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Abstract 

The focus of this PhD study is teachers’ knowledge and how it is involved in 

interacting with technology to produce the mathematical knowledge made available in 

the classroom. Contrasting connectionist and transmissionist teachers’ use of 

technology provides a means of making such knowledge visible, allowing an 

exploration of the nature and content of mathematical knowledge for teaching using 

technology. In addition, this study examines how and to what extent the mathematical 

knowledge made available through a teacher’s interaction with technology is distributed 

across the teacher and technology. 

The first, quantitative phase of the project surveyed English secondary mathematics 

teachers’ use of technology (n=183). Using Rasch analysis to construct a transmissionist 

measure of self-reported pedagogic practice, a surprising association is found between 

frequent use of teacher-centred software and a more connectionist orientation. The 

survey data also suggests that ‘teacher-centred’ practices involving ICT may instead be 

construed as ‘dominant’ practices, since they are most frequently occurring across all 

teachers.  

In the second, qualitative phase of the project, two connectionist and two 

transmissionist teachers were selected as case studies on the basis of their responses to 

the survey instrument. Data collection involved a semi-structured interview based 

around a GeoGebra file on circle theorems, two classroom observations and post-

observation interviews. Data analysis using the TPACK framework suggests the nature 

of mathematical knowledge for teaching using technology as abstract, mathematical 

knowledge and yet simultaneously as mathematical knowledge situated in the context 

of teaching using technology. Using the Knowledge Quartet, a conceptualisation of the 

content of mathematical knowledge for teaching using technology in relation to the 

topic of circle theorems is developed, demonstrating the highly complex nature of such 

knowledge. Ameliorating this complexity, this study provides indications of how a 

distributed view of cognition might offer potential strategies for facilitating teacher 

interaction with technology.  
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Chapter 1 - Introduction 

 

This thesis brings together the fields of mathematics teacher knowledge and technology 

integration into classroom practice to explore teachers’ knowledge in relation to using 

technology to teach mathematics. Using survey data, classroom observations and 

interviews, this thesis describes the nature and content of individual teachers’ 

knowledge and how it is involved in interacting with technology to produce 

mathematical knowledge made available in the classroom. This contributes towards a 

broader aim to develop a deeper understanding of both how and why mathematics 

teachers use technology in their classroom practice. 

This introductory chapter begins by providing some contextual background: describing 

the author’s personal motivations for undertaking the study as well as setting the study 

in a wider context. The following sections then describe and justify the theoretical 

framework for understanding individual teachers’ knowledge and how it is involved in 

interacting with technology, which underpins this study. Key terms, such as 

‘technology’ and ‘knowledge’ are also defined. Returning to the context of the study, 

two main research questions and two subsidiary questions are identified. The chapter 

concludes with a brief description of the structure of the rest of the thesis. 

1.1 Setting the scene: the personal and wider context for the study 

The original impetus for this United Kingdom (UK) Economic and Social Research 

Council (ESRC) funded PhD research project came from the difficulties the author 

experienced, as a secondary school mathematics teacher, in trying to integrate digital 

technology into her own classroom practice, despite viewing herself as a competent and 

confident user of such technology. She explored her own use of digital technology in 

teaching, specifically the development of teaching techniques for using dynamic 

geometry software, through an empirically-based post-graduate Master of Arts (MA) 

dissertation (Bretscher, 2007). This fuelled an interest in developing a deeper 

understanding of the complexities of integrating digital technologies experienced by 

teachers more widely and the apparent deficit between aspirations for technology use in 

schools and the classroom reality of technology use. These issues were explored further 

through a post-graduate Master in Research Methods (MRes) study (Bretscher, 2009) 

employing frameworks drawn from the literature on digital technology in mathematics 
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education to analyse teachers’ classroom practice using digital technology. The MRes 

study informed the PhD research project, providing a first pilot for the qualitative phase 

of data collection. In addition, attempting to develop a deeper understanding of 

teachers’ classroom practice using digital technology led to the progressive focusing of 

the PhD research project on teachers’ mathematical knowledge for teaching using 

technology. This focus feeds into the broader aim of the study to develop a deeper 

understanding of both how and why mathematics teachers use technology in their 

classroom practice. 

1.1.1 A deficit in mathematics teachers’ use of digital technologies? 

A deficit in mathematics teachers’ use of digital technologies appears to exist in two 

senses. Firstly, mathematics teachers appear to make only occasional use of digital 

technologies in their teaching. Secondly, when teachers do make use of digital 

technologies, the potential of these technologies to enhance pupils’ mathematical 

experience in the classroom is rarely realised. This apparent dual deficit is particularly 

significant in the context of unprecedented spending by governments around the world 

on initiatives to develop educational technology (Selwyn, 2000) and the emphasis 

placed on using Information and Communication Technologies (ICT) in previous UK 

National Curricula (e.g. 2007) for mathematics and the inclusion of digital technologies 

in mathematics curricula more globally (Wong, 2003). 

There seems to be unequivocal evidence for the deficit in terms of the frequency with 

which mathematics teachers use ICT. The 2007 Trends in International Mathematics 

and Science Study (TIMSS: Mullis, Martin, & Foy, 2008) reports that it was rare for 

computers to be used for any activity as often as in half the mathematics lessons, even 

in countries with relatively high availability. The Eurydice report (2011) on ICT use in 

European schools states that only a minority of mathematics teachers have successfully 

embedded digital technologies into their lessons and that computers are most often used 

for skill practice in mathematics. In the UK, the Impact of ICT on Pupil Learning and 

Attainment report (Harrison et al., 2003) stated that 67% of pupils at Key Stage 3 never 

or hardly ever used ICT in their mathematics lessons. In addition, Selwyn (2008) noted 

that despite the previous years of unprecedented investment by the then Labour 

government, directing over £5 billion of funding towards educational ICT during the 

1997 to 2007 period, the UK Office for Standards in Education (Ofsted, 2008) reported 

that opportunities for pupils to use ICT to solve or explore mathematical problems had 
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markedly decreased. Four years later, Ofsted (2012) reported there had been little 

change in teachers’ use of ICT, concluding that the potential of ICT to enhance learning 

in mathematics continued to be underdeveloped.  

The conclusions of the Ofsted report (2012) provide an indicator of the deficit in terms 

of the extent to which the potential of digital technologies remains unfulfilled. That is, 

where mathematics teachers do make use of digital technologies, the potential of these 

technologies is rarely realised. Lagrange and Erdogan (2008) refer to this as a 

qualitative gap in ICT use, citing inter alia Ruthven and Hennessy’s (2002) study of 

mathematics teachers in England as evidence. Lagrange & Erdogan (2008, p.66) refer to 

the tendency of teachers to view the benefits of technology in terms of enabling 

“general ‘pedagogical’ aspirations rather than for its ‘didactical’ contribution to 

mathematics learning”. In Ruthven and Hennessy’s study, mathematics teachers 

articulated the benefits of technology as indirectly enhancing students’ learning through 

increased pace and productivity and improved engagement rather than providing a 

direct means of enhancing mathematics pedagogy.  

Hence, many mathematics teachers do integrate some types of digital technology into 

their classroom practice. Moss et al’s (2007) survey on the introduction of interactive 

whiteboards (IWBs) in London schools shows that many teachers are using IWBs in 

most or every lesson. This was especially true in mathematics and science, where the 

majority did so (65% in mathematics). Moreover, in case study lessons, they observed 

mathematics teachers using presentation software, such as ActivStudio, as well as 

subject-specific software such as Geometer’s Sketchpad (Key Curriculum Press, 2003). 

