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Abstract: 
Metamaterials are materials whose optical properties can be designed through the 

accurate engineering of their structure on the subwavelength scale. They have enabled 

the discovery and study of a variety of interesting new optical properties not normally 

present in materials found in nature. Furthermore, by designing the local 

electromagnetic field distributions of such metamaterials, it is possible to engineer not 

only their linear optical properties but also their nonlinear response, which is 

fundamental for the development of nonlinear and active nanophotonics for all-optical 

information processing. In this thesis I will show that plasmonic metamaterials based on 

metallic nanorod arrays can be designed to have strong third-order nonlinear optical 

response originating from the nonlinearity of the plasmonic component of the 

metamaterial, allowing nonlinear processes to be more energy efficient and highly 

integrated. The nonlinearity will be experimentally determined through the z-scan 

technique and explained by numerical modeling in both effective medium and full-

vectorial simulations. Enhancements of about 50 times for the nonlinear absorption and 

about 10 times for the nonlinear refraction are observed compared to a smooth metal 

film. Furthermore, the properties of waveguides comprised of the nanorod metamaterial 

are studied and the possibility of their integration in conventional Si photonic 

waveguides is demonstrated. In this context, two all-optical modulators using plasmonic 

metamaterials are designed, operating in the hyperbolic and epsilon near-zero regimes. 

Both designs are highly integrated and energy efficient having footprints of 

300x440x600 nm3 and 300x180x340 nm3  with an energy consumption of 3.7 pJ/bit and 

0.6pJ/bit respectively. The obtained results show great opportunities for nonlinear 

metamaterials in nanophotonic applications. 
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Chapter 1: Introduction 
	  
Moore’s law is the observation of the doubling of transistors’ number approximately 

every two years, in integrated circuits. Thus the capabilities of many electronic devices 

are linked to this law in terms of: processing speed, memory capability, number and size 

of pixels, etc. [1] Furthermore, as new applications have been developed over time for 

the use of these capabilities, the demand for them has also been following Moore’s law, 

and the need for the increase of them grows every year in the market. However, it has 

been predicted that the trend imposed by Moore’s law will reach its limit in the 

following decade as the amount of transistors needed will require the development of 

transistors at the molecular scale (less than 5 nm) where signal degrading effects such as 

quantum tunneling become important [2]. Additionally, as a consequence of the RC 

(resistance-capacitive) delay of the electric connections in current integrated circuits, 

the maximum switching speed of the signal is limited to few tens of GHz [3]. 

Nevertheless, in order to supply the market’s demand, Moore’s law must continue and 

this has lead to research in alternative technologies, which could overcome the limits of 

current technology. There are several alternative technologies that have risen to the 

challenge although three of them have been developed greatly in the last decade and are 

strong candidates to take over Moore’s Law. The first one is called spintronics, which 

relies on the switching of the electron spin.  This technology has shown great signal 

speeds (in the order of hundreds of GHz) and low energy consumption (tens of aJ) [4].  

 

The second one consists of the use of high electron-mobility materials such as graphene.  

In this case, the electrons and holes at the Dirac point (the crossing point of the energy 

dispersion curves) can be regarded as massless since the energy dispersion is linear[5]. 

Although the zero density of states at the Dirac point makes the electronic conductivity 
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low, the Fermi level can be changed by doping the material. Thus obtaining electron 

mobility only limited by the scattering with the substrate phonons. Indeed a limit in 

electron mobility of 40000 cm2.V-1s-1 was measured for graphene on SiO2 [6]. 

Consequently, the high conductivity of graphene provides a reduced delay in the electric 

interconnection [7]. However there are several drawbacks in the use of graphene such as 

the difficulty in its massive production and the lack of band gap, required for the 

construction of graphene-based switches (transistors). Therefore it is unlikely that 

graphene will be part of high-performance integrated circuits within the next decade [8] 

although several advances have been made using graphene nanoribbons, which do have 

a band gap [9]. Nevertheless, both of these technologies rely still in the use of electrical 

interconnections and thus their switching speed is still limited by the delay imposed by 

them.  

 

The third alternative is the use of photonics, specifically silicon photonics. In this case 

the information will travel as light or in other words, as photons instead of electrons. 

Thus the signal is sent through optical interconnections, which do not have RC delay. 

This technology has already been used for the development of high speed, low power 

consumption optical chips by companies such as Intel and IBM able to achieve transfer 

bit rates in the order of 1 Tbps (Terabits per second) [10, 11]. Furthermore it has also 

been shown that old fabrications techniques used for electronic circuits can also be used 

in the development of optical chips as the materials required are similar (i.e. Silicon), 

making the development of optical chips cost effective [12]. However, there are some 

limits that need to be overcome for this technology to have a strong advantage against 

current electronic chips.  
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The first limit, called the diffraction limit, states that light cannot be confined in regions 

smaller than the wavelength of light (λ). In silicon photonics, the working wavelength 

of preference is 1.55 μm since the intrinsic absorption of both SiO2 and Si is much 

lower [13]. At this wavelength, the refractive index of silicon is large (n=3.48), and 

light can be guided through single mode silicon waveguides having size as small as 

λ/n~450 nm. However light cannot be guided using waveguides with size below this 

limit because of diffraction. This imposes a fundamental limit in the integration of 

silicon based photonic devices.  

 

The second is the limit in the modulation speed of an optical signal. Although optical 

signals can support a large signal modulation bandwidth, to achieve maximum speed the 

modulation of them has until now been done using electro-optical modulation. 

Typically a component setup using this type of modulation consists of an ultrafast 

photodiode, which converts the input optical signal to an electric signal and an optical 

circuit (typically a ring resonator) composed of a material whose refractive index 

changes with an electric field. Therefore the output electric signal of the photodiode is 

used to modulate the optical signal travelling through the optical circuit [14]. However 

there are two main drawbacks in the use of electro-optical modulation. Firstly, its speed 

depends on the RC delay time of the interconnection driving the modulating electric 

field. Although in general this interconnection is shorter than in the case of electronic 

circuits as it only has to connect the photodiode to the modulator, still the maximum 

speed of modulation is still limited by the RC delay and therefore modulation speed 

ranges in the order of hundreds of GHz [14, 15]. Secondly, the area required for the 

integration of all the required components is in the order of ~100 μm2 [14]. This value is 

orders of magnitude larger than the integration of current electronic components and 
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therefore limits strongly the total number of bits per second handled by the total 

optoelectronic chip.  

 

An obvious alternative that could solve the first and possibly the second problems of 

electro-optical modulation would be all-optical modulation. In this case one light beam 

will interact with a second light beam, modulating it and therefore the conversion from 

optical to electric signal is not needed. This interaction occurs through a material called 

nonlinear optical material or nonlinear material, whose refractive index (and 

permittivity) varies according to the intensity of light. Although all materials are 

generally nonlinear, usually this variation of their refractive index is very weak and an 

appreciable change of it requires beam intensities larger than 1 MW/cm2 at the 

material’s surface [16]. Therefore the power consumption of any photonic circuit using 

this interaction will be extremely large and cannot be sustained in an integrated and 

compact fashion.  

 

Plasmonics is an alternative to overcome these limits. It is based on the coupling of light 

(or photons) to the oscillations of the electrons’ plasma of metals (plasmons) [17]. 

There are two valuable characteristics that renders plasmons fundamental to solve the 

problems of current technology. First, plasmons can be highly confined in regions in the 

order of ~20 nm, below the diffraction limit. This allows them to be used for the 

transport of light signals in highly integrated systems [18, 19]. Second, plasmons have 

high field intensity, allowing them to produce an increased nonlinear optical response 

with less energy. A clear example of this, is the case of gold nanoparticles (or 

nanospheres), whose third order nonlinear coefficient is 4 orders of magnitude larger 

than that of bulk gold [16]. Additionally, this behavior has also been characterized 
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through the study of the nonlinear optical properties of metamaterials, which are 

materials exhibiting properties not found in nature like negative refraction, cloaking, 

etc. These properties are not a consequence of the materials composing the 

metamaterial, but of the accurately designed patterning of them [20, 21]. Plasmonic 

metamaterials, a specific kind of metamaterials, are designed using metals and therefore 

take advantage of the great confinement of plasmons to produce this variety of 

properties. Therefore, thanks to the presence of plasmons in plasmonic metamaterials, 

their nonlinear optical variation is strongly enhanced and additionally, it has been 

shown that it can be tuned in wavelength through the design of the metamaterial 

structure [22]. Furthermore, metals have inherent ultrafast nonlinear properties. These 

properties are attributed to the creation through optical excitation of a hot electron gas 

in the conduction band, which afterwards will cool down through electron-phonon 

scattering within a time interval varying between hundreds of femtoseconds to few 

picoseconds depending on the structure [23]. Consequently, plasmonic metamaterials 

are fundamental for the development of integrated all-optical modulation as through 

their engineering it is possible to tune their optical nonlinearity which additionally is 

inherently ultrafast [24] 

 

In this thesis, I will theoretically and experimentally characterize the intensity-

dependent nonlinearity of plasmonic metamaterials based on metallic nanorod arrays. 

These metallic nanorod arrays are fabricated following a electro-deposition technique 

detailed in [25]. Furthermore I will propose two designs of all-optical modulators taking 

advantage of their nonlinearity. In the second chapter, I will introduce the theory for the 

description of the linear and nonlinear optical properties of metals and plasmonic 

metamaterials based on metallic nanorod arrays. It will be shown that the inherent 
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ultrafast nonlinearity of metals will be the main component driving the nonlinear optical 

response of plasmonic metamaterials. In the third chapter, I will describe the Z-Scan 

technique, which is used to the experimental characterization of the nonlinearity of 

these materials. Additionally as an example, I will report the results obtained through 

this technique for the nonlinear optical properties of a smooth gold film. These will be 

compared later with the results obtained for the plasmonic metamaterial. In the fourth 

chapter, I will characterize both theoretically and experimentally using the tools 

developed in the previous chapters, the nonlinearity of a plasmonic metamaterial based 

on gold nanorod array. The results will show the enhancement of its optical nonlinearity 

with respect to that of a smooth film as a consequence of the metamaterial structure. In 

the fifth chapter, I will introduce the first design of an all-optical modulator, which 

takes advantage of the hyperbolic dispersion and high confinement present in plasmonic 

metamaterial-based waveguides. Finally in the sixth chapter I will introduce the second 

design of an all-optical modulator based on the ENZ (epsilon-near zero) condition of 

the metamaterial which allows the creation of highly reflective and highly optically 

nonlinear thin layers. These layers can be used for the design of a resonant nonlinear 

optical cavity.  
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Chapter 2: Theory of the linear and the nonlinear optical 
properties of metals and plasmonic metamaterials 

 
	  
	  
In this chapter I will describe the theory used for the modeling of the linear and 

nonlinear optical properties of plasmonic metamaterials. Firstly, I will give a brief 

introduction to nonlinear optics and its development in the last decades. Some nonlinear 

optical effects will be described in particular the Kerr effect corresponding to the 

change in the permittivity of a material with the intensity of light. Secondly, I will 

describe the permittivity of metals, main component of plasmonic metamaterials, 

through the random phase approximation. Within this theory, both interband and 

intraband electron transitions are taken into account allowing a complete description of 

the metal permittivity in a broad wavelength range. The resulting permittivity is 

dependent on the electron scattering, which can be increased through illumination with 

high intensity light. This behavior will be analyzed through the dependence of the 

electron scattering on the temperature of the electron gas inside the metal. Thirdly, I 

will describe the optical properties of metamaterials based on nanorod array through the 

Maxwell-Garnett theory, which allows the definition of an effective permittivity tensor 

dependent on the permittivity of the metamaterial compounds. Finally, I will show a 

self-consistent method to determine theoretically the nonlinear optical properties of 

metals and plasmonic metamaterials for further comparison with the experimental 

results obtained. 
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2.1 What is nonlinear optics?: 
	  
Nonlinear optical materials are those materials whose optical properties depend on the 

intensity of light present. All materials have nonlinear optical properties, although 

generally, the visualization of these properties require a high light intensity for the 

majority of materials [1]. An example of nonlinear materials is fluorescent materials 

whose interaction with light allows them to produce additional colors through a process 

called spontaneous emission of radiation [2]. Also LASERs take advantage of the 

nonlinear optical properties of a material (gain-material) to amplify the intensity of light 

through a process called stimulated emission of radiation. Their invention and 

development has allowed the possibility to reach high light intensities allowing in the 

last decades, the study of the nonlinear optical properties for different materials, 

increasing the understanding of the ongoing processes occurring when light interacts 

with matter [3, 4]. Nonlinear optical properties are related to the nonlinear dependence 

of the material’s polarization to the electric field amplitude (E(t) ). Therefore the 

polarization can be expanded as a power series of E(t) : 

                         P(E(t)) = ε0 (χ
(1)E(t)+ χ (2)E(t)2 + χ (3)E(t)3 + ...)                    (2.1)               

where ε0  is the permittivity of the vacuum [1]. The first term (ε0χ
(1)E(t) ) is the linear 

polarization, corresponding to the conventional optical response at low light intensity 

and χ (1)  is the linear susceptibility. The second term corresponds to the second order 

nonlinear polarization which leads to two different kinds of nonlinear effects. These 

effects can be analyzed easily by assuming an electric field harmonic in time for an 

incident electromagnetic wave represented by [5]: 

 E(t) = E0e
− iωt + c.c             (2.2) 
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(where is the frequency related to the propagation constant k and the speed of light c 

through  and c.c means the complex conjugate), and replacing it in the second 

term of equation (2.1) obtaining: 

ε0χ
(2)E(t)2 = 2ε0χ

(2)E0E0
* + (ε0χ

(2)E0
2e− i2ωt + c.c)          (2.3) 

Equation (2.3) is composed of two terms; a zero frequency term and a  frequency 

term. The latter corresponds to the generation of radiation with two times the frequency 

of the incident wave and it is called second harmonic generation (SHG). The zero 

frequency term does not contribute to generation of radiation since its second derivative 

over time vanishes. However it is related to a nonlinear effect called optical 

rectification, corresponding to the creation of a static electric field across the material 

[5].  

A similar analysis can be done for the third term in equation (2.1). In this case we 

obtain: 

   ε0χ
(3)E(t)3 = ε0χ

(3)e− i3ωt + 3ε0χ
(3)E0

2E0
*e− iωt + c.c                       (2.4) 

The first term corresponds to the third harmonic generation (THG) because this term 

has a component at . The second term has the same frequency of the incident wave; 

this allows us to define an effective susceptibility, which is dependent on the magnitude 

of the electric field. Replacing equation (2.2) in equation (2.1) and taking into account 

only terms in first and third order dependent on E0 , the resulting polarization from 

those terms is:	   	   

                           (2.5) 

With an effective susceptibility: 

                                          (2.6) 

ω

ω = ck

2ω

3ω

Pres (t) = (χ
(1) + 3ε0χ

(3) E0
2 )(E0e

− iωt + c.c)

χeff = χ (1) + 3ε0χ
(3) E0

2
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This effective susceptibility can also be written in terms of the time-averaged intensity 

of an optical field, which is related to the magnitude of the electric field through 

     (2.7) 

with  being the linear refractive index of the material which can be 

complex in the case of metals, and  is the speed of light. Therefore the effect 

generated by this term corresponds to an intensity dependent variation in the phase and 

amplitude of the wave propagating inside the nonlinear material. This is known as Kerr 

effect. Since these variations are directly related to a variation of the complex refractive 

index of the material it is very useful to define an intensity dependent refractive index (

)  

      (2.8) 

Where  and  are the complex linear and nonlinear refractive indexes respectively 

and I is the intensity of the beam inside the material. Using equations (2.6-2.8) it is 

possible to show that  is related to . Since  is related to the effective 

susceptibility through: 

                       (2.9) 

it is possible to replace equation (2.6) and equation (2.8) in equation (2.9), obtaining: 

                               (2.10) 

Expanding the term in the left, using equation (2.7) and keeping to terms up to first 

order in , we obtain: 

                (2.11) 

Therefore the linear and nonlinear refractive index coefficients can be related to  

and  through: 

I = 2Re(n0 )ε0c E0
2

n0 = (1+ χ (1) )1/2

c

n(I )

n(I ) = n0 + n2I

n0 n2

n2 χ (3) n(I )

n(I )2 = 1+ χeff

(n0 + n2I )
2 = 1+ χ (1) + 3χ (3) E0

2

E0
2

n0
2 + 2n0n2 Re(n0 )ε0c E0

2 = 1+ χ (1) + 3χ (3) E0
2

χ (1)

χ (3)
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              (2.12) 

This thesis will be focused on the analysis and measurement of the intrinsic Kerr effect 

of metallic nanostructures. In the following section I will provide the theory for the 

understanding of this Kerr effect and in the next chapter I will introduce the z-scan 

technique, which allows the measurement of the real and imaginary part of . 

