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Abstract 

 L-selectin has been well characterised as a cell adhesion molecule, which plays 

a role in the recruitment of leukocytes to sites of inflammation and is responsible for 

the recirculation of lymphocytes to secondary lymphoid organs. Recent evidence has 

shown that L-selectin also acts as a signalling molecule to activate pathways and 

regulate the inflammatory response. The cytosolic tail of L-selectin plays a crucial role 

in regulating its activity through its interaction with binding partners, such as 

calmodulin (CaM) and the ERM protein family. However, little is known about how the 

interaction between L-selectin and its binding partners is regulated. The aim of this 

multidisciplinary PhD project is to use biophysical and cell biological methods to 

address the role of the interaction between L-selectin and its binding partners during 

leukocyte recruitment. To this end, the interaction between CaM and the L-selectin 

cytosolic tail was assessed using isothermal titration calorimetry (ITC) and nuclear 

magnetic resonance (NMR) spectroscopy. Analysis revealed that phosphorylation of 

serine residues within the cytosolic tail of L-selectin did not affect CaM binding. To 

enable the observation of the interaction between L-selectin and CaM whilst 

leukocytes are undergoing transendothelial migration (TEM), the THP-1 monocytic cell 

line was engineered to stably express L-selectin-GFP and CaM-RFP so their interaction 

could be monitored at different stages of TEM. The data showed that phosphorylation 

of serine 364 in the L-selectin tail is important for regulating CaM interaction. 

Discrepancies were identified between the biophysical and cell biological results, 

implying the leukocyte plasma membrane may play a vital role in regulating the 

interaction between L-selectin and CaM. This highlights the importance of studying 

transmembrane proteins in the correct context. 
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Chapter 1: Introduction 

1.1 The Inflammatory Response 

Inflammation is a natural response to injury, brought about by infection, 

physical or chemical trauma, allergy or autoimmunity. The inflammatory response is 

designed to contain and resolve the injurious stimulus and initiate the healing process. 

Inflammation is characterised by pain, swelling, redness, heat and loss of function (of 

the organ or tissue) at the sight of insult. These signs of inflammation require the co-

ordinated actions of the innate immune and adaptive immune systems.  

The inflammatory response can be divided into two components: a vascular 

arm and a cellular arm. The vascular arm is controlled by endothelial cells, which are 

activated by leukocyte- and fibroblast-derived cytokines, promoting adhesion molecule 

expression on the luminal surface of the endothelial cells to actively recruit leukocytes 

from the microcirculation and the subsequent migration of the leukocytes to the site 

of insult (8,9). Endothelial cells that are local to a site of inflammation transport 

stromal-derived chemokines from the abluminal side and deliver them to the luminal 

side (10). Note that endothelial cells can also produce chemokines (11). This ultimately 

activates leukocytes that possess the appropriate chemokine receptor. Inflammatory 

signals also cause vasodilation (through the relaxation of local vascular smooth muscle 

cells in arterioles) which additionally leads to an increased permeability of the 

microvasculature (9). This causes a decrease in the velocity of blood flow (as blood is 

now flowing through dilated vessels), which increases the chance for passing 

leukocytes to bind to the endothelium that is local to the site of inflammation (12). 

 The cellular arm of the inflammatory response involves the passage of 

leukocytes from the circulation into the surrounding tissue. Leukocytes, such as 

monocytes and neutrophils, originate in the bone marrow. Once mature, they reside in 

tissues or organs, the blood stream and the lymphatics - ready to respond to 

inflammatory signals. There are two lineages that define the leukocytes; myeloid cells 

and lymphoid cells. Myeloid cells are precursors to a majority of cells that partake in 

the innate immune response, which is the initial stage of the response following an 

inflammatory insult. Myeloid cells are precursors for granulocytes, mast cells, dendritic 

cells and monocytes (which differentiate into macrophages after they have migrated in 

to tissue). These cells remove the injurious stimuli via phagocytosis and release of 
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granule contents, which activate the adaptive immune system. Lymphoid cells give rise 

to the cells of the adaptive immune system, which involves the production of 

pathogen-specific receptors to focus the immune response on a particular pathogen, 

i.e. B-cells and T-cells. The different cell types have different roles during an 

inflammatory response, which is summarised in Table 1.1. All subsets of leukocytes are 

thought to communicate to one another by releasing cytokines and chemokines to 

activate and attract other immune cells, to amplify the immune response (13,14). 

 

Type Diagram Main Functions 

Monocytes 

 

Differentiate into macrophages, 

which phagocytose infectious 

species and cell debris and act as 

APCs 

Dendritic cells  Act as APCs to present antigens 

for recognition by T-cells 

Neutrophils (also 

referred to as 

polymorphonuclear 

leukocytes (PMNs) 

due to the presence of 

the multi-lobe nucleus  

 Phagocytosis and release 

cytoxins from granules to destroy 

bacteria and fungi 

Eosinophil  Phagocytosis and release of 

granule contents to remove 

larger parasites. Also responsible 

for allergic reactions 

Basophils  Involved in allergic reactions by 

releasing histamine  

Lymphocytes  B-cells: secrete antibodies to 

label infectious species and 

target them for destruction. 
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Release IgE following exposure to 

allergen, leading to the activation 

of basophils and mast cells. 

Cytoxic T-cells: release cytotoxins 

to kill virus-infected cells. 

Helper T-cells: produce and 

release cytokines to activate 

other lymphocytes. The subset 

TH2 cells recognise allergens and 

activate B cells to produce IgE. 

Regulator T-cells: produce anti-

inflammatory cytokines to 

supress the immune response. 

Natural killer cells: release 

cytotoxins to kill cells recognised 

as stressed without requiring 

antibody labelling. 

 

 

 

Acute inflammation is a fast response to an inflammatory stimulus and is 

initiated by leukocytes migrating directly to the site of the insult.  The inflammatory 

response normally lasts a few days, after which the stimulus has been removed. 

However, in certain circumstances inflammation remains unresolved (“non-resolving” 

inflammation), which is the driver of multiple chronic inflammatory diseases, including 

atherosclerosis (15), rheumatoid arthritis and lupus (12). Non-resolving inflammation 

leads to the continued destruction and necrosis of cells. Recent evidence has shown 

that patients suffering from chronic inflammatory disease have increased susceptibility 

to cardiovascular disease, such as atherosclerosis, although little is known about how 

this is initiated and manifested (15). As leukocyte recruitment is a key driver of chronic 

inflammation, a key goal in the area of inflammation biology is to expose novel 

therapeutic targets for blocking the chronic recruitment of leukocytes to non-resolving 

sites of inflammation. Note that “sterile inflammation” refers to an inflammatory 

Table 1.1: Summary of the leukocyte subsets and their function in inflammatory responses. 

The different types of leukocytes are listed, with a representative diagram of each cell type 

shown. The major role of each cell type in the inflammatory response is described.  
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stimulus driven by non-infectious cell necrosis. In Section 1.8.1 the development of 

atherosclerosis is described, with reference to the role of sterile inflammation. 

1.2 The Multi-Step Leukocyte Adhesion Cascade. 

 As stated above, during an inflammatory response leukocytes must exit the 

bloodstream and enter the surrounding microenvironment. This process is controlled 

by cell adhesion molecules on both the leukocyte and endothelial cell. The multi-step 

leukocyte adhesion cascade is a paradigm that has been established through the work 

of many labs and describes the way in which leukocytes migrate out of the 

bloodstream through a series of discrete and inter-dependent steps. As shown in 

Figure 1.1, the multi-step adhesion cascade is broken down in to increasingly adhesive 

interactions called: capture (or tethering), rolling, slow rolling, firm adhesion and 

transmigration (10).  Note that in order for the adhesion cascade to progress, the 

previous step in the cascade must be executed correctly. Therefore, firm adhesion 

cannot proceed without rolling, and rolling without tethering, etc. Each step of the 

adhesion cascade will be discussed in detail below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: The Multi-Step Leukocyte Adhesion Cascade. A diagram showing the individual 

stages of the multi-step leukocyte adhesion cascade.  The selectins and the integrins are 

absolutely essential for successful progression through the adhesion cascade. It should be 

noted that other cell adhesion molecules are also involved in this process, and some detail of 

these will be discussed later. Diagram modified from bme.virginia.edu/ley/. 
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1.2.1 Leukocyte tethering and the selectins 

 Tethers are transient interactions between leukocytes and endothelial cells 

lining the blood vessels, and are predominantly mediated by members of the selectin 

family of cell adhesion molecules. There are three selectin family members: E-, P-, and 

L-selectin. E- and P-selectin are expressed in endothelial cells, P-selectin is expressed 

specifically in platelets, and L-selectin is expressed on leukocytes (details of the 

selectins are described in Section 1.3) (10). Following injury, tissue-resident 

macrophages release the cytokines interleukin-1 (IL-1) and tumour necrosis factor-α 

(TNF-α), both of which activate endothelial cells causing them to express selectins (see 

Section 1.2.2 for details of selectin expression on endothelial cells). L- and P-selectin 

interact with P-selectin glycoprotein ligand-1 (PSGL-1) (16) and other glycoproteins on 

the plasma membrane of corresponding cells to form the tethers between the 

leukocyte and endothelium, enabling the leukocyte to adhere to the endothelium from 

blood flow. The importance of L-selectin in tether formation has been investigated in 

vitro, with L-selectin function blocking antibody reducing the adhesion of lymphocytes, 

neutrophils and monocytes to the endothelial monolayer under flow conditions (17-

19).  

Leukocytes can also tether to one another, with L-selectin on a free-flowing 

leukocyte able to interact with PSGL-1 on the surface of a leukocyte tethered to the 

endothelium (or vice versa), a process known as secondary tethering, to further 

amplify the inflammatory response (16).  

 

1.2.2 Rolling and regulation of selectin expression 

Once tethers have formed between leukocytes and endothelial cells, and if 

there is sufficient ligand available (i.e. the ligand density is high enough), cells will 

begin to roll along the endothelium. Rolling is important as it brings the leukocyte into 

close proximity to the endothelium allowing the leukocyte-derived receptors to 

recognise apically presented chemokine more readily. This triggers activation of the 

leukocyte integrins, which can mediate arrest from blood flow (see later in Section 

1.2.3). During rolling, bonds between selectins and their counter ligands are formed 

and broken. Selectins are suited to this process as the interaction between them and 

their ligands have fast on and off rates (20).  
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L-selectin has been shown to cause leukocyte rolling both in the recirculation of 

lymphocytes to secondary lymphoid organs and during inflammation, with the role of 

L-selectin in these processes discussed in detail in Sections 1.7.1 and 1.7.2. Pre-B-cells 

transfected with L-selectin were shown to roll in inflamed rat mesenteric venules (21) 

and inflamed rabbit venules (22). The role of L-selectin in leukocyte rolling has been 

studied using intravital microscopy and L-selectin function blocking antibodies, with 

rolling inhibited in rat and rabbit mesenteric venules in the presence of the antibody 

(21,23). Studies in L-selectin knockout mice have shown a decrease in the rolling of 

leukocytes in mesenteric venules by 70 % (24). In vitro studies of L-selectin-dependent 

rolling using a flow chamber assay has also revealed that neutrophil (25) and monocyte 

(26) rolling on Human Umbilical Vein Endothelial Cells (HUVECs) were both inhibited by 

L-selectin function blocking antibody. 

Many potential ligands for L-selectin-dependent rolling have been explored (as 

discussed in detail in Section 1.3.2). PSGL-1 has been implicated as a possible ligand, as 

when a function blocking antibody for PSGL-1 was used, L-selectin dependent rolling 

was blocked in the flow chamber assay and neutrophils treated with L-selectin function 

blocking antibody no longer rolled on PSGL-1 (27,28). L-selectin-dependent rolling was 

also lacking in vivo with PSGL-1 knockout mice and in wildtype mice treated with PSGL-

1 function blocking antibody (29), further highlighting the role of PSGL-1 in L-selectin 

dependent rolling. However, there has been some dispute over the capability of PSGL-

1 to support L-selectin-dependent rolling due to a lack of expression on the 

endothelium, with Sperandino et al (2003)(16) showing no expression of PSGL-1 on 

resting or inflamed endothelial cells in mice. A study did reveal, however, that HUVECs 

and foreskin microvascular endothelial cells (FMVECs) both expressed PSGL-1 and 

could support monocyte adhesion and rolling (30). This clearly shows further research 

is required to determine if PSGL-1 can act as a ligand for L-selectin-dependent rolling. 

P-selectin has been shown to be involved in the early stages of rolling, with no 

rolling initially observed in the surgically exteriorised cremaster venules of P-selectin 

deficient mice (31,32). Neutrophil recruitment to the peritoneum after an 

inflammatory stimulus is delayed by 2-4 hours in P-selectin knockout mice (31), 

suggesting a role for P-selectin in the early steps of the adhesion cascade. P-selectin is 

produced and stored in α-granules and Weibel-Palade bodies, which are secretory 

storage granules that contain different substances for rapid release upon cell 
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activation. Once the cell is activated, these granules fuse with the plasma membrane 

to deliver P-selectin to the surface (33,34), with the protein detectable within minutes 

of cell activation (31), allowing P-selectin to play a role in early rolling. PSGL-1 is the 

main leukocyte-restricted ligand for P-selectin. Using antibodies against PSGL-1 blocks 

the rolling of neutrophils, monocytes and eosinophils on P-selectin in vitro (27).  

  Unlike P-selectin, E-selectin expression is controlled by transcriptional 

activation only. It was shown using COS7 cells transfected with E-selectin that 

expression was induced by the cytokines IL-1 and TNF-α, with the protein present at 

the cell surface two to four hours after activation (35). Expression was also assessed in 

HUVEC cells activated with TNF-α, with peak expression observed three to six hours 

after stimulation (36). As there is a delay in surface expression of E-selectin, rolling 

becomes dependent on E-selectin binding its ligands after this time (37). The capability 

of E-selectin to support leukocyte rolling has been assessed both in vitro and in vivo 

(31), with neutrophils able to roll on E-selectin in the flow chamber (38,39) and E-

selectin-dependent rolling evident in murine mesenteric venules activated with 

Interleukin-1β (IL-1 (40). However, blocking E-selectin with antibodies or knocking 

out E-selectin in mice does not affect rolling (31). This is due to the co-expression of P-

selectin compensating for the loss of E-selectin. 

All types of selectin-dependent rolling have been shown to depend on a 

threshold of shear stress, which is the force applied to the cells due to the flow of the 

blood through the vessel (41,42). Shear stress is required for the rolling of the HL-60 

human promyelocytic leukaemia cells on P- and E-selectin and without flow, gravity 

causes the detachment of the cells when the flow chamber is placed upside down (41). 

Different cell types have been transfected with either PSGL-1 or L-selectin and in all 

cases rolling was only seen under shear stress conditions (41), showing that this 

requirement is neither molecule nor cell type specific. It is likely this mechanism exists 

to prevent the aggregation of leukocytes at sites of low blood flow (42). How the 

increase in shear stress increases the adhesion between selectins and their ligands 

remains unclear. It has been proposed that selectins form catch-bond interactions with 

their ligands (reviewed in (43)), where the increase in force causes the straightening of 

the L-selectin molecule, enhancing its ability to interact with the ligand pocket of its 

binding partner. However, due to experimental limitations it is not possible to monitor 
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the conformational rearrangement of L-selectin under flow, so this has yet to be 

confirmed.     

1.2.3 Slow rolling and the three integrin activation states  

The slow rolling step of the adhesion cascade is important for initialising arrest 

of the leukocyte through the activation of integrins. The process has recently been 

revealed to occur through E-selectin, which can bind to PSGL-1, CD44 and CD43 on the 

leukocyte (37). The rolling velocity of leukocytes from E-selectin knockout mice were 

much higher than that of wildtype mice (44), showing its importance in initialising slow 

rolling.  

β1- and β2-integrins are expressed on the surface of leukocytes and upon 

activation they switch from the low-affinity bent state to a high-affinity extended 

state, which leads to the opening of the ligand pocket, via the intermediate state 

(Figure 1.2) [1]. Three integrins are expressed on leukocytes, namely Lymphocyte 

function-associated antigen-1 (LFA-1), Macrophage-1 (MAC-1) and Very Late Antigen-4 

(VLA-4). They bind cell adhesion molecules (CAMs) expressed on endothelial cells. LFA-

1 interacts with endothelial Intercellular Adhesion Molecule-1(ICAM-1) and the 

endothelial Intercellular Adhesion Molecule-2 (ICAM-2), MAC-1 interacts with ICAM-1 

and the VLA-4 interacts with Vascular Cell Adhesion Molecule-1 (VCAM-1) [1]. 

Both the integrins LFA-1 and MAC-1 become activated to an intermediate state 

following E-selectin-dependent rolling. In fact clustering of PSGL-1 and CD44 is 

sufficient to activate integrins to the intermediate state, which results in weak binding 

to their cognate ligands (32). When E-selectin and the integrin ligand ICAM-1 were co-

immobilised the number of cells engaged in slow rolling increased (45). Antibody 

blocking of β2-integrins increases the rolling velocity of lymphocytes on endothelial 

cells in flow chamber assays (46), showing integrin ligand binding promotes slow 

rolling. Studies of the role of integrins in slow rolling have been assessed in vivo using 

knockout mice and assessing leukocyte rolling in the cremasteric muscle venules by 

intravital microscopy. The velocity of rolling in LFA-1-/- and MAC-1-/- mice was higher 

compared to wildtype mice, with the double knockout having an even higher rolling 

velocity (47). VLA-4 has also been shown to support rolling, with lymphocytes shown 

to roll on VCAM-1 via VLA-4 in vitro (10,48). 
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During slow rolling chemokine signalling activates integrins, which leads to the 

arrest of the cell on the surface of the endothelium (10). One example of this is the 

interaction between VLA-4 and VCAM-1. Chemokines up-regulate this interaction by 

increasing the affinity of VLA-4 for VCAM-1, leading to an increase in adhesion and 

monocyte arrest (49). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.2.4 Leukocyte arrest and chemokine-induced integrin activation 

 Binding of the integrins to their ligands causes leukocytes to arrest under flow 

conditions. Chemokines presented by endothelial cells increase the avidity and affinity 

of integrins to promote leukocyte arrest (10). It has been shown in vitro that 

chemokines trigger the extension of the bent form of LFA-1. ICAM-1 then binds to LFA-

1 fully activating it and causing high affinity binding, leading to arrest (50).   

Chemokines also induce the mobility of integrins to sites that enhance the frequency 

of binding, which increases the likelihood of arrest. Phosphatidylinositide 3-kinase 

(PI3K) inhibition has been shown to block the mobility of LFA-1 and as a result prevents 

the firm adhesion to ICAM-1 immobilised at low densities (51).  

 The signalling pathways behind chemokine-induced leukocyte arrest have been 

investigated. Chemokines bind to G Protein Coupled Receptors (GPCRs) on the surface 

of the leukocyte, which leads to phospholipase C (PLC) activation (10). VLA-4-

Figure 1.2 Conformations of integrins. A schematic showing the different conformational 

states of α4β1-integrin during cell activation. The α domain is shown in blue and the β domain 

is shown in pink. In resting cells integrins exist in a bent inactive state (1). After the first stage 

of activation the integrins are in an extended closed intermediate state (3). The high activity 

state is achieved when the integrins become extended and open, exposing the ligand binding 

site (shown in green). Figure modified from Johansson, M. W., and Mosher, D. F. (2013) 

Integrin activation states and eosinophil recruitment in asthma. Frontiers in Pharmacology 4 

(4). 
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dependent arrest is blocked when an inhibitor to PLC is added to neutrophils (52). PLC 

cleaves the phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2) into diacyl-

glycerol (DAG) and inositol 1,4,5-trisphosphate (IP3), both of which act as secondary 

messengers. DAG activates PKCs and IP3 binds to receptors on the endoplasmic 

reticulum (ER) to cause the release of calcium into the cytosol. With the use of 

inhibitors against these two molecules it was found that the release of calcium was 

required for VLA-4-dependent arrest (52). Calcium release from the ER induces the 

influx of extracellular calcium via activation of calcium ion channels. Using and 

inhibitor of these channels also blocked VLA-4 binding (52), showing that it is this influx 

that leads to the conformation change of VLA-4 and firm adhesion. The calcium 

binding protein calmodulin (CaM) was also implicated in this pathway, as blocking this 

protein with the CaM specific inhibitor W7 inhibited firm adhesion (52). It is possible 

that release of calcium from the ER binds to CaM enabling it to interact with the 

calcium channels, leading to their opening, though how calcium influx causes a change 

in affinity of VLA-4 remains unclear. 

 It is possible that activation of signalling pathways lead to the binding of 

partners to the cytosolic tail of integrins, affecting their binding affinity. Talin has been 

shown to bind to β3-integrins and this interaction either induces or stabilises the high 

affinity conformation of the adhesion molecule (10,53,54). 

 Activation of integrins by chemokines also initiates signalling in the leukocytes. 

Studies have revealed that a lack of integrin signalling accelerates the detachment of 

neutrophils (10,55). The Src family kinase members Fgr and Hck have been shown to 

be involved in integrin signalling. When these kinases were knocked out in neutrophils 

the cells were able to adhere to co-immobilised ICAM-1 and P-selectin under flow at 

the same rate as wildtype cells, but detached much quicker (55), showing that integrin 

signalling is required for the sustained arrest of leukocytes. 

 

1.2.5 Leukocyte crawling 

 After leukocyte arrest, cells must transmigrate across the endothelial 

monolayer. The first step of this process is the crawling of the leukocytes on the 

luminal surface of the endothelium in order to seek a preferred site of transmigration 

(10,56,57). This process has been shown to be dependent on the integrin MAC-1, as 
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blocking this integrin on monocytes in vitro (56) or analysis of neutrophils in MAC-1 

knockout mice (57) showed that crawling did not occur. Blocking of ICAM-1 also 

inhibited crawling in vitro (56), showing it is the ligand for MAC-1. Inhibition of 

crawling in monocytes led to the cells spinning in circles where they became arrested 

(56), thus the cells were unable to undergo directive movement. Neutrophils from 

MAC-1 knockout mice would transmigrate more slowly at the site of arrest, with more 

cells using the transcellular pathway (see later in Section 1.2.6.2) (57). This shows the 

importance of crawling in facilitating rapid transmigration. 

1.2.6 Transmigration 

 The movement of leukocytes across the endothelial monolayer is known as 

transendothelial migration (TEM) or diapedesis. Leukocytes can either transmigrate 

between the junctions formed by opposing endothelial cells (paracellular route) or 

through an individual endothelial cell (transcellular route).  

 

1.2.6.1 Paracellular Route 

For leukocytes to pass between endothelial cells, the tight junctions between 

the cells must be disrupted. It is thought that ligation of adhesive molecules on the 

endothelial cells leads to activation of signalling pathways that disrupt the inter-

endothelial contacts to facilitate migration. Clustering of VCAM-1 on endothelial cells 

has been shown to cause the disruption of adherens junctions (58,59). VE-cadherin is 

found in tight junctions and binds to β-catenin to form contacts between endothelial 

cells. The presence of VE-cadherin in junctions blocks the migration of leukocytes. 

Using function-blocking antibodies against VE-cadherin accelerates the migration of 

neutrophils in to the inflamed peritoneum – a commonly used mouse model of acute 

inflammation (60). It has been shown that VE-cadherin is cleaved  during TEM (58) and 

as a result is removed from the junctions. Neutrophil binding causes the production of 

fragments of VE-cadherin and the proteases elastase and cathespin G on the surface of 

neutrophils were found to be responsible for this production (58). 

Members of the RhoGTPase family have been implicated in regulating signalling 

pathways that promote paracellular migration. Rac1 is activated by VCAM-1 and is 

thought to be responsible for the disruption of adherens junctions (58). ICAM-1 
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clustering has been shown to activate RhoA leading to the contraction of adjacent 

endothelial cells, and the opening of the junctions (58).  

 A number of junctional proteins are involved in the paracellular route of 

migration, such as Platelet Endothelial Cell Adhesion Molecule-1 (PECAM-1) and 

Junctional Adhesion Molecules (JAMs). PECAM-1 is involved with homophilic 

interactions whereas JAMs can form homotypic interactions and interact with 

integrins. Studies have shown the importance of these molecules in transmigration 

(61,62). PECAM-1 is expressed on the surface of all types of leukocytes and endothelial 

cells (63) and has been shown to mobilise to the surface of the endothelial cell after 

neutrophil interaction (58), presumably to enable the interaction between PECAM-1 

on the leukocyte and endothelial cell. Blocking PECAM-1 with antibodies blocks 

paracellular migration in vitro (60). There are three different JAMs: JAM-A, JAM-B and 

JAM-C. JAM-A and JAM-C are expressed on leukocytes and endothelial cells and JAM-B 

is expressed on endothelial cells (64). LFA-1 interacts with JAM-A on endothelial cells. 

Blocking JAM-A with antibodies inhibited transmigration of monocytes in vitro and also 

reduced the recruitment of monocytes and neutrophils to sites of inflammation (64). 

This shows the importance of the interaction between adhesion molecules on 

leukocytes and endothelial junctions in paracellular transmigration.  

  

1.2.6.2 Transcellular Route 

  Transcellular migration accounts for only 5-20% of transmigration in activated 

HUVECs (65). Vesiculo-vacuolar organelles are continuous membrane-associated 

channels present at the sites of leukocyte adhesion, suggesting they act as the site for 

leukocytes to pass through the body of the endothelial cell (10,66). Structures 

containing junctional cell adhesion molecules have been observed just below the 

plasma membrane and it is possible that these facilitate transcellular migration (10). 

Cross-linking of ICAM-1 with monoclonal antibody translocates it to caveolin-rich 

membrane domains and is subsequently transcytosed to the basal plasma membrane 

(67). Similarly, as leukocytes bind ICAM-1, their protrusions meet with sites within the 

endothelium that are enriched in caveolin and F-actin, which form a passage for the 

leukocyte to pass through (67). This suggests that ICAM-1 internalisation within 

caveolin-rich sites initiates the formation of a channel for transcellular migration. Using 
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RNA interference (RNAi) to reduce the expression of caveolin decreased the number of 

cells undergoing transcellular migration (67), showing the importance of this protein in 

the process.    

 

1.2.6.3 Migration through the Basement Membrane and Pericyte Sheath  

 Once the leukocyte has transmigrated across the endothelium it must 

penetrate the basement membrane and the pericyte sheath. The basement membrane 

is made up of laminins and collagen type IV (68). Studies have determined that certain 

areas of the basement membrane contain less of these molecules, with 60% less 

laminin 10, collagen IV and nidogen-2 at these sites compared with the average 

content of these proteins in the basement membrane (69), and these sites are where 

most neutrophils migrate through. Interestingly, these sites are also co-localised with 

gaps between pericytes, which loosely surround post-capillary venules. So, it seems 

that neutrophils migrate through areas of least resistance (10,69). Interestingly, these 

areas have been shown to be enlarged after stimulation with the cytokine IL-1β and 

this increase in size was dependent on neutrophil elastase (69). Inhibition of neutrophil 

elastase caused a reduction in transmigration (69).  

 Integrins also play a role in migration through the basement membrane to the 

site of inflammation. α6-integrin is activated by the engagement of PECAM-1 and is 

able to bind to the laminin molecules in the basement membrane, therefore 

facilitating the migration through the basement membrane (10). Antibodies blocking 

α6-integrins binding inhibited the migration of neutrophils across inflamed cremasteric 

venules (70). 

Now that all of the individual steps of the adhesion cascade have been 

discussed, the next section will focus on more detailed aspects of cell adhesion 

molecules that relate to this PhD project, namely L-selectin, it’s binding partners and 

their involvement in signal transduction. 

1.3 L-selectin form and function 

 The selectin family of proteins are a group of three adhesion molecules which 

have been shown to be critical in leukocyte trafficking. The members of the family are 

named after the location of their first discovery. P-selectin was first classified by 

expression on platelets, but has since been shown to be expressed on endothelial cells, 
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E-selectin is expressed on endothelial cells and L-selectin is expressed on most 

circulating leukocytes. There are many similarities between the three family members, 

including their structural similarity and ligand specificity, which is discussed below. 

 

1.3.1 Structure of the Selectins 

All members of the selectin family have a C-type lectin domain, followed by an 

epidermal growth factor (EGF) like domain, two to nine short consensus repeat (SCR) 

domains, a single transmembrane domain and a cytoplasmic tail (Figure 1.3). The 

number of SCR domains varies between the selectins and different species, with L-

selectin containing two SCR domains in all species studied and E- and P-selectin having 

between four and nine SCR domains (31). The homology between the extracellular 

domains between the different selectins is high, with around 52% homology amongst 

the lectin domains, 35-40% amongst the SCR domains and 47% amongst the EGF 

domains (31). Interestingly, there is no conservation in the transmembrane domain 

and the cytoplasmic tail across the three selectins, but these two domains for each 

individual selectin is well conserved between species, for example the L-selectin 

cytosolic tail in human and mouse share 78 % identity. This suggests they may play an 

important role in regulating selectin-specific properties. 

 

1.3.1.1 C-type Lectin Domain 

 The C-type lectin domain is a carbohydrate binding domain ‘C’ indicates that 

carbohydrate binding is dependent on calcium. It has been shown that the interaction 

between the C-type lectin domain and carbohydrate moieties is required for the 

binding of lymphocytes to lymph node high endothelial venules (HEVs). The addition of 

carbohydrate mimetics inhibited this interaction in vitro (71), as did the addition of the 

enzyme neuraminidase (72), which cleaves the carbohydrate moiety sialic acid from 

the surface of the HEVs. The importance of calcium in regulating the interaction 

between selectins and their ligands was assessed by chelating calcium with ethylene 

glycol tetra-acetic acid (EGTA) (73). This blocked selectin adhesion under flow, clearly 

showing adhesion occurs in a calcium-dependent lectin-like fashion. Mutagenesis 

studies have mapped the carbohydrate-binding site to near the calcium-binding site, 

with positive amino acids surrounding the calcium binding site responsible for 
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recognising carbohydrate moieties (74). The carbohydrate ligands of selectins are 

discussed elsewhere in more detail (see Section 1.3.2). 

 

1.3.1.2 EGF-like Domain 

 Deletion of the EGF-like domain has been shown to abolish adhesion (31). It is 

thought that this is due to an alteration in the structure of the selectin protein, 

affecting its ability to interact with carbohydrate moieties (75). Further evidence that 

the EGF-like domain plays a structural role and does not specifically interact with 

selectin ligands is provided by domain swapping studies. When the EGF-like domains of 

the L-selectin and P-selectin were swapped with one another, there was no effect on L-

selectin-dependent adhesion of lymphocytes to HEVs of the lymph nodes and 

mesenteric venules in vivo (76). Similarly, when the EGF-like domain of E-selectin was 

swapped with that of protein factor IX, cell adhesion was not affected (74). 

Interestingly, when the EGF-like domain of P-selectin was swapped with one of the 

other EGF-like domains, interaction with P-selectin specific ligands was suboptimal 

(76), showing both the lectin and EGF-like domains of P-selectin are required for 

optimal interaction with its ligands and suggests the P-selectin EGF-like domain does 

play a role in ligand specificity.  

 

1.3.1.3 SCR Domain 

 Deletion mutagenesis of the SCR domains reveal an impairment in ligand 

binding under flow (75). Further evidence of the importance of the SCR domains in 

ligand recognition has been shown by antibody studies. The addition of an antibody 

against the SCR domain inhibited the adhesion of both L- and E-selectin, with 

lymphocyte adhesion to HEVs and neutrophil adhesion to E-selectin respectively 

blocked (77). However, the swapping of the L- and P-selectin SCR domains had no 

effect on adhesion (76), showing the SCR domains do not play a role in ligand 

specificity. This has led to the hypothesis that the SCR domain could be important in 

controlling the distance of the C-type lectin domain from the membrane, which could 

be important for ligand interaction. For example, L-selectin is anchored to microvilli 

(78) and, as such, is less likely to require many SCR domains during tethering and 

rolling events (as it stands head and shoulders above other molecules that reside on 
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the planar part of the plasma membrane). In contrast, P-selectin contains 9 SCR 

domains and is thought not to localise to microvilli.  

 L-selectin contains a unique membrane proximal cleavage domain (shown as a 

pentagon in Figure 1.3) located below the SCR domains. This allows the regulation of L-

selectin surface levels via the cleavage of the extracellular domain, as will be explained 

in detail in Section 1.3.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.3.2 Selectin Ligands 

 As stated, the C-type lectin domain of selectins is responsible for interacting 

with carbohydrate moieties on the surface of corresponding cells. The carbohydrate 

moieties required for binding are sialyl Lewis X (sLex)-based tetrasaccharides. This is a 

sialofucosylated glycan with a terminal sialic acid linked to a galactose and a fucose, 

both linked to N-acetyl-glucosamine (Figure 1.4) (79,80). Selectin ligands are also often 

sulphated (81). Studies have been carried out in order to decipher which components 

are required for selectin binding. The loss of sialic acid from sLex by the addition of 

sialidase abolishes the interaction between lymphocytes and HEVs, therefore inhibiting 

lymphocyte homing to the lymph node (82). The role of fucose was assessed in 

Figure 1.3: Structure of selectins. A diagram showing the different domains of the selectins, 

including the C-type lectin ectodomain, epidermal growth factor (EGF)-like domain, short 

consensus repeat (SCR) domains, a single transmembrane region and a C-terminal 17 amino 

acid cytoplasmic tail. The structural domains are similar for all family members, except the 

number of SCR domains varies and the sequence of the transmembrane and cytosolic domains 

is not conserved between family members. L-selectin also contains a membrane proximal 

cleavage site, allowing it to be cleaved from the cell surface. 
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fucosyltransferase knockout mice. This resulted in HEV cells with no ligand activity, 

resulting in the loss interaction between lymphocytes and the cells of HEV (82). The 

addition of the sulphation inhibitor sodium chlorate also led to a reduction in the 

binding between the selectins and their ligands (82).  

 Although the carbohydrate moiety sLex is capable of acting as the ligand for 

selectins, highlighted by the fact it can support leukocyte rolling, the number of ligands 

required is two-three orders of magnitude higher than physiologic selectin ligands (83). 

This shows that other components are required to enhance the selectin/ligand 

interaction. The protein backbone upon which sLex is attached is important for 

displaying the carbohydrate moiety in the correct orientation for presentation to 

selectins (31,80). The glycoprotein also plays important roles in ensuring correct 

posttranslational modifications, initiating outside-in signalling and sorting of the ligand 

to the correct location (31). 

 

 

 

 

 

 

 

 

 

  1.3.3 Regulation of L-selectin expression  

 L-selectin is constitutively expressed on the surface of a majority of circulating 

leukocytes, including monocytes, neutrophils, naïve T- and B-cells (31). The expression 

of L-selectin is controlled both at the mRNA and the protein level. Analysis of the DNA 

sequence upstream of the L-selectin start codon has revealed several transcription 

factors are capable of binding to the promoter region. Site-directed mutagenesis and 

chromatin immunoprecipitation experiments have shown that Mzf1, Klf2, Sp1, Fts1, 

Irf1 bind to and activate the murine L-selectin promoter (84). The role of these 

transcription factors was further assessed by over expressing them in EL4 cells, which 

led to an increase in L-selectin mRNA levels (84). It was also shown that when Sp1 

Figure 1.4: Sialyl Lewis X. A diagram showing the composition of sLex and the attachments 

between them. R represents any glycoprotein to which sLex is attached. 
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expression was silenced using siRNA, the expression of L-selectin mRNA was decreased 

(84), further highlighting the ability of this transcription factor to promote L-selectin 

expression. The analysis of the promoter region also found a potential Forkhead box 1 

(FOXO1) binding sequence upstream of the L-selectin start codon (85). Studies have 

shown FOXO1 is capable of activating expression of L-selectin in several different cell 

lines. A constitutively active form of FOXO1 expressed in Jurkat T-cells led to an up-

regulation of L-selectin expression, as did overexpression of FOXO1 (85). FOXO1 has 

been reported to control L-selectin expression in naïve T-cells (86,87) and in B-cells, 

where a lack of FOXO1 has been shown to lead to lower L-selectin expression and as a 

result fewer B-cell populating peripheral lymph nodes (88). 

 Although the transcription factors responsible for promoting L-selectin 

expression have been deciphered, the signalling pathways leading to their activation 

remain unclear. Several pathways have been shown to regulate L-selectin mRNA levels 

in T-cells. Activation of T-cells through the T-cell receptor (TCR) has been shown to 

down-regulate L-selectin within a few hours through an acceleration of L-selectin 

cleavage (see Section 1.3.4) (89). Over the next few days L-selectin levels increase then 

decrease once again via regulation of mRNA levels (89), though how mRNA levels are 

regulated is unclear. It has also been shown that the PKC pathway is capable of up-

regulating L-selectin mRNA levels in Jurkat T-cells (90). In this study PMA was used to 

activate PKCs, which initially causes shedding of L-selectin (see Section 1.3.4), followed 

by a progressive increase in the surface expression of L-selectin and an increase in 

mRNA levels (90). It is possible that the increase in L-selectin expression is in response 

to the induction of shedding and further research is required to assess the role of PKC 

signalling in inducing L-selectin expression in T-cells. 

 In B-cells, L-selectin mRNA levels are increased by the cytokine interferon 

(IFN)-α (91), although again the signalling pathway remains unclear. The role of nitric 

oxide (NO) synthase (NOS) in regulating L-selectin expression has also been 

investigated. It has been reported that when rats were treated with the NOS inhibitor 

L-NAME, the expression of L-selectin was reduced and this was due to an overall 

reduction in L-selectin mRNA (92). The cytokine IL-7 has been shown to negatively 

regulate L-selectin expression. IL-7 is a regulator of T-cell development and as T-cells 

enter the lymph node they encounter IL-7 (93). IL-7 regulates Cdc25A, a phosphatase 

that activates cyclin-dependent kinases and actively promotes T-cell proliferation (93). 
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High doses of IL-7 promote low-level L-selectin expression and a higher level of 

nuclear-localised Cdc25A causing T-cell proliferation (93). This causes the 

sequestration of FOXO1 in the cytosol, therefore blocking the promotion of L-selectin 

expression (93).  

 L-selectin is down-regulated from the surface by cleavage at an extracellular 

site, leading to soluble L-selectin present in the plasma. Details of how L-selectin 

shedding is regulated can be found in Section 1.3.4. 

 

1.3.4 Shedding of L-selectin 

 The biological significance of shedding of L-selectin remains unclear, although it 

is likely to rapidly halt L-selectin-dependent adhesion and signalling events, as 

discussed below. Shedding of L-selectin from the plasma membrane occurs rapidly, 

following several different stimuli including: phorbol 12-myristate 13-acetate (PMA) 

(94), antibody cross-linking (6), thrombin, IL-8 (95), TNF-α (6) and mechanical force due 

to rolling (96). Shedding has been shown to occur rapidly after activation of both 

neutrophils and lymphocytes (97,98), suggesting that it plays a role in rapidly shutting 

down signalling from this molecule.  

The process of shedding is regulated by metalloproteases, such as a disintegrin 

and metalloprotease domain 17 (ADAM17) (also known as TNF-α converting enzyme 

(TACE)) (99). This is a transmembrane protein with an extracellular metalloproteinase 

domain (100) that cleaves L-selectin at an extracellular membrane-proximal site 

(Figure 1.5A). Over 70 different substrates for ADAM17 have been identified, with 

ligands involved in development and inflammation characterised (101,102). These 

ligands can broadly be grouped in 3 categories: 1) membrane-anchored ligands, such 

as growth factors and cytokines that are synthesised and attached to the membrane 

and ADAM17 cleavage forms an active soluble protein, for example TGF-α and TNF-α 

(99), 2) receptors, whose cleavage may either block signalling or induce an alteration in 

signalling, with the membrane retained fragment capable of inducing different signals, 

for example Notch (103) and ErbB4 and 3) cell adhesion molecules, with ADAM17 

cleavage blocking adhesion, for example ICAM-1 (104) and VCAM-1 (105). It must be 

noted that many adhesion molecules also act as signalling receptors, and therefore 

cleavage by ADAM17 will also impact signalling events. ADAM17 is expressed in all cell 
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types, including endothelial cells and leukocytes, with inflammatory stimuli shown to 

increase its expression (101). Surface expression of ADAM17 is also induced by 

translocation of stored protein to the plasma membrane (100). This is controlled by 

threonine phosphorylation of ADAM17 by the p38 MAPK or ERK (106,107). The activity 

of ADAM17 is controlled at the protein conformation level. It exists in a closed inactive 

conformation, maintained by intramolecular disulphide bonds, which in turn is 

regulated by the activity of extracellular protein disulphide isomerases (PDIs) 

(108,109). Upon stimulation with PMA, reaction oxygen species (ROS) are produced, 

which inactivate PDI and thereby activate ADAM17 (108).  

 Initial analysis of the role of ADAM17 in inflammation was attempted with 

knockout mice, however, the loss of ADAM17 was embryonic lethal (99). For that 

reason lymphocytes lacking ADAM17 were adoptively transferred in to wildtype mice. 

Results showed that survival against bacterial infection was improved, with a greater 

number of neutrophils infiltrating to the site of infection to aid bacterial clearance 

(110), suggesting ADAM17 has a protective role in curbing infection. However, 

evidence also points to ADAM17 being pro-inflammatory, with the risk of septic shock 

reduced  when ADAM17 was lacking in lymphocytes (101). It was also observed that 

the number of ADAM17-/-neutrophils recruited to the lung was reduced compared to 

wildtype cells following inflammation (111). ADAM17 is also up-regulated in chronic 

inflammatory diseases (112), including atherosclerosis (101). These differences are 

most likely down to the different targets of ADAM17 cleavage being involved in 

different processes during inflammation.  

The role of ADAM17 in negatively regulating L-selectin expression is highlighted 

in ADAM17-null neutrophils, where it is 10-fold higher than in wildtype cells (113). The 

location of the cleavage site in L-selectin is located between residues K321 and S322 

(114,115). Studies focusing on site specificity found that the sequence of amino acids 

surrounding the cleavage site was not important, but the actual distance of the 

cleavage site from the plasma membrane is vital (114,116-118). This suggests that the 

ADAM17 active site is poised on a fixed stalk, and lacks flexibility when cleaving its 

substrates. Mutants of L-selectin, where the extracellular domain adjacent to the 

membrane has been truncated by eight amino acids (a mutation referred to as ΔM-N 

in humans and ΔK-N in mice), showed a blockage of shedding (98,119) (Figure 1.5B).  
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The cytoplasmic tail has also been shown to play an important role in 

regulation of shedding of L-selectin. Truncating the entire tail of L-selectin leads to just 

44% shedding (114,118), suggesting that there are critical elements within the tail that 

are sufficient to drive the shedding response. As explained in a later section in this 

thesis, the binding of CaM to L-selectin has been shown to be involved in regulating L-

selectin shedding (Section 1.3.7.3). It is also possible that PKC phosphorylation of the 

cytosolic tail of L-selectin is important in regulating shedding, as inhibitors of PKCs also 

block shedding (120). 

Experiments where L-selectin cleavage is inhibited have been undertaken in 

order to decipher the role of shedding. Results showed that rolling velocities are 

reduced, with a velocity of 59 µm/s before inhibition and 39 µm/s velocity when 

shedding was inhibited, and this leads to an increase in the accumulation of leukocytes 

attached to endothelial cells (121,122). Similarly, ADAM17-null neutrophils roll slower 

and adhere more readily to endothelial cells, with a greater number of neutrophils 

being recruited to the site of inflammation (113). Mouse models expressing “sheddase 

resistant” L-selectin have been produced to study the effect of shedding in the whole 

organism. The expression of sheddase resistant L-selectin in neutrophils leads to the 

prevention of neutrophil migration into tissue following activation (114,123). Sheddase 

resistant L-selectin also leads to activated T-cells re-entering the lymph nodes 

(114,124).  

Cleavage of L-selectin results in the creation of a soluble extracellular fragment 

of L-selectin, which is able to bind to its ligand and therefore competes for binding 

sites on both the leukocyte (e.g. PSGL-1) and the endothelium, antagonising further 

recruitment of leukocytes (125). As L-selectin is a signalling molecule (see Section 

1.3.6), shedding will presumably halt the activation of L-selectin-dependent signalling 

pathways. This is highlighted by the fact that shedding limits the activation of integrin 

molecules (114,126). Therefore L-selectin cleavage may be required to limit L-selectin-

dependent signalling. All these factors suggest shedding is important for limiting the 

inflammatory response by ensuring that the number of leukocytes recruited to the 

sight of infection is controlled and limit the activation of the cells by halting L-selectin 

signalling. 

Shedding of L-selectin also creates a membrane-retained fragment, often 

referred as the “stump”. It is possible that this fragment of L-selectin is able to induce 
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different signalling pathways to the full length L-selectin, however, this has not been 

studied in any detail. The stump remains intact for 30 minutes after cleavage before 

being degraded (127), giving it ample time to activate signalling pathways. One 

possible pathway is the activation of PKC isozymes. PKCs have been shown to bind 

phosphorylated L-selectin cytosolic tail (see Section 1.3.7.2 for details), possibly after L-

selectin has been cleaved. However, further research is required to determine if this is 

the case. There are several other examples of the stump of transmembrane proteins 

produced by ADAM17 cleavage acting as signalling molecules (102,128). The stump of 

CD44 is susceptible to γ-secretase cleavage, which is an intramembrane protease that 

cleaves transmembrane proteins at residues within the transmembrane domain. This 

produces a fragment of the protein, which enters the nucleus and induces protein 

expression (129). It is possible that the same mechanism also occurs with L-selectin. 

The importance of the stump formation may be highlighted by an in vivo chemotaxis 

assay using L-selectin knockout and ΔK-N-L-selectin mice. In both cases, leukocytes 

failed to chemotax towards the keratinocyte-derived chemokine (KC) (123,130). The 

similarity in both cases is the lack of the formation of the stump, implying it may be 

responsible for inducing signalling pathways that allow chemotaxis. 
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It has been observed that non-steroidal anti-inflammatory drugs (NSAIDs) 

induce shedding of L-selectin (131). NSAIDs inhibit the interaction between neutrophils 

and endothelial cells, leading to a reduction in the number of neutrophils migrating to 

the site of inflammation (132,133). Experiments have been carried out to try to 

decipher the mechanism by which NSAIDs induce L-selectin shedding. Inhibiting the 

protease ADAM17 blocks the induction of L-selectin shedding (134), showing this 

protease is responsible for shedding L-selectin in response to NSAIDs. How NSAIDs 

activate ADAM17 remains unclear, although studies have revealed that ROS are 

involved. NSAIDs have previously been shown to induce the production of ROS. When 

neutrophils were incubated with both antioxidants and NSAIDs, the capability of 

NSAIDs to reduce the basal expression of L-selectin was diminished (135), showing 

NSAID-induced shedding requires a high oxidative status. Analysis of the ROS required 

has shown that superoxide is responsible, as the presence of superoxide dismutase 

(SOD), which catalyses the conversion of superoxide to oxygen and hydrogen peroxide, 

abrogates NSAID induced shedding almost entirely (135). Further investigation is 

required to fully decipher the mechanism behind NSAID induced shedding of L-

selectin.  

 

1.3.5 L-selectin Ligands 

 As stated above, L-selectin ligands normally consist of glycoproteins decorated 

with sLex moieties, although glycolipids can also act as ligands. It has also been shown 

that sulphation of sLex is required for L-selectin interaction with ligands expressed by 

HEVs, as mice deficient in the enzyme capable of sulphating sLex, namely N-

acetlyglucosamine 6-O-sulfotransferase-1, results in a reduction of lymphocyte homing 

to peripheral lymph nodes, mesenteric lymph nodes and Peyer’s Patch (136). Many 

potential L-selectin ligands have been identified, though the specific role of each 

Figure 1.5: The shedding of L-selectin by ADAM17. (A) In cells expressing wildtype L-selectin, 

upon stimulation with PMA etc., ADAM17 (shown in blue) comes into close proximity to L-

selectin and can access the cleavage site (shown by the hexagon), leading to shedding of L-

selectin from the cell surface. (B) In cells expressing sheddase resistant L-selectin (known as 

ΔM-N-L-selectin in humans), 8 amino acids proximal to the cleavage site have been deleted 

resulting in a cleavage site being closer to the plasma membrane. When the cell is activated 

ADAM17 can no longer access the cleavage site and so L-selectin is not shed. 
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individual ligand remains unclear. Several of the ligands whose role, to a certain 

extent, has been deciphered are described below, with further examples shown in 

Table 1.2, though this is not an exhaustive list.  

The ligands can be broadly classed in two categories, those found on the 

luminal side of the endothelial (Figure 1.6A) and those primarily found in the ECM 

beneath the endothelium (Figure 1.6B). A majority of those on the luminal side are 

glycoproteins decorated with sLex, whereas those within the ECM lack sLex and instead 

L-selectin adhesion depends on highly sulphated proteoglycans. Another interesting 

difference is the fact the L-selectin binds to luminal ligands under shear flow, which is 

required for the interaction (see Section 1.2.2), whereas shear flow is obviously lacking 

subluminally. It is therefore possible that the binding mechanisms are different in both 

cases, though further research is required to understand this difference. The fact that 

the L-selectin encounters the different subsets of ligands in distinctive 

microenvironments may be fundamental in fine-tuning L-selectin signalling in these 

very different locations.  

 

1.3.5.1 L-selectin ligands expressed on the luminal surface 

PSGL-1 is the best-characterised luminal ligand of L-selectin and is expressed on 

leukocytes and endothelial cells as a homodimer, with two subunits linked together by 

a disulphide bond (137). It has been demonstrated that L-selectin binding depends on 

sialylation, fucosylation (138) and sulphation of at least one of three tyrosine residues 

of PSGL-1 (139). Mutating one or two of the tyrosine residues to phenylalanine, and 

therefore blocking sulphation, led to a lowering in the binding affinity between L-

selectin and PSGL-1 (137). This is likely to be due to a loss of charge on PSGL-1 

preventing the formation of electrostatic interactions between L-selectin and PSGL-1 

(137). As stated above (Section 1.2.2) PSGL-1 is able to support L-selectin dependent 

rolling. Mutating either the tyrosine residues or the threonine residue to which sLex is 

attached abrogated rolling (140). The interaction between L-selectin and PSGL-1 has 

been implicated in secondary tethering, as described in Section 1.2.1. 

 Glycosylation-dependent cell adhesion molecule-1 (GlyCAM1) has also been 

shown to bind to L-selectin, with the interaction requiring the sialylation and 

sulphation of GlyCAM-1 (141). It is expressed by HEVs and lacks a transmembrane 
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domain, so is secreted as a soluble protein (142).  As GlyCAM-1 is secreted it may not 

play a role in cell-cell interactions and instead be involved in initiating L-selectin 

dependent signalling. In fact, studies have demonstrated that treatment of naïve T 

cells with GlyCAM-1 stimulates adhesion via β2-integrins (142,143). It is also possible 

that GlyCAM-1 is immobilised on to the luminal surface of the endothelial cells, likely 

through electrostatic interactions. If this is the case then it is possible that GlyCAM-1 is 

capable of supporting leukocyte attachment to the endothelium through its 

interaction with L-selectin. The levels of GlyCAM-1 found in the plasma after an 

inflammatory stimulus has been shown to increase (144), suggesting a role in 

inflammatory induced signalling. 

 Another luminal ligand of L-selectin is mucosal vascular addressin cell adhesion 

molecule 1 (MAdCAM-1). MAdCAM-1 is a member of the immunoglobulin superfamily 

expressed on the surface of the endothelium of venules, including HEVs in Payer’s 

Patch and mesenteric lymph nodes (145). It has been shown that MAdCAM-1 can be 

post-translationally modified with sLex to enable L-selectin binding (145). Studies have 

divulged that lymphoid cells transfected with L-selectin are capable of adhering to 

MAdCAM-1 isolated from mesenteric lymph nodes under shear flow (146) and rolling 

of the lymphoid cells was observed (146). This shows that MAdCAM-1 may play a role 

in recruitment of lymphocytes to the secondary lymph nodes. 

 Members of the CD34 family of glycoproteins have also been implicated as L-

selectin ligands. CD34 is a single pass transmembrane sialomucin protein, which is 

expressed on endothelial cells. CD34 can be decorated with sulphated sLex and is then 

able to bind L-selectin (147) and mediate lymphocyte extravasation (148). In fact, 

antibodies against CD34 are capable of blocking T cell binding to lymph node and 

Peyer’s Patch HEVs and therefore block T cell extravastion from the blood into 

secondary lymphoid tissue (149). Blocking CD34 with antibody has also been shown to 

inhibit the recruitment of neutrophils and monocytes to the peritoneum following an 

inflammatory stimulus (150). Interestingly, studies carried out with CD34-deficient 

mice have shown that lymphocytes homed to the secondary lymphoid organs more 

frequently than wildtype mice (151). Analysis showed that lymphocytes were twice as 

likely to tether, roll and adhere in peripheral lymph nodes when CD34 was lacking 

(151). This suggests that CD34 may interfere with L-selectin dependent recruitment of 

lymphocytes and it is possible plays a dual role in regulating lymphocyte recruitment to 
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secondary lymph nodes. Other members of the CD34 family have also been shown to 

be capable of acting as L-selectin ligands, with podocalyxin presenting sulphated sLex 

to enable L-selectin binding (152) and endoglycan interacting with L-selectin through 

sulphated tyrosine residues and sLex (152). 

Proteoglycans (PGs) expressed on the cell surface form a part of the glycocalyx 

in addition to the extracellular matrix (ECM) and collectively act as L-selectin ligands. 

Heparan sulphate proteoglycans (HSPGs) are one class of proteoglycans that make up 

the glycocalyx and can bind L-selectin. Interestingly, it is thought that the glycocalyx 

acts as an anti-inflammatory sheath by repelling leukocytes and masking underlying 

binding molecules (153). The thickness of the glycocalyx differs in different vessel 

types, with large arteries, such as the aorta, having a significantly thicker glycocalyx 

than post capillary venules (154). In fact, it was shown that segments of the post 

capillary venules in both rat and mouse almost completely lacked the glycocalyx (154). 

As a majority of leukocytes exit the blood vessels in post capillary venules, these areas 

lacking glycocalyx may act as areas where leukocyte-endothelium interactions can 

occur, with the presence of the thicker glycocalyx blocking leukocyte adhesion in the 

arteries. Upon an inflammatory stimulus the glycocalyx is shed allowing leukocyte 

adhesion to occur. Degradation of heparan sulphate, by treatment with heparitinase I, 

causes an increase in the number of adherent leukocytes (155). 

Several different studies have shown that L-selectin is able to bind to HSPGs in 

several different vessels including the kidney and spleen (156-158). A role for HSPGs in 

monocyte binding to bovine aortic endothelial cells has also been demonstrated, as 

heparanase treatment inhibited approximately 80% of monocyte attachment to the 

aortic endothelium under flow (159). The importance of heparan sulphate in the 

interaction between L-selectin and HSPGs is highlighted by the inactivation of N-

deacetylase-N-sulfotransferase-I, an enzyme responsible for the addition of the 

sulphate group to the heparan sulphate chains. When this enzyme is inactive, the 

binding between L-selectin and its ligands is much weaker, leading to reduced 

neutrophil infiltration following an inflammatory stimulus (160). 

1.3.5.2 Potential L-selectin ligands beyond the vessel lumen 

 As stated above, HSPGs expressed in the ECM may potentially act as L-selectin 

ligands. Potential HSPG L-selectin ligands were identified by staining frozen tissue 
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samples with L-selectin-Ig and then using carbohydrate-degrading enzymes in order to 

classify the ligand type. Using this method it was revealed that L-selectin interacted 

with the HSPG collagen XVII, with cells transfected with L-selectin able to bind to wells 

coated with collagen XVII (156). A similar method was used to identify chondroitin 

sulphate proteoglycans (CSPGs) and dermatan sulphate proteoglycans (DSPGs) that 

were also capable of binding to L-selectin (157), with versican (157,161) and biglycan 

(162) both shown to be potential L-selectin ligands. Although the above method was 

able to show that L-selectin is capable of binding glycoproteins expressed in the 

basement membrane, it remains to be investigated if L-selectin is capable of 

interacting with these ligands in this microenvironment. 

 The importance of the L-selectin interaction with ECM components is 

highlighted in a model of kidney interstitial inflammation. It was revealed that the 

sulphated glycolipid sulphatide was able to act as a ligand for L-selectin (163) in the 

peritubular capillaries and interstitium following infection (164). It was revealed that 

the infiltration and migration of monocytes to the interstitium following an 

inflammatory stimulus was reduced in mice lacking sulphatide (164). It is possible that 

other components of the ECM may be important for migration of leukocytes into other 

tissue types. 

It is thought that PGs in the ECM have to be cleaved to enable leukocyte 

migration (153). It is possible that fragments of PGs bind to L-selectin and promote cell 

signalling in leukocytes to enhance directional migration. T-cells produce heparanase 

to degrade HS to sulphated disaccharides (DSs) (165,166). Treatment of T-cells with DS 

induces the adhesion of the cells to ECM components via integrins (166) and inhibits 

the production of TNF-α following an inflammatory stimulus (165). Both biglycan and 

versican have been shown to interact with toll-like receptors (TLRs) on T-cells to induce 

inflammatory responses, including production of TNF-α and IL-6. To date it is unclear if 

the L-selectin interaction with components of the ECM is capable of inducing signalling 

pathways. Further investigation is required to decipher the importance of the L-

selectin interaction with glycoproteins in the ECM. 
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Ligand Expression Role of Interaction Reference 

PSGL-1 Leukocytes Secondary tethering (137-139) 

GlyCAM1 Secreted by HEVs Initiation of L-selectin-dependent 

signalling, leukocyte-endothelium 

interaction? 

(141-143) 

MAdCAM1 HEVs Recruitment of lymphocytes to 

secondary lymph organs? 

(145,146) 

CD34 Endothelial cells Regulation of lymphocyte recruitment 

to secondary lymph nodes. 

Recruitment of neutrophils and 

monocytes to sites of inflammation.  

(147,149-

151) 

Podocalyxin Pancreatic cancer Metastasis of cancer cells  (152,167) 

Figure 1.6: Ligands of L-selectin. A depiction of the location of different L-selectin ligands found 

on the luminal side of the endothelium (A) and in the ECM (B). It is worth noting that GlyCAM-1 is 

a secretory protein, but may be attached to the endothelium by a yet undiscovered mechanism. 
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cells 

Podocalyxin-

like-protein 

Colon carcinoma 

and HEVs 

Metastasis of colon carcinoma cells 

and lymphocyte binding to HEVs 

(168,169) 

Endoglycan Vascular endothelial 

cells, B cells, T cells 

and peripheral 

blood monocytes 

Leukocyte-endothelial and leukocyte-

leukocyte interactions in vitro 

(152,170) 

Endomucin Vascular and 

lymphatic 

endothelial cells, 

including HEVs 

Shown to support L-selectin-

dependent tethering and rolling in 

vitro 

(171,172) 

Sgp200 HEVs Support lymphocyte-HEV 

interactions? 

(173,174) 

Nucleolin Leukocytes Leukocyte-leukocyte interactions in 

vitro 

(175) 

E-selectin Endothelial cells Supports L-selectin-dependent 

adhesion in vitro 

(176) 

Collagen 

XVIII (HSPG) 

ECM Link between L-selectin dependent 

adhesion and chemokine signalling? 

(156,177) 

Versican 

(CS/DSPG) 

ECM Leukocyte trafficking into the kidney 

during disease conditions? 

(161,178) 

Biglycan 

(DSPG) 

ECM Tethering and rolling of CD16- NK cells 

on endometrial microvascular 

endothelial cells 

(162) 

Lubrican Synovial fluid (SF) Recruitment of polynuclear 

granulocytes to SF during rheumatoid 

arthritis 

(179) 

 

 

 

 

Table 1.2: L-selectin Ligands. A summary of glycoproteins identified as ligands for L-selectin. Note: 

this is not an exhaustive list. 
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1.3.5.3 The role of multivalent ligands in L-selectin function 

 Studies reveal an important role for multivalent ligands in regulating L-selectin 

function; for example, multivalent ligands are capable of inducing L-selectin shedding 

(114,180). Experiments using glycopolymers with sulphated sLex moieties showed 

these multivalent ligands bind to L-selectin molecules and not only cause L-selectin 

shedding, but, as a result, inhibit L-selectin-dependent rolling (180,181). Further 

analysis of the requirements of the multivalent ligands to induce shedding revealed 

that the spacings of the ligands on the polypeptide was important, as shedding 

occurred when the ligands are 17-35 Å apart, but not when they were 35-50 Å apart 

(182). This suggests that clustering of L-selectin, induced by multivalent ligands, is a 

prerequisite for L-selectin shedding (Figure 1.7). The mechanism underlying this 

shedding response remains unclear, although it is likely that signalling through 

clustering of L-selectin may activate a signalling cascade to kick-start the process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.7: Multivalent ligand induced clustering of L-selectin causes L-selectin shedding. In 

resting cells L-selectin is distributed at the plasma membrane as a monomer. When a densely 

packed multivalent ligand is bound by L-selectin molecules clustering occurs, leading to L-

selectin shedding. Engagement of a loosely spaced multivalent ligand by L-selectin does not 

induce clustering and therefore shedding does not occur. Figure taken from Liu, S., and Kiick, K. 