In the US, Becker, Ravitz and Wong (1999) found that drill-and-practice software was 

the type of software most often used by mathematics teachers. Descriptive statistics of 

teachers’ technology use, based on data from this PhD study but published elsewhere 

(Bretscher, 2014), suggest that English secondary mathematics teachers do make 

frequent use of technology. Bretscher (2014) reports that IWBs were used in almost 

every lesson by 85% of the responding teachers (n =175). Presentation-oriented 

software dominates IWB use, whilst the MyMaths web-site (Oxford University Press, 

2012) offering pre-prepared lessons dominates teachers’ use of computer suites as well 

as featuring prominently amongst software used with IWBs (Bretscher, 2014).  

However, the digital technologies that are relatively widely implemented tend to be 

compatible with and facilitate whole-class instruction through enhanced presentation. 
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These are often perceived as teacher-centred (rather than student-centred) (e.g. 

Zevernbergen & Lerman, 2008) and viewed as maintaining or even encouraging 

existing ‘traditional’ pedagogies. These types of technology tend to be overlooked in the 

literature (e.g. Pierce & Stacey, 2010; Zbiek et al., 2007) or even dismissed as ‘not 

really using ICT’. For example, Zbiek et al (2007) state that they do not include digital 

technologies whose primary purpose is as a presentation tool rather than as a problem-

solving or mathematical tool in their review of research. The deficit in terms of the 

frequency of ICT use appears therefore only in relation to digital technologies valorised 

by the mathematics education research community (e.g. Kaput, 1992; Zbiek et al., 

2007). This suggests that mathematics education research on technology integration has 

tended to focus on understanding a minority of practice and the reasons why using 

digital technologies, such as those identified by Zbiek et al (2007) as cognitive 

technological tools or Pierce and Stacey (2010) as mathematical analysis software, 

remains a minority practice. As a result, widespread practice involving ICT remains 

under-analysed and (potentially) this has also had the effect of presenting an overly 

pessimistic view of teachers’ classroom use of ICT. Thus the deficit in teachers’ use of 

digital technologies in general may be over-estimated: both in terms of the low 

frequency of use and of the extent to which the potential of digital technologies remains 

unrealised. 

 

1.1.2 Defining technology  

This study focuses on digital technologies as a means of understanding teachers’ use of 

technology more generally. This section first defines the more general term 

‘technology’ and then goes on to define what is meant by ‘digital technologies’ in 

relation to this study. 

In this study, ‘technology’ is used to indicate an artefact (physical or virtual) that has 

been designed for use or has been appropriated for use in teaching mathematics. This 

definition follows from Ruthven’s (2009) usage of ‘resource’ and, in a sense, is 

intended to be interchangeable with this term. Why then use the term technology instead 

of resource? Technology has tended to be used to indicate and abbreviate digital 

technologies, separating them from non-digital technologies, to mark them out as 

worthy of special consideration or as unique in some way. For example, both Kaput 

(1992) and Zbiek et al’s (2007) chapters focusing on digital technology in subsequent 
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editions of the Handbook of Research on Mathematics Teaching and Learning are 

entitled Technology in Mathematics Education. Instead, in this study, whilst digital 

technologies are the focus, they are viewed simply as a particular type of technology 

amongst others and not as something special or unique.  Referring to both digital and 

non-digital alike using the term ‘technology’ makes this point more salient precisely 

because it is perhaps less usual to call non-digital technologies, such as textbooks, a 

‘technology’. Mishra and Koehler (2006, p. 1023) state that ‘traditional’ technologies 

have become so well integrated into teachers’ classroom practice they are not even 

regarded as technologies. Using the term ‘technology’ in this study is intended to serve 

as a reminder that artefacts such as textbooks, non-interactive whiteboards and graph 

paper are also technologies of teaching. The term ‘resource’, as Ruthven (2009) 

suggests, follows the everyday language of teachers and therefore appears more easily 

applicable to both digital and non-digital technologies. For this reason, ‘resource’ does 

not supply a cognitive prompt to the author at least in the way that the term 

‘technology’ does, to recall that ‘traditional’ technologies, particularly those that are 

non-digital, are nevertheless types of teaching technology.  

In the previous section, the deficit in teachers’ use of digital technology was identified 

with digital technologies valorised by the mathematics education community, such as 

those singled out by Zbiek et al (2007) as cognitive technological tools (abbreviated to 

cognitive tools). However, limiting the definition of digital technology to those 

described as cognitive tools tends to omit the very types of hardware and software that 

teachers do manage to integrate into their classrooms. It was argued that this has 

prevented an analysis of widespread practice. For the purposes of this PhD study a 

broader definition of digital technology was therefore adopted. Following from the 

definition of ‘technology’ used in this study, ‘digital technologies’ is used to indicate a 

digital artefact (physical or virtual) that has been designed for use or has been 

appropriated for use in teaching mathematics. This definition is broader than Zbiek et 

al’s definition because it incorporates any digital artefact used or designed for use in 

teaching mathematics, including those that are not obviously “mathematical tools” for 

example. In particular, it includes teacher-centred digital technologies such as 

presentation-oriented software (e.g. PowerPoint, IWB software and the MyMaths 

website) that appear to be prominent in teachers’ use of ICT, but excludes non-digital 

technologies such as textbooks. As with any technology, how and why teachers make 

use of the technology in their teaching is a central research question. Viewing digital 
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technologies simply as a particular type of technology is in keeping with the broader 

aim of this study to develop a deeper understanding of both how and why mathematics 

teachers use technology in their classroom practice. Similarly, Ruthven (2009) and 

Gueudet and Trouche (2009) focus on digital technologies as a means of understanding 

teachers’ use of technology more generally. 

 

1.2 A socio-cultural perspective on teachers’ technology use 

Whilst many believe that technology has the power to transform education, Cuban’s 

(1986, 1993, 2001) studies of educational innovation over time suggest otherwise, 

predicting that where digital technologies are taken up on a large-scale they will not 

fundamentally change teaching practice. Cuban’s studies and the discussion in Section 

1.1.1 show that integrating technology into the classroom is far from straightforward. In 

particular, Cuban’s studies indicate a range of social factors influence teachers’ use of 

technology, such as cultural beliefs, the school and classroom context. Socio-cultural 

perspectives appear to offer the most promising approach towards understanding 

teachers’ technology use because they account for social factors in the context of 

teaching and learning. In addition, socio-cultural perspectives acknowledge that the 

design of a piece of software or hardware does not determine its use in the classroom. 

Instead, teachers interpret technology in the process of integrating it into their classroom 

practice. Thus a teacher’s interpretation of a piece of technology is an important factor 

in shaping its end use in the classroom. For example, teachers who adopt a student-

centred approach to pedagogy may interpret and use teacher-centred technologies, such 

as presentation-oriented software (e.g. PowerPoint, IWB software and the MyMaths 

website), to facilitate such an approach. If this is the case, then the deficit in teachers’ 

use of digital technologies discussed in section 1.1.1, in terms of the extent to which the 

potential of digital technologies remains unrealised, may be over-estimated. 

