
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 

 

 
 

 

 

King’s Research Portal 
 

DOI:
10.1098/rspa.2015.0641

Document Version
Publisher's PDF, also known as Version of record

Link to publication record in King's Research Portal

Citation for published version (APA):
Land, S., Gurev, V., Arens, S., Augustin, C. M., Baron, L., Blake, R., Bradley, C., Castro, S., Crozier, W. A.,
Favino, M., Fastl, T. E., Fritz, T., Gao, H., Gizzi, A., Griffith, B. E., Hurtado, D. E., Krause, R., Luo, X., Nash, M.
P., ... Niederer, S. (2015). Verification of cardiac mechanics software: benchmark problems and solutions for
testing active and passive material behaviour. Proceedings of the royal society of london series a-Mathematical
and physical sciences, 471(2184), Article 20150641. https://doi.org/10.1098/rspa.2015.0641

Citing this paper
Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may
differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination,
volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are
again advised to check the publisher's website for any subsequent corrections.

General rights
Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights.

•Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research.
•You may not further distribute the material or use it for any profit-making activity or commercial gain
•You may freely distribute the URL identifying the publication in the Research Portal
Take down policy
If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing details, and we will remove access to
the work immediately and investigate your claim.

Download date: 31. Dec. 2024

https://doi.org/10.1098/rspa.2015.0641
https://kclpure.kcl.ac.uk/portal/en/publications/76c746f1-9da4-45c3-a122-3c9249c11daf
https://doi.org/10.1098/rspa.2015.0641


rspa.royalsocietypublishing.org

Research
Cite this article: Land S et al. 2015
Verification of cardiac mechanics software:
benchmark problems and solutions for testing
active and passive material behaviour. Proc. R.
Soc. A 471: 20150641.
http://dx.doi.org/10.1098/rspa.2015.0641

Received: 9 September 2015
Accepted: 30 October 2015

Subject Areas:
biomedical engineering, computational
biology, computational mechanics

Keywords:
cardiac mechanics, verification,
benchmark, VVUQ

Author for correspondence:
Sander Land
e-mail: sander.land@kcl.ac.uk

Verification of cardiac
mechanics software:
benchmark problems
and solutions for testing active
and passive material behaviour
Sander Land1, Viatcheslav Gurev2, Sander Arens3,

Christoph M. Augustin4, Lukas Baron5, Robert Blake6,

Chris Bradley7, Sebastian Castro8, Andrew Crozier4,

Marco Favino9, Thomas E. Fastl1, Thomas Fritz5,

Hao Gao10, Alessio Gizzi11, Boyce E. Griffith12,

Daniel E. Hurtado8, Rolf Krause9, Xiaoyu Luo10,

Martyn P. Nash7,13, Simone Pezzuto9,14,

Gernot Plank4, Simone Rossi15, Daniel Ruprecht9,

Gunnar Seemann5, Nicolas P. Smith1,13,

Joakim Sundnes14, J. Jeremy Rice2,

Natalia Trayanova6, Dafang Wang6,

Zhinuo Jenny Wang7 and Steven A. Niederer1

1Department of Biomedical Engineering, King’s College London,
London, UK
2Thomas J. Watson Research Center, IBM Research, Yorktown
Heights, NY 10598, USA
3Department of Physics and Astronomy, Ghent University, Ghent,
Belgium
4Institute of Biophysics, Medical University of Graz, Graz, Austria
5Institute of Biomedical Engineering, Karlsruhe Institute of
Technology, Karlsruhe, Germany

2015 The Authors. Published by the Royal Society under the terms of the
Creative Commons Attribution License http://creativecommons.org/licenses/
by/4.0/, which permits unrestricted use, provided the original author and
source are credited.

 on December 17, 2015http://rspa.royalsocietypublishing.org/Downloaded from 

http://crossmark.crossref.org/dialog/?doi=10.1098/rspa.2015.0641&domain=pdf&date_stamp=2015-12-16
mailto:sander.land@kcl.ac.uk
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://rspa.royalsocietypublishing.org/


2

rspa.royalsocietypublishing.org
Proc.R.Soc.A471:20150641

...................................................

