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Abstract

Respiratory motion is a complicating factor in PET imaging as it leads to
blurring of the reconstructed images which adversely affects disease diagno-
sis and staging. Existing motion correction techniques are often based on
1D navigators which cannot capture the inter- and intra-cycle variabilities
that may occur in respiration. MR imaging is an attractive modality for
estimating such motion more accurately, and the recent emergence of hybrid
PET/MR systems allows the combination of the high molecular sensitivity
of PET with the versatility of MR. However, current MR imaging techniques
cannot achieve good image contrast inside the lungs in 3D. 2D slices, on the
other hand, have excellent contrast properties inside the lungs due to the
in-flow of previously unexcited blood, but lack the coverage of 3D volumes.
In this work we propose an approach for the robust, navigator-less recon-
struction of dynamic 3D volumes from 2D slice data. Our technique relies
on the fact that data acquired at different slice positions have similar low-
dimensional representations which can be extracted using manifold learning.
By aligning these manifolds we are able to obtain accurate matchings of
slices with regard to respiratory position. The approach naturally models all
respiratory variabilities. We compare our method against two recently pro-
posed MR slice stacking methods for the correction of PET data: a technique
based on a 1D pencil beam navigator, and an image-based technique. On
synthetic data with a known ground truth our proposed technique produces
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significantly better reconstructions than all other examined techniques. On
real data without a known ground truth the method gives the most plausible
reconstructions and high consistency of reconstruction. Lastly, we demon-
strate how our method can be applied for the respiratory motion correction
of simulated PET/MR data.

Keywords: Respiratory motion correction, PET/MR motion correction,
MR imaging of the thorax, Manifold learning, Manifold alignment

1. Introduction

Respiratory motion of the thorax is a complicating factor for many imag-
ing techniques and image-based treatments. In radiation therapy it can cause
healthy tissue to be irradiated (Seppenwoolde et al., 2002; von Siebenthal
et al., 2007b), in image-guided interventions it causes misalignment between
the static image-derived road map and the anatomy (King et al., 2009) and in
positron emission tomography (PET) it leads to blurring of the scans, which
in turn may lead to lower detectability of tumours (Zaidi and Del Guerra,
2011). In this paper we focus on the problem of PET imaging, specifically
the use of magnetic resonance (MR) imaging to image the motion in a simul-
taneous PET/MR scanner.

1.1. The Problem of Motion in PET

One strategy for coping with respiratory motion in PET imaging is gat-
ing, a technique in which PET counts are only accepted when a respiration
signal is within a small gating window. Respiration signals include external
devices such as respiratory bellows (Klein et al., 1998) and camera-based sys-
tems (Nehmeh et al., 2002), or signals extracted from the PET data itself,
for example by means of principal component analysis (PCA) (Thielemans
et al., 2011). Gating methods reduce motion artefacts, but suffer from inef-
ficient data usage, and the resulting images are of low signal-to-noise ratio
(Würslin et al., 2013). More sophisticated techniques attempt to incorporate
all counts into the reconstruction by using motion fields describing the res-
piratory motion to correct the PET data. The motion fields may either be
used to retrospectively transform a number of reconstructed PET gates to a
common reference in a process called reconstruct transform-average (RTA)
(Dawood et al., 2006), or they may be incorporated directly into the PET
reconstruction process for a motion corrected image-reconstruction (MCIR)
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(Qiao et al., 2006). Motion fields can be extracted directly from the PET
acquisitions (Bai and Brady, 2009; Dawood et al., 2006), however this ap-
proach may lack robustness for specific radiotracers with low background
uptake (Würslin et al., 2013). Alternatively, motion fields may be derived
from another modality such as computed tomography (CT). However, using
CT comes at the cost of increased radiation exposure to the patient (Beyer
et al., 2000). MR imaging is a promising alternative to CT because of its
non-ionising nature, and its good soft tissue contrast. The recent emergence
of hybrid PET/MR systems opens up the possibility of deriving the motion
fields needed for PET motion correction from simultaneously acquired MR
images (Tsoumpas et al., 2010; Würslin et al., 2013).

1.2. MR-Based Motion Correction

Current MR imaging technology is limited by the lack of contrast in
dynamic MR images of the lungs. The rapidly decaying MR signal from the
lung parenchyma makes the lung appear dark in dynamic 3D images (Robson
et al., 2003), prohibiting robust motion field estimation. Since lung motion
is not homogeneous, accurate motion fields cannot be simply interpolated
between the lung borders (Ding et al., 2009). Furthermore, dynamic 3D MR
images suffer from low image resolution and relatively long acquisition times,
which can lead to motion blurring, further limiting the accuracy of motion
estimation. Dynamic 2D scans, on the other hand, can be acquired in a
shorter time frame, have excellent in-plane resolution and, when acquired
at systole, have high contrast in the lungs due to the in-flow of previously
unexcited blood into the slice. However, they lack the coverage of 3D scans.
Examples of dynamic 2D and 3D acquisitions are shown in Figure 1.

It has been recognised that combining the favourable contrast and res-
olution properties of 2D slices with the coverage of 3D slices is possible by
acquiring 2D slices multiple times in a slice-by-slice fashion and then ret-
rospectively reconstructing dynamic 3D volumes at each time point using
a slice stacking technique. Dikaios et al. (2012) compared 2D slice-by-slice
and 3D MR acquisition protocols for motion correcting PET/MR data on
synthetic data generated from volunteer MR scans, concluding that motion
estimation from dynamic 3D volumes lacks accuracy. In order to reconstruct
3D volumes from the 2D data the authors used a simple slice stacking tech-
nique based on image similarities of neighbouring slice positions. Würslin
et al. (2013) used a similar slice-by-slice acquisition protocol, but in addition
to the slice data, the authors acquired a 1D navigator echo, also known as a
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(a) 3D volume (b) 2D slice

Figure 1: Comparison of (a) a coronal slice through a dynamic 3D MR vol-
ume; (b) a coronal dynamic 2D MR slice acquired from a similar anatomical
position. The 2D slice has much improved contrast inside the lungs due to
the in-flow of unexcited blood.

pencil beam navigator (Ehman and Felmlee, 1989), which they used to gate
the 2D slices to reconstruct dynamic 3D volumes. The resulting volumes
were used to correct clinical PET scans for respiratory motion.

It is well known that respiratory motion exhibits non-negligible variations
between and within breathing cycles such as amplitude variations, baseline
shifts and hysteresis (Blackall et al., 2006; von Siebenthal et al., 2007b; Mc-
Clelland et al., 2011). McClelland et al. (2013) classified these variations into
two categories: inter-cycle variation, i.e. the motion path during one breath-
ing cycle is different from the motion path of a different breathing cycle, and
intra-cycle variation, i.e. the motion path during inspiration is different from
the one during expiration. A simple 1D navigator, as was used in Würslin
et al. (2013), cannot accurately capture these variations. This effect is ag-
gravated by the fact that PET typically involves acquisitions over tens of
minutes, a time-frame in which many patients may change their respiration
pattern, e.g. because of varying degrees of relaxation whilst in the scanner.

An alternative approach, that has the potential to cope with such vari-
ations, was proposed by King et al. (2012). In this work, a motion model
based on low-resolution 3D MR dynamics was built before the PET acquisi-
tion, and then applied using fast 2D MR slices during the acquisition. Using
this method motion fields were estimated for any time-point of the PET ac-
quisition, and used to correct the PET data. However, the authors pointed
out that motion fields derived from low-resolution 3D volumes restrict the
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accuracy of such a technique inside in the lungs.
A slice stacking technique that could capture breathing variation was

proposed by von Siebenthal et al. (2007a). The technique was based on
an interleaved slice acquisition protocol, where a 2D navigator slice at a
fixed slice position was acquired before and after data slices at varying slice
positions. This approach was hampered by a low scan efficiency (only half
of the data acquired was actually used for reconstruction). Furthermore,
it required fast non-cardiac gated acquisitions over tens of minutes, which
makes the approach infeasible in a PET/MR scenario where it is desirable
to simultaneously perform other scans of clinical relevance.