Nevertheless, socio-cultural perspectives also acknowledge that the design of a piece of 

software or hardware constrains teachers’ interpretations of the technology. Socio-

cultural perspectives are useful in this study because they view teachers’ use of 

technology as a two-way process where the teacher is engaged in a participatory 

relationship with the technology. 

Hence a socio-cultural perspective on teachers’ use of resources was adopted for this 

study, informed by Remillard’s (2005) description of “curriculum use as participation 
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with the text”. This perspective was developed in relation to ‘curriculum materials’, 

specifically referring to printed, often published resources designed for use by teachers 

and students during instruction. The definition of technology used in this study is 

broader than that of Remillard’s usage of the term ‘curriculum materials’ and her use of 

the term ‘text’, referring to the components that comprise curriculum materials. 

However it is narrower than the definition of ‘resources’ used by Gueudet and Trouche 

(2009) who also align their approach with Remillard’s perspective. For example, 

Gueudet and Trouche include “discussions with teachers orally or online” in their 

definition of resources. Thus, although Gueudet and Trouche (2009) also focus on 

digital technologies as a means of understanding teachers’ use of technology more 

generally, they seek to generalise their approach to a wider range of resources. The 

definition adopted in this study was narrower because it is assumed that the nature of 

the participatory relationship between an individual teacher and technology is likely to 

be different to a participatory relationship between teachers. Remillard’s (2005) 

perspective is appropriate for addressing the broader aim of this PhD study and provides 

an over-arching theoretical framework for understanding teachers’ use of technology. 

 

1.2.1 Applying Remillard’s perspective to teachers’ use of technology  

Remillard’s (2005) perspective views teachers as being engaged in a participatory 

relationship with technology, resulting in the planned and enacted curriculum i.e. the 

mathematical knowledge made available in the classroom. Hence understanding 

teachers’ use of technology – the broader aim of this study – means investigating what 

factors influence the participatory relationship and how they are involved in producing 

the mathematical knowledge made available in the classroom. Underlying Remillard’s 

(2005, p221) perspective are Vygotskian notions of tool1 use, wherein technological 

tools both shape and are shaped by human action through their constraints and 

affordances. Applying Remillard’s perspective to digital technology implies that, 

although the constraints and affordances inherent in digital technologies may help to 

shape its end use in the classroom, inevitably, the end user, in this case individual 

teachers, will also work to shape the technology. Thus the design and nature of 

hardware or software is an ingredient in, but does not determine, the way individual 

                                                 
1 “Tools” is used here to indicate a wider range of (physical or virtual) artefacts appropriated for 

human use i.e. not limited to those used for teaching mathematics. See also the use of the term 

“tools” in Hutchins’ (1995) view of distributed cognition. 
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teachers interpret and make use of particular digital technologies in their classroom 

practice. For example, Ruthven’s (with Hennessy & Deaney, 2008; 2009) research on 

mathematics teachers’ use of technology and in particular his notion of interpretative 

flexibility is commensurate with the perspective described by Remillard. Similarly, 

Gueudet and Trouche’s (2009) outline of the documentational approach, extending the 

widely influential instrumental approach to teachers’ appropriation of technology, 

shares the same Vygotskian roots as Remillard’s perspective.  

In Remillard’s (2005) perspective both the teacher and technology play an active role in 

a dynamic and interactive relationship to produce the mathematical knowledge made 

available in the classroom. As a result, both the characteristics of the individual teacher 

and the technology are identified as key factors influencing this relationship. In 

particular, Stein et al (2007) identify teachers’ knowledge and beliefs about 

mathematics teaching and learning and their orientation2 towards a specific technology 

as teacher characteristics that affect the participatory relationship with the technology. 

Stein et al (2007) identify content and sequencing, as well as the way this is structured 

and communicated to the teacher, as characteristics of curriculum materials that affect 

the participatory relationship. The way these characteristics map to technology more 

generally needs consideration. A textbook or set of curriculum materials might be 

expected to cover the range of topics included in the curriculum. Thus content and 

sequencing in relation to curriculum materials could refer to the range of curricula 

topics covered and the way they are sequenced. Considering technology more generally, 

an individual artefact (physical or virtual) might address a particular topic – rather than 

a range of topics – or even a particular concept within a topic. Nevertheless, the content 

and sequencing of material designed to address a given topic or concept, and the way 

this is structured and communicated to the teacher, can be considered as characteristics 

of technology that affect the participatory relationship. Remillard’s (2005) perspective 

also recognises the impact of students and context in enabling or constraining teachers’ 

participation with technology. In particular, Stein et al (2007) highlight contextual 

features, such as time available for planning and instruction, local (school and 

departmental) cultures and teacher support through professional development, that can 

constrain or enable teachers’ interpretations of curriculum materials. Similarly, Ruthven 

(2009) describes working environment and time economy as two of five structuring 

                                                 
2 Stein et al (2007) use the term ‘orientation’ to indicate a teacher’s stance towards a type of 

technology in relation to teaching mathematics. In this study, the term orientation is taken to 

include teacher’s confidence in using technology to teach mathematics.  
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factors of classroom practice in relation to technology and Gueudet and Trouche (2009) 

include institutional influences as part of their model of the documentational approach.  

No study can take all factors into account, thus all studies are necessarily limited in 

scope to a greater or lesser extent. The focus of this study is on individual teachers’ 

knowledge and how it is involved in interacting with technology to produce the 

mathematical knowledge made available in the classroom. Other individual 

characteristics of teachers, characteristics of technology, students and contextual 

features identified in Remillard’s perspective as important factors affecting the 

participatory relationship are acknowledged and where possible these are taken into 

account. 

 

1.2.2 Knowledge, beliefs and orientation 

In the Effective Teachers of Numeracy study carried out in the UK, Askew et al (1997) 

found that highly effective teaching of primary school mathematics was associated with 

what they termed a connectionist orientation. Their use of orientation suggested an 

amalgam of beliefs and knowledge in relation to teaching and learning mathematics 

and, in this sense, is similar to Stein et al’s (2007) use of the term orientation in relation 

to a teacher’s stance towards technology. In this study, ‘orientation’ is used in a similar 

way to suggest an amalgam of beliefs and knowledge, but also to include teacher 

confidence in relation to teaching and learning mathematics. In particular, in Chapter 4, 

‘ICT orientation’ is taken to include a teacher’s confidence in relation to using ICT to 

teach mathematics because research suggests this is an important factor related to 

technology use (e.g. Zammit, 1992). 

Askew et al’s (1997) definition of a connectionist orientation centred mainly on what 

they termed ‘beliefs’ rather than on what they termed ‘knowledge’. Similarly, Zbiek and 

Hollebrands’ (2008) distinguish teacher ‘conceptions’ from knowledge about 

mathematics and technology (see Chapter 2). Askew et al’s (1997) use of beliefs and 

Zbiek and Hollebrands’ use of conceptions refer to teachers’ global beliefs about 

mathematics as a discipline and their beliefs about the nature of teaching and learning 

mathematics (using technology). However, distinguishing knowledge from beliefs is 

difficult because they are closely related (Scheffler, 1965) and hence distinctions 

between them are “fuzzy” (Thompson, 1992). As a result, in this study, beliefs and 
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conceptions in relation to teaching and learning mathematics (using technology) are 

taken to be part of teacher knowledge.  