 

As a final remark, it is worth mentioning that if the optical field incident to the 

nonlinear material is composed of two or more frequencies, it is possible to achieve the 

generation of additional optical waves corresponding to the sum and difference between 

these frequencies, this effect is known as wave mixing [1].  

2.2 The intensity-dependent refractive index of metals 
	  
Electrons inside a material interact through a Coulomb potential with the ion cores. A 

consequence of this interaction is that electrons can only have certain energy values. 

These energy values are separated in different energy bands. When an electron is 

provided with additional energy, this energy allows the change of its energy value. If 

the resultant energy value corresponds to a value within the same band, it is said that the 

electron performed an intraband transition, if it corresponds to a different band then it 

performed an interband transition [6]. Light can excite the two kinds of transitions 

depending on the photon energy, which is related to the wave angular frequency 

through , where  is the reduced Planck constant related to the Planck constant 

through . In metals, electrons occupy energy bands up to a band called 

conduction band, where the electrons can barely feel the coulomb potential of the ion 

cores and can move almost as if they were free particles. Therefore intraband transitions 

n0 = (1+ χ (1) )1/2

n2 =
3χ (3)

4n0 Re(n0 )ε0c

n2

 E = !ω  !

 ! = h / 2π
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in this band can readily be excited optically even with low photon energies. However if 

the photon energy is large enough to overcome the energy gap between the conduction 

band and the band below called valence band (See Figure 2.1), an interband transition 

can be excited.  

 

Figure 2.1 Graphical representation of interband and intraband transitions. The orange filling represents 
the states filled by electrons, white circles represent the creation of holes through the optical excitation of 

electrons.  
 

In this context, the frequency dependent susceptibility of a metal depends on both 

intraband and interband transitions. The random phase approximation (RPA) allows the 

theoretical description of the dynamic properties of an electron gas which takes into 

account both interband and intraband transitions and the derivation of a total 

permittivity (related to the susceptibility through ) which is [6]:  

      (2.13) 

with  being the permittivity only dependent on intraband transitions and 

, the permittivity only dependent on interband transitions. Furthermore it can be 

shown within this approximation that the intraband transition term is [7]: 

                                          (2.14) 

k

E

Conduction band

Valence  band

intraband 
transition

interband 
transition

ε(ω ) = 1+ χ(ω )

ε(ω ) = ε(ω )intra + ε(ω )inter

ε(ω )intra

ε(ω )inter

ε intra (ω ) = ε∞ −
ω p

2

ω (ω + iγ intra )
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where is the plasma frequency of the electron gas related to the 

electron charge (e)  electron mass (m) and the electron density in the metal N,   is the 

high-frequency limit of the permittivity, and  is the scattering cross-section 

corresponding to the inverse of the energy decay time of electrons excited through 

interband transitions. Additionally it can also be shown that the interband transition 

term is [7]: 

        (2.15) 

where  with  being the dipole moment of interband 

transitions supposed to be wave vector independent and m the electron mass,  is the 

energy gap between the valence and the conduction band,  is the Fermi-Dirac 

distribution for the electrons at an equilibrium temperature Te and depends on the metal 

interband energy transition (from the valence band to the top of the conduction band), 

and  is the interband scattering cross-section corresponding to electrons excited 

through interband transitions.  

 

The energy decay of the electrons excited through interband and intraband transitions, 

depends mainly on collisions with the lattice phonons and other electrons. These can be 

visualized as a gas of particles having temperatures TL  and Te respectively. The 

temperatures are proportional to the particles’ velocity, which through momentum 

conservation is related to the energy decay caused by collisions of a particle travelling 

within the gas. Thus the expressions for the scattering cross-sections are a sum of the 

scattering cross-section contributions of electrons and phonons, which are dependent on 

TL  and Te respectively. These expressions are: 

ω p = 4πe2N /m

ε∞

γ intra

 
ε inter (ω ) = K

!x − Eg

x
(1− f (x,Te ))

(γ inter
2 −ω 2 + x2 )+ 2iωγ inter

(γ inter
2 −ω 2 + x2 )2 + 4γ inter

2ω 2
0

∞

∫ dx

 K = 8µ2e2m 2m /π!3m2 µ

Eg

f (x,Te )

γ inter
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γ intra (TL ,Te ) = aintraγ ph−e(TL )+ bintra (4π
2 (kβTe )

2 + (!ω )2 )

γ inter (TL ,Te ) = ainterγ ph−e(TL )+ binter
(π 2 (kβTe )

2 + (Ef − !ω )
2 )

1+ exp((Ef − !ω ) / kβT )
         (2.16) 

The derivation of these formulae is beyond the scope of this thesis but can be found in 

great detail in [6, 8]. The termγ ph−e(TL )  corresponds to the electron-phonon scattering, 

which according to [9] is: 

γ ph−e(TL ) =
2
5
+ 4 TL

θ
⎛
⎝⎜

⎞
⎠⎟
5 x4

ex −10

θ /TL∫ dx      (2.17) 

The second term in the right hand side of equations (2.16) corresponds to the electron-

electron scattering, which in the case of interband transitions depends on the Fermi level 

energy Ef . Furthermore the constants aintra , ainter , bintra  and binter are free parameters 

used to fit the optical response of a specific metal at room temperature (300K). 

 

At thermal equilibrium both TL  and Te are equal. However under optical excitation 

electrons react almost instantaneously to the optical field (~0.1fs) creating an imbalance 

between these two temperatures and thus a modification in the optical properties of the 

metals. This imbalance further disappears as a consequence of electron-phonon 

coupling. This process is understood through the two-temperature model [10]. This 

model relates TL  and Te through the following equations: 

CeTe
∂Te
∂t

= ∇⋅(Ke∇Te )− g(Te −TL )+ω 0 Im(ε ) E(r,t) ⋅E(r,t)

  CL
∂TL
∂t

= g(Te −TL )
           (2.18) 

where Ce = 67.96 J /m3K 2  is the heat capacity of electrons, g = 2 ×1016W /m3K is a 

constant related to the coupling between electrons and phonons, E(r,t) ⋅E(r,t) is the 

time averaged electric field, Ke = Ke0Te /TL is the electron heat diffusion with 
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Ke0 = 318W /mK and CL is the heat capacity for a specific metal. A consequence of the 

first of equations (2.18) is that if we neglect the electron heat diffusion and the electron 

phonon coupling, the electron temperature rises following the optical power 

corresponding to the last term in this equation. This corresponds to the instantaneous 

response of the electron gas to the optical field. In this case the first of equations (2.18) 

becomes: 

CeTe
∂Te
∂t

=ω 0 Im(ε ) E(r,t) ⋅E(r,t)           (2.19) 

Using this equation the energy absorbed by the electrons from the optical power can be 

calculated: 

1
2
CeTe

2 = ω 0 Im(ε ) E(r,t) ⋅E(r,t)∫ dt = Eabs[J /m
3]            (2.20) 

If the electron phonon coupling and the electron heat diffusion are now taken into 

account, the optical energy absorbed by the electrons will be transmitted to the phonons. 

The effect of these contributions can be understood examining two cases. In the case of 

a bulk metal this energy will be spread widely over the whole material through electron 

heat diffusion because of the high exponentially-decaying temperature gradient imposed 

by the optical field. In the case of a smooth film of few tens of nanometres, this gradient 

will vanish as a consequence of the almost constant distribution of the optical field over 

the film and the electron temperature decays through electron-phonon coupling.  

 
Figure 2.2 shows the decay over time of the electron temperature at the surface of a 

metal for both bulk metal (d=∞) and smooth film (d=20 nm) assuming a starting 

electron temperature of 2500 K achieved through an ultrashort pulse (<100 fs). Indeed 

in the case of bulk metal the relaxation time of the electron temperature is in the order 

of few hundreds of femtoseconds as a result of the strong temperature gradient whereas 

the relaxation time in the smooth film follows a linear decay as a consequence of its 
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strong dependence with the electron-phonon coupling. The slope of the linear time 

decay can also be derived through the first of equations (2.18) neglecting the 

contribution from the diffusivity and assuming TL  << Te , which is the case some 

femtoseconds after the excitation. Therefore the slope of the decay is –g/Ce and in this 

case the decay time is ~Ce / g(2500 − 300) = 7.47ps  

 

Figure 2.2. Electron temperature at the metal surface computed using equations (2.18) for the case of a 
thin film of 20 nm and bulk metal (d=∞). The equations were solved numerically by finite time domain 

technique using matlab. 
 

In this thesis the properties of plasmonic metamaterials based on gold will be analysed. 

Therefore the model defined via equations (2.13-2.17) is used to fit the well-known 

experimental data for the real and imaginary part of the permittivity of gold.  Figure 2.3 

shows a comparison of our model fitting with the values measured by Johnson and 

Christy [11], and Pallik [12]. Table 2.1 shows the values used for the respective 

constants of equations (2.13-2.17). While our model presents some discrepancies fitting 

especially Pallik data in the ultraviolet where an additional interband transition is 

present, for wavelengths larger than 500 nm, it fits appropriately. Since this is the 

wavelength range for which the numerical analysis and experiments are realized in this 

thesis, our model is very reliable. 
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To summarize, the dependence of the metal permittivity to the electron and phonon 

temperatures, reveals the inherent Kerr effect of metals because electron and phonon 

temperatures can be modified through the optical intensity. 

Constant Value Units 
Θ(Debye temperature) 170 K 
kb(Boltzmann constant) 8.61x10-5 eV/K 
h(Planck constant) 4.136x1015 eV/Hz 
bintra 0.0827/h Hz/eV2 
aintra 0.0125/h Hz 
binter 0.7/h Hz/eV2 
ainter 0.15/h Hz 
Ef (interband transition energy) 2.4 eV 
Eg (band gap energy Au) 1.98 eV 
K 1.2695x1032   
ε∞ 1   
ωp 2.168x1015 Hz 

Table 2.1. Constants for the equations (2.13-2.17) to model the permittivity of gold. Both electron and 
lattice temperature are assumed to be 300K 

 
Furthermore it has been shown that the almost instantaneous response of the electrons 

to the optical field allows an ultrafast modification of the optical properties whose 

relaxation time is strongly dependent on the metal structure. Since this nonlinear 

behaviour is dependent on Im(ε ) E(r,t) ⋅E(r,t) , electron and phonon temperatures, 

equations (2.18) must be solved through a self-consistent method together with 

Maxwell’s equations. This method will be addressed in chapter 4 when I will analyse 

the modelling of the nonlinear properties of a plasmonic metamaterial based on gold 

nanorod array.  
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Figure 2.3. Comparison between the real (top figure) and imaginary (bottom figure) part of the 
permittivity of gold (Au) obtained using the developed model (Red) against the values measured by Palik 
(Blue dash line) and Johnson and Christy (blue). The fitting was done focusing on the wavelength range 

from 300 nm - 1000 nm where the most prominent variations in the permittivity of gold occur 
 

2.3 Plasmonic metamaterials (linear properties) 
	  
Metamaterials are materials whose optical properties are derived from the structure of 

the materials composing it. Generally, metamaterials are composed of “meta-atoms” 

which are individual elements whose structure is repeated through all the 

metamaterial[13]. In the case of a metamaterial based on nanorods, a meta-atom 
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corresponds to only one nanorod within a square-base unit cell of size one nanorod 

period as shown in figure 2.4. 

 

Figure 2.4. Schematic of a nanorod-array based metamaterial showing the permittivity of the embedding 
medium (εin) and of the rod (εout).  

 

The resultant optical properties are a consequence of averaging the optical properties of 

all the meta-atoms. Given that all the meta-atoms are equal, the average electric field 

over the whole metamaterial is the average electric field over a single meta-atom: 

 

!
E = 1

V
!
Ed 3r

V
∫           (2.21) 

Where V is the volume of a meta-atom. Therefore an effective permittivity εeff  can be 

defined between the average electric field and the average displacement field (defined 

in the same fashion of equation 2.21): 

 
!
D = εeff

!
E            (2.22) 

p
d

x y

z

εinεout
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Equation (2.22) is known as an effective medium approximation [13].The meta-atoms 

of a nanorod based metamaterial (a nanorod unit cell) have anisotropic properties 

because the structure of the nanorod is isotropic in the x and y direction but varies in the 

z direction. In this case εeff  is an anisotropic tensor: 

 

εeff =
ε⊥ 0 0
0 ε⊥ 0
0 0 ε!

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

       (2.23) 

Where ε⊥ is the permittivity along the x and y direction and  ε!  is the permittivity along 

the z direction (Figure 2.3). Notice that this approximation assumes an homogeneous 

electric field over the meta-atom. In the case the field is not homogeneous εeff  will 

have additional contributions from non-diagonal terms. The value of ε⊥  and  ε!  are 

dependent on the permittivities of the composing materials. Their value can be obtained 

by calculating the average electric and displacement field of an infinitely large 

metamaterial along all the directions [14]. Therefore one meta-atom of this material 

corresponds to an infinitely long rod as seen in figure 2.3. If the rod is placed in a 

uniform electric field  
!
Eout , a polarization field  

!
Ein  is created inside it, having the same 

direction of 
!
Eout . Thus the field  

!
Ein  must satisfy the boundary conditions at the surface 

of the rod. If the direction of  
!
Eout is perpendicular to the rod axis (i.e. the x direction or 

the y direction), the boundary conditions are the continuity of the tangential component 

of the electric field and of the normal component of the displacement field. Furthermore 

it can be shown that for the fields given before the corresponding potentials outside and 

inside the rod in cylindrical coordinates are [15] : 

φin = Einr cosφ                                  (2.24) 

φout = (Eoutr −
B1
r
)cosφ               (2.25) 
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where B1 is a constant found through the boundary conditions which are  

−∂φin ∂φ
r=d /2 = −∂φout ∂φ

r=d /2  for the tangential electric field components and 

−ε in ∂φin ∂r
r=d /2 = −εout ∂φout ∂r

r=d /2  for the normal displacement field components (ε in

εout  and d are defined as shown in Figure 2.3), generating the following system of 

equations: 

Eout −
4B1
d 2

= Ein

εout (Eout +
4B1
d 2
) = ε inEin

           (2.26) 

Solving equations (2.26) we obtain: 

                   
 

2εout
εout + ε in

!
Eout =

!
Ein           (2.27) 

Since  
!
Ein  has the same direction as  

!
Eout . Therefore using equation (2.21) the average 

electric field in the x and y direction is: 

 

!
E⊥ = N

!
Ein + (1− N )

!
Eout = N

!
Ein + (1− N )

εout + ε in
2εout

!
Ein             (2.28) 

Where N = π (d / 2)2 / p2  corresponds to the inclusion fraction which is the ratio 

between the volumes of the rod and the meta-atom. The same analysis can be done for 

the displacement field where it is obtained: 

 

!
D⊥ = Nε in

!
Ein + (1− N )εout

!
Eout = Nε in

!
Ein + (1− N )

εout + ε in
2

!
Ein        (2.29) 

Therefore through equation (2.22), (2.28) and (2.29) it is possible to find the effective 

permittivity along the x and y direction. 

