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Abstract

Fracture propagation in brittle materials has been studied using hybrid

molecular dynamics simulations, allowing the use of quantum calculations

wherever and whenever needed by the problem under investigation. Several

timescales of the fracture process have been taken into consideration, going

from the lowest possible velocity for a crack growing in subcritical load-

ing conditions, to the highest velocity computed for very cold cracks. The

study has been carried out in two prototypical models of brittle fracture:

silicon and amorphous silica. Aiming to interpret the lowest crack veloc-

ity ever measured by experiments on silicon at room conditions, we used

quantum-accurate computer simulations to show that immediate dissocia-

tion of oxygen molecules, and consequent oxidation of the highly stressed

silicon crack tips, may be the cause of the observed slow crack growth. This

theoretical prediction, supported by experimental evidence, clarifies long-

standing discrepancies concerning the role of oxygen as a stress corrosion

agent in silicon. Turning the attention to fast crack behaviour, a crossover

between activated and catastrophic branches of crack velocities as a function

of temperature has been detected in a hybrid classical molecular dynamics

model of silicon. Cold cracks travel faster for high loading energies, while

this trend is reversed in the region of energies where activated processes

become dominant. Finally, the study of catastrophic fracture in amorphous

silica has been initiated, testing for the first time our hybrid approach to

non crystalline structures.



Preface

This thesis describes work carried out between March 2010 and January

2014 at the Physics Department of King’s College London, under the su-

pervision of Prof. Alessandro De Vita, Dr James Kermode and Prof. Lev

Kantorovich. During the course of my PhD I have contributed to the fol-

lowing publications:

• Anna Gleizer, Giovanni Peralta, James R Kermode, Alessandro De

Vita and Dov Sherman. Dissociative chemisorption of O2 induces

stress corrosion cracking in silicon crystals. Published on Physical

Review Letters. Presented in Chapter 3.

• James R Kermode, Giovanni Peralta, Zhenwei Li and Alessandro De

Vita. Multiscale modelling of materials chemomechanics: brittle frac-

ture of oxides and semiconductors. Published on Procedia Materials

Science. Presented in Chapter 2.

• Giovanni Peralta, James R Kermode, Silvia Cereda, Zhenwei Li, Al-
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Chapter 1

Introduction

The human endeavour to transform nature has characterised the history of mankind

from many perspectives. The action of shaping and transforming objects, aiming to

improve their living condition, represents a peculiarity of human evolution. In this

process, making and breaking are two sides of the same coin. Every technological

advance relies upon both making something from raw materials, and preserving them

against failure. For this reason the act of making would be meaningless without a clear

knowledge of how things break.

Despite the relevance of the problem, a theoretical understanding of material failure

mechanisms was started only around hundred years ago. Since then, the unavoidable

presence of defects and micro cracks within the material body was identified as the main

cause of a material’s weakness to external loads. However, the broad range and diverse

features in which solid bodies could fail were totally unpredictable and yet unexplained.

Fracture mechanics originated in this scenario, aiming to solve the origin of material

failure and to theoretically predict fracture mechanisms.

In empirical terms, fracture represents the irreversible failure of a material into

several pieces. The physical causes that lead a material to experience this dramatic

phenomenon can be seen from different perspectives. At the macroscopic level, a basic

study of the elasticity of the material gives a satisfactory description of the fracture

process as the result of a local stress singularity in the proximity of the crack tip.

Looking at the atomic scale, fracture can be seen as a succession of bond breaking

events. The coupling between the nanoscopic origin and the macroscopic response of

fracture is the key which opens the gate of a multi-scale approach to studying the

mechanical behaviour of materials.

Starting from these considerations, research carried out in this PhD project has

13



focused on modelling brittle fracture in crystalline silicon and amorphous silica. Silicon

(Si), extracted from silicates (silica, or silicon dioxide, both in crystalline and amor-

phous forms) is the second most abundant element on Earth after oxygen. Amorphous

silica (a-SiO2) is the disordered structure of crystalline silica (SiO2): it is the main

constituent of the most common type of glass.

Fracture problems in silicon and silicates have a huge technological and scientific

relevance, spanning over a range of human activities including mining (rock crushing

and grinding), civil engineering (fracture of structural glasses), biomedicine (prosthetic

implants), and semiconductor technology. The challenges offered by the exponential

increase of high-tech materials has required a continuous improvement of theoretical

methods able to predict fracture mechanisms down to the atomic scale. This need has

been addressed recently by the increasing power of supercomputers, with the advent of

computer modelling of matter at the atomic level.

This thesis represents an attempt to describe the chronology of a model crack by

means of molecular dynamics simulations in two prototypical systems of brittle frac-

ture: Si and a-SiO2. In this journey, several phases of the crack life have been taken

into consideration, spanning from the lowest crack speed measurable at initiation to

a catastrophic fracture dynamics. To investigate these diverse features of brittle frac-

ture, a hybrid approach mixing classical and quantum mechanics has been applied only

wherever and whenever needed by the problem under consideration.

In Chapter 2 we review the fundamental notions of fracture mechanics, starting

from a brief historical background of previous studies, and then focusing on the fun-

damental physics of elasticity applied to fracture problems. The passage between the

continuum and discrete views of matter is analysed, introducing the reader to atom-

istic fracture studies. Then, we introduce the computational methods used to study

fracture: molecular dynamics, quantum mechanics and the hybrid technique used to

match these differing approaches. Finally, we explore selected examples of experimental

techniques used to study fracture problems at the nanoscale, highlighting the link with

computational simulations.

Inspired by recent experimental observations, suggesting the occurrence of stress

corrosion cracking in silicon for the first time, we present in Chapter 3 results of a

multi-scale hybrid simulation of this experimental setting. A theoretical background

on previous stress corrosion studies in glass and silicon introduces our research towards

a nanoscale analysis. By means of computer simulations at the quantum mechanical

level, we aim to offer a clear picture of chemical reactions that may occur at the

silicon crack tip when exposed to an air environment. The experiments performed by

14



our collaborators are also reported, concluding with a discussion and analysis of both

experimental and theoretical investigations.

From subcritical crack growth, typical of stress corrosion conditions, we turn our

attention to super-fast cracks that cleave atomic bonds at a significant fraction of the

speed of sound. Chapter 4 presents a computational analysis of fracture speed in silicon

as a function of environment temperature and applied load. Our research, building on

previous fracture studies on silicon, aims to investigate crack dynamics by means of a

hybrid molecular dynamics simulation. The hybrid approach used in this case consists

of mixing two classical interatomic potentials: one, based on DFT data, for describing

a few atoms around the crack tip; the other one, less general but computationally more

efficient, to describe the long-range stress field.

The motivation of improving atomic-scale knowledge of structural glassy materials,

aiming to enhance resistance to fracture, led us to start a theoretical investigation of

catastrophic crack propagation in amorphous silica systems. Chapter 5 reports our con-

tribution to the ADGLASS1 (Adhesion and cohesion at interfaces in high performance

glassy systems), a large research project merging academy and industry and funded by

the European Union. Our research focused on modelling catastrophic fracture propa-

gation in amorphous silica.

1www.adglass.eu
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Chapter 2

Fracture at the atomic level:

from theory to experiment

2.1 Introduction

Fracture problems have been studied for decades by the engineering community. From

a macroscopic point of view, fracture can be interpreted as the structural failure of a

material into two or more pieces. Understanding and analysing crack behaviour in solid

state systems has been largely performed within the fracture mechanics framework,

an important branch of science based on a continuum view of matter. However, the

biggest technological leaps are possible if we possess the fundamental knowledge which

lies behind empirical observations and macroscopic models. At the fundamental level,

fracture is the irreversible process of breaking atomic bonds, due to a local concentration

of mechanical stress in a specific region of the material. Despite the effort to look

at the fracture problem with an atomic lens, this microscopic definition intrinsically

embodies several length scales, from the macroscopic concept of mechanical stress to

the microscopic event of breaking an atomic bond.

A crack, or fracture, is a spatial discontinuity in the material’s bulk appearing as a

void region bounded by newly created surfaces. The existence of this region within the

material locally modifies its mechanical properties. If a remote stress is applied to the

material, all atomic bonds strain accordingly. However, the presence of a crack plays

the crucial role of stress concentrator, enhancing dramatically the strain of the atomic

bonds located near the crack tip. This may lead the fracture to advance, releasing the

elastic energy with the formation of two new surfaces.

We introduce the basic concepts of Fracture Mechanics in Sec. 2.2, firstly giving

16



2.2. Fracture Mechanics

a historical background on fracture studies and explaining the industrial relevance of

studying fracture. Then, we review the basic framework of the classical theory of elas-

ticity, looking at the physics of elastic bodies and the definition of the main physical

quantities of stress, strain, elastic constants and energy release rate. The first analytical

atomistic studies of fracture, precursors of early computer simulations at the atomic

level, are outlined in Sec. 2.3. The computational techniques used to approach fracture

problems at the atomic scale are presented in Sec. 2.4, giving a detailed description of

the classical interatomic potentials and of the Density Functional Theory (DFT) com-

putational engines. Quantum Mechanics Molecular Mechanics (QM/MM) embedding

schemes are treated in Sec. 2.5, narrowing the view to the “Learn On The Fly” (LOTF)

technique used in this work. Finally, we conclude the theoretical background on frac-

ture in Sec. 2.6 by reviewing selected experimental techniques linked with computer

simulations at the nanoscale.

2.2 Fracture Mechanics

Historically, the presence of a surface crack was commonly known to be very helpful in

breaking materials. Splitting wood, breaking rocks, cleaving gems are just a few exam-

ples of applications of this empirical knowledge. Depending on the way samples break

and on the features of the newly created surfaces after the crack propagation, mate-

rials can be classified in two distinct categories: brittle and ductile. Brittle materials

break suddenly when pulled apart in the perpendicular direction of a preexistent crack,

leaving flat surfaces behind the crack path. On the other hand, ductile materials offer

greater resistance to fracture propagation, experiencing irreversible plastic deformation

of the material’s bulk before the failure.

For centuries there has not been an apparent need to master this subject from a

theoretical point of view. The industrial revolution represented in this sense a crucial

gateway towards a thorough analysis of the mechanical properties of materials, par-

ticularly in predicting unprecedented catastrophic failures such as railway accidents,

bridges failure and tank explosions (see Ref. [1] for an exhaustive commentary on the

historical origin of fracture mechanics). At the beginning of 20th century, the engineer-

ing community started a pioneering study on the theoretical causes of brittle fracture.

Inglis first in 1913, and then Griffith in 1921, opened the way to a methodological

approach which will be, in the years to come, the basis of a new branch of science:

fracture mechanics.

Twenty years after Griffith’s analysis of brittle fracture, no significant progress was
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Figure 2.1: Photograph of a Liberty ship that failed at pier in 1943. Reproduced from
Ref. [2].

recorded on this matter. The harshness of two world wars presented other urgent

priorities that partially set aside an academic approach to fracture. In this scenario,

several structural failures were recorded in a series of systematic accidents involving

ships and airplanes during the Second World War. An interesting case of study was

represented by the construction of a several thousand “Liberty” ships in United States

as a response to the Japanese threat in the Pacific Ocean. A significant proportion of

these ships experienced catastrophic brittle fracture, breaking in half without warning

(see Fig. 2.1).

Subsequent research conducted on these cases identified notch brittleness, resulting

from a brittle-ductile transition, as one of the major causes of these calamities. The

large scale of these occurrences drove the scientific community to deepen research into

the fundamental causes of brittle fracture. In 1950s, Irwin resumed Griffith’s work and

linked the theoretical prediction of fracture based on the linear elasticity framework

with practical quantities measurable in fracture tests. Since then, fracture mechanics

has been a solid guide in approaching fracture problems, becoming a recognised branch

of science.

A complete overview of fracture mechanics can be found in Ref. [3, 4]. Before

retracing the main steps of the pioneers of this science, we step back shortly to the

fundamental principles of elasticity theory on which fracture mechanics is based.
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Figure 2.2: Schematic representation of deformation in a solid body. Reproduced from
Ref. [5].

2.2.1 Elasticity theory

The main feature characterising the theory of elasticity is the approximation of contin-

uum media, where the real atomic structure is substituted by a continuum distribution

of mass. This macroscopic approach can be considered accurate on length scales much

greater than the interatomic distance. After introducing the fundamental concepts of

strain and stress, this section will focus on the properties of linear elastic materials, in

particular isostropic media as they are the most common and easily studied.

2.2.1.1 The concept of strain

The deformation of a rigid body can be seen as a consequence of the applied forces on it,

and in linear elasticity theory they are described by the concepts of strain and stress. A

solid body is said to exhibit a deformation when it experiences a relative displacement of

some points in the body. Obviously, a solid body does not exhibit strain if it experiences

only a rigid motion(all its constitutive points are simply translated in space) or a pure

rotation (all its constitutive point are rotated but not changed in shape and size).

Let ~x be the position vector of a volume element within a body in its undeformed

configuration, and let ~X be the position vector of the same volume element in the

respective deformed configuration (see Fig. 2.2). The concept of deformation can be
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defined by the following equation:

~X = ~x+ ~u(~x) (2.1)

where ~u(~x) represents a vectorial displacement field. All the information relative to the

deformation is therefore enclosed in the function ~u(~x).

By calculating the displacement gradient we obtain a mapping of the variation of

the displacement field:

Jij =
∂ui
∂xj

(2.2)

with Ĵ = {Jij , i, j = 1, 2, 3} representing the Jacobian matrix of the displacement field.

Linear elasticity is based on the approximation of small deformations. This funda-

mental assumption can be formalised by imposing as definition of small deformation

the following relation:

Tr(Ĵ ĴT )� 1 (2.3)

namely a deformation is regarded as small provided that the trace of the product Ĵ ĴT

is negligible.

The Jacobian matrix of the displacement field can be written as the sum of a

symmetric and skew-symmetric components as follows:

Jij =
1

2

(∂ui
∂xj

+
∂uj
∂xi

)
+

1

2

(∂ui
∂xj
− ∂uj
∂xi

)
(2.4)

We define accordingly the infinitesimal strain tensor as

εij =
1

2

(∂ui
∂xj

+
∂uj
∂xi

)
(2.5)

and the local rotation tensor as

1

2

(∂ui
∂xj
− ∂uj
∂xi

)
(2.6)

The strain is defined by the tensor ε̂ = {εij , i, j = 1, 2, 3} function of the position of a

volume element of the rigid body. All the information about the deformation driving

the body from the reference to the deformed configuration is contained on the strain

tensor.
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2.2.1.2 The concept of stress

A solid body reacts to a deformation by developing internal forces and moments which

balance the effect of the external loads. Let consider the situation in which a solid body

is subjected to external forces. The system of forces acting on it can be composed of

two main types: body forces and surface forces.

On the one hand, body forces depend uniquely by external fields acting on the body

(for example the gravitational field) and can be summarised by the relation:

d~FV = ~b(x)dV (2.7)

where d~FV represents the elementary total force applied to the volume element dV

characterised by a volume force density of ~b(x).

On the other hand, surface forces deal with the interaction between neighbouring

internal portions of deformable bodies (for example contact pressure or traction) and

are formalised by the relation:

d~FS = ~fdS (2.8)

where d~FS describes the elementary total force applied to the area element dS with a

surface force density of ~f . By universal convention, once defined the normal unit vector

~n to the surface element dS, the sign of the surface force is negative if opposite to ~n

(case of compression forces), positive if on the same direction to ~n (case of tensile or

traction forces).

The Cauchy theorem demonstrates analytically the existence of a unique 3×3 tensor

such that:
~f = T̂~n (2.9)

where T̂ = (~f1, ~f2, ~f3), {~fi, i = 1, 2, 3} being the set of surface forces along the three

cartesian axes. The demonstration of this fundamental theorem (see Appendix C of

Ref. [6]) considers a generic point P within a material body surrounded by an infinites-

imal tetrahedron reproduced in Fig. 2.3.

The Cauchy tetrahedron is defined by the three planes parallel to the three coordi-

nate planes passing through the point P and a fourth plane with a normal unit vector ~n

at a distance dh from P . The four tetrahedral faces are characterised by the elementary

areas dA1, dA2, dA3, dAn with relative normal unit vectors −~e1, −~e2, −~e3, −~n. Let

f1, f2, f3, fn be the surface forces acting on each face of the tetrahedron and let ~b the

internal body force.
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Figure 2.3: The Cauchy tetrahedron. Reproduced from Ref. [6].

The second law of dynamics states that:

~fdAn − ~f1dA1 − ~f2dA2 − ~f3dA3 +~bdV = ρ~adV (2.10)

where ~a is the acceleration of the tetrahedron with mass ρdV . Since dAi = nidAn,

∀i = 1, 2, 3, from Eq. 2.10 follows:

~f − ~f1n1 − ~f2n2 − ~f3n3 +
1

3
~bdh =

1

3
ρ~adh (2.11)

having divided all terms by dAn and by considering that dV = 1
3ρdAndh. In the limit

dh→ 0 from Eq. 2.11 we obtain:

~f = ~f1n1 + ~f2n2 + ~f3n3 (2.12)

which exactly demonstrates what stated by the Cauchy theorem in Eq. 2.9.

All the internal reactions to the deformation caused by surface and body forces are

grouped in a physical quantity called stress represented by the tensor T̂ . The Cauchy

theorem demonstrates that any surface vector ~f applied on a generic plane passing

through a point P is exactly determined by the three force vectors acting on three

mutually orthogonal planes. In terms of components we can write

fi = Tijnj (2.13)
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In other words: it exists a tensor T̂ such that

~f = T̂~n (2.14)

where T̂ = (~f1, ~f3, ~f3, ).

The Cauchy theorem allows to express the total surface force in Eq. 2.8 as

d~FS = T̂~ndS (2.15)

namely in terms of components

dFS,i = TijnjdS →
dFS,i
dS

= Tijnj (2.16)

The physical meaning of the tensor T̂ can be better understood introducing a simple

example. Let T̂ be a diagonal tensor such that

Tij = σδij (2.17)

From Eq. 2.16 we have
dFS,i
dS

= σnj (2.18)

where σ describes the hydrostatic pressure applied on the solid body (negative in com-

pression and positive in traction), often called load or applied stress. Therefore the

stress tensor T̂ can be thought as a vectorial pressure, with measurement unit Pa

(typical values of stress in solid mechanics range from MPa to GPa).

2.2.1.3 The constitutive equation

In a solid body the relation between the applied deformation (strain) and the resultant

internal force (stress) is described by the so called constitutive equation:

Tij = f(εij) (2.19)

Such equation, assumed a priori of the mechanical problem of interest, says that in

every point of the solid body it exists a relation which biunivocally associates the stress

tensor with the strain tensor. In linear elasticity theory the constitutive equation is

linear under certain limits of strain and stress; moreover, the assumption of small

deformations (see Sec. 2.2.1.1) must be always satisfied. Most materials subjected to

small deformations are well described by a linear constitutive equation.
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The generality of the constitutive equation needs to be projected into a specific

mechanical problem by means of further simplifying hypotheses. In the common case

where the response of the system is linear elastic, the associated constitutive equation

becomes:

Tij = Cijkhεkh (2.20)

where Cijkh are appropriate constants. Equation 2.20 is a generalisation of the famous

Hooke’s Law (F = kx) and has general validity, including every crystal symmetry.

The tensor Ĉ in Eq. 2.20 has 81 independent components and is known as the

tensor of the elastic constants. By restricting our attention on a continuous medium,

homogeneous (the mechanical behaviour of the body is equivalent in every point) and

isotropic (the mechanical behaviour of the solid body is independent of the specific

direction), Eq. 2.20 can be significantly simplified. This type of medium has a relevant

importance both at theoretical and practical level. For such a medium the tensor Ĉ is

defined by only 2 independent components, called Lamé coefficients: µ (shear modulus)

and λ (first Lamé coefficient). Alternatively can be used the Young modulus E and

the Poisson’s ratio ν, or µ and the bulk modulus B. For a detailed derivation of the

relations connecting the elastic moduli mentioned in this section we refer to Chapter 2

of Ref. [6]. In the next subsection the problem of boundary condition will be introduced

as it is fundamental in fracture applications.

2.2.1.4 Boundary conditions

Most problems of the elasticity theory can be treated by means of appropriate boundary

conditions which significantly simplify the mathematical formalism by projecting the

problem into two dimensions. By making particular assumptions on the stress or on

the strain, two particular boundary conditions deserve to be mentioned as they are

widely used in fracture problems: plane strain and plane stress.

The condition of plane strain is satisfied when the displacement field ~u is strictly

bi-dimensional, namely: u1 = u1(x1, x2), u2 = u2(x1, x2) and u3(x1, x2, x3) = 0. In

plane strain conditions the strain tensor satisfy always the relations: ε33 = 0, ε13 = 0

and

ε23 = 0

. In practical applications the plane strain conditions occur in the case of structures

having one dimension much bigger than the other two. A typical example is represented

by a cylinder with the height much bigger than the diameter of its base, with the load

applied in the orthogonal direction to the axis of the cylinder. In fracture mechanics
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problem this geometry is generally represented by thick plates, with length (x direction)

much bigger than height (y direction) and depth (z direction).

The condition of plain stress is satisfied when T̂~n = 0 in each point for a given fixed

unit vector ~n. By taking ~n parallel to x3 direction, the plane stress condition yields

T33 = 0, T13 = 0 and T23 = 0. In practical applications the plane stress conditions occur

in the case of structures like a thin plate with one dimension much smaller than the

other two. The load in this case is uniformly applied in the parallel direction of the thin

plate, namely is uniform throughout its thickness. In fracture mechanics problems this

geometry is generally represented by thin plates, with length (x1 direction) and height

(x2 direction) much bigger than its depth (x3 direction). In plane stress conditions the

constitutive equation can be written in the compact form:TxxTyy

Txy

 =
E

1− ν2

1 ν 0

ν 1 0

0 0 1− ν


εxxεyy
εxy

 (2.21)

A thin plate containing a crack along the x1 direction with plane stress boundary

condition has been used in all my fracture simulations model and it will be described

in detail in Sec. 2.6.2.

To conclude, elasticity theory describes the mechanics of materials in the continuum

approximation. The knowledge of the material response to applied forces is enclosed

into the elastic constants, or into the elastic moduli for specific loading geometries. An

exhaustive derivation of the equations reported in this section can be found in Ref. [6]

and in Ref. [5]. The following section will focus on a material containing a crack on the

assumption of validity of elasticity theory.

2.2.2 Linear Elastic Fracture Mechanics

The study of fracture behaviour in a material where stress varies linearly with strain is

called Linear Elastic Fracture Mechanics (LEFM), namely fracture mechanics within

the linear elasticity framework. This branch of science saw its first pioneers within the

engineering community of the post industrial revolution era. Since that time it was

clear, through empirical observation, that materials under stress react by straining and

eventually failing for a critical value of the applied load. According to the ways in

which the failure process occurs, materials were divided in two main categories: brittle

and ductile.

A schematic diagram showing stress-strain curves for brittle and ductile materials is
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Figure 2.4: Schematic stress-strain curves for brittle (black line) and ductile (red line)
materials.

reported in Fig. 2.4. Brittle materials strain linearly with increasing stress until failure,

whilst plastic materials experience a significant plastic deformation followed eventually

by a failure for higher values of strain. The brittle failure occurs in the elastic regime of

the stress-strain curve for a certain value of the applied load. On the contrary, ductile

fracture takes place only after an irreversible deformation of the material structure.