Pampaka et al (2012) summarise what they term a “consensus view” amongst the 

English mathematics education community, represented by Advisory Committee on 

Mathematics Education (ACME) and National Centre for Excellence in Teaching 

Mathematics (NCETM), that promotes an approach to mathematics teaching which 

includes: 

 connecting teaching to students’ mathematical understandings; and 

 

 connecting teaching and learning across topics, and between mathematics and other 

areas of knowledge. 

Amongst similar professional communities in the US there is also a consensus in 

relation to these two statements, although the first of these is more usually associated 

with constructivist views (Cobb, 1994), whilst the latter is associated with teaching for 

conceptual understanding (Kilpatrick, Swafford & Findell, 2001). In this study, it is 

asserted that these statements underpin a connectionist orientation to teaching 

mathematics. 

1.2.3 What is mathematical knowledge for teaching using technology in terms of 

this study? 

For the purposes of this study, borrowing from Shulman (1986, p.13), mathematical 

knowledge for teaching using technology is assumed not only to be a matter of knowing 

how – being competent in teaching mathematics using technology - but also of knowing 

what and why. That is, although much of teachers’ knowledge may be tacit (Ruthven, 

2014, p. 390), at least some of their know-how is underpinned by articulated knowledge 

that provides for “a rational, reasoned approach to decision-making” (Rowland et al, 

2005, p.260) in relation to teaching mathematics using technology. In other words, 

mathematical knowledge for teaching using technology, as defined in this study, is 

when know-how or knowledge-in-action is underpinned by and coincides with the 

teacher’s articulated knowledge. This intersection between articulated knowledge and 

knowledge-in-action (i.e. articulated knowledge-in-action) is important because it is this 

type of knowledge that initial teacher education (ITE) or continuing professional 

development (CPD) programmes focus on developing.  
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It is now possible to turn to the issue of how can we know about ‘knowledge’. Clearly, 

it is not possible to observe an individual teacher’s knowledge directly. Written 

assessments, such as those employed in Hill et al (2005), can provide a valid indicator 

of mathematical knowledge for teaching. However, a distinction must be acknowledged 

between what we say we do, articulated knowledge, and what we do, know-how. This 

relates to Argyris and Schon’s (1974, pp. 6-10) definition of “espoused theory” (theory 

to which we give our allegiance) and “theory-in-use” (theory which governs actions). 

That is, we cannot always do as we say (Adler, 2001): it is possible to infer knowledge 

from a teacher’s responses to a written assessment or interview that is not realised in the 

actuality of their classroom practice. Similarly, we cannot always say what we do 

(Adler, 2001). It is equally possible to infer knowledge from a teacher’s performance in 

the classroom that is not articulated during an interview or written assessment, e.g. 

Hodgen (2011) and Thwaites et al (2010). When articulation does coincide with 

performance, i.e. when a teacher appears to do as they have said or appears able to say 

what they have done, then this may provide a more reliable basis for inference about 

their mathematical knowledge for teaching using technology. In analysing individual 

teacher’s knowledge, it should be stated that the purpose of this study is to make 

inferences about the nature and content of teachers’ knowledge in general; it is not to 

critique the knowledge of individual teachers. 

 

1.3 Understanding individual teachers’ knowledge in participation with 

technology 

This section sets out a theoretical framework for understanding how an individual 

teacher’s knowledge is involved in the participatory relationship (Remillard, 2005) with 

technology to produce the mathematical knowledge made available in the classroom. 

Arguably, the mathematical knowledge made available in the classroom through the 

interaction of the teacher with technology has a more direct impact on the quality of 

pupils’ mathematical experience in the classroom than the knowledge of the individual 

teacher. The teacher in combination with technology might interact to augment or 

impede mathematical knowledge being made available in the classroom. That is, the 

mathematical knowledge made available in the classroom through a teacher’s 

interaction with technology might be greater or less than the sum of knowledge of the 

individual constituents of the teacher-technology combination.  
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1.3.1 Hutchins’ view of distributed cognition 

Hutchins’ (1995) view of distributed cognition is used as a framework for 

understanding how individual teachers’ knowledge is involved in interacting with 

technology to produce the mathematical knowledge made available in the classroom. 

Detailing how and to what extent knowledge is distributed across teacher and 

technology is a means of describing the participatory relationship (Remillard, 2005). 

This theoretical framework is depicted in Figure 1.1 in a diagram based upon 

Remillard’s (2005) model. 

 

Figure 1.1 Theoretical framework for this study, based on Remillard (2005) 

 

Hutchins (1995) presents his view of distributed cognition as a means of 

conceptualising cognition in a way that is “as applicable to events that involve the 

interaction of humans with artefacts and with other humans as it is to events that are 

entirely internal to individual persons” (p. 118). Critically, Hutchins argues that 

conceptualising cognition in this way assumes that cognition is not only a property of an 
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individual person, but also occurs through human interaction with artefacts and other 

humans. In particular, he argues that cognition partially resides in tools – taken to mean 

any artefact appropriated for use by humans - since they incorporate in their 

construction the results of past cognitive efforts. The strength of his argument for a 

distributed view of cognition lies in his specification of minimum knowledge 

requirements for individual persons to carry out the computational tasks necessary for 

navigating a military ship in interaction with artefacts and other humans (e.g. reading 

bearings, pp. 137-140). The specification of minimum knowledge requirements 

provides strong evidence that it is not necessary for cognition as computation of 

navigational tasks to occur entirely through the actions of an individual. By specifying 

the minimum knowledge requirements necessary for an individual to carry out a 

computational task in interaction with an artefact, Hutchins (1995) provides an 

indication of to what extent cognition may be distributed across both human and 

artefact. For example, in his description of four ways to do distance-rate-time problems 

(p. 147-155), he indicates how the computation could be successfully carried out whilst 

the person was doing less because the tool did more. 

Applying Hutchin’s view of distributed cognition to this study means conceptualising 

the mathematical knowledge made available in the classroom as being distributed across 

the teacher, technology and other human participants – typically pupils, but also 

potentially teacher-colleagues and the author herself when in the role of participant-

observer or interviewer. As noted in section 1.2.1, the focus of this study is on how 

individual teachers’ knowledge is involved in interacting with technology to produce 

the mathematical knowledge made available in the classroom. Hence whilst the other 

human participants are acknowledged and where possible taken into account, the 

primary focus is on understanding how the mathematical knowledge made available in 

the classroom is distributed across the individual teacher and the technology. 

Understanding how an individual teacher’s knowledge is involved in interacting with 

technology is then a matter of investigating to what extent the mathematical knowledge 

made available in the classroom is distributed across the individual teacher and the 

technology. This means investigating to what extent the mathematical knowledge made 

available in the classroom can be accounted for through the individual teacher’s 

mathematical knowledge for teaching using technology. In particular, specifying the 

minimum knowledge requirements necessary for the teacher to produce the 

mathematical knowledge made available in the classroom in interaction with the 
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technology (and other human participants) provides an indication of how and to what 

extent cognition may be distributed across both teacher and technology. 

Hence, Hutchins’ (1995) view of distributed cognition provides a means of 

investigating how individual teachers’ knowledge is involved in the participatory 

relationship with technology. Critically for this study, by specifying minimum 

knowledge requirements, Hutchins’ (1995) view of distributed cognition provides a 

means of indicating how and to what extent the case study teachers’ mathematical 

knowledge for teaching was distributed across the software, the author and teaching-

colleagues.  

