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The evaluation of cardiovascular velocities, their changes through the cardiac cycle and the consequent
pressure gradients has the capacity to improve understanding of subject-specific blood flow in relation
to adjacent soft tissue movements. Magnetic resonance time-resolved 3D phase contrast velocity acqui-
sitions (4D flow) represent an emerging technology capable of measuring the cyclic changes of large
scale, multi-directional, subject-specific blood flow. A subsequent evaluation of pressure differences in
enclosed vascular compartments is a further step which is currently not directly available from such data.
The focus of this work is to address this deficiency through the development of a novel simulation work-
flow for the direct computation of relative cardiovascular pressure fields. Input information is provided
by enhanced 4D flow data and derived MR domain masking. The underlying methodology shows numer-
ical advantages in terms of robustness, global domain composition, the isolation of local fluid compart-
ments and a treatment of boundary conditions. This approach is demonstrated across a range of
validation examples which are compared with analytic solutions. Four subject-specific test cases are sub-
sequently run, showing good agreement with previously published calculations of intra-vascular pres-
sure differences. The computational engine presented in this work contributes to non-invasive access
to relative pressure fields, incorporates the effects of both blood flow acceleration and viscous dissipation,
and enables enhanced evaluation of cardiovascular blood flow.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

In recent years, cardiac dysfunction has become the most com-
mon cause of death in the western world. Advances in imaging sci-
ence and, more recently, computational physiology provide
significant potential to circumvent many of the current limitations
in diagnosis and therapy planning. Key to the application of these
technologies is the extraction of clinically relevant information
from patient data. It is within this context that the focus of this
work is on an automated computational model that computes rel-
ative pressure fields based on dynamic flow velocity information.

Ongoing clinical research has established phase contrast
magnetic resonance velocity mapping as a useful tool to gain
ll rights reserved.
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non-invasive insight into dynamic cardiovascular blood flow in a
wide range of contexts (Chai and Mohiaddin, 2005). Multi-
directional intra-cardiac flow has been studied, among others, by
Kilner et al. (2000) relative to selected planes and by Wigström
et al. (1999), Hope et al. (2007), Markl et al. (2007, 2011a), and
Pitcher et al. (2011) relative to volumes of acquisition. To build
on the success of these relatively comprehensive non-invasive
measurements of flow, we set out to derive, directly from the
velocity data, intra-vascular differences of pressure.

To date, fluid mechanics models have been widely used to ana-
lyse cardiovascular blood flow and more recently been integrated
with tissue mechanics to understand coupled cardiac function.
The fluid domain behaviour can be evaluated based on numerical
discretisation techniques (McQueen and Peskin, 2000; Oertel and
Krittian, 2011). The flow domain can be coupled numerically to solid
mechanics models based on monolithic (Lemmon and Yoganathan,
2000; Nordsletten et al., 2008, 2010) or even mixed approaches
(Krittian et al., 2010a,). In these models, both the intra-ventricular

http://dx.doi.org/10.1016/j.media.2012.04.003
mailto:nicolas.smith@kcl.ac.uk
http://dx.doi.org/10.1016/j.media.2012.04.003
http://www.sciencedirect.com/science/journal/13618415
http://www.elsevier.com/locate/media


1030 S.B.S. Krittian et al. / Medical Image Analysis 16 (2012) 1029–1037
pressure and velocity fields are a direct consequence of the contin-
uum mechanics principles of mass and momentum conservation as
well as the imposed boundary conditions.