For these reasons, when fractured, ductile materials present several asperities on the

surfaces opened by the crack, whilst brittle materials can be severed along a crystal

plane, leaving a flat and smooth surface without any sign of deformation. Ceramics like

glass and semiconductors like silicon, are model examples of brittle materials, whilst

metals are ductile.

Despite the successful design of engineering structures based on this empirical

knowledge, many aspects of the fracture mechanism were obscure. Why the critical

applied stress could significantly vary within the same material? What are the causes

that lead a material to experience failure in so many diversified ways? At the begin-

ning of the 20th century the engineering community started a theoretical investigation

on the causes of unexpected and catastrophic failures in an attempt to answer these

questions. We will retrace this journey in the following sections, from the first theories

based on empirical observations to the latest hybrid models combining classical and

quantum mechanics.
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2.2.2.1 Stress concentration

In a famous paper published by Inglis [7] in 1913 for the Institution of Naval Architects,

the author clearly explains the concept of stress concentration:

The destructive influence of a crack is a matter of common knowledge, and

is particularly pronounced in the case of brittle non-ductile materials. This

influence is turned to useful account in the process of glass cutting. A fine

scratch made on the surface produces such a local weakness to tension that

a fracture along the line of the scratch can be brought about by applied

forces which produce in the rest of the plate quite insignificant stresses.

Thus, despite a lack of theoretical investigation into the fundamental causes of fracture

propagation, a century ago the engineering community was wholly aware of the detri-

mental effects caused by cracks, flaws or any kind of imperfection within the material’s

body.

The idea of “critical applied stress” was a common practice in engineering design.

This concept was based on the assumption that a solid should break at a specific stress

level. However, this empirical knowledge was not sufficient to predict, and therefore

avoid, catastrophic and unexpected failures, which several times caused the loss of

human life. Moreover, there was no theory capable of explaining why brittle materials

like glass break suddenly for relatively low loading conditions with respect to ductile

materials like metals. A systematic study onto this problem was urgently needed, and

Inglis was the first to approach the problem from a mathematical point of view.

Within the approximation of linear elasticity theory, in his paper to the Institution

of Naval Architects in London he demonstrated theoretically two important results

outlined below:

• the stress at the end of the crack varies with its curvature and size;

• the stress is proportional to the square root of the length of the crack and inversely

proportional to its radius of curvature.

Taking the particular case of a plate containing an elliptical hole of length 2l and

thickness 2b, subjected to a remote uniaxial load σ along the y direction (as shown in

Fig. 2.5), Inglis postulated the existence of a stress enhancement T tipyy at the crack tip

described by the equation:

T tipyy = σ

(
1 +

2l

b

)
= σ

(
1 + 2

√
l

ρ

)
, (2.22)
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Figure 2.5: Schematic diagram of plate containing an elliptical hole subjected to the
applied uniform load σ along the y direction. Reproduced from Ref. [5].

where ρ = b2/l is the radius of curvature at the crack tip. Tyy accounts for the stress

field caused by the strain of the structure resulting from a uniform external load σ

along the y direction.

In the ideal case of a perfect brittle crystalline material with no flaws or voids, the

stress field would be uniform within the material’s volume. The presence of a crack

introduces a stress enhancement in the proximity of the crack tip which explains why

a material can fail for an applied stress σ that is much lower than the theoretical

failure stress σf . According to Eq. 2.22, the morphology of the crack (and not its

absolute dimension) controls the magnitude of the stress enhancement term, leading

to the paradox that a material containing a slit crack with ρ → 0 should fail for an

infinitesimally small load. Even removing this singularity, which arises from neglecting

the atomic structure of materials, experimental results were in clear disagreement with

Inglis theoretical findings, which highly overestimated the weakening of materials. [8]

Focusing on the role of the local stress at the singularity of the crack tip within

continuum elasticity theory gave an important qualitative explanation of the effect of

stress concentration. However, it was not still satisfactory from a quantitative point of

view. A consistent theoretical model capable of predicting the start of material failures

was needed.
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2.2.2.2 Griffith energy criterion

Only eight years later, Griffith attacked this problem from a new standpoint based on

the concept of the conservation of the energy. Working at the Royal Aircraft Establish-

ment on the effect of surface treatment on the strength of metallic machines, he pointed

out at the discrepancies between the well established hypothesis of “maximum applied

stress” and the results of alternating stress tests. The analysis and conclusions drawn

from this study were published in 1921 in the paper The phenomena of rupture and

flow in solids [8], where the author introduced a new theoretical criterion of rupture

with these words:

According to the well-known “theorem of minimum energy”, the equilibrium

state of an elastic solid body, deformed by specified surface forces, is such

that the potential energy of the whole system is a minimum. The new

criterion of rupture is obtained by adding to this theorem the statement that

the equilibrium position, if equilibrium is possible, must be one in which

rupture of the solid has occurred, if the system can pass from the unbroken

to the broken condition by a process involving a continuous decrease in

potential energy. In order, however, to apply this extended theorem to

the problem of finding the breaking loads of real solids, it is necessary to

take into account of the increase in potential energy which occurs in the

formation of new surfaces in the interior of such solids.

The simple and powerful concept communicated by the Griffith’s criterion consists

of describing the advance of the crack in energetic terms. The presence of the crack

within a strained body introduces, as a matter of fact, a local region of stress release.

Therefore, its advance consists on one hand of a decrease of the elastic energy stored

and on another hand of the work spent to open two newly created surfaces. The total

energy U of a solid containing a crack under constant applied stress σA is represented

by the balance equation:

U = UE + US , (2.23)

where UE is the elastic energy stored in the solid under strain and US the free energy

necessary to open the new crack surfaces. As the crack of length 2l extends of an

infinitesimal distance dl, the bonds within a strip of width dl relax, decreasing the

elastic energy accordingly:
dUE
dl

< 0. (2.24)
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Figure 2.6: The slit crack model used by Griffith to calculate the critical conditions for
elementary crack advancement. The elementary area dA is obtained by multiplying the
advancement dl of the crack by the thickness of the plate Z. Reproduced from Ref. [5].

On the other hand, an increase of the surface energy during crack extension accounts

for the work needed to break molecular bonds and open two newly created surfaces

behind the crack:
dUS
dl

> 0. (2.25)

The equilibrium requirement for a stationary crack on the verge of advancing is then

described by the Griffith energy-balance criterion:

dU

dl
= 0. (2.26)

The solution of this equation is a stationary point, namely a maximum for the function

expressed by Eq. 2.23.

Integrating the elementary energy contributes dUE and dUS for the elementary

crack advancement dl, we can obtain the critical conditions at which the crack ad-

vancement occurs. Griffith used the stress analysis conducted by Inglis to calculate the

strain energy:

UE = −πZl
2σ2

E
, (2.27)

where Z measures the thickness of the plate along the z direction, σ is the applied

stress and E′ is the effective Young’s modulus.
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The surface energy is obtained considering the energy needed to break molecular

bonds during crack advancement. This energy is a characteristic parameter of the

material and is expressed in terms of the surface energy density γ, namely the energy

per unit surface opened by the crack. Thus we obtain:

US = (2A× γ)× 2, (2.28)

where 2A refers to the area of two newly opened surfaces, while the factor of 2 outside

the brackets accounts for the double ended crack.

By substituting Eqs. 2.27 and 2.28 in Eq. 2.23 and solving Eq. 2.26 we obtain the

necessary critical conditions for a stationary crack to advance:

4lZγ − πZl2σ2
c

E′
= 0;

σc =

√
2γE′

πlc
, (2.29)

lc =
2γE′

πσ2
, (2.30)

where σc and lc represent respectively the critical applied stress and the critical crack

length. Griffith verified this theoretical analysis by measuring the normal component of

the applied stress to glass fracture specimens, finding a remarkable agreement. [8] An

important step achieved by Griffith was proving that the critical conditions for crack

advancement are crack-size dependent (see Eq. 2.30). Moreover, its criterion, based on

the conservation of the energy, predicts the minimum stress that should be applied to

a brittle material in order to allow a pre-existent over-critical crack to propagate at

certain velocity within the body (see Eq. 2.29). An exhaustive review of the Griffith

criterion can be found on the first chapter of “Fracture of Brittle Solids” in Ref. [3].

2.2.2.3 Irwin stress field

Starting from the Griffith milestone principle, Irwin developed the body of fracture

mechanics, aiming to introduce functional quantities characterising the driving force

for fracture.[9] The calculation of the stress field near the crack tip was one of these

important quantities never investigated before. Moreover, a physical quantity linking

the mechanical energy released by crack advancement and the surface energy was needed

for practical purposes.

Turning the attention to the mapping problem of the stress field, three principal

modes of fracturing a material can be defined. Mode I, known as the tensile mode,
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Figure 2.7: The crack opening modes. From the left to the right: tensile (I), sliding
(II), tearing (III). Reproduced from Ref. [5].

consists of opening a crack by applying a negative pressure on the normal direction

to the crack plane (on the left in Fig. 2.7). Mode II, or the sliding mode, is obtained

by sliding the two crack surfaces in opposite directions across the direction of crack

propagation (on the centre in Fig. 2.7). Mode III, or the tearing mode, is attained by

pulling apart the crack surfaces along the crack front (on the right in Fig. 2.7).

According to the constitutive equation of elasticity theory, Irwin calculated the

resulting stress field near the tip (see Fig. 2.8) using polar coordinates for an infinites-

imally narrow slit crack for the three main geometries:

Tij =
KI√
2πr

f Iij(θ) +
KII√
2πr

f IIij (θ) +
KIII√

2πr
f IIIij (θ), (2.31)

where the functions fij(θ) contain all the angular dependence of the field, KI , KII and

KIII are the stress intensity factors for the respective opening modes, r the distance

from the crack tip and θ the angle formed by r and the crack direction. The most

relevant mode of the three, both in theory (as we have seen in the Inglis and Griffith

approach) and in many experimental applications, is the tensile mode, so from now on

we will refer to KI as K. The Irwin near-tip solution for θ = 0 is described by the limit

equation:

K = lim
r→0

(√
2πrTyy(r, θ = 0)

)
(2.32)

Neglecting the singularity of the stress at r = 0 introduced by requiring the crack slit
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Figure 2.8: Tensile components of the stress tensor in the zone near the crack tip.
Reproduced from Ref. [5].

to be perfectly sharp, a significant result achieved by the Irwin near-tip solutions is

that the crack opening displacement, namely the crack profile, is parabolic.

The stress intensity factor depends only on the applied loading and specimen ge-

ometry, consequently determining the intensity of the local field. For this reason K

can be considered a powerful fracture parameter. In fact, the fracture toughness of a

material, commonly denoted by Kc, represents the stress intensity factor at which a

crack is observed to propagate in a laboratory sample. For a detailed derivation of the

Irwin solutions see Chapter 2 of Ref. [3].

Irwin’s work pointed out also the necessity of defining a quantity able to link in

practical problems the mechanical energy released by the advancing crack with the

surface energy spent to break the atomic bonds. Following Griffith’s model he thus

defined the mechanical energy release rate (called G in honour of Griffith who pioneered

the concept) as the energy released by the crack per unit area of crack surface created:

G = −dU

dA
. (2.33)

For the special case of a crack where the length l is sufficient to define the crack area

(a geometry commonly used in most of computational models) the above equation can

be rewritten in terms of the unit crack length and the unit crack front:

G = −dU

dl
. (2.34)
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This definition is independent of the loading geometry.

The definition of the energy release rate G introduces the possibility to make energy

balance arguments directly comparable with experimental quantities like the surface

energy density γ. However, we should stress the equivalent importance of K and G as

fracture parameters. If we integrate the strain energy density over the interfacial crack

area subsequent to an infinitesimal crack advancement dl we obtain:

G =
K2

E′
. (2.35)

See Ref. [3] for a detailed derivation of the result.

Finally, the Griffith criterion (Eq. 2.26) can be generalised, balancing the energy

release rate at the crack tip with the cost of opening two new fracture surfaces:

Gc = 2γ (2.36)

where γ is the surface energy density and Gc is the critical energy release rate. Equa-

tion 2.36 governs the condition of crack initiation for an ideal brittle elastic material,

the surface energy γ being the only mechanism of resistance to fracture propagation.

By considering the case when other energy dissipation mechanisms cannot be neglected,

Eq. 2.36 assumes the form:

Gc = Γ, (2.37)

where the fracture energy Γ is nothing but a generalisation of the surface energy (Γ0 =

2γ for an ideal brittle static crack at critical loading conditions).

2.2.2.4 Crack dynamics

Following the Griffith energy balance criterion in Eq. 2.37, the necessary condition for

crack propagation becomes:

G > Γ. (2.38)

What happens in this branch of fracture energies where the crack can in principle

propagate at finite speed?

The first general approach to the dynamic fracture problem was proposed by Mott [10]

in 1948. The natural extension of the Griffith energy balance to the case of a running

crack finds its expression in the formulation of a dynamic theory of fracture [4]. The
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equation governing the crack dynamics takes the form:

G(v) = Γ(v) (2.39)

where v represents the crack speed.

By knowing the fracture energy Γ(v) and the energy release rate G(v), the crack

speed can be predicted. Whilst Γ(v) can be either measured or calculated, G(v) has

been analytically calculated only in two particularly simple cases: a medium containing

a semi-infinite crack in an infinite plate subjected to any tensile loading [4]; a medium

containing a semi-infinite crack within an infinitely long strip subjected to constant

tensile loading [11].

It is useful expressing the equation of motion of fracture dynamics referring to

simple geometries. For a semi-infinite crack in an infinite half plane, LEFM predicts

the universal equation of motion, known also as “Freund equation” [4]:

v = cR

(
1− Γ(v)

G

)
, (2.40)

where cR is the speed of surface waves in the medium, namely the Rayleigh wave speed,

Γ(v) is the velocity dependent fracture energy, approximately equal to 2γ at low speeds,

and G is the static strain energy release rate, i.e. the flow of elastic energy to the crack

tip.

The main prediction made by Eq. 2.40 is an asymptotic behaviour of the crack

speed as the crack lengthens, with cR being the limiting speed (see Sec. 4.2.1 for a

thorough analysis of the Freund equation of motion). On the contrary, experiments

report measures of limiting speeds in typical brittle materials like polymers and silicon

between 20 and 80 % of this value [12, 13, 14, 15, 16]. These discrepancies between

theory and experiments have their roots in the unsolved question of fracture mechanics:

What really happens at the crack tip? An answer to this question can be only found

in the fundamental passage from a continuum view of the elastic medium to the real

discrete nature of matter.

2.3 From continuum to discrete

Fracture mechanics can be considered a theoretical background of fundamental im-

portance in approaching fracture problems. By following the historical process of this

branch of material science in Sec. 2.2, we also introduced the fundamental principles
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2.3. From continuum to discrete

Figure 2.9: Schematic picture of fracture mechanics. The presence of the crack within
a material body introduces three spatial regions: the process zone (red), the near tip
region (green) and the outer elastic region (blue).

governing the formation and the propagation of a crack within an elastic body. A clear

picture describing the structure of fracture mechanics has been proposed by Irwin and

Orowan (see a related review article in Ref. [15] p. 10). They proposed the existence

of three regions within a medium containing a crack: the process zone, the near crack

tip region and the outer elastic region ( highlighted respectively by red, green and blue

in Fig. 2.9).

The process zone, or cohesive zone, is the region of the material immediately sur-

rounding the crack tip. In this region the crack advancement consists in breaking atomic

bonds one after one another, transcending completely the realm of fracture mechanics.

The only assumption made by LEFM is strictly empirical, describing the fracture dy-

namics through the general concept of the fracture energy Γ. Outside of the cohesive

zone is the so called near-tip zone, where the response of the material to applied forces

is incorporated by the stress intensity factor K. If L is the size of the material where

macroscopic forces are applied, the near-tip zone scales as
√
L. Finally, far from the

crack tip is the linear elastic region, where the simple assumptions of linear elasticity

apply.

In spite of the broad range of correct predictions yielded by LEFM, many features

of the fracture dynamics can not be explained. Amongst several discrepancies between

theory and experiments, we remind two extreme cases of the fracture dynamics: the

crack initiation and the maximum attainable crack speed. From one hand, at initiation,

no crack is observed propagating when pulled apart with a loading scarcely higher than

Gc, but always for values significantly higher than this critical predicted value. From

the other hand, as we have pointed out in Sec. 2.2.2.4, pulling a material with very
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high loading, the measured speed of the crack is always a fraction of the predicted

theoretical value cR.

It must be recognised that there is a fundamental breakthrough in the passage from

macroscopic to nanoscopic, as highlighted in the schematic picture in Fig. 2.9. Mapping

the problem in an atomistic resolved lattice removes the mathematical singularity at

the crack tip shown by analytical approaches. It is then in the process zone, namely

the crack tip itself, where the first nanoscopic models attempted a description of the

elementary step for crack advancement: the bond breaking event.

In the early 1970’s, Thomson et al. [17] studied theoretically the lattice structure of

cracks by modelling two semi-infinite chains of atoms bonded horizontally by bendable

springs and vertically by stretchable springs. Their analysis showed the existence of a

stress stability range for the crack around the Griffith point σc over which the crack is

stable or lattice trapped, namely not prone to advance or retract. In the 1980’s, Slepyan

used two-dimensional lattice models to study dynamics crack instabilities, finding out

that fracture propagation involves the emission of high-frequency waves. [18] In the

1990’s, Marder [19] investigated the steady states of a crack moving in a triangular

lattice, highlighting the existence of a critical velocity beyond which the crack deviates

from a straight path by undergoing oscillations observed in experiments [12, 13] (see

Sec. 4.2.1 for a detailed description of this phenomenon).

These pioneering atomistic models highlighted for the first time the necessity of

going beyond the continuum approximation, anticipating the future advent of molecular

dynamics studies. Before going into the details of the modern computational methods

used to study fracture at the atomic scale, a relevant fracture geometry, particularly

useful for computational purposes, is described in the next subsection (Sec. 2.3.1).

2.3.1 The thin strip geometry

Since the Griffith pioneering work, the fracture problem has been modelled in a partic-

ular useful geometry, both from theoretical and experimental point of view. The thin

strip geometry is the particular configuration where the crack field is constrained within

a thin strip of height h along the direction orthogonal to the crack plane, clamped on

the top and the bottom by fixed displacement boundary conditions. This special ar-

rangement is particularly useful to study the crack dynamics under the condition of

constant energy release rate.

By fixing the top and bottom boundaries where the load is applied precludes the

exchange of mechanical energy between the elastic body and its surroundings. This
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Figure 2.10: The thin strip geometry. The top and bottom boundaries of the strip
are fixed and displaced vertically by an amount δ. The light blue stripe represents a
material region with elastic energy density equal to W∞ (see text for explanation).

permit us to state that the only global energy variation during crack advance is the

elastic energy, provided that the deformation due to crack progress is at equilibrium.

This elastic energy change due to crack growth is exactly the energy release rate,

expressed by the following equation:

G =
1

2

E

1− ν2
· ε2 · h (2.41)

where E is the Young’s Modulus, ν the Poisson’s ratio, ε the applied strain and h the

height of the slab.

In this loading configuration, the horizontal edges of the strip are supplied with a

uniform normal displacement δ, so the applied strain is ε0 = δ/h. The uniaxial tension

felt by the slab far ahead of the crack is the stress σ0 = E′ε0, where E′ = E/1− ν2 is

the effective Young modulus and ν the Poisson ratio. Therefore the elastic energy per

unit length and per unit thickness far ahead of the crack tip (x→∞) is

W∞ =
1

2
E′ε20 · 2h =

δ2E′

h
(2.42)

where 2h is the height of the slab.

Far behind the tip the energy density is zero because of the presence of the crack.

This discontinuity is explained by thinking that the energy supplied to the crack tip is
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equal to W∞, so the energy release rate is simply

G = W∞ =
δ2E′

h
(2.43)

In summary, the simple parameter represented by the spatial displacements δ of

the boundaries allows to make straightforward experimental measures of the energy

release rate, directly comparable with analogous theoretical estimates. This geometry

is definitely the most used in practical fracture problems, and therefore also in the

majority of computational studies. The necessity of studying fracture at the nanoscale

level introduces the concept of computational atomistic studies of fracture.

2.4 Modelling fracture at the atomic scale

Since their advent computers have provided new ways to investigate the laws of nature.

The equations that describe the laws of nature are usually not exactly solvable via

analytical approaches. Theory provides an approximate description of physical systems,

and even using approximations, the aim of reproducing exactly the model becomes

increasingly difficult as the number of objects involved in the problem increases. In

this scenario, the availability of the powerful tool represented by computers bridges

this gap, allowing many different analyses to be carried out for the first time.

The use of computer simulations lies in the middle, ground between theory and

experiment. On the one hand, we can compare the results of real experiments with the

calculations of a model system, and if the two disagree we can improve the model; on the

other hand, comparing the result of a simulation with the predictions of the theory for

the same model allows us to see if the theory is working well. Moreover, we can predict

properties of materials that have not yet been created, or even better, explore from

scratch totally unknown environments. From classical molecular dynamics to quantum

mechanics methods, we will review their fundamental principles, finally exploring a way

of combining them together in order to interpret fracture at the atomic level.

2.4.1 Classical Molecular Dynamics

Molecular dynamics (MD) is a computational simulation technique that follows the

time evolution of an ensemble of interacting atoms by integrating their equations of

motion:

~Fi = mi~ai (2.44)
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for each atom i in a system of N atoms, where mi is the atom mass, ~ai = d2~ri/dt
2 its

acceleration, and ~Fi the force acting upon it due to the interaction with other atoms.

Forces are generally derived from potential energy functions V (r1, ..., rn) which strictly

depend from the positions of the atoms and wholly characterise the materials properties

(see Ref. [20] for a general introduction to MD).

Integrating equation 2.44 in order to follow the trajectory of the interacting particles

is the main task of a MD program. Time integration algorithms are based on finite

difference methods, where time is discretised on a finite grid, the time step ∆t being

the distance between consecutive points on the grid. Knowing positions r(t) and their

time derivatives ṙ at a time t, the integration scheme gives the same quantities at a

later time t+∆t. The Velocity-Verlet algorithm [21, 22] is widely used in MD programs

since it provides a good compromise between efficiency and accuracy:

r(t+ ∆t) = r(t) + ṙ∆t+
1

2

F (t)

m
∆t2 +O(∆t4), (2.45)

ṙ(t+ ∆t) = ṙ(t) +
1

2

[F (t)

m
+
F (t) + ∆t

m

]
∆t+O(∆t4), (2.46)

with m representing the particle mass and F (t) the force acting on it at the time t.

MD simulations using the Velocity-Verlet algorithm conserve the total energy gen-

erating the micro-canonical ensemble NV E, where number of particles N , volume V

and total energy E are constant. However, in order to match experimental conditions

more closely, it is often convenient to perform simulations in other ensembles, keeping

constant the temperature of the system instead of the energy (NV T ), or the pressure

instead of the volume (NPT ). Andersen introduced this possibility for the first time

in the context of constant pressure MD simulations, reformulating the Lagrange equa-

tions of motion of the system. [23] It is particularly useful to work with the so called

canonical ensemble NV T , with constant temperature achieved via a thermostat which

adds or removes heat from the system. The Langevin thermostat [24] is an approach

that samples the canonical ensemble correctly, adding to the equations of motion a

dissipative term representing viscous damping due to fictitious heat bath particles and

a random force to represent the effect of collisions with those particles:

Fi = −∇iV − βṙi + ξi. (2.47)

In Eq. 2.47 V represents the potential energy function of the system, β is the damping

coefficient and ξi are the random forces drawn from a gaussian distribution with zero
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mean and unit variance scaled according to the Stokes-Einstein fluctuation-dissipation

relation for the diffusion coefficient, i.e. by a factor√
2mkBTβ

∆t
, (2.48)

where m is the particle mass, T the simulation temperature and ∆t the molecular

dynamics time-step.

