
This electronic thesis or dissertation has been 

downloaded from the King’s Research Portal at 

https://kclpure.kcl.ac.uk/portal/  

Take down policy 

If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing 

details, and we will remove access to the work immediately and investigate your claim. 

END USER LICENCE AGREEMENT 

Unless another licence is stated on the immediately following page this work is licensed 

under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International 

licence. https://creativecommons.org/licenses/by-nc-nd/4.0/ 

You are free to copy, distribute and transmit the work

Under the following conditions: 

 Attribution: You must attribute the work in the manner specified by the author (but not in any
way that suggests that they endorse you or your use of the work).

 Non Commercial: You may not use this work for commercial purposes.

 No Derivative Works - You may not alter, transform, or build upon this work.

Any of these conditions can be waived if you receive permission from the author. Your fair dealings and 

other rights are in no way affected by the above. 

The copyright of this thesis rests with the author and no quotation from it or information derived from it 

may be published without proper acknowledgement. 

The Genetic Epidemiology of Age-related Hearing Impairment

Wolber, Lisa Eleni

Awarding institution:
King's College London

Download date: 28. Dec. 2024



 1 

	  
	  
	  
	  

The Genetic Epidemiology of  
Age-related Hearing Impairment 

 

Lisa Eleni Wolber 

Doctor of Philosophy in Genetics & Molecular Medicine 

Research 

  



 2 

 

 

 

 

 

 

To my parents 

for always believing in me. 

  



 3 

Table of Contents 

TABLE OF FIGURES 10	  

LIST OF TABLES 12	  

TABLE OF ABBREVIATIONS 14	  

ACKNOWLEDGEMENTS 15	  

ABSTRACT 17	  

CHAPTER 1: INTRODUCTION ........................................................................ 19	  

ABSTRACT 19	  

ANATOMY AND PHYSIOLOGY OF THE EAR AND HEARING 19	  

Anatomy of the ear 19	  

Physiology of the ear and hearing 22	  

HEARING LOSS AND ARHI 23	  

Forms of hearing loss 23	  

Phenotypes and Pathologies of ARHI 25	  

Current treatment strategies and technologies for ARHI 29	  

Epidemiological population-based studies on ARHI 30	  

Environmental and medical risk factors 34	  

AGEING THEORIES AND THE MOLECULAR BIOLOGY OF AGEING 37	  

TWIN STUDIES AND THE BIOLOGY OF TWINNING 39	  

GENERALISED AND SPECIFIC AIMS 41	  

REFERENCES 42	  

CHAPTER 2: PURE-TONE AUDIOGRAM DATA COLLECTION AND 
PHENOTYPE DEFINITION ............................................................................... 50	  

ABSTRACT 50	  

INTRODUCTION 51	  

Basic acoustics 51	  

Recommended hearing test procedure 53	  

Advantages of disadvantages of pure-tone audiometry 53	  

MATERIALS AND METHODS 54	  

Sample recruitment 54	  

Pure-tone audiogram procedure 55	  



 4 

Hearing questionnaire 56	  

Initial quality control 56	  

Calculation of pure-tone audiogram phenotypes 56	  

PC1 and PC2 outlier exclusion 58	  

Comparison of pure-tone audiogram results to self-reported HL 59	  

Association of hearing ability with age and environmental risk factors 59	  

Hearing test reproducibility 60	  

RESULTS 60	  

Initial quality control 60	  

Measures of hearing ability 60	  

Description of principal components 62	  

PC1 and PC2 outlier exclusion 67	  

Description of study participants 68	  

Frequency of hearing loss in the TwinsUK cohort 69	  

Sensitivity and specificity of self-reported hearing loss 70	  

Association of hearing ability with environmental risk factors 71	  

Reproducibility of the pure-tone audiogram 72	  

DISCUSSION 73	  

REFERENCES 79	  

CHAPTER 3: THE CLASSICAL TWIN MODEL AND HERITABILITY OF ARHI 
IN TWINSUK ..................................................................................................... 83	  

ABSTRACT 83	  

INTRODUCTION 84	  

MATERIALS AND METHODS 91	  

Study sample 91	  

Interclass and intraclass correlations 92	  

Structural equation modelling based on the classical twin model 92	  

Heritability analysis for different age-groups 93	  

RESULTS 93	  

Study sample 93	  

Heritability of PC1 and PC2 94	  

Heritability analysis for different age groups 98	  



 5 

DISCUSSION 101	  

REFERENCES 104	  

CHAPTER 4: VALIDATION AND HERITABILITY OF THE SPEECH IN NOISE 
RATIO TEST ................................................................................................... 106	  

ABSTRACT 106	  

INTRODUCTION 107	  

MATERIALS AND METHODS 108	  

Speech in noise test study samples 108	  

Speech reception threshold data collection 109	  

Univariate heritability estimates for SRTs 110	  

Study sample with pure-tone audiogram and speech-in-noise test data 111	  

Validation of speech-in-noise test against pure-tone audiometry 111	  

Bivariate heritability of SRT and pure-tone audiogram measures 111	  

RESULTS 113	  

SRT study sample 113	  

Univariate heritability of speech reception in noise 114	  

Study sample with SRT and pure-tone audiogram 117	  

Correlation between speech-in-noise test and pure-tone audiogram measures

 117	  

Validation of SRT against pure-tone audiometry 118	  

Bivariate heritability analysis of speech reception in noise and pure-tone 

audiometry 120	  

DISCUSSION 123	  

REFERENCES 127	  

CHAPTER 5: GENOME-WIDE ASSOCIATION STUDIES OF HEARING 
ABILITY WITH AGE ....................................................................................... 130	  

ABSTRACT 130	  

INTRODUCTION 131	  

Linkage Analyses 131	  

Candidate gene studies 132	  

Genome-wide association studies 133	  

MATERIALS AND METHODS 137	  



 6 

Genotyping 137	  

Genotyping data QC 137	  

Data merge 138	  

Imputation 138	  

Selection of participants 138	  

Association analysis 139	  

Gene-based association 139	  

Functional Annotation of GWA results 140	  

GWAS validation study 140	  

RESULTS 141	  

Study participants 141	  

Marker-based GWAS 142	  

Gene-based association of ARHI and hearing function 161	  

Functional gene enrichment analysis 161	  

Validation of GWAS associations 162	  

DISCUSSION 163	  

REFERENCES 167	  

CHAPTER 6: A GWAS META-ANALYSIS DISCOVERS SALT INDUCIBLE 
KINASE 3 AS A NEW CANDIDATE GENE FOR HEARING FUNCTION ..... 172	  

ABSTRACT 172	  

INTRODUCTION 172	  

MATERIALS AND METHODS 174	  

Subjects 174	  

Phenotypes 175	  

Genotyping and imputation 175	  

Genome-wide association studies 175	  

Meta-analysis in METAL 176	  

Follow up of genome-wide significant association signals 176	  

Analysis of genome-wide significant associations by age groups 177	  

Immuno-histochemistry in mouse models 177	  

Antibodies 178	  

Confocal microscopy 178	  



 7 

RESULTS 179	  

Subjects 179	  

GWAS Meta-analysis 180	  

Association analysis with rs681524 by age groups 182	  

Sik3 expression in the mouse cochlea 183	  

Sik3 expression in hair cells of the cochlea 184	  

Sik3 expression in cells of the spiral ganglion 184	  

DISCUSSION 187	  

CONCLUSION 191	  

REFERENCES 191	  

CHAPTER 7: EPIGENETICS IN AGE-RELATED HEARING IMPAIRMENT 195	  

ABSTRACT 195	  

INTRODUCTION 196	  

Epigenetics: history, mechanisms and definition 196	  

Use of twins in epigenetic studies 199	  

Methods to measure DNA methylation 199	  

Epigenetics of hearing disorders 201	  

METHODS 203	  

Subjects and hearing phenotypes 203	  

DNA methylation profiles 203	  

Epigenome-wide association study 204	  

Replication study 205	  

Whole blood cell subtype heterogeneity 206	  

DMR validation using methylated DNA immunoprecipitation sequencing 

(MeDIPseq) 206	  

Effect of DNA methylation on gene expression 206	  

Exploring methylation changes in monozygotic twins 207	  

RESULTS 207	  

Subjects 207	  

DNA methylation profile 209	  

Epigenome-wide association study (EWAS) 209	  

Replication of top EWAs findings in an independent replication sample 214	  



 8 

Whole Blood heterogeneity 216	  

Validation of TCF25 using MeDIPseq 216	  

Influence of DNA methylation on gene expression 216	  

Differentially methylated regions in monozygotic twins discordant for hearing218	  

DISCUSSION 219	  

CONCLUSION 224	  

REFERENCES 225	  

CHAPTER 8: DISCUSSION ........................................................................... 232	  

DATA COLLECTION AND PHENOTYPE 233	  

HERITABILITY STUDY 236	  

WEB-BASED SPEECH-IN-NOISE PHENOTYPE 237	  

SPEECH-IN-NOISE TEST VALIDATION 237	  

BIVARIATE HERITABILITY 238	  

GENOME-WIDE ASSOCIATION STUDIES OF HEARING ABILITY WITH AGE 239	  

GWAS META-ANALYSIS 240	  

BIOLOGICAL PLAUSIBILITY OF SALT INDUCIBLE KINASE 3 241	  

Immunohistochemistry in mouse models 242	  

Further GWAS meta-analysis results 242	  

EPIGENETIC ANALYSIS 243	  

Epigenome-wide association study 243	  

Monozygotic twin discordance study 245	  

CONCLUSION 245	  

FUTURE STUDIES 246	  

Environmental factors 246	  

Genetic factors 246	  

Epigenetic factors 247	  

REFERENCES 247	  

APPENDIX CHAPTER 2 254	  

1. Copy of hearing questionnaire 254	  

2. Self reported HL 255	  

3. Exposure to otitis media during childhood 256	  



 9 

4. Exposure to otitis media in adulthood 257	  

5. Exposure to chronic otitis media 258	  

6. Exposure to eardrum operations 259	  

7. Exposure to explosions with subsequent sudden HL 260	  

8. Exposure to loud music 261	  

9. Exposure to noisy handiwork 262	  

10. Exposure to gunshots 263	  

12. Exposure to occupational noise 265	  

13. Occupation 266	  

APPENDIX CHAPTER 4 267	  

APPENDIX CHAPTER 5 270	  

APPENDIX CHAPTER 6 274	  

APPENDIX CHAPTER 7 277	  

 

  



 10 

Table of Figures 

Figure 1 Anatomy of the human ear .............................................................................. 20	  
Figure 2 Cochlea and the organ of Corti ....................................................................... 21	  
Figure 3 Example air-conduction pure-tone audiogram of a healthy hearing individual 27	  
Figure 4 Example air-conduction pure-tone audiogram of an individual affected by 

ARHI .............................................................................................................................. 27	  
Figure 5 Different forms of monozygotic twins .............................................................. 40	  
Figure 6 Waveform of a pure-tone (adapted from M. Tate Maltby)[1] ........................... 51	  
Figure 7 Eigenvector Loadings for age-adjusted PC1 and PC2 .................................... 64	  
Figure 8 Eigenvector Loadings for unadjusted PC1and PC2 ........................................ 65	  
Figure 9 Pure-tone thresholds increase with increasing PC1 value .............................. 66	  
Figure 10 A high PC2 value indicates high frequency HL ............................................. 67	  
Figure 11 Pure-tone audiograms for the better ear of statistical outliers ....................... 68	  
Figure 12 Histogram of pure-tone averages for the better ear ...................................... 70	  
Figure 13 Bland Altman Plot for measurement of repeatability of pure-tone audiometry

 ...................................................................................................................................... 73	  
Figure 14 The classical twin model ............................................................................... 87	  
Figure 15 Scatter plots of age-adjusted PC1 values by zygosity .................................. 95	  
Figure 16 Scatter plots of age-adjusted PC2 values by zygosity .................................. 95	  
Figure 17 Bivariate correlated factors model pathway ................................................ 112	  
Figure 18 Receiver operating curve of transformed SRTs against moderate hearing 

loss .............................................................................................................................. 119	  
Figure 19 Receiver operating curve of SRTs against moderate hearing loss ............. 120	  
Figure 20 Path diagrams of bivariate heritability estimates for SRT and PTA values . 121	  
Figure 21 Manhattan plot for age-adjusted PTA GWAS ............................................. 144	  
Figure 22 QQ-plot for age-adjusted PTA GWAS ......................................................... 144	  
Figure 23 Locus zooms for age-adjusted PTA GWAS results on chr 14 .................... 145	  
Figure 24 Manhattan plot for PTA GWAS ................................................................... 147	  
Figure 25 QQ-plot for PTA GWAS .............................................................................. 147	  
Figure 26 Locus zoom for PTA GWAS results on chr 6 and 10 .................................. 148	  
Figure 27 Manhattan plot for age-adjusted PC1 GWAS ............................................. 151	  
Figure 28 QQ-Plot for age-adjusted PC1 GWAS ........................................................ 151	  
Figure 29 Locus zoom for age-adjusted PC1 GWAS results on chr 10 and 22 .......... 152	  
Figure 30 Manhattan plot for age-adjusted PC2 GWAS ............................................. 155	  
Figure 31 QQ-Plot for age-adjusted PC2 .................................................................... 155	  
Figure 32 Locus zoom for PC2 GWAS results on chr 7 and 10 .................................. 156	  
Figure 33 Manhattan plot for age and gender-adjusted SRT GWAS .......................... 158	  
Figure 34 QQ-Plot for age- and gender adjusted SRT GWAS .................................... 158	  



 11 

Figure 35 Locus zoom for age-and gender adjusted SRT GWAS results on chr 1 and 2

 .................................................................................................................................... 159	  
Figure 36 Locus zoom for age- and gender adjusted SRT GWAS on chr 13 and 14 . 160	  
Figure 37 Forest plot of the PC2 GWAS meta-analysis findings at rs681524 ............. 180	  
Figure 38 LocusZoom of GWAS meta-analysis results for PC2 at SIK3 ..................... 182	  
Figure 39 Sik3 is expressed in various cells of the cochlea (next page) ..................... 184	  
Figure 40 Sik3 expression in the SG is limited to small non-neuronal cells ................ 186	  
Figure 41 Cytosine methylation ................................................................................... 197	  
Figure 42 Illumina Infinium I and II methylation assay probe designs ......................... 201	  
Figure 43 Manhattan plot of PC1 EWAS (27K) results ............................................... 209	  
Figure 44 Manhattan plot of PC2 EWAS (27K) results ............................................... 212	  
Figure 45 Correlation of hearing PC1 with DNA methylation at cg01161216 (TCF25) 

and cg18877514 (POLE) ............................................................................................. 215	  
Figure 46 Influence of DNA methylation and hearing ability on gene expression ....... 217	  
Figure 47 Correlation of age at web-based hearing test with transformed SRTs ........ 267	  
Figure 48 Histogram of original SRTs ......................................................................... 268	  
Figure 49 Histogram of transformed SRTs .................................................................. 268	  
Figure 50 Histogram of age-adjusted SRT residuals .................................................. 269	  
Figure 51 Genotyping cluster plot for rs681524 in TwinsUK ....................................... 274	  
Figure 52 Differentially methylated regions in MZ twin pairs discordant for PC1 ........ 277	  
Figure 53 Differentially methylated regions in MZ twin pairs discordant for PC2 ........ 278	  
 

  



 12 

List of Tables 

Table 1 Grades of hearing impairment .......................................................................... 25	  
Table 2 Summary of epidemiological population based cohorts used to study on age-

related hearing impairment ............................................................................................ 32	  
Table 3 Summary of significant associations of environmental and medical risk factors 

with ARHI ...................................................................................................................... 37	  
Table 4 Description of summary measures of hearing for the better ear ...................... 62	  
Table 5 Summary measures of the age-adjusted principal component analysis .......... 64	  
Table 6 Eigenvector loadings for age-adjusted principal components .......................... 64	  
Table 7 Summary measures of the unadjusted principal component analysis ............. 65	  
Table 8 Eigenvector loadings for unadjusted principal components ............................. 65	  
Table 9 Demographic and hearing characteristics for different zygosity groups in 

TwinsUK ........................................................................................................................ 69	  
Table 10 Comparison of self-reported HL to slight HL as measured by pure-tone 

audiometry ..................................................................................................................... 71	  
Table 11 Comparison of self-reported HL to moderate HL as measured by pure-tone 

audiometry ..................................................................................................................... 71	  
Table 12 Summary of Heritability studies on ARHI ....................................................... 91	  
Table 13 Population characteristics of the ARHI heritability study sample ................... 94	  
Table 14 ICCs and broad sense heritability estimates for PC1 and PC2 ...................... 96	  
Table 15 Results of the structural equation modelling used to estimate the influence of 

variance components (A, C, E) on hearing ability with age ........................................... 97	  
Table 16 Characteristic of the ARHI sample divided into three age groups .................. 98	  
Table 17 Intraclass correlation coefficients and broad sense heritability for PC1 and 

PC2 at different age ranges .......................................................................................... 99	  
Table 18 Results of structural equation modelling based on different age groups ...... 100	  
Table 19 Conversion chart for score and SRT ............................................................ 110	  
Table 20 Speech-in-noise test samples by zygosity ................................................... 114	  
Table 21 Speech-in-noise test samples by gender ..................................................... 114	  
Table 22 Intraclass correlation coefficients and heritability estimates for transformed 

and age-adjusted SRT residuals ................................................................................. 115	  
Table 23 Results of the structural equation modelling used to estimate the influence of 

A, C and E on speech-in-noise ratio ............................................................................ 116	  
Table 24 Description of samples with speech-in-noise and pure-tone audiogram test 

data ............................................................................................................................. 117	  
Table 25 Correlation matrix for different pure-tone audiogram and speech-in-noise 

phenotypes .................................................................................................................. 118	  
Table 26 Results of the bivariate heritability analysis of SRT and PTA measures. ..... 122	  



 13 

Table 27 Summary of recent candidate gene, linkage and genome-wide association 

studies of ARHI ........................................................................................................... 136	  
Table 28 Characteristics of individuals with genotyping and hearing data .................. 142	  
Table 29 GWAS Results for age-adjusted PTA .......................................................... 143	  
Table 30 GWAS Results for PTA ................................................................................ 146	  
Table 31 GWAS Results for age-adjusted PC1 .......................................................... 150	  
Table 32 GWAS results for age-adjusted PC2 ............................................................ 154	  
Table 33 GWAS results for age-and gender adjusted SRT ........................................ 157	  
Table 34 Results of the functional annotation of genes associated with hearing ability in 

GeneMania .................................................................................................................. 162	  
Table 35 Characteristics of the validation sample ....................................................... 162	  
Table 36 Characteristics of subjects by community .................................................... 179	  
Table 37 GWA meta-analysis results at rs681524 ...................................................... 181	  
Table 38 Association of rs681524 with hearing PC2 stratified by age groups ............ 183	  
Table 39 Population characteristics for the discovery, replication and validation 

samples ....................................................................................................................... 208	  
Table 40 Results for PC1 EWAS, EWAS replication and meta-analysis of epigenome-

wide association for the ten most highly associated probes ....................................... 211	  
Table 41 Results for PC2 EWAS, EWAS replication and meta-analysis of epigenome 

wide association for the ten most highly associated probes ....................................... 213	  
Table 42 Results of the MZ pair difference analysis ................................................... 219	  
Table 43 Results of the gene-based association studies ............................................ 270	  
Table 44 Genotyping and imputation information per population ................................ 275	  
Table 45 Meta-analysis results for PC1 ...................................................................... 275	  
Table 46 Meta-analysis results for PC2 ...................................................................... 276	  
  



 14 

Table of Abbreviations 

Abbreviation  

ARHI age-related hearing impairment 

K+ sodium 

Ca++ calcium 

dB HL decibel hearing level 

PTA pure-tone average 

Hz hertz 

pta pure-tone audiogram 

PTT pure-tone threshold 

OR odds ratio 

SNHL sensorineural hearing loss 

Zhigh Z-score calculated for the high frequencies  

95%CI 95% confidence interval 

MZ monozygotic 

DZ dizygotic 

ICCs intra-class correlations 

NAT2 N-acetyltransferase 2 

LD linkage disequilibrium 

SNP single nucleotide polymorphism 

LOD logarithm of the odds 

PCA principal component analysis 

PC principal component 

GWAS Genome-wide association study 

ROS reactive oxygen species 

WHO world health organization 

HL hearing loss 

BEHL better ear hearing threshold level 

SEM structural equation modelling 

PCR probandwise concordance rate 

  



 15 

Acknowledgements 

I would like to express my deep gratitude to my supervisors Dr Frances Williams and 

Prof Tim Spector, who patiently guided me throughout this research and did not spare 

any time or effort to ensure my successful completion of this PhD project. Their 

research and dedication will motivate and inspire me in my future research. 

 

I would further like to offer my special thanks to Claire Steves, who initiated the hearing 

test in the TwinsUK cohort and designed the hearing questionnaire. Claire has been an 

essential source of advice and support for me particularly at the start of my PhD 

project.  

 

My special thanks are extended to my collaborators from the G-EAR consortium, 

particularly Dr Giorgia Girotto, Prof Paolo Gasparini and their team of dedicated 

researchers and statisticians. They provided a lot of essential work and data for the 

GWAS meta-analysis and hopefully their example will motivate data in future hearing 

research. I would further like to thank Dr Nicole Soranzo and her team at the Wellcome 

trust Sanger Institute for the genotyping data used in this research. I would also like to 

thank Dr Massimo Mangino for his continuous advice in questions concerning the 

TwinsUK genotyping and imputation data. 

 

I am particularly grateful for the help of Prof Karen Steel and her research team, who 

advised and guided me through the gene follow up in mouse models. Prof Steel and 

her research team made me feel very welcome and valued in their group. Especially 

the support of this research with expert advice, access to facilities, reagents and mice 

provided by Prof Steel is greatly appreciated. I am particularly grateful for the help of 

Dr. Annalisa Buniello, who has developed from a knowledgeable tutor in Prof. Steel’s 

group to a great friend.  

 

The advice and support given by Dr Jordana Bell and her PhD student Pei-Chien Tsai 

was of great help for the epigenetics on hearing study. In this context I would further 

like to thank staff from the Beijing Genomics Institute and Prof Panos Deloukas team at 

Wellcome trust Sanger institute for providing the DNA methylation data for the 

epigenetics of hearing research.  

 

I wish to acknowledge Action on Hearing Loss and AgeUK, who funded me throughout 

my research with PhD student scholarship and were of great help in advertising my 



 16 

research to the public. I would further like to express special thanks to the staff of 

Action on Hearing Loss for allowing me to use their web-based hearing test for this 

research. This access and the effort taken to set up the test for TwinsUK has been 

greatly appreciated. 

 

Advice and support given by the IT and data access team at the Department of Twin 

Research and Genetic Epidemiology was a great help to this research, particularly in 

the adaptation of the web-based hearing test.  

 

My particular gratitude extends to all the volunteers from the TwinsUK cohort, who 

provided their time, medical data and tissue samples to enable this research. In 

addition, thanks belong to all the members of the twin visit team, who greatly helped to 

collect hearing data.  

 

Finally, I would like to thank William and my family for their invaluable emotional 

support throughout the last years.  

  

  



 17 

Abstract 

Age-related hearing impairment (ARHI) affects 46% of the population over the age of 

48 and with increasing life expectancy in Western nations, this incidence is likely to 

rise. The causes for this disorder are still poorly understood but there is known to be a 

heritable component of around 65%. In addition, epigenetic regulation of gene 

expression changes over time and may explain many age-related traits. The basis of 

this research was to explore genetic and epigenetic factors in ARHI to understand 

better the mechanisms involved in its pathology.  

 

Hearing data were obtained from female volunteers of the TwinsUK register using the 

gold standard measure, air-conduction pure-tone audiometry and a web-based speech-

in-noise perception test. The prevalence of ARHI in TwinsUK was comparable to 

previous reports. Heritability estimates based on the classical twin model confirmed a 

moderate heritability of hearing ability in TwinsUK, supporting the use of this sample in 

genetic association studies. Genome-wide association with hearing ability was 

performed in TwinsUK but no genome-wide significant polymorphisms were identified 

possibly due to inadequate sample size. Accordingly, the data were combined with 

existing genome-wide association studies (GWAS) of hearing function from the G-EAR 

consortium. This meta-analysis resulted in a genome-wide significant association with 

an exonic SNP of the SIK3 gene encoding salt-inducible kinase 3, a novel gene 

reported to regulate metabolism and skeletal development via HDAC4. 

Immunohistochemistry of sik3 in mouse models confirmed striking expression profiles 

in hair cells and spiral ganglion cells of mouse cochlea, validating a putative function of 

SIK3 in hearing ability. 

 

A small epigenome-wide association study of hearing ability in TwinsUK (n=115) 

revealed an epigenome-wide significant association with a probe in the promoter region 

of TCF25. Epigenome-wide associations at two highly associated probes (TCF25 and 

POLE) were replicated in an independent sample from TwinsUK (n=203). DNA 

methylation at these genes was negatively correlated with expression of the same, 

indicating gene expression repression by DNA methylation. Furthermore, using 

identical twins discordant for hearing loss, differentially methylated regions were found 

at genes ACP6 and CCNDBP1. 

 

This research supports a role of common genetic variants in ARHI, including the novel 

association with SIK3, which may be essential for healthy hair cell development and 

maintenance of spiral ganglion cells with increased age.  Differentially methylated 
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regions were significantly associated with ARHI and showed an effect on gene 

expression despite small sample size, supporting a role of epigenetic modifications in 

ARHI. This research is the first to report genome-wide significant association with SIK3 

and epigenome-wide significant associations at TCF25 with ARHI, which may shed 

light on the pathways involved in this disabling condition.  
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Chapter 1: Introduction  

Abstract 

In 2009, 16% of all British citizens were aged 65 years or older. This number is 

expected to rise up to 23% by 2034 [1], highlighting the impact of ageing on the 

population. Higher life expectancy will inevitably be accompanied by an increased 

incidence of age-related disorders, some of which are still rarely studied. Better 

understanding of age-related traits, like age-related hearing impairment (ARHI), is 

essential to enable treatment or possibly prevention of these disorders. Loss of hearing 

ability can affect simplest everyday activities, such as day to day conversations with 

other people, leading to social isolation [2], loss of physical and mental wellbeing and 

ultimately incapability to work. In the March 2006, 9 million individuals in the UK were 

estimated to be deaf or hard of hearing.  Most of these subjects experienced hearing 

loss (HL) as a part of the ageing process [3]. 

 

This chapter introduces the anatomy of the ear and known pathologies of ARHI. In 

addition a review of the current literature covering environmental risk factors for ARHI 

as well as the basic rational of human ageing and studies on the latter as well as the 

role of twins in medical research are discussed. 

 

Anatomy and physiology of the ear and hearing 

Anatomy of the ear  

The ear can be divided into three major parts, the outer, middle and inner ear (Figure 

1)[4]. Main structures of the outer ear include the pinna and ear canal. The pinna 

represents the visible part of the ear extruding from both sides of the head. This 

structure leads in to the ear canal, embedded in the mastoid bone. This narrow 

passageway leading to the eardrum extends on average to 2.4 cm [5]. While the inner 

two thirds of the ear canal have a bony wall, the outer third has a wall formed of 

cartilage lined by skin tissue including a high proportion of hair and ceruminous glands 

[5]. An opaque membrane called the tympanic membrane or eardrum made of 

squamous stratified epithelium, a fibrous middle layer and a mucosa lining the middle 

ear cavity defines the border between outer and middle ear. 

 



 20 

Figure 1 Anatomy of the human ear 

Schematic drawing of the major components of the human ear. For descriptive 
purposes, the ear is divided into outer, middle and inner ear. 
 
Behind the tympanic membrane an air filled cavity, the middle ear is located, which 

contains the three auditory bones (malleus, incus and stapes). Like the name implies, 

the middle ear forms the connection between outer and inner ear, with signals being 

transmitted via the ossicular chain of auditory bones. These three tiny bones form a 

tight but flexible link, with membranes and ligaments supporting their function. While 

the malleus connects to the tympanic membrane, stapes touches the wall of the inner 

ear at the oval window, one of two membrane-lined windows linking the middle ear 

cavity to snail shaped structure of the inner ear. The flexible connection between the 

ossicular bones is essential for transmission of vibration from the tympanic membrane 

to the oval window and is further regulated by two muscles, the tensor tympani and the 

stapedius muscle. Ventilation of the air-filled middle ear cavity is provided via the 

Eustachian tube, a canal opening the middle ear to the sinuses. Despite enabling 

ventilation this passage also presents a way to clear the inner ear from debris and an 

entry for bacteria to the middle ear, the main cause of otitis media [6]. Further 

structures of the middle ear include the facial and chorda tympani nerve.  

 

The inner ear is embedded in the temporal bone and formed by a connection of fluid 

filled cavities and channels. Normally, the inner ear is functionally divided into cochlea 
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and semicircular channels, with the cochlea being responsible for sound processing 

and the semicircular channels controlling balance. This short summary of the anatomy 

of the inner ear will be focussed on the cochlea. The structure of the cochlea 

resembles that of a tapered spiral, giving its name, which translates as snail or screw. 

On the inside, three channels run in parallel from the base to the apex, the scala 

vestibuli, scala media and scala tympani (Figure 2). Scala vestibuli and scala tympani 

are filled with perilymph (high in sodium), while the scala media or cochlear duct, 

located between the two other chambers, contains endolymph (high in potassium)[7]. 

 

Figure 2 Cochlea and the organ of Corti 

On the left hand side a light microscopic cross-section through the mouse cochlea at 
the day of birth is shown (SV= scala vestibuli; SM=scala media; ST=scala tympani). 
The scala media containing the organ of Corti is depicted at a higher magnification on 
the right hand side (HC=hair cell).   
 

The cochlear duct is outlined by three structures, forming a triangular shape; the basilar 

membrane, the stria vascularis and Reissner’s membrane (Figure 2). Based on the 

basilar membrane lies the organ of Corti, which harbours the sensory inner and outer 

hair cells, converting a mechanical signal from the sound waves travelling through the 

fluid of the cochlea to an electric one, giving a neuronal stimulus to the auditory nerve. 

The basal part of the hair cells is connected to the basilar membrane whereas the 

apical part is bathed in endolymph with occasional contact to the tectorial membrane. 

The organ of Corti contains three rows of outer hair cells but only one row of inner hair 

cells. While inner hair cells transmit the primary sound signal, outer hair cells are 

important for amplification of the same [8,9].  The hair cells derived their name from the 

arrangements of stereocilia on the apex of these cells, facing the endolymph. 

 

The stereocilia are arranged in a staircase like fashion giving the impression of a “V” 

when viewed from the top of the hair cell [10]. Links between adjacent stereocilia are 

responsible for maintenance of this structure and their role in opening in ion channels 
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has been suggested. Different stereocilia links have been reviewed in [11]. Disturbance 

of this strict arrangement and progressive degradation of stereocilia has been detected 

in several mouse models for HL [12,13]. Stereocilia are actin based structures and 

therefore relatively stiff [14]. To allow more flexibility, the basal ends of the stereocilia 

are anchored at the cuticular plate on top of the hair cell via a flexible taper [15]. 

Several unconventional myosins (myosin 15a [16],myosin 3a [17] and myosin 7a [18]) 

have been implicated in stereocilia growth and lack or mutation of the same is a 

common cause of HL [17,19,20]. Deflection of the stereocilia leads to opening or 

closing (depending on the direction of deflection) of transduction channels, a process 

referred to as mechanotransduction [11]. 

 

Auditory nerves form the connection between the basal end of the hair cells and the 

spiral ganglion. Two types of afferent (leading to the brain) spiral ganglion neurons are 

known, differing in anatomy and cells they innervate [21]. Type 1 spiral ganglion 

neurons innervate solely single inner hair cells and show a thick radial appearance, 

whereas type 2 neurons are thinner and connect to multiple outer hair cells [21,22].  

Both inner and outer hair cells are further connected to efferent (coming from the brain) 

nerve fibres, providing feedback to the sensory cells. Afferent cochlear nerves transmit 

signals to the cochlear nucleus located in the brainstem, from where it is sent via the 

superior olivary nucleus, inferior colliculus and medial geniculate nucleus to the primary 

auditory cortex located in the temporal lobe. 

 

Other essential features of the cochlear duct include the stria vascularis, a membrane 

rich in ion channels, which ensure the correct chemical composition of the endolymph 

corresponding to a positive endocochlear potential of +80mV [23,24]. The stria 

vascularis can be divided into three layers: marginal, intermediate and basal cells. Ion 

channels of the stria vascularis are located in the marginal part of the stria, facing the 

endolymph, whereas the intermediate layer of the stria contains capillaries to provide 

perfusion of these ion channels. The intermediate and basal layers form a tight seal of 

the scala media by the use of gap junctions (i.e. connexins)[25]. 

Physiology of the ear and hearing 

Sound waves entering the ear at the pinna are led via the ear canal towards the 

tympanic membrane. The pinna can help to localise sound, however this effect is 

limited in humans compared to other animals, like cats or dogs, which display larger 

and more motile pinna. The specific resonance property of the ear canal results in 

enrichment of the sound signal at frequencies ranging from 1500Hz to 6000Hz [5]. 
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Sound waves reaching the tympanic membrane are transformed into vibrations of the 

latter causing a movement of the ossicular chain, directly attached to the tympanic 

membrane. This movement going from malleus to incus and stapes exerts pressure on 

the oval window due to stapes footplate pushing on it. The oval window is a membrane 

lining the basal part of the cochlear canals. Stretching of the oval window creates a 

wave in the fluid perilymph, which travels along the snail-shaped cochlea. While 

travelling through the cochlea the wave builds up until it reaches its maximum. The 

location, where the sound wave reaches its maximum is defined by its initial pitch. This 

explains the tonotopical organisation of the cochlea; while low-pitched sounds reach 

the maximum at the apex of the cochlea, high pitched sounds peak at its base. At this 

point, the wave travelling underneath the basilar membrane will cause a maximum 

distortion of the membrane, pushing the membrane and hair cells residing on it 

upwards against the tectorial membrane. Stereocilia located on the apical surface of 

the hair cells form the point of contact with the tectorial membrane. As the hair cells are 

pushed upwards, stereocilia are deflected towards the stria vascularis, triggering the 

opening of mechanical ion channels on top of the stereocilia to open. K+ ions from the 

endolymph enter the stereocilia upon channel opening causing depolarization of the 

hair cell. Depolarization of the hair cell results in opening of voltage-gated ion channels 

at the hair cell membrane causing K+ efflux and Ca++ ions entering the cell. Ca++ ions in 

the hair cell trigger the discharge of glutamate, the main excitatory neurotransmitter in 

the inner ear. Negative deflection of the stereocilia can lead to closing of ion channels. 

While inner hair cells innervate afferent neurons via glutamate release, outer hair cells 

are mainly innervated by efferent neurons. Outer hair cells fulfil fine-tuning mechanisms 

by changing their length and shape [26]. Depolarization and motility of outer hair cells 

results in movement of the basilar membrane [26]. Changes in shape of outer hair cells 

are dependent on prestin [27,28], motor proteins and acetylcholine [29]. The quantity of 

neurotransmitter released by inner hair cells is directly proportional to the 

depolarization and Ca++ influx. 

 

Hearing Loss and ARHI 

Forms of hearing loss 

HL is a very broad medical field that is defined by its’ heterogeneity in forms of 

manifestation, causal factors and the corresponding diagnostic tests. This paragraph 

aims to give a short overview of the variety of HL and map ARHI in this field.  
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Forms and manifestations of HL can be divided by the age of onset (congenital, pre-

lingual, before adulthood, adult-onset and age-related) and whether the HL occurs in 

combination with other pathologies (syndromic HL) or on its own (non-syndromic). 

Knowledge about the affected structures in the ear allows further division into 

conductive, sensory or neural HL. Conductive HL is caused by a dysfunction or 

impairment of the outer and middle ear. In this form of HL, the conduction of sound to 

the cochlea is impaired. Causes of conductive HL include Otosclerosis and 

Cholesteatoma or other damage to the outer and middle ear. Sensory and neural HL 

are often summarised as one (sensorineural HL), and refer to damage to structures of 

the cochlea and auditory nerve, respectively. Most definitions of sensory HL refer to 

damage or loss of sensory hair cells in the cochlea, however also damage to other 

structures (i.e. stria vascularis) of the cochlea can lead to this impairment. 

 

HL can be caused by multiple factors, which can broadly be divided into genetic 

predisposition and acquired environmental exposure, or a combination of both. 

Environmental risk factors include, among others, noise exposure, ototoxic medication 

and infections affecting the ear, and have been determined in various epidemiological 

studies of HL, which will be covered in more detail below. However, infections of the 

ear might also be influenced by genetic predisposition [30].  

 

According to the hereditary HL homepage [31] about 100 genetic loci have been 

associated with HL. However, many of these loci are very rare and only account for HL 

in one or a few families. This suggests a high genetic heterogeneity for the phenotype. 

Genetic loci for HL are named according to their mode of inheritance: autosomal 

dominant (DFNA), autosomal recessive (DFNB) or X-linked (DFN); followed by a 

number corresponding to the order of detection [32] . The candidate genes identified 

from these loci fulfil a variety of functions in the inner ear, including unconventional 

myosins, cytoskeletal proteins, transcription factors, gap junction and extracellular 

matrix proteins [31]. Nevertheless, the function of several of the associated HL genes 

and loci is still unknown. A regularly updated list of HL loci with links to the 

corresponding literature can be found at the hereditary HL website [31]. 

 

Hearing ability can be assessed via various hearing tests. The current standard hearing 

test is the pure-tone audiogram (pta). This test is often referred to as a “subjective” test, 

as it relies on a behavioural response of the test subject. The pta determines the lowest 

sound intensity (measured in decibel HL (dB HL)) an individual can hear for different 

frequencies (measured in hertz (Hz)) (Figure 3) and will be covered in more detail in 

the following chapters. The sound intensities measured for each ear and frequency are 
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referred to as pure-tone thresholds (PTTs). Hearing impairment is measured in decibel 

HL, which corresponds to the decibels an individual’s hearing ability diverges from 

healthy hearing. The world health organization (WHO) grades hearing impairment into 

mild, moderate, severe and profound HL depending on the range of HL. Grades of 

hearing impairment adapted from the WHO and corresponding hearing performances 

are listed in  

Table 1. 

Table 1 Grades of hearing impairment 

grade of 
hearing 
impairment 

audiometric ISO value for the 
better ear [dB HL] 

hearing performance 

no impairment ≤25 Healthy hearing ability. Able to hear whispers. 

mild 26-40 Able to hear and repeat words spoken in normal voice at 1 
metre. 

moderate 41-60 Able to hear and repeat words spoken in raised voice at 1 
metre 

severe 61-80 Able to hear some words when shouted into better ear. 

profound >80 Unable to hear and understand even a shouted voice 

Grades of hearing impairment as adapted from the WHO [33] are listed by 
corresponding range of pure-tone threshold that can be perceived in the better hearing 
ear and expected hearing performance. 
 

Newest data from Action on Hearing Loss [34] suggests that one sixth of the UK 

population (~10,130,000 individuals) is affected by HL, of which 800,000 are 

profoundly hearing impaired or deaf [35]. 41.7% of all adults aged 50 years or older 

suffer from mild (>25 dB HL) to profound (>80 dB HL) hearing impairment, highlighting 

the prevalence of ARHI. 

 

Phenotypes and Pathologies of ARHI 

ARHI describes the progressing HL acquired with age. Data from an Italian cohort has 

mapped the average age of onset to 40 years [36].  Figure 3 and Figure 4 show 

example air-conduction ptas of a healthy hearing subject and an older adult affected by 

ARHI, respectively. In a healthy hearing individual, PTTs are low (<40 dB) over all 

frequencies. In most ARHI cases, HL progresses from the higher to the lower 

frequencies, causing a characteristic down-slope in the pta (Figure 4). However, other 

characteristic forms of ARHI have been described, causing primary HL in other 

frequency ranges than the higher frequencies [37]. Both ears are expected to be 

affected equally by this disorder. Men are more likely to be affected by age-related HL 

than women (possibly due to increased exposure to occupational noise or differences 
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in hormone signalling [38,39]), but it needs to be considered that women have a higher 

life expectancy than men (78 years for men, 82 years for women, UK, 2009 [40]) , 

thereby raising the prevalence of female subjects with ARHI in the oldest age groups.  
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Figure 3 Example air-conduction pure-tone audiogram of a healthy hearing individual 

The pure-tone audiogram measures the lowest sound intensity an individual can hear 
at different frequencies. Measurement is performed separately for both ears. Pure-tone 
thresholds for the right ear are depicted as red circles and pure-tone thresholds of the 
left ear are shown as blue crosses. The audiogram of a healthy hearing individual 
shows low sound intensities (≤ 25 dB HL) over all frequencies. 
 

Figure 4 Example air-conduction pure-tone audiogram of an individual affected by 

ARHI 

The pure-tone audiogram measures the lowest sound intensity an individual can hear 
at different frequencies. Measurement is performed separately for both ears. Pure-tone 
thresholds for the right ear are depicted as red circles and pure-tone thresholds of the 
left ear are shown a blue crosses. The audiogram of an individual affected by ARHI 
shows a characteristic down-slope in sound intensities for the higher frequencies. 
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Reported changes to the ageing inner ear and the corresponding pathology of ARHI is 

primarily based on the histological light microscopy observations conducted on the 

cochlea of 17 individuals with various types of age-related HL [41,42]. Though these 

observations could not really be reported as recent, they are still the most cited ones in 

regards to ARHI pathology. 

 

Schuknecht et al described four different pathological sub-phenotypes: sensory, neural, 

metabolic or strial and mechanical ARHI. Sensory ARHI is the most prevalent type 

accounting for 50% of all cases. It is defined by a loss of sensory hair cells particularly 

in the basal part of the cochlea. The loss of hair cells was associated with damage to 

supportive cells and spiral ganglion neurons, however, the loss of neurons was 

assumed to be a secondary effect to loss of supportive and hair cells. Sensory hair 

cells in the basal part of the cochlea respond to sound stimuli of higher frequency, 

whereas the lower frequencies innervate hair cells in the apical part [43,44]. Individuals 

with above described pathology showed HL for the higher frequencies, which 

corresponded to hair cell loss in the basal part of the cochlea. 

 

Strial ARHI, also referred to as metabolic, is characterized by an atrophy of the stria 

vascularis, causing a flat slightly descending audiogram. The stria vascularis is the 

metabolic centre of the cochlea and contains a high density of ion-channels, 

responsible for the correct ion concentration of the endolymph. Atrophy of this tissue 

would lead to an imbalance of ion concentration and therefore influence the high 

electrical potential inside the scala media. This imbalance would affect all areas of the 

cochlea, thus resulting in HL over all frequencies (flat audiogram). This theory is 

supported by the flat audiogram seen in patients with endolymphatic hydrops and 

Meniere’s disease [45]. 

 

Neural ARHI is associated with loss of neurons both in the spiral ganglion and auditory 

pathways [42]. The loss of neurons is assumed to start early in life without any 

phenotypic symptoms. Hearing ability is only affected after a threshold of neuronal loss 

is exceeded. In most cases, the sensory hair cells in the cochlea remain unaffected of 

these changes. Individuals with this pathology often show normal pure-tone 

audiograms (due to the healthy hair cells), but report difficulties in word discrimination, 

indicating problems in sound signal processing. 

 

The pathology of mechanical or cochlear conductive ARHI is not defined. Schuknecht 

et al suggested a stiffness of the basilar membrane leading to this pathology; however, 

light microscopy was not sufficient to prove this hypothesis. Individuals with this 
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hypothetical pathology show a slightly descending pure-tone audiogram. It was further 

highlighted that most affected individuals show a mixture of the described pathologies, 

addressed as mixed ARHI [41].Newer data from the observations of 21 temporal bones 

of individuals with ARHI revealed that loss of hair cells (inner and outer), loss of stria 

vascularis volume and reduction in spiral ganglion cells were significantly associated 

with a down-sloping audiogram, supporting a mixed form of ARHI [46]. 

 

Current treatment strategies and technologies for ARHI 

Few treatment strategies for ARHI are available but due to their relative improvement 

to hearing ability and therefore quality of life in higher age, they are worth mentioning 

[47]. The most common used appliance is a hearing aid. Hearing aids take up sound 

waves and convert them into electric stimuli. Modern hearing aids can be personalised 

to the specific needs of the patient. In case of high frequency HL, sounds in the 

affected frequencies can be shifted to lower frequencies or be amplified particularly. In 

addition, hearing aids can be set to reduce background noise and adapt automatically 

to certain situations/ environments. However, the choice of hearing aid should also 

consider the users cognitive and fine motor abilities to handle their new device. Despite 

major benefits to hearing ability reported by most hearing aid users and described in 

various publications [48,49], many elderly refrain from using hearing aids due to 

cosmetic reasons. Wearing a hearing aid is unfortunately still associated with old age 

instead of regain of hearing ability and associated freedom. In addition, fitting and 

acclimatisation to of a new hearing aid can be tedious and first disappointments might 

result in rejection of the hearing aid. In general, hearing aids should be used rather 

earlier than later, as the change from deafness to sudden hearing ability regain can be 

very harsh.  

 

Cochlear implants offer a different mechanism to restore hearing ability. In this case 

electric stimuli are formed from sound waves and directly used to excite the auditory 

nerve. However, this method is more intrusive, as it requires surgical intervention, and 

a healthy auditory nerve for success. The cochlear implant is fitted close to the head 

behind the pinna and can often be covered by hair, making it more favourable 

cosmetically. Good results for ARHI affected individuals have been reported with 

cochlear implants [50,51]. However, this treatment is still relatively rarely used in ARHI 

patients due to the associated medical risks and high treatment costs. 

 

Further options include hearing assistive devices like telecoils which can be combined 

with hearing aids or cochlear implants. Telecoils are tiny coils of wire fitted into specific 
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hearing aids, which can pick up magnetic signals set up for it. Telecoils are often used 

in supermarkets or other public places, in addition, special phones with telecoil option 

have been developed. To use the telecoil, the setting of the hearing aid has to be 

changed from microphone to telecoil with might be difficult for older users. Other 

hearing assistants can alert the user of missed sounds by visual, tactile or audiologic 

triggers. Further assistive devices amplify the sound similar to a hearing aid.  

 

The successful application of a hearing aid or cochlear implant is dependent on 4 

factors: competent fitting of the device, motivation and willingness of the patient to use 

and adapt to the new technology as well as the ability of the patient to understand and 

handle its new aid. Consideration of these factors can give remarkable results in 

hearing improvement; although it does it will not fully restore healthy hearing ability. 

 

Currently there are no pharmaceutical treatments available for age related hearing 

impairment. However, future drugs could be targeted at age-related changes in the 

cochlea and the audiologic neurons connected to it. One possibility would be to restore 

the expression of inhibitory neurotransmitters, whose expression has been shown to be 

reduced in aging rats [52]. Counteracting this reduction would help to preserve the 

balance of excitation and inhibition of audiologic neurons. Furthermore, overproduction 

of excitatory neurotransmitter was shown to have a ototoxic effect on synapses 

between hair cells and neurons of the spiral ganglion [53]. 

 

Epidemiological population-based studies on ARHI 

Several epidemiological population-based cohorts have been collected in the last 

decades to determine environmental and genetic risk factors for ARHI. This paragraph 

is meant to give a short overview of the major cohorts available and the data collected 

for the various studies. Specific information on each cohort is summarised in Table 2. 

 

The Framingham Heart Study was started in 1948 as a longitudinal population based 

cohort of the citizens living in Framingham, Massachusetts. This study was created to 

study the epidemiology of cardiovascular diseases in previously healthy individuals on 

a biennial basis [54]. Tests for ARHI were performed at examination 18 of the cohort. 

The tests included pure-tone audiometry as well as word recognition tests and self-

reported HL. Besides investigating environmental risk factors [55], heritability [38] and 

linkage studies [56] of ARHI have been performed for subjects from the Framingham 

cohort. 
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The Epidemiology of HL study was initially founded as a study focussing on 

ophthalmologic traits. Subjects for this cross sectional study were recruited from 

Beaver Dam, Wisconsin [57]. The cohort was extended to an offspring cohort, 

focussing on the children of the original participants [58]. Both cohorts covered pure-

tone audiometry (air- and bone-conduction) and self-reported HL. The main focus of 

these two related cohorts was to identify the prevalence of ARHI and determine non-

genetic risk factors, justifying the high number of environmental measures recorded 

[2,57,58,59,60,61]. It should be noted that the Beaver Dam offspring cohort is relatively 

young in respect to the normal age for cohorts on age-related traits. 

 

The Blue Mountains Hearing Study is based on a 5-year follow up of the Blue 

Mountains Eye Study cohort. Participants for this cohort were recruited from west of 

Sydney, Australia [62]. This study covers pure-tone audiometry; self-reported HL and 

the Hearing Handicap Inventory for the Elderly-Screening Version (HHIE-S) test. Bone 

conduction audiometry was only conducted in selected participants. This cohort 

focuses on both environmental risk factors and the sensitivity of self-reported HL and 

the HHIE-S in comparison to pure-tone audiometry [62,63,64]. 

 

The ARHI study is a multicentre-study based on data collected in eight European Ear-

Nose and Throat departments. This cohort was established to study environmental, 

medical and genetic risk factors of ARHI. Publications are available concerning various 

environmental risk factors [65,66], candidate gene [67,68], linkage studies [69,70] and 

genome-wide association studies [70,71]. The phenotypes used to summarize HL vary 

from pure-tone averages for different frequency ranges and standardised Z-Scores [72] 

to principal components of hearing ability (PC1; PC2; PC3). These different hearing 

measures will be referred to in more detail in chapter 2. 

 

The Finnish Twin study on ageing was created as a study on older twins from the 

Finnish twin registry [73]. The Finnish twin study on ARHI, a part of the general ageing 

study, included exclusively female twin pairs. Hearing ability was summarized as a 

better ear hearing threshold (BEHL) calculated from pure-tone air conduction 

thresholds. In addition, hearing data was obtained in form of a speech discrimination 

test as well as self-reported HL [74,75]. 

 

It should be noted that hearing data collected for the Epidemiology of Hearing Loss 

studies (Beaver Dam and Beaver Dam offspring cohort) use hearing measures for the 

worse ear, while all other population-based cohorts listed in Table 2 focus on the better 
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hearing ear. The Finnish twin study also compared hearing ability for the worse and 

better ear [75]. 

 

Table 2 Summary of epidemiological population based cohorts used to study on age-

related hearing impairment 

cohort n gender             
(% 
female) 

age range 
mean(SD) 

hearing tests environmental and 
medical measures 

The Framingham cohort 
[38,54,55,56] 

1662 59% 63-95 

73 (NA) 

otoscopic examination 

pure-tone air 

(0.25;0.5;1;2;4;6;8 kHz) 

conduction audiometry 

word recognition  

self-reported HL 

cardiovascular 
measures from the 
Framingham heart 
study 

The Epidemiology of 
Hearing Loss Study  
Beaver Dam cohort 

[2,57,58,59,60,61,76] 

 

3753 57.5% 48-92 

65.8(NA) 

otoscopic examination 

pure-tone air 

(0.25;0.5;1;2;3;4;6;8 kHz) 

and bone (0.5;4 kHz) 
conduction audiometry 

self-reported HL 

 

Income 

Education (years) 

Occupation 

Occupational noise 
exposure 

noise exposure 

Smoking (never, 
past, current) 

Diabetes 

Cardiovascular 
diseases 

Cholesterol 

High density 
lipoprotein 
cholesterol 

Blood pressure 
(systolic/diastolic) 
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cohort n gender             
(% 
female) 

age range 
mean(SD) 

hearing tests environmental and 
medical measures 

Beaver Dam offspring 
cohort 
[58,61] 

3285 54.6% 21-85 

49.2(9.9) 

otoscopic examination 

pure-tone air 

(0.5;1;2;3;4;6;8 kHz) 

and bone (0.5;4 kHz) 
conduction 

audiometry 

word recognition in quiet 
and competing message 

Income 

Education (years) 

Occupation 

childhood water 
supply 

Occupational noise 
exposure 

noise exposure 

smoking (current , 
pack-years) 

Diabetes 

Cardiovascular 
diseases 

total serum 
cholesterol 

HDL serum 
cholesterol 

weekly exercise 

central retinal 
arteriolar equivalent 

intima-media 
thickness 

statin use 

ear infections 

ear surgery 

Meniere disease 

otosclerosis 

central retinal venular 
equivalent 

nonsteroidal anti-
inflammatory 

Hypertension  

The Blue Mountains 
Hearing Study 
[62,63,64] 

2431 56.1% 55-99 

67 (95% CI: 
66.7-67.4) 

pure-tone air 

(0.25;0.5;1;4;6;8 kHz) 

and bone conduction (if 
required) 

audiometry 

self-reported HL 

Hearing Handicap 
Inventory for the Elderly 
Screening Version 

marital status 

ethnicity 

occupation 

occupational noise 
exposure 

ototoxic drug use 

hearing aid use 

36-item short form 
health survey 

Finnish twin study on 
ageing 
[73,74,75] 

 

 

429 100% 63-76 

NA 

pure-tone air 

(0.125;0.25;0.5;1;2;4;8 
kHz) conduction 
audiometry 

speech discrimination test 

self-reported HL 

 

Mini-Mental State 
examination 

chronic diseases 

medication use 

smoking status 

Body Mass Index 

hearing aid 
ownership 

frequent otitis media 

otosclerosis 

auditory diseases 

acoustic trauma 

noise exposure (work 
or leisure) 

impulse work 
exposure 
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cohort n gender             
(% 
female) 

age range 
mean(SD) 

hearing tests environmental and 
medical measures 

ARHI study 
[65,67,68,69,70,71,72,77] 

 

4083 51.8% 53-67 

males:60.9 
(3.2) 

females:60.4 
(3.2) 

pure-tone air 

(0.25;0.5;1;2;3;4;6;8 kHz) 

and bone (0.5;1;2;4 kHz) 
conduction 

audiometry 

 

 

height 

weight 

Body Mass Index 

eye-colour 

left/right-handedness 

sunburn susceptibility 

hypertension 

whiplash injuries 

osteoporosis 

osteoarthritis 

allergy 

diabetes 

Heart attack 

cardiovascular 
diseases 

aspirin use 

atorvastatin use 

noise exposure 
(years) 

solvent exposure 
(years) 

occupational noise 
exposure 

exposure to gunfire 

smoking (current and 
past; pack-years) 

alcohol consumption 

Data is based on the cohort profile as presented in the referenced publications. Data 
might vary in further studies on the cohorts. NA= information not available. 
 