(2011) Architecture effects on L-selectin shedding induced by polypeptide-based multivalent 

ligands. Polymer chemistry 2, 1513-1522 (2). 
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1.3.6 L-selectin-dependent Signalling 

 L-selectin has been described as a signalling receptor, with many studies 

undertaken in an attempt to decipher the pathways triggered upon ligand binding of L-

selectin. Although many effectors of L-selectin stimulation have been identified, the 

signalling pathways underlying them remain elusive. Those that have been deciphered 

are shown in Figure 1.8.  

Many examples of L-selectin signalling have been observed in neutrophils. In 

these cells, signalling downstream of L-selectin using sulphatide or antibody to cluster 

L-selectin increases the free cytosolic concentration of calcium (Figure 1.8, 2) (183-

185). An increase in superoxide production for use in the oxidative burst in neutrophils 

was also observed using these methods (Figure 1.8, 2) (183,184). L-selectin has also 

been shown to promote the activation of integrins and therefore facilitating the 

transition from rolling to firm adhesion and arrest of leukocytes. Clustering of L-

selectin activates both β1 and β2-integrins in both neutrophils and lymphocytes (Figure 

1.8, 2) (186-188). Interestingly, it is thought that L-selectin signalling induces a change 

in the integrin conformation leading to their activation, as opposed to mobilisation of 

internal stores of integrins, due to the rapid increase in adhesiveness observed not 

allowing a time for the mobilisation to occur (188). The pathway behind L-selectin-

dependent integrin activation in neutrophils has been investigated, in conjunction with 

PSGL-1. It has previously been shown that PSGL-1 was responsible for the activation of 

integrins through its interaction with and activation of Spleen tyrosine kinase (Syk) and 

Sarcoma (Src) family kinases (189,190). L-selectin and PSGL-1 are in close proximity in 

neutrophils and upon ligation of E-selectin this becomes more apparent with co-

localisation on microvilli and tethers evident on cells rolling on P-selectin, as shown by 

proximity ligation assay and FRET analysis (191). PSGL-1 knockout mice lack LFA-1-

dependent slow rolling (Section 1.2.3), as do L-selectin knockout mice (191), suggesting 

both molecules are required for the extension of LFA-1. Both Syk and the Src Kinase 

family members Fgr, Hck and Lyn were shown to interact with the L-selectin/PSGL-1 

complex in neutrophils, as shown by co-immunoprecipitation experiments with 

peptides representing the cytosolic tails of PSGL-1 and L-selectin (191). The activation 

of these kinases was assessed in neutrophils under shear stress by lysing adherent 

cells, immunoprecipitating the kinases and assessing their phosphorylation state (191). 

The kinases Fgr, Lyn, Hck and Syk were all phosphorylated following the interaction of 
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the cell with P- and E-selectin, but not in cells lacking L-selectin (191). Taken together 

these results suggest that both L-selectin and PSGL-1 are required for the activation of 

LFA-1 in neutrophils through their activation of Syk and Src family kinases. 

Antibody ligation of L-selectin in neutrophils has been shown to phosphorylate 

and therefore activate several tyrosine kinases, such as MAPK (192). In fact, activation 

of the p38 MAPK by L-selectin stimulation has been shown to be required for L-

selectin-dependent priming of degranulation in neutrophils (Figure 1.8, 3) (193). 

Another signalling pathway activated in neutrophils upon L-selectin stimulation leads 

to the activation of the transcription factor NF-κB. Using the L-selectin ligand 

sulphatide and by crosslinking L-selectin with antibodies this transcription factor 

becomes activated (194). It has previously been shown that NF-κB induces the 

transcription of TNF-α in the monocyte cell line Mono Mac 6 and Human Embryonic 

Kidney (HEK) cells (195,196) and sulphatide ligation of L-selectin in neutrophils also 

leads to expression of TNF-α (185). It is therefore possible that L-selectin induction of 

TNF-α expression in leukocytes involves the activation of NF-κB (Figure 1.8, 4). 

 Studies using T-cells have also been undertaken to gain insight into signalling 

pathways activated upon L-selectin stimulation. The most clearly defined pathway 

involves the tyrosine kinase p56lck, which is activated upon L-selectin cross-linking 

(197,198). It has been shown, following the activation of p56lck, that the Growth 

factor receptor-bound protein (Grb)/Son of sevenless (Sos) complex becomes 

associated with L-selectin (197) and this in turn leads to the activation of the Ras-

MAPK signalling pathway (197). Through the activation of this pathway superoxide 

generation (197) and cytoskeletal reorganisation (shown by a tenfold increase in actin 

polymerisation) both occur (Figure 1.8, 7) (199). Activation of p56lck is also involved in 

the activation of JNK via the Rac proteins (Figure 1.8, 8) (200), though the function of 

this kinase in L-selectin signalling remains unclear. L-selectin stimulation causes the 

translocation of the transcription factor family nuclear factor of activated T-cells 

(NFAT) (201). The Ras-MAPK pathway has been implicated in this process (201). The 

role of NFAT in L-selectin signalling is still being investigated, though it has been shown 

that L-selectin regulation of the cytokine colony-stimulating-factor-1 (CSF-1) 

expression is controlled through the translocation of NFAT (Figure 1.8, 6) (202). L-

selectin stimulation also leads to the increase in sphingomyelinase activity, which in 

turn leads to a release in ceramide (Figure 1.8, 5) (203). Ceramide is a secondary 
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messenger shown to modulate inflammatory responses by mediating TNF-α and IL-1 

activity (204) (205). Ceramide is also capable of stimulating the transcription factors c-

Myc and NF-κB (206,207), and thus may play a role in activating the adherent cell. The 

signalling pathway behind the sphingomyelinase activity remains unclear, though it is 

known that tyrosine kinase signalling is not involved (203).  

L-selectin signalling plays a role in chemokine signalling in lymphocytes. 

Ligation of L-selectin through antibody cross-linking and engagement of the ligands 

fucoidin and sulphatide has been shown to increase the surface expression of the 

chemokine receptor CXCR4 in T-cells (208) and natural killer (NK) cells (209). Analysis 

revealed that the increase in surface expression of this receptor was due to the 

mobilisation of internal stores of CXCR4 to the plasma membrane (Figure 1.8, 1) 

(208,209). It was also revealed that L-selectin ligation inhibited stromal cell-derived 

factor-1 (SDF-1) induction of the internalisation of CXCR4 (208), further increasing the 

surface levels of the receptor and its potential responsiveness to the chemokine. The 

higher levels of CXCR4 results in an increase in the adhesion and TEM of lymphocytes 

(208). Further evidence of the role of L-selectin in chemokine signalling was 

demonstrated by the fact that L-selectin ligation enhances the chemotaxis of murine T- 

and B-cells in response to the chemokine CCL21 (210). However, the mechanism 

behind this enhancement remains elusive, with results showing it is not a result of an 

increase in the expression levels of the receptor for the chemokine (CCR7), though the 

PKCs, MAPKs and the Syk family of kinases have been implicated in the chemotaxis 

mechanism (210). 

The examples above show the many different signalling roles of L-selectin, 

however, the molecular mechanisms of these processes remain elusive and more 

research is required to unearth the details of these pathways. Previous work by the 

Ivetic group has shown that, despite its short size, the cytoplasmic tail of L-selectin can 

accommodate both CaM and ERM in resting cells (3). This trimeric assembly is thought 

to play an important role in mediating signal transduction. Section 1.6 will discuss what 

is known about the formation of this complex, with the role of each individual protein 

in L-selectin function described in Sections 1.3.7.3 and 1.3.7.4. 
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1.3.7 L-selectin binding partners 

 The cytosolic tails of E-, P- and L-selectin are the most divergent sub-domains, 

suggesting they may play unique roles in downstream signalling events. The tail of L-

selectin is composed of seventeen amino acids, with many basic residues (Figure 1.9). 

It has been reported that the tail is able to interact with several proteins, including α-

actinin, Calmodulin (CaM), the ezrin-radixin-moesin (ERM) family of cytoskeletal 

proteins (211,212) and PKC isozymes. In the following sections, each binding partner 

will be discussed individually in the context of how it might be involved in regulating L-

selectin function. As this thesis will focus on the interaction between L-selectin, CaM 

and moesin, these binding partners will be discussed in more detail in Sections 1.4 and 

1.5, with an emphasis on structure and binding mechanisms.  

 

Figure 1.8: Signalling pathways induced by L-selectin stimulation. A depiction of signalling 

pathways shown to be initiated upon L-selectin ligation. Pathways found in lymphocytes are 

indicated by a dotted boarder, those studied in neutrophils is highlighted by a dashed boarder 

and those in both are shown with a solid line. Numbers indicate the different pathways and are 

referred to in the text where the specific pathway is described. Where the components of the 

pathway are unknown a “?” is used. 
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1.3.7.1 α-actinin 

 Studies have shown that α-actinin interacts with the last 11 amino acids of the 

cytosolic tail of L-selectin (213). Using the pre-B cell line 300.19, transfected with 

either full length or a truncated form of L-selectin lacking the last 11 residues of the 

cytosolic tail (213), it was shown through immunoprecipitation that α-actinin was co-

precipitated with full length but not the truncated form of L-selectin (213). When α-

actinin is not able to bind to L-selectin, reduced tethering and rolling were observed. α-

actinin is an actin-binding protein, so may be involved in connecting L-selectin to the 

cytoskeleton, which could be important for tethering and rolling (211,212). It is worth 

noting, however, that truncation of the last 11 amino acids of the L-selectin cytosolic 

tail may affect the interaction of the other binding partners. It is therefore possible 

Figure 1.9: Cytosolic tail of L-selectin. The seventeen amino acids that constitute the cytosolic 

tail of L-selectin are shown. Residues involved in the interaction with the different L-selectin 

binding proteins are highlighted, with residues important for CaM binding shown in blue, for 

ERMs shown in purple and α-actinin in red. The major functions of the interaction between L-

selectin and the proteins is shown, with CaM inhibiting L-selectin shedding, ERMs controlling 

localisation of L-selectin as well as having a role in shedding and tethering  and α-actinin 

shown to control leukocyte tethering in vitro. PKC isozymes are capable of phosphorylating 

and interacting with the two serine residues within the cytosolic tail of L-selectin. PKC 

interaction/phosphorylation of L-selectin has been implicated in shedding of L-selectin and 

activation of signalling pathways. 
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that the tethering defect observed with the truncated form of L-selectin is due to other 

L-selectin binding partners not interacting. By narrowing down the residues required 

for α-actinin binding specifically, the role of the interaction between this protein and L-

selectin can be fully investigated.   

 1.3.7.2 PKC Isozymes 

 Following the observation that the cytosolic tail of L-selectin was 

phosphorylated upon activation of the cell, Kilian et al (2004)(214) investigated which 

protein kinases were capable of interacting with and phosphorylating L-selectin. Using 

Glutathione S-transferase (GST)-tagged L-selectin cytosolic tail peptides to pull-down 

proteins from T cell lysates it was revealed that PKCs co-precipitated with the L-

selectin peptide and exhibited kinase activity. Analysis of which PKC isozymes were 

capable of interacting with L-selectin was undertaken by Western blot with isozymes 

specific antibodies. It was determined that PKCθ and PKCι interacted with L-selectin 

and were responsible for its phosphorylation (Figure 1.10) (214). Using serine to 

alanine mutated peptides, it was shown that these PKC isozymes were capable of 

phosphorylating both S364 and S367, however, there was a preference for 

phosphorylating S364 (214). Kilian et al (2004) further investigated whether 

phosphorylation of the L-selectin tail affected its ability to bind to PKCs, with the 

results showing that PKCθ binding was enhanced after phosphorylation and PKCα 

binding was induced (Figure 1.10) (214). It is therefore possible that phosphorylation 

of L-selectin by PKCs activates other PKC signalling pathways. 

 

1.3.7.3 Calmodulin (CaM) 

Several studies have shown that CaM is able to interact with the L-selectin 

cytosolic tail (215,216). Kahn et al (1998)(215) investigated the role of CaM binding to 

L-selectin using several CaM inhibitors, such as calmidazolium and trifluoperazine. 

They showed that L-selectin-dependent adhesion of lymphocytes to HEVs was 

disrupted in the presence of the inhibitors (215). It was determined that the disruption 

of adhesion was due to the down-regulation of L-selectin from the surface of 

lymphocytes and that this cleavage of L-selectin was caused by metalloproteases, as 

shown by the co-treatment of cells with metalloprotease inhibitors blocking the down-

regulation (215). This has led to the hypothesis that CaM binding prevents the cleavage 
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of L-selectin (211). However, how this is achieved remains unclear. A possible 

mechanism of regulation is phosphorylation of serine residues located in the cytosolic 

tail of L-selectin (Figure 1.10), a theory that is investigated in this thesis. Interestingly, 

CaM has been shown to bind to several different transmembrane domains and protect 

them from extracellular cleavage. Examples include PECAM-1 (217), ACE2 (218), GPIb-

IX-V (219,220), GPVI (221) and TIM-2 (222), clearly highlighting a role for CaM in 

regulating transmembrane protein shedding.  

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

An interesting study undertaken by Deng et al (2011)(216) investigated the 

interaction between L-selectin and CaM in the presence of a lipid bilayer to identify the 

role of the plasma membrane in regulating the interaction. To carry out these 

experiments a peptide consisting of L-selectin transmembrane and cytosolic domains 

was synthesised and inserted into liposomes containing different phospholipid species. 

It was revealed that the cytosolic tail of L-selectin was in closer proximity to the 

surface of the membrane when the negatively charged phospholipid 

Figure 1.10: Hypothesis of CaM regulation of L-selectin shedding. In resting cells CaM interacts 

with L-selectin and protects it from shedding. Upon cell activation CaM dissociation occurs and L-

selectin is cleaved by ADAM17 at the extracellular cleavage site. A possible mechanism of CaM 

dissociation is phosphorylation of serine residues within the cytosolic tail of L-selectin by PKC 

isozymes, which have been shown to be activated upon leukocyte activation. The PKC isozymes θ 

and ι are able to phosphorylate the serine residues in the tail, with a preference for S364 (shown 

by the thicker arrow). Phosphorylation of the tail also leads to the binding of PKCα and PKCθ. 



62 
 

phosphatidylserine (PS) was present (216), presumably due to electrostatic 

interactions between positive amino acids in the tail and the negative charge of PS. 

This interaction was shown to block CaM association with the L-selectin cytosolic tail 

(Figure 1.11A) (216). Further investigation showed that ERM binding desorbs the L-

selectin cytosolic tail from the lipid bilayer and allows CaM to bind (Figure 1.11B, 

described in detail in Section 1.6) (223). It would be interesting to determine if this also 

occurred with intact cells as it could be a possible method of regulation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.3.7.4 ERM Proteins 

Previous work in the Ivetic lab showed that moesin is able to interact with the 

tail of L-selectin, although the nature of this interaction was not defined. Affinity 

chromatography, using an L-selectin cytosolic tail peptide conjugated to sepharose, 

revealed moesin and ezrin were purified from lymphocyte extracts (224). The N-

terminal domain of the protein was found to be required for this interaction (224). The 

interaction between moesin and L-selectin was also studied in phospholipid-containing 

liposomes to assess the effect of the presence of the lipid bilayer on the interaction 

(223). Analysis revealed that moesin and L-selectin were capable of interacting when L-

Figure 1.11: The cytosolic tail of L-selectin interacts with phosphatidyl serine (PS) in the 

plasma membrane. A study has shown that when PS is present in the plasma membrane the 

cytosolic tail of L-selectin interacts with the plasma membrane (A) through electrostatic 

interactions between negatively charged PS and positively charged amino acids in the tail. This 

interaction inhibits CaM binding to the tail. The FERM domain of ERMs is able to interact with 

the cytosolic tail of L-selectin and desorb it from the plasma membrane (B). This in turn allows 

CaM to bind (C).   
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selectin was embedded into the liposomes (223). Studies have shown that residues 

R357 and K362 within the L-selectin tail are involved in the interaction with the FERM 

domain of moesin (211,225). Mutation of these amino acids in pre-B cells causes a 

reduction in microvillar localisation and tethering efficiency (225).  

 

1.4 CaM form and function 

CaM is a calcium binding protein, which acts as a cytosolic calcium receptor. It 

binds four calcium ions in response to extracellular signals, causing a conformational 

change and enables calcium bound CaM (CaM-Ca) to bind and activate its target 

proteins by causing further conformational changes in the target (226). 

1.4.1 Structure of CaM 

 The structure of CaM with and without Ca2+ has been solved by NMR and X-ray 

crystallography (227-229). The crystal structure of CaM-Ca reveals a dumbbell shaped 

molecule, approximately 65Å in length (Figure 1.12A) (226). The N- and C-terminal 

domains are globular lobes made up of two EF hands, each of which is able to bind one 

calcium ion. The two globular domains are separated by an eight turn α-helix (226). 

NMR structures showed that the central helix is highly flexible and that the tumbling of 

the two lobes is effectively independent of one another (230). Structural studies of the 

calcium free CaM (ApoCaM) showed a more compact structure compared with the Ca-

bound form, with a loss of the central helix (Figure 1.12B). In agreement with this CD 

spectroscopy showed that calcium binding causes CaM to become more helical (231). 

Structural rearrangements upon calcium binding causes hydrophobic surfaces on the 

globular domains to form on the surface and allow it to bind to target proteins (226). 

The exposure of these hydrophobic groups results in a release of energy, which can be 

transduced as a change in affinity for the CaM effector and/or an alteration in effector 

function (232). 

NMR and several spectroscopy methods have been used to elucidate the 

changes to CaM upon calcium binding. These studies determined that there is a two-

step conformational change observed and this shows that the binding domains have 

different affinities for calcium, with the C-lobe EF hands having a three-fivefold higher 

affinity for calcium compared to the N-lobe (232,233). Analysis has also revealed that 
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target protein binding also affects the affinity of calcium, with the KD for Ca2+ 

increasing in the presence of target peptides (226). 

 

1.4.2 CaM-Binding Proteins 

 CaM is able to bind to and regulate the activity of many different proteins. 

Studies of several CaM-binding proteins have shown that the CaM-binding domain is 

made up of fourteen to twenty six residues that are able to form a basic amphiphilic α-

helix. Interestingly, there is no consensus sequence to which CaM binds. Instead, 

varying motifs exist with several hydrophobic anchor residues which are embedded 

into the hydrophobic pockets of CaM-Ca (234). The nature of the binding motif is 

based on the spacing of the hydrophobic anchor residues (Table 1.3), with the spacing 

dictating the compaction of the structure of the complex. Many different spacings of 

the hydrophobic anchors can be accommodated due to the flexibility of the linker 

between the two lobes of CaM-Ca (234). 

 The canonical mechanism of CaM binding is highly conserved: both globular 

domains interact with the target peptide and end up in close proximity to each other, 

with the central helix being disrupted, forming a hydrophobic channel which is 

occupied by the helical target peptide.  An example of this recognition mechanism is 

shown in Figure 1.12C. Analysis of the interactions in the complex showed that the 

binding is mainly driven by hydrophobic interactions with some salt bridges also 

contributing to complex formation (226). Several protein kinases, phosphatases and 

secondary messenger generators have been shown to interact with CaM in this 

manner, including CaMKII, MLCKs (235), calcineurin (236), Ca2+-ATPase (237) and NO 

synthase (238) (though different spacings of the hydrophobic anchors are observed). 

CaM acts as a calcium sensor to activate these proteins. In the absence of Ca2+ the 

target proteins are unable to bind to their substrates as the binding site is blocked by 

an inhibitory domain. An influx of Ca2+ will lead to CaM-Ca interacting with the target 

protein and a conformational change is induced, which relieves the auto-inhibition and 

promotes activation (226). Phosphorylation has been shown to be important in 

switching off the target protein again. Many kinases are able to phosphorylate 

residues in the CaM-binding site and reduce the affinity of CaM for the site and inhibit 

activation of the target protein.  
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Variations of this canonical binding mechanism have been observed, involving 

an extended conformation of CaM. The crystal structure of CaM-Ca bound to 

calcineurin showed that CaM was in an extended conformation of 63 Å. Interestingly, it 

also showed that the complex was formed in a 2:2 manner, with two CaM molecules 

associating head to tail with each peptide bound between the N-terminal domain of 

one molecule and the C-terminal of the other (236). Munc13-1 was also shown to 

interact with extended CaM, but in this case with a 1:1 stoichiometry: here an 

amphiphilic helix of munc13-1 interacts with the C-terminal domain of CaM and a 

tryptophan residue is embedded in the hydrophobic cleft of the N-terminal domain, 

rather than the peptide sitting in a channel (239). Other examples of CaM binding in an 

Figure 1.12: Structure of CaM. (A) The X-ray structure of calcium bound CaM, calcium ions shown in 

orange. (B) The structure of Apo-CaM. (C) An example of the canonical binding method of CaM, 

with both lobes wrapped around the binding peptide (shown in cyan) (in this case MLCK). 

Structures are downloaded from the Protein Data Bank (PDB) (A id is 3CLN, B id is 1CFC and C id is 

2LV6).  

C 

A B 
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extended conformation include Bacillus anthracis edema factor (240), small-

conductance Ca2+-activated K+ channel (241) and NaV1.5 (shown in Figure 1.13) (242). 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

It has been observed that CaM is also able to bind proteins in the absence of 

calcium, but this interaction is sensitive to Ca2+ concentration. One example of this is 

neuromodulin, which binds CaM with a higher affinity in the absence of Ca2+ and 

dissociates in the presence of Ca2+ (232). It is suggested that neuromodulin acts as a 

CaM-trap which releases CaM into the cytosol when the Ca2+ concentration increases 

(243), though further investigation is required to confirm this. There are many 

examples of different CaM binding mechanisms that highlight the plasticity of CaM 

function, allowing it to regulate a vast array of proteins. 

 CaM is capable of interacting with the FERM domain of several proteins. The 

FERM domain of erythrocyte protein band 4.1R was shown to interact with CaM (244), 

having two CaM binding domains, one calcium-independent and one calcium-sensitive 

and that binding to both sites is required for regulation of 4.1R binding to its 

membrane protein targets (245). The kinase CAKβ contains a FERM domain which 

inhibits the kinase activity. CaM has been shown to bind the FERM domain and 

requires calcium for the interaction. The site of interaction was shown to be an α-helix 

present in the F2 lobe of the FERM domain. Binding of CaM-Ca causes activation of the 

Figure 1.13: Non-canonical binding mode of CaM. An example of CaM binding to a target 

protein in a non-canonical mode. The example shown is CaM-Ca binding to a NaV1.5 peptide 

(shown in cyan), with the C-lobe of CaM-Ca on the left. In this example, only the C-lobe of CaM-

Ca interacts with the target peptide. PDB id 4DJC. 
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kinase domain by promoting the formation of a CAKβ homodimer, which leads to 

trans-phosphorylation of CAKβ (245). Sequence alignment of the FERM domain of 4.1R 

with ERM proteins showed that the CaM binding sequence was not highly conserved, 

so it was thought that CaM would not be able to bind to ERMs (245). However, 

comparing the structures of the proteins show this site is structurally conserved, so 

CaM could interact with the ERM proteins, which was shown to be true and will be 

discussed later in Section 1.6.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

CaM Binding Motif 

Spacing 

Example of Binding Partner Reference 

1-14 Myosin light chain kinase (246,247) 

1-5-10 CaM-dependent protein kinase II (248) 

1-10-16 CaM-dependent protein kinase (249) 

1-(10)-14 Death-associated protein kinase-1 (234) 

1-(8)-14 Olfactory CNG channel 2 (250) 

 Alpha-II spectrin (251) 

1-7-10 Calcineurin A1 (252) 

 NMDA receptor (253) 

1-5-11 TNF receptor 16 (234) 

1-18 Plasma membrane Ca2+-ATPase (254) 

1-10 CaV1.1 (255) 

 TNF receptor 6 (234) 

 TRPV1 (256) 

1-17 Ryanodine receptor 1 (257) 

1-(5)-10 CaV1.2 (258) 

 CaV2.1 (234) 

 CaV2.3 (234) 

A B 

Table 1.3 CaM binding motifs for the canonical binding method. A list different CaM binding 

motifs for the canonical binding method of CaM, where both lobes of CaM-Ca interact with 

the binding target. The motifs are defined by the spacings of the hydrophobic residues within 

the motif. Examples of proteins with the specified binding motif spacing are listed. 
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1.5 ERM proteins – form and function 

 The ERM family of proteins has three members: ezrin, radixin and moesin. All 

ERMs are structurally similar and have redundant and non-redundant functions. They 

are composed of three domains, an N-terminal FERM domain, an extended alpha-

helical domain and a charged C-terminal domain. The FERM domain is responsible for 

interactions with proteins the plasma membrane. The C-terminal domain binds F-actin, 

enabling ERMs to link the cytoskeleton with the plasma membrane (259,260). This 

means that ERMs play a crucial role in regulating alterations in shape, which often 

involve changes in the plasma membrane protrusions and the underlying actin-based 

cytoskeleton, as discussed later (Section 1.5.3). 

 

1.5.1 Structure and Regulation of ERMs 

ERMs transition between active and inactive states. The FERM domain interacts 

with the C-terminal domain, which adopts an auto-inhibited conformation and renders 

the molecule inactive (Figure 1.14A). Phosphorylation of a conserved threonine 

residue in the C-terminal domain, T558 in the case of moesin, disrupts this interaction 

and activates the protein (Figure 1.14B and C) (1,259,261). Many different kinases 

have been suggested to be responsible for the phosphorylation, including Rho kinase 

(262), PKCα and PKCθ (1,263). It is thought that these kinases may act in a cell-type 

and stimulus-specific manner. The FERM domain is capable of binding 

phosphatidylinositol bisphosphate (PIP2) in the plasma membrane and this binding has 

also been implicated in playing a role in activating ERMs (264). PIP2 binding between 

the F1 and F3 lobes is thought to induce a conformational change that renders the 

threonine residue more accessible for phosphorylation, which will inhibit the C-

terminal domain from re-binding to the FERM domain, allowing both terminal domains 

to bind to their target partners (1).   

 The FERM domains of the three ERM proteins share around 75% identity and 

are thought to be isoforms with both redundant and non-redundant functions (259). 

This was thought to be the case as moesin knockout mice had no discernable 

phenotype (265), possibly due to the other ERMs compensating for the loss (259). 

However, it is worth noting that the expression profile of ERM differs in different cell 

types, for example ezrin is abundantly expressed in epithelial cells.  This means that, 
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although the ERMs do have redundant functions, they may possess tissue specific 

expression, in which case they play non-redundant roles in specific cell types. This is 

evident in ezrin knockout mice, where intestinal villi formation is impaired due to the 

lack of ezrin in intestinal epithelial cells, with these mice not able to survive past 

weaning (266), with a similar defect in microvilli formation on retina cells also 

observed when ezrin was lacking (267). Moesin has also been shown to be essential for 

lung alveolar structure preservation following lung injury (268) and for efficient B- and 

T-cell egression from the primary lymph organs (269).  

The crystal structure of the FERM domain has been solved for all three 

members and has shown they are all very similar (259,270). The F1 domain is made up 

of a five-stranded mixed β-sheet packed against an α-helix with a short linker helix 

between β-strand 3; a structure resembling ubiquitin. F2 contains five α-helices with a 

long loop and short α-helix between B and C and this lobe resembles acyl CoA-binding 

protein. The F3 lobe is a sandwich of two orthogonal antiparallel β-sheets connected 

by a loop containing small helix, followed by a long helix. This is a phosphotyrosine-

binding (PTB)-like domain (259,270). 

The crystal structure of inactive moesin has been solved, confirming the site of 

the interaction between the FERM and the C-terminal domains (Figure 1.14A) 

(259,270). The data showed that the C-terminal domain is made up of a β-strand and 

four α-helices that adopt an extended structure which binds to the FERM domain 

covering a large surface of the F2 and F3 lobes (as shown in Figure 1.14A), which is the 

area responsible for binding to the cytoplasmic tails of cell adhesion molecules (see 

later) (259,270). Multiple contact sites form between the FERM and C-terminal 

domains, which collectively strengthen the auto-inhibited interaction (259,261). The 

threonine, which regulates the auto-inhibition, is located on the helix C of the C-

terminal domain and is in contact with the FERM domain. This means that 

phosphorylation of this residue will likely disrupt the interaction due to steric clashes 

as well as electrostatic effects (259,270). Crystal structures also show that the α-helical 

linker (shown in yellow in Figure 1.14) between the FERM and C-terminal domains sits 

between the F1 and F3 lobes. This has been shown to be the site occupied by PIP2. This 

means that PIP2 may be able to displace the linker, which may cause the 

conformational change required for phosphorylation of the C-terminal domain 

threonine (270). 
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Figure 1.14: Structure of ERMs. (A) Shows the crystal structure the inactive structure of ERMs, 

with the C-terminal domain (also referred to as COOH-ERM associated domain (CERMAD)) 

(red) bound to the FERM domain (blue). (B) The structural change that occurs upon activation 

of ERMs, with the bottom diagram showing the extended active protein structure. Images are 

taken from Fehon, R. G., McClatchey, A. I., and Bretscher, A. (2010) Organizing the cell cortex: 

the role of ERM proteins. Nat Rev Mol Cell Biol 11, 276-287 (1).(C) Depicts the activation 

mechanism of ERM proteins. Upon activation, the C-terminal domain is phosphorylated 

(shown by the red P), causing dissociation of the two domains. This allows the FERM domain to 

interact with plasma membrane associated proteins (shown in blue) and the C-terminal 

domain to interact with actin filaments (shown in green). 

C 

A B 
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1.5.2 ERM-binding proteins 

Many proteins have been shown to bind to the FERM domain of ERM proteins. 

Many of these have been observed to be transmembrane proteins, with the FERM 

domain interacting with their cytosolic tails. L-selectin (see later), CD44 (271), CD43 

(272), ICAM-1, ICAM-2 (273) ICAM-3, and PSGL-1 (274) are all examples of this. The 

crystal structures of the FERM domain of radixin in complex with the cytosolic tails of 

ICAM-2, CD44 and PSGL-1 have all been solved. They showed that all three peptides 

bind at the same site, namely the groove between the β-sheet and the α-helix of F3 

(271,273,274). This provides us with a possible site for the interaction between FERM 

domain and the tail of L-selectin. Interestingly, analysis of the function of ERM 

interaction with CD43 (272) and PSGL-1 (275,276) showed the interaction was required 

for normal tethering, rolling and trafficking of leukocytes, similarly to observations 

made with L-selectin and ERMs (Section 1.3.7.4). 

 Other non-transmembrane proteins have also been shown to interact with 

ERMs FERM domain. The protein ERM binding protein 50 (EBP50) (which acts as a 

linker between ERMs and membrane proteins) (277), and protein kinases such as 

sodium-hydrogen exchanger 3 (NHE3) kinase A have been shown to interact with 

ERMs. Studies have revealed that ERMs are able to interact with proteins that control 

the Rho GTPase pathway, such as several guanidine nucleotide exchange factors (GEFs) 

(278) and GDP dissociation inhibitors (GDIs) (279), though analysis has found both an 

activating and inhibiting role of ERMs in this signalling pathway, suggesting the 

relationship is very complex and is reviewed elsewhere (280). Briefly, ERM proteins 

interact with RhoGDI and sequester it away from interacting with RhoGTPases, leading 

to their activation (280). Dbl is a RhoGEF which has been shown to interact with ezrin, 

facilitating the activation of the Rho family member Cdc42 (281). ERMs also interact 

with Sos, a GEF that activates members of the Ras family of small GTPases, implicating 

ERMs in activating Ras signalling pathways (282). 

1.5.3 Role of ERMs in Leukocyte Function 

 Studies have been undertaken to understand the role of ERM proteins in 

leukocyte function. ERM-deficient lymphocytes show defects in homing to lymphoid 

organs (283), with a decrease in resident B- and T-cells in the lymph nodes (269). 

Analysis suggests this is due to impairment in the egression of T-cells from the thymus 
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and B-cells from bone marrow (269). The role of L-selectin in lymphocyte recirculation 

is well established (see Section 1.7.1) and it is therefore possible that this requires the 

interaction with ERMs. Studies have also been carried out with constitutively active 

ezrin, which has been mutated to mimic phosphorylation of the threonine residue 

required for activation of the protein. These results also showed a reduction in the 

number of T-cells in the lymph nodes (284). This was accompanied with a reduction in 

T cell shape change in response to cytokines and reduced migration (284). This shows 

that dephosphorylation of ezrin is required for migration of leukocytes. This is likely 

due to the fact that dephosphorylation of ERMs has been shown to precede the 

retraction of trailing uropods (285), so by blocking ezrin dephosphorylation the uropod 

cannot retract and migration is impaired. 

  

1.6 The L-selectin/ERM/CaM Complex  

 Following the discovery that L-selectin was capable of binding to CaM and ERM 

proteins, it was of interest to decipher whether both proteins were capable of 

interacting with L-selectin simultaneously. Deng et al (2013)(223) showed in two 

separate reports that CaM and moesin were capable of interacting with a peptide 

representing the cytosolic tail of L-selectin ((216) and (223) respectively). As explained 

in Section 1.3.7.3 they also found that CaM could not interact with L-selectin when it 

was embedded in liposomes containing PS. Deng et al (2013) revealed that the moesin 

FERM domain (moesin-FERM) was able to interact with L-selectin embedded in 

liposomes even in the presence of PS and that this interaction increases the distance 

between the lipid bilayer and the L-selectin cytosolic tail (223). It was then shown that 

this desorption allowed CaM to bind and therefore moesin-FERM binding to L-selectin 

primed it for CaM binding (223).  

The trimeric complex was also studied using L-selectin cytosolic peptide 

attached to sepharose, preloaded with one of the proteins and results revealed the 

other was still able to bind (3). Further study in COS7 cells revealed that FRET was 

observed between CaM-RFP and ezrin FERM-GFP upon clustering of L-selectin (3). This 

led to molecular modelling of the complex, depicted in Figure 1.14 (taken from (3)), 

showing all three were capable of interacting with one another, with CaM and moesin-

FERM contacting specific residues within the cytosolic tail of L-selectin. The model also 
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predicted that significant contacts between CaM and moesin-FERM were present, 

independently of L-selectin, which was confirmed biochemically (3). Interestingly, the 

site of interaction predicted between CaM and moesin shows similarities with the site 

of interaction between CaM and band 4.1R, namely CaM forming contacts with α-helix 

one of F3 in the FERM domain of both moesin (3) and band 4.1R (245). The predicted 

binding site for L-selectin within the moesin-FERM structure was very similar to the 

binding site for the other transmembrane proteins shown to bind to ERM family 

members, as described in Section 1.5.2. This shows that the model of the predicted 

structure of the tertiary complex provides a good representation of the possible 

interaction; however, further experiments are required to prove that the predicted 

interactions occur.  

Killock et al (2009) postulated that the formation of the complex is likely to be 

important for controlling L-selectin-dependent signalling. The importance of the 

individual binding partners in regulating L-selectin function is highlighted above. It is 

possible that CaM and moesin interact with other proteins as well as L-selectin and 

therefore lead to the activation of signalling pathways. Intriguingly, as stated above, 

ERMs are able to bind to the Ras activator Sos. As explained in Section 1.3.6, L-selectin 

activation has been shown to activate the Ras-MAPK signalling pathway. It is therefore 

possible that ligand binding of L-selectin promotes the formation of a complex with 

ERM and Sos to activate Ras. This hypothesis becomes more appealing as CaM is able 

to bind to K-Ras (286) and it is therefore plausible that activation of L-selectin leads to 

the formation of the L-selectin/CaM/ERM complex and enables the activation of Ras by 

bringing Sos and K-Ras into close proximity. 
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1.7 L-selectin-dependent trafficking    

1.7.1 The role of L-selectin in Lymphocyte Recirculation 

 L-selectin is exclusively responsible for the recirculation of T- and B-cells 

through secondary lymphoid organs. Naïve lymphocytes are produced in the primary 

lymphatic organs (i.e. the thymus and bone marrow) (287). The cells then circulate 

through the blood and home to secondary lymphoid organs to patrol specific zones for 

antigen (287). For the cells to exit the bloodstream and enter the lymphoid organs 

requires the interaction between lymphocytes and specialised post-capillary HEVs 

(287). Studies using L-selectin function blocking antibodies have shown that when L-

selectin adhesion is inhibited, the interaction between lymphocytes and HEVs is 

blocked and lymphocyte migration does not occur (31). In vitro analysis revealed that 

lymphocytes lacking L-selectin were not able to bind HEVs (24). The role of L-selectin in 

the accumulation of lymphocytes in lymph nodes was assessed in vivo by comparing L-

selectin deficient and wildtype mice. Results showed that the number of lymphocytes 

in the peripheral lymph nodes was decreased by 99 % in mice lacking L-selectin (24). L-

selectin knockout mice also present decreased lymphocyte trafficking to mesenteric 

lymph nodes (88 %) and Payer’s Patches (50 %) (24). Taken together, these results 

clearly show the importance of L-selectin in lymphocyte homing. 

 

1.7.2 The role of L-selectin in the Recruitment of Leukocytes during the 

Inflammatory Response 

 In vivo experiments using L-selectin function-blocking antibodies showed a 

reduction in neutrophil recruitment to peritoneum (288), skin (289) and lung (290) 

after the induction of inflammation. The role of L-selectin in migration of leukocytes 

during inflammation was further confirmed in L-selectin knockout mice, with a marked 

Figure 1.15: Model of the tertiary complex between L-selectin, CaM and the FERM 

domain of moesin. A computer generated model predicting the possible complex of L-

selectin (yellow), CaM (purple) and moesin-FERM (cyan). The image is taken from Killock, D. 

J., Parsons, M., Zarrouk, M., Ameer-Beg, S. M., Ridley, A. J., Haskard, D. O., Zvelebil, M., and 

Ivetic, A. (2009) In Vitro and in Vivo Characterization of Molecular Interactions between 

Calmodulin, Ezrin/Radixin/Moesin, and L-selectin. Journal of Biological Chemistry 284, 

8833-8845 (3). 
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reduction in the accumulation of neutrophils (56-62%), macrophages (72-78%) and 

lymphocytes (70-75%) in inflamed peritoneum relative to wildtype mice (24,291). The 

role of L-selectin in TEM following inflammatory stimuli has been assessed in post 

capillary venules in the cremaster muscle of mice superfused with the inflammatory 

mediators platelet-activating factor and keratinocyte-derived chemokine and 

monitoring TEM with intravital microscopy. The results revealed that the recruitment, 

rolling flux and adhesion of leukocytes was similar for both wildtype and L-selectin -/- 

mice (130). However, the emigration was lower for L-selectin-/- and the directional 

migration was reduced (130), showing L-selectin plays a role in migration towards 

inflammatory stimuli. It is also worth noting that L-selectin has also been implicated in 

sterile inflammation. An example of this is atherosclerosis and the contribution of L-

selectin in the development of this condition is described in Section 1.8.3. 

 

1.8 L-selectin in Disease States 

 L-selectin has been implicated in the development of several disease states, 

including atherosclerosis (292), rheumatoid arthritis (179) and ischemia reperfusion 

injury (293). In a majority of cases L-selectin-dependent recruitment of leukocytes is 

involved in exacerbation of the disease. This has been shown to be the case for IR 

injury, where induction of shedding of L-selectin by activating ADAM17 with hydrogen 

sulphide led to a reduction in the recruitment of neutrophils to ischemic tissue (293). 

Other examples of L-selectin involved in disease development include ileitis, where T-

cells expressing L-selectin have been shown to enhance disease development 

compared to L-selectin- /- T-cells (294) and in allogeneic skin graft rejection, with 

rejection shown to be delayed in L-selectin deficient mice due to a reduction in the 

recruitment of lymphocytes to the graft site (295). The role of L-selectin in 

development of type 1 diabetes was assessed using the non-obese diabetic (NOD) 

mouse model. Treatment of these mice with an antibody against L-selectin prevented 

the development of the disease (296,297). This is due to a reduction in the infiltration 

of lymphocytes to β islets (296). L-selectin has also been implicated in the metastasis 

of tumour cells (298). With L-selectin deficient mice, metastasis of tumour cells was 

attenuated (299,300). Leukocytes can interact with cancer cells in the bloodstream and 

anchor them on the endothelium, thereby enabling their metastatic spread (301). It is 
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therefore likely that the interaction between leukocytes and cancer cells is in some 

part regulated by L-selectin on leukocytes interacting with ligands on cancer cells. 

  

1.8.1 Atherosclerosis 

 Cardiovascular diseases (CVDs), such as atherosclerosis, have become highly 

prevalent in the developed world, causing an economic burden on society. Research 

has revealed that inflammation is a major driver of disease progression in 

atherosclerosis, with L-selectin-dependent recruitment of leukocytes shown to play a 

role (see below). The development of atherosclerosis (depicted in Figure 1.15) and the 

evidence of the involvement L-selectin in disease development are described below. 

 

1.8.1.1 Development of Atherosclerosis 

Atherosclerosis is the thickening of the arterial walls caused by the 

accumulation of lipoproteins in the vessels. The first stage of atherosclerosis is the 

formation of fatty streaks, which are caused by the accumulation of lipid-rich 

macrophages and T cells in the intima; the inner most layer of the arterial wall (302). 

The fatty streaks develop into intermediate plaques or lesions, which are defined by 

layers of macrophages and vascular smooth muscle cells (VSMCs) (302). Complex 

lesions then develop, which are larger in size and project into the lumen. They are 

composed of a lipid and necrotic debris core overlaid with VSMCs and have a dense 

fibrous cap formed by components of the connective tissues, such as collagen (302). 

These plaques are unstable and often rupture, causing occlusion of blood vessels to 

feed oxygen-rich blood to the brain or heart, leading to stroke or myocardial infarction.  

Lesions form in large and medium sized elastic arteries, which contain large 

amounts of elastin and collagen, and muscular arteries, which contain layers of VSMCs 

(303). They are also most often found at branch points in vessels, where the shear flow 

is disturbed (304). This disturbance leads to a reduction in the generation of NO (304). 

NO production can protect against the development of atherosclerosis by inhibiting 

leukocyte adhesion to the endothelium (305,306) and inhibiting VSMC proliferation 

and migration, both of which contribute to atherogenesis.  

Many different processes and cell types are involved in the development of 

atherosclerosis. Endothelial injury leading to dysfunction is thought to be an early step 
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in atherogenesis. Oxidized low density lipoproteins (oxLDL) deposited on the surface of 

the endothelium cause injury to the cells. This leads to the up-regulation of adhesive 

glycoproteins on the luminal surface (302),  leading to the recruitment of leukocytes to 

the area. VCAM-1 expression has been observed in early atheroma and mice deficient 

for VCAM-1 show reduced plaque development (304), showing the role of this 

molecule in atherogenesis. The role of leukocytes in the development of 

atherosclerosis is described below. In brief, monocytes recruited to the area 

differentiate into macrophages, which then engulf oxLDL and differentiate into foam 

cells, causing them to secrete cytokines and chemokines that recruit other monocytes 

and leukocytes, such as T-cells, to the site and exacerbate the inflammatory response. 

Endothelial cells also release growth factors that promote VSMC proliferation and 

migration (303), which leads to the formation of more complex plaques. VSMC change 

from a contractile phenotype to a synthetic phenotype, which enables them to 

respond to growth factors, proliferate and deposit ECM components such as collagen 

that contributes to the formation of a fibrous cap (302). 

Other processes apart from lipoprotein deposition are thought to enhance 

atherogenesis, either by causing endothelial dysfunction or promoting inflammation. 

Homocysteine is toxic to the endothelium and degrades structural components of the 

artery, such as collagen (303). High plasma levels of homocysteine have been linked to 

an increase the development of atherosclerosis (303). Hypertension can increase the 

risk of atherogenesis. Angiotensin II (AngII) levels are elevated in hypertension 

(303,304). AngII stimulates VSMC growth (303) and also increases the expression of 

VCAM-1 (304), both of which promote atherogenesis. Hyperglycaemia in diabetes 

leads to the release of pro-inflammatory cytokines, which potentially can induce 

atherogenesis (304). Diabetes also increases oxidative stress, which can lead to an 

increase in the formation of oxLDL and therefore enhance atherogenesis (304). 

Infection has also been implicated in atherogenesis. Herpes viruses and Chlamydophila 

pneumonia have both been found in lesions (303), though their role in atherogenesis 

remains unclear as the presence of these molecules alone does not induce the 

formation of atherosclerotic plaques (303). It is possible that infections accelerate 

atherogenesis by causing release of cytokines and activating leukocytes at the site of 

plaques (304). Further investigation is required to decipher the role of infectious 

agents in atherogenesis.  
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1.8.1.2 Role of Leukocytes in Atherosclerosis 

 Atherosclerosis is characterised by chronic inflammation and abundant 

immune cells are found in atherosclerotic plaques, especially macrophages and T-cells, 

implicating these cells in the development of atherosclerosis. Due to lipid 

accumulation and other stimuli, monocytes are allowed to cross the endothelium and 

differentiate to macrophages (307-310). Pattern recognition receptors (PRRs) 

expressed by macrophages recognise oxLDL, which leads to its uptake (307,311). As 

lipid accumulates in macrophages they transform in to foam cells (called according to 

their appearance), many of which will die (307). Lipid accumulation also induces 

macrophages to release netrin-1, which blocks the migration of macrophages out of 

the lesion (307,312). When netrin-1 is deleted smaller plaques develop (312). 

Macrophages also enhance atherosclerosis development by secreting cytokines that 

Figure 1.16: Development of atherosclerosis. A schematic showing the stages of atherogenesis. 

OxLDL deposition leads to endothelial dysfunction and the recruitment of monocytes to the 

vessel wall. The monocytes differentiate into macrophages that ingest the LDL, become foam 

cells and, overwhelmed with lipid, die through the process of necrosis. Vascular smooth muscle 

cells proliferate and migrate to form a fibrous cap, along with components of the connective 

tissues, such as collagen, over the necrotic cells. During plaque development angiogenesis occurs 

to form microvessels within the plaque. As atherosclerosis progresses the lesion grows in size, 

becomes unstable and ruptures. This leads to a rapid block in the vasculature, blocking the vital 

supply of oxygen to the heart and/or the brain, which will lead to myocardial infarction and/or 

stroke. Figure taken from Orbay, H., Hong, H., Zhang, Y., and Cai, W. (2013) Positron emission 

tomography imaging of atherosclerosis. Theranostics 3, 894-902 (5). 
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attract other leukocytes, disturbing VSMC function and producing proteinases that 

digest the ECM, which can cause thinning of the fibrous cap covering the lesion and 

leads to plaque rupture (304) (307). 

 T-cells have also been found in atherosclerotic plaques and have been shown to 

account for 10-20% of the total leukocyte population (310). Different subsets of T-cells 

are believed to have different roles in atherosclerosis. Both TH1 and TH17 have been 

shown to be atherogenic and TH2 and Treg cells are protective (307,313,314). Recent 

research showed that T-cells produce heparan-binding epidermal growth factor-like 

growth factor (HB-EGF) in vitro and these proteins act as mitogens to stimulate VSMC 

proliferation (315). This may have a role in VSMC proliferation in atherosclerosis. 

 B-cells have also been implicated in atherosclerosis. They produce natural 

antibodies that recognise oxLDL (310) and this is thought to be atheroprotective as it is 

suggested that these antibodies mark lipids for removal (307). Neutrophils have been 

shown to be atherogenic by releasing proteins that contribute to oxidative stress, 

which leads to endothelial dysfunction and the growth of the plaque (307). Mast cells 

have been shown to accumulate at sites of plaque rupture (310,316). They are capable 

of producing proteases that degrade the ECM and it is possible that this contributes to 

plaque rupture and progression of atherosclerosis (316). 

 The information above shows the role of different leukocytes in the 

development and protection against atherosclerosis. This shows how important 

understanding their function in this process is and studying their roles further will 

provide targets for the prevention of atherosclerosis development. 

  

1.8.1.3 Implication of L-selectin in atherosclerosis  

 The role of L-selectin in the development of atherosclerosis has been disputed. 

A report has shown that advanced plaques contain “lesional microvessels”, produced 

in response to hypoxic necrosis.  These microvessels promote lesion growth by 

providing a nutrient supply and also contribute to plaque rupture by causing 

haemorrhage within in the plaque, increasing the lipid core and increases plaque 

development (317). Microvessels act as important entry sites for leukocytes to gain 

access to the plaque. Rolling within these microvessels was observed and studies 

showed that L-selectin was required for recruitment. Interestingly, PSGL-1 was found 
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to be the primary ligand on the endothelium (292), and shows a direct link between L-

selectin-dependent trafficking of leukocytes to a developing atheromatous plaque. It 

has also been observed that L-selectin-dependent secondary tethering (see Section 

1.2.1 on secondary tethering) occurs in atherosclerotic plaques in the aorta of mice 

(318). It is possible that this secondary tethering increases the leukocyte recruitment 

to atherosclerotic plaques and therefore enhances plaque development. A study using 

L-selectin-/- mice revealed that recruitment of both B-cells and T-cells to 

atherosclerotic plaques in the aorta was reduced by around 50% (319). This shows that 

L-selectin is partially responsible for the recruitment of leukocytes to atherosclerotic 

plaques. 

 The above results showed that L-selectin played a role in the development of 

atherosclerosis, however, another study has shown that the deletion of L-selectin in 

ApoE-/- mice increased the development of atherosclerosis (320). It was observed that 

more plaques were present in ApoE-/- L-selectin-/- compared to ApoE-/- mice (320), 

suggesting L-selectin does not play a role in plaque formation and rather acts to limit 

plaque burden. When analysis was carried out to decipher the reason for the increase 

in plaque formation, it was found that there was no difference in leukocyte capture, 

rolling or accumulation in plaques between the two groups (320), suggesting the other 

selectins are capable of maintaining the leukocyte-endothelial interaction. There was, 

however, an increase in the number of lymphocytes found in the blood in the ApoE-/- L-

selectin-/- mice, likely due to impaired migration into tissues (320). It is argued that this 

increase in circulating pro-atherogenic lymphocytes promotes the enhanced 

atherogenesis (320), though the exact mechanism by which this occurs remains 

elusive. It is worth noting that location of the plaque size measurement and the 

cellular composition of the plaques are measured in different locations, with them 

being measured in the descending aorta and aortic sinuses respectively (320). Ideally 

these two characteristics would be measured in the same location before firm 

conclusions for the role of L-selectin in atherogenesis can be made.  

 

1.9 Selectins as therapeutic targets 

 The well-defined role of selectins in leukocyte recruitment and the evidence of 

their involvement in disease states made them attractive prospects for possible anti-
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inflammatory targets. To this end, several clinical trials have been undertaken using 

function blocking antibodies and synthetic ligands. Early analysis revealed that anti-L-

selectin antibodies reduced inflammation and myocardial necrosis in murine models 

(321). However, a clinical trial using an L-selectin function blocking antibody, named 

aselizumab, had limited success against recovery from trauma, with no significant 

benefit with the administration of the drug in Phase II trials (322). sLex mimics have 

also been utilised as a way of inhibiting all three selectins (323). Promising results have 

been observed with the treatment of asthma (324) and psoriasis (325), but had no 

effect on IR injury in infants in phase III trials (323), showing different roles of selectins 

in different diseases. A soluble form of recombinant PSGL-1 conjugated to IgG1 (PSGL-

1-Ig) has been developed as a potential inhibitor of selectins. PSGL-1-Ig is capable of 

inhibiting leukocyte rolling in a murine model on all three selectins (326). It has also 

been shown to inhibit inflammation in rat and mouse models of inflammation, 

including trauma, haemorrhagic shock and IR (327-329). However, clinical trials were 

discontinued due to the cost and the limited efficacy of PSGL-1-Ig (330). Several small 

molecules have also been tested as possible therapeutic inhibitors of selectins. Heparin 

is able to bind to P- and L-selectin and inhibit their interactions (331). A study has 

shown that heparin blocks selectin-dependent cancer metastasis (331). 

 The limited success of clinical trials using selectin antagonists may suggest the 

complex role of selectins in disease states. Further understanding the mechanisms that 

regulate selectin function during recruitment may provide more targets for the 

development of more potent therapies. This thesis will endeavour to explore the 

regulation of L-selectin in order to add insight to such approaches.   

 

1.10 Original Hypothesis 

 Interaction between the L-selectin tail and its binding partners plays a critical 

role in regulating L-selectin-dependent adhesion and signalling. Specifically, CaM 

binding protects L-selectin from being shed and interaction with ERM regulates L-

selectin-dependent tethering and shedding. Although these interactions have been 

addressed during tethering and rolling, very little is known about how these 

interactions are co-ordinated during TEM. It is therefore hypothesised that monocyte 

TEM is regulated at the level of L-selectin and its interaction with CaM and ERM. 
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Understanding how these interactions are co-ordinated may identify novel 

mechanisms for therapeutic targeting chronic inflammation. 

1.11 Aims of the Project 

 The aims of this thesis are as follows: 

1) Produce recombinant soluble CaM and FERM domain of moesin proteins in 

order to study the interaction between these proteins and L-selectin cytosolic 

tail peptide in vitro.  

2) Use biophysical techniques to characterise the interaction between the L-

selectin tail and its binding partners, and assessing the role of serine 

phosphorylation in modulating the interaction.  

3) Generate monocytic cell lines to co-express GFP/RFP-tagged forms of CaM and 

L-selectin, so that their interaction can be analysed in resting cells.  

4) Characterise the interaction between CaM-RFP and L-selectin-GFP during TEM 

and determine: (i) the sub-cellular distribution of L-selectin-GFP and CaM-RFP 

interaction specifically during TEM; (ii) the effect of blocking phosphorylation at 

one or both serine residues within the cytosolic tail of L-selectin on the L-

selectin-GFP/CaM-RFP interaction during TEM; (iii) if changes in cell 

morphology during TEM are directly affected when specific residues within the 

L-selectin tail are mutated. 
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Chapter 2: Materials and Methods 

2.1 Chemicals and Reagents 

 A list of the chemicals and reagents used in this thesis is shown in Table 2.1 

 Chemical/Product Supplier 

Cell Culture RPMI media Life technologies 

 M199 media Life technologies 

 Penicillin/Streptomycin Life technologies 

 FBS Sigma Aldrich 

 Β-Mercaptoethanol Sigma Aldrich 

 Trypsin-EDTA Sigma Aldrich 

E.coli growth LB media Sigma Aldrich 

 LB agar Sigma Aldrich 

 Ampicillin Sigma Aldrich 

Buffers and Solutions Nuclease Free Water Ambion 

 PBS Severn Biotech Ltd 

 HEPES Life Technologies 

 BSA Sigma Aldrich 

 MES 20X Invitrogen 

 Transfer Buffer 10X Life Technologies  

 Tris-Glycine Native running 

buffer 10X 

Life Technologies 

 Protein Ladder Life Technologies 

 Native Protein Ladder Life Technologies 

 ECL Perkin Elmer 

Chemicals PFA BDH Laboratory Supplies 

 Glutaraldehyde VWR international 

 NP-40 Fluka, Sigma Aldrich 

 Tween 20 Sigma Aldrich 

 Protease inhibitor cocktail Roche  Diagnostics GmbH 

 DMSO Sigma Aldrich 

 CytoBuster Protein Extract Novagen 
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Reagent 

 Sodium Borohydride  Sigma Aldrich 

 Nitrogen15 NH4Cl Goss Scientific, 

Manufacturer Cambridge  

Isotope Laboratories Inc. 

 D2O Goss Scientific, 

Manufacturer Cambridge  

Isotope Laboratories Inc. 

 Calyculin A Sigma Aldrich 

 Bisindolylmaleimide Calbiochem  

 Alexa Fluor 633 Phalloidin Invitrogen 

 

 

 

 

2.2 Antibodies 

 A list of the primary and secondary antibodies used in this thesis is provided in 

Table 2.2, along with the concentration at which each is used. 

Antibody Species Dilution Factor Company 

Anti-CaM mouse 1:1000 Millipore 

Anti-GFP  rabbit 1:500 SantaCruz 

CA21:anti- L-selectin tail mouse 1:1000  

Anti-Actin goat 1:1000 Santa Cruz 

Goat-anti-mouse-HRP goat 1:1000 DAKO 

Goat-anti-rabbit-HRP goat 1:1000 DAKO 

Rabbit-anti-goat-HRP rabbit 1:1000 DAKO 

 

 

 

2.3 Peptides and plasmids 

 Peptides were synthesized at the department of Biochemistry, University of 

Bristol. For E. coli production of proteins the pET duet-1 vector was used (Figure 2.1). 

Table 2.2: Antibodies used during this project. Table shows the primary and secondary 

antibodies used in this thesis. The source, concentration used and the company that supplies 

each antibody is listed. 

 

Table 2.1: List of Reagents used during the project. Table shows the reagents and chemicals used 

in this thesis. The supplier of each reagent is listed. The concentrations used are stated in the 

specific sections in the Material and Methods.  
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Wildtype cDNA of full length CaM was cloned into multiple cloning site (MSC) 1 of the 

pETduet-1 vector. SalI and NotI restriction sites were engineered at the 5’ and 3’ ends 

using PCR for the Hexa Histidine (His6)-tagged CaM with a Tobacco Etch Virus (TEV) 

protease cleavage site engineered between the coding sequence of CaM and the His6-

tag. The His6-tagged moesin-FERM domain was cloned in the same way. Untagged 

moesin-FERM was also cloned into pET duet-1 vector at MSC 2 using the restriction 

enzymes NdeI and XhoI. A vector containing untagged CaM was a kind gift from 

Antonio Villalobo. CaM was also purchased from Enzo. The N and C lobes of CaM were 

cloned into pET duet-1 vector at MSC 2 using NdeI and XhoI restriction sites.  

The pET46 Ek/LIC vector (Figure 2.2) containing the Trp-Cage sequence (Figure 

2.2Aiii) was a gift from Dr Pete Simpson, Imperial College London. The L-selectin 

cytosolic tail was cloned into the vector using EcoRI and BaMHI restriction sites. 

 For lentiviral vector production, the pHR’SIN-SEW vector, which was a gift from 

Prof. Adrian Thrasher (Institute of Child Health, UCL), was used with either GFP or RFP 

C-terminal tag (Figure 2.3). For CaM cloning into the vector, BaMHI and XhoI restriction 

sites were engineered at the 5’ and 3’ ends using PCR. Moesin was cloned with XhoI 

and KpnI restriction sites at the 5’ and 3’ ends. Ezrin was cloned with either XhoI and 

SalI or XhoI and KpnI restriction sites at the 5’ and 3’ end depending on the method of 

cloning (see Section 5.3.3).  The primers used for all the cloning are summarised in 

Table 2.3. 
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Figure 2.1: Vector Maps of the Plasmids used for Cloning of Recombinant Proteins. (Ai) 

Vector map of pETDuet-1 showing the two multiple cloning sites (MCS) and the restriction 

sites found in each, with the details of the cloning site shown in (Aii). There is also Ampicillin 

resistant gene and lacI gene.  

A (i) 

A (ii) 
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A (ii) 

A (i) 

A (iii) 

Figure 2.2: Vector Map of the Plasmid used to Clone Trp-Cage-L-selectin. (Ai) The vector 

map of pET-46 EK/LIC vector with the ampicillin resistant gene (Ap) and lacI gene shown. 

(Aii) shows the detail of the cloning site into which the Trp Cage was cloned, with (Aiii) 

showing the sequence cloned into the site, including the Trp Cage, a TEV cleavage site and 

the restriction sites EcoRI and BamHI, which can then be used for further cloning. 
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2.4 E.coli Strains 

 KRX E.coli cells (genotype F´, [traD36, ΔompP, proA+B+, lacIq, Δ(lacZ)M15] 

ΔompT, endA1, recA1, gyrA96 (Nalr), thi-1, hsdR17 (rK
–, mK

+), e14– (McrA–), relA1, 

supE44, Δ(lac-proAB), Δ(rhaBAD)::T7 RNA polymerase) were used for cloning of the 

DNA vectors. The strains BL21(DE3)pLysS (genotype F– ompT hsdS(rB– mB–) gal dcm 

λ(DE3) pLysS (Camr )  ( λ(DE3): lacI, lacUV5-T7 gene 1, ind1, sam7, nin5 )) and 

Rosetta2(DE3) (genotype F-ompT hsdSB(rB
- mB

-) gal dcm (DE3) pRARE2 (CamR))were 

used for protein expression. For proteins found to be insoluble with BL21(DE3)pLysS 

and Rosetta2(DE3) cells, expression was carried out using E.coli ArcticExpress cells 

(genotype F–ompT hsdS(rB
– mB

–) dcm+ Tetr gal (DE3) endA Hte [cpn10 cpn60 Gentr]). 