The computer calculates a trajectory in a 6N-dimensional phase space (3N positions

and 3N momenta). However, such a trajectory is not usually particularly relevant by

itself because it cannot be compared directly with experimental data. For this reason

MD can be viewed as a statistical mechanics method, where physical quantities are rep-

resented by averages over configurations distributed according to a certain statistical

ensemble. As a typical experiment measures an average property, averaged over a large

number of particles and over the time of the measurement, MD aims to compute aver-

ages of different physical properties and therefore to compare them with experimental

results.

To conclude, molecular dynamics studies the interactions of atoms with each other.

These interactions are described by forces, usually obtained as the gradient of a poten-

tial energy function, depending on the positions of the particles. Therefore selecting

an appropriate potential becomes of crucial importance in order to achieve a good

description of the system.

2.4.1.1 Interatomic potentials

The potential energy function V (r1, ..., rn) for a specific material plays a key role in

molecular dynamics as forces are derived from it. The main effort is understanding

how such a function of the coordinates can be close to the behaviour of a real material.

Usually, a classical interatomic potential is initially derived by choosing an appropriate

functional form according to the complexity of the system. Then, the parameters of

this functional are fitted to reproduce relevant physical properties ( elastic constants,

Young’s and bulk modulus, cohesive energy are typical properties relevant to fracture

studies), where the fit target can either be experimental measures or ab-initio calcula-

tions. In the last case, the interatomic potential is an approximation to the underlying

quantum mechanics.

In classical MD, atoms are considered point-like particle interacting via a poten-

tial energy function decomposable into a sum of one-body, two-body or many-body
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contributions

V ({ri}) =
∑
i

V1(ri) +
∑
i<j

V2(ri, rj) +
∑
i<j<k

V3(ri, rj, rk) + ...+ VN (ri, ..., rn), (2.49)

where the conditional sums avoid double-counting. The one-body term V1 represents an

additive energy term acting on any atom, therefore can only be an external force applied

to the whole system (if the system is considered isolated this term is absent). The two-

body term V2 describes the elementary interaction between any couple of atoms, and

is usually a function of the bond length rij = |rj − ri|. Finally, the three-body term V3

accounts for the interaction between any three atoms of the system, and is a function

of the bond lengths rij and rik and the angle θijk between the bonds ij and ik. Typical

interatomic potentials for MD studies contain two- and three-body terms and can be

written in the parametric form

V ({ri}) =
∑
i<j

V2(rij) +
∑
i<j<k

V3(rij , rik, θijk). (2.50)

A fundamental aspect of modelling material properties with MM approach is the

tradeoff between two aspects intrinsically in contrast: reproducibility and accuracy.

From one hand, the functional form should be able to capture the general mechanisms

of bonding of the material under investigation. On the other hand, the fitting process

narrows the general functional to the specific material under investigation, often to a

specific phase of the material, making sure that the relevant properties are reproduced

with an accuracy comparable to the experiment or to quantum mechanical estimates.

Therefore, an interatomic potential may be very accurate in faithfully reproducing

physical properties of a specific material within the extent of the specific properties

that have been used in the fitting process. Bearing in mind this important limit, the

MM approach still represent a fundamental tool in modelling solid state systems. An

example of interatomic potential, used in this work to describe brittle fracture, will be

described in the following section.

2.4.1.2 The Stillinger-Weber potential

The Stillinger-Weber (SW ) potential [25] was one of the first attempts at modelling

semiconductors with an interatomic potential. Starting from the knowledge that simple

pair potentials were not able to describe semiconductor structures, the authors proposed

a model potential-energy function comprising both two- and three-atom contributions
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to describe interactions in solid and liquid forms of Si. Diamond structure of Si crystals

consists of atoms held in place by strong and directional bonds, so a good description of

it must take into account not only the energetic term dependent from the bond distance

(two body term) but also one part related to the bond angles (three-body term).

The SW potential is the sum of two- and three-body potentials:

VSW =
∑
i<j

v2(rij) +
∑
i<j<k

v3(ri, rj, rk), (2.51)

where

v2(rij) =
εf2(rij)

σ
, (2.52)

v3(ri, rj , rk) = εf3

(ri
σ
,
rj
σ
,
rk
σ

)
, (2.53)

with ε representing the well depth energy chosen to give f2 depth -1, and σ the value

of rij at which v2(rij) = 0 to make f
′
2(rmin/σ) vanish. If f2 is a function only of the

scalar distance rij , f3 has full translational and rotational symmetry. The reduced pair

potential f2 was selected to have the form

f2(rij) = A(Br−p − r−q)e[(r−a)−1] (2.54)

where the parameters are positive and with a representing the cutoff distance at which

the f2 goes to zero without discontinuities in any r derivatives.

The reduced three-body potential has the form

f3

(ri
σ
,
rj
σ
,
rk
σ

)
= h(rij , rik, θjik) + h(rji, rjk, θijk) + h(rki, rkj , θikj), (2.55)

where θjik is the angle between rij and rik subtended at vertex i, etc. The function h

belongs to a two-parameter family (λ, γ > 0):

h(rij , rik, θjik) = λe[γ(rij−a)−1]+γ(rik−a)−1]×(cos θjik+ 1
3

)2
(2.56)

provided that both rij and rik are less than the cutoff radius a, otherwise h vanishes

identically. The trigonometric part of the expression clearly discriminates in favour

of tetrahedral bond angle θt = 109.47◦ among triplets of bonded atoms. In order to

describe accurately interactions in solid and liquids forms of Si, the most satisfactory

parameter set is reported in Table 2.1.

The SW model has been largely used to study silicon properties even if it shows

deficiencies when it comes study the brittle cleavage of silicon. [26] It has been shown
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Table 2.1: Parameter set of SW potential [25].

A B p q a λ γ

7.049556277 0.6022245584 4 0 1.80 21.0 1.20

that the inability to reproduce the brittle behaviour in covalent materials depends on

the short range character of the potential. [27] However, this potential represents a good

candidate to use in a brittle fracture multi-scale hybrid scheme: it is easily implemented,

computationally convenient and it reproduces fairly well crucial properties of silicon as

the surface energy density and the elastic constants (see Ref. [25]). The critical zone

of the fracture, where atomic scale phenomena are responsible of the brittleness, is the

task of quantum potentials.

2.4.2 Quantum Mechanics

Real materials are made by atoms. In principle, the only theory able to describe atoms

is quantum mechanics. A system of interacting atoms is described by the Hamiltonian

Ĥ =
∑
I

P 2
I

2MI
+
∑
i

p2
i

2m
+
e2

2

∑
I

∑
J 6=I

ZIZJ
|RI −RJ |

+ (2.57)

+
e2

2

∑
i

∑
j 6=i

1

|ri − rj |
− e2

∑
I

∑
i

ZI
|RI − ri|

,

where R = {RI} is a set of nuclear coordinates, r = {ri} is a set of electronic coordi-

nates, ZI and MI are respectively the nuclear charges and masses, m is the electronic

mass. After solving the Schrödinger equation for the total wave function Ψ(R, r),

everything is known about the system.

Considering that nuclei are much heavier and consequently much slower than elec-

trons, we can regard the nuclei as stationary as far as the electronic part is concerned

(Born-Oppeneimer approximation) [28]. This means that we can factorise the total

wave-function as

Ψ(R, r) =
∑
n

Θn(R)Φn(R, r) (2.58)

where Θn(R) describes the nuclei and Φn(R, r) the electrons (depending parametrically

on the coordinates of the nuclei). With this assumption, the original problem is solved
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in terms of two separate Schrödinger equations:

HelΦ(RI , ri) = V (Ri)Φ(RI , ri) (2.59)

where

Hel =
∑
i

p2
i

2m
+
e2

2

∑
i

∑
j 6=i

1

|ri − rj |
− e2

∑
I

∑
i

ZI
|RI − ri|

(2.60)

and [∑
I

P 2
I

2MI
+ V (Ri)

]
Θ(RI) = EΘ(RI). (2.61)

Equation 2.59 is for the electronic problem, under the assumption that the nuclei are

fixed (a popular method to solve this equation will be introduced in Sec. 2.4.2.1). The

eigenvalue of the electronic energy V (Ri) will depend parametrically on the coordinates

of the nuclei; this quantity is called the interatomic potential. Once found, this quantity

enters equation 2.61, which will give the motion of the nuclei.

In the field of molecular dynamics it is customary to replace this Schrödinger equa-

tion with a Newtonian equation, modelling the motion of the nuclei classically:

H = T ({pi}) + V ({ri}), (2.62)

where T =
∑

i p
2/2mi is the kinetic energy of a system of N particles and V its

potential energy. Nevertheless, solving equation 2.59 to find the electronic energy

V (Ri) constitutes a formidable task. Depending on the way we achieve this, different

molecular dynamics approaches are available, each of which confers advantages and

disadvantages.

A full quantum treatment of the electronic energy characterises the so called first-

principles molecular dynamics [29], where, adopting approximations, we really solve

the electronic Schrödinger equation. Whilst this is feasible, it requires huge computa-

tional resources and poses severe limits on the maximum size of the system and on the

simulation time. On the other hand, by completely removing the electronic degrees

of freedom, we define the traditional approach of molecular dynamics, with which we

simulate the motion of a system of classical particles using Newton’s Laws of Motion.

In this case we select functional forms of V (Ri) which mimic the behaviour of the true

potential in realistic ways for specific materials. This approach is particularly useful to

study complex systems of millions of atoms, and for simulation times ranging from a

few picoseconds to hundreds of nanoseconds.

In-between these approaches there exists a new class of hybrid schemes which link
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quantum mechanical and classical modelling. The deep insight of this method is that

one can span large scale simulations using a classical model to describe with reasonable

accuracy the topology of bonding, and a quantum mechanical model in one specific

zone of the system in which solving the Schrödinger equation for the electrons becomes

decisive. In general, quantum approaches applied to solid systems assume valid, since

the beginning, the Born-Oppeneimer approximation: hence the label “ab initio” given

to these methods.

2.4.2.1 Density Functional Theory

Density Functional Theory (DFT) is an ab initio quantum mechanical method used to

describe the electronic structure of solid state physical systems. In 1964, Hohenberg and

Kohn stated two fundamental theorems in an attempt to simplify the solution of the

many-body electronic problem expressed via the Schrödinger equation 2.59. [30] The

first theorem proves that the ground state energy E of an electron gas in an external

potential Vext is a unique and universal functional of the electron density n(r):

E[n(r)] = F [n(r)] +

∫
Vext(r)n(r)d3r, (2.63)

where F [n(r)] is the density functional including the electron-electron interaction and

the kinetic interaction of the electronic Hamiltonian in Eq. 2.60. The second theorem

demonstrates that the universal energy functional is minimised through the variational

principle by the ground state electron density n0(r). Thus the minimum of the total

energy yields n(r): from this ground state electron density all other observables can be

obtained.

In summary, the knowledge of N wave-functions with 3N spatial coordinates rep-

resenting the electrons is reduced to the equivalent problem of calculating an electron

density n(r) with 3 spatial coordinates. However, the many-body problem included

in the universal density functional F [n(r)] still represents a formidable computational

task.

Kohn and Sham in 1965 simplified this problem by considering an auxiliary system

of non interacting electrons in an external effective potential that simulate the effect of

many-body interaction: [31]

EKS [n(r)] = T [n(r)] + VKS [n(r)], (2.64)

where EKS represents the universal energy functional, T is the kinetic energy operator
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and VKS is the effective potential in which the non interacting electrons are moving.

The main assumption of Kohn-Sham approach is that the charge density n of the

real interacting system equals the one of the non interacting reference system nr:

n(r) = nr(r) =
N∑
i=1

|φi|2 (2.65)

where |φi > are the non interacting single particle wave functions, known as Kohn-

Sham orbitals. Therefore, the electron density of the original interacting system can be

obtained by solving the Kohn-Sham equations of the auxiliary non interacting system:

[T + VKS ]|φ >= εi|φ > . (2.66)

The effective potential VKS contains all the information related to the many-body

interacting system, by explicating the electron-electron interaction term into pieces of

decreasing importance from the energetic point of view:

VKS =
1

2

∫∫
nr(r)nr(r

′
)

|r− r′ |
drdr

′
+ VXC [nr(r)]. (2.67)

The first term, known also as Hartree term, is the classical electrostatic energy and

accounts for the largest contribution of the electron-electron interaction. The exchange

term (accounting for the short range repulsion of two electrons with parallel spin oc-

cupying the same position) and the correlation term (describing the more general cor-

relation between the position of electrons due to their long range Coulomb repulsion)

are fused together in VXC .

Within the DFT framework, this quantity can only be approximated, either as

a local functional of the density in the Local Density Approximation (LDA), or of

the density and its gradient in the Generalised Gradient Approximation (GGA). Plane

waves are generally chosen as the basis set for the Kohn-Sham wavefunctions in Eq. 2.66

in order to describe periodic systems:

φi,k(r) = eik·rui(r), (2.68)

with ui representing the periodic Bloch function. A further approximation to the

all-electron potential in Eq. 2.66 is possible by considering only the valence electron

wavefunctions via a substitution of the combined effect of the nucleus and the core

electrons with a pseudopotential, which can be norm-conserving [32] or ultrasoft [33].
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Finally, the self-consistent (iterative) solution of the Kohn-Sham equations in Eq. 2.66

yields the ground state electron density n(r) and consequently the ground state total

energy EKS . From the ground state energy, all the forces can be calculated, and

therefore used to carry out molecular dynamics or geometry optimisation using the ab

initio method. According to the Hellmann-Feynman theorem [34], the force on the Ith

nucleus at position RI is given by:

FI =
∂EKS
∂RI

. (2.69)

The knowledge of the quantum forces acting on specific atoms of the cohesive zone can

reproduce with impressive accuracy all the mechanisms which escape from the realm of

classical physics. In the next section we will review a technique which combine classical

and quantum forces to create a multi-scale hybrid model of the fracture: the “Learn

on The Fly” technique.

2.5 The “Learn on The Fly” technique

2.5.1 Multi-scale modelling

Fracture is a strongly coupled multi-scale problem. Straining a perfectly elastic ma-

terial, without defects or polar charges, determines a long range elastic interaction

wholly predictable by means of Elasticity Theory (see Sec. 2.2.1). However, straining

the same material, elastic, but with an atomically sharp crack within its body, modifies

dramatically its elastic properties (see Sec. 2.2.2). The stress field behaves elastically

in the universal elastic region far from the tip, whilst increases in the near tip region as

predicted by LEFM (see Fig. 2.9). At the crack tip, the elementary crack advancement

is described by a bond breaking event, which involves a significant change of the elec-

tronic structure of the broken bonds and their neighbourhood. Thus, bond breaking,

or chemical reactions occurring at the crack tip, can be only interpreted correctly by

Quantum Mechanics.

On the basis of these facts, understanding brittle fracture at the atomic level re-

quires a virtuous matching of the classical and quantum mechanical descriptions of

matter. In particular, we will focus on hybrid techniques that combine two atomistic

treatments: one using MM interatomic potentials (see Sec. 2.4.1.1) and one by means

of quantum mechanical methods (see Sec. 2.4.2.1), known indeed as QM/MM (Quan-

tum Mechanical/Molecular Mechanical) approaches. Two broad categories of QM/MM

hybrid schemes can be defined: energy mixing and force mixing. On the one hand, the
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(a) (b)

Figure 2.11: Hybrid modelling coupling methods: (a) The energy mixing method; (b)
The smooth force mixing method. Red and white fields denote respectively the QM
and MM regions.

energy mixing methods are based on a unique Hamiltonian where the QM and MM en-

ergies are computed separately in their respective region and then combined together,

conserving the total energy. On the other hand, force mixing methods are centred on

the forces rather than on the energies: QM forces are computed in the QM region, MM

forces in the MM region, and then an interpolation between the two is performed in a

transition buffer region. A schematic diagram of these two broad categories is shown

in Fig. 2.11.

The energy mixing method (Fig. 2.11a on the left) identifies the QM active region

(red sphere) and the MM region (white field), where the respective energies are sepa-

rately calculated. The QM boundary is passivated with some atom (hydrogen passiva-

tion is quite common) or by means of pseudo-orbitals (via modified pseudo-potentials

which simulates a frozen orbital). The double arrows symbolise the QM/MM coupling,

which produces a corrective interaction energy term in the computation of the total

energy.

The smooth force mixing method (Fig. 2.11b on the right) augments the QM active

region (red sphere) with a buffer region (annular region with radial red gradient) where

a weighted sum of QM and MM forces are used. The weight λ is represented by a

gradient colour, linearly interpolating the forces from 1 (red) to 0 (white). The main

advantage of this scheme is the fact that there is no need to passivate the QM region.

Since forces are calculated on each atom, there is no interaction term as in energy

mixing methods. However, since forces no longer come from a single Hamiltonian,

neither energy nor momentum are conserved. In the next section we will show how
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LOTF deals with this problem.

The earliest QM/MM study was performed in 1976 by Warshel and Levitt 1 to

model enzymic reactions. [35] The authors understood the importance of studying the

system enzyme-substrate as a whole, by splitting the problem in three contributes:

quantum, classical and the interaction between them. The atoms directly involved in

the lysozyme reaction are treated at the quantum level, whilst the potential energy

surface of the substrate and the solvent is well described by empirical potential func-

tions. The coupling between the quantum and the classical potential was described by

a microscopic model in order to correct the inductive effect of bare Coulomb classical

charges on the QM atoms at the active site. Moreover, the QM atoms at the boundary

were passivated with a single hybrid orbital, describing classically the covalent bond

with MM atoms instead. This brilliant pioneering work contains all the main ingredi-

ents of modern QM/MM techniques, and since then hybrid simulations flourished in

the biochemistry community.

The earliest hybrid simulation applied to solid state systems was performed in 1993

by Spence et al. [36] to study lattice trapping and surface reconstruction on silicon. In

this case the authors used a force-mixing embedding scheme to describe the coupling

between QM and MM forces. On the contrary, energy-mixing methods were used by

Ogata in Ref. [37] to study the environmental effects of H2O on fracture initiation in

silicon. It is clear that the choice of the specific hybrid method strictly depends on

the particular mechanisms under investigation. Nevertheless, the class of force mixing

methods are the most used for multi-scale studies on solid state systems. A good review

on hybrid atomistic simulation for solid state systems can be found in Ref. [38].

The hybrid method used in this work, which belongs to the class of force mixing

schemes, is called the “Learn On The Fly” (LOTF) technique. The philosophy behind

this approach was firstly introduced in 1998 by De Vita and Car [39], and then devel-

oped as a hybrid QM/MM method in 2004. [40] Further developments of the LOTF

algorithm were embedded in LIBATOMS [41, 42, 43], a molecular dynamics library

written in Fortran 95+ and recently expanded with a powerful Python interface [44].

The main breakthrough behind this method is the effectiveness in combining QM and

MM forces both in space and time, requiring a quantum accuracy only wherever and

whenever needed by the problem under investigation. In the next subsections, the main

ingredients of the LOTF method will be presented, particularly stressing its application

to the fracture problem.

1Warshel, Levitt and Karplus were recently awarded of the 2013 Nobel Prize in Chemistry for their
contribute towards multi-scale modelling of complex chemical systems.
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2.5.2 Coupling QM and MM

The hybrid technique aims to reproduce observables with the same accuracy of quan-

tum mechanics, still holding a competitive computational cost. The challenge is hard,

considering that almost all the computational cost depends on the number of atoms

selected to be studied at the quantum level. In fracture problems, the atoms located

at the crack tip (namely the process zone defined in Fig. 2.9, Sec. 2.3), where bond

breaking or chemical processes drive the crack dynamics, are naturally selected as “QM

active”. Moreover, atoms nearby the process zone are also treated at the QM level by

forming a buffer region, which is the one that constitutes the real boundary with the

MM region.

This fictitious interaction at the boundary has no particular consequences on the

active site, provided that the strong locality holds:

∂n

∂xnj

∂E

∂xi
→ 0 |xi − xj | → ∞ ∀ n, i 6= j (2.70)

where E is the total energy, xi and xj are atomic positions of atoms i and j. The

strong locality guarantees that trajectories calculated at the active site (centre of QM

region) are not affected by classical trajectories in the MM region. The total number of

QM atoms (active and buffer) is the first, and most important control parameter, with

respect to which all macroscopic observables should be converged. This number can be

practically determined by using topological criteria, for example by tuning parameters

as the radius of a sphere centred on the active region.

Once the QM/MM boundary is defined, another problem one has to deal with is

how to update the QM selection algorithm if atoms fluctuate across this boundary.

Excepted the singular situation in which the QM region can be kept fixed (typical in

static calculation where the crack dynamics is not important), fracture studies need to

track the movement of the crack front during the simulation. In this common general

case, atoms fluctuations may lead to sudden changes of the number of atoms selected to

be treated at the QM level. To mitigate this problem, the proximity analysis must be

performed on time-averaged positions of the atoms rather than on their instantaneous

positions:

x̄(t) =
(

1− e−
∆t
τ

) ∞∑
n=0

e−
n∆t
τ x(t− n∆t) (2.71)

where ∆t is the time step of the simulation and x̄ the averaged position which filter

out the real positions x with a timescale shorter than τ .
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Figure 2.12: The hysteretic QM selection algorithm is schematically shown for four
cases, with QM and MM atoms coloured respectively in red and green. a) MM atom
entering external ring stays MM; b) MM atom entering internal ring becomes QM; QM
atom exiting external ring becomes MM; QM atom exiting internal ring and entering
external ring stays QM.

This fluctuation problem can be attacked also by choosing a QM selection algorithm

based on bond-hopping, where the boundary is not longer determined by a simple

Euclidean distance but rather by a covalently bonded unit. Moreover, the selection

and deselection process of an atom as QM active can be strengthened by adding a

more stringent condition at the boundary. This is the principle of the hysteretic QM

selection algorithm, implemented by Kermode in Ref. [42] and schematically shown in

Fig. 2.12.

The QM buffer surrounding the QM active region (coloured in red) is divided in

two layers, with annular radius r− and r+−r− for the internal (dark blue) and external

(light blue) layers respectively. The “hysteresis” in the QM selection process consists

in requiring more restrictive conditions according to the previous history of the atoms.

For example, a QM atom to be deselected must be further than r+ from the active

region, whilst an MM atom is required to be within a distance of r− to be selected to

QM treatment. Therefore, changes in the QM set occur only for permanent topological

changes in the atomic configuration.

Amongst all methods to treat the QM/MM boundary within a force mixing scheme,

LOTF adopts the finite buffer method firstly introduced by Bernstein [45] and success-

fully applied to silicon fracture [46]. In this method, the QM forces calculated on

the buffer atoms are not linearly interpolated with MM forces (on the same fashion
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of smooth force mixing described in Fig. 2.11). On the contrary, all QM forces are

calculated by using a Green’s-function-based total-energy method [45], which does not

require the artificial termination of dangling bonds. Moreover, the QM buffer forces

are not included in the dynamics, but substituted with MM forces instead.

Based upon the technicalities we have reviewed in this section, LOTF introduces

a new idea of dealing with the boundary problem. This idea is based on “learning”

first, then “adjusting” on the fly, updating in time the new environment explored by a

moving crack front.