Environmental and medical risk factors  

Most complex diseases, like ARHI, are caused by a combination of environmental and 

genetic risk factors, as well as the interaction of both. In addition, environmental factors 

can have an effect on epigenetic structures [78]. Genetic risk factors for ARHI are 

covered in chapter 5 and therefore not part of this introduction. Environmental risk 

factors for ARHI have been studied in various epidemiological population-based 

studies (Table 2). The environmental risk factors summarized in this paragraph are 

taken primarily from the cohorts studied in Table 2. Environmental risk factors for ARHI 

include noise exposure, smoking, alcohol consumption, ototoxic medication as well as 

medical conditions (i.e. cardiovascular diseases and diabetes mellitus). Each of the risk 

factors is covered in more detail below and significant associations summarised in 

Table 3. 

 

Noise exposure above 85 dB A was reported to have the potential to cause HL [79]. 

However, experiments in mice revealed, that the time of noise exposure can affect the 
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intensity of HL and that exposure in young years is most destructive [80]. In the Beaver 

Dam cohort, occupational noise exposure had a significant effect on HL (HL was 

defined as a pure-tone average (0.5-4kHz) >25dB HL in the worse ear)(OR=1.31, 95% 

CI: 1.10-1.56)[81]. This association could be replicated in the Beaver Dam offspring 

cohort (Age-and sex-adjusted OR:1.67 (95% CI:1.29-2.16), multivariate OR:1.57 (95% 

CI: 1.19-2.08)[58]. In addition, individuals from the Beaver Dam cohort engaging in 

noisy leisure activities (≥90dB) were more likely to have HL than unexposed 

participants (OR:1.11, 95%CI: 1.01-1.22)[76].  

 

In the ARHI study, occupational noise exposure was associated with Z-scores for the 

higher frequencies (2-8 kHz) (p=1.0x10-17) for all European centres besides Antwerp 

[66]. The length of noise exposure in years was also significantly associated with ARHI 

in the ARHI study (Z-scores for the high frequencies, p=1.0x10-17), however, an 

association between Gunfire noise exposure and Z-scores (p=0.009) did not survive 

the Bonferroni correction for 74 tests (p<6.8x10-4)[66]. 

 

Cigarette smoking can lead to vasoconstriction and thus reduce blood supply to the 

cochlea. Smoking has further been predicted to have an effect on the antioxidant 

defence of the cochlea to reactive oxygen species. [82,83]. In the Beaver Dam cohort, 

current smokers had a 1.69 times higher risk of ARHI than non-smokers (OR: 1.69; 

95%CI:1.31-2.17), this effect was even more pronounced in individuals with additional 

occupational noise exposure (OR:1.85; 95%CI: 1.33-2.57) and remained in smokers 

unexposed to noise (OR: 1.53; 95%CI: 1.03-2.29)[59]. In the Beaver Dam offspring 

cohort, Smoking more than 11 packs of cigarettes per year showed a significant effect 

on ARHI compared to non-smokers (OR:1.61; 95% CI:1.16-2.23) after adjustment for 

age and gender [58]. However, current smoking (having smoked more than 100 

cigarettes) was not significantly associated with HL (OR: 1.40; 95% CI:0.99-1.98)[58]. 

This leads to the conclusion that a threshold of smoking needs to be reached to affect 

hearing ability. In the ARHI study, smoking history measured in packyears (packages 

of cigarettes smoked per year) had a significant effect on the Z-scores for the higher 

frequencies (p=1.0x10-9) and remained significant for males (p=1.9x10-7) when 

stratified by gender [66]. A significant effect of smoking on HL was seen after 

adjustment for cardiovascular diseases and body mass index (p=2.4x10-8) [66]. 

Furthermore, a dosage effect within the group of current smokers could be shown for 

HL in the higher frequencies (p=3.0x10-7) [66]. 
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The effect of alcohol consumption on ARHI has been controversial. In the ARHI study, 

moderate alcohol consumption (at least one unit of alcohol per week) had a positive 

effect on ARHI, leading to a significant increase in hearing ability at the higher 

frequencies (p=8.4x10-6)[66]. The same positive effect of moderate alcohol 

consumption on hearing ability had been reported previously for light drinkers in a 

Japanese Health screen cohort (OR=0.73, 95% CI: 0.56-0.94) after adjustment for age 

and sex as well as other risk factors for HL [84]. 

 

Kakarlapudi et al compared the prevalence of sensorineural HL between diabetic and 

healthy individuals and determined a higher prevalence for the diabetic group [85] 

(13.1% versus 10.3%, respectively, p<0.05). However, diabetes was neither 

significantly associated with ARHI in the ARHI study (p=0.0636) nor in the Beaver Dam 

cohort or the Beaver Dam offspring cohort (OR=1.21, 95% CI: 0.79-1.83)[57,58,77]. 

These results might have been biased by the low number of diabetic individuals in both 

Beaver Dam and ARHI study cohorts. 

 

Torre et al [60] compared distortion product otoacoustic emissions of healthy 

individuals and subjects with a self-reported history of cardiovascular diseases. This 

test relies on the ability of outer hair cells to emit sound [86] and is generally applied as 

a functional test of the cochlea. It was shown that women with a history of myocardial 

infarction had an increased risk of HL compared to healthy women (OR=2.00, 95% CI: 

1.15-3.46). 

 

Aminoglycoside and macrolide antibiotics, loop diuretics, chemotherapeutic drugs and 

antimalarials are known to have an ARHI inducing effect. These therapeutic agents are 

therefore summarised as ototoxic medication. Intake of ototoxic medication can lead to 

outer hair cell death, damage to stria vascularis and cochlea in general, as well as 

degeneration of the organ of Corti [87]. 
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Table 3 Summary of significant associations of environmental and medical risk factors with 
ARHI 
risk factor 
(environmental  
or medical) 

cohort  
[reference] 

phenotype ethnicity n sex 
M/F 

age OR 
(95% 
CI) 

p-value 

occupational noise 
exposure 
 (yes/no) 

Beaver Dam  
[81] 

PTA  
(0.5-4kHz)  
>25dB HL 

Caucasian    
(American) 

3753 1589 
2164 

48-
92 

1.31 
(1.10-
1.56) 

- 

Beaver Dam  
offspring [58] 

PTA  
(0.5-4kHz)  
>25dB HL 

Caucasian  
(American) 

2837 1294 
1543 

21-
84 

1.67 
(1.29-
2.16) 

- 

ARHI study  
[66] 

Zhigh Caucasian  
(European) 

4083 1967 
2116 

53-
67 

- 1.0x10-

17 
leisure noise exposure  
(yes/no) 

Beaver Dam  
[76] 

PTA  
(0.5-4kHz)  
>25dB HL 

Caucasian 
(American) 

3571 1540 
2031 

48-
92 

1.11 
(1.01-
1.22) 

- 

current smoking Beaver Dam  
[59] 

PTA  
(0.5-4kHz) 
>25 dB HL 

Caucasian  
(American) 

3571 1540 
2031 

48-
92 

1.69 
(1.31-
2.17) 

- 

smoking  
(>11 packs/year) 

Beaver Dam  
offspring [58] 

PTA  
(0.5-4kHz) 
>25 dB HL 

Caucasian  
(American) 

2837 1294 
1543 

21-
84 

1.61 
(1.16-
2.23) 

 

smoking history 
(packyears) 

ARHI study  
[51] 

Zhigh Caucasian  
(European)  

4083 1967 
2116 

53-
67 

- 1.0x10-9 

alcohol consumption  
(≥1 unit/week) 

ARHI study 
[66] 

Zhigh Caucasian  
(European) 

4083 1967 
2116 

53-
67 

- 8.4x10-6 

alcohol consumption  
(light drinkers) 

Japanese 
health  
screen cohort  
[84] 

>40 dB at  
4 kHz  
bilaterally 

Asian 3303 2684 
619 

60-
80 

0.73 
(0.56-
0.94) 

- 

diabetes mellitus                                      
(Type 1 and 2 
diabetes;  
yes/no) 

Maryland VA  
patient 
database [85] 

SNHL Caucasian  
(American) 

66036 - - - <0.05 

myocardial infarction 
(yes/no) 

Beaver Dam  
[60] 

DPOAE Caucasian  
(American) 

877 0 
877 

68.6 
±0.32 

2.00 
(1.15-
3.46) 

- 

Environmental and medical risk factors are further specified by exposure assessment 
(yes/no; ever/never, or intensity of exposure, i.e. packyears). Associations with 
following phenotypes has been described: Z-score calculated for the high frequencies 
(Zhigh), pure-tone averages (PTA; for 0.5, 1, 2 and 4 kHz) >25dB), pure-tone thresholds 
at 4 kHz ≤40 dB, as well as sensorineural HL (SNHL) and distortion product 
otoacoustic emission (DPOAE). Ethnicity, sample size (n), sex of samples (M=male, 
F=female) and the age range or mean age (with standard error) are given for each 
association, if specified. The probability of association is defined either by the odds 
ratio (OR) and respective 95% confidence interval (95%CI) or the respective p-value. 
 

Ageing theories and the molecular biology of ageing 

Ageing is defined as the biological process of growing old. It is often associated with an 

accumulation of deleterious biological mechanisms leading to frailty and increased risk 

of death. Individuals that grow old without obvious pathologies or live longer than the 

average life expectancy predicts for their population, are referred to as “healthy agers”. 

 

Signs and therefore measures of ageing include reduced telomere length, 

accumulation of nuclear somatic mutations, increased mitochondrial mutations and 

corresponding reduced mitochondrial efficiency as well as damage to various cellular 

structures by reactive oxygen species (ROS) and decreased metabolism.  
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Telomere length is controlled by the enzyme telomerase, which is responsible for 

elongating nucleotide repeats at the telomere ends of the chromosomes and was first 

discovered in ciliate protozoa [88]. Telomeres are naturally shortened by each round of 

cell division unless telomerase reverses the shortage. Stem cells naturally produce 

telomerase, whereas mitotic cells show reduced telomerase expression or fail to 

express the enzyme completely [89]. Furthermore, nuclear somatic mutations slowly 

increase with each round of DNA replication. Mitochondria are the energy providers of 

the cell. Superoxide anions, hydrogen peroxide and hydroxyl radicals make up the 

reactive oxygen species in the body. They are produced as a side product of 

metabolism, due to the chemical reduction of oxygen [90].This reduction of oxygen 

occurs in the mitochondria. ROS, which accumulate over a lifetime, can cause damage 

to various cellular building stones, including proteins, lipids and nucleic acids as well as 

structures in the mitochondrion itself. The damage to nucleic acids can link increased 

ROS production to genome instability, another cause of ageing. Antioxidants scavenge 

ROS and can therefore prevent damage to cellular structures. Animal studies of ageing 

or longevity often focus on the effect of antioxidants by decreasing or increasing their 

expression, respectively.  

 

Many candidate genes for longevity were first discovered in studies of model 

organisms with exceptional longevity. Studying ageing or healthy ageing traits in model 

organisms particularly has the advantage of shorter lifespan in these organisms 

compared to humans. Preferred model organisms for ageing traits include 

Saccharomyces cerevisiae (yeast), Drosophila melanogaster (fruit fly), Caneorhabditis 

elegans (roundworm) and rodents such as mice [91]. Important ageing models are the 

Sir4-42 yeast mutant [92], the daf-2 roundworm mutant [93], the fruit fly mutant 

Methuselah and  the p66sh mouse mutant [94]. Model organisms helped to understand 

various public ageing processes, but should always be taken with caution if applied to 

humans.  

 

Determining human ageing genes often involves the study of individuals with extreme 

ageing phenotypes, thus focus is laid either on healthy or fast agers. Studies on 

“healthy ageing” genes are often based on the hypothesis that long-living and healthy 

ageing subjects are naturally selected for longer survival by a specific gene pool. It has 

been shown that offspring from centenarians have a higher survival risk than offspring 

from less successful agers. Identifying these genes selecting for longer survival has 

been the aim of many healthy ageing studies in which the genetic variants of 

centenarians are compared to the ones of younger unrelated subjects [95,96]. In other 



 39 

studies, individuals with specifically fast ageing disorders are selected [97]. Diseases 

leading to premature ageing include Progeria, Bloom’s, Cockayne’s and Werner’s 

syndrome [98]. 

 

Epigenetic studies of young and older identical twins showed that epigenetic profiles 

change with age, adding to increased discordance in older monozygotic twin pairs [99]. 

Epigenetic changes could provide a connection between increased exposure to 

environmental risk factors and genetic predisposition of ageing. Recent research 

proposes that DNA methylation acts like an “epigenetic clock” of human ageing [100]. 

The relationship between epigenetic factors and ageing phenotypes will be further 

explored in chapter 7. 

 

Twin studies and the biology of twinning 

A twin is defined as one of two individuals born together at the same time and from the 

same mother. The occurrence of twins has always fascinated humans and still cannot 

be fully explained. The rate of twin pregnancies increased from 11.6 multiple births per 

1000 maternities in 1990 to 15.7 in 2010 in England and Wales (Office for National 

Statistics as of November 2011). Possible reasons for this phenomenon are increased 

in-vitro fertilization (implantation of multiple embryos), as well as better nutrition, giving 

twin pregnancies a higher survival rate than in times of famine.  Twins can arise from 

one or two fertilized oocytes, giving the difference between monozygotic and dizygotic 

(fraternal) twins. In case of monozygotic twins, both twins arise from the same 

blastocysts, whereas dizygotic twins arise from two different eggs fertilized at the same 

time by two different sperms. Dizygotic twins share on average half of the alleles, like 

normal siblings, just that they share more environmental exposures than other siblings. 

Whether monozygotic twins share amniotic sac and placenta depends on the time the 

blastocyst fission. In general, the later the blastocyst splits, the more is shared during 

the pregnancy (Figure 5). What triggers splitting of the blastocyst in MZ twinning is not 

known.  

 

Monozygotic twins were long time believed to share all their genetic material; however 

exemptions to this rule are accumulating. Monozygotic twins are often referred to as 

identical, although discordance for numerous phenotypes has been recognized in 

monozygotic twin pairs [101,102,103]. There are various possible reasons for 

discordance in MZ twins. They include unequal splitting of the blastocyst, mosaicism, 

somatic mutations in chromosomal or mitochondrial genes and epigenetic changes, 
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including imprinting or X silencing in females (excellently reviewed by Machin [104]). 

Better documentation of placenta sharing and recording the number of amniotic sacs 

has been requested to differentiate between the different “intermediate” forms of MZ 

twins [104]. The use of twins in heritability, genetic and epigenetic studies will be 

explained in more detail in the following chapters. 

 

 

Figure 5 Different forms of monozygotic twins  

(adapted from Dufendach, K. (2012) Placentation. Retrieved from 
http://commons.wikimedia.org/wiki/File:Placentation.svg). 
  



 41 

Generalised and specific aims 

ARHI is a common trait affecting large parts of the elderly population. Moderate to high 

heritability estimates have been determined for this heterogeneous disorder. 

Nevertheless, genetic investigations have yet failed to explain heritability estimates with 

current management of ARHI being limited to the use of digital hearing aids. 

Furthermore, methods to summarise and rate ARHI are highly variable between 

research groups with standardised methods highly required to facilitate comparison 

and collaboration. Specifically genetic epidemiological data on purely female cohorts of 

ARHI taking genetic, environmental and epigenetic factors into account is scarce. The 

study presented here aims to address this scarcity of research. We therefore defined 

following specific aims: 

 

1. Determine the prevalence of ARHI and exposure to environmental risk factors 

of ARHI in older females from the United Kingdom. 

 

2. Estimate the percentage of variance in hearing ability with age explained by 

genetic and environmental factors in accordance with the classical twin model.  

 

3. Introduce a novel web-based speech in noise hearing test to measure hearing 

ability and evaluate this tests suitability to measure ARHI in comparison to the 

gold standard method of pure-tone audiometry. 

 

4. Identify common genetic variants associated with hearing ability with age in a 

genome-wide association design using both pure-tone audiometry and speech-

in-noise test results as measures of hearing phenotypes. Promising results from 

this analysis shall be followed up further.  

 

5. Identify differentially methylated regions associated with hearing ability with age 

in an epigenome-wide association study. Furthermore, monozygotic twin 

siblings discordant for hearing ability with age will be analysed for regions 

differentially methylated between both twins associated with their phenotypic 

discordance.  
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Chapter 2: Pure-tone audiogram data collection and phenotype 
definition 

Abstract 

In the Introduction various population samples for ARHI have been presented. 

Although ARHI is a highly prevalent disorder, methods to capture this multivariable trait 

differ between research groups and gold standards have not been completely defined. 

This chapter describes the methods used to obtain the hearing data in TwinsUK and 

data preparation for analysis. 

 

Hearing ability was measured in volunteers from the TwinsUK cohort using the Madsen 

XETA screening audiometer and supra-aural headphones to obtain air-conduction 

pure-tone thresholds. In addition all participants were asked to complete an 

accompanying questionnaire covering self-reported hearing loss and exposure to 

environmental risk factors. Different methods were applied to summarise the 

multidimensional audiogram data (pure-tone average, better ear hearing level, principal 

component analysis) and compared in their suitability to capture and represent the 

characteristic features of ARHI. The specificity and sensitivity of self-reported hearing 

loss in comparison to pure-tone audiometry was evaluated and the effect of 

environmental exposure on hearing ability with age tested. Reproducibility of the 

audiogram was tested using a Bland-Altman comparison.  

 

1309 females (mean age: 61.67 (±8.48) years) from the TwinsUK register completed 

both audiogram and hearing questionnaire. The first two principal components 

captured 70%-76% of the variation in pure-tone thresholds and represented the 

magnitude and shape of the audiogram, respectively. In contrast to averaging methods, 

principal components were able to capture not only the overall threshold shift but also 

the slope of the audiogram, characteristic for ARHI. In comparison to other samples, 

prevalence of slight (27.55%) and moderate (6.06%) hearing loss was relatively low in 

TwinsUK. Self reported hearing ability showed 87% sensitivity and 76% specificity to 

determine moderate hearing loss. Of the risk factors detected on the questionnaire, 

only reported otitis media during childhood had a significant effect on principal 

component 1 in a stepwise multivariate regression (beta± SE=1.13±0.49; p=0.023; 

95%CI: 0.16-2.11)), whereas changes in principal component 2 were significantly 

associated with exposure to noisy handiwork (beta± SE=0.82± 0.23, p=0.001; 95% CI: 

0.36-1.28) and occupational noise (beta± SE=0.74±0.37, p=0.050; 95% CI: 5.50x10-4-
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1.47). Reproducibility of the audiogram was assessed in 117 individuals that completed 

the test twice at different visits and found highly reproducible with a mean difference in 

pure-tone average of 2.082 dB HL (95% CI: -2.762 to -1.402) between both tests. 

 

In conclusion, we report the collection of a new female population sample for ARHI of 

northern European ancestry. According to our comparison, principal component 

analysis was the most suitable method to capture ARHI, representing threshold shift 

and slope of the audiogram and including the results of older individuals. The hearing 

test applied in this cohort was highly repeatable and previously reported environmental 

risk factors for ARHI showed only minor affects on ARHI in TwinsUK volunteers. 

 

Introduction 

Basic acoustics 

To understand human hearing ability and measurements of the same, a basic 

introduction into acoustics is given. Sounds are created by vibrations, which are 

transmitted through an elastic medium to the listener, who can detect and interpret the 

sound. In everyday hearing, the elastic medium transmitting the sound is air. Vibrations 

will be constantly repeated when traveling through this medium, resulting in a 

waveform like the one depicted in Figure 6.  

 

 
Figure 6 Waveform of a pure-tone (adapted from M. Tate Maltby)[1]  

The waveform of a pure-tone is defined by its amplitude and period.  
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A single sinusoidal sound wave is referred to as a pure tone. It is defined by two major 

measures, frequency and intensity (or pressure level). The period or wavelength 

represents the time (or distance) required for the sound wave to complete one cycle. 

The frequency refers to the inverse of the period (frequency= 1/period) and is 

measured in hertz (Hz) with one Hz corresponding to one period per second (1Hz=1 

period/second). The human ear is generally able to detect frequencies between 20 Hz 

and 20 kHz [1].  

 

The sound intensity (or sound pressure level) corresponds to the amplitude of the 

sound wave. The amplitude is defined as the variation of the wave’s pressure around 

its mean. Because an undisturbed acoustic wave always returns to its origin after 

completion of half a cycle and a full cycle, the mean pressure is calculated as 0. The 

amplitude of a sound wave determines how much compression (in case of high 

pressure) and rarefaction (low pressure) is enforced on the elastic medium it is 

traveling through, and is directly proportional to the intensity of the force having created 

the original vibration. A stronger vibration will therefore cause higher amplitude and 

thus increased sound intensity.  

 

Sound intensity is measured in bels and expressed as a ratio between the measured 

sound intensity and a reference sound pressure. The sound pressure level or sound 

intensity required to hear a pure-tone at a specific frequency, is measured in decibel 

(one tenth of a bel). The sound pressure measured (Pm) for an individual is compared 

to a reference sound pressure level (Pref) and expressed as a logarithm to the base 10, 

multiplied by 20 [2] (Equation 1)[1].  

 

Sound pressure (dB HL)= 20 Log10(Pm/Pref) 

[Equation 1] Sound pressure 

 

If the lowest sound intensity an individual can hear is equal to the reference sound 

pressure, the hearing test would measure 0 decibel hearing level (dB HL). If Pm was 

tenfold larger than the reference pressure (Pref), this would correspond to 20 dB HL. 

Sound intensity therefore increases tenfold in steps of 20 dB HL (i.e. 40 dB HL sound 

intensity is tenfold louder than 20 dB HL). However, the latter rule only applies for dB 

values measured against the same reference pressure level. The current reference 

zero for the dB HL scale at different frequencies is defined in BS EN ISO 389-9: 2009 

[3].  
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Recommended hearing test procedure 

The air-conduction pure-tone audiogram is accepted as the standard hearing test by 

most audiologists and measures the lowest sound intensity a person can detect for 

different frequencies, commonly ranging from 0.125 to 8.0 kHz. The sound pressure 

threshold required to hear a sound at a particular frequency in at least 50% of the time 

is referred to as pure-tone threshold (PTT) [1].  

 

Prior to the hearing test, a short patient history should be obtained and an otoscopic 

examination conducted. Otoscopy will be conducted of the outer and border to the 

middle ear, focusing particularly on the ear canal and tympanic membrane. 

Abnormalities of the tympanic membrane, like rupture, inflammation, effusion of the 

middle ear, as well as excessive wax build up obstructing the ear canal, should be 

recorded. To obtain PTTs the patient is asked to sit in a quiet room (<35 dB A or ideally 

a sound isolated booth) equipped with headphones connected to an audiometer and a 

response button. The patient is asked to listen closely and to press the button upon 

hearing of the beep sound. The tester should stay in visual contact with the subject to 

be tested at all times. The patient should not be able to determine when a beep sound 

had been send other than by hearing. For further detail on the test procedure, the 

standard procedures for pure-tone audiometry [4] published by the British Society of 

Audiology should be referred to. 

Advantages and disadvantages of pure-tone audiometry 

The audiogram gives audiologists the advantage to measure an individual’s hearing 

ability for different frequencies and both ears separately, giving a detailed picture of a 

person’s hearing level and allowing possible hearing disorders to be detected and 

diagnosed. If a bone-conduction pure-tone audiogram is performed, this can further 

help to differentiate between sensorineural, conductive or mixed types of hearing loss 

(HL). 

 

The air-conduction audiogram allows making conclusions, although limited, about 

underlying pathologies and the impact of the hearing disorder on a subject’s everyday 

life. Whereas vowels are usually located in the lower frequency spectrum (0.125 to 1.0 

kHz), consonants are pronounced in the higher frequencies (1.0 to 8.0 kHz). HL in the 

higher frequencies, which are usually affected first in ARHI, makes it difficult to 

differentiate between consonants. According to Schuknecht [5], the pure-tone 

audiogram can predict different cochlear pathologies in respect to ARHI (chapter 1). 

Nevertheless, audiometry relies on hearing pitch sounds rather than words or full 
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sentences. Therefore disorders in speech processing and word discrimination due to 

auditory neuropathy cannot be excluded by the means of this test. Furthermore, dead 

regions in the cochlea might be missed by the pure-tone audiogram [6].  

 

Although the pure-tone audiogram gives a detailed impression of a person's hearing 

ability; it creates a multitude of data. Therefore, a suitable method is required to 

summarize the multidimensional audiogram data and reduce the number of variables. 

A first step in this reduction method is to select test results for only one ear per person. 

A normal hearing person is assumed to show similar hearing sensitivity in both ears. 

Asymmetrical HL affecting only one of both ears is often caused by environmental 

exposure or distinct pathologies affecting only this ear (i.e. due to a vestibular 

schwannoma). In most analyses, the better hearing ear is selected, assuming that this 

ear reflects normal hearing ability and reducing bias due to differential environmental 

exposure between both ears at the same time. Further summary methods include 

taking the average of all pure-tone thresholds or only selected pure-tone thresholds [7]. 

In addition, it is common practice to standardise the pure-tone audiogram against pure-

tone thresholds expected for a normal hearing person of the respective age and sex, 

thus generating standardized Z-Scores [8]. A recently introduced method summarises 

pure-tone thresholds by calculation of principal components [9]. In studies on ARHI all 

three different summary methods are currently applied. The lack of a gold-standard 

method impairs the comparison between different studies, therefore having a major 

impact on research in the field. 

 

Materials and Methods 

Sample recruitment 

Volunteers were recruited from the TwinsUK registry located at St. Thomas hospital, 

London. The twin registry was created in 1992, and has since recruited mainly female 

same sex volunteer twin pairs. Hearing data, in form of a screening air-conduction 

pure-tone audiogram without masking, was collected as part of various studies 

between 2009 and 2013. Initial recruitment included all female twin pairs (both 

monozygotic and dizygotic) over the age of 40. Individuals affected by deafness or 

reporting early onset (<18 years) HL were excluded from the recruitment. All research 

was conducted according to the ethical standards as defined by the Helsinki 

declaration.  Ethical approval for this study was obtained from the National Research 

Ethics service London-Westminster (REC reference#: 07/H0802/84). Written informed 

consent was obtained from all participants prior to study conduction. Each volunteer 
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was assigned a unique identification number, which could not be associated with the 

individual by the researcher, thereby ensuring confidentiality of medical and 

demographic data. The hearing test and hearing questionnaire were set up by Claire J. 

Steves as part of the TwinsUK Cogageing study, investigating the epidemiology of 

cognitive function in the elderly, and was later continued as part of other studies 

conducted in TwinsUK.  

Pure-tone audiogram procedure 

Air-conduction pure-tone audiometry was performed according to the procedures 

recommended by the British Society of Audiology [4].  All pure-tone audiograms were 

performed using a Madsen XETA screening audiometer equipped with supra-aural 

TDH39 headphones. Hearing test equipment was re-calibrated on a regular basis. 

Each hearing test was preceded by an otoscopic examination, recording abnormalities 

of the ear canal and tympanic membrane, as well as exceeding wax build up in 

subjects’ ears. Participants were prepared for the test, explaining the test procedure 

according to a protocol developed by Claire Steves and asked whether they would 

have the energy to perform a hearing test taking about 15 minutes. Subjects were 

asked whether they experienced current hearing disorders (i.e. tinnitus, recent HL, 

infections or pain of the ear). The test was started on the better hearing ear as 

determined by participant self-report. If no better ear was reported, the test was started 

on the right ear.  Pure-tone thresholds were measured for 8 frequencies in the following 

order: 1000 Hz, 2000 Hz, 4000 Hz, 6000 Hz, 8000 Hz, 1000Hz (retest), 500 Hz, 250 Hz 

and 125 Hz. The same procedure was used for the second ear without any pause 

between both ears. All hearing tests were performed on an automated basis to limit 

bias by tester variation.  

  

The first pure-tone signal was presented at a well audible frequency (40 dB) for a 

normal hearing individual. In case of a positive reply (i.e. the participant heard the 

signal and pressed the response button), the sound intensity was lowered in 10 dB 

steps until no response indicated that the sound was inaudible. From the first inaudible 

threshold, the sound intensity was increased in steps of 5 dB until a positive response 

occurred, thus applying a “10-down, 5-up” technique. The pure-tone threshold was 

defined as the sound intensity at which 2 to 4 (≥ 50 %) out of 4 signal presentations 

were heard. The research assistant taking the test remained quietly in the hearing test 

room with the participant at all times to reinstruct the participant if necessary. 

Volunteers were seated facing away from the audiometer throughout the test. Ambient 

noise levels were monitored on a regular basis using a sound-meter.  
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Hearing questionnaire 

All participants completed a detailed questionnaire on medical and environmental risk 

factors relevant for hearing. This hearing questionnaire was designed under 

consideration of the. NoiseScan [10] and MRC ENT questionnaire created in an initial 

collaboration with the Finnish Twin study on Aging and Prof. Dai Williams aiming to 

streamline the questionnaire data and audiometry. The questionnaire covered self 

reported hearing ability; occurrence of ear infections; operations on the ears; exposure 

to leisure noise, explosions or gunfire with immediate HL and tinnitus; occupational 

noise and length of exposure; occupation as well as hearing aid usage. Questions on 

previous ear operations could be further specified for the right or left ear. Leisure noise 

was further divided into “loud music”; “noisy handiwork/power tools” and “gunshots”.  

Occupational options included “Professional or managerial”; “Non-manual or clerical”; 

“Manual”; Housewife”; “Student” or “None”. If a participant selected two occupations, 

she was asked to select the occupation she worked at for a longer time. Options for 

occupational noise exposure included: “No, never”, “Yes, for less than a year”, “Yes, for 

1-5 years” and “Yes, for more than 5 years”. All other questions could be answered 

with no, yes or not known. A copy of the applied questionnaire can be found in 

Appendix chapter 2.1. 

Initial quality control 

To reduce heterogeneity and HL due to other pathologies than ARHI, individuals with 

incomplete pure-tone audiogram data (>1 missing pure-tone threshold in one of both 

ears), who did not fit into the specified target group (females ≥40 years of age) or had 

reported a previous history of hereditary ear diseases and/or specific surgery on their 

ears (i.e. Cholesteatoma, Mastoiditis, Ossicle operations or Otosclerosis) were 

excluded from further analysis. In the case that a volunteer completed the hearing test 

twice (i.e. at different visits between 2009 and 2013) the test data collected at the later 

date was selected. 

Calculation of pure-tone audiogram phenotypes 

There is no gold standard definition for measuring ARHI and different research groups 

have used pure tone averages (PTAs) for different frequency ranges, standardized Z-

scores [8], a better ear hearing level threshold (BEHL) [7] or principal component (PC) 

scores calculated in a principal component analysis [9] to summarise hearing ability 

measured by pure-tone audiometry. Most pure-tone audiogram phenotypes are 

calculated for the better ear of each subject. The better ear was defined as the ear with 

the lower PTA, calculated over all measured frequencies.  
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Pure-tone averages: PTA and BEHL 

The PTA and BEHL are averages calculated from pure-tone thresholds (PTTs) over all 

frequencies or frequencies 0.5 kHz-4.0 kHz for the better ear, respectively. Both 

measures differ in the frequencies at which PTTs are measured. The choice of PTA or 

BEHL thus depends on availability of different frequency specific measures. PTA and 

BEHL values were calculated according to following equations: 

 

𝑃𝑇𝐴 =
(  𝑃𝑇𝑇!.!"# + 𝑃𝑇𝑇!.!" + 𝑃𝑇𝑇!.! + 𝑃𝑇𝑇!.! + 𝑃𝑇𝑇!.! + 𝑃𝑇𝑇!.! +   𝑃𝑇𝑇!.! + 𝑃𝑇𝑇!.!)

8
 

[Equation 2] Pure-tone average over all frequencies (0.125-8.0 kHz) 
With PTTx= pure-tone threshold at frequency x. 

𝐵𝐸𝐻𝐿 =
(  𝑃𝑇𝑇!.! + 𝑃𝑇𝑇!.! + 𝑃𝑇𝑇!.! + 𝑃𝑇𝑇!.!)

4
 

[Equation 3] Better ear hearing level threshold 
With PTTx= pure-tone threshold at frequency x. 
 

Principal component analysis 

Principal component analysis (PCA) is a statistical procedure to search for correlations 

in the multidimensional audiogram data, which are then summarized by new 

uncorrelated variables, called PCs. For the PCA performed here, PTTs measured for 

the eight covered frequencies were treated as eight correlated dimensions. PCs rely on 

correlations between these dimensions; therefore a correlation matrix for all 

dimensions is required. From this square correlation matrix, eigenvectors can be 

calculated.  An eigenvector is defined as a vector, which can be multiplied by the 

respective matrix, without changing its direction. Eigenvectors are specific to a certain 

matrix and each square matrix can possess as many eigenvectors as columns (or 

rows, respectively), if any. All eigenvectors of one matrix are perpendicular to one 

another with their directions resembling correlations between the dimensions. Each 

eigenvector has its own eigenvalue, which represents the factor change in magnitude 

the eigenvector experiences by multiplication with the matrix. An eigenvector with an 

eigenvalue ≥1 is considered to be important in the context of PCA [11]. 

 

PCA assumes normally distributed input data. To transform PTTs to standard normal, a 

constant of 20 (to achieve positive thresholds) was added and the logarithm to the 

base 10 taken of the resulting sum.  

 

𝑃𝑇𝑇𝑛𝑜𝑟𝑚 = log!"(𝑃𝑇𝑇 + 20) 

[Equation 4] log-transformation of pure-tone-thresholds 
With PTT=pure-tone threshold 
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Two principal component analyses were performed. The first analysis (PCA) was 

based on the above-described log-transformed pure-tone thresholds. For the second 

PCA (age-adjusted PCA) each log-transformed pure-tone threshold was adjusted for 

chronological age of subjects at hearing test using linear regression analysis and 

residuals taken. The age-adjusted PCA was performed on age-adjusted residuals of 

the log-transformed pure-tone thresholds (Equation 4). 

Z-scores 

The calculation of hearing Z-scores has been described previously [8]. In brief, 

standard hearing thresholds according to the ISO 7029 standards are given for 18-70 

year-olds.  Pure-tone thresholds determined for an individual can therefore be 

compared to the standardized medians for the respective age and gender. To 

determine whether a person has better hearing ability than the average and how far his 

or her hearing ability deviates from the standard median, the distance in standard 

deviations is calculated. According to the ISO 7029, standard deviations of the 

distribution around the median differed depending on being above or below the 

median. The Z-score is defined as the difference of the measured pure-tone threshold 

to the standard median in standard deviations. As the standard deviations differed 

dependent on the whether the threshold was higher or lower than the standard, the 

final Z-score depends on which standard deviation is chosen.  

 

It was decided not to calculate Z-scores for this study due to various reasons 

addressed in the discussion. Description of the Z-score method to summarise PTTs 

was added for completeness. 

 

PTAs, the BEHL and PCs were calculated for all subjects. Values for the different 

zygosity groups (monozygotic twins (MZs), dizygotic twins (DZs) and unpaired twins) 

were compared in an analysis of variance (ANOVA). 

PC1 and PC2 outlier exclusion 

After calculation of PC1 and PC2 values for all participants (n=1309) the dataset was 

examined for individuals whose hearing ability deviated more than 3 standard 

deviations from the mean for either PC1 or PC2. Volunteers that fulfilled the described 

criteria were rated as statistical outliers and their pure-tone audiograms for the better 

ear were visually inspected for structures indicating underlying pathologies other than 

ARHI. 
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Comparison of pure-tone audiogram results to self-reported HL 

As part of the questionnaire, all volunteers were asked to self-assess current hearing 

difficulties. This information was used to determine the sensitivity and specificity of self-

reported HL compared to HL as measured by pure-tone audiometry. Self-reported HL 

was compared to mild (PTA≥25dB HL) and moderate HL (PTA≥40 dB HL) according to 

WHO guidelines [12]. Sensitivity was defined as the proportion of individuals with slight 

or moderate HL who correctly self-reported HL (Equation 5), while specificity 

represented the proportion of volunteers with normal hearing who correctly identified 

themselves with as having normal hearing (Equation 6)[13].  

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 

[Equation 5] Sensitivity 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

[Equation 6] Specificity 

With TP=true positives, FN=false negatives, TN=true negatives and FP=false positives. 
 

In addition, the general prevalence of slight and moderate HL in the TwinsUK cohort 

was determined according to the grades of hearing impairment published by the WHO 

[12]. 

Association of hearing ability with age and environmental risk factors 

The relationship between measures of hearing ability and chronological age of the 

subjects was assessed by correlation analysis. Furthermore, the effect of 

environmental risk factors, as recorded in the questionnaire, on hearing ability was 

determined. Hearing ability, as measured by age-adjusted PC1 and PC2, was 

compared between individuals exposed or unexposed to the respective risk factors in a 

Student’s t-test assuming unequal variances between samples (Welch’s t-test)[14]. The 

t-test compares the means of a variable for two independent groups (subjects exposed 

versus unexposed to risk factor) in ratio to the standard error of the difference. Under 

the null hypothesis of no difference, sample means for both groups are expected to be 

similar. For categorical environmental exposure variables (i.e. occupational noise 

exposure and occupation) an analysis of variance (ANOVA) was conducted. In 

addition, summary tables and box-plots of age-adjusted PC1 and PC2 values for 

exposed and unexposed individuals were generated (Appendix chapter 2.2-2.12). It 
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was hypothesized that certain risk factors might not be independent of each other (i.e. 

exposure to chronic otitis media might be treated by insertion of a tympanostomy tube 

(i.e. eardrum-operation)). To test for dependence of risk factors, a factor analysis was 

performed. Furthermore, a stepwise generalized least squares regression with age-

adjusted PC1 and PC2 values as dependent variable and risk factors as predictors was 

conducted adjusted for twin relatedness. In this regression, predictor variables are 

stepwise removed if they fail to show a significant effect on the dependent variable. A 

new model is fitted each time after discarding a covariate. The final model contained 

only independent predictors having a significant effect on hearing ability (age-adjusted 

PC1 or PC2, respectively). 

Hearing test reproducibility 

A Bland Altman comparison [15] was applied to evaluate the agreement between 

repeated hearing tests measures in individuals that completed the pure-tone 

audiogram twice at different study visits. In this comparison [15] the difference between 

the two measurements was plotted versus the respective mean between repeated 

measures. When using the Bland Altman plot for measuring test repeatability, the 

differences between both visits would be expected to cluster around the zero line, 

assuming no or only minor deterioration in hearing ability between both visits. 

Results 

Initial quality control  

Pure-tone audiogram and questionnaire data were obtained for 1447 individuals. 79 

Individuals were excluded due to missing pure-tone thresholds. For this study only 

subjects over the age of 40 were included, thus 24 individuals who were younger than 

this were excluded. Further, 12 male volunteers were rejected for this data collection. 

In addition, 23 individuals were excluded due to self-report of hereditary middle ear 

diseases and operations that could result in conductive HL. After the exclusion of 138 

individuals due to initial quality control measures, 1309 individuals with pure-tone 

audiogram and questionnaire data remained for analysis. 

Measures of hearing ability 

Hearing ability was measured for both ears and the better hearing ear defined as that 

having a lower PTA. In 653 individuals, hearing ability was better in the left ear, while in 

580 participants the right ear was better. Equal hearing ability for both ears was 

reported for 76 participants and the mean difference in PTA between both ears for all 

subjects was measured as m(∆)±SD=4.811± 5.938 dB HL. According to the BSA 
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standard procedures for pure-tone audiometry [4] a difference of ≤5 dB HL between 

tests (“retest value”) does not represent a significant difference to warrant repetition of 

the hearing test. The PTTs for each frequency followed a positively skewed distribution, 

close to a lognormal distribution. After log-transformation, PTTs at all frequencies 

approached a normal distribution. Mean PTTs were raised for the higher frequencies 

and increased from 1 kHz to 8 kHz, with the lowest mean PTTs measured at 1kHz 

(m(PTT1.0)=15.700±9.995 SD dB HL) (Table 4). Hearing ability was most variable at the 

higher frequencies, which also showed an increased correlation with age (Table 4).  

 

Different methods were used to summarize hearing ability as measured by pure-tone 

audiometry. First, methods that summarise the audiogram by taking the average of 

specific PTTs were compared. The average calculated over all frequencies (PTA) was 

slightly higher than the BEHL and had a slightly larger standard deviation (SD). When 

calculating separate PTAs for the low (0.125-0.5 kHz), medium (1.0-2.0 kHz) and 

higher (4.0-6.0 kHz) frequencies, thresholds for the mid-frequencies were lowest. 

These results reflect the structure of the pure-tone thresholds, as the lowest mean 

pure-tone thresholds were determined for frequencies 1 and 2 kHz. 

 

Association with age increased for the higher frequencies and therefore higher for 

summary measures that took into account these frequencies (i.e. PTA, PTA(high) and 

PC1 unadjusted). PC2 values for the unadjusted PCA were negatively correlated with 

age. PCs calculated from age-adjusted PTTs showed a very low correlation with age, 

due to previous age-adjustment. In addition, one should consider PC1 and PC2 

together when examining the correlation with age, as these two components represent 

two dimensions from the same dataset. 
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Table 4 Description of summary measures of hearing for the better ear  

variable n mean SD min max r(age) 

PTT0.125 1309 18.0596  9.2606 -5 70  0.2267 

PTT0.25 1309 21.4278  8.6099  0 70  0.2022 

PTT0.5 1309 20.8060  8.8556  0 70  0.2759 

PTT1.0 1309 15.6998  9.9501 -5 70  0.3885 

PTT2.0 1309 16.1108 12.9682 -5 90  0.4459 

PTT4.0 1309 23.0932 16.0762 -10 100  0.5003 

PTT6.0 1309 29.0947 18.7267 -5 100  0.5121 

PTT8.0 1309 35.7601 23.1034 -5 120  0.5606 

PTA 1309 22.5065 10.3207  1.25 77.5  0.5634 

BEHL 1309 18.9274  9.9508 -1.25 73.75  0.5058 

PTA(low) 1309 20.0978  8.1895  0 70  0.2558 

PTA(medium) 1309 15.9053 10.5863 -5 75  0.4556 

PTA(high) 1309 29.3160 17.7638 -6.6667 100  0.5739 

PC1 unadjusted 1309  0.0340  2.0761 -6.6939 8.8899  0.5322 

PC2 unadjusted 1309 -0.0285  1.3059 -4.8956 3.6691 -0.2694 

PC1 age-adjusted 1309 -0.0258  1.9388 -5.8835 8.6539  0.0415 

PC2 age-adjusted 1309  0.0054  1.3618 -4.9111 5.4643 -0.0114 

Summary measures of hearing impairment are presented as mean value for all 1309 
individuals (n) and standard deviation from the mean (SD). In addition, minimal (min) 
and maximal (max) values for each summary measure and the Pearson correlation 
coefficient (r(age)) for the association of the respective measure with age are 
presented. As summary measures of hearing impairment pure-tone thresholds (PTTs) 
for the better ear for different frequencies (PTT0.125- PTT8.0), the pure-tone average 
(PTA), the better ear hearing level (BEHL), pure-tone averages for different frequency 
ranges (PTA(low; medium; high)) and principal components from adjusted and 
unadjusted PTTs are given. 
 

Description of principal components 

Principal components were obtained from two sets of PTTs, log-transformed 

unadjusted and log-transformed age-adjusted PTTs (0.125- 8 kHz). In both PCAs, only 

the first two PCs had eigenvalues ≥ 1. Together, PC1 and PC2 explained 70.30% 

(Table 5) and 75.98% (Table 7) of the variance in pure-tone thresholds for the age-

adjusted and unadjusted PCA, respectively. From the eigenvector loadings, 

hypotheses could be made about the dimensions the PCs represented. For both PCAs, 

eigenvector loadings followed similar directions for PC1 (Table 6 and Figure 7; Table 8 

and Figure 8). Eigenvector loadings for PC1 were of the similar direction and 

magnitude for all frequencies, whereas eigenvector loadings for the unadjusted and 

age-adjusted PC2 were of opposite direction (Figure 7, Figure 8). However, PC2 
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loadings changed direction from the lower to the higher frequencies for both PC2s 

(Figure 7, Figure 8). 
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Table 5 Summary measures of the age-adjusted principal component analysis 

Principal components (PCs) were obtained from age-adjusted log-transformed PTT 
(125-8.0 kHz) residuals. Eigenvalues and the proportion of variance in PTTs accounted 
for by PCs are listed. 
 

Table 6 Eigenvector loadings for age-adjusted principal components 

PCs Frequencies (kHz) 

0.125  0.25  0.5  1.0 2.0  4.0  6.0  8.0 

PC1 0.3560 0.3733 0.3933 0.3936 0.3556 0.3385 0.3201 0.2843 

PC2 -0.3932 -0.4093 -0.3217 -0.1055 0.1984 0.3652 0.4312 0.4523 

The eigenvector loadings for PC1 and PC2 are listed for pure-tone thresholds at 
frequencies 0.125-8.0 kHz.  
 

Figure 7 Eigenvector Loadings for age-adjusted PC1 and PC2 

Eigenvector loadings as listed in Table 6 for age-adjusted PC1 and PC2 were plotted 
for the different frequencies.  

PCs Eigenvalue Proportion of variance 

explained 

Cumulative proportion of 

variance explained 

PC1 3.7786 0.4723 0.4723 

PC2 1.8454 0.2307 0.7030 
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Table 7 Summary measures of the unadjusted principal component analysis 

PCs Eigenvalue Proportion of variance 

explained 

Cumulative proportion of 

variance explained 

PC1 4.3381 0.5423 0.5423 

PC2 1.7404 0.2176 0.7599 

Principal components (PCs) were obtained from log-transformed PTTs (125-8.0 kHz). 
Eigenvalues and the proportion of variance in PTTs accounted for by PCs are listed. 
 

Table 8 Eigenvector loadings for unadjusted principal components 

PCs Frequencies (kHz) 

0.125  0.25  0.5  1  2  4  6  8 

PC1 0.3264 0.3313 0.3621 0.3833 0.3683 0.3643 0.3535 0.3352 

PC2 0.4396 0.4718 0.3518 0.0914 -0.2022 -0.3329 -0.3751 -0.3995 

The eigenvector loadings for PC1 and PC2 are listed for pure-tone thresholds at 
frequencies 0.125-8.0 kHz 
 

Figure 8 Eigenvector Loadings for unadjusted PC1and PC2 

Eigenvector loadings as listed in Table 8 for unadjusted PC1 and PC2 were plotted for 
the different frequencies.  
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To understand better the meaning of PC1 and PC2 for hearing impairment, the dataset 

was divided into three equally sized groups (n= 436-437) depending on PC1 and PC2 

values, respectively. For each group, the mean PTT (± standard error) at each 

frequency was plotted, resulting in a mean audiogram per group (Figure 9 and Figure 

10). Individuals with a high PC1 value showed increased pure-tone thresholds over all 

frequencies, compared to individuals with lower PC1 values. 

Figure 9 Pure-tone thresholds increase with increasing PC1 value 

Subjects were divided into three groups according to their age-adjusted PC1 values 
(low, medium and high). For each group average PTTs per frequency were obtained 
and plotted as average pure-tone audiogram per group. Error bars represent the 
standard error of the mean PTTs.  
 

In case of PC2, participants with a high PC2 value showed raised pure-tone thresholds 

particularly for the higher frequencies. This characteristic downslope in the audiogram 

for the higher frequencies could not be seen for the lower PC2 values, in which case 

the mean audiograms appeared flatter.  
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Figure 10 A high PC2 value indicates high frequency HL 

Subjects were divided into three groups according to their age-adjusted PC2 values 
(low, medium and high). For each group average PTTs per frequency were obtained 
and plotted as average pure-tone audiogram per group. Error bars represent the 
standard error of the mean PTTs. 
 

PC1 and PC2 outlier exclusion 

12 outliers (age-adjusted PC1 and /or PC2> mean±3 SD) were determined in the 

current dataset. The pure-tone audiogram for the better ear was plotted for each of the 

12 subjects (Figure 11) and examined for structures characteristic for early-onset HL, 

low frequency HL or noise trauma.  After due consideration, it was decided to exclude 

individuals 51271, 96542, 54651, 99292, 32472 and 10122. All 6 individuals showed 

extremely raised thresholds both for the lower and higher frequencies with some of 

them exceeding thresholds for moderate HL [12]. Pure-tone audiograms for these 

individuals are characteristic for early onset HL rather than ARHI. Exclusion of cases 

with hearing pathologies other than ARHI aims to reduce variance in the dataset. After 

exclusion of these 6 outliers, 1303 individuals remained for analysis. 
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Figure 11 Pure-tone audiograms for the better ear of statistical outliers  

Pure-tone audiograms are displayed for the better ear of subjects whose PC1 or PC2 
value deviated more than 3 standard deviations from the population mean. Exact pure-
tone thresholds at each frequency measured for the better ear are shown in the table 
below the audiogram. 
 

Description of study participants 

The final dataset included 568 monozygotic (MZ) twins (MZ pairs: n=284), 630 

dizygotic (DZ) twins (DZ pairs: n=315) and 105 twins without their twin sister, referred 

0.125 kHz 0.25 kHz 0.5 kHz 1.0 kHz 2.0 kHz 4.0 kHz 6.0 kHz 8.0 kHz 
5092 0 5 0 0 5 0 10 75 

51271 55 60 65 60 80 75 75 75 

96542 65 70 60 60 50 60 80 65 

54811 0 5 10 35 50 55 60 95 

1572 5 10 5 10 30 50 55 70 

57902 15 15 10 10 25 60 85 95 

54812 10 15 20 40 65 70 95 100 

54651 30 30 30 45 90 95 85 95 

99292 40 55 65 55 55 65 60 60 

32472 40 35 35 35 30 80 100 120 

30342 15 20 15 5 -5 -10 -5 -5 

10122 70 70 70 70 80 75 95 90 
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to as unpaired twins (Table 9). Each of these three groups was characterized by their 

demographic characteristics (sample size (n), gender, mean age and age range) as 

well as by various measures of hearing ability (PTA, BEHL, age-adjusted PC1 and 

PC2) (Table 9). By ANOVA, there were no significant differences between MZs, DZs, 

and unpaired twins (Age: p= 0.8847; PTA: p=0.9125; BEHL: p= 0.8154; age-adjusted 

PC1: p=0.9743; age-adjusted PC2: p=0.1997). Means and variances showed no 

significant differences between MZs and DZs, which proves this twin sample suitable 

for future comparison in heritability studies.  

 

Table 9 Demographic and hearing characteristics for different zygosity groups in 

TwinsUK 

Samples from the TwinsUK ARHI study were divided into monozygotic (MZ) and 
dizygotic (DZ) twins and unpaired twins. Each group was described by their sample 
size (n), gender distribution (m=male, f=female), age (expressed as mean and 
standard deviation (SD) and age range). Pure-tone averages (PTAs), better ear 
hearing level thresholds (BEHLs) and age-adjusted principal components (PCs) are 
listed as mean and SD for each group.  
 

Frequency of hearing loss in the TwinsUK cohort 

To determine the incidence of HL in the TwinsUK cohort, thresholds were adapted from 

that published by the WHO [12], with slight HL defined as a PTA≥25 dB HL and 

moderate HL as PTA≥ 40 dB HL in this cohort. The histogram of PTAs for the better 

ear (Figure 12) shows the distribution of hearing ability in the TwinsUK cohort. The 

thresholds defined by the WHO were added as reference lines to the histogram. 

66.39% of participants showed good hearing ability (no HL), while 27.55% and 6.06% 

zygosity n gender 

(% 

female) 

 age  PTA 

(mean ± SD) 

BEHL 

(mean ± SD) 

age-

adjusted 

PC1 

(mean ± 

SD) 

age-

adjusted 

PC2 

(mean ± 

SD) 

mean ± 

SD 

range 

MZ 568 100% 61.57  

±8.79 

40-83 22.2091 

±9.8217 

18.5383    

±9.5208 

-0.0715 

±1.8746 

-0.0201   

±1.3695 

DZ 630 100% 61.66   

±8.16 

41-86 22.3512 

±9.8425 

18.8829   

±9.3777 

-0.0506   

±1.8255 

0.0618 

±1.3418 

unpaired 

twins 

105 100% 62.01    

±8.73 

41-83 22.6369   

±11.0424 

18.8452 

±10.3422 

-0.0370 

±2.2312 

-0.1789   

±1.3783 

total 1303 100% 61.64   

±8.48 

40-86 22.3123   

±9.9279 

18.7297 

±9.5148 

-0.0586   

±1.8809 

0.0067 

±1.3575 
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of subjects had slight or moderate HL, respectively. The group of participants with 

moderate HL also included the oldest participants (age range 54-86 years). 

 

Figure 12 Histogram of pure-tone averages for the better ear 

Figure 7 shows the distribution of pure-tone averages (PTAs) in the TwinsUK sample. 
66.39% of subjects had good hearing ability, whereas 27.55% presented with slight 
and 6.06% of subjects with moderate hearing loss (HL).  
 

Sensitivity and specificity of self-reported hearing loss  

To determine the use of self-reported hearing in studies of ARHI, hearing test results 

were compared to self-reported HL. In total, 1228 participants answered the question 

concerning whether they had a hearing problem with 347 volunteers reporting hearing 

difficulties. 409 individuals were diagnosed with mild HL and 75 with moderate HL 

according to the hearing test. We used 2x2 contingency tables (Table 10 and Table 11) 

to calculate sensitivity and specificity for self-reported HL. 
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Table 10 Comparison of self-reported HL to slight HL as measured by pure-tone 

audiometry 

self-reported hearing Pure-tone audiogram results (PTA≥25 dB HL) 

no HL mild HL total 

no HL 687 (TN) 194 (FN) 881 

HL 132 (FP) 215 (TP) 347 

total 819 409 1228 

The prevalence of mild hearing impairment (pure-tone average (PTA)≥ 25 dB HL) was 
compared to self-reported hearing difficulties.  
 

Sensitivity= 215/(194+215)=0.53 

Specificity=687/(687+132)=0.84 

Self reported hearing in comparison to slight HL diagnosed using the PTA showed 

52.6% sensitivity to detect true HL and showed 83.9% specificity to correctly identify 

healthy hearing individuals.  

 

Table 11 Comparison of self-reported HL to moderate HL as measured by pure-tone 

audiometry 

self-reported hearing Pure-tone audiogram results (PTA≥40 dB HL) 

no HL moderate HL total 

no HL 871 (TN) 10 (FN) 881 

HL 282 (FP) 65 (TP) 347 

total 1153 75 1228 

The prevalence of moderate hearing impairment (pure-tone average (PTA)≥ 40 dB HL) 
was compared to self-reported hearing difficulties. 
 
Sensitivity= 65/(65+10)=0.87 

Specificity= 871/(871+282)= 0.76 

Self reported hearing in comparison to moderate HL diagnosed using the audiogram 

showed 86.7% sensitivity to detect true HL and showed 75.5% specificity to correctly 

identify healthy hearing individuals.  

Association of hearing ability with environmental risk factors 

Age-adjusted PC1 and PC2 values were compared between exposed and unexposed 

individuals for all environmental risk factors covered in the questionnaire. Response 
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rate was reduced for specific risk factors (i.e. 86% for exposure to otitis media during 

childhood) due to slight changes in the questionnaire throughout the study. Prevalence 

of risk factor exposure and age-adjusted PC1 and PC2 values for both exposed and 

unexposed volunteers are presented in tables and box-plots in the Appendix chapter 

2.2- 2.13. 