In this paper we present a novel navigator-less slice stacking method for
retrospectively reconstructing 3D dynamic MR volumes from 2D slices, which
is based on the simultaneous embedding and groupwise alignment of under-
lying low-dimensional manifold embeddings of data acquired at different slice
positions. The method consists of three main steps: We first acquire data
from different slice positions in a slice-by-slice protocol (similar to that used
by Dikaios et al. (2012) and Würslin et al. (2013)). We then find respiratory
correspondences between data from different slice positions using manifold
alignment. Lastly, we reconstruct dynamic 3D+t volumes from the 2D data
based on the previously found respiratory correspondences. An overview of
the method is shown in Figure 2. The proposed technique is entirely image
based (i.e. requires no additional navigator), has 100% data efficiency and
has the potential to inherently model all intra-cycle and inter-cycle variabil-
ities. From the reconstructed volumes robust motion fields in the thorax
(including the lungs) can be obtained, which can be used to motion correct
simultaneously acquired PET images.

1.3. Manifold Alignment

Manifold learning is a powerful tool for non-linear dimensionality reduc-
tion of complex high-dimensional data and various manifold learning algo-
rithms have been proposed. In recent years manifold learning was shown
to be useful in the analysis of motion in medical images, making use of the
fact that similar points in the low-dimensional space correspond to similar
motion states. Applications include the region-wise separation of cardiac
and respiratory motion (Bhatia et al., 2012), retrospective reconstruction of
respiratory-gated lung CT volumes (Georg et al., 2008) and extraction of
respiratory gating navigators from MR and ultrasound images (Wachinger
et al., 2011).
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Figure 2: Overview of the proposed method. First, 2D MR data is acquired
in a slice-by-slice fashion. Respiratory correspondences between different
anatomical positions are established by means of simultaneous groupwise
manifold alignment (SGA) of data from different slice positions. The Xp de-
note data acquired at slice position p, the Yp denote low-dimensional man-
ifold embeddings thereof. Lastly, for each 2D input slice, a 3D volume is
reconstructed based on the established correspondences.

Manifold alignment can be used to establish correspondences between
multiple related datasets, which are not directly comparable in high-dimen-
sional space, but have a similar low-dimensional manifold structure. There
are two general approaches to manifold alignment: 1) The datasets are em-
bedded in a common low-dimensional space in a single simultaneous embed-
ding, either with prior knowledge of corresponding points (Ham et al., 2005;
Zhai et al., 2010), or without such knowledge (Torki et al., 2010; Baumgart-
ner et al., 2013); 2) The datasets are embedded separately, and are then
transformed to the same coordinate system in a subsequent alignment step
either with known correspondences using a shape matching technique like
Procrustes analysis (Wang and Mahadevan, 2008), or without known corre-
spondences using normalisation (Georg et al., 2008).

In this paper we propose a novel scheme for manifold alignment through
simultaneous embedding and apply it to the problem of retrospective recon-
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struction of dynamic 3D MR volumes from 2D slices. In particular, we take
advantage of the fact that data acquired at neighbouring slice positions lie on
manifolds with similar structure to establish correspondences in respiratory
state between those slice positions. Our novel manifold alignment scheme is
an extension of our previous work (Baumgartner et al., 2013), extended to
use an improved inter-dataset kernel, which accounts for anatomical differ-
ences between slice positions. We also include a more thorough validation of
our technique, comparing it to the methods proposed by Dikaios et al. (2012)
and Würslin et al. (2013), and validate it on synthetic PET data derived from
real 4D CT scans.

The paper is structured as follows: In Section 2 we give a brief review of
the theory of manifold learning and simultaneous groupwise manifold align-
ment (SGA). In Section 3 we show how SGA can be used to perform re-
construction by slice stacking of 2D slice-by-slice acquisitions. In particular,
in Section 3.1 we explain the slice-by-slice acquisition in detail, in Section
3.2 we explain how the SGA theory can be applied to establish respiratory
position correspondences between different slice positions and in Section 3.3
we show how volumes can be stacked based on those correspondences. Sec-
tion 4 describes the experiments performed, and the results are presented in
Section 5. Lastly, Sections 6 and 7 contain the discussion and conclusion.

2. Theory

Manifold alignment by means of simultaneous embedding of multiple
datasets is the core element of the proposed slice stacking technique. In
this section, we first provide some background on manifold learning and
alignment, and then outline the theory behind our simultaneous groupwise
alignment scheme.

2.1. Manifold Learning

In natural datasets the dimensionality is often artificially high. Consider,
for example, a set of coronal slices such as the one shown in Figure 1b, which
differ from one another by a deformation of tissue due to respiratory motion.
The images lie in the very high-dimensional image space RD, where D is the
number of pixels per image. However, the images vary due to a much smaller
number of degrees of freedom and therefore can be viewed as a set of points
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on a manifold of many fewer dimensions Rd : d � D, embedded in high-
dimensional space. This embedding can be uncovered using dimensionality
reduction techniques.

In addition to classical linear dimensionality reduction techniques such
as PCA, a large number of non-linear dimensionality reduction techniques
such as locally linear embeddings (LLE) (Roweis and Saul, 2000), Laplacian
Eigenmaps (LEM) (Belkin and Niyogi, 2003) and Isomap (Tenenbaum et al.,
2000) have been proposed in recent years. These techniques are collectively
known as manifold learning.

2.2. Simultaneous Embedding of Two Datasets

In some applications multiple datasets may not be directly comparable in
high-dimensional space, but may nevertheless lie on similar manifolds. For
example, this is the case when the datasets are slices acquired at two differ-
ent slice positions, which are deformed by the same respiratory mechanics.
Points close to each other on one embedded manifold correspond to similar
respiratory positions. However, this is not true for points from embeddings
obtained from two different datasets. In this case correspondences between
datasets can be established in the low-dimensional space by means of mani-
fold alignment.

Given two such high-dimensional datasets X1,X2 (e.g. data from two

slice positions), for each element ~X
(1)
i , ~X

(2)
j ∈ RD (e.g. single slices from

these two slice positions), the aligned embeddings Y1,Y2 with elements
~Y

(1)
i , ~Y

(2)
j ∈ Rd : d � D, can be found by minimising the total embedding

error
φtot(Y1,Y2) = φ1(Y1) + φ2(Y2) + µ · φ12(Y1,Y2), (1)

where φ1, φ2, are the intra-dataset embedding errors and φ12 is the inter-
dataset embedding error. The weighting parameter µ regulates the influence
of the inter-dataset error term. Increasing µ forces the embeddings to be
closer together, but setting it too high may distort the natural manifold
structure of the data.

In this paper we derive the intra-dataset error terms from LLE. LLE tries
to preserve locally linear relations of the high-dimensional data in the low-
dimensional embeddings. It is assumed that each high-dimensional point can
be reasonably well reconstructed using a linear combination of its k nearest
neighbours. The optimal reconstruction weights Wij for each point i from
its respective neighbours j can be calculated in closed form as described in
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Roweis and Saul (2000). The intra-dataset embedding errors, φ1, and φ2,
which preserve the local relations of the high-dimensional data can then be
expressed as

φm(Ym) =
∑
i

∣∣∣∣∣∣~Y (m)
i −

∑
j∈η(i)

W
(m)
ij

~Y
(m)
j

∣∣∣∣∣∣
2

, m ∈ {1, 2}, (2)

where for each dataset η(i) is the respective neighbourhood of data point i.
For the inter-dataset error a different cost function is used. The embed-

ding error of Y1 and Y2 is defined as

φ12(Y1,Y2) =
∑
i,j

(
~Y

(1)
i − ~Y

(2)
j

)2
Uij, (3)

where Uij = K( ~X
(1)
i , ~X

(2)
j ) is a (non-symmetric) similarity kernel. For high

similarity values Uij the error can only be minimised if ~Y
(1)
i and ~Y

(2)
j are

close in the simultaneous embedding. The choice of this kernel is non-trivial
and is a key element of our proposed method. In the case of a set of a priori
known correspondences it may consist of fixed connections (Ham et al., 2005;
Zhai et al., 2010). In the case of no known correspondences it may be based
on similarities in high-dimensional space (Torki et al., 2010). Our choice of
the kernel will be discussed in Section 3.2.