2.5.3 Learning from the atoms: the LOTF adjustable model

Following the idea of a finite buffer scheme outlined in Bernstein’s method, LOTF

scheme approaches multi-scale modelling in three steps:

1. Step 1: Computing. Calculation of forces on each atom within a finite buffer

scheme (see Fig. 2.13).

2. Step 2: Fitting. Feed a universal Hamiltonian with the correct forces (calculated

in step 1) and optimise its parameters.

3. Step 3: Adjusting on the fly. Carry out molecular dynamics simulation with

the LOTF forces produced by the universal Hamiltonian by using a predictor-

corrector scheme.

Step 1: Computing

Firstly, the region of atoms around the active site is augmented by a double-layered

buffer (allowing a hysteric QM selection in time described in Fig. 2.12). This QM

cluster is then terminated with hydrogen atoms to passivate missing covalent bonds

at the QM/MM boundary (light blue/white). In a first stage, using this finite buffer

scheme, QM forces are calculated in the QM cluster and MM forces in the MM region.

In a second stage, MM forces are separately calculated on the whole system, regardless

of any QM region. Finally, the two stages above are combined by keeping only the QM

forces (from the first stage) on the active region and MM forces (from the second stage)

anywhere else.

Summarising, at step 1, the LOTF finite buffer scheme yields a complete set of

forces (QM ∪MM) on all atoms of the system with a desirable accuracy. These forces

are ready to be used in the following step.

53



2.5. The “Learn on The Fly” technique

Figure 2.13: Calculation of forces within the LOTF finite buffer scheme. On the left:
QM forces are calculated on the QM cluster, composed by the active QM region (red)
and a double-layered (to allow hysteric selection) QM buffer (dark and light blue), whilst
MM forces are computed on the MM region (white field). On the centre: calculation
of MM forces on the whole system. On the right: the final set of accurate forces (QM
on the red active region, MM anywhere else in the white field).

Step 2: Fitting

Instead of mixing in space two different Hamiltonians produced from the set of forces

in step 1, the same set is used to feed, in time, a universal classical Hamiltonian

describing the whole system. The universal Hamiltonian should be simple and flexible,

in the sense that its parameters can vary in space (each atom may be characterised by

different parameters) and in time (the parameters can be updated during the simulation

accordingly).

The universal LOTF Hamiltonian consists of an “adjustable model” in addition to

the classical model. The simplest version of the adjustable potential assumes the form

of a set of linear springs:

VADJ(α,R) =
∑
bonds

αijrij (2.72)

where the system is described by a set of two body springs linear in the interatomic

distance rij .

The motivation to use this functional form is twofold. Firstly, bond lengths rep-

resent coordinates that move more slowly than the atomic coordinates themselves.

Secondly, the linearity of the potential gives rise to a linear relation in the forces as
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well:

FADJ = Cα, (2.73)

where C is a matrix of size Nparam × 3Nfit that only depends on the atomic positions.

The singular value decomposition (SVD) of the matrix C can be used to find the

least squares solution for the parameters α:

min|Ftarget − Cα|2, (2.74)

where Ftarget is the target force differences at which FADJ should tend.

Summarising, the main task accomplished by the adjustable model is tuning the

spring constants α to reproduce correct forces on all the atoms and therefore minimising

the functional:

F =
∑

allatoms

|(FQM − FCL)− FADJ |2, (2.75)

where FQM is the quantum mechanical force on an atom, FCL the classical force and

FADJ the force from the simple adjustable model. When a good fit can be obtained,

the result of the optimisation is that:

FQM−MM ' FMM + FADJ , (2.76)

where FQM−MM is the set of accurate forces calculated at Step 1.

The universal LOTF Hamiltonian is then expressed by:

VLOTF (R, α) = VMM (R) + VADJ(R, α) (2.77)

and its gradient produces the LOTF forces

FLOTF (R, α) = −∇VLOTF = FMM + FADJ (2.78)

with which molecular dynamics is carried out.

Forces in Eq. 2.78 derive from a single total energy function in Eq. 2.77 (derived

in turn from the teaching process of the original forces calculated in step 1). This fact

removes the mechanical inconsistencies at the QM/MM boundary that rise from using

typical force-mixing methods.
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Figure 2.14: The predictor-corrector scheme. The thick blue line indicate the MD
trajectory. Starting from the initial set (R0, α0), the thin red line explores the phase
space for N extrapolation steps, where MD is carried out keeping α0 constant until the
virtual point in phase space (R

′
1, α0). At this point, S1 (Step 1) and S2 (Step 2) are

performed in sequence to give the new set of parameters (R1, α1). The thick blue line
represents the true MD trajectory, carried out by interpolating between α0 and α1.

Step 3: Adjusting on the fly

Molecular dynamics can be carried out using forces in Eq. 2.78. If the deviation of

QM and MM potential energy surfaces is not too large, teaching (step 2) and learning

(step 1) processes do not have to be carried out at every time step. The same set of

LOTF parameters can be used for few MD steps, and only then it can be updated by

performing in sequence learning and teaching processes. This procedure is schematically

presented in Fig. 2.14.

At the beginning, once the QM region is defined, step 1 and step 2 are performed in

sequence to give rise to the initial set of LOTF parameters (R0, α0). Then, a primary

LOTF MD is carried out for N extrapolation steps keeping the adjustable potential

parameters α0 constant. This trajectory ends in a point of the phase space indicated

by (R
′
1, α0), where R

′
1 points out a set of virtual atomic positions. At this point, new

forces are calculated (Step 1) and a new set of LOTF parameters is obtained (Step 2),

identifying a new point in phase space (R1, α1). Now, the true LOTF MD is carried

out for the same number of steps N , interpolating the adjustable potential between α0

and α1.

The LOTF predictor-corrector scheme is iteratively repeated for the whole simu-

lation. Following this procedure, the active region is constantly mapped in space and
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Figure 2.15: LOTF force errors. Force errors during a single LOTF cycle, averaged
over many trajectories. Reproduced from Ref. [38].
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Figure 2.16: Temperature evolution during a LOTF hybrid simulation of silicon frac-
ture. A week Langevin thermostat is used to adsorb the energy drift caused by the
time-independent Hamiltonian. Reproduced from Ref. [42].

time at the QM accuracy, yet reducing by N times the computational cost. Prior ap-

plying the LOTF scheme, accurate force error tests must be done in order to define the

maximum number of extrapolation-interpolation steps, (N):

Ferror = FQM−MM − FLOTF , (2.79)

where the computation of the two set of forces, FQM−MM and FLOTF , is carried out

at every time step.

The choice of the parameter N relies on how closely the LOTF potential, and by

extension the adjustable model, is able to capture the physics of the whole system

by fixing its parameters. If the processes happening at the active site are completely

beyond the capacity of the MM model, then the LOTF forces with fixed parameters

may deviate substantially from the set FQM−MM calculated at step 1. Therefore, in

this case, the adjustable parameters α need to be calculated at every time step of the

MD simulation. In Fig. 2.15 are reported LOTF force errors for a test system of 64

atoms silicon bulk at a temperature of 2000 K with a QM region of 5 atoms at the

centre of the bulk.

Another important preliminary test of QM/MM force-mixing hybrid schemes deals

with the conservation of the energy. Since LOTF scheme is force based, with a defined

Hamiltonian which varies in space and time, the energy is not conserved. Thermostats

can be used to correct the energy drift by adding extra heat to the system. Within the

LOTF scheme, Langevin thermostat [24] is used for this purpose.

Once the system is thermostatted, a sensitive quantity capable to detect possible

anomalies of the model is the temperature deviation computed in the QM region from
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Figure 2.17: Snapshots from MD simulations of fracture in silicon on the (111) cleavage
plane, with (a) the SW classical interatomic potential and (b) the LOTF scheme,
with dark blue atoms treated at the QM level (DFT) and grey atoms with the same
classical potential as in panel (a). The classical simulation is unphysically ductile,
while the LOTF simulation recovers the brittle material response, as well as correctly
capturing chemical details such as the Pandey 2×1 reconstruction on the (111) surface.
Reproduced from Ref. [47].

the target thermostat temperature. In Fig. 2.16 we report the temperature evolution

during a LOTF hybrid simulation of silicon fracture. We see that by using a weak

Langevin thermostat the temperature is constant during the whole simulation. The

NVT ensemble obtained approaches the micro-canonical ensemble for very large sys-

tems. Other accurate tests on the LOTF temperature deviation and comparison with

other force-mixing schemes can be found in Ref. [38].

To date, the LOTF scheme has been successfully applied to several aspects of brittle

fracture in silicon, ranging from stress corrosion mechanisms induced by hydrogen [48]

and oxygen [47] to scattering of crack initiated by impurity atoms [49], by a screw

dislocation [50], by surface reconstruction processes [51, 52]. All the results presented

in these works have been confirmed through experimental observations of fracture at

the atomic scale. A description of experimental techniques used to observe fracture

features at the nanoscale will be presented in the next section.
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2.6 Fracture experiments

The challenges offered by the fracture problem to the scientific community are nu-

merous. One of them, however, has obtained a particular light in recent years. The

challenge of merging in a virtuous synergy the “hardware” of the experiment with the

“software” of the simulation. This metaphor has become an unavoidable practice in

most of the scientific studies, especially when the discrete nature of the matter can not

be neglected.

Understanding fracture at the atomic scale, and therefore aiming to predict fracture

mechanisms through computer simulations, requires a clear picture of real fracture

experiments. A typical fracture experiment focuses on measuring observables like crack

speed, energy release rate and stress field. At the nanoscale level, qualitative features

of the newly opened crack surfaces can be observed.

The aim of this section is to follow the main steps of a typical fracture experiment,

from the creation of the seed crack, to loading techniques and crack speed measure-

ments. Experimental methods used to map fracture surfaces at the nanoscale level will

be described. Finally, all the ingredients learnt in Chapter 2 will be summarised by

typical procedures followed in fracture simulations (Sec. 2.6.2), completing the perfect

triangle Theory-Experiment-Simulation.

2.6.1 Observing a real crack

Crack speed as a function of the energy release rate is one of the crucial characteristics

in fracture dynamics. A broad range of experimental techniques are therefore based

on devices able to control with high accuracy the load applied to the system and the

crack length as a function of time. A crucial point of these techniques is also the

ability of reproducing experiments directly comparable with theoretical models. A

good example of the former was attempted by Hauch and Marder in 1999, where a

tensile fracture experiment in silicon was directly compared with a MD simulation. [16]

In this outstanding work, the authors illustrate details of the experimental technique

used in relation to the thin strip geometry (see Sec. 2.3.1), typical configuration adopted

in computational models. In this section, the main steps of this experimental technique

will be summarised.

Before any fracture experiment, a crack seed must be inserted in the material body.

A thermal shock technique is usually used to achieve this task: the sample is initially

notched with a diamond disk, then heated into boiling water and further cooled down

into ice. During this process, oxidation, hydrogenation or hydroxylation are likely to
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Figure 2.18: Rigid jaw loading configuration. a) Silicon sample embedded in a steel
frame where tensile forces are uniformly applied; extension elements strain accordingly,
providing a high-precision control of the constant load applied to the sample. b) A
thin film of aluminium is deposited on the silicon sample and electrodes placed on
the opposite sides of the crack are connected to a Wheatstone bridge; this electric
configuration controls the crack length as a function of the resistance of the thin film
by following a potential drop method. Reproduced from Ref. [16].
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occur inside the notch. The thermal stresses created by this temperature difference

locally open up the crack surfaces: the crack advances to the desired length and its

tip becomes sharper. The sharpness of the crack tip guarantees a significant stress

concentration, and therefore a sensitive control of crack initiation.

The sample with the crack seed is then glued directly to a high-precision loading

configuration. In Fig. 2.18 we report a rigid jaw loading configuration used in Ref. [16]

to perform constant fracture energy experiments. This loading configuration consists

of a steel frame where the fracture sample is placed within its inside hole. The steel

jaws are loaded with constant forces that uniformly distribute across the steel frame,

causing a small displacement of the extension elements. This enforces in turn a small

displacement of the silicon sample glued to the inside edges of the hole.

To track in time the crack advancement, several techniques have been generally

used, ranging from high-speed photography to acoustic modulation of the crack tip and

potential drop techniques (see Ref. [53] for a review of the subject). The potential drop

technique is a popular and efficient method which measures the crack length through

changes in the resistance determined by the crack propagation across the conductive

specimen. If the specimen is not conductive, a thin film of a conductive element is

deposited on the surfaces of the sample across the crack path. [54] When the crack

advances, it ruptures also the thin film conductor deposited on it: the variation of its

resistance is measured by the potential drop at the electrodes placed on the opposite

sides of the fracture line (see Fig. 2.18 b).

Direct observations of surfaces opened by a running crack are generally chosen

according to the space scale of interest. Optical microscopes can be used for a prelimi-

nary investigation of fracture features, whilst a detailed atomistic investigation can be

achieved via Scanning Electron Microscope (SEM) or Atomic Force Microscopy (AFM)

devices.

SEM devices focus an electron beam on the fractured surface in high vacuum.

Electrons of the beam interact with the atoms at the surface, signals of the interaction

are detected and then combined in time with the position of the beam, yielding a 2D

high resolution image up to the nanometer scale.

AFM devices consist of a cantilever with a probe, namely a sharp tip (generally

silicon or silicon carbide) with radius of curvature of the order of the nanometer. The

probe scans the surface, and when brought into the proximity of atoms interacts with

them, causing the deflection of the cantilever. The deflection can be measured by

piezo-electric devices and is converted into a 3D mapping of the surface, significantly

improving the quality respect to SEM devices. Moreover, AFM technique can be used

62



2.6. Fracture experiments

(a) (b)

Figure 2.19: Silicon micrographs. (a) Optical micrograph of the (111) crack system
showing the faintly visible Wallner lines; (b) AFM image of a single ridge. Reproduced
from Ref. [51].

in a variety of ambient conditions, and does not need ultra-vacuum as in the case of

SEM.

An example of direct observations of fracture surfaces in silicon is reported in

Fig. 2.19, highlighting the difference between optical and AFM micrographs.

2.6.2 Simulating the experiment

The biggest challenge of computational studies is meeting the thin boundary between

the experimental reality and the theoretical model. Nowadays, the increasing power

of supercomputers is driving this challenge closer to this target. Although space and

time scales of a real fracture experiment are still not achievable by the most expensive

computer simulations, there is still room to overcome this natural limit by selecting

appropriate boundary conditions of the fracture problem.

The thin strip geometry introduced in Sec. 2.3.1 represents one of this ideal cases:

based on this geometry is also the displacement loading scheme shown in Fig. 2.20 and

used in this work. This configuration aims to mimic a typical tensile fracture experi-

ments (see Fig. 2.18). Firstly, the crack seed is identified in a thin strip by cutting a

series of atomic bonds along a desired crystal plane. Then, an initial loading, correspon-

dent to the desired initial value of energy release rate Gi, is applied by displacing the

the fixed top and bottom rows of atoms, allowing the system to relax. Periodic bound-

ary conditions are applied to the the crack front direction, with vacuum surrounding

the in-plane edges to allow the loading of the system in the tensile geometry.
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Figure 2.20: Displacement loading scheme. An initial load is applied to an unstrained
slab. The atoms in region I are vertically shifted by the displacement δ. In region III
the strain is constant and equal to the far field value of δ/h. Across region II the strain
increases linearly. Reproduced from Ref. [42].

The crack created in this fashion automatically identifies three regions within the

material slab:

1. region I, the crack seed. The atoms along the selected cut bonds result vertically

shifted by the displacement δ; the resulting strain in this region is zero.

2. region II, the sharp crack tip. The strain increases smoothly from the strainless

situation of region I to the finite value strain of region III.

3. region III, the strained region. The atoms are strained according to the specific

loading applied.

Before starting the MD simulation, the initial seed crack needs to be relaxed by

performing a geometry optimisation. Classical geometry optimisation generally uses

the conjugate gradient algorithm, providing a good approximation of the most accu-

rate QM/MM relaxed geometry. The LOTF hybrid scheme adopts an optimisation

algorithm called FIRE (Fast Inertial Relaxation Engine) [55] based on damped MD,

by adding a fictitious frictional force to drive the system to the minimum energy. Any-

time the loading is smoothly increased, the above structural relaxation is performed

accordingly.

Finally, the MD simulation can be performed at the appropriate time step and

desired constant temperature by switching on the Langevin thermostat (see Sec. 2.4.1).
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The advancement of the crack tip is detected by changes of atom coordination within

the process zone, which usually includes few hundred of atoms. Each change of atom

coordination corresponds then to a bond breaking event, which in turn implies an

advancement of the crack front proportional to the lattice constant of the specific

material.

An alternative way to check the crack tip advancement is fitting the time-averaged

atomistic stress field to the Irwin near-field solution for a sharp crack (Eq. 2.31 in

Sec. 2.2.2.3). The atomistic stress field is calculated for each atom from its deformation

relative to the perfect crystal (see details of the method in Ref. [43]). Instead of defining

a local stress (for example by means of the virial theorem), the local strain on each

atom is considered by comparing the atom’s position on the strained crack system to

that it would have in the unstrained bulk crystal. By knowing the strain ε̂ and the

elastic constant matrix Ĉ of the material under investigation, the atomistic stress σ̂

can be then computed by using the general equation ?? of linear elasticity theory (see

Sec. 2.2.1). An exponential moving average of the obtained stress field is performed in

order to mitigate fluctuations due to the random thermal motion of atoms. Finally, to

detect the position of the crack during the MD simulation, the atomistic stress field

is then fitted to the Irwin near-field solution where the crack tip is a mathematically

exact point. The fitting is performed in an annular region extending from 5 Å to 100 Å

from the geometrical tip, allowing the position of the centre of the stress field to vary

to minimise the difference between atomistic and continuum stress fields.

2.7 Summary

The relevance of the fracture problem has been highlighted in all its aspects, ranging

from the basic elements of fracture mechanics (Sec. 2.2) to the most technological ex-

perimental and computational techniques nowadays available (Sec. 2.6). In between,

theoretical models based on MD simulations have been introduced (Sec. 2.4), and a

multi-scale approach has been finally proposed (Sec. 2.5) as an effective tool, able to

fully embody relevant atomistic features of fracture mechanisms. In the next chap-

ters, results using these computational tools will be presented, converging, whenever

possible, to the evidence of experimental observations.
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Chapter 3

Stress corrosion mechanism in

silicon by oxygen dissociation

3.1 Introduction

The presence of a topological defect within a material body enhances the stress in

its neighbourhood. In Chapter 2 I highlighted the tools necessary to study this phe-

nomenon, focusing on the formation and the dynamic of a crack driven by the applied

load. However, most of these defects may appear at the surface of the material: this

implies the unavoidable interaction with chemical agents present in the environment.

An important aspect of the fracture problem is therefore understanding the effects

triggered by chemical reactions occurring in proximity of a crack.

All fracture mechanisms occurring below the critical energy release rate Gc are

considered within the realm of static fatigue processes. Stress-corrosion mechanisms

play a fundamental role in static fatigue, triggering the genesis of a Griffith critical

crack. Small flaws within the material body are stress concentrators, which in turn

accelerate the environmental chemical attack.

The theory concerning stress corrosion mechanisms in brittle materials is presented

in Sec. 3.2, revising the principal results achieved on the subject. Aiming to interpret

recent experiments (Sec. 3.4), I turn to QM/MM simulations (Sec. 3.3) to study the

effect of stress corrosion of silicon via the dissociation of oxygen molecules at the crack

tip. Finally, in Sec. 3.5 and 3.6, I propose an interpretation of our computational

predictions on the light of experimental observations.
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3.2. Theoretical background on stress corrosion

(a) (b) (c)

Figure 3.1: Crack velocity propagation in the stress corrosion regime. (a) General
diagram velocity versus loading [56]; (b) Effect of humidity on the crack propagation
in soda-lime glass [58]; (c) Effect of temperature in soda-lime glass [59].

3.2 Theoretical background on stress corrosion

When a brittle material is subjected to applied loading for a sufficiently long time, it

breaks for a stress lower than the critical stress measured in typical short-time tests.

This material weakening caused by long-term stress exposure is called static fatigue.

Static fatigue can be regarded as the combination of a primary phase of stress-enhanced

corrosion of subcritical flaws with a secondary phase where a stationary crack growth

is driven by stress corrosion mechanisms at the crack tip. [56]

The first work dedicated to static fatigue problem in glass was published by Orowan

in 1944 [57]. By measuring the surface energy of mica in vacuum and air, Orowan found

a ratio of σvacuumc /σairc = 3.5 between the respective tensile strengths. Since then, it

was clear that static fatigue processes were regulated by the finite rate of diffusion of

environmental agents into a pre-existent surface crack.

Twenty years later, Wiederhorn produced a clearer picture of stress corrosion mech-

anisms in glass, by looking particularly at the effect of water and temperature. In

Fig. 3.1 is reported velocity versus loading characteristics in the stress corrosion regime.

The stress corrosion regime is represented by region I (Fig. 3.1a on the left), where the

crack velocity is a strongly increasing function of the energy release rate G or the stress

intensity factor K. In this regime, the crack velocity increases linearly for increasing

humidity (Fig. 3.1b) [58], and for increasing temperature (Fig. 3.1c) [59].

The dependencies of the crack velocity in the stress-corrosion regime are described
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3.2. Theoretical background on stress corrosion

Figure 3.2: Model of reaction between water and a strained Si-O-Si bond at the crack
tip. From the left to the right, reaction steps involve: a) adsorption of water to Si-O
bond; b) concerted reaction involving simultaneous proton and electron transfer; c)
formation of surface hydroxyls. Reproduced from Ref. [60].

by the Wiederhorn equation:

vI = v0e
αK = A

(
pH2O

p0

)m
e

∆Ea−bK
RT (3.1)

where p0 is the total atmospheric pressure, pH2O is the partial pressure of the vapour

phase in the atmosphere and R is the gas constant; A, m, ∆Ea and b are adjustable

parameters that take into account the dependence of the glass composition; K is the

stress intensity factor KI in the tensile direction.

In 1982 Michalske and Friman extended stress corrosion experiments to several non

aqueous environments, proposing a qualitative chemical model for the interaction of

the environment with strained bonds at the crack tip. [60] The model consists in a

three-steps process reported in Fig. 3.2. Firstly, a water dimer H20 attaches the Si-

O-Si bonds attracted by the high reactivity of the hydrogen with the oxygen at the

bridge (Obr) together with the oxygen atom of the water with a silicon atom. Then, the

concerted reaction between these two couples (proton transfer to the Obr from H and

electron transfer from Ow to Si) yields two new bonds and breaks the original bridging

bonds Si-O. Finally, the rupture of the hydrogen bond between Ow and the transferred

hydrogen determines the new fracture surfaces terminated by the Si-O-H group.

The first implication transpiring from this model is that chemical environments

similar to water, namely possessing proton donor site at one end of the molecule and

lone pair orbitals at the other, are prone to enhance stress corrosion in silica glass. Ex-
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3.2. Theoretical background on stress corrosion

periments using gaseous ammonia NH3 and other structures similar to water confirmed

the above thesis.

The model of stress corrosion in glass via water can be obviously extended to other

materials and other environmental agents, provided that a certain chemical activity

exists between the atomic sites at the stressed bond and the chemical agent. On

the one hand, the concerted action of stress and chemistry has been found irrelevant in

covalent materials like silicon which do not contain polar bonds. According to Cook [61],

silicon specimens loaded in reactive environments like air or water do not exhibit crack

extension via stress corrosion.