All the E.coli strains used for protein expression contain the DE3 bacteriophage γ 

lysogen, which encodes for T7 RNA polymerase under the control of a lacUV5 

promoter and the lacI gene. This allows provides a system for the control of 

expression of the recombinant protein, through the addition of IPTG (see Section 

3.2 for details). 

 

2.5 PCR 

PCR amplification of the desired DNA was carried out using the following 

method for Pyrococcus furiosus (Pfu) DNA polymerase: 1 μl of each primer (10 μM), 

100 ng of template, 1 μl dNTPs, 5 μl of Pfu polymerase buffer and 1 μl of Pfu 

Figure 2.3: Vector Maps of the Plasmids used for Cloning of Lentiviral Vectors.  (A) Vector 

Map of pHR’SIN-SEW showing the cloning site for either GFP containing vector or RFP 

containing vector. (Ai) shows the cloning site of the vector with the GFP sequence and (Aii) 

shows the cloning site for the vector containing RFP. The restriction sites are highlighted in 

different colours, with BamHI shown in red, XhoI shown in blue, KpnI shown in yellow and 

MluI shown in cyan. The KOZAK sequence is shown in magenta. 

A (ii) 

A (i) 
A(i) 

A(ii) 

A(iii) 
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polymerase, made up to a final volume of 50 μl and placed in a thermo cycler 

(Perkin Elmer, GeneAmp 34 PCR System 2400) using the following conditions: hot-

start denaturation 95°C 5 min, followed by 25 cycles of denaturation 95°C 30 

seconds, annealing 55°C 40 seconds, elongation 72°C (30 seconds per 500 bp), with 

72°C 2 min end. For Thermococcus kodakaraensis (KOD) polymerase: 1.5 μl of each 

primer, 0.5 μl of template and 25 μl KOD polymerase mix made up to 50 μl and 

placed in a thermo cycler using the following conditions: hot-start denaturation 

95°C 5 min, followed by 25 cycles of denaturation 95°C 20 seconds, annealing 55°C 

14 seconds, elongation 75°C (15 seconds per 1kb). PCR products were run on a 0.8-

1% agarose gel, cut out and purified using QIAquick Gel Extraction kit (Qiagen) or 

Wizard® SV Gel and PCR Clean-Up System (promega) according to manufacturer’s 

protocol. All primers used are summarised in Table 2.3. 

 

 

 Forward Primer Reverse Primer 

His-tagged CaM GAGAGAGTCGACATGGCTGACCAAC

TGACTGAA 

GAGAGAGCGGCCGCTCACTTTG

CTGTCATCATTTG 

His-tagged 

moesin FERM 

domain 

GAGAGAGTCGACATGCCGAAGACG

ATCAGTGTG 

GAGAGAGCGGCCGCTCACTTGC

GCCGACGCATGTACAG 

Untagged moesin 

FERM domain 

GAGAGACATATGATGCCGAAGACGA

TCAGTGTG 

GAGAGACTCGAGTCACTTGCGC

CGACGCATGTACAG 

C-lobe of CaM GAGAGACATATGATGAAAATGAAAG

ACACAGACAG 

GAGAGACTCGAGTCACTTTGCT

GTCATCATTTG 

N-lobe of CaM GAGAGACATATGATGGCTGACCAAC

TGACTGAA 

GAGAGACTCGAGTCATGTGTCT

TTCATTTTTCTTGCC 

CaM lentivirus GAGAGAGGATCCATGGCTGACCAAC

TGACTGAA 

 

GAGAGACTCGAGCTTTGCTGTC

ATCATTTG 

Moesin lentivirus GAGAGACTCGAGATGCCGAAGACG

ATCAGTGTG 

GAGAGAGGTACCCATGGACTCA

AACTCATCAATG 

Ezrin lentivirus GAGAGACTCGAGATGCCGAAACCAA

TCAATGTC 

GAGAGAGGTACCCAGGGCCTC

GAACTCGTCGAT 

Table 2.3: Primers for cloning of Recombinant and Lentiviral Proteins. Table showing the primers 

used for the PCR of CaM and moesin-FERM for cloning into pET duet-1 vector and cloning CaM, 

moesin and ezrin into the lentiviral vector pHR’SIN-SEW. 
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2.6 Restriction Digest and Ligation 

 The clean PCR product and the vector were cut with the appropriate 

restriction enzymes for 2 hours at 37 °C. The vector was also treated with Calf 

Intestinal Alkaline Phosphatase (CIP) for one hour at 37 °C and the DNA was purified 

using QIAquick Gel Extraction kit (Qiagen) or Wizard® SV Gel and PCR Clean-Up 

System (promega) according to manufacturer’s protocol. The ligation was carried 

out with a molar vector to insert ratio of 1:3 with T4 DNA ligase (Promega) in a 10 

μl reaction at 15°C overnight and was then used to transform KRX E.coli cells. 

2.6.1 Partial Digestion of Ezrin Insert 

 After the ezrin PCR reaction, 10 μl of the product was digested with the 

restriction enzyme which does not cleave in the ezrin sequence as described above. 

Once the first digestion was completed the reaction was diluted up to 100 μl using 

dH2O and the appropriate restriction enzyme buffer. The solution was then 

aliquoted into five tubes. The second restriction enzyme was added to the first tube 

and a serial dilution using this solution was carried out into the other tubes. All the 

tubes were then incubated at 37 °C for 3 minutes. The tubes were then pooled and 

purified using the QIAquick column system. The purified DNA was run on an 

agarose gel and the band corresponding to the correct weight for the desired 

product was excised and purified using QIAquick Gel Extraction kit (Qiagen). The 

purified DNA was then used for ligation as described above. 

 

 2.7 Transformation and plasmid detection 

 50 μl of bacteria was incubated with 1 μl of plasmid DNA or 5 μl of ligation 

reaction for 45 mins on ice. The bacteria were then heat shocked at 42 °C for 45 

secs. 500 μl of LB was added and the cells were incubated for one hour at 37 °C 

shaking. The cells were then plated on LB plates with the appropriate antibiotic and 

incubated overnight at 37 °C. Colonies were picked for colony PCR, to test if the 

insert is present, and grown for plasmid isolation using PureYield™ Plasmid 

Miniprep Kit (Promega) according to the manufacturer’s protocol. The plasmid was 

then sent for sequencing by Geneservice to confirm the presence of the insert. 
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2.8 Glycerol Stock Generation of Transformed E.coli Cells 

 To produce frozen stocks of the E.coli cells expressing the recombinant 

proteins, 3 ml of E.coli cells were cultured overnight. The overnight culture was 

mixed 1:1 with 100 % sterile glycerol and kept on ice. The vials were then 

transferred to -80 °C for long time storage and could be used for inoculating future 

growth cultures. 

 

 2.9 Agarose Gel Electrophoresis 

 0.8-1% agarose Tris-acetate-EDTA (TAE) gels were made with 1:1000 

ethidium bromide. DNA samples were mixed with loading buffer (0.25% 

bromophenol blue, 0.25% xylene cyanol FF, 30% glycerol) and loaded on the gel. 

The gel was run at 120 V until bands were separated. DNA was visualized by UV 

transillumination.  

 

2.10 Oligonucleotide Kinase Treatment and Annealing 

 Oligonucleotides (oligos) for the L-selectin cytosolic tail were designed with 

EcoRI and BamHI sticky ends (Table 2.4). The oligos were treated with 

polynucleotide kinase in the following reaction: 1 μl kinase buffer, 1 μl 10 mM ATP, 

2.5 μl kinase, 2 μg oligo. The reaction was incubated at 37 °C for 1 hour and then 

heated to 75 °C for 10 minutes to deactivate the kinase.  The kinase treated oligos 

were mixed in a 1:1 molar ratio in annealing buffer (10 mM tris, 1 mM EDTA, 100 

mM NaCl, pH 7.5) the mixture was heated to 95 °C for 5 minutes then left to cool to 

room temperature overnight. The annealed oligos were then used for ligation into 

the restriction digested vector. 

 

 

 Forward oligo Reverse oligo 

L-selectin 

cytosolic 

tail  

GAATTCCGTCGTCTGAAAAAAGGC

AAAAAAAGCAAACGTAGCATGAAC

GATCCGTATTGAGGATCC 

GGATCCTCAATACGGATCGTTCATGCTA

CGTTTGCTTTTTTTGCCTTTTTTCAGACG

ACGGAATTC 

Table 2.4: Oligonucleotides used to clone L-selectin Cytosolic Tail. Oligos were annealed together 

(see Section 2.10 for experimental details) and used for ligation as described in Section 2.6. 
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2.11 Mutagenesis of L-selectin cytosolic tail 

pHR’SIN-SEW vectors containing the cDNA of human wildtype L-selectin, or 

the sheddase-resistant mutation ΔM-N-L-selectin, fused with GFP were used as the 

templates for generating mutations in the cytosolic tail of L-selectin at residue L358 

to L358E. PCR was carried out using primers engineered to contain the mutation 

(see Table 2.5), followed by digestion with DpnI for one hour at 37 °C, to remove 

the methylated parental DNA which did not contain the mutation. The digested PCR 

product was then used to transform BL21 competent E. coli. Colonies were picked 

and cultured overnight. Minipreps were carried out and DNA was sent for 

sequencing to confirm the presence of the mutation. Once this was confirmed the 

vector was used for lentivirus production (see Section 2.19).    

 

 

 

 

 

2.12 Production of Recombinant Proteins  

2.12.1 Overexpression of Recombinant Proteins  

 CaM, moesin-FERM and the N and C lobes of CaM were expressed in either 

BL21  strain (Stragene) or Rosetta II strain (Novagen) E.coli cells and moesin and C-

CaM were also expressed in arctic cells (Agilent Technologies). For large scale 

production of the proteins, two litres of bacteria were cultured. For the starter 

culture a colony was picked from an agar plate or cells were taken from glycerol 

frozen stocks and diluted in 3 ml of lysogeny broth (LB) with the appropriate 

antibiotics. The starter culture was then grown overnight at 37 °C with agitation. 

The next morning 1 ml of the starter culture was used to inoculate 1 L of LB. The 

cells were then grown at 37 °C under agitation until an optical density measured at 

 Forward primer Reverse primer 

L358E 

mutagenesis  

CTGGCAAGGAGAGAAAAAAAAGGCA

AG 

CTTGCCTTTTTTTTCTCTCCTTGCC

AG 

Table 2.5: Primers used for mutagenesis of L-selectin. The primers used to produce the 

L358E mutant. These were used in PCR experiments using Wildtype L-selectin-GFP as the 

template. 
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600 nm (OD600) of 0.6 was reached. At this point 1 ml of 1 M isopropyl β-D-1-

thiogalactopyranoside (IPTG) was added to the 1 L of bacterial culture, so a final 

concentration of 1 mM IPTG was achieved,   in order to induce expression of the 

recombinant protein. The bacterial growth and protein expression conditions for 

each recombinant is summarised in Table 2.6.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.12.2 Production of Soluble Protein 

After growth and induction, the cells were pelleted by centrifugation 

(Beckman Avanti J-26XP centrifuge with a JLA-8.1000 rotor) at 2500xg for 20 

minutes. The pellet was re-suspended in the appropriate buffer (depending on the 

purification method to be used). The solution was then sonicated for three minutes, 

amplitude 30%, pulsing five seconds on five seconds off, repeated twice. The 

soluble and insoluble fractions were separated by centrifugation at 20000xg using a 

Beckman Avanti J-26S centrifuge with a JA-18 rotor for one hour. 

To improve the amount of soluble protein, the Sarkosyl method was used on 

the insoluble fraction produced after sonication and centrifugation. This method 

uses a detergent known as sarkosyl to solubilise proteins found in inclusion bodies 

Recombinant 

Protein 

Growth 

Temperature/°C 

Length of 

Induction/hrs 

CaM 37 4 

Moesin-FERM 37 4 

 18 12-16 

 13 24 

N-CaM 37 4 

 18 12-16 

C-CaM 37 4 

 18 12-16 

 13 24 

Table 2.6: Growth and expression conditions of E.coli cells expressing recombinant 

proteins. A table summarising the temperature and length of time used for the induction of 

the recombinant proteins. 
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(see Section 3.3.2 for an explanation). The pellet was re-suspended in 2 ml of 10 % 

sarkosyl solution and was left on ice for one hour. The sarkosyl solution was then 

diluted to 1 % with the appropriate buffer required for protein purification up to 20 

ml. The solution was centrifuged at 20000xg for 45 minutes. The supernatant was 

then collected and used for purification. 

2.12.3 Hexahistidine-tag (His6-tag) Purification 

  For the recombinant proteins expressed with a His6-tag, purification was 

carried out using a nickel column attached to an AKTA system. The E.coli cells were 

suspended in nickel buffer A (20 mM Tris pH 8, 10 mM imidazole, 300 mM NaCl, 5% 

glycerol) prior to sonication and centrifugation. The soluble fraction was then 

loaded onto a 5 ml nickel column pre-equilibrated with nickel buffer A. The column 

was washed with thirty column volumes (CV) of nickel buffer A and proteins were 

eluted using a concentration gradient of nickel buffer B (20 mM Tris pH 8, 500 mM 

imidazole, 300 mM NaCl, 5% glycerol) from 0 to 100% in 25 CV. Fractions containing 

the protein of interest identified using sodium dodecyl sulphate polyacrylamide gel 

electrophoresis (SDS-PAGE) gel (see Section 2.16.1 for details) were collated and 

underwent TEV protease cleavage, to remove the His6-tag, during dialysis in TEV 

cleavage buffer (50 mM Tris pH 8, 1 mM EDTA, 1 mM DTT, 50 mM NaCl) and the 

protein solution was passed through the nickel column once again to remove the 

His6-tagged TEV protease, the His6-tag and any uncleaved product. CaM was then 

dialysed in NMR buffer (20 mM Tris, 100 mM KCl, 1 mM DTT, and 1 mM EDTA pH 

7.25) or the same buffer plus 5 mM CaCl2 for Ca2+ bound CaM (CaM-Ca). The 

protein was then concentrated to the desired concentration. 

 

2.12.4 Hydrophobic Interaction Chromatography Purification of CaM 

and CaM lobes 

 Untagged CaM and the lobes of CaM were purified using a phenyl sepharose 

column. The soluble fraction was prepared as before except the E.coli pellet was re-

suspended in 50 mM Tris pH 7.5 and 2 mM EDTA prior to sonication, with 5 mM 

CaCl2 added after centrifugation. A 5 ml phenyl sepharose column attached to the 

AKTA system and pre-equilibrated with 50 mM Tris pH 7.5, 5 mM CaCl2, 0.1 M NaCl 
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(known as pre-equilibration buffer). The supernatant containing the recombinant 

protein was loaded onto the column, after which the column was washed with 1st 

wash buffer (50 mM Tris pH 7.5, 0.1 M CaCl2, 0.1 M NaCl) until UV absorption at 280 

nm was constant. It was then washed with 2nd wash buffer (50 mM Tris pH 7.5, 5 

mM CaCl2, 0.5 M NaCl) again, until a constant UV absorption at 280 nm was 

observed. CaM was eluted from the column with 50 mM Tris pH 7.5 and 1 mM 

EGTA (elution buffer). Fractions containing CaM were dialysed in either NMR buffer 

with 5 mM CaCl2 or NMR buffer with 5 mM EGTA, then NMR buffer.  

 

2.12.5 Purification of untagged Moesin-FERM 

 The soluble fraction of E.coli expressing moesin-FERM domain was produced 

as above, except the bacteria pellet was re-suspended in hydroxyapatite buffer A 

(200 mM potassium phosphate pH 7) prior to sonication. The soluble fraction was 

loaded onto a hydroxyapatite column pre-equilibrated with hydroxyapatite buffer 

A. The column was then washed with 10 CV of buffer A and the protein was eluted 

with 5 CV hydroxyapatite buffer B (600 mM potassium phosphate buffer pH 7). The 

protein was the dialysed in potassium phosphate buffer (17.4 mM KH2PO4, 27 mM 

Na2HPO4 at pH 7) or 100 mM sodium acetate buffer and then concentrated to the 

desired concentration. 

 

2.13 Purification of Peptides 

 The peptides purchased from Bristol University were purified using PD 

MidiTrap G-10 desalting columns. The column was equilibrated with 16 ml dH2O, 

then 1 ml of peptide dissolved in dH2O was loaded onto the column, followed by 

0.7 ml of dH2O and this was allowed to completely enter the packed bed. The 

peptide was eluted in 1.2 ml of distilled H2O. The solution was then freeze dried and 

the peptide was weighed and dissolved in the appropriate buffer to the desired 

concentration. 
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2.14 Concentrating Proteins 

 Proteins were concentrated using Amicon Ultra-15 Centrifugal filter units 

(cellulose membrane) with a molecular weight cut off of either 3 kDa or 10 kDa, 

depending on the size of the protein. The concentrators were centrifuged at 4 °C 

with a speed of 1200xg using the JA-18 rotor until the desired concentration of 

protein was achieved.  

2.15 Determination of Protein Concentration 

 The protein concentration was determined using the Beer Lambert law:

clA   where A is the absorbance at 280 nm, ε is the molar extinction coefficient 

of the protein (determined using Protparam (332)), c is the concentration and l is 

the path length. The absorbance was measured using a Nanodrop 

spectrophotometer, with the protein buffer used to set the baseline. 

 

2.16 Protein Analysis 

2.16.1 SDS-PAGE 

  SDS-PAGE is a method used to separate proteins based on their size. SDS is 

an anionic detergent which when added to the protein sample removes the high 

order structure of the protein, forming an unstructured linear chain, and imparts a 

negative charge to the linearized protein. This means that separation of proteins in 

the sample depends on molecular weight only. 

 12.5% SDS-PAGE resolving gel was made by diluting polyacrylamide in 

protogel resolving buffer with APS and TEMED following the manufacturer’s 

protocol. Once the resolving gel had set, the stacking gel was made in the same 

way, except protogel stacking buffer was used. Precast NuPAGE 4-12% Bis-Tris gels 

were also purchased (Novex). The protein samples were mixed with loading buffer 

(63 mM Tris-HCl, pH 6.8, 10% (w/v) glycerol, 2% (w/v) SDS and 0.0025% (w/v) 

bromophenol blue) and loaded on the gel. The gel was run with Tris-glycine running 

buffer at 200V for around 45 minutes. Gels were stained with 0.25% (w/v) 

Coomassie Brilliant Blue R-250 in 45% (v/v) methanol, 10% (v/v) acetic acid and de-
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stained in 45% (v/v) methanol, 10% (v/v) acetic acid, or the proteins were 

transferred to nitrocellulose membrane for western blot analysis. 

 

2.16.2 Western Blot Analysis 

Polyvinylidene difluoride (PVDF) Immobilon-P (Millipore) transfer 

membrane was equilibrated in 100% methanol followed by transfer buffer 

(Invitrogen). Polyacrylamide gels were transferred to the membrane using the 

NuPAGE transfer module (Invitrogen) and run for 35V for 1 hour 45 minutes. After 

transfer the membrane was fixed in 0.3% glutaraldehyde for 15 minutes at room 

temperature. The membrane was then washed three times in tris-buffered saline 

(TBS) (150 mM NaCl, 15 mM Tris-HCl pH 7.4)  supplemented with 0.05% Tween20 

(TBST), each wash lasting 10 minutes. The membrane was then blocked in 5% milk 

in TBST for 1 hour with agitation. The primary antibody was added at the desired 

concentration in blocking solution and the membrane was incubated overnight at 4 

°C with agitation. The next day the membrane was washed three times with TBST as 

described above. Horseradish peroxidise (HRP)- conjugated secondary antibody was 

then added at a dilution of 1:1000 in blocking solution and incubated for 1 hour at 

room temperature with agitation. The membrane was washed with TBST as 

described above. Protein detection was performed using Western Lightning 

chemiluminescent reagent, with 500 μl of the two solutions being mixed together 

and incubated with the membrane for 1 minute. The membrane was then exposed 

with SuperRX X-ray film (Fuji) and films were developed using a compact X4 

automatic X-ray film developer (X-ograph imaging systems).  

 

2.16.3 Densitometric Analysis of Western Blot Images 

 Western blot X-ray films were scanned using a conventional scanner (EPSON 

Perfection 2400). The scanned images were analysed using ImageJ software. 

Differences in protein levels were assessed by measuring the intensities of the 

selected bands. The intensities were first normalised against a loading control 

(actin) and then compared to the control or baseline value for each experiment. 
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2.17 Biophysical Techniques 

2.17.1 Isothermal Titration Calorimetry (ITC)  

2.17.1.1 Theory 

Isothermal titration calorimetry (ITC) is a technique used to characterise the 

interaction between two molecules in solution, by measuring any heat either 

absorbed or generated during the association. From the resultant ITC thermogram 

the binding constant, thermodynamic profile and stoichiometry of the interaction 

can be deduced. 

 The calorimeter is made up of a syringe, which injects one molecule into the 

other and two cells surrounded by an adiabatic jacket, which controls the 

temperature of the cells (Figure 2.3A). Temperature sensitive circuits monitor 

temperature differences between the two cells and switches on heaters, located on 

the cells or jacket, to maintain a constant temperature between the cells (333,334). 

One cell is the reference cell and contains buffer or water and the other cell is the 

sample cell, in which one molecule of interest will be placed. 

 Prior to the start of the experiment a constant power is applied to the 

reference cell. This causes the feedback circuit to activate the heater of the 

reference cell (334). This represents the baseline. During the experiment the 

amount of power required to maintain the same temperature between the two 

cells is measured (2,335) and this information provides the amount of heat 

associated with the interaction between the two molecules (333,334). 

 As the molecule in the syringe is titrated into the sample cell heat is 

absorbed or evolved depending on the type of interaction (333). For an exothermic 

reaction the temperature of the reference cell will increase, so the feedback power 

will be deactivated to maintain the same temperature as the reference cell (334). 

For an endothermic reaction heat will be taken up, meaning the feedback power 

must increase to maintain the temperature. The heat absorbed or evolved during 

the titration of one molecule into the other is proportional to the fraction of bound 

molecules (334,335). For the initial injections all of the injected molecules are 

bound to the molecules in the cell, which will cause a large change in heat and 

therefore a large signal. Later as the system becomes saturated, less change in heat 
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is observed and the signal is smaller. This produces a typical profile of peaks that 

decrease in size as the experiment proceeds (Figure 2.3B) (335), with the area 

under each peak corresponding to the heat associated with the interaction at that 

injection point (2). 

 From this profile the binding constant, stoichiometry and thermodynamic 

profile can be found. The area under each peak is integrated and plotted against 

the molar ratio of the two molecules. This will produce a sigmoidal curve for 

experiments with one binding site. From this curve the heat of binding (ΔH) is 

observed as the height of the curve, the binding constant (Kb) is measured from the 

slope of the curve (following curve fitting) and the stoichiometry (n) is observed as 

the middle point of the slope (Figure 2.3C). From this the Gibbs free energy (ΔG) 

and entropy (ΔS) can be calculated using the following equation: 

 STHKRTG b  ln    

Where R is gas constant and T is temperature. 

This means that from one experiment all the information about the interaction can 

be deciphered by simple manipulations. 

 There are some important considerations to take into account when setting 

up ITC experiments. It is important to ensure the concentrations of both molecules 

of interest are accurately measured. As the binding curve is produced using the 

molar ratio, any inaccuracies in the concentration will affect the binding curve and 

therefore the stoichiometry. It is also important to ensure that the buffer for both 

molecules is the same. This is ensured by dialysing both molecules in the same 

buffer for an extended period of time. If there are differences in the buffers when 

the two molecules are mixed, the mixing of the buffer components will also induce 

a change in heat. This will mean the heat due to the interaction will not observed 

accurately. It is also important to ensure all air bubbles are removed from the 

system. Air bubbles will affect the baseline and interfere with the feedback circuit, 

leading to abnormal peak profiles (334).  

 A potential problem with using this method to study interactions between 

two molecules is that it depends on measuring the ΔH associated with the 

interaction. If the ΔH of an interaction is small it is possible that it will not be seen 
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through the heat of dilution noise of the experiment or potentially will be too small 

to be measured by the equipment. Therefore this may lead to the incorrect 

assumption that no interaction occurred, whilst it is possible that the two molecules 

interact without large changes in enthalpy (in the particular experimental 

conditions used), in cases where the reaction is largely driven by changes in 

entropy. In the event that ΔH of a given interaction is close to zero, it is essential to 

optimise the experimental conditions of the interaction by changing the 

concentration of the molecules, the temperature at which the interaction is 

measured or the buffer in which the interaction is measured, aiming at increasing 

the ΔH to values that may be above the sensitivity threshold of the instrument.  

The change in ΔH as the temperature changes is described by Kirchhoff’s 

Law. This temperature dependence is due to the heat capacity (Cp) of the 

interaction, which is calculated using the following equation: 

T

H
C p




  

By measuring ΔH across a temperature range and plotting a graph of ΔH versus 

temperature, the ΔCp of the interaction can be calculated by the slop of the straight 

line profile produced (333,335). This graph can then be used to predict the ΔH at 

different temperatures so a temperature where ΔH should be measurable can be 

found.  

The buffer conditions will also affect ΔH, with the composition, 

concentration, pH and ionic strength having an affect (333). Of particular 

importance is the enthalpy of ionization of the buffer (ΔHion). Protons are taken up 

or released during the complex formation and the equivalent number of protons 

will be taken up or released from the buffer components (334), leading to the ΔHion. 

The measured enthalpy will reflect the ΔHion as well as the complex formation 

(334). Different buffers have different ΔHion, with sodium phosphate having a low 

ΔHion and Tris-HCl having a high ΔHion (334). By carrying out experiments in buffers 

with different ΔHion the measured enthalpy will also be different and this will help 

to find conditions in which ΔH is measurable.  
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2.17.1.2 Experimental Procedure 

ITC experiments were carried out using a MicroCal ITC200 instrument at 20 

or 10 °C. CaM was used at a concentration of 0.38 mM in the syringe (40 µl) and L-

selectin tail peptides at 0.04 mM in the cell (220 µl). CaM was titrated into the cell 

in twenty injections of 2 μl each with 180 seconds spacing between them and 

constant stirring at 1000 rpm. The heat of dilution was obtained from the heat of 

the last injections and was subtracted from the other peaks to obtain the heat of 

the interaction. The data was fit to a single site binding model using Origin7. This 

gave the stoichiometry, Kb and ΔH. The dissociation constant (KD) was calculated 

using the equation: 

b

D
K

K
1

  

The ΔG and the entropic contribution (-TΔS) were calculated using the equation: 

STHKRTG b  ln  

Where R is the gas constant (1.986 cal K-1mol-1) and T is the absolute temperature. 
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2.17.2 Nuclear Magnetic Resonance (NMR) Spectroscopy 

2.17.2.1 Theory 

 NMR spectroscopy is a method used to gain structural information of 

molecules by exploiting the physical properties of active nuclei to absorb 

electromagnetic radiation when placed in a magnetic field and the dependence of 

their resonance frequency on the environment of the nuclei. 

NMR is based on spin angular momentum, also known simply as spin, which 

is a property of all particles including nuclei (336). This spin will generate a magnetic 

moment. When the nuclei are placed in a magnetic field the nuclei exist in two spin 

states: one that aligns with the external magnetic field and the other that opposes 

it. The Boltzmann distribution for thermal equilibrium dictates that in a sample of 

molecules a majority of spins will be in the lower energy level, meaning that a bulk 

of the magnetization will be in the direction of the external magnetic field (336). A 

radio frequency pulse is applied to the system to rotate the magnetization of the 

nuclei, usually by 90° or 180°. When a 90° pulse is applied to the system, the 

magnetization of the nuclei will be perpendicular to the external magnetic field and 

this is known as transverse magnetization (336). The transverse magnetization will 

rotate around the static field, in a process known as precession (336). The 

precession of the magnetic field induces a current in a receiver coil, which is the 

signal (free induction decay or FID) which is measured (336). The Fourier transform 

is applied to produce the spectrum of intensity as a function of frequency (13).  

 The shell of electrons surrounding the nuclei has an effect on its resonance 

frequency, as they produce a local magnetic field opposing the applied magnetic 

Figure 2.4: ITC equipment and example of data produced.(A) Schematic showing the ITC 

machine. The instrument is made up a reference cell, sample cell containing one molecule of 

interest and a syringe containing the other molecule of interest. The cells are surrounding by 

an adiabatic jacket to control the temperature. Image taken from Feig, A. L. (2007) 

Applications of isothermal titration calorimetry in RNA biochemistry and biophysics. 

Biopolymers 87, 293-301 (2). (B)  A typical profile of the peaks of heat generated by each 

injection of the experiment. (C) A representation of the binding curve produced by 

integrating the area under the peaks. The affinity is calculated by the slope of the curve, the 

enthalpy is represented by the height of the curve and the stoichiometry is found by finding 

the middle of the slope. Images B and C were taken from: 

http://www.huck.psu.edu/facilities/calorimetry-up/guides/itc. 
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field (336). This causes a reduction in the magnetic field sensed at the nucleus, 

known as shielding. The degree of shielding depends on the electron density 

surrounding the nucleus. The different environment surrounding the nucleus will 

change the resonance at slightly different radiation frequencies. This difference in 

frequency can be measured in the NMR spectrum, a property known as chemical 

shift. This can be used to decipher structural properties of the molecule, as 

different local environments will lead to different chemical shifts. Therefore, each 

nucleus within a molecule with different chemical shifts will produce peaks at 

different frequencies. Protons within the molecule that are in the same chemical 

environment will have the same chemical shift value. This will mean the peak on 

the spectra representing that particular chemical shift will increase in area to 

represent the multiple protons.   

  1H is the most common nuclei used in NMR.  As the size of the molecule 

increases the 1H 1D spectrum becomes overcrowded and assigning individual peaks 

becomes too difficult (336). To analyse the structures and the properties of more 

complex molecules, such as proteins, 2D NMR experiments are carried out, where 

two nuclei are analysed and the data is plotted in a space defined by two frequency 

axes rather than one (337). 2D experiments consist of four consecutive time 

periods: preparation, evolution (t1), transfer and acquisition (t2) (336). After the 

preparation time transverse magnetization has been generated and this is allowed 

to evolve during t1. During the transfer time the magnetization is transferred to the 

other nucleus and the signal from the second nucleus is measured during t2. The 2D 

data are obtained from a series of 1D measurements with t1 increased between 

each one (336). To produce the spectra two Fourier transformations are performed, 

one with respect to t2, and one with respect to t1 (336). 

  For protein structure analysis, the protein must be labelled with 13C and 15N 

as the naturally occurring 12C and 14N will not produce an NMR signal as they do not 

have spin. To produce proteins labelled with 13C and/or 15N, E.coli are grown in 

media with a source of these isotopes. [1N-15N] Heteronuclear single quantum 

coherence (HSQC) spectroscopy is a 2D experiment that correlates hydrogen and 

nitrogen nuclei that are separated by one covalent bond thereby producing a 

spectrum with one peak for each pair of coupled nuclei representing the chemical 
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shift of those nuclei. For proteins this means one peak is present for every amino 

acid corresponding to the backbone NH groups (336). Peaks will also be generated 

for side chains that contain amino or amide groups. The spectrum produced is 

known as the fingerprint of the protein. [1N-15N] HSQC spectra are extensively used 

for studying the interaction between proteins and ligands, by titrating a ligand into 

the 15N-labelled protein of interest and following any changes in chemical shifts of 

the NH groups, indicating a change in the chemical environment. If the protein 

backbone has been fully assigned, this allows quick identification of amino acids 

whose chemical shift have been altered during the titration, suggesting an 

involvement in the molecular interaction or a conformational change upon binding 

(336). The [1N-15N] HSQC spectra for CaM, with and without calcium, have 

previously been assigned (for ApoCaM BMRB ID 5353 (338)and for CaM-Ca BMRB 

ID 1634 (339)), so this information can be used to assign the spectra produced in 

this study.  

 

2.17.2.2 Experimental Procedure 

 E.coli transformed with the protein of interest was grown in minimal media 

(Na2HPO4 6 g/L, KH2PO4 3 g/L, NaCl 0.5 g/L, 15NH4Cl 1 g/L, CaCl2 0.1 μM, MgSO4 2 

μM, glucose 2.5 % (v:v), thiamine 1 μM, 10 ml E.coli trace elements (100 mM 

FeCl3·6H2O, 10 mM ZnCl2·4H2O, 15 mM CoCl2·6H2O, 10 mM Na2MoO4·2H2O, 7 mM 

CaCl2·2H2O, 5 mM CuCl2·6H2O and 8 mM H3BO3)) and purified as before. Prior to 

experimentation, D2O was added to the purified protein to a final concentration of 

10%. 1D and 2D [1H-15N] HSQC spectra were recorded on a Bruker 500 NMR 

spectrometer at 25°C equipped with a cryoprobe. For analysis of the interaction 

between L-selectin and CaM, L-selectin cytoplasmic tail peptide was titrated in from 

0.2:1 to 1.2:1 concentration with respect to CaM. This was carried out in the 

presence and absence of calcium. Spectra were processed using NMRPipe and 

analysed using NMRView. Peaks were assigned by comparing to other assigned 

spectra (from Biological Magnetic Resonance Data Bank, for ApoCaM BMRB ID 5353 

for ApoCaM (338)and BMRB ID 1634 for CaM-Ca (339)).  
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2.17.2.2.1 Chemical Shift Perturbation (CSP) Calculation and Mapping onto 

Structural Models  

 Once the [1H-15N] HSQC spectra were assigned the peaks that shifted with 

titration of L-selectin were found. For each amino acid the chemical shift 

perturbation (CSP) was calculated using the formula: 

    22
2.0 NHAV   (340) 

Where ΔδH is the difference in the proton chemical shift of the amide and ΔδN is 

the difference in the chemical shift of the nitrogen amide. The CSPs were then 

divided into categories depending on their size and colour coordinated, with red 

representing the largest CSPs (ΔδAV≥0.03), orange representing moderate CSPs 

(0.01≤ΔδAV≥0.03), yellow representing small CSPs (0.005≤ΔδAV≥0.01) and white 

representing little or no CSPs (ΔδAV ≤0.005). The colour of each amino acid was then 

plotted on the structure of the protein obtained from the RSCB protein data bank 

(id 3CLN for CaM-Ca and 1CFC for ApoCaM).  

  

2.17.3 Circular Dichroism (CD) Spectroscopy  

2.17.3.1 Theory 

Circular dichroism (CD) spectroscopy is a form of spectroscopy used to 

analyse the secondary structure of proteins and peptides. When circular polarised 

light hits a protein or peptide the electronic structure of the molecule of interest 

will cause characteristic bands on the CD spectrum (341). This means that different 

secondary structures within the protein or peptide will give distinct spectral bands. 

This information can then be used to calculate the proportion of the different 

secondary structures within the protein and therefore indirectly provide 

information of the overall structure of the protein (342). 

 Circular polarised light is produced by superimposing two linearly polarised 

beams of light of the same magnitude that are oscillating perpendicular to one 

another, one right polarised and one left polarised (341). This light is passed 

through a solution of molecules of interest. If the left and right polarised light are 

not absorbed or equally absorbed the radiation generated will be polarised in the 
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same plane, so no signal will be seen on the spectrum (343). If the solution contains 

chiral (asymmetric) molecules then the right and left polarised light will be 

refracted differently (343), the two beams will travel at different speeds and will be 

absorbed to different extents at each energy (341).  The difference in absorption 

between right and left polarised light is measured and plotted against the 

wavelength to produce the CD spectrum (341). There are several different methods 

used to measure the difference in absorbance: a) modulation where the incident 

radiation is continuously switched between left and right polarised light, b) direct 

subtraction where the absorbances of left and right polarised light are measured 

separately and subtracted from one another and c) ellipsometric where elliplicity of 

the transmitted radiation is measured. Modulation is the most common method 

used (343). 

There are several different causes of chirality: a) a molecule can be 

intrinsically chiral such as molecules contain carbon atoms that have different 

groups attached at each bonding site, b) if the moiety is covalently attached to a 

chiral centre within a molecule and c) the asymmetric environment the moiety is in 

due to the 3D structure of the molecule (343). In proteins there are several 

different species that contribute to chirality. These include the peptide bond, 

aromatic amino acid side chains and disulphide bonds. Information on the 

secondary structure of the molecule comes from the peptide bond, which produces 

bands on the spectrum from 240 nm and below (343). Figure 2.4 shows the typical 

spectra for alpha helix, beta sheet and random coil.  
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The electronic structure of the molecule produces characteristic bands in 

specific regions in the spectrum. As the different secondary structures have 

different electronic structures they will produce the different spectra seen in Figure 

2.4 (341).  

In this report CD was used to assess the secondary structure of L-selectin 

cytosolic tail peptides in solution. 

2.17.3.2 Experimental Procedure 

 Purified lyophilised peptides were dissolved in NMR buffer or potassium 

phosphate buffer at a concentration of 0.2 mg/ml. CD spectra were measured by Dr 

Tam T.T. Bui (Biomolecular Spectroscopy Centre, King’s College London) using 

Chirascan Plus spectrometer (Applied Photophysics Ltd). The CD spectra were 

measured between 260-190 nm in a 0.5 mm rectangular cell.  The instrument was 

flushed continuously with pure evaporated nitrogen throughout the 

measurements.  Spectra were recorded with a 1 nm step size, a 3 s measurement 

time-per-point and a spectral bandwidth of 1 nm.  

 

2.17.4 Microscale Thermophoresis (MST) 

2.17.4.1 Theory 

Microscale thermophoresis (MST) is a biophysical technique used to analyse 

the interaction between two molecules. It has been observed that a temperature 

gradient in an aqueous solution of molecules induces a flow of molecules, an effect 

known as thermophoresis (344,345). The thermophoretic effect is controlled by the 

charge of the molecule, the size of the molecule and the interaction with the 

solvent environment (344). When two molecules interact with one another, one or 

more of these properties will be altered. This allows the binding event to be 

analysed and the binding constant measured.    

Figure 2.5: CD Spectra of Secondary Structure. A graphic representation of CD spectrum for 

different secondary structures, showing the difference in absorption at different 

wavelengths for α-helix, β-sheet and random coil. Figure taken from 

http://www.chemistry.nmsu.edu/Instrumentation/CD1.html 
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One of the molecules of interest is labelled with a fluorescent probe. This is 

then added to a serial dilution of the other molecule of interest and placed in 

capillaries (344). An infrared (IR) laser is then focused on the sample to heat it with 

high precision at a specific spot, allowing a localised temperature increase over a 

few hundred micrometres (344,345). The fluorescence of the heated area is 

measured to assess the movement of the molecules in the heated area. This is 

repeated for all dilutions then fluorescence is plotted against the concentration of 

the titrated molecule to produce the binding curve, from which the binding 

constant can be found. 

Figure 2.5 depicts a typical MST signal for one capillary (344). It shows the 

five stages of the signal. The initial fluorescence is the fluorescence of the sample 

prior to laser heating. The temperature jump is the fluorescence change induced by 

heating the sample and is prior to the thermophoretic molecule transport. This 

temperature jump represents the change in fluorescence yield of the dye due to 

the temperature increase (344). This is not necessarily influenced by the binding 

event but can be affected in some cases as the local environment will affect the 

temperature dependence of the dye (344). This means that if the molecule binds in 

close proximity to the dye or induces a conformational change close to the dye the 

temperature dependence of the fluorescence will change and be detected in the 

temperature jump. The next stage of the signal is thermophoresis, which is the 

change in fluorescence due to the thermophoretic movement of the molecules. 

This is a diffusion limited transport process and reflects any changes that have an 

effect on the thermophoretic mobility of the labelled molecule (344). Both the 

temperature jump and thermophoresis can be affected by the binding event, 

temperature jump is affected if binding alters the internal state of the labelled 

molecule, whereas size, charge and hydration shell changes from the binding event 

affects the thermophoresis signal (344). Analysis can include temperature jump as 

well as thermophoresis if desired. After a steady state is reached the laser is turned 

off and an inverse temperature jump is observed, as the reduction of temperature 

affects the fluorescent dye as before, after which back-diffusion is seen (345), 

where fluorescence increases as the labelled molecule diffuses back to the area 

heated. 
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 To produce the binding curve the normalised fluorescence (Fnorm) is plotted 

against the concentration of the titrated molecule (344). In principle normalised 

fluorescence can be calculated by: F (hot)/F (initial), however, this does not take into 

consideration the change in the fluorescence due to the temperature jump. It is 

possible to separate the contribution of temperature jump and thermophoresis to 

the MST signal by choosing different times to calculate the Fnorm, with temperature 

jump occurring less than one second after the temperature increase and 

thermophoresis occurring after one second (344). For analysis of just 

thermophoresis the Fnorm is calculated by comparing the fluorescence after thirty 

seconds to fluorescence after one second. The change in fluorescence will depend 

on the binding of the labelled molecule and can is given by: 

Fnorm= (1-x) Fnorm (unbound) +xFnorm (bound) 

where x is the fraction of labelled molecules bound to their target, Fnorm (unbound) 

is the normalised fluorescence of unbound labelled molecules and Fnorm(bound) is 

the normalised fluorescence of complexes (344). From this equation differences in 

the normalised fluorescence of the bound and unbound state allows the 

determination of the fraction of molecules bound at different known 

concentrations of binding partners, and from this the dissociation constant can 

calculated. 

There are many advantages to using this method to analyse the binding 

event between two molecules; it is quick, with each measurement only taking 

around 20 minutes, and requires very little material, with concentrations of low 

micromolar used and very small volumes required to fill the capillaries. The main 

disadvantage is that as it depends on measuring changes in fluorescence one 

molecule must be labelled, contrary to ITC, which is a label-free technique, and this 

labelling may affect the binding. Fluorescent dyes are covalently attached to 

cysteine residues using a dye attached to a maleimide group, or covalently attached 

to lysine residues using a dye attached to an N-hydroxysuccinimide (NHS) ester 

group. If the residues labelled are located in the binding site for the ligand of 

interest, the binding could be altered or even blocked. The cost of labelling is also a 

consideration.  
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Thermodynamics of the binding can be calculated by carrying out 

experiments at different temperatures and plotting lnKb against inverse 

temperature to obtain ΔH from the slope of the straight line graph and the 

intercept is ΔS/R (346), but this requires a higher number of experiments than ITC. 

 

 

 

 

 

 

 

 

 

 

 

2.17.4.2 Experimental Procedure 

 Samples for MST analysis were sent to NanoTemper Technologies GmbH for 

experimentation. Both CaM and the peptides were sent in NMR buffer with 5 mM 

CaCl2, with 0.05% TWEEN-20 added at NanoTemper Technologies GmbH. CaM was 

labelled with NT-647 dye (Lys-coupling technology) at NanoTemper Technologies 

using Nanotemper’s protein labelling kit RED (Nanotemper Technologies) and 

mixed with the unlabelled peptide. CaM was kept at a concentration of 20 nM, with 

peptide concentration starting at 262.2 µM for wildtype and 375 µM for S364phos, 

S367A and S364A, and diluted down to 1:1, with 16 dilutions carried out and 

incubated at room temperature for 30 minutes. Each different dilution was loaded 

into an enhanced gradient standard treated MST-grade glass capillary using 

capillary force and the ends of the capillary were sealed with wax. The capillaries 

were placed into the instrument tray in concentration order and the tray was 

Figure 2.6: A typical profile of the fluorescence during an MST experiment. At the start the 

solution is homogeneous and fluorescence is constant. When the IR laser is switched on 

fluorescence changes are observed, first due to the temperature jump and then due to 

thermophoretic movement of the molecule. The IR laser is then switched off and there is an 

inverse temperature jump followed by back diffusion. 



111 
 

transferred to the instrument. Analysis of each capillary was carried out using a 

Monolith NT.115 instrument with 15 % LED power and 20 % IR power.  

  

2.18 Cell lines and Culturing 

 All cell lines used were cultured at 37 °C in a 5 % CO2 incubator. 

2.18.1 Human Embryonic Kidney (HEK) 293T Cells 

 HEK cells were a gift from Dr Yolanda Calle (Cancer Division, King’s College 

London). The cells were cultured in RPMI-1640 media (Life Technologies) 

supplemented with 10 % FBS, 1 % antibiotics (penicillin/ streptomycin). The media 

was changed every 2 days and once confluent, cells were passaged with a sub-

cultivated ratio of 1:6. 

2.18.2 THP-1 cells (Acute Monocytic Leukaemia, Human) 

 THP-1 cells were purchased from American Type Culture Collection (ATCC) 

and those containing wildtype L-selectin or the mutants ΔM-N, S364A, S367A, and 

SSAA all tagged with GFP were produced by Karolina Rzeniewicz (Cardiology, King’s 

College London). Cells were cultured in RPMI-1640 media supplemented with 10 % 

FBS, 1 % antibiotics (penicillin/ streptomycin) and 0.05 mM β-mercaptoethanol. 

Cells were seeded at a density of 0.5 x 106 cells/ml and split every 2-3 days. 

2.18.3 Human Umbilical Vein Endothelial Cells (HUVECs) 

 HUVECs were purchased from Lonza and cultured in M199 media 

supplemented with 10 % FBS, 1 % antibiotics (penicillin/ streptomycin) and 

endothelial cell growth supplement in fibronectin (10 µg/ml) coated plates. Cells 

were grown to confluence then used in experiments. 

2.18.4 Cryopreservation of Cells 

 For cryopreservation, around 10x106 cells were collected by centrifugation 

and re-suspended in 1 ml 90% FBS 10% DMSO. The cells were immediately 

transferred to pre-chilled Corning freezing vials and placed on ice prior to being 

stored at -80 °C. After 48 hours the vials were transferred to liquid nitrogen for long 

term storage. For re-culturing, vials were rapidly thawed in a 37 °C water bath. 
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After thawing the cells were added to 9 ml of fresh media and the cells were 

harvested by centrifugation. The cell pellet was then re-suspended in fresh media 

and placed in a flask for culturing. 

 

2.19 Lentiviral Production and Generation of Stable Cell lines 

2.19.1 Lentivirus Production 

 Lentiviral particles were produced using HEK cells as the packaging cell line. 

Cells were plated one day before transduction at a density of 10-15 x 106 cells per 

14 cm dish. On the day of transduction 30 μg Pax2, 10 μg pMD.G helper vectors and 

40 μg of the vector of interest were added to 4 ml of OPTIMEM media. 1 μl of 10 

mM polyethylene imine (PEI) was added to 4 ml of OPTIMEM in a separate tube (all 

quantities are correct for one dish; if more than one dish is required the reagents 

were adjusted accordingly). The two tubes were mixed and left at room 

temperature for 15 minutes. The culture media was aspirated from the HEK cells 

and the transduction media was added to the cells in a drop wise manner. The cells 

were incubated at 37 °C for 4 hours, after which the transduction media was 

removed and fresh media was added to the cells.  Cell supernatant containing 

lentiviral particles was collected 48 and 72 hours after transduction. The lentiviral 

particles were concentrated by ultracentrifugation using a SORVALL® Discovery 

ultracentrifuge with a TH641 rotor, spinning at 19900 rpm, at 4 °C for 2 hours. After 

ultracentrifugation the supernatant was decanted and 50 μl of RPMI was added to 

each tube and incubated on ice for 20-40 minutes. The lentivirus pellets were re-

suspended, pooled together, aliquoted in 25 μl fractions and stored at -80 °C until 

used. 

 

2.19.2 Titration of Lentivirus 

 In order to establish lentiviral titres, HEK cells were transduced with 

different dilutions of the concentrated lentivirus. HEK cells were plated in 24-well 

plates at a density of 150-200x105 cells/well. A serial dilution was carried out with 

the lentivirus (10-1 to 10-6) in HEK cell media, and added to the cells. The next day 
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the media was changed and two days later the cells were collected by trypsinisation 

and re-suspended in PBS. The expression of GFP/RFP was analysed using FACs to 

identify the percentage of GFP/RFP positive cells. The virus titre was established 

from cells that were 1-20% transduced. The titres were calculated using the 

following equation: 

VD

NP
T




  

where T=titer, P=GFP/RFP positive cells, N= number of cells, D=dilution and 

V=volume. The volume of lentivirus required for the transduction of the target cells 

was calculated based on the desired multiplicity of infection (MOI) using the 

following equation: 

titre

MOIcellsno
mlVolume




.
)(  

2.19.3 Production of THP-1 transduced cells 

 The lentivirus produced was used to transduce either THP-1 ATCC cells or 

THP-1 cells that had previously been transduced with different L-selectin-GFP 

lentiviruses. 1x106 THP-1 cells were collected and re-suspended in THP-1 media 

containing the volume of lentivirus required for the desired MOI. The media was 

changed the next day and the cells were grown until 10x106 cells were produced. 

The cells were then sorted using a Beckman Coulter cell sorter at a core funded 

FACs sorting facility, to produce a population expressing the fluorescent protein 

required. The sorted cells were then cultured for use in experiments. 

 

2.20 Parallel Plate Flow Chamber Assay  

 Transmigration of THP-1 cells through TNF-α activated HUVECs was carried 

out using a parallel plate flow chamber assay. Coverslips were covered with 

fibronectin (10 µg/ml) in PBS and incubated for 2-4 hours at 37 °C. The fibronectin 

solution was removed and HUVECs were plated onto the coverslips. The HUVECs 

were left to reach confluence (3-5 days) and were then stimulated with TNF-α for 

between 4 hours and overnight. The coverslip of HUVECs was attached to the flow 

chamber using a vacuum pump and was placed on the microscope (Figure 2.6). 
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THP-1 cells were re-suspended in THP-1 media with 25 mM HEPES at a density of 

0.5 x 106 cells/ml. The cells were then perfused over the HUVECs at a flow rate of 

0.25 ml/min, applied using a Harvard syringe pump. Experiments were carried out 

at 37 °C. Experiments were visualized using an Olympus IX81 time-lapse inverted 

fluorescence microscope attached to a Hamamatsu C10600 ORCA-R2 video camera. 

For short transmigration experiments cell were perfused for 5-7 minutes, and 

images were recorded at three random fields of view with three time points per 

minute. For long transmigration experiments cells were perfused for 5 minutes 

then media only was perfused over the HUVECs for a further 20 minutes, with 

images recorded at three random fields of view with one time point per minute. All 

experiments were recorded using a 10x objective. Images were acquired into video 

files using Volocity imaging software. 

  

 

 

 

 

Figure 2.7: Parallel plate Flow Chamber system. Diagram illustrating the system used for the parallel 
plate flow chamber assay. The chamber is attached to a coverslip with a monolayer of HUVECs grown 
over it using the vacuum force and placed over the objective of an inverted microscope. A syringe 
pump is used to draw THP-1 cells suspended in media through the chamber with a set flow rate (set 
by a syringe refill rate). The footage is recorded by the CCD camera connected to the computer. The 
data is visualised and analysed Volocity. Image modified from Wiese, G., Barthel, S. R., and Dimitroff, 
C. J. (2009) Analysis of physiologic E-selectin-mediated leukocyte rolling on microvascular 
endothelium. Journal of visualized experiments : JoVE (7).  
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2.21 Preparation of Coverslips for FRET/FLIM Analysis 

 

2.21.1 Poly-L lysine (PLL) coated coverslips 

 Coverslips were placed in the bottom of the wells in a 24-well plate and 100 

µl of PLL was added to each well. The plate was incubated at room temperature for 

twenty minutes, after which time the PLL was aspirated and the coverslips were 

allowed to dry overnight. The next day 0.1 x 106 THP-1 cells were suspended in 100 

µl of PBS, placed on top of the coverslips and left for ten minutes. After this time 

the coverslips were aspirated and fixed with 4 % paraformaldehyde (PFA) for ten 

minutes at room temperature. The coverslips were then washed with PBS several 

times and permeabilised with ice cold 0.1 % Nonidet P-40 (NP-40) substitute for a 

maximum of three minutes. The NP-40 was then aspirated and the coverslip was 

washed several times with PBS. Sodium borohydride (1 mg/ml) was added to the 

coverslips for ten minutes and they were left in the dark. This is a reducing agent 

used to decrease the background fluorescence. The sodium borohydride was 

aspirated and the coverslips were washed several times in PBS. The coverslips were 

then mounted on glass slides and stored in the dark at 4 °C until analysis was 

carried out by Dr Maddy Parsons, KCL. 

 

2.21.2 Coverslips from flow chamber assay experiments 

 Once flow chamber assay experiments were completed, the coverslips were 

removed and placed in 4 % PFA for ten minutes at room temperature to fix the 

cells. The coverslips were washed several times in PBS and then permeabilised with 

ice cold 0.1 % NP-40 substitute for no more than three minutes. The NP-40 solution 

was then aspirated and the coverslip was washed several times with PBS. Sodium 

borahydride (1 mg/ml) was then added for ten minutes and the coverslips were 

placed in the dark. After aspiration of the sodium borohydride, the coverslips were 

washed several times in PBS. The coverslips were then blocked with 5 % BSA in PBS 

for 20 minutes at 4 °C, after which time they were placed in a humidifying chamber 

on top of phalliodin-Alexa633 diluted 1:300 in 5 % BSA in PBS. The chamber was 
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placed at 4 °C in the dark overnight. The next day the coverslips were removed 

from the chamber and washed several times with PBS. They were then mounted on 

slides and stored in the dark at 4 °C until analysed. All FRET/FLIM analysis was 

carried out by Dr Maddy Parsons, KCL.  

 

2.22 Analysis of cell characteristics during TEM 

 The videos produced during the parallel plate flow chamber assay were used 

to analyse the protrusion number, cell area and circularity of the THP-1 bound to 

the HUVEC monolayer. The videos were paused at 7, 15 and 25 minutes and the 

THP-1 cells within the field of view were characterised as having no, one, two or 

multiple protrusions. ImageJ software was then used to draw around each cell, 

including any protrusions that were visible. The cell area and circularity were then 

calculated by the ImageJ software. For each experiment three fields of view were 

analysed at each time point, with between 20 and 100 cells being assessed. 

 

2.23 GFPTrap Immunoprecipitation Assay 

2.23.1 Cells in suspension 

 GFPTrap beads were purchased from chromotek. Cell lysate was produced 

by collecting 2 x 107 cells, which were washed with PBS. The cells were then re-

suspended in 200 μl lysis buffer (10 mM Tris-HCl pH 7.5, 150 mM NaCl, 0.5 mM 

EDTA, 0.5% NP40, 1 x protease inhibitor cocktail, 50 nM calyculin, 1 μM 

bisindolylmaleimide). The lysis solution was placed on ice for thirty minutes with 

vigorous mixing every ten minutes. The lysate was then spun at 20000 xg for ten 

minutes at 4 °C using an eppendorf 5417R microcentrifuge. The supernatant was 

collected and 550 μl of wash buffer (10 mM Tris-HCl pH 7.5, 50 mM NaCl, 0.5 mM 

EDTA, 1 x protease inhibitor cocktail, 50 nM calyculin, and 1 μM 

bisindolylmaleimide). 25 μl of GFPTrap beads were re-suspended in 500 μl of wash 

buffer and spun down at 2700 xg for two minutes at 4 °C. The supernatant was 

discarded and the wash steps were repeated twice more. The cell lysate was added 

to the beads and incubated at 4 °C overnight with constant mixing. The next day the 
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beads were spun down at 2700 xg for two minutes at 4 °C and the supernatant was 

discarded. The beads were washed three times with cold wash buffer (500 μl). After 

washing, the beads were re-suspended in 2x SDS protein loading buffer and boiled 

for ten minutes at 95 °C. The beads were collected by centrifugation at 2700 xg for 

two minutes at 4 °C. The supernatant was used for SDS-PAGE and Western blot 

analysis was carried out to detect CaM and GFP. 

 Experiments were also carried out as above, except 1% ovalbumin was 

added to the lysis and wash buffers. 

 

2.23.2 THP-1 cell co-culture with TNF-α activated HUVECs 

HUVECs were plated in six well plates and left to grow until confluent. Once 

confluent, the HUVEC were activated with TNF-α for 4 hours. 2 x 106 THP-1 cells 

were re-suspended in 1.5 ml of media and added on top of the activated HUVECs. 

The cells were incubated at 37 °C for five minutes, then the media was aspirated 

and 400 μl of lysis buffer or lysis buffer supplemented with 1% ovalbumin was 

added and the plate was placed on ice for thirty minutes, with mixing every ten 

minutes. The lysate was then spun down as before and the supernatant collected 

and diluted with 1 ml of wash buffer or wash buffer containing 1% ovalbumin. The 

immunoprecipitation was then carried out as described above (Section 2.23.1). 

 

2.24 Co-Culture of THP-1 cells with HUVECs for Shedding 

Analysis 

 HUVECs were grown in six well plates until confluent and were then 

activated with TNF-α overnight. 0.75 x 106 THP-1 cells were re-suspended in 1 ml of 

THP-1 media and added to each well of the plate. Each well was allocated a time 

point: 0, 5, 10, 20, 30 or 60 minutes. At the corresponding time point the media 

from that well was collected as the unbound fraction and the bound fraction was 

collected from the well using a cell scraper. CytoBuster (Novagen) supplemented 

with protease inhibitors was used to lyse the cells using the manufacturer’s 

protocol. Protein loading buffer was added to the cell lysate and the samples were 
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run on SDS-PAGE and Western blot analysis was carried out as described in Section 

2.16 to detect L-selectin-GFP. 

 

2.25 Statistical Analysis 

 Quantitative data was collated and analysed using Microsoft Excel 2010, 

which was also used to produce all bar and line graphs, except for those produced 

by the analysis of the ITC, which were produced by Origin7. To determine significant 

differences between data an independent two-tailed Student’s T test or a One-way 

Anova followed by a Tukey’s post-hoc test were carried out where mentioned in the 

text.  
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Chapter 3: Production and Characterisation of 

Recombinant Proteins for Biophysical Assays 

3.1 Introduction 

 L-selectin has a 17 amino acid cytosolic tail, which has been reported to bind 

several proteins, including CaM and the ERM family of proteins (215,216,223,224). 

The binding of such proteins is thought to mediate numerous functions of L-selectin 

function, which includes downstream signalling (Section 1.3.6). Study of the 

interaction between L-selectin, CaM, and moesin was carried out in vitro using a 

peptide corresponding to the cytosolic tail of L-selectin coupled to sepharose 

beads. The results showed that both CaM and moesin were able to interact with 

the peptide and when the beads were preloaded with one of the proteins, the 

other was still capable of interacting, suggesting that a tertiary complex was formed 

(3). The interaction was then studied in vivo using COS-7 cells transfected with 

ezrin-FERM-GFP, CaM-RFP and wildtype full-length L-selectin. The FRET efficiency 

between ezrin-FERM-GFP and CaM-RFP increased when all three proteins were co-

expressed and L-selectin was clustered using antibody, providing further proof that 

the three proteins form a tertiary complex (3). Although it has been shown that this 

interaction occurs, little is known about the mechanism or the regulation of this 

process. 

To gain further insight into the interaction between the cytoplasmic tail of L-

selectin, CaM and moesin, a detailed characterisation was performed using 

complementary in vitro biophysical techniques, such as NMR, ITC and MST. The 

details of these methods are described in Section 2.17 of Materials and Methods. 

Peptides representing the 17 amino acid cytosolic tail of L-selectin, either wildtype, 

phosphorylated or alanine-mutated versions were commercially sourced. 

Recombinant CaM and the FERM domain of moesin (moesin-FERM) were produced 

in an E.coli system to produce large quantities of the protein. Recombinant proteins 

expressed in E.coli have been successfully purified, using a number of 

chromatography procedures. This chapter describes in detail the methods that 
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were used to clone and express CaM and moesin-FERM so that these could be used 

in the following chapter.  

3.2 Experimental Design 

When large quantities of recombinant protein are required for 

experimentation, genetically modified expression systems are used. There are 

several different expression systems available, including E.coli, yeast and 

mammalian systems, all with different advantages and disadvantages. The most 

commonly used system is the E.coli expression system. This involves cloning 

recombinant genes into vectors used to transform E.coli cells, which will then 

produce the protein under the control of an induction system. A common induction 

method employs the T7 RNA polymerase to over-produce the recombinant protein. 