6Department of Biomedical Engineering and Institute for Computational Medicine, Johns Hopkins University,
Baltimore, MD 21218, USA
7Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
8Department of Structural and Geotechnical Engineering, Pontifica Universidad Católica de Chile, Chile
9Center for Computational Medicine in Cardiology, Institute of Computational Science, Università della Svizzera
italiana, Lugano, Switzerland
10School of Mathematics and Statistics, University of Glasgow, Glasgow, UK
11Department of Engineering, Nonlinear Physics and Mathematical Modeling Lab, University Campus Bio-Medico of
Rome, Rome, Italy
12Interdisciplinary Applied Mathematics Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
13Department of Engineering Science, University of Auckland, Auckland, New Zealand
14Simula Research Laboratory, Fornebu, Norway
15Civil and Environmental Engineering Department, Duke University, Durham, NC 27708-0287, USA

SL, 0000-0001-8572-251X

Models of cardiac mechanics are increasingly used to investigate cardiac physiology. These
models are characterized by a high level of complexity, including the particular anisotropic
material properties of biological tissue and the actively contracting material. A large
number of independent simulation codes have been developed, but a consistent way of
verifying the accuracy and replicability of simulations is lacking. To aid in the verification
of current and future cardiac mechanics solvers, this study provides three benchmark
problems for cardiac mechanics. These benchmark problems test the ability to accurately
simulate pressure-type forces that depend on the deformed objects geometry, anisotropic
and spatially varying material properties similar to those seen in the left ventricle and
active contractile forces. The benchmark was solved by 11 different groups to generate
consensus solutions, with typical differences in higher-resolution solutions at approximately
0.5%, and consistent results between linear, quadratic and cubic finite elements as well as
different approaches to simulating incompressible materials. Online tools and solutions are
made available to allow these tests to be effectively used in verification of future cardiac
mechanics software.

1. Introduction
Computational models of the heart are increasingly used to improve our understanding of cardiac
physiology, including the effect of specific genetic changes and animal models of disease [1–3].
In addition, patient-specific models are being developed to predict and quantify the response
of clinical interventions, identify potential treatments and evaluate novel devices [4,5]. For this
purpose, a large number of independent simulation codes have been developed, ranging from
open-source software and commercial products to a range of closed-source codes specific to
individual research groups [6–8]. The shift of cardiac models from a research tool to a potential
clinical product for informing patient care will bring cardiac models into the remit of clinical
regulators. With this transition comes the requirement for improved coding standards. The move
towards higher standards of accuracy and reproducibility is mirrored in many other fields of
scientific computation [9]. A recent report by the National Research Council on the verification,
validation and uncertainty quantification of scientific software addressed some of these issues
with the aim of improving processes in computational science [10]. They define three specific
categories of interest:
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— Verification. Determining how accurate a computer program solves the equations of a
mathematical model.

— Validation. Determining how well a mathematical model represents the real world
phenomena it is intended to predict.

— Uncertainty quantification. The process of quantifying uncertainties associated with
calculating the result of a model.

In cardiac modelling, uncertainty quantification has long been part of the accepted set of
techniques, both in parameter sensitivity studies and studying the effects of biological variability.
Approaches to uncertainty quantification include sensitivity analysis, visualization of parameter
sweeps and the use of regression techniques [11–14]. More formal approaches have also been
applied, including quantification of variability in high-throughput experiments and propagation
of this variability in models, and high-order stochastic collocation methods to analyse variability
in high-throughput ion channel data [15,16].

The variability and uncertainty of biological systems create significant challenges for
validating computational models [9,17]. Historical data from the experimental literature cover
a wide range of conditions with respect to temperature, species, genetic strain and other
methodological detail [18]. As comprehensive and consistent experimental datasets are rarely
available, the data most useful for validating predictions are nearly always used for constraining
parameters and developing the model.

Verification is the process of determining a code’s accuracy in solving the mathematical model
it implements. This is an area that has also been widely recognized in high-stakes fields such
as aeronautics, nuclear physics and weather prediction [17,19,20]. Until recently, verification has
had a limited role in cardiac modelling. More recently, concerted verification efforts have been
made in the area of cardiac electrophysiology solvers. These include an N-version benchmark
now being used routinely [21], analytic solutions becoming available [22] and more benchmark
tests currently being organized to expand these tests to cover more complex electrophysiological
phenomena.

Similar domain-specific verification tests have been lacking for simulating cardiac mechanics.
The heart has unique mechanical properties, including a contractile force generated by the tissue
itself, and complex nonlinear and anisotropic material features. There are a range of analytic
solutions which are commonly used in testing the correctness and convergence of solid mechanics
software, most notably Rivlin’s problems on torsion, inflation and extension of an incompressible
isotropic cylinder [23]. Although these analytic solutions for solid mechanics problems help in
verifying the correctness of mechanics codes, these typically do not test several crucial aspects
specific to the simulation of cardiac mechanics. First, these problems with analytic solutions tend
to be limited to isotropic material properties, whereas cardiac material is typically modelled as
transversely isotropic or orthotropic. Second, complex pressure boundary conditions, in which
both the area and orientation of the surface changes, are poorly tested. Third, active contraction
of tissue is not tested, while it is the driving force in a simulation of cardiac function. As a
result, simulation codes in the field are often under-verified, and a standard problem set is
lacking. Similar limitations to using simple test problems with available analytic solutions were
encountered in the field of computational fluid dynamics, which has a long history of verification
and validation [19]. Lessons from this field include extending verification efforts to include
benchmarks of carefully defined complex problems, and direct comparisons with experiments
tailor-made for simulation validation. A complementary strategy for investigating reproducibility
in the field of cardiac mechanics was the recent STACOM challenge [24], which asked participants
to predict left-ventricular deformation between two given magnetic resonance imaging (MRI)
datasets. As this challenge left many aspects open to user choice, including mesh generation,
boundary constraints and material models, and did not aim for a single consensus solution, it is
less suitable as a verification problem.