On the other hand, subcritical crack growth has been detected in silicon as a con-

sequence of static fatigue after cyclic loading. [62] In 2004, the environmental effects of

H2O molecules on Si (110) crack surfaces were investigated by a QM/MM study [37],

showing that the water molecule dissociates into H and OH to adhere to the crack

surfaces, sometimes oxidising the crack surfaces, and in one case determining a bond

breaking of a Si-Si bond. However, adding further water molecules, there was no evi-

dence of crack advancement via a stress-corrosion mechanism induced by water supply

at the crack tip.

Silicon can also be cleaved by targeted stress corrosion reactions with implanted

hydrogen, as shown in Ref. [48]. In this last work, the effect of hydrogen implanted

platelets in silicon has been modelled using a QM/MM approach with LOTF technique.

This model showed that the smooth cleavage surfaces observed in the experiments

are yielded via a stress corrosion mechanism driven by the formation and following

dissociation of H2 molecule at the stressed crack tip, determining the irreversible bond

breaking process.

Experimental evidence of stress corrosion mechanisms can be proved by detect-

ing crack advancement at subcritical values of the applied load. For this purpose,

a clear definition of the fracture energy is necessary. Over the past three decades,

the debate on the exact values of the fracture energy Γ0 has not achieved yet a sat-

isfactory convergence towards a unique value. Similar to what has previously been

found for Si grain boundaries [63], the scatter of measurements of this observable is

still very large, with 3.0 < Γ110
0 < 5.4 J/m2 for the (110) plane [64, 65, 66, 67, 68]

and 2.5 < Γ111
0 < 5.0 J/m2 for the (111) plane. Experimental measurements of the

relaxed surface energy γ also show a large variation, with 2.8 < γ110
expt < 3.8 J/m2 and

2.3 < γ111
expt < 5.0 J/m2. [69, 70, 71]

From the theoretical level, calculations of relaxed surface energies using density

functional theory (DFT) are in reasonable agreement with the direct measurements,
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3.3. Results of QM/MM simulations

yielding 3.40 < 2γ110
DFT < 4.08 J/m2 and 2.72 < 2γ111

DFT < 3.97 J/m2. [72, 73, 74] The

spread of the above DFT calculations depends on the surface reconstruction assumed

and the approximation used for the exchange-correlation functional.

In summary, if stress corrosion mechanisms in glass are profoundly documented in

literature, only few works have shown a significant role of stress corrosion in silicon.

The lack of experimental evidence of environmental effects on silicon have raised a

general agreement about the little susceptibility of strongly covalent materials to stress

corrosion. However, stress corrosion can never be excluded a priori, for the only reason

that the two main ingredients triggering this phenomenon are always present in fracture

studies: a highly stressed bond a the crack tip and the surrounding environment.

3.3 Results of QM/MM simulations

Aiming to explain recent measurement of fracture energy reported in a personal com-

munication (see Sec. 3.4), I turned to hybrid simulations to model the interaction of air

environment with the silicon crack tip. Air is mainly composed by nitrogen molecules

N2 (∼78%) and oxygen molecules O2 (∼21%) plus a small amount of other gases (∼1%).

Oxygen is a highly reactive element: its electronic configuration [He]2s22p4 yields a high

electronegativity, namely a property which strongly favours the acceptance of electrons

from donor elements.

What really happens at the crack tip when an oxygen molecule arrives in its proxim-

ity? How the oxygen molecule does react with the highly stressed silicon bond? There

is nothing better than a computer simulation to visualise how atoms behave in such a

model situation. The simulation should be able to describe at the quantum level the

likely chemical reaction between the oxygen molecule and silicon atoms at the crack

tip, leaving to classical MD potentials the responsibility to model the long range stress

field.

In principle, the problem should be modelled considering several aspects of the

environmental attack, starting from the mass fluid flow at the crack mouth, to activated

diffusion and adsorptive reaction of chemical agent at the crack tip (see Chapter 5 of

Ref. [3] for a detailed description of stress corrosion mechanisms in brittle materials).

For the sake of simplicity, I focused only on the last part of the problem, modelling

the case of an oxygen molecule that comes to be in front of the crack tip. Using the

multi-scale modelling tools described in Sec. 2.5, I described the crack tip chemistry by

selecting around 200 atoms to be treated at the quantum mechanical level.
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3.3. Results of QM/MM simulations

100 Å[11̄0]

[1̄1̄0]

[001̄]

2 Å[11̄0]

[1̄1̄0]

[001̄]

Si(110)[11̄0] – sharp tip

X

Y

2 Å[11̄0]

[1̄1̄0]

[001̄]

Si(110)[11̄0] – blunt tip

X’

Y’

Figure 3.3: Model system of stress corrosion cracking in Si (110)[11̄0] cleavage plane.
Atoms are coloured by principal stress, with red corresponding to high tensile stress
and dark blue to zero. See text for a complete explanation. [76]

3.3.1 Silicon (110)

The first crack system taken into consideration was the Si (110) cleavage plane in the

[11̄0] propagation direction. This cleavage plane offers a greater resistance to crack ad-

vancement respect to the Si (111) (see literature review reported in Sec. 3.2). Moreover,

propagation along the [11̄0] direction results in nearly perfect flat surfaces. [72]

The simulation methodology is composed by several steps. Firstly, the crack system

is prepared in the thin strip geometry described in Section 2.3.1, periodic in the crack

front direction and with vacuum surrounding the in-plane edges. A subcritical tensile

load equivalent to an energy release rate of G = 2.7 J/m2 was applied, with the top

and bottom edges of the model specimen rigidly clamped. [75] The model system has

dimensions 1200 × 400 × 5.43 Å3 and contains 129,794 atoms (Fig. 3.3). This large

system is needed to adequately capture the effects of long-range elastic relaxation. [51].

I performed hybrid QM/MM simulations using the Learn on the Fly (LOTF) scheme

for a crack, first for the (110)[11̄0] cleavage system. To describe crack tip chemistry
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3.3. Results of QM/MM simulations

correctly, around 200 atoms near the crack tip were selected for quantum mechanical

treatment at the DFT level, using the generalised gradient approximation to the ex-

change correlation potential [77] as implemented in the VASP [78] and CASTEP [79]

codes.

A hybrid QM/MM relaxation of the full crack system was first performed using

the FIRE algorithm [55], leading to a novel tip structure with a slightly blunted tip,

formed from the sharp tip by two bond rotations (Fig. 3.3 on the bottom). The black

rectangle shows the region shown in subsequent panels. Crack tip structures obtained

by QM/MM geometry optimisation with sharp crack tip (on the left) and lower energy

blunt crack tip (on the right), related to the sharp tip by rotation of bonds X/X and

Y/Y . Dark blue atoms are treated at the QM level.

As with the previously reported 5−7 crack tip reconstruction on the (111) cleavage

plane [51], I find that the local chemical cost of the bond rotations is compensated

by a reduction in elastic energy. Integrating forces along a pathway linking the two

configurations confirms that the blunted tip system is lower in energy by 0.12 eV

per unit length along the crack front, suggesting it is the preferred equilibrium crack

tip structure. Therefore this configuration has been selected as the starting point for

dynamical simulations.

Using LOTF molecular dynamics simulations at a temperature of 300 K, I first

confirmed that at G = 2.7 J/m2 the crack neither advances nor closes up, remaining

pinned by the lattice trapping barrier [17]. I then placed an oxygen molecule 4 Å

behind the first unbroken Si-Si bond at the crack tip (see Fig. 3.4), and continued

the molecular dynamics simulation. The chemisorption energy of an O2 molecule on

a silicon surface is known to be of the order of 5 eV [80] with an activation barrier

of about 0.2 − 0.3 eV per molecule on an unstressed surface [81]. In my simulations,

I observe immediate spontaneous dissociation of the oxygen molecule (see Fig. 3.4),

indicating that dissociation becomes barrierless under these conditions.

The oxygen atoms are adsorbed to form Si-O-Si bridges behind the crack tip, and the

crack advances via cleavage of the Si-Si bond labeled (1) in Fig. 3.4. The simulation was

continued by adding a second O2 molecule, which undergoes a similar pattern of disso-

ciative chemisorption, Si-O-Si bridge formation and crack advance. Further molecules

added to the MD trajectory confirmed the general stress corrosion phenomenon out-

lined in Fig. 3.4, via a barrierless dissociation of oxygen molecules and preferred attack

to the Si sites of the stressed crack tip.

To check the sensitivity of our results to initial conditions, several molecule-tip

distances were tried. The dissociation barrier as a function of the molecule distance to
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2 Å[11̄0]

[1̄1̄0]

[001̄]

Si(110) + O2, t = 0.00 ps

(1)

(2)

2 Å[11̄0]

[1̄1̄0]

[001̄]

Si(110) + O2, t = 0.10 ps

2 Å[11̄0]

[1̄1̄0]

[001̄]

Si(110) + O2, t = 1.00 ps

2 Å[11̄0]

[1̄1̄0]

[001̄]

Si(110) + O2, t = 1.20 ps

(4)

(3)

2 Å[11̄0]

[1̄1̄0]

[001̄]

Si(110) + 2 O2, t = 1.30 ps

2 Å[11̄0]

[1̄1̄0]

[001̄]

Si(110) + 2 O2, t = 1.70 ps

Figure 3.4: Snapshot from QM/MM dynamics showing dissociative chemisorption of
two O2 molecules, and resulting crack advance (see text). Bonds shown are based on
time-averaged atomic positions. [76]
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3.3. Results of QM/MM simulations

(a) (b)

Figure 3.5: Sensitivity of the O2 dissociation process. (a) 218 Si atoms cluster with
embedded crack on the (110) cleavage plane; (b) dissociation energy (red line, measured
in eV on the Y axis) and relaxed O-O distance (blue line, measured in Å on the Y axis)
as a function of the molecule distance to the crack tip (measured in Å on the X axis).

the crack tip has been calculated in a cluster containing 218 Si atoms, 1 O2 molecule

and 74 terminating H atoms (see Fig. 3.5). The oxygen molecule was placed into the

crack tip at a number of distances d from the tip comprised in the [2 Å, 10 Å] interval

and computed the DFT energies of the cluster.

For simplicity only the single degree of freedom corresponding to the O-O bond

length was allowed to relax in these tests. These results, illustrated in Fig 3.5b, predict

a total energy E(d) ≤ E(10 Å) for the entire interval considered for this system,

consistent with the immediate dissociation seen in our dynamics. The small 0.3 eV

barrier at a molecule-crack tip distance of 4 Å is probably attributable to -or at the very

least enhanced by- the enforced constraints not allowing Si atom motions or molecular

rotations, since it did not prevent direct dissociation in the dynamical simulations

started from d = 5 Å.

3.3.2 Silicon (111)

The second crack system considered was the (111) cleavage plane, in the [112̄] direction.

This cleavage plane offers the least resistance to crack propagation; however, the crack

propagates along the [112̄] direction leaving behind the well known 5-7 Pandey-like

reconstruction [82]. This particular reconstruction leaves silicon sites at the newly

formed surface with higher chemical reactivity respect to the (110) silicon cleavage

plane investigated in Sec. 3.3.1.

For this reason, the crack surface behind the tip was saturated with hydrogen to
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[1̄1̄1̄]
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Si(111)+O2, t = 0.050 ps

2 Å[112̄]
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[1̄10]

Si(111)+O2, t = 0.100 ps

2 Å[112̄]

[1̄1̄1̄]

[1̄10]

Si(111)+O2, t = 0.200 ps

Figure 3.6: Stress corrosion cracking in the Si(111)[112̄] fracture system. As in Fig.
3.4, panels show only the near tip region, treated with QM accuracy. [76] See text for
description.

reduce the number of possible O2 reaction sites. The purpose of the hydrogen saturation

is to prevent O2 molecules added to the simulation from adsorbing on either of the two

fracture surfaces before reaching the crack tip. Moreover, in the experimental system

(see Sec. 3.4), the Si surfaces would actually be fully passivated for both the (111) and

(110) cases, rendering them chemically passive.

The model system is similar to the one chosen for the (110) cleavage plane (see

Fig. 3.3), containing 90,730 atoms with dimensions 1200× 400× 3.84 Å3. After a full

relaxation of the hydrogen-saturated system, a series of LOTF MD simulation at 300

K have been performed by applying a series of subcritical tensile loads in the range

G = 2.7− 2.2 J/m2. Again, the crack does not advances nor closes up, similarly to the

(110) cleavage system analysed above.

At this point of the MD trajectory, an oxygen molecule has been positioned at

1.5 Å of distance from the stressed bond at the crack tip and the first row of hydrogens

saturating the back surfaces. The initial position of the O2 molecule was, in this case,

strongly constrained by the topology of the initial system. Any attempt to place the
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3.3. Results of QM/MM simulations

molecule more distant from the tip yielded a systematic interaction of O2 with the

saturating hydrogen atoms, cancelling any possibilities to detect the chemical attack

at the crack tip.

Figure 3.6 shows a series of four snapshots of a LOTF MD simulation in the Si

(111) cleavage system. At t = 0 (upper left panel), the oxygen molecule (red) is

placed at 1.5 Å of distance from the first unbroken SI-Si bond (labelled 1). The O2

molecule dissociates, and after 50 fs (upper right panel) an oxygen atom forms an OH−

radical, while the other bridges the stressed bond (1), subsequently chemisorbing (at

t = 100 fs in panel down left) and leading to crack advance via cleavage of the Si-Si

bond labeled (1) at the crack tip. After 0.2 ps (down right panel), both oxygen atoms

are incorporated in stable Si-O-Si bridges.

The extreme case of G = 2.2 J/m2 offered several technical difficulties while adding

a second molecule to the system: systematic interactions with hydrogen atoms were

often observed, mainly due to the severe space constraint offered by the initial conditions

discussed above. Loads below the Griffith value for this cleavage plane (Gc < 2.72 J/m2

according to DFT calculation of unreconstructed surface energies) were tested up to

two oxygen molecules, yielding the same reactions shown in Fig. 3.6. In summary, I

again observe immediate dissociative chemisorption of oxygen molecules at the crack tip

followed by Si-Si bond cleavage, leading to crack advance at subcritical energy release

rates as low as G = 2.2 J/m2.

3.3.3 Analysis of bond breaking and stress concentration

The bond breaking mechanism triggered by the oxygen dissociation and adsorption

at the silicon crack tip can be further investigated by tracking the crack tip position.

A typical parameter used for this task is the change in the coordination of atoms

consequent to a single bond breaking event. However, chemical reactions occurring at

the crack tip may involve several changes in the coordination of the atoms in a few tens

of fs, ruling out the possibility to use this simple topological parameter.

Alternatively, the crack advancement can be analysed by considering the long-range

elastic effect of the oxygen reaction taking place at the crack tip. The trajectory of the

crack tip is then obtained by tracking the position of the atomistic stress field fitted to

the Irwin near field solution for a sharp crack (see description in Sec. 2.6.2).

The results of this analysis are reported in Fig. 3.7, relatively to the bond break-

ing mechanism in the Si(111), (b), and Si(110), (c), cleavage planes during the stress

corrosion reaction. The crack advance (green line) is measured by the advancing stress
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(a)

(b)

(c)

Figure 3.7: Analysis of bond breaking and crack tip advance. Red and magenta
lines: O-O distances, increasing during dissociation. Blue and cyan lines: Si-Si bonds
cleaved during crack advance. Green lines: horizontal crack advance, measured by
fitting atom-resolved stress field to the Irwin near-field solution. (a) Near tip region
of Si(111) + O2 system with atoms coloured by the average atomistic stress field; (b)
Analysis for Si(111) + O2 system (vertical dashed lines refer to Fig. 3.6); (c) Analysis
for Si(110) + O2 system (vertical dashed lines refer to Fig. 3.4). [76]
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field towards the crack propagation direction and compared with concurrent rupture of

Si-Si bonds (blue and cyan lines), O-O bonds (red and magenta). Vertical dashed lines

correspond to the labeled snapshots illustrated in Figs. 3.6 and 3.4.

In the simplest case of the single oxygen reaction for the Si(111) cleavage plane

(Fig. 3.7b) , I see that following the dissociation and chemisorption of an O2 molecule

(O-O distance increasing, red line) the crack advances by a ∼3 Å unit step in the [112̄]

crack propagation direction (green line). The Si-Si bond at the crack tip (blue line)

ruptures concurrently with the advance of the stress field. This advance is irreversible

due to the bond termination (corking) effect of the adsorbed oxygen.

The advance of the stress field may occur at the same time of Si-Si bond rupture,

as shown in Fig. 3.7b for the Si(111) cleavage plane, or before, as we see in Fig. 3.7c

for Si(110). The interplay between individual bond breaking events and the long-range

elastic behaviour is more complex in the (110) system (Fig. 3.7 down), as the slight

blunting of the tip allows a number of distinct reaction pathways.

The first O2 molecule illustrated in Fig. 3.4 dissociates immediately, eventually

leading to the formation of two Si-O-Si bridges. By the time these bridges have fully

formed, they are already effectively unloaded, as the centre of the crack tip stress

field (green line in Fig. 3.7c) advances very soon after the dissociation of the molecule,

leading later to the breaking of the Si-Si bond labeled (1) in Fig. 3.4, in what could

be interpreted as a localised toughening response. The adsorption of the second O2

molecule (labeled 4 in Fig. 3.4) leads, however, to perfectly brittle crack advance, with

dissociation and absorption preceding the immediate rupture of Si-Si bond (3).

3.4 Experiment

In an attempt to measure with better precision the cleavage energy in silicon, re-

searchers from University of Haifa1 introduced an innovative method yielding the low-

est value of fracture energy ever seen before. In particular, the experiment was thought

to evaluate the cleavage energy in the (110)[11̄0] and (111)[112̄] cleavage systems of

silicon at room temperature. This communication motivated our computational study

on stress corrosion outlined in the previous section.

Considering the large scatter of past results outlined in Sec. 3.2, the experiment

aimed to rationalise this situation of uncertainty. Researchers performed high-resolution

fracture experiments at room condition to evaluate the cleavage energy of the (111)[112̄]

1Anna Gleizer and Dov Sherman, Department of Materials Science and Engineering, Technion,
Haifa-32000, Israel
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Figure 3.8: Confocal microscopy images showing examples of misalignment steps due
to offset (left), or tilted (right) pre-cracks. [76]

and (110)[11̄0] crack systems of silicon, with round brackets denoting the cleavage plane

and square brackets the crack propagation direction. Notched rectangular (25× 42 mm2)

specimens were used, with atomically sharp pre-cracks generated by heating to∼ 180◦ C,

then quenching in a shallow water reservoir. The specimens were then cleaved under

tension using the coefficient of thermal expansion mismatch method (CTEM), gluing

the silicon specimen to an aluminium loading frame.

The energy release rate at cleavage initiation Γ0 for each specimen was calculated

with the ABAQUS finite element analysis (FEA) code, from the specimen geometry

and measurements of the crack length. This loading method leads to non-zero shear

stresses for imperfectly aligned specimens. The cleavage energy was first evaluated at

room temperature (24◦C) and humidity of 55%; some experiments were carried out at

humidity of 20%.

Systematically higher values of the cleavage energy were obtained when the pre-

crack was either not flat, misaligned, tilted, non-uniform or when the initial notch was

blunt. This is in contrast to many materials properties such as strength, yield point, and

elastic constants, where averaging is the rule. Therefore, the empirical experience in

fracture energy measurements leads to assume that averaging is not correct, as leading

to overestimates of Γ0.

Instead, the best estimate for the cleavage energy of a brittle crystal was considered

to be the minimum of all experimental results carried out under the same conditions.

This was also the result with the closest to perfect correspondence between the water-

quenched pre-crack and the propagating crack.

Another problem taken into consideration during the experiment was the general

tendency of the cracks, in the cleavage system (111)[112̄], to continue propagating on

the original plane when the water quenched pre-crack was not well aligned with respect
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Figure 3.9: The cleavage energy Γ0 versus the misalignment step height for (110)[11̄0]
(blue marks) and (111)[112̄] (red marks) silicon crack systems under room condi-
tions. [76]

to the loading axes. This leads to an additional energy consumption at initiation.

Therefore, cleavage systems (111)[112̄] were only analysed provided a very well aligned

cracks and very smooth fracture surfaces were attained.

The cleavage energy at initiation for a pre-crack misaligned by 100 µm is 3.9 ±
0.2 J/m2 (Fig. 3.9 and becomes even higher for larger misalignment. On the contrary,

for very well aligned pre-cracks the cleavage energy was systematically lower, yielding

Γ0 = 2.2± 0.2 J/m2 (Fig. 3.9, red full circle). The latter value is the lowest value ever

obtained for this crack system, and lies below the range of experimental and calculated

surface energies.

In the (110)[11̄0] crack system, misaligned or tilted cracks again gave rise to in-

creased values of the cleavage energy. However, in this system, a smooth transition

in the cleavage energy as a function of the extent of misalignment was observed. This

transition could be directly measured from the height of the steps visible in confocal op-

tical and atomic force microscope images of the fracture surfaces. Plotting the cleavage

energy as a function of this step height (Fig. 3.9, blue dots), a surprisingly low result for

the minimally misaligned pre-crack of 10 nm was again found. The cleavage energy at

initiation for this crack system is again the lowest ever obtained: Γ0 = 2.7± 0.3 J/m2.

To better understand why these lowest values of cleavage energy at initiation were
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obtained, the same measurements were performed in a reduced oxygen environment.

Hence the experiments were conducted at atmospheric pressure in an inert gas (argon)

environment. The assembly was placed in a vacuum chamber, generating an initial

vacuum of 10−5 tor. In this vacuum conditions, the chamber was filled with 99.994%

argon, and again the pressure was reduced to 10−5 tor. The procedure was repeated

five times.

In argon environment, the cleavage energy at initiation for the (111)[112̄] and

(110)[11̄0] systems increased to Γ0 = 2.9 ± 0.2 and 3.5 ± 0.2 J/m2, respectively, as

shown in Fig. 3.9 (red and blue full squares). These larger values are in excellent

agreement with DFT calculations of 2γ, 2.88 and 3.46 J/m2, respectively [72].

The clear difference between the two set of measurements, air and argon environ-

ment respectively, suggested an important indication. In air environment, the lowest

values ever obtained for the fracture energy in the silicon cleavage systems (111) and

(110) were obtained. On the contrary, performing the same measurements in argon

environment, experimental measures and computational predictions of silicon fracture

energy were confirmed. Here was the need to take into account the possibility of sub-

critical crack initiation induced by chemical agents present in air.

3.5 Discussion and analysis

The experiment summarised in Sec. 3.4 and the computational model of stress cor-

rosion proposed in Sec. 3.3 clear up some long-standing discrepancies both amongst

experimental results and between experiments and DFT calculations for the cracking

of silicon. The experimental protocol looks at the misalignment between a “pre-crack”

and the ensuing crack in order to obtain the lowest yet values of the fracture energy.

These values are much less than those calculated with DFT. By redoing the experi-

ments in an inert argon environment a good agreement with DFT is found, leading the

experimentalists to suspect that stress corrosion cracking is occurring.

Since experiments at two values of the relative humidity yield similar results, I

focused on atmospheric oxygen as the probable culprit, and therefore carried out a

QM/MM DFT simulation (Sec 3.3) in order to confirm the possibility. In a number of

simulations in both the (110) and (111) systems, I see that the dissociation of a single

O2 molecule provides sufficient heat to oxidise at most one Si-Si bond at the crack tip.

That is, at least one oxygen molecule is required for each crack advance step, and in

some cases two or three molecules are needed to oxygenate the newly exposed fracture

surface before further crack advance can take place.