An alternative to calculating flow fields from pressure boundary
conditions is to determine pressure from known flow fields. In this
case the so-called Pressure Poisson Equation (PPE) can be derived di-
rectly from the well-known Navier–Stokes equations as shown
among others by Gresho and Sani (1987). This pressure informa-
tion is in turn very valuable for the formulation of more realistic
boundary conditions for the models described above. Song et al.
(1994) used the PPE to determine relative pressure fields from a se-
quence of ultrafast cardiac CT images. Yang et al. (1996) and, more
recently, Ebbers et al. (2001, 2002), Ebbers and Farnebäck (2009)
applied a similar approach for the computation of flow pressure
fields from MR velocity mapping. Their applied mathematical for-
mulation is based on the assumption that the contribution of vis-
cous terms to the pressure calculation can be neglected which
holds true only for high Reynolds number flow. Furthermore, the
underlying numerical discretisation requires an iterative solution
in order to determine unknown boundary conditions. The need
for applying these boundary conditions on the fluid domain further
complicates the direct use of the actual imaging space as computa-
tional domain. Therefore, Bock et al. (2011) have shown that a
more accurate pressure field estimation is achieved by extracting
the actual fluid domain from its surrounding imaging space.

With this work we provide a numerical model implemented in
OpenCMISS1 (Bradley et al., 2011) that allows the direct computation
of cardiovascular pressure based on 4D flow data, and relative to a
given reference point. The novelty of this work consists in the
numerical discretisation through finite elements which turned out
to enable a number of significant advantages both from the compu-
tational and methodological point of view (Hassanzadeh et al.,
1994). Although the imaging space is meshed automatically based
on the actual MR resolution, data projection in general allows mod-
ified element sizes and interpolation orders. By applying the func-
tional projection of the given velocity data, we bypass the sensitive
determination of boundary conditions (Gresho, 1991, 1998a,b) and
establish an overall volume source field as the sole driving force of
the PPE problem. This important step now allows a modular compo-
sition of the actual computational fluid domain as a subspace of the
original imaging space. Degrees of freedom that lie outside the fluid
domain can be eliminated based on the masking information pro-
vided. Furthermore, a mathematical isolation of separated fluid do-
mains inside the same imaging space becomes possible. This
embedded-yet-isolated flow field approach enables a quick, robust
and accurate calculation of the cardiovascular pressure field not only
on predefined integration paths but at any point in space where
masked velocity data is present.
2. Materials and methods

In order to mathematically describe the relative pressure
caused by the dynamic, three-dimensional, viscous and often
highly complex character of cardiovascular blood flow, we need
to consider the complete formulation of the well-known Navier–
Stokes equations (Oertel and Krittian, 2011). Having enforced a
divergence-free state of the given velocity data, the Navier–Stokes
equations can be further transformed into the so-called Pressure
Poisson Equation in order to compute the corresponding relative
pressure field. In the following sections we provide the mathemat-
ical and numerical foundations for the pressure estimation process,
and highlight the advantages of the finite element technique for
1 www.opencmiss.org.
discretising the PPE problem within the cardiovascular pressure
estimation process.

2.1. Governing equations

The pressure estimation process is based on the continuum
mechanics principles of mass and momentum conservation. The
underlying equations can be used to derive the PPE foundations
needed for the pressure estimation process presented.

Computing the pressure distribution p that corresponds to a gi-
ven incompressible flow field u, we expect u to satisfy the diver-
gence-free condition r � u¼! 0. Following Newton’s second law,
the relative pressure distribution can be seen as a consequence
of transient and convective momentum, viscous resistance and vol-
ume forces. On an Arbitrary Lagrangian Eulerian (ALE) reference
frame (Nordsletten et al., 2008), this condition is formulated by
the Navier–Stokes equations,

q
@u
@t
þ ððu�wÞ � rÞu

� �
¼ f �rpþ l4 u; ð1Þ

where u represents the velocity, w the reference velocity, t the time,
f is a volume force, p the pressure and q and l the fluid density and
viscosity, respectively. Obtaining a pressure distribution from its
gradient given in Eq. (1) is not straightforward. Most approaches
identify spatial integration paths which are often significantly sen-
sitive when applied to noisy input data (Ebbers et al., 2002). In order
to include smoothing options and to avoid boundary condition sen-
sitivities, we have chosen to start with a higher-order pressure
derivative which yields the PPE problem as the basis of our finite
element approach. Rearranging Eq. (1) for rp yields,

rp ¼ b; ð2Þ

where the right-hand side vector b is a function of given velocity
data and depends on the constitutive properties of blood:

b ¼ f þ l4 u� q
@u
@t
þ ððu�wÞ � rÞu

� �
: ð3Þ

The PPE is now defined as the divergence of Eq. (2) and gives us a
higher order derivative of the pressure field p:

