
This electronic thesis or dissertation has been

downloaded from the King’s Research Portal at

https://kclpure.kcl.ac.uk/portal/

Take down policy

If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing

details, and we will remove access to the work immediately and investigate your claim.

END USER LICENCE AGREEMENT

Unless another licence is stated on the immediately following page this work is licensed

under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

licence. https://creativecommons.org/licenses/by-nc-nd/4.0/

You are free to copy, distribute and transmit the work

Under the following conditions:

 Attribution: You must attribute the work in the manner specified by the author (but not in any
way that suggests that they endorse you or your use of the work).

 Non Commercial: You may not use this work for commercial purposes.

 No Derivative Works - You may not alter, transform, or build upon this work.

Any of these conditions can be waived if you receive permission from the author. Your fair dealings and

other rights are in no way affected by the above.

The copyright of this thesis rests with the author and no quotation from it or information derived from it

may be published without proper acknowledgement.

Topics in the structure and search of large networks

Siantos, Yiannis

Awarding institution:
King's College London

Download date: 09. Jan. 2025

Topics in the structure and search of large networks

Yiannis Siantos

King’s College London

Submitted for the degree Doctor of Philosophy
September 2014

Abstract

Through the development of the topic of Web Science there has been interest in the

evolution of networks such as the WWW and online social networks almost as ecospheres

in a biological sense. However much of the value of the web comes from our ability to

search and index it rapidly through the development of ranking and retrieval algorithms

such as that offered by Google. Our thesis examines properties of online social networks,

and in particular Twitter, whose properties have not been examined to date. However

one major problem is the very large size of these networks, and limited amount of

resources that are usually available when accessing them for research purposes.

We show that through the use of random walks, we are able to quickly discover im-

portant portions of such networks and estimate interesting properties, while keeping

computational costs low.

Our thesis focuses on the following:

1. To study how to crawl massive social networks representatively with limited re-

sources. This will allow users to get a meaningful snapshot of the network. Our

methodology for this is:

(a) To investigate this problem experimentally and theoretically on artificial net-

works simulated in a controlled environment.

(b) To investigate on real networks by comparing our limited designed crawls,

with data we have obtained giving the complete structure of e.g. the Twitter

network.

2. To investigate the graph theoretic structure of the networks, to the following ends:

(a) To devise representative methods of generating artificial networks as given in

1(a), both experimentally, and supported by theory.

(b) To relate this structure to improving the design of algorithms for information

retrieval, ranking home pages, viral advertising etc.

2

3. To investigate the existence of patterns in user behavior in social networks in order

to:

(a) Detect user groups with similar interests/behaviors.

(b) Recommend activities to users based on activities of similar users.

3

Acknowledgements

I firstly want to thank my supervisor Prof. Colin Cooper. His experience, knowledge

and guidance throughout my Ph.D. have been invaluable. He has been an inspiration for

my continuous desire to learn and improve both as a researcher as well as an academic.

I also wish to thank my second supervisor Prof. Tomasz Radzik. His continuous support

and advice have been very important throughout my Ph.D.

I would also like to thank my colleague Mr. Sang Hyuk Lee. Collaborating with him

has been very constructive and at the same time enjoyable experience.

In addition, I would like to thank by colleague Mr. Christos Hadjinikoli. His help and

support as a colleague and friend have helped me throughout the entire Ph.D.

Furthermore I would like to thank my colleague Ms. Andrada Voinitchi who’s support,

advice and motivation helped me greatly throughout my research.

I would also like to thank all my colleagues, friends and relatives who have supported

me throughout these past few years. Although I could not possibly mention all of them

here, their support has been invaluable.

Finally, I would like to thank my parents. Their support throughout my entire life have

made me into the person I am and it is due to them that I have been able to achieve

everything I have achieved so far in my life.

4

Dedication

To my parents, to whom I owe everything I am and to my late sister, who’s been a

constant inspiration in my life.

5

Contents

1 Introduction 23

1.1 Large Online Networks . 25

1.2 Searching and sampling large online networks 27

1.3 Network Modeling and Generation . 28

1.4 Contributions and thesis outline . 29

1.4.1 Graphs properties and generation 29

1.4.2 Markov Chains and Random Walks 30

1.4.3 Estimating network properties . 30

1.4.4 Network search and discovery . 31

1.4.5 Information Filtering and Recommendation 31

2 Scale-free graphs and models 33

2.1 Graph properties of large networks . 34

2.1.1 Degree Sequence . 34

2.1.2 Degree distribution . 34

2.1.3 Diameter . 35

6

CONTENTS 7

2.1.4 Scale-Free Structure . 36

2.1.5 Degree correlations . 36

2.1.6 Expander graphs . 37

2.1.7 Connected Components And Community Structure 38

2.1.8 Transitivity Ratio and Clustering Coefficient 42

2.2 Scale-free graphs and related models . 43

2.2.1 Erdős–Rényi Graph . 43

2.2.2 Preferential attachment models . 45

2.2.3 Edge Copying model . 57

2.2.4 Triangle Closing Model . 58

2.2.5 Forest Fire Model . 63

2.2.6 Stochastic Kronecker Graph . 65

2.2.7 Affiliation Networks . 68

2.2.8 Random Walk Graph . 71

2.2.9 Preferential attachment and message propagation 77

2.2.10 Grow, Back-Connect, Densify . 80

2.2.11 Partitioned Preferential Attachment 81

2.2.12 Implicit Power-Law Graph Model 83

2.3 Conclusion . 87

3 Markov Chains And Random Walks 89

3.1 General properties of Markov Chains . 92

3.1.1 Reversibility . 98

CONTENTS 8

3.1.2 Fundamental matrix Z . 99

3.1.3 Mixing times–Relaxation times . 100

3.1.4 Stopping times, hitting times and return times 101

3.1.5 Hitting Time From Stationarity . 102

3.2 Simple Random Walk (SRW) . 103

3.3 Weighted Random Walk (WRW) . 106

3.3.1 Electrical network paradigm . 107

3.4 Lazy Random Walk (LRW) . 108

3.5 Metropolis Hastings Random Walk (MHRW) 109

3.6 Random Walk implementation and simulations 110

3.6.1 Caching to improve WRW performance 112

3.7 Conclusions . 115

4 Estimating Network Properties: Overview 117

4.1 Estimating Population Size Using Uniform Sampling 121

4.1.1 Moran-Zippin method . 122

4.1.2 Lincoln-Petersen method . 123

4.1.3 Regression method . 124

4.1.4 Coupon collection . 126

4.1.5 Sample-and-collide method . 128

4.2 Obtaining uniformly at random samples using random walks 129

4.2.1 Using a continuous time random walk as a surrogate for uniform

sampling. 130

4.2.2 Using a Re-Weighted Random Walk 131

CONTENTS 9

4.2.3 Using a Metropolis Hastings Random Walk 132

4.3 Uniform Sampling from the degree distribution 132

4.3.1 Twitter: Initial crawling . 133

4.3.2 Second crawling, unbiased sampling 135

4.3.3 Uniform Sampling: A study of efficiency 138

4.4 Conclusion . 140

5 Estimating Network Properties Using Random Walks 142

5.1 Methodology . 145

5.1.1 First return times of Random Walks. 145

5.1.2 Cycle formula of regenerative processes (CFRP) 149

5.1.3 Method of running totals . 150

5.2 Graph property estimators . 153

5.2.1 Edge estimator . 154

5.2.2 Random Walk based vertex estimators 155

5.2.3 Triangle estimator . 157

5.2.4 Estimating the number of occurrences of an arbitrary fixed subgraph.159

5.2.5 Estimating average clustering coefficient 160

5.2.6 Estimating network averages . 163

5.3 Conclusion . 163

6 Estimating Network Properties: Experimental Results 164

6.1 Sampling approach, and presentation of results. 164

6.1.1 Preferential Attachment Model . 166

CONTENTS 10

6.1.2 Hybrid model . 171

6.1.3 Google Web Sample . 179

6.1.4 SlashDot Zoo Network . 186

6.1.5 DBLP Co-Author Network . 192

6.1.6 LiveJournal . 199

6.1.7 General Discussion of the results 205

6.2 Discussion of results and conclusions . 205

7 Fast Discovery of High Degree Vertices 208

7.1 Problem motivation . 208

7.1.1 Preferential attachment graphs, model and search methods 211

7.1.2 Fast high degree vertex discovery Random Walk 216

7.1.3 Experimental results . 222

7.2 Finding high degree vertices in general graphs with a power-law degree

distribution . 229

7.2.1 Conclusions . 234

8 Information filtering and recommendation 235

8.1 Recommendation Systems Based On Collaborative Filtering 235

8.2 Dataset Description . 239

8.2.1 Ranking methodologies . 239

8.2.2 Metric I: The number of correctly placed pairs 241

8.2.3 Metric II: The number of hits in the top k recommendations . . . 241

8.2.4 Degree bias of T . 242

8.3 Summary of aims and findings . 242

8.4 Ranking algorithms . 244

8.5 Matrix based operations: Implementation details 248

8.6 Ranking methods based on simulation of Random Walks 249

8.6.1 Time measurements . 258

8.6.2 Convergence of 3-step random walks to P 3 258

8.6.3 Improving recommendations using degree-weighted Random Walks 262

8.7 Experimental Results . 263

8.8 Conclusion . 266

9 Conclusions 268

9.1 Scale-free graphs and generative models 268

9.2 Markov Chains and Random Walks . 269

9.3 Estimating network properties . 270

9.4 Estimating network properties using Random Walks 271

9.5 Fast discovery of high degree vertices . 273

9.6 Information filtering and recommendation 273

Bibliography 274

Acronyms 290

11

List of Tables

8.1 Short Random Walks On the Small Dataset 256

8.2 Short Random Walks On The Medium sized dataset 257

8.3 Short random walks on the large dataset 259

8.4 Comparison of the scores of P 3 and P 5 and the estimates P̂ 3 and P̂ 5

obtained through short random walks. 260

12

List of Figures

2.1 Erdős-Rényi Graph G(n, p) graph with n = 50000, p = 0.0001 44

2.2 Degree distribution of a BA model graph 47

2.3 Degree distribution for m = 3, c = 3.0 (Barabási-Albert model) 49

2.4 Degree distribution for c = 3.5 . 50

2.5 Degree distribution for c = 6 . 50

2.6 Degree distribution for c = 11 . 51

2.7 m = 3, c = 3.0 (Barabási-Albert model) 55

2.8 Maximum Degree of Web-Graphs with η = 0.5 57

2.9 Degree distribution of the edge copying graph with γ = 0.5 59

2.10 Triangle closing . 59

2.11 Degree distribution of the triangle closing graph with random-random

selection policy . 60

2.12 Triangle closing graph, random-random selection policy. n = 1000,m = 3 61

2.13 Undirected triangle closing slope. Convergence rate to c. 62

2.14 Degree distribution of the forest fire model with n = 2.5∗106p = 0.5, r = 0.3 63

2.15 Directed Random Walk (RW). n = 150000, c = 3.86, cin = 3.27 73

13

LIST OF FIGURES 14

2.16 Undirected RW. n = 150000, c = 3.37 . 73

2.17 Directed vs Undirected Total Degrees, n = 150000 74

2.18 Undirected. Constant s = 20 Varying m. n = 150000 74

2.19 Undirected. Constant m = 3 Varying s. n = 150000 75

2.20 Varying s, Directed vs Undirected. 75

2.21 Community structure of undirected random walk graph. n = 1000,m =

2, s = 3 . 76

2.22 Community structure of undirected random walk graph. n = 1000,m =

2, s = 50 . 76

2.23 Preferential Message Propagation . 78

2.24 Preferential Message Propagation. n = 6000, m = 1,p = 0.6,hmax = 8 . . . 79

2.25 Grow-Back Connect-Densify Model. a = 0.5, b = c = 0.25,p = 0.1,N =

200000 . 81

2.26 Partitioned Preferential Attachment. n = 7, 5.105,m = 3, s = 500 82

2.27 Partitioned Preferential Attachment. n = 5000,m = 3, s = 50, Q = 0.87 . 83

2.28 Implicit Graph Model. α = 1.25,N = 10000,c = 1.8 86

3.1 Times taken for Simple Random Walk (SRW) and Weighted Random

Walk (WRW) and with and without caching on Preferential Attachment

Graph . 114

3.2 Times taken for SRW and WRW and with and without caching on d-

Regular Graph . 114

4.1 Population estimation using the regression method. n = 50000 125

4.2 Real Twitter data vs crawled data . 134

LIST OF FIGURES 15

4.3 In-Degrees (red) Out-Degrees (green) Total Degrees (blue) and tweets

(fuchsia) as a function of frequency on a log scale 137

4.4 Real 2009 Twitter distribution (Green) compared to sampled Twitter dis-

tribution (Red) . 138

4.5 K–S test on a preferential attachment graph 139

6.1 Edge estimates for the preferential attachment graph based on the first

return times of a SRW . 167

6.2 Vertex estimates for the preferential attachment model based on the first

return times of a VRW . 168

6.3 Vertex estimates for the preferential attachment model based on the Cycle

formula of regenerative processes (CFRP) 170

6.4 Edge estimate based on edge collisions on PA 171

6.5 Vertex estimates for the hybrid triangle closing model based on the first

return times of a VRW . 172

6.6 Edge estimates for the hybrid triangle closing model based on the first

return times of a SRW . 173

6.7 Triangle estimates for the hybrid triangle closing model based on the first

return times of a TRW . 174

6.8 Triangle estimates for the hybrid triangle closing model based on the CFRP175

6.9 Vertex estimates for the hybrid triangle closing model based on the CFRP 176

6.10 Clustering coefficient estimate using the running totals method for esti-

mating network averages (see Section 5.2.5) 177

6.11 Edge estimates for the hybrid triangle closing model based on the first

return times of a SRW . 178

LIST OF FIGURES 16

6.12 Vertex estimates for the Google Web graph sample based on the first

return times of a VRW . 180

6.13 Edge estimates for the Google Web graph sample based on the first return

times of a SRW . 181

6.14 Triangle estimates for the Google Web graph sample based on the first

return times of a TRW . 182

6.15 Triangle estimates for the Google Web graph sample based on the CFRP 183

6.16 Vertex estimates for the Google Web graph sample based on the CFRP . 184

6.17 Google Web: Clustering coefficient estimate using the running totals

method for estimating network averages 185

6.18 Vertex estimates for the SlashDot Zoo Online Social Network (OLSN)

based on the first return times of a VRW 187

6.19 Edge estimates for the SlashDot Zoo OLSN based on the first return times

of a SRW . 188

6.20 Triangle estimates for the SlashDot Zoo OLSN based on the first return

times of a TRW . 189

6.21 Triangle estimates for the SlashDot Zoo OLSN based on the CFRP 190

6.22 Vertex estimates for the SlashDot Zoo OLSN based on the CFRP 191

6.23 Vertex estimates for the DBLP co-author graph based on the first return

times of a VRW . 193

6.24 Edge estimates for the DBLP co-author graph based on the first return

times of a SRW . 194

6.25 Triangle estimates for the DBLP co-author graph based on the first return

times of a TRW . 195

6.26 Triangle estimates for the DBLP co-author graph based on the CFRP . . 196

LIST OF FIGURES 17

6.27 Vertex estimates for the DBLP co-author graph based on the CFRP . . . 197

6.28 Vertex estimates for the LiveJournal network based on the first return

times of a VRW . 200

6.29 Edge estimates for the LiveJournal network based on the first return times

of a SRW . 201

6.30 Triangle estimates for the LiveJournal network based on the first return

times of a TRW . 202

6.31 Triangle estimates for the LiveJournal network based on the CFRP 203

6.32 Vertex estimates for the LiveJournal network based on the CFRP 204

7.2 Cover time of all vertices of degree at least ta in G(c,m, t), as a function

of a. 223

7.3 Cover time of all vertices of degree at least ta in G(c,m, t), as a function

of a. 224

7.4 Cover time of all vertices of degree at least ta in G(c,m, t), as a function

of a. 225

7.5 Cover time of all vertices of degree at least ta in G(c,m, t), as a function

of a. 226

7.6 Google Web Sample: Cover time of all vertices of degree at least ta in GW

as a function of a . 227

7.7 Cover time of all vertices of degree at least ta in GW as a function of a . . 230

8.1 Results of the P 3
α method using matrix operations. This incorporates the

results of the A3 method when α = 0 and the P 3 method when α = 1. . . 247

8.2 Convergence to P 3 on small dataset . 253

8.3 Convergence to P 3 on medium dataset . 254

8.4 Convergence to P 3 on large dataset . 255

8.5 Average walk time for budget per user . 258

8.6 Total variation distance . 261

8.7 The scores of the ranking algorithms based on various weighted random

walks for the 100K MovieLens dataset: Fouss’ measure. 264

8.8 The same experiments as in Figure 8.7, but the quality of rankings shown

in the top 10% measure. 265

18

Chapter 1

Introduction

Ever since the prevalence of the Internet as a medium to exchange information between

people situated in remote locations, starting from the router network all the way to the

World Wide Web (WWW) and more recently Online Social Networks (OLSNs), many

interesting structures have popped up. These networks serve different purposes, e.g.

the router network redirects packets of information along the internet, while the WWW

is a collection of webpages connected to each other using hyperlinks and OLSNs allow

people to communicate with their friends and acquaintances and interact in a social

context. While these structures appeared at different times to serve different purposes,

when one models these networks as graphs then similarities can be observed and new

shared properties are constantly being discovered.

The graphs of these networks share a major common characteristic which puts them

in a special family of scale-free graphs with power-law degree distributions. Informally,

these graphs show a structural invariance no matter how massive they are, that is, their

size does not play a part in their local structure and global properties, which makes

them scale-free. Additionally when viewed as graphs, the degrees of the vertices of these

graphs (i.e. the number of connections/edges each vertex has to other vertices) are in

most cases small, however there are very rare but important exceptions of vertices of

very high degrees. More specifically, when one selects a vertex uniformly at random

(uar) from such a network, then the probability distribution of the degree of this vertex

19

20

follows a long-tail or power-law distribution.

The motivation behind our work comes from the scale-free aspect of these networks as

well as their very large size. We are interested in determining further network properties

but at the same time we wish to do this quickly and efficiently. Therefore our specific

interests in this topic are as follows:

1. Methods to obtain representative samples of massive networks with limited re-

sources. This will allow us to get a meaningful snapshot of the network without

the expense of an extensive sampling of hundreds of millions of home pages.

2. Investigating the graph theoretic properties and structure of scale-free networks

3. Generation of artificial graphs which fit the structure of the examined networks

and analyze the generation processes.

4. Prediction of future states of these graphs by taking advantage of knowledge al-

ready acquired.

The contents of this thesis also appear in the following publications:

Colin Cooper, Tomasz Radzik, and Yiannis Siantos.

A fast algorithm to find all high degree vertices in graphs with a power law de-

gree sequence. In WAW 2012 Proceedings, volume 7323 of LNCS, pages 165–178.

Springer, 2012. Appears in Chapter 7 [37].

Colin Cooper, Tomasz Radzik, and Yiannis Siantos.

A fast algorithm to find all high degree vertices in power law graphs. In Proceedings

of the 21st international conference companion on World Wide Web, WWW ’12

Companion, pages 1007–1016, New York, NY, USA, 2012. ACM. Appears in

Chapter 7 [36].

Colin Cooper, Tomasz Radzik, and Yiannis Siantos.

Estimating network parameters using random walks. In CASoN, pages 33–40.

IEEE, 2012. Appears in Chapters 5 and 6 [35].

1.1. Large Online Networks 21

Colin Cooper, Tomasz Radzik, and Yiannis Siantos.

Fast low-cost estimation of network properties using random walks. In Algorithms

and Models for the Web Graph, volume 8305 of LNCS, pages 130–143. Springer

International Publishing, 2013. Appears in Chapters 5 and 6 [38].

Colin Cooper, Tomasz Radzik, and Yiannis Siantos.

Estimating network parameters using random walks. Social Network Analysis and

Mining, 4(1), 2014. Appears in Chapters 5 and 6 [39].

Colin Cooper, Sang Hyuk Lee, Tomasz Radzik, and Yiannis Siantos.

Recommender systems based on random walks. Technical report, Department of

Informatics, King’s College London, August 2013. Appears in Chapter 8 [33].

Part of the project “Fast low cost methods to learn structure of large networks”,

funded by Samsung as part of the Samsung Global Research Outreach programme

awarded in 2012.

Colin Cooper, Sang-Hyuk Lee, Tomasz Radzik, and Yiannis Siantos.

Random walks in recommender systems: exact computation and simulations. In

WWW (Companion Volume), pages 811–816. ACM, 2014. Appears in Chapter 8

[34].

1.1 Large Online Networks

The reason that OLSNs are interesting from a computer science and mathematical per-

spective may not be obvious. However upon deeper examination this issue is one which

has motivated increasing interest over the past few years due to the explosive growth

of OLSNs and the relative power that people have within these networks to affect the

world around them.

Recent developments in technology have allowed the creation of large networks, which

can be accessed globally via personal computers, or more recently mobile phones. The

1.1. Large Online Networks 22

original and most outstanding examples of such networks are the WWW, and the net-

work of email exchanges. Very recently, many novel OLSNs such as Twitter and Face-

book, or online video repositories such as YouTube have sprung up. These networks,

extensively interleaved with each other and the WWW, have substantial impact on the

way we live our lives. Nobody who has followed the political unrest in North Africa dur-

ing February of 2011 can be unaware of the importance of e.g. Twitter in galvanizing

and coordinating social behavior.

The WWW is remarkable in its own right, and its structure has been subject of consid-

erable research to understand the phenomena which are observed such as, for example,

the tendency of WWW pages to link to pages to which many other pages have already

linked. More recently, through the development of the topic of Web Science there has

been interest in the evolution of such networks as ecospheres in a biological sense. How-

ever much of the value of the web comes from our ability to search and index it rapidly

through the development of ranking and retrieval algorithms such as that offered by

Google.

Our research examines properties of OLSNs, to determine whether they share similar

structural properties with the WWW or other social networks. We focus particularly on

Twitter which is a very interesting OLSN from various aspects. The WWW is known

to exhibit a scale-free structure, with small world properties such as small diameter. By

understanding graph structure, smaller networks similar to the WWW can be modelled,

to allow evaluation of search algorithms.

The results that we will be presenting from crawling these networks, combined with a

presentation of the theoretical background show a similarity of basic structure between

the WWW and these other social networks with respect to properties such as degree

frequency distribution etc. This similarity may arise because of the way these networks

were generated. The similarity of the structure may allow the creation of a generative

model which describes them, and exhibits the same characteristics.

One major problem is the very large size of these networks, and limited amount of

1.2. Searching and sampling large online networks 23

resources that are usually available when accessing them for research purposes. To solve

this, a way to take representative samples will need to be found which ideally will produce

samples relatively small, to give a correct indication of specific properties of interest.

The areas of online social graph structure, unknown graph sampling and graph genera-

tion, mentioned above are unresolved topics, and many open questions remain. Solving

these problems by developing good theoretical graph generation methods and proposing

an effective and efficient way to sample online graphs, are of interest and would be a

useful tool for the community.

1.2 Searching and sampling large online networks

Another important aspect of our research focuses around graph sampling and crawling.

In reality we do not differentiate between these two terms since they are often used to

express the same goal. The remarkable size to which real world networks have grown

means that it is no longer feasible to obtain entire networks. Even if it were feasible

however, it may not be desirable due to the fact that in an ideal world we would like

to minimize the “cost” of obtaining these networks and most of the time this means

obtaining a precise and small sample.

Graph sampling and crawling can be seen as two terms which are similar in many ways.

Both terms are usually used in the same context and while sampling is the goal, crawling

is the way to achieve it. There are numerous methods available to gather samples from

graphs and many of them can be applicable to the real world networks. These methods

include Random Walks (RWs) and their variations as well as Breadth-First Search (BFS)

and other similar methods. Many of these methods will be presented throughout this

thesis as they play an important role in achieving some of our fundamental goals which

is graph sampling.

In our work we make extensive use of Markov Chains on graphs (Random Walks) and

related methods. We rely on simulating random walks on manufactured graphs or real

1.3. Network Modeling and Generation 24

online networks. The advantage of using RWs for the purposes of sampling from large

online network are:

� The RW naturally fits the constraints typically imposed by these networks e.g.

most networks don’t allow random access to their users but allow the neighboring

users of a given user to be queried.

� Markov Chains in general are memoryless and therefore we do not need to store

too much information locally. This is a great advantage since we use a personal

computer with limited capabilities which would, in practice, not be able to store

partial BFS trees or similarly large structures.

� There is a rich assortment of resources regarding RWs, such as e.g. the book

by Aldous and Fill [2], the survey by Lovász [95] or the work by C. Cooper et

al. [30, 32].

We use RWs for various reasons: (a) sample from a network with the purpose to estimate

certain properties, (b) quickly discover important vertices in a network and (c) rank all

other vertices in a network according to their relevance to a given vertex.

1.3 Network Modeling and Generation

While the intuition for modeling an OLSN as a graph is rather simple and may even

seem trivial, one may discover that upon interpreting such a structure there are many

questions that automatically arise. Such questions may include:

� What are the underlying processes that take place and contribute to the visible

structure of the network?

� Why does the network have this particular rate of growth?

� How do individual actors interact within the network and how does this affect the

network structure?

1.4. Contributions and thesis outline 25

� What is the most likely structure of the network after some time has elapsed?

� Who is most likely to create more links on the network and who is more likely to

receive those links?

� How can we get a sample and how do the properties of this sample relate to the

properties of the entire network?

These are just a few of the questions that arise. In general modeling the real world

networks is still an open question. There are numerous models which are available to

generate graphs which match a wide range of properties of real world networks (such as

OLSNs) but there is still work to be done with new observations constantly being made.

Generative models work based on various intuitions and can be seen as network evolution

models in the sense that they initialize small graphs and then build upon them in the

same way as a real network starts with a single node and evolves over time. It is believed

that this aspect of growth is essential in modeling these sorts of networks but it is not

the only aspect which needs to exist in these models.

1.4 Contributions and thesis outline

In this section we will outline our contributions to the areas of graph generation, RW

simulation, sampling, network search and information filtering.

1.4.1 Graphs properties and generation

In Chapter 2 we investigate graph generation models which generate graphs with prop-

erties that resemble real large online networks. We review various existing models and

introduce the following new ones:

1. Random walk graph model (Section 2.2.8).

2. Preferential attachment with message propagation model (Section 2.2.9).

1.4. Contributions and thesis outline 26

3. Grow, back-connect, densify model (Section 2.2.10).

4. Partitioned preferential attachment model (Section 2.2.11).

5. Implicit Power-Law graph model (Section 2.2.12).

1.4.2 Markov Chains and Random Walks

As mentioned above, Markov Chains are used extensively in our work. In Chapter 3

we introduce some basic properties of Markov Chains and in addition, some special

cases of Markov Chains i.e. the Simple Random Walk (SRW), Weighted Random Walk

(WRW), Lazy Random Walk (LRW) and Metropolis Hastings Random Walk (MHRW).

Our main contribution in the area of Markov Chains is in Markov Chain simulations.

In Section 3.6 we discuss the algorithmic aspect of RW simulations. We also propose a

method to greatly speed up WRWs when ran on large online networks using appropriate

caching techniques.

1.4.3 Estimating network properties

Estimating network properties is an area which is of great interest. As mentioned above,

due to the large size of large online networks, it is generally impractical, and sometimes

impossible to obtain entire snapshots of them, using the limited resources we have. At

the same time we are interested in knowing some of their basic properties. By this point,

it is clear that a solution to this problem needs to be found, and in our case, the solution

is sampling these networks, using appropriately designed sampling methods which, by

their design, would allow us to infer the properties we are interested in.

A general outline of some existing methods to estimate network properties can be found

in Chapter 4. Specifically, in this chapter we discuss some methods originating from the

fields of zoology, anthropology and sociology. In addition we present work we have done

in sampling from large online networks, and specifically Twitter [125]. In Section 4.3,

we show some of the more subtle differences of sampling using a RW against sampling

1.4. Contributions and thesis outline 27

uar . We also show certain drawbacks of uniform sampling by showing the rate of obtain-

ing certain categories of vertices on synthetic graphs which are similar to large online

networks.

In Chapter 5 we present additional methods to estimate network properties. These

methods differ from the methods presented in Chapter 4 which are, in most part, methods

based on sampling uar . The methods presented in Chapter 5 are sampling methods based

on RWs. We present an in depth description of three methods:

� The method of the first returns.

� The method of the Cycle formula of regenerative processes (CFRP).

� The method of the running totals.

In Chapter 6 we present experimental results obtained when applying these methods on

manufactured graphs as well as large online network datasets.

1.4.4 Network search and discovery

In Chapter 7 we present a method we have devised to quickly discover all high degree

vertices of a web-graph quickly. We suggest a method based on a degree biased RW

which would discover such vertices quicker than a SRW. We show both theoretically and

experimentally that this method indeed discovers high degree vertices quicker than a

SRW on graph generated using the web-graph model. In addition, the cover time of the

entire graph does not increase compared to a SRW. We also show that this method works

well as a heuristic to discover high degree vertices quickly on large online networks.

1.4.5 Information Filtering and Recommendation

An information filtering system, is a system which, when provided with data, will fil-

ter the data, keeping only the relevant information contained within, while discarding

irrelevant or redundant information. These systems have many applications such as in

1.4. Contributions and thesis outline 28

signal processing, information extraction and recommender systems. In Chapter 8 we

present our work in information filtering, and specifically in recommender systems. In

particular we focus on recommender systems based on collaborative filtering and build

on the work by Fouss et al. [50, 51].

Our contributions to this area are:

� We show that the a simple approach based on the transition probability matrix of

a RW outperforms many of the state-of-the-art recommendation algorithms.

� We suggest ways to optimize the quality of the recommendations which are pro-

duced based on on the transition probability matrix of a RW.

� We show how using different types of WRW further improves the quality of the

recommendations generated.

� We further improve on the space efficiency of existing methods by simulating RWs

instead of using exact matrix operations. This results in estimated results which

rapidly converge to the expected value, require less physical memory, and are

obtained without adding any additional time complexity to the algorithms.

Chapter 2

Scale-free graphs and models

In this chapter we mainly focus on a special family of graphs known as scale-free graphs.

These graphs have emerged as models in the area of large online networks, such as the

WWW and OLSNs. They are also of interest in many areas of research, such as the

social sciences, mathematics, physics, biology, bioinformatics and computer science. We

mention the area of physics and biology as being interested in these graph structures

because they tend to be similar to to other structures observed in the physical world,

such as protein interaction networks as well as particle interaction networks.

This particular area of research is relatively new in Computer Science (CS). This is

mainly due to the fact that it is only relatively recently that scale-free network structures

have emerged as important in CS. It started with the emergence of the WWW, however

work on graph generation models greatly pre-dates the rise of the WWW, and was

previously used to model social networks in the domain of social sciences.

The WWW graph in particular has received a great deal of attention. This graph is

the result of modeling the WWW as a set of pages which are the vertices of the graph,

and a set of directed links between the pages which are the edges of the graph [72].

Some very interesting properties that have been discovered in this graph, for example

the degree distribution observed follows a long-tail distribution. This is apparently a

common attribute of large networks that is present in the WWW graph [4,16,72,75], as

well as the Internet (autonomous systems) [47], citation graphs [118], OLSNs [47] and

29

2.1. Graph properties of large networks 30

many others.

This Chapter is in 2 sections. The first section, Section 2.1 (Graph properties of large

networks), outlines various graph properties which are considered to be important or

representative of large networks. The second section, Section 2.2 (Scale-free graphs and

related models), reviews some typical models currently regarded as interesting. This

section also details simulations and experiments we made in this area. These experiments

were done mainly on a system having an Intel Core 2 Quad and 8GB memory, which are

capabilities available on most personal computers today. Where necessary, we have also

made use of a workstation equipped with 2 Intel Xeon 12 Core processors (24 processors

in total) and 64GB of memory.

2.1 Graph properties of large networks

We next outline various properties of these graphs which are perceived as being of

interest.

The term of “small world” networks is widely used in popular culture to reflect large

graphs with low edge density but good connectivity with clustering properties and where

average distances are small.

2.1.1 Degree Sequence

A graph with n vertices can be characterized by its degree sequence D0, D1, . . . , D∆(G)

where Dj is the number of vertices of degree j in the graph and ∆(G) is the maximum

degree of the graph.

2.1.2 Degree distribution

We view the degree sequence as a probability distribution where we assume a stochastic

experiment of sampling a graph vertex u, uar . The degree distribution defines the

probability that vertex u has degree X. In OLSNs and the WWW it has been observed

2.1. Graph properties of large networks 31

that this probability follows a negative exponential power-law, specifically:

P (d(u) = X) =
A

Xγ
γ > 1 (2.1)

where d(u) is the degree of vertex u and A is a positive constant.

In Equation (2.1) the constant γ is often called the parameter of the power-law and while

all observed OLSNs, the WWW as well as the internet topology network [47], exhibit

aspects of a power-law degree distribution, they often have different parameters for γ.

Additionally, depending on whether the graph is directed or undirected, there can be

different values of the constant γ for the in and out-degree. For example for the world-

wide web the observed in-link distribution follows a power-law with a γ ranging from 2

to 2.5 while the out-link distribution ranges from 2.3 to 3 [4,16,72,75]. As an empirical

rule of thumb it has been observed that in OLSNs the value of γ ranges between 1.5 and

3 while for the WWW it has been found to be approximately 3, when the network is

modeled as an undirected graph.

2.1.3 Diameter

The diameter of the aforementioned networks seems to be relatively small and this is

taken as evidence that a “small world” phenomenon has been observed. This is usually

taken to mean that the diameter d, or effective diameter [119] is proportional to log n

i.e.

d ∝ log n (2.2)

where n is the size of the graph.

However according to a study by J. Leskovec et al. [68] it was proposed that the diameter

is even smaller than this proposed value. It is unclear whether or not this observed

characteristic of certain networks is related to another observed characteristic of an edge

densification power-law [68] where |E(t)| ∝ |V (t)|α. Here E(t) and V (t) are the sets

of edges and vertices at time t respectively, and α is non-trivial (α > 1). The claim

however is that the diameter is upper bounded by d = Θ(log n).

2.1. Graph properties of large networks 32

2.1.4 Scale-Free Structure

Having introduced the concepts of degree distribution and the small world diameter,

we now clarify what we mean by scale-free graph. The graphs having properties of a

small world diameter (2.2) and a power-law degree distribution (2.1) are the types of

graphs we will refer to as power-law graphs or scale-free graphs. The latter term is

controversial however so for simplicity’s sake we will use the term power-law graphs and

scale-free graphs interchangeably to refer to all graphs which have a power-law degree

distribution, and a diameter which is bounded by the expected diameter of a small-world

network, i.e. DiamG = O(log n). Additionally we require graphs which we refer to as

scale-free to have a scale invariance in the size of the graph, where these basic properties

remain true even at very different sizes of the graph. According to the work of Dill

et al. [41] the web graph has a self-similar structure which may be the cause of the

aforementioned scale invariance of the web-graph. Having a self-similar structure means

that, if we partition the graph in sub-graphs, then these sub-graphs will be similar to the

entire graph with respect to (w.r.t.) their properties. It may be reasonable to assume

that many other scale-free graphs observed such as OLSN graphs share this characteristic

with the web-graph.

2.1.5 Degree correlations

The term “degree correlation”, sometimes referred to as neighbour assortativity, is used

to denote the relationship between the degree of a vertex and the degree of its neigh-

bours. In the work of Pastor-Satorras et al. [114] it has been suggested that the degree

correlations in real world networks, such as the WWW, are different from what would

be expected in random graphs. The metric defined in [114] was based on the conditional

probability Pc(k
′ | k) which denotes the conditional probability that a vertex u of de-

gree d(u) = k is connected to a vertex v with degree d(v) = k′. As stated by Pastor,

due to statistical fluctuations, measuring this probability is a rather complex task. He

2.1. Graph properties of large networks 33

suggested the following alternative:

〈knn〉 =
∑
k′

k′Pc(k
′ | k) (2.3)

The value of 〈knn〉 denotes the average degree of the vertices to which vertices of degree

k are connected. What has been noted in [114] is that the relationship between k and

〈knn〉 follows a power-law, i.e. is of the form 〈knn〉 ∝ 1
kc . This dependence has been

observed in various snapshots of the WWW graph, where the power-law constant was

measured to be c = 0.5.

2.1.6 Expander graphs

The expansion property of a graph is a property we will be using frequently. In general

when we talk about the expansion property of a graph, or if we describe a graph as

an expander, this may indicate one of several different properties which may hold for a

graph. Expander graphs were first defined by Bassalygo and Pinsker [7] in the early 70s.

There are several expansion properties that we can take into account:

Edge Expansion. The edge expansion h(G) is sometimes referred to as the isoperimet-

ric number or Cheeger constant; a metric which corresponds to graph conductance,

described in more detail in Section 2.1.7. We note that the notion of edge expansion

is the same as conductance which will be further discussed in Section 3.1.3.

The edge expansion of a set of vertices S belonging to a graph G given by:

h(G) = φG = min
S⊂V
|S|≤ |V |

2

φ(S) (2.4)

where φ(S) is the conductance of set S given by:

φ(S) =

∑
i∈S,j /∈S aij

min(α(S), α(S))
(2.5)

α(S) =
∑
i∈S

∑
j∈V

aij (2.6)

2.1. Graph properties of large networks 34

Where aij is the entry (i, j) in the adjacency matrix of the graph and α(S), α(S)

are the degree of set S and V \ S respectively.

According to J. Dodziuk [43] there is a direct correspondence to the expansion

properties of a d-regular graph with the eigenvalues of its adjacency matrix given

by the inequality:
d− λ2

2
≤ h(G) ≤

√
2d(d− λ2) (2.7)

where d − λ2 is the gap between the largest and second largest eigenvalue of the

adjacency matrix.

Vertex Expansion. The vertex isoperimetric numbers or vertex expansions hout(G)

and hin(G) are defined as follows:

hout(G) = min
0<|S|≤n

2

|∂out(S)|
|S|

(2.8)

hin(G) = min
0<|S|≤n

2

|∂in(S)|
|S|

(2.9)

where ∂out(S) denotes the outer boundary of S i.e. the set of vertices {u : u ∈

V \S, ∃e = {u, v}, v ∈ S}. Conversely ∂in(S) denotes the inner boundary of S i.e.

the set of vertices {u : u ∈ S, ∃e = {u, v}v ∈ V \S}.

In general when we talk about expander graphs we refer to the edge expansion h(G) and

we call a graph with h(G) = α an α-expander.

2.1.7 Connected Components And Community Structure

Recent work by Girvan et al. [56] has also suggested the existence of distinct community

structure within OLSNs (e.g. the collaboration network) the WWW as well as biological

networks (specifically the “food web of marine organisms living in the Chesapeake Bay”

[56]). When we talk about communities it is useful to describe what we are referring

to. Generally there are many varying definitions in graph-theoretical terms of what a

community is and how we detect it.

2.1. Graph properties of large networks 35

The first and simplest method used is finding connected components within the graph

using algorithms such as breadth-first search or other more optimized algorithms for this

purpose. Connected components in a directed graph is ambiguous and therefore we clar-

ify by using the terms Weakly Connected Component (WCC) and Strongly Connected

Component (SCC). A SCC is a component (sub-graph) Gs = {Vs, Es} of a given graph

G where for each vertex pair u, v ∈ Vs, u 6= v there exists a directed path connecting

them. The related concept of WCCs differs in that vertices u, v can be connected by

either a directed or undirected path. In the case of directed graphs, an undirected path is

a path that is obtained by ignoring the edge direction. Since the notion of “community”

mainly stems from the social sciences, the idea of partitioning graphs into components

does not provide with a partitioning which is informative in the context of community

detection in OLSNs. In such networks, and in the context of the social sciences, the

term community is used to indicate sub-graphs which are internally densely connected

while externally sparsely connected.

Communities: Conductance

In the context of OLSNs, communities can be very different from simply the SCCs or

WCC, of the graph. For example consider a group of vertices S in a graph which have

a degree sum of
∑

vi∈S d(ui) = |E(S)| where d(ui) is the degree of vertex ui. If the

majority of the edges that are contained in S are edges which connect vertices within S

then we can reasonably consider this group of vertices S to be a “good” community. This

is also mentioned and analysed in the work of Leskovec et al. [89] where the conductance

φ measure is used as the quantitative measure of the quality of the community. This

gives a numerical value to the comparison mentioned above. Using this measure we

can give meaning to the concept of comparing community quality, by comparing their

conductance φ. We remind that conductance, first introduced in Section 2.1.6, is given

by φ(S) =
∑
i∈S,j /∈S aij

min(α(S),α(S))
where S ⊆ V and |S| ≤ |V |2 .

In the context of Markov Chains, the conductance of a set S as well as of a graph G is a

quite interesting property. We explain the importance in more detail in Chapter 3 and

2.1. Graph properties of large networks 36

specifically in Equation (3.15), where we discuss how conductance can be used to bound

the mixing rate of a RW which is a very important property for our investigation.

Communities: Centrality and modularity

As suggested in the work of M. Girvan et al. [56] we can also measure community

structures using alternative network measures such as betweenness centrality, closeness

centrality etc. The betweenness centrality CB is a measurement of how many optimal

paths go through a specific vertex, more formally:

CB(u) =
∑

s 6=u6=t∈V

σst(u)

σst
(2.10)

where σst is the number of shortest paths from s to t, and σst(u) is the number of shortest

paths from s to t that pass through a vertex u.

The idea is that we partition the graph by removing edges with high betweenness cen-

trality we will separate the graph into a number of disjoint sets of vertices, each set being

a good community.

There is also a measure suggested by J. Newman et al. [112] called modularity which

gives a quantitative measurement of the quality of a given partitioning of a graph. This

measure effectively compares the number of edges which are present within a given

partition of the graph with the expected number of edges that would be found in a

random graph with the same number of vertices and edges.

Assuming a graph partitioned into c non-overlapping sets, the textbook measurement of

modularity as defined in [112] is shown below:

Q =
c∑
i=1

(eii − a2
i) (2.11)

ai =
c∑
j=1

eij

where eii is the fraction of edges within the i-th set of the partition and ai corresponds

to the fraction of endpoints of edges attached to vertices in i.

2.1. Graph properties of large networks 37

As stated in [112], in a network where the number of within-community edges is approx-

imately the same as the number of within-community edges in a random graph with the

same vertices and community split then the modularity is 0 while values approaching 1.0

indicate a very strong community structure. In practice values over 0.3 are considered

to denote a community structure.

The problem with the modularity measurement or partitioning in general, is that finding

the optimal separation is an NP-complete problem. Recent work on approximation

techniques [11] has made the estimation of near optimal communities feasible on very

large graphs. This was achieved by attempting to iteratively optimize the modularity of

a given partition by moving vertices into other communities, effectively producing near

optimal partitioning in polynomial time.

Communities: Overlapping communities

In related work by N. Mishra et al. [106] it was suggested that the above measures are not

sufficient to effectively represent the community structure which is apparent in OLSNs.

In their work it was suggested that communities need not be disjoint and may, in fact,

be overlapping. This is intuitively reasonable due to the fact that an average user of an

OLSN network has an array of interests, each one belonging to a different category (e.g.

sports, politics, region, religion) and in fact OLSN users belong to multiple communities

based on their interests. They introduce the concept of (α, β)-communities which are

formally defined as follows:

Definition 2.1. We denote with E(u, S) the set of edges with one endpoint on u and
the other endpoint within set S. Given a graph G = {V,E} in which every vertex has a
self-loop. C ⊂ V is an (α, β)-cluster if it is:

1. Internally dense: ∀u ∈ C, |E(u,C)| ≥ β|C|;

2. Externally sparse: ∀u ∈ V \ C, |E(u,C)| ≤ α|C|.

Additionally given 0 ≤ α < β ≤ 1 the (α, β)-clustering problem is defined as the problem

to find all (α, β)-clusters.

2.1. Graph properties of large networks 38

This concept led to a generalized way of describing communities and analysing OLSNs.

An example of this is in the work of J. He et al. [64] who suggested a method to detect

such clusters. The idea is based on iteratively optimizing a randomly selected set of

vertices S, by swapping vertices within S with vertices outside S until the conditions of

β internal density and α external sparsity are reached. It has been shown in [64] that

such a community structure is present in some OLSNs such as Twitter, SlashDot and

the citation graph. In addition it is shown that (α, β)-communities are not generally

observed in generated random graphs such as the preferential attachment graph (seen

in Section 2.2.2).

2.1.8 Transitivity Ratio and Clustering Coefficient

The transitivity ratio and clustering coefficient are closely related a measures which are

used to indicate how tightly vertices cluster together by giving an indicative measure

based on cycles of length 3 (triangles).

First, let tG be the number of triangles in G, and WG the number of paths of length 3

(either cyclic and acyclic). The transitivity ratio is given by:

C =
3tG
WG

(2.12)

The local clustering coefficient was first defined by Watts and Strogatz [128]. Assume

a vertex u has |N(u)| neighbours. The maximum number of possible edges between

those neighbours are |N(u)|(|N(u)|−1)
2 . The local clustering coefficient is the ratio of actual

connected neighbours of u over the maximum possible connections. Specifically, if the

graph is simple:

Cu =


2|{evw}|

d(u)(d(u)−1) if d(u) > 1

0 otherwise
(2.13)

where v, w ∈ N(u) and {evw} the set of edges among neighbours of u.

By using Equation (2.13) the average local clustering coefficient is defined as:

1

n

∑
u∈V

Cu.

2.2. Scale-free graphs and related models 39

In practice, the clustering coefficient has no meaning for non-simple graphs since if we

allow multiedges, the maximum number of connections between vertices in N(u) are

infinite. Therefore we only consider Cu on simple graphs.

2.2 Scale-free graphs and related models

We review various generative models, and identify their relevant graph properties or,

more often, the shortcomings of the models. The discussion here includes experimental

investigation. We remind that all experiments were mainly done on an Intel Core 2

Quad and 8GB memory, which are capabilities available on most personal computers

today. Where necessary, we have also made use of a workstation equipped with 2 Intel

Xeon 12 Core processors (24 processors in total) and 64GB of memory.

In addition we note that the graph generation process was coded in C#.NET [105]. T

he degree distribution for each generated graph was acquired in MATLAB [101] and

plotted using Gnuplot [129]. In all cases, wherever a seed graph is required as the base

of a generation model, we use a complete graph of m vertices (unless otherwise stated),

where m is the number of edges which are added at each step of the generation model (if

applicable). In addition, graphs which we considered interesting, were visualised using

Gephi [54] and the layout was done using the ForceAtlas 2 Algorithm (included by the

creators of Gephi). This is a force-directed graph drawing algorithm which simulates a

physical system based on the graph. In this system, the edges act as an attractive force

between vertices, while the vertices themselves have a repulsive force between them. The

graph drawing algorithm then iteratively moves each according to the forces applied to

it, until the system reaches a balance.