Student’s t-test was conducted to determine whether groups of exposed and 

unexposed individuals showed significantly different PC1 and PC2 scores. The results 

of the t-tests (p-value) are shown for all binary risk factors in supplementary data 2-12. 

Individuals exposed to otitis media in adulthood (p=0.0041), chronic otitis media 

(p=0.0499) or eardrum operations (p=0.0019) showed significantly higher PC1 scores 

than unexposed individuals. Significantly higher PC2 values were determined for 

subjects exposed to explosions (p=0.0200) compared to unexposed participants. The 

individuals with self-reported hearing difficulties showed significantly different mean 

PC1 and PC2 (p<0.0000) values compared to the ones with self-reported normal 

hearing. No significant difference could be detected in hearing ability for subjects of 

different occupation or with different levels of occupational noise exposure.  

 

In the factor analysis, factor 1 took mainly exposure to otitis media and eardrum 

operations into account, supporting the hypothesis that these exposures might not be 

independent of each other.  

 

In the stepwise regression, only exposure to otitis media during childhood was 

significantly associated with age-adjusted PC1 (beta± SE=1.13±0.49; p=0.023; 95%CI: 

0.16-2.11), however, this association accounted only for 2% of the variance in PC1 

values (R2=0.02). PC2 was significantly associated with exposure to noisy handiwork 

(beta± SE=0.82± 0.23, p=0.001; 95% CI: 0.36-1.28) and occupational noise exposure 

for less than 1 year (beta± SE=0.74±0.37, p=0.050; 95% CI: 5.50x10-4-1.47); 

nevertheless, both predictor variables together only explained 3% of the variance in 

PC2 values (R2=0.03).  

Reproducibility of the pure-tone audiogram 

To examine the reproducibility of the pure-tone audiogram, hearing test results were 

compared within individuals that repeated the pure-tone audiogram at different visit 

dates. 117 individuals completed the audiogram at least twice. Subjects included in this 

analysis had a mean age of 62.30 years (±7.61 SD). There was an average gap of 

16.46 months (±6.17 SD) between both study visits, ranging from 6 to 30 months. The 
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PTA calculated for the better was compared between both visits within the same 

subject.  

 

Repeated hearing measurements showed a strong positive correlation (r=0.91). The 

Bland Altman plot [15] depicts the difference between repeated PTA measures against 

the mean of corresponding pairs of repeated measures (Figure 13). The mean 

difference between the PTA for the first visit compared to a later visit was PTA(∆)=-

2.082 dB HL (95% CI: -2.762 to -1.402), indicating that hearing deteriorated slightly by 

the later visit. The majority of mean PTAs between repeated hearing tests clustered in 

the lower PTA range (average PTA< 30 dB HL). 

  

Figure 13 Bland Altman Plot for measurement of repeatability of pure-tone audiometry 

The average PTA between both tests ranged from 7.50 dB HL to 58.75 dB HL. 
Pitman’s test of difference in variance between both measurement groups was not 
significant (p=0.46). The mean difference between both tests was -2.08 dB HL (navy 
horizontal line). This corresponded with increased PTA measured at the second visit, 
indicating worse hearing. Light blue lines: limits of agreement (reference range for 
difference). 
 

Discussion 

ARHI is known to be a very heterogeneous trait, determined by environmental 

[16,17,18], genetic [9,19,20,21,22] and possibly epigenetic factors [23,24]. Pure-tone 

audiometric measures of hearing impairment in ageing cohorts has shown that ARHI is 

first detectable as an increase in PTTs for the higher frequencies moving gradually to 
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the lower frequencies, causing a characteristic downslope in the audiogram [25]. 

Standard pure-tone audiometry measures the lowest sound intensity an individual can 

hear at different frequencies within the human hearing frequency spectrum [1]. 

Assuming that hearing is measured for both ears separately at various frequencies, a 

multitude of variables per patient can be expected. To facilitate interpretation of hearing 

datasets, summary methods have been applied.  

 

To determine the most suitable method to summarise hearing ability as measured by 

pure-tone audiometry, commonly used summary methods (PTA, BEHL, PTAs for 

different frequency ranges, and PCA) were applied to the audiograms measured in 

TwinsUK. It was decided to calculate all measures from thresholds for the better ear, 

as it is considered to be less representative of environmental factors affecting hearing 

ability. Exposure to environmental factors that affect primarily one ear would not 

represent natural age-related hearing and therefore bias the search for genetic factors. 

Furthermore, differences between the PTA calculated for both ears were limited (m(∆)< 

5 dB HL).  In general, HL increased for the higher frequencies (4.0-8.0 kHz) and was 

lowest in the mid-frequencies (1.0-2.0 kHz) (Table 4). The trend in increasing HL for 

the higher frequencies was further reflected in an increasing correlation with age for the 

higher frequencies (Table 4). Furthermore, HL showed the highest variance at the 

higher frequencies (Table 4, PTT2.0-PTT8.0) indicating that hearing ability is most 

heterogeneous at this frequency range. This data shows that older subjects in TwinsUK 

show the typical high frequency HL and therefore sloping audiogram as described by 

Schuknecht and Gacek [5]. It thus proves this sample suitable for study of hearing 

ability with age.  

 

In addition to averaging methods, a PCA was conducted. This method was first 

reported in hearing research by Huyghe et al. [9], where the first three PCs reflected 

87.7% of the variance in PTTs and represented the magnitude, slope and concavity of 

the audiogram, respectively [9]. In TwinsUK only the first two PCs showed an 

eigenvalue≥ 1 (PC1: 3.78-4.34; PC2: 1.74-1.85) (Table 5, Table 7). The eigenvalue for 

PC3 (eigenvalue=0.86-0.70) did not reach the threshold of 1 used to select important 

PCs in this study (data not shown). In total, PC1 and PC2 explained together 70.3% 

and 76.0% (Table 5, Table 7) of the variance in PTTs in the age-adjusted and 

unadjusted PCA, respectively. It was assumed that the percentage of variance 

explained was inflated due to age differences for the unadjusted PCA. In the 

unadjusted analysis age, a known risk factor for ARHI, was not adjusted for. In the age-

adjusted PCA, PCs were calculated from age-adjusted PTTs. Due to the increasing 
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correlation with age for the higher frequencies, it was thought more appropriate to 

adjust each threshold separately for age rather than adjusting the resulting components 

for age. Furthermore, both the adjusted and unadjusted PCA were calculated from log-

transformed PTTs to respect the assumption of normal distribution. 

 

In both PCAs, PC1 gave a measure of the horizontal threshold shift in the audiogram 

very similar to the “magnitude” described by Huyghe et al. [9], while PC2 represented 

the slope of the audiogram. PC1 increased with increasing HL over all frequencies and 

was highly correlated with the PTA (r=0.80). PC2 was positively correlated with the 

slope of the audiogram; a high age-adjusted PC2 value indicated a steep downslope 

for the higher frequencies, while a low age-adjusted PC2 value represented similar 

hearing ability for the lower and higher frequencies (a “flat” audiogram).  

 

Measures like the PTA or BEHL represent averages over all or selected frequency 

ranges, respectively, thereby neglecting important information in the shape of the 

audiogram. In contrast, PCs reflected two important structures of the audiogram, the 

threshold shift overall frequencies and the slope of the audiogram. While PC1 appears 

to be very similar (and highly correlated) to the average measures (PTA or BEHL), PC2 

represents an additional structure neglected by the PTA and the BEHL. According to 

Schuknecht et al. [5] sensory ARHI affects the higher frequencies first, creating a 

downslope in the audiogram for these frequencies. This typical downslope with 

increasing age was shown for audiograms of TwinsUK samples (Table 4). Therefore, a 

method detecting the shape of the audiogram would be of particular importance in case 

of ARHI.  

 

Z-scores provide a standard tool used in many phenotypes to compare phenotypic 

measures of an individual to that of an appropriate reference population. In ARHI 

research, Z-scores have been applied particularly to measure HL in the older 

population, by calculating the difference in standard deviations from normal hearing 

ability for individuals of the same gender and age-range [8,26]. While this method 

measures the shape of the audiogram, reference values are not available for older 

elderly (>70 years old). It remains to be explained why the reference values for 

expected hearing ability with age, only provide measures for individuals below the age 

of 70. With an increasing live expectancy in developed countries [27], it would be 

particularly interesting to measure hearing ability in the age range of 40-90 years. 
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In conclusion, PCA was concluded to be the most appropriate method to reflect hearing 

ability in an ageing population as it takes both the threshold shift and the shape of the 

audiogram into account, while other methods either neglected the shape or excluded 

the oldest, and likely most affected, participants.  

 

Pure-tone audiograms with extreme PC1 and/or PC2 scores deviating more than 3 

standard deviations from the population mean were examined in more detail. Assuming 

a normally distributed trait, 99.73% of PC1 and PC2 values would be expected to fall 

into the range of 3 standard deviations around the mean [28]. This criterion was used 

to identify subjects with audiograms deviating from the majority of the sample and 

warranted further inspection of the pure-tone audiograms for the respective 12 

individuals. It was decided to exclude 6 of the 12 individuals due to suspected early 

onset HL. All of these individuals showed raised PTTs (PTT≥30 dB HL) over all 

frequencies, which did not conform to our definition of ARHI affecting primarily the 

higher frequencies.  

 

It was decided to study purely female participants out of two reasons. First, the 

TwinsUK cohort includes more female participants than males, because it was 

originally created to study osteoarthritis and osteoporosis in women [29,30,31], in 

addition women are more likely to volunteer for medical studies than men. Secondly, 

ARHI has been shown to be more pronounced in men than women [32] and due to this 

gender difference, many previous studies focused primarily on men or mixed gender 

cohorts [16,17,20,21]. Accordingly, the aim of this study was to explore factors causing 

ARHI particularly in ageing women. The age range of this study was slightly broader 

than for other hearing cohorts [7,16,33], mainly influenced by the minimum recruitment 

age, which was lower than for most other ARHI cohorts [7,16,17,33]. However, some 

individuals in the Beaver Dam offspring study [18] were even younger. Consequently, 

the chosen age range was comparable to the age range of other ARHI cohorts 

[7,17,34]. The low recruitment age was decided for in respect of all ageing phenotypes 

studied as part of the Healthy ageing twin study, which included the hearing data 

collection.  

 

In accordance with grades of hearing impairment defined by the WHO [12], 33.60% of 

TwinsUK hearing subjects were defined as having HL (27.55% and 6.06% of 

volunteers were affected by mild and moderate HL, respectively). In the Beaver Dam 

hearing cohort (mean age: 65.8 years), a mild HL prevalence of 45.9% (PTA(0.5-

4kHz)>25dB HL in the worse ear) was reported [17] and the prevalence of mild and 
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moderate HL in the Blue Mountain study (mean age: 67 years (95% CI: 66.7-67.4)) 

reached 39.1% and 13.4% [35]. In general, overall hearing ability was slightly better in 

TwinsUK (mean age: 61.64 years± 8.48 SD) than in comparable hearing cohorts, 

however the mean age of the TwinsUK hearing sample was below that of comparable 

cohorts. 

 

Self-reported HL, a measure of ARHI used in previous studies [7,21] was covered by 

questionnaire (Appendix chapter 2.1). To determine the reliability of self-report in 

comparison to pure-tone audiometry, the sensitivity and specificity of self-reported HL 

against thresholds for mild and moderate HL were calculated. The sensitivity to 

determine mild HL was low (sensitivity=0.53) but increased for the more severe 

moderate HL (sensitivity=0.87). At the same time specificity to identify correctly 

individuals unaffected by mild HL (specificity=0.84) decreased for moderate HL 

(specificity=0.76). The sensitivity determined for self-reported HL in TwinsUK was 

lower than in the Blue Mountain study (mild HL: 0.78, moderate HL: 0.93)[35]. We 

assume that self-reported HL is sufficiently sensitive to determine moderate HL in a 

screening test. Nevertheless, these data support the use of a diagnostic test over self-

reported hearing data. 

 

The effect of environmental exposure on hearing ability was explored using information 

collected in the questionnaire (Appendix chapter 2.1). In the Welch’s t-test individuals 

exposed to otitis media as an adult (p=0.0041) or chronic otitis media (p=0.0499) and 

eardrum operations (p=0.0019) showed significantly higher PC1 scores than volunteers 

unexposed to these factors. Participants exposed to explosions showed significantly 

higher PC2 scores (p=0.0200) than unexposed participants. We hypothesized that 

exposure to otitis media at different stages of development and eardrum operations 

might be dependent risk factors. Otitis media is more prevalent in individuals with 

insufficient drainage of the middle ear via the Eustachian tube and re-occurring 

infection of the middle ear cavity can result in pressure on - and ultimately rupture of - 

the tympanic membrane. Tympanostomy or insertion of a “grommet” into the eardrum 

was a common treatment for chronic otitis media but is now discredited [36]. Factor 

analysis was conducted to determine correlations between all risk factors. PC1 and 

PC2 were regressed against all risk factor exposures in a multivariate stepwise 

regression. In the factor analysis factor 1 was dominated by exposure to otitis media at 

different developmental stages and eardrum operations, thereby confirming our 

hypothesis. In addition, only exposure to otitis media as an adult and explosions 

remained significantly associated with PC1 and PC2 in the stepwise regression, 



 78 

respectively. Nevertheless, both exposure to otitis media during adulthood and 

exposure to explosions explained only minor parts (1% and 0.62%) of variance in PC1 

and PC2 scores, respectively. Noise exposure (both recreational and occupational) had 

no significant effect on hearing ability in TwinsUK, unlike reported for other samples 

(chapter 1, [16,17,18,37]). These results might be explained by the reduced noise 

exposure, increased personal hearing protection standards and younger age range of 

the presented sample. Furthermore, the purely female composition of this sample 

might have reduced the risk of occupational noise exposure (i.e. work in noisy 

factories). 

 

To test whether the audiogram was reproducible, the test results of participants that 

completed the test more than once were compared using a Bland Altman comparison, 

a method designed to measure agreement between two different methods or repeated 

measures of the same trait. It is commonly assumed that a high correlation between 

two measurements also indicates a high agreement between measures. However, a 

correlation only describes a relationship between two variables (i.e. x increases with 

increasing values for y) and the magnitude of the correlation coefficient measures the 

strength of this relationship. A high correlation would be achieved if most paired values 

(i.e. x and y measured in the same individual) clustered along a straight line. Yet, a 

high correlation would not detect whether one measure was consistently higher or 

lower in all tested individuals. To measure true agreement between repeated 

measures, Bland and Altman examined graphically the difference in measurements 

against the average of both variables. Accordingly, the difference in PTA between test 

visit 1 and test visit 2 was calculated per subject and plotted versus the mean PTA 

between both tests. As hearing test circumstances were assumed to be constant for 

both visits, it would be wrong to assume that only one of both tests measured the true 

value of hearing, and therefore compared the second test to this allegedly true value. 

Thus, the average between both tests was assumed to be closest to the true value. In 

case of perfect reproducibility, measures would be expected to show no difference and 

therefore be equal to their average. Good reproducibility is indicated if repeated 

measures show a low difference between each other and the differences between 

measures for the same individuals cluster around 0. For the TwinsUK cohort, repeated 

measures showed a strong correlation (r=0.91). However, the difference between 

measures clustered around ∆PTA=-2.082 dB HL (95% CI: -2.762 to -1.402). This 

indicated that in 95% of the population, the PTA calculated from the second hearing 

test was around 2 dB HL higher than in the first test. This change in hearing ability over 

a mean period of 16.46 months (±6.17 SD) is to be expected in an ageing population. 

Cruickshanks et al [17] reported that the odds of HL increased by 1.88 per 5 years 
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increase in age (OR=1.88, 95% CI:1.80-1.97). In addition, a change of 2 dB HL in PTA 

appears very low compared to the PTA standard deviation from the mean 

(SD=10.3207) measured for all 1309 particpants (Table 4),  ie only 0.2 SD. PTAs rather 

than PCs were chosen for the reproducibility analysis as the PTA values were better to 

interpret on a dB HL scale. It was therefore shown that the pure-tone audiogram used 

in this analysis showed high reproducibility.  

 

There were limitations to this study. All hearing tests were conducted in a quiet room 

rather than in a sound isolated booth. A sound isolated booth would represent the 

perfect testing environment but was financially unfeasible for this study. To ensure that 

ambient noise levels remained within the recommended range [4], they were monitored 

on a regular basis. In addition, the hearing test was administered by a small group of 

research assistants including LW. All test personnel were trained to the same 

standards and training was repeated on a regular basis. Furthermore, the pure-tone 

audiogram was strictly automated to reduce tester-bias. Our records were not sufficient 

to test for an administrative effect on the hearing test results although this has been 

shown for other traits collected (ie heat pain threshold) it would not be expected in 

standardised pure-tone audiometry. In general, the volunteers recruited for this study 

were of better health and showed better hearing ability than reported for comparable 

hearing cohorts [17,35]. This bias towards better health might be caused by the 

recruitment and testing methods. Volunteers were invited to travel to St. Thomas 

hospital to conduct a test-battery of medical assessments. Home visits could not be 

offered due to lack of transport facilities for medical equipment and financial reasons. 

Thus, less healthy individuals were less likely to take part in this study. Nevertheless, 

previous studies in the TwinsUK cohort have shown that this cohort is representative of 

a singleton population [38]. Finally it should be acknowledged that using PCA as a 

measure of ARHI also shows limitations. PC loadings differ slightly in different study 

population (although the general structure remained) [9] and might therefore be more 

complicated to adapt than PTAs, which are measured in dB HL. In addition, interpreting 

of the scale of HL is more complicated for PC values than for summary methods 

measured in decibel.  
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Chapter 3: The classical twin model and heritability of ARHI in 
TwinsUK 

Abstract 

ARHI is a complex trait caused by both genetic and environmental factors, however, 

the proportion of variance in hearing ability explained by genetic or environmental 

factors is population specific. The aim of this chapter was to determine the relative 

influence of both additive genetic and environmental factors on the variance in hearing 

ability in older subjects from the TwinsUK cohort. 

 

Heritability is defined as the variance in a trait explained by genetic factors. To 

decompose the variance seen in a trait into its causal components, twin studies have 

long been applied. Monozygotic twin pairs were assumed to share all of their genetic 

material, while dizygotic twin pairs share on average half of their alleles, like normal 

siblings. Both monozygotic and dizygotic twin pairs are exposed to an increased 

proportion of shared environment, if raised together. Comparison of trait covariance 

within monozygotic and dizygotic twin pairs can thus be used to partition trait variance 

into genetic and environmental causal factors. In this study the heritability of hearing 

ability (PC1, PC2) was estimated based on two methods: Falconer’s formula and 

structural equation modelling founded on the classical twin model. Resulting estimates 

were compared between the two methods and the effect of age on heritability 

estimates explored.  

 

Moderate heritability estimates were determined for both age-adjusted PC1 (h2= 61% 

(95% CI: 54-67)) and PC2 (h2=56% (95% CI: 49-63)). Age-adjustment of PC1 and PC2 

values decreased the proportion of trait variance explained by environmental factors 

shared within twin pairs. In general, estimates achieved by Falconer’s formula and 

structural equation modelling were very consistent. A model including additive genetic 

factors and environmental factors not shared within twin pairs gave the highest 

likelihood under the observed phenotypic variance in PC1 and PC2. In the analysis 

stratified by age, heritability estimates for both PC1 and PC2 increased with age of the 

subjects from 57% -77% and 49% - 58%, respectively.  

 

The moderate heritability estimated for hearing ability supports the hypothesis that 

ARHI is determined to a high proportion by individual genetic variation in TwinsUK. The 
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genetic variants underlying this moderate heritability merit further investigation in 

genetic association studies. 

Introduction 

Complex traits are by definition caused both by our genes and the environmental we 

are exposed to. The study of epidemiology aims to observe the occurrence of complex 

traits and determine the exact factors increasing the risk of developing this trait, while 

quantitative genetics aims to estimate the extent of genetic and environmental factors 

on a specific phenotype. The results of these heritability studies can give insight into 

the power of gene mapping studies and help to determine the focus of further 

experiments.  

 

The variability observable for a trait if measured in the population is referred to as 

phenotypic variance (VP) and can be determined by different factors, including additive 

(A) and non-additive (D) genetic factors, common environmental factors (C) and unique 

environmental factors (E). The proportion of variance due to each of these independent 

influences is expressed as variance components: VA, VD, VC, VE. The phenotypic 

variance is expressed as the sum of the specific variance components (Equation 7).  

 

𝑉! = 𝑉! + 𝑉! + 𝑉!   +   𝑉! 

[Equation 7, components of phenotypic variance] 

The phenotypic variance can be expressed as the sum of latent variance components 
(VA, VD, VC, VE) due to additive genetic effects (A), non-additive genetic factors (D), 
common(C) and unique (E) environmental factors [1]. 
 

Common environmental factors include all environmental exposures shared between 

individuals of the same population, whereas exposure to unique or unshared 

environmental factors applies only to single subjects of the population under study. 

 

According to Equation 7, phenotypic variance due to genetic factors is defined by two 

variance components: VA and VD. Additive genetic factors (A) refer to the sum of effects 

of every allele in the genome influencing the trait. Dominance or non-additive genetic 

factors (D), represent the effect of alleles on the trait by allele interaction at the same 

(dominance) or different loci (epistasis). The heritability of a trait is defined as the 

proportion of variance in a trait determined by genetic factors. Broad sense heritability 

(H2) refers to the proportion in variance due to all genetic components (VA+VD) 
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(Equation 8), whereas narrow sense (h2) heritability refers to the proportion of 

phenotypic variance only due to additive genetic components (VA) (Equation 9)[1].  

 

𝐻! = !!!!!
!!

  

[Equation 8 Broad sense heritability] 

Broad sense heritability (H2) is defined as the proportion of phenotypic variance (VP) 
due to additive (VA) and non additive (VD) genetic variance components.  
 

ℎ! =
𝑉!
𝑉!

 

[Equation 9 Narrow sense heritability] 

Narrow sense heritability (H2) is defined as the proportion of phenotypic variance (VP) 
due to additive (VA) genetic variance components. 
 

Broad sense heritability gives an estimate of the proportion of variance in a trait 

determined by genetic factors. Narrow sense heritability, on the other hand, is also 

referred to as breeding value, because it estimates the proportion of VP determined by 

the alleles an individual inherits from its founders. Heritability is a population specific 

measure and can differ for the same trait between populations. This can be explained 

by genetic variability (i.e. differences in alleles and allele frequencies) and differences 

in environment between populations, which could influence a trait.  

 

If a trait were primarily determined by genetic factors, genetically identical individuals 

would be assumed to have the same risk of developing this trait. Accordingly, raised 

phenotypic concordance would be expected in monozygotic (MZ) twin pairs, who are 

assumed to share all their genetic variations, compared to pairs of unrelated 

individuals. The probandwise concordance rate (PCR) (Equation 10), calculated as 

twice the number of concordant affected twin pairs over the number of affected 

individuals, gives the risk of the twin of an affected co-twin to be affected as well. 

Higher PCRs for MZ twin pairs compared to dizygotic (DZ) twin pairs indicate a genetic 

influence in the trait.  

 

𝑃𝐶𝑅 =
2𝑥  𝑐𝑜𝑛𝑐𝑜𝑟𝑑𝑎𝑛𝑡  𝑎𝑓𝑓𝑒𝑐𝑡𝑒𝑑  𝑡𝑤𝑖𝑛  𝑝𝑎𝑖𝑟𝑠

2𝑥  𝑐𝑜𝑛𝑐𝑜𝑟𝑑𝑎𝑛𝑡  𝑎𝑓𝑓𝑒𝑐𝑡𝑒𝑑  𝑡𝑤𝑖𝑛  𝑝𝑎𝑖𝑟𝑠 + 𝑑𝑖𝑠𝑐𝑜𝑟𝑑𝑎𝑛𝑡  𝑡𝑤𝑖𝑛  𝑝𝑎𝑖𝑟𝑠
 

[Equation 10, Probandwise concordance rate] 
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The same accounts for traits determined primarily by environmental factors. Siblings 

growing up in the same family environment, or even sharing the time in uterus, would 

be expected to show higher concordance in environmentally determined traits than 

subjects raised or living in different environments. The special potential of twins in 

quantitative genetics has first been recognized by Galton [2] and later been described 

in more detail by Siemens [3], a German dermatologist who correlated mole counts in 

twins.  

 

Non-additive (or dominant) genetic and unique environmental factors are difficult to 

distinguish in twins raised together and can thus not be estimated together in one 

model. However, comparing the correlation between MZ and DZ twin pairs can help to 

decide which of both variance components (VD or VE) to include in the model [4]. In this 

study an effect due to unique environmental factors rather than non-additive genetic 

factors will be assumed.  

 

The classical twin model assumes that MZ twin pairs share all of their additive genetic 

factors and common environmental factors. Trait discordance in MZ twins is therefore 

supposed to be caused by environmental exposure unique to one of both twin siblings. 

DZ twin pairs, in contrast, share on average half of their alleles and thus half of their 

additive genetic factors, but all common environmental factors. Consequently, DZ 

discordance can be attributed to the unshared half of their additive genetic components 

and due to unique environmental exposure. A path diagram depicting the relationship 

within MZ and DZ twin pairs (“The classical twin model”) on the basis of variance 

components is shown in Figure 1. 
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The classical twin model makes four assumptions concerning the study sample and 

trait it is applied to: 

1. Minimal or no gene x environment interactions for the studied trait.                                     

2. The extent of shared environment is equal for both MZ and DZ twin pairs.                           

3. The phenotypic variance (VP) in twins is representative of the VP in the population.                                                

4. There is no selective assortment due to the trait. 

 

 

Figure 14 The classical twin model 

The classical twin model describes the relationship in phenotype within twin pairs. The 
phenotype measured in both twins of a pair is indicated by blue boxes.  Monozygotic 
twin pairs (MZ) share 100% (=1) of their additive genetic factors (A), while dizygotic 
twin pairs (DZ) share on average half of their alleles (=0.5; correlations are depicted as 
double headed arrows). Both MZ and DZ twin pairs are fully exposed to the same 
common environment (C). The single headed arrows represent path coefficients, 
measuring the effect of the latent variables on the phenotype. The phenotypic variance 
attributed to the specific variance components (A, E, C) can be calculated as the 
square of the respective path coefficients (ie A=a2). 
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The described model ( 

Figure 14) allows the covariance within MZ (Cov MZ) and DZ (Cov DZ) twin pairs to be 

expressed as a function of the variance components and path coefficients.  

 

  𝐶𝑜𝑣!" = 𝐴 + 𝐶 = 𝑎! + 𝑐!  

[Equation 11 Covariance within MZ twin pairs]  

Covariance within MZ twin pairs can be expressed as sum of additive genetic (A) and 
common environmental (C) factors.  
 
 
 𝐶𝑜𝑣!" =

!
!
  𝐴 + 𝐶 = !

!
  𝑎! + 𝑐! 

[Equation 12 Covariance within DZ twin pairs] 

Covariance with DZ twin pairs can be expressed as sum of half of the additive genetic 
(A) and all common environmental (C) factors. 
 

Accordingly, heritability (H2) can be estimated as twice the difference between MZ and 

DZ twin pair covariance. The within twin pair covariance is calculated using the intra-

class correlation coefficient (ICC). This relationship was first described by Falconer [1] 

and is therefore referred to as Falconer’s formula. 

 

𝐻! = 𝑎! = 𝐴 = 2×   𝐼𝐶𝐶!" − 𝐼𝐶𝐶!"  

[Equation 13, Falconer’s formula] 

Heritability (H2) can be estimated as twice the difference in intra-class correlation 
coefficients (ICC) within MZ and DZ twin pairs. 
 

Accordingly, estimates for C and E can be achieved as 

 

 𝑐! = 𝐶 = 𝐼𝐶𝐶!" − 𝐻!    and     𝑒! = 𝐸 = 1 − 𝐻! + 𝑐! 

 

To facilitate heritability studies on larger datasets, the above described formulas have 

been applied in structural equation modelling (SEM) software, like Mx [5]. Estimates for 

the latent variance components (A, C and E) are determined based on maximum 

likelihood estimation. SEM allows more complex models, including covariates as sex 

and age, to be fitted to the observed twin data and can give an estimate of the model 

fit.  

 



 89 

Heritability analysis can predict the statistical power of gene mapping studies, as a high 

heritability represents high correlation between phenotype and genotype. However, 

heritability makes no claim about the architecture of a trait, i.e. whether the trait is 

caused by few genetic variations with high effect sizes or many variations with each 

low effect size [6]. This introduction focused mainly on heritability estimation in twin 

samples, however, other study designs, including family data and adoption studies, can 

be applied to compare the aggregation of a trait in genetically related and unrelated 

individuals or individuals exposed to the same family environment although genetically 

unrelated. 

 

The heritability of ARHI has been the focus of several studies [7,8,9,10,11]. Karlsson et 

al [7], studied the heritability of ARHI at different age-groups in male twin pairs. This 

study focused specifically on a high-frequency hearing loss phenotype with age and 

therefore only examined pure-tone averages calculated over 3-8 kHz combined for 

both ears. He determined an increase in variation in HL explained by unique 

environmental factors with advancing age.  

 

Gates et al [9], compared the aggregation of hearing thresholds in genetically unrelated 

individuals (spouses) to genetically related subjects (siblings and parent-child pairs) 

collected as part of the Framingham heart study cohort. In this analyses hearing with 

age was divided into three different phenotypes: normal hearing, abrupt high frequency 

hearing loss (sensory presbycusis) and flat hearing loss with age (strial presbycusis). 

These three hearing phenotypes were combined to study the heritability of presbycusis 

(including all phenotypes), sensory presbycusis (including subjects with normal hearing 

and sensory ARHI) and strial presbycusis (including normal hearing individuals and 

cases with strial presbycusis). Furthermore, the analysis was performed separately for 

males and females and for hearing thresholds at the low (0.23-1 kHz), medium (0.5-2 

kHz) and high (4-8 kHz) frequency ranges. In all analysis phenotypic aggregation of 

hearing thresholds was higher for genetically related individuals than for unrelated 

subjects. Heritability estimates ranged from 25-55% (Table 12) and were reported to be 

higher in female genetically related individuals, probably due to lower exposure to 

occupational noise in women [9].  

 

Christensen et al [11] studied the heritability of self-reported reduced hearing in older 

same sex twin pairs from Denmark. They applied both probandwise concordance rates 

and SEM based on the classical twin model. Probandwise concordance rates were 

higher in MZs compared to DZ twin pairs (0.58 compared to 0.47), indicating the 
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influence of genetic factors on the trait variance. In the SEM, the AE model provided 

the best model fit, with A= 40% (95% CI: 19-52).  

 

Viljanen et al [8] studied the heritability of ARHI in female twins. Hearing ability was 

measured as the better ear hearing threshold level (BEHL), the better ear speech 

recognition threshold level (BESRL), self rated hearing problems and hearing 

impairment measured as a BEHL≥ 21dB. Heritability estimates for the continuous 

hearing traits (BEHL and BESRL) were determined using SEM based on an ADE twin 

model, while probandwise concordance rates [4] were calculated for binary traits (self-

rated hearing and hearing impairment). Of all measured traits in this study of female 

twins, the BEHL showed the highest heritability (h2= 75% (95% CI: 67-81)). 

 

Huyghe et al [10], estimated the heritability for principal components (PCs) calculated 

from pure-tone audiometric data in related individuals. Here, heritability was estimated 

as twice the intraclass correlation coefficient and ranged from 66.3% for PC1 to 27.2 % 

for PC2 [10]. Heritability estimates for ARHI determined in the presented studies 

[7,8,9,10,11] are summarised in Table 12. 
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Table 12 Summary of Heritability studies on ARHI 

reference study sample age range 
(years) 

phenotype probandwise 
concordance 

heritabili
ty  

Karlsson et 
al, 1997 [7] 

male MZ and DZ 
twin pairs 

35-45 hearing in the high-tone ranges 
(pure-tone average calculated 
over 3, 4, 6 and 8 kHz) for both 
ears combined 

- 100% 
46-55 - 95% 
56-65 - 58.4% 
≥65 - 47.4% 

Gates et al, 
1999 [9] 

genetically 
unrelated and 
genetically related 
individuals 

husbands: 
70.9±10.0 
wives: 
69.5±6.7 
brothers: 
59.7±10.0 
sisters: 
60.1±10.6 
 

age-adjusted 
pure-tone average 

- 26-35% 

age-adjusted pure-tone 
average in individuals with 
sensory presbycusis or normal 
hearing 

- 35-55% 

age-adjusted pure-tone 
average in individuals with 
strial presbycusis or normal 
hearing 

- 25-42% 

Christensen 
et al, 2001 
[11] 

male and female 
same gender MZ 
and DZ twin pairs 

70-102 Self-reported age-related 
hearing loss 

MZ: 0.58  
(95%CI:0.52-
0.64) 
 
DZ: 0.47 (95% 
CI: 0.42-0.52) 

40% 
(95% CI: 
19-52) 

Viljanen et 
al, 2007 [8] 

female MZ and 
DZ twin pairs 

63-76 better ear hearing threshold 
level (BEHL) 

- 75% 
(95% CI: 
67-81) 

better ear speech recognition 
threshold level 

- 66% 
(95% CI: 
55-74) 

self rated problems in hearing MZ: 0.65 (95% 
CI: 0.55-0.74) 
 
DZ: 0.59 (95% 
CI: 0.49-0.70) 

- 

hearing impairment  
(BEHL≥ 21 dB) 

MZ: 0.81 (95% 
CI: 0.72-0.89) 
 
DZ: 0.44 (95% 
CI: 0.30-0.58) 

- 

Huyghe et al, 
2008 [10]  

mixed gender 
sibships 

49-76 PC1 - 66.3% 
PC2 - 27.2% 
PC3 - 37.5% 

This table summarises the study design and results of previous heritability analyses of 
ARHI. Each study is further described by the sample studied (gender, twins or 
families), the chronological age range of the study sample (shown as age range or 
mean age ± SD) and the exact phenotype covered (phenotype). The resulting 
heritability estimates are given by the applied estimation method  (probandwise 
concordance rates for binary traits and heritability estimates for continuous and binary 
traits).  
 

The objective of this chapter was to determine the heritability of hearing ability with age 

in female twins from the TwinsUK register using Falconer’s formula and SEM in Mx and 

further investigate the effect of increasing age on heritability of hearing ability. 

Materials and Methods 

Study sample 

This analysis included all individuals remaining after quality control and outlier removal 

(n=1303) as described in chapter 2. 
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Interclass and intraclass correlations 

To give an estimate of within twin pair correlations by zygosity, age-adjusted PC1 and 

PC2 values within twin pairs were plotted against each other and a linear regression 

line fitted to the data. Plots were created for MZ and DZ twin pairs separately.  

 

The intraclass correlation (ICC) measures the proportion of variance within a group in 

comparison to the variance seen between various subgroups. This measure has been 

used to assess the agreement between methods tested on the same individual and to 

measure the resemblance within families. In this analysis the ICC was applied to 

measure the resemblance in hearing ability (PC1, PC2) within twin pairs in comparison 

to resemblance within the all samples. To estimate the ICC, the variance within a twin 

pair was divided by the total trait variance determined for all twins of the same zygosity. 

The ICC ranges from 0 to 1, with a low ICC value indicating high variance within twin 

pairs approaching the variance in the population. In contrast, a high ICC represents a 

low variance (and therefore high resemblance) within pairs in comparison to the 

variance in the population. In case of a genetically determined trait, MZ twin pairs are 

supposed to present with a very similar phenotype, whereas within DZ twin pairs more 

variability in phenotype is expected. To estimate the broad sense heritability of hearing 

ability for PC1 and PC2, twice the difference in ICCs for MZs and DZs was calculated 

(Equation 13, Falconer’s formula)[1].  

Structural equation modelling based on the classical twin model  

The genetic and environmental relationships within twin pairs as described by the 

classical twin model were expressed in structural equations. These structural equation 

models were fitted to the observed variance in PC1 and PC2 and goodness of model fit 

determined by maximum likelihood estimation. The aim of maximum likelihood 

estimation is to determine parameters for A, C and E, which make the observed twin 

covariance most likely. The maximum likelihood was reported as twice the negative 

natural logarithm of the likelihood. Nested models with reduced numbers of latent 

components (CE, AE and E) were compared to the full (ACE) model based on a 

likelihood ratio test [12]. The likelihood ratio test determines whether the improvement 

in model fit due to an increase in latent variables is significant. In the ratio test a chi-

square statistic is fitted to the difference in likelihood between the full (ACE) and the 

respective reduced model (CE, AE and E). The degrees of freedom (df) for the chi-

square statistic are determined as the difference in df (∆df) between the full and the 

reduced model. A p-value was calculated based on the chi-square statistic, which 

showed whether the reduced model was significantly less likely under the observed 
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phenotype. In case of an equally well fitting reduced model, the chi-square statistic was 

expected to be non-significant (p>0.05).  Both models were compared based on the 

principle of parsimony, which states that a simpler model should be preferred if it can 

explain the observed data equally well as a more complicated model including more 

latent variables. Akaike’s information criterion (AIC) was used to compare model fit in 

respect to difference in degrees of freedom between two models and favoured the less 

parsimonious model (indicated by a low AIC value) [13].The AIC for the comparison of 

a nested to a full model was calculated according to Equation 14.  

 

𝐴𝐼𝐶 = −2∆𝑑𝑓 + ∆(−2𝑙𝑜𝑔𝐿) 

[Equation 14 Akaike’s information criterion] 

With ∆df representing the difference in degrees of freedom between both models and 
∆-2logL indicating the difference in twice the negative logarithm of the maximum 
likelihood achieved for the respective model.  
 

Heritability analysis for different age-groups 

The study sample was divided into three age groups with similar sample sizes per 

group (n=415-448). Broad sense heritability was calculated for each age group by 

calculation of ICCs for MZs and DZs separately using unadjusted PC values. Narrow 

sense heritability estimates for each age group were obtained using SEM based on the 

classical twin model as described above using unadjusted PC values.  

Results 

Study sample 

For the heritability analysis, all subjects remaining after quality control (as described in 

chapter 2) were taken forward for analysis. In general, there were slightly more DZ 

twins in this sample than MZ twins (Table 13), however, no significant difference in 

mean PC1 and PC2 values could be detected between MZs and DZs (ANOVA, chapter 

2). 
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Table 13 Population characteristics of the ARHI heritability study sample 

zygosity n gender 

(% 

female) 

 age  PC1 

(mean±sd) 

PC2 

(mean±sd) 

age- 

adjusted 

 PC1 

(mean±sd) 

age- 

adjusted 

PC2 

(mean±sd) 

(mean ±SD) range 

MZ 568 100% 61.57 ±8.79 40-83 -0.0200 

±2.0169 

-0.0046 

±1.3435 

-0.0715 

±1.8745 

-0.0201 

±1.3695 

DZ 630 100% 61.66 ±8.16 41-86 0.0113 

±1.9711 

-0.0856 

±1.2529 

-0.0506 

±1.8255 

0.0618 

±1.3418 

unpaired 

twins 

105 100% 62.01 ±8.73 41-83 0.0616 

±2.3664 

0.1272 

±1.3681 

-0.0370 

±2.2312 

-0.1789 

±1.3783 

total 1303 100% 61.64 ±8.48 40-86 0.0017 

±2.0239 

-0.0332 

±1.3029 

-0.0586 

±1.8809 

0.0067 

±1.3575  

This table summarizes the characteristics of the all subjects used in the heritability 
study of ARHI in TwinsUK. The sample is divided into three subsamples by zygosity of 
the participants. Each subsample is characterized by the number of subjects (n), 
gender, mean chronological age and age range at hearing test. Furthermore, the 4 
phenotypes analysed are summarised for each group as mean ± standard deviation 
from the mean.  
 

Heritability of PC1 and PC2 

First, the correlation within MZ and DZ twin pairs for age-adjusted PC1 and PC2 values 

was graphically examined (Figure 15, Figure 16). Values for MZ twins clustered more 

closely around the regression line than DZ values (Figure 15, Figure 16). Furthermore, 

the slope for the regression line was steeper for MZs than for DZs.  
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Figure 15 Scatter plots of age-adjusted PC1 values by zygosity 

Age-adjusted PC1 values of one twin were plotted against the PC1 value obtained for 
their twin sibling. Two plots were generated, one for MZ twin pairs (right) and one for 
DZ twin pairs (left). A linear regression line (light blue line) was fitted to each scatter 
plot. 
 

Figure 16 Scatter plots of age-adjusted PC2 values by zygosity 

Age-adjusted PC2 values of one twin where plotted against the PC2 value obtained for 
their co-twin. Two plots were generated, one for MZ twin pairs (right) and one for DZ 
twin pairs (left). A linear regression line (light blue line) was fitted to each scatter plot. 
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The broad sense heritability was estimated using ICCs for MZs and DZs separately 

according to Falconer’s formula (Equation 13). ICCs were higher for MZs than DZs for 

all measured phenotypes, as expected for a genetically influenced trait (Table 14). The 

heritability was higher for PC2 than for PC1 and estimates increased for age-adjusted 

phenotypes (Table 14). If variance in a trait was influenced by dominance genetic 

factors, ICCMZ would be expected to be twice as high as ICCDZ [4]. This was not the 

case for most of the phenotypes investigated here (Table 14). It was therefore decided 

to assume an ACE rather than an ADE model for further analyses.  

 

Table 14 ICCs and broad sense heritability estimates for PC1 and PC2 

Phenotype ICCMZ ICCDZ H2 A % (95% CI) 

PC1 0.73 0.52 0.42 39 (23- 57) 

age-adjusted PC1 0.62 0.33 0.58 61 (54- 67) 

PC2 0.58 0.32 0.52 57 (50- 63) 

age-adjusted PC2 0.57 0.27 0.74 56 (49- 63) 

The intraclass correlation coefficients for MZ (ICCMZ) and DZ (ICCDZ) twin pairs were 
calculated for each phenotype and broad sense heritability (H2) was calculated as twice 
the difference in ICCs for MZs and DZs (H2=2x(ICCMZ -ICCDZ)). For comparison, the 
percentage of phenotypic variance explained by additive genetics (A%) determined in 
SEM (Table 15) for the respective phenotype was added with 95% confidence 
intervals. 
 

The results of the heritability analysis of hearing ability according to SEM are listed in 

Table 15. For all phenotypes (excluding unadjusted PC1 values), the reduced AE 

model fitted the data better than the full ACE model. This indicates that hearing ability 

with age is primarily determined by additive genic and unshared or unique 

environmental factors. For all phenotypes, narrow sense heritability ranged from 39%- 

61% and exceeded the percentage of variance explained due to unique environmental 

factors. The effect of common environmental factors in the ACE model was reduced 

after adjustment of PC1 and PC2 values for chronological age of subjects (Table 15). 

Narrow sense (SEM, Table 15) and broad sense heritability estimates (Falconer’s 

formula, Table 14) were highly comparable.  
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Table 15 Results of the structural equation modelling used to estimate the influence of 

variance components (A, C, E) on hearing ability with age 

In the structural equation modelling, an ACE model (model) was fitted to the observed 
phenotypic variance in age-adjusted compared to unadjusted PC1 and PC2 values 
based on a maximum likelihood estimation (model fit, -2LogL). For each trait, three 
nested models were compared to the full ACE model, taking into account different 
causal factors: AE (additive genetics and unshared environmental factors), CE (shared 
and unshared environmental factors) and E (unshared environmental factors).  Model 
fit for the full and respective reduced models were compared in a likelihood ratio test 
(Model comparison). Significance of the likelihood ratio test (χ2 p-value) is determined in 
a chi-square statistic based on the difference in twice the negative logarithm of the 
likelihood (∆-2LogL) and difference in degrees of freedom (∆df) between the compared 
models. In addition, the Akaike’s information criterion (AIC) gives a measure of 
parsimony of a reduced model in comparison to the full model.  For each phenotype 
the ACE model fit and nested models with a better model fit (highlighted in grey) are 
shown. Model comparison is only given for nested models as they are compared to the 
full (ACE) model. Estimated variances explained by the specific causal factors (A= 
additive genetics, C= shared environment and E= unshared environment) are given 
with 95 % confidence intervals for each model. 
  

phenotype model fit model comparison univariate estimates % (95% CI) 

model -2LogL df ∆ -

2LogL 

∆ 

df 

χ2 p-

value 

AIC A C E 

PC1  

age-

adjusted 

ACE -

5181.81 

1296 - - - - 56  

(33- 67) 

4  

(0-24) 

39  

(33- 47) 

AE -

5181.97 

1297 0.17 1 0.68 -1.83 61  

(54- 67) 

- 39  

(33-46) 

PC1 ACE -

5229.91 

1296 - - - - 39  

(23- 57) 

33  

(17- 48) 

28  

(23- 33) 

AE -

5243.28 

1297 13.37 1 0.00 11.37 74  

(69- 78) 

- 26  

(22- 31) 

PC2  

age-

adjusted 

ACE -

4355.78 

1296 - - - - 56  

(34- 63) 

0  

(0- 19) 

44  

(37- 51) 

AE -

4355.78 

1297 0.00 1 1.00 -2.00 56  

(49- 63) 

- 44  

(37-51) 

PC2 ACE -

4237.22 

1296 - - - - 44  

(21- 62) 

11  

(0- 31) 

44  

(38-52) 

AE -

4238.31 

1297 1.09 1 0.30 -0.91 57  

(50- 63) 

- 43  

(37-50) 



 98 

Heritability analysis for different age groups 

In this analysis unpaired twins were included as MZs or DZs, depending on their 

zygosity. By including unpaired twins in the heritability analysis, the variance in 

phenotype is increased, giving a more realistic heritability estimate for the population 

under study.  

 

For the heritability analysis of different age groups, the sample was divided into three 

age groups with the aim to achieve similar sample sizes and an equal distribution of 

MZ and DZ twins per age group. Age groups 1 and 2 were of similar sample size, 

whereas group 3 included slightly less subjects (Table 16). The mean age between the 

groups differed by approximately 10 years (Table 16). The total study sample included 

more DZ twins than MZ twins, which was particularly reflected in age group 2, while the 

proportion of DZs to MZs was nearly 50% in the oldest group (age group 3, Table 16). 

As this analysis was aimed to detect an effect of age on the heritability of ARHI, 

unadjusted PC1 and PC2 values were used in this analysis.  

 

Table 16 Characteristic of the ARHI sample divided into three age groups 

age group age range mean age 

(SD) 

n n 

(DZ/MZ) 

PC1(MZ) 

mean 

±SD 

PC1(DZ) 

mean 

±SD 

PC2(MZ) 

mean 

±SD 

PC2(DZ) 

mean 

±SD 

1 40-58 52.28 

(4.52) 

440 231/209 -1.1741 

±1.5704 

-1.1254 

±  1.7256 

0.4468 

±1.2670 

0.3117 

±1.2087 

2 59-65 62.14 

(1.90) 

448 248 /200 0.0284 

±1.8577 

-0.0561 

±1.7652 

-0.0805 

±1.2980 

-0.1279 

±1.2190 

3 66-86 71.04 

(4.34) 

415 206/209 1.2529 

±1.9420 

1.2330 

±1.8101 

-0.3488 

±1.3618 

-0.4266 

±1.2521 

Total 40-86 61.64  

 (8.48) 

1303 685/ 618 0.0358 

±2.0527 

-0.0290 

±1.9986 

0.0071 

±1.3493 

-0.0695 

±1.2595 

This table summarizes the characteristics of the subjects used in the heritability 
analysis by age group. For each age group (1-3), chronological age range and mean 
age with standard deviation from the mean (SD) at hearing test are presented. The 
number of subjects per group (n) and proportion of MZ and DZ twins per group 
(n(MZ/DZ)) are listed. Furthermore, The mean unadjusted PC1 and PC2 values ± 
standard deviation from the mean (± SD) are given for MZ and DZ twin pairs, 
separately.  
 

Heritability of PC1 and PC2 at different age ranges was estimated using both 

Falconer’s formula (Table 17) as well as SEM (Table 18). Broad sense heritability for 

PC1 and PC2 increased with increasing age of the participants under study (H2(PC1): 

28%-74%; H2(PC2): 44%-76%) (Table 17). This trend was confirmed by the results of 

the SEM used to estimate narrow sense heritability of PC1 and PC2 at different age 

groups (h2(PC1): 57%-77%; h2(PC2): 49%-58%)(Table 18). In general, the reduced 
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model considering additive genetic factors (A) and unique environmental factors (E) as 

variance components of hearing ability fitted the observed data best for both 

phenotypes (PC1, PC2) and all age groups. This data can give insight into the age 

range at which ARHI is most influenced by our genes, which is likely to be in the higher 

age groups. In comparison to each other, heritability estimates obtained by SEM were 

slightly increased compared to heritability estimates calculated using Falconer’s 

formula (Table 17).  

 

Table 17 Intraclass correlation coefficients and broad sense heritability for PC1 and 

PC2 at different age ranges 

phenotype age range ICCMZ ICCDZ H2 A % (95% CI) 

PC1 40-58 0.52 0.38 0.28 57 (44- 68) 
59-65 0.60 0.38 0.44 60 (47- 69) 
66-86 0.78 0.41 0.74 77 (69- 83) 
Total 0.73 0.52 0.42 39 (23- 57) 

PC2 40-58 0.50 0.28 0.44 49 (35- 61) 
59-65 0.54 0.34 0.40 54 (40- 64) 
66-86 0.62 0.24 0.76 58 (45- 69) 
Total 0.58 0.32 0.52 57 (50- 63) 

The intraclass correlation coefficients for MZ (ICCMZ) and DZ  (ICCDZ) twin pairs were 
calculated for each phenotype and broad sense heritability (H2) was calculated as twice 
the difference in ICCs for MZs and DZs (H2=2x(ICCMZ -ICCDZ)). For comparison, the 
percentage of phenotypic variance explained by additive genetics (A%) determined in 
SEM  (Table 18) for the respective phenotype was added with 95% confidence 
intervals. 
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 Table 18 Results of structural equation modelling based on different age groups 

 

In the structural equation modelling, an ACE model (model) was fitted to the observed 
phenotypic variance in unadjusted PC1 and PC2 values at different age groups based 
on maximum likelihood estimation. For each trait, three nested models were compared 
to the full ACE model, taking into account different causal factors: AE (additive genetics 
and unshared environmental factors), CE (shared and unshared environmental factors) 
and E (unshared environmental factors).  Model fit for the full and respective reduced 
model were compared in a likelihood ratio test. Significance of the likelihood ratio test 
(χ2 p-value) is determined in a chi-square statistic based on the difference in twice the 
negative logarithm of the likelihood (∆-2LogL) and difference in degrees of freedom 
(∆df) between the compared models. In addition, the Akaike’s information criterion 
(AIC) gives a measure of parsimony of a reduced model in comparison to the full 
model. For each phenotype the ACE model fit and nested models with a better model 
fit (highlighted in grey) are shown. Model comparison is only given for nested models 
as they are compared to the full (ACE) model. Estimated variances explained by the 
specific causal factors (A= additive genetics, C= shared environment and E= unshared 
environment) are given with 95 % confidence intervals (95% CI) for each model. 
  

phenotype model Fit model comparison univariate estimates % (95% 

CI) 

model -2LogL df ∆ -

2LogL 

∆ 

df 

χ2 p-

value 

AIC A C E 

PC1  

age-group 

1 

ACE -

1638.51 

432 - - - - 39  

(0- 67) 

16  

(0- 47) 

45  

(33- 60) 

AE -

1639.33 

433 0.82 1 0.36 -

1.18 

57  

(44- 68) 

- 43  

(32- 56) 

PC1  

age-group 

2 

ACE -

1747.43 

442 - - - - 39  

(0.3- 68) 

19  

(0- 50) 

42  

(31- 56) 

AE -

1748.62 

443 1.20 1 0.27 -

0.80 

60  

(47- 69) 

- 40  

(31- 53) 

PC1  

age-group 

3 

ACE -

1597.99 

408 - - - - 72  

(39- 83) 

5   

(0- 36) 

23  

(17- 32) 

AE -

1598.07 

409 0.08 1 0.78 -

1.92 

77  

(69- 83) 

- 23  

(17- 31) 

PC2  

age-group 1 

ACE -

1393.32 

432 - - - - 40  

(0- 61) 

8   

(0- 43) 

52  

(39- 67) 

AE -

1393.49 

433 0.17 1 0.68 -

1.83 

49  

(35- 61) 

- 51  

(39- 65) 

PC2  

age-group 2 

ACE -

1430.96 

442 - - - - 34  

(0- 63) 

17  

(0- 49) 

48  

(37- 63) 

AE -

1431.86 

443 0.90 1 0.34 -

1.10 

54  

(40- 64) 

- 46  

(36- 60) 

PC2  

age-group 3 

ACE -

1352.70 

408 - - - - 58  

(23- 69) 

0   

(0- 29) 

42  

(31- 55) 

AE -

1352.70 

409 0.00 1 1.00 -

2.00 

58  

(45- 69) 

- 42  

(31- 55) 
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Discussion 

In this chapter, the heritability of hearing ability with age was estimated in female twin 

volunteers of the TwinsUK register. Correlation in hearing ability within MZ twin pairs 

exceeded DZ twin pair correlations, indicating a genetic component influencing the 

variance in ARHI.  

 

Two methods were applied to estimate the heritability of hearing ability, comparison of 

intraclass correlations between MZ and DZ twin pairs based on Falconer’s formula and 

SEM based on the classical twin model. SEM, in comparison to Falconer’s formula, 

gives a measure of how likely the observed data is under a specific model and 

calculates confidence intervals for each parameter based on the model fit. In addition, 

covariates like age or gender could be incorporated in the model; however, it was 

decided to adjust for age previous to analysis. Although SEM based on the classical 

twin model appears more advanced than heritability estimates based on Falconer’s 

formula, both methods were applied to test for consistency in the results. In general, 

heritability estimates obtained by SEM and Falconer’s formula were very consistent for 

all phenotypes but age-adjusted PC2 (Table 14). In case of age-adjusted PC2, 

heritability based on Falconer’s formula exceeded the confidence intervals for the SEM 

estimate for A (Table 14).  Furthermore, the comparison of intraclass correlation 

coefficients between MZ and DZ twin pairs, as applied in Falconer’s formula, helped to 

decide between an ACE and ACD model [4].  