4p ¼ r � b: ð4Þ
2.2. Numerical discretisation

In order to solve for cardiovascular pressure fields, especially fi-
nite difference approaches have been used in the past (Ebbers
et al., 2001, 2002; Ebbers and Farnebäck, 2009; Yang et al., 1996)
driven by so-called Neumann boundary conditions, which are of-
ten sensitive and difficult to determine (see Appendix A). In this
section we introduce a finite element based approach to the field
of cardiovascular pressure estimation, driven by volume sources
rather than surface fluxes (Hassanzadeh et al., 1994). This not only
avoids the use of gradient boundary conditions but also allows a
reduction of the computational domain at a later stage.

We transform Eq. (4) into the weak form by multiplying by a
test function q and integrating over the computational domain X.
We then look for a p 2 H1 (X) such that,Z

X
ðr � rpÞqdX ¼

Z
X
ðr � bÞqdX; 8q 2 H1ðXÞ ð5Þ

An advantage for the pressure estimation approach is based on
applying integration by parts to both the left-hand and right-hand
side of Eq. (5), which yields the surface integralZ

C
ððrp� bÞ � nÞqdX ¼ 0;

http://www.opencmiss.org
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Fig. 1. Assessment of the convergence rate for the Poisson problem given in Eq. (12)
as given by the slope for various orders of interpolation.
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leaving only the volume integralsZ
X
rp � rqdX ¼

Z
X

b � rqdX: ð6Þ

Following a standard Galerkin finite element discretisation we
get the matrix system Kmnpn = sm for Eq. (6) for m,n = 1, . . ., N with
the number of degrees of freedom (DOF) N and

Kmn ¼
Z

X
run � rumdX ¼

Z
X

@un

@xk
� @um

@xk
dX: ð7Þ

The right-hand side source is discretised as:

sm ¼
Z

X
b � rumdX ¼

Z
X

bk �
@um

@xk
dX; ð8Þ

with

bk ¼ �q
@uk

@t
þ ðui �wiÞ

@uk

@xi

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

acceleration terms

þ l @2uk

@xi@xi|fflfflfflfflffl{zfflfflfflfflffl}
v iscous terms

: ð9Þ

The scalar function um represents the finite element test functions,
un the basis functions for the resulting pressure field with m,n = 1,
. . ., N. The vector x contains global coordinates in D-dimensional
space and i,k = 1, . . ., D. It should be noted that Eq. (9) accounts
for both viscous and inertia terms. It can therefore be applied to
the whole range of laminar, low- and high-Reynolds number flows
(see Appendix A).

In order to capture the second derivative terms correctly, a tri-
cubic Lagrangian or hermite basis function is suited best for the fi-
nite-element implementation. The latter shows further potential to
improve real data quality by applying additional projection and
data smoothing methods.

2.3. Embedded pressure Poisson approach

For the general purpose of cardiovascular pressure estimation,
we characterise the embedded velocity fields by introducing the
element-based labelling factor j into Eq. (6) which yields:

eK mnpn ¼ jsm; ð10Þ

where

eK mn ¼
Z

X
jðrum � runÞdX; ð11Þ

and sm is defined in Eq. (8). Assuming a velocity screen procedure
that results in a discretised domain X containing both the fluid do-
main of interest Xint and the surrounding area Xext, we can now use
j to perform the PPE computation without extra segmentation or
mesh adaptation where j = 1 on Xint and j = 0 on Xext. Elements
e are treated as boundary elements if one degree of freedom
(DOF) of Xe is labelled as an outside voxel corresponding to Xext.
Masking information may be treated as piecewise constant or, alter-
natively, evaluated and scaled with 0 6 j 6 1. This avoids the prop-
agation of Xint-source signals to Xext and any external influence
from Xext on Xint.

