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Single-molecule identification-based super-resolution microscopy techniques such as photo-activated localisation 

microscopy (PALM) and stochastic optical reconstruction microscopy (STORM) produce pointillist data sets of 

molecular coordinates. While many algorithms exist for the identification and localisation of molecules from the 

raw image data, methods for analysing the resulting point patterns for properties such as clustering have 

remained relatively under-studied. Here, we present the first model-based Bayesian approach to evaluate 

molecular cluster assignment proposals which, in this article, are generated by analysis based on Ripley’s K-

function. The method is also the first to take full account of the individual localisation precisions calculated for 

each emitter. The technique is validated using simulated and experimental data from which we characterise the 

clustering behaviour of CD3ζ, an important subunit of the CD3-T cell receptor complex required for T cell 

function, in resting and activated primary human T cells.  

 

Conventional fluorescence microscopes produce images of the distribution of fluorophores in the sample 

convolved with the microscope Point Spread Function (PSF). Due to diffraction, this PSF typically has a width of 

hundreds of nanometres meaning the resulting image has a resolution, as assessed by the Rayleigh criterion, of 

~200 nm. Several strategies now exist to circumvent this resolution limit1. Some of these, such as Stimulated 

Emission Depletion (STED) microscopy, rely on narrowing the excitation spot of a confocal microscope by means 

of a toroidal depletion beam and the process of stimulated emission2, 3. Despite the increased resolution, these 

produce conventional fluorescence images, i.e., arrays of pixels with values representing the fluorescence 

intensity at those locations. Quantification can be performed in the same way as for conventional microscopes. 
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Another strategy is based on Single-Molecule Localisation Microscopy (SMLM)4-7. This relies on the temporal 

separation of the excitation of fluorophores in the sample whose PSFs would otherwise overlap at the detector. 

The position of each fluorophore can then be estimated from the centres of the PSFs. Many algorithms are 

available to extract the x-y coordinates of the molecules8-10. Each emitter can be localised to a precision between 

10 and 30 nm. Common strategies for the temporal separation of molecules involve intra-molecular 

rearrangements to switch from dark to fluorescent states or the exploitation of non-emitting molecular radicals11, 

12. These strategies are typically pursued using photoactivatable or photoconvertible fluorescent proteins or small 

molecule probes coupled with a reducing buffer and immunostaining protocols13. We refer to all such strategies 

as SMLM. 

Unlike non-pointillist microscopy methods, SMLM imaging does not produce a conventional image. Instead, the 

raw data is a list of the x-y coordinates of all the fluorophores, each with an associated, estimated localisation 

precision. The analysis of spatial point patterns (SPPs) requires a different statistical toolkit to the analysis of pixel 

arrays, only now being explored in the context of SMLM. 

Several techniques for analysing SPPs generated from SMLM have been proposed. To investigate and quantify 

clustering behaviour, widely used are Ripley’s K-function14-16 and pair-correlation (PC) analysis17, 18. Both rely on 

drawing a series of concentric shapes – circles in the case of the K-function and tori in the case of PC – around 

each localisation and counting the number of neighbours enclosed. These allow the degree of clustering at 

different spatial scales to be determined. In the case of the K-function, the values at each localisation can be 

interpolated to create cluster maps to which thresholds can then be applied19.  

The methods presented above have several key shortcomings. They often require calibration data or user-

selected analysis parameters that strongly influence the output. This problem is exacerbated by batch-processing, 

meaning that regions are often analysed with the same sub-optimal parameters. The methods also do not take 

any account of the individual localisation precisions for each point. Finally, these are model-free methods, which 

makes it inherently difficult to judge performance and interpret results. 

Here, we present a model-based, Bayesian approach to cluster analysis of SPPs generated by SMLM. The quality 

of a given assignment of molecules to clusters is evaluated against its (marginal) posterior probability, computed 

on the basis of a fully-specified model for the data, including the localisation precisions. This provides a principled 

mechanism for choosing between clustering proposals generated by different algorithms and settings. In this 

article, clustering proposals are generated using a strategy based on the K-function14, with variable spatial scale 

and threshold. We therefore generate several thousand candidate clustering proposals per ROI, from which the 

optimum is selected according to the Bayesian model. Code is available in the Supplementary Material. 