This report presents a set of three problems for the validation of cardiac mechanics software,
along with an N-version benchmark of 11 different implementations. We have defined a series of
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benchmark problems that can be solved by typical cardiac mechanical simulators, with features
that are important for solving cardiac mechanics problems.

2. Methods
We propose to verify cardiac mechanics codes using an N-version benchmark. For this approach
to be effective, we need to ensure a large enough number of participants to achieve a community
consensus for the solution, while ensuring that the test problems cover the salient properties of
the codes. The cardiac mechanics benchmark problems should be simple enough to be clearly and
unambiguously communicated, whereas complex enough to test important aspects of software
codes not routinely tested using other methods. To ensure that any differences in solutions are
due to differences in the implementation and not owing to ambiguities in the model definition or
the use of different image processing tools, we use analytic descriptions for the geometry in all
problems. However, we have not required the use of a specific numerical method, finite-element
basis type or approach to modelling incompressibility, to maximize the number of potential
participants. We have created a set of three different problems, each testing different aspects
important to solving cardiac mechanics. The first problem uses a simple beam geometry with a
typical cardiac constitutive law, testing the correct implementation of the governing equations,
material properties and pressure boundary conditions changing with the deformed surface
orientation and area. The second problem is independent of fibre direction and uses isotropic
material properties, but tests a more complex left ventricular geometry. Finally, the third problem
uses an identical geometry to the second problem, but adds a varying fibre distribution and
active tension.

The free choice of numerical method and basis types poses challenges for comparing results
and solution formats. As a compromise, the VTK file format is used for data output and
processing, as this format is already in common use, several participants had built-in support
for it in their software, and there is an extensive application program interface (API) for reading
and processing results [25].

(a) Solid mechanics theory and notation
We start with a brief overview to the theory of solid mechanics to introduce notation and
concepts referred to in the problem description. We denote the undeformed location in Cartesian
coordinates of a point as X and the deformed position as x = x(X). The deformation gradient is
defined as F = ∂x/∂X, and E = 1

2 (FTF − I) is the Green–Lagrange strain tensor. The governing
equations for the deformation of an incompressible solid in steady-state equilibrium can be
stated as

div σ = 0 (balance of momentum) (2.1)

and
under the constraint J = 1 (incompressibility), (2.2)

where J = det(F) and σ is the Cauchy stress tensor which is derived from a strain energy function
W(E) by

JF−1σF−T = T = ∂W
∂E

, (2.3)

where T is the second Piola–Kirchhoff stress tensor. Apart from these basic governing equations,
theory is dependent on the numerical approach. Further derivation usually proceeds by
the principle of virtual work to derive a finite-element weak form. Reviews of modelling
mechanics and finite-element approaches can be found in the literature, e.g. Holzapfel [26] or
Bonet & Wood [27]. Regardless of the discretization used, the equations are both inherently
nonlinear, and additional nonlinearity is introduced when using a nonlinear strain energy
function W(E), which is the norm in cardiac mechanics simulations. To maximize the number of
participants and encourage a wide range of solutions, we have made no particular requirement
or recommendation for specific numerical approaches in defining the benchmark problems.
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(b) Constitutive law
Cardiac tissue consists of a mesh of collagen with cardiac muscle cells, or ‘cardiomyocytes’.
Cardiomyocytes are approximately 100 × 10 × 10 μm in size, with a distinct long axis, often
referred to as the ‘fibre direction’. Taking into account, the fibre direction leads to models
with a transversely isotropic constitutive law [28–30]. In addition, laminar sheets have been
identified, with more collagen links between cells in a sheet, compared with between sheets.
Taking these sheets into account gives rise to an orthotropic material law [31–34]. However,
histological examination shows that while sheets are clearly present in the mid-myocardium, their
presence is not uniform throughout the myocardial wall [35]. In addition, defining a problem
with orthotropic material properties requires a more complex problem description, and not all
participants have software that supports simulating this kind of material.