Within this work, the matrix system given by Eq. (11) is solved
using PETSc for iterative Krylov sub-space linear system solvers.

2.4. Verification and validation

In order to test the discretised PPE problem, we perform the fol-
lowing verification process using a self-adjoint analytic solution of
the form:

4p ¼ �12p2

L2 p; ð12Þ
which represents a complex spatial pressure field

pðx; y; zÞ ¼ sin
2px

L

� �
sin

2py
L

� �
sin

2pz
L

� �
þ p0 ð13Þ

inside a regular cube with side length L = 1 and reference pressure
p0 = 0. We shall consider the numerical solution under mesh refine-
ment and for different orders of interpolation. The results for mesh
refinements by a factor of 2 are shown in Fig. 1 where r is the error
measured as L2 norm, h represents element size and logarithmus
dualis is defined as ld(r) = log2(r). For linear, quadratic and cubic La-
grange interpolation order the corresponding graph exhibits the ex-
pected error convergence rate.

In addition to demonstrating the ability of our approach to solve
the matrix systems accurately, we want to provide the proof of
concept when embedding given flow fields in a data acquisition
space. Two different examples can be seen in Figs. 2 and 3 where
Xext (black) represents parts of X that do not contain any flow
information, and Xint (coloured) represents the embedded field.
According to Section 2.3, Xext must be excluded from the actual
computational domain.

The left-hand side of Fig. 2 shows the velocity magnitude fields
in Xint of two fully developed channel flows surrounded by Xext.
Arrows indicate the respective flow direction resulting in one posi-
tive and one negative pressure gradient. The analytic values for
velocity and pressure distribution are given by the following
formulas:

uðyÞ ¼ ðD2 � 4y2Þumax

D2 ; pðxÞ ¼ p0 � 8lx
umax

D2 ; ð14Þ

respectively, where umax is the maximum velocity inside a channel
with width D, flow direction x, centre line y = 0 and reference pres-
sure p0. Due to the elimination of DOFs outside the fluid domain, the
two respective pipe flows (u1 = u(y) = �u2; p1 = p(x) = �p2) are com-
pletely separated and isolated from each other.

Whereas Fig. 2 represents a friction-driven test case, Fig. 3
shows the results of a third, inertia-driven test problem where
velocity magnitude fields are generated by four pairs of cylinders
(inner radius Ri, outer radius Ro) rotating at different speeds (inner
velocity xi, outer velocity xo). The analytic values for velocity and
pressure distribution are given by the following formula

uðrÞ ¼ C
r
; pðrÞ ¼ p0 �

C2

2r2 ; ð15Þ

with R = Ri < r < Ro and C ¼ ð9þ c=10ÞR2 � 1
s. The left-hand side of

Fig. 3 shows this linearly increasing velocity magnitude from case
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c = 1 to case c = 4; the right-hand side shows the expected increase
of pressure on the outer wall of the cylinder system due to the
increasing centrifugal forces. The calculated pressure level for all
four cases is in very good agreement with the analytical values gi-
ven by Eq. (15). As in the previous example, all four velocity fields
are mathematically isolated as needed for the following cardiovas-
cular application.

Parameters and R for Figs. 2 and 3 have been chosen such that
the vertical geometric extension of each flow domain is 40% of
the overall domain. With L = 1, this means D = 0.4 and R = 0.2 in
Figs. 2 and 3, respectively. Initial and constitutive parameters have
been set to 1 (mu and umax in Fig. 2), reference pressures to mid
range (p0 = 25 in Fig. 2 and p0 = 0 in Fig. 3) to allow for a pressure
scale starting from 0.