In chapters 6 and 7, the terms readerly and writerly response (Bowe, Ball & Gold, 1992, 

drawing on the work of Barthes) are introduced to indicate how and to what extent 

knowledge is distributed across teacher and technology. Departing from their original 

meaning, that writerly texts invite the reader to participate in meaning-making and are 

therefore in a sense superior to readerly texts that make no such demands, the use of 

these terms in this study takes a less normative view. Instead, a readerly/writerly 

response indicates the role of the individual teachers’ knowledge in the participatory 

relationship with technology to produce the mathematical knowledge made available in 

the classroom. Similarly, contrasting tacit to articulated knowledge in section 1.2.3 is 

not intended to set up a hard dichotomy but rather to suggest a continuum indicating the 

extent to which knowledge is distributed across the teacher and technology.  

1.3.2 The instrumental approach  

This study uses an amalgam of Remillard’s (2005) perspective and Hutchins’ (1995) 

view of distributed cognition as a means of understanding how individual teachers’ 

knowledge is involved in interacting with technology. However, these are not the only 

available frameworks for understanding how individual teachers’ knowledge is involved 

in interacting with technology. In particular, the instrumental approach has been highly 

influential in research on teachers and technology in mathematics education (see 

Chapter 2). This section briefly describes the instrumental approach and, by contrasting 

it with Hutchins’ view of distributed cognition, justifies the author’s theoretical 

selection.  

The instrumental approach (Guin, Trouche & Ruthven, 2005) in research on technology 

in mathematics education was based on Verillon and Rabardel’s (1995) theory of 
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instrumented activity systems. Their model of an instrumented activity system (IAS) 

consists of a triad: a human subject, an instrument and an object towards which the 

action using the instrument is directed, as well as the interactions between the three 

elements of the model (Verillon & Rabardel, 1995). The IAS model was developed as a 

means of understanding human interactions with artefacts to perform a task. An artefact 

becomes an instrument as the human subject appropriates it for use to perform a given 

task. The process of appropriation is termed instrumental genesis. An instrument is thus 

considered distinct from the artefact because it represents a psychological tool, 

incorporating both the artefact and utilisation schemes developed though the 

instrumental genesis of the subject.  

The instrumental approach was first used in mathematics education in relation to pupils 

learning to use digital technologies for solving mathematical tasks (e.g. Guin & 

Trouche, 1999). Verillon and Rabardel (1995) used their model in relation to pupils 

imagining machines that could transform prisms made out of wood into cylinders and 

cones; pupils learning to use lathes to perform similar transformations of wooden 

objects; and pupils learning to use a robot to move an object in 3-dimensional space. 

Due to the similarity of the research contexts, appropriating the IAS model into the field 

of mathematics education for the purpose of analysing pupils learning to use digital 

technologies for solving mathematical tasks seems straightforward, requiring little 

further theoretical elaboration.  

Applying the instrumental approach to teachers’ use of technology in mathematics 

education however, has been less straightforward, apparently requiring further 

theoretical elaboration. For example, Haspekian (2005, 2014) found it necessary to 

distinguish between a teacher’s personal and professional instrumental genesis. That is, 

appropriating an artefact for the teacher’s personal mathematical work produces one 

instrument, whilst appropriating an artefact for the professional work of teaching 

mathematics produces a different instrument. Another example is Gueudet and 

Trouche’s (2009) introduction of the documentational approach as a new framework for 

describing a teacher’s appropriation of technology. The documentational approach, 

mirroring the instrumental approach, replaces artefact with resources and instrument 

with document. Thus teachers are modelled as appropriating resources and, through a 

process of documentational genesis, incorporating utilisation schemes to form a 

document. 
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The centrality of the construct of instrumental/documentational genesis, i.e. the process 

of appropriation, in these adaptations of the instrumental approach means that these 

studies focus on teachers’ learning in relation to using technology to teach mathematics. 

Whilst teachers’ learning is important, it is not the primary focus of this study. Instead, 

this study concentrates on teachers as workers where the focus is on the knowledge they 

‘have’, using technology in their work of teaching mathematics, rather than on teachers 

as learners where the focus is on how their knowledge changes and develops. Hence 

Hutchins’ view of distributed cognition seemed more appropriate to this study because 

it focuses on an analysing the interaction of humans with artefacts in the workplace. In 

particular, by defining minimum knowledge requirements, distributed cognition 

provides a means of analysing how individual knowledge is involved in human-artefact 

interactions in the workplace rather than the process of knowledge acquisition. Hence 

Hutchins’ view of distributed cognition was selected as a framework for understanding 

how individual teachers’ knowledge is involved in interacting with technology to 

produce the mathematical knowledge made available in the classroom. The workplace 

Hutchins analyses in his book Cognition in the Wild is that of a United States Navy ship 

the USS Palau. There are significant differences between this workplace and that of the 

mathematics classroom. In particular, the work of members of the navigation team on 

the USS Palau was very strictly regulated in comparison to that of teachers. These 

regulations were imposed on the navigation team to avoid contingencies or unexpected 

situations arising. Such situations could result in life-threatening consequences on the 

USS Palau so strict regulations were critical to their work. In contrast, unexpected 

situations might be more welcome in the work of teaching and represent opportunities 

for teachers to learn (Clark-Wilson, 2010; 2014). This represents a possible limitation of 

the theoretical framework adopted for this study. Nevertheless, Hutchins’ view of 

cognitive framework was selected as a framework for understanding  

Remillard’s (2005) perspective identifies pupils as a key factor in influencing the 

participatory relationship between teachers and technology. However, Verillon and 

Rabardel (1995) make clear that the IAS model does not cover situations of 

instrumented activity involving collective activity i.e. more than one subject. Thus the 

IAS model would not easily apply to teacher-student interactions with technology or to 

interactions between teachers and their colleagues with technology. Based on the IAS 

model, the instrumental approach in mathematics education and subsequent adaptations 

suffer from similar limitations. Gueudet and Trouche (2009) suggest that human-human 



31 

 

interactions are included under the documentational approach and that they take account 

of teachers working collectively. However, it remains unclear how such interactions and 

collective work figure in their theoretical model of a document, based as it is on the 

original IAS model. 

In contrast, Hutchins’ view of distributed cognition was developed with the explicit 

intention that it should be “as applicable to events that involve the interaction of humans 

with artefacts and with other humans as it is to events that are entirely internal to 

individual persons” (p. 118). For example, Hutchins analyses members of the 

navigation team working in coordination with each other to execute tasks successfully. 

Hence this framework does provide a means of taking teacher-student interactions with 

technology or to interactions between teachers and their colleagues with technology into 

consideration. Although the primary focus of this study is on understanding how the 

mathematical knowledge made available in the classroom is distributed across the 

individual teacher and the technology, Hutchins’ view of distributed cognition allows 

the other human participants to be acknowledged and where possible taken into account. 