  ε⊥ =
Nε inεout + (1− N )εout

εout + ε in
2

Nεout + (1− N )
εout + ε in
2

              (2.30) 
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If the direction of  
!
Eout is parallel to the rod axis (i.e. the z direction), the only boundary 

condition that needs to be satisfied is that the tangential components of the electric field 

are continuous in the rod surface. Therefore Ein = Eout  and the analysis is simpler. The 

average electric field is then: 

 
 
!
E" = N

!
Ein + (1− N )

!
Eout =

!
Ein       (2.31) 

and the average displacement field is: 

 
!
D" = Nε in

!
Ein + (1− N )εout

!
Eout = Nε in

!
Ein + (1− N )εout

!
Ein                (2.32) 

Therefore the effective permittivity along the z-direction is: 

 ε! = Nε in + (1− N )εout             (2.33) 

Experimentally, the nanorods composing the metamaterial may be very small and their 

optical properties can be approximated better to those of elongated ellipsoids rather than 

to infinitely long rods. Therefore within this model both  ε!  and ε⊥ are dependent on the 

rod length. The details of this model can be found in [16]. Indeed this model provides 

better precision quantitatively in the description of the optical response of low aspect 

ratio nanorods, whereas equations (2.30, 2.33) provide a better description for high 

aspect ratio nanorods. However both models provide qualitatively the same features and 

equations (2.30, 2.33) allow an accurate description of the nanorod systems analysed 

through this entire thesis. 

 

The anisotropic tensor-like permittivity of the nanorods makes their optical properties 

polarization dependent. Thus for plane waves with electric field 

 
!
E = Ex exp(i(kxx + kyy + kzz))î  (electric field perpendicular to the nanorods axis or TE 

polarized) the dispersion relation is [17]: 

kx
2 + ky

2 + kz
2 = ε⊥k0

2       (2.34) 
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Here kx,y,z  are the components of the wave vector and k0 = 2π / λ  is the magnitude of 

the wave vector in vacuum. These are called ordinary waves since they follow a similar 

relation to that of waves propagating in an isotropic medium. For plane waves with 

electric field  
!
E = (Ey ĵ + Ezk̂)exp(i(kxx + kyy + kzz)) (electric field parallel to the nanorod 

axis or TM polarized) the dispersion relation is: 

 
kx
2 + ky

2 +
ε!
ε⊥

kz
2 = ε!k0

2      (2.35) 

These are called extraordinary waves. Unlike equation (2.34) which depends solely on 

ε⊥ , equation (2.35) defines two different regimes depending on the sign of the real part 

of  ε!  and ε⊥ . If both have the same sign, equation (2.35) defines an ellipse (elliptic 

dispersion) with respect to the components of the wave vector ( kx,y,z ) whereas if they 

have different sign it defines a hyperboloid (hyperbolic dispersion). An elliptic 

dispersion allows the same optical properties as the spherical dispersion corresponding 

to isotropic materials, such as a maximum value in the magnitude of the wave vector 

depending on the refractive index. In contrast a hyperbolic dispersion has no limit in the 

magnitude of the wave vector. Since the spatial extent of the wave is related to the 

inverse of the wave vector, the hyperbolic dispersion allows the propagation of highly 

confined waves [18] 

 

Additionally in the case of extraordinary waves it is possible to define an effective 

permittivity (εTM ). Therefore we can assume the following dispersion relation at the 

place of equation (2.35) 

kx
2 + ky

2 + kz
2 = εTM k0

2          (2.36) 
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For a wave coming from a medium with permittivity ε0  at an angle of incidence (θi), 

inpinging at the surface of the anisotropic medium, it can be demonstrated using both 

equations  (2.35, 2.36) that εTM  depends on θi. Thus replacing kz
2  in equation (2.35) 

using equation (2.36), and using Snell’s law to obtain kx
2 + ky

2 = k0
2ε0 sin

2θi , we obtain 

the following expression for εTM  [16]: 

 
εTM = ε⊥ + ε0 sin

2θi (1−
ε⊥

ε!
)      (2.37) 

In chapter 4 I will recall equations (2.30), (2.33), (2.37) but in that case I will replace 

the permittivity ε in  with that of a metal, allowing the description of our plasmonic 

metamaterial; a gold nanorod array. I will now discuss the different consequences on 

the values of the effective permittivity and I will describe the different features of the 

optical response of this kind of metamaterials.  

2.4 Theory for the nonlinear behavior of metals.  
	  
The definition of the nonlinear refractive index defined through equation 2.8 is 

indirectly related to the theory developed in the section 2.2, as the nonlinear refractive 

index is intensity dependent rather than electron and lattice temperature dependent. 

Therefore this section is devoted to the analysis of the relation between electron 

temperature and the intensity of the incident beam.  This will allow us to analyze the 

results obtained through our experimental technique (the z-scan described in the next 

chapter) with the theory developed in all the previous sections.  

 

Equation (2.8) relates the nonlinear refractive index to the intensity of the beam. This 

intensity corresponds to the power of the beam, which is the variation of the beam’s 

energy over a period of time. Experimentally since the variation of the refractive index 
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is measured over a time interval in which a beam of given intensity illuminates the 

sample, this definition allows a good approximate description of the nonlinear optical 

response of the material. However theoretically this is not an accurate description of the 

value of the refractive index.  Consider the measurement of the refractive index at a 

given time t. At that time the value of the refractive index is n(t). If the material is 

nonlinear, n(t) depends on the value of the beam intensity I0 (t)  applied at the time of 

the measurement of n(t). Thus, since the intensity is defined as 

I0 (t) = (E(t)− E(t0 )) / (t − t0 ) , it depends on the value of the beam’s energy at a certain 

time t0  and the value of the energy at time t. Thus n(t) depends on a certain time t0  and 

the energy at that time.  However the electron and phonon temperature dependence of 

the metallic permittivity described in section 2.2, implies that n(t) only depends on the 

energy of the electrons and phonons at a given time t and it is not relative to any 

specific time t0 .  

 

To overcome this problem, it is possible to define a nonlinear refractive index n(t) 

depending on the energy stored in the material at time t ( ). This stored energy 

corresponds to the additional energy within the material causing the modification of the 

material’s optical properties. Therefore the stored energy is modified as the material 

absorbs additional energy provided by an input energy from an incoming beam . 

Thus the stored energy at a time t+dt is related to the stored energy at time t through: 

     (2.38) 

Where A is the material’s absorption and  is the input energy provided in a time dt. 

Since the absorption of the material is dependent on its refractive index, thus A depends 

Es (t)

Ei (t)

Es (t + dt) = AdEi + Es (t)

dEi
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on the stored energy. Dividing equation (2.34) by dt and showing explicitly the 

dependence of A on the stored energy, we obtained: 

            (2.39) 

where is the input intensity. Equation (2.39) defines then the evolution 

of the stored energy in the material for a given input beam intensity. This equation can 

be easily solved if A is expanded using taylor to first order with respect to . 

Therefore equation (2.39) becomes  

                (2.40) 

The solution is: 

                                (2.41)  

where . The dependence in the linear absorption on the stored energy 

implied by equation (2.41) shows that the nonlinear properties depend on the linear 

properties of the medium. This is an important remark since I will show in Chapters 4 

and 6 that through the design of the linear properties the nonlinear properties can be 

enhanced strongly. 

 

In the experiments the input intensity is provided through femtosecond pulses. Thus 

assuming that these pulses have a Gaussian profile in time, the intensity of these pulses 

is  where is the pulse duration and is the maximum 

intensity of the pulse. This intensity is related to the total pulse energy  ( ) through 

. Furthermore using equation (2.41) the stored energy is

Es = (A0 / B 0 )(exp(B0Ep )−1) . Thus we can compute the variation of the material’s 

dEs (t)
dt

= A(Es (t))Ii (t)

Ii (t) = dEi (t) / dt

Es (t)

dEs (t)
dt

= (A0 +
dA
dEs Es=0

Es (t))Ii (t)

Es (t) =
A0
B0
(exp(B0 Ii (t ')dt ')−1)

0

t

∫

B0 = dA / dEs Es=0

I(t) = I0 exp(−t
2 / 2td

2 ) td I0

Ep

I0 = Ep / (td π )
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refractive index and this one must be equivalent to the variation obtained using equation 

(2.8). Therefore: 

n(Es )− n0 = n2I0       (2.42) 

and (both real and imaginary parts) can be calculated to compare the results obtained 

experimentally and theoretically. In the particular case of metals, the stored energy is 

directly related to the energy of the electron gas in the conduction band: 

           (2.43) 

Where V is the volume of the material storing energy. Therefore the theory used in 

section 2.2 (and section 2.3 as it will be shown in chapter 4) can be used together with 

equations (2.41-2.43) to calculate the theoretical value of  for a metal.  

 

As a final remark it is worth mentioning that in equation (2.39) there is no mechanism 

added leading to the decrease of the stored energy by the material. In the case of metals 

there is a mechanism related to the electron-phonon scattering. However since the 

nonlinear properties are being measured using femtoseconds pulses (as it will be shown 

in the next chapter), during this short period of time, the contribution of this scattering 

is very small and can be neglected.  

2.5 Conclusion 
 

In this chapter I have given the basic theory that allows us to understand and 

characterize the linear and nonlinear optical properties of metals showing how the 

intensity of light increases the scattering of the electrons in the conduction band 

modifying their optical response. The ultrafast dynamics of this process renders this 

nonlinear behaviour attractive for applications in ultrafast nonlinear optics. Additionally 

I have given an introduction to the effective medium theory, which is used to describe 

n2

Es = (1 / 2)CeTe
2V

n2
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the linear optical properties of a nanorod array obtaining an effective permittivity 

dependent on the materials composing them and the dimensions of the nanorods. 

Finally I have shown how the variation of the refractive index of a nonlinear material is 

directly related to the energy stored in it, which in our case is provided optically.  In 

chapter 4, I will show through these equations that the high optical nonlinearity of a 

gold nanorod array around the plasmon resonances is related to their high optical 

absorption.  
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Chapter 3: Z-scan technique 
 

In this chapter the Z-Scan technique, the experimental method used to measure the 

intensity dependent refractive index will be described. Firstly the experimental curves 

obtained through this technique; the close aperture curve and open aperture curve will 

be described theoretically. It will be shown that these curves can be easily represented 

as a simple polynomial function dependent on the real and imaginary part of the third 

order nonlinear susceptibility. Secondly I will describe the setup built for the realization 

of the Z-scan technique. This setup will be composed of different optical elements 

allowing the polarization, wavelength and angle dependence of the measurements. 

Finally, as an example of the measurements obtained through the z-scan technique, I 

will characterize the third order nonlinear susceptibility of gold smooth film at 

wavelengths close to the interband transition (~550 nm). The results obtained will be 

compared to those predicted through the theory presented in chapter 2. 

 

 

 

 

 

 

 

 

 

 

 



	  
38	  

3.1 The Z-Scan technique. 
	  
To characterize the optical properties of any material, its optical reflection (the ratio 

between the incident intensity and the reflected intensity) and transmission (the ratio 

between the incident intensity and the transmitted intensity) is usually measured. These 

two are linked directly to the refractive index of the material and therefore through them 

it is possible to derive its value. The same analysis applies for a material with an 

intensity dependent refractive index (I will refer to these materials as nonlinear 

materials). However as a consequence of equation (2.8), the measured value of the 

refractive index depends on the intensity of light used in the measurement. Therefore it 

is possible to conclude that several measurements at different intensities are needed to 

retrieve the value of the corresponding nonlinearity of the nonlinear material related to 

.  

 

In 1990 in a paper called “Sensitive measurement of optical nonlinearities using a single 

beam” a method was proposed to allow the measurement through a continuum range of 

intensity values, of the optical transmissibility through a given nonlinear material[1].  

 

Figure 3.1 Thin film of a nonlinear material (yellow film) scanned through the focus of a Gaussian beam. 
 

This is achieved by scanning a thin film of the nonlinear material over different position 

values around the focus of a Gaussian beam as shown in figure 3.1. 

n2

z
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Assuming a TEM00 Gaussian beam of beam waist radius travelling in the z+ 

direction and having its focus at , its intensity is: 

    (3.1)   

where  is the beam radius with  is the diffraction 

length of the beam and  is the relation between the wave vector and the 

wavelength. Therefore as a consequence of the intensity dependent refractive index 

(equation (2.8)) and equation (3.1), the optical field transmitted through the thin film 

varies according to the position of the film on the Gaussian beam. Furthermore if the 

film is thin such that , the value of the refractive index at a certain position over 

the film depends solely on the intensity value at that point ( ) and the 

contributions from self-refraction processes occurring as a result of the propagation of 

the Gaussian beam through the nonlinear material, will be negligible. [1].  Under this 

condition through this method known as “Z-Scan”, the nonlinear processes occurring in 

the nonlinear thin film can be characterized by measuring two of the nonlinear effects 

affecting the transmitted optical field: self-focusing and nonlinear absorption. 

 

Self-focusing is a consequence of the phase added to the wave as a result of the field’s 

propagation through the nonlinear material. This phase can be expressed in terms of the 

intensity dependent refractive index and the effective length of the thin film (

 with L being the film thickness and is the linear absorption). 

Using equation (2.8) we obtain: 

               (3.2) 
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Where the sub index r corresponds to the real part of and . Therefore the first term 

is the linear phase ( ), which does not depend on the intensity whereas the second 

phase is the nonlinear phase ( ) dependent on the intensity. Using equation (3.1) we 

find that the nonlinear phase is dependent on both r and z: 

                (3.3) 

Equation (3.3) is written suggestively to show that the added nonlinear phase can also 

be thought of the phase added by the propagation through a film having refractive index 

( ) but with a Gaussian varying thickness. Therefore taking into account both linear 

and nonlinear phases, the propagation through the nonlinear thin film is similar to the 

propagation through a divergent or convergent lens depending on whether the value of 

is negative or positive as shown pictorically in figure 3.2.  

 

Figure 3.2 Gaussian shaped divergent and convergent lens corresponding to the two possible signs of the 
nonlinear refraction. The beam profile is shown (red) to evidenced the modification of the effective film 

thickness in each case 
 

Thus the transmitted optical field will experience focusing or defocusing depending on 

the sign of .  
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The detection of this optical effect can be achieved by measuring the variation in the 

transmitted optical intensity of the optical field through an aperture positioned after the 

thin film against the position of the film (z) as shown schematically in figure 3.3(a). 

 

Figure 3.3. The dots indicate the position of the sample (blue) before the focus (red) at the focus (green) 
after the focus of the Gaussian beam a) Schematic of the z-scan having at the output an aperture with 

variable size represented by the dashed line in the left. The colored beams in the left represent the self-
focusing obtained at every position marked by the dots. The color of the beam is related to the color of 

the dot. The red arrow represents the direction of propagation of the beam b) Typical close aperture 
curves. c) Typical open aperture curves. Both positive (black) and negative (red dashed line) cases are 

shown. The curves in b) and c) were plotted using equations (3.6) and (3.8)  
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Indeed, in the case of a positive sign of , when the film is positioned outside but 

before the focus of the Gaussian beam, the focus of the transmitted optical field is 

shifted towards the film. Thus, the optical field reaching the aperture is more spread out 

and the transmitted intensity after the aperture is reduced. After the focus, the film 

focuses the transmitted optical field, increasing the transmitted intensity after the 

aperture. The inverse effect occurs for the negative sign ofn2r . The variation of the 

transmission after the aperture is Tnl (z) /T0  with Tnl (z)  being the total transmission after 

the aperture and T0  being the linear transmission measured either at low intensity or 

away from the Gaussian beam focus in order to obtained a negligible dependence on the 

beam intensity. The curves obtained when plotting the variation of the transmission 

against the sample position (z) are shown for both cases in figure 3.3(b).  The 

mathematical expression for these curves can be obtained by expanding the transmitted 

beam as a series of Gaussian beams with different diffraction. In the far field (the 

aperture position is far from the thin film at a distance ) and for a small size 

aperture having a transmission  it can be shown [1, 2] that the resultant 

expression can be approximated as: 

     (3.4) 

With ,  and the scanning direction is from negative to positive 

values of z. The use of this expression for the fitting analysis of the measured curves 

will be shown later in this chapter. In conclusion, by scanning the film along the focus 

of a Gaussian beam it is possible to measure its self-focusing through the measurement 

of the transmission variation after an aperture. Thus, without the aperture, all the 

n2r

d >> z0

S <<1
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transmitted intensity will be measured and the effect of the self-focusing will not be 

observed in the z-scan.  