Independent of the kernel choice the minimisation of the whole cost func-
tion φtot can be rewritten in a single matrix expression,

argmin
Y1,Y2

Tr

([
Y1

Y2

]T [
M1 + µD1 −µU
−µUT M2 + µD2

] [
Y1

Y2

])
, (4)

where D1 and D2 are the row and column sums of U as diagonal matrices,
i.e. D

(1)
ii =

∑
j Uij and D

(2)
jj =

∑
i Uij, M1 and M2, are the recentred re-

construction weight matrices Mm = (I −Wm)T (I −Wm), and Tr(·) is the
trace operator. This problem now has the same form as the standard LLE
embedding (Roweis and Saul, 2000), that is,

argmin
V

Tr(VTLV), (5)

where L is the augmented matrix from Eq. (4) and V are the augmented
embeddings. Under the constraint that VTV = I, the simultaneous aligned
embedding is given by the second smallest to the (d + 1)-th smallest eigen-
vectors of L.
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2.3. Simultaneous Groupwise Embedding of Multiple Datasets

We now describe our simultaneous groupwise manifold alignment scheme
in the context of this theory. This technique was first presented with prelim-
inary evaluation in Baumgartner et al. (2013).

Eq. (4) can be easily extended to three or more manifolds by further
augmenting V and L, as was described e.g. in Torki et al. (2010). However,
in Baumgartner et al. (2013) we showed that this approach is not optimal,
for two main reasons: 1) The problem becomes increasingly unstable when
increasing the number of datasets Xp in the cost function. That is to say,
the embeddings tend to collapse onto a single point or line, or not to be
aligned at all, depending on the choice of the parameter µ in Eq. (1). For
around 30 datasets, which is the number of datasets (i.e. slice positions) we
are embedding in this work, it is not possible to select a suitable µ; 2) The
manifold structure may not be similar enough across all datasets to justify a
simultaneous embedding of all of them.

Instead we propose to embed the datasets simultaneously in overlap-
ping groups of two, producing a much more stable problem. For N high-
dimensional inputs X1, . . . ,XN, the datasets are embedded in N − 1 groups
G(1), . . . ,G(N−1). In Section 3.2 we will define X1 as all slices acquired at
slice position 1, X2 as all slices acquired at slice position 2 and so on. But
the theory is generally applicable to other types of data as well. Each group
G(p) contains the simultaneous embeddings of two datasets Xp, and Xp+1,

i.e. G(p)1 = Yp, and G(p)2 = Yp+1. The groups are overlapping in the sense

that G(p)2 = G(p+1)
1 . This means that each dataset Xp (except X1 and XN) is

embedded in two distinct groups G(p) and G(p−1) or, in other words, both G(p)
and G(p+1) contain an embedding of the dataset Xp. X1 and XN are embed-
ded in only one group because there is no more data before or after them,
respectively. Figure 3 shows an artificial example of a groupwise embedding
in d = 2 dimensions and the relations between the groups.

By embedding the datasets in overlapping groups in this manner corre-
spondences between the different datasets can be found by going from group
to group. The two members of each group are aligned due to the simultane-
ous embedding, and the connections to the next group are deterministically
known through the group overlap, i.e. because of the dataset that the groups
share. For example, consider an arbitrary point ~Y

(p)
i (labelled with a square

in Figure 3), which is embedded in the first member manifold of group G(p),
i.e. in G(p)1 = Yp. Since within the group the manifolds are aligned, the
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Figure 3: Schematic illustration of groupwise manifold alignment. The
curved lines illustrate the manifold connections through the group overlap
(solid), or through aligned embedding (dotted).

closest neighbour on Yp+1 = G(p)2 can be found directly (see dotted lines

in Figure 3). ~Y
(p)
i and its corresponding point on Yp+1 can be looked up

directly in the neighbouring groups G(p+1), and G(p−1), since G(p−1)2 = G(p)1

and G(p+1)
1 = G(p)2 (see solid lines in Figure 3). In this manner the low-

dimensional points closest to ~Y
(p)
i on all other manifolds embeddings can be

found iteratively.
Note that by choosing the closest neighbour within the groups (dotted

lines) and transporting that between groups (solid lines) instead of the ac-
tual point coordinates, we incur small errors in the process of iteratively
looking up correspondences to a low-dimensional point. In order to propa-
gate the actual point coordinates we investigated interpolating the location
of the point in the new group by looking at the k nearest neighbours on the
current manifold embedding and finding an average of those points in the
manifold embedding of the new group. However, in our application of vol-
ume reconstructions, this only slightly influenced the results and therefore,
for simplicity, we chose to transport just the closest neighbour as described
above.

3. Materials and Methods

We now describe our specific implementation of the theory outlined in
the last section.

The proposed technique can be divided into three steps: Slice-by-slice
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data acquisition (Section 3.1), establishing correspondences in respiratory
position between slices acquired at different slice positions based on simulta-
neous groupwise embedding of multiple datasets (Section 3.2), and dynamic
3D reconstruction by means of slice stacking (Section 3.3).

3.1. Slice-by-Slice Acquisition

We imaged the volume of interest by sequentially acquiring coronal slices
at shifting slice positions covering the whole region of interest, as illustrated
in Figure 2. In order to sufficiently sample all respiratory states each slice
position was acquired 50 times. The acquisition time for each slice was 160
ms. To maximise vessel contrast, and to minimise cardiac motion, only one
slice was acquired per heartbeat at systole resulting in a temporal resolution
of approximately one slice per second. Note that in a simultaneous PET/MR
scenario the rest of the cardiac cycle could be used for other clinical scanning.

The acquisitions were carried out on a Phillips Achieva 3T MR scanner
using a T1-weighted gradient echo sequence with an acquired in-plane image
resolution of 1.4× 1.4 mm2 and a slice thickness of 8 mm. To cover a region
of interest in the thorax including most of the lungs in anterior-posterior
(A-P) direction typically 29-34 slice positions were needed, which resulted in
a total acquisition time of 24-28 minutes. In order to decrease the effective
slice thickness, and to help to establish respiratory correspondences between
neighbouring slice positions later on, the slice positions were defined in an
overlapping fashion with a slice overlap of 4 mm. This resulted in an effective
slice thickness of 4 mm in a reconstructed volume. To avoid polarisation
artefacts from previous slices, an acquisition scheme was used in which the
slice position number increased with a step size equal to the rounded square
root of the total number of slice positions.

3.2. Establishing Correspondences of Respiratory Positions

In order to reconstruct volumes from the 2D slices, correspondences in
respiratory position across the slice positions must be established. We ac-
complished this using the simultaneous groupwise manifold alignment (SGA)
technique introduced in Section 2.3.

Slices acquired at each of the slice positions were defined as the high-
dimensional input datasets Xp, where p is the slice position. Since all slice
positions undergo approximately the same transformations due to respiratory
motion they lie on similar low-dimensional manifolds Yp and points that
are close together on this manifold indicate similar respiratory positions.

12



The alignment of these embeddings allowed the necessary correspondences
in respiratory position to be established.

One key design choice is the choice of the inter-dataset kernelK( ~X
(p)
i , ~X

(q)
j )

from Equation (3) for the slice positions p and q. To facilitate this choice
the groups were naturally chosen such that neighbouring slice positions form
groups, though other methods of forming groups are also conceivable and will
be investigated in future work. Some anatomical similarities can be expected
from neighbouring slices on which a similarity measure can be based. The
fact that neighbouring slices are in fact overlapping (as described in Section
3.1), and hence share some anatomical features, further facilitates this task.
Two kernel choices were investigated, as discussed below.