This polymerase is often used for recombinant protein expression due to its ability 

to rapidly transcribe mRNA. The E.coli cells used to produce recombinant proteins 

all encode the T7 RNA polymerase under the control of a lacUV5 promoter (347). 

The cells also contain the lacI gene, which encodes the lac repressor that binds to 

the lacUV5 promoter, inhibiting transcription of the T7 RNA polymerase. Addition of 

the lactose analogue IPTG blocks this inhibition by binding to the lac repressor, 

causing allosteric alterations to the lac repressor and therefore promoting the 

release of the repressor from the promoter, allowing transcription of T7 RNA 

polymerase and therefore production of the recombinant protein of interest, which 

has been cloned downstream of a T7 promoter, allowing tight control of the 

expression of the recombinant protein of interest (347,348). There are several 

advantages to using the E.coli expression system, which include: easy growth 

conditions and the ease in which production can be scaled up. The major 

disadvantage of this system is that it is estimated that only 10 % of mammalian 

proteins expressed by E.coli are soluble and proteins larger than 60 kDa are more 

likely to be insoluble (349). Solubility can be improved by altering growth conditions 

(348), or by the co-expression of chaperone proteins. It is also possible to purify 

insoluble proteins by controlled denaturation, followed by refolding the proteins 

after purification; however, this is time consuming and the success is again very 

dependent on the protein.  
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In this thesis, an E.coli expression system was chosen for the production of 

recombinant proteins due to the simple transformation and growth of the cells and 

the quick production of large quantities of protein possible. This method has 

previously been utilised to successfully produce recombinant CaM (350), which was 

employed in the first instance. 

 Many different E.coli cells have been engineered to replicate the vector and 

enhance the production of recombinant proteins, with several of these different 

strains being used in this thesis. The KRX E.coli strain (which will be referred to as 

KRX cells) was used to replicate the vector containing the recombinant protein. It 

has been engineered to lack the nuclease endoA (351), which co-purifies with 

plasmid DNA and will therefore contaminate the vector containing the recombinant 

protein. KRX have a mutated version of the RecA gene (351), which encodes a 

recombination protein, and therefore undesirable recombination events are 

minimized. It also contains a partially defective restriction modification system 

(351), limiting the degradation of the vector containing the recombinant protein 

gene. KRX cells have also been modified to enhance protein production, including 

mutations of the protease genes OmpT and OmpR to minimize proteolysis of the 

recombinant protein (351). The cells contain a copy of the T7 RNA polymerase 

controlled by a rhamnose promoter. Using a rhamnose promoter enables tight 

control of the expression of the protein (351). In this study KRX cells were not 

utilised for protein production as the presence of glucose in the growth media 

inhibits the rhamnose promoter. This means that 13C-labelled glucose cannot be 

added to minimal media for the production of labelled protein required for NMR 

studies. It is possible to use 13C-labelled glycerol as an alternative; however this is 

much more costly. For this reason two other E.coli strains were utilised for protein 

production in this thesis. The first is the BL21-DE3-pLysS strain, which is deficient in 

the proteases Lon and OmpT (348,352). The pLysS gene encodes a plasmid for T7 

lysozyme. This lowers the background of recombinant protein expression prior to 

induction, but has no effect after protein expression has been induced, therefore 

reducing the leakiness of the expression (353). The second E.coli strain used was 

the Rosetta 2 strain (referred to as Rosetta cells). This strain contains a plasmid 
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containing tRNA for seven codons rarely used by E.coli strains. This allows for quick 

translation that would otherwise be delayed by the E.coli codon use (354,355). Due 

to the advantages of using both these strains of E.coli for recombinant protein 

production, both strains are used for different proteins in this report. A third E.coli 

strain was utilised for the production of proteins that had been produced in the 

insoluble fraction by the other E.coli strains. This strain is known as “Arctic cells”, as 

it has been engineered to produce proteins at very low temperatures. The 

alterations that have been made to these cells to promote protein expression are 

described below (Section 3.3.2). 

 Once the E.coli expression system has been used to produce large quantities 

of recombinant protein, the protein must be isolated from the cell lysate to very 

high purity. The most efficient way to purify recombinant proteins is via affinity 

chromatography, which requires the protein to be cloned as a fusion protein with 

an affinity tag. Affinity chromatography is very efficient in separating the desired 

protein from other contaminant proteins. Several different tags have been 

engineered to aid purification of recombinant proteins, including a glutathione S-

transferase (GST) and Hexa Histidine tag (His6-tag), all with advantages and 

disadvantages. An advantage to using the GST-tag is that it provides some 

protection from proteolysis, leading to increased protein yield (356). There are 

several disadvantages to using this tag however, including a time-consuming 

purification (357). The tag can also promote oxidative aggregation (358), leading 

the recombinant protein becoming insoluble. Due to its large size, NMR analysis of 

the recombinant protein is not possible with the GST-tag attached (359), meaning it 

has to be removed prior to experimentation.   

In this study recombinant proteins were tagged with a His6-tag, which 

allowed for purification using immobilised metal affinity chromatography (IMAC). 

This method involves histidine interacting with immobilised transition metal ions, in 

this case nickel ions. The electron donor groups within the imidazole ring of 

histidine coordinate bonds with the nickel ions. The recombinant protein can be 

eluted by altering the pH, salt concentration or adding imidazole to the buffer to act 

as a direct competitor for the nickel ions. The nickel resin is formed by using a 
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chelator, such as nitrilotriacetic acid (NTA), to attach the nickel ions to an agarose 

matrix, therefore the resin is known as Ni-NTA (356). The advantage of using this 

resin for purification is that it is capable of withstanding a wide range of buffer 

conditions, including detergents, it is also inexpensive and can be regenerated for 

repeated use. A possible disadvantage is that the resin will interact with any protein 

containing clusters of histidine residues, which means that endogenous proteins 

often interact with the resin, causing contaminants to the recombinant protein 

(360). An advantage to using the His6-tag is that NMR studies can be carried out 

with the tag present due to its small size. Indeed studies have been carried out on 

proteins with and without the tag and have shown the resulting 3D structures were 

roughly equivalent (348). 

As the addition of affinity tags can pose problems, purification procedures 

without the addition of tags has been developed for several proteins. In this thesis, 

methods for purifying untagged CaM and moesin are also described. These 

methods take advantage of intrinsic chemico-physical properties of the protein to 

facilitate purification.  

In addition to recombinant proteins, the production of 15N/13C-labelled L-

selectin cytoplasmic tail was attempted. Peptides and small proteins that are 

intrinsically unfolded are often degraded when produced by E.coli cells (361,362). 

To help protect against degradation, the peptide was expressed with a tag. The 

scaffold protein Trp-Cage was chosen as the tag as it has previously been utilised as 

a tag for NMR studies, so has been characterised already and the method used can 

be followed here. 

3.3 Results 

3.3.1 Production of recombinant CaM protein 

 In order to produce recombinant CaM, a vector containing the cDNA for 

CaM was produced. The pETDuet vector (Figure 2.1A in Materials and Methods) 

was chosen as the expression vector. It contains two multiple cloning sites (MCS): 

MCS1 and MCS2, both of which contain a T7 promoter to allow for the control of 

the expression of the recombinant protein (as described in section 3.2). MCS1 
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enables proteins to be cloned with a His6-tag attached to aid purification of the 

recombinant protein. To enable the removal of the His6-tag after purification, CaM 

was cloned with primers that contained an N-terminal tobacco etch virus (TEV) 

protease cleavage site, positioned between the tag and the start of CaM. TEV 

protease is a highly specific cysteine protease from the tobacco etch virus. It 

recognises the amino acid sequence ENLYQS, cleaving between Q and S. The high 

specificity for this sequence is endowed by the presence of a binding tunnel for the 

substrate. This means that there is a large contact area between the TEV protease 

and the target sequence, allowing for high specificity (363) and therefore the use of 

this protease in removing protein tags is desirable, as it is highly unlikely that it will 

cleave within the sequence of the recombinant protein. 

 PCR was carried out using full length human CaM cDNA, a gift from Donald 

C. Chang (Hong Kong, China), as the template and primers containing restriction 

sites for SalI and NotI to allow the insertion of the CaM cDNA into MCS1 of the 

pETDuet vector. A PCR reaction was carried out as previously described (Section 

2.5) to amplify the CaM cDNA with the restriction sites required for cloning. The 

purified PCR product was then digested with appropriate restriction enzymes and a 

ligation of the CaM insert and the pETDuet vector was carried out as described in 

Section 2.6. The ligation reaction mixture was then used to transform KRX cells and 

the bacteria were grown on LB agar containing ampicillin, for the selection of 

colonies that had successfully been transformed with the pETDuet vector. Single 

colonies were picked, cultured overnight, and the plasmid DNA was isolated using 

the “mini prep” protocol, following the manufacturer’s instructions. The isolated 

plasmids were sent for sequencing to ensure the DNA sequence for CaM had been 

successfully cloned in frame with His6-tag and that no mutations had occurred 

during the cloning procedure. A plasmid containing the correct sequence was then 

used to transform Rosetta cells for protein expression. 

After cloning had been successfully achieved, expression of His6-tagged 

CaM (His6-CaM) by Rosetta cells had to be tested as well as whether any His6-CaM 

produced was soluble, and therefore could be purified. To assess this, an expression 

test was carried out at 37 °C inducing cells with 1 mM IPTG for six hours, taking 
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samples every hour. Expression of His6-CaM was clearly observed from one hour 

induction onwards, with a peak of expression observed at four hours (Figure 3.1A). 

The solubility of His6-CaM was tested by sonication followed by separating the 

insoluble fraction from the soluble fraction by centrifugation, then analysing both 

samples by SDS-PAGE. The results showed that the protein was found in the soluble 

fraction (Figure 3.1B). As the protein was soluble and highly expressed, large 

quantities of His6-CaM could be produced and purified. 

 

 

 

 

 

 

 

  

 

 

 

 

Large scale production of recombinant His6-CaM was carried out by growing 

two litres of bacteria culture using the conditions shown to be favourable for 

protein production in the expression test, namely 37 °C and induction with 1 mM 

IPTG for four hours. The bacteria were harvested and sonicated to disrupt the cell 

membrane and release the soluble proteins produced by the cell. The soluble 

proteins were separated from the cell debris by centrifugation at high speed. An 

AKTA system was used for the purification of His6-CaM. A 5 ml nickel (Ni2+) affinity 

A B 

Figure 3.1: Expression test of His6-CaM in BL21-DE3-pLys cells. (A) Test expression of His6-CaM 

in BL21-DE3-pLys E.coli cells showing the protein present between 0 and 6 hours post induction. 

(B) The solubility of His6-CaM was assessed by sonicating the cells and fractionating the lysate 

in to insoluble and soluble entities and analysing the fractions by SDS-PAGE. Arrows indicates 

His6-CaM. M= Protein marker, with molecular weights shown in kDa, Sol= soluble fraction, Ins= 

insoluble fraction. 
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column was attached to the system and equilibrated with 10 column volumes of 

Ni2+ buffer A (see Section 2.12.3 for the buffer recipe). The soluble proteins were 

loaded onto the column, which was pre-equilibrated with 10 column volumes of 

Ni2+ buffer A to remove any unbound proteins. His6-CaM was eluted from the 

column using a gradient of Ni2+ buffer B (see Section 2.12.3 for a recipe), which 

contains a high concentration of imidazole to compete with the His6-tag for Ni2+ 

binding sites, causing His6-tag dissociation from the Ni2+ resin and therefore elution 

of His6-CaM from the column. The AKTA purification system measures the 

absorbance of ultraviolet (UV) light of wavelength 280 nm. As proteins contain 

amino acids with aromatic rings, ultraviolet light of this wavelength will be 

absorbed. This allows one to follow the purification experiment with an absorbance 

profile, so that the elution of proteins can be observed by a change in the 

absorbance (Figure 3.2A). After the purification experiment was completed any 

fractions that were shown to contain protein by the 280 nm absorbance profile 

were analysed by SDS-PAGE (Figure 3.2B). This allowed for the selection of fractions 

that contained only His6-CaM. 

TEV protease was produced in-house as a His6-tag fusion protein to enable 

the easy removal of the protease from the recombinant protein of interest after 

His6-tag cleavage was carried out. Fractions eluted from the Ni2+ column shown to 

contain His6-CaM, were dialysed with TEV protease in TEV cleavage buffer (see 

Section 2.12.3) overnight to remove the His6-tag. The untagged CaM was then 

purified from the TEV protease, the cleaved tag and any CaM that remained tagged, 

by passing it once again through the Ni2+ affinity column, with cleaved CaM being 

present in the flow through (Figure 3.2C).  The yield of pure recombinant CaM 

fllowing these purification steps was around 12 mg/l. 
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Figure 3.2: Purification of His6-CaM. (A) The purification profile for CaM passed through the 

nickel affinity column attached to the AKTA system. The blue trace represents the UV280 

absorbance measured in milli-absorbance units (mAU), green represents the concentration of 

buffer B, injection of the lysate onto the column is shown by the pink marker and collection 

fractions are shown in red. The zoom insert shows the elution peak for His6-CaM, with the 

fractions collected for analysis by SDS-PAGE shown. (B) Fractions from the purification were run 

on SDS-PAGE gel and those fractions shown to contain CaM were taken for TEV protease 

cleavage. (C) After TEV cleavage solution was passed through a nickel column to attempt to 

separate cleaved CaM from the His6-tag, uncleaved His6-CaM and the His6-tagged TEV protease. 

M=marker, with the molecular weight shown in kDa, tot=total lysate, FT= flow through, BC= 

before cleavage, W= wash with Ni
2+

 buffer A, E= elution with Ni
2+

 buffer B. Cleaved protein is 

shown with the blue arrow, whereas uncleaved protein is indicated with the black arrow. 

  

C 
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Problems were encountered when separating the tagged CaM from the 

untagged. After TEV cleavage was carried out, and the solution was passed through 

the nickel column once again, both untagged and tagged proteins were found in the 

flow through. The flow through was then passed through the nickel column once 

more in an attempt to re-capture some of the unbound protein, and though some 

of the tagged CaM was removed, a proportion was still visible in the flow through 

(Figure 3.3). This meant that the His6-tag of the tagged CaM was not interacting 

efficiently with the Ni2+ affinity column. A possible explanation for this behaviour 

could be that CaM may be interacting with, and therefore masking, the His6-tag of 

tagged CaM molecules. If this was the case, the interaction may well affect 

subsequent binding studies. To avoid this potential problem, an E.coli vector 

containing an untagged CaM sequence was obtained (364) so untagged-CaM 

protein could be produced in-house and in the short term pure recombinant 

untagged-CaM protein was commercially sourced (see Section 2.3).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3:  Separation of His6-CaM from TEV protease cleaved CaM. TEV cleavage was 

carried out on His6-CaM and the solution was passed through nickel column. The flow 

through was collected (1st FT) and found to contain both cleaved and uncleaved protein. The 

1st FT was then passed through the column once again in an attempt to further separate 

cleaved CaM from uncleaved CaM and fractions collected for analysis by SDS-PAGE. Both 

cleaved and uncleaved CaM was once more found in the flow through (2nd FT). The marker is 

shown on the left, with molecular weights shown in kDa, BC= before cleavage, Total = total 

after incubation with TEV, W=wash with Ni2+ buffer A and E=elution with Ni2+ buffer B. 

Cleaved protein is shown with the blue arrow, whereas uncleaved protein is indicated with 

the black arrow. 
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The vector encoding for untagged CaM was used to transform Rosetta cells 

and, as before, an expression test was carried out to ensure that CaM was 

produced in a soluble form. As soluble protein was observed at 37°C inducing cells 

with 1 mM IPTG for four hours for His6-CaM, these conditions were also used to 

test the expression of soluble untagged CaM. Analysis of the solubility of untagged 

CaM by SDS-PAGE revealed that the protein was in fact soluble (Figure 3.4A) and so 

therefore large quantities of the protein could be produced and purified.  

Production of untagged CaM was scaled-up by culturing two litres of E.coli 

using the growth conditions found to be favourable for the production of soluble 

protein in the expression test and the soluble fraction was obtained as described 

previously (Section 2.12.2).  The method used to purify untagged CaM altered 

slightly on the basis that the protein must be in its calcium loaded form (CaM-Ca). 

For this reason 5 mM CaCl2 was added prior to purification. CaM was then isolated 

using a phenyl sepharose column for hydrophobic affinity purification (350).  When 

calcium is bound to CaM it causes structural rearrangements that leads to the 

exposure of hydrophobic surfaces on CaM (365). When this was passed through the 

column the two hydrophobic surfaces interact and CaM remained bound to the 

column. Other proteins are removed from the column by several washing steps (see 

Section 2.12.4 for experimental details). CaM was then eluted from the column by 

the addition of buffer containing a high concentration of the chelating agent EGTA. 

The removal of calcium from the binding sites on CaM causes structural 

rearrangements of the protein, which leads to the hydrophobic surfaces of CaM 

becoming hidden within the protein and reversing the interaction with the 

hydrophobic column. The purification was also carried out using the AKTA system, 

and therefore the presence of protein was monitored by measuring the absorbance 

of ultraviolet light of 280 nm wavelength (Figure 3.4B). Fractions thought to contain 

protein were analysed by SDS-PAGE to assess if CaM was present (Figure 3.4C). 

Fractions containing CaM were collected, dialysed and concentrated for use in 

future experiments.  The yield of pure CaM produced using this method of 

purification was found to be around 16 mg/l. 



130 
 

 

 

 

  

 Manual run 8:10_UV  Manual run 8:10_Conc  Manual run 8:10_Fractions  Manual run 8:10_Inject  Manual run 8:10_Logbook

   0

 200

 400

 600

 800

1000

1200

1400

1600

mAU

0.0 20.0 40.0 60.0 80.0 ml

X1 X2 X3 1A1 1A3 1A5 1A7 1A9 1A11 1B1 1B3 1B4

A 

B 

C 



131 
 

 

 

 

 

 

 

 

3.3.2 Production of N and C-lobes of CaM 

 In Killock et al (2009)(3), molecular modelling was used to look at the 

possible interaction between the L-selectin cytosolic tail, CaM and FERM domain of 

moesin. The model predicted that, in the ternary complex, only the C-lobe of CaM 

was involved in the interaction with L-selectin (3). To prove this experimentally, 

individual lobes of CaM were cloned separately to assess the ability of each domain 

to bind to the cytosolic tail of L-selectin.  

 The boundary domains for the two individual lobes of CaM (N-CaM and C-

CaM) were taken from published data (366). N- and C-CaM were cloned into MCS2 

of pETDuet using NdeI and XhoI restriction sites. This meant that both lobes were 

cloned without a tag. After ligation, KRX cells were transformed with the vector 

using the method described in Section 2.7. Positive colonies were tested for the 

presence of the correct insert, using colony PCR. Several positive colonies were 

observed and these were sent for sequencing to confirm the incorporation of the 

correct insert. 

The vector encoding N-CaM was used to transform Rosetta cells and small 

scale growth was carried out at 37°C and 18°C to test for expression of soluble 

protein. It was not obvious if soluble N-CaM was produced following induction 

(data not shown). This may have been because of the small size of the protein 

making it difficult to visualise on the SDS-PAGE gel. For this reason 1 L of culture 

C 

B 

Figure 3.4: Expression and purification of untagged CaM.  (A) E.coli cells were transformed 

with the vector encoding untagged CaM. Expression was tested using same conditions as 

His6-CaM. The soluble and insoluble fractions were separated by centrifugation and 

analysed by SDS-PAGE. The black arrow indicates CaM. M= marker, with protein molecular 

weight shown in kDa, UI= Uninduced, I Ins= Induced insoluble fraction, I S= Induced soluble 

fraction. (B) Purification profile of untagged CaM passed through phenyl sepharose column. 

The blue trace represents the UV280 absorbance measured in milli-absorbance units 

(mAU), green represents the concentration of buffer, the injection of the protein onto the 

column is shown by the pink marker and collection fractions are shown in red. The zoom 

insert represents the elution peak of CaM with the fraction collected for SDS-PAGE analysis 

labelled. (C) Fractions from the purification were analysed by SDS-PAGE and those 

containing CaM were collected for dialysis. Arrow shows CaM. M= marker, with protein 

molecular weight shown in kDa, FT= flow through. W1= wash with first wash buffer, W2= 

wash with second wash buffer. 
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was grown to produce a larger amount of N-CaM and purification was attempted 

using the same method as untagged CaM. The results showed that at 37°C no 

protein eluted from the column (Figure 3.5A), whereas at 18°C protein was eluted 

from the column with a molecular weight corresponding to that of N-CaM (Figure 

3.5B), meaning soluble N-CaM was successfully produced at 18 °C. These growth 

conditions could now be used for large-scale production of N-CaM for future 

experiments. 

 

 

  

 

 

 

As with N-CaM, the C-CaM vector was used to transform Rosetta cells and 

small-scale expression tests were performed at different growth temperatures in an 

attempt to produce soluble protein. The expression tests revealed that no soluble 

protein was produced when expression was induced at 37°C (Figure 3.6A) or 18°C 

(Figure 3.6B). In an attempt to obtain soluble protein the Sarkosyl method was 

used. This is a method that uses the detergent Sodium lauroyl sarcosinate, known 

as sarkosyl, to solubilise proteins found in inclusion bodies (367,368). During 

Figure 3.5: Expression and purification of N-CaM. N-terminal domain of CaM was expressed in 

Rosetta E.coli cells either at 37 °C (A) or at 18°C (B). Soluble and insoluble proteins were 

separated by sonication and centrifugation. N-CaM was separated from other soluble proteins 

using a HIC column attached to the AKTA system. M= marker, with protein molecular weight 

shown in kDa, Insol=insoluble proteins, sol= soluble proteins, FT= flow through, W1= wash with 

first wash buffer, W2= wash with second wash buffer, A8-B2= elution fractions.  The arrow shows 

N-CaM. 
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bacterial expression of recombinant proteins many become packaged in inclusion 

bodies or co-aggregate with bacterial proteins. By using sarkosyl detergent these 

inclusion bodies are disrupted and recombinant proteins can be solubilised. The 

major advantage of using this method is that it does not entail denaturing the 

protein. Proteins solubilised by denaturing require renaturing, which can be time 

consuming, costly and may result in incorrectly folded proteins, therefore avoiding 

denaturation is desirable. The sarkosyl detergent was used to re-suspend the pellet 

produced after sonication and centrifugation. After incubation on ice the solution 

was diluted and centrifuged once again. The supernatant was collected and 

analysed to decipher if the protein of interest was now found in the soluble 

fraction. The soluble and insoluble fractions produced using this method with 

Rosetta cells expressing C-CaM were analysed by SDS-PAGE, showing C-CaM 

remained in the insoluble fraction even after the Sarkosyl method (Figure 3.6C).   

A further attempt to produce soluble C-CaM was undertaken using Arctic 

cells to express the protein. These cells are engineered to increase the yield of 

folded, active proteins at lower temperatures. Standard E.coli cells contain 

chaperonins, such as GroEL and GroES, that help process and fold the recombinant 

proteins, but these chaperonins have a reduced activity when the temperature is 

lowered (369). Arctic cells contain the chaperonins Cpn10 and Cpn60 which have 

high refolding activity at lower temperatures (370). These cells were transformed 

with C-CaM and induced at 13°C with 1 mM IPTG for twenty four hours. The results 

showed that although most of the protein remained insoluble, a small amount was 

observed in the soluble fraction (Figure 3.6D). Further experiments are required to 

determine if this method is viable for the large-scale production of C-CaM. 
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Figure 3.6: Expression tests of C-CaM. Expression tests were carried out for the C-lobe of 

CaM using different conditions to produce soluble protein. After induction the cells were 

sonicated and the soluble and insoluble fractions were separated by centrifugation. The 

different fractions were analysed by SDS-PAGE. (A) Induction carried out at 37 °C for 4 hours, 

(B) at 18 °C overnight. (C) Sarkosyl method was used on the insoluble protein produced after 

induction at 18 °C overnight. (D) Expression of C-CaM was also assessed using Arctic cells 

induced at 13 °C for 24 hours. Insol=insoluble fraction, sol=soluble fraction. The marker is 

shown on the left of each gel, with protein molecular weights shown in kDa. The black arrow 

indicates C-CaM. 
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3.3.3 Production of Moesin FERM domain 

 It has previously been shown that ERM proteins can bind to the cytosolic tail 

of L-selectin and play a role in locating it to microvilli (3,225). It was found that the 

FERM domain of moesin is responsible for interacting with L-selectin and other 

transmembrane proteins (223,371-373). For that reason, this domain was cloned 

and produced to further study the interaction between L-selectin and moesin. 

Moesin-FERM was cloned into MCS1 of pETDuet using the same restriction 

sites as full length CaM, so would therefore be expressed with a His6-tag. A TEV 

protease cleavage site was engineered between the His6-tag and the protein 

sequence.  The cloning was carried out as described before for CaM. The plasmid 

DNA from several colonies was isolated and sent for sequencing to confirm the 

presence of the correct insert. The vector with the correct sequence was then used 

to transform BL21-DE3-pLyS cells. 

 An expression test for His6-tagged moesin-FERM (His6-moesin-FERM) was 

carried out to assess protein expression and solubility and this showed that cells 

cultured at 37°C and induced with 1 mM IPTG for six hours produced His6-moesin-

FERM in the insoluble fraction (Figure 3.7A and B). For the expression at 18°C 

overnight, some soluble protein was seen, albeit the majority remained insoluble 

(Figure 3.7C). The Sarkosyl method was attempted to increase the amount of 

soluble protein, as previously described (Section 3.3.2). After incubation with 

Sarkosyl detergent, the solution was passed through a Ni2+ affinity column and 

fractions containing His6-moesin-FERM was determined by SDS-PAGE. A small 

amount of His6-moesin-FERM was eluted from the column, however a majority of 

the protein was found in the flow through (Figure 3.8A), showing it did not interact 

with the Ni2+ affinity column. One possible explanation for this is that the His6-tag is 

unable to bind to the column through partial folding, or non-specific interactions 

between the protein and the tag. There have been previous reports where the His6-

tag did not interact with the resin, which similarly hypothesise concealment of the 

tag (356). The His6-moesin-FERM eluted from the column was collected and TEV 

digestion was carried out as described earlier. After overnight cleavage, 

precipitation was observed in the digestion reaction. The solution was centrifuged 
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at 4000 rpm for five minutes to remove the precipitate and the soluble fraction was 

passed through the Ni2+ affinity column to separate tagged from untagged moesin-

FERM, the His6-tag and TEV protease. Fractions analysed by SDS-PAGE (Figure 3.8B) 

indicated that no moesin-FERM was observed in the flow through or elution 

fractions. A sample of the precipitate formed overnight was also analysed by SDS-

PAGE, showing that moesin-FERM was indeed precipitated (Figure 3.8B), indicating 

overnight aggregation. Taken together these results showed that the Sarkosyl 

method was not successful in improving the yield of soluble moesin-FERM. 

  

 

 

 

 

 

 

 

Figure 3.7: Expression of His6-moesin-FERM. (A) Expression of His6-moesin-FERM was tested at 

37°C with IPTG induction over six hours. Samples were collected once every hour and analysed by 

SDS-PAGE. (B) Solubility at 37°C was tested by sonicating the cells and separating the soluble and 

insoluble fraction by centrifugation and analysing the fractions by SDS-PAGE. Sol= soluble fraction 

and Ins= insoluble fraction. (C) An expression test was carried out at 18°C overnight in an attempt 

to produce soluble protein. The soluble and insoluble fractions were analysed by SDS-PAGE. UI= 

Uninduced, IS= Induced soluble, I Ins= Induced insoluble. The marker (M) is shown on the left of 

each gel, with the molecular weights shown in kDa. The arrows show His6-moesin-FERM. 
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Large-scale production of His6-moesin-FERM was carried out using 18°C 

induction overnight. The soluble fraction was produced as explained previously (see 

Section 3.3.1) and His6-moesin-FERM was purified with a Ni2+ affinity column using 

the protocol previously described (see Section 3.3.1). Fractions were collected from 

the column and those shown to contain protein by changes in the 280UV trace 

(Figure 3.9A) were analysed by SDS-PAGE (Figure 3.9B). His6-moesin-FERM then 

underwent TEV cleavage. Although the removal of the tag was successful, this 

caused precipitation of the protein (Figure 3.9C). This meant that this method could 

not be used to produce soluble untagged moesin-FERM.  

B A 

Figure 3.8: Purification of Moesin FERM domain after Sarkosyl treatment. (A) The insoluble 

fraction produced after protein induction at 18 °C was treated with sarkosyl reagent and the 

soluble fraction produced was passed through a Ni2+ affinity column. The flow through, wash 

and elution fractions were collected and analysed by SDS-PAGE. (B) The elution collected in 

(A) was digested with TEV protease overnight (Total 1). A precipitation was observed in the 

digestion solution the next day and centrifugation was carried out to separate the soluble 

from insoluble fractions. Soluble fraction (Total 2) was passed through the nickel column 

once again, with fractions collected for analysis by SDS-PAGE. However, moesin-FERM was 

found to be insoluble. Insol= insoluble fraction, sol= soluble fraction, FT= flow through, W= 

wash, E= elution. The marker is shown on the left of the gels, with the molecular weights 

shown in kDa. The arrow shows moesin-FERM. 
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Figure 3.9: Purification of His6-moesin-FERM. (A) Purification profile of His6-moesin-FERM using a 

Ni2+ affinity column attached to the AKTA system. The blue trace represents the UV280 absorbance 

measured in milli-absorbance units (mAU), green represents the concentration of buffer B, 

injection onto the column is shown by the pink marker and collection fractions are shown in red. 

The zoom insert shows the elution peak of His6-moesin-FERM, with the fractions collected for SDS-

PAGE shown. (B) Fractions thought to contain protein were analysed by SDS-PAGE and those found 

to contain His6-moesin-FERM were subjected to TEV protease cleavage. (C) After cleavage the 

solution was passed through a nickel column and fractions were analysed by SDS-PAGE. Moesin-

FERM was found to be insoluble after cleavage. Black arrow shows uncleaved His6-moesin-FERM 

and blue arrow shows cleaved moesin-FERM. tot=total lysate, FT= flow through, BC= before 

cleavage, Ins= Insoluble fraction after cleavage, S= soluble fraction after cleavage, W= wash with 

Ni2+ buffer A, E= elution with Ni2+ buffer B. The marker (M) is shown on the left of each gel, with 

the molecular weights shown in kDa. 
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The His6-tag was attached to the N-terminus of moesin-FERM, which was 

predicted to be the binding site for CaM. This meant that it was possible that the 

tag might interfere with the binding between CaM and moesin-FERM. For that 

reason moesin-FERM was re-cloned into MCS2 of the pETDuet vector, so it would 

be expressed without a His6-tag. NdeI and XhoI restriction sites were used to clone 

moesin-FERM domain into the vector. After transformation, colony PCR was carried 

out to confirm the presence of the insert, revealing that the insert was present in 

the colonies tested. The vector was sent for sequencing confirming that the 

moesin-FERM sequence was correct.                                                                                                                                                                                                                                                                                                                                                                            

The vector with the correct sequence was used to transform Rosetta cells. 

Expression of moesin-FERM was assessed at 37°C and the SDS-PAGE analysis 

showed that the protein was present in the insoluble fraction (Figure 3.10A). At 

18°C some of the protein was seen in the soluble fraction but a majority of it was 

still insoluble (Figure 3.10B). In an attempt to improve the solubility further, Arctic 

cells were transformed with the vector and induced for twenty four hours at 13°C. 

This resulted in an increase in the amount of soluble protein produced (Figure 

3.10C) and so Arctic cells were used for future expression of moesin-FERM. 

 Untagged moesin-FERM was purified using hydroxyapatite resin, using a 

previously described protocol (261,274). The resin has the chemical formula 

Ca10(PO4)6(OH)2 and forms crystals with pairs of calcium ions (C-sites), clusters of six 

oxygen atoms from phosphate groups (P-sites) and hydroxyl groups, which are all 

arranged in a fixed pattern on the surface of the crystal (374-376). Amino groups of 

the protein are attracted to P-sites but repelled by C-sites, with the opposite being 

true for carboxyl groups. Phosphoryl groups interact with C-sites more strongly 

than carboxyl groups, therefore the proteins are loaded onto the column with a 

buffer of low potassium phosphate concentration and proteins are eluted by 

increasing the potassium phosphate concentration (376-379). Cell lysate from Arctic 

cells expressing moesin-FERM was added to the resin, which was then washed with 

hydroxyapatite buffer A (see Section 2.12.5 for a recipe) and then hydroxyapatite 

buffer B (the recipe is shown in Section 2.12.5) to elute the protein. Fractions were 

collected after each wash stage and analysed by SDS-PAGE, showing that moesin-

C B 
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FERM was located in the elution fraction with no impurities (Figure 3.10D). This 

method was therefore successful in producing pure recombinant moesin-FERM, 

with a yield of approximately 0.95 mg/l being produced.  

 The protein was then dialysed in tris buffer, phosphate buffer and sodium 

acetate buffer to determine which was best for stabilising the protein. It was found 

that sodium acetate buffer allowed the protein to be concentrated to the highest 

level, with a low micromolar concentration reached in this buffer, whereas the 

protein precipitated earlier in the other buffers. However this concentration was 

not high enough to carry out NMR or ITC experiments successfully. 
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Figure 3.10: Expression and purification of untagged moesin-FERM. Expression of untagged 

moesin-FERM was tested at different conditions in an attempt to produce soluble protein, first at 

37°C (A) then at 18°C (B) and 13°C (C). UI= Uninduced, IS= induced soluble, Ins= Induced insoluble 

fraction. (D) As soluble protein was produced at 13°C, purification of the protein produced under 

these conditions was attempted using a hydroxyapatite column. Arrow shows the location of 

FERM. Tot= total lysate, Sol= soluble fraction, FT= flow through, WA= wash with hydroxyapatite 

buffer A, E= elution with hydroxyapatite buffer B. Arrows shows the location of FERM. The marker 

(M) is shown on the left of each gel, with the molecular weights shown in kDa. 
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3.3.4 L-selectin Peptides 

 L-selectin peptides, wildtype, alanine mutations and serine phosphorylated 

peptides, were purchased from the University of Bristol. They were purified using 

desalting columns to remove any impurities and salt that would interfere with ITC 

experiments. The peptides were then lyophilised and weighed to accurately 

calculate the concentrations required for biophysical techniques. 

  

3.3.5 Production of Trp-Cage-L-Selectin 

One possible method to pinpoint the residues involved in specifically 

interacting with CaM would be to carry out NMR experiments with 15N/13C-labelled 

L-selectin cytosolic tail peptides. To purchase labelled peptides is expensive; 

therefore it was desirable to produce peptides in-house using E.coli expression. 

However, production of recombinant peptides and unstructured proteins in E.coli 

cells is often unsuccessful because of degradation of the desired product by 

contaminating bacterial proteases (361,362). To circumvent this, peptides can be 

tagged with fusion partners that help protect against degradation (380). One of the 

possible tags is Exendin-4, a 39 residue peptide isolated from the saliva of the Gila 

monster (381). The NMR structure was solved and it showed that residues 21-38 of 

the C-terminus formed a stable tertiary structure, designated a Trp-Cage motif 

(382). The motif is a hydrophobic cluster with tryptophan residue 25 buried in the 

centre of the structure. Several proline residues, 31 and 36-38, form a cage around 

Trp-25 to shield the hydrophobic core from solvent exposure (383).  Mutational 

studies have been carried out on the Trp Cage motif to produce the folded 

structure with the fewest possible amino acids. The studies showed that the 20 

amino acids of the C-terminus are adequate for the formation of the Trp-Cage 

motif. Further mutations were carried out to improve the formation of the motif in 

water and the stability of the structure. The optimized sequence was found to be 

NLYIQWLKDGGWSSGRPPPS and known as TC5b (381), which is the sequence used 

in this study (known as Trp-Cage hereafter).  
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  The vector containing the Trp-Cage construct with an N-terminal His6-tag 

and a TEV cleavage site between the Trp-Cage and the cloning site was a gift from 

Dr Pete Simpson, Imperial College London. The L-selectin cytosolic peptide was 

cloned using primer oligonucleotides designed to span the entire sequence for the 

cytosolic tail of L-selectin and containing overhangs for the restriction enzymes 

EcoRI and BamHI to allow ligation of the insert into the vector cleaved with these 

restriction enzymes. The L-selectin insert was made by annealing the 

oligonucleotides together by heating the mixture to 95°C then allowing the solution 

to cool slowly. The insert was then treated with a kinase to phosphorylate the ends 

and enable ligation to occur, as the vector was treated with calf-intestinal alkaline 

phosphatase (CIP) after restriction digestion. The ligated vector was then used to 

transform E.coli. Several colonies were sent for DNA sequencing to confirm the 

presence of L-selectin, with results showing the correct sequence was present. 

 After transformation of Rosetta cells with the vector containing the correct 

sequence, expression of Trp-Cage-L-selectin was carried out at 20°C overnight, 

using a protocol provided by Dr Pete Simpson (Imperial College London). Analysis 

revealed that the Trp-Cage-L-selectin appeared to be soluble (Figure 3.11A). The 

protein was purified using Ni2+-NTA resin as described before, with a protein band 

visible on the SDS-PAGE gel corresponding to the molecular weight of the Trp-Cage-

L-selectin apparent in the elution fraction (Figure 3.11B). The presence of intact L-

selectin was confirmed by western blot analysis using antibody CA21, which 

recognises the tail of L-selectin (Figure 3.11C). 

 TEV cleavage was carried out to separate the Trp-Cage from L-selectin. The 

flow through was collected from the Ni2+ column following cleavage and samples 

were analysed by SDS-PAGE, but L-selectin was not visible on the gel due to its 

small size. UV analysis did suggest the presence of the peptide in the flow through 

so this was desalted into water then lyophilised. Analysis of the lyophilised product 

is required to assess if the cytosolic tail of L-selectin peptide is indeed present. 
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Figure 3.11: Expression and purification of Trp-Cage-L-selectin. (A) Rosetta cells were transformed 

with Trp-Cage-L-Selectin vector and expression was induced at 20 °C overnight. The soluble and 

insoluble fractions were produced by sonication and centrifugation and were analysed by SDS-

PAGE. (B) Trp-Cage-L-Selectin was purified from the cell lysate using nickel resin, with fractions 

collected and analysed by SDS-PAGE. (C) Western blot was carried out using CA21 antibody specific 

for the L-selectin tail to confirm the presence of L-selectin. Sol= total soluble fraction, FT= Flow 

through, W= wash, E= elution. The arrow shows the Trp-Cage-L-Selectin. The marker (M) is shown of 

the left side of the gels, with the molecular weights shown in kDa. 
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3.3.6 Characterisation of Recombinant CaM 

To check that the purified recombinant CaM protein was folded and to 

confirm its calcium-loaded state, 1D 1H NMR experiments were carried out on CaM 

samples thought to be calcium bound (CaM-Ca) (Figure 3.12B) and calcium free 

(ApoCaM) (Figure 3.12A). The 1D 1H spectrum shows the resonance signals for 

every proton in the protein (see Section 2.17.2.1 in Material and Methods for an 

explanation). Due to the difference in the structures of ApoCaM and CaM-Ca, the 

proton chemical shifts will be different for each one, producing clear differences in 

the proton spectrum. As there are many protons in the protein, there is much 

overlap within the spectrum, so these differences can only be seen at the 

periphery. These peripheral areas represent the methyl groups at around 0 ppm 

(red circle) and the NH groups around 10 ppm (blue circle). The spectra of CaM with 

and without calcium show clear differences that are consistent with spectra 

published in the literature (365,384). These differences can be used as a diagnostic 

tool to assess CaM where the calcium content is unknown. 
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Figure 3.12: 1D 1H NMR of CaM. (A) Spectra for Apo CaM and  (B) CaM-Ca. The differences in 

the chemical shifts of the methyl groups and NH groups are shown in red and blue respectively. 

Spectra were recorded using a Bruker 700 MHz at 25 °C in NMR buffer (see Section 2.12.3) with 

and without 5 mM CaCl2. 
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The folding of CaM was also assessed using 2D NMR with proteins labelled 

with 15N and carrying out [1H-15N] HSQC experiments, where each peak on the 

spectrum represents one NH group (therefore one amino acid) of CaM. The 

experiments were carried out in the presence and absence of calcium as before, to 

check the differences in the spectrum between the two (Figure 3.13). The spectrum 

showed that both CaM-Ca and Apo-CaM were folded and there were clear 

differences between the spectra. 2D [1H-15N] HSQC spectra have previously been 

published and were used to assign the spectra produced here (for ApoCaM BMRB 

ID 5353 was used (338) and for CaM-Ca BMRB ID 1634 was used (339)). 
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Figure 3.13:  2D [1H-15N] HSCQ of CaM. (A) Spectra of ApoCaM and (B) CaM-Ca. Spectra were 

recorded using a Bruker 700 MHz at 25 °C in NMR buffer (see Section 2.12.3) with and 

without 5 mM CaCl2. 
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3.3.7 Characterisation of L-selectin Peptides 

To assess the secondary structure of wildtype L-selectin in solution, CD 

experiments were carried out. Several buffers were used to see if different 

conditions affected the structure. The results showed that the peptide formed a 

random coil structure in both tris (Figure 3.14A) and phosphate buffer (Figure 

3.14B) and the addition of 0.05% TWEEN had little effect on the structure of the 

peptide (Figure 3.14C). 

CD experiments carried out on peptides with the serine to alanine 

mutations S364A and S367A indicated that these peptides also form random coils in 

the different buffers tested; no different to wildtype L-selectin. This shows that the 

alanine mutations did not affect the secondary structure of the peptide in solution.   
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Figure 3.14: CD of L-selectin peptides. (A) CD spectra of peptides in 150 mM Tris buffer, 

(B) phosphate buffer and (C) 150 mM Tris with 0.05% TWEEN. Experiments were carried 

out by Tam Bui, Kings College London using an Applied Photophysics Chirascan Plus 

spectrometer (Leatherhead, UK). 
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3.3.8 Characterisation of Trp-Cage-L-selectin 

 N15-labelled Trp-Cage-L-selectin was produced using the protocol described 

in Section 2.17.2.2. Once purity of the protein was confirmed by SDS-PAGE analysis, 

the protein was concentrated to 124 µM and NMR experiments were performed. A 

1D 1H experiment was carried out (Figure 3.15A) and the spectrum was compared 

to a previous Trp-Cage spectrum produced by Imperial College London 

(unpublished data). The spectra were very similar and the protein was mainly 

folded, shown by the presence of sharp narrow peaks.  A 2D [1H-15N] HSQC 

experiment (Figure 3.15B) was undertaken to further assess the folding of the 

protein. Once again there were signs that the protein was folded, as well-dispersed 

and distinct peaks were observed. There were however, also signs of degradation 

or unfolding of the protein, as highlighted by a cluster of overlapping peaks in the 

centre of the spectra. Comparison of the spectra produced here and previous 

spectra (unpublished data, Imperial College London), showed some similarities but, 

as there were signs of unfolding, further analysis is required to decipher whether 

the labelled version of the cytosolic tail of L-selectin can be used for binding studies. 
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Figure 3.15: NMR studies of Trp-Cage L-selectin. (A) A 1D 1H spectrum of Trp-Cage L-selectin 

and (B) a 2D [1H-15N] HSQC spectrum of Trp-Cage L-selectin. Both spectra were recorded 

using a Bruker 700 MHz at 25 °C in NMR buffer (see Section 2.12.3). 
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3.4 Discussion 

3.4.1 Production of CaM 

 CaM was originally produced with an N-terminal His6-tag to aid purification. 

However, as mentioned above, removal of the tag became problematic. ITC 

experiments were attempted with His6-CaM and wildtype L-selectin peptide. 

Binding was seen but the results were different from those seen with untagged 

CaM (see Chapter 4), in particular the stoichiometry was much lower than 1. This 

may have been caused by the presence of the tag, affecting the binding 

characteristics or the structure of CaM. This is in agreement with previous studies in 

which the His6-tag was found to interfere with protein-protein interactions 

(356,385). For this reason CaM without a tag was used. This untagged CaM was 

purified using a protocol previously described by Hayashi et al (1998)(350) and has 

been widely used in the literature. Using this method not only removed the 

problem with the tag but also reduced the time required for production of the 

protein, as only one purification step was required. 

 Once CaM was produced, NMR experiments were carried out to check that 

the protein was folded. Both The 1D 1H NMR and the 2D [1H-15N]-HSQC spectra 

showed that the protein was folded and looked similar to spectra previously 

reported. This meant that CaM could be used for further experiments, confirming 

that it was correctly folded.  

 

3.4.2 Protein expression of the Individual Lobes of CaM 

 To be able to understand if one or both terminal domains of CaM are 

required for the interaction with L-selectin, each lobe was cloned separately. The N-

terminal lobe of CaM was successfully produced and purified. The method 

described here can now be used to produce large quantities of the N-lobe for 

biophysical studies. Production of the C-lobe was more problematic, as several 

different growth conditions were tested and only a small amount of soluble protein 

was yielded using Arctic cells. Further experiments are required to determine the 

possibility of purifying this domain of CaM with high efficiency. To facilitate 
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increased production of this domain may require altering the boundary used for the 

C-lobe, either extending the N-terminus or removing residues from the C-terminus, 

as this may somehow promote the production of soluble protein, as shown in many 

examples (348,386). It is also possible that the addition of a fusion partner may 

promote solubility. Several fusion partners have been shown to increase solubility, 

including maltose-binding protein and GST (356). Persechini (1996) (387) used a 

slightly different method to study the role of the different lobes of CaM. They 

produced mutants with one of the lobes “swapped out”, so CaM was made up of 

either two N-lobes (CaMNN) or two C-lobes (CaMCC) (387). They were then able to 

use these recombinant proteins to assess their ability to activate skeletal muscle 

myosin light chain kinase, known to become activated through CaM binding. A 

similar study could be employed here if it is not possible to clone the lobes 

separately; CaMNN and CaMCC could be produced and used to assess if there is a 

difference in their capacity to bind to the L-selectin cytosolic tail. 

 

3.4.3 Production of moesin FERM domain 

 A majority of the His6-moesin-FERM produced was found in inclusion 

bodies, especially when produced at 37 °C. This was likely due to insufficient time 

for correct folding (356). To improve the solubility, the temperature was decreased 

in an attempt to slow down the production of protein expression and increase the 

time available for correct folding to occur. This did improve the amount of soluble 

protein produced and more protein could be purified. However when the His6-tag 

was removed the protein precipitated. This may be due to an increase in protein 

stability or solubility in the presence of the His6-tag and once it was removed the 

protein aggregated/precipitated. Due to the concern that the His6-tag may 

interfere with the interaction between moesin-FERM and L-selectin or CaM, it was 

decided that production of moesin without a tag was a better approach to purify 

the protein using hydroxyapatite resin (261,274). This enabled the production of 

purified soluble protein. However, when this protein was concentrated it began to 

precipitate. ITC experiments were attempted with this purified protein, but the 

results were inconsistent. This was most likely due to the instability of the protein, 
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and having to use very low concentrations of moesin (results not shown). Therefore 

it was not possible to use ITC to study the interaction between moesin, L-selectin 

and CaM. There are no examples of moesin FERM domain being used for studies 

using ITC. In a recent study using recombinant ezrin FERM, the protein was purified 

in the same way that moesin was produced and purified in this chapter (261). It is 

possible that the ezrin FERM domain is slightly more stable and as it is likely to bind 

in the same way as moesin, it could be used to study the interaction between L-

selectin and the FERM domain. MST requires much lower concentrations of protein, 

so it is possible this technique could be attempted to study the interaction between 

moesin, L-selectin and CaM in the future.  

 

3.4.4 Production of Trp-Cage L-selectin 

 By using the Trp-Cage motif as a scaffold protein, it was possible to produce 

15N labelled L-selectin cytosolic tail peptide. However, further study is required to 

assess the stability of this construct. This means that future NMR studies could be 

carried out by titrating in CaM to observe which amino acids in the L-selectin tail 

undergo chemical shift perturbations (CSPs), upon CaM binding. This will provide 

useful information on which residues in the cytosolic tail of L-selectin are 

responsible for the interaction with CaM. The same method can be used to produce 

mutated labelled peptides to assess if they have an effect on the binding between 

CaM and L-selectin. For example aspartic acid can be substituted for serine residues 

to act as a phosphomimetic to see if this affects the binding.  
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Chapter 4: In vitro Analysis of the Interaction 

between CaM and L-selectin 

4.1 Introduction  

 The binding of CaM to the cytosolic tail of L-selectin in resting cells is 

thought to negatively regulate L-selectin’s cleavage by the metalloprotease TACE 

(114). Leukocyte activation results in CaM dissociation and subsequent cleavage of 

L-selectin (215). It is not known what causes the dissociation of CaM from the tail; 

although it is hypothesised that phosphorylation within the L-selectin cytosolic 

domain may play a key role. The cytosolic tail of L-selectin contains two serine 

residues, whose phosphorylation may potentially regulate the binding of CaM and 

moesin, and several PKCs isozymes have been shown phosphorylate L-selectin upon 

leukocyte activation (95,214). There are many examples in which phosphorylation 

at sites within CaM binding domains regulate CaM binding, for example in β-

adducin, which is a subunit of the heteromeric adducin protein involved in the 

assembly of the spectrin-actin network (226). Myristoylated alanine-rich C-kinase 

substrate (MARCKS), a membrane associated protein that interacts with actin, is 

another example where the CaM-binding domain contains phosphorylation sites 

that, when phosphorylated, result in a markedly reduced binding affinity for CaM 

(226).  

 In the previous chapter the production of recombinant CaM was described. 

This protein can now be used to study its interaction with L-selectin. As previously 

described, peptides corresponding to the cytosolic tail of L-selectin were 

synthesised commercially. Along with the wildtype sequence, peptides with alanine 

mutations and phosphorylated serines were used to assess which residues within 

the cytosolic tail of L-selectin contributed to the interaction and whether serine 

phosphorylation affected CaM binding.  

4.2 Experimental Design 

A variety of biophysical methods can measure the strength of interaction 

between molecules. These include isothermal titration calorimetry (ITC) (388), 
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mircoscale thermophoresis (MST) (344), surface plasmon resonance (SPR) (389) and 

fluorescence correlation spectroscopy (FCS) (390) and they all have advantages and 

disadvantages which must be considered when designing the experimental strategy 

to use. The advantages of SPR include the fact that labelling is not required, which is 

advantageous as the presence of a label could affect the binding between the 

molecules. Experiments can be carried out on crude cell lysates, meaning that 

purification of the protein of interest may not be necessary in all cases. The major 

disadvantage of this method is it requires the immobilisation of one of the 

molecules of interest onto a support metal surface, which could seriously affect its 

ability to bind to its partner (391). FCS does not require immobilisation but does 

require fluorescently labelling one of the molecules of interest. 

 The primary method chosen in this study to investigate protein-peptide 

interaction was ITC, on the basis that the molecules do not need to be labelled or 

immobilised, therefore there was a lower chance of binding interference. 

Furthermore a major advantage of this technique is that the thermodynamic profile 

of the interaction, the constant of binding and the stoichiometry can be analysed 

from a single experiment, providing further information about the mechanism of 

interaction beyond affinity strength. MST was used in parallel with ITC, not only to 

verify the results from ITC experiments but also to provide a valid alternative when 

ITC proved inconclusive.  MST was chosen because it is relatively straightforward to 

implement and uses little material, although it does require the labelling of the 

protein. 

 To map the regions of CaM involved in L-selectin binding, NMR spectroscopy 

was utilised. [1H-15N] HSQC titration experiments were carried out to assess the 

residues within CaM which experienced chemical shift perturbations upon addition 

of L-selectin, giving a more detailed picture of the potential surface of molecular 

interaction. As described previously, a chemical shift perturbation will result from a 

change in the chemical environment of the nuclei (see Section 2.17.2.1), therefore, 

the analysis of any residues within CaM that are affected by the presence of L-

selectin may provide information on CaM’s interacting surface, as well as 

conformational changes induced by the interaction. In this report the changes in 
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the chemical shifts, chemical shift perturbations (CSPs), were identified and 

quantitatively measured. 

In this chapter, the analysis of the interaction between CaM and L-selectin 

by ITC, NMR and MST is described. As CaM is a calcium-binding protein, the first 

question was whether calcium was required for L-selectin interaction. This was 

assessed by comparing the results from ITC experiments carried out in the presence 

and absence of calcium. The next key question was whether phosphorylation of 

serine residues within the tail of L-selectin affected the ability of CaM to bind and 

therefore decipher whether phosphorylation regulates CaM binding to L-selectin 

during leukocyte recruitment. To address this point, ITC and MST experiments with 

CaM and phosphorylated peptides were undertaken. A similar approach was used 

to assess whether mutating residues within the cytosolic tail of L-selectin affected 

the ability of CaM to bind and provide information about residues within the 

cytosolic tail of L-selectin that contribute to CaM interaction.  

 

4.3 Results 

4.3.1 Assessing the interaction between CaM and Wildtype L-selectin 

Cytosolic Tail 

To determine the ability of CaM to bind to the L-selectin cytosolic tail, ITC 

was carried out using recombinant purified CaM and commercially purchased L-

selectin tail peptide. Prior to CaM/L-selectin experiments being carried out, a 

negative control was undertaken, injecting CaM into NMR buffer to observe the 

heat of dilution. The results in Figure 4.1 represent an example of this control 

experiment and shows the ITC profile for CaM-Ca/buffer experiment. Small peaks of 

very similar in size are observed throughout the experiment. The last peak of the 

CaM/L-selectin experiments was seen to be similar to the peaks observed in the 

buffer experiment. For this reason it was decided that the final peak to the L-

selectin titrations could be used as a heat of dilution.   
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CaM is a calcium binding protein and a number of its interactions have been 

reported to depend on the presence of Ca2+ (234,392,393). To understand whether 

this was the case for CaM binding to L-selectin, ITC experiments were carried out 

with wildtype L-selectin cytosolic tail peptide in the sample cell of the ITC 

equipment with calcium-bound CaM (CaM-Ca) or calcium-free CaM (ApoCaM) 

titrated into the cell from the syringe (see Section 2.17.1.1 for a schematic of the 

ITC equipment). For both experiments the integrated heat data showed that the 

binding process was composed of one clear event centred on a molar ratio of one 

(Figure 4.1). The binding isotherm curves have been interpolated using an 

independent-site model, revealing that at 20 °C CaM protein interacted with L-

selectin with a dissociation constant (KD ) of 1.6±0.3 μM, with an enthalpy change 

(H) of -416±110 cal/mol and an entropic contribution (defined as -TS) of -

6967±393 cal/mol in absence of calcium and a KD of 4.0±2.1 μM, a ΔH of 1430±341 

cal/mol and a -TΔS of  -8528±108 cal/mol in presence of calcium (Table 4.1). 

Although binding occurred with similar affinities, interestingly, the thermodynamic 

profiles of the two interactions were different (Figure 4.1C and F): CaM-Ca/L-

selectin interaction was described by an exothermic reaction (i.e. had a negative 

Figure 4.1: ITC results for CaM injected into buffer.  Raw data for NMR buffer injected into CaM-

Ca injected into NMR buffer. The experiment was carried out using a microcalorimeter, with CaM 

present in the syringe at a concentration of 0.38 mM (see Section 2.17.1.2 for experimental 

details), with the temperature set to 20 °C.  
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change in enthalpy) and was both enthalpically and entropically driven (with a 

dominant entropic contribution); the binding of ApoCaM to L-selectin is an 

entropically driven endothermic reaction.  

For an interaction to occur spontaneously, the change in Gibbs free energy 

(ΔG) of the interaction must be negative (394). ΔG has both enthalpic (ΔH) and 

entropic (ΔS) contributions, which reflect different aspects of the protein-protein 

interaction. Enthalpy represents the strength of the interactions between the two 

molecules, such as Van der Waals interactions and hydrogen bonds (335,394). 

When binding between two proteins occur, new bonds and interactions will form 

between the two molecules and there will be a change in energy, such as heat 

being released or absorbed. In addition to bond formation, bonds are also broken 

during the interaction. These can come in the form of intramolecular interactions or 

intermolecular interactions – either with the other protein or the surrounding 

solvent. These processes all contribute to the ΔH (335,394). ΔS reflects the change 

in solvation and conformation during the interaction. When binding occurs, water is 

released from the binding site causing a gain in solvent entropy (333). There is also 

a loss in conformational freedom when two molecules interact, resulting in a 

negative change in conformational entropy (394). ΔS is the sum of the ΔS of 

solvation and ΔS of conformation.  

In the case of CaM-Ca interaction with L-selectin peptide, the reaction was 

both enthalpically and entropically driven, as both ΔH and -TΔS were negative and 

therefore contributed to the favourable negative ΔG. The interaction between Apo-

CaM was entropically driven, as -TΔS was negative whereas ΔH was positive, so only 

the ΔS contributed to a favourable negative ΔG. Different enthalpic and entropic 

contributions for CaM-Ca and Apo-CaM binding to the L-selectin cytosolic tail could 

either reflect different mechanisms of binding or could be linked to a different 

solvation state of Apo-CaM and CaM-Ca. 
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Figure 4.2: ITC results for CaM binding to wildtype L-selectin tail peptide.  Raw data for 

ApoCaM (A) and CaM-Ca (D) binding to wildtype L-selectin tail. (B and E) the normalised heat 

of interaction (the ΔH caused by the interaction of CaM and the L-selectin peptide) was 

obtained by integrating the raw data and subtracting the heat of dilution from each point. 

The red line represents the best fit obtained by a non-linear least-squares procedure based 

on one independent binding site model using origin 7.0. The thermodynamic profile for the 

interaction between L-selectin and ApoCaM (C) and CaM-Ca (F) is shown, with the ΔH, -TΔS 

and ΔG for each interaction. Results are representative of three independent experiments. 
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 CaM-Ca  ApoCaM  

Stoichiometry (N) 0.97±0.12 1.21±0.15 

KD (μM) 4.01±2.15 1.6±0.3 

ΔH (cal/mol) -416±110 1430±341 

-TΔS (cal/mol) -6967±393 -8528±108 

ΔG (cal/mol) 7383±291 -7028±246 

 

 

 

To investigate further the interaction between CaM and the L-selectin 

cytosolic tail and to gain insight into the binding mechanisms for both CaM-Ca and 

ApoCaM, a series of 2D [1H-15N] HSQC NMR experiments were carried out with 15N-

labelled ApoCaM or CaM-Ca kept at a constant concentration whilst titrating in 

wildtype L-selectin peptide. Changes in amide 15N and 1H chemical shifts (ΔδAV), 

namely chemical shift perturbations (CSP), were calculated for all peaks that 

showed perturbation using the formula: 
    22

2.0 NHAV    (340), 

where ΔδH is the change in the chemical shift of the amide proton and ΔδN is the 

change in the chemical shift of the amide nitrogen. As described above, CSPs 

provide information about which residues of CaM may be involved in the 

interaction (Section 4.2). The CSPs were then colour coded depending on the extent 

of the perturbation, with red representing the largest CSPs (AV≥0.03), orange 

representing moderate CSPs (0.01≤AV<0.03), yellow representing small CSPs 

(0.005≤AV<0.01) and white representing little or no CSPs (AV<0.005). Given that 

the 3D structures of both Apo-CaM and CaM-Ca are available and that the 2D [1H-

Table 4.1: Thermodynamic parameters of the association of L-selectin and ApoCaM or CaM-

Ca. Measurements were taken using a MicroCal ITC200 instrument at 20 °C in NMR buffer (see 

Section 2.12.3 for recipe). Results shown represent the mean and standard deviation of three 

experiments. 
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15N] HSQC NMR spectra for CaM-Ca and Apo-CaM have been previously assigned, 

the residues showing CSPs can easily be identified and mapped onto the structure 

of the respective protein. 

The results showed that with both CaM-Ca (Figure 4.2) and ApoCaM (Figure 

4.3) most of the CSPs were observed in the C-terminal lobe of CaM, suggesting that 

this lobe was largely responsible for binding to L-selectin cytosolic tail. Interestingly, 

this suggests that CaM did not bind to L-selectin with the classical binding 

mechanism where both lobes are involved and wrap around the target binding site 

(see Section 1.4.2, Figure 1.12C). The large conformational rearrangement required 

for both lobes to interact with L-selectin would result in large CSPs across the entire 

structure of CaM, as observed in previous studies (254,395,396) but it is not seen 

here. This was also consistent with the small enthalpy changes observed from the 

ITC experiments for both CaM-Ca and ApoCaM binding to the L-selectin cytosolic 

tail peptide. If large structural rearrangements were taking place, larger changes in 

enthalpy would be expected, as found previously with several examples of 

canonical binding of CaM to its targets (396,397).  