Fig. 1 shows the effect of finite-element order and discretisation
density on the convergence test example demonstrating the ex-
pected decreasing error with an increasing number of elements.
The test example in Fig. 2 illustrates how our FEM formulation
solves a simple Pouiseulle flow, what could not be done by tradi-
tional finite difference methods (see Appendix A). The test example
in Fig. 3 verifies the correct solution of the equation as compared to
previous methods Song et al. (1994).
3. Modelling and application

In the following section, we apply the data processing approach
described above in order to estimate the velocity-based pressure
field for datasets of four healthy human subjects. Fig. 4 explains
the following workflow from data acquisition to pressure
evaluation.
3.1. Data acquisition and processing

The velocity input for this study is provided by phase-contrast
MR imaging, a technique that allows blood flow velocity to be mea-
sured and post-processed non-invasively. Measurements were per-
formed on a 3 T system (Magnetom Trio, Siemens AG, Erlangen,
Germany) with a standard 8-channel phased-array coil. 4D flow
data with three-directional velocity encoding and covering the
whole heart fluid domain were acquired using a navigator respira-
tion controlled and ECG-gated rf-spoiled gradient echo sequence
(Markl et al., 2007) (spatial resolution: 2.95 � 2.50 � 2.90 mm3,
temporal resolution: 38.4 ms, velocity encoding: 150 cm/s, time
frames per cardiac cycle: 17). Initial raw data normally contains
magnitude and three-dimensional phase information for each vox-
el of the initial imaging space. Voxel-based phase shifts can be di-
rectly transformed into velocity vectors which marks the starting
point for our cardiovascular pressure estimation. Data-processing
was established to further enhance quality (e.g. eddy-current elim-
ination, velocity aliasing or noise filtering) and to allow for fluid
domain representation (i.e. MR segmentation and flow field mask-
ing). Although the pressure estimation approach presented in this
work can be independently applied to any spatially distributed
velocity field, we follow the data-processing steps defined by
Velomap (Bock et al., 2007), a Matlab (The MathWorks, Inc.)
based pre-processing tool developed by the Diagnostic Radiology
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Department, University of Freiburg, Germany. Velomap has already
proven to supply reliable flow fields in previous in vivo flow studies
(Markl et al., 2011a,b; Stalder et al., 2008). Noise masking was per-
formed by thresholding of the signal deviation of the magnitude
data in order to exclude regions with low signal intensity. Further
noise reduction and separation of static tissue and vessels is
achieved by comparing the standard deviation of the velocity–time
course for each pixel in the flow data set (Bock et al., 2007). MR
segmentation output was used to mask geometric entities based
on an averaged fluid domain representation (Bock et al., 2010).

The following procedures are typically applied before the 4D
flow data enters our pressure estimation workflow: Anti aliasing,
Noise masking, Eddy current reduction. Based on a ’speed sum
squares’ iso-surface representation over all time-steps T

r ¼
XT

j¼1

X3

i¼1

u2
i ðtjÞ ¼ const:; ð16Þ

an averaged segmentation of the cardiovascular geometry was cre-
ated. Since this iso-value represents the basis for fluid domain
masking (Xint/Xext), careful distinction of adjacent cavities or ves-
sels was taken into account.

3.2. Pressure estimation workflow

In order to allow a smooth and straightforward representation
of the cardiovascular geometry of interest, our approach follows
the mean fluid domain approach often used in 4D flow analysis
based on MR segmentation information.

3.2.1. Geometrical representation
The left-hand side of Fig. 5 shows an isosurface (highlighted in

red) of r, defined in Eq. (16), clearly indicating the left and right
ventricle, the aorta and adjacent large vessels. Valid velocity infor-
mation is available in the entire imaging space X (square box) fol-
lowing an Eulerian description approach. However, we will focus on
the internal volume Xint – with r = 0.2 m2/s2 set as lower bound –
assuming Xint is a sub-domain of the true fluid domain over the
whole cardiac cycle. This value has been chosen according to Bock
MR Angiography

RV

AORTA

Fig. 5. Automatic segmentation by thresholding of the ‘Speed-sum-square’. The imaging
Xext.
et al. (2011) in order to separate the aortic arch allowing for the
best mean representation of the cardiovascular velocity field, and
must be optimised for the respective cases under consideration.