We demonstrate using simulated SPP data that we can accurately evaluate molecular clustering in a variety of 

conditions. The technique is then used to compare the clustering behaviour of CD3ζ-mEos3 in resting T cells 

versus at the T cell immunological synapse. Here, it is accepted that proteins, including the CD3ζ subunit, arrange 



into microclusters upon synapse formation. While many other biological processes involve the clustering of 

proteins at the cell surface, this application is especially informative because both the K-function strategy and PC 

have been applied previously14, 15, 20, 21. For experimental data, it is important that artefacts caused by multiple 

blinking of individual fluorophores and overlapped PSFs, inherent to the methodology of SMLM, are removed (or 

accounted for). Our algorithm does not attempt to correct for, or be robust to, multiple blinking. Therefore, our 

method generates quantitatively reliable results only when multiple blinking has been corrected, as is possible 

with PALM data. Here, this was achieved using ThunderSTORM22 localisation software which includes blink 

correction based on the method of Annibale et al23 previously validated using mEos, and is able to fit multiple 

emitters to overlapping PSFs. Our algorithm is applicable to data from other SMLM implementations, however, 

because of the difficulties of correcting multiple blinking, results must be interpreted appropriately. 

 

RESULTS 

We begin by assuming a single coordinate for each molecule in the region of interest (ROI), generated by the 

localization software, in our case ThunderSTORM24. The 2D molecular positions are modelled as a set of Gaussian 

distributed clusters overlaid on a completely spatially random (CSR) background. These molecular coordinates are 

then disturbed by Gaussian distributed errors as a result of the localisation process. The errors have different 

standard deviations, which are treated as known. In fact, they are estimated from the raw microscopy data based 

on the number of collected photons, PSF width, local background noise and camera pixel size25. 

The cluster centres themselves are assumed to be uniformly distributed over the ROI and their radii (standard 

deviation) are drawn from a user-supplied prior distribution. Localisations are assigned independently to the CSR 

background with a fixed prior probability and the remaining localisations are clustered according to the Dirichlet 

process26. We compute the posterior probability of any given assignment of localisations to clusters (a clustering 

proposal) with respect to the above model. The calculation is deterministic, unlike with many Bayesian models, 

requiring only numerical integration over one dimension (see Supplementary Methods).  

To generate clustering proposals we use a method based on Ripley’s K-function16. Every localisation is allocated a 

clustering score, L, as proposed by Getis27. L is a function of the number of localisations within a distance, r, of 

that point, normalised by the mean molecular density of the ROI. Localisations with a value of L below a certain 

threshold, T, are assigned to the background. T can be interpreted as the minimum local density required for a 

point to be assigned to a cluster. Any two remaining localisations within a distance 2r of each other are then 

connected and the connected components form clusters (Fig. 1a). By scanning r and T we generate of the order of 

10,000 cluster proposals which are then assigned a posterior probability. The highest scoring proposal is retained, 

key descriptors are extracted. Although other proposal mechanisms are possible, e.g. K-means28, KDE clustering29, 

agglomerative clustering30 or Density-based Spatial Clustering of Applications with Noise (DBSCAN)31, this 

approach is attractive because it has a straightforward geometrical interpretation and can be rapidly computed. 



In a representative simulated data set (Fig. 2b), the posterior probability is calculated for a range of values of r 

and thresholds (Fig. 2c). The dashed line indicates positions where L(r) is thresholded at r, i.e., the line T=r. L(r) 

being greater (smaller) than r indicates that points are more (less) clustered at that scale than would be expected 

under CSR. It is intuitive that a clustering model should favour thresholding L(r) above r. Four r-T combinations are 

selected and the clustering proposals generated by each are shown (Fig. 2d). The highest scoring is proposal 2. 

The others illustrate three different manifestations of a sub-optimal selection of r and T. In proposal 1, several 

small, spurious clusters are identified largely due to the small value of r used. In proposal 3, the threshold is too 

stringent and localisations at the cluster extrema are assigned to the background. Finally, in proposal 4, clusters 

are merged due to a large value of r. 

 

Performance and sensitivity analysis 

SMLM localisation data were simulated under four different clustering scenarios. In the first, the Standard 

Conditions, a 3000 x 3000 nm area contains 2000 localisations. These comprise 10 Gaussian clusters with radius 

50 nm containing 100 localisations each and 1000 localisations (50%) in the background. Each localisation is then 

disturbed by Gaussian noise with variance drawn from a Gamma distribution with mean 30 nm and standard 

deviation 13 nm (emulating the localisation error of the microscope). These parameters were chosen to 

approximately reflect typical clustering behaviour of proteins at the immunological synapse14, 15, 20, 21. The three 

remaining scenarios have the same parameters as the Standard Conditions except where stated otherwise. The 

second scenario is a sparse data set containing only 200 localisations with 10 per cluster and 100 in the 

background. In the third, the cluster radii are 100 nm. Finally, the fourth scenario has 10 localisations per cluster 

with 900 (90%) in the background. 100 ROIs were simulated for each scenario. 