Nonlinear absorption is the dependence of the film absorption to the intensity of the 

beam. Thus the transmitted intensity is computed through the intensity dependent 

absorption coefficient α '(I )  through: 

   I = I0 exp(−α '(I )Leff ) = I0 exp(−(α + β I )Leff )               (3.5) 

With  being the linear absorption coefficient and  being the nonlinear absorption 

coefficient. Thus depending on the incident intensity on the film, the transmitted 

intensity will be either reduced or increased depending on the sign of . In the same 

fashion as equation (3.3), we obtained through equation (3.1) a position dependent 

absorption: 

    (3.6) 

Therefore the maximum variation in the absorption is obtained when the film is at the 

focus of the Gaussian beam, whereas away from the focus this variation decreases. The 

measurement of this variation can also be realized by measuring the transmission 

variation after the film ( ) directly obtaining the curves shown in figure 3.3c. 

Notice that in this case there will be a transmission variation regardless of the aperture 

size as this variation is a direct consequence of the film’s nonlinear absorption. 

Furthermore, it can be shown that in the far field the transmission variation can be 

approximated as: 

    (3.7) 

With . The imaginary part of  is related to the nonlinear absorption 

coefficient using  and through this measurement its value is obtained.  
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In general a material can have both real and imaginary part of , thus the measurement 

of the transmission variation after the aperture (with transmission S<<1) has the 

contribution of both self-focusing and nonlinear absorption. Therefore the expression of 

the transmission variation is a combination of equations (3.4) and (3.7): 

        (3.8) 

In order to distinguish between both of them an additional measurement without the 

aperture is necessary. This measurement will be only sensitive to the nonlinear 

absorption and the curve obtained can be readily fitted using only equation (3.7) 

obtaining the value of . Afterwards using this value and equation (3.8), the 

measurement of the transmission variation after the aperture can be fitted obtainingΔφ0 . 

The measurement without the aperture is known as open aperture z-scan, whereas the 

measurement with the aperture is known as close aperture z-scan.  

 

In the following section, I will describe the experimental setup used to perform the z-

scan. Additionally in section 3.3 I will describe the measurement of the real and 

imaginary part of  for gold around 550 nm where I will emphasize in the fitting 

analysis used in combination with equations (3.7) and (3.8) to find with an specific error 

in the values of  and . 

3.2 The z-scan setup 
	  
The diagram containing all the elements required to perform a z-scan measurement is 

shown in figure 3.4. The diagram is divided in three different sections: The 

femtosecond laser, the z-scan setup and the compression setup. 
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The femtosecond laser generates light pulses, which are used for the z-scan 

measurement. The laser is based on a Ti:Saphire crystal which is pumped through a 532 

nm wavelength beam to generate 800 nm wavelength pulses at a repetition rate of 150 

kHz having a pulse duration of 50 fs. These pulses are sent to an optical parametric 

amplifier (OPA), which through wave mixing processes generates at the output p-

polarized pulses having a broad wavelength range between 550 nm and 1700 nm.  

 

At the input of the z-scan setup, a half-wave plate (λ/2) to change as desired the 

polarization of the beam, for polarization dependent z-scan measurements. Additionally 

there is an optical density (OD) to control the input power into the z-scan, to control the 

nonlinear response of the sample being analyzed. Subsequently the light is divided 

through a glass slide into a path going towards a detector (D1) and a path going towards 

a beam expander (BE). The beam expander increases the radius of the beam to fill the 

input of an objective.  

 

Figure 3.4  Schematic z-scan. (HM) Half-mirror; the beam is reflected and then in the return path it is 
transmitted above the mirror. (λ/2) Half-wave plate. (OD) optical density. (BE) Beam expander (O1, 

O2) Objectives. (P1,P2) Prisms. (D1, D2) Photodiode detectors. (C1) CCD camera. (PI) Piezo positioner 
(θ) The sample can be tilted as shown with the arrows for angular dependent measurements. 
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Therefore the light will be focused to a diffraction-limited spot to achieve the maximum 

intensity illuminating the sample and the beam waist at the focus will be related to the 

numerical aperture (NA) of the lens through . The chosen objectives are 

long working distance objectives, as the sample must rotate for angular dependent 

measurements. 

 

Furthermore the numerical aperture must be large but not large enough as to make the 

beam strongly divergent at the output making it difficult to collect all the transmitted 

power later as required for an open aperture z-scan measurement. Additionally the 

nanopositioner (PI) scanning range is zrange = 100 µm  and to ensure the z-scan curve is 

within it, this range must not be smaller than 8z0  as can be seen on figure 3.3 (b-c). 

Therefore there is a limit in the minimum numerical aperture required to do z-scan at a 

given maximum wavelength. This is 

  
zrange < 8z0 =

8λ
πNA2

NA > 8λ
πzrange

                                       (3.9) 

Which for a maximum wavelength of 1700 nm this limit is NA > 0.13. In the 

constructed setup the focusing objective (O1) has a numerical aperture of 0.28 and a 

focal length of 20 mm whereas the collection objective (O2) has a numerical aperture of 

0.42 and a focal length of 10 mm, thus the z-scan curves obtained are well within the 

translation range of the piezo. After the collection objective a glass slide divides the 

light into two paths: one towards a detector (D2) and the other towards a CCD camera 

(C1). The functionality of the CCD camera is to allow the visualization of the beam’s 

position in the sample giving us feedback on whether the beam is positioned in the spot 

of our interest or on the irregularities on the sample’s surface. Additionally it let us 

w0 = λ / (πNA)
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verify if the sample is positioned in the focus of the Gaussian beam, as the sample will 

be scanned around that point.  

 

The detectors D1 and D2 are InGaAs high-speed photodiodes with a wavelength 

detection range of 500 nm -1700 nm, rise time of 5 ns and a junction capacitance of 50 

pf. The high-speed photodiodes are required in order to collect the electrical signal 

generated by each pulse. Therefore to compute the transmission of the sample the ratio 

between the voltages of the detectors is computed allowing a measurement with a low 

dependence in the fluctuations of the laser intensity. In order to compute this ratio 

accurately, the electrical signals generated by the same pulse must be compared. In 

order to ensure this, the detectors are connected to a simultaneous sampling system 

operating at a speed of 2 MS/s (megasamples per second), which records the voltage 

signal of the pulses with high time resolution. Additionally, these photodiodes are 

loaded with a resistance of 50 kΩ producing an RC decay time in the photodiode of 

. The selection of this resistance was done experimentally to allow an 

increased response in the photodiodes while also having a differentiation between the 

electrical signals of each pulse according to the separation time between them (the 

inverse of the repetition rate frequency which is ~6.7 μs). The electrical signals in the 

photodiodes are recorded using the computer through software built using MATLAB. 

The electrical signal on both D1 and D2 are integrated over an interval of 1s to average 

between a large number of pulses. Then the ratio between them is computed obtaining 

an error of ~0.1% in the measured transmission. The transmission is computed as the 

sample is scanned over the whole range of the nanopositioner (100 μm) every 1 μm (or 

less if an increased resolution is needed) obtaining the z-scan curve.  

 

τ = RC = 2.5µs
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The z-scan can be change between open or close aperture z-scan by moving the 

collection objective O2. As shown in figure 3.4, depending on the position of O2 the 

output beam can be collimated, divergent or focused. Thus we can focus the beam onto 

the detector D2 allowing all the transmitted light to be detected thus realizing an open 

aperture z-scan (blue beam) or we can diverge it to allow only a part of the beam to be 

detected to realize a close aperture z-scan (red beam) 

 

The compression setup allows the compensation for the pulse dispersion when this 

propagates through the objective O1. This is a consequence of the wavelength 

dependence of the glass refractive index, which is larger for shorter wavelengths. 

Therefore the phase added to the shorter wavelength components of a pulse is larger 

thus increasing the pulse duration. The compression setup shown in figure 3.4 is 

realized with the prisms P1 and P2 to increase the phase added to longer wavelengths 

through the extra distance they have to travel on the second prism, evidenced by the red 

line in figure 3.4 (The blue line show the path of the shorter wavelengths). This 

compression setup can be accessed through the reflection of the beam from a half-

mirror (HM). The larger deflection of the blue line with respect to the red line is a 

consequence of the larger refractive index at shorter wavelengths. As a result at the 

output of the objective the paths travelled by both longer and shorter wavelengths are 

the same and the pulse retains its initial duration. Furthermore in order to minimize the 

reflections of p-polarized light in the compression setup, the angle of incidence of the 

beam on the prisms must be at the Brewster angle. However this angle varies with 

wavelength and the compression setup must change according to this variation. 

Therefore the mirror HM, can be tilted to obtain the angle of incidence required and to 
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achieve the incidence at the tip of the prism, the input prism (P1) can be moved in the y 

direction (as shown in figure 3.4).  

 

The distance required between the prism apexes to compensate for the objective O1 

dispersion, is found using FROG (Frequency resolved optical gating), which allows the 

characterization of the pulse in time and wavelength. Therefore we can calibrate this 

distance in order to obtain the shortest pulse at the output of the objective O1. Once this 

distance is characterized it is possible to calibrate it even more accurately by slightly 

changing it while doing a z-scan measurement. Therefore the increased variation of the 

transmission measured through the z-scan at a given apex distance, will be a signature 

that the pulse incident on the sample has the shortest duration. 

3.3 Z-scan measurements on gold smooth film 
	  
From now on for the results shown here and in chapter 4, we shall refer to the real part 

of the nonlinear refractive coefficient (n2r ) as γ , as it is commonly found in the 

literature [1]. Using the z-scan technique a 50 nm gold film was measured at the 

wavelengths of 550 nm, 565 nm, 575 nm and 600 nm, which are the wavelengths 

provided through manual calibration of the OPA.  

 

Figure 3.5 (left) Close aperture z-scan on a smooth gold film (50 nm) at a 550 nm wavelength. (right) 
Open aperture z-scan. Notice the asymmetry of the valley and peak of the close aperture z-scan 

corresponding to the contributions of both nonlinear absorption and refraction. These curves correspond 
to   
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The typical close and open aperture curves corresponding for the case of 550 nm are 

shown in figure 3.5. Notice that these curves are already fitted using Equation (3.8). 

This fitting is realized by using the least squares method. 

 

 Thus for an obtained transmission variation  from a close aperture or open aperture 

z-scan, the error between these two curves is calculated through: 

     (3.9) 

Thus E is numerically evaluated for a broad range of values for  and using 

MATLAB in order to find those values giving the minimum value for E. 

 

Through this method this allows us to obtain the values of  and  within an error 

of ±0.025. Recalling the relations derived in section 3.1 which relate these coefficients 

to the real and imaginary part of : 

Δφ0 = kγ I0Leff                          (3.10) 

The values obtained are shown in Table 3.1 The pulse energy is derived, measuring the 

power of the beam at the input of the z-scan and dividing it by the repetition rate. The 

value of corresponding to the beam intensity at the material’s surface can be 

calculated from the pulse energy. Furthermore this value must be normalized to the area 

of excitation, which corresponds to the area of the Gaussian beam at the focus.  

   Pulse Energy(nJ) (cm/GW) γ  (cm2/W) 
550 0.05 0.2 1 272.32±136 (4.77±0.6)×10-12 
565 0.05 0.2 1.33 225.1±112 (4.05±0.5)×10-12 
575 0.05 0.2 2.5 127.43±63.7 (2.33±0.3)×10-12 
600 0.05 0.1 3 121.7±60.9 (1.16±0.3)×10-12 

Table 3.1 (Nonlinear absorption) and γ (nonlinear refraction) for a gold thin film of 50 nm at different 
wavelengths. The pulse width is 50 fs. 

 

ΔT

E = (ΔT 2 − Tnl (z)
T0

⎛
⎝⎜

⎞
⎠⎟

2

)dz∫

Δφ0 Δψ

Δφ0 Δψ

n2

Δψ = β I0Leff / 2 β = 2kn2i

I0

λ(nm) Δψ Δφ0 β

β



	  
51	  

This can be calculated from the Gaussian beam width, which is related to the numerical 

aperture. Therefore the normalized intensity is I0 = I0
* / (π (aw0 )

2 ) = I0
* / (π (aλ / 2NA)2 )  

where  corresponds to the total intensity calculated using the pulse energy

. An additional constant (a) multiplies the value of the waist since 

according to the resulting z-scan, the theoretical value of the Rayleigh length does not 

correspond exactly to the value required to fit the obtained z-scan curve, this probably is 

a consequence of the beam not being a perfect Gaussian beam at the focus. Through the 

fitting software this constant can be obtained and it is approximately ~1.73 . The 

effective length is calculated taking into account the wavelength dependent absorption 

of the gold film ( ) through  where L=50 nm. Figure 3.6(a-b) shows 

a wavelength dependent graph for the values retrieved of γ  and . The values 

obtained are compared with previous values measured for gold by previous authors [3]. 

Since the optical nonlinearity of gold depends on the pulse width, only those results 

obtained having the same pulse widths are compared. An author obtained a result of 

n2i = 5.73×10
−15m2 /W  at 600nm for a pulse width of 200 fs. In our case this result is 

n2i = 5.81×10
−17m2 /W which is two orders of magnitude smaller. This is in agreement 

with the statement given by the same author, which says that the optical nonlinearity 

decreases with the pulse width. This statement is also a consequence of the relation 

I0 = Ep / (td π ) , which shows how the intensity increases with the pulse width thus 

making smaller the measured optical nonlinearity.  These values are compared using the 

theory developed in section 2.3. In this case the volume storing energy corresponds to 

that illuminated by the Gaussian beam at the focus. Thus this volume is

V = π (aλ / 2NA)2L .  

 

I0
*

I0
* = Ep / (td π )

α Leff = (1− e
−αL ) /α

β
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Therefore the evolution of the absorption of that volume is computed over time to 

calculate the stored energy and then the variation of the refractive index (equations 

(2.41-2.43)) is compared with the values experimentally obtained. The results are 

shown in 3.6 (c-d) for both γ  and . Additionally in figure 3.6 (a-b) the red dash line 

represents the results obtained theoretically for comparision with the experimental 

results. 

 

Figure 3.6. Measured (a) nonlinear refraction  (b) nonlinear absorption for a L=50 nm gold film on SiO2. 
(c-d) Numerically calculated using equation 2.38 against angle of incidence from air.  In the numerical 

calculations a Gaussian shaped 50 fs pulse is assumed. In figure a and b the red dash line is a cross-
section from figures c and d at 0 angle of incidence for further comparison with the obtained theoretical 

values. 
 