 

When heritability estimates were compared for unadjusted and age-adjusted PC1 and 

PC2, a general trend towards higher heritability (A) and decreased effect of common 

environmental factors (C) on variance in ARHI could be recognized for age-adjusted 

values (Table 15). This trend has been described previously for twin modelling [14] and 

reasons can be proposed for it. The twin model aims to decompose trait variance into 

variance components based on within twin pair correlation. Age is a common factor 

shared within both MZ and DZ twin pairs and will therefore be interpreted as a common 

environmental factor in twin modelling if age has an effect on the trait. Furthermore, 

variance component estimates (A, C, E) and ICCs are expressed in proportion to the 

phenotypic variance in the study sample. An increased variance due to lack of age-

adjustment could therefore lead to decreased variance component estimates. Table 13 

shows an increased variance for unadjusted PC1 values compared to age-adjusted 

values, however, this does not account for variance in PC2. Accordingly, in the SEM 

heritability was increased for age-adjusted PC1 values compared to unadjusted PC1, 

but not for age-adjusted PC2 values (Table 15). The heritability for age-adjusted PC1 
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values (A=61% (95% CI: 54- 67)) were comparable to the estimates determined for a 

mixed gender sample by Huyghe et al [10](h2= 66.3%) (Table 15). However, heritability 

estimates for PC2 (A=56% (95% CI: 49- 63) were considerably higher in TwinsUK 

compared to Huyghe et al [10] (h2=27.2%)(Table 15). 

 

When comparing heritability estimates for different age-groups, estimates for A 

increased from 57% to 77% (Table 18) with increasing age in SEM. The same trend 

could be detected in the heritability estimates based on Falconer’s formula. Here, H2 

increased from 28% to 74% (Table 17) in correlation with age. The same increase in 

heritability was determined for PC2: A increased from 49% to 58% (Table 18), while H2 

estimates first increased from 44% to 76% with higher age (Table 17). The change in 

variance components on ARHI with increasing age has previously been studied by 

Karlsson et al [7]. In this male twin study, the effect of unique environmental factors (E) 

showed an increasing effect on ARHI while, broad sense heritability decreased from 

100% to 47.4% [7]. This difference in change in heritability with age might be a gender 

specific effect, as suggested by Gates [9], who justified the higher aggregation of 

hearing in female relatives by more limited exposure of women to occupational noise 

compared to men. This hypothesis is further supported by the low exposure to 

environmental risk factors for TwinsUK as reported in chapter 2. However, it should 

also be considered that ARHI might be influenced by different genetic factors in men 

and women, which show different impacts on hearing at different stages in 

development. In comparison to a female twin sample of similar age range (age range: 

63-76 years)[8], heritability estimates for PC1 at the highest age group (A=77% (95% 

CI: 69- 83, age range: 66-86) were highly comparable to the ones for the BEHL 

(A=75% (95% CI: 67-81)) (Table 18). In conclusion, decreased risk factor exposure 

(i.e. to occupational noise) in women might reduce the effect of unique environmental 

factors on ARHI and therefore increase heritability estimates compared to male 

samples.  

 

The increase in heritability with increasing age might be interpreted in different ways. 

First, the impact of genetic factors on ARHI could rise due to changes in gene 

expression or accumulation of genetic mutations with higher age. Secondly, the 

reduced impact of environmental factors on ARHI with increasing age could indicate 

that vulnerability to environmental risk factors is higher at a younger age. Similar has 

been reported for mouse models, where noise exposure had a higher effect on hearing 

ability with age if the exposure occurred during early rather than late development [15]. 

In general, recruiting study samples at an age range at which heritability of hearing 
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ability is maximised might give a potential power advantage for future genetic 

association studies.  

 

The classical twin model is based on assumptions that were not addressed in the 

analysis of this chapter. The twin sample studied here has been shown to be 

representative of the UK singleton population [16]. Furthermore, similar hearing ability 

could be determined for comparable singleton cohorts (chapter 2). The high age of 

onset for ARHI should prevent assertive mating due to hearing loss. Twin studies are 

often criticised in respect to the assumption of equally shared environments within MZ 

and DZ twin pairs with MZ twin pairs being assumed to be treated more similarly than 

DZ twin pairs. This would imply that MZ twins are exposed to a higher extent of shared 

environment. Studying DZ twins, who have falsely been labelled as MZ twins, could 

disprove this hypothesis [4]. If these mislabelled pairs shared a higher amount of 

shared environment than their true zygosity suggests, the assumption of equal 

environments would be violated. However, testing for equally shared environments was 

beyond the scope of this study. It is tempting to compare the findings of this heritability 

analysis to previous heritability analysis on ARHI, however, heritability is a population 

specific estimate [6], dependent on the population specific trait prevalence, 

environment and genetic variation. The comparison of heritability estimates for different 

population samples is therefore limited and should be interpreted with caution. 

Furthermore, this study was focused on a purely female sample, and can thus not 

make predictions on heritability in a mixed gender or male population. In addition, 

power calculation for heritability studies based on twin models suggests sample sizes 

of at least 200 twin pairs [17] to reach significant statistical power. In consideration of 

this, the analysis by age groups used therefore relatively limited sample sizes (n≥415 

subjects).  

 

In this chapter, the proportion of variance in ARHI explained by additive genetic, shared 

and unshared environmental factors, was estimated based on twin modelling. The 

presented results show that hearing ability with age is determined by up to 61% by 

genetic variants, while the remaining 39% of variance in ARHI are determined by 

unique environmental exposures. This suggests that shared environmental factors play 

only a minor to no role in hearing ability with age. Furthermore, a rising heritability of 

ARHI with increasing age is reported. In conclusion, the moderate heritability 

determined for age-adjusted PC1 and PC2 in TwinsUK females supports the use of this 

sample for further analysis on a genome-wide level to identify the genetic variants 
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involved in ARHI. The increase in heritability with age for PC1 and PC2 suggests 

recruitment of older (>65 years) subjects for future genetic association studies of ARHI. 
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Chapter 4: Validation and heritability of the speech in noise 
ratio test 

Abstract 

Pure-tone audiometry is accepted as the gold standard hearing tests by most 

audiologists. Still, pitch perception at different frequencies in a quiet environment can 

only make limited predictions about speech perception in a noisy environment. 

Communication difficulty in a noisy environment is a major symptom of ARHI. Various 

speech intelligibility tests have been developed to measure speech perception in real 

life situations.  

 

Speech intelligibility in noise was assessed using a web-based speech-in-noise test 

kindly provided by Action on Hearing Loss. Heritability of speech reception in noise was 

estimated in a heritability analysis based on the classical twin model. The speech-in-

noise test was validated against pure-tone audiometry in 448 subjects having 

completed both hearing tests. Shared heritability for hearing ability as measured by 

both tests was determined in a bivariate correlated factors model.  

 

Speech reception thresholds were collected for 1909 subjects (1684 females and 225 

males) from the TwinsUK register. Additive genetic factors accounted for 34% (95% CI: 

26-42) of the variance in speech reception thresholds, while environmental factors 

unshared within twin pairs explained the remaining variance (E=66% (95% CI: 58- 75). 

At a speech reception threshold of -9.25 dB, the speech-in-noise test showed a 

sensitivity and specificity of 88.24% and 80.05% in comparison to moderate hearing 

loss defined as a pure-tone average ≥40dB HL. Shared additive genetic factors 

explained up to 68.8% of phenotypic correlation between speech reception thresholds 

and pure-tone averages.  

 

The sensitivity and specificity of the speech-in-noise hearing test in comparison to 

pure-tone audiometry supports the use of this web-based test as a predictor for 

moderate hearing loss. The proportion of shared heritability between both tests 

suggests the use of both hearing phenotypes (speech reception in noise and pitch 

perception at different frequencies) as validation datasets for each other in future 

genetic studies. 
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Introduction 

Advanced ARHI can cause severe communication difficulties resulting in social 

isolation [1] and incapability to work. Despite the high impact of ARHI on daily life 

activities, many affected individuals do not recognize and/ or acknowledge their hearing 

loss until it is well advanced. As shown in chapter 2, self reported hearing loss showed 

a sensitivity of 86.6% and a specificity of 75.5% to correctly identify individuals with 

moderate hearing loss (pure-tone average ≥ 40 dB HL). To better understand the 

factors leading to the hearing loss with advanced age, large samples need to be 

collected. Previous genome-wide association studies of complex traits like ARHI 

suggests that ~5000 subjects (2000 cases and 3000 controls) might be required to 

reliably identify genetic variants associated with disease [2]. Reaching sample sizes of 

such magnitude for studies of ARHI seem illusionary when measuring hearing ability 

using standard pure-tone audiometry. The collection of large samples for studies of 

ARHI has been impaired by various factors: decreased mobility of elderly subjects to 

attend test centres; length of test procedure (air conduction pure-tone audiometry 

without masking takes ~15 minutes per tested individual) and availability of trained 

testers and equipment (i.e. audiometer, headphones, sound insulated environment). 

The optimal screening hearing test would therefore allow fast and efficient medical 

testing from at home requiring limited assistance by medically trained personal. With 

increased access of elderly users to the Internet, the worldwide web has often been 

suggested as a future platform for health care information and possibly medical tests 

[3,4,5,6].  

 

Difficulty understanding other individuals in a noisy environment is one of the major 

symptoms reported by individuals with ARHI. The standard hearing test, air-conduction 

pure-tone audiometry, tests pitch perception at different frequencies (0.125-8.0 kHz) in 

a quiet environment. Although the pure-tone audiogram is the gold standard test to 

assess hearing ability, it can only make predictions concerning hearing performance in 

real life situations. Subjects with word recognition difficulties due to neural hearing loss 

might go unnoticed according to their pure-tone audiogram. Hearing tests which access 

word recognition rather than pitch perception have therefore long been used in 

audiology as an addition to the pure-tone audiogram [7]. 

 

Most speech perception hearing tests are based on phonemic word groups or whole 

sentences, which are presented to the listener at various sound intensities and asked 

to be repeated by the listener [8,9]. Using complete sentences as speech material 

allows the tested individual to guess single words to form a meaningful sentence. In 



 108 

addition, many speech perception tests are limited to a defined selection of speech 

material [10,11]. An increased learning effect due to repetition of speech material 

becomes thus more likely. Numbers or digits provide a unique opportunity as test 

material as they can be combined independently of each other. Furthermore, numbers 

are more easily entered at a keyboard as part of an automated test procedure in 

contrast to words or sentences as a response.  

 

The majority of hearing tests are designed for conduction in a quiet environment or 

ideally in a sound isolated room [12]. However, this does not reflect the challenges 

encountered by hearing impaired subjects on a daily basis. To mirror normal life 

conditions, background noise would be required during the test. Noise at frequency 

ranges similar to the range of the speech signal would give the highest masking effect 

and thereby allow the test to be more challenging and authentic for the listener.  

 

The considerations presented here were incorporated in the design of a digits-in-noise 

screening test for telephone usage in the Netherlands [13,14]. This test has since been 

used and described for the Dutch national screening program [15], was adapted for 

internet use [16] and different languages [17,18]. Speech reception thresholds (SRTs) 

as measured by the digits-in-noise test [19] were highly correlated (r=0.82-0.90) with 

the standard speech-in-noise test SRTs obtained using sentences as speech material 

[8] in 23 subjects. Although this test has previously been compared to other speech-in-

noise tests [13,19] it has not been published showing validation against standard pure-

tone audiometry. 

 

Materials and Methods 

Speech in noise test study samples 

Recruitment for the speech-in-noise online hearing test was limited to volunteers from 

the TwinsUK cohort with registered email addresses (n=4811), including adult (≥18 

years) subjects of both genders. Subjects with valid email addresses were assumed to 

have regular access to the Internet and therefore deemed suitable for this web-based 

test. Recruitment was conducted between March and September 2011. All eligible 

volunteers were invited to take part in the test via a recruitment email including 

instructions concerning the test procedure and how to access the test. Test results 

were saved using a unique identification number per individual.  
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Speech reception threshold data collection 

The speech-in-noise test measures speech intelligibility against increasing background 

noise. The test used in this study was originally developed for telephone use [13] and 

converted for web based use via loud speakers by Action on Hearing loss [20]. During 

the test, combinations of digit-triplets (i.e. 3-7-9 spoken as “three seven nine”) were 

presented at a constant sound intensity against a variable intensity of noise spectrum 

based on the long-term speech spectrum [13]. At the beginning of each test procedure, 

volunteers were asked to set a comfortable speech intensity according to their own 

hearing ability. This speech volume was kept constant throughout the test while the 

noise intensity was allowed to vary. Triple digits were uttered by a female voice. An 

adaptive up-down procedure was applied according to which noise intensity was 

increased or decreased in steps of 2 dB depending upon correct or incorrect 

identification of all three digits, respectively. Per test, 26 digit triplets were presented 

and the SRT, defined as the threshold at which 50% of presentations were identified 

correctly, was determined as the average SNR over all 26 presentations. The SRT was 

measured for both ears together (binaural) via computer speakers and subjects were 

asked to perform the test on their own in a quiet environment. Test results were saved 

under the unique identification number and date of birth provided for each subject as 

well as time and date of test conduction. Volunteers were allowed to repeat the test 

whereas each test result was saved with its respective time and date of conduction. In 

the Dutch screening test only a slight learning effect could be registered between the 

first and following 24 tests in naïve listeners, with the mean SRT being 1.3 dB worse for 

the first test compared to the 4 following measurements [19]. Therefore, if a subject 

completed the speech-in-noise test several times, the most recent test result was used. 

 

The sound intensity for both speech and noise signals was measured in decibel and 

thus on a logarithmic scale (see chapter 2). According to calculus rules, the ratio 

between two logarithms is expressed as their difference. The SNR is therefore 

calculated as the difference in speech and noise sound intensity and expressed in 

decibels (Equation 14). 

 

𝑆𝑁𝑅 𝑑𝐵 = 20× log!"
𝑠
𝑛

= s 𝑑𝐵 − 𝑛 𝑑𝐵  
[Equation 14 Speech-to-noise ratio] 

With SNR= speech-to-noise ratio, s=speech sound intensity and n= noise sound 
intensity, [dB]= expressed in decibels.   
 

The SRT ranged between +8 dB and -14 dB, where a high value indicated hearing 

difficulties (speech could only be heard at a low background noise) and a low value 
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represented good speech reception even at high masking noise. To enable simpler 

interpretation of test results, the SRT was converted to a score from 0 to 11, which was 

inversely correlated with the SRT [21]. A low score indicated hearing loss while a high 

score indicated good speech reception in noise (Table 19). The relationship between 

SRTs and scores can be expressed as SRT= 8+ (-2x score). 

 

Table 19 Conversion chart for score and SRT 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The web-based speech-to-noise ratio test measured hearing ability in speech reception 
thresholds (SRTs) and scores. Poor hearing ability was indicated by a low score and 
high SRT, whereas good hearing ability was reflected by a high score and low SRT. 
 

Original SRTs followed a skewed distribution. To ensure overall positive SRT values 

and thereby facilitate transformation a constant of 20 was added to all SRTs. The 

resulting positive SRT values were transformed to normality by dividing 1 by the square 

of the positive SRTs (Equation 15). 

 

𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑  𝑆𝑅𝑇 = !
(!"#!!")!

  

[Equation 15, transformation of SRT values to normality] 

with SRT= speech reception threshold 
 

Linear regression analysis adjusted for twin relatedness was used to test whether age 

and gender had a significant effect on transformed SRT values. 

Univariate heritability estimates for SRTs 

Univariate heritability estimates of the SRT were based on the classical twin model as 

described in detail in chapter 3. Heritability estimates were determined using maximum 

likelihood estimation based on a full ACE model (ACE). Model fit for reduced models 

(CE, AE, E) were compared to the model fit for the full model in a likelihood ratio test 

Hearing ability in noise score SRT [dB] 

low (score<7.5)  0   8 dB 

 1   6 dB 

 2   4 dB 

 3   2 dB 

 4   0 dB 

 5 - 2 dB 

 6 - 4 dB 

moderate (score >7.5 &< 8.5)  7 - 6 dB 

 8 -8 dB 

good (score  ≥ 8.5)  9 -10 dB 

10 -12 dB 

11 -14 dB 



 111 

[22]. In addition to structural equation modelling using maximum likelihood estimation, 

broad sense heritability estimates were derived using Falconer’s formula [23] (chapter 

3). 

 

Univariate heritability analysis was performed for transformed SRTs and age-adjusted 

residuals of the latter. Analysis was performed for the complete sample with speech-in-

noise test data (males and females) and for female subjects only. 

Study sample with pure-tone audiogram and speech-in-noise test data 

To compare and validate the SRT against standard pure-tone audiometry, all subjects 

with pure-tone audiogram and speech-in-noise test data were selected. Individuals with 

pure-tone audiograms were chosen from the original dataset remaining after quality 

control as described in chapter 2 (n=1303). The pure-tone audiometry (n=1303) and 

SRT (n=1909) datasets were merged by the unique identification number for each 

subject. 

 

Validation of speech-in-noise test against pure-tone audiometry 

For descriptive comparison of SNR and pure-tone audiogram measures, association 

was tested with PC1, PC2, PTA and age-adjusted PTA. To validate the SRT against 

pure-tone audiometry, the sensitivity and specificity for different SRTs against 

moderate hearing loss (HL) defined as a pure-tone average (calculated over 

frequencies 0.125-8 kHz) ≥ 40 dB HL were obtained. The sensitivity of the SRT 

represents the proportion of subjects correctly diagnosed with moderate HL (according 

to the PTA≥40 dB HL) at the respective SRT, whereas specificity corresponds to the 

proportion of volunteers without HL that were correctly identified as healthy hearing at 

the respective SRT [24]. The result of this analysis for various SRTs is summarised in a 

receiver operating curve (ROC), which plots (1-specificity) against the sensitivity 

calculated for different SRT. 

 

Bivariate heritability of SRT and pure-tone audiogram measures 

To determine shared causal factors between both hearing tests, bivariate structural 

equation modelling based on a correlated factors model was performed for PTAs and 

SRTs. The correlated factors model assumes no known direction of causality between 

both variables [25]. This model determines the correlation (ra, rC, re) between variance 

components (A, C, E) estimated for both measures of hearing ability and can therefore 
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give an estimate of shared variance components (i.e. shared heritability) between both 

measures (Figure 17). 

 

The bivariate correlated factors model (Figure 17) was fitted to transformed SRTs and 

PTA values as well as age-adjusted transformed SRT residuals and age-adjusted PTA 

residuals. For both bivariate models, the full ACE model was compared to a reduced 

AE model based on a likelihood ratio test [26] (chapter 3). 

 

Figure 17 Bivariate correlated factors model pathway 

The bivariate correlated factors model describes the univariate heritability estimates for 
two observed phenotypes (i.e. SRT and PTA results) and determines the correlation 
(r(a2), r(c2) and r(e2)) between the corresponding estimates (A, C, E). The two observed 
phenotypes are indicated by black boxes. Univariate variance component analysis is 
based on the classical twin model. The single headed arrows represent univariate path 
coefficients, measuring the effect of the latent variables on the phenotype. The 
phenotypic variance attributed to the specific variance components (A, C, E) can be 
calculated as the square of the respective path coefficients (i.e. A=a1

2). Double-headed 
arrows indicate correlations between the estimated variance components (A, C and E) 
between both phenotypes. 
 

The results of the bivariate heritability analyses were further used to calculate the 

percentage of phenotypic correlation due to shared additive genetic effects for the 

corresponding phenotype pairs. This calculation can be completed by tracing the path 

of the additive genetic effects from one phenotype to the next (path: a1 x r(a2) x a2) 
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according to the bivariate correlated factors model pathway (Figure 17) and dividing the 

total by the phenotypic correlation coefficient (Equation 16). 

 

𝑟 𝑃! = !!"#×!(!!)× !!"#
!(!"#,!"#)

= !!×!!×!(!!)
!(!"#,!"#)

  

[Equation 16 Percentage of phenotypic correlation due to shared additive genetics] 

with ASRT=heritability of hearing ability as measured by SRT, APTA=hearing ability as 
measured by pure-tone average, r(a2)= correlation of SRT and PTA heritability 
estimates and r(SRT, PTA)= phenotypic correlation coefficient for correlation between 
SRT and PTA measures of hearing ability.  
 

Results 

SRT study sample 

Between March and September 2011, 1909 individuals from TwinsUK were recruited to 

test their hearing online using the web-based speech-in-noise test. Considering that 

4811 individuals were invited via email, this corresponds to a response rate of 39.68%. 

The SRT sample included 349 MZ twin pairs, 179 DZ twin pairs and 853 unpaired 

twins. For this test, both female and male twins were recruited, with 1684 female and 

225 male volunteers having completed the speech-in-noise test. Age of the participants 

ranged from 19 to 85 years, giving a mean age of 54.63 years ±12.79 standard 

deviation. Original SRTs followed a skewed distribution (appendix chapter 4, Figure 48) 

that could not be transformed to normality using a log-transformation. A histogram of 

the transformed SRT values can be seen in appendix chapter 4, Figure 49. 

 

Although males showed slightly lower SRTs (n=225; coef=-0.0003±0.0002 se) this 

effect was not significant (p=0.171). However, chronological age at the test date 

explained 16.75% of the variance in transformed SRTs and was significantly 

associated with transformed SRT values (p=0.000). Increasing age had a negative 

effect on transformed SRTs (coef=-0.000011 ± 6.34x10-6 se) (appendix chapter 4, 

Figure 47). To adjust for this effect of age, age-adjusted SRT residuals were taken. A 

histogram of the transformed age-adjusted SRT residuals can be seen in appendix 

chapter 4, Figure 50. There was no significant difference between speech-in-noise test 

scores and original, transformed or age-adjusted SRTs between MZs, DZs and 

unpaired twins (ANOVA, p>0.05). Speech-in-noise ratio test results were listed by 

zygosity (Table 20) and gender (Table 21).  
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 Table 20 Speech-in-noise test samples by zygosity 

zygosity n gender  

F/M 

age score 

mean ±SD 

SRT  

mean ±SD 

transformed  

SRT 

mean ±SD 

age-

adjusted 

SRT 

mean ±SD 

range mean 

±SD 

MZ 698 628/ 70 20- 

85 

53.28 

±14.15 

9.1301 

±1.0379 

-10.2602 

±2.0759 

0.0116 

±0.0036 

-3.419 E-05 

±0.0033 

DZ 358 330 / 28 28- 

78 

57.24 

±10.20 

9.0939 

±1.0844 

-10.1879 

±2.1689 

0.0115 

±0.0036 

0.0003 

±0.0033 

unpaired 

twins 

853 726/ 127 19- 

84 

54.63 

±12.44 

9.0757 

±1.1045 

-10.1514 

±2.2089 

0.0114 

±0.0035 

-0.0001 

±0.0032 

total 1909 1684/ 

225 

19- 

85 

54.63 

±12.79 

9.0990 

±1.0765 

-10.1980 

±2.1530 

0.0115 

±0.0035 

-3.044 E-12 

±0.0032 

This table summarizes the characteristics of the all subjects with speech-in-noise test 
data by zygosity. The sample was divided into three subsamples by zygosity of the 
participants. Each subsample was characterized by the number of subjects (n), gender, 
mean chronological age and age range at speech-in-noise test. Furthermore, speech-
in-noise test scores, SRTs, transformed as well as age-adjusted SRT values are 
summarised by zygosity as mean ± standard deviation (SD) from the mean.  
 

Table 21 Speech-in-noise test samples by gender 

gender n zygosity: 

DZ 

MZ 

unpaired 

twins 

age  score 

mean ±SD 

SRT 

mean ±SD 

transformed  

SRT 

mean ±SD 

age-adjusted 

SRT 

mean ±SD 
range mean 

±SD 

female 1684 330 

628 

726 

19-82 54.52 

±12.69 

9.1149 

±1.0638 

-10.2297 

±2.1277 

0.0115 

±0.0035 

3.902 E-05 

±0.0032 

male 225 28 

70 

127 

21-85 55.44 

±13.51 

8.9803 

±1.1626 

-9.9606 

±2.3253 

0.01101 

±0.0036 

-3.000 E-04 

±0.0033 

total 1909 358 

698 

853 

19-85 54.63 

±12.79 

9.0990 

±1.0765 

-10.1980 

±2.1530 

0.0115 

±0.0035 

-3.044 E-12 

±0.0032 

This table summarizes the characteristics of all subjects with speech-in-noise test data 
by gender. The sample was divided into female and male participants. Both female and 
male subjects were characterized by the number of subjects (n), zygosity, age range 
and mean chronological age at speech-in-noise test. Speech-in-noise test scores, 
SRTs, transformed as well as age-adjusted SRT values were summarised as mean ± 
standard deviation (SD) from the mean.  
 

Univariate heritability of speech reception in noise 

Univariate heritability estimates were calculated for transformed and age-adjusted SRT 

residuals using two methods, Falconer’s formula and structural equation modelling 

based on the classical twin model. 
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Broad sense heritability estimates according to Falconer’s formula ranged between 

H2=32% for transformed SRTs and H2=36% for age-adjusted SRT residuals (Table 22). 

Results of the structural equation modelling suggested that speech intelligibility against 

background noise was primarily influenced by exposure to environmental factors not 

shared within twin pairs (E: 66-80%) (Table 23). The AE model gave a more 

parsimonious model fit in comparison to the full ACE model for all SRT phenotypes. 

While broad sense heritability estimates (H2) increased after age-adjustment of SRT 

values using Falconer’s formula, the reverse effect could be seen in structural equation 

modelling, where heritability decreased from A=34% (95% CI: 26- 42) to A=20%(95% 

CI: 10- 29). As previously reported, age-adjustment reduced the estimated effect of 

common environmental factors on phenotypic variance [27] from C=6% (95% CI: 0- 32) 

to C=0% (95% CI: 0-19).  

 

The heritability of SRT values in a purely female sample was investigated. In the 

structural equation modelling with female subjects only, the AE model fitted the 

observed variance in age-adjusted SRT residuals best. Variance component estimates 

ranged from 19% (95% CI: 8- 28) for additive genetic factors (A) to 81% (95% CI: 72- 

92) for unshared environmental factors within twin pairs (E) (Table 23). 

 

Table 22 Intraclass correlation coefficients and heritability estimates for transformed 

and age-adjusted SRT residuals  

phenotype ICCMZ ICCDZ H2 A% (95% CI) 

transformed SRT 0.34 0.18 32% 34 (26- 42) 

age-adjusted SRT 0.20 0.02 36% 20 (10- 29) 

The intraclass correlation coefficients for MZ (ICCMZ) and DZ (ICCDZ) twin pairs were 
determined for each phenotype and broad sense heritability (H2) calculated as twice 
the difference in ICCs for MZs and DZs (H2=2x(ICCMZ -ICCDZ)). For comparison, the 
percentage of phenotypic variance explained by additive genetics (A%) determined in 
univariate structural equation modelling (Table 23) for the respective phenotype was 
added with 95% confidence intervals.   
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Table 23 Results of the structural equation modelling used to estimate the influence of 

A, C and E on speech-in-noise ratio 

In the structural equation modelling an ACE model was fitted to the observed 
phenotypic variance in transformed and age-adjusted SRT residuals based on 
maximum likelihood estimation. For each trait, three nested models were compared to 
the full ACE model, taking into account different causal factors: AE (additive genetics 
and unshared environmental factors), CE (shared and unshared environmental factors) 
and E (unshared environmental factors).  Model fit for the full and respective reduced 
model were compared in a likelihood ratio test. Significance of the likelihood ratio test 
(p-value) is based on a chi-square statistic (∆χ2) with 1 or 2 degrees of freedom (∆df). 
In addition, the Akaike’s information criterion (AIC) gives a measure of parsimony of a 
reduced model in comparison to the full model.  For each phenotype the ACE model fit 
and nested models with a better model fit (highlighted in grey) are shown. Model 
comparison is only given for nested models as they are compared to the full (ACE) 
model. Estimated variances explained by the specific causal factors (A= additive 
genetics, C= shared environment and E= unshared environment) are given with 95 % 
confidence intervals (95% CI) for each model. 

phenotype model fit model comparison univariate estimates % (95% CI) 

model -2LogL df ∆ χ2 ∆ df p-value AIC A C E 

transformed  

SRT 

ACE -16186.77 1902 - - - - 28  

(0- 42) 

6  

(0- 32) 

66  

(58- 76) 

AE -16186.61 1903 0.16 1 0.69 -1.84 34  

(26- 42) 

- 66  

(58- 75) 

age-adjusted  

SRT residuals 

ACE -16505.17 1902 - - - - 20  

(0- 29) 

0  

(0-19) 

80  

(71- 90) 

AE -16505.17 1903 0.00 1 1.00 -2.00 20  

(10- 29) 

- 80   

(71- 90) 

age-adjusted  

SRT residuals 

(females only) 

ACE -14565.20 1677 - - - - 19  

(0- 28) 

0  

(0- 22) 

81  

(72- 92) 

AE -14565.20 1678 0.00 1 1.00 -2.00 19  

(8- 28) 

- 81  

(72- 92) 
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Table 24 Description of samples with speech-in-noise and pure-tone audiogram test 

data 

demographics pure-tone audiogram phenotypes speech reception phenotypes 

zygosity n age at 

audiogram 

PC1 PC2 PTA age- 

adjusted  

PTA 

SRT trans-

formed 

SRT 

age- 

adjusted  

SRT 

residuals 

range mean  

±SD 

MZ 142 41- 80 58.92 

±8.65 

-0.213 

±1.735 

0.238 

±1.345 

20.337 

±8.921 

0.460 

±7.322 

-10.395 

±1.612 

0.012 

±0.003 

0.001 

±0.003 

DZ 116 47- 79 61.07 

±6.35 

-0.309 

±1.737 

-0.022 

±1.246 

20.598 

±9.030 

-0.573 

±7.474 

-10.160 

±2.021 

0.011 

±0.004 

0.001 

±0.004 

unpaired 

twins 

190 41- 80 60.35 

±8.16 

-0.251 

±2.012 

0.008 

±1.381 

20.745 

±9.644 

0.006 

±8.587 

-10.061 

±1.903 

0.011 

±0.003 

 0.000 

±0.003 

Total 448 41- 80 60.09 

±7.93 

-0.254 

±1.854 

0.073 

±1.338 

20.578 

±9.243 

4.7E-10 

±7.913 

-10.193 

±1.850 

0.011 

±0.003 

0.000 

±0.003 

Subjects with speech-in-noise test data and pure-tone audiometry were described by 
demographic measures, pure-tone audiogram phenotypes and speech-in-noise test 
phenotypes. The sample was divided into three subsamples by zygosity of the 
participants (monozygotic twins (MZ), dizygotic twins (DZ) and unpaired twins. Each 
subsample was characterized by the number of subjects (n), mean chronological age 
and age range at pure-tone audiogram. Pure-tone audiogram and speech-in-noise test 
phenotypes are summarised as mean and standard deviation from the mean (SD) 
(PC1=principal component 1, PC2=principal component 2, PTA=pure-tone average, 
SRT=speech reception threshold). All subjects presented in this table were female.  
 

Study sample with SRT and pure-tone audiogram 

For the speech-in-noise test validation and bivariate heritability analysis between SRT 

and pure-tone audiogram measures, all individuals having completed both speech-in-

noise test and the pure-tone audiogram were selected. In total, 448 subjects completed 

both tests, comprising 142 MZs, 116 DZs and 190 unpaired twins. This study sample 

included only female subjects, as recruitment for the pure-tone audiogram had been 

limited to female volunteers only. Age at audiogram ranged from 41-80 years (mean 

age: 60.09± 7.93 SD). Both hearing tests had been performed within ≤2 years of each 

other. The mean difference in age at both tests amounted to 0.58 years± 0.59 SD. The 

results for different pure-tone audiogram measures (PC1, PC2, PTA and age-adjusted 

PTA residuals) and speech-in-noise measures (SRT, transformed SRT and age-

adjusted SRT residuals) are summarised by zygosity in Table 24. As shown above for 

the speech-in-noise test and previously for the audiogram dataset (chapter 2), there 

was no significant difference in results between MZs and DZs. 

Correlation between speech-in-noise test and pure-tone audiogram measures  

To determine the relationship between pure-tone audiogram and SRT measures, the 

correlation between test results was measured. The resulting correlation coefficients 
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are shown in Table 25. The highest correlation could be observed between SRTs and 

PTA results (unadjusted and age-adjusted residuals). Transformed SRTs (transformed 

SRTs and age-adjusted SRT residuals) were negatively correlated with audiogram 

phenotypes, as a result of the transformation of SRTs to normality. The strongest 

absolute correlation for transformed SRT values was seen with PTAs. To adjust for the 

effect of age, the association between age-adjusted SRT residuals and age-adjusted 

PTA residuals was determined by correlation analysis. Age-adjustment reduced the 

correlation coefficient from r=-0.4519 to r=-0.3280 (Table 25). 

 

Table 25 Correlation matrix for different pure-tone audiogram and speech-in-noise 

phenotypes 

Correlation coefficients between speech in noise and pure-tone audiogram phenotypes 

pure-tone audiogram phenotypes speech-in-noise phenotypes 

SRT transformed SRT age-adjusted SRT 

residuals 

PC1 0.2995 -0.2314 -0.2568 

PC2 0.1795 -0.1628 -0.1779 

PTA 0.5249 -0.4519 -0.3388 

age-adjusted PTA residuals 0.3942 -0.3048 -0.3280 

The above table lists correlation coefficients between different pure-tone audiogram 
and speech reception thresholds (SRTs). Pure-tone audiogram phenotypes include: 
Principal component 1 (PC1) and 2 (PC2) as well as a pure-tone average (PTA) 
calculated as the mean pure-tone threshold measured over 0.125-8.0 kHz.  

Validation of SRT against pure-tone audiometry  

To validate the speech-in-noise test, test results were compared to hearing impairment 

as measured by the standard hearing test, pure-tone audiometry. Moderate hearing 

impairment was defined as a PTA≥ 40 dB HL based on thresholds adapted from the 

WHO [28]. This standard criterion was used as the reference measurement to 

determine the sensitivity and specificity of the SRT to correctly identify or reject 

subjects for moderate hearing loss. The analysis was performed for both SRT and 

transformed SRT values and depicted in receiver operating curves (Figure 18 and 

Figure 19). At an SRT of -9.25 dB, the speech in noise test showed 88.24% sensitivity 

and 80.05% specificity to correctly identify moderate hearing loss. The same sensitivity 

and specificity was determined for a transformed SRT value of 0.0087. The area under 

the curve measured 0.9238 with a standard error of 0.0245 (95% CI: 0.8758-0.9719) 

for both SRT and transformed SRT values (Figure 18 and Figure 19).  
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Figure 18 Receiver operating curve of transformed SRTs against moderate hearing 

loss 

The receiver operating curve (ROC) plots the specificity versus the sensitivity of the 
transformed speech reception threshold (SRT) in comparison to hearing loss as 
measured by the pure-tone average ≥ 40 dB HL. At a transformed SRT value of 
0.0087, a sensitivity and specificity of 88.24% and 80.05% was observed, respectively. 
The area under the curve is presented with standard error (se) and 95% confidence 
intervals (95% CI). 
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Figure 19 Receiver operating curve of SRTs against moderate hearing loss 

The receiver operating curve (ROC) plots the specificity versus the sensitivity of the 
speech reception threshold (SRT) in comparison to hearing loss as measured by the 
pure-tone average ≥ 40 dB HL. At a SRT of -9.25 dB, a sensitivity and specificity of 
88.24% and 80.05% was observed, respectively. The area under the curve is 
presented with standard error (se) and 95% confidence intervals (95% CI). 
 

Bivariate heritability analysis of speech reception in noise and pure-tone 

audiometry 

The strongest correlation in heritability estimates was observed for transformed SRT 

and PTA values (r(a2)= -0.7 (95% CI:-1.0- -0.5)). However, the strength of correlation 

decreased after age-adjustment of both SRT and PTA values to r(a2)= -0.4 (95% CI:-

1.0-1.0), which was also reflected in wider confidence intervals. The correlation 

between unique environmental factors for both tests was generally lower than 

correlation within heritability estimates (r(e2)= -0.3 (95% CI: -0.5 - -0.1) to r(e2)= -0.4 

(95% CI:-0.5- -0.1). Although univariate heritability estimates for the SRT were low 

under the AE model (ASRT=15% - 27%), the correlation between heritability estimates 

for SRT and PTA values was consistent, supporting the existence of shared genetic 

factors between both hearing phenotypes. The percentage of phenotypic correlation 

between the corresponding SRTs and PTA values due to shared additive genetics 

(Equation 16) was estimated as 68.8% and 36.8% for transformed values and age-

adjusted residuals, respectively. 
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Figure 20 Path diagrams of bivariate heritability estimates for SRT and PTA values 

The path diagrams depict the results of the bivariate heritability analysis between SRT 
and PTA values based on the AE model. Observed phenotypes and latent variables 
are indicated by black boxes and circles, respectively. Estimated variances explained 
by additive genetics (A) and unshared environment (E) are given for each phenotype 
(SRT or PTA). Correlation coefficients between additive genetic factors (r(a2)) and 
unique environmental factors (r(e2)) are indicated by double-headed arrows. The effect 
of the latent variables on the respective phenotype is indicated by single headed 
arrows. Panel A displays the results of the bivariate heritability analysis of transformed 
SRT and PTA values, while panel B represents results for age-adjusted SRT and PTA 
residuals.  
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Table 26 Results of the bivariate heritability analysis of SRT and PTA measures.  

In the bivariate structural equation modelling an ACE model (Model) was fitted to the 
observed phenotypic variance in both SRT and PTA measures and correlation between 
univariate variance components for both traits were determined.  Model fit was based 
on maximum likelihood estimation. For each trait, the nested AE model was compared 
to the full ACE model, taking into account additive genetics (A) and unshared 
environmental factors (E), Model fit for the full and respective reduced model were 
compared in a likelihood ratio test (∆ -2 log L). Significance of the likelihood ratio test 
(p-value) is based on a chi-square statistic with 1 or 2 degrees of freedom (∆df). In 
addition, the Akaike’s information criterion (AIC) gives a measure of parsimony of a 
reduced model in comparison to the full model.  For each phenotype the ACE model fit 
and nested models with a better model fit (highlighted in grey) are shown. Model 
comparison is only given for nested models as they are compared to the full (ACE) 
model. Estimated variances explained by the specific causal factors (A= additive 
genetics, C= shared environment and E= unshared environment) are given with 95 % 
confidence intervals (95% CI) for each model. Correlation coefficients between additive 
genetic factors (r(a2)), shared environmental factors (r(c2)) and unique environmental 
factors (r(e2)) are given with 95% confidence intervals. 
  

phenotype model fit model comparison univariate  

estimates %  

(95% CI)  

correlation  

between  

estimates  

(95% CI) 

model -2 log L df ∆  

-2 log L 

∆ 

 df 

p-value AIC A 

C 

E 

r(a2) 

r(c2) 

r(e2) 

transformed  

SRT 

&  

PTA 

ACE -7535.734 885 - - - - 18 (0-.44) 

8 (0-32) 

74 (56- 91) 

-1.0 (-1.0 -1.0) 

-0.2 (-1.0-0.7) 

-0.3 (-0.5 --0.1) 

46 (9- 79) 

27 (0-58) 

27 (20- 39) 

AE -7532.57 888 3.17 3 0.37 -2.83 27 (7-45) 

- 

73 (55-93) 

-0.7 (-1.0- -0.5) 

- 

-0.3 (-0.5 - -0.1) 

73 (63- 81) 

- 

27 (19-37) 

age-adjusted  

SRT 

& 

age-adjusted  

PTA 

ACE -7850.84 885 - - - - 8 (0- 32) 

6 (0-23) 

85 (67- 99) 

-1.0 (-1.0- 1.0) 

 1.0 (-1.0- 1.0) 

-0.3 (-0.5- -0.1) 

53 (13- 72) 

8 (0-42) 

39 (27- 56) 

AE -7849.14 888 1.70 3 0.64 -4.30 15 (0-35) 

- 

85 (65- 100) 

-0.4 (-1.0-1.0) 

- 

-0.4 (-0.5- -0.1) 

61 (45- 73) 

- 

39 (27- 55) 
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Discussion 

In this chapter a web-based speech-perception test was compared to hearing ability as 

measured by pure-tone audiometry in respect to future genetic studies. Speech 

reception in noise was primarily influenced by additive genetic factors and 

environmental exposure unshared within twin pairs. Correlation between hearing ability 

as measured by SRT and PTA was explained by up to 68.8% by additive genetic 

factors shared between both hearing traits. In addition, speech reception in noise 

showed 88.24% sensitivity and 80.05% specificity to correctly identify subjects with 

moderate hearing loss as defined by a PTA≥ 40 dB HL. 

 

SRTs in the TwinsUK sample were collected using a web-based speech-in-noise test. 

This test has been developed by Action on Hearing Loss based on the digits-in-noise 

test by Smits et al.[13]. In comparison to previous speech-in-noise tests, it uses triple 

digits (i.e. 3-7-5) as speech material rather than complete sentences [8] to reduce the 

effect of cognitive ability on word recognition. Furthermore the speech signal in this test 

is presented against increasing background noise, to mimic real life situations. It should 

also be mentioned that in the test applied here, speech intensity is kept constant while 

the noise component varies, whereas in the original Dutch version [13] speech volume 

was allowed to increase or decrease against a constant background noise.  

 

In prospect of future genetic studies, the univariate heritability of different speech-in-

noise phenotypes was determined. For all three SRT phenotypes analysed, the AE 

model was most likely under the observed trait variance. This implies that shared 

environment within twin pairs does not have a major impact on speech reception in 

noise. The same effect has been determined in chapter 3 for different pure-tone 

audiogram measures. Unique environmental factors explained E=66% (95% CI: 58- 

75) to E=81% (95% CI: 72-92) of variance in SRTs, while additive genetic factors 

accounted for the remaining A=34% (95% CI: 26- 42) to A=20% (95% CI: 10- 29). This 

is contradictory to hearing as measured by pure-tone audiometry, where genetic 

factors explained more than half of the variance in hearing (chapter 3). Heritability of 

speech intelligibility has been determined in elderly women of the Finnish Twin Study 

on Aging. Speech reception was measured as the better ear speech recognition 

threshold (BESRL). Variance in BESRL values was determined to 66% (95% CI: 55-

74) by additive genetic factors [29], twice as high as our estimates, however, this test 

measured speech recognition in a quiet environment [29]. Smoorenburg [30] measured 

speech perception in 200 individuals with noise induced hearing loss. He observed only 

moderate correlation (r=0.45) between SRTs in noise and quiet environments, 
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indicating that environmental exposure (i.e. noise exposure) might influence speech 

reception in noise and quiet differently. In addition, tone perception thresholds at 2 and 

4 kHz were determined as a good predictor for SRTs in noise (r=0.72) [30]. The low but 

consistent heritability of SRTs merits further analyses in genetic studies, however, a 

high sample size will be required to achieve sufficient statistical power to identify 

genetic variants associated with speech reception in noise.  

 

In a purely female sample (n=1684), univariate heritability estimates for STR values 

were slightly decreased (A=19%, 95% CI: 8- 28) in comparison to the mixed gender 

estimates (A=20%, 95% CI: 10-29). It would have been interesting to compare 

univariate heritability estimates of speech reception in noise between genders. 

However, the number of complete twin pairs for the male participants (n=49 pairs) was 

too low to achieve sufficient statistical power to use structural equation modelling. 

Previous power calculations for univariate heritability estimation report that at least 200 

twin pairs are required to achieve sufficient statistical power [31].  

 

To explore the relationship between speech reception in noise measures and pure-tone 

audiometry, correlation between different speech reception in noise and pure-tone 

audiogram phenotypes was investigated. Moderate correlations could be observed 

between pure-tone averages and SRTs (r=0.52--0.32). Smits et al. [13] observed an 

even stronger correlation between speech in noise test results for telephone usage and 

PTAs for medium (0.5-2 kHz) and medium to high (0.5-4kHz) frequencies (r=0.732 and 

r=0.770, respectively). The speech-in-noise test for telephone usage [13] has 

previously been validated against an existing speech-in-noise hearing test using 

sentences rather than triple digits as speech material [8]. Furthermore, it has been 

regressed against pure-tone averages for different frequency ranges (0.5-4 kHz) [13]. 

Most audiologists consider the air conduction pure-tone audiogram as the standard 

hearing test. Although we were aware that speech reception and particular speech 

reception in background noise might be determined by other factors than pitch 

perception alone, we wanted to measure the sensitivity and specificity of the speech in 

noise test as a predictor for moderate hearing loss as determined by pure-tone 

audiometry. A PTA ≥ 40dB HL is considered as definition for moderate hearing loss 

[28] and was thus applied as a reference measurement for hearing loss. Sensitivity and 

specificity at an SRT of -9.25 dB was high in comparison to the PTA (88.24% and 

80.05%, respectively).  
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These sensitivity and specificity values might be too low for a diagnostic test, but might 

serve as a good predictor of overall hearing, as used here. Difficulty to understand 

speech against background noise is a symptom of hearing loss that may have different 

sources. Speech perception is defined both by the anatomy and physiology of the ear 

as well as sound processing in the brain. The speech-in-noise test cannot discriminate 

the source of the hearing loss. In comparison, air and bone conduction pure-tone 

audiometry can be used to differentiate between conductive, sensorineural or mixed 

hearing loss and thus help to identify affected structures in the ear. Even though the 

speech-in-noise test showed high sensitivity (88.24%) and specificity (80.05%) to 

correctly identify individuals with moderate hearing loss, further tests would be required 

to follow up the type of hearing loss. The data presented here suggests that the web-

based speech-in-noise test could be used to screen for hearing loss in the general 

population. Individuals identified with hearing loss should then be referred to an 

audiologist for further diagnosis.  

 

The moderate sensitivity and specificity of the speech-in-noise test in comparison to 

pure-tone audiometry lead to the hypothesis that tests measuring similar hearing traits 

might also share a proportion of heritability. Therefore a bivariate heritability analysis 

was conducted, which estimated the univariate variance components for both traits and 

the correlation between the corresponding components. Genetic correlations between 

pure-tone averages and SRT values determined in the bivariate analyses ranged from r 

= −0.7 to r = −0.4 and explained 68.8% and 36.8% of the phenotypic correlation 

between both measures of hearing ability. In a female Finnish twin sample it was 

shown that better ear hearing threshold levels (measured using pure-tone audiometry) 

and BESRL values (speech reception in quiet) had a genetic component in common, 

which accounted for 54% (95%CI: 43-64) of the variance in speech recognition [29]. 

Although bivariate heritability for speech reception and pitch perception in the Finnish 

Twin cohort was based on different measures of hearing ability and fitted to a different 

bivariate variance component model, these results support our findings of shared 

heritability between hearing ability as measured by speech perception and pure-tone 

audiometry.  

 

These results suggest that part of the variance in both SRTs and PTAs is determined 

by additive genetic factors shared between both hearing measures. Genetic studies 

aimed at determining genetic variants associated with hearing ability could therefore 

use hearing ability as measured by either of these two hearing test (speech-in-noise 

test and pure-tone audiometry) and thereby increase the sample size and statistical 
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power of future genetic studies. Alternatively, the shared heritability and moderate 

specificity and sensitivity estimates support the use of samples with SRT data as 

validation samples for future genetic studies of hearing ability as measured by pure-

tone audiometry. According to the sensitivity and specificity as well as the moderate 

bivariate heritability correlations determined, it was concluded that the speech-in-noise 

test represents a satisfactory predictor for hearing loss as measured by the pure-tone 

audiogram.  Although the SRT test was slightly less sensitive and specific in identifying 

HL correctly compared to pure-tone audiometry, much larger sample sizes could be 

recruited at minimal time and effort. 

 

There were limitations, which were beyond the scope of this study. The number of 

unpaired twins was relatively high for data collected from a twin cohort. We explain this 

high number by the recruitment and data collection procedure. Whereas pure-tone 

audiograms were performed at St. Thomas hospital, during a twin visit including both 

twins of a pair, the web-based speech-in-noise test was performed at the volunteer’s 

home, separate of their twin sibling. Furthermore, the number of individuals with both 

speech reception in noise measures and pure-tone audiometry was limited (n=448). 

Nevertheless, hearing ability in this sample reflected the shape of the hearing 

distribution in the complete speech-in-noise test and pure-tone audiogram samples. As 

reported for the complete pure-tone audiogram sample in chapter 2, hearing ability was 

better than reported for other European samples of this age range previously [32]. The 

number of individuals with moderate hearing loss was thus limited in the speech-in-

noise test validation analysis. We also accept that speech reception in noise and pitch 

perception at different frequencies in quiet represent different aspects of hearing 

function and the comparison of both should therefore be interpreted with caution. 

Finally, ambient noise levels during the web based hearing test could not be controlled 

for. All volunteers were asked to perform the test in a quiet environment trying to avoid 

interruption. However, Smits et al has shown that ambient noise levels and quality of 

PC speakers should only have limited affect on the resulting speech-to-noise ratio [13].  

 

In conclusion, this is the first study to our knowledge that explores the heritability of 

SRTs (measured via the speech-in-noise test) and validates this measure of hearing 

ability against standard pure-tone audiometry. These results suggest, that speech 

reception in noise shows a high sensitivity and moderate shared heritability with 

hearing ability as measured by pure-tone audiometry and could thus be used as a 

predictor for moderate hearing loss as measured by pure-tone audiometry in future 
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studies. The web-based set-up of this test allows collection of large datasets for future 

epidemiological studies at reduced time and effort compared to pure-tone audiometry. 
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Chapter 5: Genome-wide association studies of hearing ability 
with age 

Abstract  

Heritability estimates determined in chapter 3 and 4 confirmed a moderate heritability 

for hearing ability with age in TwinsUK, proofing this sample suitable for genetic 

studies. This chapter aims to determine genetic variants associated with hearing ability 

with age in a predominantly female sample. 

 

Genetic variants associated with ARHI and hearing function were sought in a genome-

wide association design using three phenotypes of hearing ability with age (age-

adjusted PCs (PC1; PC2) and PTA residuals calculated from pure-tone audiograms) 

and a measure of hearing function (age-and gender adjusted SRT residuals). Genome-

wide association was performed on a marker and gene-based level and replication 

sought in two validation datasets. Significantly associated (p<10-3) genes were followed 

up in literature and tested for gene enrichment. 

 

Despite a moderate sample size (n=1028-1214), no genome-wide significant 

associations (p≤5x10-8) with hearing ability could be determined. Nevertheless, 

suggestive genome-wide significant associations (p<5x10-6) were identified for genes 

LAMA2, GLRX3, SDK1, HSPG2, FGF14 and XKR3. In the gene-based analysis 

FAM110C, GLRX3 and DHRS7C presented the most highly associated genes (p<10-4). 

Gene-based validation was determined for genes PANX1, LYST and WNT16. In the 

gene enrichment analysis associated genes were enriched for ephrin receptors, genes 

involved in cell-cell interaction and gene silencing by miRNA.  

 

In conclusion, this analysis determined suggestive significant associations with various 

genes with a putative function in hearing ability. The lack of genome-wide significant 

associations might be explained by the polygenic nature of ARHI, thus reducing the 

effect size of single variants. Future GWAS of ARHI should focus on larger sample 

sizes to increase the power to detect genome-wide significant associations with 

common genetic variants of low to moderate effect sizes.  
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Introduction  

Heritability studies attempt to distinguish the proportion of phenotypic variance 

determined by environmental or genetic factors.  Heritability estimates for hearing 

ability with age in the TwinsUK cohort ranged from 39% (speech reception in noise, 

chapter 4) to 77% (PC1 in older samples; chapter 3), confirming a moderate genetic 

effect and suitability of this sample for future genetic studies. Genetic variations 

causing differences in quantitative phenotypes (i.e. blood pressure, height, hearing 

ability) are referred to as quantitative trait loci. Detection of these loci has been a major 

aim for geneticists in the last decade. In case of ARHI, candidate gene, linkage and 

association studies have been used to define genetic variants associated with this trait. 

Linkage Analyses 

Linkage analysis are based on the hypothesis that markers located close to a disease 

allele are linked to this allele and that segregation of these markers is related to the 

inheritance of   disease in large pedigrees. Linkage disequilibrium describes the 

phenomenon that some alleles are inherited together more often than expected by 

chance. These markers are usually located close to each other on a chromosome and 

therefore less likely to be separated by recombination during meiosis. Linkage analysis 

makes use of linkage disequilibrium by selecting markers that can easily be traced from 

generation to generation.  Nevertheless, large pedigrees are required to narrow down 

linkage intervals, as family members share a higher proportion of alleles identical by 

decent than unrelated individuals. Collection of large pedigrees is particularly difficult in 

the study of age-related traits due to the late age of disease onset. Even with large 

pedigrees available, success is often limited due to multiple loci implicated in disease 

aetiology and large linkage intervals, which might include several possible candidate 

genes. 

 

Genetic markers used in most studies include copy number variations and single 

nucleotide polymorphisms (SNPs). SNPs represent the most common genetic 

variation, occurring roughly every 1000 base pairs per human genome. Most SNPs are 

located outside protein coding regions and have therefore no direct impact on the 

protein sequence. Only a minor proportion of SNPs is located in coding regions and 

therefore has a putative impact on the protein. 

 

The first linkage analysis of ARHI was performed in 328 families (1789 subjects) of the 

Framingham cohort [1]. Pure tone averages calculated for the lower (0.25, 0.5 and 1.0 

kHz) and medium (0.5, 1.0 and 2.0 kHz) frequencies accounted for the quantitative 
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phenotype. Analysis resulted in 6 loci with logarithm of the odds (LOD) scores > 1.5, on 

chromosomes 11, 10, 14 and 18.  

 

Garringer et al [2] used a sibling–pair linkage analysis to detect genetic loci linked to 

ARHI. This method aims to identify genetic markers shared identical by descent to a 

higher percentage than expected for DZ twins. Linkage analysis resulted in a region of 

23 cM on chromosome 3 (between markers D3S2496 and D3S3637) with a LOD score 

of 2.5. The D3S1292 marker included in this region maps to the DFNA18 locus 

(autosomal dominant hearing loss) [3].  

 

A third linkage analysis was conducted on 200 European and Finnish sibships (1081 

subjects) using PCs (PC1-3) calculated from pure-tone thresholds. After simulation, a 

region on chromosome 8 achieved genome-wide significance (p=0.0170) in the 

multipoint analysis. The region on chromosome 8 mapped to locus 8q24.13-q24.22[4].  

Candidate gene studies 

Another approach to determine QTLs for common diseases involves sequencing of 

candidate genes. However, an a priori hypothesis is required to select biological 

candidates, which is particularly challenging in a poorly understood trait like ARHI. In 

addition, sequencing of selected candidate genes in several cases and controls is a 

time and cost intensive process. Furthermore, the candidate gene method assumes 

that mutations in a single gene could have a sufficient effect on a trait to be determined 

in this study design, which might not apply to a polygenic trait with many variants of low 

effect sizes on the trait [5].  

 

Unal et al [6] measured the association of 4 different N-acetyltransferase 

polymorphisms with susceptibility to ARHI. The enzyme encoded by NAT2 plays an 

important role in acetylation of drugs and environmental toxins, leading to removal of 

the latter. Polymorphisms in NAT2 have been shown to influence enzyme activity [7]. 