 

1.4 Frameworks for analysing teachers’ individual knowledge 

An individual teacher’s mathematical knowledge for teaching using technology, as 

defined in section 1.2.3, is when their know-how or knowledge-in-action coincides with 

their articulated knowledge. Hutchins’ (1995) view of distributed cognition provides a 

means for understanding how individual teachers’ knowledge is involved in interacting 

with technology to produce the mathematical knowledge made available in the 

classroom. However, it does not provide a means of analysing an individual teacher’s 

own knowledge in relation to using technology to teach mathematics. That is, another 

framework is needed to analyse and compare teachers’ espoused theories (articulated 

knowledge) and their theories-in-action (knowledge-in-action), in order to make 

inferences about individual’s mathematical knowledge for teaching using technology – 

see Figure 1.1. This section justifies the selection of the Technological Pedagogical and 

Content Knowledge (TPACK) framework (Mishra & Koehler, 2006) and the 

Knowledge Quartet (Rowland et al., 2005) as frameworks suitable for this purpose. 

In view of the definition of mathematical knowledge for teaching and the focus on 

digital technologies adopted in this study, a framework for analysing an individual 
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teacher’s own knowledge in relation to using technology to teach mathematics should 

fulfil two criteria: 

1) accommodates an analysis of both knowledge-in-action and articulated knowledge 

2) enables a focus on teachers’ mathematical knowledge for teaching in relation to 

technology. 

The literature review in Chapter 2 provides a more detailed analysis of potential 

frameworks for analysing an individual teacher’s own knowledge in relation to using 

technology to teach mathematics. The broad finding from the literature review was that 

frameworks from research on teacher knowledge in general and in mathematics 

education in particular tended to fulfil the first criterion but did not focus on technology 

(Ball et al., 2008; Baumert et al., 2010; Davis & Simmt, 2006; Ma, 1999; Rowland et 

al., 2005; Shulman, 1986). Research on teachers and technology in mathematics 

education tended to fulfil the second criterion but focussed either on knowledge-in-

action or know-how (Drijvers et al., 2010; Gueudet & Trouche, 2009; Ruthven et al., 

2008; Ruthven, 2009; Trouche, 2005) or on aspects of articulated knowledge (Bowers 

& Stephens, 2011; Monaghan, 2004; Pierce & Stacey, 2010; Zbiek et al., 2007) but not 

on both. 

The TPACK framework (Mishra & Koehler, 2006) is unusual in fulfilling both criteria 

– hence its selection for this study. Their framework represents Shulman’s (1986) 

conception of pedagogic content knowledge diagrammatically as the intersection of two 

circles representing general pedagogic knowledge and content knowledge. Extending 

this representation using a Venn diagram with three overlapping circles, they 

incorporate technology knowledge as a third domain of teacher knowledge. The 

inclusion of this third domain of teacher knowledge enables a focus on teachers’ 

mathematical knowledge for teaching in relation to technology. Since the TPACK 

framework is informed by Shulman’s (1986) concept of PCK, it is reasonable to assume 

that it enables analysis of individual teachers’ articulated knowledge or propositional 

knowledge in Shulman’s terms. However Mishra and Koehler also emphasise the 

situated (Brown, Collins & Duguid, 1989) nature of teacher knowledge in the context of 

classroom practice, enabling an analysis of knowledge-in-action or know-how. In 

Chapter 5, Noss and Hoyles’ (1996; & Kent, 2004; & Pozzi, 2002) notion of situated 

abstraction is used to reconcile the apparent duality of an individual teacher’s 

mathematical knowledge for teaching using technology as at once ‘abstract’, articulated 
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knowledge and yet situated in the context of teaching mathematics using technology. 

Similarly, Adler’s (1999; 2001) concepts of the dilemma of transparency and 

visibility/invisibility are used to provide insight on this tension. 

The TPACK framework is not without limitations, sketched briefly here and in more 

detail in the literature review in Chapter 2. Firstly, the components of the TPACK 

framework appear weakly theorised and thus establishing clear distinctions between 

them in empirical terms has proved problematic. Secondly, due to the TPACK 

framework’s development outside of mathematics education, it lacks of subject-

specificity – this may explain in part Ruthven’s (2014, p.380) criticism that it provides a 

rather “coarse-grained tool” for conceptualising and analysing teacher knowledge. To 

mitigate this second limitation, the Knowledge Quartet (Rowland et al., 2005) was also 

selected to complement the TPACK framework. The Knowledge Quartet was chosen as 

a suitable tool for analysis primarily due to the framework’s development as a means of 

focusing attention on teachers’ mathematical knowledge, hence compensating for the 

TPACK framework’s lack of subject specificity. In addition, the Knowledge Quartet 

fulfils the first criterion in accommodating an analysis of both knowledge-in-action and 

articulated knowledge. The fourth category of the Knowledge Quartet, Contingency, 

focuses on teachers’ knowledge in relation to unexpected situations arising in the 

mathematics classroom. This focus on knowledge arising in contingent or unexpected 

situations helps to ameliorate the limitations of Hutchins’ view of distributed cognition 

mentioned in section 1.3.2. Finally, the strong face validity of the Knowledge Quartet 

also made the framework generally appealing to the author.  

This study uses an amalgam of Remillard’s (2005) perspective and Hutchins’ (1995) 

view of distributed cognition as a means of understanding how individual teachers’ 

knowledge is involved in participation with technology. However, the TPACK 

framework (Mishra & Koehler, 2006) and Knowledge Quartet (Rowland et al., 2005) 

complement each other to provide a dual means of focusing on and analysing individual 

teachers’ own knowledge in relation to using technology to teach mathematics. In 

particular, whilst the TPACK framework enables a focus on teachers’ mathematical 

knowledge for teaching in relation to technology, the Knowledge Quartet enables a 

more fine-grained analysis of mathematical knowledge for teaching using technology. 
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1.5 An imperative for exploring a connectionist orientation in relation to 

technology 

This section begins by defining a connectionist orientation in more detail and 

contrasting it with the transmission and discovery orientations that Askew et al (1997) 

found were associated with less effective teaching of mathematics. Sub-section 1.5.1 

sets out the relevance of a connectionist orientation in relation to technology use and to 

the context in which this study is set to argue that there is an imperative for exploring a 

connectionist orientation in relation to technology. Finally, the imperative for exploring 

a connectionist orientation in relation to technology is used to justify the two main 

research questions and two subsidiary research questions that this study aims to address. 

In a study of primary school teachers in the UK focusing on their teaching of numeracy, 

Askew et al (1997) found that more effective teachers of numeracy displayed what they 

described as a connectionist orientation in contrast to the transmission or discovery 

orientations of their less effective colleagues. Askew et al (1997) defined these 

orientations mainly in terms of beliefs about what it means to be numerate and about the 

relationship between teaching and learning. In section 1.2.2 it was noted that such 

beliefs are considered as ‘knowledge’ in the terms of this study.  

As a result, connectionist teachers are defined as knowing that “being numerate means 

having a rich network of connections between different mathematical ideas and 

employing teaching approaches that establish and emphasise such connections” (Askew 

et al., 1997, p.3). In contrast, transmissionist teachers’ knowledge of what it means to be 

numerate is that it concerns the acquisition of a collection of routines or procedures. As 

a consequence, transmissionist teachers place more emphasis on teaching as a clear 

explanation of routines, reducing interactions between teachers and pupils to checks that 

these routines can be reproduced correctly. For discovery teachers, learning takes 

precedence over teaching: pupils' own strategies are the most important, irrespective of 

how effective or efficient they are. Discovery teachers make extensive use of practical 

experiences to embody mathematical ideas so that pupils discover methods for 

themselves. Connectionist teachers seek to balance teaching and learning so that there is 

a dialogue between teacher and pupils, both to exemplify the teacher's network of 

knowledge and skills and to reveal pupils' thinking. 