Representative example of each of the four simulated scenarios are shown (Fig. 2a) with corresponding heat-

maps displaying the log-posterior probability (Fig. 2b). The highest scoring r-T combinations are encircled and the 

generated proposals displayed (Fig. 2c). Histograms of three key cluster descriptors – cluster radii (empirical 

standard deviation of the localisations), number of localisations per cluster and  percentage of localisations in 

clusters were generated (Supplementary Fig. 1). A thorough characterisation of our algorithm tested on varying 

simulation parameters is also provided (Supplementary Fig. 2).  

Our algorithm substantially outperforms currently available cluster analysis methods, e.g. Getis and Franklin’s 

Local Point Pattern analysis and DBSCAN and offers definite advantages over other approaches, e.g. Ripley’s K-

function and pair correlation (Supplementary Figs. 3- 5, and Supplementary Materials and Methods). There, we 

also test our algorithm against more challenging conditions, including an uneven background (Supplementary 

Figs. 6 and 7), very small clusters (multimers) (Supplementary Fig. 8) or clusters with variable size 

(Supplementary Fig. 9). A side by side comparison of our algorithm, Getis’s method and DBSCAN on three 



example conditions clearly demonstrates the superiority of our approach (Supplementary Fig. 10). A sensitivity 

analysis to prior settings is also provided (Supplementary Fig. 11). 

 

Analysis of protein clustering in primary human T cells 

We analysed SMLM data of the CD3ζ subunit of the TCR-CD3 complex, fused to the photoswitchable fluorescent 

protein mEos3 at the plasma membrane of CD4+ primary human T cells that had formed an immunological 

synapse on anti-CD3/28 coated glass coverslips. Non-activating poly-L-lysine coated coverslips were used as a 

control. After 4 minutes of incubation on the coverslips at 37°C, cells were pH-shift fixed and imaged. 

Photoswitching of mEos3 was achieved using 405 nm laser light and switched proteins imaged using 564 nm 

excitation. Details of the sample preparation method and imaging can be found in the Supplementary Materials 

and Methods. Multiple blinking of fluorophores and overlapped PSFs were compensated for using 

ThunderSTORM localisation software24 and optimal settings estimated using the method of Annibale et al23 

(Supplementary Fig. 12 and Supplementary Materials and Methods). Note that while mEos3 displays multiple-

blinking during PALM data acquisition, this effect can be effectively corrected (due to the different time-scales of 

photo-switching and photo-blinking), thus rendering the input data appropriate for our algorithm. The localisation 

precisions were calculated using the method of Quan et al25 and representative histograms of these values are 

shown (Supplementary Fig. 12). 

From SMLM images of resting and activated T cells (Fig. 3a), 3000 x 3000 nm regions (n = 30 per condition) were 

selected and the localisations plotted (Fig. 3b). For each, the Log Posterior Probability heat map is shown (Fig. 3c) 

with the highest scoring proposal (Fig. 3d). Beeswarm plots of the percentage of localisations in clusters, number 

of clusters per region, cluster radii and relative density of localisations inside and outside clusters are shown (Fig. 

3e). T-tests were used and their p-values were computed by permutation (see Supplementary Materials and 

Methods). In good agreement with previous reports21, 32, CD3ζ was clustered in stimulated and non-stimulated 

cells, and cluster parameters were significantly altered. Despite no large scale changes in the percentage of 

localisations found in clusters (29 ± 2% in PLL to 33 ± 1% in activated cells, P > 0.05), a significant increase in the 

number of clusters and a significant decrease in the size of clusters was observed from resting to activated cells (8 

± 1 clusters per region on PLL versus 20 ± 3 in activated cells; P ≤ 0.005 and 82 ± 4 nm radius versus 48 ± 2 nm 

after activation; P ≤ 0.0005; Fig. 3e). In addition, a significant increase in the density of localisations in clusters 

relative to non-clustered regions was observed (7 ± 1 versus 14 ± 1, P ≤ 0.0005). Results are consistent when we 

divide localisations into two equally sized data sets (Supplementary Fig. 13). As with the simulations, we analysed 

all experimental data using three well established cluster analysis methods; Getis and Franklin’s cluster maps, 

Ripley’s K-function and Pair Correlation (Supplementary Fig. 14).  