The study sample included 68 subjects with ARHI and 98 healthy controls. Multivariate 

logistic regression analysis was used to determine the association between N-

acetyltransferase 2 (NAT2) polymorphism genotypes and hearing status. Subjects 

homozygous mutant for NAT2*6A (G590A) showed a 15.2 fold (p=0.013) increased 

risk of developing ARHI compared to individuals with a homozygous wildtype genotype. 

Individuals heterozygous at this locus showed a 0.34-fold (p=0.032) decreased risk of 

ARHI compared to the homozygous mutant group.  
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These results motivated Van Eyken et al [8] to conduct a study on the effect of 

polymorphisms in genes associated with reactive oxygen species detoxification and 

ARHI. Selected genes of interest were the previously reported NAT2 and different 

classes of glutathione S-transferases. Individuals from 9 centres across Europe were 

tested for hearing levels and grouped according to a Z-score for the high and low 

frequencies. All samples were checked for population stratification and according to 

that, separated into a Finnish sample group and a general European group. Two 

significant associations between genotypes and phenotypes could be identified in the 

Finnish population. An association between Z high and homogeneity for the GSTT1 

polymorphism in women (p=0.035) and an association between the GSTM1 wildtype 

and Z high (p= 0.027) was determined. Analysis in the European group showed a 

significant association between Z high and NAT2*6A (for the AA genotype, p= 0.013).  

 

Van Laer et al [9] conducted an association study on 70 candidate genes for ARHI. 

2318 subjects from 9 centres across Europe were genotyped for 703 SNPs located 

across the candidate genes and regions 3000 bp upstream of these genes. The three 

top ranked SNPs in the results were located at the grainyhead like 2 (GRHL2) locus on 

chromosome 8q22.3 and were in LD with one another. Odds ratios (ORs) for the top 

SNP (rs10955255) ranked between 1.76 and 1.02 at the different centres and, 

consistent with this, the two top ranked SNPs showed ORs following the same 

direction. Fine mapping resulted in the discovery of a third significant intronic SNP 

(rs13263539, p=0.0002) in GRHL2 associated with ARHI. GRHL2 encodes a 

transcription factor expressed in cells lining the cochlear duct.  

Genome-wide association studies 

Novel DNA microarrays capture about 1 million SNPs and copy number variations. 

These SNPs have been selected as special tagging or marker SNPs, which are in 

strong LD with surrounding variants, giving maximal haplotype information according to 

the HapMap haplotype database [10]. Imputation based on these tagging SNPs and 

corresponding haplotypes can yield coverage of up to several million SNPs per subject. 

Genome-wide association studies (GWAs) test the association of these SNPs with a 

phenotype. It is assumed that significantly associated marker SNPs will be in close LD 

and/or on the same haplotype block as the causal genetic variant. GWAs studies are 

based on the common disease common variant hypothesis [11,12], which assumes 

that disease causing alleles are equally common in the population as the trait itself. 

Tagging SNPs in linkage equilibrium with the causative allele, or even the causative 

allele itself, are expected to be significantly more prevalent in individuals sharing a 

certain phenotype than in individuals of a different phenotype. This method requires no 
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hypothesis regarding diseases pathways and was designed for unrelated subjects 

rather than large pedigrees. Putative relation between participants has to be controlled 

and adjusted for [13]. 

  

To date, three GWASs of ARHI have been published. The first analysis was conducted 

as a combination of linkage study and GWAS on 1081 individuals [4]. No significant 

association signals were identified, but linkage resulted in significant linkage peaks on 

chromosome 8q [4]. 

 

The second GWAS for ARHI was performed on 846 cases and 846 controls for ARHI 

using a pooling approach [14]. A set of 23 top ranked SNPs was used for replication in 

a group including 63 cases and 67 controls. The T-allele of rs11928865 was associated 

with ARHI in the original European and the replication European samples (p=9x10-5). 

This SNP was located in the metabotropic glutamate receptor type 7 (GRM7) gene. It 

could be shown, that GluR7, the protein product of GRM7, is expressed in the sensory 

epithelium of the organ of Corti, in the hair cells of the vestibular apparatus and in the 

spiral ganglion of mice at different developmental stages. In addition, expression could 

be detected in the inner ear of a human adult, underlining the involvement of GluR7 in 

hearing ability. 

 

A third GWAS on ARHI has been performed in the Finnish Saami [15]. The high extent 

of linkage disequilibrium in this isolated population offers a powerful advantage over 

outbred populations, as fewer tagging SNPs will be required to obtain full haplotype 

information. Nevertheless, isolated populations might be distinct in their genetic and 

environmental factors, making it difficult to apply findings obtained in these groups to 

the general population. Association testing was performed in 347 subjects using three 

PCs (PC1, PC2, PC3) as quantitative phenotypic traits obtained from the pure-tone 

audiogram. One SNP (rs457717) associated with PC3 reached suggestive genome-

wide significance levels (p=3.55x10-7). The two top ranked SNPs for PC3 mapped to 

the IQ-motif containing GTPase activating like protein (IQGAP2). IQGAP2 is important 

for signalling pathway regulation and shows expression inside the cochlea [15]. It has 

also been associated with cadherins, which are involved in sensory hair cell viability 

[15]. 

 

A very recent GWAS was performed in the ARHI cohort by Fransen et al. [16]. This 

study was the first to use imputation based on data from the 1000 Genomes panel, 

resulting in <4000000 markers tested for association with PC1, PC2 and PC3 in 1489 

samples. Subjects for this analysis were recruited as a population-based sample from 
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residential areas surrounding Antwerp, Belgium. After principal component analysis 

based on pure-tone thresholds, only samples with PC values within the highest or 

lowest 20% percentiles were selected for analysis, resulting in 1489 subjects. Initial 

power calculations based on the described study design predicted 80% power to detect 

genome-wide significant associations with genetic variants explaining 2% of trait 

variance, while twice the sample size would be required to identify genes accounting 

for 1% of phenotypic variance. GWAS analysis failed to determine genome-wide 

significant associations with any of the three PC phenotypes. Furthermore, replication 

of previously reported genome-wide associations [14,15,17] were scarce. Even after 

adjustment for environmental exposure and taking into account rare genetic variants, 

no genome-wide significant associations could be determined [16]. A genome-wide 

complex trait analysis in this sample estimated that 22% of phenotypic variance could 

be explained by the collective effect of all SNPs in the sample. Fransen et al. conclude 

that ARHI is likely to be caused by multiple genetic variants each with low effect on the 

trait[16].  
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 Table 27 Summary of recent candidate gene, linkage and genome-wide association 

studies of ARHI 
study 

design 

reference phenotype n age  

[years] 

loci / gene 

[SNP] 

p-value / 

LOD 

score 

candidate 

gene 

Unal et al. 

2005 

PTT, 

 

68 cases,  

98 controls 

cases: 

61±6.46 

controls:  

60.3±3.04 

NAT2*6A  

[G590A] 

p=0.013 

Van Eyken et 

al. 2007b 

Z-scores 530  53-67  GSTT1  p=0.035 

  GSTM1 wildtype p=0.027 

2010  53-67 NAT2*6A  [AA 

genotype] 

p=0.013 

Van Laer et 

al. 2008 

Z-scores 2318  53-67 GRHL2 [rs10955255] p=8.38x 

10-5 

linkage 

analysis 

DeStefano et 

al. 2003 

PTA 328 families 

(n=1789) 

32-89 chr 11 (2,79 and 143 

cM);  

chr 10 (171 cM);  

chr 14 (126 cM); 

chr 18 (116 cM)  

LOD>1.5 

Garringer et 

al. 2006 

Self reported 

hearing loss 

160 DZ  

twin pairs 

69-82  DFNA18 [D3S1558] LOD=2.5 

Huyghe et al. 

2008 

PCs 200 sibships 

(n=955) 

49-76  8q24.13-q24.22 

[rs4512366] 

p=0.0170 

LOD 

=4.23 

GWAS Huyghe et al. 

2008 

PCs 955  49-76  - - 

Friedman et 

al. 2009 

Z-scores 846 cases 

and 846 

controls 

53-67  GRM7 [rs11928865] p=9x10-5  

 

Van Laer et 

al. 2010 

PCs 347  50-75   IQGAP2 [rs457717] p=3.55x 

10-7 

Fransen et al. 

2014 

PCs 1489 - no genome-wide 

significant 

associations found 

- 

Summary of recent candidate gene association, linkage and genome-wide association 
studies (GWAS) of ARHI. Five different phenotypes were defined: self reported hearing 
loss, pure-tone thresholds (PTT), Z-scores, pure-tone averages (PTA) or principal 
components (PCs) calculated from the audiogram. In case of Z-scores, the 34% 
extreme subjects of all samples (n) were chosen as cases and controls. Sample age is 
given as age range or mean age ± standard deviation. Significance of linkage or 
association of a specific locus or polymorphism with ARHI is given in p-values or 
logarithm of the odds (LOD) scores. 
 
Complex diseases are often caused by interplay of genetic risk genotypes and 

exposure to environmental risk factors. Several environmental risk factors have been 

proposed for ARHI, whereas suggested genetic risk loci remain to be replicated. The 

research by Fransen et al. supports a polygenic character for ARHI [16]. 
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In chapter 3, hearing ability with age showed a moderate heritability in females of the 

TwinsUK cohort. This suggests additive genetic factors involved in the pathology of this 

common trait. Accordingly, the aim of this chapter was to identify genetic variants for 

hearing ability with age in GWAs using the SRT values and PCs and PTAs calculated 

from the pure-tone audiogram data. 

 

Materials and Methods 

Genotyping 

The Wellcome Trust Sanger Institute performed genotyping, genotyping data QC and 

merge of data, as well as imputation. Genotyping of the TwinsUK dataset was done 

with a combination of Illumina arrays (HumanHap300 [18,19], HumanHap610Q, 1M-‐

Duo and 1.2MDuo 1M). The normalised intensity data was pooled [20] for each of the 

three arrays separately (with 1M-‐Duo and 1.2MDuo 1M pooled together). For each 

dataset the Illluminus calling algorithm [21] was used to assign genotypes in the pooled 

data. No calls were assigned if an individual's most likely genotype was called with less 

than a posterior probability threshold of 0.95. Validation of pooling was achieved via a 

visual inspection of 100 random, shared SNPs for overt batch effects. Finally, intensity 

cluster plots of significant SNPs were visually inspected for overdispersion biased no 

calling, and/or erroneous genotype assignment. SNPs exhibiting any of these 

characteristics were discarded. 

Genotyping data QC 

Similar exclusion criteria were applied to each of the three datasets separately. 

Samples: Exclusion criteria were: (i) sample call rate <98%, (ii) heterozygosity across 

all SNPs ≥2 s.d. from the sample mean; (iii) evidence of non-‐European ancestry as 

assessed by PCA comparison with HapMap3 populations; (iv) observed pairwise IBD 

probabilities suggestive of sample identity errors; (v). Misclassified monozygotic and 

dizygotic twins were corrected based on IBD probabilities. SNPs: Exclusion criteria 

were (i) Hardy-‐Weinberg p-‐value<10−6, assessed in a set of unrelated samples; (ii) 

MAF<1%, assessed in a set of unrelated samples; (iii) SNP call rate <97% (SNPs with 

MAF≥5%) or < 99% (for 1% ≤ MAF < 5%). Alleles of all three datasets were aligned to 

HapMap2 or HapMap3 forward strand alleles. 
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Data merge 

Prior to merging, pairwise comparison among the three datasets and further excluded 

SNPs and samples was performed to avoid spurious genotyping effects, indentified as 

follows: (i) concordance at duplicate samples <1%; (ii) concordance at duplicate SNPs 

<1%; (iii) visual inspection of QQ plots for logistic regression applied to all pairwise 

dataset comparisons; (iv) Hardy-‐Weinberg p-‐value<10−6, assessed in a set of unrelated 

samples; (v) observed pairwise IBD probabilities suggestive of sample identity errors. 

The three datasets were then merged, keeping individuals typed at the largest number 

of SNPs when an individual was typed at two different arrays. The merged dataset 

consists of 5,654 individuals (2,040 from the HumanHap300, 3,461 from the 

HumanHap610Q and 153 from the HumanHap1M and 1.M arrays) and up to 874,733 

SNPs depending on the dataset (HumanHap300: 303,940, HumanHap610Q: 553,487, 

HumanHap1M and 1.M: 874,733). 

Imputation 

Imputation was performed using the IMPUTE software package (v2) [22] using two 

reference panels, P0 (HapMap2, rel 22, combined CEU+YRI+ASN panels) and P1 

(610k+, including the combined HumanHap610k and 1M reduced to 610k SNP 

content). 

Selection of participants 

Participants for the hearing ability with age GWAs were chosen according to two 

criteria: Firstly, availability of phenotype results (pure-tone audiogram or speech-in-

noise test) and secondly availability of corresponding genotyping data. In dizygotic twin 

pairs, both siblings were included in the analysis if genotyping and phenotype data 

were available for both siblings. In case of monozygotic twin pairs, who are expected to 

share 100% of alleles, primarily one sibling had been genotyped previously, to reduce 

the number of genotyping duplicates. Which MZ twin sibling of a pair was genotyped 

had been selected previous to the start of this study and was therefore not biased by 

the selection of better or worse hearing twins. Twins whose co-twin had missing 

genotyping or phenotype data were treated as singletons. To adjust for the increased 

relatedness within complete twin pairs, a polygenic model [23] was applied as part of 

the association study, as described below. Genotyping had been performed for 1028 

and 1214 individuals with pure-tone audiogram and speech-in-noise data, respectively. 

Demographic and phenotypic characteristics of these individuals are presented in 

Table 28.  



 139 

Association analysis 

Genome-wide association analysis was performed for 5 separate traits: age-adjusted 

PTA residuals and unadjusted PTAs, age-adjusted PC1 and PC2 residuals as well as 

normalized age and gender adjusted SRT residuals. GenABEL R library was used [24] 

for the association analysis. The analysis was performed in a two step mixed model 

and regression analysis [23,25]. In the first step a mixed model was applied to the trait 

(i.e. PC1, PC2, SRT) with optional environmental covariates (i.e. age, gender) as fixed 

effects and a kinship matrix calculated from genomic data as random effect. Fitting of 

the mixed model was based on a maximum likelihood estimate and performed using 

the polygenic() function by Aulchenko and Svischeva [23,25]. Objects resulting from 

this analysis included an inverse variance-covariance matrix of estimates computed at 

the maximum likelihood estimate and trait residuals based on covariate effects. 

 

For the second step of the association analysis, the formetascore() function with option 

mmscore was chosen. This function applies a linear mixed effect regression model 

based on a score test for association, similar to the test described by Chen and 

Abecasis [26]. The score test incorporates trait residuals and allelic information for 

each SNP (coded as 0-2 according to the number of effect alleles per SNP and 

individual) as well as the inverse variance-covariance matrix of estimates. The score 

was computed for each SNP and follows an approximate chi-square distribution with 1 

degree of freedom. Genetic association analysis was performed for all autosomes. 

Markers with a minor allele frequency (MAF) <0.05, a call rate <0.95 and/or a 

significant deviation from Hardy Weinberg Equilibrium p(HWE)<10-6 were excluded 

after imputation. Manhattan and quantile-quantile plots were generated in R [27] using 

the manhattan() and QQ() functions by Stephen Turner [28].  

Gene-based association 

To determine association with hearing phenotypes on a gene rather than marker based 

level, the versatile gene-based test for GWAS (VEGAS)[29] was used. This freely 

available software (http://gump.qimr.edu.au/VEGAS/) combines the association results 

between a trait and all available markers within a gene (including 50kb of 3’ and 5’ 

untranslated regions) to calculate a combined p-value per gene. SNPs were mapped to 

17787 genes according to the UCSC genome Browser human genome 18. After 

adjustment for multiple testing, a Bonferroni corrected significance threshold of 

p<2.81x10-6 (0.05/17787) was considered genome-wide significant. 
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Functional Annotation of GWA results 

All markers from the GWA analysis with a p-value below 5x10-6 were taken forward for 

functional annotation. Position within or near a gene and function of each selected 

marker was followed up using the SNP and copy number annotation tool (SCAN) [30] 

and UCSC Genome Browser (hg18) [31,32]. Regional Manhattan plots of the most 

highly associated SNPs ± 400 kb were created using Locus Zoom [33] for all loci 

harbouring suggestive significantly associated markers. Linkage disequilibrium 

information used in the Locus Zoom plots was based on the HapMap Phase 2, CEU 

sample. Genes harbouring associated markers were followed up in the literature.  

 

All genes from the gene-based association analysis for SRT, PTA and PCs with a p-

value <10-3 were taken forward for an enrichment analysis in GeneMania [34]. 

GeneMania tests for interaction between genes and proteins and allows for enrichment 

analysis of a given gene list in various gene ontology (GO) terms. Enrichment is 

calculated in a hypergeometric test for enrichment. Significance of enrichment is 

expressed as a false discovery rate (FDR) Q-value estimated based on the Bejamini-

Hochberg procedure [35]. Genes that had been associated with several hearing 

phenotypes were only included once in the analysis, giving a gene list of 52 unique 

genes associated with at least one of four hearing phenotypes (age and gender-

adjusted SRT residuals, age-adjusted PTA, PC1 and PC2 residuals). Up to 20 related 

genes were allowed to be added by GeneMania to the list of 52 query genes based on 

previous functional annotations. The list of query (and related) genes with a specific 

GO annotation was compared to the number of all genes in the genome with the same 

annotation term. Functional enrichment analysis was limited to gene ontology 

annotation terms based on molecular function. 

GWAS validation study 

Validation of association with SRTs was sought in a separate sample with PTA data. 

Individuals for the SRT GWAS validation were selected if they had genotyping and PTA 

data available, but not been included in the SRT discovery GWAS. Age-adjusted PTA 

residuals were selected as validation phenotype, as they showed the strongest 

correlation with SRTs in chapter 4.  

Likewise, validation of association with age-adjusted PC and PTA residuals was sought 

in a sample of volunteers with speech-in-noise and genotyping data, who had not been 

part of the pure-tone audiogram discovery GWASs previously. 

Validation was sought on a marker (including all SNPs with p<5x10-5 in the respective 

discovery GWAS) and gene level (including all associated genes from the gene-based 
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analysis with p<10-3). Validation of association was defined as a nominally significant 

association (p<0.05) with the same marker or gene following the same direction of 

effect in case of the marker-based validation.  

 

Results 

Study participants 

For the GWA analysis, all volunteers with hearing data (pure-tone audiometry or 

speech-in-noise test) and available genotyping data were selected. 1028 individuals 

with pure-tone audiometry and 1214 with speech-in-noise data fulfilled these criteria. 

Participants for the PCs and PTA GWASs were all female, whereas the group selected 

for the SRT GWAS was primarily female, but also included a minority of male subjects 

(108 males and 1106 females). Age of participants at pure-tone audiogram and 

speech-in-noise test ranged between 41-86 and 20-83 years, respectively. In 

accordance with the wider age range, mean age was slightly lower for the SRT GWAS 

sample compared to the PC1 and PC2 GWAS samples (56.85±11.29 SD compared to 

61.98±8.29 SD). The characteristics of the two different study groups used in the 

discovery GWASs are summarized in Table 28. 
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Table 28 Characteristics of individuals with genotyping and hearing data 

measure of hearing ability n gender (M/F) 

 

age [years] 

range                     mean ± SD 

phenotype 

mean ± SD 

PTA 1028 0/1028 

 

41-86 61.98 

±8.29 

22.4795 

±9.8740 

PTA 

age-adjusted 

-0.0584 

±8.1381 

PC1 

age-adjusted 

-0.0747 

±1.8770 

PC2 

age-adjusted 

0.0521 

± 1.3587 

SRT 

age and gender 

adjusted 

1214 108/1106 

 

20-83 56.85 

±11.29 

3.22x10-5 

±0.0033 

Participants for the GWASs of ARHI and hearing function were recruited from two 
different datasets from TwinsUK, the pure-tone audiometry and speech-in-noise test 
data collection. Pure-tone audiometry was summarised as pure-tone averages (PTA) 
and principal components (PC1; PC2). Both cohorts are characterised by their sample 
size (n), the gender distribution (M=male; F=female), age of participants at hearing test, 
presented as age range and mean age ± standard deviation from the mean (SD). For 
each phenotype, the original values (PTA unadjusted), age-adjusted residuals (age-
adjusted PTA, PC1 and PC2) or age-and gender adjusted residuals (SRT) are 
presented as mean ± standard deviation (SD). 
 

Marker-based GWAS  

After exclusion of markers with too low minor allele frequency (MAF<0.05), deviation 

from HWE (p(HWE)<10-4) and reduced call rate (call rate<0.95), 1328646 SNPs 

(genotyped and imputed) remained for the hearing ability with age GWAS and were 

tested for association with age-adjusted PTA, PC1 and PC2 residuals as well as 

original PTA values. For each GWA study, the strongest association signals at a 

significance level below 5x10-6 (p<5x10-6) were presented, in accordance with the 

universally excepted significance threshold of p<5x10-6 for suggestive genome-wide 

significant associations [12]. 

Age-adjusted PTA 

Age-adjusted PTA residuals were significantly associated (p<5x10-6) with 2 markers on 

chromosome (chr) 14. The most significant association with age-adjusted PTA 

residuals was observed for SNP rs4898904 on chr 14 (beta±se=-0.3315±0.0709, 

p=2.90E-06). The two significantly associated markers on chr 14 were imputed. All 

SNPs associated with age-adjusted PTA residuals at a significance threshold of 

p<5x10-6 are listed in order of their significance of association in Table 29. None of the 

associated markers reached genome-wide significance levels (p<5x10-8).  
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The Manhattan plot (Figure 21) showed the significance of association with age-

adjusted PTA residuals for each marker according to its position in the genome. For the 

associated markers on chromosome 14, 3 highly associated SNPs at the same locus 

could be detected. Due to LD between nearby markers, this association peak was 

expected. The QQ plot (Figure 22) compared the distribution of observed p-values 

against significance levels expected under the null hypothesis of no association 

(expected p-value). It could be seen that for lower extremes of the p-value distribution 

(p<10-5), less significant associations than expected under the null hypothesis were 

detected.  

 

Table 29 GWAS Results for age-adjusted PTA 

SNP chr position allele1 

allele2 

MAF n beta ± SE p gene 

feature 

left gene 

right gene 

rs4898904 14 56086782 C 

T 

0.13 985 -0.33 

± 0.07 

2.90E-06 NA 

NA 

PELI2 

C14orf101 

rs4898903 14 56086588 A 

G 

0.13 991 -0.33 

± 0.07 

3.57E-06 NA 

NA 

PELI2 

C14orf101 

Two single nucleotide polymorphisms (SNPs) were significantly associated (p<5x10-6) 
with age-adjusted PTA residuals. The age-adjusted PTA GWAS results are described 
by their rs-number (SNP), the chromosome (chr) and base-pair location (position), non-
effect allele (allele1) and effect allele (allele2), minor allele frequency (MAF), the 
number of individuals with genotyping or imputation data for the respective SNP (n), 
the effect size (beta) and corresponding standard error (SE) and significance of 
association (p). Mapping information for each SNP is specified by genes at the 
respective locus (gene) and surrounding the locus (left and right gene) as well as 
feature of the SNP position within a gene (feature). All SNPs were mapped to the 
forward (+) strand.  
  



 144 

Figure 21 Manhattan plot for age-adjusted PTA GWAS  

The Manhattan plot depicts the chromosomal location of genetic markers versus their 
significance of association with age-adjusted PTA residuals. Significance of association 
is measured as the negative logarithm of the p-value. Significant associations   
(p<5x10-6) were found on chr 14. 

Figure 22 QQ-plot for age-adjusted PTA GWAS 

The quantile-quantile plot depicts the expected significance of association under the 
null hypothesis of no association versus the observed significance (p) for the age-
adjusted PTA GWAS. Significance of association is measured as the negative 
logarithm of the p-value. 
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Figure 23 Locus zooms for age-adjusted PTA GWAS results on chr 14 

The locus zoom depicts the location of genetic markers versus their significance of 
association with age-adjusted PTA values. Significance of association is measured as 
the negative logarithm of the p-value.  Genes located in the area 400kb up-and 
downstream of the reference SNP (violet diamond) are displayed below the x-axis. The 
colour of each genetic marker indicates its correlation with the reference SNP. A 
legend for the correlation colour scheme is shown in the upper left corner. 
Recombination rate is highlighted as light blue peaks. 
 

Associated markers on chr 14 mapped to a not previously annotated region near 

C14orf101. A recombination event (blue peaks in the Locus zoom) between the 

associated markers and the coding region of open reading frame C14orf101 explains 

the lack of LD between the reference SNP and neighbouring loci. 

 

PTA GWAS 

In chapter 3, an increase in heritability was observed for participants of higher age 

groups. It was thus hypothesized that age plays an important role in ARHI and that 

adjustment for age in GWAS might reduce the effect size of genetic variants under 

age-related gene expression regulation. To determine the effect of age-adjustment on 

ARHI GWAs, GWASs for both age-adjusted PTA residuals and unadjusted PTAs were 

performed.  

Unadjusted PTA values were significantly associated (p<5x10-6) with 4 markers located 

on chr 6 and 10. These most highly associated markers are listed in Table 30 in order 

of significance of association. All associated markers were located in intronic regions of 

genes. The corresponding Manhattan plot (Figure 24) shows 3 defined association 
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peaks on each chr 6, 8 and 10. Like for the GWAS of age-adjusted PTA residuals, the 

QQ plot (Figure 25) showed a negative deviation of the observed p-values from the 

expected distribution of p-values for the high significance levels. In general, 

significance levels of association did not exceed the ones observed for the age-

adjusted PTA GWAS (p=3.52x10-6 compared to 2.90x10-6 after age-adjustment) and 

the most highly associated markers did not overlap.  

 

Table 30 GWAS Results for PTA 

SNP chr position allele1 

allele2 

MAF n beta ± 

SE 

p gene 

feature 

left gene 

right gene 

rs7904722 10 131851881 C 

T 

0.38 1028 -0.22 

±0.05 

3.52E-

06 

GLRX3 

intron 

LOC387723 

TCERG1L 

rs17297984 10 131857683 T 

A 

0.37 1009 -0.22 

±0.05 

4.04E-

06 

GLRX3 

intron 

LOC387723 

TCERG1L 

rs10499151 6 129473312 C 

T 

0.11   996 -0.35 

±0.08 

4.13E-

06 

LAMA2 

intron 

MESTP1 

LOC643778 

rs4001969 10 131842055 T 

C 

0.38 1026 -0.22 

±0.05 

4.91E-

06 

GLRX3 

intron 

LOC387723 

TCERG1L 

Four single nucleotide polymorphisms (SNPs) were significantly associated (p<5x10-6) 
with PTA values. The PTA GWAS results are described by their rs-number (SNP), the 
chromosome (chr) and base-pair location (position), non-effect allele (allele1) and 
effect allele (allele2), minor allele frequency (MAF), the number of individuals with 
genotyping or imputation data for the respective SNP (n), the effect size (beta) and 
corresponding standard error (SE) and significance of association (p). Mapping 
information for each SNP is specified by genes at the respective locus (gene) and 
surrounding the locus (left and right gene) as well as feature of the SNP position within 
a gene (feature). All SNPs were mapped to the forward (+) strand.  
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Figure 24 Manhattan plot for PTA GWAS 

The Manhattan plot depicts the chromosomal location of genetic markers versus their 
significance of association with unadjusted PTAs. Significance of association is 
measured as the negative logarithm of the p-value. Significant associations (p<5x10-6) 
were found on chr 6 and 10. 
 

Figure 25 QQ-plot for PTA GWAS 

The quantile-quantile plot depicts the expected significance of association versus the 
observed significance (p) for the unadjusted PTA GWAS. Significance of association is 
measured as the negative logarithm of the p-value. 
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Figure 26 Locus zoom for PTA GWAS results on chr 6 and 10 

The locus zoom depicts the location of genetic markers versus their significance of 
association with PTA values. Significance of association is measured as the negative 
logarithm of the p-value.  Genes located in the area 400kb up-and downstream of the 
reference SNP (violet diamond) are displayed below the x-axis. The colour of each 
genetic marker indicates its correlation with the reference SNP. A legend for the 
correlation colour scheme is shown in the upper left corner. Recombination rate is 
highlighted as light blue peaks. 
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Associated markers on chr 6 were located in an intron of the Laminin Alpha 2 (LAMA2) 

gene. The locus zoom of chr 6  (Figure 26) shows that the reference SNP rs10499151 

is in high LD (R2≥0.8) with various other associated SNPs at this locus, with LD 

extending over an area of 0.1 Mb.  

 

PTA values were further associated with markers mapping to introns of the 

Glutaredoxin 3 (GLRX3) gene on chromosome 10 (Figure 26). GLRX3 encodes a 

member of the glutaredoxin family, which have the ability to reduce different substrates 

upon use of glutathione as a cofactor.  

 

PC1 GWAS 

After quality control, 4 of 1329738 total markers showed significant association with 

PC1 at a significance level of p<5x10-6. Of these, one marker had been genotyped 

(rs5748636), while the remaining three had been imputed according to HapMap Phase 

2 data. The strongest association signal was observed for rs5748636 (beta± se= 

0.266356±0.053771, p=7.29E-07). Significantly associated SNPs mapped to introns or 

intergenic regions on chr 10 and 22 and are listed in Table 31 in order of association 

strength. The Manhattan plot of PC1 GWAS results (Figure 27) shows a defined 

association peak on chr 10. The association on chr 22 appears to result from 

association with a single marker (rs5748636). According to the QQ-plot, the distribution 

of observed associations closely follows the expected distribution of p-values and only 

deviates slightly from the expected distribution for low p-values. 
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Table 31 GWAS Results for age-adjusted PC1 

SNP chr position allele1 

allele2 

MAF n beta ± SE p gene 

feature 

left gene 

right gene 

rs5748636 22 15655394 G 

A 

0.26 1028 0.27 

± 0.05 

7.29E-07 XKR3 

intron 

VWFP 

CECR8 

rs7069495 10 131950097 G 

C 

0.10 1010 -0.37 

± 0.08 

2.20E-06 NA 

NA 

GLRX3 

TCERG1L 

rs1999109 10 131948198 A 

G 

0.10 1012 -0.37 

± 0.08 

2.35E-06 NA 

NA 

GLRX3 

TCERG1L 

rs6482783 10 131950554 G 

A 

0.10 1000 -0.37 

± 0.08 

3.15E-06 NA 

NA 

GLRX3 

TCERG1L 

Four single nucleotide polymorphisms (SNPs) were significantly associated (p<5x10-6) 
with age-adjusted PC1 residuals. The age-adjusted PC1 GWAS results are described 
by their rs-number (SNP), the chromosome (chr) and base-pair location (position), non-
effect allele (allele1) and effect allele (allele2), minor allele frequency (MAF), the 
number of individuals with genotyping or imputation data for the respective SNP (n), 
the effect size (beta) and corresponding standard error (SE) and significance of 
association (p). Mapping information for each SNP is specified by genes at the 
respective locus (gene) and surrounding the locus (left and right gene) as well as 
feature of the SNP position within a gene (feature). All SNPs were mapped to the 
forward (+) strand. 
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Figure 27 Manhattan plot for age-adjusted PC1 GWAS 

The Manhattan plot depicts the chromosomal location of genetic markers versus their 
significance of association with age-adjusted PC1 residuals. Significance of association 
is measured as the negative logarithm of the p-value. Significant associations   
(p<5x10-6) were found on chromosomes 10 and 22. 

Figure 28 QQ-Plot for age-adjusted PC1 GWAS 

The quantile-quantile plot depicts the expected significance of association versus the 
observed significance (p) for the age-adjusted PC1 GWAS. Significance of association 
is measured as the negative logarithm of the p-value.  
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Figure 29 Locus zoom for age-adjusted PC1 GWAS results on chr 10 and 22 

The locus zoom depicts the location of genetic markers versus their significance of 
association with PC1 values. Significance of association is measured as the negative 
logarithm of the p-value.  Genes located in the area 400kb up-and downstream of 
rs7069495 are displayed below the x-axis. The colour of each genetic marker indicates 
its correlation with the reference SNP rs7069495. A legend for the correlation colour 
scheme is shown in the upper left corner. Recombination rate is highlighted as light 
blue peaks. 
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The most highly associated SNP was located in an intron of the XK, Kell Blood Group 

Complex Subunit-Related Family, Member 3 (XKR3) on chr 22 (Figure 29). As 

indicated by the Manhattan plot and confirmed in the locus zoom, the reference SNP 

rs5748636 maps closely to a recombination break point and is only in moderate LD 

with surrounding SNPs (Figure 29). Association for the same SNP was detected in the 

age-adjusted PTA GWAS. 

 

Further associated markers were located in non-coding regions and down-stream of 

the Glutaredoxin 3 (GLRX3) gene. The most strongly associated markers on chr 10 

map to introns of GLRX3, but are in strong LD with SNPs downstream of the GLRX3 

coding region (Figure 29). Similar association signals for GLRX3 have been observed 

in the PTA GWAS. 

 

PC2 GWAS 

Age-adjusted PC2 residuals were significantly associated (p<5x10-6) with 11 SNPs, 

which are listed according to their strength of association in Table 32. The strongest 

association of age-adjusted PC2 residuals was observed for rs4747375 (beta± 

se=0.3088± 0.0625, p=7.80E-07) on chr 10. Two significantly associated SNPs were 

genotyped and located at the same locus on chr 10. Most SNPs significantly 

associated with PC2 mapped to non-coding regions. The Manhattan plot of PC2 

GWAS results (Figure 30) showed two defined association peaks on chr 7 and 10. The 

-plot (Figure 31) shows neither deflation nor inflation in observed p-values. 
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Table 32 GWAS results for age-adjusted PC2 

SNP chr position allele1 

allele2 

MAF n beta 

± SE 

p gene 

feature 

left gene 

right gene 

rs4747375 10 19829342 T 

G 

0.18 1010 0.31 

0.06 

7.80E-07 LOC100128641 

intron 

C10orf112 

PLXDC2 

rs2358412 10 19846259 T 

C 

0.11 1013 0.35 

0.07 

2.05E-06 LOC100128641 

intron 

C10orf112 

PLXDC2 

rs10494867 10 19849680 C 

A 

0.11 1027 0.35 

0.07 

2.06E-06 LOC100128641 

intron 

C10orf112 

PLXDC2 

rs7921915 10 19851760 G 

T 

0.11 1027 0.35 

0.07 

2.06E-06 LOC100128641 

intron 

C10orf112 

PLXDC2 

rs7895790 10 19846022 G 

A 

0.11 1012 0.35 

0.07 

2.08E-06 LOC100128641 

intron 

C10orf112 

PLXDC2 

rs3864833 10 19850180 T 

C 

0.11 1024 0.35 

0.07 

2.74E-06 LOC100128641 

intron 

C10orf112 

PLXDC2 

rs7907741 10 19851717 A 

T 

0.11 1024 0.35 

0.07 

2.74E-06 LOC100128641 

intron 

C10orf112 

PLXDC2 

rs7800962 7 3512416 G 

A 

0.31 983 0.24 

0.05 

3.01E-06 SDK1 

intron 

LOC100129603 

LOC730351 

rs3852468 10 19840498 T 

C 

0.11 1004 0.35 

0.08 

3.28E-06 LOC100128641 

intron 

C10orf112 

PLXDC2 

rs6462121 7 3513830 G 

C 

0.31 996 0.24 

0.05 

4.27E-06 SDK1 

intron 

LOC100129603 

LOC730351 

rs1412779 10 19838319 T 

G 

0.11 1003 0.34 

0.08 

4.78E-06 LOC100128641 

intron 

C10orf112 

PLXDC2 

Eleven single nucleotide polymorphisms (SNPs) were significantly associated   
(p<5x10-6) with age-adjusted PC2 residuals. The age-adjusted PC2 GWAS results are 
described by their rs-number (SNP), the chromosome (chr) and base-pair location 
(position), non-effect allele (allele1) and effect allele (allele2), minor allele frequency 
(MAF), the number of individuals with genotyping or imputation data for the respective 
SNP (n), the effect size (beta) and corresponding standard error (SE) and significance 
of association (p). Mapping information for each SNP is specified by genes at the 
respective locus (gene) and surrounding the locus (left and right gene) as well as 
feature of the SNP position within a gene (feature). All SNPs were mapped to the 
forward (+) strand. 
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Figure 30 Manhattan plot for age-adjusted PC2 GWAS 

The Manhattan plot depicts the chromosomal location of genetic markers versus their 
significance of association with age-adjusted PC2 residuals. Significance of association 
is measured as the negative logarithm of the p-value. Significant associations   
(p<5x10-6) were found on chromosomes 7 and 10. 
 

Figure 31 QQ-Plot for age-adjusted PC2 

The quantile-quantile plot depicts the expected significance of association versus the 
observed significance (p) for the age-adjusted PC2 GWAS. Significance of association 
is measured as the negative logarithm of the p-value. 
  



 156 

Figure 32 Locus zoom for PC2 GWAS results on chr 7 and 10 

The locus zoom depicts the location of genetic markers versus their significance of 
association with PC2 values. Significance of association is measured as the negative 
logarithm of the p-value.  Genes located in the area 400kb up-and downstream of the 
reference SNP (violet diamond) are displayed below the x-axis. The colour of each 
genetic marker indicates its correlation with the reference SNP. A legend for the 
correlation colour scheme is shown in the upper left corner. Recombination rate is 
highlighted as light blue peaks. 
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Significant associations on chr 7 (Figure 32) mapped to introns of Sidekick Cell 

Adhesion Molecule 1 (SDK1) gene. The reference SNP rs7800962 was in strong LD 

with surrounding SNPs located in introns of SDK1. 

 

Associated markers on chr 10 (Figure 32) mapped to the LOC100128641 locus 

upstream of the Plexin Domain Containing 2 (PLXDC2) gene. The reference SNP 

rs4747375 was in moderate LD with surrounding genetic markers.  

SRT GWAS 

After quality control, 1344384 SNPs were tested for association with age and gender 

adjusted SRT residuals. Four genetic markers showed significant (p<5x10-6) 

associations. These markers mapped to four different chromosomes and three of them 

were genotyped. The Manhattan plot (Figure 33) shows one defined association peak 

on chr 13 and associations with single markers on chr 1, 2 and 14. The QQ-plot (Figure 

34) showed a slight deflation for highly significant associations. 

 

Table 33 GWAS results for age-and gender adjusted SRT 

SNP chr position allele1 

allele2 

MAF n beta ± SE p gene 

feature 

left gene 

right gene 

rs28433318 2 21791 G 

A 

0.07 1193 -0.37 

0.08 

2.55E-06 NA 

NA 

NA 

FAM110C 

rs9557794 13 101498211 T 

G 

0.35 1170 0.20 

0.04 

3.67E-06 FGF14 

intron 

LOC100126007 

LOC100130168 

rs2290501 1 22047013 T 

G 

0.33 1214 -0.20 

0.04 

3.74E-06 HSPG2 

intron 

LDLRAD2 

LOC440575 

rs13379210 14 66990924 T 

C 

0.22 1192 0.23 

0.05 

4.84E-06 NA 

NA 

PLEK2 

C14orf83 

Four single nucleotide polymorphisms (SNPs) were significantly associated (p<5x10-6) 
with age and gender-adjusted SRT residuals. The SRT GWAS results are described by 
their rs-number (SNP), the chromosome (chr) and base-pair location (position), non-
effect allele (allele1) and effect allele (allele2), minor allele frequency (MAF), the 
number of individuals with genotyping or imputation data for the respective SNP (n), 
the effect size (beta) and corresponding standard error (SE) and significance of 
association (p). Mapping information for each SNP is specified by genes at the 
respective locus (gene) and surrounding the locus (left and right gene) as well as 
feature of the SNP position within a gene (feature). All SNPs were mapped to the 
forward (+) strand.  
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Figure 33 Manhattan plot for age and gender-adjusted SRT GWAS 

The Manhattan plot depicts the chromosomal location of genetic markers versus their 
significance of association with age and gender-adjusted SRT residuals. Significance 
of association was measured as the negative logarithm of the p-value. Significant 
associations (p<5x10-6) were found on chromosomes 1, 2, 13 and 14. 
 

Figure 34 QQ-Plot for age- and gender adjusted SRT GWAS 

The quantile-quantile plot depicts the expected significance of association versus the 
observed significance (p) for the age and gender-adjusted SRT GWAS. Significance of 
association is measured as the negative logarithm of the p-value. 
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Figure 35 Locus zoom for age-and gender adjusted SRT GWAS results on chr 1 and 2  

The locus zoom depicts the location of genetic markers versus their significance of 
association with SRT values. Significance of association is measured as the negative 
logarithm of the p-value.  Genes located in the area 400kb up-and downstream of the 
reference SNP (violet diamond) are displayed below the x-axis. The colour of each 
genetic marker indicates its correlation with the reference SNP. A legend for the 
correlation colour scheme is shown in the upper left corner. There was no LD 
information available for the reference SNP on chr 2. Recombination rate is highlighted 
as light blue peaks. 
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Figure 36 Locus zoom for age- and gender adjusted SRT GWAS on chr 13 and 14 

The locus zoom depicts the location of genetic markers versus their significance of 
association with SRT values. Significance of association is measured as the negative 
logarithm of the p-value. Genes located in the area 400kb up-and downstream of the 
reference SNP (violet diamond) are displayed below the x-axis. The colour of each 
genetic marker indicates its correlation with the reference SNP. A legend for the 
correlation colour scheme is shown in the upper left corner. Recombination rate is 
highlighted as light blue peaks.  
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SNP rs2290501 associated with SRT residuals on chr 1 mapped to an intron of the 

HSPG2 gene (Figure 35). This SNP was in strong LD with 3 further SNPs included in 

the association study located in close proximity. 

 

The most highly associated SNP (p=2.5x10-6) was located at the beginning of the pter 

arm of chromosome 2 (Figure 35). No gene has been mapped to the exact location of 

this SNP and LD information for the reference SNP (rs28433318) was not available in 

the HapMap Phase 2 CEU dataset. However, rs28433318 was located in proximity of 

the Family with sequence similarity 110, member C gene (FAM110C).  

 

In addition, alleles associated with SRT values were located in the Fibroblast growth 

factor 14 gene on chromosome 13 (Figure 36). The reference SNP rs9557794 and 

markers in strong LD with this SNP were all located in intron 1 of the FGF14 gene.  

 

Hearing ability as measured by SRT was also associated with markers on chromosome 

14 (Figure 36), upstream of the Plekstrin 2 (PLEK2) gene.  

Gene-based association of ARHI and hearing function 

Genes associated with ARHI or hearing function in the gene-based analysis did not 

reach genome-wide significance levels (p<2.81x10-6), however, all associated genes 

with a suggestive genome-wide significant association (p<10-3) are listed in appendix 

chapter 5, Table 43. 

In total, 32 genes were associated with hearing ability as measured by pure-tone 

audiometry (p<10-3), while 22 genes showed significant associations with hearing 

function according to speech-in-noise reception. Some genes were associated with 

different hearing phenotypes (i.e. GLRX3 and MYO1E). 

The most highly associated genes (p<10-4) included FAM110C, GLRX3 and 

Dehydrogenase/Reductase Member 7C (DHRS7C).  

Functional gene enrichment analysis 

All genes associated with age and gender adjusted SRT residuals and age-adjusted 

PC and PTA residuals in the gene-based analysis were used in a functional enrichment 

analysis in GeneMANIA [34]. The resulting enrichment categories and significance of 

enrichment are presented in Table 34. 

Most significant enrichment was seen for ephrin receptor gene ontologies. Four to 6 

genes in the submitted gene list from the gene-based association results mapped to 



 162 

these gene ontologies, with FDR Q-values for enrichment ranging from 1.83x10-7 to 

1.04x10-3. Further gene ontologies enriched in the gene-based association results 

included cell-cell interaction terms and gene silencing ontologies.  

Table 34 Results of the functional annotation of genes associated with hearing ability in 

GeneMania 

Gene ontology term FDR Genes in 

query list 

Genes in 

genome 

ephrin receptor binding 1.83E-07 6 15 

ephrin receptor signaling pathway 2.40E-06 6 24 

ephrin receptor activity 1.04E-03 4 14 

cell-substrate adhesion 2.72E-02 6 122 

cell-matrix adhesion 8.05E-02 5 91 

transmembrane receptor protein tyrosine kinase activity 1.08E-01 4 50 

gene silencing by miRNA 2.19E-01 3 23 

transmembrane receptor protein kinase activity 2.23E-01 4 67 

posttranscriptional gene silencing by RNA 2.23E-01 3 26 

posttranscriptional gene silencing 2.23E-01 3 26 

Results of the functional gene enrichment analysis in GeneMANIA are presented by 
the different annotation terms (Gene ontology term). For each annotation term the false 
discovery rate Q-value (FDR) of enrichment, the number of genes involved in this term 
(genes in query list) and the number of genes in the genome associated with the 
corresponding annotation term are listed. 

Validation of GWAS associations 

670 volunteers with age-adjusted PTA residuals and 856 participants with SRT 

residuals were selected for the validation study. Both validation samples are described 

in more detail in Table 35.  

 

Table 35 Characteristics of the validation sample 

phenotype n gender (M/F) 

  

age [years] 

range         mean ±SD 

phenotype 

mean ±SD 

age-adjusted PTA 670 0/670 

 

41-86 62.78    

±8.47 

0.3839 

±8.2188 

age-and gender adjusted SRT 856 108/748 

 

20-83 55.37    

±12.17 

-0.0001 

±0.0032 

The validation sample was created from all participants with pure-tone audiogram or 
SRT data, who had been genotyped and not been included in the discovery GWAS of 
hearing function (age and gender-adjusted SRT) or ARHI (age-adjusted PTA, PC1 or 
PC2). Selected samples with PTA data were used for validation of the hearing function 
GWAS, while the validation samples for the ARHI GWAS included exclusively 
volunteers with SRT data.  Both replication groups are characterised by their sample 
size, gender distribution (M=male; F=female), age at the respective hearing test and 
the age or age and gender-adjusted trait residuals. Phenotype residuals are presented 
as mean ± standard deviation from the mean (SD).   
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On a gene-based level, validation of association was observed for three genes that 

were associated with hearing ability as measured by pure-tone audiometry (age-

adjusted PC and PTA residuals): Pannexin 1 (PANX1), Lysosomal Trafficking 

Regulator (LYST) and Wingless-Type MMTV Integration Site Family, Member 16 

(WNT16) (Table 43).  

 

Discussion 

ARHI is a complex trait with no previously identified significant genome-wide significant 

associations [4,9,15,17] and only few suggestive significant genetic associations 

reliably replicated [14] despite moderate heritability estimates [36,37,38,39]. Here, the 

first GWASs of hearing ability with age in a purely female northern European cohort 

were described using PCs and the PTA calculated from pure-tone audiograms and 

SRTs from a speech-in-noise reception test in a mainly female cohort of wider age 

range (20-83 years). Despite moderate heritability estimates for hearing ability with age 

in TwinsUK, genome-wide significance levels could not be reached in this analysis, 

highlighting the problem of “missing heritability” [5].  

 

Despite the lack of genome-wide significant associations, many suggestive significant 

associations were determined, including associations with genetic markers in genes 

LAMA2, GLRX3, SDK1, HSPG2, FGF14 and XKR3. Laminin 2, associated with PTA 

values, is an important component of the basilar membrane. Mutations of LAMA2 in 

humans are the cause of merosin-deficient muscular dystrophy. A laminin deficient 

mouse model of merosin-deficient muscular dystrophy showed increased auditory 

thresholds consistent with destruction of various cochlear structures [40]. SDK1, 

associated with PC2 residuals, has first been discovered in chick retinal ganglion cells 

[41] and is thought to be important for synapse formation via cell adhesion between the 

pre- and postsynaptic cells [42]. HSPG2, a gene associated with SRT residuals, 

encodes a heparan sulfate proteoglycan expressed in various mesenchymal tissues, 

including cartilage and basements membranes. HSPG2 null mouse mutants show 

poorly developed inner and middle ear structures, indicating the importance of this 

gene and its protein product for ear development [43]. 

 

Although many highly associated markers mapped to genes previously linked to 

hearing disorders, the reduced significance threshold (p<5x10-6) accepted here raised 

the risk of false positive associations. To limit this risk, a gene-based association 

analysis, which summarises association signals for genetic markers clustering at the 



 164 

same gene or locus was applied. Accordingly, association signals for genes harbouring 

several moderate to highly associated markers were supported, whereas association 

signals for loci with single strongly associated markers were diluted. True positive 

associations with underlying causal variants often result in several neighbouring SNPs 

showing association with a trait due to underlying LD at the respective locus. The 

choice of this method is further supported by the fact that individuals affected by ARHI 

might show associations with different causal variants within the same gene, but not 

necessarily with the same marker. This method thereby might filter out likely false 

positive associations. 

 

The resulting list of significantly associated (p<10-3) genes comprised 52 unique genes 

including FAM110C, GLRX3 and DHRS7C. Associations with markers in FAM110C 

and GLRX3 had been highlighted in the marker-based analyses (association with SRT 

residuals and age-adjusted PTA and PC1 residuals, respectively) whereas the 

association with DHRS7C resulted primarily from the gene-based analysis. The 

FAM110C protein product has recently been involved in cell migration and filopodia 

formation [44] whereas mutations in glutaredoxin domains, similar to the ones found in 

GLRX3, have been associated with non-syndromic HL in humans [45] and inner ear 

dysfunction in the pirouette mouse [46]. DHRS7C is a short chain dehydrogenase 

reductase, which has been linked to heart failure. Dhrsc7 was significantly down-

regulated under conditions of heart failure [47]. 

 

To functionally annotate genes from the gene-based analysis and thereby better 

understand underlying pathways, a gene enrichment analysis was performed. In this 

analysis, genes clustered in gene ontology categories for ephrin receptors, cell-cell 

interactions and gene silencing. Ephrin receptors (EFNA1, EFNA3 and EFNA4) were 

associated with PC2 residuals in the gene-based analysis. Ephrins and ephrin-

receptors were shown to play an essential role in afferent type 1 and type 2 spiral 

ganglion neuron synapse formation with inner and outer hair cells [48]. Cell-cell 

interaction in the cochlea is indispensable to create a tight seperation between the 

different chambers of the cochlea and maintain functionality of the sensory hair cells 

and stria vascularis. Furthermore, regulation of hearing ability by miRNA [49,50] has 

been reported previously and reviews suggest other epigenetic regulation involved in 

hearing and deafness disorders [51]. Specifically the enrichment of ephrin receptors 

and gene silencing ontologies in the gene-based association analysis of hearing ability 

might highlight new pathways involved in ARHI. 
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Replication of association with the same trait in an independent sample is considered a 

strong indication for true positive findings. This analysis was able to replicate genome-

wide association with genes previously associated with hearing function. FGF14, 

CSMD1 and ARSG have previously been reported in a GWAS meta-analysis of 

hearing function performed in samples of the G-EAR cohort [17,52]. As part of this 

work, Arsg and Csmd1 were reported to show striking expression in sensory cells of 

mouse cochlea [52,53], supporting a function of the respective proteins in the inner ear. 

 

To further validate our findings, association signals found in the pure-tone audiogram 

dataset were validated in independent subjects of the speech-in noise test sample and 

vice versa. On a gene-based level, PANX1, LYST and WNT16 were found associated 

with ARHI in the pure-tone audiogram and this association validated in the speech-in-

noise test sample. None of these genes had been linked to hearing ability with age 

previously, however, PANX1 is a gap-junction protein known to be expressed in the 

cochlea and spiral ganglion neurons [54]. LYST encodes a lysosomal protein trafficking 

regulator. Lyst knockout mice show lysosomal dysfunction and abnormal 

melanogenesis. WNT16 has not yet been linked to hearing, however Wnt4, another 

member of the WNT family was essential for recovery of hair cells in the avian inner 

ear [55]. 

 

The problem of missing heritability [5] has been described for many common complex 

traits like diabetes and height. Experts have suggested a range of solutions to tackle 

this problem, including the use of more precise phenotypes to reduce heterogeneity, 

inclusion of rare genetic markers (MAF<1%) and structural genetic variants as well as 

study of more genetically diverse populations and larger sample sizes [5]. Many of 

these suggestions have been incorporated in these and previous GWASs of ARHI, 

including the use of isolated populations [17], selection of individuals with extreme 

phenotypes [14] and application of advanced phenotyping methods like principal 

component analysis. A limitation shared by all GWASs of hearing traits is the low to 

moderate sample size. Genome-wide association studies are based on the common 

disease-common variant hypothesis, which states that traits with a high prevalence in a 

population should be caused by genetic makers equally frequent in the population 

[56,57,58]. It has been argued though that genetic variants with a large effect on a trait 

could impact reproductive fitness and therefore be selected against by natural 

selection. This selection process would result in rare variants with high effect sizes and 

more common variants with moderate to low influence on the phenotype [58]. Due to 

the late age of onset and slow progression of ARHI [59], reduced reproductive fitness 
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and thus negative selection against ARHI is not to be expected. GWASs test for an 

association of common genetic variants (MAF≥0.05) with a selected phenotype. 

Significantly associated marker variants are expected to be in high LD with the causal 

underlying variant. However, common tagging SNP used in GWAS are only in weak LD 

with rare causal variants. Whole genome sequencing or exome sequencing would be 

required to test for associations between ARHI and rare variants. Without these 

datasets it is currently too early to comment on putative allele frequency distributions of 

causal variants in ARHI. Also, recent genetic studies on ARHI and hearing function 

suggest many more genes than originally suspected to be involved in hearing ability 

[1,6,8,14,17,60]. The multitude of genes involved will most likely result in low to 

moderate effect sizes for single variants, which could only be identified in samples 

much larger than the ones currently used in hearing research.  

 

Despite all the strengths of this study, there were limitations that were beyond the 

scope of this project. Although a reasonable sample size was collected both for the 

ARHI (n=1028) and hearing function (n=1214) GWASs, the number of subjects did not 

give sufficient power to detect genome-wide significant associations. Furthermore, 

hearing ability for the TwinsUK sample was slightly better than expected from other 

epidemiological studies of similar age-range. A higher proportion of individuals with 

more extreme HL might have increased the effect size and therefore the chance to 

determine more significant genetic associations.  Although many of the genes 

associated with hearing ability here were linked to hearing and deafness phenotypes, 

further research on these genes in model organisms would be desirable. The follow up 

of gene expression in the mouse cochlea reported by Girotto et al [52] seems a 

suitable method to verify putative function of associated genes in the inner ear. Lastly, 

participants used here were not unrelated as assumed for GWAS, still, previous 

associations studies in related individuals have proven the success and strength of this 

study design [26]. 