Following this mean geometrical representation, the right-hand
side of Fig. 5 now visualises the fluid domain masking and the sub-
sequent separation of the whole imaging domain X into Xint und
Xext. This information will be used in a similar way as for the cases
in Figs. 2 and 3; they are also the basis for the numerical approach
and its parameter settings for j in Eq. (10).
3.2.2. Pressure field estimation
In order to illustrate clinically relevant results, computation of

the pressure differences in the rest of the article is performed in
the isolated aorta, which is manually segmented from the auto-
matic identification of the fluid domain represented in Fig. 5. This
isolation removes the contamination from the rest of vascular
structures (mainly the pulmonary arteries). Fig. 6 shows the discre-
tised imaging domain X, where each voxel of the image is a control
point of a tri-cubic Lagrangian hexahedra. The masked DOFs corre-
sponding to the aorta are used to distinguish between the fluid do-
main of interest Xint and Xext. Whereas nodes which belong to Xint

carry velocity information, all nodes of Xext get eliminated from the
initial computational domain, effectively decreasing the system
size and, hence, increasing computational efficiency.
3.3. Visualisation and post-processing

3.3.1. Velocity field and estimated relative pressure
The left-hand side of Fig. 7 shows 6 different snapshots at differ-

ent points in time during systole chosen for best visualisation re-
sults. Starting with almost steady-state conditions (snapshot 1),
one can clearly identify the increasing blood velocity magnitude
in early systole (snapshots 2 and 3) and the blood momentum
transported further downstream the aorta (snapshots 4 and 5) un-
til the blood velocity magnitude decreases to a minimum (snap-
shot 6). The right-hand side shows the corresponding relative
pressure fields directly computed from the respective time-frames.
Fluid domain masking

Ω intextΩ

ΩLV

space X (left) is masked, and the fluid domain Xint is separated from the static tissue



Fig. 6. Data processing from imaging space to pressure evaluation (red – high magnitude, blue – low magnitude). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Fig. 7. Input velocity field projected on streamlines (left) and estimated pressure projected on fluid domain boundary (right).
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Since there is almost no blood flow present at the very begin-
ning of systole (snapshot 1) no differences of relative pressure
can be identified. However, as soon as the early systole begins, a
pressure drop over the aortic valve plane can be seen (snapshot
2) followed by an increase of both the magnitude and differential
values of the relative pressure field (snapshot 3). After the main
blood flow has passed the aortic arch, the highest relative pressure
value develops due to the centrifugal forces (snapshot 4). Finally,
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the relative pressure field returns to its initial state (snapshot 5 and
6). The reference point for the relative pressure field has been lo-
cated at the end of the descending aorta. Pressure values are mea-
sured relative to the pressure at this reference point. Consequently,
the relative pressure at this point must be equal to zero as shown
in Figs. 7–9, respectively.

3.3.2. Spatial and temporal correlation
In order to understand the velocity/pressure interdependence,

we plot in Fig. 8 velocity and pressure magnitudes for three differ-
ent time-frames during the systolic phase. Two different cutting
planes (one through the aorta and one through the ventricle) are
used to project and visualise both velocity magnitude and pres-
sure. Relative to the reference point at the end of the descending
aorta, one can clearly identify a pressure drop during early systole
followed by the highest pressure in the aortic arch as a conse-
quence of the stagnation pressure and the change of direction of
the blood column.