As expected the largest value for the optical nonlinearity is obtained around the 

interband transition of gold (~532 nm). For increasing wavelength both γ  and β  

decrease monotonically. 
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3.4 Conclusion 
	  
The z-scan technique measures both the nonlinear absorption and nonlinear refraction of 

a thin film by scanning it through the focus of a Gaussian beam. The measured curves 

can be fitted through polynomial curves obtaining the values of the nonlinear 

coefficients. Through this technique I have measured the nonlinear optical properties of 

a gold film at several wavelengths and through the theory developed in chapter two I 

have shown a good fit to the results obtained experimentally and those obtained 

theoretically.  
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Chapter 4: Experimental characterization and analysis of the 
linear and nonlinear optical properties of a plasmonic 
metamaterial 
	  

 
The linear and nonlinear optical properties of a plasmonic metamaterial based on gold 

nanorod arrays will be characterized in this chapter. Firstly, I will start with the 

description of the linear optical properties both experimentally and theoretically. It will 

be shown that our nanorod sample possesses two plasmonic resonances: A transverse 

resonance at 550 nm and a longitudinal resonance at 600 nm. These features will be 

analyzed within the theory developed in chapter two and it will be shown that they 

correspond to resonances in the value of the metamaterial’s effective permittivity. 

Secondly the theoretical results obtained for the linear optical properties will be used to 

analyze the nonlinear optical properties of the metamaterial. The results will show the 

strong enhacement of the nonlinear optical response around both plasmonic resonances. 

This behavior will be verified using the theory developed in chapter two sections 2.2 

and 2.4 and through the finite element method. Finally, measurements of the 

metamaterial’s third order nonlinear coefficient will be realized using the z-scan 

technique around these plasmonic resonances and I will compare the results with those 

obtained theoretically. 
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4.1 Effective medium theory for a plasmonic metamaterial. 
	  
As previously said in section 1.3, the permittivity of nanorod based metamaterials can 

be modeled as an anisotropic tensor having the expression shown in equation (2.23) 

with a permittivity ε⊥  perpendicular to the rod axis and a permittivity  ε!  parallel to the 

rod axis. Both of them are a function of the rod permittivity ε in  and the embedding 

medium εout . In the case of a gold based nanorod plasmonic metamaterial, ε in  

corresponds to the permittivity of a metal (Au) and εout  corresponds to the permittivity 

of a dielectric (in the case of our nanorod metamaterial it is Aluminum oxide (Al2O3) 

andεout = 2.89 ). However as a consequence of the nanorods fabrication procedure, the 

mean free path of electrons travelling inside them is reduced and an additional 

correction must be added to the bulk gold permittivity described in equation (2.13). 

Therefore the total permittivity of the nanorods is [1] 

ε in = ε r = εAu +
iω p

2τ (L − R)
ω (ωτ + i)(ωτR + iL)

                                (4.1) 

Where εAu  is the bulk permittivity of gold derived from the equation (2.13), L 

(=35.7nm) is the mean free path of electrons, R is the effective mean free path of 

electrons, restricted by the effects of the structure [1] and τ = 1/γ intra (ω ,Te,TL ) . In this 

case R is 13nm to fit the measured optical properties of the nanorod array sample 

analysed. Later I will discuss the consequences of the variation of R. Therefore taking 

into account the model described in section 2.2 for the permittivity of a metal and 

equations (2.30) and (2.33), we can calculate the wavelength dependence of the 

parameters ε⊥  and  ε!  for a given filling factor as shown in figure 4.1. As expected 

from the definition of equation (2.33) and the metal’s permittivity behavior in 

wavelength, the real part of  ε!  has values going from positive at shorter wavelengths to 
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negative at longer wavelengths. On the other hand, ε⊥  is always positive and has a 

resonance-like behavior at a wavelength around 550 nm.  

 

Figure 4.1. Real and imaginary part of εxy and εz calculated using equations (4.1) and theory developed in 
chapter 2 section 2.3. This is plotted for a filling factor of N=0.25 which is chosen to fit the measured 

extinction spectra of the nanorod array sample analyzed. The curves are calculated using equations (2.30, 
2.33) 

 

This resonance corresponds to the situation when the value of ε in  makes the 

denominator in equation (2.30) close to zero thus obtaining a resonant increase in the 

magnitude of both real and imaginary parts of ε⊥ . Since this resonance is related solely 

to the value of ε⊥ , it corresponds to the optical excitation of electrons in the rod along 

the x and y direction or in other words perpendicular to the rod axis. This resonance 

corresponds to the transverse plasmon resonance of the metamaterial and can be 

observed using either TE or TM polarized optical excitation. 
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An additional resonance arises under TM polarized excitation and corresponds to an 

additional resonance in equation (2.33). This resonance occurs when the value of  ε! ~ 0  

or ENZ (epsilon-near-zero) regime. Furthermore from equation (2.33) we observe that 

the resonance increases with increasing angle of incidence as a consequence of the 

increasing electric field component along z. This resonance corresponds to the 

longitudinal plasmon resonance of the metamaterial.  

 

Figure 4.2. (a) Numerically calculated extinction against wavelength and angle of incidence for a layer of 
150 nm nanorod metamaterial on glass (SiO2 n=1.5) calculated using the transfer matrix method. The 

metamaterial is illuminated with a TM wave, which reveals both the transverse and longitudinal 
resonance. (b) Measured extinction spectrum at (red) 20 degrees (black) 40 degrees and (blue) 60 

degrees. The position of the longitudinal and transverse resonance for the numerical analysis are fitted to 
match those of the measured spectrum through the parameter N=0.2536 
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Using equation (2.33) and the transfer matrix method it is possible to compute the 

extinction of the metamaterial defined as − log(T )  where T is its optical transmission 

for a TM polarized incident wave. The results are shown in Figure 4.2a and are 

compared to the experimentally measured extinction spectrum of a nanorod array 

sample fabricated through a self-assembly technique explained in [1] (Figure 4.2b).  At 

a wavelength of 550 nm and 600 nm we observe the corresponding transverse and 

longitudinal resonances of the metamaterial for both the theoretically calculated and the 

experimentally obtained extinction. In the case of TE polarized incident wave only the 

transverse resonance is excited.  

 

As a final remark, it is worth mentioning that the monotonical increase with angle of 

incidence in the extinction for the longitudinal plasmon resonance sometimes varies 

depending on the mean free path of the electrons (R). This effect is not taken into 

account through the effective medium described here and in section 2.3, as it needs to 

account for additional longitudinal plasmon resonances instead of only one. This effect 

is called nonlocality and results from the dependence on the perpendicular wave vector 

of the permittivity parameter ε z . The details in the analysis of this behavior can be 

found in references [2, 3] 

4.2 Nonlinear optical properties of a plasmonic metamaterial 
	  
The nonlinear optical properties of the metamaterial were modeled using the theory 

developed in section 2.4. Thus using the transfer matrix method and equation (2.33) 

together with equation (4.1), the dependence of the absorption coefficient of the 

metamaterial on the electron temperature is found. Furthermore the stored energy in the 

metamaterial is dependent on the electron temperature as shown in equation (2.43), 

where the volume storing the energy corresponds to the rods under the surface being 
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illuminated by the Gaussian beam. This volume can be calculated through the area at 

the focus of the beam. This is V = (π (w0 )
2 / (prod )

2 )(π (drod / 2)
2hrod )  where the first term 

in the multiplication corresponds to the number of rods under excitation, and the second 

term is the volume of a single rod ( prod  drod  and hrod  are the rod period, diameter and 

height respectively).  

 

Figure 4.3. (a) nonlinear absorption and (b) nonlinear refraction computed using the theory developed in 
section 2.2-2.4 together and the transfer matrix method. All the numerical parameters are the same as in 

figures 4.2 and 4.1. 
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Therefore the stored energy is dependent on the electron temperature and we can find 

the zero and first order coefficients of the Taylor’s expansion of the metamaterial 

absorption against the stored energy ( A0  and B0  of equation (2.41)).  

This allows us to find the final stored energy through equation (2.41) and to use 

equation (2.42) to derive the nonlinear coefficient n2  of the metamaterial. The results in 

the case of the nanorods analyzed in the previous section having the linear extinction 

shown in figure 4.2 are shown in figure 4.3 for both γ and β = 2kn2i  for a wavelength 

range of 450 nm -800 nm and angles of incidence from 0-70 degrees respectively. Since 

the evolution of the metamaterial’s absorption is computed taking into account the angle 

of incidence of the incoming wave, the variation in the absorption takes into account the 

contribution from both perpendicular and parallel components of the wave’s electric 

field. Thus the implicit anisotropy of the effective χ (3) for the metamaterial is shown in 

the angle dependence of both γ and β . In the following section I will analyze the 

consequence of this anisotropic nature of χ (3) relating it to the angular dependence of γ 

and β . 

4.3 Analysis of the anisotropy of χ(3)  
	  
The effective χ (3)of the metamaterial is a fourth rank tensor having 81 components. 

Thus the component in the i direction of the displacement field is given by:   

Di = ε ij 'Ek
j=1,2,3
∑ + χ i, j ,k ,l

(3)

j ,k ,l=1,2,3
∑ EjElEk     (4.2) 

Which can be written in the following way: 

Di = (ε ij '
j ,k ,l=1,2,3
∑ + χ i, j ,k ,l

(3) EkEl )Ej     (4.3) 
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Thus the resultant displacement field can be related to an anisotropic linear permittivity 

having as components the modified linear components (nonlinear anisotropic 

components): 

ε ij = ε ij '+ χ i, j ,k ,l
(3) EkEl

k ,l=1,2,3
∑         (4.4) 

The prime corresponds to the linear anisotropic component. In the case of diagonal 

anisotropic materials such as our nanorod array metamaterial, having diagonal linear 

components  ε xx ' = ε yy ' = ε⊥ ≠ ε zz ' = ε! , it can be shown through equation (2.35) that the 

effective linear permittivity can be expressed as [4]: 

εeff (θ ) =
ε xx 'ε zz '

ε xx 'sin
2θ + ε zz 'cos

2θ
       (4.5) 

Where θ is the propagation angle of the wave to which the wave’s electric field is 

dependent through  
!
E = Exî + Ezk̂ = E0 cos(θ )î + E0 sin(θ )k̂ ( î  and k̂  are unitary vectors 

along the x and z direction respectively).  To understand the dependence of the 

nonlinear effective permittivity in terms of the anisotropic tensor, we need to use 

equation (4.4) to replace each linear anisotropic component.  This equation allows three 

angular dependent contributions to the effective nonlinear anisotropic components: 

ε ij = ε ij '+ 3E0
2 (χ iizz

(3) sin2 (θ )+ χ iixx
(3) cos2(θ )+ χ iixz

(3) sin(θ )cos(θ ))           (4.6) 

Therefore in the case of the transverse resonance, which has a small variation for both 

of γ and β  with respect to the angle of incidence, we can conclude that in this 

resonance there is a contribution from both χ ijxx
(3) and χ ijzz

(3) since the sum of these 

contributions (the second and third term on the right hand side of equation (4.6)) has a 

vanishing angular dependence. However since the nonlinear coefficients for the 

longitudinal resonance increase with the angle we can conclude that the main 
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contribution comes from χ ijzz
(3)  (second term on the right hand side of equation (4.6)). 

Thus the effective nonlinear anisotropic components are: 

ε xx = ε xx '+ χ xxzz
(3) sin2 (θ )E0

2

ε zz = ε zz '+ χ zzzz
(3) sin2 (θ )E0

2     (4.7) 

Obtaining the effective nonlinear permittivity: 

εeffnl (θ ) =
ε xx '+ χ xxzz

(3) sin2 (θ )E0
2( ) ε zz '+ χ zzzz

(3) sin2 (θ )E0
2( )

ε xx '+ χ xxzz
(3) sin2 (θ )E0

2( )sin2θ + ε zz '+ χ zzzz
(3) sin2 (θ )E0

2( )cos2θ      
(4.8) 

 

To a first approximation we can assume that the nonlinear terms in the denominator of 

equation (4.8) can be negligible in comparison with the sum of the linear terms and thus 

the denominator remains unchanged. Applying this substitution and expanding the term 

in the numerator neglecting the terms in order 4 of E0 we arrive at the following 

expression: 

 

εeffnl (θ ) = εeff (θ )+
εeff (θ )sin

2(θ )χ xxzz
(3) E0

2

ε xx '
+
εeff (θ )sin

2(θ )χ zzzz
(3)E0

2

ε zz '
+ ...           (4.9) 

 

We can make an additional approximation assuming again that the nonlinear terms are 

very small compared to the linear term and thus Snell’s law can be written linearly as 

εeffnl (θ )sin
2(θ ) = εeff (θ )sin

2(θ ) = ε0 sin
2(θi )  where ε0  corresponds to the medium where 

the incident wave is coming from. Since the value of εeff (θ )  is also a function of the 

angle of incidence related to the Snell’s law we can rewrite equation (4.9) as: 

εeffnl (θi ) = εeff (θi )+
ε0 sin

2(θi )χ xxzz
(3) E0

2

ε xx '
+
ε0 sin

2(θi )χ zzzz
(3)E0

2

ε zz '
       (4.10) 
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As a result we can observe that the linear anisotropy can enhance strongly the effect of 

the nonlinear anisotropic coefficients in the effective nonlinear permittivity particularly 

if one of the linear anisotropic coefficients is close to zero. Since the longitudinal 

resonance occurs within the ENZ (epsilon near zero) regime, equation (4.10) allows the 

understanding of the large enhancement of the metamaterial’s optical nonlinearity 

obtained at this resonance (Figure 4.3).  

4.4 Finite element method modeling of the nonlinear optical properties of a 
plasmonic metamaterial 
	  
The optical properties of the plasmonic metamaterial were simulated using the finite 

element method [5], which accounts for the shape of the rods. Furthermore, to account 

as well for the non-homogeneous distribution of the electron temperature in the rods 

under optical excitation, the two-temperature model defined through equations (2.18) is 

also solved through the finite element method together with the Maxwell’s equations. 

The coupled solution of these two sets of equations requires a simulation in finite time 

elements since both sets are time dependent. However since the variations in time of the 

light’s electric field are very fast (in the case of a 550 nm wavelength wave this 

variation are in the order of the inverse of the frequency which is 

1/ω = 1/ ck = λ / (2πc) = 0.29 fs  ) and the time variation of the two temperature model 

is in the order of hundreds of femtoseconds, the full simulation of the system will 

require steps in the order of less than 0.05 fs to describe well the electromagnetic field 

and a time span of at least 1ps leading to a very time-consuming simulation.  

 

To overcome this problem, Maxwell’s equations were solved in the frequency domain 

for retrieving the power dissipation density over the rod volume  q(
!r ,ω ,t0 )  generated at 

a given time t0  by the power of a pulse having a Gaussian intensity profile 
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I(t) = I0 exp(−t
2 / 2td

2 )  where td  is the pulse duration. After that, the power dissipation 

density is introduced as an input to the two-temperature model, which is solved for 

larger time steps (Δt = 25 fs ) thus during this time period  q(
!r ,ω ,t0 )  is assume to be 

invariant. In terms of the two temperature model (equations 2.18) this can be expressed 

as: 

 
CeTe

∂Te(r,t)
∂t

= ∇⋅(Ke∇Te(r,t))− g(Te(r,t)−TL )+ q(
!r ,ω ,t0 )          (4.11) 

Retrieving for a specific time t = t0 + Δt , the electron temperature distribution 

Te(r,t0 + Δt) . Afterwards, the rod permittivity of the rod is calculated again but this 

time it will be position dependent as it is dependent on the electron temperature 

(equation (4.1) together with equations (2.15-2.17). Therefore the permittivity 

ε rod (ω ,Te(r,t0 + Δt))  is obtained, which is an input to the maxwell’s equations to 

retrieve the new power dissipation density for the next time step  q(
!r ,ω ,t0 + Δt) . This 

process is repeated until the pulse has passed and the intensity of the pulse is close to 

zero (About 3td after the maximum of the pulse intensity).  

 

The electron temperature will relax through electron-phonon coupling within some 

picoseconds. Therefore, for optical excitation with pulses in the femtosecond regime, 

the contribution of this coupling is negligible during the time when the optical 

excitation is occurring, and only equation (4.11) needs to be solved. The variation in the 

transmission defined as ΔT = (Tnl −T0 ) /T0  (where Tnl  corresponds to the transmission 

with optical excitation and T0  corresponds to the linear transmission without optical 

excitation) is computed using the theory developed in the previous section and the finite 
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element method developed here. The results are shown in figure 4.4. Both transmission 

variations are computed assuming an input pulse having energy of 1 pJ.  