81



3.5. Discussion and analysis

However, a water-filled crack tip could in principle form at any environmental hu-

midity level, contrary to our assumption above, perhaps introducing capillarity effects.

Most importantly, this would shield the tip from the arrival of O2 molecules from the

air reservoir, so that in these conditions the reaction of H2O molecules with the stresses

Si-Si tip bonds would become a likely candidate stress corrosion step.

The existing literature evidence (see Ref. [83, 84]) suggests that at theK ≥ 0.5 MPa
√

m

stress intensity factor conditions of the experiment (Sec. 3.4), stress corrosion cracking

would propagate distinctively faster than the maximum speed allowed by the need of

refilling the water feedstock from the environmental humidity, to make up for the water

consumed by the corrosion reaction and the water which remains trapped in the two

thin films wetting the crack surfaces by the trailing Laplace meniscus. In these con-

ditions, the typically 0.1 µm water droplet filling the crack would quickly be depleted

and could never trail the crack tip for the 50 µm long initiation region observed in the

experiment (Sec. 3.4). Even assuming a water-filled cavity extending back from the

crack tip by as much as 1 µm, and wetting water films as thin as 1 nm, it is easy to

show that for the crack tip aspect-ratio appropriate to the stress concentration of the

experiment (a parabolic profile with crack tip opening displacement 15 nm, 1 µm be-

hind the tip, containing 10−11 Kg of water per crack front metre) the depletion length

could not exceed 5 µm. Thus, any possibly pre-existent water droplet would be swiftly

removed, so that the crack propagation in the initiation region would in all cases be

due to corrosion by the more abundant/reactive gas-phase species present, namely O2

molecules in our case.

The purpose of the hydrogen saturation is to prevent O2 molecules added to the

simulation from adsorbing on either of the two fracture surfaces before reaching the

crack tip. In the experimental system, the Si surfaces would actually be fully passi-

vated for both the (111) and (110) cases, rendering them chemically passive. Previous

experimental and simulation works suggest that a native oxide film forms on silicon

surfaces upon exposure to oxygen. The oxidation process is enhanced in presence of

water and tensile strain. [85] While the exact passivation mechanism may depend on

the precise experimental conditions (the pre-crack notches are produced by a thermal

stress technique upon dipping the samples in cold water) I expect oxidation, hydro-

genation or hydroxylation to be the most likely mechanisms. In fact there will always

be plenty of time for oxidation to occur, since the relatively slow crack advance rate

via stress corrosion is limited by the supply of oxygen molecules to the crack tip, which

happens by diffusion past any previously exposed fracture surfaces.

The full details of the complex native oxide surface do not, however, play a sig-
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nificant role on the dynamics of unbroken Si-Si bonds at the crack tip, which are

independent of any passivation further back. In fact, passivation will not significantly

affect the stress concentration effect ahead of the crack, while the relatively short Si-O

bonds will not cause obstruction to further O2 supply, as confirmed with our (110)

simulations including multiple O2 molecules. I therefore added the simplest available

chemical passivation option to our simulations, and did so only where this was necessary

to allow molecules to reach the crack tip region.

For the (110) system, the open crack tip structure of Fig. 3.3 implies a low chance

of early adsorption of O2 molecules, so that passivation is not necessary. On the other

hand, for the (111) system, the sharper crack tip of Fig. 3.6 results in a narrower

access region for the incoming O2 molecules, so that some surface passivation was

necessary. I consider the (110) and (111) sets of simulations to be equally relevant to

the experimental setup described in Sec. 3.4 as the most balanced way to treat the O2

reaction with the unbroken Si-Si bond at the crack tip.

In summary, I believe that the heat locally released by the exothermic dissocia-

tive chemisorption process is efficiently dissipated into the crystal matrix, and never

observed to cause breaking of Si-Si bonds not directly bonding with O atoms, yield-

ing multiple advance steps. I note that such a physical effect would be favoured by

the periodic boundary conditions I use along the crack front, which correspond to an

infinite row of molecules simultaneously approaching the crack tip. I conclude that

slow fracture can be initiated at subcritical loads, with the crack advancing by stress

corrosion. Since the oxygen dissociation is barrierless, we are in a transport-limited

stress corrosion regime where the speed of the crack is wholly determined by the rate

of supply of oxygen molecules to the crack tip [86].

3.6 Summary

I find that oxygen molecules play the role of a corrosive agent capable of initiating

fracture at subcritical loads on the Si(111) and Si(110) cleavage planes, contrary to

the common wisdom in Si. LOTF atomistic simulations (Sec. 3.3) show that cracks

in a dry environment do not propagate at energy release rates below the Griffith crit-

ical value given by twice the surface energy density, in accordance with experimental

measurements reported by collaborators in Sec. 3.4. The presence of the oxygen-rich

environment leads to sub-critical crack growth, revealed for the first time by the exper-

iments in vanishing misalignment conditions and confirmed by our LOTF simulations,

where the dissociative chemisorption of O2 molecules, followed by cleavage of individual
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stressed Si-Si bonds at the crack tip has been observed.

The additional effect of water on the stress corrosion mechanism was not taken

into consideration by assuming the crack tip gas filled; even assuming a water-filled

cavity extending back from the crack tip via capillary effects, this water droplet filling

the crack would quickly be depleted and could never trail the crack tip for the 50 Å

initiation region observed in the experiment. I note that the speed of the subsequent

crack growth will be limited by the time taken for oxygen to diffuse to the crack tip [86],

so here I have focused only on crack initiation, leaving a full discussion of the influence

of the complex rheology of confined fluids on fracture propagation for a future work.
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Chapter 4

Crossover from activated to

catastrophic fracture in silicon

4.1 Introduction

Silicon has been the primary model for brittle fracture investigations for many decades.

It is an extremely brittle material, cleaving to leave atomically smooth fracture sur-

faces. [3] Its extensive role in technological applications explains why silicon remains

one of the most studied materials to this day. Strikingly, however, many features of

brittle fracture have not yet been fully understood at the atomic scale. For example,

cracks in silicon typically require a fracture energy higher than that expected from

simple energetic considerations in order to propagate. [87] Moreover, discrepancies also

remain between continuum elasticity theory predictions and experiments for the limit-

ing velocity of cracks under a given applied load. [4, 13]

A molecular dynamics investigation of brittle fracture in silicon has been conducted

with a twofold aim: studying the role played by the temperature on the crack dynamics

by testing a new interatomic potential. Such study requires to span a broad range of

crack velocities as a function of the energy release rate, going from the catastrophic

behaviour of a super fast crack to a low speed fracture propagation where activated

processes become important.

In general, classical interatomic potentials do not describe brittle fracture accu-

rately. [46] They tend to dramatically overestimate the lattice trapping barriers, leading

to fracture energies far in excess of those required to create new surfaces, which is then

dissipated via tip blunting and other plastic deformation more typical of the failure

of ductile materials. [26] However, the details of stress concentration near a crack tip
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in silicon are well described by many classical potentials, with the stress field beyond

about 10 Å ahead of a crack tip in good agreement with both higher level quantum

mechanical theory and with linear elastic fracture mechanics (LEFM). [42]

This suggests the use of informationally efficient non uniform precision multi-scale

techniques (see Sec. 2.5), where the process zone near the crack tip is treated at a

higher level of theory than the rest of the system. Such techniques have been applied

successfully to explain, for example, dynamical instabilities in the fracture of silicon [51,

88] as well as crack-defect interactions [49] and the emission of dislocations during the

transition from brittle to ductile fracture. [89]

In this work, I am interested in accessing longer timescales to probe the dynamical

effects of temperature on fracture dynamics. For this purpose a new interatomic po-

tential (described in Sec. 4.2.2), based on quantum mechanical data, has been used to

describe the near tip region, leaving the task of describing the long range elastic field

to a less expensive and well tested potential for silicon. Results reported in Sec. 4.3

represent the first application of this classical hybrid model to fracture in silicon.

4.2 Theoretical background

4.2.1 Crack speed in brittle materials

The goal of this work is to predict the crack speed behaviour in brittle materials as

a function of loading and temperature. Why is the crack speed such an important

feature in fracture dynamics? Knowledge of the crack velocity as a function of the

energy release rate G provides key information about the crack dynamics and the

extent of lattice trapping.

The starting point for most attempts to understand the process of brittle fracture is

the well known Griffith criterion [8], based on an energy balance between the energy cost

of creating new fracture surfaces and the elastic potential energy relieved by opening

a crack (see Sec. 2.2.2.2). The minimal energy required for crack advance is twice the

surface energy density γ, namely the energy necessary to open two new surfaces, leading

to the Griffith critical loading Gc = 2γ. However, the elastic energy of a running crack

is always higher than the theoretical limit expressed by the Griffith criterion, attributed

to the limitations of applying continuum elastic theory when describing systems with

discrete bond breaking processes at the atomic level.

The discreteness of the atomic lattice introduces a periodic barrier to crack ad-

vance, via the concept of lattice trapping introduced by Thomson and Rana [17] using
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analytical models, and subsequently further developed in several computational studies

(see Ref. [90] for a review). This barrier is biased by the applied load, reducing as the

load increases, with fracture becoming barrierless for energy release rates exceeding a

threshold value G+. A multiscale simulation using tight-binding to describe the pro-

cess zone around a crack tip in silicon found the lattice trapping barrier falls to zero

by about 10% above Gc [46].

Another important feature on the energetics of brittle fracture is the relation be-

tween the velocity of the crack and the strain energy release rate G. For a semi-infinite

crack in an infinite half plane, LEFM [4] predicts the universal equation of motion

reported in Eq. 2.40. Γ(v) can be considered constant and equal to the Griffith critical

loading Gc. Moreover, for better comparison with other studies, it is useful rewriting

Eq. 2.40 rescaling the velocity v to the relevant sound speed cR and the loading G to

the critical one Gc:
v

cR
=

(
1− Gc

G

)
(4.1)

where the fracture energy Γ(v) has been considered constant and equal to the Griffith

critical loading Gc. This equation presents inconsistencies with experiments at both

high and low speeds.

The upper limit for a travelling crack should be the Rayleigh wave speed; however,

experimentally, this limiting speed is usually a substantial fraction below cR (between

20% and 80% of cR). [13] This is attributed to instabilities which make fracture unstable

above a critical speed. [15] At intermediate speeds the discrepancy between theory and

experiment can sometimes be resolved including other energy dissipation mechanisms

such as phonon emission in the fracture energy Γ(v). [91] According to Eq. 4.1, the

minimal crack speed should be zero for G = 2γ, but also in this case there is not

yet clear experimental evidence for the behaviour of the crack velocity at the onset

of fracture. Some experiments observe cracks travelling at a substantial fraction of

cR immediately after initiation, supporting theoretical lattice models and molecular

dynamics simulations which suggest a ‘velocity gap’, or forbidden band of velocities

below about 200 K. [16, 19, 92] On the other hand, an experimental study using three

point bending reports crack propagation at velocities close to zero with temperatures

as low as 77 K, showing no evidence for a velocity gap. [93]

The velocity v of a running crack should increase with increasing energy flow to

the crack tip, as I mentioned in Sec. 2.3. Following LEFM predictions, all speeds

0 < v < cR are predicted to be accessible by a running crack. The rescaled Freund

equation of motion (Eq. 4.1) is reported in Fig. 4.1, showing the normalised crack speed
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(a) (b)

Figure 4.1: Normalised crack speed (respect to cR) as a function of the normalised
energy release rate (respect to Gc). (a) The Freund equation of motion (see Eq. 4.1);
(b) The Freund equation of motion in the case of velocity gap (red dotted line). The
extent of lattice trapping is indicated by the blue double arrow.

v/cR as a function of the normalised loading G/Gc.

In Fig. 4.1a, the crack starts to propagate at the Griffith loading Gc and its speed

increases tending to the asymptotic value of cR
1, as predicted by Eq. 4.1. A schematic

plot of the same equation is reported in Fig. 4.1b, considering though the existence of

a finite lattice trapping (blue double arrow in the axis of loading) and velocity gap (red

double arrow in the axis of velocity). The crack initiates at G+ > Gc (G+/Gc = 1.5 on

the x axis) with nil velocity, and accelerates tending to the limit of cR.

Lattice trapping and velocity gap represent dynamical instabilities of brittle fracture

that, to date, have not been yet fully understood. The challenge of clarifying their origin

was the driven force which motivated this computational work. An hybrid approach

mixing two MM interatomic potentials has been chosen to accomplish this task. In the

next section, the main ingredient used to efficiently model the interatomic interaction

at the crack tip will be described.

4.2.2 Methods

Gaussian approximation Potentials (GAP) [94] are a new class of classical interatomic

potentials based on DFT calculations. The version used in this work has been embed-

ded, in a hybrid fashion, with SW potential [25] to accurately model the brittle fracture

in silicon. GAP is an interatomic potential which does not present an analytical form,

1In this work, I refer to cR = 4.3 km/s, calculated by using elastic constants predicted by our
hybrid model.
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and is based directly on quantum mechanical data. Its implementation concerns the

task of modelling the Born-Oppenheimer potential energy surface (PES) of a set of

atoms, but without recourse to simulating the electrons explicitly.

A description of the atomic environment is required. To this aim, GAP uses a vector

which looks at nonlinear interactions, the bispectrum [95], invariant under rotations,

translations and permutations of atoms in the neighbourhood.

The total potential energy is regarded as a sum of atomic energy functions:

E =
atoms∑
i

ε({rij}), (4.2)

where rij = ri − rj is the relative position between atoms i and j. Imposing the

condition |rij | < rcut, the set of atoms over which the index j runs is restricted to some

fixed neighbourhood of atom i, defined by a cutoff radius rcut.

The first step is forming a local atomic density from the neighbours of atom i:

ρi(r) = δ(r) +
∑
j

δ(r− rij)fcut(|rij |), (4.3)

where fcut is a cutoff function reflecting the spatial scale of the interactions.

The second step consists of projecting the atomic density onto the surface of a four-

dimensional unit sphere, which constitutes a natural complete basis for the interior of

the 3D sphere. The projection of the atomic density on the surface of the 4D sphere

can therefore be expanded in 4D spherical harmonics U jm′m using coefficients

cjm′m =
〈
U jm′m|ρ

〉
. (4.4)

In practice, the bispectrum Bj1j2j built from these coefficients (see Bartok PhD thesis

for a detailed discussion [96]) is truncated, including only terms up to Jmax, corre-

sponding to a limit in the spatial resolution with which the atomic neighbourhood is

described.

The PES is determined by interpolating the atomic energy in the truncated bispec-

trum space using a non parametric method known as Gaussian process (GP) regression

ε(b) =
∑
n

αnG(b,bn), (4.5)

where G is a typical Gaussian function depending on the bispectrum components b,

and n ranges over the reference configurations.
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Then the covariance of the reference configurations is defined as

Cnn′ = δ2G(b,b′) + σ2I, (4.6)

where δ and σ are two further hyper-parameters and I is the identity matrix. The

interpolation coefficients are then given by

{αn} = C−1y, (4.7)

where y = {yn} is the set of reference values (quantum mechanical energies).

Finally, the data directly accessible are not values of atomic energies but forces

and stress tensors; furthermore these data can be heavily correlated. This problem

is solved by applying a sparsification procedure, in which a predetermined number of

sparse configurations are chosen randomly from the set of all configurations and the

data values y are replaced by linear combinations of all data values. The reference

configurations are generated from random MD simulations at the DFT level.

In summary, GAP may be regarded as an interpolation of the quantum mechanical

potential energy surface. The teaching set used for generating the GAP model used in

this work contained atomic environments for 1586 bulk atoms and 1342 (111) surface

(both Pandey and unreconstructed forms) atoms, and was sparsified to select the 400

most relevant configurations.

The GAP calculation is embedded within a buffer region (cyan and red atoms) and

abruptly mixed with SW potential which describes the long range elastic field. The

abrupt mixing method is far more simple than the LOTF method, and surprisingly

yields an excellent convergence of the force error in silicon bulk. [38] Considering that

the goal of this investigation requires to take into account a much larger time scale than

the case of complicated chemical reaction at the crack tip (as shown in Chapter 3), I

opted for the more computationally efficient option of abrupt force mixing.

As illustrated in Fig. 4.2, our hybrid GAP+SW technique restores the brittle char-

acter of fracture, correcting the anomalous ductile behaviour seen in simulations carried

out with the SW potential alone. Furthermore, simulations at 300 K conducted with

the GAP+SW scheme reproduced the Pandey-like crack tip reconstruction with 5- and

7-membered rings, as reported in a previous multi-scale study where the near tip region

was treated at the DFT level. [51] Whilst the observed fracture behaviour is qualita-

tively in excellent agreement with DFT-based studies, the Griffith critical loading of the

GAP+SW model is Gc = 2γ = 1.56 J/m2. Since this value is significantly lower than

the experimental value of 2.48 J/m2 [71], our work should be considered to describe a
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Figure 4.2: Snapshots at intervals of 4 ps from a 300 K simulation of fracture in the
Si(111)[11̄0] cleavage system using a QM-derived GAP model for the crack tip region
(light blue atoms) and the SW classical interatomic potential to describe the long range
elastic field (dark blue atoms). These images are close-ups of the crack tip region in a
larger system of size 2000× 300× 3.68 Å3. [97]
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model brittle material, rather than silicon per se. For consistency reasons, from now

on I will refer to the loading G in reduced units (∆ = G/Gc).

4.3 Results

4.3.1 Statistics of bond breaking events

The velocity of the crack tip is related to the frequency of bond breaking events. The

crack speed can be then defined by looking at the statistical ensemble of the time elapsed

between two successive bond breaking events. By associating each bond breaking event

with a change in the coordination number of a pair of atoms, we can record the time of

every event as the crack propagates during an MD simulation. Therefore the quantity

that fully embodies the physics of the problem is the interval of time ∆t necessary for

the occurrence of a single bond breaking event.

The average velocity of the crack can be calculated straightforwardly as the ratio

between the average advancement when one bond breaks (∆x, known from the crystal

structure) and the average time of the distribution (〈∆t〉):

〈v〉 =
∆x

〈∆t〉
± σv√

N
, (4.8)

where σv = 〈v〉
〈t〉 σ∆t is the standard deviation of the average speed and N is the number

of bond breaking events observed in the simulation. A convenient visual representation

of this distribution of the events is then a histogram, with mean 〈∆t〉 and standard

deviation σ∆t.

A series of constant temperature loading simulations were performed on a 2000 ×
300 × 3.8 Å3, containing 111,000 atoms and periodic in the crack-front (z) direction.

All calculations of crack velocity were made using equation 4.8.

An example of the statistical distribution of bond breaking times is shown in Fig. 4.3,

revealing interesting features of the fracture dynamics. Histograms (Fig. 4.3a) display

two different distributions relative to cracks travelling at different temperatures and

loadings. The solid lines fitting the distributions are calculated by a simple theoretical

model thought to interpret the different skewness of the histograms. In fact, although

the slower mean velocity for the crack with lower loading is as expected, the different

shape of the two distributions is more interesting.

We may model this situation by considering that the slow crack at 300 K may

feel a residual time dependent energy barrier which blurs the tail of the distribution

92



4.3. Results

100 150 200 250 300
0.00

0.01

0.02

0.03

0.04

0.05

0.06
Fr

e
q
u
e
n
cy

T = 50 K

� = 2.8

100 150 200 250 300
Time / fs

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Fr
e
q
u
e
n
cy

T = 300 K

� = 2.3

(a)

(b)

Figure 4.3: Statistics of bond breaking events fitted by time-dependent energy barrier
model. Distribution of time intervals between bond breaking event at 50 K and 300 K
are shown by the upper and lower histograms respectively (a). The red curves fitting
the histograms have been calculated by applying a simple statistical model where a
time-dependent energy barrier for breaking the next bond falls from its initial value Eu
to the static value Eu −∆E over a time t0 (b).
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(a schematic representation of the energy barrier is shown in Fig. 4.3b). Within this

model, the probability that one bond breaks per unit time after a time t is given by

the linear differential equation

dP

dt
= [1− P (t)] ν exp

(
−E(t)

kBT

)
, (4.9)

which is the product of [1 − P (t)], the probability of the bond not having broken yet

and an Arrenhius term formed from an attempt rate ν and the likelihood of crossing

a time-dependent energy barrier E(t). We propose that this energy barrier E(t) falls

from a relatively high transient value Eu immediately after the previous bond breaks

to its equilibrium value EL over a finite time t0, corresponding to the elastic relaxation

time required for the stress field to adjust so that it is fully concentrated on the new

crack tip bond:

E(t) =

{
Eu −∆E t/t0 t ≤ t0,
Eu −∆E t > t0,

(4.10)

Note that it is the final barrier Eu −∆E which should be compared with static calcu-

lations of the lattice trapping barrier.

The parameters of the model are the initial and final barrier heights Eu and Eu−∆E,

the stress re-concentration time t0; the temperature T , the attempt rate ν. We have

solved the differential equation (Eq. 4.9) numerically, with the physically motivated

parameters given in Table 4.1. To represent stochastic effects, we used an ensemble

of stress re-concentration times, normally distributed around a mean value t0 with

standard deviation σ0. The results of fitting this model to our MD data are illustrated

in Fig. 4.3.

This implies that for a range of loadings sufficiently above Gc, the propagation of

the fracture is regulated by a precise frequency, namely a tight distribution centred

on the average value (e.g. the 50 K - G/Gc = 2.8 case of Fig. 4.3). On the other

hand, there will be a range of loads for which the crack tip loses regularity in breaking

successive bonds, when the crack tip feels the presence of a residual energy barrier. In

this case, the interplay between the temperature and energy barriers matches well with

the features seen in the “blurred” distribution (300 K - G/Gc = 2.3 case).

4.3.2 Crossover of crack velocities

Knowledge of the crack velocity as a function of the energy release rate G provides

key information about the crack dynamics and the extent of lattice trapping. Using
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MD simulation parameters

Parameter Description Catastrophic Activated

T Temperature 50 K 300 K
G/Gc Energy release rate 2.8 2.3

Model parameters

Parameter Description Catastrophic Activated

Eu −∆E Residual barrier after stress concentration 0.0 eV 0.9 eV
t0 Characteristic time for barrier to fall by ∆E 156 fs 165 fs

Eu Unstrained barrier height 1.0 eV
σ0 Gaussian noise in t0 7.5 fs
ν Attempt rate - fastest phonon mode 14 THz

Comparison of MD and model results

Value Description Catastrophic Activated

〈∆t〉MD Mean bond-breaking time interval - MD 152 fs 194 fs
〈∆t〉model Mean bond-breaking time interval - model 151 fs 191 fs
σMD

∆t Standard deviation - MD 7.6 fs 35 fs
σmodel

∆t Standard deviation - model 7.7 fs 30 fs

〈v〉MD Mean crack velocity - MD 2200 ms−1 1700 ms−1

〈v〉model Mean crack velocity - model 2250 ms−1 1700 ms−1

σMD
v Standard deviation in crack velocity - MD 110 ms−1 260 ms−1

σmodel
v Standard deviation in crack velocity - model 110 ms−1 270 ms−1

Table 4.1: Parameters used in the MD simulations and bond breaking frequency model
illustrated in Eq. 4.9, and a comparison of the bond breaking time statistics and cor-
responding crack velocities measured in MD simulations and described by the model.
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Figure 4.4: Crack speed as a function of loading for five different temperatures. The
vertical dotted line separates the activated (A) from the catastrophic (C) region. The
velocities for the lowest normalised energy release rate, G/Gc = 1.6, were computed by
slowing down a running crack (Fig.4.5). [97]

the statistics of bond breaking events described above, a mapping of the velocity of

the crack has been made at constant energy release rate and temperature, spanning a

range of normalised loadings 1.6 < G/Gc < 5 and a range of temperatures 5− 500 K

(see Fig. 4.4). The general trend suggested by this result is that lower temperatures

favour higher velocities. This behaviour can be clearly seen in the right hand side of

Fig. 4.4.