In terms of knowledge of what it means to be numerate, connectionist and 

transmissionist teachers can therefore be seen as occupying opposite ends of a spectrum, 
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with a connected understanding of mathematics at one end versus a isolated and 

fragmented at the other. In terms of pedagogy, transmissionist teachers can be 

characterised as being teacher-centred, whilst discovery teachers occupy an extreme 

student-centred position. Connectionist teachers adopt a pedagogic approach that seeks 

to balance the best aspects of both student and teacher-centred pedagogies. 

 

1.5.1 Justifying the research questions of this study 

The first section of this chapter argued that mathematics education research has tended 

to focus narrowly on digital technologies such as those termed cognitive technological 

tools (Zbiek et al., 2007) or mathematical analysis software (Pierce & Stacey, 2010). 

This has led to the perception of a deficit in teachers’ use of digital technologies. The 

apparent deficit exists in two senses. Firstly, mathematics teachers appear to make only 

occasional use of digital technologies in their teaching. Secondly, when teachers do 

make use of digital technologies, the potential of these technologies to enhance pupils’ 

mathematical experience in the classroom is rarely realised. Adopting a wider definition 

of digital technologies suggests the apparent deficit in teachers’ frequency of use may 

be over-estimated. Teachers do integrate some types of digital technology into their 

classroom practice. However, these types of digital technology are commonly assumed 

to be teacher-centred (rather than student-centred) and to maintain or even encourage 

existing ‘traditional’ pedagogies.  

Remillard’s (2005) perspective is a reminder that although the constraints and 

affordances inherent in digital technologies may help to shape its end use in the 

classroom, inevitably, teachers as end-users will also work to shape the technology. 

Thus connectionist-oriented teachers may work to shape digital technologies commonly 

assumed to be teacher-centred, using them in ways that conform to their own more 

student-centred pedagogy. If this is the case, then the apparent deficit in teachers’ use of 

digital technologies in terms of the extent to which their potential is realised may also 

be over-estimated. 

A connectionist orientation towards teaching mathematics has not been investigated in 

relation to ICT use. This is surprising given the prominence of ICT and links made 

between ICT and student-centred practices (see Becker et al., 1999; Law et al., 2008). 

Given the consensus that effective mathematics teaching should involve features that 
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underpin a connectionist approach to teaching mathematics (see section 1.2.2), there is 

an imperative for research on how technology use is associated with a connectionist 

orientation. This study has defined a connectionist orientation mainly in terms of 

knowledge, for example, knowing that understanding mathematics means having a 

connected knowledge of the subject. Transmissionist teachers provide a contrast with 

connectionist teachers in this respect. This contrast provides a means of exploring 

connectionist teachers’ use of technology through a comparison with transmissionist 

teachers’ use of technology. In addition, the main focus of this PhD project is an 

examination of individual teachers’ knowledge and how it is involved in interacting 

with technology to produce the mathematical knowledge made available in the 

classroom.  

The imperative for research on how technology use is associated with a connectionist 

orientation and this study’s focus on teacher knowledge in relation to using technology 

to teach mathematics give rise to the two main research questions, RQ1 and RQ2, and 

two subsidiary questions, RQ2a and RQ2b, listed below. Contrasting transmissionist 

and connectionist teachers’ use of technology should make visible individual teachers’ 

mathematical knowledge for teaching using technology and thus allow RQ2 and its 

subsidiary questions to be addressed. In this sense, RQ1 provides a frame of reference 

for the rest of the research project through an initial exploration of how a connectionist 

orientation may be related to technology. 

 

RQ1  How is a connectionist orientation towards teaching mathematics associated 

with teachers’ frequency of use of ICT, their orientation towards ICT and their 

pedagogic practices involving ICT? 

RQ2 What is the nature and content of teachers’ mathematical knowledge for 

teaching using technology, as represented by the central TPACK construct? 

RQ2a  How does a conceptualisation of teachers’ mathematical knowledge for teaching 

using technology suggest ways in which such knowledge could be measured? 

RQ2b To what extent is the mathematical knowledge made available through a 

teachers’ interaction with technology distributed across the individual teacher 

and the technology? 
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1.6 Structure of the thesis 

Chapter 2 is a review of literature in relation to mathematical knowledge for teaching 

using technology. 

Chapter 3 sets out the methodology and research design adopted for the study, in 

accordance with the theoretical framework set out in this introductory chapter.  

Chapter 4 reports findings from using survey data to explore associations between ICT 

use and a connectionist orientation towards teaching mathematics, addressing RQ1.  

Chapter 5 begins to address RQ2 by investigating the nature of mathematical 

knowledge for teaching using technology, drawing on interview and classroom 

observation data from four case study teachers. 

Chapter 6 investigates the content of mathematical knowledge for teaching using 

technology in relation to the topic of circle theorems. In particular, the analysis reports 

the development and post-hoc justification of a conceptualisation of this knowledge to 

address RQ2 and as a first step towards addressing RQ2a. 

Addressing RQ2b, Chapter 7 introduces a framework for identifying instances of 

distributed cognition (Hutchins, 1995), developed from an analysis of the case study 

teachers’ mathematical knowledge for teaching circle theorems using technology 

presented in Chapter 6. In particular, the development of this framework led to the 

specification of minimum knowledge requirements necessary for a teacher to produce a 

choice and use of examples and decisions about sequencing (Rowland et al., 2005). 

Chapter 8 synthesises the findings of the four preceding data analysis chapters and 

considers implications for future research, policy and practice. 
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Chapter 2 - Literature Review 

 

This chapter reviews the literature for two purposes. Firstly, to identify and analyse 

potential frameworks for analysing individual teachers’ own knowledge that fulfil the 

two criteria described in Chapter 1. Namely, that in view of the definition of 

mathematical knowledge for teaching and the focus on digital technologies adopted in 

this study, a framework for analysing individual teachers’ own knowledge in relation to 

using technology to teach mathematics should: 

1) accommodate an analysis of both knowledge-in-action and articulated knowledge 

2) enable a focus on teachers’ mathematical knowledge for teaching in relation to 

technology. 

The identification and analysis of potential frameworks for analysing an individual 

teacher’s own knowledge should therefore provide a justification for the author’s choice 

of the TPACK framework and Knowledge Quartet for this purpose as argued in Chapter 

1. 

Secondly this chapter aims to justify Research Questions 2, 2a and 2b by identifying 

gaps in the research literature, which these questions seek to address. This chapter 

reviews research relevant to this study across the general and subject-specific fields of 

research on teachers and teacher knowledge and research on technology in education. 

This review therefore uses the literature selectively, providing a review for, rather than 

of, research (Maxwell, 2006). 

 

2.1 Introduction 

The structure of this literature review attempts to reflect the distribution of the literature 

relevant to this study across the general fields of research on teachers and teacher 

knowledge and research on technology in education. Conducting the search for 

literature, it became apparent that there was little overlap between these fields: within 

handbooks they appear to be treated as distinct research domains (see, for example 

Anderson, 1995). In particular, although research on teacher knowledge has begun to 

inform research on technology in education, there is little evidence to suggest the 

reverse process is occurring. A similar pattern appears in research within the (subject-
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specific) field of mathematics education. Research on teacher knowledge in 

mathematics education rarely seems to inform or be informed by research on technology 

in mathematics education. Thus this literature review consists of three main sections. 