For the benchmark problems, we use the transversely isotropic constitutive law by Guccione
et al. [28]. It was anticipated that this constitutive law would be the most widely implemented
by potential participants because it is relatively simple and has been widely used in cardiac
modelling. Its strain energy function is given by

W = C
2

(eQ − 1) (2.4)

and

Q = bf E2
11 + bt

(
E2

22 + E2
33 + E2

23 + E2
32

)
+ bfs

(
E2

12 + E2
21 + E2

13 + E2
31

)
, (2.5)

where Eij are components of the Green–Lagrange strain tensor E in a local orthonormal coordinate
system with fibres in the e1-direction, and where C, bf , bt, bfs are the material parameters which
will be defined for each of the three problem separately. In all problems, the material is fully
incompressible, i.e. J = 1 as stated in equation (2.2). Please note that in all problems the direction
of the pressure boundary condition changes with the deformed surface orientation, and its
magnitude scales with the deformed area. There were no restrictions on the methods used to
satisfy incompressibility, and participants used both Lagrange multiplier methods as well as
quasi-incompressibility approaches with penalty functions to satisfy this constraint.

(c) Problem descriptions
The following sections give a complete and reproducible description of each of the three
benchmark problems as distributed to the participants. In addition to an incompressible
large deformation elasticity formulation and a description of the constitutive law, five
additional components were required for a reproducible problem definition: a reproducible
problem definition requires five additional parts: a problem geometry, the material parameters
(C, bf , bt, bfs), a full description of the fibre direction throughout the geometry, the Dirichlet
boundary conditions and the applied pressure boundary conditions. The three problems each
test different aspects important to cardiac mechanics solvers. The first problem is the simulation
of a deforming rectangular beam. This problem tests pressure-type forces whose directions
change with the deformed surface orientation, and the correct implementation of fibre directions
changing with the deformation, the transversely isotropic constitutive law, and Dirichlet
boundary conditions. This problem uses a simple mesh geometry, which makes it easier to quickly
test new codes and provide an initial verification test. The second problem is the inflation of
an ellipsoid with isotropic material properties. The problem tests the reproduction of a mesh
geometry from a description, and a deformation pattern similar to cardiac inflation. The third
problem is the inflation and active contraction of an ellipsoid with transversely isotropic material
properties. The problem tests reproducibility of complex fibre patterns, and the implementation
of active contraction, both important aspects of a cardiac mechanics solver. Using two problems
on the same initial geometry allows benchmark participants to generate a mesh geometry and
verify inflation first, before the source of potential errors is conflated with the implementation of
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x

p1 p3 p5 p7 p9

yz

Figure 1. Problem 1. Deformation of a beam with the reference geometry (bottom) and an example solution (top). The green
node indicates the position of results in figure 3, the red line indicates the line used for results in figure 4, and the blue points
indicate the locations used in the strain calculations. (Online version in colour.)

active contraction and fibre directions. This is intended to make it easier to track down potential
errors in an implementation.

(i) Problem 1: deformation of a beam

Figure 1 shows the problem geometry and a representative solution.
Geometry: the undeformed geometry is the region x ∈ [0, 10], y ∈ [0, 1], z ∈ [0, 1] mm.
Constitutive parameters: transversely isotropic, C = 2 kPa, bf = 8, bt = 2, bfs = 4.
Fibre direction: constant along the long axis, i.e. (1, 0, 0).
Dirichlet boundary conditions: the left face (x = 0) is fixed in all directions.
Pressure boundary conditions: a pressure of 0.004 kPa is applied to the entire bottom face (z = 0).

(ii) Problem 2: inflation of a ventricle

Figure 2 shows the problem geometry and an example solution.
Geometry: the undeformed geometry is defined using the parametrization for a truncated

ellipsoid:

x =

⎛
⎜⎝x

y
z

⎞
⎟⎠=

⎛
⎜⎝rs sin u cos v

rs sin u sin v

rl cos u

⎞
⎟⎠ . (2.6)

The undeformed geometry is defined by the volume between:

— the endocardial surface rs = 7 mm, rl = 17 mm, u ∈ [−π , − arccos 5
17 ], v ∈ [−π , π ],

— the epicardial surface rs = 10 mm, rl = 20 mm, u ∈ [−π , − arccos 5
20 ], v ∈ [−π , π ]

— the base plane z = 5 mm which is implicitly defined by the ranges for u.

Constitutive parameters: isotropic, C = 10 kPa, bf = bt = bfs = 1.
Dirichlet boundary conditions: the base plane (z = 5 mm) is fixed in all directions.
Pressure boundary conditions: a pressure of 10 kPa is applied to the endocardial surface.
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(a)

(d ) (e)

fibre angle

–90 –45 0 45 90 (g)( f )

(b) (c)

Figure 2. Problems 2 and 3. Panels (a,b) show the reference geometry for both problem 2 (inflation of a ventricle) and 3
(inflation and active contraction of a ventricle). The greennodes indicate the apical position used in results in figures 6 and9, and
the red line indicates the line used for results in figure 7 and 10. Blue nodes are used for strain calculations as described in §3,with
panel (a) showing only nodes at v = 0 and panel (b) showing both nodes at v = 0 and v = π/10 used for circumferential
strain calculations. Panel (c) shows an example solution to problem 2. Panel (d) shows the fibre directions used in problem 3,
varying from −90◦ at the epicardium to +90◦ at the endocardium. Panels (e,f ) show different side views of one example
solution to problem 3, and panel (g) shows a view from the base. (Online version in colour.)