The lowest loading for which a significant number of bond breaking events for all

temperatures are detected is G/Gc = 1.9. This provides an estimate for the energy

release rate G+ for our model material, the energy at which the lattice trapping barrier

first falls to zero, allowing propagation of cracks at any temperature. The region of

loadings G > G+ characterises the catastrophic branch of velocities. For lower energies

G < G+, cracks must be thermally activated to overcome the lattice trapping barrier.

Even with the approximate QM description of bond breaking near the crack tip, the

timescale limitations of MD make it impractical to measure the velocity of thermally

activated cracks starting from an arrested crack. This is particularly important in view

of the low speed fracture instability present in this fracture system, which presents

an increased barrier to crack advance whenever the crack falls into the ‘trap’ of the
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5–7 reconstructed crack tip (Fig. 4.2). However, low velocity states may be accessed

by starting with a running crack and reducing the flow of energy to the crack tip,

controlled by the applied strain and the clamped boundaries.

To do this, a silicon slab with dimensions 3000× 300× 3.89 Å3 has been prepared,

containing three loading regions (see Fig. 4.5a): Region I (0 < x < 700 Å), with the

high loading of GI/Gc = 3.2, favouring crack propagation with steady state velocity;

Region II (700 Å< x < 1700 Å), with smoothly decreasing loading GI < GII < GIII ,

leading to a gentle reduction of the crack velocity; Region III (x > 1700 Å), with

the low loading of GIII/Gc = 1.6, allowing us to study low crack speeds where the

lattice trapping barrier plays a significant role. Periodic boundary conditions have

been applied along the narrow crack front direction, as before. The behaviour of cracks

passing through these three regions is reported in Fig. 4.5b.

The main result highlighted in this plot is the transition of the crack velocity from a

catastrophic regime in regions I and II to an activated regime in region III. In the cases

of 5 K, the crack arrests before entering region III. Above 50 K, a slow crack propagation

is detected, with the crack velocity increasing with increasing temperature. This is the

thermally activated regime: for a given lattice trapping barrier, the rate of barrier

crossing increases with increasing temperature.

Following well established theories of kinetic crack propagation, [3] the lattice trap-

ping barrier is expected to be related to the bond breaking rate r via an Arrhenius-like

exponential relation:

r = ν0 exp

(
− ∆E

kBT

)
. (4.11)

By plotting the logarithm of Eq. 4.11 as a function of 1/T (Fig. 4.5c), a straight line is

obtained, with the gradient proportional to the lattice trapping barrier.

Following the above procedure, the lattice trapping barrier is ∆E = 0.02 eV,

per unit cell along the crack front, at an energy release rate of G/Gc = 1.6. This

barrier is reduced as the energy flow to the crack tip increases, and falls to zero above

G+/Gc ∼ 1.9, i.e. at the onset of the catastrophic fracture regime. Whilst this barrier is

not high in absolute value, it leads to a clearly defined dependence of the crack velocity

on the temperature, with higher temperatures leading to faster crack propagation.

4.3.3 Test on thermal expansion

Moving now to the catastrophic branch (C) of Fig. 4.4, the key question to be addressed

is why the behaviour observed for the activated branch is now inverted, that is, why

cracks with the same energy release rate travel faster at low temperatures than at
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Figure 4.5: Transition from catastrophic to activated branch of crack velocities. (a)
Slab loading scheme used to study the crack speed in 3 different loading regions: region
I, catastrophic (GI/Gc = 3.2); region II, spatial decrease of loading; region III, activated
(GIII/Gc = 1.6). (b) Crack length as a function of time for several temperatures; the
y axis is divided into three regions, corresponding to the decreasing loads illustrated in
panel (a). (c) Arrhenius plot of the bond breaking rate in region III as a function of
1/T ; the slope of the line of best fit is proportional to the lattice trapping barrier for
thermally activated fracture. [97]
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Figure 4.6: Strain as a function of temperature: the slope of the straight line interpo-
lating the calculated point is a measure of the thermal expansion coefficient.

high temperatures. At first sight, it could be an effect of thermal expansion: higher

temperatures cause an expansion of the lattice which reduces the effective energy release

rate at a given strain. To check if this is the case, we calculated the thermal expansion

coefficient for our model material by finding the strain corresponding to zero stress in

a 50× 300× 3.84 Å3 silicon slab during MD simulations at a range of temperatures.

In this particular test, the SW potential has been used to model the interaction

between all atoms, performing a fully classical MD simulation. This choice is justified

by the fact that in the hybrid simulations, elastic energy relieved by an advancing crack

originates in the strained classical region ahead of the tip. The stress as a function of

the strain has a linear behaviour in a range of small strain (±5%), with fluctuations

increasing with the increasing temperature. A running average has been applied to

our data sets in order to mitigate the noise of these fluctuations, allowing a better

evaluation of strain for which the stress is nil. For different temperatures the value

of the strain for which the stress goes to zero is slightly shifted in the direction of

increasing temperatures (see Fig. 4.6).

This is nothing but the effect of thermal expansion: the coefficient of thermal

expansion describes how the size of an object changes with temperature variations.

Specifically, it measures the fractional change in size per degree change in temperature

at a constant pressure. For solids one might only be concerned with a change along a
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length L:

αL =
1

L

dL

dT
. (4.12)

The change in the linear dimension can be estimated to be:

δL

L
= αLdT. (4.13)

The strain points at zero stress as a function of the temperature are fitted by

a straight line, which slope gives an estimate of the thermal expansion coefficient:

αL(Si)SW = 5 · 10−6/K. The result presented here agrees reasonably well with typical

values reported in literature: αL(Si)SW = 3.9 · 10−6/K [98]; αL(Si)exp = 3.2 · 10−6/K

(within the range 300−500 K) [99]; αL(Si)exp = 2.6×10−6/K [100]. Inserting changes

in the applied strain of this order into Eq. 2.41 makes it clear that the effect of ther-

mal expansion on the strain energy release rate is too small to explain the significant

reductions in crack speed seen at higher temperatures in Fig. 4.4.

4.3.4 Autocorrelation

Temperature may introduce an order parameter in the crack dynamics, an order mani-

fested as a regularity in breaking successive bonds. In the activated branch, namely in

the region of loadings G just above the critical value Gc, higher temperatures favour

over jumping the lattice trapping barrier, leading to a slow fracture propagation (see

Sec. 4.3.2). On the contrary, moving to the catastrophic branch (C) of Fig. 4.4, the

behaviour observed for the activated branch is now inverted. The key question to be

addressed is: why cracks with the same energy release rate travel faster at low temper-

atures than at high temperatures?

An answer to this question may be found thinking at the elementary mechanism

of crack advancement, namely a succession of bond breaking events in a periodic crys-

talline structure. The crucial quantity embodying the physics of the problem is the time

taken to break two successive bonds. To this end, we consider the autocorrelation of

the bond breaking interval statistics. This describes the similarity between successive

events as a function of the time separation between them.

Let τi be the interval between two bond breaking events, namely the time the crack

spend at a particular lattice site. Supposing that the mean value µ and the standard

deviation σ of this physical quantity over many hundreds of events can be considered to

be time independent, we can express the autocorrelation of our discrete bond breaking
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Figure 4.7: Autocorrelation of bond breaking events for four temperatures at constant
energy release rate G/Gc = 3.2.

events series as:

Rj =
1

N − j

N−j∑
i

(τi − µ) · (τi+j − µ)

σ2
, (4.14)

with the index j running from zero to N−1, N being the total number of bond breaking

events, Rj describing how much the time τi is correlated to the time τi+j , averaged over

N − j events. In other words, we seek to know how much the jth bond breaking event

is correlated to the ith.

The autocorrelation functions for hybrid MD simulations conducted at a constant

energy release rate of G/Gc = 3.2 for four representative temperatures are shown in

Fig. 4.8. The bond breaking time interval data have been cleaned of the first 20 bond

breaking events at crack initiation, since the crack velocity was significantly different

from the mean velocity. The total autocorrelation function (Rtotal in Fig. 4.8) suggests

that there is essentially no significant correlation between bond breaking events. For

10 consecutive events, the autocorrelation profile oscillates around zero for all tem-

peratures, suggesting that bond breaking time intervals do not depend from a specific

temperature.

Another way to approach the autocorrelation problem is to split the total autocorre-

lation function defined in Eq. 4.14 in specific components. To this extent, we define the

normalised bond breaking time and the total autocorrelation function by the following
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Figure 4.8: Autocorrelation contributions of bond breaking events for four temperatures
at constant energy release rate G/Gc = 3.2. See Table 4.2 for a description of each
contribution.

Table 4.2: Description of autocorrelation contributions

R++ R−− R+− R−+

τ̃i > 0 and τ̃i+j > 0 τ̃i < 0 and τ̃i+j < 0 τ̃i > 0 and τ̃i+j < 0 τ̃i < 0 and τ̃i+j > 0

equations:

τ̃ =
τ − µ
σ

, (4.15)

Rtot
j =

1

N − j

N−j∑
i=0

τ̃i · τ̃i+j , (4.16)

where contributions to the autocorrelation are resolved by sign of τ̃ (positive is ‘late’

with respect to mean, negative ‘early’).

Separating the contributions of the autocorrelation as reported in Table 4.2, we

observe the existence of a weak positive (for R++ and R−−) or weak negative (for

R+− and R−+) correlation for temperatures lower than 300 K. This could enhance

the ordering of the crack dynamics at low temperatures or, viewed from the opposite
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perspective, too much thermal energy may prevent cracks from propagating cleanly.

Seen from this perspective, a weak autocorrelation is present for temperatures lower

than 150 K, whilst room temperature cracks conserve the same behaviour reported in

the total autocorrelation function.

4.4 Discussion and analysis

The velocity of the crack shows interesting temperature-dependent features unobserved

so far in experiments. Within the limits of the hybrid model GAP-SW, the result of

the transition from the activated to the catastrophic branches of the crack velocities

contains a physical insight which goes beyond a necessary, and hopefully feasible, ex-

perimental demonstration. From a theoretical point of view, the argument of the auto-

correlation of bond-breaking events could explain why cold cracks travel faster in the

catastrophic regime. However, as it has been shown in the previous section, the weak

contributions arising from Fig. 4.8 lead us to assume a more conservative approach.

A minimal theoretical model thought to interpret the crossover of crack speeds in

function of loading and temperature has been proposed by collaborators [97]. This

model describes the situation of two atoms interacting via a Lennard-Jones (LJ) po-

tential in two distinct cases. In the first one (Fig. 4.9 left), the atom bonds are charac-

terised by the same stiffness, simulating the situation of a matrix of atoms where the

stress is uniformly distributed. In the second one (Fig. 4.9 right), the central bond is

weaker than the other bonds, presuming the existence of a stress concentration at at

the centre and uniform stress distribution in the rest of the atoms matrix. This last

case approaches more closely the effect of stress concentration at the crack tip, whilst

the first one focuses essentially on the dynamics of a single bond rupture.

The bond is considered broken when the mutual atom distance is three times their

equilibrium distance. The total energy of the system is described by the equation:

E = ULJ +K, (4.17)

where ULJ represents the static contribute of the Lennard-Jones potential whilst K is

the kinetic contribute depending on the mutual oscillations of the atoms. In Fig. 4.9

the work necessary to break the bond (W ) is plotted against the velocity of separation

v, with W measuring the energy variation ∆E at the time the bond breaks. The

velocity of separation v, proportional to the applied load, is kept constant for each

single calculation of W .
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Figure 4.9: Work spent to break an atomic bond in function of the velocity of the
atoms separation rescaled by the speed of sound for three different temperatures. (a)
1D model of atomic bond; (b) 1D model of a triple bond. [97]

In the single bond model (Fig. 4.9a), at low loading (low values of v), higher tem-

peratures yield lower values of W , namely finding less resistance to break the bond than

lower temperatures. On the other hand, at high loading (high values of v), the bond

breaking mechanism seems favoured for lower temperatures: in this region of fracture

energies, colder system find less resistance to rupture (namely the work W to break a

bond is lower for lower temperatures). This simple model, based on the Lennard-Jones

potential, gives an interesting interpretation of the crossover of crack speeds from the

activated to the catastrophic branch highlighted by our MD simulations (see Sec. 4.3.2).

On the contrary, Fig. 4.9b offers a different interpretation of the bond breaking

mechanism. By assuming that the central bond is weaker than the other bonds, the

theoretical model based on LJ potential shows that higher temperatures encounter less

resistance to bond rupture in the whole range of loadings (velocity of separation v)

considered.

Finally, we conclude this analysis bearing in mind one of the questions that moti-

vated us to undertake this work: Does a velocity gap exist? According to the autocor-

relation of bond breaking times reported in Fig. 4.8, there is no significant evidence of

a forbidden band of velocities in the crack dynamics. However, the crossover of crack

speeds observed in our simulations suggests that crack travelling at temperatures lower

than 150 K may be susceptible to rarely over jump the lattice trapping barrier, becom-

ing therefore more prone to initiates at a finite velocity for a certain G+. This intuition

is in agreement with the minimal one-dimensional theoretical model (Fig. 4.9a), based
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on LJ potential, thought to clarify the bond breaking mechanism in function of loading

and temperature.

On this basis, I still believe that results of my MD simulations, using the hybrid

GAP-SW model, offer yet another opportunity to clarify the importance of temperature

in determining crack behaviour. Moreover, they confirm the conventional wisdom on

silicon fracture using a new classical potential with stronger reproducibility than many

others in the field.

4.5 Summary

Hybrid simulations of brittle fracture in silicon have demonstrated an important inter-

play between temperature and loading in determining the dynamics of the crack. Using

a statistical approach to measuring the velocity of the crack, I have studied how the

dynamics of bond breaking are seriously affected by these two variables. In particular,

I have identified two branches in the crack velocity related to two regions of loading:

activated and catastrophic. The activated branch is characterised by a lattice trapping

barrier of about 0.02 eV at G/Gc = 1.6, decreasing to zero with increasing the loading,

and therefore favouring crack initiation for higher temperatures. In the catastrophic

branch, cold cracks appear to be faster. I show that the autocorrelation of bond break-

ing events for temperatures below about 150 K can not be the cause of this interesting

and unexpected phenomenon.

A simple theoretical model in the simplest one-dimensional (Fig. 4.9a) case confirms

the existence of a crossover of crack velocities in function of loading and temperature.

However, by adding additional degrees of freedom (see discussion in Sec. 4.4 referred

to Fig. 4.9b), the crossover disappears, showing that higher temperatures are always

favoured in the bond breaking mechanism.

As a future work, a three-dimensional MD simulation (namely by removing periodic

boundary conditions along the crack front direction z) could clarify this enigma. From

the experimental point of view it would be extremely interesting to test these predictions

in an experimental setting.
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Chapter 5

Brittle fracture in glassy systems

5.1 Introduction

Glass is a boundary by definition: it is an hybrid state of matter, in between solid

and liquid phases; it divides exteriors from interiors for its excellent transparency;

it preserves goods from the environment for its insulating properties. Glass is also

a prototype of brittleness: empirical evidence shows that a weak impact with hard

materials may determine irreversible damage to its structure, resulting often in very

sharp cracks. The pioneering work of fracture mechanics (see Sec. 2.2) has been strongly

inspired by glass, in an attempt to understanding the origin of brittleness. Mainly

composed by amorphous silicon dioxide (a-SiO2) in its most familiar form, glass owes

its brittleness to the extreme homogeneity of its structure along with the strength of

its covalent bonds. [56]

Understanding fracture in silicates has a huge technological and scientific relevance,

including mining, where a huge amount of energy is required to fragment rocks into

fine powder, medicine (biomedical implants, glassy pharmaceutical containers) and

civil engineering, where new materials made by glass are increasingly used in struc-

tural and energetic applications. Research carried out for this thesis has been funded

by ADGLASS1 project, a European consortium2 devoted to improving the efficiency,

functionality and reliability of glass products for pharmaceutical and thin layer optical

photovoltaic applications.

After the investigation of stress-corrosion mechanisms (Ch. 3) and catastrophic frac-

1Adhesion and cohesion at interfaces in high performance glassy systems - www.adglass.eu
2Participants: Fraunhofer IWM, Friburg; Fraunhofer IFAM, Bremen; King’s College London; Cam-

bridge University; ICTP, Trieste; Technion IIT, Haifa; Schott AG, Germany; Aerial, France. Funded
by the Seventh Framework Programe, European Union Commission.
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ture propagation (Ch. 4) in silicon, we now aim to test our hybrid atomistic modelling

method (Sec. 2.5) in amorphous silica compounds. The procedures followed to realise a

model of seed crack in amorphous silica realisations are presented in Sec. 5.3, involving

their generation from cristalline structures and the fracture simulations of crack-free

samples. We have then focused on testing our hybrid technique, with particular atten-

tion paid to the computational cost, and to the variation of the quantum zone during

the molecular dynamics.

5.2 Theoretical background

5.2.1 Amorphous Silica

Amorphous silica a-SiO2 is a disordered structure of the chemical compound silicon

dioxide SiO2, which is most commonly found in nature as sand or quartz. It is the main

constituent of the most familiar type of glass (soda-lime glass) and plays an essential

role in both science and industry, and in our daily life. Since the pioneering work of

Griffith in fracture mechanics (see Sec. 2.2.2.2), glass has been a useful material for the

process of understanding brittleness. Silicate glasses are isotropic materials because of

their amorphous structure, and are characterised by a strong degree of homogeneity,

giving excellent transparency.

The disordered network of amorphous SiO2 consists of tetrahedral units of SiO4

bridged by oxygen atoms, undergoing a glass transition at TG = 1482 K [101]. Accord-

ing to Ojovan [101], the glass formation can be treated as a percolation transition in

the system of network defects, with a change in the geometry of the defects from fractal

in the liquid state to Euclidean in the glassy state. These defects are thought as ele-

mentary excitations resulting from broken bonds and are called configurons [102]; the

symmetry breaking at the glass transition is then described as a change of Hausdorff

dimension of these configurons.

In the computational field, a big issue in studying such a structure is the size of the

system. For some systems it is reasonable to use a small system size: in crystals a small

cell is infinitely reproduced across the space; moreover also in liquids (ergodic systems)

a small system size is sufficient to achieve good statistical averaging. In contrast, an

amorphous system, which is in principle non ergodic, can have many possible network

configurations that have nearly equal free energy. Therefore a large size of the sample

has to be selected for our MD simulation in order to have a good representation of the

structure.
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(a) (b) (c)

Figure 5.1: Structure of silicon dioxide. Planar view of crystalline (a) and amorphous
(b) structures of silicon dioxide. [103] (c) Illustration of short range order (left, upper
a) and medium range order (right, upper b) in amorphous SiO2. [104]

An interesting way to attack this problem is reported in Ref. [105], where an en-

semble of ten samples containing 72 ions (24 SiO2 units) has been used in order to

reproduce the characteristics of the glass. These simulated samples have been tested

by analysing the molecular features of the silica network, which are characterised by

a short and medium range order. The short range occurs at the level of tetrahedra

and can be characterised by radial distribution functions and bond-angles distribu-

tions. The medium range is represented by the possible connections via oxygen atoms

of these tetrahedral units into more extended structures and rings: although there is

no long range periodicity typical of other crystals, there is a preference of the network

to form rings of 6-tetrahedra. [104]

5.2.2 Methods

Studying a material at the atomistic level involves the development of accurate poten-

tials which must capture the physics of the problem. A typical dilemma in the field

of simulation is the choice between an ab initio approach and an empirical approach.

According to the specific problem we are looking at, a reasonable compromise is to use

both approaches: quantum mechanics focusing on a few atoms where electronic effects

can not be neglected, whit a classical force field describing the interatomic interactions

of the majority of atoms, representing the electronic effects in a phenomenological way

(see Sec. 2.5.1). Thus, the choice of an appropriate force field becomes a crucial element.

Silica is a prototype of ionic systems with a great importance in technological ap-

plications. Ionic system are usually represented by a pair potential in the Born-Mayer
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form [106]:

Uij =
qiqj
rij

+Bije
−αijrij − Cij

r6
ij

(5.1)

where Uij is the interaction energy between ions i and j, rij = |ri − rj | is the distance

between ions i and j, qi is the charge of ion i which plays the role of a parameter and

Bij , αij and Cij are constants parameters. Following the simple Born-Mayer form, the

pair potential of van Beest, Kramer and van Santen (BKS) [107] has been undoubtedly

the most utilised in the past. This potential, parametrised to reproduce the behaviour

of small hydrogenated silica clusters, treats silica as an ensemble of rigid ions that are

not sensitive to their environment.

Tangney and Scandolo presented in 2002 a classical interatomic force field for liquid

SiO2 (TS) [108], with the main aim of accounting for the large polarisability of the

oxygen ion. They used a potential of Morse-Stretch form to describe the pairwise

interactions between ions

Uij =
qiqj
rij

+Dij [e
γij [1−(rij/r

0
ij)] − 2e(γij/2)[1−(rij/r

0
ij)]], (5.2)

where the interaction between an atom of type i and an atom of type j is defined by

the parameters qi, qj , Dij , γij , r
0
ij and the distance between them rij . The advantage

of this form compared to the simpler Born-Mayer is the transferability between differ-

ent phases. The effects of dipole polarisation of the oxygen ions has been taken into

consideration by assigning to the oxygen ion a single parameter α corresponding to the

dipole polarisability. The computation of the inductive effects of dipole moments then

involves using the Ewald summation scheme. Ewald summation replaces the summa-

tion of long range interaction energies in real space with an equivalent summation in

Fourier space.

A recent reformulation of the TS interatomic force field for Silica [109] removes the

requirement of performing an Ewald summation. This summation heavily affects the

computational cost, scaling as N2 for typical bi-dimensional systems used in fracture

simulations. Considering the screening effect of electrons between nuclei, this reformu-

lation assumes it is possible to truncate electrostatic interactions for specific systems

and specific physical properties. The original TS potential is made short-range applying

a Yukawa screening function to Eq. 5.2 of the form

Y = e−βrijfc(rij), (5.3)
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where fc(rij) is a cutoff function which takes the potential smoothly to zero at some

distance rcut. A full re-parametrisation of the potential has then been made using DFT-

LDA to calculate forces, energies and stresses on a representative database of atomic

configurations. This screened version of TS potential scales linearly with the number

of atoms, allowing a consistent speed up for systems containing more than 6000 atoms.

5.3 Results

5.3.1 Crackless simulations

A crackless simulation represents the procedure of pulling apart a material which does

not contain any initial fracture. The aim of conducting this method on amorphous

silica cells was to reproduce a “more realistic” fracture surface which could be used as

a seed crack in standard fracture simulations. In fact, a standard simulation requires

the presence of a preexistent seed crack in the structure (see Sec. 2.6.2).

For crystalline materials this can be simply obtained by cutting all the atomic

bonds along a crystal plane. On the contrary, amorphous structures do not offer this

possibility. Instead of “manually” inserting a crack seed, we opted for an unbiased

procedure to generate a more realistic fracture template.