2.2.1 Erdős–Rényi Graph

In graph theory, the Erdős-Rényi model consists of two models for generating random

graphs. It is perhaps the simplest of all graph generation models and it can be seen

2.2. Scale-free graphs and related models 40

Figure 2.1: Erdős-Rényi Graph G(n, p) graph with n = 50000, p = 0.0001

from two different aspects, the first one called the G(n,M) model and the second one

the G(n, p) model. These models were examined by P. Erdős et al. [45].

G(n,M) model From all the possible graphs with n vertices and M edges we choose

one uar .

G(n, p) model Consider a graph with n vertices. For each vertex pair u,v there exists

an edge (u, v) with probability p

These models are very well analysed and understood. They tend to be connected when

still remaining reasonably sparse (p > logn
n). However they lack other basic properties

that we need to successfully model an OLSN graph. For example, on average, they do

not have a power-law degree distribution [45].

An example degree distribution of this graph can be seen in Figure 2.1.

2.2. Scale-free graphs and related models 41

2.2.2 Preferential attachment models

In this section we will describe a set of graph generation models referred to as preferential

attachment models. These models are interesting in our work, since they are the basic

models proposed to generate scale-free graphs, i.e. graphs which have a power-law degree

distribution and small diameter regardless of the size of graph generated.

The term preferential attachment is used to describe the way that the edges are added

in these graph generation models. Assume that at some point in one such model we wish

to add an edge with one endpoint adjacent to vertex u. Preferentially selecting the other

endpoint of the edge, means the probability pu(v) that edge (u, v) is added is equal to:

pu(v) =
d(v)

2|E|
(2.14)

which means v is selected proportionally to its degree.

An additional element required for a preferential attachment model to generate scale-free

graphs is growth i.e. the graph size is not static but rather increases over time. Further

details will be discussed when the Barabási-Albert graph generation model model and

the generalized web-graph models are described.

Surveys by Bollobás and Riordan [12] and Drinea, Enachescu and Mitzenmacher [44] give

many related generative procedures to obtain graphs with power-law degree sequences.

Barabási-Albert graph generation model and generalized Web-Graph Model

The Barabási-Albert graph generation model (BA model) is a graph process which gener-

ates graphs with degree distributions which follow a power-law. This generative method

was proposed by Barabási and Albert [4] as a generative procedure for a model of the

WWW.

It was empirically shown by Barabási that there are two required elements in order in

order to obtain a power-law degree distribution. Two models were defined as follows:

2.2. Scale-free graphs and related models 42

Model A This model retains growth but all new vertices created are attached uar on

existing edges.

Model B This model consists of a graph with a static vertex count which at each step

an edge is added preferentially.

Each of the individual models above fails to create scale-free graphs, and it is shown

in [4] that only by a combination of models A and B do we obtain a power-law degree

distribution. The combination of these two models is what we refer to as a preferential

attachment model. The generated graph is denoted by be G(m, t) meaning the graph

generated after t steps with m edges added at each step. Often we will let m be implicit

and simply write G(t). Adding an edge preferentially means that one or both end points

of that edge is chosen preferentially i.e. according to Equation (2.14). Specifically for

the Barabási-Albert graph generation model (BA model), assuming that we are adding

m new edges at each step then the graph generated at step t− 1 would have 2m(t− 1)

edges. Thus, at step t the probability p(v, t) that vertex v ∈ G(t − 1) is chosen as an

end point of a given edge is equal to:

p(v, t) =
d(v, t− 1)

2m(t− 1)

Let m ∈ N and we have a graph G(m, t − 1) which is the graph generated after t − 1

applications of the Barabási-Albert graph generation procedure, we can obtain graph

G(m, t) by doing the following:

� Select m vertices {v(1), v(2), . . . , v(m)} from G(m, t−1) preferentially, meaning that

v(i) is chosen according to Equation (2.14).

� Add vertex vt to G(m, t− 1)

� Add edges {{vt, v(1)}, . . . , {vt, v(m)}}.

A graph generated in this way has a power law of 3 for the degree sequence, irrespective

of the number of edges m ≥ 1 added at each step. The preferential edge endpoint

2.2. Scale-free graphs and related models 43

Figure 2.2: Degree distribution of a BA model graph

selection, and growth, are the reasons why the Barabási-Albert model is classified as a

preferential attachment model.

We call graphs generated using this model, as well as the generalized web-graph model

(see Section 2.2.2) preferential attachment graphs. Preferential attachment graphs have a

heavy tailed degree sequence. Thus, although the majority of the vertices have constant

degree, a very distinct minority have very large degrees. This particular property is

the significant defining features of such graphs. A log-log plot of the degree sequence

breaks naturally into three parts. This is illustrated in Figure 2.2. In this Figure we

can see the lower range (small constant degree) where there is a slight curvature, as the

power law approximation is incorrect. The middle range, of large but well represented

vertex degrees, which give the characteristic straight line log-log plot of the power law

coefficient. In the upper tail, where the sequence is far from concentrated, and the plot is

a spiky mess. Due to the simple structure of the model as well as the extensive analysis

that has been done, this will be the main reference model for our experiments.

2.2. Scale-free graphs and related models 44

General Undirected Web-Graph Model

The Barabási-Albert model was refined Bollobas and Riordan [13,14] who introduced the

scale-free model and made detailed calculations of degree sequence and diameter. The

model was generalized by many authors, including the web-graph model of Cooper and

Frieze [24]. The web-graph model is very general and allows the number of edges added

at each step to vary, for edges from new vertices to choose their end points preferen-

tially or uniformly at random, as well as for insertion of edges between existing vertices.

By varying these parameters, preferential attachment graphs with degree sequences ex-

hibiting power laws c in the interval (2,∞) are obtained. Further details about the

generalized web-graph model can be found in the next Section.

The general undirected web-graph model described in [24] can be seen as a general

preferential attachment model. This model requires the parameters: α, β, γ, δ,p, q,

where α, β, γ, δ ∈ [0 . . . 1] and p, q are probability distributions with p = (pi : i > 1),

q = (qi : i > 1), pi, qi ∈ [0 . . . 1] and
∑∞

i=1 pi = 1 and
∑∞

i=1 qi = 1. Considering the fol-

lowing events Xi= “There are i edges added”, then PNEW (Xi) = pi and POLD(Xi) = qi.

We make use of the notation G(t) as a shorthand notation to G(α, β, γ, δ,p, q, t) to

indicate the graph which is generated up to step t using the general web-graph process.

As we mentioned above this graph is obtained by applying one step of the generation

procedure on graph G(t − 1). In this case each step of the generative procedure is as

follows:

� With probability α an existing vertex generates edges (Procedure OLD)

� With probability 1 − α a new vertex is added and generates edges (Procedure

NEW)

� Procedure NEW

1. With probability pi following p we will select i vertices from G(t − 1). The

selection policy of these vertices is as follows:

2.2. Scale-free graphs and related models 45

Figure 2.3: Degree distribution for m = 3, c = 3.0 (Barabási-Albert model)

With probability β for each of the vertices {v(1), v(2), . . . , v(i)} that vertex is

chosen uar and with probability 1− β the choice is preferential.

2. Add vertex vt to G(t− 1)

3. Add edges {{vt, v(1)}, . . . , {vt, v(i)}}.

� Procedure OLD

1. With probability δ we select a vertex v from G(t − 1) uar otherwise with

probability 1− δ v is selected preferentially.

2. With probability qi following q we select i vertices from G(t−1). The selection

policy of these vertices is as follows:

With probability γ for each of the vertices {v(1), v(2), . . . , v(i)} that vertex is

chosen uar and with probability 1− γ the choice is preferential.

3. Add edges {{v, v(1)}, . . . , {v, v(i)}}.

2.2. Scale-free graphs and related models 46

Figure 2.4: Degree distribution for c = 3.5

Figure 2.5: Degree distribution for c = 6

2.2. Scale-free graphs and related models 47

Figure 2.6: Degree distribution for c = 11

We refer to this generalized (web-graph) process with power law c as G(c, t). As it is

noted above the power-law generated by this process does not depend on the number

of edges added per step. In the cases where the number of edges added per step is a

constant m then we refer to this graph as G(c,m, t). In [26], Cooper noted the result

that the power law c for preferential attachment graphs and web-graphs can be written

explicitly as

c = 1 +
1

η
, (2.15)

where η is the expected proportion of edge end points added preferentially. In the

Barabási and Albert model, η = 1
2 , as each new edge chooses an existing neighbour

vertex preferentially; thus explaining the power law of 3 for this model.

The proportions of preferential edges only depends on the quantities 1 − β, 1 − δ and

1−γ. In the case of the NEW procedure each new edge added has 1 preferential endpoint

with probability 1−β therefore, for each added edge the expected number of preferential

endpoints is: (1− β).

2.2. Scale-free graphs and related models 48

At the same time each new edge added using the OLD procedure has 1 preferential

endpoint when one of two things happen:

1. The OLD vertex is selected preferentially (with probability 1 − δ) and the other

endpoint is selected uar (with probability γ).

2. The OLD vertex is selected uar (with probability δ) and the other endpoint is

selected preferentially (with probability 1− γ).

Assuming distributions PNEW (Xi), POLD(Xi) have a finite mean e.g.
∑∞

i=1 ipi = m and∑∞
i=1 iqi = M then the overall η value of this model, as specified in [26] would be:

η =
(1− α)m(1− β) + αM((1− γ) + (1− δ))

2((1− α)m+ αM)
(2.16)

yielding a graph G(c, t) with c = 1 + 1
η .

The BA model can be considered a special case of the General Web-Graph process and

can be obtained by setting: α, β = 0 and pm = 1 where 1 ≤ m = m < ∞. The other

parameters are not relevant since the OLD procedure will never be performed.

The value η occurs naturally in such models in the expression for the expected degree

of a vertex. Let d(s, t) denote the degree at step t of the vertex vs added at step s. The

expected value of d(s, t) is given by

Ed(s, t) ∼ m
(
t

s

)η
, (2.17)

where η is the parameter defined above (see e.g. [23]). We remind that f(t) ∼ g(t) means

that limt→∞
f(t)
g(t) = 1.

Thus, in the preferential attachment model of [4], Ed(s, t) ∼ m(t/s)1/2.

The actual value of d(s, t) is not particularly concentrated around Ed(s, t), but the

following inequalities are proved in e.g. [23] and [26].The inequalities hold with high

probability (whp), for all vertices in G(c,m, t). In general, whp results mean that, their

probability is 1− o(1) as t→∞. o(1) denotes a quantity smaller than any constant.(
t

s

)η(1−ε)
≤ d(s, t) ≤

(
t

s

)η
log2 t, (2.18)

2.2. Scale-free graphs and related models 49

where ε > 0 is some arbitrarily small positive constant (e.g. ε = 0.00001). The upshot

of this, and our reason for explaining this to the reader, is that all vertices v added after

step s log2/η+1 t have degree d(v, t) = o ((t/s)η) whp.

Preferential attachment graphs have diameter

Diam(G(m, t)) = O(log t) (2.19)

whp. This was proved for scale-free graphs by Bollobas and Riordan. Detailed inves-

tigations of the diameter of preferential attachment graphs have been made by several

authors including [14]. Experimental investigations of average distances in the WWW

are given in [5, 16].

A crude proof of the O(log t) upper bound can be made using the expansion properties

of the graph. For example, in the preferential attachment graph (η = 1/2, c = 3) when

vertex t is added to G(m, t) the probability that t does not select at least one neighbour

in G(t/2) is at most (
1− 2m(t/2)

2mt

)m
=

(
1

2

)m
.

Thus Diam(G(m, t)) = O(log t) by a ’tracing backwards stochastically’ argument. There

is a probability of p = 1 −
(

1
2

)m
that the vertex added at step t, is connected to some

vertex added at step tu ≤ t
2 . Moving backwards, the vertex added at tu has a probability

p of being connected to some vertex added at step tv ≤ tu
2 ≤

t
4 . Therefore, there is a

path which exists whp starting from u1 and ending at ut of length O(log t), therefore

vertices added at steps t and t− 1 would be at a distance of O(log t). All vertices added

before step t− 1 would connect to u1 with even shorter paths. Given a sufficiently large

p then we can state that Diam G(m, t) = O(log t) whp.

Experimental results on the web-graph model

Here we will present some experimental results on graphs generated using the web-graph

model. The purpose of this section is to show that the analysis found in [24, 26, 28] can

be experimentally confirmed in graphs generated using the general web-graph model.

2.2. Scale-free graphs and related models 50

Degree distribution. We note that in [26], the expected degree distribution depends

on factors relating to the proportion of preferential and uniform edge endpoints which

are added to the graph. These factors are denoted in [26] as ν and η respectively. We

can see the value of η under the general web-graph parameters in Equation (2.16). The

factor of η is a factor which reflects the proportion of preferential edge endpoints added

in the graph. In addition, ν is complementary to η indicating the proportion of edge

endpoints added uniformly. The value of ν is given by:

ν =
(1− α)mβ + αM(γδ)

(1− α)
(2.20)

Cooper has shown that the expected number of vertices of degree m+ ` is given by the

value of nm(`) shown in the following Equation:

nm(`) =
Γ(ξ + 1

η)

ηΓ(ξ)

Γ(`+ ξ)

Γ(`+ ξ + 1 + 1
η)

(2.21)

where ξ = ξ(u) = m+ ν
η and m = m(u) is the degree of vertex u when first added.

In Equation (2.21), Γ denotes the gamma function, the generalization of the factorial

function. We remind that Γ(n) = (n− 1)! if n ∈ N and Γ(z) =
∫∞

0 tz−1e−tdt if z ∈ R.

The resulting degree distribution from such a graph model can be seen in Figures 2.3-

2.6. These figures show graphs generated using the web-graph model. For each of these

graphs, α = 0, meaning that the OLD procedure is never performed. We have varied

the parameter β of uar attachment in order to obtain graphs with varying values of

η, starting from 0.1 and going up to 0.5 (BA model). We remind that η = 0.5 is the

maximum value of η which can occur from only performing the NEW procedure. In all

these figures the we have used the following distributions for p and q: p3 = 1, q3 = 1

and for all i 6= 3, pi = 0, qi = 0. This means that there would be a constant number

of edges added at each step, that number being m = 3 in all cases. We have done this

to simplify the implementation of the generation model. We also note that the method

used to generate the graph whose distribution is seen in Figure 2.3 is essentially the

Barabási-Albert generation method and we have obtained this by setting α = 0 and

2.2. Scale-free graphs and related models 51

Figure 2.7: m = 3, c = 3.0 (Barabási-Albert model)

β = 0 and using this constant value for m. The additional lines drawn in those plots

are due to [26]. We have plotted the expected degree distribution (in the dashed line)

from Equation (2.21). In addition we have drawn the asymptotic lines of f(x) = A
xc

and g(x) = 1
ν+1(ν

ν+1)`. The reason is to show how the the uniform and preferential

portion of the generative model shapes the resulting degree distribution. We note that

g(x) is an asymptotic solution to Equation (2.21) when η → 0. At the same time f(x) is

the power-law to which the degree distribution should converge to for sufficiently large

graphs (i.e. when `→∞).

A general observation that can be made is that the rate in which the power-law of the

degree distribution seems to converge to the expected theoretical value, however the rate

in which this converges seems to be different depending on the parameters used. The

slope is much closer to the expected power-law, if the value of ν is low. Overall the actual

degree distribution follows the expected distribution precisely, up to a point. Beyond

that point there are various explanations on why the degree distribution “breaks”. One

2.2. Scale-free graphs and related models 52

reason is that at some point, the tnm(`) < 1 i.e. the expected number of vertices of

degree m+ ` beyond that point are less than one. At this point, a vertex of degree m+ `

exists with probability nm(`) in which case the frequency of degree m+` would be 1/t or

a multiple of this value (in the unlikely case there are more than 1 vertex of that degree).

This explains why the degree distribution seems “flat” towards the high degrees in e.g.

Figure 2.3 rather than following the theoretically expected distribution. As a visual

example, one can consider the cumulative distribution function (c.d.f.) of the degree

distribution rather than the probability distribution function (p.d.f.) to confirm that

the experimental values conform the the theoretically expected ones. Such an example

can be seen in Figure 2.7.

Maximum degree. The maximum expected degree of a graph generated using the

web-graph model would correspond to the vertex with the maximum expected degree.

Equation (2.17) gives us an indication of the expected degrees of vertices in such a graph.

Since the first vertex introduced, at time s = 1, has the maximum degree in the graph,

the maximum degree of the graph is expected to be:

E∆(G) = max Ed(us, n) ∼ mnη

There is a whp bound which is due to A. Flaxman et al. [48]. The upper bound we have

used was ∆(G) ≤ tη log2 t. In reality, instead of using log2 t we could use any function

f(n) for which, f(n)→∞ as t→∞.

In order to experimentally confirm the maximum degree bound, we have generated

graphs with varying values of m and n while keeping η = 0.5. For each value of n and

m we have generated 20 graphs and recorded the maximum degree for each of them. In

Figure 2.8 we see the average of these maximum degrees along with the variance across

the 20 graphs generated. We observe that the maximum degree is dependent on the

parameters m and n. The values of the maximum degree are plotted relatively to the

graph size. The relative values of the maximum degree seem to decrease with the graph

size, however the rate is very slow. This means that it is unlikely we will be able to

2.2. Scale-free graphs and related models 53

Figure 2.8: Maximum Degree of Web-Graphs with η = 0.5

experimentally determine the validity of the upper bound for higher values of m due to

hardware limitations to the size of the graphs we can generate.

2.2.3 Edge Copying model

Like the preferential attachment, the edge copying model, described by Kleinberg et

al. [72] produces scale-free graphs. However there is no explicit concept of preferential

attachment involved.

This model is a directed model. In [72] the model described only creates vertices with

out-degree 1, however, as it is mentioned, it is easy to extend the procedure to out-degree

m for each vertex. Here we will describe the model from [72], with the difference that

each vertex has out-degree m. The model works as follows:

� We start with an initial graph, typically an m-clique.

� At each step a new vertex v arrives.

2.2. Scale-free graphs and related models 54

� For this vertex v we select a vertex u uar .

� As mentioned, vertex u has out-degree m. Assume these edges are

{(u,w1), (u,w2), . . . , (u,wm)} We do the following i = 1 : m times:

1. With probability 1− γ we direct an edge from v to wi.

2. With probability γ select a vertex v′ uar and direct an edge from v to v′

This model has been shown to produce power-laws with a coefficient of 1 + 1
1−γ in [72].

Community structure has been observed in the resulting graphs, meaning that e.g. the

value of modularity (see Section 2.1.7) was higher than the corresponding random or

preferential graphs.

In the Section 2.2.2 we have seen the preferential attachment models and noted the effect

which the value of η has on the slope of the power-law in these models. We remind that

η is the proportion of edge endpoints added preferentially. While in the edge copying

model, there is no explicit notion of preferential attachment η can be used as a heuristic

to estimate the power-law coefficient [26]. In this case, attaching to a neighbour of vertex

u, is preferential in the sense that vertices with higher in-degree are more likely to be

selected. This would mean the value of η would be 1− γ, which confirms the power-law

coefficient of [72].

The resulting degree distribution from the above generation model can be seen in Fig-

ure 2.9. The slope in this case confirms the theoretically expected and is c = 3.

2.2.4 Triangle Closing Model

This model was created based on the observation that most links in OLSNs are created

locally. A new link typically connects vertices which were previously no more than 2

hops apart [85]. There are several variations of this model discussed but they all follow

this basic idea: At each step a new vertex v arrives. For this vertex v we select a vertex

u uar and direct an edge to that vertex. Having done this then we proceed to create as

2.2. Scale-free graphs and related models 55

Figure 2.9: Degree distribution of the edge copying graph with γ = 0.5

many additional edges as we wish, by using a certain selection policy to select vertices of

distance 2 from v. Typically we would select a random neighbour u of v and then select

a random neighbour w of u and direct and edge from v to w. Initially v would only have

1 neighbour, but during subsequent selections the newly added neighbours can also be

selected. An illustration of this procedure can be seen in Figure 2.10.

The way the vertex is selected depends on a given policy and there are several policies

mentioned in [85]. These policies were:

v

Vertex v is added

v

u

Select vertex u uniformly
and direct edge

v

uw

Select w and direct edge

Figure 2.10: Triangle closing

2.2. Scale-free graphs and related models 56

Figure 2.11: Degree distribution of the triangle closing graph with random-random selection policy

1. Random. The vertex is selected uniformly at random for the set of neighbours.

2. Preferential. The vertex is selected preferentially (proportionally to degree)

among the neighbours.

3. Common. The vertex is selected proportionally to the number of common neigh-

bours it shares with v.

4. Activity. The vertex is selected proportionally to the number of steps since it has

been last selected.

Any combination of the above policies can be applied, once for selecting a neighbour of

v and then a second time for selecting a neighbour of that neighbour.

The generated graphs were compared to some real OLSNs with respect to how each ver-

tex directs edges to other vertices. The comparison was done by observing the evolution

of some real OLSNs graphs, and then using a maximum likelihood estimator to get the

likelihood of the same process being repeated by the generative model. It was suggested

2.2. Scale-free graphs and related models 57

Figure 2.12: Triangle closing graph, random-random selection policy. n = 1000,m = 3

by Leskovec that the random neighbour of random neighbour policy is the simplest one

and worked surprisingly well. While other policies, such as most active neighbour of

most active neighbour, may work better the increase in accuracy is marginal [85].

We have generated a graph based on this model with parameters n = 107 and number of

edges added per step being 3. The selection policy we have used was Random–Random

i.e. random neighbour of a random neighbour. The resulting degree distribution from

the above generation model can be seen in Figure 2.11 where the slope of the power-law

is approximately c = 2.75. In this case what is plotted is the total degree frequency (the

out-degree is m for all vertices). In addition, we have observed a community structure

in these graphs, which can be seen in Figure 2.12. Each detected community was given

a different colour for differentiation.

2.2. Scale-free graphs and related models 58

Figure 2.13: Undirected triangle closing slope. Convergence rate to c.

Undirected triangle closing model

In this section we will present an undirected variation of the triangle closing model.

Specifically, at each step we add vertex v to the graph. We then and select a vertex u uar

and add edge (u, v). We then select vertex w from N(u) and create an edge (v, w). This

forms a triangle between vertices u, v and w. We remind that according to [26], the slope

of the power-law would converge to c = 1 + 1
η . In this case η = 0.25, since 1/4 endpoints

are added preferentially, and therefore c = 5. In addition we expect the maximum degree

to be ∆(G) = O(n1/4). While the model is difficult to analyse formally, the heuristic

calculation of c seems to be fairly accurate. We have experimentally confirmed that the

slope does seem to converge to c = 5. The maximum degree also seems to converge to

∆(G) = O(n1/4). This result can be seen in Figure 2.13

In general, we have experimentally determined that for many other undirected graph

generation models, the heuristic c = 1 + 1
η does give a good estimate of the slope of the

power-law, however the rate at which the slope converges to c is unknown.

2.2. Scale-free graphs and related models 59

Figure 2.14: Degree distribution of the forest fire model with n = 2.5 ∗ 106p = 0.5, r = 0.3

2.2.5 Forest Fire Model

This model, was proposed by Leskovec et al. [88] as an intuitive model on how OLSNs

evolve over time. It is very similar to the triangle closing model when viewed from the

perspective of the locality of new links. Like the triangle closing model, the forest fire

model is also a directed model, but unlike the triangle closing model, this model generates

graphs with power-law degree distributions in both the in-degrees and out-degrees. A

community structure is also observed. Moreover, according to [88] the edge densification

power-law holds for each step of the generative process. In addition, the diameter of

graphs generated using this model decreases as the graph size increases [88]. An evolving

graph, such as an OLSNs or evolving graph generation process, is said to have an edge

densification power-law if E(t), the number of edges at time t is proportional to some

power of the number of vertices V (t), i.e. E(t) ∝ V (t)α with α > 1. This phenomenon

has been observed by Leskovec et al. [68] in some OLSNs.

The forest fire model requires 2 parameters: p, q. The generative method is as follows:

2.2. Scale-free graphs and related models 60

1. At each step we add a new vertex v and direct an edges to a vertex u selected uar .

This vertex is referred to as the ambassador of v ([88]).

2. We generate two random numbers x and y, which are geometrically distributed,

with means Ex = p
1−p and Ey = pq

1−pq respectively. We select x out-edges of u, i.e.

{(u,w1), . . . , (u,wx)} and y in-edges of u i.e. {(z1, u), . . . , (zy, u)}. We then direct

edges from v to all vertices wi and from all vertices zi to v.

3. For each edge (v, w) created, step (2) is repeated.

4. We continue until no new edges are added at which point we add a new vertex and

repeat the above process.

This method has a very good intuition of why it should generate graphs which look like

OLSNs from a sociological point of view, and in practice it does generate such graphs

under a certain condition. Due to the complexity of the method it has not yet been

formally analysed. There are still uncertainties on why the graphs generated look the

way they do and how the input parameters (p, q) affect the properties of the generated

graph. For a range of those parameters the graph may tend to become a complete graph

where by definition the desired properties are not met i.e. there is no power-law in the

degree distribution and the graph is not sparse.

Additionally Leskovec has shown that there is a specific range of parameters that he

called the “sweet spot”. In this range of parameters, the generated graphs have the

properties described, i.e. power-law degree distribution on both in and out-degrees, com-

munity structure, small-world diameter and edge densification. The degree distribution

of a graph generated using this method can be seen in Figure 2.14. The specific graph

generated has a power-law degree distribution, with slopes being c = 2.8, cout = 3.9 and

cin = 2.7.

2.2. Scale-free graphs and related models 61

2.2.6 Stochastic Kronecker Graph

This method as a generation model was proposed by Leskovec et al. [87]. It takes

advantage of the self-similar structure observed in many real world graphs and uses the

Kronecker matrix multiplication (a form of tensor product applied on matrices) in order

to generate graphs.

This method itself requires a good initiator matrix to be chosen and depending on that,

the properties of any size of graph generated can be calculated using the properties of

the initiator matrix product. However choosing an appropriate initiator matrix is still

an open problem and thus, this method is not as effective for generating graphs as it

could potentially be.

The major advantage and use of this method however is not to generate graphs. It is

used to find which initiator matrix could be used to produce graph which is similar to

a given graph. It was suggested by Leskovec that finding a good initiator which is most

likely to have produced a given graph and then applying the Kronecker multiplication

will produce a graph very similar to the original graph. This can be used to model the

given network either at a scale or determine how it may look like when it grows.

The problem of finding the initiator, while generally an NP -complete problem, was

proven to be solvable by approximation in O(n) time [86], and this may prove to be a

valuable tool in analysing networks and their temporal evolution.

The Kronecker product is an operation of two matrices of arbitrary size resulting in a

block matrix. This operation, which we now describe, is completely unrelated to the

normal matrix product.

Assume we have two matrices MA and MB of dimensions m× n and p× q respectively.

2.2. Scale-free graphs and related models 62

MA =


a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n

. .

am,1 am,2 · · · am,n

 MB =


b1,1 b1,2 · · · b1,q

b2,1 b2,2 · · · b2,q

.

bp,1 bp,2 · · · bp,q


The Kronecker Product of these matrices is symbolised as:

MA ⊗MB

and is a block operation defined as:

MA ⊗MB =


a1,1MB a1,2MB · · · a1,nMB

a2,1MB a2,2MB · · · a2,nMB

. .

am,1MB am,2MB · · · am,nMB


In the case of the Stochastic Kronecker Graph we require that MA = MB, m = n and

0 ≤ aij ≤ 1. We will symbolize MA ⊗MA as M
(2)
A which would contain elements a

(2)
ij .

Further analysis of this model was done by M. Mahdian et al. [96]. In [96] a stochastic

Kronecker graph with initiator matrix of size 2 is defined by:

1. An integer k

2. A symmetric 2 × 2 matrix ϑ with entries ϑ(1, 1) = α, ϑ(1, 2) = ϑ(2, 1) = β,

ϑ(2, 2) = γ where 0 ≤ γ ≤ β ≤ α ≤ 1.

3. The graph has n = 2k vertices

Specifically, in [96] it was shown that there are transitional phases for the emergence of

a giant component and for the connectivity. Initially the graph is not expected to be

connected and all the disconnected components are relatively small. The aforementioned

2.2. Scale-free graphs and related models 63

transitional phase is a size threshold in which the majority of the small components con-

nect to each other, creating a giant component which makes the graph nearly connected.

Additionally Mahdian proved that the diameter beyond the connectivity threshold is

constant.

In general the matrix ϑ does not need to be symmetric and in [86], a non symmetric

matrix was used to simulate directed OLSNs. The matrix M
(k)
ϑ or simply ϑ(k) is called

the “adjacency probability matrix” of a graph. In order to generate the actual graph

which results from the k-th Kronecker multiplication we create a graph where for each

vertex pair ui, uj the probability that there is an edge eij = (ui, uj) is P (eij) = a
(k)
ij .

A major drawback of this approach is that the calculation of the k-th power Kronecker

power of the initiator matrix ϑ takes O(22k) = O(n2) time and O(n2) space. This is due

to the fact that, since the initiator matrix (typically) does not contain zero elements,

the Kronecker product would also have the same property. It is therefore not feasible to

generate large graphs using this approach. Due to this, Leskovec et al. [86] have suggested

an alternative way to obtain graphs generated via the k-th Kronecker multiplication

though a fast generation procedure. This is based on the following ideas:

1. Since the existence of each edge is an independent Bernoulli trial with success prob-

ability P (eij). The expected number of edges would be E m =
∑n

i=1

∑n
j=1 P (eij)

with variance Var m =
∑n

i=1

∑n
j=1 P (eij)(1− P (eij)).

2. From the central limit theorem, m would follow a normal distribution with mean

E m and variance Var m.

3. The expected number of edges E m relate to the initiator matrix since∑n
i=1

∑n
j=1 P (eij) ≈

(∑k
i=1

∑k
j=1 ϑ(i, j)

)k
.

4. Due to the self-similar structure of ϑ(k), we can add edge (i, j) with probability

P (eij) by generating i = 1 : k recursive coordinate samples from matrix ϑ. Each

sampled coordinate (u, v) would be according to the probability ϑ(u,v)∑k
i=1

∑k
j=1 ϑ(i,j)

.

2.2. Scale-free graphs and related models 64

5. The i-th sampled coordinates would correspond to the block coordinates of ϑ(k)

when converted to a block matrix with blocks of size 2(k−i). By following each block

recursively we eventually sample a coordinates from matrix ϑ(k) with probability

P (eij).

Given parameters ϑ and k, the exact generative process is as follows:

� We generate a number r following a normal distribution with mean E m and

variance Var m.

� We sample r coordinates e.g. (u, v) according to their probability P (euv) of matrix

ϑ(k).

� We create an edge between u and v.

The drawback of this approach is that the the variance of the Bernoulli trials becomes

too large when p approaches 0 or 1. In this case there graph generated with this approach

would may not be as likely to have been generated using the Kronecker multiplication. In

general this approach makes this generation method feasible since the graphs generated

would generally be sparse and there would be no need to maintain the entire stochastic

matrix ϑ(k) in memory.

2.2.7 Affiliation Networks

In the work of S. Lattanzi et al. [78] it is claimed that all the theoretical understanding

of pre-existing graph generation models failed to explain properties which were recently

observed in social networks [68, 87]. They propose a new method which is based on

previous work on bipartite models of social networks. This model aims to “capture the

affiliation of agents to societies”

In this model there are two distinct graphs:

� A bipartite graph that represents the affiliation network, which in [78] is referred

to as B(Q,U)

2.2. Scale-free graphs and related models 65

� The social network graph which in [78] is referred to as G(Q,E)

Specifically, the model is based on the concurrent evolution of the two graphs, B and

G. The following parameters are required: β, cQ, cU , s. At each step one of two events

may occur:

1. With probability β: Evolution of Q.

2. With probability 1− β: Evolution of U .

The evolution of Q involves the following actions:

� A new vertex q arrives and is added to Q.

� A vertex q′ is selected from Q preferentially and q connects to cQ neighbours of q′

in B(Q,U) selected uar .

� Vertex q connects to vertex q′′ ∈ G if they have at least one common neighbour in

U .

� There are s vertices S = {q1, q2, . . . , qs} selected from preferentially Q , and the

edges {(q, q1), . . . , (q, qs)} are added.

The evolution of U involves the following actions:

� A new vertex u arrives and is added to U .

� A vertex u′ is selected from U preferentially and u connects to cU neighbours of

u′ in B(Q,U) selected uar .

� Vertices q1 and q2 are connected in G if u is a neighbour to both of them.

In the above case the set Q is shared among both graphs. Their intuition in creating

this model is based on observations on social phenomena in online graphs (such as the

citation network). In their example they make use of the citation network and in this

2.2. Scale-free graphs and related models 66

context Q is the set of papers and U the set of topics those papers are about. When a

new paper emerges it is likely to be based on an older paper, referred to as the prototype

and it is also likely that focus on (a subset of) the topics in which the prototype focuses

on. Based on this, new vertices emerging in Q will consist of an edge copying flavour as

described in Section 2.2.3. In a similar fashion when a new topic emerges it is likely to

be based, or inspired from, an existing topic.

Based on the above example the graph G(Q,E) is constructed when taking into consid-

eration that when an author adds references to a new paper that author will cite most or

all of the papers on that topic and some papers of general interest. It is mentioned that

this intuition can be applied to other social graphs as well and we can assume within

this statement that we can consider Q to be a set of interests a person may have and

G(Q,E) to be a social interaction graph between people. It is more likely for people who

share the same interest to be connected in G and in addition people without common

interests may be connected as a result of the popularity of one or both of those people.

From this intuitive understanding there are two factors that emerge which are an edge

copying flavour and a flavour of preferential attachment based on degree. In fact the

suggested model contains both these elements in some way. In fact since graph B(Q,U)

uses the edge copying mechanism heavily it does exhibit a power-law degree distribution

and a community structure as it is proven in the paper. The graph G(Q,E) which also

includes the degree preferential attachment mechanism as well as common affiliation links

between vertices of Q also exhibits this phenomenon. In addition this model claims a

densification power-law and bounded diameter.

This model is worth noting due to the fact that all the above properties are properties

which have been observed in most online graphs (social, citation, Peer-To-Peer (P2P)

etc.) but more importantly this model provides a proven power-law degree distribution,

densification and bounded diameter.

2.2. Scale-free graphs and related models 67

2.2.8 Random Walk Graph

In this section we describe a simple model based on RWs. The Random Walk (RW) graph

model is a graph generation model which we have created in order to generate graphs in

which each edge is created with a clear intuition, that is a model which simulates a user

searching through the network by going through local links, to decide who to connect

to. In addition since this is a graph generation model which is based around a SRW,

it is easy to understand and we can make use of RW properties to further extend and

generalize it. The main reason we have devised this model is that the area of RWs is one

we use extensively. There are many reasons why RWs fit well in OLSN analysis, which

we discuss further in Chapter 5.

At each step the method creates a new vertex u and attaches to a random existing vertex

v in the graph. Then it performs a SRW of s steps starting from u and stores all the

visited vertices in a list L allowing repeated entries. After the end of the walk, a vertex

v is selected from L and an edge (u, v) created. This process may be repeated up to

m − 1 times to add m total edges per step. There are many possible ways to select v,

including (but not limited to) a random selection or preferential selection. In general

this model is easily extendible by using other RWs instead of a SRW.

Ideally this should generate power-laws since it does have both growth and some flavour

of preferential attachment, i.e., it combines both Model A and Model B mentioned in

Section 2.2.2. Details on why there is preferential attachment can be further found in

Chapter 3 where RWs are analysed in depth. We will mention here that for s > τ2

(see Section 3.1.3) the expected number of times an undirected SRW visits vertex v is

approximately (s − τ2)d(v)
2m + O(1). The O(1) term would be the expected number of

times v is visited in steps less than τ2. This would mean in general that vertices with

higher degree are visited more often and therefore have a higher probability of being

selected as edge endpoints. This by definition is a preferential vertex selection. We note

that τ2 is referred to as the “mixing time” of a random walk, and it is the number of

steps required before the visited vertex stops being correlated to the starting vertex. If

2.2. Scale-free graphs and related models 68

s � τ2 then (s − τ2)d(v)
2m + O(1) ≈ sd(v)

2m . If instead of having a fixed stopping time s

we run the random walk until it has covered the entire graph, we have a model which

is identical to preferential attachment. On the other hand if we stop the walk at time

s ≈ τ2 we have a model similar to triangle closing (described in Section 2.2.4) but rather

than triangles, we insert cycles of length at most s since all the vertices visited by the

RW would be at a distance at most s.

This model also generates a good community structure for small s. This is due to the fact

that chosen vertices are at most s steps away from the newly added vertex. There are

two different variations of the model we consider, which is simply using either undirected

random walks (i.e. ignoring edge direction) or using directed random walks and walking

only along out-edges. The power-law coefficient varies with the parameters is typically

c > 3. The model is directed but only presents with power-laws in the in direction,

which by design is what it is intended to do. It is unclear on how the parameters

affect it therefore it may be a good candidate model but needs further analysis and

modifications.

We have generated a large number of such graphs to compare how the parameters affect

the resulting graph properties. Results of these comparisons can be seen in Figures 2.15-

2.20. In particular we have varied the parameters of m (edges per step), s (number

of steps per random walk), and whether the random walk followed the directed graph

or ignored edge direction. We note that values of m = 1 imply that no random walk

is performed and the resulting distribution would be that of a growing random graph

generation process (Model A, Section 2.2.2).

We have determined that the number of steps in both variations do not seem to affect

the generated power-law coefficient. We have only experimented with small values of s,

i.e. s ≤ 100. However, the number of steps does affect the modularity Q of the graph,

which, when m was kept constant (m = 3) was determined to vary from Q = 0.5 for

s = 10 to Q = 0.3 for s = 100. Furthermore what does affect the power-law coefficient

is m which larger m means smaller coefficients. Additionally m seems to affect Q which

2.2. Scale-free graphs and related models 69

Figure 2.15: Directed RW. n = 150000, c = 3.86, cin = 3.27

Figure 2.16: Undirected RW. n = 150000, c = 3.37

2.2. Scale-free graphs and related models 70

Figure 2.17: Directed vs Undirected Total Degrees, n = 150000

Figure 2.18: Undirected. Constant s = 20 Varying m. n = 150000

2.2. Scale-free graphs and related models 71

Figure 2.19: Undirected. Constant m = 3 Varying s. n = 150000

Figure 2.20: Varying s, Directed vs Undirected.

2.2. Scale-free graphs and related models 72

Figure 2.21: Community structure of undirected random walk graph. n = 1000,m = 2, s = 3

Figure 2.22: Community structure of undirected random walk graph. n = 1000,m = 2, s = 50

2.2. Scale-free graphs and related models 73

when we kept s constant (s = 50) Q appears to drop from Q = 0.6 for m = 2 down to

Q = 0.25 for m = 5. The results are generally similar for directed and undirected random

walks, with the difference that when the walks are directed the power-law coefficient is

generally higher than that of the graph generated with the same m and s but by using

undirected random walks. A comparison of the resulting community structure can be

seen in Figures 2.21 and 2.22. Specifically each detected community has been given a

different colour. We can observe in Figure 2.21, the communities seem better defined,

and this is reflected by the modularity score Q which in this case was 0.8. This is not

the case in Figure 2.22 where there seems to be overlap in the community structure and

Q = 0.5. We note that s also affects the diameter of the generated graphs, with the

graph in Figure 2.21 with s = 3 having a diameter of 18 while the graph in Figure 2.22

with s = 50 having a diameter of 8. These results are expected since as s increases, then

the probability of u connecting to a vertex of high distance increases.

2.2.9 Preferential attachment and message propagation

This model is essentially a combination of the well known preferential attachment model

with an intuitive flavour of the Twitter link creation procedure which we have added. It

is a model we devised based on the idea that there are two ways of creating links:

1. A new vertex joins and connects to m other vertices with probability proportional

to each vertex’s total degree (normal preferential attachment).

2. An existing vertex activates and begins transmitting a message down to its out-

edges. Each recipient of that message has a probability p to retransmit that mes-

sage. After the process has died out (or reached a maximum number of hops) then

from all the vertices which retransmitted, m of them choose to create a directed

link to the originator of the message (message propagation). We chose only m

links to be created during each step to ensure that the graph remains relatively

sparse.

2.2. Scale-free graphs and related models 74

Figure 2.23: Preferential Message Propagation

It is a directed model, and specifically the preferential attachment portion of the model is

preferential on the in-degrees, since we are always creating m out-edges when performing

a preferential attachment step.

While there are multiple ways to generate graphs which combine these two procedures,

we will only consider one here. This variation of the model requires parameters: Edges

to be added per step m, Message propagation probability p and maximum distance a

message can propagate to hmax. The model consists of two phases. The first phase is the

growth phase, which is the same process as in the preferential attachment model with m

edges added per step. Once the graph has reached the appropriate size via preferential

attachment, for each vertex u we begin propagating a message. We then select m vertices

which received that message e.g. {v1, v2, . . . , vm} and direct edges {(v1, u), . . . , (vm, u)}

back to message source u. We note that in the end of the process the graph will have

2mn edges.

The message propagation phase, in more detail, can be seen below:

2.2. Scale-free graphs and related models 75

Figure 2.24: Preferential Message Propagation. n = 6000, m = 1,p = 0.6,hmax = 8

1. Starting from vertex u we add < u, 0 > to a queue Q where h = 0 represents the

current number of hops h.

2. While the queue Q is not empty do the following:

2.1 Remove < q, h > from Q and add q to a list L.

2.2 For each vertex w in the neighbourhood of q in the out-direction (N+(q)), if

h+ 1 < hmax we add < w, h+ 1 > to Q with probability p.

3. We select m random vertices from L as edge endpoints for the densify process.

We note that during first step of the message propagation (or densify) procedure we

expect pm vertices to retransmit the message. This is because vertex u has out-degree

m. If pm ≥ 1 then with high probability the process will terminate when h = hmax.

Since the base of the process is a preferential attachment graph, which is known to be

a good expander (see Section 2.1.6), we employ two tactics to ensure that the sizes of L

and Q remain manageable. The first is to never add the same vertex to Q or L more

2.2. Scale-free graphs and related models 76

than once, which would mean that it will terminate after at most O(n2) steps (where n

is the number of vertices in the graph). The second is to have an upper bound on the

maximum hops hmax for which we will add items in the queue. In practice both these

methods are used to optimize both for time and space performance In the example we

present in Figure 2.23 the parameters used were: p = 0.2, hmax = 8 and m = 3. This

choice of parameters was made to ensure the product pm < 1 and hmax is set to be equal

to the expected diameter the graph would reach.

The above process experimentally generates power-law degree distributions on both the

out-degrees and in-degrees as seen below in Figure 2.23. Additionally a community

structure is created with modularity Q ranging between 0.25 and 0.75. Specifically

the generated graph seen in Figure 2.24 the modularity Q ≈ 0.7. It is empirically

observed that m and p affect Q, but we have not yet determined how and why this

occurs. However intuitively we assume that the aspect of the model which generates

the community structure is the densification and we would expect that values of p such

that pm = 1 will result in a higher success rate of message propagations while limiting

the number of hops that the message would reach, thus more local links and therefore

a better community structure. The power-law coefficient of the model presented in

Figure 2.23 are c = 3.8, cout = 3 and cin = 6.

2.2.10 Grow, Back-Connect, Densify

This model is based on the Preferential Attachment With Message Propagation model

mentioned in Section 2.2.9. In the context of this model we call the preferential at-

tachment step the grow step, while the message propagation step the densify step. In

addition to this we have another element in the model which is called the Back-Connect

element. The parameters of the model are a, b, c and p where a + b + c = 1, a, b, c ≥ 0

and 0 ≤ p < 1

Starting with a complete graph of 3 vertices, we perform the following at each step:

Grow. With probability a we add a new vertex u and choose m vertices v1, . . . , vm

2.2. Scale-free graphs and related models 77

Figure 2.25: Grow-Back Connect-Densify Model. a = 0.5, b = c = 0.25,p = 0.1,N = 200000

preferentially and create edges (vi, u).

Back-Connect. With probability b we choose a vertex u uar and a vertex v preferen-

tially and create an edge (u, v).

Densify. With probability c we perform a message propagation similar to the one de-

scribed in section 2.2.9 where p is the message transmission probability.

Given the parameters m = 3, a = 0.5, b = c = 0.25 and with p = 0.1 we have obtained

the power-law degree distribution seen in Figure 2.25, where the resulting coefficient is

approximately c = 2.2.

2.2.11 Partitioned Preferential Attachment

This model is essentially a combination of the well known preferential attachment model

with an additional element of periodic partitioning of the graph. It is an undirected

2.2. Scale-free graphs and related models 78

Figure 2.26: Partitioned Preferential Attachment. n = 7, 5.105,m = 3, s = 500

model and it intuitively simulates the cell reproduction procedure. Given the parameters

m and s, the generative procedure is as follows:

� Initially the graph is non-empty and consists of a single component.

� A new vertex u joins the graph. A component C is selected uar and u is added to

that component.

� We select m vertices belonging to component C preferentially.

� We connect u to each of the m vertices selected.

� If the size of component reaches s, i.e. |C| = s we create a new component C ′.

� For each vertex v ∈ C with probability p = 0.5 we move v to C ′.

We note that during the split the edges which have endpoints belonging to different

components are maintained, which maintains the connected nature of the graph. The

2.2. Scale-free graphs and related models 79

Figure 2.27: Partitioned Preferential Attachment. n = 5000,m = 3, s = 50, Q = 0.87

resulting degree distribution from this generative process is seen in Figure 2.26. In

addition, in Figure 2.27 we can see that there is a strong community structure in graphs

generated using this model.

2.2.12 Implicit Power-Law Graph Model

From an algorithmic aspect an implicit graph is a graph which is not stored in memory in

advance. The structure (at least in part) can be determined when certain rules, formulae

or algorithms are applied. These are given as part of the graph’s definition. In this case

we define a graph with the following properties:

� The graph consists of n vertices

� Each vertex is labelled ui where i ∈ [1 . . . n]

� Given an α > 0, each vertex ui has an out-degree given by the formula

d+(ui) =

⌈
A

iα

⌉
(2.22)

2.2. Scale-free graphs and related models 80

The intuition of this model is that, in any given OLSN users vary in activity [135]. Over

time the a large number of users will not be very active, and as a result will not to create

many links. A very small minority will be very active and create many links. Intuitively

ui can be viewed as the user who arrived at the network at time i. Since early users

have had more time as members of the network, they would generally have been more

active, while more recent users (i.e. with i > A) would not have had enough time to

create more links within the network. In this model the parameter A acts as a limiter

to the overall activity a user can have in a network.