3.2.1. Image Similarity-based Inter-dataset Kernel

In Baumgartner et al. (2013) we proposed an inter-dataset kernel based
directly on the image similarity of neighbouring slices. The kernel U(p,q)

relating the slices from slice position p to the slices from slice position q was
defined as

U
(p,q)
ij = K( ~X

(p)
i , ~X

(q)
j ) = exp

(
−
L̃2( ~X

(p)
i , ~X

(q)
j )2

2σ2

)
, (6)

where L̃2 denotes the normalised L2-distance, which is a scaled version of
the L2-distance such that the maximum L̃2 value between slices acquired at
two neighbouring slice positions is equal to 1. The parameter σ governs the
kernel shape. The normalisation step allows the value of σ to be subject
independent. Normalised cross correlation and mutual information were also
investigated as possible distance measures, but in our experiments L̃2 per-
formed the best. For the remainder of this paper we will refer to SGA using
this similarity-based kernel as SGA.SIM.

3.2.2. Registration-based Inter-dataset Kernel

Even though the overlapping slices used in this study cover some common
anatomy and consequently look similar, the small changes in slice position
between two neighbouring slices still cause non-negligible differences in the
images. In particular, a shift in slice position might cause a similar apparent
deformation to a change in respiratory position (e.g. a shift in the diaphragm
position and/or a change in lung area). Hence, basing the inter-dataset
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kernel directly on the image similarities may adversely affect the resulting
reconstructions.

To address this problem, in this work we propose a novel registration-
based inter-dataset kernel, which incorporates knowledge of the approximate
relations between adjacent slice positions. Those relations were obtained
using registration of exhale slices, which were subsequently transported to
different respiratory states using transformations obtained from a second set
of registrations. In this manner approximations of the relations between
neighbouring slice positions at any respiratory position were found, which
were then incorporated in the similarity kernel in order to improve the sim-
ilarity measure between slice positions. This process is explained in more
detail below. The relations between the slices and transformations that we
will refer to in the following are shown in Figure 4.

Figure 4: Relations between the slices at the neighbouring slice positions p
and q and the different transformations between them. The transformations
T p 7→qexh , and T q 7→pexh between two exhale slices Xp

exh, and Xq
exh were transported to

different respiratory positions using the transformations T pexh7→i, and T qexh7→j,
to arrive at approximate transformations T p 7→qi , and T q 7→pj between two slices
Xp
i , and Xq

j at arbitrary time points i, and j.

In a first step an exhale volume consisting of exhale slices Xp
exh was recon-

structed from the slice-by-slice data. Because the exhale state is very repro-
ducible (Blackall et al., 2006) this can be accomplished by simply stacking the
slices with the smallest lung area, which can be found reliably by calculating
the mean intensity of each slice position; the slices with the highest mean

14



intensity corresponded to the smallest lung area. Note that no additional
imaging was necessary for this step.

The relations between neighbouring exhale slices at slice positions p and
q are captured by the transformation T p 7→qexh which was obtained by registering
Xp
exh to its neighbour Xq

exh using B-spline registration (Rueckert et al., 1999)
with a control point spacing of 2.8 mm, a smoothness penalty term of λ =
0.01 and sum of squared differences (SSD) as similarity measure. A relatively
small control point spacing was chosen because changes from slice position to
slice position typically do not involve large displacements. The corresponding
motion fields Dp 7→q

exh can be obtained by subtracting the grid locations from
the transformed grid points, i.e.

Dp 7→q
exh (x′, y′) = T p 7→qexh (x′, y′)− (x′, y′), (7)

where (x′, y′) are the grid points of the transformation.
In order to make this mapping across slice positions available at all respi-

ratory positions, the transformations T p 7→qexh were transported to the different
respiratory states. This can be viewed as transporting the motion fields
from the exhale coordinate system to the coordinate systems of different res-
piratory states which are non-rigidly deformed with respect to the exhale
coordinate system. We adapted the approach described by Rao et al. (2002)
who used this concept to transport motion fields from one patient coordinate
system to another. To obtain mappings to different respiratory states, we
performed additional registrations within the slice positions to different time
points. That is, we computed the transformations T

(p)
exh7→i by registering Xp

exh

to Xp
i . For this step, B-spline registration with a larger control point spacing

of 14 mm was used, because the the deformations due to respiratory motion
are larger than the deformations from slice position to slice position.

To obtain T p 7→qi we transported the motion fields Dp 7→q
exh from the coordi-

nate system (x′, y′) to the coordinate system of respiratory state i, which we
denote by (x, y). If the motion vector at positional coordinates (x′0, y

′
0) in

the coordinate system of exh is equal to dp 7→qexh , the transported vector at the
location (x0, y0) and respiratory position i is given by dp 7→qi , where

(x0, y0) = T
(p)
exh7→i(x

′
0, y
′
0) and dp 7→qi = J−1 · dp7→qexh . (8)

Here, J is the Jacobian matrix of (T
(p)
exh 7→i)

−1, and (T )−1 denotes a numeric
approximation of the inverse of T . The multiplication by J−1 is necessary to
account for non-translational changes between the coordinate systems (Rao
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et al., 2002). T p 7→qi can be obtained from the transported motion fields using
Eq. (7). This process can be repeated going in reverse from slice position q
to p to arrive at the transformation T q 7→pj at respiratory position j.

With approximate knowledge of the relations between the slice positions
at arbitrary respiratory states an improved similarity measure can be defined
as

ε(X
(p)
i , X

(q)
j ) =

1

2
L̃2(X

(q)
j , X

(p)
i ◦ T

p 7→q
i ) +

1

2
L̃2(X

(p)
i , X

(q)
j ◦ T

q 7→p
j ), (9)

where, again L̃2 denotes the normalised L2-distance, and I ◦ T is the trans-
formation of image I with the transformation T . This means the similarities
were evaluated after transforming the slice at p into the coordinate system
of q at the corresponding respiratory position, and vice versa. Using both
the registrations T p 7→qi , and T q 7→pj improved the robustness of the similarity
measure.

Note that the transformations T p 7→qi and T q 7→pj are only approximations,
and might lose validity at deep inhale states where the slice relations change
significantly with respect to an exhale state. However, even at those states
the similarity measure was significantly improved over using the L2-distance
directly.

The novel registration-based similarity kernel relating the slices at slice
position p to the slices at slice position q can then be defined as

U
(p,q)
ij = K( ~X

(p)
i , ~X

(q)
j ) = exp

(
−
ε(X

(p)
i , X

(q)
j )2

2σ2

)
, (10)

where again σ governs the kernel shape.
For the remainder of this paper SGA.REG will denote the simultaneous

groupwise manifold alignment with the improved registration-based kernel.

3.2.3. Kernel Sparsification

To make the respiratory position matching more robust we used only a
subset of the found similarities for the kernels in Eqs. (6) and (10), that is,
the respective similarity kernels U(p,q) were sparsified. Note that in a simple
k-nearest neighbour sparsification neighbourhood relations are directed and
thus not symmetric, i.e. if ‘A is a neighbour of B’ it does not necessarily
follow that ‘B is a neighbour of A’. This means that the sparsification will
depend on which slice position the k-nearest neighbour operation is based on,
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for example if we keep the k-nearest connections of slice position p to p+1 we
will get a different result than when looking for the k-nearest connections of
slice position p+1 to p. This in turn will lead to biased connectivities and will
adversely affect the embedding. Furthermore, note that making the sparsified
kernel symmetric by mirroring the connections is not permitted because the
inserted connections do not correspond to any physical similarity, e.g. if slice
i on slice position p is close to slice j on slice position q (i.e. ~X

(p)
i is close to

~X
(q)
j ) it does not follow that also ~X

(p)
j is close to ~X

(q)
i .

To overcome these limitations we used a kernel sparsification technique
based on a global bipartite maximum edge similarity matching. That is, we
calculated the matching in which every data point in Xp was connected to
exactly one data point in Xq, and the sum of similarities over the corre-
sponding edges Uij was maximised. Figure 5 illustrates this process. The
bipartite matching that maximises the similarity is highlighted in red in Fig-
ure 5b. This is equivalent to a combinatorial optimisation problem and can
be solved using the Hungarian method (Kuhn, 1955). Note that here, if A is
a neighbour of B, by definition B has to be a neighbour of A.