 

In conclusion, this study identified various associations of suggestive genome-wide 

significance. A gene-based association study as well as gene-enrichment analysis 

helped to verify findings from the discovery GWASs and thereby reduce the risk of 

false positive associations. It was concluded that ARHI and hearing function are likely 

to be determined by a multitude of common genetic variants with each showing low 

effects on the trait, like suggested previously [16]. To identify these common low effect 

variants larger sample sizes would be required, which can be achieved by combining 

data from different hearing and ARHI cohorts. Moreover, results from the gene 

enrichment analysis indicated that epigenetic processes might be involved in ARHI.  
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Chapter 6: A GWAS meta-analysis discovers salt inducible 
kinase 3 as a new candidate gene for hearing function  

Abstract 

Hearing function and ARHI are known to be heritable, still genome-wide significant 

associations with these complex traits are rare, probably due to moderate sample sizes 

and corresponding lack of statistical power. 

 

In this chapter, Genome-wide association study results from 8 different samples 

conducted by the G-EAR consortium and TwinsUK were combined in a meta-analysis 

of hearing function. Hearing function, measured by pure-tone audiometry, was 

assessed in 7 population samples of European ancestry (n=4591) and one sample 

from the Silk Road (n=348). Results from the pure-tone audiogram were summarised in 

2 principal components adjusted for age and gender of participants. Genetic 

association studies were performed separately for each population, based on an 

additive genetic model adjusted for relatedness of subjects. Results from the studies 

were combined in a meta-analysis based on the direction of effect and significance of 

association weighted by sample size per population. 

 

A single nucleotide polymorphism in intron 6 of the salt-inducible kinase 3 gene was 

genome-wide significantly associated (p=3.69x10-8, Z-score=-5.505) with principal 

component 2, representing the slope of the audiogram. Immunohistochemistry of Sik3 

in mouse cochlea revealed a striking expression profile of this protein in haircells, the 

spiral ganglion, stria vascularis and Reissner’s membrane at different points in 

development. These results suggest a role of Sik3 in development of hearing ability 

and maintenance of the same throughout adulthood.  

 

Introduction 

As addressed in chapter 5, most GWAS of hearing phenotypes (i.e. hearing function or 

ARHI) lack sufficient sample sizes to reach statistical power to detect common variants 

with low effects on the trait under study. Genome-wide association studies (GWASs) of 

other common complex traits like height [1] or body mass index [2] have shown sample 

size to be positively correlated with the number of genome-wide significant 

associations [3]. The low sample sizes currently used in hearing traits are mainly 
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influenced by the high effort, specialised equipment, training and time required to 

collect pure-tone audiogram data. An alternative to separately collecting a large sample 

size for GWA is to combine the data from existing GWASs on the same trait in a meta-

analysis. 

 

The first GWAS meta-analysis of hearing function was conducted by the G-EAR 

consortium [4]. In this analysis the GWAS results from six isolated populations 

(n=3417, age range: 18-98 years, ~60% females) were combined in a meta-analysis. 

The meta-analysis was based on the significance of association and direction of effect 

(beta) and weighted by the sample size of the respective populations. The broad age 

range of this study made it difficult to refer to the phenotype as ARHI and was therefore 

described as adult hearing function. The use of isolated populations in this study 

increased the power to detect associations due to decreased genetic heterogeneity 

within the single populations. Hearing ability was measured in a standard pure-tone 

audiogram and summarized as pure-tone averages (over low, medium and high 

frequency ranges), pure-tone thresholds (250 Hz-8 kHz) and principal components 

(PC1-3). Several suggestive genome-wide associations (p<10-7) were detected for 

genes including doublecortin-like kinase 1 (DCLK1), receptor-type tyrosine-protein 

phosphatase delta (PTPRD), metabotropic glutamate receptor type 8 (GRM8) and c-

Maf inducing protein (CMIP)[4]. Associated genes with a p-value below 10-4 from all 

tested pure-tone audiogram phenotypes used were taken forward for a pathway 

analysis to detect shared pathways between candidate genes. 

 

This study gives proof that higher sample sizes for studies of hearing traits can be 

reached under collaborative effort. Despite the lack of genome-wide significant 

associations, the increase in combined sample size resulted in several suggestive 

significant associations. Furthermore, combining GWA data from different cohorts 

allowed adjustment of individual biases applying to different cohorts (i.e. using different 

quality control thresholds), which would have been impossible if all samples had been 

pooled in one large GWAS of hearing function. However, the standards for phenotype 

collection have to be equal across all combined studies to prevent false positive 

associations.  

Probably due to the lack of genome-wide significant associations, only few association 

signals for GWASs on ARHI or hearing function had previously been taken forward for 

functional analysis. Most studies limited their gene follow-up to literature search or 

pathway analyses of associated genes, but rarely investigated putative functions of 

genes in the cochlea in vivo. Expression data from the inner ear is scarce and rarely 

included in common expression databases. This gap of knowledge might be explained 
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by the low accessibility of human inner ear tissue pre mortem. Nevertheless, mouse 

models have been successfully applied to study human hearing disorders [5,6]. Mice 

serve as a perfect model organism for human hearing due to the high similarity in 

anatomy and physiology between murine and human inner ears. The temporal and 

spatial expression profile of candidate genes in the mouse cochlea can give essential 

information on the function and pathways a gene product might be involved in [5,6]. 

The G-EAR consortium has recently given a good example of how to follow up 

expression of genes identified in genome-wide association studies in mouse models 

[7]. 

 

Here we present the first genome-wide significant (p<5x10-8) association with principal 

component (PC) 2, measuring the slope of the audiogram, determined in a GWAS 

meta-analysis of hearing function. The association signal (rs681524, p=3.69x10-8, Z-

score=-5.505) mapped to an intron of salt-inducible kinase 3. Immunohistochemistry of 

Sik3 in mouse cochlea revealed a striking expression of Sik3 in the inner ear at 

different developmental stages, supporting this gene as a novel candidate for hearing 

function. 

 

Materials and Methods 

Subjects  

Subjects were recruited from two cohorts, the G-EAR consortium and TwinsUK. 

Samples from the G-EAR consortium originated from isolated communities throughout 

Italy (Carlantino, Cilento, Friuli Guilia and Talana), Croatia (Korcula and Split) and the 

Silk Road, while TwinsUK samples were recruited to study ageing traits in adult female 

twins residing in the United Kingdom. Samples from the G-EAR cohort and TwinsUK 

have been described elsewhere [4,8,9,10]. 

 

All individuals completed a hearing test and gave blood or saliva samples for DNA 

extraction. Volunteers were screened for a family history of hearing loss or previous ear 

diseases, which might cause conductive HL, by the mean of questionnaires. Subjects 

reporting either predisposition were excluded from further analysis. All research was 

conducted according to the ethical standards as defined by the Helsinki declaration.  

Studies were approved by the National Research Ethics service London-Westminster 

(REC reference number: 07/H0802/84), the Institutional Review Board of IRCCS-Burlo 
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Garofolo, Trieste, Italy and other involved members. Fully informed written consent was 

obtained from all participants prior to study conduction. 

Phenotypes 

All individuals participated in a standard pure-tone audiogram conducted according to 

local standards (i.e.[11]). Pure-tone thresholds [dB HL] measured for frequencies 250 

Hz, 500 Hz, 1 kHz, 2 kHz, 4 kHz and 8 kHz were summarized in a principal component 

analysis. Principal components (PCs) 1 and 2 represented the overall threshold shift 

and slope of the audiogram, respectively, as described previously [12]. PC loadings for 

PC1 and PC2 were compared for direction between study groups and adjusted for age 

and gender in a linear regression and residuals taken. The resulting PC residuals were 

rank-transformed to normality separately for each sample. In case of PC loadings 

indicating a reverse direction for PC1 or PC2 in single populations, the direction was 

corrected by taking the reverse effect (beta) from the GWAS for meta-analysis, if 

necessary. 

Genotyping and imputation 

DNA extracted from individual samples was genotyped and imputed separately for 

each sample. Genotyping and Imputation for TwinsUK samples has been covered in 

detail in chapter 5. Subjects from the G-EAR cohort were genotyped using either the 

Illumina 370k or Affymetrix 500k array. Genotypes were called applying the appropriate 

software. Imputation was performed based on the HapMap Phase 2 CEU sample using 

Impute version 2 [13](TwinsUK) or the Markov Chain based haplotyper (MaCH 1.0)(G-

EAR consortium)[14]. Single nucleotide polymorphisms (SNPs) with an imputation 

quality score below 0.4 (info in Impute vs 2) or 0.3 (Rsq in MaCH 1.0), respectively, 

were excluded for GWAS. Information on the genotyping platforms, imputation program 

and pre-imputation quality control thresholds used for each population are listed in 

supplementary Table 44. 

Genome-wide association studies 

Genome-wide association studies were performed separately for each community 

using R GenAbel [15] or ProbAbel [16] library. GWA was based on a linear mixed effect 

model assuming an additive genetic model and adjusting for putative relatedness of 

subjects [17,18,19], using the GRAMMAR option [18,19] available for mmScore. The 

exact method has been described in detail in chapter 5. 
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Meta-analysis in METAL 

GWAS results for each population were combined in a meta-analysis of GWAS using 

METAL meta-analysis software [20]. The sample size scheme was chosen, in which 

GWAS results per SNP are combined by p-value and direction of effect weighted by 

the sample size of each population. This is particularly useful for meta-analysis of 

samples with large differences in sample size. In short, Z-scores were calculated for 

each GWAS sample per SNP based on the significance of association (p-value) and 

direction of effect (direction of beta). Z-scores per population were then combined to 

form an overall Z-score per SNP weighted by sample size of each population with 

GWAS results available for the respective SNP. Combined Z-scores can be both 

positive and negative, with higher absolute values indicating higher significance of 

association. The direction of the Z-score indicates whether the effect allele increases 

(Z-score >0) or decreases (Z-score<0) phenotypic measures [20]. SNPs with a minor 

allele frequency ≤0.01, a call rate ≤0.90 and/or significance of deviation from Hardy 

Weinberg equilibrium p(HWE) ≤10-6 were excluded from the meta-analysis. 

Follow up of genome-wide significant association signals 

Genome-wide significant association signals resulting from the GWAs meta-analysis 

were followed up in more detail using forest plots. The forest plot depicts the beta and 

corresponding 95% confidence interval per population studied in comparison to the 

combined beta. The total beta was calculated as the average of all betas per 

population weighted by the sample size of each population. This plot shows whether all 

populations show the same direction of effect for the respective generic marker and 

thereby helps to evaluate the validity and heterogeneity of the respective association. 

The percentage of total variation at rs681524 due to heterogeneity was calculated in 

form of I2 [21]. Furthermore, genotyping cluster plots available for the TwinsUK sample 

were investigated for clarity of genotype separation and to support validity of our 

findings (Figure 51).  

A regional LocusZoom [22] was generated to assess location of associated SNPs and 

correlation with nearby markers. Linkage disequilibrium (LD) surrounding (±500kb) 

genome-wide significant findings (p≤5x10-8) were further investigated using the 1000 

Genomes pilot 1, CEU population dataset (n=1092) [23] as extracted from the SNP 

Annotation and Proxy Search tool [24]. In addition, whole genome sequencing data for 

TwinsUK samples (n=2000) was available as part of the UK10K study. This data was 

used to newly impute the original genotyping data in n=5654 subjects from TwinsUK. 

The newly imputed TwinsUK sample was used to calculate LD structure in PLINK [25] 

investigating 400 neighbouring SNPs located in a 1 Mb window surrounding rs681524. 
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Imputation accuracy was measured as genotype concordance between imputed 

genotypes (used in the GWAS and meta-analysis) and newly available whole genome 

sequencing data at rs681524 in 2 subsamples from Carlantino (n=93) and Friuli 

Venezia Giulia (n=222). In addition, GWAS genotyping results from TwinsUK samples 

were compared with newly collected whole-genome sequencing data from the UK10K 

project (n=2000) at rs681524. 

 

Furthermore, association between rs681524 and PC2 was validated in 503 females 

from the UK10K TwinsUK whole genotyping dataset with available hearing data 

applying a linear regression model (adjusted for age and twin relatedness). 

Analysis of genome-wide significant associations by age groups 

The effect of genome-wide significantly associated SNPs on hearing was analysed 

stratified by three age groups (>40 years, 40-60 years and >60 years) in all samples 

separately. These association analyses were conducted adjusted for relatedness 

between subjects, as described above. PC values used in this analysis were not 

adjusted for age of subjects and mean effect calculated for all samples per age group. 

Immuno-histochemistry in mouse models 

Expression analysis in mouse models was performed in collaboration with and under 

supervision of Professor Karen P. Steel and Dr. Annalisa Buniello. Facilities, 

equipment, mice and reagents were kindly provided by Professor Karen P. Steel. 

Wildtype C57Bl/6 mice homozygous for a spontaneous albino mutation were sacrificed 

at three different steps of development, the day of birth (P0), postnatal day 5 (P5) and 

at the age of 4 weeks (4w). Mouse heads were fixed in 10% formalin at   4ºC for 48 

hours, followed by two washing steps of 30 min in phosphate buffered saline (PBS). 

For decalcification, 4w old specimens were kept in 10% ethylenediaminetetraacetic 

acid in PBS for 2.5 days at 4ºC. Following the decalcification, tissues were washed in 

PBS (2x 30 minutes at room temperature) and saline (2x2 hours at 4ºC). To dehydrate 

the samples, a dehydration chain of increasing ethanol concentration was used at 4ºC. 

Tissues were embedded overnight and mounted in paraffin wax the following morning. 

Serial 8 µm sections were mounted on glass slides and dried at 40ºC overnight. 

Immunohistochemistry was performed by the Ventana Discovery system (Ventana 

Medical Systems, Inc Illkirch, France) according to the manufacturer’s instructions. 
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For each age, between 3 and 6 mice and multiple sections per animal were analysed 

and observations only reported if all samples showed similar labelling patterns. Two 

separate Sik3 antibodies were used and control sections were prepared omitting the 

primary antibody. 

Antibodies 

The following primary antibodies were used for immunohistochemistry experiments: 

primary Anti-SIK3 antibody (ab110987, Abcam, Cambridge, United Kingdom and as a 

control: LS-c120369 SIK3 Lifespan Bioscience, Seattle, USA) at 1:50 (P0, P5) or 1:40 

(4w) concentration; anti-peripherin antibody (ab4666, Abcam, Cambridge, United 

Kingdom) at a 1:100 concentration; anti-TUJ1 antibody (Covance, New Jersey, US) at 

a 1:100 concentration; anti-GFAP antibody (ab53554, Abcam, Cambridge, United 

Kingdom) at a 1:50 concentration. The secondary antibody, biotin conjugated donkey 

anti-rabbit (711-065-152), was purchased from Jackson ImmunoResearch (West 

Grove, PA, USA). Images of the antibody stained sections were taken using a Zeiss 

Axioskop MOT light microscope. Image processing was performed in Adobe 

Photoshop CS5. 

Confocal microscopy 

Confocal Microscopy was kindly performed by Beatriz Lorente-Canovas with facilities, 

reagents, mice and equipment provided by Professor Karen P. Steel. Heads from 5 

days old mice (P5) were bisected and inner ears plus bone were removed from the 

skull and then fixed in 4% paraformaldehyde for 2 hours at room temperature. 

Subsequently specimens were fine dissected in PBS, then washed and permeabilized 

in 1% PBS/Triton-X-100 (PBT) and blocked with 10% sheep serum. Then, they were 

incubated with the primary antibody, rabbit polyclonal against Sik3 (ab110987, Abcam, 

Cambridge, United Kingdom, dilution 1:200) overnight at 4°C. After washes with PBT, 

samples were incubated with anti-rabbit Alexa Fluor 488 secondary antibody 

(Invitrogen, anti-rabbit, diluted 1:500) and rhodamine/phalloidin (Invitrogen, diluted 

1:100). Samples were mounted in Prolong Gold Antifading reagent (Invitrogen). Images 

were acquired on a LSM 510 Meta confocal microscope (Zeiss, Welwyn Garden City). 

Images were processed using Adobe Photoshop CS5. 
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Results 

Subjects 

Subjects were recruited from 8 different samples: 6 isolated community samples from 

Italy (Carlantino; Friuli Venezia Guilia; Cilento; Talana) and Croatia (Korcula; Split), one 

sample recruited from 5 different countries along the Silk Road and a twin cohort from 

the United Kingdom (TwinsUK). Sample sizes for the different samples ranged from 

280 to 1097 individuals. In total, 4939 subjects were included in the GWAS meta-

analysis with a preponderance of female volunteers (54.60%- 100% females). Age of 

participants ranged from 18 to 98 years with a mean age of 41.59- 61.06 years. The 

characteristics of the different study samples are summarised in Table 36. 

 

Table 36 Characteristics of subjects by community 

 
sample 

 
country 

 
n 

gender  
(%females) 

age (years) 
range mean (SD) 

Carlantino Italy 280 56.87% 18-89 53.29 (18.1) 
Friuli Venezia Guilia Italy 1097 60.19% 18-89 51.47 (16.3) 
Korcula Croatia 804 63.30% 18-98 56.30 (13.7) 
Split Croatia 497 56.00% 18-79 49.00 (14.6) 
Cilento Italy 421 56.67% 18-91 56.30 (17.6) 
Talana Italy 470 59.00% 18-92 50.82 (18.5) 
Silk Road Azerbaijan 

Giorgia 
Kazakhstan 
Tajikistan 
Uzbekistan 

348 54.60% 18-82 41.59 (15.5) 

Twins UK United Kingdom 1022 100% 29-86 61.06 (9.1) 
Total - 4939 - 18-98 - 
Samples included in the GWAS meta-analysis of hearing function are listed by their 
country of origin, the number of individuals per sample (n), gender distribution 
expressed as percentage of female subjects (% female) and age of participants 
(measured as age range and mean age with standard deviation from the mean (SD). 
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GWAS Meta-analysis 

After quality control, as described in supplementary Table 44 and under Materials and 

Methods, >2.3 million SNPs were tested for association in the GWAS meta-analysis of 

hearing function. Only one SNP on chromosome 11 (rs681524, p=3.69x10-8, Z-Score= 

-5.505) showed genome-wide significant (p<5x10-8) association with PC2 (Table 46). 

 

Figure 37 Forest plot of the PC2 GWAS meta-analysis findings at rs681524 

The forest plot shows the direction of effect for each population at rs681524 compared 
to the combined effect. The direction of effect is measured as beta (light blue boxes) 
and displayed with corresponding 95% confidence interval (95% CI)(dark blue lines). 
The size of each box reflects the relative sample size per population. The combined 
direction of effect is displayed as total light blue box. Heterogeneity (I-squared) 
between study populations explained 0% of variation at rs681524 (p=0.481). 
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Table 37 GWA meta-analysis results at rs681524 

GWA meta-analysis results are presented as GWAS results per population (GWA 
results for the population of Talana were not available at this SNP) and total meta-
analysis results. Each population is described by the number of samples (n) with 
available data at this SNP, the minor allele frequency (MAF), the direction of effect 
(beta) and corresponding standard error (se), the significance of association (p-value) 
and the Z-score calculated in Metal. The total Z-score is a combined value of the Z-
scores per population weighted by sample size. These results are further depicted in 
the Forest plot (Figure 37). 
 

Imputation accuracy measured as genotype concordance between imputation and 

whole genome sequencing results at rs681524 in 2 subsamples from Carlantino (n=93) 

and Friuli Venezia Giulia (n=222) determined high accuracies of 0.97 and 0.94, 

respectively. In addition, GWAS genotyping results from TwinsUK samples were 

compared with newly collected whole-genome sequencing data from the UK10K 

project (n=2000), confirming a high genotyping accuracy of 0.99. 

 

The LocusZoom (Figure 38) showed that the association of PC2 with Sik3 was limited 

to SNP rs681524 at this locus on chromosome 11. Heterogeneity between study 

samples accounted for 0% of the variation at rs681524 (I2=0.0, p=0.481). This single 

SNP association was likely influenced by the exceptionally low LD (R2≤0.28) of the 

reference SNP rs681524 with nearby genetic makers (± 400 kb) as shown in Figure 38. 

LD structure in the Locus Zoom was based on the HapMap Phase 2 CEU panel.  

population n MAF beta se p-value Z-Score 

Carlantino 280 0.057 -0.2438 0.2215 0.2710 -1.101 

Cilento 419 0.075 -0.2206 0.1958 0.2599 -1.127 

Friuli Giulia 1097 0.080 -0.1836 0.0728 0.0117 -2.522 

Korcula 794 0.064 -0.1695 0.1153 0.1415 -1.470 

Split 497 0.087 -0.4166 0.1276 0.0011 -3.265 

Silk Road 255 0.039 -0.0579 0.1705 0.7342 -0.340 

Talana - - - - - - 

TwinsUK 980 0.065 -0.3423 0.0914 1.8E-04 -3.745 

total 4322 - -0.2439 - 3.69E-08 -5.505 
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Figure 38 LocusZoom of GWAS meta-analysis results for PC2 at SIK3 

The LocusZoom depicts the location of genetic markers versus their significance of 
association with PC2 values. Significance of association is measured as the negative 
logarithm of the p-value.  Genes located in the area 400kb up-and downstream of 
rs681524 (violet diamond) are displayed below the x-axis. The colour of each genetic 
marker indicates its correlation with rs681524. A legend for the correlation colour 
scheme is shown in the upper left corner. Recombination rate is highlighted as light 
blue peaks. 
 
Further information concerning LD structure at this locus was sought in two 

independent samples: the 1000 Genomes pilot dataset (n=1092) [23] and a newly 

imputed TwinsUK genotyping sample (n=5654). Both samples confirmed the low LD 

surrounding rs681524. While five SNPs, four of which were located in introns of SIK3, 

showed moderate LD (R2 ≥0.8) with rs681524 in the 1000 Genomes sample, LD 

calculations using a newly imputed TwinsUK sample were uncommonly low for 

rs681524 (R2≤0.28). 

 

A linear regression between hearing PC2 and genotype at rs681524 (adjusted for age 

and twin relatedness) performed in a subset of the newly imputed TwinsUK sample 

(n=503 females) supported the negative association between PC2 and rs681524 

(p=0.010, beta± se=-0.33 ± 0.13).  

Association analysis with rs681524 by age groups 

As the interest of this project lies originally in age-related hearing impairment, subgroup 

analysis of rs681524 by age groups was performed. Association analyses were 

conducted for under 40 years, 40 to 60 years and older than 60 years. The protective 
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effect of the C allele of rs681524 was detectable in all three age groups with a mean 

effect ranging from -0.117 to -0.386 (Table 38). The largest effect could be detected in 

the youngest samples (>40 years) although this was the smallest sample. 

 

Table 38 Association of rs681524 with hearing PC2 stratified by age groups 

 <40 years 40-60 years >60 years 

Population n beta se n beta se n beta se 

Carlantino 88 -0.448 0.613 87 0.468 0.599 105 -0.412 0.403 

Cilento 82 -0.956 0.385 150 -0.675 0.282 188 0.105 0.274 

Friuli Venezia Giulia 295 0.124 0.116 424 -0.518 0.170 378 -0.258 0.210 

Korcula 103 0.089 0.306 399 0.304 0.183 292 0.349 0.243 

Split 138 -0.307 0.257 232 -0.595 0.218 127 -0.263 0.272 

Silk Road 115 -0.210 0.424 104 0.253 0.428 36 -0.027 0.691 

Talana NA NA NA NA NA NA NA NA NA 

TwinsUK 19 -0.993 0.671 372 -0.356 0.162 589 -0.314 0.113 

Mean effect 120 -0.386 0.396 253 -0.160 0.292 245 -0.117 0.315 

The effect of the C allele at rs681524 on hearing PC2 was analysed in three age 
groups (>40 years, 40-60 years and >60 years) in all samples separately. For each 
association the sample size (n), effect size (beta) and standard error of the effect size 
(se) are given. A mean effect was calculated for all samples per age group (beta, se). 

Sik3 expression in the mouse cochlea 

To investigate putative functions of Sik3 in the inner ear, the expression pattern of this 

gene was investigated in mouse cochlea at different developmental stages (P0, P5 and 

4w). Two separate Sik3 antibodies were used and both gave identical labelling, 

supporting the validity of the expression patterns detected. Control sections showed no 

noticeable labelling. The results of the expression analysis are summarised in Figure 

39. 

 

At the day of birth (P0), Sik3 expression was detected at the top of both inner and outer 

hair cells (HCs), in distinct cells of the spiral ganglion (SG), in perilymph facing cells of 

the Reissner’s membrane and in cells surrounding blood vessels in the stria vascularis. 

The cells expressing Sik3 in the stria vascularis have recently been identified as 

macrophage-like melanocytes, which are critical for integrity of the intrastrial fluid-blood 

barrier [26,27]. The same expression pattern could be detected 5 days postnatal (P5). 

However, at 4 weeks of age (4w) Sik3 expression was limited to the SG, Reissner’s 

membrane and the stria vascularis. No expression could be detected in the HCs at this 

advanced stage of development (Figure 39). 
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Sik3 expression in hair cells of the cochlea 

To further investigate the exact location of Sik3 expression in the HCs at early 

developmental stages, confocal microscopy was used. These experiments were 

conducted by Beatriz Lorente-Canovas and kindly provided for inclusion in this thesis. 

Sik3 expression in the inner and outer HCs was compared to phalloidin expression. 

Phalloidin binds to actin filaments and therefore serves as marker for stereocilia, which 

are rich in actin. In comparison to phalloidin, Sik3 seemed to be primarily expressed at 

the top of the HCs but did not co-localise with phalloidin expression at the stereocilia 

(Figure 39, K-M).  

Sik3 expression in cells of the spiral ganglion 

In Figure 39 it was shown that Sik3 was expressed in distinct cells of the SG at all three 

tested stages of development (P0, P5 and 4w). To determine the exact cell type, which 

expresses Sik3 in the SG, Sik3 expression was compared to the expression pattern of 

known markers for type 1 and type 2 SG neurons (Beta-Tubulin and Peripherin) as well 

as glial cells (GFAP) in adjacent sections of the SG. Beta-Tubulin is expressed in both 

type 1 and type 2 SGs, whereas Peripherin is expressed in type 2 SG neurons only. 

Sik3 expression did not co-localize with either Peripherin or Beta-Tubulin (Figure 40, A-

F) and thus not expressed in neurons. Further comparison of Sik3 expression with 

GFAP in adjacent sections showed a partial overlap in cells expressing Sik3 and 

GFAP, however the overlap was not complete (Figure 40, G-J). 

 

Figure 39 Sik3 is expressed in various cells of the cochlea (next page) 

Mouse cochlear sections were stained with primary Sik3 antibody (brown) and 
counterstained with hematoxylin (blue). A, B, E, F: At the day of birth (P0), Sik3 
expression was detected in the apex of inner and outer hair cells (B, red arrows), in the 
perilymph facing layer of the Reissner’s membrane (F, grey arrows), near blood 
vessels of the intermediate layer of the stria vascularis (F, black arrows), as well as in 
cells of the spiral ganglion (E, white arrows) and cells surrounding the ganglion. C, D, 
G, H: At 5 days postnatal (P5), Sik3 expression was found in the hair cells (D, red 
arrows) and small cells of the spiral ganglion (G, white arrows). I, J: At 4 weeks 
postnatal, Sik3 expression remained in the spiral ganglion (J, white arrows), Reissner’s 
membrane and stria vascularis, but could not be detected in the apex of the hair cells 
(I). K, L, M: Convocal imaging of Sik3 expression in the stereocilia at 5 days postnatal 
(L, green), compared to Phalloidin expression (K, red), showed that Sik3 was 
expressed in the region around the base of the stereocilia (M, merged image of K and 
L). IHCs= Inner hair cells; OHCs= Outer hair cells. Scale~ bars: A, C, I: 50µm; B, D, E, 
F, G, H, J: 10 µm; K, L, M: 5 µm. 
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Figure 40 Sik3 expression in the SG is limited to small non-neuronal cells 

To identify the cell type expressing Sik3 in the spiral ganglion Sik3 expression was 
compared to Beta-Tubulin (A, D), Peripherin (C, F) and GFAP (G, I) expression in 
adjacent sections. Beta-Tubulin is expressed in both Type 1 and 2 spiral ganglion 
neurons, while Peripherin expression is limited to type 1 spiral ganglion neurons. Sik3 
expression (B, E) did not coincide with either Beta-Tubulin (A, D) or Peripherin 
expression (C, F), but seemed to be expressed in smaller cells interspersed between 
the neurons. To determine whether Sik3 could be expressed in glial cells, Sik3 
expression (H, J) was compared to GFAP expression (G, I) in adjacent sections. Sik3 
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and GFAP expression overlapped partially. Sik3 expression coincided with GFAP 
expression in some cells (black arrows), but was absent in other glial cells (red arrows). 
All sections were prepared from mice at 5 days postnatal (P5). Expression of each 
antibody is indicated by a brown signal. Scale~ bars: A, B, C, D, E, F, I, J: 10 µm; G, 
H: 50 µm. 
 

Discussion 

Here we described the first genome-wide significant association with hearing function 

identified in a large GWAS meta-analysis (n=4939) of this trait. A SNP in intron 6 of the 

salt-inducible kinase 3 gene (SIK3) was genome-wide significantly associated (Z-

score= -5.5, p=3.69x10-8) with PC2, representing the slope of the audiogram. The 

LocusZoom of the described association signal on chr 11 did not support the validity of 

this finding due to a lack of nearby associated genetic markers. The concern that the 

association with rs681524 might be a false positive finding was addressed accordingly. 

 

A forest plot was created (Figure 37), which highlighted the direction and strength of 

effect observed for the C allele at rs681524. The negative effect was consistent for all 

available populations and nominally significant in three of the eight samples. This 

association could not be explained by heterogeneity between samples (I2=0.0, 

p=0.481). The exceptionally low LD structure surrounding rs681524 as seen in the 

HapMap CEU panel ( 

Figure 38), was confirmed in two independent panels, one from the 1000 Genomes 

project and a newly imputed TwinsUK sample. 

 

As this SNP was genotyped in one sample (TwinsUK) and imputed in the others, the 

imputation accuracy of this SNP was investigated. SNP rs681524 was successfully 

imputed, passing imputation quality thresholds in 6 samples. In addition, imputation 

accuracy was assessed in two subsets from Carlantino and Friuli Venezia Giulia, which 

had additional whole genome sequencing data available. Imputation accuracy as 

analysed in these two subsets was high with values of 0.94 and 0.97. To exclude 

genotyping errors, the genotyping cluster plot for rs681524 (in TwinsUK) was examined 

(Figure 51), showing clear separation of alleles at this SNP. In addition, we were able 

to confirm a high genotyping accuracy of 0.99 for the TwinsUK sample.  

 

Further, a regression analysis between hearing PC2 and rs681524 in a subset (n=503) 

of the newly imputed TwinsUK sample confirmed our original finding (p=0.010, beta± 

se=-0.33 ± 0.13). The exceptionally low LD reported for this SNP would rather be 
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expected for rare variants (MAF<5%). MAF at rs681524 was consistently low (MAF≤ 

8%) in all presented populations but not rare. 

 

Further to this evidence, salt-inducible kinase 1, another member of the family of salt-

inducible kinases had been shown to be expressed in the human vestibule [28]. In 

summary, Sik3 was assumed to be a suitable candidate gene for hearing function and 

thus selected for further expression studies in the cochlea. Due to the low accessibility 

of human cochlea in healthy individuals, the expression study was performed in 

cochlea of mice, whose inner ear anatomy and physiology is highly similar to that of 

humans. 

 

Immunohistochemistry of Sik3 in mouse cochlea was performed at three 

developmental stages (P0, P5 and 4w) to study the expression pattern of Sik3 over 

time. Sik3 showed a striking expression at the apex of the HCs, in non-neuronal cells of 

the SG, the perilymph facing layer of Reissner’s membrane and in macrophage-like 

melanocytes in the stria vascularis. While expression in HCs was limited to early 

developmental stages (P0 and P5), expression in the other described structures lasted 

during early development up to adulthood (P0, P5, 4w). It was therefore assumed that 

Sik3 serves a developmental function in HCs showing expression during early 

development whereas Sik3 expression at other cochlea structures is more important for 

maintenance of the latter and thereby remains expressed during development and 

adulthood. Bright field microscopy was not sufficient to determine the exact location of 

Sik3 expression in HCs at P0 and P5, therefore confocal microscopy was applied. 

Confocal microscopy revealed that Sik3 was expressed at the apex of the HCs at the 

base of the stereocilia rather than in stereocilia themselves. 

 

The striking expression pattern of Sik3 in the SG was investigated in more detail by 

comparing Sik3 expression of markers for Type 1 and 2 SG neurons and glial cells in 

adjacent sections.  It was obvious that neither Beta-tubulin nor Peripherin (molecular 

markers for Type 1 and/or Type 2 SG neurons) were expressed in the same cells of the 

SG as Sik3. Having ruled out Sik3 expression in SG neurons, we investigated whether 

Sik3 might be expressed in glial cells interspersed between neurons. Gfap is a marker 

for glial cells in the SG and its expression was thus chosen to be compared to Sik3. A 

partial overlap between cells expressing Sik3 and Gfap could be detected, however, it 

should be mentioned that co-localisation of Sik3 and Gfap was not complete for all 

cells. In addition, Sik3 appeared to be expressed in the cell nucleus, while Gfap was 
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expressed in cytoplasmic structures. It was thus concluded that Sik3 is expressed in 

small non-neuronal cells in the SG, which might be an undefined subset of glial cells.  

 

Salt-inducible kinases (SIKs) are a sub family of the AMP activated serine/threonine 

protein kinases. Three different SIKs have been identified, with Sik1 and Sik2 being 

expressed in adrenal and adipose tissue, respectively [29]. Initially, Sik3 was reported 

to be expressed ubiquitously. All three proteins contain a kinase, a sucrose non-

fermenting homology and a phosphorylation domain [29]. SIK3 is with 1263 reported 

amino acids the largest protein of the three SIKs [29]. Both Sik1 and Sik3 control 

histone deacetylases via phosphorylation and nuclear export [30,31,32]. In addition, 

SIKs have recently been shown to regulate the formation of regulatory macrophages by 

phosphorylation of the CREB-regulated transcriptional coactivator 3 [33]. Analysis of 

Sik3 deficient mice revealed that Sik3 is essential for chondrocyte hypertrophy [31] and 

might be involved in regulation of lipid storage and cholesterol bile acid homoeostasis 

[34]. Mice with a disrupted Sik3 sequence (Sik3-/-) present with dwarfism, skeletal 

abnormalities and malnourishment [31,34], however, details on their hearing ability 

have not been reported. In addition, 90% of Sik3-/- pups die on the first day after birth 

[31]. Interestingly, Sik3, was capable of binding histone deacetylase 4 (HDAC4) and 

thereby anchored it to the cell cytoplasm [31]. HDAC4 is known to transcriptionally 

repress myocyte-specific enhancer factor 2 when in the nucleus. Sik3 anchoring 

HDAC4 to the cytoplasm thus relieves this transcriptional repression [31]. These 

reports support the function of Sik3 as an important regulator involved in various 

pathways.  

 

The striking expression of Sik3 in cells essential for hearing underlines its putative role 

in hearing. It has been shown that mutation or down regulation of genes expressed in 

similar structures of the cochlea resulted in hearing loss or deafness.  It would be of 

high interest to test the hearing ability of Sik3-/- mice, to determine whether Sik3 is 

essential for hearing.  

 

A subset of the samples presented here had been used previously in a GWAS meta-

analysis of hearing function [4]. The current analysis included two further GWAS 

samples, a female twin sample from the United Kingdom (TwinsUK) and a population 

sample collected from countries situated along the Silk Road (Azerbijan; Giorgia; 

Kazakistan; Tajikistan; Uzbekistan) [8]. By increasing the sample size, and therefore 

statistical power, it was hoped to determine associations with hearing of genome-wide 

significance. In comparison to the previously performed meta-analysis, the overlap of 
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significant associations was limited. The association of rs681524 has not been reported 

in the previous study, possibly because this association was strongly supported by the 

newly added TwinsUK GWAS (Table 37, p(TwinsUK)=1.8x10-4). In addition, the 

previous study reported suggestive significant associations with metabotropic 

glutamate receptor type 8 (PC1, p-value=3.22x10-7); the PBX/knotted homeobox 2 

gene (PC2, p-value=2.86x10-7) and phosphatidic acid phosphatase type 2D (PC3, p-

value=2.32x10-7) [4]. The association between PC1 and SNPs in the vicinity of GRM8 

was confirmed in the present study (Table 45; rs2687481, p=1.07x10-7), while the 

association between PC1 and intronic SNPs in Immunoresponsive 1 homolog (IRG1, 

rs589636, p=6.61x10-8) as reported here was novel. The association between PC2 and 

Carboxypeptidase A6 (Table 46; CPA6, rs1393902, p=3.07x10-7) presents a further 

novel finding. The difference in association findings might reflect the addition of two 

samples of diverging ethnic origin (TwinsUK and Silk Road) to a relatively homogenous 

sample of southern European background. The change in findings might indicate that 

the presented samples had differing contribution of genomic variants to hearing 

function. 

 

Despite the strengths of this study, there were details that were beyond the scope of 

this chapter. Although we were able to follow up expression of Sik3 in murine cochlea, 

functional follow up in humans awaits confirmation. Furthermore, subjects selected for 

this study were of a wide age range and gender distribution, which differed between 

populations. To adjust for this difference in age and gender, PCs were adjusted for age 

at hearing test and gender previous to analysis. In addition, populations studied here 

were of different ethnic background, which increases the risk of population 

stratification. To account for this, population sub-structure was controlled for in each 

GWAS separately per population. A comparison of three samples of related subjects 

has shown this method to be similar in power and type 1 error to the more commonly 

used Genomic Control [18]. The difference in ethnicity should have also been 

considered when estimating LD pattern surrounding association results. LD pattern 

was initially followed up using the HapMap Phase 2 CEU panel, which might not 

represent LD pattern in some of the isolated populations presented here. To address 

this possible source of error, allele frequencies for the respective SNP were compared 

in data from the Human Genome Diversity project [35] and found similar across the 

selected populations. SNP rs681524 was genotyped in one of the 8 presented 

populations and successfully imputed in 6 further samples. Although examination of the 

cluster plots in TwinsUK showed a clear separation of genotypes, direct genotyping 

information for the remaining 7 samples would have strengthened our finding. It might 

be argued that the threshold for genome-wide significance should have been corrected 
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for the two, by definition, independent PCs investigated here. However, all three PCs 

were determined from the same pure-tone audiogram and thereby not truly 

independent. Although follow up of expression patterns gave further insight into 

putative functions of Sik3, no mechanistic links could be determined without further 

information gained in sik3 knockout mice.  

 

Conclusion 

In this chapter we presented the first genome-wide significant association between 

PC2, representing the slope of the audiogram and salt-inducible kinase 3. An 

expression study of sik3 in the cochlea revealed striking expression patterns in various 

cells essential for hearing ability. SIK3 is therefore proposed as a novel candidate gene 

for hearing function, which might be crucial for development of HCs and maintenance 

of hearing function in adults. Future analyses of Sik3 in hearing should focus on the 

expression pattern of SIK3 in human cochlea and hearing ability of mice with a 

disrupted Sik3 sequence. 
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Chapter 7: Epigenetics in age-related hearing impairment 

Abstract 

Epigenetic regulation of gene expression has been shown to change over time and has 

been associated with environmental exposures [1] and multiple complex traits [2,3]. 

Epigenome-wide association studies and studies of identical twins showing phenotypic 

discordance are the major study designs used to identify differentially methylated 

regions (DMRs) linked to the trait under study. Monozygotic (MZ) twin pairs are well 

matched for genetic variation and environmental exposure [4]. Loss of hearing ability 

with higher age is a complex disorder known to be heritable [5], and epigenetic 

regulation could explain the differences in hearing ability between identical twins  as 

well as [4,6] in age of onset and magnitude of hearing ability seen in the elderly 

population [7,8]. 

 

Pure-tone audiograms were collected from female twins (n=1303, age range: 40-86 

years) of the TwinsUK cohort. DNA methylation data based on the Illumina 

HumanMethylation27K array were available in 115 subjects (age range: 47-83 years). 

We performed an epigenome-wide association scan (EWAS) with hearing loss, using 

the first two principal components of the audiogram (PC1, PC2). We found that these 

two hearing traits were strongly associated with DNA methylation levels in the promoter 

regions of genes TCF25 (cg01161216, p=6.6x10-6), FGFR1 (cg15791248, p=5.7x10-5), 

POLE (cg18877514, p=6.3x10-5) and ACADM (cg05467918, p=1.72x10-6). Replication 

of these results in a second independent sample from TwinsUK (n=203, age range: 41-

86 years), confirmed the presence of differentially methylated probes at TCF25 

(p(replication)=8.5x10-5) and POLE (p(replication)=0.017). The association with TCF25 

was validated using methylation dependent immunoprecipitation and high throughput 

sequencing (MeDIPseq, p=0.04).  

 

In a discordant monozygotic twin study, difference in hearing ability was correlated with 

DNA methylation differences within twin pairs (n=21 pairs). Differential methylation at 

ACP6 (cg01377755, r=-0.75, p=1.2x10-4) and MEF2D (cg08156349, r=-0.75, p=1.4x10-

4) showed the strongest correlation with differences in PC1, while PC2 discordance 

correlated strongly with differential methylation at CCNDBP1 (cg12113132, r=-0.792, 

p=2.5x10-5). Gene expression regulation of these genes by differential methylation 

could explain the late onset of age-related hearing impairment and the great variance 

in hearing ability. 
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In conclusion, we have identified differential methylation changes at several genes, 

which may shed light on epigenetic mechanisms operating in hearing ability with age. 

 

Introduction 

Epigenetics: history, mechanisms and definition 

Epigenetics stems from the Greek word epigenetic, which translates as “on, above or 

around the gene” [9] and was first coined by Conrad Waddington, who defined 

epigenetics as a summary of “events which lead to the unfolding of the genetic 

program for development” [10].  For Waddington epigenetics explained how pluripotent 

cells could differentiate into unique cell-types despite having inherited identical DNA 

sequences. According to the ENCODE project [11] human DNA encodes roughly 

20,700 protein coding genes, however, only a minority of these genes are expressed in 

a specific cell type at a given point in time. While each cell in an organism should have 

inherited an identical DNA sequence, expression profiles across cell types differ 

tremendously. More modern definitions of the term epigenetics include all molecular 

processes affecting gene expression without altering the nucleotide sequence of DNA 

[12,13]. Epigenetic modifications help to orchestrate the expression of genes required 

for the cell under given circumstances [14] primarily by altering chromatin structure. In 

contrast to the static DNA sequence, epigenetic modifications are relatively flexible and 

have been shown to adapt to environmental changes. Despite their ability to change, 

epigenetic modifications can be stably maintained over long time frames [15]. Several 

epigenetic mechanisms are recognised, including DNA methylation, histone 

modification, regulatory RNA, specific transcription factors and prions [16]. This chapter 

will focus primarily on the epigenetic change DNA cytosine methylation, one of the 

most widely studied epigenetic mechanisms due its high abundance and relative ease 

of measurement.  
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Figure 41 Cytosine methylation 

Cytosine methylation involves the addition of a methyl-group (CH3, labelled in green) by 
a DNA-methyltransferase to the 5th carbon atom (position labelled in red) of cytosine, 
forming 5-methylcytosine. 
 

 

DNA methylation refers to the stable addition of a methyl-group (CH3) to the 5th carbon 

atom of cytosine, resulting in 5-methylcytosine (Figure 41). The methylation of 

cytosines occurs primarily at CpG dinucleotides, which show an uneven distribution 

across the genome and often cluster in the promoter region of genes, where they are 

referred to as CpG islands (CpGI). CpGI are defined as sequences of ≥ 200 bps with a 

CG content of more than 50% [17]. Whereas 70-80% of CpG dinucleotides in the 

genome are methylated [18], CpGI in the promoter region of  genes are mostly 

unmethylated . Methylation of CpGI promoters results in an unfavourable chromatin 

structure for the transcription machinery and transcription factors to access, therefore 

causing repression of gene expression. Furthermore, DNA methylation recruits methyl-

CpG binding proteins, which in return can recruit secondary repressor proteins like 

histone de-acetylases [19]. Whereas hypermethylation of cancer repressor genes has 

been detected in several forms of cancers [20], hypomethylation of generally 

methylated gene promoters can lead to over-expression of genes [21]. In addition, 

methylation of repetitive sequences and retrotransposons supports DNA stability by 

silencing these parts of the genome, thus preventing DNA rearrangements [21,22,23]. 

More importantly, DNA methylation is an essential process during development of an 

organism, allowing cells to differentiate and adapt their gene expression to the 

requirements of their particular tissue [14,24]. This process is complex however and 

outside promoter regions methylation often leads to over-expression. 

 

Cytosine methylation is mediated by three DNA methylases (DNMTs): DNMT1, 

DNMT3a and DNMT3b. DNMT1 shows a high affinity to hemi-methylated DNA strands 

[25,26]. It co-localises with proliferating cell nuclear antigen during DNA replication and 

copies the DNA methylation profile of the mother to the newly synthesized daughter 

strand, thus being referred to as maintenance DNMT [26]. Members of the DNMT3 

family of methylases show equal affinities for hemi- and unmethylated DNA sequences 
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[27,28,29,30]. They are therefore referred to as de-novo-methylases and play an 

essential role in establishment of DNA methylation after methylation erasure in the 

blastocyst and silencing of transposable elements [27,30]. Whereas the process of 

DNA methylation is relatively well explored, the process of epigenetic reprogramming 

(i.e. erasure and re-establishment of parental epigenetic marks in the blastocyst) is still 

poorly understood [31]. 

 

While DNMTs are responsible for methylation transmission during mitosis, trans-

generational epigenetic transmission is more complicated [32]. The most prominent 

example of transgenerational epigenetic transmission involves the agouti viable yellow 

(Avy) allele in mice. This allele developed from a retrotransposon insertion upstream of 

the agouti gene, which regulates coat colour and if overexpressed results in obesity. 

The agouti promoter is located in the retrotransposon insertion, resulting in the agouti 

gene expression being regulated by the methylation status of the promoter sequence 

[33]. It was shown that female mice with a high agouti expression (causing yellow coat 

colour) produced a higher percentage of yellow offspring than dams with lower 

expression. This indicates incomplete erasure of epigenetic marks at the Avy allele in 

the female germline and thus epigenetic inheritance at this locus. Maternal effects post 

fertilization could not explain this effect [33]. 

 

A similar study in sheep showed that periconceptional dietary restriction of methionine, 

vitamin B12 and folate led to wide-spread epigenetic modifications in the adult offspring 

[34]. The three restricted nutrients are included in the methionine cycle producing the 

primary methyl group donor, S-adenosylmethionine, in DNA-methylation [35]. The 

epigenetic modifications seen in adult offspring sheep were further associated with 

increased body weight, insulin-resistance, high blood-pressure and differences in 

immune response. Interestingly, phenotypic differences were more prominent in male 

than in female adult offsprings [34].  

 

Similar results have been observed in humans conceived during the Dutch winter 

famine (1944-1945). Six decades after their periconceptional exposure to famine in 

uterus, exposed individuals showed significant hypomethylation (p≤ 1.5 x10-4) at the 

imprinted IGF2 gene in comparison to their unexposed same sex siblings [36]. 

Epigenetic heritability studies in humans have shown an increased epigenetic 

correlation within dichorionic MZ twin pairs, who split early in uterus, compared to DZ 

pairs across 6000 genes extracted from buccal epithelial cells [37]. However, DNA 

methylation profiles measured longitudinally on a gene specific level showed less to no 



 199 

indication of increased epigenetic correlation in MZ compared to DZ twin pairs [1]. So 

far unlike animal models, the human studies lack convincing evidence of definite 

epigenetic trans-generational evidence. 

Use of twins in epigenetic studies 

One major limitation of epigenetic studies is the lack of a reference sequence. Due to 

the flexibility of epigenetic modifications with environment, age, disease and various 

other factors, it is impossible to define which modifications form the standard for an 

individual. While animal studies can control for environmental factors under laboratory 

conditions, this is unethical to apply to humans. In addition, the influence of age, 

gender and genotype variation will bias epigenetic analyses [38,39]. Therefore, three 

main study designs have been preferred for epigenetic analyses: family-studies, 

longitudinal studies of the same individuals or MZ twin studies. MZ twin siblings share 

their genetic material and a high proportion of environmental exposures, like time in 

uterus, familial environment and early nutrition. In addition, they are perfectly matched 

for age and gender.  Particularly in the case of MZ twins discordant for a specific 

phenotype, epigenetic modification could explain why one twin sibling develops a trait 

while the other one does not, despite identical genetic material. Furthermore, MZ and 

DZ twin pairs can give a measure of heritability of epigenetic marks. Studies on various 

phenotypes have proven the usefulness of MZ twins in this regard [1,4,6,40]. In a study 

of 40 MZ twin pairs of Spanish ancestry (age range: 3-74) it could be shown that at a 

young age, epigenetic profiles were very similar within twin pairs but grew more 

discordant with increasing age [6]. Furthermore, although numbers were small twin 

pairs with discordant lifestyles showed greater differences in epigenetic marks than 

twin siblings with similar lifestyles [6].  

Methods to measure DNA methylation 

To determine the methylation status of a specific CpG site or CpG dinucleotides across 

the genome reliable methods are required. Three major DNA methylation assays are 

available: restriction digest with methylation sensitive restriction enzymes, affinity 

enrichment by methyl-group specific antibodies or proteins and bisulfite conversion 

[41]. 

 

Bisulfite conversion is based on the observation that sodium bisulfite treatment of DNA 

converts unmethylated cytosine to uracil and spares methylated cytosines. Thus a 

change in DNA is introduced dependent on DNA methylation status at the respective 

cytosine. The converted DNA will be amplified in a polymerase chain reaction and 

subsequently sequenced. It is critical that all unmethylated cytosines are converted to 
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uracil to avoid false negatives. High throughput methods developed for bisulfite treated 

DNA allow simultaneous screening of DNA methylation at up to 480.000 CpG sites. In 

this chapter, DNA methylation was measured using two assays based on bisulfite 

conversion, the Illumina Infinium HumanMethylation27K (27K) and 

HumanMethylation450K (450K) Bead Chips. This work was performed as part of the 

EpiTwin project (http://www.epitwin.eu/index.html). DNA methylation was measured 

from venous blood samples collected from TwinsUK volunteers. Both assays have 

been applied previously to measure DNA methylation epigenome-wide [40,42]. The 

Illumina Infinium 27K array measures methylation at 27.758 CpG sites, covering 14475 

consensus coding sequences and cancer genes. This array primarily covers CpG sites 

located in promoter regions of genes with on average two CpG sites per consensus 

coding sequence and three to twenty assays per cancer gene [43]. The Illumina 

Infinium 450K array, in contrast, covers 485577 methylation sites in 99% of RefSeq 

genes (21231 genes) with an average of 17.2 CpG sites per gene region. In addition, 

its successor the 450K array covers not only CpG sites in the promoter regions of 

genes, but also CpG sites in the first exon, gene body and 5’ and 3’ untranslated 

regions [44]. Both assays differ further in the probe design used. While the Illumina 27K 

Bead chip uses exclusively Illumina I beadtypes, with one bead per methylated and 

unmethylated CG site measured [43,45], the 450K chip applies both Illumina I and 

Illumina II beadtypes. Illumina II beadtypes use only one probe per CpG site with 

differential colour signals indicating the methylation status of the annealing sequence 

[44] (Figure 42). 
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Figure 42 Illumina Infinium I and II methylation assay probe designs 

A. The Illumina Infinium I beadtype methylation assay uses 2 probes per CpG site to 
detect methylation, while in B. Illumina Infinium II beadtype assay applies one probe 
per CpG site using different colour signals to differentiate between methylated and 
unmethylated loci (graphic adapted from M. Bibikova [44]). 
 

Methylated DNA Immunoprecipitation (MeDIP) is an affinity enrichment method that 

uses antibodies to bind to methylated DNA sequences [46]. To prepare samples for 

this affinity treatment, extracted DNA has to be sheered into short fragments (300-1000 

bp in length) by sonication and denatured to produce single-stranded DNA fragments. 

These single stranded DNA fragments are subsequently treated with the respective 

antibody (i.e. 5-methylcytidine antibody) and antibody bound fragments enriched using 

immunoprecipitation techniques [46]. The resulting enriched methylated DNA 

sequences can then be identified by the use of microarrays or next generation 

sequencing techniques (MeDIPseq) [47].  

Epigenetics of hearing disorders 

ARHI is a common complex disorder, which has been intensely studied using genetic 

[48,49,50,51,52] and environmental tools [53,54]. The search for genetic risk loci of 

ARHI was of limited success despite relatively large cohorts and promising study 

designs. In addition, the few identified risk loci fail to explain the large differences in 
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severity of HL seen in many ageing populations. While studies in mice and humans 

show that genotype can determine sensitivity to environmental factors like noise [55] 

and ototoxic medication [56,57], epigenetic modifications could further explain changes 

in gene expression upon environmental factors like smoking behaviour. Furthermore, 

ARHI develops in individuals with previously normal hearing at various times of onset 

and intensity. Epigenetic modifications could accumulate over a lifetime in association 

with environmental exposure. Epigenetic changes might also explain how hearing in 

genetically identical individuals, like monozygotic twin siblings, diverges with increasing 

age independent of environmental exposure. A Previous study of one MZ twin pair 

discordant for Alzheimer’s disease showed reduced DNA methylation levels in 

neuronal nuclei in the neocortex of the diseased twin compared to his unaffected 

sibling [58]. Similar findings have been reported for Schizophrenia discordant and 

concordant MZ twin pairs. In this study DNA methylation at the 5’-regulatory region of 

the Dopamine D2 receptor gene was investigated in two MZ twin pairs, one concordant 

and the other pair discordant for schizophrenia [59]. DNA methylation patterns in the 

discordant affected twin were more similar to the patterns observed in the concordant 

affect siblings than to the DNA methylation seen in its own sibling [59]. Particularly in 

hearing ability with age the moderate heritability estimates have yet to be explained by 

genetic associations with the trait [60]. Epigenetic modifications might explain for part 

of the missing heritability currently attributed to genetic variation [60]. In conclusion, 

several factors favour an epigenetic mechanism involved in hearing loss with age. 

 

A role of epigenetic modifications in ARHI on a genome-wide level has not been 

formally documented, however, reviews of epigenetics in hearing phenotypes have 

suggested it [7,8]. Besides, several forms of syndromic hearing impairment have been 

linked to epigenetic processes [7]. In Stickler syndrome type 1, a disorder involving 

hearing loss to various extends, an exceptionally high rate of cytosine to threonine 

point mutations were detected, which lead to stop codons in the responsible gene. It 

could be shown that these base transitions resulted from mutations of methylated CGA 

codons by cytosine deamination [61]. In Rett syndrome, a disorder characterised by 

specific abnormal hand movements, motor and neurological defects, mutations in the 

methyl-CpG binding protein (MeCP2) have been determined [62]. MeCP2 interacts with 

DNMT1 and histone-deacetylase and can bind methylated CpG dinucleotides to 

repress transcription. In addition, many mutations resulting in Rett syndrome occur at 

methylated CpG sites, highlighting the fact that methylated CpGs are prone to 

mutations [8]. Further epigenetic mechanisms involved in hearing phenotypes have 

been summarised in more detail elsewhere [7,8]. 