Whereas Fig. 8 gives a first indication of the spatial relation be-
tween velocity and pressure, Fig. 9 allows a temporal analysis of
the cardiac cycle. Point 1 is placed inside the left ventricle, fol-
lowed downstream by points 2 and 3 until the end of the descend-
ing aorta is reached at point 4; close to the pressure reference
point. It is interesting to note that the early systole causes positive
and negative relative pressure changes at points 1 and 2, respec-
tively, before the pressure level returns to its force-free state. The
effect of the directional change due to the aortic arch causes an
earlier pressure increase accompanied by a higher magnitude. As
expected, control point 4 shows no significant pressure change,
being located at the end of the descending aorta. Fig. 10 illustrates
the acceleration of blood at early systole (positive values), followed
by the deceleration during late systole (negative values) and a rel-
atively flat profile during diastole.

4. Discussion

In this study we have presented a methodology based on the
Pressure-Poisson equation to enable direct access to relative pres-
Fig. 8. Velocity (top) and pressure magn
sure fields derived from 4D flow measurements. Whereas 4D flow
information are increasingly available from non-invasive imaging
to date, there has been no computationally efficient approach
established to determine the corresponding pressure field due to
both inertial and viscous effects. The proposed framework provides
a platform for a wide range of applications, both in clinically rele-
vant diagnosis and in computational cardiac modelling.

Our approach exhibits several novel features that overcome
many of the deficiencies associated with existing methods based
on alternative approaches. Firstly, conventional methods are typi-
cally driven by Neumann conditions in the form of pressure gradi-
ents defined on the relevant boundaries of the region on interest.
However, such boundary data is generally not readily available.
To address this issue conventional methods resort to costly itera-
tive schemes to computationally approximate this boundary data,
but these iterative schemes often lack robustness and may con-
verge slowly or not at all. In contrast, the approach outlined in this
paper removes the need for such boundary conditions and iterative
schemes. Using the finite-element formulation enables integration
by parts of the source term in the Pressure-Poisson equation, effec-
tively eliminating unknown boundary integrals, as previously
demonstrated by Hassanzadeh et al. (1994). It is this source term
which drives the underlying pressure estimation process. Secondly,
the method eliminates the no-flow domain associated with a zero
source term, which, in combination with eliminating the need to
determine a solution via iteration, reduces computational cost rel-
ative to current schemes. A final benefit is that our approach, by
accounting for pressure changes due to both acceleration and vis-
cous resistance (see Appendix A), is valid for both low- and high-
Reynolds number laminar flows. While the magnitude of these vis-
cous terms was relatively small for the healthy volunteer data, for
pathological cases these terms are likely to be significantly more
important. For these cases taking into account simple turbulent
assumptions may also be relevant, however, this extension was be-
yond the scope of the current study.

To verify the correctness and demonstrate the potential of this
technique, we have presented various numerical results in Sections
2 and 3. A convergence study has shown that the proposed method
itudes (bottom) on cutting planes.



Fig. 9. Local relative pressure dynamics.