(a) Fully connected (b) Sparsified

Figure 5: Graph sparsification of similarity kernel. (a) shows the fully con-
nected graph, (b) shows the optimal one-to-one mapping.

The resulting graph can be written as a sparse matrix U, which in every
row and every column has exactly one non-zero entry, 0 < Uij ≤ 1. This
is similar to the case of labelled connections as in Ham et al. (2005), with
the difference that here the labels are not known a priori, but instead have
a certainty measure (i.e. the kernel value) attached to them.

3.3. Dynamic 3D Volume Reconstruction

After computing a low-dimensional embedding using either SGA.SIM or
SGA.REG and thus establishing respiratory correspondences in the low-
dimensional space as explained in Section 3.2, the only remaining step is
to reconstruct the slices into a sequence of 3D volumes.
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To this end we considered the first acquired slice, and looked up its closest
neighbours in the low-dimensional space for all other slice positions in the
aligned manifolds. The slices corresponding to those points were then stacked
into a volume. This process was repeated for each slice X

(p)
i in the original

acquisition order to arrive at a 3D+t reconstruction over the length of the
acquisition. Note that because each slice position has been acquired 50 times
(see Section 3.1) it can be assumed that most respiratory positions have been
covered and there will be enough data to reconstruct a volume from each slice.

4. Experiments

We evaluated the proposed simultaneous groupwise alignment methods
with the similarity-based inter-data kernel (SGA.SIM) and the registration-
based kernel (SGA.REG) against two other state-of-the-art slice stacking
techniques, both of which have very similar acquisition schemes and recon-
struction steps to our proposed method. They can be implemented directly
in our framework by replacing the method used for establishing respiratory
correspondences by alternative mechanisms (compare to Figure 2).

• Würslin et al. (2013) used a simultaneously acquired MR pencil beam
navigator to establish respiratory correspondences between 2D MR
slice-by-slice data. Thus each acquired slice has an associated naviga-
tor value. To reconstruct volumes, in the original work, the navigator
values were used to bin the MR data from different slice positions into
four gates. For the evaluation on our data we adapted this approach
to allow for more accurate reconstructions. In the reconstruction step,
for each slice a volume was reconstructed by selecting the data from
all other slice positions with navigator values closest to the input slice.
We will refer to this technique as PBNAV.

• Dikaios et al. (2012) proposed establishing respiratory correspondences
between 2D slice-by-slice MR data based solely on image similarities
of neighbouring slices. For each slice the neighbouring slice that max-
imised the normalised mutual information was chosen. This process
was repeated for the newly found slice until the whole volume was re-
constructed. We will refer to this image-based method as IMBASED.

We performed three experiments. First, we evaluated all the techniques
described above on realistic synthetic data generated with a known ground
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truth. Secondly, we evaluated the methods on real data acquired using the ac-
quisition protocol described in Section 3.1. Lastly, we performed a PET/MR
simulation, in which we demonstrated the ability of the proposed method to
generate robust motion fields in the lungs, which can be used to correct PET
data for respiration induced motion.

4.1. Experiment 1 - Validation on Synthetic Data

We performed experiments on synthetic data from 10 healthy volunteers.
In order to generate the synthetic data we acquired a slice-by-slice breath hold
volume at end-exhale covering all slice positions using the same acquisition
sequence that we used for the real data, which was described in Section 3.1. In
addition, for each volunteer, we acquired 50 low-resolution dynamic volumes
on the same Phillips Achieva 3T MR system using a cardiac-triggered T1-
weighted gradient echo sequence with an acquired image resolution of 1.5×
4.1×5 mm3, and an acquisition time of approximately 600 ms. An example of
a coronal slice from such a volume was shown in Figure 1a. A 1D pencil beam
navigator was recorded immediately before and after acquiring each dynamic
image. To account for the length of the 3D acquisition the leading and
trailing pencil beam navigators were averaged to arrive at a better estimate
of respiratory position. Note that the pencil beam navigator was used only
to implement the technique proposed by Würslin et al. (2013).

In the next step an exhale image was chosen from the 50 low-resolution
dynamic images. This was was used as a reference volume. We then obtained
motion fields for each of the dynamic images by registering them to the
reference volume using B-spline registration. Finally, we transformed the
breath hold slices using the motion fields to arrive at synthetic slices at
different respiratory positions. Note, however, that while the deformations of
the thorax overall are realistic, the motion estimates inside the lungs are not
reliable as they were derived from low-resolution volumes with little contrast
in this area.

In order to evaluate the accuracy of the four reconstruction techniques we
performed a leave-one-out (LOO) cross validation for each subject separately.
For one of the synthetic slices the whole volume it belonged to was left out,
apart from the slice itself. Next, a new volume was reconstructed around the
slice from the remaining synthetic data, which resulted in an approximation
V̂out of the left-out ground-truth volume Vout. The reconstruction error was
estimated by calculating the L2-distance, L2(V̂out,Vout), between the two
volumes. The process was repeated for each of the synthetic slices to get a
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good estimate of the mean and the standard deviation of the reconstruction
error.

In preliminary evaluations we found SGA.SIM and SGA.REG to be rel-
atively insensitive to the choice of the parameters k (number of neighbours
in the LLE cost function) and σ (the kernel shape parameter) as long as
they were chosen from a reasonable range. We set the number of neighbours
to half of the time points acquired at each slice position, i.e. k = 25, and
σ = 0.5 for the evaluation of both methods. We more closely investigated
the significance of the weighting parameter µ which governs the importance
of the similarity kernel in Eq. (1) and the embedded dimensionality d of the
manifold representation.

In order to estimate the inherent dimensionality of our slice-by-slice data
we employed a technique developed for this purpose which employs frac-
tal dimensions to estimate the underlying number of dimensions of high-
dimensional data (Camastra and Vinciarelli, 2002). We applied the algo-
rithm to our data from each slice position and each subject and formed an
average. We found that the average inherent dimensionality of the data was
close to 3 and we set the embedding dimensionality to d = 3 accordingly.

We determined the optimal parameter value of µ and the results of the
LOO cross validation simultaneously in a 2-fold cross validation over all sub-
jects. That is, we divided the 10 subjects into a tuning set of 5 and a test
set of 5. We performed the LOO experiment on the tuning set for a range of
different parameter values of µ, combining the errors of the 5 subjects into a
single error figure for each parameter. We chose a parameter range from 0.01
to 5 with a logarithmic spacing for this evaluation. Next, we selected the µ
with the minimum error and used it for the error evaluation for each of the
subjects in the test set. Lastly, we swapped the positions of the test set and
tuning set to evaluate the second fold. The optimum parameters for the two
respective folds were µ = {0.144, 0.144} for SGA.SIM and µ = {0.144, 0.224}
for SGA.REG.

Note that PBNAV and IMBASED do not have any parameters that need
to be tuned.

4.2. Experiment 2 - Validation on Real Data

In order to validate the proposed method on real data we acquired slice-
by-slice data from 10 volunteers over the course of 24 to 28 minutes as de-
scribed in Section 3.1. Note that all volunteers except volunteer H are the
same as the volunteers from experiment 1. Volunteer H was not available for
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the long scanning session and was replaced by volunteer K. Similar to the
synthetic experiments, additionally a 1D pencil beam navigator was recorded
for each slice. However, only a leading pencil beam navigator was acquired
since acquiring both leading and trailing navigators was not possible on the
scanner we used for an acquisition of this length.

For each of the examined slice stacking methods we reconstructed a vol-
ume around each of the acquired slices resulting in a time sequence of 3D
volumes.

Since for the real data the ground truth is unknown we evaluated the
consistency of reconstruction for each of the techniques. That is, for each
acquired slice we reconstructed a volume V, and for each slice s in this vol-
ume we reconstructed a new volume V̂s. Ideally, V̂s should be equal to V.
In practice, however, a different input slice position will give a different re-
construction. To estimate this reconstruction consistency we calculated the
L2-distance, L2(V̂s,V), for each slice of each reconstructed volume. Con-
sistency alone naturally does not give an indicator of the correctness of a
method, as reconstructions can be consistently wrong. However, together
with visual inspection of the results, and the results from the experiment
on synthetic data from the previous section, the consistency error gives an
indication as to how reproducible the shown results are.