The number of vertices of out-degree x is not explicitly given but we next prove that it

its of the form of P (d+(u) = x) ∝ x−(1+ 1
α

).

Theorem 2.1. The out-degree sequence produced by formula 2.22 follows a power law
with coefficient c = 1 + 1

α with a > 0.

Proof. We need to determine the number of natural numbers which produce the same
degree, i.e., we need to know the interval for which Equation (2.22) produces the same
result.

Let i, j ∈ [1, · · · , n] such that d+(ui) = y and d+(uj) = y + 1 where y ∈ N and 6 ∃k <
i, l < j : d+(uk) = y, d+(ul) = y+ 1. This means that all vertices um with m ∈ [i . . . j)
having the same out-degree y and uj is the first vertex in the sequence with out-degree
y + 1.

y =
A

iα
⇐⇒ i = (

A

y
)

1
α

y + 1 =
A

jα
⇐⇒ j = (

A

y + 1
)

1
α

The number of vertices with degree y, (|Dy|) is given by the difference between |j − i|.
Because d+ is a decreasing function of i, it must be that i < j and therefore:

j − i = (
A

y
)

1
α − (

A

y + 1
)

1
α

= (
A

y
)

1
α

1−

(
1

1 + 1
y

) 1
α


= (

A

y
)

1
α

[
1− (1 +

1

y
)−

1
α

]

2.2. Scale-free graphs and related models 81

The term (1 + 1
y)−

1
α can be approximated using a Taylor series as follows:

(1 +
1

y
)−

1
α ≈ (1− 1

αy
)

since 1
y is small, we omit the rest of the terms in the series without introducing a

significant error. This results in:

j − i ≈ (
A

y
)

1
α

[
1− (1− 1

αy
)

]
= (

A

y
)

1
α

(
1

αy

)
= A

1
α

(
1

αy1+ 1
α

)

Therefore the number of vertices |Dy| which have a degree of y is:

|Dy| ≈ A
1
α

(
1

αy1+ 1
α

)
(2.23)

From Equation (2.23) we can conclude that |Dy| ∝ y−(1+ 1
α

) as y →∞ which means the
function d+ will follow a power-law in the midrange with coefficient

c = 1 +
1

α
(2.24)

Since 0 < α <∞ the power-law ranges from 1 < c <∞.

The only remaining issue for this model is determining the actual edges of the graph. In

order to do this we follow the following procedure:

� For vertex ui we determine the edges {(ui, v1), . . . , (ui, vd)} where d = d+(ui).

� To determine the vertices v1, . . . , vd we use a seeded pseudo-random number gen-

erator with i as the seed.

� Using the seeded random number generator we proceeded to generate d+(ui) con-

secutive random numbers. For each of these numbers j we ensure that 0 < j ≤ n.

2.2. Scale-free graphs and related models 82

Figure 2.28: Implicit Graph Model. α = 1.25,N = 10000,c = 1.8

� For each number j generated we add edge (ui, uj).

Since the pseudo-random number generator is seeded, generating a random number using

the same seed always generates the same number. The above process guarantees that

while the edges are effectively random, they follow a specific rule, and the same graph

can be reproduced on demand.

As shown above the model generates graphs with a power-law degree distribution with

coefficients which include the range c ≤ 2 as given by Equation (2.24) if α ≥ 1. Coeffi-

cients c ≤ 2 are hard to obtain using other generative processes.

For values of α < 1 we must set N sufficiently large to observe power-law degree distri-

butions. This is due to the fact that the formula at 2.22 decreases much slower. The

degree distribution we obtain from this graph model is seen in Figure 2.28.

We can observe that the out-degree distribution follows a power-law, as expected by def-

inition. The in-degree distribution approaches a log distribution but has some anomalies

2.3. Conclusion 83

which may be a direct effect of the way we determine the target vertices of the model’s

edges. The modularity Q = 0.6 which is significantly higher than expected however we

currently consider this to be an artefact of the edge endpoint selection in conjunction

with the fact that there are several disconnected components within the graph. It is

worth noting however that the graph mainly consists of a single large component which

in this case contains over 99% of the vertices of the graph while the second largest

component consists of only 8 (0.08%) vertices.

2.3 Conclusion

In this section we have defined scale-free graphs and have seen some basic graph prop-

erties which describe these graphs. Specifically a scale-free graph is a graph with a

power-law degree distribution, small diameter with Diam(G) = O(log n), and a scale

invariance w.r.t. these properties. These kinds are the result of modeling real world

networks such as: OLSNs, the WWW, autonomous systems networks, citation networks

as well as biological networks such as the yeast protein-protein interaction network and

many more. We have presented some properties which we used to quantify certain as-

pects of the network, such as e.g. Q modularity to quantify the quality of the community

structure of OLSNs, as well as the clustering coefficient as an indicator of the locality of

edges.

In addition we have presented some existing models for generating graphs which have

some or all the properties which are observed in real world scale-free graph. Such models

are generally based around the notion of growth and preferential attachment, i.e. the

probability a vertex gets connected by an edge is proportional to its degree. There are

many models which already exist and make use of these ideas, either directly (e.g. the

Barabási-Albert model and Generalized web-graph model) or indirectly (e.g. the triangle

closing model, the edge copying model etc.).

We have also presented some graph generation models which we have created. These

models are:

2.3. Conclusion 84

� Random walk graph model.

� Preferential attachment and message propagation model.

� Grow,Back-Connect,Densify Model.

� Partitioned preferential attachment model.

� Implicit Power-Law Graph model.

Each of these models was created to capture additional properties of real world scale-free

graphs. For example the random walk graph model was created as a generalization be-

tween the triangle closing model and preferential attachment model where by modifying

a parameter of this model we can generate graphs from the former, the latter or a graph

which is in between the two models. The preferential attachment and message propaga-

tion model, as well as the grow,back-connect,densify model were designed to model user

behaviour patters in OLSNs such as the creation of edges based on propagation of con-

tent through these OLSNs. In addition we have created an implicit graph model which

would produce a power-law with coefficient c > 1 while at the same time modeling user

activity as a power-law. Specifically in a OLSN network, there are a majority of users

with low activity who create few links, but a small minority which create many links.

We prove that the consequence of such behaviour would be a degree distribution which

follows a power-law and depending on the difference in activity between low-activity and

high-activity users, we get a power-law slope which better corresponds to the observed

slopes in OLSNs.

We have performed experiments with each model presented and have shown that in many

aspects, the generated graphs share a number of common characteristics with real world

scale-free graphs, such as the degree distribution, diameter and community structure.

Chapter 3

Markov Chains And Random
Walks

A Markov Chain is a random process named after Andrey Markov, a Russian mathe-

matician whose work was on these same stochastic processes. Since, in a Markov Chain

the system changes randomly, it is impossible to deterministically predict the state of

a Markov Chain at a future step. However, the expected future states of the system

can be analysed statistically and predicted with reasonable confidence. This analysis is

often referred to as Markov Chain analysis. In many applications, such as ours, it is this

analysis which makes the use of Markov Chains of interest.

Markov Chains have been analysed in depth by various mathematicians and there is a

rich assortment of resources available. We make extensive use of such analysis found

in the book by Aldous and Fill [2]. Based on our motivation we are interested in the

applications of such chains on large online networks (e.g. WWW or OLSNs) represented

as graphs. A discrete-time Markov Chain whose state-space and transition probabilities

can be represented as a weighted graph is often referred to as a RW on a graph. We

therefore focus on analysis made specifically for RWs on graphs.

The basic framework for random walks on graphs is provided by L. Lovász [95] in his

extensive survey of random walks. Additionally we build upon the work of C. Cooper

et al. [25, 31] to provide an analysis suited for the kinds of graphs we are targeting.

85

86

Methods based on RWs are commonly used for graph searching and crawling, and such

methods have been used and analysed extensively. Stutzbach et al. [123] compare the

performance of BFS with a RW and a Metropolis Hastings Random Walk (MHRW) [61,

104] on various classes of random graphs. They use this as a basis for sampling the degree

distribution of the underlying networks. The purpose of the investigation was to sample

from dynamic P2P networks. In a related study, M. Gjoka et al. [57] made extensive use

of the above methods to collect a sample of Facebook users. As SRWs are degree biased,

they used a re-weighting technique to unbias the sampled degree sequence output by the

random walk. This is referred to as a Re-Weighted Random Walk (RWRW) in [57]. In

both the above cases it was shown the bias could be removed dynamically by using a

MHRW and selecting an appropriate target distribution.

Sampling using Markov Chains, was done by A. H. Rasti et al. [117] for the special case

of the MHRW and compared to sampling using Respondent-Driven Sampling (RDS),

which can be seen as a sociological equivalent to the BFS method, in which only a

subset of the neighbours of a vertex is traversed. In their work they compared the

efficiency of these methods on five classes of graphs: (a) Erős-Rényi Random Graph,

(b) Small World graph (Watts and Strogatz [128]), (c) Barabási-Albert Preferential

Attachment Graph, (d) Hierarchical Scale-Free graph which has a structure of clusters

within clusters (Barabási and Albert [6]) and (e) real online network data from the

Gnutella network obtained by the authors in the context of their previous work in [122].

This examination showed the effect of graph structure and size has on the efficiency of

these methods. Specifically, they used the methods of MHRW and RDS to sample for

the degree distribution of the aforementioned networks. The convergence rate of the

methods was measured using a Kolmogorov-Smirnov Test (K–S test) (see Section 4.3.3)

and the results were presented for each method individually. It was shown that the

above methods of MHRW and RDS, when applied to the Hierarchical Scale-Free had a

reduced sampling accuracy, as indicated by the bad K–S test scores.

Methods such as the Re-Weighted Random Walk (RWRW) and MHRW can be used

to gather unbiased samples of graphs and in particular the method of MHRW was also

87

used by Krishnamurthy et al. [74] to sample the Twitter network. They collected three

samples, one using a SRW on the Twitter digraph, one using the public timeline of users

who have recently posted status updates, and the third one was using a MHRW. The

purpose of their study was to determine the level of symmetry between Twitter users i.e.

if user u is following user v, then we say there is a symmetric edge if user v reciprocates

by following user u. In addition according to the amount of symmetry for each user,

they were classified according to the proportion of friends/followers they had. Users with

the ratio of friends/followers approaching 1 indicate users who use Twitter as a social

network, where they connect to their acquaintances and these connections are usually

symmetric. Users who have a much higher number of friends than followers may indicate

spammers, stalkers or simply users who friend many other users in hopes they get some

of those users to reciprocate. Finally users who have a much higher number of followers

than friends are broadcasters of information. These users include news companies as well

as celebrities. The work of Krishnamurthy used the method of MHRW and compared

the results with the results acquired by using their other methods. This was done in

order to determine the level of bias the other methods had. This shows a certain level

of confidence in the unbiased nature of the MHRW.

One can consider numerous sampling goals which are sometimes case specific. For exam-

ple one could consider the goal of measuring cover time of a graph, that is, the expected

number of steps required for a RW to visit all vertices at least once; or of determining

where a RW of t steps and starting from a vertex u is most likely to terminate at(i.e.

the distribution of P
(t)
u). These are some examples of possible interesting questions that

arise which always depends on the problem at hand. In general, sampling with RWs

is used extensively in the context of estimating structural properties of graphs. This

is further examined in Chapter 5. In addition to property estimation, Markov Chains

have also been used in many other areas, such as in the context of property testing.

For example in the work of Czumaj et al. [40], RWs were used to test whether or not a

graph is an expander. This was done by running multiple random walks starting from

a specific vertex and stopping after a certain number of steps. If a sufficient number of

3.1. General properties of Markov Chains 88

walks stopped at a specific vertex then this was an indication of a “bottleneck” in the

graph. This would mean that the graph in question was not an expander.

3.1 General properties of Markov Chains

Since Markov Chains, and RWs in particular, are fundamental to our work, we first

introduce some concepts and properties of Markov Chains in general. We then continue

to provide properties specifically for the class of Markov Chains we will be using i.e.

RWs. The concepts and properties defined here will be used in the rest of the thesis.

To simplify the notation, we will mainly focus on discrete time chains, while noting that

in most cases there is a direct correspondence of the same properties in continuous time

chains.

A Markov Chain is a random process in a finite or countable state space, with the

Markov property. Thus the conditional probability distribution for the system at the

next step depends only on the current state of the system. We first define the notion

of the starting point. The starting point of a Markov Chain, is the point that the chain

occupies at time t = 0. We denote this as X0. By extension we will denote the state

occupied by the Markov chain at time t as Xt.

Based on the above notation we describe the Markov property as:

P (Xt = ut | Xt−1 = ut−1, Xt−2 = ut−2, · · · , X0 = u0) = P (Xt = ut | Xt−1 = ut−1)

(3.1)

meaning that the probability to move to state ut at time t given that at time t − 1 we

are at state ut−1 does not depend on the states occupied by the chain at earlier steps.

The Markov Chain M is a sequence of random variables M = (X0, X1, X2, . . . , Xt) which

satisfy the Markov Property (3.1). Usually, the term Markov Chain is used to mean a

Markov process which has a discrete (finite or countable) state-space. Markov Chains

can be either in discrete time or continuous time. Discrete time chains are often referred

to as discrete RWs, and for these chains there is the notion of step, as a discrete unit. In

3.1. General properties of Markov Chains 89

this case the system is assumed to occupy a certain state momentarily and the change

of states is considered as an incrementation of the step. The steps are often thought of

as moments in time, but they can equally well refer to physical distance or any other

discrete measurement.

There are many variations of Markov Chains but we only focus on a specific one called

a time-homogeneous Markov Chain. This type of Markov Chain is time independent

meaning that:

P (Xt = u | Xt−1 = v) = P (Xt−1 = u | Xt−2 = v) = · · · = P (X1 = u | X0 = v)

where P (Xt = u) is read as “the probability the chain occupies vertex u at time t.

A time-homogeneous Markov Chain can be described by a transition probability matrix

P over the state space S. The transition probability matrix P ∈ R|S|×|S| is a matrix

whose entries are:

p(u, v) = P (Xt = v | Xt−1 = u) ∀u, v ∈ S,p(u, v) ∈ [0 . . . 1] (3.2)∑
v∈S

p(u, v) = 1 ∀u ∈ S

This can be read as “the probability to get from vertex u to vertex v in the next

transition”.

Extending on Equation (3.2) we note that the probability of reaching state v starting

from state u after t transitions have been made, is given by the (u, v) entry of the matrix

P t and is written as:

p(t)(u, v) = P (Xt = v | X0 = u) ∀u, v ∈ S,p(t)(u, v) ∈ [0 . . . 1] (3.3)∑
v∈S

p(t)(u, v) = 1 ∀u ∈ S

Because the chains we are dealing with are time-homogeneous P (Xt = v | X0 = u) can

be rewritten as P (Xt+r = v | Xr = u). Thus we can consider each transition of a chain

3.1. General properties of Markov Chains 90

to be the beginning of a new chain due to the time-homogeneous nature of this class of

Markov Chains.

In summary, given a state space S, a time-homogeneous a Markov Chain is a random

process in which the Markov property holds (see Equation (3.1)). The transition prob-

ability matrix P is defined in Equation (3.2).

We note some facts about random walks, which can be found either in J.R. Norris [113],

Aldous and Fill Chapters 2-3 [2] or Lovasz [95]. In our notations we note that we will

use Tu to denote the distribution of times at which the Markov Chain occupies vertex u.

We denote as EuTv as the expected times a Markov Chain, starting at vertex u occupies

vertex v. General properties which a Markov Chain may or may not have are:

Accessible and Communicating States. Given a state space S of a Markov Chain,

and states u, v ∈ S then state v is called accessible from state u (written as u→ v)

if there exists a time t such that:

P (Xt = v | X0 = u) = p(t)(u, v) > 0 (3.4)

Thus there is a non-zero probability that the chain starting from state u will reach

state v after a finite number of steps t (see Equation (3.3)).

In a similar fashion, state u is said to communicate with state v (written as u↔ v)

if u→ v and v → u.

Communicating Class. A closed communicating class C of a state space S of a

Markov Chain is the subset of S such that ∀u, v ∈ C u↔ v and ∀w ∈ S\C, u 6↔

w. That is all states in C communicate with each other and do not communicate

to any state in S \ C.

Reducibility. In an irreducible Markov Chain means that all states can be reached

after a certain number of steps from every possible start state of the chain, i.e.

P (Xt = v | X0 = u) = p
(t)
uv > 0 ∀u, v ∈ S and some positive t ∈ N. If the chain

3.1. General properties of Markov Chains 91

is not irreducible then it is reducible meaning that there is an initial state v from

which we cannot reach the entire state space at a given step.

Alternatively assume a state-space S which can be split into n disjoint sets

C1, . . . , Cn such that Ci ⊆ S, with 1 ≤ i ≤ n and Ci is a communicating class. We

say a Markov Chain is reducible if n > 1 and irreducible if n = 1 i.e. there is a

single communicating class C1 = S.

Periodicity. A state u has a period k if any return to state u must occur in times which

are a multiple of k, i.e., k = gcd{t : P (Xt = u | X0 = v) > 0}. Thus k is the

GCD of all values of t for which the probability to be at state u is greater than 0,

if k > 1 then the chain is periodic otherwise it’s aperiodic.

Recurrence and transience. Assume P (Xt = u) is the probability the Markov Chain

occupies state u at time t. Let T = {t | P (Xt = u) > 0}. The state u is called

positive recurrent if the size of the set |T| =∞ and transient if the set T is finite.

There is always a positive probability that the chain will return to u if u is positive

recurrent. Otherwise if u is transient, means that after some point the chain never

returns to u. It can be shown that ([113] Theorem 1.5.3):

1. If Pu(Tu <∞) = 1 then u is recurrent and
∑∞

t=0 p
(t)(u, u) =∞

2. If Pu(Tu <∞) < 1 then u is transient and
∑∞

t=0 p
(t)(u, u) <∞

The following two theorems are from Norris [113] and hold for all communicating

classes (connected components) of a graph G.

Theorem 3.1 ([113] Theorem 1.5.4). Let C be a communicating class. Then
either all states in C are recurrent or all are transient

Theorem 3.2 ([113] Theorem 1.5.5). Every recurrent class is closed.

A Markov Chain is said to be positive recurrent if all its states are positive recur-

rent.

3.1. General properties of Markov Chains 92

Ergodicity. Ergodicity is an additional important property of Markov Chains. A state

u ∈ S is said to be ergodic if it is aperiodic, i.e. if k = 1 in the definition of

periodicity. A Markov Chain is said to be ergodic if it is aperiodic and irreducible.

First Hitting Time. Given an ergodic Markov Chain starting from a vertex u, the

first hitting time of vertex v, H(u, v) is defined as:

H(u, v) = min{t : X0 = u,Xt = v} (3.5)

For a walk starting in state v, define the first return time to state v as

H(v, v) = T+
v = min{t : X0 = v,Xt = v, t > 0}. (3.6)

Absorbing states A state u is called an absorbing state if P (Xt = u | Xt−1 = u) = 1

and P (Xt = v | Xt−1 = u) = 0 ∀v 6= u. The chain cannot “escape” from an

absorbing state.

A Markov Chain with absorbing states is called an absorbing chain, if every non-

absorbing state can reach an absorbing state in a finite number of steps. Addi-

tionally all non-absorbing states in an absorbing Markov Chain are transient

In addition to Markov Chains which obey the Markov property defined in Equation (3.1),

there are some relaxations which are allowable in some cases. For example for some

classes of Markov Chains the P (Xt = u | Xt−1 = v, . . .X0 = w) does not depend on just

the previously occupied state, but rather, the m previously occupied states, for a finite

m. These chains are are called higher order Markov Chains, (or order m Markov Chains).

While a transition probability exists for such chains, it depends on the m previous steps:

P (Xt = xt | Xt−1 = xt−1, Xt−2 = xt−2, · · · , Xt−m = xt−m). Therefore these order m

Markov Chains can be expressed by a Markov Chain with no memory and with a state

space Sm = Sm meaning that each state is an m-dimensional vector over the original

state space. This means that the analysis of Markov Chains with no memory also holds

3.1. General properties of Markov Chains 93

for higher order Markov Chains. However, basic properties of a Markov Chain, such as

recurrence etc. which may hold over state space S, may not necessarily hold for state

space Sm.

We now define the notion of stationary distribution. The stationary distribution is

a fundamental property of time-homogeneous Markov Chains. This distribution has

various ways to be defined and we will present them here:

Definition 3.1 (Stationary Distribution). Given a Markov Chain, the stationary dis-
tribution π is the probability distribution which satisfies the following balance equation:

πv =
∑
u

πup(u, v) (3.7)

We note that the stationary distribution is not necessarily unique. We will now provide

the definition of the limiting stationary distribution based on matrix P .

Definition 3.2 (Limiting Stationary Distribution). The limiting distribution Π of
Markov Chains is said to exist if the following limit exists:

lim
t→∞

P t = Π, (3.8)

If the limit exists then the limiting stationary distribution of the Markov Chain is Π.

The stationary distribution of a state πu can be understood as “The probability of a

Markov Chain to be at a specific state at a specific time after a large number of steps”.

If the stationary distribution exists, then it is independent of the initial state meaning

that in a sense the chain “forgets” where it started from and the probability it currently

occupies a state u only depends on πu.

The stationary distribution may not necessarily be unique for a Markov Chain. However

if the chain is Ergodic then it defines a unique stationary distribution. In this case the

Ergodic theorem holds. The Ergodic theorem can be viewed as the analogue of the

strong law of large numbers but applied to Markov Chains, and is defined as follows:

Theorem 3.3 (The Ergodic theorem: [2] Chapter 2 Theorem 1). Let Nu(t) be the number
of visits to state u during times 0, 1, . . . , t− 1. Then the following holds:

t−1Nu(t)
a.s.→ πu, as t→∞ (3.9)

where πu is the stationary distribution of u (see Definition 3.1).

3.1. General properties of Markov Chains 94

This means that t−1Nu(t) converges almost surely to πu, i.e., P (limt→∞ t
−1Nu(t) =

πu) = 1.

We next outline a simple explanation on why periodic chains do not necessarily have a

uniquely defined stationary distribution. We note that in the case that the chain has a

periodic state u with period k then:

lim
t→∞

p(t)(u, u) =

 c t mod k = 0

0 otherwise

where 0 < c ≤ 1. In other words, the limit does not exist in those cases and by

extension the limiting stationary distribution matrix Π does not exist. There may still be

a distribution which satisfies Equation (3.7) in this case, i.e., the stationary distribution

may still exist. In Section 3.4 we discuss a way to eliminate the periodicity of a chain

and ensure the existence of the limit. If we assume an aperiodic chain with all states

being positive recurrent then the stationary distribution exists and is unique for each

communicating class Ci of the chain. The matrix Π is an |S|×|S| matrix but is of rank k

where k is the number of communicating classes in the chain. If the chain is irreducible

then k = 1 and Π can be simply referred to as the unique vector π which is the row

vector to which all rows of matrix Π converge to. From here on we will only be dealing

with ergodic Markov Chains which define a unique stationary distribution π and we will

refer to the distribution of each state u in the chain as πu.

For a chain which starts at v, the expected value of the first return time of state v is

related to the stationary distribution of v as follows:

EvT
+
v =

1

πv
(3.10)

We will refer to EvT
+
v as ET+

v .

3.1.1 Reversibility

In our work we will mostly deal with reversible time-homogeneous discrete time Markov

Chains over a discrete state space. Specifically in our work we will be dealing with

3.1. General properties of Markov Chains 95

Random Walks (RWs) on undirected graphs, which are time-homogeneous reversible

Markov Chains. The name RW comes from the fact that they can be represented as

a particle which, at each discrete time takes a random step among states based on the

transition rule which satisfies the transition probability matrix P .

This section introduces the definition of reversibility as presented in [2, 113].

Definition 3.3 (Reversibility). A Markov Chain which defines a unique stationary dis-
tribution π is called reversible if following detailed balance equation holds:

πup(u, v) = πvp(v, u) ∀u, v ∈ S (3.11)

The detailed balance equation shown in (3.11) is a special case of Equation (3.7).

The name reversible comes from the fact that, if we assume a chain starting from sta-

tionarity π at state X0 the following holds for all t([2]):

(X0, X1, . . . , Xt)
d
= (Xt, Xt−1, . . . , X0)

meaning that the chain (X0, X1, . . . , Xn) has the same distribution as its time-reversal

(Xt, Xt−1, . . . , X0).

3.1.2 Fundamental matrix Z

The fundamental matrix Z is an important tool used in Markov Chain analysis. It is

defined as:

Z(u, v) =
∞∑
t=0

(
p(t)(u, v)− πv

)
(3.12)

where p(t)(u, v) is probability a walk starting from u visits v at step t.

The following useful lemma can be found in [2] (Chapter 2. Lemma 11, 12)

Lemma 3.1.
πuEπTu = Zuu

πvEuTv = Zvv − Zuv

3.1. General properties of Markov Chains 96

3.1.3 Mixing times–Relaxation times

As we noted above, an ergodic Markov process has a unique stationary distribution π.

This stationary distribution can be determined by Equation (3.8) or Equation (3.28) for

random walks on graphs. The rate in which P k → Π is discussed in Aldous and Fill [2]

Chapter 3 and Lovasz [95].

It is worth noting that since P is a probability matrix and assuming the set of the absolute

values of the eigenvalues of this matrix is Λ = {λ1, λ2, . . . , λ|S|} sorted by value, then the

largest eigenvalue is λ1 = 1 and the second largest eigenvalue is λ2. For discrete ergodic

chains, the gap 1− λ2 has the interpretation of “asymptotic rate of convergence to the

stationary distribution”.

For a walk starting at vertex u, the following bound holds ([95]):

|P (t)(u, v)− πv| ≤

√
d(v)

d(u)
λt2 (3.13)

The ε-mixing time T (ε) of a walk is the number of steps required to converge to within

a distance ε from π, i.e.,

|P (T (ε))(u, v)− πv| ≤ ε

Since the infinite geometric series
∑∞

t=1 λ
t
2 = 1

1−λ2 the mixing time is often defined in

terms of the relaxation time τ2 ([2, 73]):

τ2 =
1

1− λ2
(3.14)

We note that for continuous chains τ2 = 1
λ2

. The relaxation time τ2 has a meaning of

an upper bound of convergence to stationarity.

In many cases however the quantity λ2 is hard to obtain. For stationary Markov Chains

on graphs, the relaxation time can be bounded in terms of conductance, which is a quan-

tity easier to determine or estimate. This is done based on the Cheeger inequality [20]:

Φ2

2
≤ 1− λ2 ≤ 2Φ (3.15)

3.1. General properties of Markov Chains 97

In Equation (3.15) Φ = ΦG is the conductance of the graph, first introduced in Chapter 2

Equation (2.4). We will choose to use the simpler notation:

φ(S) =
e(S : S)

min(d(S), d(S))

where e(S : S) denotes the edges starting from S and ending outside of S and d(S)

denotes the degree of S. We remind that ΦG, the conductance of the graph, is the

minimum value of φ(S) over all possible sets S ⊆ V with |S| ≤ |V |2 .

3.1.4 Stopping times, hitting times and return times

We focus only on time-homogeneous Markov Chains which are ergodic, and therefore

define a unique stationary distribution. Since our work focuses mainly on graphs we

refer to these chains as Random Walks. We only consider reversible chains, however

most of the properties presented in this section hold for both reversible and irreversible

chains unless otherwise specified.

We now proceed to present some related definitions which are derived from the Ergodic

principle which is Nt(u)
t

a.s.→ πu(see Theorem 3.3). For a walk starting from a state u,

let S be a random stopping time such that XS = u (and Eu S < ∞), e.g. each time

Xt = u we decide with some probability to stop the chain; if the chain stops at step t

then S = t. Then the following hold:

Eu(number of visits to v before time S) = πvEu S. (3.16)

In particular, if S = T+
u then

Eu(number of visits to v before time T+
u) =

πv
πu
.

We remind that Eu is used to denote the expectation for chains starting at state u.

3.1. General properties of Markov Chains 98

3.1.5 Hitting Time From Stationarity

The expected hitting time of vertex v from stationarity is given by the following([2]):

EπTv =
∑
u∈V

πuEuTv,

where EuTv is the expected time to hit v starting from u. Conveniently EπTv can be

expressed as

EπTv =
Zvv
πv

(3.17)

where Zvv is the (v, v) value of the fundamental matrix Z defined in Section 3.1.2.

The variance of the first return time T+
v is given by (see e.g. [2])

Var T+
v =

2EπTv + 1

πv
− 1

π2
v

. (3.18)

combining this with Equation (3.17) we get:

VarT+
u =

2EπTu + 1

πu
− 1

π2
u

=
2Zuuπu + 1

πu
− 1

π2
u

=
πu(2Zuuπu + 1)

π2
u

− 1

π2
u

=
2Zuu + πu − 1

π2
u

(3.19)

(3.20)

We can combine the above with Equation (3.13) in page 100 ([95])

|p(t)(v, v)− πv| ≤ λt2

so we can obtain

1− πv ≤ Zvv ≤
1

1− λ2
. (3.21)

Setting C(v) = C = 2Zvv + πv − 1 we get:

Var T+
v =

C

π2
v

= C(ET+
v)2 (3.22)

where

1− πv ≤ C ≤ 2/(1− λ2).

3.2. Simple Random Walk (SRW) 99

3.2 Simple Random Walk (SRW)

As mentioned in Section 3.1.4 our work focuses mainly on graphs. In this section we

define some special cases of Markov Chains whose state space S can be viewed as the

vertex set V of a graph G = {V,E}. Commonly the edge set E of the graph corresponds

to permitted transitions i.e. transitions which have a non-zero probability of occurring.

However this is not always the case and we will see many examples of random walks

on graphs which also permit transitions between vertices which are not connected by

an edge. If we were to model the Markov Chain precisely as a graph this would not be

the case since we would need to insert these edges in the edge set. Since the graphs we

use usually correspond to an underlying online network, such an addition would not be

permitted.

We also note that from this point forward we will only be dealing with ergodic and

reversible chains, unless otherwise stated. However many of the properties which will

be presented may also apply to other chains. A SRW is a Markov Chain on a graph,

in which each transition is done towards a randomly selected adjacent vertex of the

current state. In general we will mainly focus on undirected graphs and this is done for

various reasons. The main reason is that in the case of the large online networks we

will be targeting, some of them are undirected by default (e.g. Facebook). The ones

that are not undirected usually allow queries in either direction allowing us to ignore

direction and simply view them as undirected (e.g. Twitter). This would allow us to

take advantage of reversibility properties, such as the detailed balance equation.

Let G = {V,E} be a graph. A SRW Wu, u ∈ V on graph G is a Markov Chain

X0 = u,X1, . . . , Xt, . . . on the vertices V associated to a particle that moves from vertex

to vertex according to a transition rule. Specifically if the particle is at vertex u, then

the transition rule of a SRW is to select a vertex v ∈ N(u) uniformly from the set N(u),

where N(u) is the set of the neighbours of u.

Definition 3.4. Assume a SRW starting at vertex u, the transition probabilities which

3.2. Simple Random Walk (SRW) 100

would make up the transition probability matrix P (see Equation (3.2)) are:

p(u, v) =

{ 1
d(u) , ∃{u, v} ∈ E
0, otherwise

(3.23)

where d(u) is the degree of vertex u.

We note how the quantity f(u) = d(u)
2m satisfies the balance equation (3.7) due to the

fact that: ∑
v∈V

p(u, v)f(v) =
∑

v∈N(u)

1

d(v)

d(v)

2m
= f(u) (3.24)

∑
u∈V

f(u) =
1

2m

∑
u∈V

d(u) = 1

where m = |E|, the total number of edges in G.

This means that f(u) = π is a stationary distribution for the SRW. Additionally if

the underlying graph is connected then the Markov Chain is irreducible and therefore,

assuming the chain is aperiodic, π is unique. We can ensure that even on bipartite con-

nected graphs the chain is aperiodic and therefore the stationary distribution is unique.

This is discussed in Section 3.4.

In the cases that the graph is not connected and consists of k connected components

then we can decompose the vertex set into k disjoint sets {G1, G2, . . . , Gk} with Gi =

{Vi ⊂ V,Ei ⊆ E} such that each graph Gi is a connected component of G. In this case

Vi is a communicating class for the Markov Chain.

Assuming vertex u ∈ Vi and the function g(u)

g(u) =
d(u)

2k|Ei|

we can observe that: ∑
v∈V

p(u, v)g(v) =
∑

v∈N(u)

1

d(v)

d(v)

2k|Ei|
= g(u) (3.25)

∑
u∈V

g(u) =

k∑
i=0

∑
u∈Vi

d(u)

2k|Ei|
=

k∑
i=1

1

k
= 1

3.2. Simple Random Walk (SRW) 101

We observe that both f(u) and g(u) satisfy the balance equation and therefore are both

stationary distributions which means the only case where the stationary distribution is

unique is when k = 1 and G1 = G.

By definition of recurrence, a state u is positive recurrent if
∑∞

t=0 p
(t)(u, u) =∞. Assum-

ing an irreducible Markov Chain with stationary distribution given by Equation (3.25),

and a finite relaxation time τ2. Let t = kτ2 where k ∈ N. From Equation (3.13) page

100:

|p(kτ2)(u, v)− πv| ≤

√
d(u)

d(v)
λ

k
1−λ2
2

if u = v then:

|p(kτ2)(v, v)− πv| ≤ λ
k

1−λ2
2

since ab = exp (b log a) we have:

|p(kτ2)(v, v)− πv| ≤ exp

(
k

1− λ2
log λ2

)
λ2 < e therefore log λ2 < 0 and so as k →∞ we have:

|p(kτ2)(v, v)− πv| ≤ exp

(
k

1− λ2
log λ2

)
∼ e−ck

where 0 < c < 1. Therefore p(kτ2) ≈ πu for k ∈ N. We note that k needs to be large

enough to make the error smaller than πv, i.e., when e−k � πv.

Since the chain is irreducible, then d(u) > 0. This means that:

∞∑
t=0

p(t)(u, u) ≥
∞∑
k=1

p(kτ2)(u, u) ≈
∞∑
k=1

d(u)

2m
=∞

which means state u is positive recurrent. This assumes a relaxation time τ2 <∞ which

means that the chain is aperiodic. If the chain is periodic then λ2 = λ1 = 1 and τ2 →∞.

We note that a SRW is biased towards high degree vertices meaning that high degree

vertices are sampled more often, compared to a uniform sample. This makes random

walks unsuitable to obtain uniform vertex samples. However in Chapter 4 we describe

ways to correct this bias.

3.3. Weighted Random Walk (WRW) 102

3.3 Weighted Random Walk (WRW)

The idea of WRWs comes as a natural next step from the SRW. There are cases where

the edges of a graph are weighted, usually denoting edge significance. This means that a

SRW is not sufficient to represent the transitions in this specific model. The transition

probability of the walk should take these weights into account.

Definition 3.5. Given a graph G = {V,E} and a function w(u, v) > 0 ∀{u, v} ∈ E,
the WRW on graph G is defined by the following transition probability matrix:

p(u, v) =

{
w(u,v)∑

k∈N(u) w(u,k) , ∃{u, v} ∈ E
0, otherwise

(3.26)

where w(u, v) denotes the weight of edge {u, v}.

The function w can be interpreted as a weight function where the edge {u, v} has a weight

w(u, v). In short the WRW is a random walk which differs from the SRW w.r.t. the

transition rule. While in the SRW the transition rule is a uniform neighbour selection, in

the WRW the neighbour selection is done proportionally to the weight of the associated

edge.

The quantity w(u) =
∑

k∈N(u)w(u, k) is often referred to as the weight of vertex u and

is a basic vertex property in the context of random walks on graphs. The SRW is a

special case of the WRW where w(u, v) = 1 ∀{u, v} ∈ E which results in w(u) = d(u).

An additional fundamental property of WRWs is the overall graph weight which is given

by Equation (3.27).

wG =
∑
u∈V

w(u) = 2
∑
{u,v}∈E

w(u, v) (3.27)

The stationary distribution of vertex u in this chain is:

πu =
w(u)

wG
(3.28)

In the case that w(u) = d(u) and wG = 2m Equation (3.26) becomes equivalent to

Equation (3.23). For the same reasons as for the SRW, a WRW on a connected finite

graph with a finite relaxation time defines a unique stationary distribution π which is

given by Equation (3.28).

3.3. Weighted Random Walk (WRW) 103

3.3.1 Electrical network paradigm

In the case of WRWs, the weight w(e) of an edge e has the meaning of conductance

in electrical networks, and the resistance r(e) of e is given by r(e) = 1/w(e). Under

this paradigm we can use additional properties of electrical networks such as e.g. the

effective resistance between two vertices, denoted as Reff .

The commute time K(u, v) between vertices u and v, is the expected number of steps

taken to travel from u to v and back to u. The commute time for a weighted walk is

given by

K(u, v) = w(G)Reff (u, v). (3.29)

Here w(G) is given by Equation (3.27), and Reff (u, v) is the effective resistance between

u and v, when G is taken as an electrical network with edge e having resistance r(e).

For our work we do not need to calculate Reff (u, v) very precisely, but rather note that

if uPv is any path between u and v then

Reff (u, v) ≤
∑
e∈uPv

r(e).

For u ∈ V , and a subset of vertices S ⊆ V , let Cu(S) be the expected time taken for Wu

to visit every vertex of G. The cover time CS of S is defined as CS = maxu∈V Cu(S).

We define a walk as seeded if it starts in S. The seeded cover time CS
∗ of S as CS

∗ =

maxu∈S Cu(S). For a random walk starting in a set S, the cover time of S satisfies the

following Matthews bound

C∗S ≤ max
u,v∈S

H(u, v) log |S|. (3.30)

For u 6= v, the variable H(u, v) is the expected time to reach v starting from u (the

hitting time). The commute time K(u, v) is given by K(u, v) = H(u, v) + H(v, u), so

K(u, v) > H(u, v).

3.4. Lazy Random Walk (LRW) 104

3.4 Lazy Random Walk (LRW)

The Lazy Random Walk (LRW) is another special case of a Markov Chain. It is a special

random walk in which which there is a guarantee that P (Xt = u | Xt−1 = u) > 0 ∀u ∈

V . This means that there is always a probability that the walk will chose to stay at a

specific vertex rather than moving to a different one.

We will describe a two LRWs, each with a different transition probability matrix.

The simplest LRW is the random walk with the following transition probability matrix:

p(u, v) =


w(u,v)

2
∑
k∈N(u) w(u,k) , ∃{u, v} ∈ E

1
2 , u = v

0, otherwise

(3.31)

Based on Equation (3.31) one can relate this walk with the general WRW but with

the addition of a loop with weight 1
2w(u) and by also halving the weights of all other

transitions. This results in a stationary distribution which is identical to the one seen

in Equation (3.28). There is however a significant advantage in using this kind of walk

and that comes from the fact that P (Xt = u | Xt−1 = u) 6= 0. This means that

gcd{t : P (Xt = u | X0 = v) > 0} = 1 as needed for an aperiodic irreducible chain. This

is based on the idea that if t1 ∈ {t : P (Xt = u | X0 = v) > 0} then t1 + 1 ∈ {t : P (Xt =

u | X0 = v) > 0} and the fact that consecutive integers are co-prime.

If a SRW or WRW on a connected undirected graph is aperiodic the stationary distri-

bution is given by Equation (3.28). As we have seen in Equation (3.8) the stationary

distribution Π only exists if limt→∞ P
t exists, however this limit does not exist in the

case of periodic chains. Using a LRW we can ensure that the Markov Chain on any

graph would not be periodic, even if the underlying graph is k-partite. We will there-

fore assume that this sort of walk is always used to ensure the existence of a stationary

distribution, (even if that stationary distribution is not unique in the underlying walk)

and thus the walk is irreducible and aperiodic.

3.5. Metropolis Hastings Random Walk (MHRW) 105

An alternative form of a LRW is described by the following transition probability matrix:

p(u, v) =


1
n , ∃{u, v} ∈ E

n−d(u)
n , u = v

0, otherwise

(3.32)

where n = |V |

In practice, the walk in Equation (3.32) can be described as follows. It is the walk in

which, at a specific step we select a vertex v uniformly at random from V . A transition

there is then performed if there is an edge between the current vertex u and the selected

vertex v. We can view this LRW as a WRW where each vertex u has a loop with weight

n−d(u)
n and each other edge has weight 1

n . This results in each vertex having weight

w(u) = 1 ∀u ∈ V . The stationary distribution for each vertex of this walk is πu = 1
n

which is the uniform distribution. This property makes it useful walk to obtain uniform

samples from a graph.

3.5 Metropolis Hastings Random Walk (MHRW)

The MHRW is an other special case of a Markov Chain. It was first proposed by

Metropolis et al. [104] and later analysed and generalized by Hastings et al. [61].

The idea is to use a given transition matrix P (u, v) to manufacture a different walk which

samples from a desired stationary distribution Q over the set of vertices. Assume we

run a SRW with transitions p(u, v) from state u to state v given by the SRW transition

probability matrix P , then during each step the MHRW would accept v as the next

vertex to visit with a probability:

a(u, v) = min

{
1,
Q(v)p(u, v)

Q(u)p(v, u)

}
(3.33)

Here Q(u), Q(v) are the desired sampling probabilities for vertices u and v respectively

and p(u, v) = 1
d(u) if v ∈ N(u), as given in Equation (3.23). The entries of the transition

probability matrix PMHRW of the MHRW are defined in Equation (3.34). Note that, if

3.6. Random Walk implementation and simulations 106

the walk does not transition to v, it remains at u for this step.

p(u, v) =


1

d(u)a(u, v), if v ∈ N(u),

1−
∑

w∈N(u) a(u,w), v = u

0, otherwise

(3.34)

The MHRW is manufactured in such a way such that we can obtain any desired distribu-

tion by sampling our graph. An example of this in the context of online social networks

is in Gjoka et al. [57] or Stutzbach et al. [123] where the MHRW is used to gather uniform

samples from Facebook. A uniform sample requires the distribution of all vertices to be

P (u) = 1
|V | ∀u ∈ V (uniform vertex selection). The acceptance probability a(u, v) was:

a(u, v) =

 min(1, d(u)
d(v)), ∃{u, v} ∈ E

0, otherwise
(3.35)

This indicates that there are application or network specific optimizations that can be

done on random walks in order to tune them to the required task. However, the downside

is that for each specific distribution we select, the mixing rate of the entire chain changes

in unpredictable ways.

3.6 Random Walk implementation and simulations

Since our work mainly focuses on large online networks, and as a major aspect of that

work is sampling from these networks, we make extensive use of Markov Chains as a

sampling tool. Due to the large size of these networks and the fact that we do not usually

have much information about them, we cannot make use of matrix operations to infer

e.g. stationary distribution or expected hitting times. It is often the case that we do not

even know the real size of these networks or the number of edges which exist within.

To overcome all these limitations we simulate RWs as a sampling algorithm. We will

discuss sampling methods and issues using RWs in Chapter 5. In this section we will

discuss algorithmic complexity issues and for this purpose we present the algorithms

3.6. Random Walk implementation and simulations 107

corresponding to the main random walks we have presented so far, the SRW and the

WRW.

For the purposes of explanation we will assume that we have an arbitrary stopping

criterion for all random walk algorithms in which the algorithm stops after s transitions

are made. This criterion is a widely used when sampling, and is based on the practical

limitations of time and space that arise from simulating RWs. We will refer the reader to

Aldous and Fill [2] for properties of RWs with arbitrary stopping times such as the one

seen in Equation (3.16). The RW on graphs is simulated with the algorithm presented

as Algorithm 1.

Algorithm 1 RW

v ← start vertex
i← 0
while i < s do

Visit(v)
v ← random vertex from N(v)
i← i+ 1

end while

Based on this algorithm we can note that p(u, v) = 1
d(u) which means that we are indeed

sampling from the transition matrix P . For example if we perform a large number of

such walks starting from u and record the vertex which was visited last in each case, we

will observe that the P (Ts = v) = p(s)(u, v). If we are interested in sampling from the

stationary distribution πu we choose the stopping time s to be more than the relaxation

time e.g. s > τ2. If this is true then P s ≈ Π and P (Ts = v) ≈ πv. While in practice the

properties we sample from the random walk are not so straight forward, we can see that

we have a powerful tool to simulate these walks and infer relevant properties.

The complexity of Algorithm 1 is straightforward to determine. We note how the number

of steps taken is s and during each step there are only 3 actions taken. In most cases, the

action “Visit(v)” takes f(v) = O(1) therefore the complexity of the algorithm is O(s).

There are cases in which f(v) is not constant time, which adds to the complexity of the

algorithm, and the overall complexity is generalized as O(sf(v)). It is clear however,

3.6. Random Walk implementation and simulations 108

that the RW algorithm itself is of linear complexity in the number of steps s.

The WRW on graphs is in general the algorithm presented in Algorithm 2.

Algorithm 2 WRW

u← start vertex
while i ¡ s do

Visit(u)
U ← random number between [0 · · ·w(u)]
Acc← 0
for all v ∈ N(u) do

if Acc ≤ U ≤ Acc+ w(u, v) then
u← v
Acc← Acc+ w(u, v)

end if
end for

end while

There is additional complexity in this algorithm, arising from the fact that we need to

obtain the weight of each adjacent edge of the vertex we are currently at. Each step

requires a worst-case time of O(d(u)) (assuming f(v) = O(1)). There are additional

optimizations that could be made to reduce the general worst-case time of each WRW

step to O(log d(u)), which we will discuss further in the following section.

3.6.1 Caching to improve WRW performance

When sampling using a WRW we wish to avoid the overhead which is added from

determining the vertex weight at each step. To do this we make use of a cache. Firstly

we assume that the vertices in N(u) are indexed so N(u) = (v1, v2, . . . , vd(u)). The cache

is essentially a set:

{u→ {w(u, v1), w(u, v1) + w(u, v2), . . . ,

d(u)∑
i=1

w(u, vi)}}

What is stored in this cache is a cumulative weight for each neighbour with w(u) being

at the last entry. If we were to generate a random number U ∈ [0, . . . , w(u)] then if

0 ≤ U < w(u, v1) we would select v1, if
∑k−1

i=1 w(u, vk−1) ≤ U <
∑k

i=1w(u, vk) we would

3.6. Random Walk implementation and simulations 109

select vertex k etc. The check to determine the range in which U falls can be done with

a binary search, which requires time O(log d(u)) however this requires us to pre-process

the graph in order to fill the cache with the appropriate entries. The cost of using this

caching mechanism is that each vertex requires O(1 + d(u)) memory and therefore we

would need O(n+m) space to store the entire graph. Since it is not always possible to

do this we make the compromise of filling in these values each time a vertex which is not

already in the cache is visited. We refer to this caching mechanism as dynamic caching.