Although both CaM-Ca and ApoCaM show a majority of the CSP in the C-

lobe of the protein, there were differences in the amino acid residues affected in 

one or the other experiments. This may suggest a difference in binding between L-

selectin and the two forms of CaM, although this remains to be confirmed through 

further investigation. 
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CaM-Ca Chemical Shift Perturbations
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Figure 4.3: Chemical shift perturbation analysis of CaM-Ca/L-selectin interaction. (A) [1H-15N] HSQC 

of CaM-Ca (black) and CaM-Ca in the presence of 1.2 equivalent of the peptide (red). 15N chemical 

shifts are shown on the Y axis and 1H chemical shifts shown on the X axis, both in part per million 

(ppm). Chemical shifts were assigned from the Biological Magnetic Resonance Bank (BMRB) ID 1634.  

Spectra were recorded using a Bruker 700 MHz at 25 °C in NMR buffer (see Section 2.12.3 for recipe) 

with 5 mM CaCl2. (B) Chemical shift perturbations were calculated using the method described in 

Section 2.17.2.2.1 and (C) plotted on the structure of CaM-Ca, Protein Data Bank (PDB) id 3CLN. 

Residues coloured red represent CSPs of ΔδAV≥0.03, orange represent CSPs of 0.01≤ΔδAV<0.03, 

yellow represents CSPs of 0.005≤ΔδAV<0.01 and white represents CSPs of ΔδAV<0.005. 
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ApoCaM Chemical Shift Perturbations
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Figure 4.4: Chemical shift perturbation analysis of ApoCaM/L-selectin interaction. (A) [1H-15N] 

HSQC of ApoCaM (shown in black) and ApoCaM in the presence of 1.2 equivalent of the 

peptide (shown in red). 15N chemical shifts are shown on the Y axis with 1H chemical shifts 

shown on the x axis both measured in ppm. Chemical shifts were assigned from BMRB ID 5353. 

The spectra were recorded using a Bruker 700 MHz at 25 °C in NMR buffer (see Section 2.12.3 

for recipe). (B) Chemical shift perturbations were calculated using the method described in 

Section 2.17.2.2.1 and (C) plotted on the structure of ApoCaM, PDB id 1CFC. Residues coloured 

red represent CSPs of ΔδAV≥0.03, orange represent CSPs of 0.01≤ΔδAV<0.03, yellow represents 

CSPs of 0.005≤ΔδAV<0.01 and white represents CSPs of ΔδAV<0.005. 
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4.3.2 Monitoring the binding of CaM to phosphorylated L-selectin 

peptides 

 To assess the importance of phosphorylation of two serine residues (S364 

and S367) within the cytosolic tail of L-selectin to the binding of CaM, 

phosphorylated L-selectin cytosolic tail peptides were sourced commercially, with 

either one of the serines (i.e. S364phos or S367phos) or both (hereafter termed: 

‘doublephos’) phosphorylated. These peptides were tested for CaM binding using 

ITC experiments.  

As with the wildtype L-selectin cytosolic peptide, ITC experiments were 

carried out with and without calcium in the same conditions used previously (in 

NMR buffer at 20°C). Integration of the heat of binding for the interaction of 

ApoCaM with S367phos, S364phos and doublephos peptides revealed that one 

binding event occurred with each peptide, with a molar ratio of around one. The 

data was fit to a one independent binding site model, which revealed KDs of 5.0±1.1 

µM for S364phos, 5.6±1.7 µM for S367phos and 4.1±1.1 µM for doublephos (Figure 

4.4 and Table 4.2). When these KDs were compared to that found with wildtype L-

selectin (1.6±0.3 µM), there was a difference of between 2.5 and 3.5 fold (3.5 fold 

for S364A, 3.1 fold for S367A and 2.5 fold for doublephos), which was not 

considered significant (see Discussion, Section 4.4.1). The ΔH of the interaction 

between ApoCaM and wildtype L-selectin (1430±341 cal/mol) was less than the ΔH 

with the mutated peptides (2236±680 cal/mol for S364phos, 2437±807 cal/mol for 

S367phos and 2227±380 cal/mol for doublephos, Table 4.2). Although the ΔH and –

TΔS were slightly larger with the phosphorylated peptides, this was not considered 

significant as the errors were quite large (between 17% for doublephos and 33% for 

S367phos) and ΔH remained endothermic.  

The experiments in presence of calcium however, were less straightforward 

because the changes in enthalpy observed here were particularly small and close to 

the limit of what can be rigorously measured by ITC (see below). The interaction 

between CaM-Ca and S367phos or doublephos peptides could barely be measured, 

but one binding event was observed and the data could be fit to the one 

independent binding site model. The comparison of the KDs, ΔH and –TΔS between 
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these peptides and wildtype L-selectin showed no differences that were considered 

significant (Figure 4.5 and Table 4.2). However, the ΔH values in the ITC experiment 

with S364phos were even smaller (Figure 4.5A), too small to obtain a clear fitting of 

the curve and therefore for the experiment to be conclusive.   

 

 

 

 

 

 

 

 

 

Figure 4.5: Interaction between ApoCaM and phosphorylated L-selectin peptide. ITC 

experiments studying the interaction between ApoCaM and either S364phos (A and B), 

S367phos (C and D) or doublephos (E and F). The normalised heat of interaction was 

obtained by integrating the raw data and subtracting the heat of dilution from each point. 

The red line represents the best fit obtained by a non-linear least-squares procedure based 

on one independent binding site model using origin 7.0. These results are representative of 

three independent experiments. 
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Figure 4.6: Interaction between CaM-Ca and phosphorylated L-selectin peptide. ITC 

experiments of CaM-Ca interacting with either S364phos (A and B), S367phos (C and D) 

or doublephos (E and F). The normalised heat of interaction was found by integrating 

the raw data and subtracting the heat of dilution from each point. The red line 

represents the best fit obtained by a non-linear least-squares procedure based on one 

independent binding site model using origin 7.0. The results shown here are 

representative of three independent experiments. 
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The determination of binding affinity using ITC relies on a ΔH value 

measurable above the heat of dilution (the heat associated with the dilution of the 

buffer components in the syringe into the sample cell) and, most importantly, 

above the limits of detection of the instrument: the ITC200 is not capable of 

measuring power compensation changes below 0.05 µcal/sec (388). Considering 

that the enthalpy changes for the interaction between CaM-Ca and wildtype L-

selectin were at the limit of the instrument sensitivity, the inconclusive outcome of 

the measurement with S364phos did not exclude the possibility that an interaction 

was indeed occurring between CaM-Ca and S364phos peptide in the experimental 

conditions used. In this scenario, the reaction would generate a ΔH smaller than the 

Proteins Stoichiometry 

(n)  

KD (μM)  ΔH 

(cal/mol)  

-TΔS 

(cal/mol)  

ΔG 

(cal/mol)  

ApoCaM Wildtype  1.21±0.15 1.63±0.33 1430±341 -8528±108 -7028±246 

 S364phos  0.99±0.22 5.03±1.02 2236±680 -9441±560 -7204±120 

 S367phos  0.89±0.07 5.63±1.72 2437±807 -9583±991 -7146±183 

 Doublephos  0.92±0.18 4.12±1.10 2227±380 -9553±540 -7326±159 

CaM-Ca Wildtype  0.97±0.12  4.01±2.15 -416±110  -6967±393  -7383±291  

 S364phos  Binding could not be measured* 

 S367phos  0.81±0.11  7.58±3.09 -443±141  -6544±113  -6987±234  

 Doublephos  0.89±0.09  5.31±2.09  -248±109  -6946±192  -7195±227  

Table 4.2: Thermodynamic parameters of the association of CaM and phosphorylated L-

selectin peptide. Measurements were taken using ITC200 instrument at 20 °C in NMR buffer 

(see Section 2.12.3 for recipe) with and without 5 mM CaCl2. Results shown represent the 

mean and standard deviation of three independent experiments. *binding could not be 

measured either because no binding occurred or because the ΔH of interaction was too 

small to be detected in an ITC experiment. 
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one observed with wildtype L-selectin tail binding to CaM-Ca and therefore below 

what could be reliably measured by ITC. To find out conclusively whether CaM-Ca 

was indeed capable of binding to the S364phos peptide, a different biophysical 

technique was needed, which would not rely on the changes of enthalpy generated 

during the reaction but measured a different biophysical parameter. MST was 

therefore chosen on the basis that the parameter followed in a titration-dependent 

experiment (the thermophoresis, see Section 2.17.4.1) was independent of 

enthalpy changes.  

Initial MST experiments, carried out during a demonstration of the MST 

Monolith NT.115 instrument at King’s College London, established that this method 

was competent in measuring the interaction between CaM-Ca and L-selectin 

cytosolic tail; hence samples were sent to NanoTemper Technologies GmbH for 

further tests and repeats. CaM was labelled with NT-647 dye, which uses 

hydroxysuccinimide (NHS)-ester to covalently couple the dye to lysine residues. A 

serial dilution of CaM (at constant concentration) with the peptide was then 

performed and the solutions were loaded into glass capillaries. The experiments 

were carried out in the presence of 0.05% TWEEN: detergents such as TWEEN are 

often added to the buffer in MST experiments in order to avoid molecular 

aggregation and to favour sample stability (344,398), given that this technique fails 

in the presence of even small aggregates. TWEEN also minimises adsorption of the 

protein to the glass capillary (399). The MST experiments showed that CaM-Ca 

bound to both wildtype and S364phos peptides with similar affinity (binding 

constant of 68 µM and 46 µM respectively, Figure 4.6 and Table 4.6), though, due 

to time constraints, only two experiments were carried out for each interaction and 

as a result further repeats are required for a statistical analysis to be performed.  

The outcome of MST experiments would indicate that CaM-Ca is capable of 

binding to all the phosphorylated peptides with comparable affinities, adding 

support to the hypothesis that the initial ITC experiments were unable to detect the 

interaction between CaM-Ca and the S364phos peptide in the conditions used. 

However, the experimental conditions used in the MST experiments were slightly 

different from the ITC tests, in that the buffer used in the former measurements 
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contained TWEEN, albeit in very small concentration (0.05%). TWEEN is a detergent 

and it cannot be excluded that it may have an effect on altering the conformation 

of the protein or peptide, thereby influencing the outcome of the experiment. It has 

in fact been shown that peptides can easily form helices in the presence of 

detergents, such as SDS and Tetrafluoroethylene (TFE), though concentrations 

higher than 0.05% are often required (400-402). This required further investigation. 

 

 

 

 

 

 

 

 

The analysis of the effect of TWEEN on the L-selectin secondary structure 

was described in the previous chapter (Section 3.3.7), showing that the peptides 

remained in a random coil formation in a buffer containing 0.05% TWEEN (Figure 

A B

B 

KD=68μM KD=44μM 

Figure 4.7: Microscale thermophoresis showing the interaction of CaM-Ca and L-selectin 

peptides. Experiments were carried out with (A) wildtype and (B) S364phos. Experiments 

were carried out by Nanotemper technologies. CaM-Ca was labelled with NT-647 dye (Lys-

coupling chemistry) using NanoTemper’s Protein Labelling Kit RED (#L001, Nanotemper 

Technologies). The concentration of the labelled protein was kept constant at 20 nM, 

whereas for the peptides a 1:1 series of dilution was carried out, starting at a highest 

concentration of 262 µM for S364phos and 375 μM for wildtype. The samples were loaded 

into enhanced gradient standard treated MST grade glass capillaries after a short incubation 

period and an MST analysis was performed using the Monolith NT.115. Concentrations of 

the unlabelled peptide are in nM (shown on the x axis). n=2 for all experiments. 

Experiments were carried out by a third party at Nanotemper Technologies GmbH, Munich. 
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3.14). Next, the effect of TWEEN on the conformation of CaM-Ca was assessed by 

carrying out a 2D [1H-15N] HSQC experiment of CaM-Ca in NMR buffer with 0.05% 

TWEEN and comparing the spectra with that in NMR buffer alone. Figure 4.7A 

shows that CaM-Ca was folded in the presence of TWEEN; however, the chemical 

shift of a majority of the residues was altered (Figure 4.7B). Changes in buffer 

conditions have been shown to affect the [1H-15N] HSQC spectrum of proteins 

(403,404); nonetheless a significant buffer-induced conformational rearrangement 

of the protein could not be totally excluded from this NMR analysis. 

 In parallel to the analysis of the effect of 0.05% TWEEN on the conformation 

of the individual molecular species, its effect on the interaction between CaM-Ca 

and L-selectin was also investigated by repeating ITC experiments using the MST 

buffer. Experiments were undertaken with both wildtype and S364phos peptides to 

allow a direct comparison. Interestingly, the enthalpy of the interaction between 

CaM-Ca and wildtype L-selectin cytosolic tail peptide increased in these 

experimental conditions, and, accordingly, a detectable ΔH value was now observed 

for the interaction between CaM-Ca and the S364phos peptide. A dissociation 

constant for this interaction could therefore be derived from the curve fitting to the 

one independent binding site model and was found to be similar to that observed 

with wildtype L-selectin peptide (Table 4.3). Time constraints prevented further 

repeats to be carried out for each interaction and therefore a statistical analysis 

could not be undertaken. For this reason, these experiments were used to compare 

qualitatively the binding profiles of wild-type selectin and mutant rather than 

provide a quantitative assessment of the parameters of the interactions.  

Considering that the ΔH values increased across the board, a plausible 

explanation was that 0.05% TWEEN in the buffer could account for the shift of the 

ΔH values to measurable pulses above the ITC detection limits (see Section 2.17.1.1 

for a description of the dependence of ΔH on buffers, temperature etc.). 

Nonetheless, the changes in chemical shifts observed for CaM-Ca in presence of 

TWEEN prompted additional experiments to be undertaken to confirm this 

supposition. In particular, in support of the hypothesis that addition of TWEEN 

caused ΔH to change to a measurable value without altering any other parameters, 
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ITC experiments were performed with CaM-Ca and the L-selectin peptides at a 

different temperature (but without TWEEN), as temperature can also affect ΔH 

(Kirchhoff’s law of thermochemistry, see Section 2.17.1.1 for an explanation). The 

experiments (Figure 4.8) showed that at 10 °C the ΔH of the interaction between 

CaM-Ca and the S364phos peptide once again became detectable by ITC200 

instrument (compare Figure 4.5A and B with Figure 4.8C and D). The thermogram 

could be fitted to the one independent binding site model and the resultant KD for 

this interaction was found to be similar to that of the CaM-Ca wildtype L-selectin 

peptide interaction (Table 4.4), though only two experiments were undertaken for 

each interaction, so further repeats will be required to enable a proper statistical 

analysis.  

It should be noted that MST required covalent modification of primary 

amine groups derived from lysine residues within CaM, specifically for the 

attachment of the NT647 dye. Due to time constraints, chemical modification of 

CaM by the addition of the dye was not controlled for, but is discussed below (in 

Section 4.4.1). 

Taken together all these data support the hypothesis that phosphorylation 

of the L-selectin cytosolic tail did not affect CaM-Ca binding in a binary in vitro 

system. However, further work will be required to definitively understand the role 

of phosphorylation of L-selectin in regulating CaM binding. 

Peptide Stoichiometry 

(N) 

KD (μM)  ΔH (cal/mol)  -TΔS 

(cal/mol)  

ΔG 

(cal/mol)  

WT 0.8±0.02 11.4 -1038±32 -5679 -6717 

S364phos 0.9±0.04 6.5 -405±20 -6638 -7043 

Table 4.3: Thermodynamic parameters of the association of CaM and L-selectin peptides in 

the presence of 0.05% TWEEN. Measurements were taken using ITC200 instrument at 20 °C 

in NMR buffer (see section 2.12.3 for recipe) with 5 mM CaCl2 and 0.05% TWEEN. Results are 

from one experiment; with the error associated with fitting the data to the model shown 

(calculated by Origin 7.0 software). 

 

 



173 
 

 

 

 

  

Figure 4.8: Effect of 0.05% TWEEN 20 on CSP of CaM-Ca. (A) [1H-15N] HSQC of CaM-Ca 

(black) and CaM-Ca with 0.05% TWEEN 20 (red). Chemical shifts taken from BMRB ID 1634.  

Spectra were recorded using a Bruker 700 MHz at 25 °C in NMR buffer with 5 mM CaCl2. (B) 

Chemical shift perturbations were calculated and plotted against residue number. 

B 
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Peptide Stoichiometry 

(N) 

KD (μM)  ΔH 

(cal/mol)  

-TΔS 

(cal/mol)  

ΔG 

(cal/mol)  

WT 1.04±0.09 3.90±0.29 306±111 -7285±67 -6978±43 

S364phos 0.86±0.13 6.04±3.04 141±10 -6912±304 -6771±294 

Table 4.4: Thermodynamic parameters of the association of CaM and L-selectin peptides 

carried out at 10°C. Measurements were taken using ITC200 instrument at 10 °C in NMR 

buffer with 5 mM CaCl2. Results represent the mean and standard deviation of two 

experiments. 

Figure 4.9: Interaction between CaM-Ca and L-selectin peptides. ITC experiments for CaM-Ca 

with wildtype (A and B), S364phos (C and D) at 10 °C. The normalised heat of interaction was 

obtained by integrating the raw data and subtracting the heat of dilution from each point. The 

red line represents the best fit obtained by a non-linear least-squares procedure based on one 

independent binding site model using origin 7.0. Results are representative of two 

independent experiments. 
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NMR was also used to confirm the association between CaM-Ca and 

S364phos, whilst at the same time gaining further insight into the binding 

mechanism via the chemical shift perturbation analysis. The S364phos peptide was 

added to a solution containing 15N labelled CaM-Ca and a series of 2D NMR [1H-15N] 

HSQC experiments were carried out to follow the titration. The spectra showed 

changes in the chemical shifts of CaM-Ca amino acids upon S364phos peptide 

addition, implying that binding occurred (Figure 4.9). These CSPs were compared to 

those observed with wildtype peptide and were seen to be very similar, albeit some 

differences were observed (Figure 4.10), for example detectable CSPs for residues 

E54, K55 and A57 and higher CSPs for residues S101, L105, V108 and L116.  

Although this remains to be confirmed, the current working hypothesis is that 

differences in Ca-CaM CSPs induced by the wild-type peptide and the S364phos 

mutant interaction are likely to have arisen from local chemical environment 

perturbations due to the close proximity of some of the CaM residues to the 

phosphate group of S364phos.  

Overall the NMR experiments positively confirm that phosphorylation of 

S364 does not affect the ability of CaM-Ca to bind to the tail of L-selectin in vitro 

and that the binding mechanisms between CaM-Ca and S364phos or non-

phosphorylated full-length L-selectin peptide appeared to be not significantly 

dissimilar. Further experiments will be required to elucidate the precise point of 

contacts between the protein and peptides.  

  

Wildtype 
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A 

Figure 4.10: Chemical shift perturbation analysis of CaM-Ca/S364phos-L-selectin interaction. 

(A) [
1
H-

15
N] HSQC of CaM-Ca (black) and CaM-Ca in the presence of 1.2 equivalent of the peptide 

(red).
 15

N chemical shifts are shown on the Y axis and 
1
H chemical shifts shown on the X axis, 

both measured in ppm. Chemical shifts were assigned from BMRB ID 1634. Spectra were 

recorded using a Bruker 700 MHz at 25 °C in NMR buffer with 5 mM CaCl
2
. (B) Chemical shift 

perturbations were calculated using the method described in Section 2.17.2.2.1 and (C) plotted 

on the structure of CaM-Ca, PBD id 3CLN. Residues coloured red represent CSPs of Δδ
AV

≥0.03, 

orange represent CSPs of 0.01≤Δδ
AV

<0.03, yellow represents CSPs of 0.005≤Δδ
AV

<0.01 and white 

represents CSPs of Δδ
AV

<0.005. 
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 CaM-Ca Chemical Shift Perturbations
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Figure 4.11: Comparison of the CSPs of CaM-Ca with wildtype and S364phos L-selectin 

peptides. CSPs for CaM-Ca upon the addition of wildtype (A) or S364phos (B) L-selectin 

peptide were calculated and plotted against residue number to allow comparison of the 

CSPs with both peptides. 
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4.3.3 Monitoring the Interaction between CaM and Alanine 

Mutations of the L-selectin Cytosolic Tail  

Much of the work carried out in the Ivetic lab uses cell lines that possess 

alanine mutations within the L-selectin tail. They have been used to better 

understand if shedding of L-selectin can be altered, using for example non-

phosphorylatable serine-to-alanine residues. To elucidate which residues within the 

L-selectin cytosolic tail were important for the binding of CaM, several peptides 

with different alanine mutations were purchased, namely K362A, S364A, S367A and 

Y372A. The two serine to alanine mutants were chosen to complement the 

experiments carried out in cell lines (see Chapter 5 and 6). A previous study 

investigated the role of basic residues in the cytosolic tail of L-selectin in the 

interaction with moesin (225). K362A was one of the mutations used and it was 

shown that it strongly inhibited the interaction between L-selectin cytosolic tail 

peptide and moesin (225) and it was therefore of interest to see its effect on CaM 

binding. In the same study the Y372A mutant was used as a control peptide with an 

alanine mutation in a non-basic position (225). The results showed this mutation 

had little effect on the interaction between moesin and the peptide (225). To 

understand if the same was true for the interaction between CaM and this peptide 

was analysed in this section.  

ITC experiments were carried out with these peptides as described above, 

with measurements taken at 20 °C in NMR buffer with or without CaCl2. The 

experiments with ApoCaM showed a binding process for all the peptides, with one 

event observed and a molar ratio of around one for each peptide. This allowed the 

data to be interpolated into binding curves using a one independent binding site 

model, from which the KD, ΔH and –TΔS for the binding of each peptide could be 

elucidated (Figure 4.11 and Table 4.5). The KDs were found to be 3.6±1.6 µM for 

K362A, 4.1±2.0 µM for S364A, 6.3±0.5 µM for S367A and 2.7±0.3 µM for Y372A. As 

with the phosphorylated peptides, the differences between these KD values and 

that observed with wildtype L-selectin were not considered significant. The same 

was true for the comparison between the ΔH and –TΔS for each peptide.  



179 
 

Results with CaM-Ca showed that binding occurred between CaM-Ca and 

S367A and Y372A peptides and binding curves could be produced by integrating the 

heat of interaction of each peak and fitting the data to the one independent binding 

site model. The KDs extrapolated from the binding curves (2.7±0.5 µM for S367A 

and 5.0±4.5 µM for Y372A) were compared to that found with wildtype L-selectin 

peptide (4.0±2.1 µM) and no significant difference was observed, showing the 

strength of binding was similar with all three peptides. The ΔH for the interaction 

between CaM-Ca and each peptide were also compared (-416±110 cal/mol for 

wildtype, -391±73 cal/mol for S367A and -341±225 for Y372A) revealing no 

significant difference. Experiments with K362A and S364A were inconclusive as no 

measurable ΔH was produced (Figure 4.12 and Table 4.5). Similarly to previous 

experiments with the S364phos peptide, the enthalpies of interaction were very 

close to zero in the above experimental conditions used, thereby rending the 

experiments inconclusive. 
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Figure 4.12: Interaction between ApoCaM and alanine mutant L-selectin peptides. ITC 

experiments for ApoCaM with K362A (A and B), S364A (C and D), S367A (E and F) and 

Y372A (G and H). The normalised heat of interaction was obtained by integrating the raw 

data and subtracting the heat of dilution from each point. The red line represents the best 

fit obtained by a non-linear least-squares procedure based on one independent binding site 

model using origin 7.0. Results are representative of three independent experiments. 
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Figure 4.13: Interaction between CaM-Ca and alanine mutant L-selectin peptides. ITC 

experiments for CaM-Ca with K362A (A and B), S364A (C and D), S367A (E and F) and Y372A 

(G and H). The normalised heat of interaction (change in ΔH associated with the interaction 

between CaM and the L-selectin peptide) was obtained by integrating the raw data and 

subtracting the heat of dilution from each point. The red line represents the best fit obtained 

by a non-linear least-squares procedure based on one independent binding site model using 

origin 7.0. Results are representative of three independent experiments. 
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The inconclusive ITC results between CaM-Ca and S364A were reminiscent 

of what was observed with S364phos at 20 °C in NMR buffer. For this reason, the 

same experimental steps were undertaken to ascertain whether CaM-Ca was 

binding to the S364A peptide. MST experiments were carried out to test the CaM-

Ca and S364A association, using S367A peptide as a positive control because CaM-

Ca interaction with this peptide was already characterised by ITC. The MST 

experiments, performed in the presence of 0.05% TWEEN, revealed a clear 

interaction between CaM-Ca and S364A peptide, with a similar KD to that found 

with wildtype (Figure 4.13A and Table 4.6), though once again, statistical analysis 

was not possible, as only two experiments were carried out for each interaction. 

Interestingly, the KD value of the interaction between CaM-Ca and the S367A 

peptide obtained from MST was smaller than that of the other peptides (Figure 

4.13B and Table 4.6), indicating a stronger interaction between CaM-Ca and S367A 

in the experimental conditions used. However, the results from MST were the mean 

Proteins Stoichiometry 

(N) 

KD (μM) ΔH 

(cal/mol) 

-TΔS 

(cal/mol) 

ΔG (cal/mol) 

ApoCaM Wildtype  1.21±0.15 1.63±0.33 1430±341 -8528±108 -7028±246 

 K362A  0.84±0.010 3.62±1.64 2428±823 -9853±546 -7425±277 

 S364A  0.99±0.14 4.2±2.0 2350±218 -9719±203 -7369±357 

 S367A 0.92±0.11 6.29±0.58 1976±556 -9049±601 -7074±55 

 Y372A 0.99±0.22 2.79±0.28 2052±721 -8767±960 -7549±58 

CaM-Ca Wildtype  0.97±0.12  4.01±2.15  -416±110  -6967±393 -7383±291  

 K362A  Binding could not be measured* 

 S364A  Binding could not be measured* 

 S367A 1.02±0.19 2.72±0.53 -391±73 -7176±126 -7567±120 

 Y372A 0.93±0.27 5.01±4.59 -341±225 -7032±709 -7373±558 

Y372A 

B 

G 

Table 4.5: Thermodynamic parameters of the association of CaM and alanine mutant 

peptides. Measurements were taken using ITC200 instrument at 20 °C in NMR Buffer with 5 

mM CaCl2 for CaM-Ca or NMR alone for Apo-CaM Results represent the mean and standard 

deviation of three independent experiments. *binding could not be measured either because 

no binding occurred or because the ΔH of interaction was too small to be detected in an ITC 

experiment. 
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of only two experiments and therefore further repeats are required in order to 

carry out a comprehensive quantitative analysis on the different KD values obtained 

with this technique.  

 

 

 

 

 

 

 

 

 

 

 

 

A 

KD=46μM 

Figure 4.14: Microscale thermophoresis with CaM-Ca and L-selectin peptides. Experiments were 

carried out with (A) S364A and (B) S637A. CaM-Ca was labelled with NT-647 dye (Lys-coupling 

chemistry) using NanoTemper’s Protein Labelling Kit RED (#L001, Nanotemper Technologies). The 

concentration of the labelled protein was kept constant at 20nM, while a serial dilution of the 

peptide was carried out, with a starting concentration of 375 μM and diluting down to 1:1. The 

samples were loaded into enhanced gradient standard treated MST grade glass capillaries after a 

short incubation period and an MST analysis was performed using the Monolith NT.115. 

Concentrations of the unlabelled peptide (shown on the x axis) are in nM. N=2 for all experiments. 

Experiments were carried out by a third party at Nanotemper Technologies GmbH, Munich. 
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Akin to the S364phos analysis, ITC experiments were repeated with 0.05% 

TWEEN supplemented to the binding buffer to confirm the results seen with MST. 

Binding of CaM-Ca was observed with the S364A peptide giving a KD (12.2 µM), a ΔH 

(-772 cal/mol) and –TΔS (-5905 cal/mol) (Table 4.7). This indicated that CaM-Ca was 

capable of interacting with S364A, although only one experiment for each 

interaction was undertaken because of time restraints. As for before, ITC 

experiments were also carried out at 10 °C (without TWEEN) to be able to measure 

ΔH values without the use of TWEEN in the buffer, and this confirmed that CaM-Ca 

was capable of binding to S364A peptide with similar KD to wildtype (Figure 4.14. 

and Table 4.8). These results together confirm that CaM-Ca is able to bind to S364A 

peptide. 

 The same experimental conditions were used to assess the binding of CaM-

Ca to the S367A peptide, following the differences in the KDs measured with ITC at 

20 °C and MST. Binding was observed both in buffer supplemented with 0.05% 

TWEEN and at 10 °C in NMR buffer and the KDs measured were similar to those for 

wildtype L-selectin peptide, but due to time limitations, the necessary repeats could 

not be carried out and therefore the extent of the similarity between wildtype and 

S367A could not be assessed by statistical analysis.  

 

 KD (µM) 

Wildtype 68 

S364phos 48 

S364A 46 

S367A 13 

Table 4.6: Summary of dissociation constants of Cam-Ca and L-selectin peptides 

calculated by MST analysis. Measurements were taken with a Monolith NT.115 instrument 

by a third party at NanoTemper Technologies GmbH, Munich.  Results shown are the mean 

of two independent experiments. 
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Peptide Stoichiometry 

(N) 

KD (μM)  ΔH (cal/mol)  -TΔS (cal/mol)  ΔG (cal/mol)  

WT 0.8±0.03 11.4 -1038±31 -5679 -6717 

S364A 0.8±0.06 12.2 -772±28 -5905 -6677 

S367A 0.9±0.02 7.3 -560±18 -6418 -6978 

Table 4.7: Thermodynamic parameters of the association of CaM and L-selectin peptides in 

the presence of 0.05% TWEEN. Measurements were taken using ITC200 instrument at 20 °C 

in NMR buffer with 5 mM CaCl2 and 0.05% TWEEN. Results are from one experiment, with 

the error in fitting the data to the model (calculated by Origin 7.0) shown. 

 

 

Figure 4.15: Interaction between CaM-Ca and L-selectin peptides. ITC experiments for 

CaM-Ca with S364A (A and B), S367A (C and D) at 10 °C. The normalised heat of 

interaction was calculated by integrating the raw data and subtracting the heat of 

dilution from each point. The red line represents the best fit obtained by a non-linear 

least-squares procedure based on one independent binding site model using origin 7.0. 

Results are representative of two independent experiments. 
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4.3.4 ITC Experiments with Trp-Cage L-selectin 

 In the previous chapter the Trp-Cage L-selectin construct was made in order 

to produce in-house L-selectin peptides (and mutants), in particular 15N-labelled 

peptides to be used in NMR investigations aimed at elucidating details of L-selectin 

interaction with CaM. It was therefore critical to test whether the presence of the 

Trp-Cage had any effect on the binding of the L-selectin peptide to CaM. To this 

aim, ITC experiments were used to probe the interaction of Trp-Cage-L-selectin and 

CaM-Ca and compared with L-selectin peptide alone. 

 The ITC experiments showed association between CaM-Ca and Trp-Cage-L-

selectin, with the interaction being fit to the one independent site model to 

produce the binding curve, from which the parameters associated with the 

interaction could be obtained. Comparison of the results for CaM-Ca with Trp-Cage-

L-selectin and L-selectin peptide showed a similar binding affinity, however, the 

thermodynamic profile was very different, with Trp-Cage-L-selectin having a large 

positive enthalpy (Figure 4.15) compared to a small negative enthalpy for L-selectin 

peptide (Figure 4.1D and Table 4.1). This may suggest that the Trp-Cage had an 

effect on the interaction and therefore it is vital to test whether the Trp-Cage motif 

alone can bind to CaM-Ca. The Trp-Cage motif was obtained from E.coli cells 

following the same protocols used for Trp-Cage-L-selectin (section 3.3.5). Soluble 

Peptide Stoichiometry 

(n) 

KD (μM)  ΔH (cal/mol)  -TΔS (cal/mol)  ΔG (cal/mol)  

WT 1.04±0.09 3.90±0.29 306±111 7285±67 6978±43 

S364A 0.92±0.25 2.72±0.13 119±30 7302±2 7182±27 

S367A 0.89±0.12 3.84±0.02 358±54 7347±52 6988±2 

Table 4.8: Thermodynamic parameters of the association of CaM-Ca and L-selectin peptides 

carried out at 10°C. CaM-Ca binding to L-selectin peptides. Measurements were taken using 

ITC200 instrument at 10 °C in NMR buffer with 5 mM CaCl2. Results shown represent the mean 

and standard deviation of two experiments. 
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protein was observed on a SDS-PAGE gel (data not shown), however, when 

purification of the Trp-Cage motif was attempted using a Ni2+ affinity column, a 

band on the gel corresponding to its expected molecular weight was observed in 

the flow through fraction, suggesting that the protein did not interact with the 

affinity column. Lack of time prevented further pursuit of this. 

 

 

  

N= 0.99±0.05 
KD= 2.02±0.04 µM 

Figure 4.16: ITC data of CaM-Ca binding to Trp-Cage L-selectin. (A) ITC raw data profile of 

Trp-Cage L-selectin titrated into CaM-Ca. (B) binding curve produced by integrating the heat 

of interaction of each point and fitting the data to the one independent binding site model, 

with the stoichiometry (N) and dissociation constant( KD) shown. (C) The thermodynamic 

profile of the interaction, with the ΔH, -TΔS and ΔG for the interaction shown. 

Measurements were taken using ITC200 instrument at 20 °C in NMR buffer with 5 mM 

CaCl2. Results are representative of two independent experiments, with standard 

deviations shown bar the error bars. 
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4.4 Discussion 

Previous work showed that L-selectin was capable of interacting with both 

CaM and ERM proteins at the same time to form a 1:1:1 complex (3). It is thought 

that this interaction regulates several functions of L-selectin, including localisation 

of L-selectin to microvilli and extracellular cleavage of L-selectin. Little is known 

about the mechanism behind the binding and how it is regulated. To study this, 

recombinant proteins were produced (Chapter 3) and biophysical techniques were 

used to assess the interaction of CaM to different L-selectin peptides and 

investigate possible regulation mechanisms of binding, particularly focussing on the 

requirement for calcium and the effect of L-selectin phosphorylation. 

 

4.4.1 Determining what is considered a significant difference 

between binding constants 

In this chapter, ITC and MST have been used to measure the binding 

constants of CaM with L-selectin peptides. Differences in binding affinities between 

CaM with wildtype L-selectin peptide and CaM with the mutant L-selectin peptides 

in any of the conditions tested were found to be fivefold or less with both methods. 

A fivefold difference in KDs obtained by ITC is generally not considered significant 

because of the limitations of the technique, as it has been reviewed in previous 

studies (405-408). In our case this evaluation is justified because of the large error 

associated with several of the measured KDs, in particular for experiments involving 

CaM-Ca, which are likely to derive from the small ΔH of interaction. A poor signal-

to-noise ratio will inevitably be associated with sizeable experimental errors.  

Several of the KDs for the interaction between CaM-Ca and the different L-

selectin cytosolic tail peptides measured using MST were also slightly different, with 

the largest difference being between wildtype and S367A L-selectin peptides, 

where a fivefold difference was observed (68 µM for wildtype and 13 µM for 

S367A). It is possible that this difference is significant, but due to time constraints 

only two experiments were carried out for each interaction and therefore a proper 

statistical comparison of the KDs could not be undertaken. 
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In these studies, the KDs for the CaM-Ca/L-selectin interaction measured 

using ITC and MST showed around a tenfold difference, 4.0±2.1 µM and 68 μM 

respectively. The exact reason for this difference remains unclear, though it is 

possible that it is linked to the different techniques used to measure the KDs and 

different conditions, including the temperature and buffer in which the interaction 

was measured. It would be useful to compare the KDs measured by ITC and MST in 

the same buffer (with TWEEN) directly, but further experiments are required for 

this. It is worth noting that there are several other examples reported in literature 

where MST and ITC have produced different binding constants for the same 

interaction (409), for example synaptotagmin binding to calcium (410,411) and 

riproximin interacting with asialofetuin (ASF) (412). Another consideration is the 

fact that CaM-Ca is labelled in the MST experiments. It is possible that the presence 

of the dye affects the interaction between L-selectin and CaM. There are several 

lysine residues within the C-lobe of CaM (the predicted binding site of L-selectin), 

such as K94, K115 and K148, with the possibility of the addition of the dye to these 

residues affecting the interaction, leading to a decrease in strength of binding. To 

test if this is the case, ITC experiments could be carried out with CaM with the dye 

covalently attached and comparing the KD measured with that without the dye 

and/or conducting MST using an N-terminal or C-terminal labelled protein (413). 

 

4.4.2 Calcium is not required for CaM interaction with L-selectin 

cytosolic tail in vitro, but may affect the mechanism of interaction  

 ITC measurements conducted in this study show that CaM is capable of 

binding to L-selectin cytosolic tail peptide in the absence and presence of calcium 

with comparable affinity. It has been disputed whether calcium is required for the 

interaction between CaM and L-selectin. Work by Matala et al (2001)(414) showed 

that CaM could be immunoprecipitated with anti-L-selectin antibodies in resting 

neutrophils and that this was abrogated when EDTA was present, suggesting a 

requirement of calcium for the interaction in resting cells. Conversely, Killock et al 

(2009) (3) reported that the L-selectin cytosolic tail peptide conjugated to 

sepharose beads was capable of pulling down purified recombinant CaM even in 
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the presence of 5 mM EGTA, implying CaM interacted with L-selectin in the 

presence and absence of calcium. Deng et al (2011)(216) also investigated this 

interaction using an L-selectin cytosolic tail peptide and modified CaM covalently 

attached to a fluorescent probe. The change in fluorescence was monitored as the 

peptide was titrated in a solution containing CaM, with or without calcium, 

revealing that binding occurred in both cases with similar dissociation constants. 

Furthermore they performed ITC experiments to confirm the fluorescence data, but 

the experiment was only carried out with calcium. Importantly, the dissociation 

constant found by Deng et al (2011) for CaM-Ca/L-selectin interaction was 

consistent with what was found in this chapter. Notably, this report provides for the 

first time a quantitative measure of the dissociation constants with and without 

calcium, indicating that CaM can bind to the L-selectin cytosolic tail peptide with 

similar affinities when calcium bound or calcium free. It is worth noting that the 

possible discrepancy between the study of Matala et al (2001) and the other studies 

may be due to different requirements in vivo and in vitro. All examples where 

binding appears independent of calcium entailed the use of the L-selectin tail 

peptide in vitro, whereas Matala et al (2001) carried out the experiment using 

neutrophils with full length L-selectin. This implies that the requirement of calcium 

for the interaction may be dependent on L-selectin being in its full length form or 

could highlight differences in the interaction depending on the context in which it is 

studied, i.e. in vitro compared to in vivo. Immunoprecipitation requires cellular 

disruption by non-ionic detergents, which produces a cell lysate and ultimately 

destroys the cellular architecture and compartmentalisation. As will be seen in the 

subsequent results chapters of this thesis, assessing L-selectin/CaM interaction in 

vivo may be the best way forward in determining these presumably simple binary 

interactions occurring in complex cellular systems.  

It remains to be defined how similar the binding mechanisms of L-selectin 

for CaM-Ca and ApoCaM are. The thermodynamics data here suggests that the 

binding mechanisms may be somewhat different. It is possible in the complex 

cellular environment that this change may have larger repercussions in vivo, 

whereby calcium influx into the cell, i.e. upon leukocyte activation (185), may lead 
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to CaM dissociation from L-selectin. One hypothesis may envisage that in resting 

leukocytes ApoCaM is bound to the tail of L-selectin, but once the leukocyte is 

activated, the calcium influx will result in CaM dissociation from L-selectin due to 

the conformational rearrangement of CaM upon calcium binding. It is also possible 

that cell activation exposes CaM-Ca to more abundant and higher affinity binding 

sites, which may sequester CaM-Ca away from L-selectin. For example both 

calcineurin and the CaM kinase family are up-regulated upon leukocyte activation 

(396) and could be other potential binding sites for CaM-Ca. Further experiments 

are required to establish the calcium content of CaM at different stages of cell 

activation to pinpoint the importance of calcium in regulating CaM binding to L-

selectin in leukocytes. 

  The CSPs measured from the analysis of the 2D [1H-15N] HSQC NMR 

titrations suggests that CaM, either in the CaM-Ca or ApoCaM form, interacts with 

L-selectin predominantly via the C-lobe, with very few perturbations seen in the N-

lobe. This suggests that the “wrap-around” mechanism of binding commonly seen 

with CaM binding to its target sequences does not occur with L-selectin. It is worth 

noting that the molar ratio of peptide to CaM used in these experiments was 1.2:1. 

This ratio was used as there was very little difference in the CSPs between this ratio 

and a ratio of 1:1, suggesting all binding events had occurred by this ratio. It is 

however, possible that CaM is not saturated in the results shown here. It maybe 

worth carrying out further titrations, increasing the amount of peptide added to 

ensure CaM is saturated. The NMR results observed in this thesis are consistent 

with molecular modelling of the CaM/ERM/L-selectin complex (3). Intriguingly, 

some of the residues of CaM predicted by this model to be involved in hydrogen 

bonding with L-selectin have been found in this study to exhibit some experimental 

CSPs. The majority of these residues are located within the C-lobe of CaM: I100, 

E114, L112, G134 and D131 are all predicted to form hydrogen bonds with L-

selectin and all experience moderate CSPs in the titration of CaM with L-selectin 

(Figure 4.16). Other residues in CaM surrounding those predicted to form hydrogen 

bonds have been found to have large CSPs, in particular N111, G113, K115 and 

L116, consistent with a close proximity to L-selectin. However, residues E127 and 
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E140 which are predicted to form hydrogen bonds with L-selectin showed no CSPs 

in the NMR analysis. There are also several residues with large CSPs that are distant 

from the predicted L-selectin binding site, namely M76, D78 and E82. Though there 

is a correlation between the residues predicted to be in the vicinity of the L-selectin 

binding site and those that show large CSPs, there are also some significant 

differences. This implies that the molecular model produced by Killock et al 

(2009)(3) may serve as a good starting point in the analysis of a structure of the 

complex between CaM and L-selectin, but further NMR experiments are required to 

solve the structure of CaM bound to L-selectin to confirm if the model is correct. 

  

 

 

 

 

 

 

 

 

 

 

 

The model of the tertiary complex of CaM, ERM and L-selectin predicts that 

the binding sites of CaM and ERMs on L-selectin are very close to one another, with 

some overlap predicted (3). It therefore seems unlikely that this seventeen amino 

acid domain would be able to accommodate both lobes of CaM and the FERM 

Figure 4.17: Comparison of predicted residues of CaM involved in Hydrogen bonding with CSP 

of CaM with L-selectin peptide. (A) The sites of the predicted Hydrogen bonds were mapped on 

the CaM structure (shown in blue). When compared to the CSP caused by binding to L-selectin 

peptide (B) it can be seen that several of the residues that have large CSP match those thought 

to hydrogen bond to L-selectin. 
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domain of ERMs. Although not as common as both lobes interacting with the CaM 

binding peptide, there are some examples of one lobe interacting with the target 

protein. Chagot et al (2011)(242) studied the interaction between ApoCaM and the 

IQ motif of human cardiac sodium channel NaV1.5 and found that only the C-lobe 

of CaM interacted with the CaM binding motif of NaV1.5, with several amino acids 

implicated in the binding overlapping with those that show CSPs in the CaM/L-

selectin interaction, including G113, L116 and M145. This so called extended 

conformation of the CaM-peptide complex was also confirmed by x-ray 

crystallography of the complex (415).  

Structural studies with CaM and the HIV-1 matrix protein Gag showed that 

when a short peptide, residues 11-28, was used to study the interaction, only the C-

lobe of CaM was involved in the interaction (416). ITC experiments also revealed 

this interaction had a binding constant similar to CaM-Ca/L-selectin peptide 

interaction (4.4±0.2 µM and 4.0±2.1 µM respectively), though ΔH was larger (-

8760±100 cal/mol versus -416±110 cal/mol) (416). When a longer peptide was 

used, residues 11-46, however, both lobes were found to interact with the peptide. 

The dissociation constant measured with the longer peptide was also much lower, 

showing the interaction was stronger (416). This is particularly interesting because 

when the L-selectin amino acid sequence was analysed for CaM binding domains, 

the sequence that was predicted to be a CaM binding site included part of the 

peptide studied here, but also several residues to the N-terminal side of this 

peptide, which are predicted to be located in the transmembrane domain of L-

selectin (Figure 4.17A). Gifford et al (2012) (396) carried out ITC experiments 

looking at the interaction between CaM and a peptide of L-selectin that contained 

the cytosolic tail plus seven N-terminal residues located in the transmembrane 

domain. They found that the binding of CaM to the longer peptide was stronger 

than the shorter peptide and this increase in affinity was dependent on calcium 

(396). Furthermore, NMR analysis showed that larger CSPs in CaM were seen with 

the longer peptide. Gifford et al (2012)(396) also determined the structure of the 

complex showing that CaM wrapped around the longer peptide, with both domains 

interacting with the peptide in the canonical CaM binding fashion. However, the 
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question remains whether CaM is able to access residues located in the 

transmembrane domain in the cell. Gifford et al (2012)(396) argue that CaM must 

perturb the membrane bilayer structure to gain access to the site or pull L-selectin 

down to remove this section from the plasma membrane. This is an interesting 

point, as it is known that shedding of L-selectin can be inhibited by moving the 

extracellular cleavage site closer to the plasma membrane by amino acid deletion 

mutagenesis (117), thus CaM binding in the cell may be responsible for pulling the 

extracellular cleavage site towards the plasma membrane. When calcium binds to 

CaM it causes structural rearrangements, which expose hydrophobic regions in 

both lobes and these are the sites of binding for most target sequences. It is 

possible that the hydrophobic regions of CaM-Ca can then interact with 

hydrophobic residues found in the transmembrane domain of L-selectin, forming a 

favourable environment for these residues when L-selectin is pulled down. But if L-

selectin is pulled down then presumably extracellular residues must move into the 

transmembrane domain. The extracellular amino acids that are proximal to the 

transmembrane domain consist of several hydrophilic residues (Figure 4.17B), 

which would make the insertion of these into the lipid bilayer energetically 

unfavourable. Clearly, more work is required to unearth this interesting hypothesis.  

Interestingly, several other examples of CaM binding to transmembrane 

proteins, including PECAM-1 (217) and ACE-2 (218) have been reported. CaM has 

been shown to interact with cytoplasmic domain of both these proteins and this 

interaction protects the protein from extracellular cleavage (217,218). 

Bioinformatics analysis of the amino acid sequence of these proteins shows a CaM 

binding motif extending into the transmembrane domain, similar to L-selectin 

(396).  

An attempt to study the interaction in a more biologically significant setting 

was carried out by Deng et al (2013)(417). CaM was fluorescently labelled with a 

donor in one lobe and a non-fluorescent acceptor in the other lobe. If both lobes 

interact with L-selectin they will become closer to one another and quenching of 

the fluorescence probes could be measured as a function of their binding proximity. 

An L-selectin peptide containing the cytosolic and transmembrane domains was 
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inserted into liposomes and the binding of the doubly-labelled CaM was assessed. 

The results showed that no quenching was observed when the L-selectin embedded 

liposomes were mixed with doubly-labelled CaM, suggesting the two lobes 

remained apart (417). This implies that CaM interacts with L-selectin in an extended 

conformation, with only one lobe participating in the interaction when the 

transmembrane domain is present in a lipid bilayer. The discrepancy in the results 

shows the complexities encountered when studying protein interactions and that 

the environment (as well as the appropriate experimental conditions) can have a 

dramatic effect on the outcome. 

  

Figure 4.18: Analysing the predicted CaM binding site of L-selectin. (A) Bioinformatic analysis 

shows the predicted location of the CaM binding site to be located towards the C-terminal end 

of L-selectin. The binding site contains juxtamembrane region as well as residues located in the 

transmembrane domain. Results produced by 

http://calcium.uhnres.utoronto.ca/ctdb/ctdb/sequence.html. (B) The location of the CaM 

binding site (red residues) and the transmembrane domain (blue box) are shown on the amino 

acid sequence of L-selectin, showing the residues within the predicted CaM binding site that are 

located in the transmembrane domain. Hydrophilic amino acids located extracellularly to the 

transmembrane domain are shown (*). 

****** 325 372 
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4.4.3 Phosphorylation of the L-selectin cytosolic tail does not inhibit 

CaM binding in vitro   

 As phosphorylation has been shown to occur upon leukocyte activation, it 

was hypothesised that this was the mechanism by which CaM dissociation from L-

selectin was initiated. Nonetheless, the results in this chapter suggest this is not the 

case, with CaM association observed with both S364phos and S367phos peptides. 

Dr Ivetic has previously shown that phosphorylation, specifically at S364, abrogates 

L-selectin binding to CaM (Figure 4.18, unpublished data). In his experiments, 

decreasing concentrations of L-selectin peptide were mixed with a fixed amount of 

recombinant CaM and a chemical cross-linker. The cross-linked reactions were then 

resolved on SDS-PAGE and subsequently stained with Coomassie blue staining. At 

high concentrations of peptide, a higher molecular weight band could be observed 

above the unbound CaM, representing an electrophoretic mobility shift that 

corresponded to a complex of CaM and L-selectin peptide. When S364phos peptide 

was used the band representing the complex decreased in intensity, showing that 

less complex was formed in the presence of the phosphate group located on S364 

(Figure 4.18). Interestingly, the same experiment using the S367phos peptide 

revealed that the formation of the cross-linked complex was less affected when 

S367 was phosphorylated, though there was still less complex formation than with 

the wildtype peptide.  
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Figure 4.19: DSS cross-linking reveals that phosphorylation of serine-364 mediates CaM/L-

selectin tail complex formation. Recombinant CaM was incubated with increasing 

concentrations of phosphorylated or non-phosphorylated L-selectin tail peptides and a fixed 

concentration of the DSS. Proteins were resolved by SDS PAGE and visualised by Coomassie 

staining. A reduction in the electrophoretic mobility of CaM was observed upon crosslinking 

to the L-selectin tail peptide resulting in an obvious band shift to a higher molecular weight 

(arrow). The amount of protein in the higher molecule weight band was drastically reduced 

by placing a phosphate group on serine-364, but was not significantly changed by serine-367 

phosphorylation. Bands corresponding to monomeric CaM and L-selectin peptide are 

indicated by asterix and arrowheads respectively. Gels are representative of three 

independent experiments. Results taken from Dr Ivetic, and previously presented in Dr 

Killock’s PhD thesis.  

*

*

*

*
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The results produced in this chapter by employing a range of diverse 

biophysical techniques, such as ITC, MST and NMR, are all in agreement that 

phosphorylation of L-selectin on either S364 or S367 had no effect on the binding 

affinity of either CaM-Ca or ApoCaM. The discrepancies observed in the results with 

the S364phos peptide could be due to differences in methodology used. 

 If the Gifford et al (2012)(396) model of binding is correct, then it would be 

unlikely that phosphorylation of the serine residues in the tail would affect CaM 

binding. The structure of the CaM-L-selectin complex Gifford et al (2012)(396) 

produced showed that both serine residues were not comprised within the CaM 

binding site and furthermore phosphorylation was shown to have no effect on the 

[1H-15N] HSQC spectrum of the complex. The [1H-15N] HSQC spectrum of CaM-Ca 

complexed with S364phos peptide studied in this thesis (Figures 4.9 and 4.10) 

showed that although overall the CSPs were similar, some differences were 

observed with the S364phos peptide compared with wildtype L-selectin cytosolic 

tail peptide. This could be compatible with the phosphate group being located 

within the binding site, having a local effect on the chemical shift environment for a 

number of CaM residues. Although unlikely, lacking a validated structural model, it 

is not possible to exclude that the conformation of the CaM/L-selectin complex 

would not be different from wild-type - due to the presence of the phosphate 

group on S364.  

 It has been shown that several CaM-binding sites can be phosphorylated, 

but that this does not necessarily affect the binding of CaM (226). For example, 

calcineurin A can be phosphorylated within its CaM-binding domain, but 

phosphorylation prior to incubation with CaM did not affect the binding of CaM to 

calcineurin A, as revealed by mobility shift assays (418).  On the other hand, CaM 

bound to calcineurin A inhibited the phosphorylation within the CaM binding site to 

occur. The site of phosphorylation of calcineurin A is a serine which is predicted to 

be located towards the C-terminal boundary of the CaM-binding site; therefore it 

may be possible to argue that modification to this peripheral position may not have 

an effect in blocking the interaction with CaM.  Nevertheless, the presence of CaM 

prevents its phosphorylation, counter arguing that this serine is likely to be 
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positioned within the binding region occupied by CaM or close enough to the 

binding region to suffer from steric hindrance. Interestingly, bioinformatics 

predictions of the CaM binding site of L-selectin suggest that S364 is also towards 

the C-terminal boundary of the site of interaction, and, consistent with what was 

found with calcineurin A, its phosphorylation does not block binding of CaM to L-

selectin as demonstrated by the biophysical experiments carried out in this chapter. 

The fact that serine phosphorylation does not affect CaM binding to L-selectin 

according to the biophysical results does not exclude the possibility that in a 

complex cellular environment, with more players involved in an interplay of 

interactions, phosphorylation may cause CaM dissociation.  

 

4.4.4 Alanine mutation of K362 within the cytosolic tail of L-selectin 

may affect the interaction with CaM-Ca 

 The ITC experiments in this chapter could not detect an interaction between 

CaM-Ca and the L-selectin cytosolic tail peptide containing the K362A mutation 

when experiments were carried out at 20 °C. It is possible that, as with the S364A 

mutation, this is due to the small ΔH of interaction, which could not be measured 

by ITC. However, it cannot be excluded that the K362A mutation is capable of 

blocking the interaction between L-selectin and CaM-Ca. The molecular model 

produced by Killock et al (2009)(3) predicted that K362 was involved in forming a 

salt bridge with residue E114 of CaM, therefore postulating that mutating this 

residue could disrupt the molecular interaction. On the other hand if the structural 

model produced by Gifford et al (2012)(396), using the longer L-selectin peptide, is 

correct, residue K362 would be exposed to the solvent upon CaM binding and 

would be therefore available to interact with moesin FERM domain upon the 

formation of the tertiary complex. Immunoprecipitation experiments have 

previously been undertaken using 300.19 pre-B-cells expressing K362A-L-selectin 

(225). The results showed that CaM was co-precipitated in these cells, therefore 

implying CaM was able to bind to L-selectin in the presence of this mutant. Further 

experiments are required to investigate whether K362 is involved in the interaction 

with CaM-Ca, i.e. ITC in different experimental conditions, as well as MST and NMR 



200 
 

experiments that were successful in clarifying the first inconclusive ITC results 

obtained with S364A and S364phos.  

   

4.4.5 ITC analysis of Trp-Cage L-selectin and CaM 

The feasibility of producing in-house recombinant L-selectin peptide as a 

Trp-Cage fusion protein was tested by NMR analysis (Section 3.3.8). The rationale 

for attempting this was to be able to produce 15N-labelled peptides in a cost 

effective manner so NMR experiments can be carried out with the aim of 

elucidating details of L-selectin interaction with CaM. Whether this could be used 

for investigating the interaction between CaM and L-selectin was probed by ITC 

experiments conducted using Trp-Cage-L-selectin, to test the influence of the Trp-

Cage on CaM association. An interaction between CaM and Trp-Cage-L-selectin 

could be measured by ITC, but the thermodynamic parameters turned out to be 

different to those seen with L-selectin peptide alone, raising suspicions that the 

presence of the Trp-Cage may somehow alter the binding. ITC experiments with 

CaM and the Trp-Cage alone will therefore be required as a control experiment to 

ensure that CaM does not interact with the Trp-Cage motif per se. Purification of 

the Trp-Cage motif was attempted once, but was unsuccessful and lack of time 

prevented this being taken further.  

If the Trp-Cage was found to be interfering with CaM interaction, then it 

could theoretically be cleaved away from the peptide prior to ITC and NMR 

experiments. A TEV protease cleavage site is indeed present between the Trp-Cage 

and the L-selectin peptide in the construct used. Such cleavage was attempted 

(Section 3.3.6) but no analysis was carried out on the peptide produced by this 

reaction due to time constraints. 2D [1H-15N] HSQC titration experiments with 15N 

labelled Trp-Cage-L-selectin and CaM would be extremely valuable as they would 

enable the analysis of the CSPs within the L-selectin cytosolic tail and the 

consequent identification of residues involved in establishing interactions with 

CaM. Further investigations will be needed to understand the feasibility of this 

method.  
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4.4.6 Devising a cell-based model of analysing CaM/L-selectin 

interaction 

In conclusion, the experiments outlined in this chapter attempted to model 

a binary interaction between L-selectin and CaM with some interesting results. The 

following two results chapters will focus on the generation of monocyte-like cell 

lines to model the interaction between CaM and L-selectin in a more complex 

cellular setting. As the focus of this thesis is centred on understanding the 

contribution of CaM/L-selectin interaction during inflammation, the analysis is 

addressed specifically on monocytes undergoing transendothelial migration under 

flow conditions.   
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Chapter 5: Generation and characterisation of a 

cellular model to explore the in vivo interaction 

between CaM and L-selectin in monocytes during 

TEM. 

 

5.1 Introduction 

 After exploring in vitro techniques to study the interaction between L-

selectin and its binding partners, the next step was to study the interaction in vivo. 

The role of L-selectin in monocytes has previously been studied. It has been shown 

that L-selectin-dependent adhesion is required for monocyte recruitment, with 

function blocking antibodies against L-selectin inhibiting monocyte recruitment to 

endothelial cells (17,18,419). In vivo, L-selectin has been shown to be responsible 

for monocyte recruitment to the skin (420), the interstitum of the kidney (421), the 

arterial endothelium (159) and the peritoneum (422) following an inflammatory 

stimulus. L-selectin dependent recruitment of monocytes has also been implicated 

in several chronic inflammatory disease states, including rheumatoid arthritis (423) 

and atherosclerosis (292). 

 As the literature clearly highlights an importance for L-selectin in monocyte 

adhesion, the interaction between L-selectin and its binding partners, using the 

THP-1 monocytic cell line as a leukocyte model, could be assessed. These cells were 

transduced with lentivirus expressing L-selectin tagged with GFP and the binding 

partners of L-selectin tagged with RFP. This allowed the study of the interaction by 

using fluorescence-lifetime imaging microscopy (FLIM) to measure the extent of 

fluorescence resonance energy transfer (FRET) between the tags. Increases in FRET 

efficiency would translate directly in to protein-protein interaction (see Section 

5.2). The FRET efficiency in this thesis was measured by exciting the donor 

fluorophore, in this case GFP, and then measuring its fluorescence lifetime, which 

will depend on the proximity of the acceptor fluorophore, i.e. RFP (see Section 5.2). 
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5.2 Experimental Procedure 

Lentivirus transduction uses the properties of human immunodeficiency-1 

(HIV-1) virus to deliver a transgene to cells and insert it into the genome, therefore 

ensuring the transgene will be passed on to the cell progeny. The HIV-1 genome is 

modified so that it contains only the genes necessary for delivery of the transgene 

but is not capable of replicating itself, so there is no risk of infection (see Section 

5.3.1 for details). There are several advantages to using lentiviruses to deliver 

transgenes to target cells over other methods. Lentiviral vectors are very efficient at 

transduction (424) and are also able to transduce non-dividing cells, compared with 

retroviral vectors where the cells must divide within two hours of transduction to 

successfully deliver the transgene (425). Lentiviruses have previously been used to 

successfully modify monocyte cell lines (426), showing there is a precedence for 

using this method. 