Because for the real data we lacked a ground truth, there was no good
measure to use for tuning the values of the parameters. Applying the di-
mensionality estimation technique to the real data in the same manner as
before yielded an approximate average underlying dimensionality of 5 for
each slice position. However, we found that neither SGA.SIM nor SGA.REG
were robust to matching in such high dimensions. We suspect that this has
to do with the fact that higher modes of variation might be slice position
specific and not common to all slice positions as with the first three modeds.
Therefore, we used the same dimensionality as for the synthetic experiment,
i.e. d = 3 for both SGA.SIM and SGA.REG. Furthermore, we again used
σ = 0.5, k = 25 and we fine tuned the value for µ using visual inspection. We
found that a value of µ = 0.10 worked well for both SGA.SIM and SGA.REG.

4.3. Experiment 3 - PET/MR simulation

In the final experiment we applied IMBASED, SGA.SIM and SGA.REG
for the retrospective respiratory motion correction of a realistic synthetic
PET dataset using the reconstruct-transform-average (RTA) approach.
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4.3.1. Generation of Synthetic PET Data

Based on a breath hold slice-by-slice scan of volunteer A (shown in Figure
6a) we manually created a 3D fluorodeoxyglucose (FDG) uptake map with
realistic standardised uptake values (SUVs) (Figure 6c). For the purpose of
evaluating the accuracy of motion correction inside the lungs we additionally
added an artificial lung tumour with 1.3 cm diameter and an SUV of 7 to
the FDG maps. To simulate the deformations due to respiratory motion we
transformed these maps using a set of generating motion fields. To obtain
realistic motion estimates in the whole thorax, including the lung, the gen-
erating motion fields were derived from patient 2 of the publicly available
POPI 4DCT dataset (Vandemeulebroucke et al., 2011) using B-spline regis-
tration and were transported to the coordinate system of our volunteer using
the method described in Rao et al. (2002). A coronal slice of the CT volume
transformed to the MR coordinate frame is shown in Figure 6b. Because
the 10 available motion states in the POPI dataset were not enough for our
simulation we linearly interpolated the motion fields to arrive at 30 (15 exhal-
ing, 15 inhaling) motion states. The CT volume corresponding to end-exhale
was then transformed by the 30 generating motion fields. These CT volumes
served as attenuation maps in the following. Based on the 30 motion fields we
simulated 30 gates of synthetic PET data (2×2×2 mm3 voxels, and 1.67 mil-
lion coincidence events per gate) using the STIR package (Thielemans et al.,
2006) with the ordered subsets expectation maximisation (OSEM) recon-
struction algorithm (23 subsets, 11 iterations). The transformed attenuation
maps were used to introduce attenuation effects into the PET simulations
and also to correct for such effects in the reconstructions. A single gate of
synthetic PET data at end-exhale is shown in Figure 6d. The tumour is
indicated with an arrow. We also generated 30 PET gates without motion
corruption which served as the ground truth for our evaluation. Lastly, we
obtained 30 synthetic slice-by-slice MR volumes by transforming the breath
hold slice-by-slice volume using the generating motion fields. This is the
equivalent of simultaneously acquired slice-by-slice data in a real PET/MR
scenario. Note that while the synthetic PET and MR data contains intra-
cycle variabilities because inhaling and exhaling states were separated in the
generating 4DCT data, it does not contain inter-cycle variabilities because
in the 4DCT data each time point is an average of multiple breathing cycles.
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(a) MR Reference (b) Transformed CT

(c) Emission Map (d) Single PET Gate

Figure 6: Coronal slices at the same A-P position through components of
the synthetic PET simulation: (a) Reference MR scan for our volunteer, (b)
exhale gate from POPI dataset warped to the coordinate system of our vol-
unteer, (c) manually drawn emission map with an artificial tumour inserted
in the lower lung (shown in white), and (d) an example of a single synthetic
PET gate. The tumour is highlighted with an arrow.

4.3.2. Retrospective Motion Correction

In the next step we reconstructed a volume from a synthetic slice for
each time point using the IMBASED method, the SGA.SIM method and our
proposed SGA.REG method. Again, the parameters for the latter two were
chosen based on our findings on the synthetic data. The dimensionality was
set to d = 3 and the weight parameter was set to µ = 0.144. Furthermore,
we chose σ = 0.5 and k = 15, which is again half of the time points acquired
at each slice position. Note that performing this experiment using PBNAV,
by extracting an artificial pencil beam navigator signal from the images,
would not be meaningful. This is because all of the slices originating from
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one volume would have identical navigator values and the matching would
always be perfect.

Similar to the acquisition of the real slice-by-slice data (see Section 3.1)
we varied the input slice position for each time point with the square root of
the total number of slice positions. For each of these reconstructed volumes
we derived backward motion fields by registering the volumes derived using
the three examined techniques to the MR reference volume using B-spline
registration.

Finally, we transformed each of the synthetic PET gates back to the
reference exhale state using the estimated backwards motion fields derived
using each of the examined techniques, and averaged them to produce the
final PET image. Additionally, we also averaged the PET gates without
motion corruption to obtain a ground truth, and we reconstructed a PET
volume without any motion correction. In order to compare the quality of
motion correction we evaluated intensity profiles through the tumour for each
of the reconstructions above.

5. Results

5.1. Experiment 1

The combined error scores on the synthetic tuning sets for each parameter
value of µ are shown in Figure 7. For comparison the errors obtained with the
navigator based PBNAV method on the tuning set are also shown. The errors
obtained with IMBASED were much higher than the errors obtained using
the other methods and were thus omitted on the plot. It can be seen that
the optimal parameter µ for both SGA.REG and SGA.SIM can be chosen
from a range of values between approximately 0.05 and 0.5.

The results of the leave-one-out cross-validation on the respective syn-
thetic data test sets are shown in Table 1.

Since the error distribution of all volunteers was symmetric but not nor-
mal, we evaluated the significance levels using a 1-tailed Wilcoxon signed
rank test. We found that overall SGA.REG performed significantly better
(p < 0.001) than all other evaluated techniques, and SGA.SIM performed
significantly better than PBNAV and IMBASED. When examining results
volunteer-by-volunteer we found that for 7 out of our 10 subjects the improve-
ments of SGA.REG over the respective next best technique (highlighted in
light grey in Table 1) were significant (p < 0.001). For volunteers C, G and I,
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Figure 7: Combined fold error on the tuning set for SGA.SIM (red) and
SGA.REG (blue). For comparison the average errors obtained with PBNAV
(black dotted line) on the tuning sets are also shown.

SGA.REG was not significantly better than SGA.SIM, but was significantly
better than PBNAV and IMBASED.

PBNAV IMBASED SGA.SIM SGA.REG
·103 ·103 ·103 ·103

Volunteer A 2.911± 1.215 4.604± 2.150 2.627± 0.926 2.508± 0.902
Volunteer B 3.940± 1.113 7.802± 2.993 3.818± 0.955 3.774± 0.970
Volunteer C 3.907± 1.472 4.822± 1.543 3.685± 1.180 3.649± 1.161
Volunteer D 3.183± 1.031 6.146± 2.966 3.478± 1.909 2.988± 0.959
Volunteer E 5.441± 2.129 7.995± 2.773 4.830± 1.142 4.673± 1.200
Volunteer F 7.076± 2.650 9.043± 3.002 6.192± 1.717 6.094± 1.642
Volunteer G 5.861± 2.705 5.941± 2.041 5.189± 2.308 5.105± 2.247
Volunteer H 4.184± 1.698 7.653± 3.173 3.557± 1.042 3.465± 1.009
Volunteer I 4.044± 1.357 6.723± 2.282 3.859± 1.269 3.806± 1.271
Volunteer J 3.967± 1.294 5.820± 2.232 3.460± 0.851 3.372± 0.816

Table 1: Means and standard deviations of the leave-one-out cross-validation
experiment on synthetic slice-by-slice data for each volunteer. The method
giving the lowest reconstruction error is highlighted in dark grey for each
volunteer; the next best method is highlighted in light grey.