(iii) Problem 3: inflation and active contraction of a ventricle

Geometry, Dirichlet boundary conditions: identical to problem 2.
Fibre definition: fibre angles α used in this benchmark problem range from −90◦ at the epicardial

surface to +90◦ at the endocardial surface. These angles were chosen to allow for easy visual
inspection of generated fibre directions, despite being steeper than those measured in DTMRI
experiments [36]. They are defined using the direction of the derivatives of the parametrization
of the ellipsoid in equation (2.6)

f (u, v) = n
(

dx
du

)
sin α + n

(
dx
dv

)
cos α, where n(v) = v/‖v‖, (2.7)

dx
du

=

⎛
⎜⎝rs cos u cos v

rs cos u sin v

−rl sin u

⎞
⎟⎠ , (2.8)

dx
dv

=

⎛
⎜⎝−rs sin u sin v

rs sin u cos v

0

⎞
⎟⎠ , (2.9)

rs(t) = 7 + 3t, (2.10)
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rl(t) = 17 + 3t (2.11)

and α(t) = 90 − 180t, (2.12)

where rs, rl and α are derived from the transmural distance t ∈ [0, 1] which varies linearly from 0
on the endocardium and 1 on the epicardium. The apex (u = −π ) has a fibre singularity which is
common in cardiac mechanics problems. No specific approaches are prescribed for handling this
singularity, and all approaches were considered acceptable.

Constitutive parameters: transversely isotropic, C = 2 kPa, bf = 8, bt = 2, bfs = 4.
Active contraction: the active stress is given by a constant, homogeneous, second Piola–

Kirchhoff stress in the fibre direction of 60 kPa, i.e.

T = Tp + TaffT, (2.13)

where Ta = 60 kPa, f is the unit column vector in the fibre direction described above, and the
passive stress Tp = ∂W/∂E as in equation 2.3.

Pressure boundary conditions: a constant pressure of 15 kPa is applied to the endocardium. As
this is a quasi-static problem, participants are free to add active stress first, add pressure first or
increment both simultaneously in finding a solution. Figure 2 shows the problem geometry and
an example solution.

(d) Participants
Table 1 lists the participants and the computational methods they used. Although there was no
requirement to use a specific computational method, all participants used finite-element methods,
as they are most common in the field of cardiac mechanics.

3. Results
Here, we analyse and compare the submitted solutions with the benchmark problems. In
terms of three-dimensional deformation as visualized, the submitted solutions are typically
indistinguishable, so such visualizations are not included for all solutions. There are no analytic
solutions to the problems, which limits the use of typical convergence analysis. In addition, the
range of different finite-element basis types used result in further challenges in processing data
and comparing solutions.

To analyse and compare results, we use the API provided by VTK [25].1 Participants were
requested to provide meshes for the deformed and undeformed configurations in the VTK
file format. Where a basis type was not supported by VTK, specifically on cases using cubic-
order elements, solutions were interpolated to a compatible VTK element type. Our strategy
for comparing solutions is based on a method for determining the deformed location of specific
points in the submitted solutions for all participants. Using the VTK API, we locate the element
containing a specific point in the undeformed mesh provided by a participant, along with the
local parametric coordinates within that element. We use these local coordinates to locate the
corresponding deformed point in the same element of the deformed geometry provided. This
process allows us to track displacements in a wide variety of element types.

To calculate strain Si, we track changes in the distance between pairs of n points with
coordinates Xi

1 and Xi
2 in the undeformed finite-element geometries and coordinates xi

1 and xi
2

of the deformed geometry, where i = 0, 1, . . . , n. We use a finite difference scheme to determine
the strain

Si =
(

‖xi
1 − xi

2‖
‖Xi

1 − Xi
2‖

− 1

)
× 100%. (3.1)

For the beam problem, we use neighbouring points along the line (x, 0.5, 0.5) to calculate
axial strain in the x-direction: Xi

1 = (i, 0.5, 0.5) and Xi
2 = (i + 1, 0.5, 0.5), where i = 0, 1, . . . , 8.