 THP-1 cells are a monocytic cell line originating from an acute monocytic 

leukaemia. It has previously been shown that minimal levels of L-selectin was 

observed in this cell line (427); this allows for the transduction of L-selectin-GFP to 

study the role of L-selectin in these cells without endogenous L-selectin 

interference. Previously in the lab THP-1 cells had been transduced with L-selectin 

tagged with GFP (L-selectin-GFP). Cells expressing wildtype L-selectin, the mutants 

S364A, S367A, SSAA and the sheddase resistant mutant ΔM-N were all produced 

with a C-terminal GFP tag. The ΔM-N mutant involves the deletion of eight amino 

acids in the membrane-proximal region, which has been shown to resist shedding 

(98,116,117,119) and is appropriately called a “sheddase-resistant” mutant of L-

selectin (see Section 1.3.4 in Introduction). Analysis of wildtype L-selectin-GFP 

expressing cells showed that L-selectin was correctly located to the microvilli of the 

THP-1 cells and increased the binding of these cells to TNF-activated HUVECs under 

flow (Karolina Rzeniewicz, unpublished data). This means that the L-selectin-GFP 

was functioning correctly and the GFP tag was not affecting its function. Several 

other cell biological characterisations were also performed, such as rolling velocity, 

shedding in response to TNF, PMA and Calyculin A, as well as the sub-cellular 

localisation of L-selectin-GFP to microvilli (as judged by scanning electron 
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microscopy). These analyses all demonstrated that the GFP tag did not interfere 

with L-selectin function. Although noteworthy to mention, the exact experiments 

will not be discussed in this thesis as they formed a major part of another PhD 

student’s thesis in the Ivetic lab (Karolina Rzeniewicz). In this study CaM and moesin 

were cloned as RFP-tagged chimerae and lentivirus particles were produced. These 

were used to transduce cell lines stably expressing L-selectin-GFP. The interaction 

between L-selectin and its binding partners could then be assessed by studying the 

FRET efficiency between the two fluorescent tags. 

FRET is a method used to assess the proximity of two molecules to one 

another. It measures the transfer of energy between two fluorophores, one known 

as the donor and one the acceptor (428). The donor molecule is excited using light 

at the excitation wavelength. The donor will then transfer the energy to the 

acceptor through long range dipole-dipole coupling and the donor will return to its 

ground state (429). For the transfer of energy to occur the emission wavelength of 

the donor must overlap with the excitation wavelength of the acceptor (Figure 

5.1A) (428). The FRET efficiency depends on the distance between the two 

molecules, with FRET occurring between two molecules less than 10 nm apart 

(428). The closer the two molecules are to one another the higher the FRET 

efficiency.  As a result, this method can provide information about the interaction 

of two molecules. In this thesis the FRET efficiency is measured using fluorescence 

lifetime imaging microscopy (FLIM). With FLIM the fluorophore is excited and the 

decay of the fluorophore from the excited state to the resting state is measured 

(430). The fluorescence lifetime is the time the molecules spends in the excited 

state (430) and is dependent on the local environment of the molecule, including 

the presence of an acceptor molecule (431,432).  The presence of the acceptor will 

lead to a decrease in the lifetime of the donor (Figure 5.1B) (432,433). The 

fluorescence lifetime of the donor is calculated at each pixel in the image and is 

displayed as a pseudo-colour image (Figure 5.1C) (431,432,434,435). This allows for 

visualisation of the sub-cellular distribution of the fluorescence lifetime of the 

donor within a single cell and therefore the location of the interaction between the 

donor and acceptor within the cell. 
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 Fluorescent proteins can be tagged to the proteins of interest to study their 

interaction. As previously stated, the fluorescent proteins GFP and RFP are used in 

this thesis as the donor and acceptor fluorophores, respectively. The emission 

wavelength of GFP overlaps the activation wavelength of RFP, meaning they act as 

a FRET pair (Figure 5.1A). 

This chapter details the generation of cell lines used in this study to monitor the 

interaction between L-selectin and its binding partners during TEM. The ability of L-

selectin to bind to CaM was then assessed in more detail, with specific reference to 

residues within the L-selectin tail that were required to support binding of CaM 

during TEM. 
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5.3 Results 

5.3.1 Generation of Lentivirus particles to deliver CaM-RFP to THP-1 

cells expressing L-selectin-GFP    

 CaM was cloned into the vector pHR’SIN-SEW (see Figure 2.2 in Materials 

and Methods), which was a gift from Prof. Adrian Thrasher (Institute of Child 

Health, UCL). The vector contains a spleen focus-forming virus (SFFV) promoter to 

initiate transcription, followed by the sequence encoding for red fluorescent 

protein (RFP) and a Woodchuck Hepatitis Virus (WHP) post transcriptional 

regulatory element (WPRE), which helps to enhance the expression of the gene of 

interest and stabilize the transcript. Two long terminal repeat (LTR) sequences are 

also present at the 5’ and 3’ ends of the cloning site. The 5’ LTR is able to act as a 

promoter for RNA polymerase II and the 3’ LTR terminates transcription. LTRs are 

also responsible for the insertion of the transgene into the host genome. CaM was 

cloned into the vector at the 5’ end of the RFP sequence using the restriction sites 

BamHI and XhoI, so CaM would be produced with RFP at the C-terminus. PCR was 

carried out and the product of the correct size was observed, cleaved from the gel 

and purified (Figure 5.2). 

 

 

 

 

Figure 5.1: Diagram of FRET/FLIM between GFP and RFP. (A) Graph showing the excitation and 

emission spectra of GFP and RFP. The overlap between GFP emission and RFP excitation is shown 

in grey. (B) A diagram showing the FRET between GFP and RFP. GFP is excited and light is emitted. 

If the proteins are close to one another FRET will occur and the fluorescent lifetime of the donor 

emission will decrease (green arrow) and acceptor emission increases (red arrow). This decrease in 

donor emission is measured during FLIM. (C) Depiction of how FLIM is used to produce images. 

The decay time of the donor fluorophore is measured throughout the whole cell and found to be 

different in three areas (T1, T2 and T3). The fluorescence lifetime is calculated for all areas and a 

pseudo-colour range is used to depict the difference in fluorescence lifetime. In reality the 

fluorescence lifetime of every pixel is measured, so images are produced with a range of colours to 

represent the differences between the individual pixels. 

1         2 

 



208 
 

  

 

  

A restriction digestion with the appropriate restriction enzymes was carried 

out on the purified PCR product and the vector as previously described (see Section 

2.6 for experimental procedure). The ligation of the CaM insert into the lentiviral 

vector was undertaken and the vector was then used for transformation of E.coli 

cells. To examine the presence of the CaM insert, E.coli colonies were selected and 

used to inoculate small scale cultures. These were grown overnight and the plasmid 

DNA was isolated using “mini-prep” kits. The plasmid DNA was then digested with 

restriction enzymes for one hour. The products of the digestion were analysed by 

agarose gel electrophoresis. The results showed that plasmid DNA from all the 

colonies tested produced a DNA band of around 0.5 Kb after digestion, which 

corresponded to the molecular weight expected for the CaM insert (Figure 5.3). 

This suggested that all the colonies contained the CaM insert. In parallel, the vector 

was also sent for sequencing to confirm the presence of the insert and ensure no 

spontaneous mutations had occurred. To enable the production of lentiviral 

particles, large quantities of the CaM-RFP lentiviral vector were required. E.coli cells 

expressing the CaM-RFP vector were grown on a large scale and the plasmid DNA 

was isolated using a “maxi-prep” kit.   

 

 

 

 

 

 

Figure 5.2: Visualisation of CaM PCR product following the PCR reaction. PCR was carried out 

to produce a CaM sequence with XhoI and BamHI restriction sites at the 5’ and 3’ termini 

respectively. After the PCR reaction was completed, the reaction solution was analysed by 

agarose gel electrophoresis and visualizing the DNA bands with ethidium bromide. The band 

corresponding to the CaM product was cut from the gel and purified. The product was then 

cleaved with restriction enzymes and used for ligation into the vector.  Lane 1 represents the 

PCR reaction solution and lane 2 is the DNA marker. The arrow shows the CaM PCR product. 
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Using lentivirus to insert transgenes into the genome of target cells is 

efficient and enables stable integration of the transgene; therefore the progeny of 

the transduced cell will also express the gene. This means that the generated cell 

lines can be used multiple times. There is however, a potential risk with using 

lentiviruses. It is possible that replication-competent viruses could be generated. To 

minimize the risk of this, first the viral genes not required for lentivirus production 

are removed (436,437), and second the genes that are required are split into 

multiple vectors, each encoding the different genes required (438). In this report 

three vectors were used, the transfer vector containing the transgene which will be 

inserted into the cell genome, and two helper vectors containing the genes 

required for the assembly of the lentiviral particles. Only the transfer vector has the 

ability to integrate into the genome of the cell, whereas the helper vectors are not 

integrated. This means that the lentivirus produced does not contain the genes 

encoded by the helper vectors and therefore the host cells cannot produce 

functional lentivirus. 

The first helper vector used here was the lentiviral packaging vector Pax2. 

This carries the HIV genes gag, pol, rev and tat which all encode different 

components required for lentiviral production. The gag gene encodes four 

structural proteins that make up the core viral structure (438). The pol gene 

encodes virus specific enzymes that are required for the formation of double-

stranded DNA and integration of the DNA into the host genome (438). rev encodes 

a post translational regulator required for the efficient expression and production 

of the other viral genes and tat encodes a protein which enhances the efficiency of 

transcription of viral mRNA (438). The second helper vector was pMD2.G lentiviral 

Figure 5.3: Restriction digest of CaM-RFP lentiviral vector. Four colonies (labelled 1-4) 

were picked after transformation of E.coli with the lentiviral vector ligated with the CaM 

PCR product and the plasmid DNA was isolated using “mini-prep” kit. The isolated vector 

was cleaved with the restriction enzymes XhoI and BamHI to assess the presence of CaM. The 

digestion products were analysed by agarose gel electrophoresis using a 0.8% agarose gel and 

ethidium bromide for DNA visualisation. The cleaved vector (labelled C) was run next to the 

uncleaved vector (labelled UC) for comparison of the DNA bands produced. The arrow shows 

CaM cleaved from the vector.  
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vector, which encodes the viral envelope protein vesicular stomatitis virus (VSV) G 

protein. The two helper vectors were mixed with the transfer vector containing 

CaM-RFP and were used to transduce HEK cells for the production of the lentivirus. 

After 48 and 72 hours transduction the assembled lentiviral particles were collected 

from the tissue culture supernatant and concentrated by ultracentrifugation. 

To optimize the transduction of the target cells, the titre, the number of 

infectious units per millilitre (i.u./ml), was calculated. To calculate the titre a serial 

dilution of the concentrated lentiviral particles was carried out and added to HEK 

cells. Fluorescence-activated cell sorting (FACS) was used to assess the percentage 

of HEK cells expressing CaM-RFP. The first step in calculating the titre was to plot 

the percentage of RFP positive cells against the dilution of lentiviral particles (Figure 

5.4). The dilutions corresponding to between 1-20% transduction efficiency were 

then used for the titration calculation. These dilutions were used as they fall within 

the linear range of transduction and using dilutions in this range means multiple 

lentiviral integrations into the genome are avoided in the calculation. The titre for 

each of the dilutions within the linear range was calculated using the equation: 

DV

PN
T   , where T is the titre, P is the percentage of transduced cells, N is the 

number of cells on the day of transduction, D is the dilution of the lentivirus stock 

added to the cells and V is the volume of lentivirus added to the cells. The final titre 

was found by calculating the average of the titres of the dilutions within the linear 

range (Table 5.1). For CaM-RFP this was found to be 4.31x109 i.u./ml.  

 

 

 

 

 

 



211 
 

0

20

40

60

80

100

0 10‒6 10‒5 10‒4 10‒3 10‒2 10‒1

R
FP

 p
o

si
ti

ve
 c

e
lls

 (
%

)

Dilution

(i) Lentiviral Titration

0         10-6 10-5           10-4          10-3         10-2          10-1

y = 3.663x - 3.045
R² = 0.8518

0

5

10

15

10‒6 10‒5 10‒4 10‒3R
FP

 p
o

si
ti

ve
 c

e
lls

 (
%

)

Dilution

(ii) Linear Range

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dilution % RFP  Titre 

10-6 2.23 14.87x109 

10-5 2.84 1.89x109  
10-4 6.04 0.41x109 
10-3 13.44 0.089x109 
  average titre 4.31x109 i.u./ml 

Figure 5.4: Transduction of HEK cells with lentivirus carrying the lentiviral vector for CaM-RFP. HEK 

cells were transduced with CaM-RFP lentivirus using a serial dilution (0, 10-6, 10-5, 10-4, 10-3, 10-2, 10-1) 

of the concentrated lentiviral particles. (i) The percentage of RFP positive cells was assessed using 

FACS and plotted against the lentiviral dilution. (ii) Low dilutions, in the linear range were used to 

calculate the titre to avoid multiple integrations. 

Table 5.1: Calculation of viral titre of CaM-RFP from dilutions within the linear range of 

transduction. The titre for dilutions with a transduction efficiency of between 1-20 % was 

calculated using the equation: 
DV

PN
T  . The final titre was found by calculating the mean of 

the titres for the dilutions within the linear range.  
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To ensure that similar levels of protein expression were observed between 

the different cell lines infected with the CaM-RFP lentivirus, the multiplicity of 

infection (MOI) was used. The MOI is a measure of the infectious units (lentiviral 

particles) delivered to each target cell. This was calculated using the equation:

N

VT
MOI  , where V is the volume of lentivirus added, T is the titre of the lentivirus 

and N is the number of cells to be transduced. Once the MOI of choice has been 

decided upon, the equation can be rearranged to find the appropriate volume of 

lentivirus required for that particular MOI. As CaM-RFP was being transduced into 

THP-1 cells to act the FRET acceptor for GFP tagged to L-selectin, it was decided to 

use an MOI of 20 for the transduction with CaM-RFP, as it was desirable for the 

expression of the acceptor to be in excess of the donor to cause saturation of the 

donor. This meant that for the transduction of 1 x 106 THP-1 cells, the volume of 

CaM-RFP lentivirus required was 4.6 µl.  

The required amount of lentivirus particles was added to THP-1 cells stably 

expressing L-selectin-GFP. Several L-selectin mutants tagged with GFP were also 

transduced with CaM-RFP. The serine to alanine mutants S364A, S367A and SSAA, 

where both serines are mutated to alanines, were chosen to assess the effect these 

mutations have on CaM binding to L-selectin. By mutating the serine residues to 

alanine, phosphorylation can no longer occur at these sites in the cytosolic tail of L-

selectin. As a result these mutants enable the assessment of the role of 

phosphorylation in regulating CaM binding. The sheddase resistant mutant ΔM-N 

was also transduced with CaM-RFP to assess the effect of blocking shedding on 

CaM/L-selectin interaction. The MOI of L-selectin-GFP in these cells was 5; meaning 

CaM-RFP expression should be greater than L-selectin-GFP and saturation of GFP 

should be achieved. After transduction, the cells were maintained in cell culture 

until several million were present. At this point samples of each cell line were taken 

for the analysis of fluorescent protein expression by fluorescence microscopy 

(Figure 5.5). Images were taken to assess the number of cells expressing both GFP 

and RFP. The images showed that all the cells were expressing L-selectin-GFP. This 

was to be expected as the cells had previously been sorted to select GFP positive 
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cells only. The percentage of cells also expressing CaM-RFP was calculated from 

three different fields of view for each of the cell lines. The results showed that 

transduction varied between the cell lines, with SSAA having the highest level of 

transduction (45%) and S364A having the lowest level (14.3%, Table 5.2). 

For future experiments with these cells it was important that all the cell 

lines had similar levels of expression of the CaM-RFP transgene to enable fair 

comparison between them. For this reason the cells were sorted to produce 

populations with uniform expression of CaM-RFP. If unsorted cells were used for 

future experiments the difference in the number of cells and the expression levels 

of CaM-RFP could lead to misinterpretation of results.  

The cell lines were taken to a core-funded FACs sorting facility for sorting 

into uniform-expressing populations. The cells were first gated for GFP expression 

and then within that population cells which expressed similar or higher levels of RFP 

were selected. The wildtype L-selectin-GFP/CaM-RFP cells were sorted first and the 

same gating was then used for the other cell lines to ensure the expression levels 

were similar between them all. Images of the sorted cells are shown in Figure 5.6. 

Once sorting was completed the cell lines were maintained in cell culture. 
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Wildtype 

SSAA 

S367A 

S364A 

Figure 5.5: Fluorescence images of THP-1 cell lines transduced with L-selectin-GFP and CaM-RFP 

prior to cell sorting. Cells expressing wildtype L-selectin-GFP (A) and the mutants ΔM-N- (B), S364A-

(C), S367A- (D) and SSAA-L-selectin-GFP (E) were transduced with lentivirus carrying the lentiviral 

vector for CaM-RFP and maintained in cell culture until several million cells were present. Images 

were taken of the THP-1 cell lines with the GFP and RFP channel and the images were subsequently 

merged. Images were taken using an Olympus IX81 time-lapse inverted fluorescence microscope 

attached to a Hamamatsu C10600 ORCA-R2 video camera and analysed using Volocity imaging 

software. All images were acquired using a 10x objective. 
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 RFP positive cells (%) 

Wildtype 27.5 

DM-N 39.5 

S364A 14.3 

S367A 38 

SSAA 45.5 

Table 5.2: Percentage of RFP positive THP-1 cells after transduction with lentiviral particles 

carrying the lentiviral vector for CaM-RFP. The percentage of RFP positive cells were 

calculated for the L-selectin-GFP THP-1 cell lines after CaM-RFP lentiviral transduction by 

analysis of three fields of view for each cell line and finding the mean of the three. 
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Figure 5.6: Fluorescence images of THP-1 cell lines transduced with L-selectin-GFP and CaM-RFP 

after cell sorting. Cells expressing wildtype L-selectin-GFP and the different L-selectin mutants were 

sorted using FACs to produce a population of cell expressing L-selectin-GFP and CaM-RFP. After 

sorting images were taken of the THP-1 cell lines with the GFP and RFP channel and the images were 

subsequently merged. Images were taken using an Olympus IX81 time-lapse inverted fluorescence 

microscope attached to a Hamamatsu C10600 ORCA-R2 video camera and analysed using Volocity 

imaging software. All images were acquired using a 10x objective. 

 



217 
 

y = 2.773x + 2.475
R² = 0.9963

0

5

10

15

10^-5 10^-4 10^-3 10^-2

R
FP

 p
o

si
tv

e
 c

e
lls

 (
%

)

Dilution

(ii) Linear Range

0

5

10

15

20

25

30

35

0 10^-5 10^-4 10^-3 10^-2 10^-1

R
FP

 p
o

si
ti

ve
 c

e
lls

 (
%

)

Dilution

(i) Lentiviral Titration

5.3.2 Generation of Lentivirus carrying the lentiviral vector 

encoding Moesin-RFP for the Transduction of THP-1 cell lines 

expressing L-selectin-GFP    

 Moesin was cloned into the lentiviral vector pHR’SIN-SEW using the same 

method described above (see Section 5.3.1) except the restriction sites XhoI and 

KpnI were used for the insertion of the moesin sequence into the lentiviral vector. 

Once the correct sequence of the lentivirus was confirmed, lentiviral particles were 

formed using HEK cells (the same method as in Section 5.3.1 was used). A titration 

with the lentivirus was carried out and the percentage of RFP positive cells was 

calculated by FACs (Figure 5.7). From this information the titre was calculated and 

found to be 1.19x109 i.u./ml (Table 5.3). As with CaM-RFP, the expression levels of 

moesin-RFP required must be in excess of L-selectin-GFP to cause saturation of the 

GFP, so an MOI of 20 was used to transduce the L-selectin-GFP cell lines. This meant 

that a volume of 17 µl was required for the transduction of 1 x 106 cells. 
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The moesin-RFP lentivirus was used to transduce the THP-1 cell lines stably 

expressing L-selectin-GFP, either wildtype or the mutations ΔM-N, S364A, S367A 

and SSAA. The cell lines were maintained in cell culture after transduction until 

several million cells were present, at which point samples were taken from each cell 

line for analysis of the transduction efficiency using fluorescence microscopy 

(Figure 5.8A-E). The percentage of RFP positive cells was calculated for each cell line 

using three fields of view. The results for all the cell lines showed that the 

percentage of cells transduced with the moesin-RFP lentiviral vector was between 

10 and 5% (Table 5.4). The images also showed that the RFP signal was strongest at 

one region within the THP-1 cell, close to the plasma membrane (Figure 5.8F) and 

this was observed in all the different cell lines. As the cells were in suspension it 

was not possible to see if this region was located at the leading edge or the uropod. 

It was also possible that this high intensity region represents an accumulation of 

moesin-RFP within the Golgi apparatus or the endoplasmic reticulum. Due to the 

low magnification used to acquire the images it was not possible to discern the 

precise sub-cellular location of the moesin-RFP signal.     

dilution RFP positive (%) titre 

10-5 5.44 4.08x109 

10-4 7.71 0.58x109 

10-3 10.84 0.081x109 

10-2 13.64 0.011x109 

 Average titre 1.19x109 i.u./ml 

Figure 5.7: Transduction of HEK cells with lentivirus carrying the lentiviral vector for moesin-RFP. 

HEK cells were transduced with moesin-RFP lentivirus using a serial dilution (0, 10-5, 10-4, 10-3, 10-2, 

10-1) of the concentrated lentiviral particles. (i) The percentage of RFP positive cells was assessed 

using FACS and plotted against the lentiviral dilution. (ii) Dilutions in the linear range of 

transduction were used to calculate the lentiviral titre to avoid multiple integrations. 

Table 5.3: Calculation of viral titre of moesin-RFP from dilutions within the linear range of 

transduction. Dilutions with a transduction of between 1-20 % were taken and the titre for 

each was calculated using the equation:
DV

PN
T  . The final titre was found by calculating the 

mean of the titres for all the lentivirus dilutions within the linear range.  
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 As with the THP-1 cell lines transduced with CaM-RFP, the cell lines 

transduced with moesin-RFP were taken to the core funded FACs sorting facility for 

the selection of cells expressing both L-selectin-GFP and moesin-RFP. The cells were 

first gated for cells expressing GFP and then cells within that population that 

expressed similar or higher levels of RFP were selected. The cells remaining after 

sorting were collected and maintained in cell culture.  
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Figure 5.8: Fluorescence images of THP-1 cell lines expressing L-selectin-GFP and transduced 

with moesin-RFP acquired prior to sorting. Images of the THP-1 cell lines expressing wildtype 

(A), ΔM-N- (B), S364A- (C), S367A- (D) or SSAA-L-selectin-GFP and transduced with lentiviral 

particles containing moesin-RFP. Images are merged from acquiring individual stills from the 

GFP and RFP channels. (F) Digital zoom of THP-1 cells expressing moesin-RFP. The arrow 

shows the sub-cellular location of a high-intensity signal corresponding to moesin-RFP. Images 

were taken using an Olympus IX81 time-lapse inverted fluorescence microscope attached to a 

Hamamatsu C10600 ORCA-R2 video camera and analysed using Volocity imaging software. All 

images were taken at 10x objective.  
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 RFP positive cells (%) 

Wildtype 5.5 

DM-N 7.5 

S364A 5 

S367A 6.4 

SSAA 10 

 

 

 

 

5.3.3 Cloning of Lentiviral Vector Expressing Ezrin-RFP 

 The cloning of ezrin into the pHR’SIN-SEW vector was problematic due to 

the fact that all the restriction sites in the vector, except XhoI, were also found in 

the sequence of ezrin, meaning they could not be used for conventional cloning as 

they would also cleave the ezrin sequence. For this reason ezrin was cloned with an 

XhoI site at the 3’ end and a SalI site at the 5’ site. The nucleotide base overhang 

produced by digestion with SalI is complimentary to that produced by digestion 

with XhoI, meaning that the two overhangs will interact (Figure 5.8). This meant 

that the vector was only cut with XhoI prior to ligation of the vector and ezrin 

insert. One disadvantage of using this method is that the ezrin insert can ligate in 

both the forward and reverse directions (Figure 5.8). After ligation of the cleaved 

insert and vector, E.coli cells were transformed with the ligation mixture. Colonies 

were then picked and used to inoculate small scale cultures, and the plasmid DNA 

was purified using the ‘mini-prep’ kit. Sequencing was used to check the orientation 

of ezrin. Several different colonies were tested but were found to either not contain 

ezrin or contain ezrin in the wrong orientation. 

  

Table 5.4: Percentage of RFP positive THP-1 cells after transduction with lentivirus carrying 

the lentiviral vector for moesin-RFP. The percentage of RFP positive cells were calculated for 

the L-selectin-GFP THP-1 cell lines after moesin-RFP lentiviral transduction by analysing three 

fields of view for each cell line and calculating the mean. 
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Restriction 

Digest 

Ligation 

Forward Reverse 

Figure 5.9: Cloning of Ezrin into pHR’SIN-SEW vector using one cloning site.  Ezrin was 

cloned with XhoI restriction site at the 3’ end and SalI restriction site at the 5’ end. Ezrin 

was then digested with both XhoI and SalI, which produces the same overhang sequence, 

whilst the lentiviral was digested with XhoI only. When ligation was carried out the ezrin 

insert could either ligate in the forward or reverse direction. 
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As using one restriction site was not successful, cloning using a partial digest 

was attempted. The restriction enzyme KpnI cleaves ezrin in the middle of the DNA 

sequence. Ezrin was cloned with an XhoI site at the 3’ end of the sequence and a 

KpnI sequence at the 5’ end. The PCR product was then fully digested with XhoI 

followed by the partial digest with KpnI (see Section 2.6.1 for experimental details). 

The digest mixture was purified and run on an agarose gel. The band corresponding 

to KpnI cleaving at the 5’ end only was cut from the gel and purified to use for the 

ligation with the vector. Sequencing results of vectors created using this method 

found that although ezrin was present, the first few amino acids of the sequence 

were missing. This could be due to a mistake with the PCR reaction or the protein 

being cleaved at a location at the 3’ end. This requires repeating to produce the 

lentiviral vector for ezrin. 

 

5.3.4 Production of THP-1 cells expressing L-selectin CaM-binding 

Mutants 

 It has previously been shown that mutating residue L358 to glutamate in the 

cytosolic tail of L-selectin inhibits CaM binding (215). By mutating this residue the 

hydrophobic face of the cytosolic tail of L-selectin is disrupted. Kahn et al 

(1998)(215) showed that when this mutation was present CaM could no longer co-

precipitate with  immunoprecipitates of L-selectin (215). For this reason, it was 

decided to use this mutation in THP-1 cells transduced with CaM-RFP to see if the 

interaction was blocked in this system. 

 The QuickChange site-directed mutagenesis protocol was used to introduce 

the mutation into wildtype L-selectin-GFP and the sheddase resistant mutant ΔM-

N-L-selectin-GFP. With this method primers are designed to contain the desired 

mutation with complimentary sequences present either side. The primers must 

bind to the same site on opposite strands of the vector. During the thermal cycling 

the primers bound to their complimentary sequences on the parental DNA and are 

extended by DNA polymerase. Once the thermal cycling reaction is completed the 

parental DNA is digested using DpnI endonuclease. This enzyme only cleaves 
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methylated and hemimethylated DNA. As the parental DNA has been isolated from 

E. coli cells, it will be dam methylated and so is digested by DpnI. The newly formed 

DNA containing the mutation is not methylated so remains un-cleaved. The DNA 

containing the mutation is then used to transform E. coli and the DNA can be 

isolated. 

 The lentiviral vector pHR’SIN-SEW containing either wildtype L-selectin-GFP 

or ΔM-N L-selectin-GFP were used for the mutagenesis of residue 358. Plasmid DNA 

was isolated from bacterial colonies observed after transformation with the DpnI 

digested PCR reaction and sequencing was carried out to verify that the appropriate 

mutation was successfully introduced. These vectors were then used to produce 

lentivirus as described previously and a titration was carried out with the lentiviral 

particles produced (see Section 5.3.1).  

The titre for lentiviral particles containing L358E-L-selectin-GFP was found to 

be 5.04x109 i.u./ml (Figure 5.9, Table 5.5). ATTC THP-1 cells were transduced with 

MOI5 and MOI20 to represent a low and high MOI. The cells were allowed to 

propagate for two weeks, until several million cells were present. The expression of 

L358E-L-selectin-GFP was assessed using fluorescence microscopy and images were 

taken (Figure 5.10). The percentage of GFP positive cells was calculated and the 

results are summarized in Table 5.6. The results showed that the number of GFP 

positive cells was 5.3% for MOI5 and 13.7% for MOI20. Due to the low percentage 

of GFP positive cells produced with MOI5, it was decided to use the MOI20 cells for 

future experiments. CaM-RFP and moesin-RFP lentiviruses were added to a sample 

of these cells using the MOI stated above to produce L358E-L-selectin-GFP/CaM-

RFP and L358E-L-selectin-GFP/moesin-RFP cell lines. These cell lines were 

maintained in cell culture ready for cell sorting to select the cells expressing both 

L358E-L-selectin-GFP and CaM-RFP/moesin-RFP. 
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dilution GFP positive (%) Titre 

10-6 1.75 17.50x109 

10-5 1.89 1.89x109 

10-4 6.54 0.65x109 

10-3 11.61 0.12x109 

 Average titre 5.04x109i.u/ml 

Figure 5.10: Transduction of HEK cells with lentivirus carrying the lentiviral vector for L358E-L-

selectin-GFP. HEK cells were transduced with L358E-L-selectin-GFP lentivirus using a serial 

dilution (0, 10-6, 10-5, 10-4, 10-3, 10-2, 10-1) of the concentrated lentiviral particles. (i) The 

percentage of GFP positive cells was assessed using FACS and plotted against the lentiviral 

dilution. (ii) Those dilutions found in the linear range of transduction were used to calculate the 

lentiviral titre to avoid multiple integrations. 

Table 5.5: Calculation of viral titre of L-selectin-L358E-GFP from dilutions within the 

linear range of transduction. Lentiviral dilutions with a transduction efficiency of 

between 1-20 % were taken and the titre for each dilution was calculated using the 

equation:
DV

PN
T  . The final titre was found by calculating the mean of the titres for the 

dilutions within the linear range.  

     0           10
-6

        10
-5             

10
-4             

10
-3           

10
-2               

10
-1
 

10
-6

                   10
-5                           

10
-4                            

10
-3          



226 
 

 

 

   

L-selectin L358E-GFP GFP positive (%) 

MOI5 5.3 

MOI20 13.7 

L358E 

MOI5 

L358E 

MOI20 

Phase GFP 

Figure 5.11: Images of THP-1 cells transduced with L358E-L-selectin-GFP. ATTC THP-1 cells 

were transduced with lentivirus encoding L358E-L-selectin-GFP with MOI5 (A and B) or 

MOI20 (C and D). Images were taken with both the phase and GFP channels using an 

Olympus IX81 time-lapse inverted fluorescence microscope attached to a Hamamatsu 

C10600 ORCA-R2 video camera, with analysis undertaken using Volocity imaging software. All 

images were taken at 10x objective. 

Table 5.6: Percentage of GFP positive THP-1 cells after transduction with lentivirus carrying 

the lentiviral vector for L358E-L-selectin-GFP. The percentage of GFP positive cells was 

calculated for the THP-1 cell lines after L358E-L-selectin-GFP lentiviral transduction by 

calculating the mean of three fields of view. 

D C 

B A 
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The titre for L358E-ΔM-N-L-selectin-GFP was found to be 0.155x109 i.u./ml 

(Figure 5.11, Table 5.7). ATTC THP-1 cells were transduced with MOI5 and MOI20. 

The cells were left to propagate for two weeks, at which point the transduction 

efficiency was assessed using fluorescence microscopy. Images were taken (Figure 

5.12) and the percentage of GFP positive cells was calculated for cells transduced 

with each MOI. The results showed that for MOI5 59.7% of the cells were GFP 

positive and for MOI20 the percentage of GFP positive cells was 88.5% (Table 5.8). 

Due to the high levels of expression it was decided that cells transduced with MOI5 

would be used for future experiments. CaM-RFP and moesin-RFP lentiviruses were 

added to a sample of these cells using an MOI of 20 to produce L358E-ΔM-N-L-

selectin-GFP/CaM-RFP and L358E-ΔM-N-L-selectin-GFP/moesin-RFP cell lines. These 

cell lines were maintained in cell culture in preparation of cell sorting, so the cells 

expressing both GFP and RFP could be selected.    

 

   

Figure 5.12: transduction of HEK cells with lentivirus carrying the lentiviral vector for L358E-

ΔM-N-L-selectin-GFP. HEK cells were transduced with L358E-ΔM-N-L-selectin-GFP lentivirus 

using a serial dilution (0, 10-6, 10-5, 10-4, 10-3, 10-2, 10-1) of the concentrated lentiviral particles. (i) 

The percentage of GFP positive cells was assessed using FACS and plotted against the lentiviral 

dilution. (ii) In order to avoid multiple integrations, lentiviral dilutions in the linear range were 

used to calculate the lentiviral titre. 
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dilution GFP positive (%) Titre 

10-5 1.21 1.21x109 
10-4 2.15 0.22x109 
10-3 9.53 0.095x109 
 average titre 0.51x109 u/ml  

Phase GFP 

Figure 5.13: Images of THP-1 cells transduced with L358E-ΔM-N-L-selectin-GFP. ATTC THP-1 

cells were transduced with lentivirus expressing L358E-ΔM-N-L-selectin-GFP with MOI5 (A and 

B) or MOI20 (C and D). Images were taken using an Olympus IX81 time-lapse inverted 

fluorescence microscope attached to a Hamamatsu C10600 ORCA-R2 video camera and 

analysed using Volocity imaging software. All images were taken at 10x objective with both the 

phase and GFP channels. 

Table 5.7: Calculation of viral titre of L358E-ΔM-N-L-selectin-GFP from dilutions within the 

linear range of transduction. Dilutions of the lentivirus with a transduction efficiency of 

between 1-20 % were taken and the titre for each dilution was calculated using the 

equation:
DV

PN
T  . The final titre was found by calculating the mean of the titres for the 

dilutions within the linear range.  
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5.3.5 Analysis of the Protein Expression Levels of CaM-RFP in THP-1 

cell lines 

 To assess the levels of CaM-RFP expressed in the different THP-1 cell lines, 

cell lysates were produced and analysed by Western blot, using an anti-CaM 

antibody. As a negative control THP-1 cells transduced with GFP protein were used, 

as this cell line would not express CaM-RFP. The results showed that a band with 

molecular weight of around 50 kDa was observed in all the cell lines except THP-1 

cells expressing GFP alone (Figure 5.13A, blue arrow). This molecular weight was 

consistent with that expected for CaM tagged with RFP (18 KDa for CaM and 27 KDa 

for RFP). The protein expression levels of CaM-RFP between the different cell lines 

was analysed using endogenous CaM as a loading control and comparing the CaM-

RFP expression levels of all the L-selectin mutant cell lines to wildtype L-selectin-

GFP. It was found that the expression levels were very similar, with SSAA having 

slightly higher levels compared to the others (Figure 5.13B). As all the cell lines 

expressed CaM-RFP at similar levels, comparison of the interaction between L-

selectin-GFP and CaM-RFP across the cell lines could be carried out without the 

concern of misinterpretation of results due to different protein expression levels.  

The anti-CaM antibody also recognised the endogenous CaM expressed in 

the THP-1 cell lines. A band with a molecular weight between 20 and 15 kDa was 

present in all the cell lines, corresponding to endogenous CaM, and the protein 

expression levels of endogenous CaM was similar between the cell lines (Figure 

ΔM-N-L358E-L-selectin-GFP GFP positive (%) 

MOI5 59.7 

MOI20 88.5 

Table 5.8: Percentage of GFP positive THP-1 cells after transduction with lentivirus carrying 

the lentiviral vector for L358E-ΔM-N-L-selectin-GFP. The percentage of GFP positive cells 

were calculated for the THP-1 cell lines after L358E-ΔM-N-L-selectin-GFP lentiviral 

transduction as the mean of three fields of view for each cell line. 
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5.13A, back arrow). When the levels of endogenous CaM were compared to CaM-

RFP it was clear that endogenous CaM was expressed at a higher level than CaM-

RFP. Densitometric analysis was performed to analyse the extent of the difference 

in the protein expression levels between endogenous CaM and CaM-RFP. Analysis 

revealed that the expression levels of CaM-RFP were around a quarter of that of 

endogenous CaM for all the cell lines (Figure 5.13C). 
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5.3.6 Monitoring the biochemical interaction of L-selectin-GFP with 

endogenous CaM and CaM-RFP  

 To study the interaction between L-selectin and CaM, a GFP-Trap assay was 

performed. This entails using a GFP-binding protein coupled to agarose beads to 

immunoprecipitate GFP (see Section 2.23 in Materials and Methods). When THP-1 

cell lysate was added to the GFP-Trap beads, L-selectin would be 

immunoprecipitated, as L-selectin was tagged with GFP. Any proteins that were 

interacting with L-selectin will co-precipitate, allowing for the identification of 

binding partners of L-selectin. 

 GFP-Trap assays were carried out on cell lysates derived from THP-1 cells 

expressing wildtype and mutant L-selectin-GFP to determine if any of the mutations 

had an effect on CaM binding. THP-1 cells expressing GFP were used as a negative 

control, to ensure that any protein co-precipitated with L-selectin-GFP is due to the 

interaction with L-selectin and not due to the presence of the GFP tag. Following 

incubation with the GFP-Trap beads the immunoprecipitated proteins were 

analysed by Western blot, using anti-CaM antibody to visualise CaM bound to L-

selectin. Anti-GFP antibody was also used to assess the quantity of L-selectin 

immunoprecipitated in the different cell lines, so comparison of CaM binding to L-

selectin between the cell lines could be carried out.  

Initial experiments showed that endogenous CaM was co-precipitated in all 

the cell lines (Figure 3.14A, black arrow), with SSAA and ΔM-N showing the greatest 

amount of co-precipitation (Figure 3.14A, lanes 5 and 6 respectively). CaM-RFP 

could also be observed as a faint band in the S364A, SSAA and ΔM-N cell lines, but 

Figure 5.14: Protein expression levels of CaM in the different THP-1 cell lines. (A) Cell lysates 

for the THP-1 cell lines expressing L-selectin-GFP and CaM-RFP were analysed to assess the levels 

of CaM by western blot using an anti-CaM antibody (The blue arrow shows CaM-RFP and the 

black arrow shows endogenous CaM). (B) The protein expression levels of CaM-RFP were 

compared between the cell lines by densitometric analysis, using endogenous CaM as a loading 

control and comparing the mutants to wildtype L-selectin. (C) Densitometric analysis was used to 

compare the difference between CaM-RFP and endogenous CaM in the different cell lines. 

Densitometric analysis was carried out using ImageJ software.  
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was not visible in wildtype or S367A cell lines (Figure 3.14A blue arrow). However, a 

band corresponding to the molecular weight of endogenous CaM was visible in the 

immunoprecipitation of the THP-1 cells expressing GFP (Figure 3.14A, Lane 1). This 

suggested that there was nonspecific binding occurring between CaM and the GFP-

Trap beads. In an attempt to remove any nonspecific interactions, 1% ovalbumin 

was added to the lysis and wash buffers, which has been previously used in 

immunoprecipitation experiments to limit any nonspecific interactions with L-

selectin (3). When the experiment was repeated in these conditions, CaM was no 

longer observed in the lane corresponding to THP-1 cells expressing GFP (Figure 

3.14C, Lane 1). Endogenous CaM was still present in the pull-down of all the cell 

lines (Figure 3.14C, black arrow), however, under these conditions wildtype L-

selectin bound best to CaM (Figure 3.14C, Lane 2), with all the mutants co-

precipitating much less CaM, suggesting that mutating the tail of L-selectin affected 

its ability to effectively co-precipitate CaM. The extent of this difference was 

assessed using densitometric analysis, using the level of full length L-selectin-GFP 

for each cell line as the loading control (Figure 3.14D) and comparing all the mutant 

cell lines to the results observed with wildtype L-selectin-GFP. The results clearly 

showed that wildtype L-selectin-GFP immunoprecipated the greatest amount of 

CaM, with the mutants having similar levels of CaM (Figure 3.14E). It is worth noting 

that, due to time constraints this experiment was only undertaken once and 

therefore further repeats are required in order to carry out statistical analysis of 

this result. CaM-RFP was no longer visible in the pull-down from the lysate of any 

cell line. This was likely due to the fact that the levels of CaM-RFP were much lower 

than endogenous CaM, so was less likely to be bound to L-selectin, meaning less 

would be present in the immunoprecipitate.  
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Figure 5.15: GFP-Trap assay for the analysis of CaM interaction with L-selectin in THP-1 cell 

lysates. GFP-Trap assay was carried out to assess the ability of CaM to bind to L-selectin-GFP in 

either wildtype cells or L-selectin mutants. For each experiment 2x107 THP-1 cells were collected 

by centrifugation and the cells were lysed. The lysate was then incubated with pre-equilibrated 

GFP-Trap beads and any proteins interacting with the beads were precipitated by centrifugation. 

The precipitated proteins were analysed by Western blot using anti-CaM and anti-GFP antibodies. 

Initial pull-down was carried out without ovalbumin and levels of CaM (A) and GFP (B) were 

assessed. 1% ovalbumin was then added to the lysis and wash buffer to block nonspecific 

interactions and Western blots for CaM (C) and GFP (D) were carried out. (E) The amount of  
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5.3.7 FRET/FLIM analysis of CaM and L-selectin in THP-1 cells plated 

on poly-L-lysine 

 As explained in Section 5.2, GFP and RFP can act as a donor and acceptor 

pair for FRET. As the THP-1 cell lines produced here express L-selectin-GFP and 

CaM-RFP, FRET/FLIM analysis was carried out to gain an insight into the interaction 

between these two proteins in intact cells. To study the interaction in resting cells, 

without any activation, cells were taken from suspension and plated onto poly-L-

lysine (PLL)-coated glass coverslips and fixed in 4 % paraformaldehyde (PFA) prior to 

FRET/FLIM analysis. Analysis showed that the FRET efficiency between wildtype L-

selectin-GFP and CaM-RFP was very low (Figure 5.15A and F), showing there was no 

interaction between the two proteins. The same analysis was carried out with cells 

expressing L-selectin-ΔM-N-GFP and CaM-RFP and the results showed the FRET 

efficiency was similar to that observed with wildtype L-selectin-GFP, suggesting as 

with wildtype L-selectin, there was no interaction between ΔM-N-L-selectin-GFP 

and CaM-RFP in resting cells (Figure 5.15B and F).  

 The interaction between L-selectin and CaM was also assessed with the 

serine to alanine mutants in resting cells. The results showed that the FRET 

efficiency in cells expressing S367A-L-selectin-GFP was similar to that in cells 

expressing wildtype L-selectin-GFP (Figure 3.15D and F). This suggests that there 

was little or no interaction between S367A-L-selectin-GFP and CaM-RFP, as with the 

wildtype cells. However, the FRET efficiency for S364A-L-selectin-GFP/CaM-RFP 

(Figure 3.15C) and SSAA-L-selectin-GFP/CaM-RFP (Figure 3.15E) was significantly 

higher than that observed with wildtype L-selectin-GFP, showing an interaction 

between L-selectin-GFP and CaM-RFP in these cell lines, with the greatest amount 

of interaction occurring with S364A (Figure 3.15F). This implies that mutating S364 

to alanine enhances the interaction of CaM with L-selectin in resting cells. As this 

mutation blocks the phosphorylation of this residue it is possible that 

phosphorylation of S364 is involved in abrogating the binding of CaM to L-selectin 

under resting conditions.     

endogenous CaM immunoprecipitated was analysed, using full length L-selectin-GFP to adjust 

the density of CaM, with the levels compared to wildtype L-selectin-GFP, for the experiment 

with ovalbumin present. The black arrow endogenous CaM and the blue arrow shows CaM-RFP. 
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Figure 5.16: FRET efficiency between CaM-RFP and L-selectin-GFP in resting THP-1 cell lines. 

THP-1 cells were plated on PLL covered coverslips, fixed with 4% PFA and mounted on slides 

ready for FRET/FLIM analysis. Images showing the  FRET efficiency between CaM-RFP and L-

selectin-GFP in resting cells were taken for wildtype L-selectin (A), S364A (B), S367A (C), SSAA (D) 

and ΔM-N (E), with the left panel showing the GFP signal, the middle panel showing the 

fluorescence lifetime and the right panel showing the RFP signal. (F) The FRET efficiency for the 

cell lines was measured and statistical analysis was carried out using a One-way Annova followed 

by a Tukey’s post-hoc test. Images and measurements were taken by Dr Maddy Parsons, King’s 

College London.  *=p<0.05, **=p<0.01. 
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5.4 Discussion 

5.4.1 Generation of Stably Transduced THP-1 Cell lines 

 THP-1 cells expressing CaM-RFP and different mutants of L-selectin-GFP 

were successfully produced for use in future studies of the interaction between the 

two molecules. Analysis of the lysate of these cells showed that the level of CaM-

RFP was much lower than endogenous CaM. This could lead to misinterpretation of 

results from FRET analysis of the interaction between L-selectin and CaM, as 

binding of endogenous CaM to L-selectin-GFP would block the binding sites for 

CaM-RFP, leading to no FRET being observed even though CaM binding was 

occurring and therefore inaccurate conclusions. In the future it may be 

advantageous to knock out endogenous CaM before introducing CaM-RFP to 

ensure this is not a problem. Additionally, overexpressing CaM-RFP in THP-1 cells 

could confirm if the results were due to a dilution effect of exogenous CaM-RFP 

versus endogenous CaM. By shifting the pool of available CaM towards the 

exogenous CaM-RFP may lead to increased co-precipitation of CaM-RFP with L-

selectin-GFP. 

 It is worth noting that some of the Western blot bands corresponding to 

endogenous CaM are saturated and bleeding into one another (Figure 5.13). This is 

a problem with using x-ray film to detect bands of different intensities, where the 

long exposure required to visualise the lower levels of protein expression causes 

over exposure of bands representing higher protein expression levels. This can be 

overcome by using a digital Western blot scanner, which is capable of detecting all 

protein bands at once without causing saturation of the higher intensity bands. This 

will mean a more accurate densitometric analysis can be undertaken. 

 Moesin-RFP was also successfully expressed in THP-1 cell lines expressing L-

selectin-GFP, both wildtype and the mutants. Images of these cells showed that the 

distribution of moesin-RFP was found at the membrane, with areas of high 

expression observed. It has previously been shown that moesin is located primarily 

at the cell membrane in both neutrophils (439) and differentiated THP-1 cells (440). 

This is to be expected as it is known that ERM proteins interact with the plasma 
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membrane (264). It is possible that the high intensity fluorescence signal represents 

the uropod of the cell. Several proteins, including CD43, CD44 and PSGL-1 are 

concentrated at the uropod and these molecules have been shown to interact with 

ERM proteins (271,274,441,442). It was shown that ezrin did co-localize with these 

molecules in the uropod of T-cells (443). It is therefore feasible that moesin also 

accumulates to the uropod in THP-1 cells through its interaction with these 

transmembrane proteins. These transmembrane proteins could be used to 

decipher the location of moesin within the THP-1 cells. Fluorescently tagged 

antibodies against CD43, CD44 or PSGL-1 could be used to indicate their location 

within the cell and it would be possible observe if this signal co-localises with the 

high intensity RFP signal observed with moesin-RFP. Work in the Ivetic lab is 

currently underway to address such questions. 

 Cloning of ezrin-RFP has so far been unsuccessful. Using a partial digest to 

carry out the cloning can be repeated. If this is still unsuccessful it may be useful to 

obtain a different lentiviral vector containing RFP with different restriction sites 

that are not present in the ezrin sequence. This would enable the use of 

conventional cloning for the production of ezrin-RFP. 

 

5.4.2 Monitoring the discrepancies between FRET and biochemical 

approaches. 

 To study the interaction between CaM and wildtype L-selectin-GFP in THP-1 

cells two methods were used: GFP-Trap assay to detect L-selectin-GFP and any of its 

binding partners, and FRET/FLIM analysis to observe the interaction in intact cells. 

The results of these two experiments produced very different results, with the GFP-

Trap assay showing an interaction between wildtype L-selectin-GFP and CaM and 

the FRET/FLIM analysis showing no interaction. It is possible that this is due to 

endogenous CaM binding to L-selectin and blocking CaM-RFP from binding. It is also 

possible that the interaction between the cell and PLL affects the interaction 

between L-selectin and CaM. PLL coats the surface of the glass coverslip with 

cationic sites which are capable of interacting with anionic sites on the surface of 
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the cell (444). This process often results in the flattening of the cell to a degree 

which is not physiological (444). It is possible that this flattening alters signalling 

within THP-1 cells, leading to CaM dissociation from L-selectin. To test if PLL affects 

the interaction, THP-1 cells could be fixed prior to immobilization on PLL. 

 Another reason for these differences is likely to be due to the different 

methodology used. GFP-Trap pull-down experiments involve creating cell lysates 

and studying the interaction of the proteins in solution. Whereas the FRET analysis 

is carried out on intact cells fixed to PLL-coated cover slips. One major difference 

between these two methods is the presence of an intact plasma membrane with 

the FRET/FLIM analysis. As L-selectin is a transmembrane protein it is conceivable 

that the plasma membrane may play a role in regulating the binding of its partners. 

Deng et al (2011)(216) studied the interaction between CaM and the cytosolic tail 

of L-selectin by embedding the L-selectin tail and transmembrane domain into 

liposomes. They found that when a negatively charged phospholipid, 

phospohotidylserine (PS), was embedded in to liposomes the cytosolic tail of L-

selectin was located closer to the surface of the membrane compared to liposomes 

that did not contain PS and CaM binding was not observed (216). This difference 

was due to an electrostatic interaction between the negatively charged PS and the 

positively charged amino acids of the L-selectin tail, which directly competed for 

CaM binding (216,417). Leukocyte plasma membranes, such as monocytes, contain 

approximately 7.5% PS (445), with the majority being located within the inner 

leaflet of the lipid bilayer (446,447). This makes it likely that the mechanism 

observed by Deng et al (2011) with liposomes may also occur inside the cell. This 

would explain why CaM binding to L-selectin is not seen when FRET/FLIM analysis is 

carried out in resting cells. The binding was observed with the GFP-Trap assay, 

however, as the plasma membrane was disrupted by the lysis, the cytosolic tail of L-

selectin is free in solution and so is capable of interacting with free CaM.  

To test if PS in the plasma membrane of THP-1 cells is responsible for 

blocking the interaction between L-selectin and CaM, the cells could be transduced 

with the protein annexin A5, which binds to PS with a high affinity (448). Annexin 

A5 binding to PS could potentially block the interaction between L-selectin and PS 
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and therefore promote the interaction with CaM. It is also possible to force the 

movement of PS from the inner membrane to the outer using a synthetic PS 

scramblase (449). If CaM binding was observed after treatment with this 

scramblase it would suggest that PS in the cell membrane is responsible for 

blocking the interaction between L-selectin and CaM in resting cells.  

 The role of the membrane in the regulation of CaM binding to L-selectin 

raises the question of how CaM association occurs to protect L-selectin from 

shedding. It has been shown that when CaM was inhibited using the CaM specific 

inhibitors calmidazolium, trifluoperazine and W7, L-selectin was down-regulated 

(215), leading to the hypothesis that CaM binding in resting cells protects L-selectin 

from cleavage. However, the FRET data shown here suggests that CaM is unable to 

bind to L-selectin in resting cells, possibly due to L-selectin interacting with the 

plasma membrane. It is possible that there is an early activation step that leads to 

CaM binding, before dissociation occurs at a later time point. There are several 

potential mechanisms that could lead to CaM association. It has been shown in 

Jurkat T cells that a subpopulation of L-selectin is located in lipid rafts (450). The L-

selectin antibody Dreg56 was used to crosslink L-selectin, simulating ligand binding, 

and this led to an increase in the amount of L-selectin found in the lipid rafts (450). 

It was also found that the L-selectin located in the lipid rafts was tyrosine 

phosphorylated, suggesting this could be a possible signal that leads to the re-

localisation of L-selectin after cell activation. It is possible that this movement to 

the lipid raft will lead to L-selectin no longer interacting with the cell membrane 

and allow CaM to bind to the cytosolic tail (Figure 5.16(i)).  

 It is also possible that other binding partners of L-selectin may enable CaM 

to bind. It has been shown that the FERM domain of moesin is able to bind to L-

selectin embedded in liposomes containing up to 20% of PS (223). It has long been 

established that the FERM domain is able to interact with the plasma membrane 

(264). It was also observed that binding of moesin-FERM domain to L-selectin 

caused it to separate from the membrane surface by interacting with the positive 

amino acids within the cytosolic tail of L-selectin and blocking their interaction with 

the anionic membrane surface and this allowed CaM binding (223). This means that 
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it is possible that early activation of the cell leads to moesin association with L-

selectin, which in turn allows CaM to bind (Figure 5.16(iii)). 

As was mentioned in Sections 1.3.6 and 4.4.2, upon leukocyte activation an 

influx of calcium is induced and it is possible that this affects the interaction 

between CaM and L-selectin, especially given the fact that CaM is a calcium binding 

protein. As has been explained in Chapter 4, in vitro biophysical experiments 

showed both ApoCaM and CaM-Ca were capable of interacting with L-selectin 

cytosolic peptide, though it was possible there were differences in the binding 

mechanisms. It is therefore possible that in the cell only CaM-Ca is able to interact 

with L-selectin and leukocyte activation and the resultant calcium influx is required 

for the initiation of the interaction between CaM-Ca and L-selectin (Figure 5.16(v)). 

The FRET experiments cannot allow one to determine if the CaM-RFP that is binding 

to L-selectin-GFP is loaded with Ca2+ or not. However, using ionophores to increase 

intracellular Ca2+ levels could be one possible way of addressing if the interaction 

between L-selectin-GFP and CaM-RFP in resting cells is altered by controlling 

intracellular [Ca2+] levels. Drugs, such as 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-

tetraacetic acid (BAPTA), that prevent intracellular increases in [Ca2+] can also be 

used. Interestingly, studies have shown that treatment of leukocytes with calcium 

ionophores induces rapid down regulation of L-selectin (451,452). The exact 

mechanism by which calcium ionophores cause loss of L-selectin remains unclear, 

though the addition of PKC inhibitors did not block the effect (452). It is therefore 

possible that CaM plays a role the down regulation of L-selectin in response to 

calcium influx. 

 Another possibility is that activation of the cell leads to the redistribution of 

PS within the plasma membrane. The externalisation of PS has previously been 

shown to be an apoptotic signal for the recognition of cells to be removed by 

phagocytosis (447). It has also been found in non-apoptotic cells. A population of 

activated/memory CD4+ T-cells were found to have high levels of external PS and 

were found to be healthy (453). It was found that this redistribution of PS occurs 

after activation of the P2X7 receptor (453-455). The P2X7 receptor has been shown 

to be  expressed in THP-1 cells (454), so it is possible that activation of this receptor 
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causes the externalisation of PS in these cells, which leads to L-selectin no longer 

interacting with the plasma membrane and allows CaM binding (Figure 5.16(ii)). It 

would be possible to visualise if PS is externalized after THP-1 cells are activated by 

using a fluorescent probe which binds to PS. Lactadherin is a milk glycoprotein 

which binds to PS. it has previously been tagged with GFP and expressed in several 

different cell types (456). It was shown that in wildtype yeast cells the lactadherin-

GFP was localised at the plasma membrane but in cells deficient for PS the protein 

was cytosolic (456). By comparing THP-1 cells expressing lactadherin-GFP before 

and after activation it will be possible to see if the distribution of this protein was 

altered.  

 Interestingly, it has also been shown that P2X7 receptor activation leads to 

shedding of L-selectin in several different leukocyte cell types (453-455,457). 

Inhibitors of PS translocation also inhibited the shedding of L-selectin induced by 

P2X7 receptor activation (453), showing a clear link between PS redistribution and 

L-selectin shedding. Although both processes have been shown to occur it is not 

known if they happen at the same time or are sequential. It is possible that PS 

redistribution occurs first, allowing CaM binding to take place and regulate the 

shedding of L-selectin. Further experiments are required to decipher if there is a 

link between PS distribution and CaM regulation of L-selectin shedding. 
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Figure 5.17: Potential Mechanisms of the initiation of CaM binding to L-selectin upon leukocyte 

activation. There are several potential mechanisms that regulate CaM (shown in light blue) 

association to L-selectin. It is possible that in resting cells the cytosolic tail of L-selectin interacts 

with PS (shown in orange) in the plasma membrane. Upon activation L-selectin could be re-

localised to lipid rafts (shown in dark blue)(i), PS could be translocated to the outer membrane (ii) 

or ERM could bind to the cytosolic tail of L-selectin(shown in purple), all of which could lead to 

dissociation of the L-selectin cytosolic tail from the plasma membrane and allow CaM  interaction. 

(iv) It is also possible that phosphorylation of residue S364 (shown in red) in the tail of L-selectin  
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5.4.3 Mutating the Cytosolic tail of  L-selectin affects CaM binding  

 When GFP-Trap beads were used to immunoprecipitate L-selectin and its 

binding partners it was found that the sheddase resistant mutant ΔM-N did not 

bind as effectively to L-selectin when compared to wildtype L-selectin. This 

difference may be due to the fact that ΔM-N cells do not produce the 

transmembrane and cytosolic domain, known as the “stump”. It is possible that 

CaM binds to a greater exent to the stump of L-selectin, as this contains the binding 

site without the large extracellular domain, which may interfere with the binding. 

The FRET data showed that in resting cells CaM did not interact with ΔM-N-L-

selectin, as with the wildtype L-selectin. This shows that if L-selectin does interact 

with the plasma membrane, as described above, blocking the cleavage of L-selectin 

does not affect this interaction. 

 Serine to alanine mutants were used to assess the affect of blocking 

phosphorylation on the interaction between L-selectin and CaM. The GFP-Trap 

immunoprecipitation results showed that all the serine to alanine mutants co-

precipitated less CaM. This is not consistant with in vitro data that showed CaM was 

able to bind to the serine to alanine mutant peptides with similar affinities as 

wildtype (see Section 4.3.3 and Table 7.1 for a summary of the results). This 

highlights how the methodology and context in which the interaction is measured 

affects the result. With the single serine to alanine mutants, S367A and S364A, it is 

possible that by blocking phosphorylation of one residue promotes the 

phosphorylation of the other. This increase in phosphorylation at one site may 

affect CaM binding. It is not known what the phosphorylation state of the tail of L-

selectin is in resting cells. The development of antibodies that can differentiate 

between the different possible phosphorylation states would provide useful 

information.  

blocks CaM binding in resting cells. Upon activation, dephosphorylation occurs and CaM is 

able to bind to L-selectin. (v) Another possibility is that in resting cells CaM is in its Apo form 

and is not able to interact with L-selectin. Upon activation there is an influx of calcium, which 

will bind to CaM and lead to the association of CaM-Ca to L-selectin. 
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 The FRET data for S364A and S367A showed that S367A behaves similar to 

wildtype L-selectin, with no interaction observed, but the interaction does occur in 

the S364A mutant cell line. This suggests there maybe a role for S364 

phosphorylation in blocking the interaction between L-selectin and CaM in resting 

cells, and furthermore suggests that S364 may be constitutively phosphorylated in 

resting THP-1 cells (Figure 5.16(iv)). This may be the method of regulation in place 

of L-selectin interacting with the cell membrane as described above, or it could be a 

mixture of the two. Deciphering the phosphorylation state of the tail at different 

stages may show that it is very dynamic, with phosphorylation and 

dephosphorylation occuring at several different stages to control the complex 

mechanism of CaM binding and regulation of L-selectin shedding. It has been shown 

that basal shedding of L-selectin occurs and this turnover of L-selectin is at a slower 

rate than activated shedding (458). It is therefore possible that phosphorylation and 

dephosphorylation is responsible for basal shedding in resting cells. 

The GFP-Trap assay results for the SSAA-L-selectin mutant showed that 

lower levels of CaM were pulled down. It is possible that the double mutation of 

the tail leads to the disruption of the overall secondary structure of the tail, leading 

to CaM not binding as tightly as with wildtype L-selectin. CaM normally binds to 

alpha helical structures and it is possible that the double serine to alanine mutation 

affects the capability of the tail to form a helix and therefore will affect CaM 

binding. The FRET data however, shows that CaM is capable of binding to the SSAA 

mutant in the cell, with a greater interaction observed with this mutant compared 

to wildtype L-selectin-GFP. This again shows that phosphorylation of S364 may be 

responsible for blocking the interaction in wildtype L-selectin-GFP cells. This data 

shows how complex the regulation of the interaction between L-selectin and CaM 

is. It is also possible that the mutants studied here affect the binding of other 

proteins, such as moesin or ezrin, to L-selectin and by affecting this interaction it 

may also affect the interaction with CaM. By studying the interaction between the 

L-selectin mutants and moesin and ezrin this may help provide information about 

the importance of these residues in regulating the interaction, which in turn may 

provide information about the interaction between CaM and L-selectin. It will also 

be useful to study the interaction of all three in vivo. 
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Chapter 6: Monitoring L-selectin/CaM interaction 

during Leukocyte Transendothelial Migration 

6.1 Introduction 

 In Chapters 4 and 5 the interaction between L-selectin and CaM was studied 

both in vitro and in resting cells, with an emphasis on deciphering the role of serine 

phosphorylation in regulating the interaction. The results revealed that CaM was 

able to interact with L-selectin both when the serine residues were mutated to 

alanine and when they were phosphorylated in vitro. Interestingly, analysis of the 

interaction in resting THP-1 cells, by GFPTrap assay and FRET/FLIM analysis, 

suggested that mutating serine residues within the cytosolic tail did affect the 

interaction between L-selectin and CaM. The GFPTrap assay implied that L-selectin 

mutations S364A, S367A and SSAA abrogated the binding of CaM to L-selectin 

(Section 5.3.6). Whereas the FRET/FLIM analysis showed that mutating S364, S367 

or both serine residues to alanine promoted the interaction between L-selectin-GFP 

and CaM-RFP under resting conditions (Section 5.3.7). The differences in these 

results suggested that the context in which the interaction was studied plays a 

pivotal role in the regulation of the interaction.  