Dynamic caching has an additional advantage when using relatively short random walks.

This advantage is that not all vertices will need to be cached, but just the ones which

are discovered. This makes it a much more practical method to use in the cases where

s � CV where CV is the number of steps required to visit all vertices of the graph i.e.

the cover time of the graph. In practice, we have found this method to be very efficient

since the most expensive vertices to get the weights for are the high degree vertices. At

the same time for most of our experiments those vertices are the ones with the highest

weights as well, which means they are visited more often, and therefore queried more

frequently.

We have found that this caching mechanism works better in practice. We can ob-

serve this in Figures 3.1 and 3.2. For the purpose of testing the effectiveness of this

caching mechanism we made use of two graphs of n = 105 vertices, a Preferential At-

tachment graph (see Section 2.2.2) and a 3-Regular graph. The weights we have used

were w(u, v) = d(u)+d(v) for the WRW. We ran the experiments 100 times for a number

of steps s = 11n and recorded the time taken for each 1000 steps. We then averaged the

times over all 100 experiments.

The Preferential Attachment graph has a degree distribution which follows a power-law.

According to the stationary distribution of the vertices seen in Equation (3.28) higher

weight vertices are expected to be visited more often, this explains the fact that (as seen

in Figure 3.1) the dynamic caching mechanism is faster than pre-processing the entire

graph at first, but converges to the pre-process time as it discovers more vertices. We

can also observe the overhead which is introduced by a WRW when we compare with

3.6. Random Walk implementation and simulations 110

Figure 3.1: Times taken for SRW and WRW and with and without caching on Preferential Attachment
Graph

Figure 3.2: Times taken for SRW and WRW and with and without caching on d-Regular Graph

3.7. Conclusions 111

the SRW time which grows in a much slower rate. Additionally we note the times of

not caching the weights at all is not fully included in the plot due to the fact that the

plot line grows in a much faster rate than the other 2 lines. We have found that for a

number of steps s = 11n the time for an unbuffered WRW was t = 43648 milliseconds

which is around 30 times slower than the time achieved by pre-processing and caching.

This may be due to the fact that the high degree vertices were visited more often and

were also the most computationally expensive vertices to get weights for.

We have also used a 3-Regular graph, that is a graph with all the vertices having degree

3. This graph is different to the Preferential Attachment graph in the sense that there

are no high-weight vertices but rather all vertices have the same weight. While we could

have taken advantage of this fact to modify the WRW algorithm to behave like a SRW,

we did not do so for the purpose of comparison. Since the degree of each vertex is

low, calculating the weights of the vertices is quick, however we can still see in this case

that the dynamic caching mechanism outperforms the pre-processing mechanism up to a

point, and both these caching mechanisms are faster than not using any caching. These

results can be seen in Figure 3.2.

3.7 Conclusions

In this chapter we have defined Markov Chains, and have mentioned their possible uses

in sampling. Additionally we have seen some properties of these chains and a special

case of Markov Chains which is time-homogeneous reversible ergodic Markov Chains on

graphs, which are called RWs. We have described various types of RWs, such as the

SRW and WRW.

In more practical aspects of sampling with RWs we have seen the algorithmic complexity

of simulating these walks. We have also presented some optimization techniques we

have employed to provide speed-ups to WRW sampling but at the cost of requiring

additional memory. To the best of our knowledge, such caching mechanisms are usually

left implicit when working with RWs. We have shown a general and widely applicable

3.7. Conclusions 112

way to implement such caching.

Chapter 4

Estimating Network Properties:
Overview

Due to the explosive growth of large online networks such as OLSNs and the WWW,

the area of graph sampling methods is receiving a great deal of attention, and many

open questions exist. Finding effective and efficient algorithms to sample online graphs

is an area of great interest, a useful tool for the community, and has many practical

applications in various fields, such as social sciences, marketing and computer science.

In the area of social sciences, sampling techniques have been used in order to estimate

the size of the population or estimate the proportion of the population which have a

certain characteristic e.g. it is impossible to exhaustively measure the height of every

person in the world, but we know the distribution of heights of people from sampling and

estimation. Similarly in advertising the population is sampled to estimate the proportion

of the population who uses and is happy with a certain product or service.

The topic we consider, is how to efficiently estimate global graph properties such as

number of edges, triangles and vertices etc. We first present some existing methods to

estimate graph properties as well as their strengths and weaknesses. In some cases, we

present an analysis of such methods to determine the expected value of the property, and

the accuracy of the estimates. We also present some practical applications on synthetic

and real graphs.

113

114

Generally speaking, graph sampling is an underdeveloped topic. Put simply, the big

question is: ‘How can one sample only a part of a graph and infer properties which hold

for the entire graph’. This question has many interpretations and shades of meaning. In

our case, for example, we are interested in getting specific global properties of a graph

which are distributed among the vertex set or a subset of the vertex set In particular

we want the degree distribution that is observed in the entire network to be, at scale,

observed in our sample of the network. Other typical examples might be global clustering

coefficient.

Work on efficient sampling of network characteristics arises in many areas. In the context

of search engine design, studies in optimally sampling the URL crawl frontier to rapidly

sample (e.g.) high page-rank vertices based on knowledge of vertex degree in the current

sample can be found in e.g. [3].

Within the random graph community, traceroute sampling was used to estimate cumulate

degree distributions; and methods of removing the high degree bias from this process

were studied in e.g. [1], [49]. Another approach, analysed in [15], is the jump and crawl

method to find (e.g.) all very high degree vertices. The method uses a mixture of uniform

sampling followed by inspection of the neighbouring vertices, in a time sub-linear in the

network size.

In the context of online social networks, early explorations often focused on how to

discover the entire network more efficiently. Until recently this was feasible for many

real world networks, before they exploded to their current size. It is no longer feasible

to get a consistent snapshot of the Facebook network for example. According to online

sources1, there were around 109 active Facebook users. While there is no way to confirm

the accuracy of this statement directly, it seems to be a widely accepted estimate.

In our specific area of interest, large online networks, and in particular scale-free net-

works, sampling is very useful. Such networks are very large with the number of vertices

ranging anything between a few thousands up to a billion vertices. Due to the sheer

1http://www.statisticbrain.com/facebook-statistics/, retrieved 8 May 2014

http://www.statisticbrain.com/facebook-statistics/

115

volume of these networks, and the fact that we do not have the time or resources to

exhaustively investigate them in their entirety we look for quick and efficient tools for

investigating network properties, without needing the entire network. Sampling comes

as a natural step towards this goal.

Some work has been done by F. Wu et al. [46] and their work has provided us with

the framework for the basic definitions and the methods of sampling. For each method

several properties the authors identified as important were measured including:

Efficiency. How fast new vertices are discovered

Sensitivity. How much the results vary depending on the target network and the per-

centage of protected users within that network.

Bias. How different statistical properties are distorted in the samples depending on the

sampling method.

The above are the general concern of graph sampling as we require our methods to be

unbiased, successful and independent of the entry point.

According to a related study conducted by A. Mislove et al. [107] the major issues

that arise in sampling, have to do with getting an unbiased sample quickly and ef-

fectively. Several methods are discussed such as Breadth-first search (BFS) and the

snowball method. The snowball method is effectively like a BFS samples only k out-edge

targets for each discovered vertex rather than all of them and rejects the rest. It was

found experimentally that sampling the graph with these methods introduces a bias.

According to their work additional challenges arise when the underlying network itself

imposes query limitations, like not allowing retrieval of backwards links (as it is the case

in Formspring) or imposing a strict limitation on the rate that data can be acquired (as

in the case of Twitter or Facebook).

It is a fact that data rate limitations can be overcome by scraping the web interface

of OLSNs rather than using the API. The method called web scraping successively

116

reads web pages from the OLSN web interface and strips them down to contain only the

relevant information. However as it is pointed out in [57] this introduces a large overhead

due to the fact that useless information such as web-headers and other hypertext elements

will have to be downloaded. We must be very careful and the size of the overheads

must be evaluated to determine whether or not we will achieve a higher throughput via

scraping or by using the API with data rate limitations.

In [84] Leskovec suggests that the goals in sampling a network could include:

Back in time goal. Here one is interested in obtaining a sample of a network which

has the same properties as that network in a previous epoch.

Scale-down goal. Here one is interested in getting a sample of the network which has

the same properties as the network in the current epoch.

This is of course only some of the goals one could consider when sampling a network.

In addition to the above problem there is also the more general problem of when to stop

the sampling. When do we know that we have sampled enough of the network? This

question is very critical as it has many side-effects. What if our method is appropriate

but we are stopping it too soon? What if we sampled too much and distorted our perfect

image? The answer to this question is still largely an open problem. However in [57]

some convergence tactics are discussed and analysed. These convergence tactics were:

Geweke Diagnostic. The Geweke diagnostic, proposed by J. Geweke [55], considers

the convergence of a single Markov Chain. In [57] X is defined as sequence of sam-

ples of a metric of interest. The sequence is split into two subsequences, Xa which

is typically the leading 10% of the sample sequence, and Xb, which is typically the

trailing 50% of the sequence. The z-statistic is:

z =
Xa −Xb√

VarXa + VarXb
(4.1)

4.1. Estimating Population Size Using Uniform Sampling 117

where Xa and Xb are the mean values of the subsequences Xa and Xb respectively.

Since Xa and Xb are samples from the same distribution then z is normally dis-

tributed with mean 0 and variance 1. In [57] it is mentioned that we can declare

convergence if z ∈ [−1, 1].

Gelman-Rubin Diagnostic. The Gelman-Rubin diagnostic, proposed by A. Gelman

and D. B. Rubin [53] suggests the use of m > 1 parallel RWs from different starting

points, to ensure that the sample means are not correlated to a specific starting

position in the sample space. As mentioned in [57], this diagnostic compares the

distribution of each RW with the overall distribution of all the RWs together.

In [53] the convergence test is as follows:

R =
V̂

σ2
· df

df − 2
(4.2)

where V̂ is the estimate of the variance of the underlying t-student distribution and

df is the degrees of freedom of the t-student distribution estimated by the method

of moments. The value of R converges to 1 as the number of samples approaches

infinity, and values close to 1 (typically below 1.02) indicate convergence.

These methods offer a great tool for the crawler to be able to determine when it is best

to halt the crawling.

4.1 Estimating Population Size Using Uniform Sampling

Sampling is a broad term used to specify the act of obtaining representative data from

a group. In the social context sampling and statistics were developed as a tool to infer

trends and general behaviour of social groups without exhaustively investigating the

entire group. In the context of large online networks sampling is an area of great interest,

mainly due to the very large size of these networks. Obtaining network properties has a

great interest on its own. However, exhaustively searching such massive networks comes

at great time and space costs which are usually undesirable and sometimes impossible to

4.1. Estimating Population Size Using Uniform Sampling 118

meet. Sampling is a natural tool that meets the challenge of obtaining network properties

at the minimum cost possible, even if it means sacrificing some accuracy.

In a other scientific contexts, such as e.g. sociological attempting to exhaustively obtain

properties of a population leads to inevitable limits to the size of population size that can

be handled. An example of this can be seen in the work of W. W. Zachary [132] where

a karate club was investigated exhaustively in order to observe the social fission and

re-formation after conflict. The size of this karate club was no more than 100 members

and larger sizes are often challenging or impossible to deal with. Due to these challenges

researchers have turned to alternative ways of obtaining useful statistics of populations.

Estimating the size of a population has been very important in various contexts including

sociological, anthropological and zoological. Typically in such contexts, the populations

investigated are very large. In addition, exhaustive search is generally not feasible.

Even if it is feasible, it is an expensive and time consuming process. These practical

limitations had led to the need of estimating properties within reasonable accuracy,

rather than exhaustively searching. Many methods were developed for this purpose. D.

W. Hayne [63] presented some methods that were used in zoological contexts in order

to estimate the population size.

We will use the following notation:

Definition 4.1 (Sampling definitions). We define the population size n as the number
of elements in a set S such that |S| = n. A sample Si ⊆ S that is obtained from S will

consist of elements of that set, e.g. Si = {p(i)
1 , p

(i)
2 , . . . , p

(i)
k } where pj ∈ S and the size

of the i-th sample is referred to as |Si| = ki. We refer to an element pj ∈ Si as the j-th
sample point in the i-th sample. We will use the notion of collision to denote a pair

of sample points (p
(i)
j , p

(i)
l) where j 6= l and p

(i)
j = p

(i)
l i.e. when during a sampling we

sample the same point twice.

4.1.1 Moran-Zippin method

This method of population size estimation again comes from the field of zoology and

specifically on the work of C. Zippin [136] and P. A. P. Moran [110]. The method is as

follows: Let n be the population size (unknown). Since this method is from a zoological

4.1. Estimating Population Size Using Uniform Sampling 119

context, the sample size is generally not something that can be controlled. The sampling

takes place in a fixed time frame, and the population that can be sampled within that

time frame varies. Assuming two consecutive samples without replacement from the

same population S1 and S2 with |S1| = k1 and |S2| = k2 then the size of the set which

remains after the first sample should be n − k1. The proportion of the set which was

sampled during the second sampling is k2
n−k1 . The assumption here is that the two

samples obtained the same proportion of the population or k1
n = k2

n−k1 and therefore the

estimate would be

n̂ =
k2

1

k1 − k2

4.1.2 Lincoln-Petersen method

Another method used to estimate population sizes is the Lincoln-Petersen method or

Lincoln index. This method was first described by F. C. Lincoln [93], however it was

first used by C. G. J. Petersen [116]. Similarly to the Moran-Zippin method described

in Section 4.1.1, this method also requires only two samples to be collected. Again, the

samples are taken in a fixed time frame and vary in size. The method works under the

assumption that both samples taken are independent and identically distributed (i.i.d.).

The sampling done in this case is with replacement, i.e. after the first sample is taken,

all sampled points are returned to the population. Therefore there may exist points

p
(1)
i = p

(2)
j i.e. points which are sampled during both samplings. The assumption

here is that the proportion of previously sampled members of the population, would

be representative to the overall population. If for example p is the proportion of the

population sampled during the second visit, i.e. p = k2
n then this should contain a p

proportion of previously sampled members of the population i.e. |S1∩S2|
k1

= p. By solving

for n we derive the the Lincoln-Petersen estimate, which is:

k2

n
=
|S1 ∩ S2|

k1

n̂ =
k1k2

|S1 ∩ S2|
(4.3)

4.1. Estimating Population Size Using Uniform Sampling 120

While this method is asymptotically unbiased for large sample sizes, it is biased for small

sample sizes [19]. An alternative approach, which is less biased, would be the Chapman

estimator [19]. This estimator based on the same sampling procedure, but the estimate

is given by:

n̂ =
(k1 + 1)(k2 + 1)

|S1 ∩ S2|+ 1
− 1

4.1.3 Regression method

The regression method is a method for estimating population size which has been widely

used in zoological contexts such as e.g. in the work of G.G. Marten [99]. A graphical

example of this method can be seen in Figure 4.1. While this method is widely ap-

plied in zoological contexts it is generally applicable. Using the notation as defined in

Definition 4.1 we proceed to describe the regression method.

The initial assumptions of the method are that sampling is done with replacement. The

procedure for the regression method is as follows:

� Assume we sample with replacement obtain k points from set S. We then remove

any points we have previously sampled to obtain sample k1 ≈ k.

� We repeat this process to get r disjoint samples of sizes k1, k2, . . . , kr respectively.

� We plot the number of samples ki against the total number of samples obtained

during all previous times i.e. ci =
∑i−1

j=1 ki.

� In the simplest form of linear regression we would visually inspect these elements

and draw the line which would pass through a minimal distance from all of them.

� We would then extrapolate to find the point of intersection of that line with the

x-axis. Presumably the point where y = 0 would be the point where x = n

The intuition of the method is that if we continue to sample we eventually would have

sampled the entire population. The underlying assumptions here are that if the sample

4.1. Estimating Population Size Using Uniform Sampling 121

Figure 4.1: Population estimation using the regression method. n = 50000

probability of each point is uniform then the rate in which new points are obtained would

decrease linearly w.r.t. the number of distinct points that have been sampled. This will

continue to occur until no more new samples can be obtained. Since this decline is linear

then the point of intersection of the line drawn with the x axis should be the size of

the population since at the point the y-axis is 0 then the x-axis should be n. This can

be seen in Figure 4.1 where the extrapolation of the line which best matches the data

passes approximately through n.

A simple intuitive explanation of why this works would be the following: For the sake of

simplicity we will denote with ci the cumulate sum of previous samples i.e. ci =
∑i−1

j=1 ki.

The following two properties hold: k1 ≈ k and c1 = 0. For the i-th sample we obtain

k points, however for each point there is a ci
n probability we have sampled it before

and therefore the expected ki would be: ki ≈ k − kci
n . In Figure 4.1 the y-axis would

correspond to the number of successful samples which would be ki while the x-axis

4.1. Estimating Population Size Using Uniform Sampling 122

would be the previous samples obtained ci. Therefore two points (ci, ki) and (cj , kj)

would define a line with slope:

m =
kj − ki
cj − ci

=
(k − kcj

n)− (k − kci
n)

cj − ci

=

kci−kcj
n

cj − ci

=
k

n

ci − cj
cj − ci

= −k
n

(4.4)

Assume point (0, k) our first point in the regression line, then the line which would pass

through this point and has slope m would be given by: y = mx + k = − k
nx + k and

therefore when y = 0 the value of x would be n. This would only work assuming that

during the first sample k1 ≈ k which means that there are not many collisions within

the sample. This would mean the size needs to be small e.g. k <
√

2n. The reason for

this particular value is discussed in Section 4.1.5. We note that this explanation is not

a formal proof since there are many other aspects to take into account, such as variance

and the effect that |k1 − k| has on the estimate. In the case of Figure 4.1, the slope was

was derived by fitting the data with the line y = mx + k where m is the slope of the

line. The fitting of the data was done using the built-in Gnuplot function fit2 which

uses an implementation of the non-linear least-squares (NLLS) Marquardt-Levenberg

algorithm [90]. The value of the slope which was calculated using this method was

m̂ = −0.00200157 which is very close to the theoretically expected m = − k
n = −0.002.

4.1.4 Coupon collection

Coupon collection is a well known technique. More on this problem can be found in

Chapter 7 and 15 of Problems and Snapshots from the World of Probability [10]. The

problem definition states: Assume there is a set of items S of size n. We wish to sample

2http://gnuplot.sourceforge.net/docs 4.2/node82.html, Retrieved 27/06/2014.

4.1. Estimating Population Size Using Uniform Sampling 123

this set uar until we have observed all the elements contained in it i.e. until we have

collected all elements. How many times would we need to sample items from S uar in

order to collect all of them?

Assuming after sampling k elements uar we have a sample set S which contains |S| = i−1

distinct samples elements then the probability that our next sample sk+1 will obtain an

uncollected element is

P (sk+1 /∈ S | |S| = (i− 1)) = Pi−1(sk+1) = 1− i− 1

n

If we consider Pi−1(sk+1) to be to probability of “success” then the expected time Yi

until success follows a geometric distribution with probability Pi−1(sk+1) which, has an

expected value EYi = 1
Pi−1(sk+1) = n

n−i+1 . The expected time to collect all items would

be
N∑
i=1

EYi = n(
1

N
+

1

N − 1
+ . . .+ 1) = nHn

where Hn =
∑n

i=1
1
i is the n-th harmonic number.

The coupon collection method is not typically viewed as a population/set size estimator.

On the other hand the expected number of samples to collect all items coincides with the

cover time of RWs on the complete graph. Generalizing the above equations we can easily

obtain the cover times of RWs for graphs with a near-uniform stationary distribution,

assuming the RWs have a small mixing time τ2. The reason we require a small mixing

time is due to the fact that while the stationary distribution may be near-uniform, the

distribution of samples taken before the RW is stationary are not necessarily uniform,

and in most cases are correlated to the starting point.

If our sampling is not uniform but taken from some distribution f(x) then the general

formulae are:

Pi−1(sk+1) = 1−
∑
s∈S

f(s) (4.5)

Giving a generalized expected waiting time Yi

EYi =
1

1−
∑i−1

i=1 f(si)

4.1. Estimating Population Size Using Uniform Sampling 124

The overall waiting time until all elements are collected would be

N∑
i=1

EYi =

N∑
i=1

1

1−
∑i

j=1 f(si)

4.1.5 Sample-and-collide method

This method is a generalization of one form of the birthday paradox which states that

if we assume that the birthdays of people are uniformly distributed and if we sample

uniformly from a population of people then the expected number of samples required

before we sample an individual with the same birthday is
√

2n with n = 365 in this

case. The paradox is that the actual theoretical and experimental result does not satisfy

the general intuition in which we would expect a collision at a sample size of n
2 . While

this has no theoretical support, the name “paradox” has remained for this problem, for

historical reasons. In order to generalize this problem, assume we obtain k uar samples

from a set S of size n. There are two properties which we can consider:

1. How many samples k do we need to get until we get a repeating sample (collision)?

2. How many collisions are we expected to have in a sample of size k?

This problem is an interesting one and has been generalized by McKinney [103] where

it was shown that, the expected number of repetitions in k samples is k(k − 1)/2n with

variance (1 − 1/n) k(k − 1)/2n. The use of this method to estimate network size is

described by Bawa et al. [8].

The method of sample and collide requires uar samples with replacement from the

population. Assume that we successively sample a population S until we find a member

of the population twice. Since we are sampling uar then the probability of sampling a

particular member is 1
n where n = |S|.

Assuming a sample S1 = {x1, x2, · · · , xk} of size k taken uniformly at random from S, if

k is the sample size when the first repetition occurs, then an estimate of the network size

4.2. Obtaining uniformly at random samples using random walks 125

is n̂ = S2
1/2. Explanation follows: The number of collisions in the sample are expected

to be:

EC =

(
k

2

) n∑
i=1

p2 =

(
k

2

)
1

n
(4.6)

which means that we expect 1 collision when we have a sample of size:

k =
√

2n

In this case is to get the average sample size k required for a single collision and get an

estimate of n̂ = k
2

2 .

4.2 Obtaining uniformly at random samples using random
walks

The methods described in this chapter rely heavily on the acquisition of uniform samples,

however, obtaining such samples is in practice very difficult. Large online networks gen-

erally do not support this sort of random access, in many cases due to privacy concerns.

However we will describe some ways we could “work around” these limitations.

Sampling the elements of a set uniformly at random with replacement can be used to

estimate the set size in sub-linear time by the method of sample and collide, described

in Section 4.1.5. However, the method of sample and collide requires uar samples from

the population.

To obtain a uniform sample from a network using a random walk, we can do the following:

Run the walk for T ≥ τ2 steps before sampling, where τ2 is a suitable mixing time. In

this case the walk is in near stationarity, and Pu(Xt = x) ∼ πx, where Xt is the position

of the walk at step t, and πx is the stationary distribution of the walk. For a simple

random walk πx = d(x)/2m, where d(x) is degree of x, and m is the number of edges.

Thus, unless the graph is regular πx 6= 1/n and so the sample is not uniform. To use

a sample from the stationary distribution and we need to unbias the walk. There are

several ways to do this.

4.2. Obtaining uniformly at random samples using random walks 126

4.2.1 Using a continuous time random walk as a surrogate for uniform
sampling.

We review the approach of Massoulie et al. [100], and Ganesh et al. [52], who use a

continuous time random walk with a fixed stopping time.

The method suggested by L. Massoulié et al. [100], is based on a continuous time random

walk. This walk makes use of continuous time to unbias a simple random walk.

The sampling algorithm in [100] proceeds as follows:

1. A timer is set at some predefined value T > 0, by the initiator, node u, in a

sampling message.

2. Any node v, either after receiving the sampling message, or (if it is the initiator)

after having initialised the timer, does the following. It picks a random number R,

uniformly distributed on [0, 1]. It sets T ′ = T + log(R)
di

. If T ′ ≤ 0, then this node

v is the sampled node; it returns its ID to the initiator, and the procedure stops.

Otherwise, it forwards the message with the updated timer T ′ to one of its d(v)

neighbours, chosen uniformly at random.

This procedure returns a random node sample, the distribution of which is exactly that

of the state of the standard CTRW at time T , started from node u. The reason is that,

since U is selected uar from (0 . . . 1] and therefore has an exponential distribution with

E log(R) = −1. Using the procedure above, the claim is that each sample gathered is an

approximate uniform sample. This can be implemented as a simple random walk, either

by holding the simple walk at u for a time exactly 1
d(u) , or by holding the walk for an

exponential waiting time with mean 1
d(u) , such as e.g. − log(R)

d(u) .

Assume we run the CTRW described above, where at each step, we hold the walk at

vertex u for an expected time of 1
d(u) . Assume the total time the CTRW has been held is

T . F or each vertex u, the expected proportion of T for which the walk was held at u is

Tπu
d(u) = T

2m . Since the walk is held at each vertex for time T
2m which is uniform among all

4.2. Obtaining uniformly at random samples using random walks 127

vertices, then for the probability of the walk being at vertex u at any given time T ′ ≤ T

is P (Xt = u | T ′) = T
2m .

4.2.2 Using a Re-Weighted Random Walk

An alternative way to collect uniform samples is by using a Re-Weighted Random Walk

(RWRW).This is used to unbias random walks and has been widely used e.g. in [57].

The general idea is based on rejection sampling [126]. Rejection sampling is the method

that states that if we want to sample from a specific distribution f(x) but are unable

to, we may instead choose to find another distribution g(x) which we are able to sample

from. If there exists a constant ` such that `g(x) ≥ f(x)∀x then accepting samples

drawn from `g(x) with probability f(x)
`g(x) will result in the samples accepted to follow

distribution f(x).

In this case if we run a SRW for time T ≥ τ2 then the probability of sampling v would

be P (XT = v) = πv = d(v)
2m = g(v). On the other hand we with to sample v uar , that is

(ideally) with probability P (v) = 1
n = f(v). Assuming the graph is sparse then m = cn,

therefore g(v) = d(v)
2cn = d(v)

2c f(v) therefore setting ` = d(v)
2c we have (from e.g. [126]):

P (accept | v) =
f(v)

`g(v)

P (v) =g(v)

P (accept) =
1

`

P (v | accept) =
P (accept | v)× P (v)

P (accept)
= f(u)

We remind that ` = d(v)
2c , however c is not generally known. On the other hand we only

need to satisfy the requirement that `g(x) ≥ f(x). Since d(v)
2 ≥ ` as c ≥ 1 we can set

`1 = d(v)
2 . We can use P (accept) = 1

`1
= 2

d(u) to obtain uniform samples. In this case,

this may change the rate of rejection, and therefore the number of steps we need to

take in the underlying random walk. We note that we can implement the same strategy

using a WRW by replacing d(v) with w(v) and using the WRW stationary distribution.

However it is more likely we know the mixing time τ2 for a SRW rather than a WRW.

4.3. Uniform Sampling from the degree distribution 128

4.2.3 Using a Metropolis Hastings Random Walk

An alternative method is to use a MHRW random walk with target stationary distri-

bution πx = 1/n. One problem with this approach, and indeed all random walk based

sampling, is that the mixing time τ2 is often unknown. This becomes even more appar-

ent in the case of the MHRW since, unlike the RWRW, the steps in which the walk does

not make any transition, greatly increase the mixing time. If we view the mixing time

as the time required for the walk to “forget” where it started from then the longer the

walk position is correlated to the starting vertex, the more steps would be required for

the walk to reach stationarity.

We remind that the acceptance probability of a MHRW designed to collect uniform

samples is given in Equation (3.35), namely, a(u, v) = min
(

1, d(u)
d(v)

)
if u 6= v.

An alternative method would be to relax the acceptance probability and set the transition

probability matrix as follows:

p(u, v) =


1
M , if v ∈ N(u),

1− d(u)
M , v = u

0, otherwise

where n � M ≥ ∆(G) the maximum degree of G. This is equivalent to making the

graph M -regular by adding loops on vertices with degree lower than M .

4.3 Uniform Sampling from the degree distribution

In the initial steps of our research we had experimented on crawling the Twitter OLSN.

The initial approach of the crawling method was a simple random walk which was

performed on a single lab computer. The inherent limitation was that the Twitter API

only allowed 150 requests per hour. The way that the API was utilized in this initial

phase was, starting from a specific vertex, to retrieve all the in and out-links and then

randomly select one of those to continue with the crawl while rejecting all the previously

visited ones. This method is known as exploration without replacement or graph traversal.

4.3. Uniform Sampling from the degree distribution 129

The notion of in-degree and out-degree of the Twitter graph is ambiguous and depends

on the point-of-view of the network. We define this as the direction of the flow of

information, in our case “tweets” where a user’s out-degree is the number of followers

of that user, who are recipients of tweets from the user, while the user’s in-degree is the

number of users that user is following i.e. the number of people that user is receiving

tweets from.

The above process had many challenges, namely the limitation of the API to only receive

5000 in or out links per request and the requirement that the request for in-links and

out-links to be done as separate API calls. We present the example of a well known

Twitter site of the comedian Stephen Fry who approximately had 50,000 friends and

2,500,000 followers at the time. In order to fully acquire the friends and followers of this

specific user, due to the API limitation we would have required 520 separate requests

which would take around 4 hours to complete.

Due to the inherent bias in the random walk process we were very likely to encounter

more high degree vertices as a consequence of Equation (3.28). Such vertices would take

hours to fully crawl. This resulted that in a period of two weeks we only fully crawled

around 5000 users. However this gave us a strong indication of the small world structure

of Twitter as well as its expansive nature. We note that the 5000 users not only were

well connected between them, but we also determined that the combined in and out

edges of those 5000 users were over 20 million. The results of this crawling are further

analysed in Section 4.3.1.

4.3.1 Twitter: Initial crawling

As it has been mentioned we crawled a much smaller part of the Twitter network using

a sampling method without replacement. Generally methods without replacement or

graph traversals are methods which do not visit the same vertex multiple times. The

deduced sub-graph of Twitter we have acquired using this crawling had the properties

presented in Figure 4.2. We have used a previously collected snapshot of Twitter by M.

4.3. Uniform Sampling from the degree distribution 130

(a) Crawled Data: Total(red) in(blue) and out(green) degree distributions

(b) Crawled Data: In-degree to Out-Degree Observations

(c) Out-degrees. Real data(green) and Crawled data(red)

Figure 4.2: Real Twitter data vs crawled data

4.3. Uniform Sampling from the degree distribution 131

Cha et al. [18] who collected the entire Twitter network of November 2009. Since this

dataset was unbiased, and based on the assumption that Twitter is scale-free, we found

it reasonable to assume that the data from [18] were representative of the actual Twitter

data. A more detailed investigation on this can be found in Section 4.3.2.

In Figures 4.2 we can observe the relative bias of the random walk method especially

when observing 4.2c. As we can see the plot of the crawled data tends to approach

the real data on higher degrees, however on lower degrees the frequency is much lower

than the real frequency. Since the high degree vertices are generally very few, we would

not expect to discover as many if we were to sample uar . It is this observation, when

combined with the results presented in Section 4.3.2 which have provided us with a

motivation to further investigate the efficiency of sampling uar in scale-free graphs.

Additionally its worth noting that the relative bias of our crawling was small in the lower

degrees. This may be in part a consequence of the fact that the above data consist of

the merging of several random walks. Each different random walk started from the same

location and crawled the graph for approximately the same amount of time. The results

of each crawler were merged to create the graph image presented in Figure 4.2c.

The problems with the initial crawling, were not only the API limitations but also the

hardware limitations we were imposed with. Generally there were two options available

for storing the intermediate graph: either in the main memory or on the hard drive.

The first case had the limitation of not being able to store a large amount of data (due

to the fact that the memory of the computer used was limited) and in the second case

proved to be infeasible to use, due to the high access time of the hard disk.

4.3.2 Second crawling, unbiased sampling

Our second crawling was mainly focused on discovering the actual degree distribution of

the Twitter network. This research happened at a time after we had analysed the real

Twitter data from [18] and had a good idea how the network looked like in 2009. This

however was not enough, because we wanted to know if the structure of the network had

4.3. Uniform Sampling from the degree distribution 132

remained unchanged, at least in the aspect of the degree distribution. Due to this we

started a second crawl of the Twitter network, this time using uniform sampling.

In order to do our sampling we took advantage of the fact that each Twitter user, when

created, is assigned a unique user ID. To the best of our knowledge and backed by

observation of a subset of users, the user Ids are assigned incrementally according to the

order each user was created. This suggested that there was a very strong possibility that

if we generated a random number ranging from the smallest to largest observed user

ID at the time we would have a good possibility to have obtained a valid user ID. The

method we used was to generate random numbers between 15 and 300, 000, 000 which

were the smallest and largest Twitter ids at the time. We then performed a user info

request from the Twitter API which is a single request that returns a great deal of data

regarding Twitter users such as in-degree, out-degree, number of tweets sent, age of the

account etc. This request, while not providing the actual in-edges and out-edges (i.e.

the other endpoints) did provide us with a good idea regarding the degree distribution.

We have observed that the actual valid user Ids that fell within our sample range were

around 75% of all the Ids tried, which seems to follow our intuitive assumption. The

above method of rejecting a proportion of the generated samples is a method of rejection

sampling and had been used in the past by e.g. [82].

In the process of this crawling we gathered data regarding 378303 users and the resulting

degree distributions are presented in Figure 4.3.

From what is seen in Figure 4.3 we can determine that the degree distribution follows a

power-law for both the in and out-degrees. In addition to this the power-law coefficient

seems to be the same for both distributions and also for the total degree. A unique

observation in this plot is that the number of statuses (or tweets) that users have sent

also follow a power law. To elaborate what exists in the above plot. Let f(x) be the

number of users who have sent x tweets and n the total number of users then what is

plotted on the above is t(x) = f(x)/n. This distribution seems to be similar to the

degree distributions with a lower slope. A rough estimate of the power-law in the mid-

4.3. Uniform Sampling from the degree distribution 133

Figure 4.3: In-Degrees (red) Out-Degrees (green) Total Degrees (blue) and tweets (fuchsia) as a function
of frequency on a log scale

range indicates that it has a co-efficient of c ≈ 1.6 which is significantly lower than what

the currently analysed generative models are able to reproduce.

This data also gave us the opportunity to make some reasonable comparisons to the

dataset from the 2009 Twitter crawl. The result of this comparison can be seen in

Figure 4.4. We note that only the results of the in-degree comparison are presented

due to the fact that they include a certain anomaly which we hoped to examine and

determine whether that was an artefact of the crawling or of the network itself. The

comparisons of the other distributions has similar results.

From Figure 4.4 we can observe that the degree distribution is the same, however this

cannot be said with certainty as the scale of the two data sets is largely different. It

is worth mentioning that the large data-set from [18] does not include vertices of total

degree 0, which seem to take up a significant portion of the network. Also when viewing

both Figure 4.3 and Figure 4.4 we can see anomaly when the in-degree is 20. This seems

to be artefact of the Twitter network and appears to have remained. From empirical

4.3. Uniform Sampling from the degree distribution 134

Figure 4.4: Real 2009 Twitter distribution (Green) compared to sampled Twitter distribution (Red)

observation a number of the users with in-degree 20 do not correspond to people but

certain services, sometimes malicious. It seems that there might be a limit imposed

either by Twitter or by other limitations which restricts these kinds of accounts to an

in-degree of 20.

All the above have led us to the assumption that the actual Twitter network today, while

being much larger, has a similar degree distribution compared to the network as it was

in 2009, however it seems that the slope is slightly different.

4.3.3 Uniform Sampling: A study of efficiency

In this section we make a small case study of uniform sampling. We have performed

some tests by sampling vertices with respect to degree uar from a preferential attachment

network. This study was made in order to correctly and accurately measure the efficiency

of the uniform sampling method depending on the size of the sample. The resulting image

was mostly what was expected (which was a near accurate degree distribution sample

even for small sample sizes) however we did make some important observations.

4.3. Uniform Sampling from the degree distribution 135

Figure 4.5: K–S test on a preferential attachment graph

We will present our findings here but before doing so we will describe the method we

used to test the efficiency of sampling uar . The method we used was the widely used

and described Kolmogorov-Smirnov Test (K–S test) [108]. This goodness of fit test is

defined as follows:

Assuming that we are sampling from a distribution with c.d.f. F (.). We use Fn(·) to

denote the c.d.f. of the empirical distribution, i.e., our sample for n i.i.d. observations.

Then the K–S test is defined as:

Dn = sup
−∞<x<∞

|Fn(x)− F (x)| (4.7)

This measure is used with a specific null hypothesis and tests whether the sample con-

firms this hypothesis if it falls within specific confidence intervals. In our case, the

hypothesis was that the sampled degree distribution c.d.f. would converge to the real

c.d.f. of the degree distribution which we could measure beforehand in our manufactured

4.4. Conclusion 136

graph. Under this hypothesis F (x) = P (d(u) ≤ x) the probability a vertex has degree

less than x while Fn(x) is the actual proportion of sampled edges of d(u) ≤ x.

The results of the above test are shown in Figure 4.5. What is shown, is three different

K–S tests. Each of those tests, uses the null hypothesis that the sample is taken from a

c.d.f which includes the degree distributions of specific degree ranges. This corresponds

to the 3 areas of the degree distribution which can be seen in Figure 2.2. These ranges

are: (a) degrees d(u) < n0.12, (b) degrees between n0.12 ≤ d(u) < n0.32 and (c) degrees

d(u) > n0.32. Under the K–S test, for a sample of size n the null hypothesis is rejected

at level a (i.e., is rejected with confidence a) if

√
nDn > Ka

where Ka is given by the probability P (K ≤ Ka) = 1 − a . In this case K is the

Kolmogorov distribution [98]. The values of Ka are given by tables of critical values

(such as the one found in e.g. [70]).

The reason we decided to partition the tests in cases was the nature of the distribution;

there was a need to perform this sort of separation in order to determine how well a uni-

form sampling process would perform in finding authorities in a real network situation.

As we can see in Figure 4.5 the sampling converges much slower for the higher degree

vertices. The sampling is very efficient even at very small samples in the low and medium

range (d(u) ≤ n0.32). Indeed, sampling uar is not a good method to sample the c.d.f. of

large degrees because there were few such vertices. This important observation is what

led to the inspiration of a new method which would perform this sampling better. This

method is based on a WRW (see e.g. Section 3.3) and will be described in Chapter 7.

4.4 Conclusion

In this chapter we note the importance of estimating various properties in populations.

We show the work that had been done in the past to estimate sizes of populations in

various contexts. In our specific area of research we typically represent these populations

4.4. Conclusion 137

as graphs, and specifically target large online networks. Now the notion of population

is not very specific in our case but can rather correspond to (a) people (b) web-pages

(c) autonomous systems (d) agents etc. We show that uniform sampling has been an

important tool in determining various properties of these populations and show various

methods we can simulate uniform sampling if uniform sampling is not directly possible

on the targeted graphs.

We also present some results comparing a snapshot of the the Twitter network as well

as samples taken either uniformly, or by using a SRW. We show that sampling uar

works well in practice in the majority of the network, however is not very successful

in sampling under-represented data, such as high degree vertices, which are rare in the

targeted graphs.

Chapter 5

Estimating Network Properties
Using Random Walks

In Chapter 4 we have described the need for sampling and estimation of certain network

properties such as e.g. the size of the network. There are certain drawbacks on these

methods, namely they require uniform sampling of the vertex set of the graph. In Sec-

tion 4.2, we have seen some methods to obtain uniform samples from a graph indirectly

using RWs. In this chapter we present four RW based methods to obtain global network

properties.

The ideas developed are joint work with C. Cooper and T. Radzik and appear in [35,

38,39]. We develop the following ideas, both theoretically and experimentally.

1. Global properties of graphs can be estimated using first return times of RWs.

2. For a given property, vertex weights based only on local structure can be designed

which return the desired estimate of the global property.

3. Vertices with the highest weight will estimate these properties most quickly.

4. Experimentally, as the walk proceeds it naturally discovers high weight vertices,

and the estimates based on these vertices are efficient after a suitable number of

steps.

138

139

5. If the walk starts from a high weight vertex then, experimentally, the property

estimates we obtain converge rapidly towards the correct value.

Our assumptions are that the network is unknown but can be queried through either

a public API or via a web interface. In addition, we assume that all computations are

based on the query results which are held locally on a single processor. The random

walk runs on the query data and is used as a randomized algorithm to determine the

next step in the query process. Our measure of computational complexity is the number

of transitions made by the walk, and our aim is to obtain results in a number of steps

sub-linear in the network size, which is assumed unknown.

There are four techniques for the design of algorithms to estimate graph properties based

on random walks.

Cycle formula of regenerative processes (CFRP). This is based on obtaining a

cumulative sum of a function when a RW first returns to the starting vertex. This

has been used by Massoulié et al. [100], as an estimator of the number of vertices

n, and in that paper the authors remark on its general applicability to property

estimation.

Weighted Random Walk (WRW). This is based on obtaining the return time of

a WRW to a vertex. This is a method we have developed for the purpose of

estimating network properties.

Optimized Metropolis Hastings Random Walk (MHRW). This approach, used

by [131], gives a weight A to vertices not having the desired property, and a weight

B to those with the property. These values are incorporated into the stationary

distribution and optimized.

Running totals. This is based on obtaining a cumulative sum of a function after an

arbitrary number of RW steps S. This is a variation of the CFRP which is useful

in estimating network averages.

140

The circumstances under which each technique is most appropriate are not well under-

stood, and indeed the techniques can easily be combined. It may be that using the

CFRP technique with a SRW is appropriate for structurally homogeneous graphs, and

the WRW for structurally inhomogeneous graphs. The advantage of the CFRP tech-

nique is that it can used with a SRW, for which mixing times are often known. The

advantage of a WRW is that is can exploit variations in graph structure. The advantage

of the running totals method is that it does not rely on return times, which in some

graphs may have a high variance. The underlying theory of the topic of weighted walks

is underdeveloped, especially with regard to mixing times and variance of first return

times. On the whole the ideas explored in this chapter worked well in practice, so there

is encouragement for further study.

The simplest way to study a network is to inspect it completely using, e.g., breadth first

search. Failing this, the another simple statistical method is to sample vertices uar ,

using the methodology described in Section 4.2. In practice for large networks such as

the WWW or OLSNs, neither of these methods is feasible, but the network can still be

queried by some limited form of crawling or interaction with the network through an

API. Our assumption is that query results are held locally on a single processor. The

selection of the next vertex to visit (query) is based on a a RW runs on the query data.

The RW is used as a randomized algorithm to determine the next step in the query

process. The measure of computational complexity is the number of steps made by the

walk, and our aim is to have obtained results in a number of steps in the order of O(cn)

where 0 < c ≤ 1 and n is the network size, which is assumed unknown.

In this chapter we present the aforementioned methods to estimate graph properties. The

chapter is organized as follows: In Section 5.1 we present the general methodology of the

property estimation process. The discussion will include both a theoretical discussion,

as well as the general procedure followed in order to obtain estimates. In Section 5.2 we

will present details on the exact procedure followed to estimate each specific property.

We will present details on obtaining estimates using each of the four methods described

above, where applicable. In Section 6.1 we present experimental results obtained when

5.1. Methodology 141

running our methods on theoretical graphs such as preferential attachment graphs. In

addition we present results obtained using real large online network data which were

freely available. We will also compare results on some estimators on real network data

with configuration graphs of the same degree distribution.

5.1 Methodology

In this section we will present the general methodology which the property estimation

methods we present are based on.

5.1.1 First return times of Random Walks.

In this section we describe the basis of the property estimators based on first return

times of RWs. The methods for estimating network properties, presented here are based

on using first return time of a random walk, given by Equation (3.10), i.e. EvT
+
v = 1

πv
.

For a random walk starting from vertex v, with a first return time to v as defined in

(3.10). If the walk is ergodic, it has a well defined stationary distribution πv at any

vertex v.

Assuming a random walk starting from vertex u at time t = 0 we can experimentally

measure the first return time T+
u = Z. By repeating this process k times we obtain the

sample Ẑ = {Z1, Z2, · · · , Zk}. Let Z(k) =
∑k

i=1 Zi, i.e., the cumulative time taken for

k returns to vertex u. The random variable Z(k)/k has expected value ET+
u = 1/πu,

which for a WRW can be written as:

ET+
u =

1

πu
=

wG
w(u)

, (5.1)

where w(u) is the weight of vertex u (i.e. the sum of the weights of the edges adjacent

to u) and wG is the weight of the graph (i.e. the sum of the weights of all vertices in

the graph). This follows from the definition of the WRW. We now use Equation (5.1)

as a property estimator. We assume that we know w(u) for each vertex u we encounter

during the walk. This is a realistic assumption since we need to compute it in order to

5.1. Methodology 142

determine the next step of the walk. We use this knowledge and the estimate Z(k)/k

and solve for wG.

Since the process is Markovian, the sample points of Ẑ are i.i.d. and the variance of

Z(k) is

Var Z(k) = kVar T+
u , (5.2)

Further analysis on the variance of the first return time can be found in Section 3.1.5

and specifically in Equation (3.22) repeated below:

Var T+
v =

2Zvv + πv − 1

π2
v

=
C

π2
v

= C(ET+
v)2

where

1− πv ≤ C ≤ 2/(1− λ2).

As we can see, vertices with larger stationary distribution have a lower value for ET+
u

and therefore a lower variance of return time. This would mean they should rapidly

provide a sample whose average matches the true value.

Using the Chebychev inequality,

Pr(|Z(k)−EZ(k)| ≥ ε) ≤ VarZ(k)

ε2
, (5.3)

by setting ε =
√
ωVarZ(k), dividing the bracketed term on the left hand side by k and

using (5.2), we obtain

Pr

∣∣∣∣Z(k)

k
−ET+

u

∣∣∣∣ ≥
√
ωVar T+

u

k

 ≤ 1

ω
.