 

Figure 4.4. (a) variation in the transmission computed using the finite element method coupled to 
equation (4.10) (b) variation in the transmission computed using the same method used in section 4.2 for 

computing the nonlinear coefficients. 
 

As expected at both transverse and longitudinal resonance in both cases we have a 

positive variation in the transmission corresponding to the negative value for beta found 

in both cases (figure 4.3a). Furthermore for the longitudinal resonance we have also a 

monotonic increase of the transmission variation. However the value of the achieved 

transmission variation is higher in FEM than in the case of the effective medium theory 
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and there is a larger contrast between the transmission variations in and out of 

resonance. 

 

In summary, the results of the finite element method are similar to those using the 

effective medium approximation which shows that the simple model developed in the 

first two sections of this chapter describes well the linear and nonlinear properties of the 

plasmonic metamaterial. 

4.5 Protocol for the z-scan measurement of a nanorod array sample 
	  
Gold nanorod samples are generally inhomogeneous as a consequence of the fabrication 

procedure. Thus when these samples are being scanned through the focus of the 

Gaussian beam, their transmission is not constant but has some variations depending on 

the inhomogeneity. Therefore to perform either open or close aperture z-scan in these 

samples, it is required to perform the following 3 measurements: 

1. A z-scan at low intensity power P0  is performed to retrieve the linear 

transmission T0 . 

2. A z-scan at high intensity with a desired power Pnl  is performed to retrieve the 

nonlinear transmission Tnl   

3. A z-scan again at low intensity is performed to verify that the power applied in 

step 2 was not enough to damage the sample and change its linear transmission 

measured in 1. 

In the case the verification of step 3 does show that the sample was damaged, then the 

entire protocol must be repeated again on a different spot on the sample reducing the 

power until step 3 shows either no or a very small modification in the linear 

transmission of the sample. Since the nanorod array samples are highly nonlinear they 
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require very low power thus these measurements must be done with at least 3 times less 

power than the power used to measured the nonlinearity of gold to prevent damage. 

Finally Tnl  is normalized against T0 to obtain Tnl /T0  which is fitted using the z-scan 

theoretical curves given in section 3.1 (equation 3.8) and the value of n2  using a value 

of I0  corresponding to the difference in power between the nonlinear and linear 

transmission (Pnl − P0 ) 

4.6 Z-scan results on the plasmonic metamaterial and comparison with 
theory. 
	  
The open and closed aperture measurements were performed at both the resonances of 

the plasmonic metamaterial (transverse resonance at 550 nm and longitudinal resonance 

at 600 nm) and at different angles of incidence.  

 

Figure 4.5 a) Close and open aperture z-scan at the transverse resonance of the nanorod array at 550 nm at 
an angle of 40 degrees and b) at 600 nm at an angle of 60 degrees. All measurements are done using TM 

polarized light. 
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The rods are perpendicular to the x-axis defined by the reference frame in Figure 3.4 

(At 0 angle of incidence, the rods are aligned with the z-axis). Typical close and open 

aperture curves for gold nanorods are shown in figure 4.5. A summary of all the 

coefficients obtained is given in table 4.1 and Figure 4.6 (a-c) shows the variation of the 

coefficients against the angle of incidence.  

 

For the calculation of the coefficients, the linear absorption of the plasmonic 

metamaterial needed for the calculation of the effective length, was calculated 

considering the effective linear absorption using equation (2.37), which increases with 

the angle of incidence.  

 

Figure 4.6. (a-b) Nonlinear refraction and (c-d) nonlinear absorption coefficients (a-c) Coefficients 
measured using the z-scan technique. (b-d) Theoretically calculated. The measurements are done using 
light (black) TE polarized at 550 nm (Red) TM polarized at 550 nm (green) TM polarized at 600 nm 

(blue) TM polarized at 650 nm. 
 

Indeed as observed in figure 4.6 (b-d), the behavior predicted by the theory for the 

nonlinear coefficients in figure 4.3 matches qualitatively the behavior observed through 

15 20 25 30 35 40 45 50 55 60 65
−30

−25

−20

−15

−10

−5

0

5

 

 

TM 600nm
TM 550nm
TM 650nm
TE 550nm

15 20 25 30 35 40 45 50 55 60 65
−80

−60

−40

−20

0

20

40

 

 

TM 600nm
TM 550nm
TM 650nm
TE 550nm

15 20 25 30 35 40 45 50 55 60 65
−12000

−10000

−8000

−6000

−4000

−2000

0

2000

15 20 25 30 35 40 45 50 55 60 65
−10000

−8000

−6000

−4000

−2000

0

2000

4000

6000

angle(degrees)

angle(degrees)

angle(degrees)

angle(degrees)20 40 60
Angle (degrees)

β(
cm

2 /W
x1

03 )

c)
0

-4

-8

-12

0

6

2

-2

-10

-6

d)

0

20 40 60
Angle (degrees)

β(
cm

2 /W
x1

03 )

5

0

-10

-20

γ(
cm

2 /W
×1

012
)

a)

γ(
cm

2 /W
×1

012
)

b) 40

0

-40

20 40 60
Angle (degrees)

-30
20 40 60

Angle (degrees)

-80

TM 600nmTM 550nmTE 550nm TM 650nm

2



	  
69	  

the z-scan technique. In the case of the transverse resonance we observe that the 

nonlinear absorption is constant with varying angle of incidence. However the nonlinear 

refraction decays and changes signs. In the case of the longitudinal resonance we 

observe the monotonous increase of the nonlinear absorption and refraction with 

increasing angle 

 
Furthermore, off resonance at longer wavelengths (650 nm), we observe the decrease of 

the nonlinearity and the shift in the sign. Comparison between figure 4.6 and figure 3.6 

reveals the large enhancement obtained between the nonlinear properties of the 

metamaterial and those of a smooth thin film of gold. Indeed comparing tables 3.1 and 

4.1 we have obtained at the wavelength of 550 nm an enhancement in the nonlinear 

absorption of ~14 and in the nonlinear refraction of ~2 times comparing the largest 

values found using both polarizations and angles.  

T resonance (550nm)         
Δψ  Δφ0  Polarization angle β (cm/GW) γ (cm2/W) Ep(nJ) 

-0.45 -0.05 TE 20 -3762.99±209 (-1.83±0.9)×10-12 0.47 
-0.4 -0.05 TE 40 -2980±186 (-1.63±0.8)×10-12 0.47 
-0.25 -0.1 TE 60 -1573.4±157 (-2.75±0.68)×10-12 0.47 
-0.3 -0.25 TM 20 -2508.66±209 (-9.15±0.9)×10-12 0.47 
-0.3 -0.2 TM 40 -2234.22±186 (-6.52±0.8)×10-12 0.47 
-0.2 0.15 TM 60 -1258.72±157 (4.13±0.6)×10-12 0.47 

L resonance (600nm )         
-0.1 -0.05 TM 20 -467.16±116 (-1.12±0.5)×10-12 0.47 
-0.2 -0.1 TM 40 -2259.2±282 (-5.39±1.3)×10-12 0.47 
-0.4 -0.2 TM 60 -9967.2±622 (-2.38±0.3)×10-11 0.33 

Off the L resonance (650nm )         
0.05 -0.05 TM 60 270.415±135 (-1.40±0.7)×10-12 0.33 

 
Table 4.1 summary of the measurements on the gold nanorod array. In the last measurements the pulse 

energy was selected to be lower due to possible damage to the sample 
 

In the case of the longitudinal resonance we obtained an enhancement of ~120 in the 

nonlinear absorption and of ~20 of the nonlinear refraction comparing the largest values 

obtained which are at an angle of incidence of 60 degrees.   
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4.7 Conclusion 
 

Plasmonic metamaterials based on nanorod arrays exhibit two plasmonic resonances: 

transverse plasmon resonance and longitudinal resonance. Through the effective 

medium theory these resonances have been explained as a consequence of the effective 

permittivity enhancement occurring when either the value of the permittivity 

perpendicular to the nanorod axis is resonant or when the value of the permittivity 

parallel to the nanorod axis is close to zero respectively. Furthermore, it has been shown 

that through the high optical absorption characteristic of these resonances it is possible 

to enhance the nonlinear optical response of the system. This behavior has been 

modeled using the effective medium theory together with the theory described in 

chapter 2 to model the intensity dependent permittivity of gold. Additionally, the 

nonlinear absorption and refraction of a gold-nanorod sample was characterized using 

the z-scan technique described in chapter 3. The theoretical results qualitative describe 

those obtained experimentally showing the large enhancement of the nonlinearity at 

both resonances particularly at the longitudinal resonance. Finally, by analyzing the 

anisotropic nature of the third order nonlinear coefficient, it was shown that the linear 

properties enhance strongly the response corresponding to the third order nonlinear 

components of the tensor. In particular, and in agreement with the theoretical and 

experimental results, when the permittivity parallel to the nanorod axis is close to zero, 

the nonlinear contribution of the components of the third order nonlinear tensor to the 

effective nonlinear permittivity is enhanced. 
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Chapter 5: Ultrafast all-optical modulation using hybrid 
confined modes in plasmonic metamaterials 

 
 
 
In this chapter I will present the first application of the high optical nonlinearity of 

plasmonic metamaterials based on gold nanorods, in particular in using it for ultrafast 

all-optical modulation. Here the hyperbolic properties of the material are used. It will be 

shown that in a plasmonic metamaterial waveguide (which I shall refer as meta-

waveguide) (i.e. a nanorod waveguide), these properties can be mixed as a consequence 

of the structure confinement. This leads to the creation of a hybrid mode having both 

hyperbolic properties and normal properties as it has components parallel and 

perpendicular to the nanorod axis. Additionally the linear optical properties of this 

hybrid mode can be changed between normal or hyperbolic when applying an optical 

excitation to the metamaterial. Finally taking advantage of this property a highly 

integrated all-optical modulator compatible with silicon photonics will be designed.  
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5.1 Hybrid anisotropic modes in meta-waveguides. 
	  
When light propagates through a waveguide, it propagates in the form of optical 

eigenmodes as a consequence of the confinement of the structure, which allows only 

certain eigenvalues for the propagation constant. Assuming that the i-th mode is 

propagating along the y direction with an electric field 

 
!
E(x, y, z) =

!
Ei (x, z)exp(−βi y + ck0t)  inside an isotropic medium waveguide of 

permittivity ε , it can be proved that all the components of the electric and magnetic 

field are a function of the components along the propagation direction, which in this 

case is y [1, 2]. Thus the corresponding wave equations are: 

∂2Ey
i

∂x2
+
∂2Ey

i

∂z2
+ (k0

2ε )Ey
i = βEi

2Ey
i

∂2Hy
j

∂x2
+
∂2Hy

j

∂z2
+ (k0

2ε )Hy
j = βHj

2Hy
j

     (5.1) 

Where the super-indexes i and j correspond to the respective modes which in the case of 

the first equation are called TM (transverse magnetic) modes and in the case of the 

second equation are called TE (transverse electric) modes. These equations can be also 

expressed using quantum mechanics notation in the following fashion[3]: 

H Ey
i = βEi

2 Ey
i

H Hy
j = βHj

2 Hy
j

        (5.2) 

where H defines the operator corresponding to the wave equation at the right hand side 

of equations (5.1). Therefore βEi
2  and βHj

2 are the eigenvalues of the equation. 

Depending on the boundary conditions of the waveguide, a mode can generally have a 

small contribution from other modes. This contribution can be added through the 

addition of a perturbation operator (or coupling operator) W. For example the equation 

for an hybrid mode composed of two modes j and i, is similar to that of a perturbed two-

state system in quantum mechanics: 
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                    (5.3) 

Where βH corresponds to the propagation constant of the hybrid mode. If the 

corresponding eigenvalues of the coupling operator in this case are assumed to be

W Ey
i = Aij Ey

i  and W Hy
j = Aij Hy

j  where Aij  is a coupling constant dependent on 

the boundary conditions, it can be shown that the propagation constant can be expressed 

as a function of the propagation constants of the composing modes and of the coupling 

constant [4]: 

βH ±
2 = 1

2
(βHi

2 + βEj
2 )± 1

2
(βHi

2 − βEj
2 )2 + Aij

2    (5.4) 

The sub-index ± defines the two new hybrid modes composed of the previous modes. It 

is worth noticing that if Aij = 0  or (βHi
2 − βEj

2 ) >> Aij  then the propagation constant of 

the hybrid modes remains equivalent to that of the normal modes and both hybrid and 

normal modes are respectively equal. Therefore only when the Aij ≠ 0  and when the 

propagation constants of the two composing modes are similar (or in other words the 

modes are degenerate), there is a strong coupling between these two. This coupling 

leads to the deviation of the hybrid mode propagation constant from that of the 

composing modes.  

 

In the case of a meta-waveguide (plasmonic metamaterial waveguide), the modes are 

divided into two categories similarly to the propagating plane waves as described in 

section 2.3: ordinary modes and extraordinary modes. Ordinary modes correspond to 

modes having Ez = 0  and extraordinary modes to those having Ez ≠ 0 . In this context 

ordinary modes satisfy the wave equation for Ex  (or Ey  since these are related through 
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 ∇⋅
!
D = 0 ) whereas extraordinary modes satisfy the wave equation for Ez . Therefore it 

can be shown [5] that the waves equations for ordinary and extraordinary modes are: 

 

 

∂2Ex
i

∂x2 + ∂2Ex
i

∂z2 + (
ε!
ε⊥

−1) ∂
2Ez

j

∂x∂z
+ (k0

2ε⊥ )Ex
i = βiORD

2 Ex
i

                     ∂
2Ez

j

∂x2 +
ε!
ε⊥

∂2Ez
j

∂z2 + (k0
2ε!)Ez

j = β jEXT
2 Ez

j

        (5.5) 

Where βiORD
2  and β jEXT

2 are the eigenvalues corresponding to the ordinary and 

extraordinary mode. These equations can be expressed as well in quantum mechanics 

notation as equations (5.2) obtaining: 

 
Hx Ex

i = βiORD
2 Ex

i

Hz Ez
j = β jEXT

2 Ez
j

        (5.6) 

Notice that in this case the operator Hx  does not include the term ∂2 / ∂x∂z  since the 

field along the z direction for an ordinary mode is zero. However in the case of a 

coupling between extraordinary and ordinary modes, the resultant hybrid mode allows 

the inclusion of the term ∂2 / ∂x∂z as the field along z is no longer zero. Assuming that 

∂2 / ∂x∂z  corresponds to the operator C having eigenvalues C Ez
j = Bj Ez

j , ( Bj  being 

the anisotropic coupling constant), the perturbed two-state system equation for an 

hybrid mode composed of two modes i and j in this case is: 

 

Hx W + (ε! / ε⊥ −1)C
W Hz

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

Ex
i

Ez
j

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

= βH
2 Ex

i

Ez
j

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

                            (5.7) 

The eigenvalues are: 

 
βH ±
2 = 1

2
(βiORD

2 + β jEXT
2 )± 1

2
(βiORD

2 − β jEXT
2 )2 + (ε! / ε⊥ −1)AijBj + Aij

2        (5.8) 

Therefore the propagation constant and thus the nature of the hybrid mode depend 

strongly on the anisotropy of the metamaterial given by  (ε! / ε⊥ −1) . To appreciate the 
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consequences of equation (5.8), we will analyze first some of the properties of meta-

waveguides which can be easily derived through the analysis of a rectangular meta-

waveguide having perfect electric boundary conditions, as illustrated in the inset of 

Figure 5.1b.  

 

Figure 5.1. a) (blue) normal spherical dispersion (green) Elliptical dispersion (red) Hyperbolic dispersion. 
b) Effective refractive index against the size b of the waveguide. The colored squares and circles related 

to the same points in both a) and b). bcut-off represents the starting point of the modes.  
 