Following the results from the previous chapters, it was important to 

investigate the interaction between L-selectin-GFP and CaM-RFP during 

transendothelial migration (TEM). It is well known that direct binding between CaM 

and L-selectin protects L-selectin from shedding (215). However, much of our 

understanding that relates to shedding is on leukocytes activated purely in 

suspension. Static transmigration assays (i.e. without flow) have previously shown 

that L-selectin is shed during recruitment, suggesting that the CaM/L-selectin 

interaction is lost at some point during TEM, however, exactly at what stage the 

dissociation occurs remains unclear. Furthermore, the sub-cellular distribution of 

the CaM/L-selectin interaction could be different within any given leukocyte. In 

other words, although L-selectin is expressed in many different leukocyte subsets, it 

could be regulated very differently within any given cell. By using FRET/FLIM 

analysis to study the interaction between L-selectin and CaM during TEM, it is 
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possible to pinpoint where and when the CaM/L-selectin interaction is lost. This will 

provide an important insight into L-selectin shedding during TEM.  

In this chapter the interaction between CaM-RFP and L-selectin-GFP was 

assessed in THP-1 cells undergoing TEM under flow conditions. Analysis was 

undertaken with both wildtype and mutant L-selectin-GFP cells to assess whether 

mutating L-selectin affected this interaction at any stage of the transmigration 

process. Western blotting of the GFP tag was used as a measure of L-selectin 

shedding during TEM, which was also used to correlate CaM dissociation from the 

L-selectin tail. The formation of pseudopod-like protrusions by THP-1 cells was 

assessed – specifically within the transmigrated part of the cell. Circularity and cell 

area were monitored to establish a possible link between the shedding of L-selectin 

and a change in cell shape during TEM.  

6.2 Experimental Procedure 

 In order to study the interaction between L-selectin and CaM during TEM, 

the parallel plate flow chamber assay was used in combination with FRET/FLIM 

analysis. The parallel plate flow chamber assay is a method developed to study the 

interaction between leukocytes and endothelial cells under shear stress conditions 

(7). This method involves culturing endothelial cells on to fibronectin-coated glass 

coverslips until a monolayer is established. The monolayers are then activated with 

TNF-α prior to their assembly in to the flow chamber (see Section 2.20 for details of 

the experimental set-up). Leukocyte suspensions are perfused over the endothelial 

monolayer using a syringe pump. The flow rate is set at 0.25 ml/min, which 

corresponds to a shear stress of 1.24 dyn/cm2. This represents a shear stress that is 

physiologically relevant to post capillary venules, where shear stresses of between 

1-5 dyn/cm2 have been measured (459). It should be noted that under this setting, 

THP-1 cells cannot undergo full TEM. The reason for this is likely to be their size. As 

HUVEC are plated on fibronectin-coated glass coverslips, transmigrating THP-1 cells 

have very little space to pass underneath this monolayer. Full TEM is therefore 

rarely observed. This does however, allow the process of TEM to be explored in 

detail, which is normally a rapid event when primary monocytes or neutrophils are 

used (which are much smaller in size than THP-1 cells).  By using the THP-1 cells 
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expressing L-selectin-GFP and CaM-RFP produced in the previous chapter, 

FRET/FLIM analysis was used to study the interaction between the two at different 

times during TEM, which provided information about when the interaction was 

occurring and enabled the deciphering of the regulation of shedding of L-selectin 

during TEM.  

 As CaM binding to L-selectin is important for inhibiting L-selectin shedding, 

it was of interest to determine if mutating the cytosolic tail of L-selectin affected 

the rate of shedding of L-selectin and if this could be linked to the dissociation of 

CaM. A Western blotting method was developed in the Ivetic lab to measure L-

selectin shedding in THP-1 cells undergoing TEM over time. This involved culturing 

HUVEC cells in six well plates to form monolayers. The HUVECs were then activated 

and THP-1 cells were placed on top and incubated for a specified amount of time. 

Cell lysates were then produced and prepared for Western blotting. Full-length and 

cleaved (occasionally referred to as the “stump”) L-selectin-GFP was analysed by 

anti-GFP immunoblotting. By comparing cell lines expressing wildtype and mutant 

L-selectin-GFP, it was possible to assess if the cytoplasmic tail of L-selectin was 

contributing to the shedding event during TEM. 

 Previous work in the Ivetic lab demonstrated a role for L-selectin shedding in 

regulating cell shape change during TEM. For this reason the protrusion dynamics, 

cell area and circularity of THP-1 cells expressing the different forms of L-selectin 

were assessed during recruitment. Cells were scored as having zero, one, two or 

multiple protrusions, with circularity and cell area calculated by drawing around the 

cell perimeter, including any protrusions. ImageJ software was used to carry out the 

analysis. 

6.3 Results 

6.3.1 Monitoring the biochemical interaction between CaM and L-

selectin in THP-1 cells following co-culture with activated 

endothelial cells 

 The interaction between CaM and L-selectin-GFP mutants in resting cells 

was previously assessed using the GFPTrap assay (Section 5.3.6). It was decided to 
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use this same assay to assess if the presence of an activated HUVEC monolayer 

affected the interaction between CaM and L-selectin. This also provides an 

alternative experimental procedure to FRET/FLIM analysis for monitoring the 

CaM/L-selectin interaction. If the experimental data is supportive of the FRET/FLIM 

observation, it would clearly strengthen the observations made with this method.  

The experiment was performed with 2 x 106 THP-1 cells co-cultured with a 

monolayer of TNF-activated HUVEC for five minutes. This time point was chosen as 

it corresponded to the early time point of the FRET/FLIM analysis (Section 6.3.2). 

This would allow direct comparison between the FRET/FLIM analysis and the 

GFPTrap assay results. 

 Initial experiments were carried out using the manufacturer’s protocol for 

lysis and wash buffers (see Section 2.23) and the experimental details were as 

described previously (see Section 2.23.2). The results showed that CaM was co-

precipitated with wildtype L-selectin-GFP and all the L-selectin mutations tested 

(Figure 6.1A), with the greatest amount of co-precipitated CaM being observed in 

the lane corresponding to THP-1 cells expressing ΔM-N-L-selectin-GFP (Figure 6.1A 

lane 6). However, a band corresponding to CaM was also co-precipitated with THP-

1 cells expressing GFP protein alone (Figure 6.1A lane 1), as was observed with the 

GFPTrap assay carried out with resting THP-1 cells (Section 5.3.6, Figure 5.14). As 

explained previously (see Section 5.3.6), 1 % ovalbumin was added to the lysis and 

wash buffers to block any non-specific interactions between CaM and the GFPTrap 

beads. As was observed previously, CaM was no longer co-precipitated in THP-1 

cells expressing GFP with the presence of ovalbumin (Figure 6.1C lane 1). However, 

the addition of ovalbumin also affected the interaction between L-selectin and 

CaM, with very little CaM visible on the western blot with any of the L-selectin-GFP 

cell lines tested (Figure 6.1C lanes 2-6). As the bands were so faint, analysis was not 

possible. The experiment could be repeated with an increase in the number of THP-

1 cells collected to produce the lysate in an effort to co-precipitate a larger quantity 

of CaM. 
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Figure 6.1: GFPTrap assay with THP-1 cells co-cultured with activated HUVECs. GFPTrap 

immunoprecipitation assay was carried out as previously described (Section 5.3.6) except 

THP-1 cells were incubated with TNF-activated HUVEC monolayers for five minutes prior to 

cell lysis. Western blot analysis was carried out with anti-CaM (A) and anti-GFP antibody (B).  

The experiment was repeated with 1 % ovalbumin in the lysis and wash buffers and Western 

blots were analysed with anti-CaM (C) and anti-GFP antibodies (D). The arrow shows 

endogenous CaM.  
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6.3.2 Monitoring the interaction between wildtype L-selectin-GFP 

and CaM-RFP during TEM using FRET/FLIM analysis 

Since biochemical analysis of the interaction between L-selectin and CaM in 

THP-1 cells were co-cultured with TNF-activated HUVEC was unsuccessful, the 

parallel plate flow chamber was used to assess the interaction. This assay allows the 

capture of THP-1 cells undergoing the initial stages of recruitment and TEM, where 

pseudopods of adherent THP-1 cells begin to protrude beneath the HUVEC 

monolayer. THP-1 cells were perfused over activated HUVEC monolayers for a fixed 

period of time. Two different time points were chosen for analysis, an early time 

point of six minutes and a late time point of twenty five minutes. These time points 

were selected as it was previously observed that L-selectin shedding peaked at 

approximately twenty minutes following incubation with TNF-activated HUVECs 

(Karolina Rzeniewicz, unpublished data). This meant that at six minutes L-selectin 

would be predominantly uncleaved, whereas maximal shedding would have 

occurred by twenty five minutes. Studying the interaction between L-selectin and 

CaM within a given cell enables one to specifically address the dynamics of the 

interaction during TEM. 

 The FRET efficiency between CaM-RFP and L-selectin-GFP was measured at 

two thin optical sections to better understand the subcellular distribution of the 

interaction. In other words, the interaction between the two chimeric proteins was 

analysed specifically within the non-transmigrated and transmigrated part of the 

cell (Figure 6.2A). By measuring FRET in both locations the effect of TEM on the 

interaction between L-selectin and CaM could be assessed. After dis-assembly of 

the parallel plate flow chamber, the specimen was rapidly fixed in 4% 

paraformaldehyde followed by permeabilisation and staining with phalliodin-

Alexa633 (see Section 2.21.2 in Materials and Methods for experimental 

procedure). Phalloidin binds to actin filaments (F-actin) within both cell types. More 

importantly, it was used as a marker to determine where the optical sections were 

taken: specifically above and below the HUVEC monolayer. All of the FRET 

measurements were taken by Dr Maddy Parsons at the Randall Division of 

Biophysics and Molecular Biology (KCL).   
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 After six minutes of perfusion, the interaction between L-selectin-GFP and 

CaM-RFP was assessed in both the transmigrated (base) and the non-transmigrated 

(top) parts of the cell (Figure 6.2B). The FRET efficiency was found to be similar 

within both these sub-cellular domains (7.01±0.91% in the non-transmigrated part 

and 8.14±0.68% in the transmigrated part of the cell, Figure 6.2D). When the FRET 

efficiency was analysed at twenty five minutes (Figure 6.2C), little change within the 

non-transmigrated part of the cell had occurred between the two time points 

(6.61±0.47% and 7.01±0.91% respectively, Figure 6.2D). This suggested that CaM-

RFP/L-selectin-GFP interaction was sustained over time and it was likely that 

shedding was not taking place in this sub-cellular domain. In contrast, the FRET 

efficiency between CaM-RFP/L-selectin-GFP in the transmigrated part of the cell 

changed dramatically by twenty five minutes compared to six minutes TEM 

(2.84±0.53% compared to 8.14±0.68%, Figure 6.2D). This suggested that CaM-RFP 

was no longer bound to L-selectin-GFP and that shedding had likely taken place, 

specifically in this sub-cellular domain.  

  



252 
 

 

  

A 

B C 

6 minutes 25 minutes 

Figure 6.2: Interaction between wildtype L-selectin and CaM during TEM. THP-1 cells co-expressing 

wildtype L-selectin-GFP and CaM-RFP were perfused over TNF-activated HUVEC monolayers for either 

6 min or 25 min, fixed with 4 % PFA and processed for FRET analysis. Images of the transmigrated 

(top) and non-transmigrated (base) parts of the cell (A) were produced after six minutes of flow (B) 

and twenty five minutes of flow (C). The left panel in (B) and (C) shows confocal images of L-selectin-

GFP, the right panels show the lifetime fluorescence of GFP shown by a pseudo-colour scale, the 

bottom left panel shows the phalloidin-Alexa633 staining and the bottom right panel shows CaM-RFP 

(RFP image taken by fluorescence microscopy). (D) The FRET efficiency between L-selectin-GFP and 

CaM-RFP during TEM was measured at each time point and the difference between the results in the 

top and base of the cell was compared. Results are an average of three experiments with 10-15 cells 

measured for each experiment; error bars represent SEM. Statistical significance was assessed using a 

two-tailed unpaired Student’s T test. **=p<0.01. All FRET analysis was performed by Dr Maddy 

Parsons, KCL. 
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6.3.3 Monitoring CaM/L-selectin interaction in the ΔM-N Sheddase 

Resistant Mutant THP-1 cell line during TEM 

 The interaction between the sheddase resistant mutant ΔM-N-L-selectin and 

CaM was assessed using the same method as above, with the FRET efficiency at the 

same time points measured and compared to the results observed with cells 

expressing wildtype L-selectin-GFP. The interaction was studied in this mutant to 

assess if blocking shedding affected the interaction with CaM, especially as CaM 

plays a role in regulating shedding. 

At the six minute time point, the FRET efficiency was very low in both the 

transmigrated and non-transmigrated parts of the cell, both being significantly 

lower than that observed with wildtype L-selectin-GFP cells (Figure 6.3A, B and E). 

This suggested that ΔM-N-L-selectin-GFP and CaM-RFP were not interacting with 

one another. In contrast, after twenty five minutes of flow, the FRET efficiency 

increased in both the transmigrating and the non-transmigrating parts of the cell 

compared to that observed at six minutes TEM (Figure 6.3D and F), suggesting that 

at this later time point CaM-RFP was capable of interacting with ΔM-N-L-selectin-

GFP throughout the entire cell. The FRET efficiency at twenty five minutes in the 

transmigrated and non-transmigrated parts of the cell was compared between the 

wildtype and ΔM-N cell lines (Figure 6.3C and D). The results showed that the FRET 

efficiency in the non-transmigrated part of the cell was similar in both cell lines 

(6.61±0.53% for wildtype and 5.52±0.53% for ΔM-N cells, Figure 6.3F). However, 

the FRET efficiency in the transmigrated part of the cell of ΔM-N was significantly 

higher than that observed with wildtype cells (5.15±0.52% versus 2.83±0.47%, 

Figure 6.3F). It is tempting to suggest at this point that the differences in binding 

observed between the cell lines suggest that the cytoplasmic tail is regulated 

differently between the wildtype and ΔM-N cell lines. One possibility is that serine 

phosphorylation of the tail could be differently regulated in the ΔM-N sheddase-

resistant mutant. 

 

  



254 
 

Top 
Base 

WT + CaM M-N + CaM 

15 

13 

11 

9 

7 

5 
3 

1 

-1 

FR
ET

 e
ff

ic
ie

n
cy

 (
%

) 

25 minutes 
15 

13 
11 

9 

7 

5 

3 

1 

-1 

6 minutes 

WT + CaM M-N + CaM 

FR
ET

 e
ff

ic
ie

n
cy

 (
%

) 

 

  

6 minutes 

25 minutes 

Figure 6.3: Comparing the Interaction between L-selectin and CaM in wildtype and ΔM-N 

THP-1 cells. THP-1 cells expressing L-selectin-GFP and CaM-RFP were perfused over 

activated HUVEC monolayers for either 6 min or 25 min and fixed with 4 % PFA to be 

processed for FRET analysis. Images showing the FRET efficiency between L-selectin-GFP 

and CaM-RFP in the transmigrated (top) and non-transmigrated part of the cell after six 

minutes of flow for wildtype (A) and ΔM-N (B) and twenty five minutes of flow for wildtype 

(C) and ΔM-N (D). The left panel in (A-D) shows confocal images of L-selectin-GFP, the right 

panels show the lifetime fluorescence of GFP shown by a pseudo-colour scale, the bottom 

left panel shows the phalloidin-Alexa633 staining and the bottom right panel shows CaM-

RFP (RFP image taken by fluorescence microscopy). (E) The FRET efficiency between L-

selectin-GFP and CaM-RFP during TEM was measured after 6 minutes of flow in cells 

expressing wildtype and ΔM-N-L-selectin-GFP and (F) the same analysis was carried out 

after 25 minutes of flow, with a comparison made between the cell lines. Results are an 

average of three experiments with 10-15 cells measured for each experiment; error bars 

represent SEM. Statistical significance was assessed using a two-tailed unpaired Student’s T 

test. *=p<0.05, **=p<0.01. All FRET analysis was performed by Dr Maddy Parsons, KCL. 
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6.3.4 Monitoring CaM/L-selectin interaction in serine-to-alanine 

mutant THP-1 cell lines undergoing TEM 

 It was hypothesised that phosphorylation of serine residues within the 

cytosolic tail of L-selectin were responsible for the dissociation of CaM during TEM, 

which led to L-selectin cleavage. In the previous chapters (Chapter 4 and 5) the 

interaction was studied using biophysical and biochemical techniques, with 

conflicting results observed. To test if phosphorylation had an effect on the 

interaction during TEM under flow, serine residues within the tail of L-selectin were 

mutated to alanines, so phosphorylation would be blocked. The interaction 

between L-selectin and CaM was then assessed as above, by FRET/FLIM analysis, to 

investigate if blocking phosphorylation of either one or both serine residues 

affected the sub-cellular distribution of the interaction seen with wildtype L-

selectin-GFP THP-1 cells during TEM under flow conditions.  

 The FRET efficiency of cells expressing S364A-L-selectin-GFP was measured 

in the non-transmigrated and transmigrated parts of the cell after six minutes of 

flow (Figure 6.4B) and then compared to the results observed with cells expressing 

wildtype L-selectin-GFP (Figure 6.4A). The comparison revealed that the FRET 

efficiencies were very similar in all parts of the cell for both cell lines (Figure 6.4E), 

showing the S364A mutation had no effect on the ability of CaM-RFP to bind to L-

selectin-GFP after six minutes of flow. 

 Comparison between the FRET efficiency measured for cells expressing 

S367A-L-selectin-GFP (Figure 6.4C) and wildtype L-selectin-GFP after six minutes of 

recruitment (Figure 6.4A) revealed the FRET efficiency in the non-transmigrated 

part of the cell was similar in both cell lines. However, the FRET efficiency in the 

transmigrated part of the cell was significantly lower in cells expressing S367A-L-

selectin-GFP (Figure 6.4E). This shows that there is a reduction in the interaction 

between CaM-RFP and L-selectin-GFP in the transmigrated part of the cell with this 

mutation, possibly leading to L-selectin shedding.  
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Figure 6.4: Comparing the FRET efficiencies between L-selectin-GFP and CaM-RFP during TEM in 

wildtype and mutant cell lines after six minutes of flow. THP-1 cells expressing L-selectin-GFP and CaM-

RFP were perfused for 6 min over HUVEC monolayers activated with TNF-α and then fixed with 4 % PFA.  

Images showing the FRET efficiency between L-selectin-GFP and CaM-RFP in the transmigrated (top) and 

non-transmigrated (base) part of the cell after six minutes of TEM for wildtype (A), S364A (B), S367A (C) 

and SSAA (D). The left panel shows images of L-selectin-GFP, the right panels show the lifetime 

fluorescence of GFP shown by a pseudo-colour scale, the bottom left panel shows the phalloidin-

Alexa633 staining and the bottom right panel shows CaM-RFP (RFP image taken by fluorescence 

microscopy). (E) Summary of the FRET efficiency between L-selectin-GFP and CaM-RFP during TEM for 

cells expressing wildtype, S364A-, S367A- and SSAA-L-selectin- 
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The same analysis was undertaken using cells expressing SSAA-L-selectin-

GFP (Figure 6.4D). Comparison to wildtype L-selectin-GFP showed that the FRET 

efficiency in the transmigrated part of the cell was significantly lower in cells 

expressing SSAA-L-selectin-GFP (Figure 6.4E), similarly to cells expressing S367A-L-

selectin-GFP. Interestingly, the FRET efficiency was also significantly lower in the 

non-transmigrated part of the cell with the SSAA mutation. This result implies the 

SSAA mutation reduces CaM binding in all subcellular locations after six minutes of 

flow. Whether this may have something to do with binding of this mutant tail of L-

selectin to the inner leaflet of the plasma membrane, as discussed in Section 5.4.2, 

is currently not known. 

 The FRET efficiency in the different cell lines was then assessed after twenty 

five minutes of recruitment. As for the results at six minutes, the results with the L-

selectin-GFP mutants were compared those found with wildtype-L-selectin-GFP. 

Analysis of cells expressing S364A-L-selectin-GFP (Figure 6.5B) showed that the 

FRET efficiency in the non-transmigrated part of the cell was significantly higher 

than that of cells expressing wildtype-L-selectin-GFP (6.61±0.53% for wildtype cells 

versus 11.99±1.08% for S364A cells, Figure 6.5E).  In the transmigrated part of the 

cell there was also a significant difference in the FRET efficiency between the cell 

lines, with a much higher FRET efficiency observed with cells expressing S364A-L-

selectin-GFP (2.83±0.47% for wildtype versus 7.56±1.37% for S364A, Figure 6.5E). 

This showed that the interaction between CaM-RFP and L-selectin-GFP was 

maintained in all parts of the cell when S364 was mutated to alanine. This is in 

contrast to wildtype L-selectin-GFP cells, where the interaction was lost in the 

transmigrated part of the cell at the twenty five minute time point. This further 

implies that the S364A mutation will block the shedding of L-selectin in the 

transmigrated part of the cell, and implies that the L-selectin tail is phosphorylated 

differently in the transmigrated part of the tail versus the non-transmigrated part. 

GFP. Results show the average of three experiments with 10-15 cells measured each time, with 

error bars representing SEM. To test statistical significance between the top and base within each 

cell line was assessed using an unpaired, two-tailed Student’s T test (black lines).  Statistical 

significance of the differences between the cell lines in the top or base (blue lines) of the cells was 

assessed using one-way Anova, followed by Tukey’s post-hoc test. *=p<0.05. All FRET analysis was 

carried out by Dr Maddy Parsons, KCL. 
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 At twenty five minutes, comparison between the wildtype (Figure 6.5A) and 

S367A-L-selectin-GFP (Figure 6.5C) cell lines showed that both cell lines had a 

similar level of FRET efficiency in the non-transmigrated part of the cell (6.61±0.53% 

and 4.6±0.57% respectively, Figure 6.5E) and the transmigrated part of the cell 

(2.83±0.47% and 2.21±0.70% respectively, Figure 6.5E). These results reveal that 

the S367A mutation had no effect on the sub-cellular distribution of the CaM-

RFP/L-selectin-GFP interaction after twenty five minutes of flow. 

 The FRET efficiency after twenty five minutes of flow was compared 

between wildtype (Figure 6.5A) and SSAA-L-selectin-GFP (Figure 6.5D) cell lines. The 

results indicated that there was no difference in the FRET efficiency in the non-

transmigrated part of the cell in either cell line (6.61±0.53% for wildtype and 

6.45±0.60% for SSAA-L-selectin-GFP, Figure 6.5E). In the transmigrated part of the 

cell, the FRET efficiency was significantly higher in cells expressing SSAA-L-selectin-

GFP compared to cells expressing wildtype L-selectin-GFP (Figure 6.5E). This is likely 

due to the presence of the S364A mutation, blocking the dissociation of CaM-RFP in 

the transmigrated part of the cell.  

Taken together, this data suggests that blocking phosphorylation of S364 by 

alanine mutation inhibited the loss of interaction between L-selectin-GFP and CaM-

RFP in the transmigrated part of the cell after twenty five minutes of recruitment. It 

is therefore likely that the shedding of L-selectin was also blocked. Mutating S367 

to alanine also affected the interaction between L-selectin-GFP and CaM-RFP, with 

the interaction being disrupted in the transmigrated part of the cell at the six 

minute time point (possibly through binding to phosphatidyl serine (PS)). This 

suggests it is likely that phosphorylation of the tail of L-selectin plays an important 

role in regulating the interaction between L-selectin and CaM during TEM. 
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Figure 6.5: Comparing the FRET efficiencies between L-selectin-GFP and CaM-RFP during 

TEM in wildtype and mutant cell lines after twenty five minutes of flow. THP-1 cells 

expressing L-selectin-GFP and CaM-RFP were perfused over TNF-α activated HUVEC 

monolayers for 25 min and fixed with 4 % PFA ready for FRET/FLIM analysis.  Images showing 

the FRET efficiency between L-selectin-GFP and CaM-RFP in the transmigrated (top) and non-

transmigrated (base) part of the cell after twenty five minutes of TEM for wildtype (A), S364A 

(B), S367A (C) and SSAA (D). The right panel shows images of L-selectin-GFP, the right  
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6.3.5 Co-Culturing of THP-1 cells with activated HUVEC monolayers 

to assess the shedding of L-selectin 

 The analysis of the interaction between CaM-RFP and L-selectin-GFP using 

FRET/FLIM analysis showed that the S364A mutation blocked the dissociation of 

CaM from L-selectin during TEM. It is therefore possible that L-selectin shedding 

would also be blocked by the S364A mutation, as CaM has been shown to bind to L-

selectin and inhibit its shedding from the cell surface (215). To test if this was the 

case, shedding of L-selectin was visualised by Western blot analysis. By using an 

anti-GFP antibody all bands corresponding to the different cleavage products of L-

selectin could be observed as the GFP tag would still be present at the C-terminal. 

As it is not practically possible to perform Western blot analysis on THP-1 cells 

under flow conditions, a static assay was developed to overcome this. HUVEC 

monolayers were grown to confluence in fibronectin-coated six well plates and 

THP-1 cells were co-cultured with activated monolayers for zero, five, ten, twenty, 

thirty or sixty minutes. Lysates were prepared from bound and unbound THP-1 cells 

and used in Western blots to assess the GFP signals derived from full length and 

cleaved (known as the stump) L-selectin (Figure 6.6). More importantly, this 

allowed one to closely monitor L-selectin shedding over time. Previous experiments 

had shown that the anti-GFP antibody did not recognise any components of the 

HUVEC lysate (Karolina Rzeniewicz, unpublished data), so any signal detected by the 

anti-GFP antibody would be derived exclusively from the THP-1 cell lysate. THP-1 

cells expressing wildtype, S364A- or S367A-L-selectin-GFP were co-cultured with 

HUVEC monolayers to assess the effect of these mutations on shedding of L-

selectin. 

panel shows the lifetime fluorescence of GFP shown by a pseudo-colour scale, the bottom left 

panel shows the phalloidin-Alexa633 staining and the bottom right panel shows CaM-RFP 

(RFP image taken by fluorescence microscopy). (E) Summary of the FRET efficiency between 

L-selectin-GFP and CaM-RFP during TEM for wildtype, S364A, S367A and SSAA. Results show 

the average of three experiments with 10-15 cells measured each time. Error bars represent 

SEM. To test statistical significance between the top and base within each cell line was 

assessed using an unpaired two-tailed Student’s T test (black lines).  Statistical significance of 

the differences between the cell lines in the top (red lines) or base (blue lines) of the cells was 

assessed using one-way Anova, followed by Tukey’s post-hoc test. *=p<0.05, **=p<0.001. All 

FRET analysis was carried out by Dr Maddy Parsons, KCL. 
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Figure 6.6: Schematic of THP-1 cell co-culture with TNF-α activated HUVEC experiment. 

HUVEC cells were grown in fibronectin-coated six well dishes until confluent. The HUVEC 

cells were then activated with TNF-α and 0.75 x106 THP-1 cells were placed in each well of 

the dish. The THP-1 cells were then incubated with the HUVEC monolayer for the time 

indicated in each well, after which point the unbound and bound fractions were collected 

and cell lysates were produced. the cell lysates were then analysed by Western blot, with 

anti-GFP antibody used to visualise L-selectin-GFP. 
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Analysis of the unbound and bound fractions of THP-1 cells expressing 

wildtype L-selectin-GFP at the different time points showed that a majority of the 

cells were bound after five minutes of incubation, with only faint bands 

corresponding to L-selectin-GFP observed in the unbound fraction after this time 

point (Figure 6.7A, Left Panel). As maximal THP-1 cell binding to activated HUVEC 

monolayers was achieved by five minutes of co-culture, all other time points were 

compared to this as a base line value. In other words, shedding of L-selectin was 

calculated from a start time of 5 minutes. Signals derived from both the full length 

and the stump of L-selectin (Figure 6.7A, Right Panel) were assessed at each time 

point by densitometric analysis (see Materials and Methods, Section 2.16.3).  

The results for THP-1 cells expressing wildtype L-selectin-GFP showed that 

the levels of full length L-selectin did not significantly change over time (Figure 

6.7B). The levels of the stump of L-selectin-GFP did increase slightly between five 

and ten minutes. The level then remained similar between ten and twenty minutes 

before decreasing between twenty and sixty minutes (Figure 6.7C). However, these 

changes were not quite significant due to variation between the experiments (one-

way Anova p=0.054). It was possible that the downward trend in stump levels 

observed between twenty and sixty minutes was a result of the stump being 

cleared from the plasma membrane and degraded (e.g. via an endocytic pathway). 

This suggested that a majority of shedding occurred between five and twenty 

minutes, after which time the rate of shedding decreased, possibly returning to 

basal levels. Since these experiments were performed, members of the Ivetic lab 

had realised that the anti-GFP antibody used in these experiments had lost their 

specificity over time. Therefore caution is needed with the interpretation of these 

results. 
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Figure 6.7: Co-Culture of wildtype L-selectin THP-1 cells with TNF-α activated HUVECs. (A) Western blot analysis of the levels of L-selectin after co-culture 

with HUVECs for increasing lengths of time (0 to 60 minutes). The unbound and bound fractions were collected and cell lysates were produced. Western blots 

were probed with anti-GFP antibody to visualise the different forms of L-selectin. The level of actin at each time point was also assessed for the use as a 

loading control. Western blot is representative of three independent experiments. Levels of full length (B) and the stump (C) of L-selectin were analysed using 

densitometric analysis, with actin used as a loading control and all other time points compared relative to five minutes. Results shown are the mean of three 

experiments with error bars showing the standard deviation. A One-way Annova was used to assess statistical significance.  
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With the cell line expressing S364A-L-selectin-GFP it was observed that 

bands corresponding to L-selectin-GFP were visible in the unbound fraction at later 

time points compared to wildtype L-selectin-GFP cells, with faint bands remaining 

visible at sixty minutes (Figure 6.8A, Left Panel). As the number of cells added to 

each well was carefully calculated using a hemocytometer, this suggested that the 

S364A-L-selectin-GFP cells may bind less efficiently to the HUVEC monolayer than 

wildtype L-selectin cells. It is possible that this less efficient binding of cells with this 

mutant may be a result of fewer THP-1 cell protrusions being produced (see Section 

6.4.3 for a discussion of this possibility). The L-selectin-GFP signal was similar in all 

the unbound fractions after ten minutes. For this reason the ten minute time point 

was used for the base line value of L-selectin-GFP to which all other time points 

would be compared. As with the wildtype L-selectin-GFP cells, the levels of full 

length and stump of L-selectin-GFP (Figure 6.8A, Right Panel) were assessed using 

densitometric analysis.  

The levels of full length L-selectin did not change over time with cells 

expressing S364A-L-selectin-GFP (Figure 6.8B), similarly to the observation made 

with cells expressing wildtype L-selectin-GFP. Analysis of the level of L-selectin 

stump formation in cells expressing S364A-L-selectin-GFP showed there was little 

change in the levels of the stump over time (Figure 6.8C). This was a variation from 

the change in stump levels observed with THP-1 cells expressing wildtype L-selectin-

GFP, which showed a slight increase between five and ten minutes and a decrease 

in formation of the stump after twenty minutes. As the level of the stump did not 

change with the S364A-L-selectin-GFP cell line, this suggested that mutation of S364 

(to block selective phosphorylation at this site) reduced the extent of L-selectin 

shedding upon cell activation observed in THP-1 cells expressing wildtype L-

selectin-GFP. 

THP-1 cells expressing S367A-L-selectin-GFP were also analysed under 

similar conditions. Western blot analysis revealed that L-selectin-GFP was detected 

in the unbound fraction after five minutes of co-culture with HUVEC (Figure 6.9A, 

Left panel), suggesting a good proportion of THP-1 cells remained unbound at this 

time point. As with S364A-L-selectin-GFP cells, this may be because fewer 
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protrusions are produced with these cells, meaning they are easier to dissociate 

from the membrane (Section 6.3.6.3.5). After ten minutes the anti-GFP signal in the 

unbound fraction had decreased. This indicated that a majority of the THP-1 cells 

had bound to the HUVEC monolayer by this time point. Based on this, it was 

decided that the ten minute time point would be used as the baseline level of L-

selectin-GFP to which all other time points could be compared. Densitometric 

analysis was used to compare the changes in the protein levels of full length and 

the stump of L-selectin-GFP during co-culture with activated HUVEC monolayer 

(Figure 6.9A, Right Panel). The results showed that the levels of full length L-selectin 

tended to increase as the time the cells were co-cultured with HUVECs progressed, 

with the anti-GFP signal at sixty minutes being significantly higher than that at five 

and ten minutes (Figure 6.9B). The trend in increase in the level of full length L-

selectin observed with THP-1 cells expressing S367A-L-selectin-GFP was potentially 

different from the results observed with wildtype L-selectin-GFP, but, due to the 

large error bars produced by variation in the experiments, it was unclear if this was 

significant. The level of the stump with cells expressing S367A-L-selectin-GFP 

tended to increase up to twenty minutes, followed by a decrease between twenty 

and sixty minutes, although this was not significant, again due to the variation 

between experiments (Figure 6.9C). This trend was very similar to that observed 

with wildtype L-selectin-GFP. Taken together these results imply that the rate of 

shedding of S367A-L-selectin-GFP followed a similar trend to that observed with 

wildtype L-selectin-GFP, but due to the variation between the experiments, and the 

quality of the anti-GFP antibody, it was unclear if this mutation did have an effect 

on the rate of shedding. 
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Figure 6.8: Co-Culture of S364A-L-selectin-GFP THP-1 cells with activated HUVECs. (A)  A Western blot representing the levels of full length and the stump of L-

selectin-GFP after co-culture with HUVECs for increasing lengths of time, from 0 to 60 minutes. At each time point the unbound and bound fractions were collected 

and cell lysates were produced. The Western Blot was probed with anti-GFP antibody to assess the levels of L-selectin-GFP and the level of actin was assessed to use 

as a loading control. The levels of full length (B) and the stump (C) of L-selectin were assessed using densitometric analysis with actin used as a loading control to 

normalise variation. The levels of both full length and the stump of L-selectin in the bound fraction at all the time points were compared to the levels at ten minutes, 

where the majority of THP-1 cells bound to the endothelium. Results shown are the mean of three experiments with error bars showing the standard deviation. 

Statistical analysis was carried out using a one-way Anova. 
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Figure 6.9: Co-Culture of S367A-L-selectin-GFP THP-1 cells with activated HUVECs. THP-1 cells expressing S367A-L-selectin-GFP were after co-cultured with 

HUVECs for increasing lengths of time (0 to 60 minutes). The unbound and bound cells were then collected and cell lysates were produced. The levels of L-

selectin-GFP were analysed by Western blot (A). The blot is representative of three independent experiments. Levels of full length (B) and the stump (C) of L-

selectin were analysed by densitometric analysis using actin as a loading control and comparing the levels at all other time points to those at ten minutes. 

Results shown are the mean of three experiments with error bars showing the standard deviation. Statistical significance was analysed using one-way Anova 

followed by Tukey’s  post-hoc test. * represents results that are significantly different, p<0.05. 
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6.3.6 Analysing the role of the L-selectin tail in regulating cell 

morphological changes during TEM under flow conditions. 

Once leukocytes exit the circulation and enter the surrounding 

microenvironment, directionality becomes an important determinant in how efficiently 

they undergo chemotaxis towards an inflammatory insult. Chemokines are released by 

stromal cells surrounding a site of inflammation and act as essential soluble guidance 

cues for leukocyte migration towards any given inflammatory insult (460,461). Glycans, 

such as heparan sulphate proteoglycans (HSPGs) that decorate extracellular matrix 

proteins, provide an appropriate scaffold for chemokine immobilisation (153). These 

immobilised chemokines will provide a gradient that can be sensed by the emigrated 

leukocyte (462,463). The receptors for chemokines are located at the cell’s leading 

edge (463-466), which facilitates directional migration. Previous reports have shown 

that antibody or ligand-induced clustering of L-selectin promotes the surface 

expression of chemokine receptors (208,209,467,468). This suggests that L-selectin 

engagement is a pre-requisite for chemokine expression in some leukocytes. Another 

report showed that clustering of L-selectin on naïve T-cells increases cell 

responsiveness to chemokines in vivo, but does not affect the overall expression of the 

chemokine receptor at the cell surface (208). Interestingly, blocking the shedding of L-

selectin in mice through the generation of a “sheddase-resistant” L-selectin knock-in 

mutation dramatically affected chemotaxis (123), although the mechanism underlying 

this observation is not fully understood. Although these reports would suggest that 

shedding forms an important mechanism in sensing chemokine gradients and possibly 

directionality, collectively they are disjointed – as these studies are derived from 

different research labs that ask rather specific questions. In respect of this thesis 

chapter, it was of interest to understand: (a) whether L-selectin shedding contributes 

to cell shape change during TEM, and (b) whether the cytoplasmic tail of L-selectin is a 

key regulatory domain of such responses.  

Wide field fluorescence time-lapse microscopy of THP-1 cells undergoing TEM 

under flow conditions revealed distinct morphological changes as recruitment 

progressed towards eventual TEM. To assess if mutating L-selectin affected cell shape 

change during TEM, three different parameters were measured during recruitment:  

(i) Cell area 
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(ii) Cell circularity 

(iii) Protrusion number  

These characteristics were chosen as they provide information about the dynamic 

nature of the cells during TEM. By measuring cell area, information about how far the 

cell spreads during TEM could be obtained. The circularity provides information about 

how polarised the cell becomes during TEM. The number of protrusions provides 

information about the cell’s “invasiveness” (i.e. the more pseudopods that protrude 

beneath the endothelium, the more invasive the cell is) and priming directionality of 

migration during chemotaxis; one protrusion would show clear directionality whereas 

multiple protrusions would show a lack of directionality. Digital videos obtained during 

each flow assay were analysed to monitor these parameters at an early time point of 

seven minutes, a middle time point of fifteen minutes and a late time point of twenty 

five minutes to determine how they changed over time.   

6.3.6.1 Analysis of Cell Area 

 The area of the cell was measured using ImageJ software to draw around the 

perimeter of the cell, including the protrusions, and calculating the area of the shape 

produced (Figure 6.10). Cells expressing mutated forms of L-selectin were directly 

compared to cells expressing wildtype L-selectin-GFP to decipher whether mutating L-

selectin affected the area of the cell during recruitment. 

 

 

  

 

 

 

 

 

 

A (i) A (ii) 

Figure 6.10: Analysis of cell area. Images of cells from the flow chamber assay were 

opened with ImageJ for the measurement of the cell area. A (i) shows the initial image 

and A (ii) shows the image with the outline of the cell shown in blue.  
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When the area of cells expressing ΔM-N-L-selectin-GFP were compared to 

those expressing wildtype L-selectin-GFP, the results showed that there was no 

significant difference in cell area between these cell lines after seven minutes of 

recruitment (Figure 6.11A). However, after fifteen minutes, cells expressing ΔM-N-L-

selectin-GFP were significantly larger in area than those expressing wildtype L-selectin-

GFP (with a cell area of 1088±21.1 arbitrary units (AU) for ΔM-N versus a cell area of 

984±47.9 AU for wildtype, Figure 6.11B). This difference became more significant by 

twenty five minutes (Figure 6.11C). This highlights the fact that as recruitment of THP-1 

cells progressed, cells expressing the sheddase-resistant form of L-selectin become 

larger in area, implying they had spread further.  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.11: Cell area of THP-1 cells expressing either wildtype or ΔM-N-L-selectin-GFP during 

TEM under flow conditions. The cell area was calculated using ImageJ for THP-1 cell lines 

expressing either wildtype or ΔM-N-L-selectin-GFP undergoing recruitment at seven minutes 

(A), fifteen minutes (B) and twenty five minutes (C). For each experiment three fields of view 

were analysed and between 10 and 40 cells per field of view were measured. Results shown 

are the mean of three experiments with standard deviation as error bars. An independent two-

tailed Student’s t test was used to assess statistical significance. *=p<0.05, ***=p<0.005. 
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Cells expressing the S364A mutant form of L-selectin-GFP were compared to 

cells expressing wildtype L-selectin-GFP to decipher if this mutant affected the area of 

the cell during recruitment. After seven minutes recruitment cells expressing S364A-L-

selectin-GFP were significantly larger in area than those expressing wildtype L-selectin-

GFP (an area of 833±48 AU for S364A compared to an area of 681±46.3 AU for 

wildtype, Figure 6.12A)). However, after fifteen (Figure 6.12B) and twenty five minutes 

(Figure 6.12C) of recruitment there was no significant difference between the area of 

cells expressing S364A-L-selectin-GFP and wildtype L-selectin-GFP. This suggested that 

at early stages of recruitment THP-1 cells expressing S364A-L-selctin-GFP were more 

spread than those expressing wildtype L-selectin-GFP. However, at later stages of TEM 

both cell lines were spread to a similar extent. 

 

 

  

 

 

 

 

 

  

 

 

 

 

 

 

 

Figure 6.12: Cell area of THP-1 cells expressing either wildtype or S364A-L-selectin-GFP during 

TEM under flow. ImageJ software was used to calculate the cell area of THP-1 cell lines 

expressing either wildtype or S364A-L-selectin-GFP undergoing TEM at seven minutes (A), 

fifteen minutes (B) and twenty five minutes (C). Three fields of view were analysed for each 

experiment, with between 10 and 40 cells per field of view were measured. Results shown are 

the mean of three independent experiments with error bars representing the standard 

deviation. An independent two-tailed Student’s t test was used to assess statistical significance. 

*=p<0.05. 
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Next, the area of THP-1 cells expressing S367A-L-selectin-GFP was compared to 

wildtype L-selectin-GFP cells. After seven minutes of flow, cells expressing wildtype L-

selectin-GFP had a significantly greater area than those expressing S367A-L-selectin-

GFP (an area of 681±46.3 AU and 536±21.4 AU respectively, Figure 6.13A). This 

difference became more significant after fifteen minutes of TEM (Figure 6.13B). 

However, after twenty five minutes of flow both cell lines had a similar area 

(821±20.11 AU for wildtype and 759±46.6 AU for S367A, Figure 6.13C). This would 

suggest that at early stages of recruitment cells expressing S367A-L-selectin-GFP were 

smaller than wildtype L-selectin-GFP and therefore less spread. Interestingly, as TEM 

progressed both cell lines were equally spread. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.13: Cell area of THP-1 cells expressing either wildtype or S367A-L-selectin-GFP during 

TEM under flow conditions. The cell area of THP-1 cell lines expressing either wildtype or S367A-

L-selectin-GFP undergoing TEM at seven minutes (A), fifteen minutes (B) and twenty five minutes 

(C) was calculated using ImageJ. For each experiment three fields of view were analysed and 

between 10 and 40 cells per field of view were measured. Results shown are the mean of three 

experiments with standard deviation as error bars. An independent two-tailed Student’s t test 

was used to assess statistical significance. *=p<0.05, ***=p<0.005. 
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Cells expressing SSAA-L-selectin-GFP were next compared to cells expressing 

wildtype L-selectin-GFP cells during TEM. After seven minutes of flow, cells expressing 

wildtype L-selectin-GFP had a significantly greater area than cells expressing SSAA-L-

selectin-GFP (681±46.3 AU and 488±54.3 AU respectively, Figure 6.14A). The same 

result was also observed after fifteen minutes (Figure 6.14B). Analysis after twenty five 

minutes of TEM revealed that the cell area of both cell lines was similar (Figure 6.14C). 

This analysis suggests that at early stages of recruitment cells expressing SSAA-L-

selectin-GFP spread less than wildtype L-selectin-GFP cells, but at the later stages of 

recruitment both cell lines spread to a similar degree. The phenotype displayed by the 

SSAA L-selectin-GFP-expressing cells was most similar to the S367A-expressing cells. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.14: Cell area of THP-1 cells expressing either wildtype or SSAA-L-selectin-GFP during 

TEM under flow conditions. During TEM the cell area was calculated at seven minutes (A), 

fifteen minutes (B) and twenty five minutes (C) for THP-1 cell lines expressing either wildtype or 

SSAA-L-selectin-GFP using ImageJ software. For each experiment three fields of view were 

analysed and between 10 and 40 cells per field of view were measured. Results shown are the 

average of three experiments with standard deviation as error bars. An independent two-tailed 

Student’s t test was used to assess statistical significance. *=p<0.05, ***=p<0.005. 
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The change in cell area over time was analysed in the different cell lines to 

assess how cell spreading altered during the progression of recruitment. Cells 

expressing wildtype L-selectin-GFP increased in area significantly between seven and 

fifteen minutes, but the area significantly decreased between fifteen and twenty five 

minutes (Figure 6.15A). This suggested that between seven and fifteen minutes the 

cells were spreading and sending out protrusions, but between fifteen and twenty five 

minutes the protrusions were being retracted, leading to a decrease in the spread 

area. From these results, it seems that the altered CaM/L-selectin interaction, and 

therefore shedding, could be a driver for these observed changes in spreading. 

THP-1 cells expressing ΔM-N-L-selectin-GFP had the same pattern of change in 

cell area as wildtype L-selectin-GFP cells between seven and fifteen minutes, with an 

increase in the cell area observed. However, between fifteen and twenty five minutes 

the cell area of ΔM-N-L-selectin-GFP cells did not change (Figure 6.15B), showing that 

the protrusions were not retracted, as they appear to be with cells expressing wildtype 

L-selectin-GFP.  

Analysis of the cell area of THP-1 cells expressing S364A-L-selectin-GFP showed 

that there was no change in cell area as time progressed (Figure 6.15C). This shows a 

clear difference from the results observed with wildtype L-selectin-GFP cells, where 

the cell area fluctuated over time.  

Both S367A-L-selectin-GFP (Figure 6.15D) and SSAA-L-selectin-GFP (Figure 

6.15E) were smaller in area than wildtype L-selectin-GFP cells at seven minutes. The 

cell area significantly increased between seven and fifteen minutes, but not to the 

same extent as wildtype L-selectin-GFP cells. Between fifteen and twenty five minutes, 

the spread area of the S367A-L-selectin-GFP and SSAA-L-selectin-GFP cell lines showed 

a slight increase, with a cell area similar to that seen in wildtype L-selectin-GFP cells at 

this time point. This data suggested that S367A- and SSAA-L-selectin-GFP cells spread 

at a slower rate than wildtype L-selectin cells and did not spread as far during the TEM. 

It also suggests that the overall phenotype of the SSAA L-selectin was most similar to S367A, 

and not S364A. 

B 
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Figure 6.15: Analysis of the change in cell area during TEM under flow conditions. (A) The 

area of THP-1 cells expressing wildtype L-selectin-GFP was analysed over time during 

recruitment. The change in cell area over time was then analysed for each of the mutant 

cell lines and compared to the results for cells expressing wildtype L-selectin-GFP ((B) 

shows the results for ΔM-N, (C) shows the results for S364A, (D) shows the results for 

S367A and (E) shows the results for SSAA). For each experiment three fields of view were 

analysed and between 10 and 40 cells per field of view were measured. Results shown are 

the mean of three experiments with standard deviation as error bars. Statistical 

significance between the cell area at each time point was assessed for each cell line using a 

One-way Annova followed by Tukey’s post hoc test (shown in black) and an independent 

two-tailed Student’s t test was used to assess statistical significance between wildtype and 

mutant cell lines at each time point (shown in red). *=p<0.05, **=p<0.01, ***=p<0.005. 
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6.3.6.2 Analysis of Cell Circularity 

The circularity of the THP-1 cells during recruitment was assessed using the 

same images as above, with ImageJ software used for the calculation of circularity. 

Circularity was assessed to decipher whether there was a link between the changes in 

cell area observed above and a decrease in circularity, suggesting the cells were 

sending out protrusions and becoming more polarised – rather than adopting a “fried 

egg” morphology. Circularity was calculated using the formula:  24 perimeterarea  

and was measured on a scale between zero and one, with one being a perfect circle 

and the number decreasing towards zero as the shape becomes more elongated. As 

with cell area, the circularity was assessed after seven, fifteen and twenty five minutes 

of recruitment in the different cell lines, with each mutant being compared to the 

results for cell expressing wildtype L-selectin-GFP. Moreover, changes in circularity will 

allow monitoring of dynamic changes in circularity over time between cell lines.  

 The results comparing the circularity of cells expressing ΔM-N-L-selectin-GFP to 

those expressing wildtype L-selectin-GFP showed that there was no significant 

difference in the circularity between the different cell lines after seven (Figure 6.16A), 

fifteen (Figure 6.16B) and twenty five minutes (Figure 6.16C) of recruitment. This 

suggested that both cell lines became polarised following binding to the endothelium. 
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The circularity of cells expressing S364A-L-selectin-GFP was compared to cells 

expressing wildtype L-selectin-GFP. The results showed that at seven minutes there 

was no significant difference in the circularity of the cell lines (Figure 6.17A). After 

fifteen minutes of recruitment, cells expressing S364A-L-selectin-GFP tended to remain 

more circular than those expressing wildtype L-selectin-GFP, but this was not 

significant (Figure 6.17B). This was also the case after twenty five minutes of flow 

(Figure 6.17C). Altogether, these results imply that there was little difference in the 

circularity between these cell lines, though cell expressing S364A-L-selectin-GFP 

tended to be more circular as TEM progressed. 

 

 

 

 

 

 

 

 

 

Figure 6.16: Circularity of THP-1 cells expressing either wildtype or ΔM-N-L-selectin-GFP 

during recruitment under flow. The circularity was calculated using ImageJ for THP-1 cell 

lines expressing either wildtype or ΔM-N-L-selectin-GFP undergoing recruitment at seven 

minutes (A), fifteen minutes (B) and twenty five minutes (C). For each experiment three fields 

of view were analysed and between 10 and 40 cells per field of view were measured. Results 

shown are the mean of three experiments with standard deviation as error bars. An 

independent two-tailed Student’s t test was used to assess statistical significance.  

Figure 6.17: Circularity of THP-1 cells expressing either wildtype or S364A-L-selectin-GFP during 

TEM under flow conditions. ImageJ software was used to calculate the circularity of THP-1 cell 

lines expressing either wildtype or S364A-L-selectin-GFP undergoing TEM at seven minutes (A), 

fifteen minutes (B) and twenty five minutes (C). For each independent experiment three fields of 

view were analysed and between 10 and 40 cells per field of view were measured. Results shown 

are the mean of three experiments with error bars representing the standard deviation. An 

independent two-tailed Student’s t test was used to assess statistical significance. 
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When the circularity of cells expressing S367A-L-selectin-GFP was compared to 

cells expressing wildtype L-selectin-GFP the results showed that after seven minutes of 

recruitment S367A-L-selectin-GFP cells were significantly more circular in nature than 

wildtype L-selectin-GFP cells (0.814±0.012 versus 0.734±0.040, Figure 6.18A). S367A-L-

selectin-GFP cells were also significantly more circular than wildtype L-selectin-GFP 

cells after fifteen (Figure 6.18B) and twenty five minutes (Figure 6.18C) of recruitment. 

This shows that cells expressing S367A-L-selectin-GFP generally lacked the ability to 

become elongated during TEM. 

  

  

 

 

 

 

 

 

 

 

 

 

 

Figure 6.18: Circularity of THP-1 cells expressing either wildtype or S367A-L-selectin-GFP during 

TEM under flow. The circularity of THP-1 cell lines expressing either wildtype or S367A-L-selectin-

GFP was calculated using ImageJ after seven minutes (A), fifteen minutes (B) and twenty five 

minutes (C) of flow. Three fields of view were analysed for each experiment, with between 10 and 

40 cells per field of view being measured. Results shown are the mean of three experiments with 

standard deviation as error bars. An independent two-tailed Student’s t test was used to assess 

statistical significance. *=p<0.05, ***=p<0.005. 
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The same analysis as above was carried with cells expressing SSAA-L-selectin-

GFP. When the circularity of these cells was compared to that of cells expressing 

wildtype L-selectin-GFP, after seven minutes of recruitment there was no significant 

difference in the circularity of either cell line (Figure 6.19A). The results after fifteen 

minutes of recruitment showed the circularity of cells expressing SSAA-L-selectin-GFP 

was significantly greater than that of cells expressing wildtype L-selectin-GFP 

(0.703±0.015 for SSAA compared to 0.596±0.009 for wildtype, Figure 6.19B). This was 

also observed after twenty five minutes of recruitment (0.714±0.023 versus 

0.629±0.047, Figure 6.19C). These results showed that during recruitment, cells 

expressing SSAA-L-selectin-GFP were more circular and less spread than cells 

expressing wildtype L-selectin-GFP. As with the cell area results, the circularity 

phenotype of the SSAA L-selectin-expressing cells sided with the S367A L-selectin-

expressing cells. 

 

 

 

 

 

 

 

 

 

 

Figure 6.19: Circularity of THP-1 cells expressing either wildtype or SSAA-L-selectin-GFP during 

recruitment under flow conditions. The circularity of cells was calculated using ImageJ for THP-1 

cell lines expressing either wildtype or SSAA-L-selectin-GFP undergoing recruitment at seven 

minutes (A), fifteen minutes (B) and twenty five minutes (C). For each experiment three fields of 

view were analysed and between 10 and 40 cells per field of view were measured. Results shown 

are the means of three experiments with standard deviation as error bars. An independent two-

tailed Student’s t test was used to assess statistical significance. *=p<0.05, ***=p<0.005. 
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As with cell area (Figure 6.15), the circularity over time was assessed for each 

cell line to analyse how it changed as recruitment progressed. The circularity of cells 

expressing wildtype L-selectin-GFP decreased between seven and fifteen minutes of 

recruitment. After twenty five minutes of recruitment the circularity remained 

significantly less than that observed at seven minutes (Figure 6.20A).  

Cells expressing ΔM-N-L-selectin-GFP showed a similar dynamic profile of 

circularity change during recruitment as wildtype L-selectin-GFP, with the circularity 

decreasing between seven and fifteen minutes and remaining low (approx. 0.6) 

between fifteen and twenty five minutes (Figure 6.20B).  

The results for cells expressing S364A-L-selectin-GFP showed no significant 

difference in the circularity of the cells between the time points analysed (Figure 

6.20C). Analysis of cells expressing S367A-L-selectin-GFP revealed that the circularity 

decreased between seven and fifteen minutes, but to a lesser extent than wildtype-L-

selectin-GFP cells (Figure 6.20D). A similar result was also observed with the SSAA-L-

selectin-GFP cell line (Figure 6.20E). These results show that with wildtype L-selectin-

GFP cells, as recruitment proceeds, the cells become less circular. However, mutating 

L-selectin affected this, with the mutants S367A- and SSAA-L-selectin-GFP, remaining 

more circular than wildtype cells and the S364A-L-selectin-GFP mutant causing no 

change in the circularity as recruitment progressed. 
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Figure 6.20: Analysis of the change in cell circularity during THP-1 recruitment under 

flow conditions. (A) The circularity of cells expressing wildtype L-selectin-GFP was 

analysed over time during recruitment. The change in cell circularity over time was then 

analysed for each of the mutant cell lines and compared to the results for cells 

expressing wildtype L-selectin-GFP ((B) shows the results for ΔM-N, (C) shows the results 

for S364A, (D) shows the results for S367A and (E) shows the results for SSAA). For each 

experiment three fields of view were analysed and between 10 and 40 cells per field of 

view were measured. Results shown are the mean of three experiments with standard 

deviation as error bars. Statistical significance between the cell circularity at each time 

point was assessed for each cell line using a One-way Annova followed by Tukey’s post 

hoc test (indicated by black lines).  An independent two-tailed Student’s t test was used 

to assess statistical significance between wildtype and mutant cell lines at each time 

point (shown in red). *=p<0.05, **=p<0.01, ***=p<0.005. 
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When the results for cell area and circularity were analysed together, there was 

a strong correlation between the two parameters, with an increase in cell area causing 

a decrease in circularity (Figure 6.21). This correlation was apparent across all the cell 

lines studied. This showed that as cell area increased during recruitment the cells 

became more elongated, suggesting that the cells were spreading and becoming more 

polarised. 

 

 

 

 

 

 

 

  
Figure 6.21: Comparison of the changes in cell area and circularity of THP-1 cells during 

recruitment under flow. The changes cell area and circularity during recruitment was 

compared for THP-1 cells expressing wildtype L-selectin-GFP (A), ΔM-N-L-selectin-GFP (B), 

S364A-L-selectin-GFP (C), S367A-L-selectin-GFP (D) and SSAA-L-selectin-GFP (E). For each 

experiment three fields of view were analysed and between 10 and 40 cells per field of view 

were measured. Results shown are the mean of three experiments. 
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6.3.6.3 Analysis of Protrusion Dynamics 

Analysis of the spread cell area and circularity during recruitment indicated 

that, as TEM progressed, the THP-1 cells spread and became more polarised, 

suggesting the cells were extending protrusions beneath the monolayer. As the spread 

area and circularity in some cell lines would change over time (Figure 6.21), this 

suggested that the protrusions were extending and retracting over time. To assess if 

these changes were in fact due to dynamic changes in protrusions during recruitment, 

the number of protrusions emanating from each cell was analysed over time. Mutating 

the cytosolic tail of L-selectin-GFP or blocking shedding of L-selectin-GFP significantly 

altered the extent of cell spreading during TEM under flow conditions (Section 6.3.6.1). 

For this reason, analysis of protrusion dynamics was carried out on cells expressing 

wildtype L-selectin-GFP, with the results compared to those found with each of the L-

selectin-GFP mutants. The number of protrusions was analysed at time points similar 

to those indicated before. The cells were categorized as having zero, one, two or 

multiple protrusions (Figure 6.22), with the percentage of cells with each number of 

protrusions recorded at each time point. 

 

 

 

 

 

 

 

 

Previously in the lab THP-1 cells transduced with GFP protein were analysed as 

a control, to ensure the presence of GFP did not affect the protrusion dynamics. The 

results for GFP and wildtype L-selectin-GFP cells were compared at seven and fifteen 

minutes. At the earlier time point both cell lines had similar percentages of cells with 

one or multiple protrusions, but a significantly greater percentage of wildtype L-

Figure 6.22: Examples of Protrusion numbers. Images of cells from the flow chamber 

assay showing examples of cells scored as having one protrusion (A (i)), two protrusions (A 

(ii)) and multiple protrusions (A (iii)).  

A (i) A (ii) A (iii) 
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selectin-GFP cells had two protrusions (Figure 6.23A). After fifteen minutes of 

recruitment there was no significant difference in the protrusion dynamics between 

either of the cell lines (Figure 6.23B). These results show that cells expressing wildtype 

L-selectin-GFP tend to have a greater number of protrusions at the earlier time point 

than GFP cells, suggesting they possibly display a more invasive phenotype. As time 

progressed this effect was diminished, as shown by the decrease in cells classified as 

having multiple protrusions (analysis was undertaken by Karolina Rzeniewicz, PhD 

Thesis December 2013). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.23: Analysis of protrusion dynamics in THP-1 cells during recruitment under flow 

conditions. THP-1 cell protrusion numbers were analysed as cells were recruited to TNF-α-

activated HUVEC monolayers. Analysis was undertaken at seven minutes (A) and fifteen 

minutes (B) with results for cells expressing GFP and those expressing wildtype L-selectin-

GFP compared. Results represent the mean of three independent experiments, with three 

fields of view analysed for each experiment. Error bars represent SEM. Statistical analysis 

was assessed using two-tailed unpaired Student’s T test, *=p<0.05.Experiments and 

analysis were carried out by Karolina Rzeniewicz, PhD Thesis. 
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6.3.6.3.1 Analysis of Protrusion Numbers of THP-1 cells expressing Wildtype L-

selectin-GFP  

The cell lines analysed in this report were transduced with both L-selectin-GFP 

and CaM-RFP. In order to be able to compare the L-selectin-GFP mutant with wildtype 

L-selectin-GFP cell lines, the protrusion dynamics were first assessed in THP-1 cells 

expressing wildtype L-selectin-GFP and CaM-RFP (referred to hereafter as wildtype L-

selectin-GFP). The results were analysed in two ways, firstly cells were scored as having 

zero, one, two or multiple protrusions at seven, fifteen or twenty five minutes (Figure 

6.24A-C). In addition, cells possessing a specific protrusion number were grouped in to 

a single category over time (Figure 6.25A-D). This allowed analysis of the protrusion 

number that was most common at each time point as well as assessing how the 

number of cells with a given number of protrusions changed as recruitment 

progressed. The same method of analysis was then used for the L-selectin-GFP mutant 

cell lines to allow direct comparison between the mutant and wildtype cells. 