Examples of sagittal maximum intensity projections (MIPs) over volumes
reconstructed for volunteer E using the four examined techniques, and their
disparity with respect to the ground truth, are shown in Figure 8. The
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magenta represents the ground truth, and the green shows structures of the
reconstructed volume which do not appear in the ground truth. The top
row (EXH) contains a typical end-exhale reconstruction and the bottom row
(INH) a typical inhale reconstruction.

Figure 8: Examples of sagittal MIPs over the left lung of volunteer E obtained
from synthetic slice-by-slice data reconstructed using the four examined tech-
niques. The left most column (a), contains the ground truth (GT) MIP. The
remaining columns show the disparity between the ground truth (shown in
magenta) and the volumes reconstructed using the examined techniques: (b)
PBNAV, (c) IMBASED, (d) SGA.SIM, (e) SGA.REG (shown in green). The
projections are shown at two respiratory positions: (EXH) end-exhale, and
(INH) deep inhale. The white arrows indicate some of the disparities.

5.2. Experiment 2

In Figure 9 sagittal MIPs of volumes reconstructed from real slice-by-slice
data using the different reconstruction techniques are presented. We show
examples of one representative volunteer (volunteer B) at three distinct res-
piratory states (end-exhale, mid-inhale, and end-inhale). For the mid-inhale
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and end-inhale reconstructions a small area inside the lungs was magnified
to highlight the differences in vessel continuity.

For illustration the first two dimensions of the aligned embedding using
SGA.REG of G(18)2 (group 18), which contains the manifolds of slice position
18 (blue), and 19 (red), is shown in Figure 10b. For comparison we also show
the embeddings of the same two slice positions computed directly from LLE
without any alignment in Figure 10a. The embedded low-dimensional coor-
dinates which correspond to the slices used for slice positions 18, and 19 of
the inhale (INH) reconstruction using SGA.REG in Figure 9 are highlighted
with black squares in Figures 10a and b. In Figure 9 the two slice positions
are indicated by small red triangles in the lower right.

The results of the consistency experiment are shown in Table 2. For
all volunteers PBNAV gave significantly (p < 0.001) more consistent results
than all other evaluated techniques, and SGA.REG gave significantly more
consistent results than IMBASED and SGA.SIM. Again, significance was
assessed used a 1-tailed Wilcoxon signed rank test as the error distributions
were symmetric but not normal.

PBNAV IMBASED SGA.SIM SGA.REG
·103 ·103 ·103 ·103

Volunteer A 1.777± 1.632 5.730± 3.671 3.240± 2.203 2.738± 2.072
Volunteer B 2.181± 1.842 6.960± 4.278 4.117± 2.873 3.554± 2.309
Volunteer C 2.850± 2.160 7.807± 4.327 4.860± 3.382 4.347± 2.887
Volunteer D 2.566± 2.513 8.717± 5.700 4.654± 3.452 4.301± 3.289
Volunteer E 2.585± 2.321 8.123± 5.137 5.034± 3.264 4.282± 2.808
Volunteer F 4.026± 2.959 8.560± 5.140 6.268± 3.980 6.079± 3.860
Volunteer G 4.166± 2.942 8.598± 4.447 6.417± 4.150 5.550± 3.681
Volunteer I 2.807± 1.995 8.309± 5.256 5.416± 3.571 4.082± 2.573
Volunteer J 2.766± 2.069 6.712± 3.933 4.658± 3.234 3.889± 2.459
Volunteer K 3.841± 2.600 8.636± 5.528 6.083± 3.795 4.693± 3.035

Table 2: Means and standard deviations of the consistency experiment on
real slice-by-slice data for each volunteer. The method giving the lowest con-
sistency error for each volunteer is highlighted in dark grey, and the method
with the second to lowest consistency error is highlighted in light grey.
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5.3. Experiment 3

The results of the PET motion correction experiment are shown in Figures
11 and 12. A coronal slice including the tumour through the ground truth
reconstruction without motion corruption is shown in Figure 11a and the
reconstruction without motion correction is shown in Figure 11b. The motion
corrected reconstructions using IMBASED, SGA.SIM, and SGA.REG are
shown in Figures 11c, 11d, and 11e. Close-up views of the tumour for (a)-(e)
are shown in Figure 11f. Finally, the line profiles through the tumour along
the line indicated in Figure 11a, are shown in Figure 12.

6. Discussion

We have presented a novel method for the navigator-less, accurate recon-
struction of high-resolution, high-contrast dynamic 3D volumes from long
slice-by-slice MR acquisitions based on the simultaneous groupwise mani-
fold alignment of neighbouring slice positions (SGA.REG). Such volumes
have many potential applications. Here, we applied them for the motion
correction of simultaneously acquired PET data. The present work is an
extension of the SGA.SIM technique which we previously published (Baum-
gartner et al., 2013) by a registration-based similarity kernel to account for
anatomical differences between adjacent slice positions.

The proposed technique captures the breathing motion of each slice posi-
tion in a low-dimensional manifold embedding. For a sufficiently high embed-
ded dimensionality, this representation of motion has the potential to model
all respiratory inter-cycle as well as intra-cycle variabilities such as amplitude
variations, baseline shifts and hysteresis in the manifold representation. Such
variabilities are then taken into account during the reconstruction resulting
in more accurate volumes than current methods. In future work we plan to
investigate in more detail to which degree the different types of variations
contribute to this improvement.

We compared our technique against two recently proposed PET motion
correction schemes based on MR slice-by-slice data: the purely image-based
technique (IMBASED) proposed by Dikaios et al. (2012), and the pencil
beam navigator-based technique (PBNAV) proposed by Würslin et al. (2013).

On synthetic data (experiment 1) the proposed SGA.REG method signif-
icantly outperformed all other methods in terms of reconstruction accuracy
(see Table 1). The results were confirmed by looking at maximum intensity
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projections in the sagittal plane of the synthetic data (Figure 8). At end-
exhale all methods tended to perform very well, most likely because exhale
states are generally more reproducible over the course of a long acquisition
than inhale states. However, especially the reconstructions using PBNAV
suffered from artefacts in the anterior chest-lung interface (indicated by ar-
rows in the top row of Figure 8), which can be explained by intra-cycle
or inter-cycle breathing variabilities that cannot be captured by a technique
based on a 1D navigator signal. The biggest improvements of SGA.REG over
the other techniques were achieved for inhale states, such as the one shown
in the bottom row of Figure 8, where breathing variabilities are largest. We
observed that IMBASED did not perform well in our experiments and often
gave implausible reconstructions such as the one in the bottom row of Figure
8.