Using Var T+
v = C(ET+

v)2, from the previous section, assuming Cω is small compared

to k, but ω is large in absolute value, we can write ε =
√
Cω/k, so that

Pr

(∣∣∣∣Z(k)

k
−ET+

u

∣∣∣∣ ≥ εET+
u

)
≤ 1

ω
, (5.4)

This gives a crude measure of convergence. For rapidly mixing walks, C is small. If

we assume that we start a SRW from a vertex u such that d(u) = ∆(G) then T+
u =

5.1. Methodology 143

minv∈V T
+
v . If we assume that G is sparse, i.e. m = cn and that d(u) = nα with

0 < α < 1 then EuT
+
u = O(n1−α) which is sub-linear in the size of the graph. This

means, for a sufficiently small s we can collect s samples in (expected) sub-linear time

O(sn1−α).

The concentration ε =
√
Cω/k, is based on the assumption that the walk is rapidly

mixing (C constant) and that a large enough number, k, of return time samples can be

taken to make ε small. In order to get k large, and to also keep the run time t of the

walk short, we need a vertex u for which ET+
u = 1/πu is small. That is, we need a vertex

u such that πu �
∑

v πv/n; i.e. a vertex u which has a stationary distribution which

is much greater than the average. While this is true for power-law degree distribution

graphs and SRWs it is not always the case. The SRW based methods which are based on

the first return times such as the cyclic formula for regenerative processes (Section 5.1.2)

and the edge estimator based on the SRW (Section 5.2.1) would not work well on graphs

with near uniform stationary distributions, such as d-regular graphs or Erdős-Rényi

random graphs, unless we are prepared to wait. For graphs with stationary distribution

πv ≈ 1/n for all vertices, we would have to wait for Ω(kn) walk steps for a large enough

sample, whereas we aim to sample in sub-linear time, if possible.

However, since we also use WRWs to estimate various properties, if there are high weight

vertices and the graph is an expander then the weight bias ensures that we will quickly

discover high weight vertices whp. The advantage of this approach is that, in the case

we suspect that the underlying graph has a near uniform stationary distribution, but

know that the vertices with the desired property are non-uniformly distributed within

the graph, we can design a WRW in such a way that we give those vertices a significantly

higher weight.

Using the above procedure and an appropriately designed random walk with a graph

weight wG ∝ T (G), where T (G) is some global property of G (or the reciprocal of a

property), we show that we can estimate T (G) by estimating wG. Examples of such

estimators follow in Section 5.2.

5.1. Methodology 144

The quantity EπTv can be bounded in various ways, to give estimates of Zvv and Var T+
v .

We give two methods: (M1) an estimate based on eigenvalue gap; (M2) a direct estimate

from the return time data. One standard deviation of the sample mean for estimates

of edges was derived by these methods. Illustration of these methods can be found in

Chapter 6 along with all experimental results of these methods.

M1. From (3.13) we have

Zvv =
∑
t≥0

(P (t)(v, v)− πv) ≤
∑
t≥0

|P (t)(v, v)− πv|

Using the result (see e.g. [95]) that |P (t)(v, v)− πv| ≤ λt2, gives

Zvv ≤
1

1− λ2
. (5.5)

M2. We estimate Zvv directly from the first return time data. Let τ2 be a mixing time

of a random walk on a graph G. The method described in [29] states (subject to certain

technical conditions) that for t > τ2 the probability ρ(t) that a first return to v has not

occurred by t is of the form

ρ(t) ∼ exp
(
−t/EπT

+
v

)
,

i.e.

log
1

ρ(t)
=

t

EπT
+
v
.

Replacing 1− ρ(t) by the proportion y(t) of returns at or before step t, estimates Zvv.

When we change from a simple random walk S to a weighted walk W, we change the

second eigenvalue λ(W) = λ2 of the transition matrix, and hence the mixing rate. Some

bounds on the change in eigenvalue gap can be obtained from the Direct Comparison

Lemma for weighted random walks (Lemma 29, Ch. 3 [2]).

Lemma 5.1 (Direct Comparison Lemma [2]). Let (we) and (w∗e) be edge weights on a
simple graph G, let (wv) and (w∗v) be vertex weights, and let τ2, τ

∗
2 be the relaxation

times for the associated random walks. Then

mine(we/w
∗
e)

maxv(wv/w∗v)
≤ τ2

τ∗2
≤ maxv(wv/w

∗
v)

mine(we/w∗e)
.

5.1. Methodology 145

Put simply, Lemma 5.1 states that if the values of we and w∗e as well as the values of

wv and w∗v do not change by much, their ratio will remain close to 1 and therefore the

mixing time τ∗2 ≈ τ2.

5.1.2 Cycle formula of regenerative processes (CFRP)

The CFRP can be summarized as follows. For a walk starting from vertex u at step 0,

let Xt be the vertex occupied by the walk at step t. Let f(Xi) be a function with the

domain of f being V and with finite mean. Then

Eu

T+
u −1∑
i=0

f(Xi)

 = ET+
u

∑
v∈V

πvf(v). (5.6)

This identity is a consequence of Equation (3.16) by replacing S with T+
u :

Eu(visits to v before time T+
u) =

πv
πu

= ET+
u πv.

The identity (5.6) was used by Massoulié et al. [100] to count the network size using a

simple random walk. Putting f(v) = 1/d(v) removes the degree bias from πv so that∑
v∈V πvf(v) = n/2m. The paper [100] uses the notation f(v) = φ(v)/d(v).

We maintain the convention f(v) = φ(v)/w(v) when generalizing to weighted random

walks, with πv = w(v)/wG. Denote by S(T+
u) the random variable

∑T+
u −1
i=0 f(Xi), with

expectation ES(T+
u) given by (5.6). Let φ =

∑
v∈V φ(v), then, as ET+

u = 1/πu,

ES(T+
u) = ET+

u ×
∑
v∈V

πv
φv
w(v)

=
wG
w(u)

∑
v∈V

w(v)

wG

φ(v)

w(v)

=
1

w(u)

∑
v∈V

φ(v)

=
φ

w(u)
(5.7)

We can rewrite Equation 5.7 as:

φ = w(u)ES(T+
u) (5.8)

5.1. Methodology 146

which we use as an estimator for φ. If we set φ(u) = 1 we have φ = n and therefore we

can use Equation (5.8) to estimate the number of vertices.

The variance of S(T+
u) for the case where φ(v) = 1, was obtained in [100]. The variance

Var n̂ mentioned in [100] is:

n2

[
2

(
1− 1

n

)2

− 1− nd(u)

]
≤ Var n̂ ≤ n2 2d(u)

1− λ2

where λ2 is the second largest eigenvalue.

Since w(u) is generally known, we can use the methodology described in Section 5.1.1,

but this time we would measure S(T+
u) rather than T+

u . The CFRP is a generalization

of the first return times method, where if we set f(u) = 1 (i.e. φ(u) = w(u)). we obtain

the result: ES(T+
u) = wG

w(u) = ET+
u which is equivalent to Equation 5.1.

5.1.3 Method of running totals

A more general expression form related the cycle formula can be written as follows:

Eπ

(
t∑
i=0

f(Xi)

)
= t

∑
v∈V

πvf(v). (5.9)

where Eπ denotes expectation from stationarity. We denote the number of visits to

vertex u before time S by Nu(S). We remind that a stationary Markov Chain is at

vertex u with probability πu, which in turn gives Equation (5.9) a similar interpretation

to Equation (3.16) but from stationarity. This can be trivially determined by considering

the fact that EπNu(t) = tπu.

Based on Equation 5.9, we generalize the estimator as follows:

EπS(t) = t
∑
v∈V

πv
φv
w(v)

= t
∑
v∈V

w(v)

wG

φ(v)

w(v)

=
t

wG

∑
v∈V

φ(v)

=
tφ

wG
(5.10)

5.1. Methodology 147

where S(t) is a generalization of S(T+
u) such that S(t) =

∑t−1
i=0 f(Xi).

This would allow us to estimate φ as follows:

φ ≈ S(t)wG
t

The disadvantages of this method are:

� Knowledge of the mixing time τ2 is required. In order to sample from stationarity

we need to run a walk for τ2 steps until it mixes, before we start sampling. While

this is true for Equation (5.10), Dinwoodie [42], and Lezaud [91] have shown that,

provided t is sufficiently large, results are accurate even when starting from any

initial distribution.

� Knowledge of wG is required in order to obtain estimates for φ. wG is in many

cases unknown.

However the method is useful in the cases where (a) we know wG or have estimated it

within a reasonable margin, or (b) we wish to obtain the network average values of φ , i.e.

1
nφ. The idea of estimating network averages will be further explained in Section 5.2.3.

We will now proceed to discuss previous work on the accuracy bounds for the running

totals method both in the cases when assuming knowledge of the mixing time τ2 and

when we do not assume knowledge of τ2.

Accuracy of the method of running totals

The following section concerns the empirical accuracy of the sampled running total S(t)

as given by (5.10). The total S(t) =
∑t

i=1 f(Xi) depends on a function f(Xi) evaluated

at the vertices Xi visited by a random walk during steps i = 1, ..., t. Theorems 5.1–5.3

below provide Chernoff-type bounds for the concentration of the random variable S(t).

Theorem 5.1 seems the most straightforward in application, but requires the walk to

start from the stationary distribution. The bounds in Theorems 5.2 and 5.3 allow any

initial distribution of the random walk.

5.1. Methodology 148

The following result from Léon and Perron [81] concerns sampling a function f(v) : v ∈ V

on a graph G = (V,E) using a reversible ergodic random walk starting from stationarity.

The function f(v) evaluated at any vertex v is restricted to take values in the interval

[0, 1]. Let π be the stationary distribution of the walk, and µ = Eπf(X) =
∑

v∈V πvf(v)

the expected value of f(X) w.r.t. the stationary distribution. Let λ0 = max(λ2, 0) where

λ2 is the second largest eigenvalue of the transition matrix P of the random walk. Let

Prπ denote the probability of an estimate for a walk starting from stationarity. Then

the following theorem holds.

Theorem 5.1 (Léon and Perron [81]). Consider an ergodic and reversible Markov Chain
(X0, X1, . . .) on a graph G = (V,E), starting from the stationary distribution π. Let
S(t) =

∑t
i=1 f(Xi) be the running total. Then, for any ε > 0 such that µ+ ε < 1,

Prπ(S(t) ≥ t(µ+ ε)) ≤ exp

(
−2

1− λ0

1 + λ0
tε2
)
. (5.11)

An alternative approach used by Dinwoodie [42] and Lezaud [91] is to estimate such

probabilities starting from a given initial distribution q = (Pr(X0 = v : v ∈ V) on

vertices. Theorems 5.2 and 5.3 below assume that the function f is mean centred, i.e.,

µ = Eπf =
∑

v∈V πvf(v) = 0.

The following Chernoff-type bound for Markov Chains is from Lezaud [91].

Theorem 5.2 (Lezaud [91]). Consider an ergodic and reversible Markov Chain
(X0, X1, . . .) on a graph G = (V,E). Let S(t) =

∑
f(Xi) be the running total. As-

sume maxv |f(v)| ≤ 1. Let λ2 be the second largest eigenvalue of the transition matrix
P of the walk. Then, for any initial distribution q of X0, any positive integer t and all
0 ≤ γ ≤ 2/5,

Prq (S(t) ≥ tγ) ≤ e(1−λ2)/5 ·
∑
u∈V

(Pr(X0 = u))2

π(u)
· exp

(
− tγ

2(1− λ2)

4

(
1− 5γ

2

))
.

A recent paper by Wagner [127] gives simplified bounds for Lezaud type inequalities

given the variance σ2 =
∑

v∈V πvf
2(v) of f . An example of this is:

Theorem 5.3 (Wagner [127]). Consider an ergodic and reversible Markov Chain
(X0, X1, . . .) on a graph G = (V,E). Let S(t) =

∑
f(Xi) be the running total. Let

λ = max(λ2, 0), where λ2 is the second eigenvalue of the transition matrix P of the walk.

5.2. Graph property estimators 149

Assume maxv |f(v)| ≤ 1. Then, for any initial distribution q of X0, any positive integer
t and all γ > 0,

Prq (S(t) ≥ tγ) ≤ e
1−λ
1+λ

γ2

σ2+γ ·
∑
u∈V

(Pr(X0 = u))2

π(u)
· exp

(
− t

8σ2
(1− λ)γ2

)
.

The following result from K. Chung et al. [22] concerns general Markov Chains.

Theorem 5.4 (Chung et al. [22]). Assume an ergodic Markov Chain over state space
V and stationary distribution π. Let T = T (ε) be its ε-mixing time for ε ≤ 1

8 and let
(X0, . . . , Xt) denote a t step random walk starting from initial distribution q (i.e. X0 is
drawn from distribution q). Assume fi → [0, 1] with Efi = µ and S(t) =

∑t
i=0 fi(Xi).

There exists a constant c such that:

Prq(|S(t)− µt| ≥ δµt) ≤ c

√√√√ n∑
i=1

q2
i

πi
exp

(
−δ2µt

72T

)
for 0 ≤ δ ≤ 1 (5.12)

Prq(S(t) ≥ (1 + δ)µt) ≤ c

√√√√ n∑
i=1

q2
i

πi
exp

(
−δµt
72T

)
for δ > 1 (5.13)

Overall, the error in the estimate of the running totals method decreases exponentially

with the sample size. There are a few things to note on Theorems 5.1-5.4.

� Theorems 5.1-5.3 provide an upper bound on the error of the estimates whp. We

generally don’t know the probability P (|S(t)−tµ| < tε) in these cases. This means

that while we can use the results of Theorems 5.1-5.3 to determine a whp upper

bound on any estimates, we cannot use them to determine a lower bound. This is

not the case for Theorem 5.4.

� Theorem 5.1 and Theorem 5.4 hold for µ < 1 while Theorems 5.2 and Theorem 5.3

hold for µ = 0. This means that in order to be able to use these results, we may

need to rescale the function f(u) appropriately.

5.2 Graph property estimators

In this section we present some property estimators based on the four methods we have

described in the beginning of this chapter.

5.2. Graph property estimators 150

5.2.1 Edge estimator

Based on the return time of a Simple Random Walk

A simple example of our approach, is to estimate the number of edges m using a RW.

As seen in based on the discussion in Section 3.3, setting an edge weight w(u, v) = 1

leads to w(u) = d(u) and wG = 2m. Let Z(k) =
∑k

i=1 Zi be time for the k-th return to

vertex u. We can use the random variable

m̂ =
Z(k)d(u)

2k
(5.14)

to estimate the total number of edges m of a graph without the need to exhaustively

count them.

Edge Estimator using the CFRP

If we wish to use the CFRP to estimate the number of edges the procedure is as follows

we set a function φ(u) = d(u). It is clear that in the case we use a SRW, function

f(u) = φ(u)
w(u) becomes f(u) = 1 ∀u ∈ V . This is essentially equivalent to counting the

steps of first return which our previous estimator was based on. However, in this case

we may choose to use a WRW as the underlying walk if for any reason a SRW is not a

viable option.

Edge Estimator Based on collision sampling

A SRW in stationarity, is uniform among the edges which can be easily determined by

considering the probability of transitioning along any edge e = {u, v} during step t is

the probability of being at vertex u at step t − 1 and then selecting vertex v or (since

the walk is reversible) vice-versa. This is:

Pr(Xe) = πuPuv + πvPvu

=
πu
d(u)

+
πv
d(v)

=
1

m

5.2. Graph property estimators 151

This means that we can use the sample and collide method as described in Section 4.1.5.

We remind that based on the sample-and-collide method, the expected number of sam-

ples before the first collision should be
√

2m (since the set we are sampling from is the set

of edges). In general given a sample size R and a number of collisions C the estimated

number of edges is:

m̂ ≈ R2

2C
(5.15)

In practice in order to deploy this method and estimate the number of edges we either

need to know the mixing time of the walk or make a “good guess”.

5.2.2 Random Walk based vertex estimators

As we have noted in Chapter 4, the size of a population is an important property and

multiple methods exist to estimate it. We have described some of these methods which

were mainly based on uniform sampling. However since, as we mentioned, we assume

that sampling uar directly is not possible in the case of OLSNs and WWW, therefore

we have also presented some methods to obtain uar samples by unbiasing RWs.

In this section we extend the discussion of Sections 4.1.5 and 4.2. We present two

methods to estimate the number of vertices, the first method uses a sample-and-collide

method with non uniform samples obtained through a random walk, in order to estimate

the number of vertices. We then present a method we have devised to estimate the

number of vertices. This method is based on an a WRW with appropriately assigned

weights which allows us to use the method of first returns to estimate the number of

vertices.

Sample-and-Collide Based Vertex estimator using biased sampling

As pointed out by L. Katzir et al. [71] and discussed in Section 4.1.5, it is possible to

estimate the number of members of a group (i.e., vertices in a graph) by counting the

number of collisions that an unbiased sampling would yield. In [71] this notion is further

5.2. Graph property estimators 152

extended to yield similar results using a SRW on a directed graph. While in our case

the graphs in question are not directed the principles remain the same.

Assume a sample of r vertices {x1, x2, · · · , xr} taken from a sampling distribution π the

stationary distribution of a SRW. Define C =
∑r

i=1

∑r
j=i+1 I(xi = xj) where I is the

indicator function taking the value of 1 if the predicate within (xi = xj) is satisfied,

and 0 otherwise. If we assume stationarity then it is reasonable that the samples xi are

independent, since samples from stationarity are not correlated with the starting vertex

or any other vertex and are always drawn from the stationary distribution.

The expectation E = Eπ of a vertex dependent random variable X sampled according

to the stationary distribution π of a random walk is:

EπX =
∑
v∈V

X(v)πv.

The expected number of collisions is:

EC = E
r∑
i=1

r∑
j=i+1

I(xi = xj)

=

(
r

2

)
EI(xi = xj)

=

(
r

2

)∑
v∈V

π2
v (5.16)

The expected sum of the degrees of the sample is:

Em̂ = E
r∑
i=1

d(xi) = r
∑
v∈V

d(v)πv =
r

2m

∑
v∈V

d(v)2. (5.17)

Finally the expected reciprocal sum of the degrees is:

Em̂−1 = E

r∑
i=1

d(xi)
−1 = r

∑
v∈V

πv
d(v)

=
rn

2m

If the term n is isolated from the above then the vertex estimator is as follows:

n̂ =

(
r

2

)
Em̂Em̂−1

r2EC
=
r − 1

r

Em̂Em̂−1

2EC
(5.18)

5.2. Graph property estimators 153

Vertex estimator based on first return times

We use an inversely degree biased WRW. Let γ > 0 be some positive constant. We

set the edge weight w(u, v) = γ
d(u) + γ

d(v) . Let V RW be the associated walk, then the

stationary distribution of the walk is:

πu =
w(u)

wG
=
γ +

∑
v∈N(u)

γ
d(v)

2γn
. (5.19)

This follows as

w(u) =
∑

v∈N(u)

w(u, v)

=
∑

v∈N(u)

γ

d(u)
+

∑
v∈N(u)

γ

d(v)

= γ +
∑

v∈N(u)

γ

d(v)
(5.20)

wG = 2
∑
e∈E

w(e)

= 2
∑
e∈E

γ

d(u)
+

γ

d(v)
= 4

∑
e∈E

γ

d(u)

= 2
∑
u∈V

∑
v∈N(u)

γ

d(u)
= 2γn.

Let Z(k) =
∑k

i=1 Zi be time for the k-th return to vertex u. We use the following

estimator for vertices:

n̂ =
Z(k)w(u)

2γk
(5.21)

where w(u) is given by Equation 5.20.

5.2.3 Triangle estimator

In this section we will present a few methods to estimate the number of triangles. In

general number of triangles is an interesting property since a higher than random density

of triangles is generally viewed as an indicative property of a OLSN.

5.2. Graph property estimators 154

The methods presented here have a significant overhead introduced at each step, since

we generally require knowledge of t(u), the number of triangles which include vertex u.

For each vertex u this requires O(d(u)2) time. However since exhaustively counting the

number of triangles is itself a hard problem, with the complexity of the current “state of

the art” algorithm being O(nω) where ω is the fast matrix multiplication exponent1. In

addition to O(nω) being very high for very large graphs, this specific algorithm requires

the graph to be represented as an adjacency matrix, requiring Θ(n2) space. While there

are space optimizations for sparse matrices, the run time is generally the same.

WRW based triangle estimator

For each edge e we assign a weight 1 + ct(e) where t(e) is the number of triangles

containing e. Let t(v) be the number of triangles containing v, and t(G) the total

number of triangles in G and c ≥ 1. Let TRW be the associated random walk, then

πu =
w(u)

wG
=
d(u) + 2ct(u)

2m+ 6ct(G)
.

This follows as

w(u) =
∑

v∈N(u)

1 + ct(e)

= d(u) + 2ct(u)

wG =
∑
u∈V

w(u)

=
∑
u∈V

d(u) + 2ct(u)

= 2m+ 6ct(G)

Let Z(k) =
∑k

i=1 Zi be time for the k-th return to vertex u. We can use this to estimate

the number of triangles t(G) by

t̂ =
Z(k)(d(u) + 2ct(u))− 2m

6ck
, (5.22)

1At the time of writing ω = 2.3729, by Williams [130]. The algorithm which achieves runtime
O(n2.3729) has large constants hidden in the Big-O notation meaning that in practice, for graphs which
can be stored in todays memory, the runtime of O(n2.3729) is unachievable.

5.2. Graph property estimators 155

where m can be estimated by Equation (5.14). We note that for the majority of our

experiments we have chosen to use c = 1. Ideally we would choose c such that 2m ≈

6ct(G) in order to equally distribute any errors in the estimate, to both terms of the

weight.

Triangle Estimator using the CFRP

Using the method described in Section 5.1.2 we can create an estimator of the number

of triangles by selecting φ(u) = t(u) meaning that f(u) = t(u)
w(u) This results in:

ES(T+
u) =

3t(G)

w(u)

We remind that ES(T+
u) is the E

∑T+
u −1
i=0 f(Xi). We can now make use of any random

walk to estimate:

t̂ =
w(u)S(T+

u)

3
(5.23)

5.2.4 Estimating the number of occurrences of an arbitrary fixed sub-
graph.

Using a weighted random walk to estimate the number of edges m or triangles t(G)

in a graph G are special cases of the following problem. Let S be a set of unlabelled

graphs. For each M ∈ S we want to count the number of distinct labelled copies of

M in the graph G. The cases edges and triangles given above correspond to S = {K2}

and S = {K2,K3} respectively. For each e ∈ E(G) we put w(e) =
∑

M∈S N(M, e),

where N(M, e) is the number of distinct subgraphs H isomorphic to M which contain

e. M can be any connected subgraph, e.g., Kk,Kk,`, a chordless cycle of length 4, some

specific tree. The simplest case (after S = {K2}) is S = {K2,M}. In this case we have

the following:

wG = 2
∑
e∈E

w(e) = 2
∑
e∈E

(1 +N(M, e))

= 2m+ 2νµ(G), (5.24)

5.2. Graph property estimators 156

where ν = |E(M)| and µ(G) is the number of distinct copies of M in G. As πv =

w(v)/wG, and w(v) and ν are known, we can use the method of first returns to estimate

µ(G).

Estimating the number of occurrences of an arbitrary fixed subgraph using
the CFRP.

Following the same ideas as above, we use the vertex valued function f(u) = N(M,u)
w(u)

where N(M,u) is the number of subgraphs isomorphic to M which vertex u belongs to.

By using this function we have:

ES(T+
u) =

ξµ(G)

w(u)

where ξ = |V (M)| the number of vertices belonging to graph M .

This would mean that we can estimate µ(G) using the following equation:

µ̂(G) =
S(T+

u)w(u)

ξ
(5.25)

We can observe that Equation (5.25) generalized the CFRP formulae seen so far, i.e. for

the case of vertices N(M,u) = 1 for each vertex and ξ = 1, or for the case of triangles

N(M,u) = t(u) and ξ = 3.

5.2.5 Estimating average clustering coefficient

The average clustering coefficient is a network property which we discussed in detail in

Chapter 2 and specifically in Section 2.1.8. We remind that the clustering coefficient of

a vertex is given by Equation (2.13).

Cu =


2|{evw}|

d(u)(d(u)−1) if d(u) > 1

0 otherwise.

If d(u) > 1 we can write Cu = 2t(u)
d(u)(d(u)−1) .

Let ε > 0, γ > 0 be small positive constants, we can use the WRW with weights w(u, v) =

ε + γ Cu
d(u) + γ Cv

d(v) to estimate the average clustering coefficient C =
∑
u∈V Cu
n . We note

5.2. Graph property estimators 157

that, as in the case of the TRW, the ε is added to the weight to ensure that the edge

would still be traversable even if Cu = Cv = 0 and therefore the graph would remain

connected. This is because:

w(u) =
∑

v∈N(u)

w(u, v)

=
∑

v∈N(u)

(ε+ γ
Cu
d(u)

+ γ
Cv
d(v)

)

= εd(u) + γCu +
∑

v∈N(u)

γ
Cv
d(v)

and the graph weight is:

wG = 2
∑

(u,v)∈E

w(u, v)

= 2εm+ 2(
∑

(u,v)∈E

γ
Cu
d(u)

+
∑

(u,v)∈E

γ
Cv
d(v)

)

= 2εm+ 4
∑

(u,v)∈E

γ
Cu
d(u)

= 2εm+ 2
∑
u∈V

∑
v∈N(u)

γ
Cu
d(u)

= 2εm+ 2
∑
u∈V

γCu

= 2εm+ 2nγC

We remind that from the discussion in Section 2.1.8, we only consider this method on

simple graphs.

The average clustering coefficient in this case can be estimated using:

Ĉ =
Z(k)w(u)− 2εm

2knγ
(5.26)

In this case we note a few significant drawbacks of this approach:

� The term 2m is much greater than C since 0 ≤ C ≤ 1 and m = O(n) in sparse

graphs. The parameters ε and γ can be used to appropriately make the two terms

5.2. Graph property estimators 158

comparable, but it is not realistic to assume that we know appropriate values of

these parameters without assuming we know the values of C and m.

� This method requires knowledge of m and n, which we assume as unknown. This

assumption is similar to the assumption made when estimating the number of

triangles or arbitrary subgraphs. The difference is that in practice we would have

to use estimates of these values, which introduces an error. In the case of triangle

counting, the error introduced only involves the term m but in this case it would

involve both m and n.

In summary, the problem is that C is very small compared to wG and that it is a value

which is an average over the entire graph. By contrast, all previous properties estimated

had values are typically much larger, and were summed over the entire graph.

While a WRW is not the most appropriate approach to estimate C, we will show how

the method of the running totals can be used to greatly simplify the estimation of C,

and any similar property.

Estimating average clustering coefficient using the method of running totals

We remind that the method of running totals is a method based on a generalization of

the CFRP. We can use this method to estimate C by assuming a vertex valued function

f(u) = Cu
w(u) . From Equation (5.10) we have:

ES(t) =

∑
v∈V Cu

wG
=
nC

wG

by using the VRW with wG = 2γn as the underlying walk, and setting γ = 1
2 this is

simplified to:

ES(t) = C

and therefore Ĉ = S(t).

This method is most appropriate since 0 ≤ Cu ≤ 1 and in general C < 1. This would

mean that we can use the results from Theorems 5.1,5.2,5.3 and 5.4 to obtain confidence

5.3. Conclusion 159

intervals. In practice what this means is that from, e.g., Theorem 5.1 we would have:

P (S(t) ≥ t(C + ε)) = P (Ĉ ≥ C + ε) ≤ exp

(
−2

1− λ0

1 + λ0
tε2
)

5.2.6 Estimating network averages

In general, we can use the running totals of the CFRP in order to estimate any network

average. Assume a vertex property with value P (u). Our goal is to estimate the average

value of P (u) i.e. P = 1
n

∑
v∈V P (u). If we set a vertex valued function f(u) = P (u)

w(u) and

by using the VRW with γ = 1
2 we have:

ES(t) =

∑
v∈V P (u)

wG
=
nP

wG
= P

This idea we present here is based on the average clustering coefficient estimation, but

can easily be extended to average degree d or degree correlations 〈knn〉.

5.3 Conclusion

In this section we have presented a variety of methods to estimate properties using RWs.

We discussed three basic RW based methods in depth:

� Methods based on the first return times of RWs.

� Methods based on the CFRP.

� Methods based on running totals of a RW.

We have also presented methods to estimate properties such as: the number of edges

m, the number of vertices n, the number of triangles t, the number of arbitrary fixed

subgraphs µ(G) and the average clustering coefficient C. We presented ways we can

use either of the aforementioned RW-based methods in order to estimate each of these

properties.

Chapter 6

Estimating Network Properties:
Experimental Results

In this chapter we will present experimental results of the property estimation methods

discussed in Chapter 5. Most of the results which appear here are joint work with

C. Cooper and T. Radzik and appear in [35, 38, 39]. The results here were obtained

using a home computer with limited capabilities. The specifications of the machine were

Intel Core 2 Quad with 8 GB RAM, which are slightly lower than the standard budget

personal computers in circulation today. This shows, that in practice these methods do

not require many resources in terms of computational power or memory. The simulations

of the RWs were written in C#1.

6.1 Sampling approach, and presentation of results.

The total number of steps of the walk in all experiments was, in most cases, limited to

the graph size n. The results presented are averaged over 10 runs of the experiment.

The following was recorded at each step of the walk for later processing: Step, Vertex

identifier, Vertex weight, Cycle Formula function cumulate. Random Walk simulations

rely on a good random number generation and therefore, in order to generate random

numbers we used a random number generator developed by M. Matsumoto and T.

1The code of the simulation can be found at https://github.com/apokryfos/randomwalkframework

160

6.1. Sampling approach, and presentation of results. 161

Nishimura [102] called the Mersenne twister random number generator the code we used

was ported from a C code2 by Rory Plaire.3

We present our findings in two different ways:

1. The property estimate for the highest-weight vertex the walk discovered, showing

how this estimate changed with the number of returns to that vertex. We refer

to this as the high-weight property estimate. Our hypothesis is that high weight

vertices make good property estimators. The purpose of plotting by returns is

to show convergence over time of the property estimate to its correct value (the

horizontal line) for the highest-weight vertex.

2. The property estimate obtained for all sampled vertices at a fixed time s, showing

how the estimate varies as a function of vertex weight. We refer to this as the

property estimate per vertex weight. The purpose of plotting by weight is to show

the long run convergence of the property estimate as a function of vertex weight.

The precise data presented is as follows.

For the highest weight property estimate. We take the highest weight vertex v

which occurred in all runs and plot the evolution of the property estimate p as

a function of the number of returns i. For the given vertex v, let N(v, j) be

the total number of returns to v in runs j = 1, ..., 10 of the simulation. The

value pi = 1
10

∑10
j=1 P (i, j) where P (i, j) is the property estimate at return i in

experiment j.

In addition, the actual estimates made for each individual experiment as displayed

as points on the same plot. The variance of the estimate is also plotted as an

envelope around the mean estimate to show convergence.

2The original C code can be found at http://www.math.keio.ac.jp/~matumoto/mt.html
3The C# code can be found at https://github.com/pwhe23/Pathfinder/blob/master/Pathfinder.

Domain/Utility/MersenneTwister.cs

http://www.math.keio.ac.jp/~matumoto/mt.html
https://github.com/pwhe23/Pathfinder/blob/master/Pathfinder.Domain/Utility/MersenneTwister.cs
https://github.com/pwhe23/Pathfinder/blob/master/Pathfinder.Domain/Utility/MersenneTwister.cs

6.1. Sampling approach, and presentation of results. 162

For the property estimate per vertex weight. The plot values are (d, p(d)), where

d is weight and p property estimate. Let nj = N(d, s, j) be the number of vertices

of weight d observed at step s in experiment j and let P (d, s, j) be the average

value of the property based on a sample of size nj , then p(d) = 1
10

∑10
j=1 P (d, s, j).

The results are given for steps s = 0.3n, 0.6n, n, and are plotted at three different

levels. This makes it easy to compare the estimates at different steps, but also to

distinguish them. The lowest level shows the estimates obtained when the number

of steps is s = 0.3n. The level above that, shows the estimates when the number

of steps is s = 0.6n, with the reference line for the property shifted upwards to

twice its value. The third level shows the estimates when the number of steps is

s = n, with the reference line shifted to four times its value.

6.1.1 Preferential Attachment Model

The preferential attachment graph used for these experiments is the graph model dis-

cussed in Section 2.2.2, specifically, the A. Barabási and R. Albert [4] where at each step,

a new vertex joins the graph and attaches r edges preferentially to existing vertices.

We generated a graph with 3 · 106 vertices and 1.2 · 107 edges. Four edges were added at

each step (r = 4) using preferential attachment. As the expected number of triangles in

this model is small (about 5000 in the generated graph), no estimate was made of this

quantity.

Estimate of number of vertices. In Figure 6.2a we can see the vertex estimate n̂

obtained using the walk described in Equation (5.21). Additionally Figure 6.2b shows

the vertex estimate averaged for each weight. The conclusions are: (i) That the estimate

based on the highest weight vertex visited by the walk converge rapidly (at around 50,000

steps), (ii) That the estimates do not change significantly with vertex weight after 0.3n

steps have elapsed, (iii) Any vertex of reasonably high weight can be used as an estimator.

Indeed above weight about 300, the estimates obtained do not differ significantly. This

Figure 6.2a also indicates that initially the variation of results between experiments is

6.1. Sampling approach, and presentation of results. 163

(a) Estimate based on returns to a high degree vertex

(b) Edges estimate as a function of vertex degree

Figure 6.1: Edge estimates for the preferential attachment graph based on the first return times of a
SRW

6.1. Sampling approach, and presentation of results. 164

(a) Estimate based on returns to a high weight vertex

(b) Estimate as a function of vertex weight

Figure 6.2: Vertex estimates for the preferential attachment model based on the first return times of a
VRW

6.1. Sampling approach, and presentation of results. 165

very high, but the results for all experiments soon become similar, and an averaging

approach can be justified.

An alternative way to estimate number of vertices, using the Cycle formula for regener-

ative processes (see Section 5.1.2) is also shown in Figures 6.3a and 6.3b. We note the

accuracy of estimates using the Cycle formula is heavily correlated with the accuracy of

estimating the graph weight using the corresponding SRW.

Estimate of number of edges. In Figure 6.1a we can see the edge estimate m̂ for this

graph using a SRW. What is also seen in this figure is the theoretical variance of the

estimates based on Varπ T
+
u . The methods used to obtain this variance were discussed

in Section 3.1.5. We remind that there were two methods described: Method M1 which

is based on the eigenvalue gap 1 − λ2, and method M2 which is based on an estimate

of the value of Zvv based on return time data. The outer blue curve is obtained using

method (M1) and the inner curve using method (M2) . For the plot shown in Figure

6.1a the estimate of Ẑvv = 1.6 was obtained using the method M2.

In Figure 6.1b we can see the value of the edge estimate for all sampled vertices, averaged

over the vertices of the same weight. The conclusions are similar to those of the vertex

estimators, that experimentally, the estimation process is stable.

Importance of high degree/weight vertices. As we can observe in Figures 6.1b and

6.2b, vertices of higher degree (resp. weight) seem to converge quicker. This confirms our

assertion that vertices which higher weights/degrees are important vertices for estimating

properties. This agrees with what Equations 3.10 and 3.21 would suggest.

Edge estimates using edge collisions We also present the estimate for the number of

edges using the birthday paradox and on Equation (5.15) we have attempted to estimate

the number of edges using various values for our estimate of mixing time T . In detail,

at each T -th step we sample the edge which we have traversed at that step. Having

obtained R samples in this way we have created an estimate for the number of edges.

In Figure 6.4 we can see the estimates obtained in this way, for the preferential attach-

ment graph mentioned above. We expect by setting T above log n ≈ 15 to obtain an

6.1. Sampling approach, and presentation of results. 166

(a) Estimate based on returns to a high weight vertex

(b) Estimate as a function of vertex weight

Figure 6.3: Vertex estimates for the preferential attachment model based on the CFRP

6.1. Sampling approach, and presentation of results. 167

Figure 6.4: Edge estimate based on edge collisions on PA

accurate estimate. This is due to the fact that the mixing time τ2 of a preferential

attachment graph is noted to be τ2,PA = O(log n) (see e.g. [25]).

6.1.2 Hybrid model

We use a hybrid triangle closing model which generates graphs as follows. At each step

we add a new vertex v with r edges to the existing graph. To add a vertex v, we first

attach to an existing vertex x chosen preferentially. The remaining edges 2, . . . , r from

v are added as follows. With probability p we attach a vertex chosen by preferential

attachment, and with probability 1 − p we add an edge from v to a random neighbour

of x. Using this approach we are able to control the number of triangles generated while

maintaining the power-law degree distribution.

We generated a graph using this model with n = 0.5 ∗ 106,m = 1.4 ∗ 106 and p = 0.3.

At each step r = 3 edges were added. The total number of triangles was t = 5.61 ∗ 106.

6.1. Sampling approach, and presentation of results. 168

(a) Estimate based on returns to a high weight vertex

(b) Estimate as a function of vertex weight

Figure 6.5: Vertex estimates for the hybrid triangle closing model based on the first return times of a
VRW

6.1. Sampling approach, and presentation of results. 169

(a) Estimate based on returns to a high weight vertex

(b) Estimate as a function of vertex weight

Figure 6.6: Edge estimates for the hybrid triangle closing model based on the first return times of a
SRW

6.1. Sampling approach, and presentation of results. 170

(a) Estimate based on returns to a high weight vertex

(b) Estimate as a function of vertex weight

Figure 6.7: Triangle estimates for the hybrid triangle closing model based on the first return times of a
TRW

6.1. Sampling approach, and presentation of results. 171

(a) Estimate based on returns to a high weight vertex

(b) Estimate as a function of vertex weight

Figure 6.8: Triangle estimates for the hybrid triangle closing model based on the CFRP

6.1. Sampling approach, and presentation of results. 172

(a) Estimate based on returns to a high weight vertex

(b) Estimate as a function of vertex weight

Figure 6.9: Vertex estimates for the hybrid triangle closing model based on the CFRP

6.1. Sampling approach, and presentation of results. 173

Figure 6.10: Clustering coefficient estimate using the running totals method for estimating network
averages (see Section 5.2.5)

6.1. Sampling approach, and presentation of results. 174

(a) Estimates over all vertices (with d(u) < 80) sorted by degree

(b) Estimate per vertex weight averaged over all vertices of the same weight.

Figure 6.11: Edge estimates for the hybrid triangle closing model based on the first return times of a
SRW

6.1. Sampling approach, and presentation of results. 175

Estimates based on return times. In Figure 6.5 we can see the vertex estimate

n̂ obtained using the walk described in Equation (5.21). The edge estimator for this

network is given in Figure 6.6. In Figure 6.7 we can see the triangle estimate t̂ obtained

using the walk described in Equation (5.22).

In Section 6.1 we mention that the estimate per vertex weight is averaged over all

vertices of the same weight. In Figure 6.11 we show what the averaging results in. The

left hand side plot shows the same data as the right hand side plot, but not averaged.

The weight is limited to d(u) < 80. The actual estimates are not concentrated around

the average in the lower degrees but seem to converge for higher degree vertices. This

further emphasises the importance of starting at a high degree vertex in order to obtain

accurate results.

Estimates based on the CFRP In Figure 6.9 we can see the vertex estimate n̂

obtained using the walk described in Equation (5.21). In Figure 6.8 we can see the

triangle estimate t̂ obtained using the walk described in Equation (5.23).

In all cases the estimators appear stable and convergent, and the comments made for

the preferential attachment model apply equally in this case.

6.1.3 Google Web Sample

A sample from the Google web graph released for the purposes of the Google program-

ming contest in 2002. This dataset can be found in [83] and consists of 855802 vertices

and 5066842 edges and 31935926 triangles if multi-triangles are counted or 13356298

simple triangles. Since this graph is not connected, these quantities refer to its largest

WCC.

For this network the estimates converged more slowly than in the generated test graphs,

with much more variation around the expected values as the walks progressed.

Estimate of number of vertices. In Figure 6.12 the right hand figure plots the

estimate of the number of vertices over time for the highest weight vertex accessed by

the walk. Although reasonably convergent, the rate of convergence is much slower than

6.1. Sampling approach, and presentation of results. 176

(a) Estimate based on returns to a high weight vertex

(b) Estimate as a function of vertex weight

Figure 6.12: Vertex estimates for the Google Web graph sample based on the first return times of a
VRW

6.1. Sampling approach, and presentation of results. 177

(a) Estimate based on returns to a high weight vertex

(b) Estimate as a function of vertex weight

Figure 6.13: Edge estimates for the Google Web graph sample based on the first return times of a SRW

6.1. Sampling approach, and presentation of results. 178

(a) Estimate based on returns to a high weight vertex

(b) Estimate as a function of vertex weight

Figure 6.14: Triangle estimates for the Google Web graph sample based on the first return times of a
TRW

6.1. Sampling approach, and presentation of results. 179

(a) Estimate based on returns to a high weight vertex

(b) Estimate as a function of vertex weight

Figure 6.15: Triangle estimates for the Google Web graph sample based on the CFRP

6.1. Sampling approach, and presentation of results. 180

(a) Estimate based on returns to a high weight vertex

(b) Estimate as a function of vertex weight

Figure 6.16: Vertex estimates for the Google Web graph sample based on the CFRP

6.1. Sampling approach, and presentation of results. 181

Figure 6.17: Google Web: Clustering coefficient estimate using the running totals method for estimating
network averages

6.1. Sampling approach, and presentation of results. 182

in the randomly generated test graphs. The left hand plot shows the convergence of the

estimator based on returns to the highest weight vertex. Note the large variability of

the results between each different run of the experiments. In Figure 6.16 we see similar

vertex estimates n̂ obtained using the CFRP. In this case the underlying walk was a

SRW.

Estimate of number of edges. In Figure 6.13 we see the edge estimate m̂ of this

graph using a simple random walk. The performance of this walk appears better than

the weighted counterpart used above to estimate the number of vertices.

Estimate of number of triangles. In Figure 6.14a we see the triangle estimate t̂

obtained from the highest weight vertex, using the walk described in Equation (5.22),

Although apparently convergent, there is considerable fluctuation. In Figure 6.14b we

can see the triangle estimate per vertex weight. The estimate is still below the true

network value at 0.3n steps and 0.6n. By n steps the result seems better, but considerable

variability in the data still remains. We ran these experiments for 5n steps to get

reasonably accurate results.

Estimate of the clustering coefficient Based on the method of the running totals and

using the procedure described in Section 5.2.5 we have estimated the average clustering

coefficient in this network. The results can be seen in Figure 6.17. We note that the

underlying graph in this case is the same as above, but with all multi-edges and loops

removed. This estimator seems to converge rapidly.

6.1.4 SlashDot Zoo Network

SlashDot is a website which posts technology related news and events. It is owned by

Dice Holdings, Inc. and ran by a handful of editors and coders [97]. In 2002 SlashDot

introduced a social network type of feature called the SlashDot Zoo where users could

tag other users as friends or foes. We run our experiments on this graph, ignoring edge

directions and whether or not the edges are friend or foe links. This dataset can be found

in [83] and consists of 82168 vertices, 870161 edges and 602592 simple triangles and is

6.1. Sampling approach, and presentation of results. 183

(a) Estimate based on returns to a high weight vertex

(b) Estimate as a function of vertex weight

Figure 6.18: Vertex estimates for the SlashDot Zoo OLSN based on the first return times of a VRW

6.1. Sampling approach, and presentation of results. 184

(a) Estimate based on returns to a high weight vertex

(b) Estimate as a function of vertex weight

Figure 6.19: Edge estimates for the SlashDot Zoo OLSN based on the first return times of a SRW

6.1. Sampling approach, and presentation of results. 185

(a) Estimate based on returns to a high weight vertex

(b) Estimate as a function of vertex weight

Figure 6.20: Triangle estimates for the SlashDot Zoo OLSN based on the first return times of a TRW

6.1. Sampling approach, and presentation of results. 186

(a) Estimate based on returns to a high weight vertex

(b) Estimate as a function of vertex weight

Figure 6.21: Triangle estimates for the SlashDot Zoo OLSN based on the CFRP

6.1. Sampling approach, and presentation of results. 187

(a) Estimate based on returns to a high weight vertex

(b) Estimate as a function of vertex weight

Figure 6.22: Vertex estimates for the SlashDot Zoo OLSN based on the CFRP

6.1. Sampling approach, and presentation of results. 188

weakly connected. However due to multi-edges we have found the number of non-simple

triangles to be 4840912. For this network the estimates converged generally well, slower

than in the generated test graphs, but faster than in the case of the Google Web graph

sample.

Estimate of number of vertices. In Figure 6.18 the left had figure plots the estimate

of the number of vertices over time for the highest weight vertex accessed by the walk.

The rate of convergence is slower than in the randomly generated test graphs, however

it is significantly faster than the Google web sample. In Figure 6.22 we see the vertex

estimate n̂ for all sampled vertices, averaged over the vertices of the same weight.

Estimate of number of edges. In Figure 6.19 we see the edge estimate m̂ of this

graph using a simple random walk. The performance of this walk appears better than

the weighted counterpart used above to estimate the number of vertices. It converges

slower than the simulated graphs, but faster than the web graph sample of Google.

Estimate of number of triangles. In Figure 6.20 we see the triangle estimate t̂

obtained from the highest weight vertex, using the walk described in Equation (5.22).

In the left hand side of Figure 6.20 we see the estimate based on returns on a single

high weight vertex. In the right hand side we see the estimate when we group vertices

according to their weight. The estimate in the second case is reasonable even at 0.3n

steps.

6.1.5 DBLP Co-Author Network

The DBLP website is an online database which contains information about papers pub-

lished in the broader area of computer science. It is maintained by the DBLP team in

the University of Trier. All the data held in the database is openly available under the

ODC-BY 1.0 licence4 and can be found at [124]. For the purposes of our experiments we

obtained the data and extracted the Co-Author graph, i.e. if an author had co-authored

a paper with another author then an edge was added between them. If an author had

4http://opendatacommons.org/licensees/by/1.0/

6.1. Sampling approach, and presentation of results. 189

(a) Estimate based on returns to a high weight vertex

(b) Estimate as a function of vertex weight

Figure 6.23: Vertex estimates for the DBLP co-author graph based on the first return times of a VRW

6.1. Sampling approach, and presentation of results. 190

(a) Estimate based on returns to a high weight vertex

(b) Estimate as a function of vertex weight

Figure 6.24: Edge estimates for the DBLP co-author graph based on the first return times of a SRW

6.1. Sampling approach, and presentation of results. 191

(a) Estimate based on returns to a high weight vertex

(b) Estimate as a function of vertex weight

Figure 6.25: Triangle estimates for the DBLP co-author graph based on the first return times of a TRW

6.1. Sampling approach, and presentation of results. 192

(a) Estimate based on returns to a high weight vertex

(b) Estimate as a function of vertex weight

Figure 6.26: Triangle estimates for the DBLP co-author graph based on the CFRP

6.1. Sampling approach, and presentation of results. 193

(a) Estimate based on returns to a high weight vertex

(b) Estimate as a function of vertex weight

Figure 6.27: Vertex estimates for the DBLP co-author graph based on the CFRP

6.1. Sampling approach, and presentation of results. 194

multiple publications with another author then this was expressed through multi-edges.