  One protrusion was the most prevalent phenotype at seven minutes (Figure 

6.24A). At fifteen minutes the percentage of cells with one protrusion remained 

significantly higher than those with zero, one, two or multiple protrusions (Figure 

6.24B), as was the case at twenty five minutes (Figure 6.24C).  
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Next, cells were categorised on the basis of protrusion number over time. The 

results showed that the percentage of cells with zero protrusions tended to decrease 

over time, but this was not significant (Figure 6.25A). The percentage of cells extending 

a single protrusion tended to increase over time, but once again not significantly 

(Figure 6.25B). Similarly, there was no significant change in the percentage of cells with 

two protrusions over time (Figure 6.25C). Analysis of the percentage of cells with 

multiple protrusions at each time point showed that the percentage of this phenotype 

tended to decrease as time progressed, but this was not significant (Figure 6.25D). 

Together, these results showed that, as time progressed, cells with zero and multiple 

protrusions tended to decrease while the percentage of cells with a single protrusion 

tended to increase. 

These results correlate with the results observed for cell area and circularity, 

with the number of cells protruding increasing between seven and fifteen minutes, 

corresponding with an increase in area and a decrease in circularity. Between fifteen 

and twenty five minutes, when cell area decreased and circularity increased (Figure 

6.21), the number of protrusions produced by each cell likely decreased. 

 

 

 

 

Figure 6.24: Analysis of THP-1 protrusion numbers during TEM with cells expressing wildtype 

L-selectin-GFP. Time-lapse microscopy was used to produce movies of THP-1 cells expressing 

wildtype L-selectin-GFP undergoing TEM. Analysis of protrusion dynamics was carried by scoring 

cells as having zero, one, two or multiple protrusions at seven (A), fifteen (B) and twenty five (C) 

minutes. Results represent the mean of three experiments, with three fields of view studied for 

each experiment and 20-100 cells analysed for each field of view. Error bars represent standard 

deviation. Statistically significant differences were assessed using One-Way Annova with Tukey’s 

post-hoc test.  *=p<0.05. 
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6.3.6.3.2 Analysis of Protrusion Numbers of cells expressing ΔM-N-L-selectin-GFP 

The same analysis of protrusion dynamics was carried out using the sheddase 

resistant THP-1 cell line expressing ΔM-N-L-selectin-GFP. At seven minutes the 

percentage of cells with each protrusion number was similar (Figure 6.26A). After 

fifteen minutes of recruitment a majority of cells produced one protrusion, with two 

protrusions being the next most common phenotype (Figure 6.26B). At twenty five 

minutes there are very few cells with no protrusions. The percentage of cells with one, 

two or multiple protrusions were similar at this time point (Figure 6.26C).  

The change in the protrusion number of ΔM-N-L-selectin-GFP cells was 

assessed over time. The results showed that the percentage of cells with zero 

protrusions significantly decreased as time progressed (from 23.9±9.1% at seven 

minutes to 6±3.9% at twenty five minutes, Figure 6.26D). There was no change in the 

percentage of cells with one protrusion at the different time points (Figure 6.26E). 

Figure 6.25: Analysis of Protrusion Dynamics of THP-1 cells expressing wildtype L-selectin-GFP 

during TEM under flow conditions. The percentage of cells with zero (A), one (B), two (C) or 

multiple (D) protrusions was analysed as TEM progressed. Results are the mean of three 

experiments with error bars showing the standard deviation. For each experiment three fields of 

view were analysed with 20-100 cells characterised per field of view. Statistical analysis was 

undertaken using one-way Anova.  
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Cells expressing ΔM-N-L-selectin-GFP with two protrusions increased significantly 

between seven and fifteen minutes (Figure 6.26F)and the percentage of cells with 

multiple protrusions tended to increase as time progressed, but not significantly 

(Figure 6.26G).   

6.3.6.3.3 Comparison of Protrusion Dynamics of Wildtype and ΔM-N-L-selectin-GFP 

Comparison between cells expressing wildtype and ΔM-N-L-selectin-GFP 

revealed that at seven minutes there were no significant differences in the 

percentages of cells with any of the protrusion numbers (Figure 6.26A). After fifteen 

minutes of recruitment there were significantly more cells with multiple protrusions in 

the ΔM-N-L-selectin-GFP cell line compared to wildtype cells (16.6±2.5% and 3.9±2.0% 

respectively, Figure 6.26B), which persisted at twenty five minutes (Figure 6.26C).  

These results show that as TEM progressed cells expressing ΔM-N-L-selectin-

GFP had a greater number of cells with multiple protrusions compared to cells 

expressing wildtype L-selectin-GFP. This was interesting, as it correlated with ΔM-N-L-

selectin-GFP cells having a significantly larger cell area at fifteen and twenty five 

minutes compared to wildtype L-selectin-GFP cells (Figure 6.11). It is therefore likely 

that the difference in cell area is a result of ΔM-N-L-selectin-GFP cells sending out a 

greater number of protrusions. 
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Figure 6.26: Analysis of THP-1 protrusion dynamics during TEM with cells expressing ΔM-N L-

selectin-GFP, with a comparison between the mutant and wildtype results. Time-lapse 

microscopy was used to produce movies of THP-1 cells, expressing either wildtype or ΔM-N L-

selectin-GFP, undergoing TEM. Analysis of protrusion dynamics was carried out at seven, fifteen 

and twenty five minutes, with cells scored for having no, one, two or multiple protrusions for 

both cell lines. Data was summarised by assessing the percentage of cells with each phenotype 

at seven (A), fifteen (B) and twenty five (C) minutes. The change in the percentage of cells with 

each protrusion number over time was also assessed (D-G). Results represent the mean of three 

experiments, with three fields of view studied for each experiment and 20-100 cells analysed for 
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6.3.6.3.4 Analysis of Protrusion Dynamics of cells expressing S364A-L-selectin-GFP 

The protrusion dynamics of the cell line expressing the L-selectin mutant 

S364A-L-selectin-GFP was also assessed as above. The results showed that at seven 

minutes the percentage of cells with one protrusion was significantly higher than other 

protrusion numbers (Figure 6.27A). The percentage of cells with multiple protrusions 

was also significantly lower than those with either zero or two protrusions. This 

distribution of protrusion numbers was conserved at fifteen (Figure 6.27B) and twenty 

five minutes (Figure 6.27C). 

When the change in the percentage of cells carrying a specific protrusion 

number was analysed over time, the results showed that as time progressed there was 

no change in the percentage of cells with zero (Figure 6.27D), one (Figure 6.27E), two 

(Figure 6.27F) or multiple protrusions (Figure 6.27G). This directly correlated with the 

results observed for both cell area and circularity with this cell line, where there was 

no change as time progressed (Sections 6.3.61 and 6.3.6.2). This provides further 

evidence that changes in cell area and circularity is a result of the changes in 

protrusion number.  

6.3.6.3.5 Comparison of Protrusion Dynamics of Wildtype and S364A-L-selectin-GFP 

 Given that the number of cells with each protrusion did not change as 

recruitment progressed, it was of interest how this compared to cells expressing 

wildtype L-selectin-GFP. The percentage of cells with zero protrusions was significantly 

higher at fifteen  and twenty five minutes for cells expressing S364A-L- compared to 

cells expressing selectin-GFP wildtype L-selectin-GFP (Figure 6.27D). As TEM 

progressed, cells expressing wildtype L-selectin-GFP tended to have a larger proportion 

of cells with one protrusion compared to cells expressing S364A-L-selectin-GFP, with a 

significant difference observed at twenty five minutes (Figure 6.27E). The percentage 

of cells with two protrusions was similar for both cell lines at every time point (Figure 

6.27F). Comparison of the percentage of cells with multiple protrusions at each time 

each field of view. Error bars represent standard deviation of three experiments. Statistically 

significant differences within the ΔM-N cell line were assessed using One-Way Anova with 

Tukey’s post-hoc test (represented by the black lines). Statistical differences between 

wildtype and ΔM-N cell lines at each point were assessed using an independent, two-tailed 

Student’s T test (red lines), *=p<0.05, **=p<0.01. 
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point revealed that the percentage of cells was similar in both cell lines at seven 

minutes and twenty five minutes. At fifteen minutes the percentage of cells with 

multiple protrusions was significantly higher with cells expressing S364A-L-selectin-GFP 

(Figure 6.27G). These results confirm that mutating the residue S364 to alanine 

blocked the change in protrusion dynamics over time, compared to cells expressing 

wildtype L-selectin-GFP.  
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6.3.6.3.6 Analysis of Protrusion Number of Cells Expressing S367A-L-selectin-GFP 

The S367A L-selectin-GFP mutant cell line was analysed to assess the effect of 

this mutant on protrusion dynamics. The results showed that at all time points 

analysed a majority of the cells had either zero or one protrusion, with very few having 

multiple protrusions (Figure 6.28A-C).  

The change in protrusion dynamics of S367A-L-selectin-GFP cells was analysed 

over time. The results showed that the number of cells with zero protrusions 

decreased between seven and fifteen minutes significantly (from 38.9±5.3% to 

24.4±3.4%, Figure 6.28D). The percentage of cells with one protrusion increased 

between seven and fifteen minutes, with the percentage of cells at fifteen and twenty 

five minutes being significantly higher than that at seven minutes (Figure 6.28E). As 

time progressed there was no change in the percentage of cells with two (Figure 6.28F) 

or multiple protrusions (Figure 6.28G).  

6.3.6.3.7 Comparison of Protrusion Numbers of Wildtype and S367A-L-selectin-GFP 

 When comparing wildtype and S367A-L-selectin-GFP cell lines, the results 

showed that the percentage of cells with zero protrusions was significantly higher with 

the S367A-L-selectin-GFP cell line compared to wildtype L-selectin-GFP cells at all the 

time points analysed (Figure 6.28D). In contrast, wildtype L-selectin-GFP cells had a 

higher percentage of cells with two protrusions compared to S367A-L-selectin-GFP, 

with a significant difference observed at fifteen and twenty five minutes (Figure 6.28F). 

The percentage of cells with multiple protrusions tended to be higher with wildtype L-

selectin-GFP cells than S367A-L-selectin-GFP cells, but this was only significant at 

twenty five minutes (Figure 6.28G).  

Figure 6.27: Analysis of THP-1 protrusion dynamics during TEM with cells expressing S364A L-

selectin-GFP, with a comparison between the mutant and wildtype results. Movies of THP-1 

cells, expressing either wildtype or S364A L-selectin-GFP, undergoing TEM were produced by 

time-lapse microscopy. Analysis of protrusion dynamics was carried out at seven (A), fifteen (B) 

and twenty five minutes (C), with cells scored for having no, one, two or multiple protrusions for 

both cell lines. The change in the percentage of cells with each protrusion number over time 

was also assessed (D-G). Results represent the mean of three experiments, with three fields of 

view studied for each experiment and 20-100 cells analysed for each field of view and error bars 

representing the standard deviation. Statistically significant differences within the S364A cell 

line was assessed using One-Way Anova with Tukey’s post-hoc test (represented by black lines). 

Statistical differences between wildtype and S364A cell lines at each point were assessed using a 

Student’s T test (red lines),*=p<0.05, **=p<0.01. 
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These results show that mutating residue S367 to alanine reduces the number 

of protrusions the THP-1 cells produce during recruitment and this inhibition of 

protrusion formation becomes more apparent as TEM progressed. The fact that cells 

expressing S367A-L-selectin-GFP produce fewer protrusions was consistent with them 

being more circular and smaller in area than wildtype L-selectin-GFP (Figures 6.13 and 

6.18). 
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6.3.6.3.8 Analysis of Protrusion Dynamics of Cell Expressing SSAA-L-selectin-GFP 

The protrusion dynamics of cells expressing the double serine to alanine 

mutation of L-selectin (SSAA) was also assessed. After seven minutes of recruitment, a 

majority of the cells had zero or one protrusion, with very few cells with two or 

multiple protrusions (Figure 6.29A). The results at fifteen minutes showed that a 

majority of the cells had one protrusion, very few had multiple protrusions and a 

similar percentage had either zero or two protrusions (22.4±1.3% and 24.9±1.2% 

respectively, Figure 6.29B). At twenty five minutes the results were similar to that 

observed at fifteen minutes (Figure 6.29C).  

How the percentage of cells with each protrusion number changed over time 

was also assessed. The results showed that the percentage of cells not protruding 

decreased over time (Figure 6.29D). The percentage of cells with one protrusion 

increased significantly between seven and fifteen minutes (from 51.0±3.6% to 

59.2±0.36%, Figure 6.29E). For both two (Figure 6.29F) and multiple (Figure 6.29G) 

protrusions the percentage of cells increased between seven and fifteen minutes and 

then remained the same between fifteen and twenty five minutes. In general these 

results showed that the percentage of cells with zero protrusions decreased over time 

and the percentage of cells with two or multiple protrusions increased. 

6.3.6.3.9 Comparison of Protrusion Numbers of Wildtype and SSAA-L-selectin-GFP 

Comparison between cells  expressing wildtype and SSAA-L-selectin-GFP 

showed that at seven minutes more SSAA-L-selectin-GFP cells were not protruding 

compared to wildtype L-selectin-GFP cells, but this was just under statistical 

Figure 6.28: Analysis of THP-1 protrusion dynamics during TEM with cells expressing S367A L-

selectin-GFP, with a comparison between the mutant and wildtype results. Time-lapse 

microscopy was used to produce movies of THP-1 cells undergoing TEM, expressing either 

wildtype or S367A L-selectin-GFP. Analysis of protrusion dynamics was carried out by scoring 

cells as having zero, one, two or multiple protrusions for both cell lines. Data was summarised 

by assessing the percentage of cells with each phenotype at seven (A), fifteen (B) and twenty 

five (C) minutes. The change in the percentage of cells with each protrusion number over time 

was also assessed (D-G). Results represent the mean of three experiments, with three fields of 

view studied for each experiment and 20-100 cells analysed for each field of view. Error bars 

represent standard deviation. Statistically significant differences within the S367A cell line were 

assessed using One-Way Anova with Tukey’s post-hoc test (black lines).  Statistical differences 

between wildtype and S367A cell lines at each point were assessed using a Student’s T test (red 

lines), *=p<0.05, **=p<0.01, ***=p<0.005. 
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significance (p=0.0507, Figure 6.29A). The results for all other protrusion numbers at 

seven minutes were similar for both wildtype and SSAA-L-selectin-GFP cell lines. This 

pattern was also observed at fifteen (Figure 6.29B) and twenty five minutes (Figure 

6.29C). These results show that the SSAA-L-selectin-GFP mutant leads to an increase in 

the number of cells not protruding at all the time points studied.  

Once again these results correlate with the analysis of the cell area and 

circularity, with SSAA-L-selectin-GFP cells being smaller in size, more circular and 

having fewer cells protruding than wildtype L-selectin-GFP cells. This provides further 

evidence that the changes in cell area and circularity observed during TEM is a result of 

the cells sending out protrusions. 
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Figure 6.29: Analysis of THP-1 protrusion dynamics during TEM with cells expressing SSAA L-

selectin-GFP, with a comparison between the mutant and wildtype results. Time-lapse microscopy 

was used to produce movies of THP-1 cells, expressing either wildtype or SSAA L-selectin-GFP, 

whilst undergoing TEM. Analysis of protrusion dynamics was carried out at seven (A), fifteen (B) and 

twenty five (C) minutes, with cells scored for having no, one, two or multiple protrusions for both 

cell lines. The change in the percentage of cells with each protrusion number over time was also 

assessed (D-G). Results represent the mean of three experiments, with three fields of view studied 

for each experiment and 20-100 cells analysed for each field of view. Error bars represent standard 

deviation. Statistically significant differences within the SSAA cell line was assessed using One-Way 

Anova with Tukey’s post-hoc test (black lines). Statistical differences between wildtype and SSAA 

cell lines at each point were assessed using an independent two-tailed Student’s T test (red lines), 

*=p<0.05, **=p<0.01. 



297 
 

6.4 Discussion 

 In the previous chapters the interaction between CaM and L-selectin was 

studied in vitro using biophysical and biochemical techniques, and subsequently in 

resting THP-1 cell lines. Experiments in this chapter focussed on the CaM/L-selectin 

interaction when THP-1 cells were co-cultured with HUVECs, either under static or flow 

conditions. Using FRET/FLIM approaches enabled direct assessment of interaction 

during TEM.   

6.4.1 Loss of interaction between L-selectin and CaM in transmigrated 

pseudopods of THP-1 cells 

 Analysis of the interaction between wildtype L-selectin-GFP and CaM-RFP 

during TEM by FRET/FLIM showed that the interaction was detected in all parts of the 

cell at early time points, but the interaction was exclusively lost in the transmigrated 

part of the cell at later time points (Section 6.3.2). This suggested that L-selectin was 

shed in the transmigrated part of the cell at this time, but not in the non-transmigrated 

part of the cell. This led to the question of why a polarity in cleavage of L-selectin 

occurred. It was possible that L-selectin was retained in the non-transmigrated part of 

the cell to allow it to play a role in secondary tethering (see Section 1.2.1). Secondary 

tethering is thought to be important for amplifying the accumulation of leukocytes to 

the endothelium. It has been shown that blocking L-selectin with a function blocking 

antibody causes a loss of secondary tethering (469-472). Alon et al (1996) (469) found 

that L-selectin-dependent secondary tethering accounted for 70% of the accumulated 

neutrophils on P- and E-selectin. Secondary tethering has also been observed in vivo 

(318), with L-selectin deficient mice lacking secondary tethering (318), again showing 

the role of L-selectin in this process.  

 It has previously been thought that L-selectin was only responsible for the 

initial capture of leukocytes from the blood flow and then was quickly shed once cells 

had firmly adhered to the endothelium (97,127). The results here suggested that L-

selectin remained bound to CaM up to six minutes after capture, so was therefore 

presumably still in its full length form. The images taken at six minutes clearly showed 

that the cell had begun to transmigrate, with clear protrusions observed under the 

HUVEC monolayer. The fact that L-selectin is un-cleaved at this point allows it to play a 

role in cellular processes during TEM. L-selectin has been shown to bind to several 

* F 
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proteins in the extracellular matrix and basement membrane such as heparan sulphate 

proteoglycans (Section 1.3.5.2) (HSPGs)(153). It is possible that L-selectin binding to 

these “sub-endothelial” ligands is required for the directional migration of the 

leukocyte towards the inflammatory insult. A Previous study using an elaborate in vivo 

chemotaxis model demonstrated that L-selectin-deficient leukocytes accumulate on 

the endothelial surface at the same rate as wildtype cells, but undergo less emigration 

(130). The study also showed that L-selectin-deficient leukocytes failed to chemotax 

towards a soluble chemokine (130). The fact that L-selectin remains intact six minutes 

after capture suggests that it could play a role in signalling to promote directed cell 

migration, or at least during TEM.  

 

6.4.2 Phosphorylation of S364 promotes the dissociation of CaM 

specifically within the non-transmigrated part of the cell 

 The FRET efficiency results for the serine-to-alanine mutants showed that when 

S364 was mutated to S364A, CaM failed to dissociate within the transmigrated part of 

the cell, suggesting that it is possible that phosphorylation of this residue was 

responsible for the dissociation of CaM seen in wildtype L-selectin-GFP cells (Figure 

6.30). It has been shown that activation of PKC isozymes by either PMA or 

chemoattractant receptors resulted in an increase in phosphorylation of L-selectin (95) 

and that the phosphorylation occurred at the serine residues, as the responses were 

blocked by the SSAA mutation (95). Further analysis revealed the PKC isozymes θ and ι  

were responsible for the phosphorylation (214). It is therefore likely that L-selectin is 

phosphorylated after cell activation and this could be responsible for CaM dissociation.  
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Cells expressing wildtype L-selectin-GFP and the S367A-L-selectin-GFP mutation 

had a similar profile of interaction with CaM-RFP at twenty five minutes. However, at 

six minutes the interaction between S367A-L-selectin-GFP and CaM-RFP was also lost 

in the transmigrated part of the cell, unlike wildtype L-selectin-GFP cells. This could be 

because blocking the phosphorylation of S367 promotes the phosphorylation of S364, 

leading to a decrease in the interaction between CaM and L-selectin. Using anti-

phospho-serine antibodies to study the phosphorylation state of the cytosolic tail of L-

selectin after activation may help provide information about whether mutating one 

serine to alanine affects the phosphorylation state of the other. The role of other 

binding partners of L-selectin must also be taken into account. The ERM proteins may 

be important in enabling CaM to interact with L-selectin and the S367A mutation could 

affect the ERM interaction and as a result the CaM is no longer able to interact with L-

selectin.  

As explained in the previous chapter (Section 5.3.7), CaM and L-selectin do not 

interact with one another in resting THP-1 cells, possibly due to the tail of L-selectin 

interacting with PS in the plasma membrane. It is possible that phosphorylation of 

S367 is responsible for dissociation of L-selectin from the plasma membrane. It is 

predicted that the interaction between the plasma membrane and L-selectin is due to 

electrostatic interactions between positive amino acids in the cytosolic tail of L-selectin 

and negatively charged PS in the plasma membrane. It is therefore probable that the 

addition of the negatively charged phosphate group to S367 will interrupt this charge-

charge interaction. This may explain why the FRET efficiency between L-selectin-

S367A-GFP and CaM-RFP is much lower in the transmigrated part of the cell at six 

minutes compared to wildtype L-selectin-GFP cells. It is possible that at the early time 

point L-selectin is still interacting with the plasma membrane in the S367A mutated 

cells and as a result CaM-RFP is not able to interact with L-selectin.  This may also 

Figure 6.30: Potential mechanism of L-selectin shedding in monocytes undergoing TEM. After six 

minutes of TEM, CaM (blue circle) was bound to the tail of L-selectin (green line) in both the 

transmigrated and non-transmigrated parts of the cell and therefore L-selectin was protected from 

extracellular cleavage. At twenty five minutes residue S364 was phosphorylated (red P) in the 

transmigrated part of the cell only leading to CaM dissociation in this subcellular region and 

shedding of L-selectin. The fact that L-selectin remains intact in the non-transmigrated part of the 

cell allows it to play a potential role in secondary tethering of leukocytes. 
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explain why the FRET efficiency in resting THP-1 cells was much higher with the S364A 

mutation (Figure 5.15). It is possible that when phosphorylation of S364 is blocked by 

the alanine mutation it promotes phosphorylation of S367. This could mean that L-

selectin is no longer able to interact with PS in the plasma membrane and therefore 

CaM binding is observed in the S364A mutant in resting cells. Again, phospho-specific 

antibodies would prove to be an invaluable resource in deciphering the subcellular 

distribution of S364 and S367 phosphorylation during TEM. 

It is plausible that phosphorylation of the two serine residues regulate L-

selectin differently, with phosphorylation of S367 occurring early after cell activation, 

causing interruption of the interaction between L-selectin and the plasma membrane 

and allowing CaM to bind to L-selectin and protect it from shedding. At a later time 

point, between six and twenty five minutes after recruitment, S364 is phosphorylated, 

causing CaM dissociation from L-selectin and therefore L-selectin cleavage. (Figure 

6.31). By producing cell lines with one serine residue mutated to alanine and the other 

mutated to aspartate to mimic phosphorylation (e.g. S364A/S367D or S364D/S367A 

mutants, where one residue mimics phosphorylation and phosphorylation of the other 

residue is blocked) it may be possible to assess the role of phosphorylation of each 

residue individually without the complication of not knowing the phosphorylation 

status of the other serine residue. This will provide clear evidence of the role of 

phosphorylation of each residue and enable one to decipher the difference between 

the two. One will need to consider the structural constraints a double 

alanine/aspartate mutant may make on the cytoplasmic tail, so caution should be 

taken with this approach.  
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Figure 6.31: The possible role of phosphorylation of different serine residues in the cytosolic tail of L-selectin. It is hypothesised that 

phosphorylation of the serine residues play a role in regulating L-selectin function. One possibility is that in resting THP-1 cells both serine 

residues are unphosphorylated and the tail of L-selectin interacts with PS (shown in orange) in the plasma membrane, meaning CaM (shown in 

blue) is not able to interact with L-selectin. Early after cell activation, S367 is phosphorylated by PKC isozymes. This means the interaction 

between L-selectin and PS in the plasma membrane is disrupted and CaM is able to bind to L-selectin and protect it from shedding. At a later 

point of TEM, phosphorylation also occurs at residue S364. This leads to CaM dissociation and L-selectin is cleaved by ADAM 17 at the 

extracellular cleavage site. 
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The FRET efficiency results for SSAA at twenty five minutes are similar to those 

of S364A at the same time point, with CaM interacting with L-selectin in all parts of the 

cell. This was consistent with phosphorylation of S364 being responsible the 

dissociation of CaM in the transmigrated part of the cell. However, at six minutes little 

to no interaction between CaM and SSAA-L-selectin was observed. This may support 

the hypothesis that phosphorylation of S367 is required to disrupt the tail of L-selectin 

interacting with the plasma membrane and allow CaM binding at the early time point. 

It is also possible that this mutation affects the association of the other binding 

partners of L-selectin and this in turn may affect the interaction of CaM.  Studying the 

interaction between this mutant and the other partners, such as moesin, may provide 

information as to why CaM binding was altered with this mutation.  

The sheddase-resistant mutant ΔM-N-L-selectin-GFP had a similar profile of 

interaction as the SSAA-L-selectin-GFP mutant, with no interaction observed at six 

minutes and interaction in all subcellular locations of the cell at twenty five minutes. 

As with SSAA this may be due to this mutation affecting the dynamic 

phosphorylation/dephosphorylation of the tail. As this form of L-selectin cannot be 

shed, it is susceptible to continual phosphorylation/dephosphorylation and this 

dysregulation of phosphorylation may lead to the differences in CaM binding observed 

here. 

The results above suggest that the phosphorylation state of the tail at 

particular stages of TEM may be important in regulating CaM binding and, if this was 

affected, it could alter CaM binding. The limitation of the FRET/FLIM analysis here was 

that it only allows analysis of the interaction at very specific time points, with the cells 

being fixed at a certain time after the start of the flow chamber assay. This only 

provides information of the interaction at that particular time point. It was possible 

that CaM dissociates and re-associates several times during TEM. One possible way of 

monitoring the interaction continuously during TEM is to use real time FRET, where the 

FRET efficiency is measured as the experiment progresses. Real time FRET would also 

give vital clues as to whether the interaction was influenced by protrusions, if the 

protrusions themselves had an influence on the interaction, or both. Currently, this 

technique is rare and is under development in only very few labs around the world and 

is discussed in more detail in Section 7.6. 
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Since writing this thesis, Dr Angela Rey Gallardo from the Ivetic lab has 

confirmed that phospho-mimic serine-to-aspartate mutagenesis of the cytoplasmic 

serines confirmed that the S364D-GFP mutant blocked interaction with CaM-RFP at 

both six and twenty five minutes. In contrast, binding of CaM-RFP to the S367D-GFP 

mutant behaved similarly to wild type L-selectin. Lastly, the SSDD-GFP mutant blocked 

interaction to a similar extent as S364D. This provides further evidence that 

phosphorylation of S364 is important in regulating the interaction between L-selectin 

and CaM. 

 

6.4.3 Shedding is compromised in serine-to-alanine mutants when 

THP-1 cells are co-cultured with HUVEC 

  Co-culturing THP-1 cells with HUVEC monolayers revealed that in cells 

expressing wildtype L-selectin, the maximal level of stump formation of L-selectin was 

seen at around ten minutes, suggesting that the highest level of shedding occurred at 

this time. When S364 is mutated to alanine there was no significant difference in the 

levels of stump at any of the time points, suggesting there was no peak time of 

shedding. The S367A mutant had a similar profile of stump formation at the different 

time points as wildtype L-selectin cells, with peak shedding possibly occurring between 

ten and twenty minutes, but due to the fact that large error bars were produced it was 

not possible the make firm conclusions. In fact, the results from this assay were 

disappointing due to the variable detection of the anti-GFP antibody. Several 

contaminating bands were also visible between full length L-selectin-GFP and the 

stump making analysis of the results difficult. An alternative antibody has recently 

been purchased, which provides a clearer signal. These experiments can now be 

repeated with the new antibody in the hope that clearer results are produced. Due to 

the limitations of this method and the fact that different baselines had to be used, it 

was not possible to undertake direct comparison between the different cell lines. This 

meant that the trend in protein level changes was compared to assess if there was a 

difference. This was not ideal and in the future the assay could be modified, possibly 

by lowering the number of THP-1 cells used in the assay so the same baseline can be 

used for all cell lines. 
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 Although the anti-GFP antibody used in these experiments lacked specificity for 

L-selectin-GFP, one interesting observation from this assay was the fact that GFP signal 

was observed in the unbound fraction after incubation with the HUVEC monolayer 

increased when the serine residues in the L-selectin cytosolic tail were mutated to 

alanine, with the S364A-L-selectin-GFP cells having the strongest signal in the unbound 

fraction (Figure 6.8). This suggested that the serine to alanine mutations led to the 

THP-1 cells not binding as effectively to the HUVEC monolayer compared to wildtype 

cells. It is possible that this binding deficiency could be linked to an inability of the cells 

to send protrusions beneath the HUVEC monolayer. Analysis of the protrusion 

dynamics revealed that cells expressing S367A-L-selectin-GFP sent out fewer 

protrusions, with a greater proportion of cells not protruding, compared to wildtype L-

selectin-GFP cells (Figure 6.28). This could result in the cells being more easily removed 

from the HUVEC monolayer, during wash steps. The results for cells expressing S364A-

L-selectin-GFP showed that the protrusion dynamics did not change as TEM progressed 

(Figure 6.27) and the same was true for cell area (Figure 6.12). This suggests that 

although these cells did send out protrusions, they are smaller in size than wildtype L-

selectin-GFP cells and may not have protruded as far under the monolayer. As a result 

of this S364A-L-selectin-GFP cells may be removed from the HUVEC monolayer more 

readily than wildtype L-selectin-GFP cells and may explain why a greater number of 

cells were found in the unbound fraction. Clearly, more work is required to optimise 

this technique before any firm conclusions can be made. 

  

6.4.4 Mutating the tail of L-selectin affects the size, shape and number 

of protrusions of the cell during TEM 

 The analysis of the cell area, circularity and protrusion number during TEM 

showed that these factors were affected by mutation of L-selectin, with S367A- and 

SSAA-L-selectin-GFP cells being in general, smaller, more circular and producing fewer 

protrusions than wildtype and ΔM-N-L-selectin-GFP cells being larger and producing 

more protrusions. S364A-L-selectin-GFP cells were similar to wildtype at early time 

points, but as TEM progressed this similarity was lost.  
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Protrusions have been observed in several different leukocytes following cell 

capture (473). The function of these protrusions is not entirely clear but it is thought 

that they play a crucial role in TEM. They are thought to be produced as leukocytes 

remain on the apical surface of the endothelium and patrol the local environment until 

a suitable place for diapedesis is found (473). Once on the basolateral surface, it is 

thought that they search for an area in the basement membrane permissive for 

migration towards the extravascular space (473). It is also possible that the protrusions 

detect subendothelial chemokines to direct leukocyte chemotaxis (474). It has been 

shown that the integrin LFA-1 is responsible for the movement of the invasive 

protrusions in lymphocytes and it has been shown to interact with its ligand ICAM-1 on 

the luminal surface of the endothelial and basolateral surface (474). As the adhesion 

between these protrusions and the endothelium must be strong to resist the shear 

flow in the vessel it is expected that this process is integrin-dependent and not 

selectin-dependent. This leads to the question as to why mutations in L-selectin affect 

the size and number of these protrusions. The fact that inhibiting the shedding of L-

selectin leads to an increase in the number of protrusions suggests that extracellular 

cleavage of L-selectin may play an important role in limiting the number of protrusions. 

Results have suggested that cleavage of L-selectin is required for directional migration 

towards a chemokine in the mouse cremaster (123,475). This implies that the multiple 

protrusion phenotype could be responsible for the loss of directional migration (Figure 

6.32). The reason S367A- and SSAA-L-selectin-GFP cell lines do not protrude to the 

same extent as wildtype L-selectin-GFP cells remains unclear. It is possible that other 

binding partners of L-selectin, such as moesin or ezrin, may play a role in regulating 

protrusion dynamics in correlation with L-selectin shedding. It is possible that these 

mutations affect moesin/ezrin interacting with L-selectin and as a result protrusion 

formation is affected. Further research is required to prove if this is the case. Another 

possibility to take into consideration is the importance of dynamic changes in 

phosphorylation of L-selectin as TEM progresses. Phosphorylation of S367 may be 

required for enhancing the production of protrusions. Further research is required fully 

understand the role of S367 in regulating protrusion dynamics.  
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Figure 6.32: Shedding of L-selectin may limit the number of protrusions produced during TEM. 

(A) In leukocytes expressing wildtype L-selectin (shown in green), as cells transmigrate L-selectin is 

cleaved from the surface, leading to few protrusions and cells undergo directional migration. (B) 

When L-selectin shedding is blocked, cells produce multiple protrusions, which leads to a 

reduction in directional migration. 

A 

B 



307 
 

Chapter 7: Discussion 

 The purpose of this thesis was to investigate the interaction between L-selectin 

and its binding partners moesin and CaM and in doing so decipher the mechanisms 

regulating the interactions. As this was an interdisciplinary PhD, both biophysical and 

cell biological methods were utilised to gain further insight into the interaction. To this 

end, recombinant proteins were produced as described in Chapter 3, with the proteins 

produced used to study the interaction with L-selectin cytosolic tail peptides using 

biophysical techniques such as ITC, NMR and MST (Chapter 4). In conjunction with this 

THP-1 cells were engineered to express L-selectin-GFP and CaM-RFP/moesin-RFP (as 

described in Chapter 5) and this allowed the analysis of the interaction in intact cells 

and during TEM (Chapter 6). 

 The main findings of the biophysical analysis are: i) CaM interacts with wildtype 

L-selectin cytosolic tail peptide in the presence and absence of calcium, though the 

binding mechanisms may differ, and ii) neither phosphorylation nor alanine mutation 

of serine residues in the cytosolic tail of L-selectin affect the interaction between the 

two molecules. The cell biological results also provide some interesting results, 

namely: i) CaM dissociates from L-selectin specifically in the transmigrated part of the 

cell as TEM progresses, suggesting L-selectin is cleaved only in this part of the cell, ii) 

blocking the phosphorylation of S364 by mutating it to alanine inhibits the dissociation 

of CaM in the transmigrated part of the cell during TEM and iii) mutating serine 

residues within L-selectin affects the protrusion dynamics of the cell as TEM 

progresses. These results are summarised in Table 7.1. 

As previously explained (Section 1.3.7.3) CaM has been implicated in protecting 

L-selectin from shedding, with phosphorylation of serine residues 364 and 367 

predicted to regulate CaM binding to L-selectin. The biophysical data here does not 

support this theory, whereas the cell biological data does suggest phosphorylation of 

S364 is responsible for the dissociation of CaM from L-selectin. This discrepancy 

highlights the importance of studying proteins in the correct context. In the case of 

transmembrane proteins the role of the plasma membrane should be taken into 

account. 
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 ITC MST GFP-Trap Assay FRET/FLIM 
analysis in 

resting cells 

FRET/FLIM analysis during TEM 

20°C, 
ApoCaM 

20°C, 
CaM-Ca 

10°C, 
CaM-Ca 

6 Minutes 25 Minutes 

       Non-
transmigrated 
part of the cell 

Transmigrated 
part of the cell 

Non-
transmigrated 
part of the cell 

Transmigrated 
part of the cell 

Wildtype Binding 
observed 

Binding 
observed 

Binding 
observed 

Binding 
observed 

Binding observed No binding 
observed 

Binding 
observed 

Binding 
observed 

Binding 
observed 

No binding 
observed 

S364A Binding 
observed 

Not able 
to 

measure 
binding 

Binding 
observed 

Binding 
observed 

Binding 
observed-to a 

lesser extent than 
wildtype 

Binding 
observed 

FRET similar to 
wildtype, 

suggesting 
binding  

FRET similar to 
wildtype, 

suggesting 
binding 

FRET similar to 
wildtype, 

suggesting 
binding 

FRET 
significantly 
greater than 

wildtype, 
suggesting 

binding  
S367A Binding 

observed 
Binding 

observed 
Binding 

observed 
Binding 

observed 
Binding 

observed- to a 
lesser extent than 

wildtype 

No 
significant 

difference to 
wildtype, 

suggesting 
no binding 

FRET similar to 
wildtype, 

suggesting 
binding 

FRET 
significantly 

less than 
wildtype, 

suggesting no 
binding 

FRET similar to 
wildtype, 

suggesting 
binding 

FRET similar to 
wildtype, 

suggesting no 
binding  

SSAA ND ND ND ND Binding 
observed- to a 

lesser extent than 
wildtype 

Binding 
observed 

FRET 
significantly 

less than 
wildtype, 

suggesting no 
binding 

FRET 
significantly 

less than 
wildtype, 

suggesting no 
binding 

FRET similar to 
wildtype, 

suggesting 
binding 

FRET 
significantly 
greater than 

wildtype, 
suggesting 

binding 
ΔM-N ND ND ND ND Binding observed No 

significant 
difference to 

wildtype, 
suggesting 
no binding 

FRET 
significantly 

less than 
wildtype, 

suggesting no 
binding 

FRET 
significantly 

less than 
wildtype, 

suggesting no 
binding 

FRET similar to 
wildtype, 

suggesting 
binding 

FRET 
significantly 
greater than 

wildtype, 
suggesting 

binding 

Table 7.1: Summary of the interaction between L-selectin and CaM studied using different methodologies. A comparison of the results from the different methods 

used to study the interaction between L-selectin and CaM, including biophysical, biochemical and in vivo methods, highlighting the differences observed with these 

methods. ND= Not Done, showing experiments that were not carried out. 
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7.1 What leads to the interaction between CaM and L-selectin 

upon THP-1 binding to activated endothelial cells?  

The results in Section 5.3.7 of this thesis show that the L-selectin/CaM 

interaction is not observed in resting cells (analysed in poly-L-lysine-bound cells), most 

likely due to the tail of L-selectin interacting with the inner leaflet of the plasma 

membrane. The interaction is then present in all parts of the cell once recruitment to 

the endothelial monolayer has occurred, showing the association must occur at some 

point after adhesion to the activated endothelium. Possible mechanisms allowing CaM 

interaction upon activation are shown in Figure 5.16. A tempting hypothesis is that 

binding of ERMs causes the dissociation of L-selectin tail from the plasma membrane 

and allows CaM binding, which has been shown to occur in vitro (223). To test if this is 

the case in THP-1 cells, the FRET/FLIM between L-selectin-GFP and moesin/ezrin-RFP 

can be assessed in resting cells and after six minutes of flow. It would be expected that 

the interaction between L-selectin-GFP and moesin/ezrin-GFP would be lacking in 

resting cells but present after 6 minutes of recruitment if ERMs are responsible for 

desorbing the tail of L-selectin from the plasma membrane upon cell activation.  

It is also plausible that S367 phosphorylation is required for the dissociation of 

L-selectin from the plasma membrane at early stages of recruitment (Figure 6.31). This 

is highlighted by the fact that S367A-L-selectin-GFP and CaM-RFP did not interact in 

the transmigrated part of the cell after six minutes of flow (Figure 6.4), suggesting S367 

phosphorylation maybe required for the CaM binding in the transmigrated part of the 

cell. This could be supported by the FRET/FLIM results in resting cells (Figure 5.15), 

where the interaction between CaM-RFP and S364A-L-selectin-GFP observed may be a 

result of this alanine mutation promoting the phosphorylation of S367 and therefore 

dissociation of L-selectin from the plasma membrane, allowing CaM to bind.  

One cannot formally exclude that phosphorylation of one of the serine residues 

is dramatically affected by blocking the phosphorylation of the other. For example, 

S364 may be hyper-phosphorylated in the S367A mutant and this could be responsible 

for blocking CaM binding to L-selectin in the transmigrated part of the cell. To test if 

this is the case, experiments could be undertaken using L-selectin embedded into 

liposomes enriched with different types of phospholipids, similar to the experiments 



310 
 

carried out by Deng et al (2011) (216), except using the serine to alanine or serine to 

aspartate (as a phosphomimetic mutation) mutants of L-selectin and assessing if the 

interaction between the L-selectin cytosolic tail and the liposome is affected by any of 

these mutations.  

7.2 How is polarisation of L-selectin shedding controlled?   

The mechanism controlling the location of CaM dissociation and therefore L-

selectin shedding in the transmigrated part of the cell remains unclear. It is possible 

that ligation of L-selectin with ECM ligands activates signalling pathways, leading to the 

phosphorylation of L-selectin and therefore CaM dissociation, as described below in 

more detail (Section 7.4). It is also possible that ADAM17, the metalloprotease 

responsible for cleaving L-selectin (details in Section 1.3.4), is localised to specific parts 

of the cell during TEM. It has been shown that ADAM17 expression increases in T-cells 

stimulated with PMA (476), however, the location of the expression during TEM has 

not been investigated. It would be interesting to observe if an increase ADAM17 

surface expression correlates with the location of L-selectin shedding during TEM. 

ADAM17 has been shown to be associated with lipid rafts (101,477), with the 

thought that this compartmentalisation is a possible method of restricting its activity. 

Analysis has revealed that the proportion of the ADAM17 substrate TNF-α in the lipid 

raft increased when cells are treated with metalloprotease inhibitors (477), suggesting 

TNF-α relocated to the lipid raft in preparation for ADAM17 cleavage. It is possible that 

L-selectin clustering promotes its movement to lipid rafts (discussed in more detail in 

Section 7.4) to facilitate its cleavage by ADAM17. Interestingly, the disruption of lipid 

rafts by depleting cholesterol increases ADAM17-dependent cleavage of TNF-α and its 

receptors (477), as well as interleukin-6 receptor (IL-6R) (478), showing that the 

presence of lipid rafts provides an environment for the control of the location of 

shedding. This provides a possible method of regulation for limiting shedding to the 

transmigrated part of the cell, with specific signals activated upon diapedesis leading 

to L-selectin relocation to lipid rafts exclusively in that part of the cell.  

It is possible that activation of p38 mitogen-activated protein kinase (MAPK) 

plays a role in regulating L-selectin shedding. p38 has been shown to be activated by L-

selectin clustering (193) and this leads to the shedding of L-selectin (96,479). Analysis 
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of the mechanism behind this revealed that p38 phosphorylates the tail of ADAM17, 

which increases its surface expression (6). This could mean that ADAM17 activity is 

limited to the transmigrated part of the cell by the activation of p38 only occurring in 

this location. 

7.3 The importance of the polarisation of L-selectin shedding: Is 

there a direct link to regulating protrusions?  

The fact that CaM dissociated from L-selectin in the transmigrated part of the 

cell raised the question why polarisation of shedding occurs. The intact L-selectin on 

the non-transmigrated part of the cell may play a role in secondary tethering, which is 

thought to enhance the recruitment of leukocytes to the endothelium. The importance 

of L-selectin-dependent secondary tethering is discussed in Section 6.4.1. Interestingly, 

L-selectin-dependent secondary tethering has been observed in atherosclerotic 

plaques and has therefore been implicated in recruiting more leukocytes to the 

plaques and therefore enhancing the development of the disease (318). It would 

therefore be interesting to understand the mechanism behind the protection of L-

selectin shedding in the non-transmigrated part of the cell as inducing the shedding of 

L-selectin at this location may be a possible therapeutic target for protecting against 

the development of atherosclerosis.  

 When L-selectin is shed, levels of soluble L-selectin (sL-selectin) are detectable 

in the blood (480), with such increases observed in many disease states, including type 

I diabetes (481), myocardial ischemia during angina (482) and systemic lupus 

erythematous (483). sL-selectin still retains its ligand binding capability (480) and is 

hypothesised to act as a repressor of leukocyte tethering by competing with ligands. 

The results here suggest that L-selectin is shed below the endothelium during TEM and 

this raises the question as to how it can be detected in the blood. One possibility is 

that endothelial cells transport sL-selectin from the abluminal to luminal side by 

retrograde transcytosis (463). Several different cytokines have been shown to be 

transported in this manner by endothelial cells so they can be presented to leukocytes. 

These include interleukin-8 (Il-8) (484), chemokine C-C motif ligand 2 (CCL2) (485,486) 

and chemokine C-X-C motif ligand 10 (CXCL10) (486), with cargo vesicles containing 

caveolin implicated in the process (484,486,487). Interestingly, heparan sulphate (HS) 
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has been shown to be important in the transcytosis of Il-8, with the C-terminal of this 

molecule shown to interact with HS (484). When this interaction is blocked, Il-8 is not 

present on the luminal surface of the endothelium (484). As explained in Section 

1.3.5.2 L-selectin is capable of binding to HS presented on proteoglycans. It is 

therefore possible that sL-selectin interacting with HS facilitates its transportation to 

the luminal surface so it can act to inhibit the recruitment of further leukocytes. 

Limiting the shedding of L-selectin to the transmigrated part of the cell will 

mean that the stump of L-selectin is only generated in this part of the cell. As stated in 

Section 1.3.4 it is possible the stump acts as a signalling molecule to activate different 

signalling pathways from full length L-selectin. The activation of L-selectin stump-

specific signalling pathways in the transmigrated part of the cell implies that they 

might be important for the directional migration. This was assessed in vivo by placing a 

KC-coated agarose cube on the surface of the cremaster a specific distance from a post 

capillary venule and leukocyte migration towards the chemoattractant was assessed in 

wildtype, L-selectin KO, and sheddase-resistant mice (123,130). The results showed the 

lack of stump formation blocked chemotactic migration (123,130). It is possible that 

p38 MAPK is involved in the formation of the stump for chemotaxis. As stated above 

(Section 7.2), p38 has been implicated in L-selectin shedding and when p38 is inhibited 

emigration and chemotaxis is blocked (488). This provides further evidence that 

shedding of L-selectin and therefore stump formation is important for chemotaxis. 

Analysis of cell protrusion number suggested that shedding of L-selectin is 

required for limiting the number of protrusions as TEM progresses (Section 6.4.4). 

Signalling through the formation of the stump may be responsible for reducing the 

number of protrusions and therefore promoting chemotaxis as stated above. It 

remains unclear the reason why cells expressing S367A had fewer protrusions than 

wildtype cells. It is possible that this mutation leads to hyper-phosphorylation of S364, 

leading to CaM dissociation and L-selectin shedding, potentially reducing the number 

of protrusions. It is also possible that serine to alanine mutations affect the binding of 

other partners to L-selectin. A likely candidate is the ERM family of proteins via their 

interaction with cell division control protein 42 (Cdc42). It has been shown that Cdc42 

is a regulator in the formation of invasive filopodia in T-cells at the apical endothelial 

surface (489). Cdc42 is a member of the RhoGTPase family, which have been shown to 
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regulate cytoskeletal dynamics. When T-cells were treated with an inhibitor of Cdc42, 

the cells were able to arrest on HUVECs, but did not crawl or undergo TEM and no 

invasive filopodia were observed (489), showing the importance of Cdc42 activity in 

the formation of protrusions and their role in diapedesis. It has previously been shown 

that ERMs can regulate the activity of RhoGTPases (Section 1.5.2). Dbl is a RhoGEF 

which activates Cdc42. It has been shown that ezrin binds to Dbl and recruits it to lipid 

rafts and this leads to activation of Cdc42 at these sites (281). The expression of a 

dominant negative form of ezrin led to a reduction in Cdc42 activity and inhibited cell 

migration in MDA-MB-231 cell line (281). This shows that ezrin may play a role in 

protrusion formation in these cells via Cdc42 activation. It is therefore possible a 

similar mechanism exists in the THP-1 cell line. It is plausible that ERM interaction with 

L-selectin is required for the formation of protrusions and L-selectin shedding limits 

this process. Unearthing the effect of the serine to alanine mutations on the ERM/L-

selectin interaction during TEM may provide evidence that ERMs are responsible for 

controlling protrusion number of THP-1 cells during TEM.  

 

7.4 Is there a link between L-selectin shedding and clustering? 

 It has been shown that L-selectin exists as a monomer in the plasma membrane 

(490) and  cross-linking of L-selectin with antibody (6) or using multivalent ligands 

(114,180) causes shedding of L-selectin. It is hypothesised that this is due to the 

clustering of L-selectin. As it was observed in this thesis that CaM only dissociates from 

L-selectin in the transmigrated part of the cell and it is therefore likely L-selectin is only 

shed in this location, it was of interest to determine if this correlated with the 

clustering of L-selectin. Previously in the lab the clustering of L-selectin has been 

investigated using THP-1 cells transduced with L-selectin-GFP and L-selectin-RFP, so 

FRET/FLIM analysis could be undertaken to observe where and when L-selectin 

clustered during TEM. Interestingly, the results showed that L-selectin was only 

clustered in the transmigrated part of the cell after fifteen minutes of recruitment 

(Karolina Rzeniewicz, unpublished data), correlating with the location of the predicted 

shedding of L-selectin. It would therefore be plausible to predict that clustering of L-

selectin is a prerequisite for the shedding of L-selectin. The mechanism behind this 

remains unclear, though membrane location may be important. It has been shown that 
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cross-linking of L-selectin in Jurkat cells relocates it to lipid rafts (450,491). It is possible 

that tyrosine phosphorylation of the cytosolic tail of L-selectin may act as a signal for 

the movement of L-selectin to the lipid rafts as a study revealed that L-selectin located 

in lipid rafts is tyrosine phosphorylated (450). To test the importance of tyrosine 

phosphorylation, cells expressing a tyrosine to alanine mutated form of L-selectin 

could be generated and the location of the adhesion molecule could be assessed after 

cell activation to observe if this mutation blocks the translocation of L-selectin to lipid 

rafts. As described in Section 7.2 ADAM17 is located in lipid rafts and therefore L-

selectin re-localisation to the lipid raft may be required for shedding.  

 As described in Section 1.3.5.3 multivalent ligands have been shown to cause 

the shedding of L-selectin through the clustering of L-selectin, with a distance of 17-35 

Å between the ligands required for the induction of shedding. HSPGs have been 

suggested as potential ligands for L-selectin in the ECM (see Section 1.3.5.2 for details). 

The HS side chains of HSPGs range from 50 to 150 saccharides in length and are only 

sulphated at particular sections, normally 2-8 saccharides in length (492). These highly 

sulphated regions, designated S domains, are uniformly distributed along the chain 

and are separated by non-sulphated regions 16-18 saccharides in length (493), which 

equates to approximately 17 Å between each S domain (494). It may be the case that 

the S domains of HSPGs are responsible for clustering L-selectin and causing the 

shedding of L-selectin. This provides an interesting hypothesis for the regulation of L-

selectin shedding in the transmigrated part of the cell, summarised in Figure 7.1. 

Clustering of L-selectin by multivalent ligands in the ECM causes the re-localisation of 

L-selectin to lipid rafts and activates signalling pathways. After a time L-selectin is 

phosphorylated on residue S364 causing CaM dissociation and L-selectin shedding.    
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Figure 7.1: Model of clustering of L-selectin inducing shedding. (A) Once the leukocyte has begun transmigration, L-selectin encounters multivalent 

ligands, such as HSPGs, in the ECM which cause L-selectin to cluster (①). It is likely that this activates signalling pathways in the cell, such as PKC and 

p38 activation (②). At this time CaM (shown in blue) is bound to the tail of L-selectin, protecting it from shedding. (B) Activation of p38 and PKC may 

result in the phosphorylation of ADAM17 (by p38) and L-selectin (by PKCs)(①, leading to the activation of ADAM17and the dissociation of CaM from L-

selectin (②). (C) Once CaM has dissociated L-selectin and ADAM17 is activated, L-selectin is shed (①), with the remaining stump potentially regulating 

chemotaxis (②). 
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Interestingly, clustering of L-selectin is also thought to be important for 

initialising signalling pathways, as highlighted by Killock et al (2009)(3). As described in 

Section 1.3.6 the Ras pathway is activated by L-selectin cross-linking via Sos/Grb (197), 

with Sos shown to interact with ERMs (282) and CaM interacting with k-Ras (286). It is 

therefore plausible that clustering of L-selectin results in activation of the Ras pathway 

by bring k-Ras and Sos into close proximity (Figure 7.2). It is possible that clustering of 

L-selectin induces its shedding via the activation of this signalling pathway. Ras 

signalling has been shown to activate the enzyme Rac-1 in lymphocytes (495), with k-

Ras specifically shown to be able to activate Rac-1 (Figure 7.2, 1)(496). In turn Rac-1 is 

capable of activating phospholipase C (PLC) β2 and γ2 (Figure 7.2, 2)(497), both of 

which are expressed in leukocytes (498,499). PLCs produces diacylglycerol (DAG) 

(Figure 7.2, 3), which in turn is capable of activating conventional and novel PKCs 

(Figure 7.2, 4)(500), such as PKCθ, which has been shown to interact with and 

phosphorylate L-selectin (Figure 7.2, 5, details in Section 1.3.7.2). It is therefore 

conceivable that Ras activation leads to the activation of PKC, which in turn 

phosphorylates L-selectin causing CaM dissociation and shedding (Figure 7.2, 6). As 

stated in Section 7.2, L-selectin clustering also activates p38, which phosphorylates and 

activates ADAM17. The Ras/Rac pathway is also capable of activating p38 (Figure 7.2, 

7) (501). It is therefore possible that PKCs and p38, activated by Ras signalling, act in 

unison to shed L-selectin following clustering (Figure 7.2). 
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Figure 7.2: Activation of the Ras signalling pathway following clustering of L-selectin. It is proposed 

that in its monomeric form L-selectin interacts with CaM and ERM in a trimeric complex. It has been 

shown that CaM is able to interact with k-Ras and ERM interacts with Sos. Clustering of L-selectin 

may result in the activation of the Ras signalling pathway by bring k-Ras and Sos into close proximity 

of each other. This could potentially activate PKCs, via Rac activation of PLC (1-4), which could result 

in the phosphorylation of the cytosolic tail of L-selectin (5). This would result in the dissociation of 

CaM from L-selectin (6), meaning the adhesion molecule would be shed. At the same time Ras/Rac 

signalling may also activate p38 MAPK (7), which has been shown to phosphorylate and activate 

ADAM17 (8), enabling it to cleave L-selectin. PKCs may interact with the stump of L-selectin, inducing 

PKC-dependent signalling events. Figure modified from Killock, D. J., and Ivetic, A. (2010) The 

cytoplasmic domains of TNF-a-converting enzyme (TACE/ADAM17) and L-selectin are regulated 

differently by p38 MAPK and PKC to promote ectodomain shedding. Biochemical Journal 428, 293-

304 (6). 
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7.5 The importance of L-selectin cytosolic tail modification in 

regulating leukocyte activity 

 The results in this thesis highlight the importance of modifications to the 

cytosolic tail of L-selectin in regulating leukocyte function. Phosphorylation of serine 

residues plays a role in regulating CaM binding (Section 6.3.4) and controlling the 

invasiveness of the leukocyte by regulating the protrusion dynamics (Section 6.3.6.3). 

It is worth noting that in this thesis the role of serine phosphorylation is investigated 

by mutating the residues to alanine and thereby blocking phosphorylation. This means 

that one can only presume that the resulting phenotypes are due to the inhibition of 

phosphorylation. However, it is not possible to discern if the alanine mutations are 

interfering with L-selectin activity independently of blocking phosphorylation. For this 

reason studies should be carried out using alanine to aspartate mutations to act as 

phosphomimetics, so results with both mutations can be analysed together to provide 

clearer information. In the Ivetic lab experiments with cell lines co-expressing CaM-RFP 

with L-selectin S364D-GFP or S367D-GFP have been undertaken. Results have revealed 

that the S364D mutation blocks CaM interaction with L-selectin in all parts of the cell 

at all time points assessed during the flow chamber assay (Dr Angela Rey, unpublished 

data). This correlates with the fact that when phosphorylation of S364 is blocked by 

alanine mutation, CaM dissociation is inhibited. In contrast, the S367D mutant does 

not affect binding to CaM, and is in fact indistinguishable from the FRET profiles of 

wildtype L-selectin (Dr Angela Rey, unpublished data) at early and late time points. 

Where the S367A mutant showed reduced binding to CaM, the S367D had restored 

this level of interaction to wildtype levels. These results would favour the idea that 

phosphorylation of S367 is actually dissociating the L-selectin tail from the plasma 

membrane. There is however, one drawback to using phosphomimetic mutants as 

they cannot be dephosphorylated. The data in this thesis hints at the fact that dynamic 

phosphorylation/dephosphorylation of the L-selectin cytosolic tail may be important 

for the correct regulation of activity, as highlighted by results with the ΔM-N-L-selectin 

mutant (Section 6.4.2). The ideal situation would be to monitor the phosphorylation 

state of L-selectin in real time as TEM progresses. The generation of phospho-specific 

antibodies to detect the phosphorylated species at S364 or S367 in primary 
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transmigrating monocytes would help complement the molecular mechanism 

uncovered so far. 

 

7.6 Concluding Remarks 

 The results in this thesis reveal the complexity of the regulation of L-selectin 

interacting with its binding partners, with the interactions varying depending upon the 

activation status of the cell. Due to experimental limitations it was not possible to 

pinpoint the exact moment of CaM association/dissociation from L-selectin during TEM 

in real time. One possible way of following the dynamic interaction between L-selectin 

and its binding partners during TEM would be to carry out real-time FRET. Technology 

has been developed in order to a acquire high speed FLIM data and has been used to 

analyse FRET efficiency in pituitary cells plated on coverslips and placed in a chamber 

with media (502). However, with moving objects spurious signals are generated (503), 

so using this method in conjunction with the parallel plate flow chamber would not be 

possible. A previous study was able to assess the activity of RhoA in T-cells during 

crawling and transmigration on HUVEC monolayers using real-time FRET (504). It is 

possible that the same method could be employed to assess the interaction of L-

selectin with its binding partners. It is worth noting however, that flow was not used in 

the above experiment, so therefore it will have to be assessed if this technique can be 

used to measure the real-time FRET with the parallel plate flow chamber assay. 

This thesis focuses on the role of L-selectin and its binding partners during TEM. 

It is likely however, that L-selectin works in conjunction with other adhesion molecules 

to regulate cell activity. An example of this has been highlighted by work in the Ivetic 

lab. It was revealed that the cross-linking of other adhesion molecules, namely CD43 

and PECAM-1 led to the clustering of L-selectin (Karolina Rzeniewicz, unpublished 

data). This would suggest there is a signalling event linking the different adhesion 

molecules, though the mechanism behind this remains unclear. It will be important to 

decipher the signals that link the adhesion molecules, and understand how signals 

converge to regulate the process of recruitment, as this may provide novel targets for 

therapeutics. This would be particularly useful in understanding under acute and 

chronic inflammatory settings. 
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The results provided in this thesis show the effect of blocking the phosphorylation of 

serine residues in the cytosolic tail of L-selectin expressed in a monocytic cell line. The 

next step would be to assess the effect these mutations have on leukocyte activity in 

an animal model. This could be investigated using lentivirus to deliver wildtype L-

selectin-GFP and mutated L-selectin-RFP into the bone marrow of L-selectin knockout 

mice. It would then be possible to assess the response of the different leukocytes to an 

inflammatory insult. The response to acute inflammation could be assessed by 

injecting zymosan into the peritoneal cavity to induce peritonitis. The number of 

neutrophils and monocytes recruited to the peritoneum could then be assessed 48-

72hrs after injection and the number of GFP-positive and RFP-positive cells could be 

compared to decipher if the mutation had an effect on leukocyte recruitment. It would 

also be interesting to assess if mutating L-selectin has an effect on chronic 

inflammation, such as the development of atherosclerosis. A similar method above 

could be used to analyse this, except L-selectin/ApoE double knockout mice could be 

transduced with the lentivirus. The mice would then be fed a high fat diet to induce 

the development of atherosclerotic plaques and the recruitment of the different 

leukocytes to the plaques could then be assessed. This would allow one to observe if 

the mutations that effect leukocyte TEM in the parallel plate flow chamber have an 

effect on in vivo acute and chronic inflammation.  
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