Fig. 10. Temporal transients of the pressure difference between the left ventricle
and the end of the descending aorta in the four healthy volunteers.
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yields the expected rate of convergence under mesh refinement.
Furthermore, the Poiseuille-flow model in two channels repro-
duced the correct linear pressure profile. This result is in contrast
to results determined using methods employing iterative determi-
nation of boundary conditions which typically fail for this problem
due to the absence of a source term from which to derive the
boundary conditions. For the third test problem of four cylinders
rotating at different speeds, our computed solution compares well
with the analytic solution as well as with results published in liter-
ature. While the above results serve to verify the method, in Sec-
tion 3 we also assessed the potential of our method on 4D flow
measurements acquired on a human aorta. We presented relative
pressures on the surface of the aorta as well as on cutting planes,
and variations of relative pressures over a heart cycle at specific
points of interest in the aortic branch. These results are in good
agreement with results published in Yang et al. (1996), Ebbers
and Farnebäck (2009) and Bock et al. (2011). This demonstrates
the viability and potential of the proposed methodology for the
non-invasive estimation of relative pressures to complement 4D
flow velocity data and assist in the assessment of healthy and
diseased conditions.
While these results illustrate the potential of the FEM system to
solve the PPE problem, there remains further work to understand
the behaviour of pressure estimation in vivo. The influence of MR
image acquisition factors (limited spatial and temporal resolution,
average through different heart cycles, Eddy currents and patient
movement among others) on physical correctness is of particular
interest in terms of interpretation of cardiovascular Reynolds num-
bers. The uncertainty is less influenced by physical blood flow
properties, but more by the uncertainty of velocity magnitude
and its gradients. While traditional FEM techniques for measuring
accuracy rely on supposed smoothness, understanding the influ-
ence of interpolation and mesh resolution on the computed vector
b, and consequently the pressure, is unknown. As far as geometri-
cal limitations are concerned, a mean representation of the fluid
domain is taken into account. However, domain discontinuity like
through a closed cardiac valve must be treated carefully, as the
pressure field determined is relative to some reference pressure
that is unique within a connected fluid domain, but generally dis-
tinct for separated regions. This means that changes of the pressure
reference value through discontinuities, such as during the valve
opening and closing process, require more sophisticated measure-
ment input.

Future work will address data quality and enhanced cleaning of
data with noise. Stipulating that the flow is governed by the incom-
pressible Navier–Stokes equations, the velocity field should theo-
retically be divergence-free. Consequently, the degree to which
the measured velocity field violates the divergence-free condition
provides a useful quality measure of the acquired data. Accord-
ingly, to improve the quality of the data, the error components cor-
responding to a violation of the divergence-free condition can be
eliminated by projecting the velocity data onto a divergence-free
finite-element approximation before using it as input to the pres-
sure estimation. Further validation will then be carried out by com-
paring our pressure estimation results to data from combined 4D
flow and pressure catheter measurements.
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Appendix A. Methodological motives

The pressure estimation approach presented in this work has
been specialised for cardiovascular flow and satisfies the following
characteristics when compared to traditional finite difference
methods:

� Minimise boundary condition sensitivities:
Following Eq. (4) we see that applying Gauss’ theorem to the
left-hand side yields
Z

X
rp � rudX ¼

Z
C
ðrp � nÞudC�

Z
X
ðr � bÞudX: ð17Þ

With r � u = 0, we see that

r � @u
@t

� �
¼ 0 and r � ðlMuÞ ¼ 0; ð18Þ

and therefore r � b =r � (�q(u � r)u). We conclude that any
change in relative pressure due to viscous resistance or temporal
acceleration is driven entirely by the specification of Neumann
boundary conditions in finite difference methods. Sensitivities
during the determination process of the boundary conditions di-
rectly influence the accuracy of relative pressure.
� Consider both acceleration and viscous terms:

Cardiovascular studies on relative pressure estimation by tradi-
tional methods often neglect the viscous contribution since
fluid acceleration is believed to be much higher than its near-
wall resistance. However, this assumption disqualifies problems
where the pressure gradient is entirely driven by fluid viscosity.
Following the equations outlined above we see that for fully-
developed Hagen-Poiseuille or channel flows, often used for val-
idation purposes, we have r � b = 0, and the entire problem
must be captured by its boundary conditions on C which need
to be determined iteratively by finite difference methods.
� Allow isolation of separated fluid domains:

In order to avoid the influence of separated fluid domains and
static tissue, isolated sub-domains of the whole imaging space
as well as corresponding boundary conditions must be speci-
fied, and this poses an additional challenge for some implemen-
tation of finite difference methods.

Since the approach presented in this work transforms the
boundary integrated terms into a source field, no additional
boundary values must be iteratively determined. The field formu-
lation, based on finite elements, further allows the evaluation of
field derivatives at each Gauss point taking the viscous, second-or-
der derivative terms into account. Now, the entire discretised
imaging space can be regarded as a unit composition system of
adjacent fluid domains, each of which depends on its respective
reference pressure only.
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