This resulted in a graph consisting of 1324333 vertices, 19216185 edges and 759578796

triangles.

This network is different to other large online networks in the sense that there is a

natural limit on the degree each vertex can have, since this corresponds to the number

of publications an author can realistically make. This results in an interesting power-law

with a rather steep cut-off compared to the number of vertices, i.e. the maximum degree

was around 500. Despite this limitation and the fact that the distinction between low

degree/weight and high degree/weight vertices is not as clear as other networks, the

methods employed still worked surprisingly well.

For this network the estimates converged generally well, slower than in the generated

test graphs, faster than in the case of the Google Web graph sample and is comparable

to the case of the SlashDot Zoo network.

Estimate of number of vertices. In Figure 6.23 the left hand side figure plots the

estimate of the number of vertices over time for the highest weight vertex accessed by

the walk. The rate of convergence is slower than in the randomly generated test graphs,

however it is significantly faster than the Google web sample. In the right hand side

figure we see the vertex estimate n̂ for all sampled vertices, averaged over the vertices

of the same weight. In addition, in Figure 6.27 we can see the estimates of the number

of vertices based on the CFRP. The underlying walk in this case is a SRW. Specifically

it is the same SRW we used to estimate the number of edges with, which would justify

the similar accuracy of the two estimates.

Estimate of number of edges. In Figure 6.24 we see the edge estimate m̂ of this

graph using a simple random walk. The performance of this walk appears better than

the weighted counterpart used above to estimate the number of vertices. It converges

slower than the simulated graphs, but faster than the web graph sample of Google.

Estimate of number of triangles. In Figure 6.25 we see the triangle estimate t̂

obtained from the highest weight vertex, using the walk described in Equation (5.22). As

6.1. Sampling approach, and presentation of results. 195

in the previously presented results, the estimates presented here show how the estimate

changes based on returns to a single high weight vertex and in addition we group all

vertices according to weight. We note how while the maximum weight in this graph is

considerably lower than other large online networks, the maximum weight of the TRW

is comparable, indicating a number of vertices which are included in a large number if

triangles. In general the estimates are reasonable and seem to converge quickly.

6.1.6 LiveJournal

LiveJournal is a network which allows users to publish content as well as maintain links

with other users. The website is self-described as “a community publishing platform,

wilfully blurring the lines between blogging and social networking” [94]. It was created

on April 15, 1999 by American programmer Brad Fitzpatrick. Originally the creator

needed a platform to keep his classmates up to date with his activities, but since then

this OLSN has grown and now receives around than 10 million visits per day5. The

dataset we have used was obtained from [83] and consists of 4843953 vertices, 68983820

edges and 285730264 simple triangles in its largest WCC. However due to multi-edges

we have found the number of non-simple triangles to be 5.85 ∗ 108. For this network the

estimates converged generally well, slower than in the generated test graphs, but faster

than in the case of the Google Web graph sample and comparably to the SlashDot and

DBLP networks.

The estimates for this network are organized in the same way as the other networks.

The first return time estimators for vertices, edges and triangles can be seen in Fig-

ures 6.28,6.29 and 6.30 respectively. In addition the estimates based on the CFRP for

vertices and triangles can be seen in Figures 6.32 and 6.31 respectively.

Overall estimation was fairly accurate in all cases, which is a surprising result considering

the unique nature of this network. While the network is not an OLSN specifically, the

large number of closed triangles indicates there is a strong social aspect to it.

5Based on Alexa.com estimates on 14/07/2014

6.1. Sampling approach, and presentation of results. 196

(a) Estimate based on returns to a high weight vertex

(b) Estimate as a function of vertex weight

Figure 6.28: Vertex estimates for the LiveJournal network based on the first return times of a VRW

6.1. Sampling approach, and presentation of results. 197

(a) Estimate based on returns to a high weight vertex

(b) Estimate as a function of vertex weight

Figure 6.29: Edge estimates for the LiveJournal network based on the first return times of a SRW

6.1. Sampling approach, and presentation of results. 198

(a) Estimate based on returns to a high weight vertex

(b) Estimate as a function of vertex weight

Figure 6.30: Triangle estimates for the LiveJournal network based on the first return times of a TRW

6.1. Sampling approach, and presentation of results. 199

(a) Estimate based on returns to a high weight vertex

(b) Estimate as a function of vertex weight

Figure 6.31: Triangle estimates for the LiveJournal network based on the CFRP

6.1. Sampling approach, and presentation of results. 200

(a) Estimate based on returns to a high weight vertex

(b) Estimate as a function of vertex weight

Figure 6.32: Vertex estimates for the LiveJournal network based on the CFRP

6.2. Discussion of results and conclusions 201

6.1.7 General Discussion of the results

As we can see from the results, while the methods work reasonably well on all graphs they

are deployed on, real graphs such as the Google Web sample show with more fluctuation

of the results, this is in part on the structure of the graph. While it is generally accepted

that online networks are expanders, they are not such good expanders as random graphs

generated using the Barabási/Albert model. However while the data does fluctuate, the

tendency to track the real value is obvious, at least in the cases of the V RW and SRW,

and in the case of TRW when s ≥ 0.6.

It is also worth noting that while we choose to stop the walk when the number of steps

s = n, in fact we only cover part of the graph. This is due to the multiple revisits that

many vertices get. This means that in the context of online networks, provided we use

appropriate caches, we can run a walk for a high number of steps but the actual number

of queries we make to the server would be lower. For example in the case of the Google

web sample, after n steps, the SRW had visited around than 2.8∗105 vertices, less than

half the total number of vertices.

However what we should note about e.g. Figure 6.14a is that the number of returns

to the highest weight vertex for each of the individual experiments varies greatly. The

reason for this is unknown, but presumably it is due to the weights of this walk and

the structure of the Google web sample. It may be the case that some walks reached

path-like subgraphs from which it was hard to return. The work by A. Z. Broder et

al. [17] gives a detailed view on the structure of the web and to the existence of such

parts (referred to as “tendrils”).

6.2 Discussion of results and conclusions

From Equation (5.4) (repeated below)

Pr

(∣∣∣∣Z(k)

k
−ET+

u

∣∣∣∣ ≥ εET+
u

)
≤ 1

ω
,

6.2. Discussion of results and conclusions 202

we can see a crude measure of convergence (1−1/ω) to within (1±ε)ET+
u of the expected

value of return time ET+
u . The concentration ε =

√
Cω/k, is based on the assumption

that the walk is rapidly mixing (C constant) and that a large enough number, k, of

return time samples can be taken to make ε small. In order to get k large, and to also

keep the run time t of the walk short, we need a vertex u for which ET+
u = 1/πu is small.

That is, there exists a vertex u such that πu �
∑

v πv/n; i.e. there is some vertex u

which has a stationary distribution which is much greater than the average. While this

is true for power-law degree distribution graphs and SRWs it is not always the case. So

we point out that all SRW based methods which are based on the first return times such

as e.g. the CFRP (presented in 5.1.2) as well as the edge estimator based on the SRW

(Section 5.2.1) would require a significantly larget number of steps on graphs with near

uniform stationary distributions, such as in the case of d-regular graphs or Erdős-Rényi

random graphs. For graphs with stationary distribution πv ≈ 1/n for all vertices, we

would have to wait for Ω(kn) walk steps for a large enough sample, whereas we aim to

sample in sub-linear time if at all possible.

However our approach makes use of WRWs to estimate vertices and triangles. If there

are high weight vertices and assuming the graph is an expander then the weight bias

ensures that we will quickly discover high weight vertices whp. Additional details on

the bounds of the discovery of such vertices in power-law graphs can be found in [36].

The use of appropriately designed RWs to quickly discover high degree vertices will be

further analysed in Chapter 7.

We have presented a general framework for estimating network parameters using ap-

propriately designed random walks. We have shown that the experimental results on

manufactured graphs as well as graphs sampled from real network data support the tech-

niques we propose. Moreover our methods give reasonable estimates in a short number of

steps. We believe there is great potential on this framework to estimate other properties

in graphs, such as degree sequence, variance in degree and measures of expansion.

One particular advantage of our method, is that we can make property estimates even

6.2. Discussion of results and conclusions 203

if the walk is terminated prematurely. For example if the server black listed our queries

on the network at any point. Conventional methods such as breadth first search cannot

adapt in this way.

These results are encouraging since it is feasible to use these methods on real networks,

and we require a minimal amount of resources to do so. In theory a random walk requires

no (or little) memory, and the results obtained are reasonably good even for 0.3n steps,

as we can see from Figures 6.1b,6.2b.

A future study for us will be to run the walk of live networks such as Twitter etc, and see

how easily we obtain reasonable estimates. While the elapsed time to run the walk may

be large due to query limitations, the overheads are small and it can be left running in

background on a single processor, with no significant overheads in program development.

Chapter 7

Fast Discovery of High Degree
Vertices

In this chapter we present an approach to discover all high degree vertices in a power-law

graph, quickly. The ideas developed are joint work with C. Cooper and T. Radzik and

appear in [36,37].

7.1 Problem motivation

Many large networks have a power-law degree sequence. Thus, although the majority of

the vertices have constant degree, a very distinct minority have very large degrees. This

particular property is the significant defining feature of such graphs. A log-log plot of

the degree sequence breaks naturally into three parts. The lower range (small constant

degree) where there may be curvature, as the power law approximation is incorrect (see

for example Figure 2.2 in page 47). The middle range, of large but well represented

vertex degrees, which give the characteristic straight line log-log plot of the power law

coefficient. In the upper tail, where the sequence is far from concentrated, the plot is a

spiky mess. See for example Figure 7.1b (the degree sequence of a simulated preferential

attachment graph withm = 4 edges added at each step), Figure 7.1a (the degree sequence

of the underlying graph of a sample of the WWW) or Figure 7.1c (the degree sequence

of the underlying graph the SlashDot Zoo Social network). In both cases the x-axis is

204

7.1. Problem motivation 205

(a) Degree distribution of sample of size 8.7 × 105 of GW , the underlying graph of the WWW

(b) Degree distribution of a realization of G(c,m, t), c = 3,m = 4, t = 5 × 106

(c) Degree distribution of underlying graph of a snapshot of SlashDot network

7.1. Problem motivation 206

a = log d/ log t, where d is vertex degree, and t is the size of the graph.

In Chapter 4 we presented our work in network sampling and property estimation. We

have also shown the importance of starting the random walk based methods from high

degree/weight vertices. This can be seen in Equation (5.4) which states that higher de-

gree/weight vertices would result in quicker convergence in the property estimates. This

Chapter focuses on methods which we could use to quickly discover a large proportion

of these high degree/weight vertices in order to give us flexibility in the choice of the

starting vertex.

We focus on sampling higher degree vertices, including those in the middle range as

well as the upper tail. Our aim is to find all these vertices, and we propose a provably

efficient method of obtaining those vertices in sub-linear time using a weighted random

walk. One reason for finding all the higher degree vertices is that the upper tail is not

concentrated, so no sub-sample will be representative. We consider a weighted random

walk because, as there are few vertices even in the middle range, a simple random walk

may take too long to obtain a statistically significant sample. Coupled with this is the

impression that in many networks, for example the WWW, it is the high degree vertices

which are important, both as hubs and authorities, and for page-rank calculations.

Our eventual aim is to devise search algorithms based on weighted random walks which

quickly locate all high degree vertices in arbitrary connected graphs with a heavy tailed

degree sequence. To do this, we use a random walk with transition probability along

edge {x, y} proportional to (d(x)d(y))b, where d(x) is the degree of vertex x, and b is a

positive constant.

Our work in fast discovery of high degree vertices can be split into two parts. In the

first part we make a detailed investigation of the best kind of weighted random walk to

find high degree vertices in a graph generated using the preferential attachment model,

and with known degree sequence power law c. In this case we find the optimal value

b = b(c) to use in the transition probabilities of the weighted random walk. The theory

is developed in Sections 7.1.1-7.1.2, and the experimental results given in Section 7.1.3.

7.1. Problem motivation 207

Because we use weighted random walks whose mixing properties are not known, the

analysis we make for the preferential attachment model does not use notions of mixing

time or stationary distribution.

In the second part of this work, in Section 7.2, we discuss what can be obtained in the

case of general heavy tailed degree sequences, when the power law c is unknown. Our

analysis in Section 7.2 uses notions of mixing time and stationary distribution, and we

quantify things as best we can. In particular, we develop reasoning to suggest a weight

of b = 1
2 could be used as a search heuristic, and give experimental evidence on the

effectiveness of this choice. Experimentally, setting b = 1
2 works well as a heuristic in a

wide range of real networks irrespective of their power-law coefficient c.

Methods based on RWs are commonly used for graph searching and crawling. Stutzbach

et al. [123] compare the performance of breadth first search (BFS) with a simple random

walk and a Metropolis Hastings random walk on various classes of random graphs as a

basis for sampling the degree distribution of the underlying networks. The purpose of

the investigation was to sample from dynamic P2P networks. In a related study Gjoka

et al. [57] made extensive use of these methods to collect a sample of Facebook users. As

simple random walks are degree biased they used a re-weighting technique to unbias the

sampled degree sequence output by the random walk. This is referred to as a re-weighted

random walk in [57]. In both the above cases it was shown the bias could be removed

dynamically by using a suitable Metropolis-Hastings random walk.

7.1.1 Preferential attachment graphs, model and search methods

A simple way to generate a graph with a power law degree sequence is to use the

preferential attachment method described by Albert and Barabási [4] and shown in

Section 2.2.2. We remind that the power-law coefficient c for preferential attachment

graphs and web-graphs is given in Equation (2.1), i.e. c = 1 + 1/η, where η is the

expected proportion of edge end points added preferentially (see [26] and Section 2.2.2).

As mentioned in Section 2.2.2, we will refer to a graph of size t with expected power-law

7.1. Problem motivation 208

coefficient c and a constant number of edges added per step as G(c,m, t) where m is the

number of edges added per step.

The parameter η in (2.1) occurs in process models, in the expression for the expected

degree of a vertex. Let d(s, t) denote the degree at step t of the vertex vs added at step

s. The expected value of d(s, t) is given by Equation (2.17) repeated below:

Ed(s, t) ∼ m
(
t

s

)η
To generalize this, we consider multi-graphs G(t) on t vertices with properties (i) and

(ii) below, where ε > 0 and 0 < η < 1 are parameters. We call such graphs pseudo-

preferential.

(i) When the vertices are relabelled s = 1, ..., t by sorting on vertex degree in descend-

ing order, G(t) has a degree sequence which satisfies for each s ≥ 1,(
t

s

)η(1−ε)
≤ d(s) ≤

(
t

s

)η
log2 t. (7.1)

(ii) For all vertices s in the sorted order, s has at most m edges to vertices σ ≤ s.

Our particular aim is, given a > 0, to find all vertices v ∈ V (t) of degree d(v) ≥ ta.

Denote by Sa the set of vertices of G(t) of degree d(v) ≥ ta. For the following reason,

we will assume a < η. The maximum degree in (7.1) is Õ(tη), and, from (2.17), this

is also the maximum expected degree in preferential attachment graphs (η = 1/2) and

web-graphs (0 < η < 1). We use the notation Õ(f(t)) as shorthand for O(f(t) logk t)

where t is the size of G(t) and k is a positive constant.

When we apply a random walk to find all vertices in a set S, then we say that the walk

is seeded if it starts from some vertex of S. In the context of searching networks such as

Facebook, Twitter or the WWW it is not unreasonable to suppose we know some high

degree vertex without supposing we know all of them. Experimentally, we found the

seeding condition was not necessary, but a general analysis without this condition would

require notions of mixing time and stationarity which our analysis avoids.

7.1. Problem motivation 209

The maximum degree of G(c,m, t) is Õ(tη) whp, where η = 1/(c − 1) which explains

the bound on a given above. Using this, a t1−2ab run time can be re-packaged as follows.

Let a = θη for 0 < θ < 1, then 2ab = θ(1− 1/(2c− 3)).

For a graph G(c,m, t) generated by the web-graph process (see Section 2.2.2) the actual

value of d(s, t) is not concentrated around Ed(s, t) in the lower tail, but a version of

Lemma 7.1 proved in [26] is adequate for our analysis.

In reality the degree sequence (7.1) of graph G(t) is unknown, but η can be estimated

as η = 1/(c − 1) from the power law c of the degree sequence, if this is known. Opti-

mistically setting ε = 0 gives a value b for the search algorithm. It’s also fair to say that,

experimentally, we found putting b = 1/2 in the biased random walk was effective for a

variety of real networks with a power law degree sequence.

The preferential attachment model, and its generalization, the web-graph model satisfy

(7.1) for suitable choices of ε, η,m.

Lemma 7.1. Given G(c,m, t) and a, ε and suppose m > (1/ε)(1/a − 1/η), where η as
in (2.1).

With high probability for all vertices s, such that Ed(s, t) ≥ ta, we have that d(s, t) ≥(
t
s

)η(1−ε)
. For all s ≥ log2 t, d(s, t) ≤

(
t
s

)η
log2 t. For all s ≥ 1, d(s, t) = Õ(tη).

The upshot of this is that all vertices added after step v = s log2/η+1 t have degree

d(v, t) = o ((t/s)η) whp since Ed(u, t) = 2ms
(
t
s

)η
. This observation forms the basis of

our sub-linear algorithm.

Proof The upper bound on d(s, t) is given in [26], as is the following degree distri-

bution. For m ≥ 2, the distribution of d(s, t) is given by

Pr(d(s, t) = m+ ` | d(s, s) = m) ≤ C
(
m+ `− 1

`

)(s
t

)ηm (
1−

(s
t

)η)`
.

Thus, crudely

Pr(d(s, t) ≤ `) ≤ C`m
(s
t

)ηm
.

Inserting ` =
(
t
s

)η(1−ε)
, and choosing s = t1−a/η, we find the expected number of vertices

1 ≤ v ≤ s not satisfying the lower bound is of order

s
(s
t

)mεη
= t(1−a/η)(1+mεη) = o(1),

7.1. Problem motivation 210

provided

m >
1

ε

(
1

a
− 1

η

)
.

2

We also need lower tail concentration for large sets of vertices.

Lemma 7.2. Let d([s], t) denote degree of [s] = {1, ..., s} at step t. Let K > 1. Then

Pr

(
d([s], t) ≤ 2ms

K

(
t

s

)η)
= O(s−mK).

Proof We give the proof for η = 1/2 (preferential attachment), the general proof is

similar.

Let Zt = d([s], t). Then Zs = 2ms, as m edges are added in the first s steps. From

step t ≥ s + 1, Zt = Xt + Zt−1, where Xt ∼ Bin(m,Zt−1/(2m(t − 1))). This comes

from the fact that when we create a new edge e in the preferential attachment model,

assuming we add a new vertex u at step t, the probability that we select a vertex in s

preferentially is P (e picks [s]) = d([s])
2m(t−1) = Zt−1

2m(t−1) . Since we add m edges at each step,

we have m such i.i.d. chances of selecting a vertex in s, which is equivalent to a binomial

distribution with parameters p = Zt−1

2mt and m.

It follows that EZt ∼ 2ms(t/s)1/2.

Given h, ct, A > 0,

Pr(Zt < A) = Pr(e−hZt/ct > e−hA/ct).

Let p = Zt−1

(2m(t−1)) , then

E(e−hXt/ct) =(1− p+ pe
− h
ct)m

since 1− x ≤ e−x we have:

(1− p+ pe
− h
ct)m = (1− p(1− e−

h
ct))m

≤ (e−p(1−e
− h
ct))m

7.1. Problem motivation 211

by using e−x ≤ 1− x+ x2 we have:

1− e−h/ct ≥ 1− (1− h

ct
+
h

ct

2

) =
h

ct
− h

ct

2

therefore

(e−p(1−e
−h/ct))m ≤ e−pm(h

ct
− h
ct

2
)

= e
− Zt−1

(2(t−1))
(h
ct
− h
ct

2
)

= e
− h
ct

(1− h
ct

)
Zt−1
2(t−1) ,

Let cs = 1, ct = (1+1/(2(t−1)))ct−1 so that ct ∼ (t/s)1/2 ∼ EZt/(2ms). We will choose

h = o(1) (see below). Iterating the expression Zt = Xt + Zt−1, and conditioning on the

value of Zt−1 gives

E(e−hZt/ct | Zt−1) ≤ (7.2)

e
−hZt−1

ct−1

1+(1−h/ct)/(2(t−1))
1+1/(2(t−1)) (7.3)

=e−h
′Zt−1/ct−1 , (7.4)

where

h(1−O(h/tct)) ≤ h′ ≤ h,

and

E(e−hZs/cs) = e−h2ms.

The conditioning in (7.2)-(7.4) can be recursed backwards by taking the expectation of

Zt−1 conditional on Zt−2 etc. until we arrive at the expectation of Zs which is constant.

Thus

E(e−hZt/ct) ≤ E
(
e−h

Zs
cs

∏t−1
j=s(1−O(h/(jcj)))

)
= e−h2ms(1−O(h)).

Applying the Markov inequality that Pr(Y ≥ A) ≤ E(Y)/A with Y = e−hZt/ct and

A = e−hE(Zt)/(Kct) where K > 0 (from statement of lemma) we have

Pr(Zt ≤ EZt/K) = Pr
(
e−hZt/ct ≥ e−hE(Zt)/(Kct)

)
≤ e−h2ms(1−1/K−O(h))

= O(s−mK),

on choosing h = (K log s)/s = o(1). 2

7.1. Problem motivation 212

7.1.2 Fast high degree vertex discovery Random Walk

Let d(v) = d(v, t) be the degree of vertex v ∈ G(t), and let N(v) denote the neighbours

of v in this graph. The basis of our algorithm is a degree-biased random walk, with

transition probability p(u, v) given by

p(u, v) =
(d(v))b∑

w∈N(u)(d(w))b
, (7.5)

where b > 0 constant. The value of b we will choose in our proofs is optimized to depend

on η. Thus for Theorem 7.3, using (2.1), the value of b can be expressed directly as a

function of the degree sequence power law c.

The easiest way to reason about biased random walks, is to give each edge e a weight

w(e), so that transitions along edges are made proportional to this weight. In the case

above the weight of the edge e = (u, v) is given by w(e) = (d(u)d(v))b so that the

transition probability (7.5) is now written as

p(u, v) =
(d(u)d(v))b∑

w∈N(u)(d(u)d(w))b
. (7.6)

The inspiration for the degree biased walk above, comes from the β-walks of Ikeda,

Kubo, Okumoto and Yamashita [66] which use an edge weight w(x, y) = 1/(d(x)d(y))β

to favour low degree vertices. When β = 1/2 this gives an improved worst case bound

of O(n2 log n) for the cover time of connected n-vertex graphs.

Some facts about weighted random walks, can be found in Aldous and Fill [2] or Lovasz

[95] and are also thoroughly explained in Chapter 3. We make use of the electrical

network paradigm where the weight w(e) of an edge e has the meaning of conductance in

electrical networks, and the resistance r(e) of e is given by r(e) = 1/w(e). The commute

time for a weighted walk is given by Equation (3.29) i.e. K(u, v) = w(G)Reff(u, v).

Where w(G) = 2
∑

e∈E w(e) and Reff(u, v) is the effective resistance between u and v,

when G is taken as an electrical network with edge e having resistance r(e). For a random

walk starting in a set S, the cover time of S satisfies the Matthews of Equation (3.30),

repeated below:

C∗S ≤ max
u,v∈S

H(u, v) log |S|.

7.1. Problem motivation 213

We next give a general result for web-graphs G(c,m, t), which is also valid for related

models such as scale-free graphs. For the class of graphs G(c,m, t), the lower bound

on the degree of vertex s becomes less concentrated as s tends to t, so that the value

of ε we must choose for our lower bound in (7.1) increases with s. Thus, as the vertex

degree ta decreases, the upper bound on the algorithm runtime increases in a way which

depends on a, c,m. As long as we incorporate this dependence, Theorem 7.3 says that

if we search G(c,m, t) using a random walk with a bias b proportional to the power law

c then, (i) we can find all high degree vertices quickly, and (ii) the time to discover all

vertices is of about the same order as for a simple random walk.

Theorem 7.1. By choosing

b =
1− η

η(2− η(1− ε′))
,

where ε′ = ε for the pseudo-preferential graphs (Theorem 7.2), and ε′ = 0 for the web
graphs (Theorem 7.3), it follows that w(G) = Õ(t).

Proof The proofs for the pseudo-preferential graphs and the web-graphs are very

similar, so we present them together. For the web-graphs, all statements should be

understood as ”with high probability”.

We define a graph G∗ on vertices 1, 2, . . . , t which has the same degree sequence as graph

G, and is built in a similar iterative process: for each v = t0, t0 + 1, . . . , t, add m edges

from vertex v to some earlier vertices. In graph G, edges are selected according to a

random preferential process, while in graph G∗ according to the deterministic process

which greedily fills the in-degrees of vertices, giving preference to the older vertices. In

both graphs, if (x, y) is a directed edge, then y < x (the edges point from x towards the

earlier vertex y).

Assume b > 0 and define

d̄(v) =

(
t

v

)η
,

w̄(G) = 2
∑

{x,y}∈E(G)

(
d̄(x)d̄(y)

)b
.

7.1. Problem motivation 214

Using Equation (7.1) for the pseudo-preferential graphs and Lemma 7.1 for the web-

graphs, we see that in both graphs, the degree of vertex v is

d(v) = d̄(v) ·O(polylog(t)), (7.7)

so we have

w(G) = w̄(G) ·O(polylog(t)). (7.8)

Assume graph G∗ obtained from G by repeatedly swapping edges. Whenever there is a

pair of edges (x, y), (u, v) such that x < u but y > v, then replace them with edges (x, v)

and (u, y). If A > B and C > D then (A− B)(C −D) > 0 so AC + BD > AD + BC.

Thus each swap increases w̄(G) because

(d̄(x))b > (d̄(u))b and (d̄(y))b < (d̄(v))b

implies

(d̄(x))b(d̄(v))b + (d̄(u))b(d̄(y))b > (d̄(x))b(d̄(y))b + (d̄(u))b(d̄(v))b.

Therefore,

w̄(G∗) ≥ w̄(G). (7.9)

By construction, a vertex v in G∗ has incoming edges originating from consecutive ver-

tices first(v), first(v) + 1, . . . , last(v). Thus we have

w̄(G∗) = 2
∑

{y,x}∈E(G∗)

(
d̄(x)d̄(y)

)b
= 2

t∑
x=1

last(x)∑
y=first(x)

(
d̄(x)d̄(y)

)b
≤ 2

t∑
x=1

d(x)
(
d̄(x)d̄(first(x))

)b
≤ O(polylog(t)) ·

t∑
x=1

(
d̄(x)

)1+b (
d̄(first(x))

)b
. (7.10)

7.1. Problem motivation 215

This follows from the definition in Equation (7.7). Now we bound first(x). There are at

most m · first(x) edges outgoing from vertices 1, 2, . . . ,first(x), and these edges fully fill

the in-degrees of vertices 1, 2, . . . , x− 1, so

m · first(x) ≥
x−1∑
z=1

din(z) =

x−1∑
z=1

(d(z)− dout(z)) ≥
x−1∑
z=1

(d(z)−m).

Hence

first(x) ≥ 1

2m

x−1∑
z=1

d(z).

Let C be some generic constant whose value can vary at different places of the proof.

For Theorem 7.2 choosing ε′ = ε, we have for all x ≥ 1,

x−1∑
z=1

d(z) ≥
x−1∑
z=1

(
t

z

)η(1−ε′)
= Ctη(1−ε′)x1−η(1−ε′) = Cx

(
t

x

)η(1−ε′)
.

For Theorem 7.3 (web-graph case), choosing ε′ = 0 we have from Lemma 7.2 that for all

x ≥ log t,
x−1∑
z=1

d(z) ≥ mx
(
t

x

)η(1−ε′)
.

Thus in both cases, for all x ≥ log t,

d̄(first(x)) =

(
t

first(x)

)η
≤ C

(
t

x

)η(1−η(1−ε′))
. (7.11)

Using (7.10) and (7.11), and the bound d̄(first(x)) = Õ(tη) for x ≤ log t, we get

w̄(G∗) = O(polylog(t)) ·
t∑

x=1

(
t

x

)η(1+b)(t
x

)bη(1−η(1−ε′))

= O(polylog(t)) ·
t∑

x=1

(
t

x

)η(1+b(2−η(1−ε′)))
. (7.12)

Choosing

η(1 + b(2− η(1− ε′))) = 1, (7.13)

the sum in (7.12) is O(t log t). This, (7.8) and (7.9) imply w(G) = Õ(t).

2

7.1. Problem motivation 216

Theorem 7.2. Let G(t) be a pseudo-preferential graph with degree sequence satisfying
(7.1). Let Sa = {v : d(v) ≥ ta} be connected with diameter Diam(Sa). Let b = (1 −
η)/(η(2− η(1− ε))).
A biased seeded random walk with transition probability along edge {x, y} proportional
to (d(x)d(y))b, finds all vertices in G(t) of degree at least ta in Õ(Diam(Sa) × t1−2ab)
steps, whp. The cover time of the graph G(t) by this biased walk is Õ(tDiam(G(t))).

Theorem 7.3. Let c ≥ 3, m ≥ 2, a < 1/(c − 1) and ε = (1 + 1/a − c)/m. Let
b = (c− 1)(c− 2)/(2c− 3).

A biased seeded random walk with transition probability along edge {x, y} proportional
to (d(x)d(y))b, finds all vertices in G(c,m, t) of degree at least ta in Õ(t1−2ab(1−ε)) steps,
whp. The cover time of the graph G(c,m, t) by this biased walk is Õ(t).

Proof

We apply the Matthews bound (3.30) to set Sa. Clearly log |Sa| ≤ log t. It remains to

find

max
u,v∈Sa

H(u, v) ≤ max
u,v∈Sa

K(u, v).

To calculate K(u, v) in (3.29), we use the bound of w(G) from Theorem 7.1.

The set Sa is connected with diameter Diam(Sa) as specified. Let ∆(a) = Diam(Sa),

then for any u, v ∈ Sa there is a path uPv of length O(∆(a)) from u to v in G(t)

contained in Sa, and thus consisting of vertices w of degree d(w, t) ≥ ta. Thus each edge

(x, y) of this path has resistance 1/(d(x)d(y))b ≤ 1/t2ab, so

Reff(u, v) ≤ Diam(Sa) · t−2ab. (7.14)

The Matthews bound (3.30), Theorem 7.1 and the bound (7.14) give the (expected)

seeded cover time C∗Sa = Õ(Diam(Sa) · t1−2ab).

Suppose we want to find all vertices of degree at least ta for some a > 0 in G(t) ≡

G(c,m, t). Recall that G(t) is generated by a process of attaching vt to G(t − 1). At

what steps were the vertices v ∈ Sa added to G(t)? The expected degree of v at step t is

given by (2.17) i.e. Ed(v, t) = (1 + o(1))m(t/v)η. This function is monotone decreasing

with increasing v. Let σ be given by

ta =

(
t

σ

)η
or equivalently σ = t1−a/η. (7.15)

7.1. Problem motivation 217

Let s = σ · log2/η+1 t, then using Lemma 7.1 all vertices added at steps w ≥ s have

d(w, t) = o(ta), whp. On the other hand, using Lemma 7.1 again, all vertices v added

at steps 1, ..., s have degree d(v, t) ≥ (t/s)η(1−ε).

For Theorem 7.3 let ∆(a) = Diam(G(s)) where s is defined above. Because Diam(G(s)) =

O(log s), (see (2.19)), we know that for any u, v ∈ Sa there is a path uPv of length

O(log t) from u to v in G(t) contained in G(s), and thus consisting of vertices w of

degree d(w, t) ≥ (t/s)η(1−ε) = ta(1−ε)/polylog(t). Thus each edge (x, y) of this path has

resistance 1/(d(x)d(y))b ≤ polylog(t)/t2ab(1−ε), so

Reff(u, v) ≤ t−2ab(1−ε) · polylog(t). (7.16)

The Matthews bound (3.30), Theorem 7.1 and the bound (7.16) give the (expected)

seeded cover time C∗Sa = Õ(t1−2ab(1−ε)). In both cases, apply the Markov inequality

(Pr(X > A ·EX) ≤ 1/A), with EX = C∗Sa , and A = log t to give a whp result, that all

vertices of degree at least ta can be found in time

TPP (a) = Õ(Diam(Sa) · t1−2ab),

in pseudo-preferential graphs, and in time

TWG(a) = Õ(t1−2ba(1−ε)),

in web-graphs.

For preferential attachment graphs η = 1/2, and (7.13) gives b = 2/3, and the time

TPA(a) is

TPA = Õ(t1−(4/3)a(1−ε)).

Finally we establish the cover time of the graph G(t). This is done by using (3.30) with

S = V (t) the vertex set of G(t), i.e.

CV (t) ≤ max
u,v∈V (t)

H(u, v) log t. (7.17)

We bound H(u, v) by (3.29) as usual. The resistance r(e) of any edge e = {x, y} is

r(e) =
1

(d(x)d(y))b
≤ 1

m2b
= O(1).

7.1. Problem motivation 218

Let the diameter of G(t) be Diam(G) which is specified for Theorem 7.2 and is O(log t)

(whp) for Theorem 7.3. Thus Reff(u, v) = O(Diam(G)), since the effective resistance

between u and v is at most the resistance of a shortest path between u and v. This and

the bound w(G) = Õ(t) proven in Theorem 7.1 give K(u, v) = Õ(t · Diam(G)). Thus

the cover time of the graph G(t) is Õ(t ·Diam(G)).

2

7.1.3 Experimental results

Theorem 7.3 gives an encouraging upper bound of the order of around t1−(4/3)a for a

biased random walk to cover all vertices of degree at least ta in the t-vertex preferential

attachment graph G(c,m, t). Our experiments, summarized in Figures 7.2-7.5, suggest

that the actual bound is stronger than this. The experiments were made on various

preferential attachment graphs G(c,m, t) with m = M = 3, and t = 6 × 105 vertices.

There were various values of c The degree distribution of these graphs was presented

Chapter 2, Section 2.2.2 in Page 48 and follows Equation (2.1), repeated below:

nm(`) =
Γ(ξ + 1

η)

ηΓ(ξ)

Γ(`+ ξ)

Γ(`+ ξ + 1 + 1
η)

where ξ = ξ(u) = m(u) + ν
η and m = m(u) is the degree of vertex u when first added.

We remind that ν is the proportion of edge endpoints added to the graph uar while η is

the proportion added preferentially. We have used values of η ranging from 0.1 to 0.9.

For each of these values, we used three different random walks. A SRW, a WRW with

β = 1
2 and a WRW with β = βopt = 1η

η(2η) . We see the results of these experiments in

Figures 7.2-7.5. Both axes are in logarithmic scale. The y-axis is y = (log τ(a))/ log t.

There are also two reference lines drawn in each of the Figures in 7.2-7.5. These lines

have slopes −a and −2a, and are included for visual inspection only. To calculate the

speed up, given x = a, read off the y(a)-values yS , yW . The speed up is tyS−yW , where

t = 6× 105. Curiously, the improvement does not seem sensitive to the precise value of

βopt and the difference between β = 1
2 and β = βopt is only apparent if βopt � 1

2 .

7.1. Problem motivation 219

(a) η = 0.9 (c = 2.1)

(b) η = 0.8 (c = 2.25)

Figure 7.2: Cover time of all vertices of degree at least ta in G(c,m, t), as a function of a.

7.1. Problem motivation 220

(a) η = 0.7 (c = 2.4)

(b) η = 0.6 (c = 2.6)

Figure 7.3: Cover time of all vertices of degree at least ta in G(c,m, t), as a function of a.

7.1. Problem motivation 221

(a) η = 0.5 (c = 3)

(b) η = 0.4 (c = 3.5)

Figure 7.4: Cover time of all vertices of degree at least ta in G(c,m, t), as a function of a.

7.1. Problem motivation 222

(a) η = 0.3 (c = 4.3)

(b) η = 0.2 (c = 6)

Figure 7.5: Cover time of all vertices of degree at least ta in G(c,m, t), as a function of a.

7.1. Problem motivation 223

Figure 7.6: Google Web Sample: Cover time of all vertices of degree at least ta in GW as a function of a

Our experimental results for Theorem 7.2 are less clear cut, but still encouraging. Figure

7.1a gives the degree distribution of the underlying graph of the WWW, on t = 8.7×105

vertices obtained from the SNAP1 database. The power law exponent is approximately

c = 3, and it was crawled using a weight of b = 2/3. Figure 7.6, shows the results

obtained by averaging 25 runs of the simple and weighted random walks. The weighted

walk is generally about 4 times faster for a > 0.43.

Before discussing Figures 7.2-7.5 in greater detail, we remark that they broadly con-

firm the implications from our theoretical analysis: for random preferential attachment

graphs, biased random walks discover quickly all higher degree vertices while not in-

creasing by much the cover time of the whole graph. For example, by checking the exact

cover times, we observed that the biased random walk with b = 1/2 took on average 2.7

times longer than a simple random walk to cover the whole graph G(3, 3, 6 ∗ 105), but

1http://snap.stanford.edu/data/web-Google.html

7.1. Problem motivation 224

discovered the 100 highest degree vertices 10 times faster than a simple random walk.

For a weighted random walk, the stationary distribution π(v) of vertex v is given by

π(v) =
1

w(G)

∑
x∈N(v)

w(v, x),

where w(G) is the sum of the edge weights of G, each edge counted twice. Thus for a

simple random walk on G(m, t), πS(v) = d(v)/2mt. For the weighted random walk of

Theorem 7.2 (η = 1/2 and b = 1/2 for G(m, t)) we have the following lower bound.

πW (v) = Ω((d(v))3/2/(tpolylog(t))).

This bound holds because we know from Theorem 7.1 that w(G) = Õ(t), and∑
x∈N(v)

w(v, x) =
∑

x∈N(v)

(d(v)d(x))1/2

≥ (d(v))1/2
∑

x∈N(v)

(m)1/2

≥ (d(v))3/2.

We can give an informal explanation of Figures 7.2-7.5 as follows. In the long run, the

number of visits to vertex v in T steps approaches Tπ(v), so the first visit to v should

be at about T (v) = 1/π(v). As π(v) increases with increasing degree d(v), then if h > a

we should expect to see all vertices of degree th before all vertices of degree ta.

For a simple random walk, let v be a vertex of degree ta, then T (v) ≈ 1/πS(v) =

2mt/ta ≈ t1−a. So the SRW plot in Figure 7.2 should have slope −a, and this is indeed

the case.

For a weighted random walk, the same argument gives

1

πW (v)
= O

(
t log5 t

(ta)3/2

)
= Õ(t1−3/2a),

which explains the slope of about −3a/2 for (at least part of) the WRW plot.

The total number n(a) of vertices of degree at least ta is approximated by σ = t1−a/η =

t1−2a, where the value of σ from (7.15), is the expected step at which a vertex of degree

7.2. Finding high degree vertices in general graphs with a power-law degree distribution225

ta is added, and η = 1/2 for preferential attachment. As no walk based process can visit

σ vertices in less than σ steps, this explains our inclusion of the line with slope −2a in

Figures 7.2–7.5.

7.2 Finding high degree vertices in general graphs with a
power-law degree distribution

In this section we give a discussion to support a general heuristic which chooses a value

of b = 1/2 for a weighted random walk to find high degree vertices in heavy tailed graphs

with power law c ≥ 3.

The setting is a graph G for which the general properties (number of edges, vertices,

degree sequence etc.) are unknown, but which we suppose to be a ‘small world network’,

in the sense that it is connected, with power law degree sequence and the number of

edges is linear in the number of vertices. We suppose as before, that we want to find all

high degree vertices of G as quickly as possible. Theorems 7.2, 7.3 do not provide any

insight into the best value of b to choose, even if, as in Theorem 7.3, we assume that the

power law parameter c ≥ 3. For c ≥ 3 at least, there is theoretical evidence to support

the choice of b = 1/2, as we now explain.

The basic assumptions we make are:

(i) We regard the power law parameter c, the maximum degree ∆ and the number of

vertices n as unknowns which cannot be used as inputs into the choice of b.

(ii) We assume G has a power law parameter c and heavy tailed degree sequence

(n1, n2, ..., n∆), where nk ∝ nk−c.

(iii) We assume the number of edges m = an for some constant a > 1.

We remark that, for graphs with a power-law degree sequence, the value of ∆ needs

to be determined independently of c. For example, in many cases on power-law degree

sequences an arbitrary assumption is made that ∆ = Õ(n1/2) further details on the

upper bound of ∆ can be found in the work of A. Flaxman et al. [48]. In the web-graph

model of [24] the whp value of ∆ = Õ(n1/(c−1)) is a property of the model.

7.2. Finding high degree vertices in general graphs with a power-law degree distribution226

(a) Pokec OLSN

(b) LiveJournal OLSN

(c) SlashDot OLSN

Figure 7.7: Cover time of all vertices of degree at least ta in GW as a function of a

7.2. Finding high degree vertices in general graphs with a power-law degree distribution227

An upper bound on the time taken by a reversible random walk to hit a vertex v, from

arbitrary starting position can be obtained from the following lemma. See e.g. [27] for a

proof of this lemma.

Lemma 7.3. Let W be a lazy random walk with second eigenvalue λ = λ(W) and
stationary distribution π. With high probability, all vertices v with stationary distribution
πv ≥ ρ can be found in T (ρ) steps, where

T (ρ) = O

(
log n

ρ (1− λ)

)
. (7.18)

For a weighted random walk W , the stationary distribution of vertex v is given by

πv(W) =

∑
u∼v w(u, v)∑

x∈V
∑

y∼xw(x, y)
=
wv
wG

,

where x ∼ y means the edge (x, y) exists.

In order to bias the walk towards high degree vertices we consider weights (d(x)d(y))b

for edges (x, y), where b > 0. From the Cauchy-Schwarz inequality,

wG =
∑
x∈V

∑
y∼x

(d(x)d(y))b ≤
∑
x∈V

(d(x))2b+1,

and, as d(u) ≥ 1,

wv =
∑
u∼v

(d(u)d(v))b ≥ (d(v))b+1.

Thus

πv(W) =
wv
wG
≥ (d(v))b+1∑

x∈V (d(x))2b+1
. (7.19)

The equivalent simple random walk, S, has stationary distribution πv(S) = d(v)/2m.

For a weighted walk to reach high degree vertices faster than a simple random walk, we

would need to choose a value b for the edge weights in such a way that,

πv(W)� πv(S) =
d(v)

2m
, (7.20)

If we do this, and provided λ(W) is not too different from λ(S), then by Lemma 7.3,

the weighted walk improves the hitting time of such vertices in comparison to a simple

random walk.

7.2. Finding high degree vertices in general graphs with a power-law degree distribution228

Let φ(b) =
∑

x∈V (d(x))2b+1. Using (7.19) and the assumption that m = an, a > 1 we

can make a worst case analysis, replacing the requirement (7.20) by

πv(W) =
wv
wG
≥ (d(v))b+1

φ(b)
� d(v)

2m
=
d(v)

2an
,

which is equivalent to

(d(v))b � φ(b)

n
. (7.21)

Under the power-law degree sequence assumption, the sum φ(b) in the denominator of

(7.19) can be approximated in the following way. We approximate the number of vertices

of degree k by Nk ∼ nAk−c (see Equation (2.1) in Page 35). Therefore:

φ(b) =
∑
x∈V

(d(x))2b+1

=

∆∑
k=1

k2b+1Nk

≈ nA
∫ ∆

1
k−ck2b+1 dk

= nA

∫ ∆

1
k2b+1−c dk

In the case that c = 2b+ 2:

φ(b) = nA

∫ ∆

1
k2b+1−(2b+2) dk

= nA

∫ ∆

1
k−1 dk

= nA
(

log k|∆1
)

= nA log ∆ ≈ 1

2
nA log n

since ∆ ∼ n
1
2 .

In all other cases:

φ(b) =
nA

2b+ 2− c

(
−k2b+2−c

∣∣∣∆
1

)
=

nA

2b+ 2− c
(∆2b+2−c − 1)

7.2. Finding high degree vertices in general graphs with a power-law degree distribution229

If c > 2b+2 then ∆2b+2−c � 1. In the case that c < 2b+2 then ∆2b+2−c � 1. Therefore

φ(b) can be approximated by

φ(b) ∝


n c > 2b+ 2

n log n c = 2b+ 2

n∆2b+2−c c < 2b+ 2

.

Thus we can rewrite (7.21) as

(d(v))b = Ω(log n max(1,∆2b+2−c)).

At this point it becomes clear that there is no perfect answer. For given c, we need to

choose values of b satisfying c ≥ 2b+ 2.

The results of Theorem 7.3 apply when c ≥ 3. To generalize these results for heuristic

use, we assume c ≥ 3. The value b = 1/2 satisfies our worst case analysis, and seems the

best choice for that range. We suggest its use as an informed heuristic.

Interestingly, the value b = 1/2 works quite well experimentally, not only on graphs with

parameter c = 3 (see Figures 7.2–7.5, 7.6), but also marginally improves on a simple

random walk graphs with much lower values of c such as a SNAP2 copy of the SlashDot,

LiveJournal and Pokec OLSNs networks (see Figure 7.7).

Perhaps the moral is, that any positive weight is good, as it biasses the walk towards

high degree vertices.

When we change from a simple random walk S to a weighted walk W , we change the

second eigenvalue λ(W) = λ2 of the transition matrix, and hence the mixing rate.

Although small world networks are regarded as having small diameter, which means

they must be expanders, and rapidly mixing for simple random walks, it is difficult to

estimate the change in mixing rate for general power law graphs.

Some bounds on the change in eigenvalue gap can be obtained from the Direct Com-

parison Lemma for weighted random walks (Lemma 29, Ch 3 [2]). This lemma was

2http://snap.stanford.edu/data/index.html. Data retrieved 15/12/2011

7.2. Finding high degree vertices in general graphs with a power-law degree distribution230

introduced in Chapter 5 as Lemma 5.1.

mine(we/w
∗
e)

maxv(wv/w∗v)
≤ τ2

τ∗2
≤ maxv(wv/w

∗
v)

mine(we/w∗e)
.

where τ2 is the relaxation time of a random walk, given by τ2 = 1/(1− λ2).