 

DISCUSSION 



Super-resolution imaging based on localising individual molecules is becoming increasingly widespread. While 

methods to localise molecules from the raw fluorescence data have been extensively analysed8, 10, 33, the 

subsequent interrogation of the point pattern data has been relatively under-studied. We have demonstrated a 

new, Bayesian cluster analysis algorithm for SMLM data.  

Unlike previously demonstrated methods based on the generation of cluster maps which involve an interpolation 

algorithm to generate the surface19, the new method is not prone to artefacts in sparse data sets, e.g. from low 

copy-number proteins. The method also has the possibility to allow faster imaging as less localisations are 

required to accurately identify and characterise clustering. Increasing the speed of SMLM data acquisition and 

processing has been one of the major goals to move the technique into the domain of live cell imaging33. 

The algorithm is only weakly sensitive to the prior settings and this is a major advantage over previous methods, 

where the initial choice of spatial scale and threshold has a large effect on the final results. In addition, here, all 

ROIs are analysed with the parameters which are estimated to be optimal for that specific region, rather than 

diverse regions being treated equally. The method is the first to take full account of the localisation precisions 

rather than treating all localisations as exact. We have stress-tested the algorithm under challenging conditions, 

for example, finding the detectability limit to be around 6 localisations per cluster. We hypothesise that a 

Bayesian model that explicitly targets small features would be more successful in detecting small multimers. 

Indeed, an interesting avenue of future research would be to develop a number of different models to capture 

the diversity of point patters observed in SMLM data, including fibres, meshes, areas of exclusion and so on. 

It is well known that raw SMLM data can exhibit artefacts, due to the photophysical nature of the process22, 23, 34, 

whereby individual molecules can re-excite and thus generate multiple localisations. In addition, due to the 

stochastic nature of the activation process, it is possible for several PSFs to overlap at the detector, causing errors 

in the extracted coordinates. Our algorithm does not attempt to correct or to be robust to multiple-blinking 

effects. If there is suspicion that these have not been adequately addressed by the localisation software, then the 

output of our algorithm should be interpreted with caution. In our case, we acquired experimental data using 

PALM, for which multiple blinking can be corrected. This is because of the different timescales of molecular 

photo-conversion and photo-blinking. In other experimental conditions, for example, when using small molecule 

dyes, such corrections may not be possible. Therefore, the outputs of the algorithm may contain artefacts, in 

particular, spurious clusters. Our algorithm remains a valuable exploratory tool for such data. 

Our method therefore allows the accurate and principled quantification of clustering behaviour in SMLM data in a 

manner that is more automatic, robust and objective than previously possible. In this initial case, we focused on a 

model consisting of circular, Gaussian distributed clusters overlaid on a CSR background. In future, it will be 

possible to create generative models with different clustering characteristics. Evaluation of SMLM data against 

such models may allow a better understanding of the biophysical principles underlying protein clustering.  

 



 

METHODS 

Methods and any associated references are available in the online version of the paper at 

 http://www.nature.com/naturemethods/. 

Note: Supplementary information is available on the Nature Methods website. 
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Figure 1: Workflow of the algorithm. a) Schematic of the cluster proposal generating mechanism. i) A raw data set 

consisting of molecular localisations within a square ROI. ii) Getis’s method counts the number of localisations 

within a distance r of each point. iii) This allows each localisation to be assigned a score, L(r), in pseudo-colour. iv) 

These values are then thresholded and v) those falling above are grouped into clusters by connecting any pair 

whose circles intersect. vi) Finally, this allows all localisations to be given a cluster label or to be assigned to the 

background, culminating in an overall cluster proposal. The algorithm searches through many combinations of r 

and T to generate many thousands of cluster proposals. b) A representative simulated data set from the Standard 

Conditions. c) A pseudo-coloured heat-map showing the Log Posterior Probability for a range of values of r and 

threshold T. Red represents the most probable combinations according to the model. The dashed line represents 

T = r. d) From this map, four r and T combinations are selected and the corresponding proposals shown. The 

highest scoring combination generates Proposal 2.  