We made similar observations in our experiments on real data (exper-
iment 2). By visual inspection of the results we found that exhale states
can be reconstructed accurately with most techniques, as can be seen in the
through-plane maximum intensity projections of reconstructions in Figure 9.
Only IMBASED sometimes suffered from implausible reconstructions such
as the kink in the diaphragm indicated by an arrow in the EXH row. For
other respiratory positions the effects of misalignment became more evident.
In mid-inhale frames such as the one shown in the MID row of Figure 9
we occasionally observed inaccuracies in the anterior chest-lung interface for
PBNAV (highlighted by an arrow) similar to the ones observed on synthetic
data. These kind of artefacts are not surprising as PBNAV derives all its
respiratory information from the diaphragm and doesn’t have information
about other areas. The vessel close-up views show that SGA.REG gives the
smoothest estimate in this area of all examined techniques. Artefacts like the
ones mentioned above became much worse at inhale states, such as the one
shown in the bottom row of Figure 9 where respiratory variabilities are the
largest. In this frame PBNAV suffers from large artefacts on the diaphragm
and the anterior chest-lung interface as highlighted by arrows, which are
likely due to respiratory intra- and inter-cycle variations. Also the vessels are
distorted and intermittent for PBNAV while SGA.REG retains smooth con-
tinuous vessels. As can be seen in the same figure, IMBASED and SGA.SIM
give anatomically implausible reconstructions at inhale. SGA.REG is the
only technique which incorporates knowledge of the anatomical ground truth
in the form of our novel registration-based inter-dataset kernel for matching
the slices. We attribute the improvements of SGA.REG over SGA.SIM and
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IMBASED to this fact.
The consistency results of experiment 2 shown in Table 2 allow to mea-

sure how consistently the visual results shown in Figure 9 can be reproduced
over all time frames. The consistency results should however not be mistaken
as a measure for reconstruction accuracy and should not be interpreted on
their own. PBNAV gave the most consistent results for all volunteers. This
can be understood when considering that a 1D signal is easier to match con-
sistently to 1D signals from other slice positions. This, however, comes at
the cost of not being able to model inter- and intra-cycle breathing variabil-
ities, which cannot be captured by a 1D signal only. The other techniques
require matchings in higher dimensions which have more ambiguity, but al-
low for such variabilities to be captured. The high consistency of PBNAV
also means that errors due mismatches caused by breathing variabilities were
also consistently reproduced. SGA.REG exhibited a high consistency for all
volunteers when compared to SGA.SIM and IMBASED and offered a good
compromise between reconstruction reproducibility and ability to model com-
plex breathing patterns.

Acquiring data using a slice-by-slice acquisition protocol as described in
Section 3.1 allowed excellent image contrast and made it possible to image
vessel structures inside the lungs which cannot be visualised using a dy-
namic 3D MR acquisition protocol. In the synthetic PET/MR experiment
(experiment 3) these additional structures allowed us to extract very detailed
and reliable motion fields of the whole region of interest in the thorax. By
incorporating these into an RTA motion correction scheme we could success-
fully correct realistic, synthetic PET data for respiratory motion. Note that
because of the way the data was generated in this experiment, only intra-
cycle variabilities could be modelled. Also, in this experiment, we used the
generating motion fields to transform the attenuation maps used in the re-
constructions, which would obviously not be possible when using real data.
In practice, these maps could be transformed using motion fields estimated
from the images produced using our technique. As is shown in Figure 11,
the reconstructions using SGA.SIM (Figure 11d) and SGA.REG (Figure 11e)
both very closely match the ground truth with no motion corruption (Fig-
ure 11a). The reconstruction using IMBASED (Figure 11c) is markedly less
defined. This is confirmed by looking at the line profiles through the tumour
shown in Figure 12. The profile through the SGA.REG reconstruction is
very similar to the motionless ground truth. The profile from the SGA.SIM
reconstruction is slightly less defined.
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It has been shown by Polycarpou et al. (2011) that under some circum-
stances MCIR may provide superior PET motion correction than RTA, but
comes at greater computational cost. Our technique can also be used to pro-
vide motion estimates for MCIR-based reconstructions, and in future work
we plan to investigate this.

During a PET/MR session typically many different MR scans need to
be acquired for, amongst other things, attenuation correction and visual-
isation of different aspects of the anatomy. Note that the MR-based PET
motion correction scheme proposed here could be applied with minimal scan-
ning overheads, since acquiring one 2D slice for 160 ms per cardiac cycle is
sufficient to retrospectively obtain high-contrast 3D volumes for the entire
duration of a PET imaging session. In the remainder of the time the scanner
could be used for other MR imaging relevant to the PET session. In the
future it would also be conceivable to integrate part of those additional scan-
ning requirements into our method, for example, by temporally interleaving
partial MR data acquisitions using different protocols and reconstructing
them retrospectively using SGA.REG.

For this work we acquired 50 dynamic slices of each slice position which
resulted in acquisition times of 24-28 minutes. This number was chosen
arbitrarily and the minimum number of dynamics required to build reliable
reconstructions will be investigated in future work. For smaller datasets
interpolating amongst the k-nearest neighbours on the manifold as was briefly
discussed in Section 2.3 may be beneficial.

The largest deformations due to breathing motion are in the superior-
inferior (S-I) and A-P directions. Therefore, the choice of coronal slices may
be suboptimal and it may be preferable to use sagittal slices since these
two deformations are within the sagittal plane. The proposed SGA.REG
method is currently not robust when applied to sagittal slices, because the
anatomy undergoes much larger changes from slice position to slice position
in this plane. Extending the method to arbitrary slice orientations will be
the subject of future investigations. Nevertheless, through-plane motion is
only slightly hampering the performance of our method because the changes
in slice appearance due to A-P motion are also captured in the manifold.

The proposed technique also has potential application in MR-guided
treatments such as MR-guided high-intensity focused ultrasound (HIFU)
(Köhler et al., 2011). In a calibration phase 2D slices could be acquired
and embedded in an aligned low-dimensional representation as described in
this work. The aligned embeddings contain information about all respiratory
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states that are likely to occur and can thus be viewed as a motion model (Mc-
Clelland et al., 2013). In a subsequent application phase a volume could be
generated from previously unseen data by acquiring a new slice at a conve-
nient slice position, embedding it into the aligned manifold embedding and
looking up the closest slices at all other slice positions. In MR-guided HIFU
this could be applied for fast online updating of guidance information. In a
similar fashion the proposed method could also have potential applications
in the guidance of radiotherapy treatments in a hybrid MR linear accelerator
setup such as recently proposed by Stam et al. (2012).

7. Conclusion

The recent emergence of hybrid PET/MR systems is a promising technol-
ogy for many applications which currently use PET/CT systems. Acquiring
MR images during a PET procedure comes at no additional radiation expo-
sure to the patient and thus opens up possibilities for non-ionising and very
accurate respiratory motion correction. Using 1D navigators for gating or
reconstructing MR volumes suffers from inaccuracies due to breathing vari-
abilities and does not use the full potential of MR imaging. Here we have
proposed an effective and accurate motion correction technique, which does
not rely on navigators, has the potential to image breathing variabilities, and
may be combined easily with other MR scanning requirements that may arise
during a PET/MR imaging session.
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Figure 9: Examples of sagittal MIPs over the left lung of volunteer B ob-
tained from real slice-by-slice data reconstructed using the four examined
methods: (a) PBNAV, (b) IMBASED, (c) SGA.SIM, and (d) SGA.REG.
The projections are shown at three respiratory positions: (EXH) end-exhale,
(MID) mid-inhale, (INH) at end-inhale. Magnifications of the square area
indicated with white boxes in the middle and bottom rows are shown in the
lower left corner of the respective images. The red markers in the lower right
mark the slice positions shown in the sample manifold embedding in Figure
10.
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Figure 10: Unaligned and aligned embeddings for slice positions 18 (blue)
and 19 (red) of volunteer B. (a) shows the first two dimensions of the 3-
dimensional embeddings of the two slice positions as obtained directly from
LLE without alignment. (b) shows the first two dimensions of group 18 of
the aligned SGA.REG embedding. The manifold coordinates of the slices
that were chosen for the inhale reconstruction of SGA.REG in Figure 9 are
highlighted with black rectangles.
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(a) No Motion (b) No Correction (c) IMBASED

(d) SGA.SIM (e) SGA.REG (f) Close-up Views

Figure 11: Result of motion correction applied to the synthetic PET data:
(a) The sum of the PET gates with no motion (ground truth), (b) PET
reconstruction without motion correction, and motion corrected PET recon-
structions using (c) IMBASED, (d) SGA.SIM and SGA.REG. Finally close-
up views of the tumour for (a)-(e) are shown in (f). The line profiles in
Figure 12 were calculated along the doted line in (a).
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Figure 12: SUV line profiles through the tumour along the line indicated
in Figure 11a for the motionless ground truth, no motion correction, and
motion correction using IMBASED, SGA.SIM and SGA.REG. The motion-
less ground truth and the SGA.REG motion correction have almost identical
profiles between z = 5mm and z = 12mm.
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