 



 203 

The aim of this chapter was to explore the role of DNA methylation in ARHI. Two study 

designs were used: an epigenome-wide association study (EWAS) associating hearing 

ability with DNA methylation genome-wide and an MZ twin pair discordance analysis, 

to identify differentially methylated CpG sites within MZ twin pairs in correlation with 

intra-pair hearing ability. 

 

Methods 

Subjects and hearing phenotypes 

Participants were recruited from females of the TwinsUK cohort. Hearing data were 

collected in the form of pure-tone audiograms, assessing pure-tone thresholds at 

frequencies 0.125-8 kHz. Log-transformed pure-tone thresholds were summarised in a 

principal component analysis, with PC1 and PC2 representing the overall threshold 

shift and slope of the audiogram, respectively. 

DNA methylation profiles 

Measurement of DNA methylation in TwinsUK samples was performed as part of the 

EpiTwin project (http://www.epitwin.eu/index.html) under the lead of Prof. Tim Spector 

and Dr. Jordana Bell. The 450K data was assayed at the Wellcome Trust Sanger 

Institute Cambridge under the lead of Prof. Panos Deloukas. The DNA methylation 

data processing as presented under the DNA methylation profiles section was kindly 

provided for this project.  

DNA methylation from venous whole blood samples was measured using two different 

DNA methylation assays, the 27K BeadChip (26,690 CpG sites) and the Infinium 450K 

BeadChip kit. For both assays, the DNA methylation level at a specific CpG site is 

expressed as β value, representing the ratio of methylated probe signal (SM) over the 

sum of methylated and unmethylated probe signal (SU) (Equation 1). β scores ranged 

from 0 to 1, with 0 indicating no methylation and 1 representing a fully methylated 

probe.  

𝛽 = !!
!!!!!

   [Equation 1. Methylation β] 

To identify potential confounders of the Illumina Infinium HumanMethykation27K array, 

a principal component analysis (PCA) was performed using the normalised DNA 

methylation values. The first five principal components resulting from this analysis were 

examined for association with confounders by correlation analysis with following 

covariates: chronological age, methylation chip and position of sample on the chip. 

Both methylation chip and position of sample on the chip were found to be significantly 
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correlated with the first two principal components from this analysis and so these 

covariates were included as fixed effects in further analyses [40]. 

 

The same analysis was performed for the Illumina Infinium 450K array with covariates 

age, chip, position of sample on the chip and bisulfite conversion levels (unpublished 

data). Chip, position on the chip and bisulfite conversion levels were significantly 

associated with the first 3 principal components and were included as fixed effects in 

the linear mixed effects model for future analysis of this dataset.  

Epigenome-wide association study 

DNA methylation was measured for 26690 DNA methylation probes from the 

HumanMethylation27K chip, each of which mapped to a different CpG dinucleotide in 

the human genome (hg18)[63]. After exclusion of probes mapping to the X-

chromosome and probes with missing data performed by Dr. Jordana Bell and Pei-

Chien Tsai, 24641 autosomal probes remained for the EWAS [40]. To determine 

associations between hearing ability and DNA methylation a linear mixed effect model 

was applied, where DNA methylation levels at individual CpG-sites were examined as 

a function of hearing ability (PC1 or PC2, respectively), with chip, position on the chip 

and chronological age included as fixed effects, and family identifier and zygosity as 

random effects. DNA methylation was transformed to standard normal per probe using 

a quantile normalisation. To exclude associations with DNA methylation due to 

covariates other than hearing, the full model was compared to a null model, in which 

hearing (PC1 or PC2, respectively) was excluded as a predictor variable. The null and 

the full model were compared for model fit in an analysis of variance (ANOVA).  Only 

associations where the full model fitted the data significantly better (p(ANOVA) )≤0.05) 

than the null model were reported. For each significantly associated probe, the effect 

size (beta), standard error of the effect (se) and the p-value from the ANOVA 

comparing full and null model were reported (Table 40 and Table 41, 27K). 

 

To adjust for multiple testing in the discovery EWAS initially a Bonferroni corrected 

significance threshold assuming 24,641 independent tests (p=0.05/24641=2.03x10-6) 

was assumed epigenome-wide significant. However, the 27K array contains on 

average 2 probes per promoter and high levels of co-methylation between 

neighbouring probes have been reported recently [63]. It was therefore decided to 

consider two further Bonferroni corrected thresholds: a genome-wide significant 

threshold correcting for 14,495 independent genes (p=0.05/14495=3.45x10-6) and a 
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genome-wide suggestive threshold correcting for 14,495 independent genes 

(p=0.1/14495=6.90x10-6). 

 

To confirm that the associated probes were not age-dependent differentially methylated 

regions (age DMRs), we determined the significance of model fit (p(no age)) by 

comparing the full and null model in an ANOVA after excluding age as a fixed effect in 

both models (Table 40 and Table 41, p-value (no age)).  In addition, the ten most 

strongly associated probes in both PC1 and PC2 EWAS were checked against 

previously reported age DMRs in these data [40]. 

 

To exclude an underlying association between genetic variation and hearing at 

differentially methylated regions, corresponding loci were checked for association in 

genome-wide association scans with PC1 and PC2 data, respectively (chapter 5). 

Replication study 

The top 10 associated probes from the discovery EWAS for PC1 and PC2 were taken 

forward for replication. To determine associations between hearing ability and DNA 

methylation a linear mixed effect model was applied. In the full linear mixed effect 

model, the DNA methylation β at the 10 selected probes was expressed as a function 

of hearing (PC1;PC2), incorporating fixed (chronological age, chip-number and position 

on chip) and random (family identifier and zygosity) effects. DNA methylation was 

transformed to standard normal per probe using a quantile normalisation. To exclude 

associations with DNA methylation due to covariates other than hearing, we compared 

the full model to a null model, in which hearing was excluded as a predictor variable. 

The null and the full model were compared for model fit in an ANOVA. For each of the 

10 probes, the effect size (beta), standard error of effect (se) and the p-value from the 

ANOVA comparing full and null models were reported (Table 40 and Table 41, 450K). 

Replication of association was assumed if the direction of effect was concordant in the 

discovery and replication sample and if association signals in the replication cohort 

passed nominal significance (p≤0.05). 

 

To confirm that the replicating associated probes were not age DMRs, the significance 

of model fit (p(no age)) after exclusion of age as a fixed effect in both full and null 

model was determined by ANOVA for replicating probes (Table 40). 
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To determine the joint effect of discovery and replication study for the ten most strongly 

associated probes, a meta-analysis was conducted in the program METAL [64] based 

on the reverse variance option (Table 40 and Table 41, meta-analysis) The reported 

meta-analysis results include the direction of effect for both discovery and replication 

study, the joint beta with corresponding standard error and significance of joint 

association. 

Whole blood cell subtype heterogeneity 

Previous studies have reported that association with DNA methylation measured in 

whole blood samples can be driven by blood cell subtype heterogeneity [65]. To adjust 

for this possible bias, eosinophil, lymphocyte, neutrophil and monocyte concentrations 

in blood samples were included as fixed effects in the full and null models for the ten 

most highly associated probes. Full blood cell subtype counts were available in 106 

individuals from the discovery EWAS sample. This test aimed to determine whether 

blood cell heterogeneity alone could explain the differences in DNA methylation.  

DMR validation using methylated DNA immunoprecipitation sequencing 

(MeDIPseq)  

To further validate the findings from the EWAS (27K) and replication study (450K) 

using an alternative technique, the top ranked association with DNA methylation at 

TCF25 was also explored using MeDIPseq [47]. The MeDIPseq validation sample 

consisted of 46 unrelated healthy females with PTA scores and previously published 

MeDIPseq profiles [66]. None of these subjects had been included in either discovery 

or replication samples. MeDIPseq DNA methylation levels were generated and 

quantified as previously described [66]. This data was kindly provided from the EpiTwin 

project in collaboration with the Beijing Genomics Institute who performed the 

genotyping. Relative methylation scores in a 1kb region on chr 16 (chr16: 88466501-

88467500 on hg 18) overlapping probe cg01161216 (chr16: 88466949 on hg 18) 
were explored for association with PTA. A linear fixed effect model was applied, 

where the DNA methylation signal at the locus surrounding the chromosomal position 

of probe cg01161216 was regressed on hearing ability (PC1), adjusted for age. To 

exclude an association of DNA methylation with other factors than hearing, the full 

model was compared to a null model, excluding hearing as a predictor variable. The 

null and full models were compared for model fit using ANOVA. 

Effect of DNA methylation on gene expression 

To investigate the influence of DNA methylation on gene expression at selected genes, 

we tested the correlation between DNA methylation probes and gene expression in 
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skin tissue collected in TwinsUK as part of the Multiple Tissue Human Expression 

Resource (MuTHER) (http://www.muther.ac.uk) [67]. 

Quantile normalised gene expression in skin was adjusted for experimental batch effect 

and RNA concentration in the tissue sample and residuals examined for an association 

with DNA methylation residuals (adjusted for chip and position on the chip) at the 

corresponding probes using Pearson correlation. Furthermore, we tested for an 

association between skin expression residuals and PC1 values using correlation 

analysis, to test for an effect of gene expression on phenotype. 

Exploring methylation changes in monozygotic twins 

All MZ twin pairs from the discovery sample were selected for the MZ discordance 

analysis. Within twin pair DNA methylation difference per probe was calculated as the 

difference in DNA methylation residuals (adjusted for chip and position on the chip) 

between twin sister 1 and twin sister 2. DNA methylation residuals were calculated 

from quantile normalised β values per probe. The association between differences in 

DNA methylation and differences in PC1 or PC2 was examined using Spearman 

correlation (Table 42). 

 

Results 

Subjects 

As described in Chapter 2, pure-tone audiograms were collected for 1303 females from 

the TwinsUK cohort. Of these, 115 individuals had 27K data available for epigenetic 

analysis. Volunteers had a mean age of 63.57 years (±7.05 years of standard deviation 

from the mean, age range 47-83 years). The study sample included 25 dizygotic twin 

(DZ) pairs, 21 MZ twin pairs as well as 23 unpaired twins. 

 

For the replication cohort, data from 203 females having pure-tone audiometry and 

Illumina Infinium Humanmethylation450K data, which were not included in the 

discovery EWAS (27K), was used. This sample included 61 MZ twin pairs, 22 DZ twin 

pairs and 37 unpaired twins. Age of subjects at hearing test ranged from 41 to 86 years 

with a mean age of 63.21years ±8.87 years standard deviation (SD). 

 

The validation sample  (MeDIPseq) consisted of 46 unrelated females from TwinsUK 

with an age range of 43 to 86 years (mean age: 62.28 ±7.86 SD). Population 
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characteristics of the discovery (27K), replication (450K) and validation (MeDIPseq) 

samples are summarised in Table 39. 

 

Table 39 Population characteristics for the discovery, replication and validation 

samples 

sample zygosity n age 

at DNA extraction   

age at  

hearing test 

PC1 ±SD PC2 ±SD  

mean ±SD range mean ±SD range 

discovery 

(27K) 

MZ 42 55.43 ±6.93 45-68 62.00 ±6.60 50-72 -0.28 ±1.47 -0.18 ±1.27 

DZ 50 57.68 ±8.88 33-80 64.32 ±7.68 47-83 0.72 ±1.53 -0.17 ±1.58 

unpaired 23 56.91 ±7.35 43-70 64.83 ±6.12 50-75 0.29 ±1.78 -0.30 ±1.20 

Total 115 56.70 ±7.91 33-80 63.57 ±7.05 47-83 0.27 ±1.61 -0.20 ±1.39 

replication 

(450K) 

MZ 122 55.64 ±8.83 37-73 63.82 ±8.79 46-82 0.60 ±2.13 -0.21 ±1.46 

DZ 44 52.88 ±10.59 33-78 60.86 ±10.58 41-86 0.21 ±2.48 -0.29 ±1.36  

unpaired 37 55.87 ±6.20 42-66 63.97 ±6.28 49-75 0.21 ±1.74 -0.41 ±1.05 

Total 203 55.09 ±8.87 33-78 63.21 ±8.87 41-86 0.45 ±2.15 -0.27 ±1.37 

validation                   

(MeDIPseq) 

unpaired 46 60.02 ±7.85 41-83 62.28 ±7.86 43-86 -0.10 ±2.08 - 

 Demographic characteristics of the discovery (27K DNA methylation bead chip), 

replication (450K DNA methylation bead chip) and validation (methylated DNA 

immunoprecipitation and high throughput sequencing (MeDIPseq) samples are shown. 

Sample zygosity is shown (monozygotic (MZ) and dizygotic (DZ) twins) as well as 

unpaired twins. Mean principal component 1 (PC1) values and standard deviation (SD) 

from the mean, representing the overall threshold shift in the audiogram, are given. 
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DNA methylation profile 

Genome-wide DNA methylation (Illumina Infinium Human Methylation 27K) levels were 

measured in the discovery sample. Most CpG sites investigated were unmethylated 

(β<0.3, 68.9% of probes), while a minority of probes were fully methylated (β>0.7, 

19.9% of probes) or hemi-methylated (β: 0.3-0.7, 11.2% of probes). 

Epigenome-wide association study (EWAS) 

Epigenome-wide association was assessed in a regression analysis comparing 

genome-wide DNA methylation levels (β) with hearing PC1 and PC2 separately. DNA 

methylation at 2519 and 1181 probes was nominally associated (p(ANOVA)≤0.05) with 

hearing ability as measured by PC1 and PC2, respectively. A Manhattan Plot of the 

EWAS with hearing PC1 and PC2 can be seen in Figure 43 and Figure 44, 

respectively. The ten most highly associated differentially methylated probes are 

located above the blue horizontal line corresponding to a p-value of p=6.98x10-5 for the 

PC1 EWAS and a significance level of p=2.55x10-4 for the PC2 EWAS. The red line 

marks a significance threshold of p=10-5 for both Manhattan plots and CpG sites with 

significant associations passing this threshold depicted as red dots (Figure 43 and 

Figure 44). 

Figure 43 Manhattan plot of PC1 EWAS (27K) results 

The Manhattan plot for epigenome-wide association with PC1 depicts the significance 
of association as the negative logarithm of the p-value versus chromosomal location for 
each of the 24641 tested DNA-methylation probes. The red line defines a significance 
threshold of p=10-5. The ten most highly associated probes are located above the blue 
line corresponding to a p-value of p=6.98x10-5. 
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PC1 was most significantly associated with DNA methylation at probe cg01161216, 

located in the promoter region of the transcription factor 25 (TCF25) gene (beta±se= -

0.245±0.052, p=6.60x10-6). Further associations between differential DNA methylation 

and hearing threshold shift were observed for CpG sites in the phosphoglucomutase 3 

(PGM3) gene (beta±se=-0.261±0.056, p=4.46x10-5), the cysteine dioxygenase type 1 

(CDO1) gene (beta±se=-0.238±0.056, p=4.67x10-5), the nucleolar complex associated 

2 homolog (NOC2L) gene (beta±se=-0.200±0.048, p=5.38x10-5), the myosin binding 

protein C (MYBPC3) gene (beta±se=-0.190±0.045, p=5.44x10-5), the fibroblast growth 

factor receptor 1 (FGFR1) gene (beta±se=-0.242±0.058, p=5.73x10-5), the DNA 

polymerase epsilon catalytic subunit (POLE) gene (beta±se=-0.163±0.039, p=6.33x10-

5), vacuolar protein sorting 4 homolog B (VPS4B) gene (beta±se=0.196±0.048, 

p=6.55x10-5), the heterogeneous nuclear ribonucleoprotein A0 (HNRNPA0) gene 

(beta±se=0.136±0.033, p=6.90x10-5), and probe cg25017250 (beta±se=-0.232±0.055, 

p=6.98x10-5) mapping to the apolipoprotein C-4 (APOC4) gene. The ten most highly 

associated PC1 EWAS probes are listed in Table 40. After exclusion of chronological 

age as a fixed effect, association of DNA methylation with PC1 remained significant for 

all of the ten most strongly associated probes (Table 40). 
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Table 40 Results for PC1 EWAS, EWAS replication and meta-analysis of epigenome-

wide association for the ten most highly associated probes 

probe gene 27K (n=115) 450K (n=203) meta-analysis (n=318) 

beta  

± SE 

p-value 

p-value (no age) 

beta  

± SE 

p-value 

p-value (no age) 

dir beta  

± SE 

p-value 

cg01161216 TCF25 -0.245 

±0.052 

6.60E-06 

4.98E-04 

-0.124 

±0.031 

8.55E-05 

1.06E-08 

- - -0.155 

±0.027 

4.89E-09 

cg25383093 PGM3 -0.261 

±0.056 

4.46E-05 

7.46E-05 

-0.008 

±0.034 

8.08E-01 

7.66E-02 

- - -0.075 

±0.029 

9.80E-03 

cg07644368 CDO1 -0.238 

±0.056 

4.67E-05 

2.06E-03 

0.023 

±0.039 

5.50E-01 

4.40E-01 

- + -0.061 

±0.032 

5.80E-02 

cg19923810 NOC2L -0.200 

±0.048 

5.38E-05 

3.24E-05 

-0.0253 

±0.031 

4.26E-01 

8.16E-01 

- - -0.077 

±0.026 

3.05E-03 

cg21370143 MYBPC3 -0.190 

±0.045 

5.44E-05 

1.03E-05 

-0.052 

±0.034 

1.30E-01 

1.62E-01 

- - -0.102 

±0.027 

1.95E-04 

cg15791248 FGFR1 -0.242 

±0.058 

5.73E-05 

5.01E-05 

-0.015 

±0.038 

6.96E-01 

5.13E-01 

- - -0.084 

±0.032 

8.46E-03 

cg18877514 POLE -0.163 

±0.039 

6.33E-05 

9.08E-04 

-0.068 

±0.028 

1.70E-02 

2.83E-02 

- - -0.101 

±0.023 

1.20E-05 

cg05934874 VPS4B 0.196 

±0.048 

6.55E-05 

8.98E-04 

-0.088 

±0.030 

3.67E-03 

1.88E-02 

+ - -0.007 

±0.025 

7.80E-01 

cg12241297 HNRNPA0 0.136 

±0.033 

6.90E-05 

4.52E-04 

-0.064 

±0.029 

2.65E-02 

3.18E-02 

+ - 0.023 

±0.022 

2.80E-01 

cg25017250 APOC4 -0.232 

±0.055 

6.98E-05 

1.06E-03 

-0.040 

±0.036 

2.71E-01 

1.71E-02 

- - -0.097 

±0.030 

1.25E-03 

This tables summarises the ten differentially methylated regions most highly associated 
with PC1 in the discovery EWAS (27K). In the discovery EWAS (27K) association of 
DNA methylation was associated with PC1 in a linear mixed effect model adjusted for 
batch effects, chronological age and subject relatedness. The ten most highly 
associated probes are characterised by the gene they localise to. The effect (beta), 
standard error of the effect (se) and significance of model fit (p-value) are reported.  To 
confirm that association was not driven by association with chronological age, 
significance of model fit excluding age as a model parameter (p-value (no age)) was 
added. The ten most highly associated probes were taken forward for replication in an 
independent sample of 203 subjects (n=203) with 450K DNA methylation bead chip 
data available (450K). The effect (beta) standard error of the effect and significance of 
model fit (p-value) in the replication sample (450K) are reported. To confirm that 
association in the replication sample (450K) was not driven by association with 
chronological age, significance of model fit excluding age as a model parameter (p-
value (no age)) was added The associations reported for the discovery EWAS (27K) 
and replication (450K) sample were meta-analysed (meta-analysis) using an inverse 
variance scheme. The direction of effect for both samples (dir), combined effect (beta), 
standard error of the combined effect (se) and significance of the combined association 
(p-value) are listed for the meta-analysis. Association of DNA methylation and hearing 
PC1 was replicated for probes cg01161216 and cg18877514 (highlighted in grey). 
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Figure 44 Manhattan plot of PC2 EWAS (27K) results 

The Manhattan plot for epigenome-wide association with PC2 depicts the significance 
of association as the negative logarithm of the p-value versus chromosomal location for 
each of the 24641 tested DNA-methylation probes. The red line defines a significance 
threshold of p=10-5. The ten most highly associated probes are located above the blue 
line corresponding to a p-value of p=2.55x10-4. 
 

PC2 was most significantly associated with differential DNA methylation at probe 

cg05467918 located in the acyl-CoA dehydrogenase (ACADM) gene 

(beta±se=0.323±0.063, p=1.72x10-6). Additional associations between PC2 and 

differentially methylated CpG sites were observed for the peroxisome assembly protein 

12 (PEX12) gene (beta±se=0.175±0.043, p=8.04x10-5), the actin related protein 2/3 

complex subunit 5-like (ARPC5L) gene (beta±se=0.191±0.047, p=9.90x10-5), the 

CUGBP Elav-like family member 5 (CELF5) gene (beta±se=-0.274±0.070, p=1.47x10-

4), open reading frame 174 on chromosome 1 (C1orf174) (beta±se=0.171±0.044, 

p=1.49x10-4), openreading frame 116 on chromosome 9 (C9orf116) 

(beta±se=0.185±0.047, p=1.50x10-4), MAX dimerization protein 3 (MXD3) gene 

(beta±se=0.167±0.043, p=1.79x10-4), the BEN domain containing 7 (BEND7) gene 

(beta±se=-0.208±0.053, p=1.96x10-4), the DNA damage-binding protein 2 (DDB2) gene 

(beta±se=0.251±0.065, p=2.05x10-4) and the PRP4 pre-mRNA processing factor 4 

homolog B (PRPF4B) gene (beta±se=0.173±0.046, p=2.55x10-4). The ten DMRs most 

highly associated with PC2 in the EWAS are listed in Table 41. After exclusion of 

chronological age as a fixed effect, association of DNA methylation with PC2 remained 

significant for all of the ten most highly associated probes (Table 41). 
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Table 41 Results for PC2 EWAS, EWAS replication and meta-analysis of epigenome 

wide association for the ten most highly associated probes 

probe gene 27K (n=115) 450K (n=203) meta-analysis (n=318) 

beta  

± SE 

p-value 

p-value (no age) 

beta  

± SE 

p-value dir beta  

± SE 

p-value 

cg05467918 ACADM 0.323 

±0.063 

1.72E-06 

5.47E-06 

0.029 

±0.034 

4.00E-01 ++ 0.095 

±0.030 

1.45E-03 

cg21116410 PEX12 0.175 

±0.043 

8.04E-05 

1.68E-03 

-0.094 

±0.039 

1.90E-02 +- 0.027 

±0.029 

3.43E-01 

cg03916787 ARPC5L 0.191 

±0.047 

9.90E-05 

8.23E-05 

0.048 

±0.038 

2.03E-01 ++ 0.105 

±0.030 

4.04E-04 

cg06734812 CELF5 -0.274 

±0.070 

1.47E-04 

5.59E-04 

0.084 

±0.049 

8.62E-02 -+ -0.034 

±0.040 

4.01E-01 

cg25762395 C1orf174 0.171 

±0.044 

1.49E-04 

4.42E-05 

0.019 

±0.041 

6.46E-01 ++ 0.090 

±0.030 

2.80E-03 

cg12438037 C9orf116 0.185 

±0.047 

1.50E-04 

1.03E-03 

0.008 

±0.043 

8.51E-01 ++ 0.089 

±0.032 

5.20E-03 

cg02693857 MXD3 0.167 

±0.043 

1.79E-04 

2.97E-04 

0.067 

±0.042 

1.16E-01 ++ 0.116 

±0.030 

1.16E-04 

cg14784653 BEND7 -0.208 

±0.053 

1.96E-04 

2.86E-04 

-0.008 

±0.045 

8.56E-01 -- -0.092 

±0.034 

7.46E-03 

cg19486271 DDB2 0.251 

±0.065 

2.05E-04 

1.18E-03 

-0.093 

±0.055 

9.62E-02 +- 0.051 

±0.042 

2.29E-01 

cg06786424 PRPF4B 0.173 

±0.046 

2.55E-04 

1.04E-02 

0.056 

±0.034 

1.06E-01 ++ 0.097 

±0.027 

3.71E-04 

 
This table summarises the ten differentially methylated regions most highly associated 
with PC2 in the discovery EWAS (27K). In the discovery EWAS (27K) association of 
DNA methylation was associated with PC2 in a linear mixed effect model adjusted for 
batch effects, chronological age and subject relatedness. The ten most highly 
associated probes are characterised by the gene they localise to. The effect (beta), 
standard error of the effect (se) and significance of model fit (p-value) are reported.  To 
confirm that association was not driven by association with chronological age, 
significance of model fit excluding age as a model parameter (p-value (no age)) was 
added. The ten most highly associated probes were taken forward for replication in an 
independent sample of 203 subjects (n=203) with 450K DNA methylation bead chip 
data available (450K). The effect (beta) standard error of the effect and significance of 
model fit (p-value) in the replication sample (450K) are reported. The associations 
reported for the discovery EWAS (27K) and replication (450K) sample were meta 
analysed (meta-analysis) using an inverse variance scheme. The direction of effect for 
both samples (dir), combined effect (beta), standard error of the combined effect (se) 
and significance of the combined association (p-value) are listed for the meta-analysis.  
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Replication of top EWAs findings in an independent replication sample 

The ten most highly associated CpG probes determined in the discovery sample were 

taken forward for replication in an independent sample of 203 females from the 

TwinsUK cohort with available pure-tone audiometry and Illumina Infinium 450K Bead 

chip data (Table 39, replication). In agreement with the replication criteria defined 

above association between DNA methylation and hearing PC1 was replicated for 

probes cg01161216 (p(450K)=8.55x10-5) and cg18877514 (p(450K)=1.70x10-2) (Table 

40), mapping to TCF25 and POLE, respectively. The association between hearing PC1 

and DNA methylation residuals (adjusted for age, batch effects and relatedness) for the 

discovery and the replication cohort at cg01161216 and cg18877514 is depicted in 

Figure 45. Additionally, 5 out of the 10 most highly associated DMRs for PC1 showed 

the same direction of effect in the replication sample (cg25383093, cg19923810, 

cg21370143, cg15791248 and cg25017250), however association in the replication 

sample did not reach nominal significance for these probes (Table 40). To confirm that 

association at the replicating probes (cg01161216 and cg18877514) was not driven by 

association with chronological age, significance of model fit excluding age as a model 

parameter (Table 40, 450K, p-value (no age)) was determined. 

Whether underlying genetic associations might influence the epigenome-wide 

association signals at cg01161216 and cg18877514 was further investigated. Genome-

wide association results from the TwinsUK cohort for age-adjusted hearing PC1 

(chapter 5) showed no significant association with SNPs 200kb up- and downstream of 

the replicating genes (TCF25 and POLE).  
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Figure 45 Correlation of hearing PC1 with DNA methylation at cg01161216 (TCF25) 

and cg18877514 (POLE) 

A, B Hearing PC1 values were plotted versus raw DNA methylation beta (adjusted for 
age, batch effects and relatedness) for both the discovery (27K, light blue dots) and the 
replication (450K, dark blue dots) samples. A linear regression lines was fitted for both 
datasets (27K:light blue line, 450K:dark blue line). 
C, D Hearing PC1 values were plotted versus DNA methylation beta residuals 
(adjusted for age, batch effects and relatedness) for both the discovery (27K, light blue 
dots) and the replication (450K, dark blue dots) samples. A linear regression lines was 
fitted for both datasets (27K:light blue line, 450K:dark blue line). 
 

None of the DNA methylation probes associated with PC2 in the discovery EWAS 

passed replication criteria in the Illumina Infinium Humanmethylation450K dataset. 

However, 7 out of 10 probes (cg05467918, cg03916787, cg25762395, cg12438037, 

cg02693857, cg14784653, cg06786424) taken forward for replication showed the 

same direction of effect observed in the discovery EWAS (Table 41). 

Differential DNA methylation at TCF25 showed the most significant association with 

PC1 (cg01161216, p=4.89x10-9) in the meta-analysis (Table 40). For PC2, the 
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association with differentially methylated DNA at MXD3 (cg02693857, p=1.16x10-4) 

was most significant after meta-analysis (Table 41).  

Whole Blood heterogeneity  

It was tested whether the ten most highly associated probes in the discovery EWAS 

remained significantly associated with PC1 and PC2 after adjustment for blood cell 

heterogeneity in a subset of 106 females from the discovery sample (Table 39) with 

data available. Epigenome-wide association signals for the most highly associated 

probes in this subset remained significantly associated (p>0.005) with PC1 and PC2 

after adjustment for blood cell subtype concentrations. 

Validation of TCF25 using MeDIPseq 

To validate the peak EWAS DMR using a different technology, TCF25 DNA 

methylation levels based on MeDIPseq data were also explored for association with 

hearing in 46 unrelated females from TwinsUK [66]. The mean age of subjects in the 

validation sample was 62.28 (± 7.86 years of standard deviation from the mean, age 

range 43 - 86 years) (Table 39, validation). MeDIPseq DNA methylation levels at a 1kb 

locus overlapping probe cg01161216 were selected and compared to PC1. DNA 

methylation at this locus was significantly associated with hearing PC1 (p=4.09x10-2) 

and showed the same direction of effect (beta ± se=-8.72x10-6 ± 4.13x10-6) as both the 

discovery EWAS and replication datasets. 

Influence of DNA methylation on gene expression  

To determine the influence of DNA methylation and hearing measures on gene 

expression, DNA methylation levels at the replicating probes in TCF25 and POLE 

(cg01161216, cg18877514) and PC1 values were compared to gene expression levels 

for the corresponding genes from the MuTHER database [67]. Gene expression data 

were available for three different tissues in 172 females with corresponding hearing 

and DNA methylation (27K) measures. It was decided to compare DNA methylation to 

gene expression in skin tissue, due to its shared embryonic origin with inner ear tissue. 

DNA methylation residuals and gene expression residuals showed a weak negative 

correlation with TCF25 (r=-0.02) (Figure 46, A) and POLE (r=-0.06) expression (Figure 

46, B). Cytosine DNA methylation in the promoter region of a gene should represses 

gene expression, thus a negative correlation between DNA methylation and gene 

expression was expected. In addition, the effect of gene expression of TCF25 and 

POLE on hearing ability with age was investigated by correlating gene expression 

residuals for TCF25 and POLE with PC1 values. Expression levels of both genes 
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showed weak positive correlations with PC1 values (TCF25: r=0.12; POLE: r=0.16) 

(Figure 46, C and D).  

 

Figure 46 Influence of DNA methylation and hearing ability on gene expression 

A. DNA methylation residuals showed a weak negative correlation (r=-0.02) with 
expression residuals of TCF25 in skin samples. Both quantile normalised DNA 
methylation betas and quantile normalised gene expression values were adjusted for 
experimental batch effects (chip and position on the chip for Methylation betas and for 
gene expression experimental batch and RNA concentration) previous to analysis. The 
regression line (blue line) depicts the linear association between DNA methylation 
residuals and gene expression residuals. B. DNA methylation residuals at probe 
cg18877514 were weakly correlated (r=-0.06) with POLE expression residuals in skin 
tissue. Both quantile normalised DNA methylation betas and quantile normalised gene 
expression values were adjusted for experimental batch effects (chip and position on 
the chip for Methylation betas and for gene expression experimental batch and RNA 
concentration) previous to analysis. The regression line (blue line) depicts the linear 
association between DNA methylation residuals and gene expression residuals. C. 
TCF25 expression residuals in skin showed a weak negative correlation (r=0.12) with 
PC1. Quantile normalised gene expression values were adjusted for experimental 
batch effects and RNA concentration. The regression line (blue line) depicts the linear 
association between gene expression residuals and PC1 values. D. POLE expression 

 

A 

D C 
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residuals in skin showed a weak negative correlation (r=0.16) with PC1. Quantile 
normalised gene expression values were adjusted for experimental batch effects and 
RNA concentration. The regression line (blue line) depicts the linear association 
between gene expression residuals and PC1 values. 
 

Differentially methylated regions in monozygotic twins discordant for hearing 

For the MZ co-twin analyses, all MZ twin pairs from the discovery sample (Table1) 

were selected. This dataset comprised 21 female MZ twin pairs (n=42) with a mean 

age of 62.00 years ±6.60 years of SD (age range: 50-72 years) (Table 39). In the 

discordant MZ twin pair analysis, difference in hearing ability within identical twin pairs 

was correlated with difference in DNA methylation determined between the same twin 

sisters. Phenotypic mean difference within twin pairs (measured as difference between 

twin sister 1 and 2) as measured by PC1 was -0.42± 1.34 SD and ranged between -

3.47 and 2.86. Phenotypic mean difference within twin pairs as measured by PC2 was 

-0.21± 1.02 SD and ranged between -1.97 and 1.92. Difference in DNA methylation 

was measured at 24641 CpG sites genome-wide. Discordance in hearing PC1 was 

most highly correlated with differential methylation at probe cg01377755, mapping to 

the promoter of the lysophosphatidic Acid Phosphatase 6 (ACP6) gene (r=-0.753, 

p=1.24x10-4). Further strongly correlated differentially methylated genes included 

Myocyte Enhancer Factor 2D (MEF2D, cg08156349,r=-0.749, p=1.41x10-4), Tachykinin 

Precursor 1 (TAC1, cg07550362, r=-0.722, p=3.25x10-4),	  ATPase Family AAA Domain-

Containing 3C (ATAD3C, cg27383362, r=-0.703, p=5.49x10-4),	   brain-specific Serine 

Protease 3 (PRSS12, cg21208104, r=0.697, p=6.26x10-4), ADAM Metallopeptidase 

Domain 18 (ADAM18, cg23566335, r=0.696, p=6.47x10-4), Chromobox Homolog 2 

(CBX2, cg22892904, r=-0.688, p=7.82x10-4), Septin 3 (SEPT3, cg04283938, r=-0.684, 

p=8.59x10-4),	   Transmembrane Protein 121 (TMEM121, cg23886551, r=-0.684, 

p=8.59x10-4) and Torsin Family 1 Member B (TOR1B, cg14299800, r=-0.682, 

p=9.13x10-4) (Table 42 and Appendix Figure 52). 

 

Discordance in hearing PC2 was most strongly correlated with differential methylation 

at probe cg12113132 in the promoter of the Cyclin D-Type Binding-Protein 1 

(CCNDBP1) gene (r=-0.792, p=2.48x10-5). Further differentially methylated probes in 

strong correlation with PC2 discordance were determined for the Serine/Arginine-Rich 

Splicing Factor 6 (SRSF6) gene (cg07440387, r=0.752, p=1.29x10-4), the 

Arginine/Serine-Rich Coiled-Coil 2 (RSRC2) gene (cg11157872, r=0.751, p=1.35x10-4), 

the G-protein coupled Purinergic Receptor P2Y 12 (P2RY12) gene (cg05094216, r=-

0.751, p=1.35x10-4), the RAB10 member of the RAS Oncogene Family (RAB10) gene 

(cg11109684, r=0.721, p=3.37x10-4), the Histone deacetylase 4 (HDAC4) gene 
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(cg19028160, r=0.718, p=3.62x10-4), the Rho-interacting serine/threonine kinase 21 

(CIT) gene (cg25499017, r=0.717, p=3.76x10-4), the Zinc finger protein 610 (ZNF610) 

gene (cg07703337, r=-0.706, p=4.96x10-4), the tubulin tyrosine ligase-like family 

member 3 (TTLL3) gene (cg14800883, r=0.700, p=5.86x10-4) and the microRNA 638 

(MIR638) gene (cg10948777, r=0.697, p=6.26x10-4) (Table 42 and Appendix Figure 

53). 

 

Table 42 Results of the MZ pair difference analysis 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This table shows the results of the ten most highly correlated DNA methylation probes 
with MZ twin pair discordance in PC1 and PC2. Correlation between differences in PC1 
and PC2 within twin pairs and differential DNA methylation residuals (adjusted for chip 
and position on the chip) was assessed using spearman correlation. Results are listed 
for the ten most highly correlated probes with the corresponding gene, Spearman rank 
correlation coefficient (rho) and significance of correlation (p-value).  
 

Discussion 

Changes in DNA methylation have been associated with increasing age and age-

related disorders [40]. Here, the association between genome-wide DNA methylation 

and hearing ability with age has been demonstrated for the first time. This approach 

identified epigenetic changes at several genes that associated with hearing ability with 

age, and replicated in a second independent sample of unrelated subjects. Altogether, 

a significant association with hearing (PC1, PC2) and DNA methylation in the promoter 

of TCF25 and ACADM were observed. Further, the associations of hearing PC1 with 

TCF25 and POLE were replicated in an independent sample. In addition, DNA 

methylation at FGFR1 was significantly associated with PC1, a gene known to be 

MZ pair difference analysis (n=42) 

PC1 PC2 

probe gene rho p-value probe gene rho p-value 

cg01377755 ACP6 -0.753 1.24E-04 cg12113132 CCNDBP1 -0.792 2.48E-05 

cg08156349 MEF2D -0.749 1.41E-04 cg07440387 SRSF6 0.752 1.29E-04 

cg07550362 TAC1 -0.722 3.25E-04 cg11157872 RSRC2 0.751 1.35E-04 

cg27383362 ATAD3C -0.703 5.49E-04  cg05094216 P2RY12 -0.751 1.35E-04 

cg21208104 PRSS12 0.697 6.26E-04  cg11109684 RAB10 0.721 3.37E-04 

cg23566335 ADAM18 0.696 6.47E-04  cg19028160 HDAC4 0.718 3.62E-04 

cg22892904 CBX2 -0.688 7.82E-04 cg25499017 CIT 0.717 3.76E-04 

cg04283938 SEPT3 -0.684 8.59E-04 cg07703337 ZNF610 -0.706 4.96E-04 

cg23886551 TMEM121 -0.684 8.59E-04 cg14800883 TTLL3 0.700 5.86E-04 

cg14299800 TOR1B -0.682 9.13E-04 cg10948777 MIR638 0.697 6.26E-04 
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essential for maintenance of glial cells and cochlear neurons in the spiral ganglion [68]. 

We suggest, that epigenetic changes with age might account for the late age of onset 

for ARHI and explain a proportion of the missing heritability for this phenotype.  

 

Two differentially methylated regions at TCF25 and POLE were highly associated with 

hearing PC1 in the discovery EWAS and replicated in the replication study (450K). At 

both gene promoters individuals with reduced hearing ability (high PC1 value) showed 

lower DNA methylation levels. The association of these two DMRs with PC1 could 

neither be explained by blood cell heterogeneity in the venous blood samples nor by 

underlying genetic variants at the corresponding loci. TCF25, also referred to as 

NULP1, belongs to the family of helix-loop-helix transcription factors and was shown to 

be expressed in mouse dorsal root ganglia during embryonic development [69]. In 

addition, TCF25 encodes a protein with a novel transcriptional repressive domain, 

which can repress the transcription of other genes [70]. Tcf25 deficient mouse models 

have not been reported yet, but might shed further light on the function of this gene. 

 

POLE encodes the catalytic subunit of DNA polymerase epsilon, the enzyme 

responsible for extension of the leading strand during DNA replication [71]. Mutations in 

POLE have been reported in patients with colorectal cancer, likewise mice 

homozygous for a knock-in allele of Pole show increased incidence of various cancers. 

Mice with a transgenic gene disruption of Pole die before birth, highlighting the 

essential function of this gene.  

 

According to the ENCODE database [72], both cg01161216 and cg18877514 (TCF25 

and POLE, respectively) map to regions of the genome with increased enhancer- and 

promoter-associated histone marks (H3K4Me1 and H3K4Me3) as assessed in various 

cell lines. Furthermore, ENCODE lists transcription factor binding sites identified by 

chromatin immunoprecipitation for the loci of both probes. Neither of the two replicating 

genes has been associated with hearing previously. However, the crucial function of 

both genes during development and DNA replication, respectively, will require finely 

regulated gene expression. Disruption of this highly regulated process by a change in 

DNA methylation in the inner ear, could lead to increased DNA mutation rates and cell 

death. 

 

DNA methylation levels in both the discovery EWAS and replication study were 

obtained in methods based on bisulfite conversion and DNA annealing. As proof that 

our findings were not an artefact of this method, technical validation in a different DNA 
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measurement method, MeDIPseq, was obtained. MeDIPseq is based on enrichment of 

methylated DNA segments by immunoprecipitation of methylated DNA [47]. The 

enriched DNA segments are subsequently processed by next generation sequencing. 

Methylation levels at TCF25 as measured by MeDIPseq were nominally significant 

associated with PC1 (p=4.09x10-2), thereby supporting our previous findings. 

 

DNA methylation at gene promoters restricts access of transcription factors and DNA 

transcription machinery to the underlying nucleotide sequence, thereby repressing 

gene expression. To test whether DNA methylation at TCF25 and POLE had an effect 

on expression levels of the respective genes, gene expression and DNA methylation 

levels in 172 individuals were investigated. DNA methylation at both probes showed 

weakly negative correlations with gene expression (TCF25: r=-0.02, POLE: r=-0.06).  

However, DNA methylation and gene expression were measured from different tissues, 

which might explain the lack of influence on gene expression. 

 

Further, association between gene expression and the hearing (PC1) was investigated 

by correlation analysis. PC1 values were positively correlated with gene expression at 

TCF25 and POLE, indicating that high expression of these genes corresponded with 

reduced hearing ability. Nevertheless, correlations were relatively weak (r= 0.12-0.16) 

and gene expression in skin, as presented here, might not best represent expression 

profiles in the inner ear. These findings should therefore be interpreted with caution. 

 

Although we were unable to replicate association between DNA methylation and 

hearing (PC1; PC2) with further top associated genes from the discovery EWAS, some 

of these genes represented validated candidate genes for hearing loss and therefore 

merit discussion here. FGFR1 encodes the fibroblast growth factor receptor 1 protein.  

Chemically induced mutations at the FGFR1 gene in mice resulted in the mouse model 

“hush puppy”, which displays defects in inner ear morphology and physiology [73,74]. 

Of particular interest, “hush puppy” mice present with a decreased number of cochlear 

outer hair cells and reduced endocochlear potential. Furthermore, a conditional mouse 

knockout of Fgfr1 and Fgfr2 in glial cells of the spiral ganglion resulted in loss of spiral 

ganglion neurons and associated ARHI [75]. These data support an essential function 

of FGFR1 in hearing and fine tuned gene expression regulation of this gene appears to 

be crucial for hearing ability with age. Although FGFR1 was not significantly associated 

with DNA methylation in the replication cohort, the direction of effect remained 

constant. However, the negative association of PC1 with DNA methylation at FGFR1 
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indicates that good hearing ability with age is associated with high methylation and 

therefore expression repression of FGFR1. 

 

The strongest association between DNA methylation and PC2, representing high 

frequency hearing loss, was observed for the ACADM gene encoding medium-chain 

acyl-CoA dehydrogenase. Deficiency of this protein results in hypoglycaemia and can 

lead to sudden death in infants if untreated [76]. Although this gene showed the 

strongest association in the PC2 discovery EWAS, a direct link to hearing ability is as 

yet unclear. 

 

The sample presented here was collected from the TwinsUK cohort and therefore 

included MZ and DZ twin pairs (80% of total samples). MZ twin pairs are assumed to 

be genetically identical and share an increased proportion of environmental exposures 

(i.e. time in uterus, family environment) compared to normal siblings or unrelated 

individuals. They have therefore been suggested as the perfect study sample for 

epigenetic studies in humans, as differences in epigenetic profiles within twin pairs 

cannot be biased by genetic differences and only to a reduced proportion by differential 

environmental exposure [4]. Furthermore, epigenetic differences have been suggested 

as the cause of MZ twin discordance seen for highly heritable traits [59,77]. Particularly 

the use of MZ twin siblings in the EWAs and replication sample might have reduced 

confounding by genetic variability in comparison to a sample formed of unrelated 

singletons only. However, the increased proportion of twin siblings in the EWAS 

sample also poses the risk of reduced phenotypic variance, potentially limiting power to 

detect association with moderate to strong epigenetic effects. 

 

All MZ twin pairs from the EWAS sample (n=21 pairs) were taken forward for an 

epigenome-wide MZ discordance analysis. In this analysis phenotypic differences 

within twin pairs (hearing PC1 and PC2) were examined for differences within twin 

pairs’ epigenetic profiles. The most strongly correlated probes for PC1 discordance 

were found in the promoters of the genes ACP6 and MEF2D. The function of acid 

phosphatase 6 is yet unknown. However, myocyte enhancer factor 2D is a member of 

the myocyte enhancer factor family of transcription factors, which are involved in 

neuronal development and differentiation under regulation of class 2 histone 

deacetylases. MEF2D is expressed in mouse cochlear neurons and sensory cells at 

P15 and was diminished in IGF knockout mice, which show sensorineural hearing loss 

[78]. These results indicate MEF2D to be an interesting candidate gene for ARHI. 

Reduced expression of MEF2D due to DNA methylation could result in sensorineural 
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hearing loss, as reported for mouse models [78]. Discordance for PC2 was most 

strongly correlated with differential methylation at CCNDBP1. CCNDBP1 represses 

transcriptional activity of cyclin D1 and has been shown to directly interact with Sirt6 

[79], a class 3 histone deacetylase linked to cancer and ageing [80]. 

 

This study had several strengths and limitations. Strengths included the identification 

and replication of differentially methylated probes strongly associated with ARHI. 

Although the associations reported here failed to reach epigenome-wide significance 

levels conservatively considering all 24641 “independent” probes, the association 

between PC1 and TCF25 reached suggestive significant association thresholds 

(p=6.90x10-6) when considering 14495 independent genes. The 27K chip used here 

was originally developed to measure DNA methylation genome-wide with a particular 

focus on genes differentially methylated in cancer. Therefore our EWAS findings for 

PC1 and PC2, two non-cancer phenotypes, might be biased by the selection of gene 

promoters covered on this chip. Furthermore, recent research shows that the 70-80% 

of CpG sites currently covered in whole-genome bisulfite sequencing provide only 

minor information about Dna methylation due to reduced variability of methylation at 

these sites [81]. Age and blood cell heterogeneity could be excluded as potential 

confounders of the hearing DMR results. Limitations of our study included the choice of 

sample tissue. Despite the knowledge that DNA methylation can be tissue specific, 

DNA methylation from more accessible whole blood samples was used instead of more 

appropriate but problematic tissues from the inner ear. The only study investigating 

epigenetic changes in the human inner ear analysed DNA methylation of candidate 

genes in tumour tissue from vestibular schwanomas [82]. Nevertheless, recent 

research on the epigenetics of pain sensitivity demonstrated that epigenetic changes in 

blood samples mirrored those in brain tissue, suggesting a tissue crossover [66]. 

Phenotypic variation might have been reduced in the EWAs and replication sample as 

a result of including of a high proportion of twin pairs, which might limit power to detect 

association with moderate to strong epigenetic effects. Twin relatedness was adjusted 

for as a random effect in the EWAS and replication linear mixed effect regression 

models. Although we were able to show a weak negative correlation between DNA 

methylation levels and gene expression at TCF25 and POLE, these results were 

obtained from skin samples, which might not be representative of gene expression in 

the inner ear. Gene expression as measured in skin tissues was selected as the most 

suitable tissue from the three tissues available [67] (skin, fat and white blood cells) due 

to its embryonic relatedness with nervous tissue. 
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While twin siblings might have not been the optimal study sample in the standard 

EWAS, we took particular advantage of this special relatedness structure in the MZ co-

twin analysis. In the EWAS, the confounding effect of genetic variability between study 

subjects on DNA methylation could not be eliminated completely. However, the 

inclusion of MZ twin pairs in this sample might have reduced this confounding genetic 

variance. In contrast, the MZ co-twin design compares only MZ twin siblings within a 

twin pair. Differences in DNA methylation due to genetic differences should therefore 

be prevented in this special twin sample. Here, MZ twin siblings showing stronger 

discordance in hearing ability would provide greater statistical power to detect 

significant effects, however, limited by the availability of samples with DNA methylation 

and hearing data available, the twin sisters studied showed only relatively low levels of 

discordance. Previous studies reported that associations with DNA methylation 

measured in venous blood samples might be driven by blood cell heterogeneity [65]. 

Exact blood cell counts were available for 106 of the 115 EWAS samples. DNA 

methylation at the ten most significant probes remained significantly associated with 

PC1 after adjustment for blood cell heterogeneity in the EWAS. This showed that blood 

cell heterogeneity alone could not account for the associations reported in the EWAS. 

Finally, this study does not allow assumptions about causal relationships between DNA 

methylation and ARHI. A longitudinal study design would have been required to 

determine whether changes in DNA methylation are causal to ARHI or whether 

processes involved in ARHI cause changes in DNA methylation. 

 

Conclusion 

This is the first study to date demonstrating the association between hearing ability (as 

measured by pure-tone audiometry) and DNA methylation genome-wide. We identified 

suggestive significant associations with DNA methylation in the promoters of various 

genes, of which two (TCF25 and POLE) could be replicated in an independent cohort 

and one (TCF25) technically validated using a different methylation detection method. 

Functional studies will be required to further explore the effect of epigenetic regulation 

of these genes in ARHI. Despite the relatively small sample presented here, our 

findings strongly support the association of ARHI with epigenetic modifications like 

DNA cytosine methylation. Future investigations focussing on different epigenetic 

modifications and larger sample sizes might explain part of the missing heritability in 

ARHI and revolutionise the understanding and treatment of this complex disorder. 

Furthermore, these findings are of fundamental importance not only for hearing loss but 

also other age-related disorders.  
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Chapter 8: Discussion 

 

Age related hearing impairment (ARHI) represents the loss of hearing ability acquired 

with increased age. Action on Hearing Loss has reported that one sixth of the UK 

population (~10,130,000 individuals) is affected by HL, with 41.7% of all adults aged 50 

years or older showing some form of hearing loss [1], making it a common disorder in 

the elderly. Loss of hearing ability can have significant effects on social interaction [2], 

and result in loss of physical and mental wellbeing as well as incapacity to work. 

Particularly in ageing Western populations, the prevalence of this and other ageing 

traits is likely to rise with the predicted shift in population structure. 

 

Early studies of ARHI described 4 different pathologies: sensory, neural, strial and 

mechanical ARHI [3], with sensory presbycusis presenting the most commonly 

described form of ARHI seen in 50% of studied subjects. Sensorineural ARHI is 

defined by a loss of sensory hair cells particularly in the basal part of the cochlea, 

which is further associated with damage to supportive cells and spiral ganglion 

neurons. However, the neuronal damage was suspected to represent a secondary 

effect to the loss of supportive cells and hair cells. 

 

Despite the high prevalence and impact of ARHI on everyday life, the pathological 

processes underlying this condition are still poorly understood. Furthermore, once 

manifested, this loss of hearing ability is not reversible and likely to progress with 

limited management options available. Current management options focus primarily on 

the fitting of digital hearing aids. Cochlear implants could provide a good treatment 

option for the future, but are currently neither cost nor risk efficient to be used routinely, 

and pharmaceutical treatments have yet to be developed. Better understanding of the 

causative factors in ARHI might improve the treatment and prevention of this common 

age-related trait. 

 

The aim of this study was to better understand the factors leading to ARHI in previously 

healthy individuals. Epidemiological data was collected from mature to elderly females 

from the United Kingdom. To measure ARHI two hearing tests were to be used: 

standard pure-tone audiometry and a novel web-based speech-in-noise test, with the 

new test being compared to and validated against the existing gold standard. The 

proportion of variance in hearing ability explained by genetic and environmental risk 

factors was to be estimated based on the classical twin study design. The specific 
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focus of this study was to identify common genetic variants and epigenetic 

modifications associated with hearing ability with age. Despite moderate to high 

heritability estimates of ARHI determined in previous studies, genetic investigations 

had yet failed to explain this heritability.  

 

It was decided to study females for two reasons. Firstly, the TwinsUK sample 

historically has a preponderance of female subjects. Also, previous studies of ARHI 

focussed primarily on male or mixed gender cohorts [4,5,6,7], where ARHI severity is 

more pronounced in men, showing an earlier age of onset than in women [8]. Hearing 

ability was measured in 1309 females from the TwinsUK registry using pure-tone 

audiometry and a customized hearing questionnaire covering exposure to known 

medical and environmental risk factors of ARHI. 

 

Data collection and phenotype 

Pure-tone audiometry is accepted as the gold standard hearing test by most 

audiologists and aims to determine the lowest sound intensity an individual can hear for 

different frequencies within the human hearing spectrum. Measured frequencies 

usually range from 0.25 to 8 kHz with hearing ability at these frequencies being 

determined for both ears separately. Standard procedures for air-and bone-conduction 

pure-tone audiometry with and without masking have been published by the British 

Society of Audiology [9]. While pure-tone audiometry provides detailed information 

about an individual’s hearing ability, using all collected pure-tone thresholds (PTTs) 

would generate a multitude of data. Previous studies of ARHI divided study participants 

into cases and controls depending on hearing ability [10] or recruited individuals with 

particularly extreme age-related hearing phenotypes [6] to increase effect size and 

therefore statistical power. In this study, we chose to measure hearing ability as a 

continuous trait rather than comparing affected (“cases”) and unaffected (“controls”) 

individuals and thereby retaining maximal hearing information and sample. Due to the 

choice of measuring ARHI in the population, only one third of the sample met the 

diagnostic criteria for mild to moderate hearing loss. It might therefore be inappropriate 

to refer to the phenotype under study as ARHI. Accordingly, the phenotype was 

referred to as hearing ability with age, rather than ARHI. 

 

There were limitations to our data collection, like the lack of bone conduction testing 

and a sub-optimal testing environment. To limit their influence subjects with reported 

forms of conductive HL were excluded from the analysis. In addition, ambient noise 
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levels were monitored on a regular basis to ensure compliance with BSA standards [9]. 

Despite these limitations, test results were highly repeatable with a mean difference of 

∆PTA=2.082 dB HL within subjects having performed the test twice with a mean 

difference of 16 months between both test dates. According to previous research [11] 

in the Beaver Dam cohort the odds of hearing loss increases by a factor of 1.88 for 

every 5 years of age (OR=1.88, 95% CI:1.80-1.97). Furthermore, the noticed change of 

2 dB HL over 16 months appeared low compared to the PTA standard deviation from 

the mean (SD=10.3207) measured for all 1309 particpants (chapter 2, Table 4), ie only 

0.2 SD.  

 

Twins were chosen as the study sample. Twins in general and from the TwinsUK 

cohort in particular have been shown to be comparable with the general singleton 

population in cardiovascular mortality [12] and other continuous traits [13], respectively. 

This supports their suitability in studying age related traits. Same gender twins are of 

great advantage in heritability studies [14,15], which dissect phenotypic variance into 

genetically and environmentally determined variance, but less so in genome-wide 

association studies, where the lack of genetic variance within monozygotic twin siblings 

reduces total variance and decreases statistical power for the study sample.  