1Available at http://www.vtk.org/download/.
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Table 1. Overview of methods and software used by participants of the mechanics benchmark. Superscripts in the ‘affiliations’
column refer to the contributing institution details as given on the title page. Details for open source code origins and availability
are given below for groups who use publicly available code. The ‘method’ summarizes the type of finite-elements used, with
‘Qx’ referring to order x hexahedral elements, ‘Px’ to order x tetrahedral elements, and ‘QxQy’, ‘PxPy’ to order x elements for
deformation andorder y elements for the Lagrangemultiplier.When twoelement types are listed, thefirstwas used for problem
1, and the second for problems 2 and 3. I/D denotes the use of an approachwith isochoric/deviatoric splitting of the deformation
gradient.

code name affiliation type references method
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Cardioid IBM2 in-house [8] Q2Q1/P2P1, Lagrange multiplier, I/D
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CardioMechanics KIT5 in-house [2] P2, quasi-incompressible
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CARP Graz1,4 in-house [37] P1P0, quasi-incompressible, I/D
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Elecmech KCL1 in-house [38,39] Q3Q1, Lagrange multiplier
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

GlasgowHeart-IBFE Glasgow10,12 in-house [40] Q1, IB/FEa
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Hopkins-MESCAL Hopkins6 in-house Q1P0, Lagrange multiplier
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

LifeV Duke15 open sourceb [41,42] P2, quasi-incompressible
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MOOSE-EWE USI9 mixedc [43] Q2Q1/P2P1, Lagrange multiplier, I/D
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

OpenCMISS Auckland3,7,13 open sourced [6] Q3Q1 (hermite), Lagrange multiplier, I/D
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Simula-FEniCS Simula14 open sourcee [44,45] P2P1f , Lagrange multiplier, I/D
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

PUC-FEAPg PUC8,11 open source [46] Q1P0, Lagrange multiplier, I/D
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
aIB/FE indicates the immersed boundary method using a finite-element mechanics model, and used the open-source IBAMR software
available at https://github.com/IBAMR/IBAMR.
bLifeV was developed by EPFL and available at http://github.com/lifev.
cMOOSE is open source and available at http://www.mooseframework.org/, EWE is an in-house application using MOOSE.
dOpenCMISS available at http://www.opencmiss.org.
eFEniCS was developed by Simula and is available at http://fenicsproject.org, with problem-specific source code available at
https://bitbucket.org/peppu/mechbench.
f FEniCS using two-dimensional elements in problems 2 and 3.
gPUC-FEAP: no solution submitted for problems 2 and 3, FEAP available at http://www.ce.berkeley.edu/projects/feap/.

For transverse strain, we use Xi
1 = (i, 0.5, 0.5), where i = 0, 1, . . . , 9 and Xi

2 = (i, 0.9, 0.5) and
Xi

2 = (i, 0.5, 0.9) for strain calculations in the y- and z-directions, respectively.
For the ellipsoidal problems, longitudinal, circumferential and radial strain are each calculated

at the endocardium, epicardium and midwall. We use the parametrization in equations (2.6)–
(2.12) and take the points along apex-to-base lines: vi = 0, ui = u1 + (u2 − u1)/nu × (i + 1) × 0.95,
where u1 = −π , u2 = − arccos 5/(17 + 3t), nu = 10 and i = 0, 1, . . . , nu − 1. These lines are taken
along the endocardium (t = 0.1), epicardium (t = 0.9) and midwall (t = 0.5). For longitudinal
strain, we use pairs of neighbouring points along each line. For transmural strains, we use pairs of
neighbouring endocardium-midwall, midwall-epicardium and endocardium–epicardium points
to calculate radial strain at endocardium, epicardium and midwall. To calculate circumferential
strain, the second point Xi

2 is derived by rotating the points at each myocardial layer by using
vi = π/10 instead of vi = 0. The points used for strain calculation are also shown in figures 1 and 2.

Overall, we perform three types of comparisons for each problem. First, we look at key points
in the solution, which provides a crude but efficient measure of solution accuracy, and allows
us to plot the accuracy of all solutions as a function of the number of degrees of freedom used
to solve the problem. Second, we display the deformation of key lines through the mesh, which
provides a more global measure of accuracy while still being easy to interpret and compare in a
two-dimensional plot. Third, we calculate the strain measures described in this section to enable
a more complex quantitative comparison of the deformation in each direction.
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(a) Problem 1
Figure 3 shows the maximal deflection of the beam across different solutions plotted against the
number of degrees of freedom used, with the deformed position of a specific line at maximal
deflection shown in figure 4. Figure 5 shows a comparison of strain measures in the submitted
solutions. For both the strain measures and the deformed solution, only the solutions with most
refined discretizations were used.

(b) Problem 2
Figure 6 shows the location of the endocardial and epicardial apex plotted against the number
of degrees of freedom used. Figure 7 shows the deformed position of a line in the midwall from
apex to base for all the submitted solutions, with details of the apex and inflection point. Figure 8
shows a comparison of strain measures for the submitted solutions.