The bounds on the change in mixing rate for the weighted walk we obtain in this way

are a function of ∆. As we do not know ∆, it is difficult to quantify further.

7.2.1 Conclusions

Our theoretical analysis of the number of steps required by biased random walks to

discover all high degree vertices in random t-vertex preferential attachment graphs, was

restricted to power laws c ≥ 3. This was a consequence of the proof technique. The

statement of Theorem 7.3 can be used to give a value of b for the walk weight for any

c > 2, but we do not have a proof of correctness for c < 3. A method which provably

worked down to c = 2, or even lower would be desirable; especially as power laws around

c = 2 are common in real networks [16].

As a heuristic, the method we propose seems to work well with weight b = 1/2 in many

cases where there is no performance guarantee. An example of this is the SlashDot

network which has a power law of c = 1.6. At a guess, the performance of our method

depends more on the existence of a dense subgraph between high degree vertices, than

on the exact power law of the degree sequence. The existence of such a dense subgraph is

important to the discussion in Section 7.1.2 as it means the effective resistance between

high degree vertices is small, thus ensuring a low cover time in (3.30).

There is a lack of agreement among models as to the range of values for high degree

vertices for a given power law c. To give an example, the web-graph model of [24]

predicts vertices of degree Θ(t1/(c−1)) on t-vertex graphs, but some authors arbitrarily

truncate heavy tailed degree sequences at O(t1/2). Any technique to find such vertices

would have to be tuned to exploit the related structures in the graph.

Chapter 8

Information filtering and
recommendation

A recommender system uses information about known associations between users and

items to compute for a given user an ordered recommendation list of items which this user

might be interested in acquiring. For example, in the context of a library, knowing which

books have been read by which members of the library, a recommender system would

calculate for a given member an ordered list of book recommendations for next reading.

The act of using known information as a means to predict a future state of a system is

what is commonly known as an information prediction system or a recommender system.

The ideas developed are joint work with C. Cooper, S. H. Lee and T. Radzik and appear

in [34]. This work has been funded by Samsung as part of the Samsung Global Research

Outreach programme awarded in 2012 for the project “Fast low cost methods to learn

structure of large networks”.

8.1 Recommendation Systems Based On Collaborative Fil-
tering

We view a recommender system as an algorithm which takes a dataset of relationships

between a set of users and a set of items and attempts to calculate how a given user might

rank all items. For example, the users may be the customers who have bought books

231

8.1. Recommendation Systems Based On Collaborative Filtering 232

from some (online) bookstore and the items the books offered. The core information in

the dataset in this case would show who bought which books, but it may also include

further details of transactions (the date of transaction, the books bought together, etc.),

information about the books (authors, category, etc.), and possibly some details about

customers (age, address, etc.). For a given customer, a recommender system would com-

pute a list of books 〈m1,m2, . . . ,mk〉 which this customer might be interested in buying,

giving the highest recommendations first. Recommender systems viewed as algorithms

for computing such personalised rankings of items (rather than overall “systems,” which

would also include methods for gathering data) are often referred to as scoring , or rank-

ing algorithms.

Recommender systems are part of everyday online life. Whenever we buy a movie, or

a new app for our mobile phone, a recommender system would suggest other items of

potential interest to us. A good recommender system improves the user’s experience

and increases commercial activity, while consistently unhelpful recommendations may

make the users look for other sites. This significant commercial value coupled with the

challenging theoretical and practical aspects of modelling, designing and implementing

appropriate algorithms, has made recommender systems a fast growing research topic.

We focus on a simple scenario with two main entity sets, Users (U) and Items (I), and a

single relationship R of pairs 〈u,m〉, where u ∈ U and m ∈ I. The fact that 〈u,m〉 ∈ R

means that u has some preference for m. The pairs 〈u,m〉 ∈ R may have additional

attributes which indicate the degree of preference. The relationship R can be modelled as

a bipartite graph G = (U ∪ I,R), possibly with edge weights, which would be calculated

on the basis of the attributes of pairs 〈u,m〉 ∈ R. A scoring algorithm for a user u ∈ U

orders the items in I according to some similarities between vertex u and the vertices in

I, which are defined by the structure of graph G. More precisely, a scoring algorithm is

defined by a formula or a procedure for calculating an n× n matrix M = M(G) which

expresses those similarities, where n = |U |+ |I|. For a user u ∈ U , the items m ∈ I are

ranked according to their M(u,m) values (in increasing or decreasing order, depending

whether a lower or a higher value M(u,m) indicates higher or lower similarity between

8.1. Recommendation Systems Based On Collaborative Filtering 233

vertices u and m). Matrix M is called the scoring matrix or the ranking matrix of the

algorithm. We also note that the methodology of designing ranking algorithms of this

type, which use the whole relationship between users and items rather than user and

item profiles, is often referred to as collaborative filtering.

Let Wu = 〈X0, X1, . . . , Xt, . . .〉 be a RW on graph G starting from vertex u. That

is, X0 = u and Xt+1 is a neighbour of Xt selected according to the RW transition

probability. Let h(u, v) denote the first step t ≥ 1 such that Xt = v. The hitting time

of v from u is the expectation H(u, v) of the random variable h(u, v). The Laplacian

matrix of graph G is defined as

L = D −A

where A is the adjacency matrix of G and D is the diagonal matrix of the vertex degrees.

The main scoring algorithms considered in Fouss et al. [50, 51] are the hitting-time

algorithm, the reverse hitting-time algorithm, the commute-time algorithm and the L-

pseudoinverse algorithm. The scoring matrices M of these algorithms are matrices H,

HT , C = H +HT and L+, respectively. Matrix L+ is the Moore-Penrose pseudoinverse

[109, 115] of L, in this paper referred to as simply the inverse Laplacian. Detailed

explanation of these ranking matrices can be found in Section 8.4. For all these matrices,

a lower value of M(u,m) indicates higher similarity between vertices u and m, and a

higher rank of m in the ranking list of items for the user u. For example, the commute-

time algorithm ranks the items for a user u according to the expected commute times

C(u,m) = H(u,m) +H(m,u) = H(u,m) +HT (u,m), putting an item m1 ahead of an

item m2, if C(u,m1) < C(u,m2).

Fouss et al. [50, 51] reported that for the MovieLens dataset which they used in their

experiments, the L+ algorithm (and its variants) performed the best. The hitting-time

and the commute-time algorithms performed similarly to the simple user-independent

algorithm which orders the items according to their vertex degrees in the graph G. The

reverse hitting-time algorithm showed the worst performance.

Kunegis and Schmidt [76] extend Fouss’ work of [51] by taking user ratings into account

8.1. Recommendation Systems Based On Collaborative Filtering 234

while computing a similarity measure on users-items bipartite graph. The similarity

measure used in the paper is resistance distance, which is equivalent to the commute-

time distance used in [51]. They adapt a rescaling method proposed in [9], in which the

user ratings are rescaled into 1 (good) to -1 (bad). The authors conduct experiments

on two datasets: 100K MovieLens dataset [111] and Jester [69] and the performance is

measured by two evaluation metrics, the mean squared error and the root mean squared

error.

Gori and Pucci [58, 59] present a RW based scoring algorithm for the recommendation

systems. In [59] the algorithm is applied to movie recommendation whilst in [58], the

algorithm is used for recommending research papers. For the movie recommendation,

100K (small) MovieLens dataset is used for the experiments and for the research paper

recommendation, they use the dataset that is derived from the crawling of ACM portal

website. The algorithm is based on the PageRank algorithm applied to an item similarity

graph called a correlation graph. The correlation graph is constructed in [59] from the

users-items bipartite graph, and in [58] from citation graph. Zhang et al. [133, 134]

extend Gori and Pucci’s work [59] by taking into account user’s preference on item

categories. The proposed algorithm computes the ranking scores based on the item

genre and user interest profile.

Singh et al. [121] present an approach of combining a relations graph (friendship graph)

with the ownership data (user-item graphs) to make recommendations. The combined

graph is represented as an augmented bipartite graph and is treated as a Markov Chain

with an absorbing state. The items are ranked according to the approximated absorbing

distribution. This method is tested and evaluated for on-line gaming recommendation.

Lee et al. [79] consider a multidimensional recommendation problem, which allows some

additional contextual information as an input. They present a RW based method,

which adapts the Personalized PageRank algorithm. They conduct experiments on two

datasets: last.fm [77] and LG’s OZ Store [92]. The performance is evaluated using hit

at top-k evaluation metric. Further work in this direction is reported in [80].

8.2. Dataset Description 235

8.2 Dataset Description

Using the data collected by the MovieLens service [111], the GroupLens Re-

search lab composed three datasets of user produced movie ratings [60]. These

datasets are collections of quadruples 〈UserId, MovieId, Rating, Timestamp〉, which

we view as pairs 〈UserId, MovieId〉 with attributes Rating and Timestamp.

For each UserId and each MovieId, each dataset has at most one quadruple

〈UserId, MovieId, Rating, Timestamp〉. The three datasets have following sizes:

MovieLens 100K (basic set) – 943 users, 1, 682 movies, 100K ratings;

MovieLens 1M (medium size) – 6, 040 users, 3, 900 movies, 1M ratings;

MovieLens 10M (large size) – 71567 users, 10, 681 movies, 10M ratings.

The main use of these datasets is for the purposes of building and testing information

prediction/recommendation systems as defined Section 8.4.

8.2.1 Ranking methodologies

To ensure reproducibility of results and to facilitate comparison between various recom-

mender systems, each MovieLens dataset is partitioned into two parts: a training, or

base, set B and a test set T . The test set is obtained by selecting 10 random user-movie

ratings for each user. The training set consists of all remaining ratings. To make this

partitioning feasible, the small dataset has more than 10 ratings per each user. The

medium and large datasets have at least 20 ratings per each user.

The intended methodology for evaluating the performance of a recommender system is

to consider the training set as the information about the past (which movies have been

watched, and ranked, by each user) and the test set as the (hidden) information about

who will watch what in the future. A recommender system is run on the training set to

compute for each user a ranking of movies, and then the computed rankings are compared

8.2. Dataset Description 236

with the test set. A better recommender system would be more effective in reconstructing

the hidden information, that is, would give a closer fit between the computed rankings

and the test set. More precisely, for each user u, the ranking of movies computed for this

user is compared with the set {m(u)
1 ,m

(u)
2 , . . . ,m

(u)
tu } of the test movies for this user. The

pairs 〈u,m(u)
1 〉, 〈u,m

(u)
2 〉, . . . , 〈u,m

(u)
tu 〉 are this user’s ratings excluded from the training

set and included in the test set. A better recommender system would place the movies

m
(u)
i higher in the ranking. It is not obvious, however, how the closeness between the

computed rankings and the test set should be quantified and a number of measures have

been proposed.

Fouss et al. [50,51] evaluated the performance of ranking algorithms on the basic Movie-

Lens dataset, taking into account all pairs 〈UserId,MovieId〉 included in this set, but

ignoring the timestamp and rating attributes. The measure used in [50, 51] is the per-

centage of correctly placed pairs. In Section 8.2.1 we give the definition of this measure

and the other measure which we use in this paper.

Herlocker et al. [65] discusses different measures of the performance of ranking algo-

rithms. Among the most common ones are the percentage of correctly placed pairs

(used in [50, 51]) and the number of hits in the top k recommendations. We use both

these measures in this paper. To define these measures, we assume the general eval-

uation methodology described earlier (the bipartite graph G = (U ∪ I,R) partitioned

into the training set B and the test set T), and we use the following notation: |U | = p,

|I| = q, |R| = r, I(u) = {m ∈ I : 〈u,m〉 ∈ R} is the set of all items associated

with user u, I
(u)
B = {m ∈ I : 〈u,m〉 ∈ B} is the set of the training items for user u,

I
(u)
T = {m ∈ I : 〈u,m〉 ∈ T} is the set of the test items for user u, |I(u)| = iu, |I(u)

B | = bu,

|I(u)
T | = tu. For example, for a MovieLens dataset, I(u) is the set of all movies watched

(rated) by user u, while I
(u)
T is the set of the movies watched by user u but put aside in

the test set. For all three MovieLens dataset, tu = 10 for each user u.

For a given ranking algorithm A, Rank (u) = 〈 m(u)
1 ,m

(u)
2 ,. . ., m

(u)
qu 〉 denotes the ranking

of items computed for user u, and m′ <u m
′′ means that item m′ appears in Rank(u)

8.2. Dataset Description 237

before item m′′ (so is ranked higher than item m′′).

8.2.2 Metric I: The number of correctly placed pairs

This measure requires that the ranking algorithmA computes for each user a full ranking,

that is, a ranking which includes all items. Hence we assume qu = q, for each user u. To

calculate the score for a given user u, consider all pairs of items 〈m′,m′′〉, with m′ ∈ I(u)
T

and m′′ ∈ I \ I(u). We say that such pair 〈m′,m′′〉 is correctly placed, if m′ <u m
′′, that

is, if the (test) item m′ is ranked higher than (appears before) the item m′′. The score

for user u is the percentage of correctly placed pairs:

|{〈m′,m′′〉 : m′ ∈ I(u)
T , m′′ ∈ I \ I(u), m′ <u m

′′}|
tu(q − iu)

· 100%.

The score of the ranking algorithm is the average user score, over all user. If the tu

test items for user u are the first items, in any order, in the ranking Rank(u) \ I(u)
B , then

the score for this user is the perfect 100%. For the MovieLens dataset, the score of

100% means that the top tu movies recommended for user u, on the basis of the training

set, are exactly the movies which this user has actually already watched, but have been

hidden in the test set.

We note that if the items are ranked completely randomly (that is, the ranking is a

random permutation of items), then for any pair of items is m′ and m′′, the probability

that m′ <u m
′′ is equal to 1/2, so the (expected) score is 50%.

8.2.3 Metric II: The number of hits in the top k recommendations

An alternative evaluation measure is the number of hits in the top k recommendations.

This measure is based on the simple all-or-nothing concept of counting only the test items

which have made into the top k recommendations, ignoring their exact positions in the

top k, and ignoring the positions of the test items outside the top k. The parameter

k is either an absolute value, usually ranging between 10 and 100, or a fraction of the

total number of items, usually ranging between 1% and 10%. We used both absolute

8.3. Summary of aims and findings 238

and relative values for k to compare the results that is the fraction or number of the

items from I
(u)
T which are among the first k% items or k items in the list Rank(u) \ I(u)

B .

If a random permutation of items is taken as the ranking, then the probability that

a given test item is in the top k recommendations is equal to k/(q − bu). This is the

expected score for user u, so the expected score of the random recommender is equal to

k
∑

u 1/(q − bu), which is at least k/q and at most k/(q − (r/p)). The value r/p is the

average degree of a user vertex in the graph G, so normally much less than q. Therefore,

the expected score of the random recommender is approximately k/q.

8.2.4 Degree bias of T

The dataset provided comes pre-split into B and T . The method of doing such a split is

also provided. Given the data-set D consisting of entries described in Section 8.2 the first

10 entries encountered for each user is placed in T and what remains becomes B. We note

that while D is randomized, this specific method is degree biased since the probability

of including a given movie in the test set is proportional to the probability that it’s

included in an randomly selected edge. Therefore this gives a convincing explanation

on why arranging the movies according to their degree yields reasonably good results

in [51].

To challenge the methods we have provided a different split to the graph by removing

the 10 lowest degree movies from each user, while guaranteeing that we don’t disconnect

the graph. We note that in this case, ranking by degree performs no better than random

ranking while at the same time the rankings provided by the other ranking methods

discussed in [51] perform slightly better than random, while maintaining their relative

order of evaluation score.

8.3 Summary of aims and findings

Our primary findings related to the above topics were as follows.

8.3. Summary of aims and findings 239

1. One particular measure which was good for [51] was the inverse Laplacian. The

quantity L+ has no clear intuitive meaning in terms of the structure of the graph G,

and we could find no direct random walk equivalent. We found, however, that the

third power P 3 of the transition matrix P = D−1A of a random walk was an equally

effective measure P 3 has the straightforward interpretation of ’What Movies we

expect a random walk to be at after 3 steps from a given start User’. (The walk is

of the form: User-Movie-User-Movie). A full explanation of all methods is given

in Section 8.2.1.

2. We based our experiments around repeated short random walks from a given start.

The details of these experiments are given in Section 8.6. Our experiments worked

quite well. We managed to match the performance of all methods from [50, 51]

except the L+ method, for which we could not find a short random walk equivalent.

Results are given in Table 8.1.

We have also computed the values of P 3 using matrix operations. In common

with our findings that P 3 gave best results among most matrix based methods

examined in [50,51], we find that random walks of length 3 give best results. The

details of the methods in Tables 8.1–8.3 are explained in Section 8.6.

Carrying out the experiments highlighted statistical issues which required some

thought. In parallel with our study we became aware of a study using a similar

approach [120], but our conclusions are somewhat different. This is discussed

further in Section 8.6

3. We evaluated the performance of the methods from [50, 51] as well as some ad-

ditional methods using a larger dataset (MovieLens 1M), which was not used

in [50, 51]. The main observation from this experiment is that the P 3 method

has overtaken the L+ method. We also found out that matrix based techniques

did not scale well, as the matrix operations were now large. Techniques based on

short random walks were shown to be more scalable and required significantly less

memory than matrix operations.

8.4. Ranking algorithms 240

8.4 Ranking algorithms

The input for the ranking methods is the bipartite graph G = (U ∪ I,R). The methods

are general, but we describe them using the terminology of the MovieLens datasets, since

the evaluation presented in [50,51] and our evaluation are based on those datasets. Thus

we refer to U as the set of users, to I as the set of movies, and the edges in G show which

movies the users have watched. A ranking algorithm computes for each user a ranking

of movies. The main ranking methods considered in [50,51] are described below.

Degree based ranking (MaxF): Movies that the user has not watched are ranked

based on their degree in G. The highest degree movies (movies watched by the

largest number of people) are at the top of this ranking.

Hitting time ranking (Hit→): Movies that the user has not watched are ranked

based the hitting times of the random walk in G starting from that user. Movies

with lower hitting times are higher up in the ranking.

Reverse hitting time ranking (Hit←): Movies that the user u has not watched are

ranked based on the hitting times of the random walks in G starting from the

movies. If the hitting time of u for the random walk starting at a movie m′ is

lower than the hitting time for the random walk starting from a movie m′′, then

m′ is higher in the ranking than m′′.

Commute time ranking (AVC): Movies that the user has not watched are ranked

based the random walk commute time between that user and the movies.

Pseudoinverse Laplacian ranking (L+): Let L+ denote the Moore-Penrose pseu-

doinverse of the Laplacian matrix L = D −A [109,115]. Let l+x,y denote the entry

of L+ at row x and column y. We compute L+ using the following formula.

L+ = (L− eeT /n)−1 + eeT /n, (8.1)

where n is the number of nodes, e is a column vector made of 1s, i.e, e =

[1, 1, . . . , 1]T .

8.4. Ranking algorithms 241

Movies that the user u has not watched are ranked according to the descending

order of the values l+u,m, m ∈ I.

Fouss et al. [50, 51] applied the above ranking methods to the small 100K MovieLens

dataset using Metric I to evaluate their performance. They reported that the simple

degree based ranking performed reasonably well, scoring 85%, which is significantly

above the 50% score of the random permutation. The degree based ranking is probably

the simplest possible method based fully only on the popularity of individual movies

and requires little computation. The hitting time based rankings are considerably more

costly to compute, but they did not perform better than the degree based ranking. The

hitting time ranking could only match the performance of the degree based ranking,

while the reverse hitting time ranking performed actually worse, scoring only 80%. The

best ranking method was the L+ ranking, scoring 90%.

Another widely used ranking algorithm is the ItemRank (IR) method described in [59],

and the following methods.

ItemRank

The IR algorithm [59] is a random walk based scoring algorithm, which exploits cor-

relations between items to predict user preferences. Recommendation is made based

on the information obtained. Let M be the |I| × |I| correlation matrix, in which each

element Mij represents the number of users who have watched both movies mi and mj

in the training set. Let M̃ be the column normalised matrix of M and directed graph

Gc be the correlation graph associated to the normalized correlation matrix M̃. The IR

algorithm is based on the personal PageRank algorithm [62].

IR = α · M̃ · IR + (1− α) · d̃, (8.2)

where α is attenuation factor typically 0.85 and d̃ is the column normalized matrix of

rating distribution matrix d. The column vector di of d contains the user i’ ratings on

movies. Note that for unweighed case, the column vector di of d has a value of either 0

(not watched) or 1 (has watched) instead of user ratings (1-5) on movies.

8.4. Ranking algorithms 242

For user i, among the unrated items, the items with the higher probability are recom-

mended to the user i.

In addition to the above ranking algorithms, we experimented with two additional rank-

ing methods, the s-step random walk distribution P s method, the number of paths of

length s method As and the parametrised s-step random walk distribution method P 3
α.

The s-step random walk distribution (Ps) :

Movies that the user u has not watched are ranked based on the probability distribution

P s(u, .) of the random walk at step s, if u was the starting vertex. If P s(u,m′) >

P s(u,m′′), then movie m′ is ranked higher than movie m′′. The matrix P s can be

computed by raising the matrix P of the transition probabilities of the random walk on

G to the power of s.

Observe that only odd numbers s ≥ 3 should be considered: for a user u and a movie m

not watched by u, the probability P s(u,m) can be positive only for an odd s ≥ 3. In this

paper we include experimental results only for the P 3 and P 5 rankings (the rankings

based on the distribution of the random walk after 3 and 5 steps, respectively), since

they performed the best among the P s rankings.

Number of paths of length s (As):

Movies that the user has not watched are ranked based on the number of distinct paths

of length s from that user to the movies in graph G. A movie m with the greater number

of paths has a higher ranking. The numbers of paths of length s can be simply computed

as the s-th power of the adjacency matrix A.

Parametrised method Ps
α

The method Ps
α is a method for improving the performance of P s by introducing a

parameter α, which ranges over the real numbers. We define matrix Pα as derived from

the transition probability matrix P by raising every entry to the power of α. That is,

pα(u, v) =


(

1
d(u)

)α
, ∃(u, v) ∈ E

0, otherwise

8.4. Ranking algorithms 243

(a) Small Dataset

(b) Medium Dataset

Figure 8.1: Results of the P 3
α method using matrix operations. This incorporates the results of the A3

method when α = 0 and the P 3 method when α = 1.

8.5. Matrix based operations: Implementation details 244

The parametrised P sα matrix is a generalization of the methods P s and As. Setting α = 0

this method is equivalent to the As method while setting α = 1 it is equivalent to P s.

Experimentally, limiting the number of steps to 3 has shown to have the best perfor-

mance. The P 3 and P 3
α methods compute recommendations for a user u based only on

the neighbourhood of u in graph G of diameter 3. A closer look at the general structure

of graph G can give some justification why these methods perform so well. The diameter

of G is small – for example, the training set subgraph for the small MovieLens dataset

has diameter 6, and on average 70% of the users are at distance 2 from a given user.

Another evident characteristic of the MovieLens datasets is their relatively high density.

For example, the average degree of a user in the training set of the small MovieLens

dataset is 95. Thus another interesting question is how the ranking algorithms ”scale

down” when the density of the dataset decreases. The results of the three methods P 3,

A3 and P 3
α can be seen in Figure 8.1.

8.5 Matrix based operations: Implementation details

In this section, we discuss the technical issues that arise when implementing the ranking

methods discussed above.

The values of the hitting time (Hit→), reverse hitting time (Hit←) and commute time

(AVC) between all pair of nodes can be obtained from hitting time matrix. Fouss et al.

in [50, 51] suggest a method to compute such hitting time matrix through the pseudo-

inverse of the Laplacian matrix (L+). However, this method has a high computational

cost as it requires a presence of a pseudo-inverse of the Laplacian matrix, which involves

computation of matrix inversion. Moreover, even if it was assumed that pseudo-inverse

of Laplacian matrix already exists, the time complexity for computing the hitting time

matrix from the pseudo-inverse of Laplacian matrix is O(n3), where n is the size of a

Laplacian matrix. In order to compute the hitting time matrix H faster, a method

presented in [95], could be used. Specifically,

8.6. Ranking methods based on simulation of Random Walks 245

X = (I − P + π)−1(J − 2mD−1)

H = X − (e ∗ λT) (8.3)

where I is the identity matrix of size n, P is the transition probability matrix, π is the

stationary distribution of matrix A, J is a matrix of ones of size n, m is the total number

of edges in the bipartite graph, D is the diagonal matrix of vertex degrees, λ is a column

vector containing a diagonals of X matrix, and e is a column vector of ones.

Based on Equation 8.3, we can compute the commute time matrix C as:

C = H +HT

Matrix multiplication requires O(n2) space, therefore if the size of graph increases, com-

puting P s matrix may require unrealistic amount of memory space and hence becomes

intractable. For example, in the large 10M dataset, there are 82, 248 nodes in total,

therefore a naive approach of computing P 3 would need ≈ 150GB.

8.6 Ranking methods based on simulation of Random Walks

In order to obtain a ranking of movies, we would need to compute the ranking matrix

using any of the methods described in Section 8.4. There are two ways to achieve this:

1. Compute the exact values of each movie in order to determine their relative rank-

ing. This can be done with matrix operations. E.g. we can compute the hitting

time matrix H from Equation 8.3 and based on this result we can compute the

commute time matrix C. We could also compute P s as the s-th power of the

transition probability matrix P .

2. Approximate these values by simulating short random walks.

Ranking algorithms based on matrix manipulations have their natural limit: the sizes

of the matrices may quickly become too large to fit in the computer memory. Even if

8.6. Ranking methods based on simulation of Random Walks 246

the graph G modelling the dataset is sparse, matrix operations involving the adjacency

matrix can easily lead to dense matrices. For example, the pseudoinverse matrix L+

and the hitting time matrix H are both dense. While we would not have problems

with running the ranking algorithms from the previous section on the small MovieLens

dataset, some technical issues of insufficient memory would start appearing when we

move on to the medium size dataset (the MovieLens 1M set), and became a major

obstacle for computing matrices in the largest MovieLens dataset. While we could have

used external memory algorithms in order to solve these memory issues, this would have

added significant delays caused by frequent access to the slower secondary storage. 0

We use the alternative approach, which is to gather information about the structure of

a graph from simulations of random walks in this graph. For example, the hitting times

used in the ranking methods in the previous section can be estimated by simulating

random walks. Such simulations require only O(m) space, to store the adjacency lists of

the graph, with m ∝ n for sparse graphs (n is the number of vertices and m is the number

of edges). Furthermore, the computation can be organised in a distributed manner, if

the graph is scattered over a network.

Experiment Description

In order to estimate random walk properties without using matrix operations we made

use of many short random walks of various lengths. The experiments were ran on a

personal computer with an Intel Quad core CPU at 3 GHz (specifically Intel Core 2

Quad Q9650) and 8 GB DDR2-800 memory. We developed our implementations using

the C# programming language.

The training and test set graphs were loaded into memory as adjacency lists. There

were W random walks performed, each of length s. Each individual walk visited a

number of vertices within s steps of the starting user. For each of these vertices, if they

corresponded to movies, we recorded the number of times they were visited by the walks

at a specific step. All movies were evaluated based on properties such as Truncated

8.6. Ranking methods based on simulation of Random Walks 247

hitting times, number of Hits, number of hits at step s and then ranked accordingly.

The ranking was done using radix sort with two radices, the first being the property

in which we evaluated against, and the second being a random number. This resulted

in all movies to be ranked according to the evaluated property. In the case that two

(or more) movies had the same score, they were ranked randomly. This was done to

ensure that the ranking only indicated the performance of the methods being checked

and not any secondary characteristics. The ranking obtained through each method was

evaluated using both metrics described in Section 8.2.1.

For most experiments the values of s were s = 3, 5, 7, 9. The values of W varied according

to s based on the budget/step allowance of each experiment. For the results in Tables 8.1-

8.3 the budget was set to be the number of vertices in the graph n. We note how walks

of length s = 7, 9 had diminishing scores.

Assuming that a training and test set were in memory, the recommendation system

consisted of 3 components:

1. The movie assessor, which, for each user u and given a movie m, would yield

the value of that movie according to the assessment method. There were various

methods used which are described in e.g. Table 8.1 and this is initialized by running

W random walks of length s starting from the user u.

2. The item ranker, which uses a variety of different sort algorithms to rank items

according to the assessment score. We made use of both the built-in C# quick-sort

algorithm as well as our implementation of radix sort to perform the ranking.

3. The score evaluator which, given a ranked item list and the test set for a specific

user, would return the score of that ranked list according to the various evaluation

metrics defined in Section 8.2.1

Due to the independent nature of the process of evaluating each user’s score we made

use of multi-threading to a great extent and there were scores for multiple users being

8.6. Ranking methods based on simulation of Random Walks 248

computed concurrently. The drawback of this approach was that in the case of the large

data-set, keeping all the assessment details in memory for many users was not feasible

and we had to impose a limit of 4 concurrent threads. In practice having more threads is

not expected to improve the performance of the algorithms since typical home computers

don’t currently have more than 4 processors.

Experimental Results

Recall that our ranking methods based on simulating random walks perform for each user

n/s random walks, each of length s. We experimented with various values of s and found

out that small values (that is, many short random walks) give the best results. We chose

s = 3, 5, 7, 9 to compare the performance. In Table 8.4 we compare the metric-II scores

of our ranking methods, counting the fraction of hits in the top k% recommendations.

The method P̂ 3 has the best performance. This method would converge to the method

P 3 considered in Section 8.4, if the number of walks was increasing. The method based on

the number of hits weighted with the vertex degrees comes second. Among the methods

based on the truncated hitting times, the penalties m̂ and 2m̂/degree, combined with s

equal to 3 or 5, led to reasonably good performance.

Short Random Walk Evaluation Methodology

Similarly to the work of Sarkar and Moore [120], we estimate the truncated hitting time

hT (u, v) of vertex v starting from vertex u by

1

w

w∑
i=1

sv(i). (8.4)

To use this estimator, we have to decide what should be the value of sv(i), if vertex v

was not visited during walk i. Vertices which have not been visited by any of the walks

are not ranked (or they are put in arbitrary order at the end of the ranking list, if a

full ranking list is required), so we do not need to worry about their sv(i) values. We

consider now a vertex v which was visited by some walks, but was not visited by, say,

8.6. Ranking methods based on simulation of Random Walks 249

Figure 8.2: Convergence to P 3 on small dataset

walk i. A choice of sv(i) = 0 seems incorrect, as this would imply v = u. Some hitting

time penalty should be imposed for unvisited vertices, and we experimented with various

values for this penalty.

� (a) Set the penalty to m̂, our estimate of the number of edges incident with the

subgraph we can visit in s steps.

� (b) Set the penalty to 2m̂/d(v) where m̂ is the estimated number of edges. The

reasoning behind this penalty is to approximate the first hitting time from station-

arity of a vertex. We do not use the total number of edges of a graph to cover the

cases when this is unknown. The value m̂ is our best estimate of the size of the

sub-graph we are expected to see within s steps, and approximates the number of

edges in the breadth first search tree of depth s+ 1

� (c) Set the penalty to s, the walk length. This is the penalty used in [120].

Having estimated hT (u, v) with (8.4) and using one of the above penalties, we can rank

the movies in ascending order of their hT (u, v) values.

8.6. Ranking methods based on simulation of Random Walks 250

Figure 8.3: Convergence to P 3 on medium dataset

In addition to estimates of hT (u, v) we rank movies based on the number of times they

were hit on average. We calculate the average number of hits of a vertex v from vertex

u as

n(u, v) =
1

w

w∑
i=1

nv(i).

For example, if a movie m is hit w/2 times by w walks, then the number of hits is

0.5. Intuitively, movies which were hit often are more relevant to a user and should be

ranked higher. Movies are ranked for recommendation in the descending order according

to their average number of hits. We also consider some heuristics for re-weighting of

average number of hits, such as (number of hits)*(degree).

We can also rank movies based on an estimate of the s step transition probability. We

can estimate this simply by counting P̂ (k)(u, v) – the number of walks which hit vertex v

at step s divided by the total number of walks w. If we let the number of walks increase

to infinity, P̂ (s)(u, v) converges to P s(u, v). We rank movies in the descending order of

values P̂ (s)(u, v).

8.6. Ranking methods based on simulation of Random Walks 251

Figure 8.4: Convergence to P 3 on large dataset

Experimental results for SRW methods

Recall that our ranking methods based on simulating random walks perform for each

user n/s random walks, each of length s. We experimented with various values of s and

found out that small values (that is, many short random walks) give the best results.

The method P̂ 3 has the best performance. This method would converge to the method

P 3 considered in Section 8.2.1, if the number of walks was increasing. The method

based on the number of hits weighted with the vertex degrees comes second. Among the

methods based on the truncated hitting times, the penalties m̂ and 2m̂/degree, combined

with s equal to 3 or 5, led to reasonably good performance. It would be of independent

interest to investigate if these two methods give actually good estimators of the hitting

times for these type of graphs.

8.6. Ranking methods based on simulation of Random Walks 252

Small size dataset

Length Evaluation Truncated hitting times #Hits #Hits P̂s

of Walk Method penalty: penalty: penalty: * degree
(s) Edges r̂ 2r̂/degree Walk length

3 Metric I 78.98% 79.64% 79.08% 79.17% 80.45% 79.02%
Metric II@1% 0.1642 0.1592 0.1621 0.1607 0.1760 0.1617
Metric II@2% 0.2468 0.2297 0.2501 0.2477 0.2636 0.2477
Metric II@3% 0.3034 0.2962 0.3056 0.3029 0.3300 0.3028
Metric II@4% 0.3513 0.3441 0.3516 0.3496 0.3822 0.3514
Metric II@5% 0.3903 0.3896 0.3885 0.3887 0.4286 0.3905
Metric II@10% 0.5382 0.5545 0.5376 0.5389 0.5812 0.5356

5 Metric I 79.44% 80.12% 79.31% 79.33% 80.47% 70.88%
Metric II@1% 0.1501 0.1602 0.1472 0.1474 0.1657 0.0905
Metric II@2% 0.2304 0.2270 0.2310 0.2274 0.2504 0.1509
Metric II@3% 0.2906 0.2948 0.2916 0.2877 0.3123 0.1947
Metric II@4% 0.3435 0.3417 0.3410 0.3336 0.3644 0.2370
Metric II@5% 0.3830 0.3819 0.3780 0.3766 0.4113 0.2755
Metric II@10% 0.5319 0.5410 0.5253 0.5232 0.5723 0.3959

7 Metric I 79.20% 80.11% 78.78% 78.69% 80.16% 65.92%
Metric II@1% 0.1462 0.1601 0.1454 0.1411 0.1615 0.0730
Metric II@2% 0.2245 0.2275 0.2226 0.2217 0.2432 0.1208
Metric II@3% 0.2785 0.2948 0.2769 0.2739 0.3046 0.1665
Metric II@4% 0.3252 0.3407 0.3247 0.3156 0.3538 0.2000
Metric II@5% 0.3642 0.3834 0.3609 0.3511 0.3962 0.2247
Metric II@10% 0.5159 0.5400 0.5054 0.5001 0.5599 0.3353

9 Metric I 78.51% 79.86% 78.28% 78.07% 79.69% 63.47%
Metric II@1% 0.1327 0.1601 0.1312 0.1287 0.1548 0.0586
Metric II@2% 0.2060 0.2277 0.2084 0.2002 0.2317 0.1083
Metric II@3% 0.2655 0.2932 0.2662 0.2572 0.2931 0.1407
Metric II@4% 0.3133 0.3391 0.3117 0.3017 0.3436 0.1663
Metric II@5% 0.3576 0.3803 0.3498 0.3438 0.3895 0.1930
Metric II@10% 0.5013 0.5386 0.4910 0.4852 0.5478 0.3201

Table 8.1: Short Random Walks On the Small Dataset

8.6. Ranking methods based on simulation of Random Walks 253

Medium size dataset

Length Evaluation Truncated hitting times #Hits #Hits P̂s

of Walk Method penalty: penalty: penalty: * degree
(s) Edges r̂ 2r̂/degree Walk length

3 Metric I 82.15% 82.80% 82.14% 82.12% 83.23% 82.10%
Metric II@1% 0.1729 0.1729 0.1728 0.1834 0.1727 0.1731
Metric II@2% 0.2583 0.2536 0.2587 0.2726 0.2584 0.2588
Metric II@3% 0.3214 0.3203 0.3208 0.3368 0.3206 0.3213
Metric II@4% 0.3716 0.3681 0.3714 0.3893 0.3715 0.3711
Metric II@5% 0.4131 0.4102 0.4142 0.4344 0.4139 0.4143
Metric II@10% 0.5620 0.5688 0.5621 0.5893 0.5617 0.5618

5 Metric I 81.92% 82.97% 81.74% 81.72% 83.09% 74.89%
Metric II@1% 0.1600 0.1729 0.1597 0.1751 0.1581 0.1124
Metric II@2% 0.2431 0.2533 0.2436 0.2600 0.2397 0.1789
Metric II@3% 0.3043 0.3196 0.3036 0.3214 0.3002 0.2269
Metric II@4% 0.3545 0.3670 0.3528 0.3732 0.3494 0.2687
Metric II@5% 0.3947 0.4093 0.3946 0.4163 0.3908 0.3068
Metric II@10% 0.5450 0.5673 0.5389 0.5741 0.5358 0.4427

7 Metric I 81.51% 82.87% 81.36% 81.32% 82.86% 71.26%
Metric II@1% 0.1510 0.1730 0.1510 0.1703 0.1492 0.0956
Metric II@2% 0.2324 0.2531 0.2323 0.2548 0.2278 0.1530
Metric II@3% 0.2913 0.3195 0.2913 0.3160 0.2867 0.2004
Metric II@4% 0.3408 0.3674 0.3407 0.3667 0.3364 0.2358
Metric II@5% 0.3846 0.4096 0.3818 0.4089 0.3799 0.2702
Metric II@10% 0.5345 0.5670 0.5284 0.5672 0.5268 0.3956

9 Metric I 81.18% 82.72% 80.90% 80.97% 82.59% 68.93%
Metric II@1% 0.1476 0.1728 0.1469 0.1687 0.1457 0.0872
Metric II@2% 0.2274 0.2532 0.2266 0.2507 0.2236 0.1409
Metric II@3% 0.2871 0.3193 0.2839 0.3121 0.2828 0.1803
Metric II@4% 0.3334 0.3670 0.3323 0.3611 0.3309 0.2198
Metric II@5% 0.3754 0.4090 0.3729 0.4044 0.3711 0.2556
Metric II@10% 0.5222 0.5665 0.5169 0.5609 0.5179 0.3610

Table 8.2: Short Random Walks On The Medium sized dataset

8.6. Ranking methods based on simulation of Random Walks 254

Figure 8.5: Average walk time for budget per user

8.6.1 Time measurements

In order to determine the feasibility of our approach using short random walks we have

measured the time a short random walk requires to perform the necessary processing

in order to produce user recommendations. What is seen in Figure 8.5 is an indication

that the time required grows linearly with the total number of steps taken. Combining

this with the fact that there is no pre-processing required and the methods can be ran

for a single user in linear time we obtain a method that is more space and time efficient

in the long run, compared to matrix methods.

8.6.2 Convergence of 3-step random walks to P 3

In this section we show experimental results obtained from varying the budget of the

short random walk to b = cn, c ∈ N. What was done for this experiment is the

same as was done to obtain the results of Tables 8.1-8.3 but specifically to estimate P s

with s = 3. These results were then compared to the results obtained using the matrix

multiplication to obtain P 3 (see Table 8.4).

8.6. Ranking methods based on simulation of Random Walks 255

Large size dataset

Length Evaluation Truncated hitting times #Hits #Hits P̂s

of Walk Method penalty: penalty: penalty: * degree
(s) Edges r̂ 2r̂/degree Walk length

3 Metric I 91.83% 93.65% 91.84% 94.90% 94.52% 94.90%
Metric II@1% 0.1769 0.3507 0.1769 0.4681 0.4210 0.4681
Metric II@2% 0.3087 0.4775 0.3087 0.5868 0.5419 0.5865
Metric II@3% 0.4074 0.5681 0.4074 0.6645 0.6206 0.6644
Metric II@4% 0.4855 0.6330 0.4855 0.7186 0.6828 0.7190
Metric II@5% 0.5471 0.6766 0.5471 0.7590 0.7281 0.7585
Metric II@10% 0.7461 0.8117 0.7461 0.8657 0.8471 0.8655

5 Metric I 91.04% 93.55% 91.06% 94.37% 94.15% 92.30%
Metric II@1% 0.1495 0.3496 0.1495 0.4347 0.3985 0.3823
Metric II@2% 0.2725 0.4763 0.2725 0.5535 0.5232 0.5035
Metric II@3% 0.3693 0.5675 0.3693 0.6333 0.6022 0.5821
Metric II@4% 0.4473 0.6318 0.4473 0.6901 0.6641 0.6375
Metric II@5% 0.5122 0.6751 0.5122 0.7315 0.7103 0.6813
Metric II@10% 0.7157 0.8109 0.7157 0.8474 0.8349 0.8032

7 Metric I 90.64% 93.52% 90.66% 94.10% 93.97% 90.82%
Metric II@1% 0.1396 0.3490 0.1396 0.4159 0.3849 0.3440
Metric II@2% 0.2545 0.4755 0.2545 0.5354 0.5140 0.4681
Metric II@3% 0.3477 0.5668 0.3477 0.6157 0.5932 0.5488
Metric II@4% 0.4254 0.6312 0.4254 0.6737 0.6544 0.6063
Metric II@5% 0.4899 0.6746 0.4899 0.7169 0.7011 0.6503
Metric II@10% 0.7004 0.8105 0.7004 0.8374 0.8290 0.7780

9 Metric I 90.35% 93.49% 90.34% 93.87% 93.83% 89.84%
Metric II@1% 0.1319 0.3487 0.1319 0.4046 0.3789 0.3252
Metric II@2% 0.2415 0.4754 0.2415 0.5239 0.5063 0.4491
Metric II@3% 0.3338 0.5664 0.3338 0.6039 0.5868 0.5288
Metric II@4% 0.4108 0.6311 0.4108 0.6624 0.6480 0.5883
Metric II@5% 0.4753 0.6746 0.4753 0.7072 0.6947 0.6328
Metric II@10% 0.6905 0.8105 0.6905 0.8308 0.8246 0.7623

Table 8.3: Short random walks on the large dataset

8.6. Ranking methods based on simulation of Random Walks 256

Dataset Metric Methods considered

P̂3 P3 P̂5 P5

Small Metric I 80.45% 90.70% 80.47% 88.19%
Metric II@1% 0.1617 0.261 0.0905 0.197
Metric II@2% 0.2477 0.375 0.1509 0.295
Metric II@3% 0.3028 0.452 0.1947 0.362
Metric II@4% 0.3514 0.510 0.2370 0.415
Metric II@5% 0.3905 0.559 0.2755 0.460
Metric II@10% 0.5356 0.699 0.3959 0.616

Medium Metric I 82.10% 89.62% 74.89% 86.68%
Metric II@1% 0.1731 0.2336 0.1124 0.1809
Metric II@2% 0.2588 0.3441 0.1789 0.2699
Metric II@3% 0.3213 0.4160 0.2269 0.3332
Metric II@4% 0.3711 0.4723 0.2687 0.3820
Metric II@5% 0.4143 0.5183 0.3068 0.4250
Metric II@10% 0.5618 0.6713 0.4427 0.5857

Large Metric I 94.90%% 95.88% 92.30% 94.52%
Metric II@1% 0.4681 0.4809 0.3823 0.4054
Metric II@2% 0.5865 0.6027 0.5035 0.5270
Metric II@3% 0.6644 0.6804 0.5821 0.6044
Metric II@4% 0.7190 0.7376 0.6375 0.6667
Metric II@5% 0.7585 0.7778 0.6813 0.7136
Metric II@10% 0.8655 0.8845 0.8032 0.8390

Table 8.4: Comparison of the scores of P 3 and P 5 and the estimates P̂ 3 and P̂ 5 obtained through short
random walks.

8.6. Ranking methods based on simulation of Random Walks 257

Figure 8.6: Total variation distance

The comparison was done using the formula:

Relative difference =
|Score of P̂ 3 − Score of P 3|

Score of P 3
(8.5)

where P̂ 3 is the estimated P 3 obtained via short random walks while P 3 is the matrix

obtained from matrix multiplication.

The results for the small dataset can be seen in Figure 8.2, for the medium dataset in

Figure 8.3 and for the large dataset in Figure 8.4, where the relative difference is the

value obtained by Equation (8.5). The x-axis is on a log-scale to emphasize how the

increase of the budget greatly diminishes the benefit on the score. It is made especially

apparent in the case of the large dataset (Figure 8.4) that the budget required to get a

low relative difference is sub-linear in the size of the graph.

Additionally, in Figures 8.2,8.3,8.4 convergence is assumed to be achieved when the

short random walk ranking yields the same evaluation score as the matrix operation

score. However, we also want to confirm that the short random walk estimations of

p̂3(u,m) (where u ∈ U and m ∈ I) indeed converge to the real p3(u,m) entry of P 3.

8.6. Ranking methods based on simulation of Random Walks 258

This is done using the following a form of total variation distance:

V (P 3) = ||P 3 − P̂ 3||∞ (8.6)

We note that the value range of Equation (8.6) is [0 . . . 2] with 0 indicating identical

distributions. The results of Equation (8.6) applied to the small dataset can be seen in

Figure 8.6.

8.6.3 Improving recommendations using degree-weighted Random Walks

The transition probabilities of a weighted random walk in a graph G = (V,E) are defined

by the weights of edges. Let w(u, v) = w(v, u) be the weight of an (undirected) edge

(u, v). The weight of a vertex u is defined as w(u) =
∑

(u,x)∈E w(u, x). If the random

walk is at a vertex u at the beginning of the current step, then the probability that it

moves in this step to a vertex v is equal to

P (u, v) =
w(u, v)

w(u)
.

Ikeda et al. [67] consider the weighted random walks defined by the following edge

weights:

w(u, v) = (d(u)d(v))β , (8.7)

where β is a parameter taking on real values. Observe that for this walk, the transition

probability from the current vertex u to a neighbouring vertex v is equal to

P (u, v) =
(d(u)d(v))β∑

(u,x)∈E (d(u)d(x))β
=

(d(v))β∑
(u,x)∈E (d(x))β

∼ (d(v))β.