Thus the solutions of equations (5.5) correspond to plane waves with k-vectors 

satisfying the boundary conditions knx = nπ / a  and kmz = mπ /b (n, m being integers 

corresponding to the ordinary mode i). Substitution of the plane wave solution in 

equations (5.5) gives: 

knx
2 + βiORD

2 + kmz
2 = ε⊥k0

2      (5.9) 

 
kn 'x
2 + β jEXT

2 +
ε!
ε⊥

km 'z
2 = ε!k0

2      (5.10) 

Where n’ and m’ are the integers corresponding to the extraordinary mode j. For 

elliptical dispersion the anisotropic permittivity values chosen are ε⊥ = 9   and  ε! = 20  

whereas for hyperbolic dispersion  ε! = −20 .The values were chosen arbitrarily 
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according to typical values obtained for the plasmonic metamaterial at the telecom 

wavelength (1.55μm) which is our wavelength of interest. Figure 5.1a shows a section (

kx  constant) of the different possible surfaces mapped by equations (5.9) and (5.10) in 

k-space (kx ,β,kz ) . The blue surface corresponds to ordinary waves. The green and red 

surfaces correspond to extraordinary waves in two different cases. For the green surface 

 ε! > 0  and ε⊥ > 0  and equation (5.10) maps an ellipsoid. For the red surface  ε! < 0  and 

ε⊥ > 0  and equation (5.10) maps a hyperboloid. From these maps it is clear that the 

dependence of the propagation constant to the dimensions of the waveguide is different 

in every case. Inspection of equations (5.9) and (5.10) shows that although a variation in 

kx (corresponding to a variation in the width) will lead to the same behavior for the 

propagation constant of both ordinary and extraordinary modes, a variation in kz  will 

not since in equation (5.10), it is multiplied by the constant  ε! / ε⊥ . Figure 5.1b shows 

the variation of the effective refractive index defined through the propagation constant 

as neff = β / k0  against the height of the waveguide, which is associated with kz . It is 

shown that, although similar behavior is found for the case of the ordinary and 

extraordinary elliptical mode, the extraordinary hyperbolic mode has a different 

behavior. In the hyperbolic case, firstly we observe that even for b close to zero it is 

possible to have a propagating mode with a high propagation constant value. This is 

evident from the red curve in Figure 5.1b as for a large value of kz  there is still a point 

having a value for β  unlike the other cases. Secondly, for increasing value of b the 

effective refractive index decreases up to zero in contrast to the other cases where it 

increases up to the value of the material’s refractive index. Therefore for a normal 

ordinary mode or an elliptic extraordinary mode there is a cut-off value 𝑏!"#$%% which 

for 𝑏 > 𝑏!"#$%%, the mode propagate through the waveguide (figure 5.1b). In contrast 
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extraordinary hyperbolic modes have the opposite behavior where there is still a cut-off 

value 𝑏!"#$%% but the mode can propagate for 𝑏 < 𝑏!"#$%%.  

 

To induce the coupling between these different modes, instead of having our waveguide 

surrounded by perfect electric boundary conditions, we use dielectric boundary 

conditions [1, 2]. Therefore numerical simulations of the behavior of the propagation 

constant in a meta-waveguide surrounded by air (ε = 1)  are done to observe the 

behavior predicted using equation (5.8). These simulations were realized using the finite 

element method (FEM)[6]. Two cases were analyzed. In the case of elliptical dispersion 

(Figure 5.2a) it is found that for the given permittivity values, there is a degeneracy of 

the (n=1,m=2) extraordinary mode and the (1,1) ordinary mode occurring at a height of 

!
!
= 0.57. The coupling between these two modes is evidenced from the mode profiles 

at different heights of the anisotropic waveguide where away from the height of 

degeneracy, the modes behave as single extraordinary and ordinary modes but close to 

it the mode profile is a linear combination between the two (mode profiles inside figure 

5.2(a,b)). Similar behavior for the propagation constant is found using equation (5.8) 

together with (5.9) and (5.10) for the same modes ((1,2) extraordinary mode and (1,1) 

ordinary mode) as shown in Figure 5.2c. In this case the coupling constants were chosen 

as A12 = B1 = 0.01  to fit closely the behavior found in the simulation. The same analysis 

is done for the hyperbolic case using the finite element method (Figure 5.2b) and 

theoretically (Figure 5.2d) with A14 = B1 = 0.01 . In this case the height of degeneracy is 

found at !
!
= 0.55 for the (1,4) extraordinary mode and the (1,1) ordinary mode. 
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Figure 5.2. Effective refractive index against waveguide height calculated for the (a-c) ordinary mode 
(n=1,m=1) and extraordinary elliptic mode (n=1,m=2) and the hybrid modes generated. (b-d) ordinary 

mode (n=1,m=1) and extraordinary hyperbolic mode (n=1,m=4) using finite element method (a-b) using 
equation 5.8 (b-d) In (a-b) the modes profile are included at the points shown to evidence the coupling. 
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Interestingly, the hyperbolic condition renders  (ε! / ε⊥ −1)  negative and the behavior of 

the coupling changes leading to the curve shown in Figure 5.2 (b,d).  

Additionally it was also analyzed the behavior of the coupling when losses are added to 

the system as an increase of the imaginary part of either  ε! and ε⊥  

 

Figure 5.3 a) dispersion of the hybrid hyperbolic mode (angular frequency against wavevector). b) inverse 
of the group velocity (1/vg) for the dispersion against wavelength. c) Derivative of group velocity 

dispersion (GVD) defined as d/dω(1/vg) 
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Using the same analysis for two given degenerate modes, it can be found that an 

increase in the imaginary part of only ε⊥ or both  ε! and ε⊥  breaks the degeneracy of the 

modes removing the coupling between them as well.  

 

Conversely, when only the imaginary part of  ε!  is increased, the degeneracy is not 

lifted. However using equation 5.8 it can be shown that the propagation constants of the 

hybrid modes will become the same as those of the original extraordinary and ordinary 

modes and therefore the coupling between the modes will be reduced. This behavior 

was also simulated and it is depicted on the gray curves of Figure 5.2a and Figure 5.2b 

that correspond to a value of  ε! = 20 + 3i  and  ε! = −20 + 3i  respectively. From the 

comparison between the curves with and without imaginary part (gray and cyan curves), 

it is possible to observe how an anisotropic increase in the losses allows the hybrid 

modes to transform into the original extraordinary and ordinary modes.  

 

This behavior will be used in the following section for the design of an all-optical 

modulator. Additionally the dependence in wavelength of the particular behavior 

obtained in the case of the hyperbolic dispersion was analyzed. The obtained dispersion 

is shown in figure 5.3a. Indeed this dispersion allows regions of group velocity 

dispersion (GVD), which are negative (Figure 5.3c). Thus the use of these waveguides 

could be found in applications such as pulse compression or optical signal 

manipulation. 

5.2 Hyperbolic metamaterial all-optical modulator 
	  
The coupling demonstrated in equation (5.8) can be done not only between ordinary and 

extraordinary modes but also between the modes of a normal dielectric waveguide with 



	  
82	  

the hybrid mode in the meta-waveguide. The basic geometry inducing this coupling is 

depicted in figure 5.4. The dielectric waveguide, which is a silicon waveguide, is 

designed to operate in the telecom regime (λ = 1.5 µm ). Therefore its width is 300 nm 

and is height is 340 nm corresponding to standard fabrication dimensions [7].The meta-

waveguide (done using a gold nanorod array) is placed in the top of the slab to reduce 

the mismatch between the silicon waveguide and the system. 

 

Figure 5.4. (a) Schematic of the modulator. (b) mode profile at the modulator without optical excitation 
(Te=300 K) and (c) with optical excitation (Te=3000 K). 

 
 
 

The combined system composed of the silicon waveguide and the meta-waveguide will 

be referred to as the modulator. The silicon waveguide has two fundamental modes the 

first order HEx11 polarized in the x direction and the first order HEz11 polarized in the z 

direction. Therefore the mode HEx11 will excite ordinary modes in the meta-waveguide 

whereas the mode HEz11 will interact with extraordinary modes in the meta-waveguide. 

As a consequence the propagation losses of the HEz11 mode will be larger than those of 



	  
83	  

the HEx11 since extraordinary modes depend on  ε!  which in the case of a gold nanorod 

array has a larger imaginary part than that of ε⊥ in the telecom regime (i.e figure 4.1). 

However if the meta-waveguide dimensions are designed to allow the degeneracy of the 

extraordinary and ordinary modes, the HEz11 can couple additionally to ordinary modes 

and HEx11 to extraordinary modes. Thus the propagation losses of the HEx11 will 

increase, while those of the HEz11 will remain almost unchanged since ordinary modes 

depend on ε⊥  which has a smaller imaginary part. 

 

Using the mode-matching technique together with the finite element method to solve for 

the fields inside the waveguide, it is possible to observe the described behavior. Within 

this technique the transmission between the modes in the silicon waveguide and the 

modes in the combined system can be computed through the modified Fresnel formula, 

taking into account the spatial overlap between the modes [2] 

 
Tij =| tij ⋅ tij

* |
Re(nj

mod )
ni

wg     tij =
2ni

wg

nj
mod + ni

wg
!ei
wg (x, y) ⋅ !ei

mod (x, y)
S
∫ dS            (5.11)  

Where i and j are the eigenmodes of the silicon waveguide and the modulator, 

respectively, nj
mod is the effective refractive index of the j mode in the modulator, ni

wg is 

the effective refractive of the i mode in the silicon waveguide and the integral is 

performed over the modes cross-section. The total transmission through the 

waveguide/modulator interface with respect to a given eigenmode i of the waveguide 

consists of the sum of all Tij, corresponding to every eigenmode j supported by the 

combined system.  
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Figure 5.5. a) Transmission computed using the finite element method together with equation 5.11 of the 
HE11,x mode against the dimensions of the meta-waveguide: nanorod height and period. The diameter is 
kept constant to 50nm.  b) Transmission variation for the HE11,x mode defined as ΔT=T(ON)-T(OFF) 
against meta-waveguide dimensions. The insets show the mode profiles inside the modulator at each 

specific point. The white cross in b) shows the point where the 3D calculation for figure 5.6 was done 
 

Using this general formalism (Equation (5.11)), we can estimate the overall 

transmission HEx11 and the HEz11 waveguided modes through the modulator’s interface 
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at the operating wavelength of 1.5 μm as a function of meta-waveguide geometry and 

effective permittivity value. The transmission of the HE11,x mode is shown in the color 

map in Figure. 5.5(a) as a function of the parametric variables of the metamaterial 

geometry. A strong sensitivity of the transmission to rod length and spacing is observed 

with an overall change in transmission from 10% to 95% for different metamaterial 

parameters in the modulator. 

 

The dimensions where the transmission drops dramatically correspond to those allowing 

the degeneracy of the ordinary and extraordinary modes in the meta-waveguide. A 

similar analysis shows more modest transmission values for the HE11,z waveguided 

mode, only reaching about 40%, but nevertheless also very sensitive to the metamaterial 

parameters.  

 

As previously said the degeneracy can be lifted through the addition of anisotropic 

losses in the meta-waveguide. This can be done through its optical excitation. Since the 

anisotropic permittivity of the meta-waveguide (nanorod-waveguide) is calculated 

through the equations shown in chapter two, section 2.2-2.3, we have assumed an 

electron temperature of Te(ON ) = 3000K to compute the transmission of the HEx11 when 

the meta-waveguide is under optical excitation (ON state).  The difference in the 

transmission between the ON state and the OFF state (without optical excitation or 

Te(OFF) = 300K  as it is shown in Figure 5.5a) is shown in figure 5.5b. Indeed at the 

dimensions allowing the degeneracy we observe the highest variation in the 

transmission corresponding to the coupling reduction to the extraordinary mode through 

the induced anisotropic losses, allowing the HEx11 to couple only to ordinary waves. 
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To determine both the transmission and modulation performance of the proposed 

device, a 3D numerical modeling was performed on the basis of the optimal modulation 

geometry (white cross Figure 5.5(b) corresponding to a height of 100 nm and a nanorod 

period of 100 nm). Calculations were first performed by modeling the nanorod 

metamaterial within the EMT (effective medium theory) to determine the modulator’s 

switching performance as a function of length. For the considered operating point, the 

length of the modulator was chosen to be 600 nm as a tradeoff between insertion losses 

and maximized modulation depth. The transmission of the modulator as the function of 

the wavelength is plotted in Figure 5.6 (a) in both ON and OFF states. 

 

In agreement with the single interface simulations, the transmission of the device shows 

a distinct transmission minimum of about 37% at the operating wavelength of 1.5 µm. 

Figure. 5.6(b,c) shows the plot of the absolute value of the normalized electric field 

amplitude along the propagation direction for both OFF and ON states. The 

corresponding mode distribution is depicted in Figure 5.4(b,c), respectively. As 

predicted analytically, the variation of the mode’s spatial confinement in the 

metamaterial layer as a function of operating conditions is clearly visible. In the ON 

state, the fundamental mode stays mainly confined to the silicon waveguide decaying 

exponentially in the nanorod metamaterial. In contrast, the OFF state shows 

hybridization of the modes, as a significant coupling to extraordinary waves is observed 

within the metamaterial layer. 
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Figure 5.6. a) Transmission calculated using the finite element method for an input HE11,X mode (FEM 
corresponds to the meta-waveguide modeled as real nanorods with the given dimensions and EMT 

corresponds to the meta-waveguide modeled using the effective medium approximation described in 
section 2.3). b) Calculated electric field profile along the modulator for the ON state and c) for the OFF 

state. 
 
 
 

A 50 fs control pulse at a center wavelength of 532 nm provides the optical excitation of 

the meta-waveguide accessing its transverse resonance, which allows an extinction 

exceeding 90%. The optical pump (green beam in Figure 5.4a) controls the transmission 

of the modulator via the change of the temperature-dependent permittivity of the Au 

nanorods. To compute the total stored energy we use equation (2.43) where the total 

volume corresponds to that of the metal inside the meta-waveguide. For the considered 

geometry, an estimated energy of 3.7 pJ is required in order to achieve the 35% 

modulation (Figure 5.6b). Furthermore, the modulator switching time can be estimated 

in the framework of the two-temperature model. In the weak excitation regime assumed 

here, electron-phonon coupling is linear with a decay rate that can be estimated as



	  
88	  

−g /Ce = −2.943×10
14K / s  for gold, leading to a decay rate of 

(Ce / g) ⋅ (T (ON )−T (OFF)) = 9.1 ps  between ON and OFF states. Since diffusion effects 

were not accounted for in this estimate, this time corresponds to an upper limit to the 

practical relaxation time of the device that could, therefore, exceed 100 GHz. This 

switching speed is well above the typical switching speed of electro-optical modulation 

[8]. Additionally the insertion losses of our modulator can be calculated by calculating 

the maximum increase of transmission in the ON state at the desired working 

wavelength. This was calculated as -10log10(0.6)=2.21 dB.  

5.3 Conclusion 
	  
In conclusion, through the design of the dimensions of plasmonic metamaterials it is 

possible to control the optical dispersion of waves propagating within them and as a 

consequence their optical properties. In particular in the hyperbolic dispersion regime 

offers several new properties as highly confined hybrid waves, which can be controlled 

nonlinearly through the optical excitation of the metamaterial and whose properties 

(such as negative group velocity dispersion) allow new different methods for optical 

device engineering.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



	  
89	  

References 
	  
[1] J. D. Jackson, Classical electrodynamics: Wiley, 1975. 

[2] R. E. Collin, Field Theory of Guided Waves: Wiley, 1990. 

[3] J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic 
Crystals: Molding the Flow of Light (Second Edition): Princeton University 
Press, 2011. 