(c) Problem 3
Figure 9 shows the location of the endocardial and epicardial apex plotted against the number of
degrees of freedom used. Figure 10 shows the deformed position of a line in the midwall from
apex to base for all the submitted solutions, and figure 11 shows the position of this same line
as viewed from the top, comparing results for the twisting motion of the ventricle under active
contraction. Details are provided of several key regions to highlight small differences between
solutions. Figure 12 shows a comparison of strain measures for the submitted solutions.
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4. Discussion
This study presented a set of benchmark problems and an in-depth evaluation of 11 different
cardiac mechanics codes, each submitting between one and four solutions for the three
benchmark problems. The results, processing tools and MATLAB scripts for mesh generation,
are made available online to assist in the verification of additional software in the field.2

In addition to verifying a basic solid mechanics solver, the benchmark problems test several
aspects of software specific to cardiac mechanics. First, all three problems test pressure boundary
conditions that depend on the deformed surface orientation and area. This has typically been
the only type of external force applied to the heart in physiological cardiac simulations,
although some more recent work implements contact mechanics with the pericardium [2], or
spring boundary conditions to simulate contact with soft material near the apex. Second, the
problems test a commonly used transversely isotropic constitutive law, as well as a complex fibre
distribution. Fibre directions are most commonly stated in terms of ‘fibre angles’, and routinely
visualized in the literature. However, they are rarely described accurately enough to ensure
reproducibility, as the conversion from fibre angles to fibre vectors can rely on details of mesh
geometry and implementation of local coordinate systems and orthogonalization. Specifically,
fibre orientations are often defined with respect to local finite-element mesh coordinates,
but mesh personalization tools vary, and there is no guarantee that these local coordinates
unambiguously align with the apical-basal or circumferential directions. As a result, reproducible
fibre directions are rarely given in studies on cardiac mechanics. In this study, the use of an exact

2Repository of results: http://www.bitbucket.org/sander314/mechbench.
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Figure 12. Problem 3: strain results. Plot of longitudinal (LONG), circumferential (CIRC) and radial (TRANS) strains at
endocardium, epicardium and midwall. Index of points increases from the apex to the base, and labels correspond to those
given in figure 2. (Online version in colour.)

mathematical description of fibre directions provided an unambiguous anatomical description
and demonstrates that this description is sufficient for different groups to reproduce a solution.
Third, we have tested the inclusion of contractile forces. Although these contractile forces are
arguably the most important factor driving cardiac deformation, there have been no tests of
its correct implementation proposed so far. The third benchmark problem tests this aspect and
reproduces the typical twisting motion with apical–basal shortening of the ventricle in systole.
Overall, the current problems aim to strike a balance between problem complexity and testing
aspects that are important in cardiac mechanics, but currently not routinely tested. At the same
time, they were designed to be simple enough to run relatively quickly, increasing their utility in
rapid verification of software.

In this report, we have used a variety of methods to compare the submitted solutions. Showing
deformation results for a few key points plotted against the number of degrees of freedom is a
concise way of comparing a large number of solutions. They also provide a quick verification
test for new software codes, as comparison of a single point for each problem can quickly reveal
incorrect solutions. A drawback of this technique is that the selected points of comparison may
not be representative of the overall accuracy of a solution. Especially in problem 3, errors localized
at the apex show up disproportionately, and are not always representative of the accuracy
elsewhere. Therefore, we have highlighted both regions close to the apex as well as closer to
the base. Plotting the deformation of lines through the simulation domain as in figures 4, 7
and 10 shows more information, but can quickly result in solutions overlapping in visualizations.
Finally, we have plotted strain in different directions, and at different locations, for the submitted
solutions. For problem 1, despite the large deformation of the beam, relatively small strains on
the order of 1% were observed (figure 5). The largest strains and largest discrepancies between
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solutions are located near the Dirichlet boundary conditions at x = 0. Thus, this strain test is
useful to reveal obvious errors in implementation or to reveal shortcomings in discretization
such as volumetric locking by linear finite elements. A potential explanation for differences in
strain between submitted solutions is the low number of degrees of freedom used by some
groups. Strain results for problem 2 (figure 8) are most consistent across submitted solutions,
suggesting that this was the least challenging test. Problem 3 was the most challenging test,
and a number of participants submitted several revised solutions before the close agreement in
strains shown in figure 12 was achieved. These visualizations are richer, comparing the solutions
across a wider area, and more clearly show local similarities and differences. However, they
require a larger number of plots to show, and are more difficult to interpret and define in a
reproducible way. Requiring only solutions of the deformation increased participation, given
the varied capabilities of the software used by different participants, but limited the range
of possible comparison methods. Further comparisons would have been possible by requiring
participants to provide Cauchy–Green strain, or deformed fibre directions in problem 3. Although
it is theoretically possible to obtain these metrics using finite-difference methods, in practice, we
found this approach not robust enough in the VTK implementation, leading us to use more global
strain metrics.

