a minority of samples.  However, FISH proved to have high cost 
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requiring special equipment, and was labour intensive and time consuming to produce 

data, making it unsuitable for routine diagnostic use.  

The theoretical potential advantages of QuantiGenePlex included high signal 

amplification, ability to analyse degraded DNA and multiplexing. Conversely, 

requirement for costly special equipment makes it less suitable for routine used across 

laboratories. Though our ability to perform this assay sufficient times limited the results, 

we identified problems with selection of reference genes and possibly sample quality 

and sample enrichment. We showed that the technique was insufficiently reproducible 

for clinical work without further optimisation of sample preparation.   

Real time qPCR is the method of choice for rapid high throughput genetic testing 

in many laboratories. However, the accuracy of results obtained from qPCR has always 

been a concern when performed on genomic DNA extracted from formalin fixed tissue. 

The inconsistencies seen in our results were likely attributable to fragmentation and 

cross-linking of genomic DNA isolated from fixation in formalin. We had insufficient 

matched samples to compare qPCR and QGPlex in this study.   
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5.2 Recommendations for future work 

 Further work to validate the QGP technique for OPMD and optimize the process is 

merited as the technique appears potentially useful.  

 QPCR has insufficient accuracy and reliability to detect copy number variation and 

no further work is suggested pending evaluation of QGP. 

 Both QPCR and QGP are dependent on control genes and calibrator but it is 

difficult to propose a stable unaffected gene for future work. 

 FISH merits further work using a reduced target panel, automated staining and 

simplified counting method suitable for routine clinical application using 

colorimetric ISH.  

 ICM DNA ploidy analysis remains the best predictor of malignant transformation in 

OPMD but requires further work to improve diagnostic criteria  

 Predictive values of ICM and DNA ploidy should be used to define a clinically 

applicable treatment algorithm.  
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