[4] B. D. F. L. Claude Cohen-Tannoudji, Quantum Mechanics Volume 1: Hermann. 

[5] J. J. A. Fleck and M. D. Feit, "Beam propagation in uniaxial anisotropic media," 
Journal of the Optical Society of America, vol. 73, pp. 920-926, 1983. 

[6] in Comsol multiphysics 4.3a, ed, 2014. 

[7] Y. Zhu, X.-J. Xu, Z.-Y. Li, L. Zhou, W.-H. Han, Z.-C. Fan, et al., "High 
efficiency and broad bandwidth grating coupler between nanophotonic 
waveguide and fibre," Chinese Physics B, vol. 19, p. 5, 2010. 

[8] L. Alloatti, D. Korn, R. Palmer, D. Hillerkuss, J. Li, A. Barklund, et al., "42.7 
Gbit/s electro-optic modulator in silicon technology," Optics Express, vol. 19, 
pp. 11841-11851, 2011. 

 
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  



	  
90	  

Chapter 6: Ultrafast optical modulation using ENZ 
metamaterials 
  

An ultrafast modulator based on a resonant cavity is designed taking advantage of the 

ENZ (epsilon near zero) regime, which allows the enhancement of the nonlinear 

interaction as seen in chapter 4. First I will give a brief introduction of the optical 

properties of ε = 0  materials making emphasis on the reflectivity. Second I will 

describe the design of an optical modulator based on a resonant cavity built using two 

ENZ layers. It will be shown that these layers provide high reflectivity allowing a strong 

resonant transmission through them, while also introducing low losses. The resultant 

modulator is highly integrated and low energy consuming.    
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6.1 Linear optical properties of ε=0  materials. 
 
In the case of materials with , the Maxwell’s equations for an electromagnetic 

wave  are: 

 
 

∇×
!
E(r) = iωµ0

!
H (!r )      ∇×

!
H (r) = 0

∇⋅
!
D(r) = 0                    ∇⋅

!
H (r) = 0

                           (6.1) 

where µ0  is the vacuum permeability. Thus the first equation in the right implies that 

the magnetic field is a constant in space whereas the first equation in the left implies 

that the electric field is the integral of that constant thus corresponding to a ramp. Using 

equations (6.1) it can be shown that the relation between the transmitted and reflected 

electric fields of an  layer at normal incidence correspond to[1]: 

   (6.2) 

which have a dependence on the thickness of the layer (d) as a consequence of the ramp 

solution for the electric field. In conclusion even if according to Fresnel coefficients a 

 material has reflectivity 1 at its boundary, light can still be transmitted through a 

small layer. However a material is difficult to design or to find in nature since 

even if the real part of the permittivity of some materials can be zero, its imaginary part 

usually is not. As described in chapter 4, by designing the dimensions of the plasmonic 

metamaterial (nanorod array) it is possible to obtain a material having a permittivity 

close to . In these conditions the material is called an ENZ (epsilon-near-zero) 

material. For the analysis of the properties of ENZ materials, consider as an example the 

behavior of the absorption and reflection against the value of the real part of the 

permttivity computed using the transfer matrix method. The results are shown in Figure 

6.1.  

ε = 0

 E(
!r ,t) = E(!r )exp(−iωt)

ε = 0

Er

E0

= ikd
ikd − 2

      Et

E0

= −2exp(ikd)
ikd − 2

  

ε = 0

ε = 0

ε = 0
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Figure 6.1. a) Reflection and b) Absorption of a layer having real permittivity value ε and an arbitrary 
imaginary permittivity value of 0.1. These values were calculated for layers having thickness (red) 

d=0.4/λ (blue) d=0.2/λ with λ the wavelength of the wave coming from air 
 

For values of ε ≤ 0 , the reflection coefficient is 1, whereas for ε > 0 the reflectivity is 

low depending on the value of the permittivity around the layer (in this case, air). 
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Therefore the regime where ε ~ 0 or ENZ regime marks a strong transition between a 

low and high reflectivity regime exactly as in the case of materials (Figure 6.1a). 

Thus in the ENZ regime the variation of the reflectivity with respect to the permittivity 

is the highest (dR / dε ) leading to a high sensitivity of the reflectivity to changes in the 

effective permittivity. Additionally, close to ε ~ 0 the absorption achieves its largest 

value, although this decreases with decreasing layer thickness as expected (Figure 6.1b). 

However, the propagation losses of the wave through a low thickness ENZ layer are 

smaller. This property will be used in the following section to decrease the insertion 

losses of the ENZ layers. Hence, according to the theory developed in section 2.4, the 

nonlinear optical properties of ENZ layers are larger than those belonging to any other 

dielectric (ε > 0 ) or metallic (ε < 0 ) layers, due to the high sensitivity of their optical 

properties (i.e reflectivity) to the permittivity and their intrinsic high absorption. The 

high reflectivity and the strong nonlinear properties belonging to the ENZ regime will 

be used in the following section for the design of a highly integrated all-optical ENZ 

modulator. 

6.2 ENZ all-optical modulator 
	  
The high reflectivity of an ENZ layer can be used to construct a resonant optical cavity, 

which can be optically controlled. The main schematic is shown in figure 6.2. Through 

the design of the nanorod’s dimensions, this cavity can allow the resonant transmission 

of the fundamental TM mode propagating in a silicon waveguide at the telecom 

wavelength of 1.55 μm. The multilayer system shown in figure 6.2a is analyzed first by 

using the transfer matrix method (TMM). The permittivity of the ENZ layer is modeled 

through the use of equation (2.33). Additionally to minimize further the losses added by 

the ENZ layers, these are designed with the minimum possible thickness, which 

corresponds to 1 period of nanorod array or 1 metamaterial unit cell. The value of the 

ε = 0
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period is chosen arbitrarily to be 90 nm as this is a typical value from the nanorod array 

fabrication procedure and also from equation (2.33) it can be shown that the variation of 

this value will just change the variation of the corresponding diameter that ensures the 

ENZ regime. The system’s transmission is plotted against gap and rod diameter in 

figure 6.3(a).  

 

Figure 6.2. Schematic of the ENZ-modulator. a) Two ENZ layers are embedded in a silicon waveguide 
separated by a gap. The incident mode is TM polarized as shown by the electric field arrow. b) 3D 

diagram showing the ENZ layer as a single line of nanorods. The silicon waveguide height is 340nm and 
the width is 300nm (Similar to the silicon waveguide in chapter 5) 

 
 

At a gap of 70 nm and a diameter of 35nm there is a resonance peak corresponding to 

the ENZ condition achieved at that diameter. This is further verified by plotting the real 

part of εz against rod diameter using equation (2.30) as seen in figure 6.3c. 
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Figure 6.3 Transmission through the cavity against nanorod diameter and cavity gap using a) the transfer 
matrix method (TTM) and b) full FEM 3D simulation of the schematic shown in figure 5.3b for an input 

TM polarized mode. c) Real part of ε z  against diameter. d) Field profiles on and off the cavity 
resonance. 

 
The optical properties of a metamaterial are the result of averaging those of the meta-

atoms. Therefore the reduction in ENZ layer thickness performed before for the TMM 

analysis, corresponds to the creation of a single line of nanorods (figure 6.2b) whose 

optical response might vary from the average optical response, as the number of meta-

atoms is few. In this context to compare the results from theory, the full 3D geometry 

depicted in figure 6.3b, was simulated using finite element method [2]. As done before 

the transmission of the fundamental TM mode of a single mode silicon waveguide 

(height=340nm width=300nm ) is computed against gap and diameter of the 

rods at a 1.55um wavelength. The results are shown in figure 6.3. Indeed a similar peak 

appears again for a rod diameter of 35nm and additionally the resonance appears at a 

gap of 170nm, which is the nanorod period plus the gap derived previously using TTM ( 

transfer matrix method). This corresponds to the distance between the middle of the 

metamaterial’s unit cells, showing that the effective medium theory still holds even for 

a small number of unit cells. The magnitude of the electric field is plotted along the 

nSi = 3.48
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silicon waveguide off and on resonance as shown in figure 6.3d. Indeed off resonance 

the light is almost completely reflected out of the cavity as can be seen from the 

interference at the waveguide’s input. Instead on resonance the light is completely 

transmitted and inside the cavity there is high electric field magnitude. Similarly as in 

the case of the modulator shown in chapter 5, to evaluate the nonlinear optical 

performance of the cavity, its transmission was computed assuming two electron 

temperatures Te(ON)=3000K and Te(OFF)=300K  which correspond to the cavity with 

(ON state) and without optical excitation (OFF state). The results are shown in figure 

6.4 where the dimensions of the cavity gap and the nanorods diameter and period are 

170 nm, 35 nm and 90 nm corresponding to the dimensions to obtain the resonant peak 

in figure 6.3a and 6.3b. At the ON state the transmission is decreased since the optical 

excitation increases the losses inside the ENZ layers increasing their absorption. This is 

observed on the plot of the electric field magnitude along the waveguide for the ON 

state. Indeed the high sensibility to the variation in the permittivity at the ENZ regime is 

observed as the nonlinear variation in the transmission defined as T(ON)- T(OFF) 

reaches a maximum of 30% (Green curve Figure 6.4).  

 

The performance of the cavity as an all-optical modulator can be characterized 

additionally in terms of the total energy needed to be absorbed by the cavity to achieve 

the ON state and also of the insertion losses of the modulator. The first can be 

calculated as in chapter 5 assuming a uniform electron-temperature across the nanorods 

composing the ENZ layers using equation (2.43). 
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Figure 6.4. Nonlinear optical behavior of the ENZ-modulator. The insets shown, are several field profiles 
showing the modulator’s behavior at different wavelengths. (Red curve) ON state (Blue curve) OFF state 

(green curve) Difference between the transmission at the OFF and ON state 
 

For the geometry considered a total energy of 600 fJ is required to achieve the 30% 

modulation in the transmission shown before. Moreover, This energy can be provided 

through a control pulse at the same wavelength of the signal (1.55 µm) since as 

previously explained in section 6.1 and in chapter 4, the high absorption of the ENZ 

layers allows their efficient optical excitation. The insertion losses estimated for this 

geometry are 0.9dB and the modulation depth of  -10log10(0.3)/(0.18 µm) = 29.04 

dB/µm. This high value is a consequence of the high confinement of the cavity. In 

conclusion this modulator exceeds in performance the modulator shown in chapter 4 in 

both energy requirement and integration.  

6.3 Conclusion 
	  
In conclusion, the high reflectivity found in ENZ layers together with their enhanced 

nonlinear optical properties allows the creation of resonant optical systems, which are 

highly nonlinear and allow all-optical control of light. Furthermore, the integration in 

silicon waveguide of these layers enables the high integration of the nonlinear cavity. 
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Moreover, it is remarkable the agreement of the effective medium theory even in the 

description of systems composed of few meta-atoms. Therefore the results obtained in 

the modeling of this ENZ cavity may provide the groundwork for the analysis of more 

complicated systems having a non-uniform distribution of meta-atoms. 
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Chapter 7: Conclusion and Outlook 
	  
Plasmonic metamaterials based on metallic nanorod arrays support two kinds of 

plasmon resonances: the transverse plasmon resonance and the longitudinal plasmon 

resonance. These are accurately characterized using the effective medium theory, which 

approximates the permittivity of the metamaterial to a diagonal anisotropic permittivity 

tensor having equivalent components perpendicular to the nanorods (ε⊥ ) and a different 

component along the axis of the nanorods ( ε! ). At both resonances the nonlinear optical 

properties of the metamaterial are enhanced with respect to those of the composite 

materials. In the case of the transverse resonance, the enhancement occurs when there is 

a resonant increase in the real and imaginary part of ε⊥  leading to an increased 

absorption and optical response of the metamaterial. In the case of the longitudinal 

resonance the enhancement occurs when  ε! ~ 0 , increasing the real and imaginary part 

of the effective permittivity, which is dependent on the angle of incidence (equation 

2.33). At this regime, called ENZ (epsilon-near-zero) regime a strong enhancement of 

the nonlinear optical properties is obtained as a consequence of the metamaterial 

anisotropy (equation 4.10). This behavior has been verified through the modeling and 

experimental characterization of a gold-based metallic nanorods array sample having a 

transverse resonance at 550 nm and a longitudinal resonance at 600 nm. The modeling 

was performed using effective medium theory and the finite element method by solving 

Maxwell equations together with the two-temperature model (equation 2.18).  

 

The experimental characterization was done using the z-scan technique at the 

corresponding plasmonic resonances of the array where an enhancement of about ~120 

times over the nonlinear absorption and ~20 times over the nonlinear refraction of a 

smooth film, is obtained. This analysis can be extended to other metallic nanorod arrays 
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having plasmonic resonances at different wavelengths or composed of different metals 

such as aluminium, silver, nickel, copper, etc.  However the nonlinear enhancement is 

highly dependent on the metallic losses since these reduce the strength of the plasmonic 

resonances. In the future it would be interesting to characterize the nonlinear properties 

of plasmonic metamaterials based in other metals particularly CMOS-compatible metals 

such as TiN which has already shown a good properties as a constituent material for 

metamaterials [1]. 

 

Furthermore, as described through the effective medium theory the wavelength and 

angular dependence of the metamaterial’s optical properties is complex and it would be 

very interesting to perform z-scan measurements at different wavelengths and angles to 

validate further our model. However z-scan measurements are time consuming, as they 

require several scans as well as the alignment of the optical parametric amplifier used 

for the wavelength dependent measurements. In the future, additional measurements 

will be taken using a completely computer controlled optical parametric amplifier 

together with the z-scan technique described here which will increase the amount of 

measurements allowing a broader characterization of the nonlinear properties of the 

sample. Additionally, pump-probe experiments, in which the changes caused to the 

sample’s spectrum by a high intensity pulse (pump) are recorded, could shed light on 

other ongoing nonlinear mechanisms occurring in our sample. 

 

In terms of theory, the sample analyzed in this thesis has high losses, which are enough 

to prevent the visualization of any strong nonlocal effect as described in [2, 3]. 

Therefore, the model used fits well the linear and nonlinear optical properties observed. 

However, it would be interesting to understand and model the effects that might occur if 
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the losses are low enough to approach closely the ε = 0  condition which in theory 

should increase dramatically the nonlinear optical properties of the sample as underlined 

in equation (4.10). Nevertheless, the fabrication of samples having low losses is very 

challenging.  

 

I would like to underline the importance of the ENZ regime in the enhancement of the 

nonlinear properties with this simple example. Consider an interface between a material 

having ε1 = 0  and a material having a very small permittivity close to zero (i.e 

ε2 = 1×10
−6 ). The reflectivity at the interface is 1. However, if the permittivity of the 

first material changes slightly to be ε1 = 1×10
−6 , then the reflectivity changes to 0. 

Therefore with a very small change in the permittivity the reflectivity of the interface 

has changed 100%. Thus the closest the metamaterial’s permittivity is designed to be 0 

the largest is the possibility to obtain a theoretically infinite optical nonlinear 

coefficient.  

 

Furthermore, it is interesting to observe how the effective medium theory has worked 

well in the understanding of both linear and nonlinear optical properties of the 

plasmonic metamaterial, especially in the description of a few amounts of meta-atoms 

such in the case of chapters 5 and 6. Therefore it might be possible to understand still 

through the effective medium theory some new structures such as metamaterial crystals 

(for example periodic arrays of metamaterial slabs or meta-waveguides) or disordered 

meta-atoms. These materials may have new and interesting linear and nonlinear optical 

properties. 
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In the future, the experimental optical characterization of the linear and nonlinear 

properties of the devices shown in chapters 5 and 6 will be realized, the devices will be 

designed on SOI wafers and the light will be coupled to them using gratings. The results 

of these experiments will definitely corroborate the properties theoretically described 

and will allow the birth of different additional applications based on these designs 

which are the base of a new highly integrated all-optical circuitry, which is capable of 

operating easily at THz rates.  
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