In total, 11 different groups submitted solutions to the benchmark problems. Although the
choice of computational methods was left open, all participants used finite-element methods
to solve the problems. Most commonly used were quadratic-order tetrahedral elements and
linear hexahedral elements. In addition, to these standard solution methods, several unique
approaches were applied in solving the benchmark problems. First, problem 2 and 3 were
rotationally symmetric, and participants from Simula Research Laboratory exploited this feature
by solving these problems using two-dimensional elements, allowing very high-resolution
solutions. Second, participants from the University of Glasgow applied the immersed boundary
method with finite-element extension (IB/FE) developed for their coupled fluid-structure
implementation [40]. The IB/FE method is designed for dynamic fluid-structure analyses rather
than for the quasi-static analyses considered in this study, but its inclusion in the study highlights
the usefulness of the benchmark problems in verification of both static and dynamic solvers.
Overall, there was broad agreement between participants, with typical differences in deformation
at approximately 1% (figures 3, 7, 6, 9, 10). The largest differences that were encountered were
attributed to

— under-converged results, e.g. the high discrepancy between solutions with a few hundred
degrees of freedom and those with over 105 in problem 1 (figure 3). However, in
problems 2 and 3, the solutions with larger difference from consensus solutions were
not necessarily those with the fewest degrees of freedom used. Specifically, the use of
two-dimensional elements exploiting problem symmetry by Simula Research Laboratory
achieved excellent accuracy with very low degrees of freedom used. Nevertheless, the
largest error for those using three-dimensional elements appears for LifeV, who use the
fewest degrees of freedom.

— the use of a passive isotropic region near the apex in problem 3. This clearly shows
differences in apical strain (figure 10), especially for earlier submitted results using a
relatively large region with passive material properties, but is also still visible for several
results in the final set. However, despite differences at the apex, results were consistent
with other codes in the basal regions.

In addition, several participants reported potential stability problems. Fung-type constitutive
laws, including the one used in this benchmark, can become unstable depending on the material
parameters and loading conditions [47]. This was reported to lead to potential stability issues
in problem 1, although all participants managed to solve to the load specified in the problem
description. Participants from Simula Research Laboratory noted that problem 2 can fail to solve
at around 3 kPa pressure when using P2P1 elements unless volumetric–deviatoric splitting of
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the deformation gradient is used. Similar stability problems were reported by the PUC group
at around 10.5 kPa using Q1P0 elements, despite the use of volumetric–deviatoric splitting. The
benchmark also tests the ability of software to handle problems with different properties in terms
of their stiffness matrix, which potentially affects solver convergence. Specifically, problems 2 and
3 have a symmetric stiffness matrix owing to the boundary of the region where pressure is applied
being completely fixed, whereas problem 1 has an asymmetric stiffness matrix (cf. Bonet & Wood
[27, §6.5.2]).

As the first significant benchmark in the field of cardiac mechanics, we have aimed to
strike a balance between maximizing participation and testing more complex aspects of cardiac
mechanical simulations. As such, this initial study has a number of potential limitations. First,
problem 3 adds both fibre directions and active contraction, whereas an additional problem
could test only passive properties, leading to more fine-grained verification. However, in the
context of limiting the number of problems to be solved, we found it more important to
introduce mesh geometry and fibre directions in separate problems, as both are difficult to
unambiguously describe and reproduce. For problems 2 and 3, the curved geometry combined
with the free choice of elements and meshing strategy, means that not all points in the problem
domain appear in each mesh. This limits comparison with regions present in all submitted
solutions, and specifically prevents comparison of solutions near the edge of the problem
domain. In addition, the limited support for higher-order elements in VTK required interpolating
cubic-order solutions to linear elements, which has the potential for introducing additional
error. Finally, although this benchmark tests a number of important aspects specific to cardiac
mechanics, future benchmarks could test several more detailed aspects not touched on by these
benchmark problems. Specifically, an important aspect that was not tested is the use of time-
dependent solutions of the cardiac cycle with heterogeneous activation patterns. These whole
cycle simulations also require specialized numerics required to deal with length- and velocity-
dependence of cardiac tension, and techniques for coupling to hemodynamic models, which
were not tested in the current benchmark. Other aspects could involve using non-symmetric
geometries, biventricular models or including the personalization of a mesh from a segmented
image. In the context of the increase in patient-specific modelling, a verification of with local
heterogeneities in material properties and contractile force, as observed in ischaemia, would be
particularly important.

In conclusion, the development of a set of benchmark problems for simulating cardiac
mechanics is an important step in the process of verification of cardiac modelling software.
These results now provide us a standard and reproducible set of problems to drive forward
the development and verification of simulation platforms and numerical methods tailored to the
domain-specific characteristics of cardiac mechanics modelling.
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