 

Various summary measures of PTTs have been created which are used to varying 

degrees in current research of ARHI. Severity of hearing difficulty has traditionally been 

measured by averaging measured PTTs over various pitches [16], referred to as pure-

tone average (PTA) or better ear hearing threshold level (BEHL)[17]. Further summary 

methods included the calculation of principal components[18] or standardised Z-scores 

[19].  

 

In accordance with the pathology described by Schuknecht and Gacek [3] 

sensorineural ARHI manifests initially in the higher frequencies of the human hearing 

spectrum and progresses eventually to the medium and lower frequencies, thereby 

causing a characteristic downslope in the audiogram for the higher frequencies (>2 

kHz). We considered the different pure-tone audiometry summary methods listed 

above in their suitability to best measure this characteristic HL in ARHI. While 

averaging methods like the PTA and BEHL do not provide important information about 

the shape of the audiogram, standardised hearing Z-scores only reflect standard 

hearing ability in subjects below the age of 70 years. Principal components (PCs) do 

reflect the shape of the audiogram and can be calculated for all age groups. It was thus 

decided to use PCs as the main measure of hearing ability in this study of ARHI. 
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Together, the first two PCs explained 70.3%-76.0% of variance in PTTs in the female 

TwinsUK samples (n=1309). In keeping with previous reports [18], PC1 was found to 

represent the horizontal threshold shift in PTTs (previously referred to as “magnitude” 

[18]), while PC2 reflected the slope of the audiogram. Using principal component 

analysis two major shape features of the audiogram could thus be measured without 

having to separate samples into subgroups of specific audiometric shapes as done 

previously [8,20,21,22] and thereby reduce sample size for the different subsamples. A 

comparison of mean PTTs for groups of TwinsUK volunteers showing low, medium or 

high PC1 or PC2 values, respectively, revealed that a high PC1 value corresponded 

with raised PTTs over all frequencies and a high PC2 value corresponded to a high 

frequency sloping HL. Despite their advantages in measuring hearing ability in respect 

to ARHI, PCs are not measured on a decibel scale and thus more difficult to interpret. 

Furthermore, PC values are specific for the hearing cohort calculated in and would 

need to be standardised (i.e. by rank- transformation) before comparing values 

between cohorts. 

 

Hearing ability in TwinsUK females was generally better than in samples of comparable 

gender, ethnicity and age-range [17], with 33.60% of our participants showing at least a 

mild hearing difficulty (PTA≥25 dB HL). This observation might underlie a general 

selection bias resulting from the voluntary recruitment strategy used by the TwinsUK 

register, which favoured more mobile and thus healthier volunteers, who could attend 

our research facilities at St. Thomas hospital, London. However, the cohort has been 

shown to be representative of the UK singleton population in various medical and 

demographic measures [13] as well as for genetic factors [23,24,25].other population 

based studies of ARHI often recruit subjects passed on subjects registered in a specific 

residential area [8,26]. In addition, it should be mentioned that we rated HL according 

to the grades of hearing impairment published by the WHO [16] (mild HL: PTA>25 dB 

HL), while hearing descriptors as suggested by the British Society of Audiology would 

have been more stringent (mild HL: PTA>20 dB HL) [9], increasing the prevalence of 

mild HL.  

 

As seen for other age related traits, variation in hearing ability in our sample increased 

with age. Previous studies reported ARHI to be associated with exposure to 

environmental risk factors including noise exposure, gender, smoking and alcohol 

consumption and cardiovascular diseases [4,5,27,28,29]. Association with 

environmental risk factors (otitis media during childhood, noisy handiwork and 

occupational noise exposure) in the females presented here explained only a minor 
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fraction of variance in PC1 and PC2 (2-3% of variance explained, respectively). This is 

likely due to the generally low exposure of these subjects to previously determined 

environmental risk factors. 

Heritability study 

Previous heritability studies in the elderly have shown variance in hearing detection 

thresholds to be determined by both genetic and environmental factors, with heritability 

estimates for ARHI varying widely between 25-100% [8,30]. In addition, heritability 

estimates of ARHI have shown differences between genders (heritability estimates: 

males= 47.4- 58.4%; females= 75% (95% CI: 67- 81) [17,30]). A similar gender bias 

has been observed for other traits [31], indicating perhaps different underlying 

aetiologies or ages of onset for both sexes. Heritability analyses of ARHI in the studied 

samples showed a moderate heritability for ARHI (A%=56-61). In general, the AE 

model, taking into account additive genetic effects and environmental exposure 

unshared within twin siblings, provided the best model fit under the principle of 

parsimony. This suggests that shared environmental factors play only a minor role in 

hearing ability at this age (age range: 40-86 years, mean age± SD: 61.64±8.48). 

Slightly higher heritability estimates (A=75% (95% CI: 67-81)) had been determined for 

a similar Finnish twin cohort (100% female; age range: 63-76 years) [17], supporting 

our findings. The increased heritability estimates seen in the Finnish twin sample might 

be influenced by reduced phenotypic variance, limited environmental exposure to risk 

factors for hearing loss and the rather narrow age range of this sample (age range: 63-

76 years).  

 

In TwinsUK, the heritability of hearing ability as measured by PC1 and PC2 increased 

with advanced age (∆A%=9-20). This increase in heritability was positively correlated 

with an increase in phenotypic variance observed for the higher age groups. In 

contrast, a study on heritability of ARHI in male twins reported an increased effect of 

environmental exposure for higher age groups [30]. The difference in results might be 

influenced by the increased noise exposure (both occupational and recreational) and 

differences in underlying aetiology between the two genders. The observation that 

heritability estimates increased with age could be used to determine the optimal age at 

which heritability would be maximised and incorporate this into future recruitment 

strategies for genetic association studies of this trait. Unfortunately, this was not 

possible in the current study due to limited sample size in the highest age group (age 

range: 66-86 years), but should be taken into consideration for future studies of ARHI.  
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The increase in heritability with increasing age as reported here goes against the 

theory of a cumulative effect of environmental exposure on hearing impairment. Similar 

results have been found for cognitive function. Early research showed that genetic 

effects had a greater impact on cognitive function in the elderly [32]. However, 

longitudinally studies of age related cognitive function in the very elderly population 

(>70 years) showed that the change in cognitive function within subjects was 

increasingly influenced by environmental factors [33,34]. This change in heritability in 

the oldest of the old is further reflected in the low heritability (h2=23-26%) measured for 

age of death [35]. Due to the lack of very elderly subjects (age range: 40-86 years) and 

longitudinal hearing data in this sample the change in heritability for very elderly 

subjects could not be determined, but would be interesting to investigate in future 

analyses.  

Web-based speech-in-noise phenotype 

The common disease common variant hypothesis proposes that complex diseases with 

a moderate to high prevalence in the population might be caused by genetic variants 

equally common in the population. In line with the moderate heritability estimates in 

TwinsUK, it was decided to test for an association between genotype and hearing 

ability with age in a genome-wide association study. Previous studies aimed at 

determining causative genetic variants in ARHI have yet failed to reach genome-wide 

significance thresholds [6,10,18,36,37]. This might be due to the relatively low sample 

sizes used in each of these studies. Pure-tone audiometry is the accepted gold 

standard hearing test to determine a hearing loss, however, the test procedure may be 

relatively lengthy and requires specialised personal and equipment to administer the 

test. This naturally limits the number of samples that can be collected for research 

studies in a given timeframe. A quick hearing check that could be performed from at 

home and gave a direct measure of hearing might facilitate a faster collection of larger 

datasets and help to recruit less mobile subjects. 

Speech-in-noise test validation 

A web based hearing test developed to measure speech perception in background 

noise [38,39,40] and kindly provided for this research by Action on Hearing Loss 

(http://www.actiononhearingloss.org.uk) was chosen to collect hearing data that might 

be used to capture ARHI for future GWAS. Difficulty understanding speech in a noisy 

environment (i.e. in a group of subjects or with the TV on in the background) is one of 

the first symptoms of ARHI reported by most individuals. To determine the suitability of 

this novel test to correctly diagnose ARHI, sensitivity and specificity to diagnose 

moderate hearing loss (defined as a PTA≥40 dB HL) was investigated in 448 subjects 
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having completed both pure-tone audiometry and the web based test. The web based 

hearing test showed 88.24% sensitivity and 80.05% specificity at a speech reception 

threshold (SRT) of -9.25 dB to correctly identify moderate HL in our sample. Despite 

the moderate sensitivity and specificity determined for the speech in noise test, it 

should be considered that both hearing tests (pure-tone audiometry and speech-

perception in noise) might measure different aspects of hearing (namely pitch 

perception in quiet and speech perception in noise). However, it should be mentioned 

that speech perception difficulties represent a symptom of ARHI and might be 

influenced by different pathologies than pitch perception as measured in the 

audiogram. For example individuals diagnosed with auditory neuropathy might present 

with normal pure-tone detection thresholds but strong speech-perception impairment. 

In addition, access to this test via the world-wide-web might have prevented less 

technically advanced subjects from participating in this part of the study. In conclusion, 

the speech-in-noise test presents a good surrogate for pure-tone audiometry to collect 

large datasets for hearing studies. However, subjects being diagnosed with hearing 

loss according to their SRT value should seek further hearing assessment using pure-

tone audiometry. 

Bivariate Heritability 

Heritability estimates for speech perception in noise were significantly lower than 

heritability estimates for PC1 and PC2. This might indicate that ability to understand 

speech in noise might be strongly influenced by environmental exposure, while a 

reduction in pure-tone perception with age is more strongly determined by genetic 

make up. It would have been interesting to test for association between speech 

perception in noise and exposure to environmental risk factors (i.e. noise exposure), 

however, information on environmental exposure was only available for a minority of 

subjects having completed the web based test. Nevertheless, this possible association 

might be further investigated in future studies. 

 

Due to the moderate (~80%) specificity and sensitivity of the web based test to 

diagnose hearing loss (PTA≥40 dB HL), it was hypothesized that variance in tests 

measuring the same trait might be explained by shared genetic factors. To determine 

the extent of this shared variance, a bivariate heritability analysis was conducted. 

Genetic correlations between PTAs and SRTs ranged from r=-0.7 and r=-0.4 and 

explained 68.8% and 36.8% of phenotypic correlation between both measures. Similar 

findings were reported for a Finnish twin sample (100% female; age range: 63-76 

years), which measured hearing levels as BEHLs and better ear speech recognition 

threshold levels (BESRLs). BESRLs and BEHLs shared a genetic component, which 
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explained 54% (95% CI: 43-64) of the variance in BESRLs. Nevertheless, comparison 

with our results was limited by the differences in hearing measures, the different choice 

of bivariate heritability models and samples between both studies. 

 

Having determined a shared genetic component between measures of pitch perception 

and speech perception in noise, we decided to investigate genes associated with the 

SRT as an approach to better understand ARHI. It was decided that both SRTs and 

PCs could both be used as hearing measures for genome-wide association studies 

(GWASs) of ARHI. Using both phenotypes might further increase sample size and 

power to detect significant associations. Alternatively, samples with either SRT or PC 

measures of hearing might serve as replication samples for each other in GWASs. 

While both tests likely measure different aspects of hearing loss they might also 

complement each other.  

Genome-wide association studies of hearing ability with age 

A linear mixed effect regression was applied to determine genetic variants significantly 

associated with hearing ability in mature female subjects of the TwinsUK registry. Four 

continuous hearing traits were investigated: PC1 (representing the magnitude of the 

audiogram), PC2 (reflecting the audiogram’s slope), the PTA and speech in noise 

perception as determined in the web-based test. To determine whether genetic variants 

each of low effect size might cluster in specific genes, an additional gene, rather than 

SNP, based association study was performed based on the original GWAS results. In 

addition, it was investigated whether the genetic associations determined in the GWAS 

were enriched for specific gene ontologies. Significant gene enrichment (False 

discovery rate≤ 0.05) was observed for ephrin receptors, cell-cell interactions and gene 

silencing ontologies. 

No genome-wide significant (p≤ 5x10-8) associations were found. This is a common 

phenomenon in the study of common traits, which are assumed to be caused by 

multiple common genetic variants most likely with small or modest effect sizes on the 

trait [41]. Current genotyping chips are designed to cover tagging SNPs giving maximal 

haplotype information according to the HapMap project. GWAs rely on this fact that 

associated tagging SNPs are in LD with the causal variants. Rare causal variants with 

potentially large effect sizes display only low LD with the more common tagging SNPs, 

making GWAs underpowered to detect these associations [42]. Common causal 

variants, on the other hand, are more likely to be in strong LD with associated tagging 

SNPs and thus more suitable to be detected using GWA. However, the allelic 

frequency spectrum of common causal variants (minor allele frequency (MAF)≥ 5 %) 
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implies that these variants have only a minor effect on fitness and thus rather moderate 

to low effect sizes on the trait [41]. Strategies suggested to increase statistical power of 

GWAS include the collection of larger samples, the study of isolated or founder 

populations, or shifting focus from common (MAF≥ 5%) to rare single nucleotide 

polymorphisms (SNPs) (MAF< 5%) and other genetic variants, which might have a 

larger effect size on the trait [41].Particularly, large sample sizes will be required to 

determine genetic associations with even modest effects on the trait. Good examples 

of this have been demonstrated for common traits like height [43] and body mass index 

[44]. The number of significant genome-wide associations in GWAS of these traits were 

shown to be proportional to the sample size studied [42] with significant associations 

seen to  double by using twice the sample size.  

 

GWAS meta-analysis 

To increase the sample size and therefore statistical power to identify association with 

common genetic variants, a meta-analysis of GWAS of hearing function from 8 

samples was conducted. This analysis was performed in collaboration with the G-EAR 

consortium, which collected hearing and genotyping data originating from 7 isolated 

populations. The majority of GWAS analyses used in this GWAs meta-analyses were 

conducted by the G-EAR consortium previous to this collaboration [37,45] and kindly 

provided for collaboration with TwinsUK. The eight samples included: one female twin 

sample of Northern European origin (TwinsUK), 6 samples collected from isolated 

populations of Southern European origin (from Italy and Croatia) [37,45] as well as one 

sample of isolated populations situated along the Silk Road [46]. The meta-analysis 

presented an association between hearing ability and genetic variation as measured in 

4939 individuals of different ethnic origin and population structure. A single SNP in 

intron 6 of the salt inducible kinase 3 gene was found genome-wide significantly 

associated with PC2 (p=3.7 x10-8). Often in GWAS, multiple neighbouring SNPs are 

identified significantly associated with a trait due to underlying linkage disequilibrium 

with the marker SNP. The single SNP association determined for SNP rs681524 did 

not show this pattern. Thus the veracity of the finding was questionable. It may have 

been a single false positive representing a systematic error in genotyping or, more 

likely, imputation, across the study samples. SNP rs681524 was genotyped in the 

TwinsUK sample and imputed in all other samples included in the GWAS meta-

analysis. Imputation accuracy determined as genotype concordance in two subsamples 

from Friuli Venezia Giulia and Carlantino was high (0.94-0.97). In addition, genotyping 

accuracy determined in TwinsUK reached a genotype concordance of 0.99. These 

findings contradicted false positive association due to an underlying systematic error. It 
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was further hypothesised that the lack of SNPs in LD with rs681524 might likely be due 

to an exceptional LD structure in this region. Examination of LD at the respective locus 

in three genetic panels (HapMap version 2 CEU panel using LocusZoom [47] , 1000 

Genomes [48] and the UK10K TwinsUK whole genome sequencing sample) reported 

exceptionally low correlation of rs681524 with surrounding SNPs, supporting this 

hypothesis. This genetic architecture observed would usually be expected for rare 

genetic variants commonly defined as having a minor allele frequency of < 5% in the 

measured populations. Despite an overall relatively low frequency (≤ 8%) of the minor 

C allele at rs681524 in all 8 populations, it could not be considered rare. 

 

The forest plot at rs681524 confirmed a consistent direction of effect for all included 

samples, which was significant (p≤0.05) in 3 of the 7 samples (TwinsUK, Friuli Venezia 

Guilia and Split). Heterogeneity between study samples could not account for this 

association (I=0.0, p=0.481). Thus there is some evidence that the association 

between hearing PC2 and rs681524 is likely a real one, which was reflected in all 

included study samples. The high number of genetic loci tested for association with 

phenotypes in GWAS today, increases the likelihood of false positive significant 

association by chance. Replication of association with a genetic variant in an 

independent sample is therefore considered standard to support true positive 

association. To decrease the likelihood of false positive association, stringent 

significance thresholds are applied (p≤5 x10-8) based on Bonferroni corrections for 

multiple testing. However, these stringent thresholds will also exclude possible true 

positive associations of lower significance. It has even been suggested that the 

inclusion of less significant true positive associations might account for the missing 

heritability [49]. A recent study in the ARHI cohort reports that all GWAS SNPs 

collectively accounted for 22% of the phenotypic variance in ARHI [26].  

Biological plausibility of salt inducible kinase 3 

Due to the significant association between PC2 and a marker SNP in SIK3, it was 

decided to further investigate the biological plausibility of this gene. Salt inducible 

kinases belong to the family of cAMP activated serine threonine kinases [50]. Three 

family members have been described so far [50], and isoforms 1 and 2 have been the 

main focus of research. Sik1 has been shown to be expressed in the inner ear, in the 

sensory epithelium of the vestibular system, where it is thought to be involved in the 

formation of endolymphatic hydrops via interaction with phosphodiesterases [51]. Both 

Sik1 and Sik3 control histone deacetylases via phosphorylation and nuclear export 

[52,53,54]. The majority of Sik3 knockout mice (Sik3-/-) die at birth. Surviving pups 

present with skeletal abnormalities, reduced bodyweight and dwarfism. However, 
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abnormalities in the hearing ability of (Sik3-/-) mice have not been reported yet. Sik3 is 

assumed to regulate cholesterol bile acid homeostasis and lipid storage size and is 

essential for chondrocyte hypertrophy [53,55] and has recently been shown involved in 

the formation of regulatory macrophages [56]. 

 

Due to its significant genome-wide association with PC2 and the involvement of other 

salt-inducible kinases (SIKs) in the inner ear [51], the SIK3 gene was considered a 

good candidate gene. Accordingly, it was decided to investigate the expression of Sik3 

in the inner ear of mouse models at different stages of development. 

Immunohistochemistry in mouse models  

Immunohistochemistry of Sik3 in the mouse inner ear showed expression of the gene 

in various structures of the inner essential for hearing ability including Inner and outer 

hair cells, a subgroup of glial cells in the spiral ganglion and resident macrophages in 

the stria vascularis. Expression was examined at three developmental stages, the day 

of birth (P0), 5 days postnatal (P5) and at 4 weeks of age (4w). While Sik3 was only 

expressed in hair cells during early development (P0 and P5), expression remained 

present up to 4 weeks of age in the spiral ganglion, stria vascularis and Reissner´s 

membrane. This might indicate differential function of this protein in different cells of the 

inner ear and different points in development. Whereas sik3 might serve a 

maintenance function in cells of the spiral ganglion, the expression profile reported 

here suggests a developmental function of this gene in hair cells. Although tempting to 

suggest a putative mechanistic link between Sik3 expression and hearing function 

throughout life, these suggestions should be tentative until more information can be 

gained from sik3 knockout mice. In conclusion, we demonstrated the first genome-wide 

significant association between salt inducible kinase 3 and hearing function, with the 

expression profile of this gene in mice cochlea indicating a putative important function 

in hearing. 

Further GWAS meta-analysis results 

Despite the large overlap in samples between the original GWAS meta-analysis of 

hearing function in the G-EAR consortium conducted by Girotto et al [37] and the meta-

analysis presented here of the G-EAR samples plus TwinsUK, only few associations 

were replicated in the current study. One of these was the association between PC1 

and a SNP in the vicinity of metabotropic glutamate receptor type 8 (rs2687481, 

p=1.07x10-7). Glutamate presents a major excitatory neurotransmitter in the central 

nervous system and the inner ear. A previous GWAS on ARHI found GRM7, another 
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close member of this family of glutamate receptors, strongly associated with hearing 

[6]. Although we could not replicate this exact association with GRM7, the association 

of two members of the glutamate receptors in independent studies of hearing function 

and ARHI supports an essential function of these receptors in hearing. 

 

The low overlap of top associated SNPs between the original GWAS meta-analysis 

[37] and the meta-analysis presented here might be indicative of multiple genetic 

variants contributing to hearing function, each with only moderate effect on the trait. 

Replication of these associations in an independent sample is considered the gold 

standard validation of true positive associations, but difficult to achieve with low to 

moderate sample sizes. Populations included in the original meta-analysis were 

ethically more homogenous [37], being collected from Southern European (from Italy 

and Croatia) isolated populations, compared to the current meta-analysis, which 

included an additional sample of Northern European origin and a selection of isolated 

populations situated along the Silk Road. 

Epigenetic Analysis 

 Many age-related common traits show moderate to high heritability estimates. 

However, despite a few exceptions like age-related macular degeneration [57], genetic 

variants genome-wide significantly associated with age-related traits as identified in 

GWAS currently explain only a minority of phenotypic variation [41]. While the genetic 

make up of an individual is determined at conception, epigenetic modifications can 

occur throughout life and have been shown associated with environmental exposure 

[58,59]. Epigenetic marks have been identified as the cause of various disorders (i.e. 

various forms of cancers [60], Alzheimer’s disease[61,62] and Rett syndrome [63]) and 

have been shown to change throughout life associated with various environmental 

factors [59]. Previous studies have shown that epigenetic differences within 

monozygotic twin pairs may explain phenotypic discordance [64] with MZ twin siblings 

leading discordant lifestyles showing the strongest epigenetic differences 

[59].Furthermore, epigenetic modifications as a cause of disease are particular 

interesting due to their disease mechanisms and might help identify novel targets for 

treatment due to their potential reversibility [65]. 

Epigenome-wide association study 

In the epigenetic analysis of hearing ability, two study designs were applied: an 

epigenome-wide association study (EWAS) and a MZ co-twin analysis to take 

advantage of MZ twins having identical DNA code and thus adjust for any differences 
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DNA code may make on epigenetic marks. Firstly, all samples with available pure-tone 

audiometry and DNA methylation measured using the Illumina HumanMethylation27K 

array [66] (n=115) were used in an EWAS in which, analogous to GWAS association 

with ~ 24,000 epigenetic marks were examined across all autosomal chromosomes. 

Despite the relatively small sample size available for the EWAS, one CpG probe 

(cg01161216) in the promoter region of the transcription factor 25 (TCF25) gene was 

associated reaching suggestive epigenome-wide significance (considering a Bonferroni 

correction for 14,495 genes) in the discovery EWAS. This finding was replicated in 

females from the TwinsUK registry (n=203) unrelated to the discovery samples with 

DNA methylation measured using the Illumina HumanMethylation 450k array [67]. An 

additional technical replication was performed using an alternative method [68] to 

quantify DNA methylation (n=46). The association was not explained by an underlying 

association with age, underlying genome-wide association with genetic variants or 

blood cell heterogeneity in the blood samples used to measure DNA methylation. 

 

Methylation levels at the TCF25 promoter were reduced in samples with low hearing 

ability. The effect of DNA methylation at TCF25 on the expression of this gene was 

determined using the available expression data available for the same twins previously 

used in the MuTHER study [69]. This sample comprised 172 individuals. DNA 

methylation at TCF25 was negatively correlated with gene expression (r=-0.02), a 

finding, which is in accordance with the hypothesis that DNA methylation at gene 

promoters represses gene expression. 

 

TCF25, also referred to as human homologue of NULP1, belongs to the family of helix-

loop-helix transcription factors and encodes a protein with a novel transcriptional 

repressive domain, which can repress the transcription of other genes, particular the 

serum response factor [70]. This gene has been further shown to be expressed in 

mouse dorsal root ganglia during embryonic development [71]. The serum response 

factor is involved in cell-cycle regulation, apoptosis and cell differentiation and might 

thereby affect ageing processes in the inner ear. Due to the wide expression and 

transcriptional regulation of TCF25 on other genes, suggesting a clear mechanistic link 

is problematic. Further studies in model organisms (i.e. mice or rats) investigating 

changes in DNA methylation at TCF25 throughout development and ageing and their 

effect on hearing function will be required to shed light on putative mechanistic links. 
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Monozygotic twin discordance study 

All MZ twin pairs (n=21 pairs) selected from the EWAS discovery sample were selected 

for an additional co-twin discordance study, where trait discordance within twin pairs 

was compared to inter-twin pair DNA methylation differences at CpG sites epigenome-

wide. MZ twin siblings offer a particular advantage in the second study design as they 

are perfectly matched for age, gender and genetic variation. In addition, most twin pairs 

show a high proportion of shared environmental exposure compared to normal siblings 

or unrelated individuals. Although discordance in hearing ability was not great within 

our sample, strong associations were observed (p≥ 2.5x10-5). One of the most strongly 

correlated probes for PC1 discordance was found in the promoter of the myocyte 

enhance factor 2 D (MEF2D) gene. The myocyte enhancer factor family of transcription 

factors is involved in neuronal development and differentiation under regulation of class 

2 histone deacetylases. The associated gene (MEF2D) is expressed in mouse cochlear 

neurons and sensory cells at P15 and was diminished in IGF knockout mice showing 

sensorineural hearing loss [72]. Reduced expression of MEF2D due to DNA 

methylation could result in sensorineural hearing loss in humans, as reported for 

mouse models [72]. Discordance for PC2 was most strongly correlated with differential 

methylation at CCNDBP1, which represses transcriptional activity of cyclin D1 and has 

been shown to directly interact with Sirt6 [73], a class 3 histone deacetylase linked to 

cancer and ageing [74]. There were limitations to the MZ discordance analysis, like the 

limited discordance in hearing ability within the available twin siblings. In addition, we 

lacked subjects to replicate our findings in an independent twin sample. Future studies 

should thus focus on the collection of particular hearing discordant elderly twin siblings, 

to determine whether epigenetic differences could account for their phenotypic 

discordance. A manuscript describing the epigenetic analyses has been submitted for 

publication.  

 

Conclusion 

The findings presented here and in previous studies show that ARHI is dependent both 

on environmental exposure and genotype. This PhD thesis did not only generate an 

excellent new cohort to study age-related hearing impairment in the future, but also 

obtain the first genome-wide significant association with hearing function and 

demonstrate associations between hearing ability with age and epigenetic 

modifications.  

Despite moderate heritability estimates determined for ARHI in this and previous 

studies, genome-wide significant associations in GWAS analysis of ARHI could not be 
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obtained due to limited sample sizes of separate analysis previously. We were able to 

show by combining our data in collaboration with other researchers that variation in 

hearing function can be explained by association with common genetic variants. 

However, even larger collaborations will be essential to achieve sufficient sample sizes 

required. The association of SIK3 with hearing function had not been predicted 

previously, supporting the use of GWAS analysis to determine novel genes involved in 

this common complex trait. Immunohistochemistry of sik3 in mouse cochlea supports 

an important function of this gene in development and maintenance of various cochlear 

structures, including inner and outer hair cells.  

Furthermore, we were the first to demonstrate an association between DNA 

methylation in the promoter of TCF25 and hearing ability with age. This result was 

particularly exciting considering the limited sample size, indicating that these 

modifications might have a strong enough effect on hearing ability with age to be 

determined even in moderately sized samples. We hope that these findings will 

motivate other researchers to further investigate the possible effects of epigenetic 

modifications of hearing ability with age and thereby open new doors to better 

understand this common trait.  

Future studies 

Future studies of ARHI should ideally account for three factors (genotype, epigenetic 

modifications and environmental exposure) and interactions of the same. Combining 

and expanding existing datasets will be essential to reach the large sample sizes 

required for these complex studies. 

Environmental factors 

According to our heritability estimates, 66-80% of variance in speech perception in 

noise was determined by environmental exposure not shared within twin pairs. It would 

there for be interesting to investigate associations with environmental exposure and 

speech perception in future studies.  

Genetic factors 

Current studies have mainly focused on common genetic variants in ARHI and hearing 

function. We were able to show that genome-wide significant associations can be 

determined with sufficiently large sample sizes. However, even larger sample sizes 

might be required to explain the moderate to high heritability of this common complex 

trait. In addition, the increased availability of whole genome sequencing data in hearing 

cohorts will facilitate investigations into the association with rare variants.  
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Epigenetic factors 

To our knowledge, we were the first to demonstrate the association between cytosine 

DNA methylation and ARHI epigenome-wide and hope that our results will motivate 

other researchers to investigate epigenetic factors in ARHI. Future studies should focus 

on larger sample sizes, different epigenetic modifications (ie histone methylation and 

acetylation) and higher epigenome-wide coverage. Epigenetic changes have been 

shown associated with environmental exposure. In ARHI the association between 

epigenetic modifications and environmental risk factors like noise exposure could 

provide a link between environmental assault and changes in gene expression. 

Furthermore, future studies should build upon the MZ discordance analysis by 

collecting of specifically hearing discordant twin pairs. Follow up of the differentially 

methylated regions associated with hearing ability with age in model organisms could 

give further insight into the biological mechanisms of these genes. In addition, model 

organisms could be kept under equal environmental conditions, thereby controlling for 

environmental exposure, which is currently impossible in humans.  
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Appendix chapter 2  

1. Copy of hearing questionnaire 

Learning, memory and hearing questionnaire 

Healthy Ageing Twin Study 

Your hearing: 

2.1 Do you have any 
difficulty with your 
hearing? 

 No  Yes  Not known 

2.2 Have you ever had 
an ear disease? 

 No  Yes  Acute ear inflammation in 
childhood (>3 times) with pain, discharge. 

 Not known 
 

(> more than)   Yes  Acute ear inflammation as an  
adult (>3 times) with pain and discharge 

 Not known 
 

   Yes  Chronic ear inflammation with  
      a feeling of deafened ear, discharge  
      from ear (lasting  >3 months) 

 Not known 
 
 

2.3 Or an ear operation?  No  Yes  Plastic tube  
      through eardrum 

 Yes  Other 
      eardrum operation 

 Yes  Ossicle operation 

 Yes  Infection in bones 
      behind ear (Mastoiditis) 

 Yes Cholesteatoma of 
      middle ear 

 Yes Otosclerosis 
      (broken ossicle) 

 R 
 

 R 
 

 R 

 R 
 

 R 
 

 R 
 

 L 
 

 L 
 

 L 

 L 
 

 L  
 

 L 

 
 

 Not known 
   

 Not known 
  

 Not known 

 Not known 
 

 Not known 
 

 Not known 
 

2.4 Have you ever 
experienced an 
explosion or gunfire 
which caused immediate 
HL or tinnitus? 

 No  Yes  Not known 

2.5 Have you been frequently exposed to loud noise in your leisure time without using 
protection. (Frequently would be more than once a month over several years) 
  No  Yes – loud music 

 Yes – noisy handiwork / power tools 
 Yes – gunshots 

 

 Not known 

2.6 Do you wear a 
hearing aid? 

 No  Yes  
 

 Not known 

3.1 What best describes your main 
occupation throughout most of your life? 

 Professional or managerial  
 Non-manual or clerical  
 Manual 
 Housewife 
 Student 
 None 

3.2 Have you ever worked in a place that 
was so noisy you had to shout to be heard? 
 

 No, never  
 Yes, for less than 1 year  
 Yes, for 1-5 years  
 Yes, for more than 5 years 
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2. Self reported HL 

 

 

 

  

10
7.

5
5

2.
5

0
-2

.5
-5

P
C

1

no self-reported HL self-reported HL (total)

PC1 values by self-reported hearing loss

10
7.

5
5

2.
5

0
-2

.5
-5

P
C

2

no self-reported HL self-reported HL (total)

PC2 values by self-reported hearing loss

 age-adjusted PC1 

(mean±SD) 

age-adjusted PC2 

(mean±SD) 

n 

no self-reported HL -0.5141  

±1.6570 

-0.1141    

±1.2845 

881 

self-reported HL 1.0515  

±2.0165 

0.3003      

±1.4790 

347 

total  -0.0717 

±1.9008 

0.0030 

±1.3546 

1228 

Student’s t-test p<0.000 p<0.000 - 



 256 

3. Exposure to otitis media during childhood 

 age-adjusted PC1 

(mean±SD) 

age-adjusted PC2 

(mean±SD) 

n 

unexposed -0.0689 

±1.8854 

0.0082  

±1.3628  

996 

exposed 0.2848  

±2.0200 

-0.0885    

±1.3166 

127 

total  -0.0289  

±1.9034 

-0.0027 

±1.3574 

1123 

Student’s t-test p=0.0631 p=0.4385 - 
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unexposed exposed (total)

PC2 values by exposure to otitis media in childhood
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4. Exposure to otitis media in adulthood 

 age-adjusted PC1 

(mean±SD) 

age-adjusted PC2 

(mean±SD) 

n 

unexposed -0.0773    

±1.8848 

0.0060    

±1.3616 

1075 

exposed 0.6497   

±1.8545  

0.0642    

±1.3794 

61 

total  -0.0383    

±1.8895 

0.0091    

±1.3620 

1136 

Student’s t-test p=0.0041 p=0.7493 - 
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PC1 values by exposure to otitis media in adulthood
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unexposed exposed (total)

PC2 values by exposure to otitis media in adulthood
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5. Exposure to chronic otitis media 

 age-adjusted PC1 

(mean±SD) 

age-adjusted PC2 

(mean±SD) 

n  

unexposed -0.0690 

±1.8795 

0.0101 

±1.3574 

1268 

exposed 0.7448 

±1.7267 

-0.4087 

±1.2647 

20 

total  -0.0564 

±1.8793 

0.0036 

±1.3566 

1288 

Student’s t-test p=0.0499 p=0.1580 - 
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PC1 values by exposure to chronic otitis media 

10
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5
5

2.
5

0
-2

.5
-5

P
C

2

unexposed exposed (total)

PC2 values by exposure to chronic otitis media 
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6. Exposure to eardrum operations 

 age-adjusted PC1 

(mean±SD) 

age-adjusted PC2 

(mean±SD) 

n 

unexposed -0.0965    

±1.8647 

0.0109 

±1.3541 

1268 

exposed 1.0371  

±1.6495 

-0.0267   

±1.5196 

26 

total  -0.0738    

±1.8669 

0.0101    

±1.3569 

1294 

Student’s t-test p=0.0019 p=0.9015 - 
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7. Exposure to explosions with subsequent sudden HL 

 age-adjusted PC1 

(mean±SD) 

age-adjusted PC2 

(mean±SD) 

n 

unexposed -0.0706   

±1.8777 

-0.0115    

±1.3559 

1267 

exposed 0.6238  

±2.0718 

0.5927 

±1.2808 

28 

total  -0.0556    

±1.8839 

0.0016  

±1.3567 

1295 

Student’s t-test p=0.0897 p=0.0200 - 
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8. Exposure to loud music 

 age-adjusted PC1 

(mean±SD) 

age-adjusted PC2 

(mean±SD) 

n 

unexposed -0.0362    

±1.8461 

-0.1709 

±1.3235 

336 

exposed -0.1590 

±1.7730 

0.1031     

±1.3274 

92 

total  -0.0626 

±1.8293 

-0.1120    

±1.3276 

428 

Student’s t-test p=0.5606 p=0.0814 - 
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9. Exposure to noisy handiwork 

 age-adjusted PC1 

(mean±SD) 

age-adjusted PC2 

(mean±SD) 

n 

unexposed -0.0169  

±1.8655 

-0.1604 

±1.3297 

352 

exposed -0.3503  

±1.7401 

0.0619  

±0.9924 

12 

total  -0.0279   

±1.8602 

-0.1531   

±1.3195 

364 

Student’s t-test p=0.5274 p=0.4652 - 
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10. Exposure to gunshots 

 age-adjusted PC1 

(mean±SD) 

age-adjusted PC2 

(mean±SD) 

n 

unexposed -0.0132  

±1.8534  

-0.1548    

±1.3229 

355 

exposed 0.7209  1.7673 1 

total  -0.0112 

±1.8512 

-0.1494 

±1.3249 

356 

 

  



 264 

11. Exposure to noisy leisure activities 
(loud music, noisy handiwork and gunshots combined) 

 age-adjusted PC1 

(mean±SD) 

age-adjusted PC2 

(mean±SD) 

n  

unexposed -0.0582  

±1.8912 

0.0012  

±1.3630 

1197 

exposed -0.1222 

±1.7685  

0.0653  

±1.3133 

98 

total  -0.0630    

±1.8816 

0.0060  

±1.3589 

1295 

Student’s t-test p=0.7322 p=0.6440 - 
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12. Exposure to occupational noise 

 age-adjusted PC1 

(mean±SD) 

age-adjusted PC2 

(mean±SD) 

n 

unexposed -0.0930  

±1.8736 

0.0189  

±1.3526 

1146 

exposed for less than 1 year 0.2967  

±2.0301 

0.1402 

±1.2385 

50 

exposed for 1-5 years 0.1137  

±2.0429 

-0.3605  

±1.3061 

50 

exposed to longer than 5 years 0.2914 

±1.7271 

-0.1490 

±1.4880 

53 

total  -0.0543  

±1.8818 

0.0021  

±1.3534 

1299 

ANOVA p=0.2205 p=0.1757 - 
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13. Occupation 

occupation age-adjusted PC1 

(mean±SD) 

age-adjusted PC2 

(mean±SD) 

n  

professional or managerial -0.2074  

±1.8878 

0.0812 

±1.3781 

478 

non-manual or clerical 0.0857  

±1.8720 

-0.0119  

±1.3748 

480 

manual 0.0463 

±1.7593 

-0.3399 

±1.3743 

103 

housewife -0.1304  

±1.9205 

0.0613  

±1.2484 

206 

student 2.3992  -1.8943  1 

none -0.4163 

±1.8809 

-0.0932  

±1.1546 

16 

total -0.0657  

±1.8799 

0.0057 

±1.3571 

1284 

ANOVA p=0.1209 p=0.0589 - 
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Appendix chapter 4  

Figure 47 Correlation of age at web-based hearing test with transformed SRTs 

This figure shows a scatter plot of chronological age at web-based speech-in-noise 
hearing test (in years) against transformed speech reception thresholds (SRTs). 
Chronological age at the test date explained 16.75% of the variance in transformed 
SRTs. Transformed SRTS decreased with increasing (coef=-0.000011 ± 6.34x10-6 se, 
p=0.000). A linear regression line (red line) was fitted to the dataset. 
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Figure 48 Histogram of original SRTs 

The histogram shows the distribution of SRTs in the sample as percentage of subjects 
from the complete sample with corresponding SRTs. 
 

Figure 49 Histogram of transformed SRTs 

The histogram shows the distribution of transformed SRTs in the sample as percentage 
of subjects from the complete sample with corresponding transformed SRTs 
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Figure 50 Histogram of age-adjusted SRT residuals 

The histogram shows the distribution of age-adjusted SRT residuals in the sample as 
percentage of subjects from the complete sample with corresponding age-adjusted 
SRT residuals. 
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Appendix chapter 5 

Table 43 Results of the gene-based association studies 

phenotype chr gene nSNPs gene start  

gene stop [bp] 

test 

p 

p  

(replication) 

  

SRT 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SRT 

2 FAM110C 

 
5 

31607 

36385 

65.2441266772 

3.80E-05 

0.2910 

1 COL8A2  

 
20 

36333432 

36338437 

201.3110873808 

1.24E-04 

0.0966 

1 ZMYM4  

 
6 

35507154 

35660132 

79.0004544011 

1.24E-04 

0.8560 

1 TEKT2  

 
18 

36322262 

36326463 

171.5698272259 

2.42E-04 

0.0782 

1 TRAPPC3  

 

21 36374759 

36387654 

176.2873038451 

2.43E-04 

0.1190 

1 ADPRHL2   

 

18 36327072 

36332120 

171.5698272259 

2.51E-04 

0.0771 

1 KIAA0319L  

 

4 35671677 

35795591 

34.3522913469 

2.87E-04 

0.2780 

1 MAP7D1    

 

19 36394389 

36419028 

157.9870006899 

2.92E-04 

0.1740 

17 SLFN11   

 

28 30701440 

30724833 

159.0352029007 

3.82E-04 

0.3940 

20 LOC400831  

 

47 1132097 

1136918 

215.5803736878 

3.91E-04 

0.1670 

10 PLEKHA1  

 

136 124124209 

124181856 

621.3856505814 

4.02E-04 

0.6880 

10 ARMS2    

 

72 124204168 

124206858 

332.5870657010 

5.83E-04 

0.4590 

3 MME      

 

58 156280129 

156384212 

267.2805620329 

5.92E-04 

0.1790 

1 EIF2C3    

 

26 36169358 

36294650 

237.0368090903 

6.10E-04 

0.4270 

1 PSMB2   

 

2 35841325 

35879730 

19.7681755964 

6.78E-04 

0.5750 

7 NT5C3  

  

77 33020266 

33068934 

624.0873663299 

6.85E-04 

0.8400 

7 FKBP9   

 

65 32963576 

33013067 

457.0516966390 

7.26E-04 

0.8540 

1 SFPQ    

 

6 35421787 

35431322 

61.8434006167 

7.36E-04 

0.7540 

6 ALDH8A1   

 

55 135280220 

135312937 

353.1985115149 

8.00E-04 

0.5190 

1 EIF2C4  
 

12 36046414 

36093775 

108.2195489391 

8.66E-04 

0.7500 

12 LYZ    

 

53 68028400 

68034280 

303.4161121183 

8.67E-04 

0.8790 

1 CLSPN  

 

19 35974404 

36008138 

177.3196893056 

9.52E-04 

0.7860 

 

PC1 

10 GLRX3     

 

100 131824652 

131867860 

632.3079471598 

2.30E-05 

0.4470 
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phenotype chr gene nSNPs gene start  

gene stop [bp] 

test 

p 

p  

(replication) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PC1 

6 HIVEP2    

 

187 143114296 

143308031 

691.7842524914 

3.21E-04 

0.3730 

3 XIRP1    

 

46 39199710 

39209081 

218.8959858500 

3.81E-04 

0.6260 

1 CD53      

 

96 111215343 

111244081 

546.6698083396 

4.00E-04 

0.2360 

15 MYO1E    

 

147 57215854 

57452363 

539.5822646702 

4.12E-04 

0.1360 

22 XKR3  

  

78 15644305 

15682584 

392.6700908715 

4.51E-04 

0.1990 

1 ZNF281 

 

68 198642042 

198645789 

468.1096139110 

5.65E-04 

0.8820 

11 PANX1  
 

84 93501741 
93554785 

564.8584080233 
5.65E-04 

0.0159 

11 LYVE1   

  

62 10535988 

10546941 

377.7540548833 

6.30E-04 

0.5320 

11 TBRG1  

 

24 123997951 

124011032 

101.6066229251 

7.86E-04 

0.0507 

5 CHD1    

 

71 98218807 

98290138 

493.3263905315 

8.17E-04 

0.8530 

11 RNF141 

  

70 10489800 

10519350 

374.7735314154 

8.19E-04 

0.5120 

19 CEBPA     

 

22 38482775 

38485160 

89.5000362635 

9.44E-04 

0.8630 

 

PC2 

17 DHRS7C  

 

32 9615479 

9635326 

154.502608706559000 

5.50E-05 

0.2780 

1 LYST   

 

64 233890968 

234096843 

512.715873463855000 

2.58E-04 

0.0419 

17 ARSG  

 

45 63766917 

63928595 

162.068253832286000 

4.71E-04 

0.7100 

1 EFNA1   

 

29 153366972 

153374010 

236.380407010318000 

5.00E-04 

0.6380 

1 CHRM3  

 

167 237858995 

238139340 

666.801828593204000 

6.30E-04 

0.1130 

1 EFNA3   

  

32 153317971 

153326638 

190.578535943440000 

6.44E-04 

0.4510 

1 RAG1AP1   

 

27 153374911 

153377958 

213.738941966987000 

7.14E-04 

0.5650 

1 DPM3  

 

27 153378990 

153379620 

209.153402546024000 

7.24E-04 

0.5880 

1 ADAM15   

 

30 153290385 

153301876 

163.612411182511000 

7.31E-04 

0.3840 

1 MUC1      

 

16 153424923 

153429324 

114.704643616058000 

7.31E-04 

0.3790 

1 TRIM46   

 

17 153412983 

153424069 

124.834160464716000 

7.46E-04 

0.3740 

6 BMP6  

 

156 7672009 

7826960 

570.522527358666000 

8.32E-04 

0.6320 

11 LOC644672  58 113155727 276.627931290039000 0.7160 
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phenotype chr gene nSNPs gene start  

gene stop [bp] 

test 

p 

p  

(replication) 

 113156417 8.37E-04 

1 EFNA4   

 

33 153302836 

153308653 

174.074028976508000 

8.58E-04 

0.4680 

1 THBS3     

 

15 153432002 

153444314 

103.903100592252000 

9.11E-04 

0.3580 

unadjusted 

PTA 

 

unadjusted 

PTA 

10 GLRX3     

 

100 131824652 

131867860 

662.7044512171 

1.00E-05 

- 

13 GPR12    

 

52 26230959 

26231964 

325.8311958210 

1.28E-04 

- 

5 CHD1    

 

71 98218807 

98290138 

590.8798504793 

2.13E-04 

- 

3 CHCHD6   

 

139 127905807 

128161934 

822.2741781330 

3.21E-04 

- 

19 ELSPBP1   

 

55 53189742 

53220217 

244.2502769688 

3.89E-04 

- 

19 CABP5   

 

55 53225021 

53239116 

238.6667832603 

4.18E-04 

- 

5 REEP5  

 

62 112239979 

112285930 

532.3056059406 

4.32E-04 

- 

6 HEY2     

 

29 126112424 

126124108 

231.5221231219 

4.38E-04 

- 

19 BSPH1    

 

46 53163114 

53187239 

217.1527189269 

4.53E-04 

- 

7 WNT16     

 

34 120752656 

120768394 

227.5994727882 

5.16E-04 

- 

17 FN3KRP    

 

33 78267894 

78279146 

202.7587557149 

5.50E-04 

- 

1 TMCO4     

 

63 19881292 

19998997 

227.7438824274 

5.78E-04 

- 

17 FN3K   

 

36 78286796 

78302362 

255.6953860606 

6.17E-04 

- 

5 SRP19    

 

52 112224891 

112231503 

496.2085120380 

6.22E-04 

- 

8 TAF2     

 

175 120812194 

120914255 

927.4767480306 

6.87E-04 

- 

1 HTR6    

 

42 19864366 

19878642 

188.4830896844 

8.38E-04 

- 

1 SDCCAG8   

 

97 241485942 

241730016 

462.6429356037 

9.51E-04 

- 

1 NBL1      

 

43 19842312 

19857532 

190.9223714250 

9.68E-04 

- 

age-adjusted  

PTA  

 

age-adjusted  

PTA 

10 GLRX3     

 

100 131824652 

131867860 

542.4649639709 

1.14E-04 

0.4470 

15 MYO1E     

 

147 57215854 

57452363 

596.3068102455 

1.73E-04 

0.1360 

7 WNT16    
  

34 120752656 
120768394 

245.0590637250 
3.35E-04 

0.0107 

3 STAC   

 

172 36397100 

36564500 

701.3925443186 

3.98E-04 

0.4470 
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phenotype chr gene nSNPs gene start  

gene stop [bp] 

test 

p 

p  

(replication) 

3 XIRP1   

 

46 39199710 

39209081 

200.5656241959 

8.74E-04 

0.6260 

19 TDRD12    

 

64 37902518 

37973554 

480.6724799050 

8.74E-04 

0.1380 

6 ZNF318    

 

43 43411785 

43445159 

280.0812249136 

9.77E-04 

0.3620 

This table presents the results of the gene-based association studies for different 
hearing function and ARHI phenotypes, respectively. Phenotypes included age and 
gender-adjusted SRT residuals (SRT) and age-adjusted PC1 (PC1), PC2 (PC2) and 
PTA (PTA) residuals. The results of the gene-based analysis using VEGAS are 
presented by gene, chromosomal location of the respective gene (chr, gene start and 
gene stop), number of SNPs tested per gene (nSNPs), the gene-based test statistic 
(test) and the level of significance of association (p). For each gene 106 simulations 
were performed. The p-value achieved in the gene-based replication study is listed as 
p (replication). Significantly replicated associations are presented in bold.  
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Appendix chapter 6 

 

Figure 51 Genotyping cluster plot for rs681524 in TwinsUK 

The genotyping cluster plot shows clear separation of genotyping signals for the two 
alleles. Signal on the y-axis represents the genotyping signal for the C-allele, while the 
x-axis represents the genotyping signal for the T-allele. 
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Table 44 Genotyping and imputation information per population 

Population array  genotype 
calling 

QC criteria imputation imputation 
reference 
population 

statistical 
analysis 
tool 

Carlantino Illumina 370 
CNV 

Bead studio call rate>90% 
p(hwe)>10-4 

MACH HapMap 
Phase II 

GenABEL, 
ProbABEL 

Friuli 
Venezia 
Guilia 

Illumina 370 
CNV 

Bead studio call rate>90% 
p(hwe)>10-4 

MACH HapMap 
Phase II 

GenABEL, 
ProbABEL 

Korcula Illumina 370 
CNV 

GenomeStudio call rate>98% 
p(hwe)>10-10 

MACH HapMap 
Phase II 

GenABEL, 
ProbABEL 

Split Illumina 370 
CNV 

GenomeStudio call rate>98% 
p(hwe)>10-10 

MACH HapMap 
Phase II 

GenABEL, 
ProbABEL 

Cilento Illumina 370 K Illumina call rate>95% 
SNPs not in 
HapMap 

MACH HapMap 
Phase II 

GenABEL, 
ProbABEL 

Talana Affymetrix 500 
K 

BRLMM p(hwe)<10-6  
call rate 95%, 
MAF≥1% 
 

MACH HapMap 
Phase II 

GenABEL, 
ProbABEL 

Silk Road Illumina 700 K GenomeStudio call rate>97% 
p(hwe)>10-8 

MACH HapMap 
Phase II 

GenABEL, 
ProbABEL 

TwinsUK Illumina 
HumanHap300 
Bead Chip  
Illumina 
HumanHap610 
Quad Chip 

Illuminus 
algorithm  

call rate≥97% 
(SNPs with 
MAF≥5%) 
call rate≥99% (for 
SNPs with 
1%≤MAF<5%) 
p(hwe)>10-6 
MAF≥1% 

Impute vs2 HapMap 
Phase II 

GenABEL 

The number of genotyped SNPs taken forward for imputation was based on passing 
the defined quality control (QC) criteria (p(hwe)= significance of deviation from Hardy 
Weinberg equilibrium, MAF=minor allele frequency, call rate=genotyping efficiency per 
SNP). Imputation was performed using Markov Chain based haplotyper (MACH) or 
Impute vs2 based on the HapMap Phase II CEU reference population. As statistical 
tools for genome-wide association analyses ProbABLE and GenABEL in R were used. 
 
Table 45 Meta-analysis results for PC1 

SNP allele1 

allele2 

Z-score p-value direction chr position gene feature left gene 

right gene 

rs589636 t 

c 

-5.40 6.61E-08 ?------? 13 76414577 IRG1 intron BTF3L1 

LOC390413 

rs588702 t 

c 

-5.33 9.75E-08 ?------- 13 76420926 IRG1 intron BTF3L1 

LOC390413 

rs2687481 t 

g 

-5.32 1.07E-07 -------? 7 125656358 NA NA LOC646837 

GRM8 

rs2521030 c 

g 

-5.23 1.69E-07 -------? 7 125656552 NA NA LOC646837 

GRM8 

rs614171 a 

g 

-5.23 1.71E-07 ?------- 13 76414753 IRG1 intron BTF3L1 

LOC390413 

rs592425 a 

g 

4.96 7.21E-07 ?++++?++ 13 76438632 IRG1 intron BTF3L1 

LOC390413 

Six single nucleotide polymorphisms (SNPs) were suggestive genome-wide significant 
(p<0.5x10-7) associated with PC1. Meta-analysis results for PC1 are further 
characterised by non-effect allele (allele1) and effect allele (allele2), the resulting Z-
score and significance of association (p-value). The direction of effect (minus or plus) is 
indicated for each of the 8 included populations. If a SNP did not pass QC criteria for a 
certain SNP, this is indicated by a question mark (?) in the direction column. Mapping 
information for each SNP is specified by   chromosome (chr), base-pair position 
(position), genes at this locus (gene) and surrounding the locus (left and right gene) as 
well as feature of the SNP position within a gene (feature). 
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Table 46 Meta-analysis results for PC2 

SNP allele1 

allele2 

Z-score p-value direction chr position gene feature left gene 

right gene 

rs681524 t 

c 

-5.505 3.69E-08 ?------- 11 116253524 SIK3 intron APOA1 

LOC100129905 

rs1393902 a 

g 

5.119 3.07E-07 ++++++++ 8 68584119 CPA6 intron ARFGEF1 

LOC100132812 

rs1503369 t 

c 

5.116 3.12E-07 ++++++++ 8 68584552 CPA6  intron ARFGEF1 

LOC100132812 

rs1827524 a 

g 

5.104 3.32E-07 ++++++-+ 8 68587796 CPA6 intron ARFGEF1 

LOC100132812 

rs1393901 t 

c 

5.100 3.40E-07 ++++++-+ 8 68587888 CPA6 intron ARFGEF1 

LOC100132812 

rs6472312 t 

g 

-4.994 5.92E-07 ------+- 8 68572052 CPA6 intron ARFGEF1 

LOC100132812 

rs1503363  a 

g 

-4.940 7.80E-07 ------+- 8 68569258 CPA6  intron ARFGEF1 

LOC100132812 

Seven single nucleotide polymorphisms (SNPs) were suggestive genome-wide 
significantly (p<0.5x10-7) associated with PC2. Top associated SNPs for PC2 are 
further characterised by corresponding non-effect allele (allele1) and effect allele 
(allele2), the resulting Z-score and significance of association (p-value). The direction 
of effect (minus or plus) is indicated for each of the 8 included populations. If a SNP did 
not pass QC criteria for a certain SNP, this is indicated by a question mark (?) in the 
direction column. Mapping information for each SNP is specified by   chromosome 
(chr), base-pair position (position), genes at this locus (gene) and surrounding the 
locus (left and right gene) as well as feature of the SNP position within a gene 
(feature). 
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Appendix chapter 7 

 
Figure 52 Differentially methylated regions in MZ twin pairs discordant for PC1  

Scatter plots are shown for the ten probes at which differential DNA methylation within 
twin pairs was most strongly correlated with within pair differences in hearing PC1 
(Table 4). The difference in DNA methylation within twin pairs was calculated as within 
pair difference in DNA methylation residuals (adjusted for batch effects). A linear 
regression line (lightblue line) was fitted to each scatter plot. 
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Figure 53 Differentially methylated regions in MZ twin pairs discordant for PC2 

Scatter plots are shown for the ten probes at which differential DNA methylation within 
twin pairs was most strongly correlated with within pair differences in hearing PC2 
(Table 4). The difference in DNA methylation within twin pairs was calculated as within 
pair difference in DNA methylation residuals (adjusted for batch effects). A linear 
regression line (lightblue line) was fitted to each scatter plot. 