Firstly, we obtained an initial cell of amorphous Silica by slightly distorting an

alpha-quartz cell to make it cubic, before setting the density to the experimental value

of 2.2 g/cm3. The system was initially thermalised at 5000 K for 50 ps and then cooled

to room temperature at an annealing rate of 0.01 K/fs. Using a time step of 0.1 fs for the

high temperature regime guarantees energy conservation within 10−6 kBT/ps. Finally

the configuration at 300 K was structurally optimised, by relaxing lattice vectors and

atomic positions.

At room temperature and below almost all silicon atoms within the amorphous

structure are four-fold coordinated. We occasionally observe defects, mainly three-

and five-fold coordinated atoms, and even less frequently we detect two-membered

silicon rings. The elastic properties of the optimised configuration obtained with the

TS potential are shown in Table 5.1.

The agreement with experimental data is very satisfactory. Starting from a template

cell of 10000 atoms obtained following the above procedure, we aimed to study how

different cell sizes can affect the structural order. We then replicated the initial template

cell along the three dimensions.

As a secondary study, we reproduced the same quenching procedure used for the
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Table 5.1: Equilibrium density and elastic properties of amorphous silica

δ B E ν C11 C12 C44

g/cm3 GPa GPa GPa GPa GPa

Experiment 2.2 38.0 69.1 0.197 76.5 18.8 28.9
MD simulation 2.3 36.9 69.1 0.174 73.6 21.7 30.1

template, in order to remove the false periodicity introduced by replicating the ini-

tial cell. Once these amorphous structures have been relaxed, a molecular dynamics

examination of the fracture process was started.

Previous molecular dynamics studies report that when dynamic loads are applied to

brittle materials, the system fails under the rapid propagation of cracks. If a dominant

crack is not present a spalling of the material takes place due to the nucleation, growth

and coalescence of multiple flaws (cracks, voids). In a recent study by Muralidharan

et al (2007) [110], using the BKS potential, the authors were able to reproduce this

mechanism, calculating the stress strain behaviour for several strain rates. Moreover,

they where able to reproduce further features of the fracture process, like the scaling

of void size with sample size.

Thirdly, we began a series of crackless simulations by rigidly displacing the top

and bottom surfaces of our amorphous silica samples. To break the slab, our samples

were subjected to constant strain rates of 0.02/ps, 0.01/ps and 0.005/ps at constant

temperature of 300 K, with the strain applied uniformly throughout the sample.

In Fig. 5.2 the uniaxial stress component σyy as a function of the applied strain is

shown for three different strain rates. The failure of the system is clearly identified by

a maximum in the stress, related to a critical strain independent from the strain rate;

however, the critical stress increases for higher strain rates, confirming the hypothesis

that lower strain rates favour a more equilibrated system.

The graphic highlights the presence of two main regions separated by a dotted line:

an elastic region (I) for 0 < ε < εc and a void-coalescence region for ε > εc. Region I is

characterised by a linear behaviour of the stress in function of the strain. Initially, by

rigidly displacing the upper and lower boundaries of the structure, atomic bonds strain

accordingly. However, the failure of the system is mainly attributable to the presence

of nanoscale voids. These voids, characteristic of amorphous silica structures, also grow

elastically; for high critical values of strain, some voids grow more rapidly than others

until their coalescence become irreversible, leading to the separation of the material and
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Figure 5.2: Uniaxial stress-strain curves for TS-modified glass. The dotted line sepa-
rates the elastic region (I) from the void coalescence region (II).

the formation of the fracture surfaces (region II). In the coalescence phase the stress

drops dramatically to zero, accounting for the release of elastic energy associated with

the creation of the fracture within the whole structure.

By following this crackless procedure for several sample sizes, we finally chose as

a “seed crack template” a well formed fracture, farther from the boundaries and with

smooth fracture surfaces. The surface morphologies obtained by straining the slab until

failure were then used as a template to create the initial seed for our future fracture

simulations. However, we had to develop a stable strategy to transfer the surface

topology within the un-deformed sample. The best results have been obtained by

using two-dimensional alpha-shape functions [111]. The method applies an algorithm,

which takes into account the topologic structure of the system and allows us to detect

the shape of a set of points in a plane, the points in our system corresponding to the

atomic positions. In our particular model, the alpha-shape method defines straight

lines delimiting the open surfaces. These shapes are then used to detect the equivalent

surfaces inside the original un-broken slab. Since the method is developed for points

located in a plane, we considered the slab as being cut into slices along the z direction.

By applying the alpha-shape for each slice within the xz plane and eventually summing

up the shapes of all the slices, we arrive at a map of the whole surface.
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5.3. Results

5.3.2 Catastrophic fracture propagation

Several initial seed cracks have been prepared at different strain energy release rates

G. In our classical simulations, for G ≤ 3 J/m2, the seed crack closed up during

the thermalisation process at 300 K, indicating that this is the lower extent of the

lattice trapping range. Starting from an equilibrated configuration, we then performed

classical molecular dynamics simulations, increasing the applied loading at a rate of

10−4 J/m2/fs for five different temperatures.

The first feature emerging from the analysis of these MD trajectories (see selected

snapshots in Fig. 5.3) is that the crack advances for loadings G+ > 10 J/m2, where G+

measures the fracture toughness of our system. The stress applied is locally released by

the many voids spread within the amorphous silica structure. The void size increases

with increasing loading, and eventually their coalescence becomes the main process of

fracture formation.

For all the temperatures tested in the 5 − 500 K range, the formation of several

2-membered (2M) rings have been detected (see Fig. 5.4). This local structure, widely

described in the literature [105, 110], naturally forms during the molecular dynamics

even for high loading (G > 12 J/m2). These 2M rings have been experimentally shown

to provide sites for reactions with water and other impurities [112], and are therefore

important for stress corrosion cracking.

After investigating the fracture mechanisms in amorphous silica with a fully classical

approach, we tackled the problem with a more refined methodology: the QM/MM

LOTF technique (see Sec. 2.5). For describing the region far away from the inner

quantum zone, we used the TS potential, since it turned out to be a very reliable

and stable force field. This classical potential was then combined with an ab initio

description for a few atoms located around the crack tip, whose energies and forces

were calculated at QM precision with the CP2K code.

Long-range electrostatic forces play a key role in ionic materials such as silica, so

the electrostatic environment generated by the far away MM atoms must be included

in the QM calculation. The hybrid region was initialised at the exact crack tip, and the

selection of the quantum active region was carried out following topological criteria.

Namely, we chose all the Si atoms contained within a given radius. All the O atoms

connected with the selected Si atoms were then also included in the active quantum

zone.

Once the quantum zone was selected, a buffer region surrounding the inner core

was grown following a bond hopping approach, in order to give converged forces on the
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5.3. Results

(a) t = 0 ps; G = 5.6 J/m2

(b) t = 50 ps; G = 10.57 J/m2

(c) t = 70 ps; G = 12.57 J/m2

Figure 5.3: Classical MD snapshots of catastrophic fracture in amorphous silica at
room temperature.
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5.3. Results

Figure 5.4: Formation of two-membered ring chains between the silica surfaces opened
by the crack. Colouring denotes atomic coordination, with red Si atoms being over-
coordinated and green Si atoms being under-coordinated.

central atoms. Again, this implied making sure that all Si atoms were terminated with

their oxygens, in order to allow the cluster to be chemically passivated.

When the overall QM cluster (which contains the effective quantum atoms and the

buffer atoms) is chosen, we need to terminate it in a suitable way. Different mechanisms

have been proposed in the literature. In particular, we considered in our simulations:

1. Hydrogen termination: all the O atoms are terminated with an H atom, in order

to create a O-H bond.

2. Oxygen termination: all the Si atoms are terminated with their oxygens, and

all the O atoms are terminated with an extra electron to passivate them. This

requires the core charge on the oxygen ions to be increased to ensure overall

neutrality. This approach is a generalisation of the one proposed in Ref. [113].

Several convergence tests have been performed in order to select the termination

mechanism that is best for our particular system, and to identify the calculation pa-

rameters to be used. Indeed, particular attention has to be paid to the following key

parameters, whose values have to be carefully chosen to obtain convergent and reliable

results:

• The convergence threshold for the SCF loop, which was set equal to 10−6 Ha1;

• The electronic smearing temperature, set to T = 5000 K;

1The Hartree (Ha) is an atomic unit of energy - 1 Ha ∼ 27.2 eV
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5.3. Results

Figure 5.5: Force errors during LOTF predictor-corrector dynamics for different num-
bers of extrapolation steps. Red, green, blue and cyan lines correspond to 10, 8, 6 and
4 extrapolation steps, respectively.

• The number of unoccupied molecular orbitals which was increased with respect

to the default value of CP2K (this value increases with the size of the system).

Further key parameters are the number and length of the springs used by the LOTF

adjustable potential to fit the QM forces, and the number of extrapolation steps (see

Sec. 2.5.3). The larger the number of extrapolation steps, the faster the calculation will

be since a lower frequency of QM calculations is required. Tests have been performed

on a minimal hybrid region of a single tetrahedral SiO2 unit. In Fig. 5.5 we reproduce

the force errors during LOTF predictor corrector dynamics for differing numbers of

extrapolation steps.

We have further investigated the error associated with the number of springs used

for the adjustable potential. This parameter is measured in terms of the maximum

number of bond hops between pairs of atoms for them to be joined by an adjustable

spring potential term. Increasing this value increases the number of the parameterised

spring terms used by the LOTF scheme to fit the QM forces, and therefore increases the

accuracy of the fit, but, as with any fitting procedure using too many degrees of freedom

implies the risk of over-fitting with consequent loss of transferability. The minimum
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5.3. Results

(a) (b)

Figure 5.6: Quantum silica clusters selected for LOTF simulation: (a) 152 QM atoms;
(b) 250 QM atoms

number of possible hops for a reasonably accurate fit is five, which significantly improves

the performance with respect to using just three hops (the default for dense covalent

materials such as Si), with a very satisfactory maximum force error of 0.05 eV/Å

during the interpolation.

5.4 Discussion and analysis

A main issue in LOTF calculations is the high computational cost arising from the very

large size of the clusters under consideration, resulting from the large buffer radius (8−
10 Å) needed to give converged forces, and the O(N3) scaling of the key QM algorithms.

For this reason great efforts have been made to carefully choose quantum regions as

small as possible to minimise the computational demand. We found the CP2K package

to be highly memory intensive; this was the main computational bottleneck of our

calculations.

The smallest QM region we were able to build in our amorphous silica structure

contained 152 atoms. This size is just sufficient to represent a crack front traversing

an amorphous SiO2 bond network, whilst still enforcing periodic boundary conditions.

Two main LOTF simulations have been performed using this active region, with two

different sizes of the buffer region discussed above.

The computational cost of a single QM calculation on the larger buffer (Fig. 5.6b)

is around 460 CPU hours, while the same operation for buffer (Fig. 5.6a) requires 140

CPU hours. Using the LOTF method with 8 extrapolation steps gives an overall cost
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5. Summary

of 57.5 and 17.5 CPU hours per time step, respectively. Using the smaller buffer size,

the first bond breaking event occurs after 0.1 ps of LOTF molecular dynamics.

We note that following the entire dynamics of a crack in amorphous silica using

quantum calculations can only be achieved on very large-scale HPC platforms. On

the contrary, the LOTF scheme could be used to check the forces on specific snapshots

generated through classical MD simulations of fracture processes carried out by reliable

QM-derived force fields (this option would not be available for purely covalent systems

where suitable classical potentials do not exist). Moreover, our hybrid scheme appears

ideal to investigate targeted properties of structures like the 2-membered rings chains

outlined in Sec. 5.3.2, or modelling chemical reactions at the crack tip with Na+ ions

or H2O on the same fashion outlined in Chapter 3.

5.5 Summary

A preliminary molecular dynamics investigation on the fracture problem in amorphous

silica structures has been presented. A technique to reproduce amorphous silica struc-

tures has been tested using a classical approach; calculations of stress strain curves

have shown a fair agreement with previous literature studies. To this extent, interest-

ing features like the formation of 2M ring chains have been detected.

The main difficulty has been experienced in efficiently applying a hybrid technique,

as it has been done successfully in silicon. In fact, it has been shown that the computa-

tional cost necessary to achieve significant results of catastrophic fracture propagation

comparable with experiments was beyond our current computational capacity. Higher

computational resources are necessary to attack the fracture problem in amorphous

silica, where larger system sizes are necessary because of the intrinsic lack of long

range order typical of crystalline forms. Future challenges opened by this work will be

outlined in Chapter 6.
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Chapter 6

Future work

6.1 Fracture in glassy interfaces

Efficiency and durability of multi-layered materials depend on the properties of inter-

faces between different glassy phases. In Chapter 5 we only started a journey towards

the challenge of studying fracture mechanisms in glassy interfaces. One of the main

issue that we encountered behind modelling such a system is definitely the size, which

is a consequence of the amorphous nature of glass. The absence of a long range order,

commonly found in crystals, requires sampling amorphous structures in large three-

dimensional samples.

6.1.1 Titanium dioxide

Titanium dioxide is encountered in nature in three main crystalline forms known as

rutile, anatase and brookite. Rutile is the most stable phase at all temperatures, while

the metastable phases anatase and brookite turn out in rutile upon heating.

In particular, titania anatase is an excellent photocatalyst material for environmen-

tal purification. Its scientific and industrial applications are numerous, ranging from

white pigments, sunscreen and UV absorber, as a photocatalyst under ultraviolet light

and in glass coatings with self cleaning and anti fogging properties. It also presents a

super-hydrophilic phenomenon which led industries to superpose thin films of titania

on amorphous silica, making a new high-tech self cleaning glass.

The photocatalytic property, discovered by Fujishima in 1967, is particularly im-

portant in energetic applications: under UV light TiO2 (especially titania anatase)

undergoes electrochemical photolysis if connected to an electrochemical cell containing

water. [114] The super-hydrophilicity of TiO2 coated glass was then discovered in 1995
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6.1. Fracture in glassy interfaces

again by Fujishima. [115] When TiO2 is irradiated by UV light, water molecules adhere

perfectly to the surface by reducing to zero its contact angle.

The photocatalytic and super-hydrophilic properties combined together make tita-

nium dioxide the main ingredient to build self cleaning devices. In recent years thin

films of titania have been extensively used as coating for glass; interfacing amorphous

silica structures with titania generates a new product with self-cleaning properties.

Moreover, the photocatalytic effect, active when the material is exposed to light, is

responsible for chemical reactions which eventually oxidise any biological films present

on the surface of the exposed glass. Despite their very recent discovery, self cleaning

glasses are nowadays in mass production by several glass companies, with application

to solar panels and architectural covering of buildings.

6.1.2 Preliminary results on titania anatase

We present preliminary molecular dynamics simulations of fracture propagation in tita-

nia (anatase) structures. To model the interatomic interaction between atoms we chose

a modified version [109] of the Tangney-Scandolo (TS) potential [116], parameterised

using density functional theory on rutile structures.

The TS pair potential has the Morse-stretch form:

Uij =
qiqj
rij

+Dij [e
γij [1−(rij/r

0
ij)]]− 2e(γij/2)[1−(rij/r

0
ij)]] (6.1)

where Uij is the energy of interactions between ions i and j and rij = |ri − rj | is the

distance between them. The charge of ion i is qi, while parameters specific to the pair of

species areDij , γij and r0
ij . The exponential part of the potential is truncated at a radius

of 18.0 a.u. Regarding the dipole polarisation of ions, the induction of dipole moments

includes the local electrostatic field and the short range repulsive forces between ions.

The preliminary results presented here constitute the first application of the titania

TS potential to fracture simulation. Prior to running any fracture simulations, a seed

crack on the (001) cleavage plane with the crack front along the [010] direction was

built and relaxed in the anatase structure. Trying to build a single ended crack creates

the technical difficulty of chemically terminating the yz surfaces perpendicular to the x

crack propagation direction, without which polarisation instabilities could occur during

the simulations. This problem was avoided by considering a double-ended crack with

periodic boundary conditions along the x and z directions.

Figure 6.1 reports the time evolution of full classical MD simulations on a double

ended crack in titania anatase. To initiate the fracture, a tensile loading was applied
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6.1. Fracture in glassy interfaces

(a) t = 0 ps; G = 4 J/m2. (b) t = 20 ps; G = 9.7 J/m2.

Figure 6.1: Series of two snapshots from 20 ps of molecular dynamics on TiO2 anatase
crack. Increasing smoothly the loading the crack tip plastically deforms (b).

to the top and bottom surfaces with a constant rate of 5× 10−4 J/m2 fs (on the same

fashion illustrated in Sec. 2.6.2 for a edge crack). Whenever a bond breaking was de-

tected, the loading was kept constant, allowing the system to release the concentration

of stress at the tip. If no bond breaking was detected within 500 fs, the loading was

increased at the same rate.

The feature highlighted by this test is that the crack tip does not release elastic

energy by breaking bonds along a cleavage plane, but instead by lengthening bonds

and deforming their alignment relative to the surrounding region. Whilst the model

does not reproduce brittle fracture behaviour in this cleavage plane, the deformed

region develops following a straight path similar to that typically observed upon crack

propagation in brittle materials. This result should be further investigated (e.g., by

decreasing the loading rate), since there is no evidence of this kind of behaviour in

anatase structures in the literature. The use of the full LOTF scheme for crystalline

anatase can be taken into consideration only if the methods outlined above prove unable

to accurately describe the brittle behaviour of titanium dioxide.

6.1.3 Testing SiO2/TiO2

Interest in advancing research on self-cleaning glass at the atomic scale is mainly due to

the complicated mechanical adhesion of titania thin films on glass. In fact, the interface

of two materials that do not adhere perfectly creates a potential threat to its durability.

Defects and voids at the interface represent potential seed cracks that, under loading,

might unexpectedly fail.

A preliminary investigation of the a-SiO2/TiO2 interface has been started by col-

laborators of the ADGLASS consortium. [117] To this purpose, a model of a sharp
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6.2. Stress corrosion cracking

(a) (b)

Figure 6.2: Self-cleaning property application to photovoltaic cells. (a) Typical problem
of photovoltaic cells (picture above): long-time exposure to outdoor environments leads
to the formation of opaque film and growth of moss (picture below) [118]. (b) Proposed
atomistic model of self-cleaning glass a− SiO2 − TiO2 interface; atoms are coloured by
species: yellow for silicon, grey for titanium, red for oxygen. [117]

interface between TiO2(101) anatase and a-SiO2 has been constructed and reported in

Fig. 6.2b. Notice that, away from the interface layer, the perfect atomistic structure of

the two compounds is preserved. The geometrical structure of the interface has been

investigated with full QM precision level by ab-initio DFT calculations, finding a strong

connection between the bonding topology and the electron density of states.

A current issue under investigation is preparing a crack model of the interface

system. In fact, the bonding topology at the interface is hardly reproducible by classical

interatomic potentials. For this reason, the LOTF approach represents a promising

strategy to study the complicated interface at a more reasonable computational cost

compared to other hybrid techniques. Performing multi-scale simulations of fracture at

the interface of SiO2/TiO2 is one of the milestones of the “Fracture Team” at Kings

College London.

6.2 Stress corrosion cracking

Fracture of silicates is relevant in many other sectors of human life, spanning from

mining, where a huge amount of energy is required to fragment rocks into fine powder,
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6.2. Stress corrosion cracking

(a) (b)

Figure 6.3: Stress corrosion cracking in silica. (a) Subcritical stress corrosion cracking
induced by water in silica and silicon; (b) Role of deep water penetration in silica
fracture. [119]

to medicine, where biomedical implants introduced into the human body are often made

of silica, titania and zirconia for their high compatibility. A vein of future research is

to perform QM-accurate simulations to clarify the role played by the oxygen and water

in initiating stress corrosion cracking (SCC) in silica and silicon. [119]

This task can be decomposed into three major goals:

1. SCC in wet silicon;

2. SCC in wet silica;

3. Role of deep water in penetration.

Firstly, motivated by the analysis of SCC of silicon via oxygen dissociation presented

in Chapter 3, we aim to complete the picture of a realistic experimental setting by

clarifying the role of water towards an enhancement, or a passivation, of the observed

subcritical crack growth in silicon. Ideally, since humidity and air are both present at

room conditions, the simultaneous attack of water and oxygen at the crack tip must be

taken into consideration.

Secondly, after determining the crack initiation conditions, a hybrid simulation

of SCC in silica via water could be carried out. This will offer the possibility to

quantitatively compare experimental measures of reaction barriers of the hydrolysis

process with simulation predictions.

In addition to the above, SCC may be enhanced by the diffusion of water ahead of

a crack within the strained silica matrix. [83]. This is particularly important in amor-

phous silica, where small pre-existing voids can act as seed sites for cavity formation.
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Chapter 7

Conclusions

In this thesis, I focused on two archetypical systems of brittle fracture: silicon and

amorphous silica. The fracture problem has been analysed in a wide range of velocities,

from those typical of subcritical crack growth induced by stress corrosion mechanisms

to those associated with the catastrophic brittle fracture behaviour. By means of hybrid

quantum mechanical and classical molecular dynamics simulations, I could reach the

following main conclusions:

• stress corrosion cracking in silicon takes place via oxygen dissociation and conse-

quent adsorption at the crack tip;

• cracks in silicon undergo a transition from catastrophic-mode to activated-mode

crack speeds as a function of temperature and loading;

• catastrophic fracture in amorphous silica occurs via nucleation, growth and coa-

lescence of flaws intrinsically present in its structure.

My hybrid simulations reveal that oxygen plays the role of a corrosive agent in

silicon fracture, consistent with recent experimental measurements of fracture initiation

energy. Chemical reactions occurring in proximity of the crack tip induce immediate

dissociation of the first oxygen molecule, followed by the attack of single oxygen atoms

to the silicon sites at the tip. This computational prediction is in excellent agreement

with recent experimental observations of subcritical crack growth in air: an important

consequence is the possibility to control the fracture process via the oxygen supply

at the crack tip. Interestingly the combined attack by oxygen and water would be a

natural extension of my research, which would have to involve lower loads and speeds

(see Fig. 3.1a), where humidity must be taken into account. Moreover, modelling

analogous processes in silicon dioxide would be extremely useful and relevant in both
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the amorphous and crystalline forms, e.g., in view of the strategic importance for energy

saving of fine-tuning the environmental parameters during rock crushing and grinding

in mineral ores processing.

In my crack velocity investigation I observe a catastrophic-to-activated transition

of crack propagation in silicon at energy release rates of around 3 J/m2, remarkably

with “cold” cracks travelling faster than “hot” ones at higher loadings. This compu-

tational prediction, achieved via a hybrid approach involving two classical force fields

yields insight potentially useful for a better understanding of the dynamics of the crack

as a function of temperature. An interesting, but so far prohibitively cpu-intensive

computational test of these theoretical finding could be achieved by carrying out new

simulations free of the constraint of periodic boundary conditions along the crack front

direction.

Extended crack front sections could be investigated in this work in a series of (non

hybrid) classical molecular dynamics simulations which allowed me to reproduce typical

fracture features of crack propagation in amorphous silica e.g., the formation of two-

membered ring chains, confirming the results of previous studies. As a result, fracture

in amorphous silica appears to originate by the nucleation, growth and coalescence of

nano-voids intrinsic to its structure.

In conclusion, I applied hybrid quantum mechanical and classical molecular dy-

namics simulations to two prototypical brittle model materials: silicon and amorphous

silica. Among all the results of this research, perhaps the most significant one is that

for the first time we have computational evidence, at the quantum accuracy level, of the

occurrence of stress corrosion cracking promoted by oxygen dissociation and adsorption

at the silicon crack tip; this result is in excellent agreement with novel experimental ob-

servations carried out in a collaborating experimental group in parallel with the present

study.
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