 



 

Figure 2: Four different clustering scenarios. i) Standard Conditions, ii) a sparse data set with only 10% as many 

localisations, iii) clusters which are twice the size and iv) only 10 localisations per cluster and 90% of localisations 

in the background. a) Representative simulated data. b) Log Posterior Probability heat-maps together with T = r 

line and highest scoring combination encircled. c) Highest scoring cluster proposal.  

 

 



 

Figure 3: Comparison of the clustering behaviour of CD3ζ-mEos3 in resting and activated primary human T cells. 

a) Representative SMLM images, scale bar 5 m. b) Example 3000 x 3000 nm region showing localisation 

coordinates. c) Log Posterior Probability heat-maps showing the highest scoring r-T combination for a 

representative 3000 x 3000 nmROI. e) Beeswarm plots presenting the percentage of localisations found in 

clusters (one point per ROI), the number of clusters per region (one point per ROI), the cluster radii (one point per 

cluster) and the relative density of localisations in clusters compared to the surrounding region (one point per 

ROI). * = P ≤ 0.05, ** = P ≤ 0.005, *** = P ≤ 0.0005. 

 

 

 

 

 

 

 

 

 



Online only methods 

Sample preparation 

Primary human T cells were isolated from peripheral blood using Lymphoprep (Stemcell) followed by a naïve CD4 T 

cell negative selection kit (Miltenyi). 1X107 naïve human CD4 T cells were transfected with 2 µg CD3ζ-mEOS3 using an 

Amaxa system (Lonza). Immune synapses were formed against activating coverslips coated with anti-CD3 (2 µg/mL) 

and anti-CD28 (5 µg/mL). Immune synapses were allowed to form for 5 minutes and were then pH-shift fixed (3% 

paraformaldehyde (PFA)-kPIPES at 80 mM, pH 6.8 for 5 minutes followed by 3%-PFA Borax at 100 mM for 10 minutes). 

Cells were imaged in phosphate buffered saline (PBS). 

SMLM imaging 

SMLM imaging was performed on a Nikon N-STORM microscope using a 100X, 1.49N.A. oil-immersion total internal 

reflection fluorescence (TIRF) objective. Cells were imaged under TIRF illumination with a 563 nm laser with photo-

activation at 405 nm. Fluorescence was collected in the wavelength range 575-625 nm on an Andor iXon DU897U EM-

CCD camera. Camera integration time was 30 ms and a total of 20,000 frames were typically recorded. Molecular 

coordinates were localised using ThunderSTORM software. ThunderSTORM is able to separate multiple overlapped 

PSFs and compensates for the multiple blinking of individual fluorophores given a user supplied merge time and 

distance. Following software recommendations, up to four overlapped Gaussian PSFs were allowed. The optimal merge 

time was computed following the analysis method of Annibale et al as described for mEos (see Supplementary Figure 

12). This has been shown to generate reliable molecular localisation coordinates free from multiple blinking effects and 

therefore appropriate for input into our algorithm. The distance is determined by the camera pixel size, in this case 100 

nm. The merge time was determined to be three frames (30 ms). The photon threshold for single molecule 

identification was set at 500. ThunderSTORM corrects for sample drift during the acquisition using an autocorrelation 

approach. To calculate the localisation precision for each emitter, we selected the method of Quan et al, which accounts 

for the specific noise statistics of EM-CCD cameras.  

Permutation test 

Significance levels for the changes in clustering properties of CD3ζ in resting and activated primary human T cells were 

calculated based on a permutation test. This assumes only that the data are independent (in fact, exchangeable) under 

the null hypothesis.  

The test statistic is 𝑇 = |𝑋1̅̅ ̅ − 𝑋2̅̅ ̅|, where 𝑋1̅̅ ̅ and 𝑋2̅̅ ̅ are the means of the two groups of values under analysis, X1 and X2. 

The p-value of this test is the frequency that T*≥T where T* is a simulated test statistic under the null hypothesis. 

Specifically, 𝑇∗ = |𝑋∗
1

̅̅ ̅̅ ̅ − 𝑋∗
2

̅̅ ̅̅ ̅|, where 𝑋∗
1

̅̅ ̅̅ ̅ and 𝑋∗
2

̅̅ ̅̅ ̅ are two simulated groups constructed by sampling from the pooled 

values without replacement. 

Through the procedure described by Gandy29, 30, we were able to bound the probability, due to simulation error, of 

reporting a p-value to be on the wrong side of the threshold (0.05, 0.005 or 0.0005) to 1/106. 

 