Thus, for β < 0, the probability of moving into a given neighbouring vertex is larger, if

its degree is smaller, and the stationary probability of high degree vertices decreases (in

comparison with the uniform random walk). A similar effect is achieved by the weighted

8.7. Experimental Results 259

random walk defined by the edge weights

w(u, v) = (max{d(u), d(v)})β , (8.8)

considered in Ikeda et al. [66], and by the edge weights

w(u, v) = (d(u))β + (d(v))β. (8.9)

In both cases (8.8) and (8.9), if β < 0, then for two neighbours v′ and v′′ of u, P (u, v′) ≤

P (u, v′′), if d(v′) ≥ d(v′′). It is shown in [66, 67] that the cover time of the weighted

random walk defined by (8.7) for β = −1/2 and the cover time of the weighted random

walk defined by (8.8) for β = −1 are both O(n2 log n) (while the worst-case cover time

of the uniform random walk is Θ(n3)). Using a similar analysis as in [66, 67], one can

also show that the cover time of the weighted random walk defined by (8.9) for β = −1

is also O(n2 log n).

For the weighted random walks defined by (8.7), (8.8) and (8.9), we consider the ranking

algorithm P̂ 3, which estimates for each pair of vertices u ∈ U and v ∈ I the probability

that the random walk which started at u is at v after three steps. This estimation is

obtained by simulating B/3 random walks of length 3 for each starting vertex u and

counting how many times each vertex v ∈ I has been reached. Vertices with the same

count are ranked in random order. The parameter B is the budget: the total number of

steps of all random walks from the same starting vertex.

8.7 Experimental Results

Figures 8.7 and 8.8 show the plots of the quality of the rankings computed by the P̂ 3

method for the 100K MovieLens dataset. We used the weighted random walks defined

by the edge weights (8.7) with β taking on various values between −1 and 1, the edge

weights (8.8) with β = −1, and the edge weights (8.9) with β = −1. Figure 8.7 shows the

quality of the rankings computed according to the correctly-placed-pairs measure, which

we refer to also as Fouss’ measure. Figure 8.8 shows the quality of the rankings computed

8.7. Experimental Results 260

(a) Rankings of all tested methods

(b) Rankings of best methods compared to a SRW

Figure 8.7: The scores of the ranking algorithms based on various weighted random walks for the 100K
MovieLens dataset: Fouss’ measure.

8.7. Experimental Results 261

(a) Rankings of all tested methods

(b) Rankings of best methods

Figure 8.8: The same experiments as in Figure 8.7, but the quality of rankings shown in the top 10%
measure.

8.8. Conclusion 262

in the top 10% measure. In both figures, the left diagrams show the performance of all

tested random walks. The right diagrams show only the random walks which give the

best performance and the uniform random walk for comparison.

Interestingly, for the small budget B = n, rankings obtained by the weighted random

walks are not better than the rankings obtained by the uniform random walks. However,

when we let the budget increase, some of the weighted random walks start outperforming

the uniform random walks, gaining clear advantage for B = 10n and further improving

until their performance flattens from B ≈ 100n. The best performance is obtained for

the weighted random walks defined by the edge weights (8.7) with β = −1/2 (the same

β which gives the best bound for the worst-case cover time [67]). In comparison with

the uniform random walks, the quality of the ranking obtained for B = 100n increases

from 91% to 93% in Fouss’ measure, and from 0.70 to 0.77 in the top 10% measure. The

weighted random walks defined by the edge weights (8.7) and β = −1 also eventually

(for sufficiently large budget B) start outperforming the uniform walks.

8.8 Conclusion

In this chapter we have defined what we consider a recommender system. We view a

recommender system as an algorithm on a graph G = {(U ∪ I), E} where U is a set of

users, and I is a set of items those users could potentially interact with. When given

a user u ∈ U , the purpose of a recommender algorithm is to rank items in I according

to the user’s relation to those items. Specifically a good recommender algorithm would

place items which a user u is more likely to be interested in, higher in the ranking.

We build on the work of Fouss et al. [50, 51] by making use of RW based methods to

produce ranked lists of I. We work with the dataset collected by GroupLens [60] of users

and movies they had rated using the MovieLens online service [111]. We have shown

that SRW methods such as the third power of the transition probability matrix P 3 work

equally well, and sometimes better than the methods considered in [50,51]. In addition,

we generalize the method of P 3 by raising each entry of P to the power α. We call this

8.8. Conclusion 263

method P 3
α and we show how this method can be used to optimize the results of P 3.

Furthermore we show how the method of P 3 in conjunction with degree biased WRWs

could further improve the quality of the results. We test the quality of the results using

two quality metrics: Metric I, percentage of correctly placed pairs and Metric II, number

of hits in the top k recommendations.

Chapter 9

Conclusions

9.1 Scale-free graphs and generative models

In Chapter 2 we have seen a number of graph properties which appear in large online

networks, as well as graph generation models which generate graphs which share these

properties with large online networks. As mentioned, there are a number of properties

which are indicative of large online networks, such as:

� Power-law degree distribution.

� Diameter bounded by O(log n).

� Existence of sub-graphs which are internally densely connected and externally

sparsely connected. We refer to these sub-graphs as communities.

� Scale invariance i.e. the local structure and global properties are unaffected by the

size of the graph.

� Higher than expected number of triangles.

We generally refer to graphs with these properties as scale-free graphs. There are many

real world graphs which belong to the category of scale-free graphs such as: the router

network, the WWW and OLSNs. There are various existing graph models which generate

graphs which have similarities to these networks. Models such as the Erdős-Rényi models

264

9.2. Markov Chains and Random Walks 265

for example generate sparse connected graphs with relatively small diameters, while

the preferential attachment models (such as e.g. the Barabási-Albert model [4] or the

general web-graph model [24,28]) generate graphs which also have a degree distribution

which follows a power-law. While these two properties are significant in real online

networks, they are not sufficient to accurately model them, therefore additional models

were proposed, such as e.g. the edge copying model [72], the triangle closing model [85]

etc. We have also proposed a number of our own models such as:

1. Random walk graph model (Section 2.2.8).

2. Preferential attachment with message propagation model (Section 2.2.9).

3. Grow, back-connect, densify model (Section 2.2.10).

4. Partitioned preferential attachment model (Section 2.2.11).

5. Implicit Power-Law graph model (Section 2.2.12).

There are some open problems which remain unanswered in this area and ongoing re-

search focuses on the following aspects:

1. Discovery of additional properties which are common among scale-free networks.

2. Creation of a graph generation model which more accurately models real online

networks.

3. Formal analysis of graph generation models which would accurately describe the

properties which generated graphs would have.

9.2 Markov Chains and Random Walks

In Chapter 3 we have presented an overview of Markov Chains and specifically, time-

homogeneous Markov Chains on graphs which we refer to as Random Walks. We have

discussed notions such as transition probability matrix P and stationary distribution

9.3. Estimating network properties 266

π as well as mixing rate τ2 and mixing time T (ε). We base the properties of Markov

Chains we have presented, from the books Norris [113] and by Aldous and Fill [2], as

well as the survey by Lovasz [95].

Simulating RWs is a large part of our work and therefore we discuss the algorithms

that could be used, as well as the algorithmic issues which arise from simulating RWs

and specifically the increase in complexity when simulating Weighted Random Walks

(WRWs). We also present a method to make optimal use of caching to speed up query

time but at the cost of increased space complexity. We show how this dynamic caching

method greatly improves performance of WRWs. In addition, we show that if the total

number of steps taken remains significantly lower than the cover time of the graph,

dynamic caching also outperforms pre-processing methods.

In the area of simulating RWs there are still some open problems, the most important,

in our opinion is discovery of a method which would further improve the query time

of specific WRWs without requiring additional memory. This could be achieved by

approximation as well as knowledge of specific RW and graph properties.

9.3 Estimating network properties

In Chapter 4 we have presented some methods to estimate network properties. The

methods presented were from various backgrounds such as zoology, anthropology and

sociology. These methods mainly rely on sampling uar which is a simple and unbiased

method to obtain samples from a set. However it is not always possible to obtain samples

uar from large online networks. For example, getting a web-page from the WWW uar

is impossible unless we have obtained the entire network beforehand. Due to this we

present some RW based methods to simulate uar sampling while at the same time not

requiring any parts of the network to be stored in memory. This can be done by using

either a RWRW or a MHRW to unbias a SRW.

We have also partially sampled the Twitter OLSN and shown the differences between

sampling uar and sampling by using a SRW to discover new vertices. Because a SRWs is

9.4. Estimating network properties using Random Walks 267

degree biased, we observed that we had obtained a larger number of high degree vertices

than those acquired by sampling uar .

9.4 Estimating network properties using Random Walks

In Chapter 5 we have shown additional methods to estimate network properties. The

methods presented are based on random walks and they are the following:

Method of first returns This method makes use of the first return time of a RW to

estimate the total weight of the graph. By using this method and appropriately

designed WRWs we are able to estimate a variety of graph properties such as:

number of edges, number of vertices, number of triangles, number of arbitrary

fixed subgraphs and clustering coefficient.

Method of the Cycle formula of regenerative processes (CFRP) This method

is a generalization of the first return times method. It also relies on the first return

time of a RW but in this case, rather than counting the number of steps until the

first return, we keep track of a cumulative sum of a vertex valued function. By

using appropriately selected functions we are able to estimate the same properties

as mentioned above, but we can do so by using any underlying RW.

Method of the running totals The method of the running totals is similar to the

method of the CFRP in that we use the same vertex valued functions. However

in this case, rather than waiting for the first return, we rely on knowledge of the

graph weight of the underlying RW to get a property estimate at each step of the

walk.

For each of these methods we have investigated the convergence rate both theoretically

and experimentally. We have experimented using these methods on manufactured graphs

such as graphs generated using the Barabási-Albert model. In addition we have applied

these methods on datasets of large online networks. The experimental results obtained

can be found in Chapter 6.

9.4. Estimating network properties using Random Walks 268

Each of the aforementioned method has certain advantages and disadvantages.

� The method of first returns is simple and many theoretical results exist regarding

the first return times of RWs. It has been observed that scale-free networks are

good expanders which means that a SRW on these networks converges rapidly to

stationarity, which in turn means the property estimates obtained using a SRW

are generally accurate. However estimating properties other than the number of

edges, requires the use of appropriately designed WRWs. In this case we have no

knowledge of the rate of convergence to stationarity.

� By using the method of the CFRP we can avoid this issue by using a SRW to

estimate a number of properties. The disadvantage with this method however is

that the accuracy of the estimates, is heavily correlated to the convergence rate of

the underlying walk. It may be the case that on some graphs, we may still find it

better to use the CFRP while using a WRW as the underlying walk.

� The method of the running totals does not rely on the first return time. The

accuracy of the estimated property depends on the rate of convergence to station-

arity rather than the rate in which the experimentally obtained first return times

converge to the theoretically expected return time ET+
u . The advantage of this

method is that it is very accurate and previous work has shown that the error in

the estimate drops exponentially with the number of steps. However this method

requires knowledge of the graph weight of the underlying RW, which is not always

a realistic assumption.

There are some open problems which remain unanswered in this area, including:

� Creating additional WRWs for the purpose of estimating different network prop-

erties.

� Determine bounds for the eigenvalue gap for each of the RWs based methods on

scale-free graphs.

9.5. Fast discovery of high degree vertices 269

� Experimentally confirm the convergence bounds of all proposed methods.

� Make use of on-line convergence tactics to further optimize the required amount

of samples required.

� Deploy the proposed methods on real online networks to show their applicability.

9.5 Fast discovery of high degree vertices

In Chapter 7 we have presented a method based on a degree biased WRW which covers

the set of high degree vertices faster than a SRW. We have proven, both theoretically

and experimentally, that this method works on graphs generated using the general web-

graph model (described in Section 2.2.2). In addition, the graph cover time of the degree

biased WRW does not significantly increase compared to that of a SRW. We have also

shown experimentally that this method could be used as a heuristic to quickly discover

high degree vertices on general scale-free graphs, such as large online networks.

It would be of further interest to further investigate the structure of large online networks,

in order to more accurately determine the optimal parameters for the degree biased

WRW. This would allow us to further improve the discovery rate of high degree vertices

on such graphs.

9.6 Information filtering and recommendation

In Chapter 8 we have presented our contribution to the area of recommender systems.

In our work we focus on recommender systems based on collaborative filtering and build

upon the work of Fouss et al. [50, 51]. A recommendation system is a system which

comprises of several components, but in our work we focus only on ranking algorithms

which, given a user u, would rank all items I according to that user’s predicted interest

in them.

Our contributions to this area are:

9.6. Information filtering and recommendation 270

� We show that the a simple approach based on the transition probability matrix of

a RW outperforms many of the state-of-the-art recommendation algorithms.

� We suggest ways to optimize the quality of the recommendations which are pro-

duced based on on the transition probability matrix of a RW.

� We show how using different types of WRW further improves the quality of the

recommendations generated.

� We further improve on the space efficiency of existing methods by simulating RWs

instead of using exact matrix operations. This results in estimated results which

rapidly converge to the expected value, require less physical memory, and are

obtained without adding any additional time complexity to the algorithms.

There are several open problems in this area which we would focus our future research,

such as:

� Theoretically and experimentally determine the bias introduced by currently used

evaluation techniques.

� Further improve the accuracy of the results by using WRWs specifically designed

for this purpose.

� Make use of meta-data to determine secondary user preferences. We could achieve

this by including the secondary characteristics of items (e.g. the genre of movies

or the director of movies), and we could rank the user’s preference according to

these characteristics.

Bibliography

[1] Dimitris Achlioptas, Aaron Clauset, David Kempe, and Cristopher Moore. On the

bias of traceroute sampling: Or, power-law degree distributions in regular graphs.

J. ACM, 56(4), 2009.

[2] David Aldous and James Allen Fill. Reversible markov chains and random walks on

graphs. http://stat-www.berkeley.edu/pub/users/aldous/RWG/book.html, 1995.

[3] Ricardo Baeza-yates, Carlos Castillo, Mauricio Marin, and Andrea Rodriguez.

Crawling a country: Better strategies than breadth-first for web page ordering. In

Proceedings of the 14th international conference on World Wide Web / Industrial

and Practical Experience Track, pages 864–872. ACM Press, 2005.

[4] A. Barabási and R. Albert. Emergence of scaling in random networks. In Science,

number 5439 in Volume 286, pages 509–512, 1999.

[5] Albert-László Barabási, Réka Albert, and Hawoong Jeong. Scale-free characteris-

tics of random networks: the topology of the world-wide web. Physica A: Statistical

Mechanics and its Applications, 281(14):69 – 77, 2000.

[6] Albert-László Barabási, Zoltán Dezső, Erzsébet Ravasz, and Zoltán Oltvai. Scale-

free and hierarchical structures in complex networks. In In Sitges Proceedings on

Complex Networks, pages 1–16. Springer-Verlag, 2003.

[7] L. A. Bassalygo and M. S. Pinsker. The complexity of an optimal non-bloking com-

mutation scheme without reorganization. Problemy Peredac̆i Informacii, 9(1):84–

271

BIBLIOGRAPHY 272

87, 1973. Translated into English in Problems of Information Transmission, 9

(1974) 64–66. MR0327387 (48:5729).

[8] Mayank Bawa, Hector Garcia-Molina, Aristides Gionis, and Rajeev Motwani. Esti-

mating aggregates on a peer-to-peer network. Technical Report 2003-24, Stanford

InfoLab, April 2003.

[9] Daniel Billsus and Michael J. Pazzani. Learning collaborative information filters.

In Jude W. Shavlik, editor, ICML, pages 46–54. Morgan Kaufmann, 1998.

[10] G. Blom, L. Holst, and D. Sandell. Problems and Snapshots from the World of

Probability. Problems and Snapshots from the World of Probability. Springer New

York, 1994.

[11] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefeb-

vre. Fast unfolding of communities in large networks. Journal of Statistical Me-

chanics: Theory and Experiment, 2008(10):P10008, 2008.

[12] B. Bollobás and O. Riordan. Handbook of Graphs and Networks: Mathematical

results on scale-free graphs, pages 1–32. S. Bornholdt, H. Schuster (eds), Wiley-

VCH, 2002.

[13] Béla Bollobás, Oliver Riordan, Joel Spencer, and Gábor Tusnády. The degree

sequence of a scale-free random graph process. random structures and algorithms.

Random Structures and Algorithms, 18:279–290, 2001.

[14] Bélaa Bollobás and Oliver Riordan. The diameter of a scale-free random graph.

Combinatorica, 24:5–34, January 2004.

[15] Mickey Brautbar and Michael Kearns. Local algorithms for finding interesting

individuals in large networks. In ICS, pages 188–199, 2010.

[16] Andrei Broder, Ravi Kumar, Farzin Maghoul, Prabhakar Raghavan, Sridhar Ra-

jagopalan, Raymie Stata, Andrew Tomkins, and Janet Wiener. Graph structure

BIBLIOGRAPHY 273

in the web: experiments and models. In Proceedings of the Ninth International

World-Wide Web Conference (WWW9, Amsterdam, May 15 - 19, 2000 - Best

Paper). Foretec Seminars, Inc. (of CD-ROM), Reston, VA, 2000.

[17] Andrei Z. Broder, Ravi Kumar, Farzin Maghoul, Prabhakar Raghavan, Sridhar

Rajagopalan, Raymie Stata, Andrew Tomkins, and Janet L. Wiener. Graph struc-

ture in the web. Computer Networks, 33(1-6):309–320, 2000.

[18] Meeyoung Cha, Hamed Haddadi, Fabricio Benevenuto, and Krishna P. Gummadi.

Measuring User Influence in Twitter: The Million Follower Fallacy. In Proceedings

of the 4th International AAAI Conference on Weblogs and Social Media (ICWSM),

Washington DC, USA, May 2010.

[19] Douglas George Chapman. Some properties of the hypergeometric distribution with

applications to zoological sample censuses. Berkeley, University of California Press,

1951.

[20] J. Cheeger. A lower bound for the smallest eigenvalue of the laplacian. Problems

in Analysis, pages 195–199, 1971.

[21] Maggie X. Cheng, editor. Nano-Net - Third International ICST Conference,

NanoNet 2008, Boston, MA, USA, September 14-16, 2008, Revised Selected Pa-

pers, volume 3 of Lecture Notes of the Institute for Computer Sciences, Social

Informatics and Telecommunications Engineering. Springer, 2009.

[22] Kai-Min Chung, Henry Lam, Zhenming Liu, and Michael Mitzenmacher. Chernoff-

hoeffding bounds for markov chains: Generalized and simplified. In Christoph Dürr

and Thomas Wilke, editors, STACS, volume 14 of LIPIcs, pages 124–135. Schloss

Dagstuhl - Leibniz-Zentrum fuer Informatik, 2012.

[23] C. Cooper. Classifying special interest groups in web graphs. In RANDOM 2002:

Randomization and Approximation Techniques in Computer Science, pages 263–

275, 2002.

BIBLIOGRAPHY 274

[24] C. Cooper and A. Frieze. A general model web graphs. In Random Structures and

Algorithms, pages 311–335, 2003.

[25] C. Cooper and A. Frieze. The cover time of the preferential attachment graphs.

Journal of Combinatorial Theory, B(97):269–290, 2007.

[26] Colin Cooper. The age specific degree distribution of web-graphs. Combinatorics

Probability and Computing, 15:637–661, 2006.

[27] Colin Cooper, Robert Elsässer, Hirotaka Ono, and Tomasz Radzik. Coalescing

random walks and voting on graphs. CoRR, abs/1204.4106, 2012.

[28] Colin Cooper and Alan M. Frieze. A general model of undirected web graphs.

In Friedhelm Meyer auf der Heide, editor, ESA, volume 2161 of Lecture Notes in

Computer Science, pages 500–511. Springer, 2001.

[29] Colin Cooper and Alan M. Frieze. The cover time of random regular graphs. SIAM

J. Discrete Math., 18(4):728–740, 2005.

[30] Colin Cooper and Alan M. Frieze. Random walks on random graphs. In Cheng [21],

pages 95–106.

[31] Colin Cooper and Alan M. Frieze. Random walks on random graphs. In Cheng [21],

pages 95–106.

[32] Colin Cooper, Alan M. Frieze, and Tomasz Radzik. Multiple random walks in

random regular graphs. SIAM J. Discrete Math., 23(4):1738–1761, 2009.

[33] Colin Cooper, Sang Hyuk Lee, Tomasz Radzik, and Yiannis Siantos. Recommender

systems based on random walks. Technical report, Department of Informatics,

King’s College London, August 2013.

[34] Colin Cooper, Sang-Hyuk Lee, Tomasz Radzik, and Yiannis Siantos. Random

walks in recommender systems: exact computation and simulations. In Chin-

Wan Chung, Andrei Z. Broder, Kyuseok Shim, and Torsten Suel, editors, WWW

(Companion Volume), pages 811–816. ACM, 2014.

BIBLIOGRAPHY 275

[35] Colin Cooper, Tomasz Radzik, and Yiannis Siantos. Estimating network parame-

ters using random walks. In CASoN, pages 33–40. IEEE, 2012.

[36] Colin Cooper, Tomasz Radzik, and Yiannis Siantos. A fast algorithm to find all

high degree vertices in graphs with a power law degree sequence. In WAW 2012

Proceedings, volume 7323 of LNCS, pages 165–178. Springer, 2012.

[37] Colin Cooper, Tomasz Radzik, and Yiannis Siantos. A fast algorithm to find all

high degree vertices in power law graphs. In Proceedings of the 21st international

conference companion on World Wide Web, WWW ’12 Companion, pages 1007–

1016, New York, NY, USA, 2012. ACM.

[38] Colin Cooper, Tomasz Radzik, and Yiannis Siantos. Fast low-cost estimation of

network properties using random walks. In Anthony Bonato, Michael Mitzen-

macher, and Pawe Praat, editors, Algorithms and Models for the Web Graph,

volume 8305 of Lecture Notes in Computer Science, pages 130–143. Springer In-

ternational Publishing, 2013.

[39] Colin Cooper, Tomasz Radzik, and Yiannis Siantos. Estimating network parame-

ters using random walks. Social Network Analysis and Mining, 4(1), 2014.

[40] Artur Czumaj and Christian Sohler. Testing expansion in bounded-degree graphs.

In Proceedings of the 48th Annual IEEE Symposium on Foundations of Computer

Science, pages 570–578, Washington, DC, USA, 2007. IEEE Computer Society.

[41] Stephen Dill, Ravi Kumar, Kevin S. Mccurley, Sridhar Rajagopalan, D. Sivakumar,

and Andrew Tomkins. Self-similarity in the web. ACM Trans. Internet Technol.,

2:205–223, August 2002.

[42] I. Dinwoodie. A probability inequality for the occupation measure of a reversible

markov chain. Ann. Appl. Probab., 5:37–43, 1995.

BIBLIOGRAPHY 276

[43] Jozef Dodziuk. Difference equations, isoperimetric inequality and transience of cer-

tain random walks. Transactions of the American Mathematical Society, 284(2):pp.

787–794, 1984.

[44] M. Enachescu E. Drinea and M. Mitzenmacher. Technical report: Variations on

random graph models for the web. Technical report, Harvard University, Depart-

ment of Computer Science, 2001.

[45] P. Erdős and A Rényi. On the evolution of random graphs. In Publication of the

Mathematical Institute of the Hungarian Academy of Sciences, pages 17–61, 1960.

[46] S. Ye F. Wu, J. Lang. Crawling online social graphs. In 2010 12th International

Asia-Pacific Web Conference, 2010.

[47] Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos. On power-law rela-

tionships of the internet topology. In Proceedings of the conference on Applications,

technologies, architectures, and protocols for computer communication, SIGCOMM

’99, pages 251–262, New York, NY, USA, 1999. ACM.

[48] Abraham Flaxman, Alan Frieze, and Trevor Fenner. High degree vertices and

eigenvalues in the preferential attachment graph. Internet Mathematics, 2(1):1–

19, 2005.

[49] Abraham D. Flaxman and Juan Vera. Bias reduction in traceroute sampling -

towards a more accurate map of the internet. In WAW, pages 1–15, 2007.

[50] François Fouss, Alain Pirotte, Jean-Michel Renders, and Marco Saerens. Random-

walk computation of similarities between nodes of a graph with application to

collaborative recommendation. IEEE Trans. Knowl. Data Eng., 19(3):355–369,

2007.

[51] François Fouss, Alain Pirotte, and Marco Saerens. A novel way of computing

similarities between nodes of a graph, with application to collaborative recom-

mendation. In Andrzej Skowron, Rakesh Agrawal, Michael Luck, Takahira Yam-

BIBLIOGRAPHY 277

aguchi, Pierre Morizet-Mahoudeaux, Jiming Liu, and Ning Zhong, editors, Web

Intelligence, pages 550–556. IEEE Computer Society, 2005.

[52] A. Ganesh, A. Kermarrec, E. Le Merrer, and L. Massouli. Peer counting and

sampling in overlay networks based on random walks. Distributed Computing,

20:267–278, 2007. 10.1007/s00446-007-0027-z.

[53] Andrew Gelman and Donald B. Rubin. Inference from iterative simulation using

multiple sequences. Statistical Science, 7(4):pp. 457–472, 1992.

[54] Gephi. https://gephi.org/, 2013.

[55] John Geweke. Evaluating the accuracy of sampling-based approaches to the cal-

culation of posterior moments. In IN BAYESIAN STATISTICS, pages 169–193.

University Press, 1992.

[56] M. Girvan and M. E. J. Newman. Community structure in social and biological

networks. In Proc Natl Acad Sci U S A, 2002.

[57] Minas Gjoka, Maciej Kurant, Carter T. Butts, and Athina Markopoulou. A

walk in facebook: Uniform sampling of users in online social networks. CoRR,

abs/0906.0060, 2009.

[58] Marco Gori and Augusto Pucci. Research paper recommender systems: A random-

walk based approach. In Web Intelligence, pages 778–781. IEEE Computer Society,

2006.

[59] Marco Gori and Augusto Pucci. Itemrank: A random-walk based scoring algorithm

for recommender engines. In Manuela M. Veloso, editor, IJCAI, pages 2766–2771,

2007.

[60] Grouplens. http://www.grouplens.org/node/73.

[61] W. K. Hastings. Monte carlo sampling methods using markov chains and their

applications. Biometrika, 57(1):97–109, 1970.

BIBLIOGRAPHY 278

[62] Taher H. Haveliwala. Topic-sensitive pagerank. In WWW, pages 517–526, 2002.

[63] Don W. Hayne. Two methods for estimating population from trapping records.

Journal of Mammalogy, 30(4):pp. 399–411, 1949.

[64] Jing He, John E. Hopcroft, Hongyu Liang, Supasorn Suwajanakorn, and Liaoruo

Wang. Detecting the structure of social networks using (α, β)-communities. In

Proceedings of the 8th International Workshop in Algorithms and Models for the

Web Graph (WAW), pages 26–37, 2011.

[65] Jonathan L. Herlocker, Joseph A. Konstan, Loren G. Terveen, John, and T. Riedl.

Evaluating collaborative filtering recommender systems. ACM Transactions on

Information Systems, 22:5–53, 2004.

[66] Satoshi Ikeda, Izumi Kubo, Norihiro Okumoto, and Masafumi Yamashita. Im-

pact of Local Topological Information on Random Walks on Finite Graphs. In

Proceedings of the 32st International Colloquium on Automata, Languages and

Programming (ICALP), pages 1054–1067, Washington DC, USA, 2003.

[67] Satoshi Ikeda, Izumi Kubo, and Masafumi Yamashita. The hitting and cover

times of random walks on finite graphs using local degree information. Theoretical

Computer Science, 410(1):94 – 100, 2009.

[68] J. Kleinberg J. Leskovec and M. Faloutsos. Graph evolution: Densification and

shrinking diameters. In Knowledge Discovery from Data, Vol. 1, No. 1, Article 2,

2007.

[69] Anonymous ratings data from the jester online joke recommender system.

http://goldberg.berkeley.edu/jester-data.

[70] Ana Justel, Daniel Pea, and Rubn Zamar. A multivariate kolmogorov-smirnov test

of goodness of fit. Statistics & Probability Letters, 35(3):251 – 259, 1997.

[71] Liran Katzir, Edo Liberty, and Oren Somekh. Estimating sizes of social networks

via biased sampling. In Sadagopan Srinivasan, Krithi Ramamritham, Arun Kumar,

BIBLIOGRAPHY 279

M. P. Ravindra, Elisa Bertino, and Ravi Kumar, editors, WWW, pages 597–606.

ACM, 2011.

[72] Jon M. Kleinberg, Ravi Kumar, Prabhakar Raghavan, Sridhar Rajagopalan, and

Andrew S. Tomkins. The web as a graph: measurements, models, and meth-

ods. In Proceedings of the 5th annual international conference on Computing and

combinatorics, COCOON’99, Berlin, Heidelberg, 1999. Springer-Verlag.

[73] J. Komjathy and Y. Peres. Mixing and relaxation time for Random Walk on

Wreath Product Graphs. ArXiv e-prints, August 2012.

[74] B. Krishnamurthy, P. Gill, and M. Arlitt. A few chirps about twitter. In Pro-

ceedings of the 1st ACM SIGCOMM Workshop on Social Networks, WOSN08,

2008.

[75] Ravi Kumar, Prabhakar Raghavan, Sridhar Rajagopalan, and Andrew Tomkins.

Extracting large-scale knowledge bases from the web. In Malcolm P. Atkinson,

Maria E. Orlowska, Patrick Valduriez, Stanley B. Zdonik, and Michael L. Brodie,

editors, VLDB, pages 639–650. Morgan Kaufmann, 1999.

[76] Jérôme Kunegis and Stephan Schmidt. Collaborative filtering using electrical resis-

tance network models. In Petra Perner, editor, Industrial Conference on Data Min-

ing, volume 4597 of Lecture Notes in Computer Science, pages 269–282. Springer,

2007.

[77] Last.fm. http://www.last.fm/.

[78] Silvio Lattanzi and D. Sivakumar. Affiliation networks. In Proceedings of the 41st

annual ACM symposium on Theory of computing, STOC ’09, pages 427–434, New

York, NY, USA, 2009. ACM.

[79] Sangkeun Lee, Sang il Song, Minsuk Kahng, Dongjoo Lee, and Sang goo Lee.

Random walk based entity ranking on graph for multidimensional recommenda-

BIBLIOGRAPHY 280

tion. In Bamshad Mobasher, Robin D. Burke, Dietmar Jannach, and Gediminas

Adomavicius, editors, RecSys, pages 93–100. ACM, 2011.

[80] Sangkeun Lee, Sungchan Park, Minsuk Kahng, and Sang goo Lee. Pathrank:

Ranking nodes on a heterogeneous graph for flexible hybrid recommender systems.

Expert Syst. Appl., 40(2):684–697, 2013.

[81] C. Léon and F. Perron. Optimal hoeffding bounds for discrete reversible markov

chains. The Annals of Applied Probability, 14(2):958–970, 2004.

[82] Albert Leon-Garcia. Probability and Random Processes for Electrical Engineering

(2nd Edition). Addison-Wesley, 2 edition, August 1993.

[83] J. Leskovec. Stanford network analysis package. http://snap.stanford.edu/, 2009.

[84] J. Leskovec and C. Faloutsos. Sampling from large graphs. In Proceedings of of

ACM SIGKDD, ACM SIGKDD 2006, 2006.

[85] Jure Leskovec, Lars Backstrom, Ravi Kumar, and Andrew Tomkins. Microscopic

evolution of social networks. In Proceeding of the 14th ACM SIGKDD international

conference on Knowledge discovery and data mining, KDD ’08, pages 462–470, New

York, NY, USA, 2008. ACM.

[86] Jure Leskovec, Deepayan Chakrabarti, Jon Kleinberg, Christos Faloutsos, and

Zoubin Ghahramani. Kronecker graphs: An approach to modeling networks. J.

Mach. Learn. Res., 11:985–1042, March 2010.

[87] Jure Leskovec and Christos Faloutsos. Scalable modeling of real graphs using

kronecker multiplication. In Proceedings of the 24th international conference on

Machine learning, ICML ’07, pages 497–504, New York, NY, USA, 2007. ACM.

[88] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graph evolution: Densi-

fication and shrinking diameters. ACM Trans. Knowl. Discov. Data, 1, March

2007.

BIBLIOGRAPHY 281

[89] Jure Leskovec, Kevin J. Lang, Anirban Dasgupta, and Michael W. Mahoney. Com-

munity structure in large networks: Natural cluster sizes and the absence of large

well-defined clusters. CoRR, abs/0810.1355, 2008.

[90] Kenneth Levenberg. A method for the solution of certain non-linear problems in

least squares. Quarterly Journal of Applied Mathmatics, II(2):164–168, 1944.

[91] P. Lezaud. Chernoff-type bound for finite markov chains. The Annals of Applied

Probability, 8(3):849–867, 1998.

[92] Lg u+ oz store. http://ozstore.uplus.co.kr/.

[93] Frederick C. Lincoln. Calculating waterfowl abundance on the basis of banding

returns. Circular 118, United States Department of Agriculture, Washington D.C.,

May 1930.

[94] Livejournal. http://www.livejournal.com.

[95] László Lovász. Random walks on graphs: A survey. Bolyai Society Mathematical

Studies, 2:353–397, 1996.

[96] Mohammad Mahdian and Ying Xu. Stochastic kronecker graphs. Technical report,

Proceedings of the 5th Workshop on Algorithms and Models for the Web-Graph,

2007.

[97] Rob Malda and Jeff Bates. Slashdot. slashdot.org.

[98] George Marsaglia, Wai Wan Tsang, and Jingbo Wang. Evaluating kolmogorov’s

distribution. Journal of Statistical Software, 8(18):1–4, 11 2003.

[99] Gerald G. Marten. A regression method for mark-recapture estimation of popula-

tion size with unequal catchability. Ecology, 51(2):pp. 291–295, 1970.

[100] Laurent Massoulié, Erwan Le Merrer, Anne-Marie Kermarrec, and Ayalvadi J.

Ganesh. Peer counting and sampling in overlay networks: random walk methods.

In Eric Ruppert and Dahlia Malkhi, editors, PODC, pages 123–132. ACM, 2006.

BIBLIOGRAPHY 282

[101] Mathworks. Matlab. http://www.mathworks.co.uk/products/matlab/, 2014.

[102] Makoto Matsumoto and Takuji Nishimura. Mersenne twister: A 623-dimensionally

equidistributed uniform pseudorandom number generator, 1998.

[103] E. H. Mckinney. Generalized birthday problem. The American Mathematical

Monthly, 73(4):pp. 385–387, 1966.

[104] Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H.

Teller, and Edward Teller. Equation of state calculations by fast computing ma-

chines. The Journal Of Chemical Physics, 21(6):1087–1092, 1953.

[105] Microsoft. C#.net. http://www.microsoft.com/net, 2010.

[106] Nina Mishra, Robert Schreiber, Isabelle Stanton, and Robert E. Tarjan. Finding

strongly knit clusters in social networks. Internet Mathematics, 5(1-2):155–174,

2008.

[107] Alan Mislove, Massimiliano Marcon, Krishna P. Gummadi, Peter Druschel, and

Bobby Bhattacharjee. Measurement and analysis of online social networks. In

Proceedings of the 5th ACM/USENIX Internet Measurement Conference (IMC07,

2007.

[108] Alexander M. Mood. Introduction to the Theory Of Statistics, pages 508–511.

McGraw-Hill Inc., 1963.

[109] E. H. Moore. On the reciprocal of the general algebraic matrix. Bulletin of the

American Mathematical Society, 26:394–395.

[110] Patrick Alfred Pierce Moran. A mathematical theory of animal trapping.

Biometrika, 38(3-4):307–311, 1951.

[111] Movielens. http://movielens.umn.edu.

[112] M. E. J. Newman and M. Girvan. Finding and evaluating community structure in

networks. Phys. Rev. E, 69(2):026113, Feb 2004.

BIBLIOGRAPHY 283

[113] J. R. Norris. Markov Chains. Cambridge University Press, 1998.

[114] Romualdo Pastor-Satorras, Alexei Vázquez, and Alessandro Vespignani. Dynam-

ical and correlation properties of the internet. Phys. Rev. Lett., 87:258701, Nov

2001.

[115] R. Penrose. A generalized inverse for matrices. Mathematical Proceedings of the

Cambridge Philosophical Society, 51:406–413, 7 1955.

[116] C. G. J. Petersen. The yearly immigration of young plaice into the limfjord from

the german sea. Report 6, Danish Biological Station, 1895. pp. 5–84.

[117] Amir H. Rasti, Mojtaba Torkjazi, Reza Rejaie, Nick Duffield, Walter Willinger,

and Daniel Stutzbach. Evaluating sampling techniques for large dynamic graphs.

Technical Report CIS-TR-08-01, Department of Computer and Information Sci-

ence, University of Oregon, September 2008.

[118] S. Redner. How popular is your paper? an empirical study of the citation distri-

bution. In European Physical Journal, B 4, 1998.

[119] G. Siganos S. L. Tauro, C. Palmer and M. Faloutsos. A simple conceptual model

for the internet topology. In Global Telecommunications Conference, volume 3,

GLOBECOM 01, pages 1667–1671, 2001.

[120] Purnamrita Sarkar and Andrew W. Moore. A tractable approach to finding closest

truncated-commute-time neighbors in large graphs. In Ronald Parr and Linda C.

van der Gaag, editors, UAI, pages 335–343. AUAI Press, 2007.

[121] Ajit P. Singh, Asela Gunawardana, Chris Meek, and Arun C. Surendran. Recom-

mendations using absorbing random walks. North East Student Colloquium on

Artificial Intelligence (NESCAI), 2007.

[122] D. Stutzbach, R. Rejaie, and S. Sen. Characterizing unstructured overlay topolo-

gies in modern p2p file-sharing systems. Networking, IEEE/ACM Transactions

on, 16(2):267–280, April 2008.

BIBLIOGRAPHY 284

[123] Daniel Stutzbach and Reza Rejaie. On unbiased sampling for unstructured peer-

to-peer networks. In Proc. ACM IMC, pages 27–40, 2006.

[124] DBLP Team. Dblp xml records. http://dblp.uni-trier.de/xml/, February 2014.

[125] Twitter. http://twitter.com/.

[126] John von Neumann. Various Techniques Used in Connection with Random Digits.

J. Res. Nat. Bur. Stand., 12:36–38, 1951.

[127] R. Wagner. Tail estimates for sums of variables sampled by a random walk. Com-

binatorics,Probability, and Computing, 17(2), 2008.

[128] Duncan J. Watts and Steven H. Strogatz. Collective dynamics of ’small-world’

networks. Nature, 393:440–442, June 1998.

[129] Thomas Williams and Colin Kelley. Gnuplot. http://www.gnuplot.info/, 2014.

[130] Virginia Vassilevska Williams. Multiplying matrices faster than coppersmith-

winograd. In Proceedings of the Forty-fourth Annual ACM Symposium on Theory

of Computing, STOC ’12, pages 887–898, New York, NY, USA, 2012. ACM.

[131] M. Yamashita. Personal Communication, 2012.

[132] Wayne W. Zachary. An information flow model for conflict and fission in small

groups. Journal of Anthropological Research, 33(4):pp. 452–473, 1977.

[133] Liyan Zhang, Jie Xu, and Chunping Li. A random-walk based recommendation

algorithm considering item categories. Neurocomputing, 120(0):391 – 396, 2013.

[134] Liyan Zhang, Kai Zhang, and Chunping Li. A topical pagerank based algorithm

for recommender systems. In Sung-Hyon Myaeng, Douglas W. Oard, Fabrizio

Sebastiani, Tat-Seng Chua, and Mun-Kew Leong, editors, SIGIR, pages 713–714.

ACM, 2008.

BIBLIOGRAPHY 285

[135] Yin Zhu, Erheng Zhong, Sinno Jialin Pan, Xiao Wang, Minzhe Zhou, and Qiang

Yang. Predicting user activity level in social networks. In Proceedings of the 22Nd

ACM International Conference on Conference on Information & Knowledge

Management, CIKM ’13, pages 159–168, New York, NY, USA, 2013. ACM.

[136] Calvin Zippin. The removal method of population estimation. The Journal of

Wildlife Management, 22(1):pp. 82–90, 1958.

Acronyms

i.i.d. independent and identically distributed . 123, 139, 146, 214

uar uniformly at random. 23, 30, 31, 34, 44, 45, 48, 49, 52, 54, 57, 58, 61, 63, 69, 81,

82, 126, 127, 128, 129, 130, 131, 135, 138, 140, 141, 144, 155, 222, 270

whp with high probability. 52, 53, 56, 147, 153, 206, 212, 213, 219, 220, 221, 229

BA model Barabási-Albert graph generation model . 17, 45, 46, 47, 52, 54

BFS Breadth-First Search. 27, 89, 90

c.d.f. cumulative distribution function. 55, 139, 140

CFRP Cycle formula of regenerative processes. 19, 20, 21, 31, 143, 149, 150, 154, 160,

162, 163, 169, 171, 179, 186, 192, 198, 199, 205, 271, 272

CS Computer Science. 33

IR ItemRank. 245

K–S test Kolmogorov-Smirnov Test. 90, 138, 139, 140

LRW Lazy Random Walk. 30, 107, 108, 109

MHRW Metropolis Hastings Random Walk. 30, 89, 90, 109, 110, 131, 132, 143, 270

286

Acronyms 287

OLSN Online Social Network. 20, 23, 25, 26, 28, 29, 33, 34, 35, 38, 39, 41, 44, 58, 60,

62, 64, 67, 70, 84, 87, 88, 89, 117, 119, 132, 144, 155, 157, 186, 199, 229, 233, 268,

270

p.d.f. probability distribution function. 55

P2P Peer-To-Peer. 70, 89, 211

RDS Respondent-Driven Sampling. 90

RW Random Walk. 17, 27, 28, 29, 30, 31, 32, 39, 70, 71, 72, 89, 91, 92, 98, 101, 110,

111, 115, 121, 127, 142, 143, 144, 145, 153, 155, 163, 164, 206, 211, 237, 238, 266,

269, 270, 271, 272, 273, 274

RWRW Re-Weighted Random Walk. 89, 90, 131, 270

SCC Strongly Connected Component. 38, 39

SRW Simple Random Walk. 18, 19, 30, 31, 70, 71, 89, 90, 103, 104, 105, 106, 108, 109,

110, 113, 115, 131, 141, 143, 146, 147, 153, 154, 155, 156, 166, 169, 179, 198, 199,

205, 222, 254, 263, 266, 270, 272, 273

w.r.t. with respect to. 35, 87, 106, 124, 151

WCC Weakly Connected Component. 38, 39, 179, 199

WRW Weighted Random Walk. 18, 30, 32, 105, 106, 108, 109, 110, 112, 113, 115, 131,

140, 143, 145, 147, 154, 155, 156, 160, 162, 206, 222, 266, 270, 271, 272, 273, 274

WWW World Wide Web. 23, 25, 26, 33, 34, 35, 36, 37, 38, 45, 53, 87, 89, 117, 144,

155, 208, 210, 268, 270

	Introduction
	Large Online Networks
	Searching and sampling large online networks
	Network Modeling and Generation
	Contributions and thesis outline
	Graphs properties and generation
	Markov Chains and Random Walks
	Estimating network properties
	Network search and discovery
	Information Filtering and Recommendation

	Scale-free graphs and models
	Graph properties of large networks
	Degree Sequence
	Degree distribution
	Diameter
	Scale-Free Structure
	Degree correlations
	Expander graphs
	Connected Components And Community Structure
	Transitivity Ratio and Clustering Coefficient

	Scale-free graphs and related models
	Erdos–Rényi Graph
	Preferential attachment models
	Edge Copying model
	Triangle Closing Model
	Forest Fire Model
	Stochastic Kronecker Graph
	Affiliation Networks
	Random Walk Graph
	Preferential attachment and message propagation
	Grow, Back-Connect, Densify
	Partitioned Preferential Attachment
	Implicit Power-Law Graph Model

	Conclusion

	Markov Chains And Random Walks
	General properties of Markov Chains
	Reversibility
	Fundamental matrix Z
	Mixing times–Relaxation times
	Stopping times, hitting times and return times
	Hitting Time From Stationarity

	Simple Random Walk(SRW)
	Weighted Random Walk(WRW)
	Electrical network paradigm

	Lazy Random Walk(LRW)
	Metropolis Hastings Random Walk(MHRW)
	Random Walk implementation and simulations
	Caching to improve WRW performance

	Conclusions

	Estimating Network Properties: Overview
	Estimating Population Size Using Uniform Sampling
	Moran-Zippin method
	Lincoln-Petersen method
	Regression method
	Coupon collection
	Sample-and-collide method

	Obtaining uniformly at random samples using random walks
	Using a continuous time random walk as a surrogate for uniform sampling.
	Using a Re-Weighted Random Walk
	Using a Metropolis Hastings Random Walk

	Uniform Sampling from the degree distribution
	Twitter: Initial crawling
	Second crawling, unbiased sampling
	Uniform Sampling: A study of efficiency

	Conclusion

	Estimating Network Properties Using Random Walks
	Methodology
	First return times of Random Walks.
	Cycle formula of regenerative processes(CFRP)
	Method of running totals

	Graph property estimators
	Edge estimator
	Random Walk based vertex estimators
	Triangle estimator
	Estimating the number of occurrences of an arbitrary fixed subgraph.
	Estimating average clustering coefficient
	Estimating network averages

	Conclusion

	Estimating Network Properties: Experimental Results
	Sampling approach, and presentation of results.
	Preferential Attachment Model
	Hybrid model
	Google Web Sample
	SlashDot Zoo Network
	DBLP Co-Author Network
	LiveJournal
	General Discussion of the results

	Discussion of results and conclusions

	Fast Discovery of High Degree Vertices
	Problem motivation
	Preferential attachment graphs, model and search methods
	Fast high degree vertex discovery Random Walk
	Experimental results

	Finding high degree vertices in general graphs with a power-law degree distribution
	Conclusions

	Information filtering and recommendation
	Recommendation Systems Based On Collaborative Filtering
	Dataset Description
	Ranking methodologies
	Metric I: The number of correctly placed pairs
	Metric II: The number of hits in the top k recommendations
	Degree bias of T

	Summary of aims and findings
	Ranking algorithms
	Matrix based operations: Implementation details
	Ranking methods based on simulation of Random Walks
	Time measurements
	Convergence of 3-step random walks to P3
	Improving recommendations using degree-weighted Random Walks

	Experimental Results
	Conclusion

	Conclusions
	Scale-free graphs and generative models
	Markov Chains and Random Walks
	Estimating network properties
	Estimating network properties using Random Walks
	Fast discovery of high degree vertices
	Information filtering and recommendation

	Bibliography
	Acronyms