The first section explores the general field of research on teachers and teacher 

knowledge and its findings with respect to technology, before focusing specifically on 

research on teacher knowledge in mathematics education and its findings in relation to 

technology. The second section explores the general field of technology in education 

with regard to its findings on teachers and teacher knowledge, before again focusing on 

mathematics education, this time with regard to research on technology and its findings 

in relation to teachers’ knowledge. Finally, the third section provides a summary and 

draws conclusions, which are used to justify RQs 2, 2a and 2b. The structure of this 

literature review is illustrated in Figure 2.1, below: 

 

 

Figure 2.1 Literature review structure 
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2.2 Technology in research on teachers and teacher knowledge 

Handbook entries in sections on teachers and teaching tend not to have technology as a 

focus – articles on teachers and technology, if they exist, are in sections devoted to 

research on technology in education (Anderson, 1995; Biddle, Good & Goodson, 1997; 

Guthrie, 2003; Peterson, Baker & McGaw, 2010). The Handbook of Research on 

Teaching (Richardson, 2001) exemplifies this tendency: none of its chapters has 

technology as a focus and its index contains only a handful of scattered references to 

technology or computers. Subject-specific handbooks in mathematics and science 

education follow this trend: reviews of research on teachers and teaching and research 

on technology rarely appear to coincide (Bishop, 1996; Bishop, Clements, Keitel, 

Kilpatrick & Leung, 2003; Clements, Bishop, Keitel, Kilpatrick & Leung, 2013; 

English, 2008; Fraser & Tobin, 1998; Grouws, 1992; Lerman, 2014; Lester Jr, 2007). 

Technology use in teacher education does appear as a focus both in generalist and 

subject-specific handbooks (see for example, Musley, Lamndin and Koc (2003); Borko, 

Jacobs and Koellner (2010); Wiske and Spicer (2010) and Tittle (2006) on assessment 

of teacher learning). However, pre-service and in-service teachers’ learning about how 

to integrate technology was not the focus of such research. Instead the focus on 

technology in the context of teacher education lies in how technology may be used by 

teacher educators to help pre- and in-service teachers engage with wider issues of 

(subject-specific) pedagogy, for example through internet-based communities, 

interactive media, video case studies and digitised work (Borko et al., 2010; Lampert & 

Ball, 1998; Musley et al., 2003; Wiske & Spicer, 2010). Such uses of technology in 

teacher education may contribute indirectly to developing teacher knowledge for 

teaching using technology, however this does not appear as an explicit focus in teacher 

education research. For example, in an introduction to a special issue of the Journal of 

Teacher Education on technology use in teacher education, Borko et al (2009) 

acknowledge that exploration of the knowledge and skills that teachers must have to use 

technology effectively in their teaching was not addressed in the issue’s call for 

manuscripts. Attending to this lacuna, Borko et al (2009) describe TPACK 

(technological pedagogical content knowledge, Mishra & Koehler, 2006) as a promising 

construct for directing such an exploration of teacher knowledge for technology 

integration. The TPACK framework and its limitations are discussed in detail in the 
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second half of this literature review, which focuses on reviewing research on teachers 

and teacher knowledge in the field of technology in education. Finally, Borko et al 

(2010) states that research on contemporary professional development programs 

(whether they include new technologies or not) falls mostly within the initial proof-of-

concept phase of research: few studies move beyond this phase to examine the impact of 

professional development on teachers’ learning and classroom practice. 

Research on teachers and teaching does focus on teachers’ knowledge, beliefs and 

affect, but within such research little attention is given to teachers’ knowledge in 

relation to technology. For example, Munby et al’s (2001) review of research entitled 

Teachers’ knowledge and how it develops, which summarises reviews in previous 

editions of the Handbook of Research on Teaching and the Handbook of Educational 

Psychology, makes no reference to teachers’ knowledge in relation to technology. In the 

most recent edition of the Handbook of Educational Psychology, Hoy et al’s (2006) 

review of research on teacher knowledge and beliefs likewise contains no references to 

the knowledge teachers need for technology integration. Describing the content of 

teacher knowledge, Grossman (1995) and Putnam (2003) both present a list of 

categories based around Shulman’s (1987) categorisation of the professional knowledge 

base for teaching. Similarly, Meijer (2010) quotes Shulman (1987, p. 8) in her portrayal 

of the content of teacher knowledge, listing his seven categories as follows: 

 content knowledge;  

 general pedagogical knowledge, with special reference to those broad 

principles and strategies of classroom management and organization that 

appear to transcend subject matter;  

 curriculum knowledge, with particular grasp of the materials and programs 

that serve as "tools of the trade" for teachers;  

 pedagogical content knowledge, that special amalgam of content and 

pedagogy that is uniquely the province of teachers, their own special form of 

professional understanding;  

 knowledge of learners and their characteristics;  

 knowledge of educational contexts, ranging from the workings of the group 

or classroom, the governance and financing of school districts, to the 

character of communities and cultures; and  
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 knowledge of educational ends, purposes, and values, and their philosophical 

and historical grounds.  

Putnam and Borko (1997) choose to focus on general pedagogic knowledge, subject 

matter knowledge and pedagogic content knowledge as the three most researched areas 

of teacher knowledge, although they include curriculum knowledge as part of pedagogic 

content knowledge. Of Shulman’s categories, curriculum knowledge appears most 

clearly related to teachers’ knowledge of technology. Shulman (1986) describes 

curriculum knowledge as knowledge of the “full range of programs and associated 

materials designed for teaching particular subjects and topics at a given level, the 

variety of instructional materials available in relation to those programs” (p. 10), as well 

as recognising when it may be appropriate to deploy such materials. Beyond this brief 

description, neither Meijer (2010) nor Grossman (1995) provide further insight into 

what teachers’ knowledge with regard to technology might entail. Putnam (2003) notes 

that much of what teachers know is connected to technology, referring to textbooks and 

instructional materials, although he does not explicitly mention digital technologies. 

The brevity of the description of teachers’ knowledge of technology is perhaps not 

surprising: Putnam and Borko (1997) observe that research on pre-service and 

experienced teachers’ knowledge and use of curriculum materials is sparse. In contrast, 

Van Driel and Berry (2010) state that pedagogic content knowledge has received 

considerable attention in the research literature, however their summary of this literature 

does not refer to teachers’ knowledge of technology. Despite the concentration of 

research on pedagogic content knowledge, Van Driel and Berry (2010, p. 657) note that 

no universally accepted conceptualisation of pedagogic content knowledge has 

emerged, thus “that which is searched for and that which is uncovered is variable 

indeed”. Research on teachers’ knowledge, in particular Shulman’s categorisation and 

its variants, arose from attempts (mainly in the US) to identify and establish a 

professional knowledge base for teaching, seen as integral in contributing to the 

professionalisation of teaching (Grossman, 1995; Meijer, 2010; Munby et al., 2001; 

Putnam & Borko, 1997; Shulman, 1986; 1987). As such research emphasises the critical 

role of professional knowledge and beliefs in teaching, it essentially makes an 

individualistic assumption that, for knowledge to be influential in teaching, it has to 

remain internal to the teacher (Putnam & Borko, 1997). Thus individualistic approaches 

to teacher knowledge tend to dominate, characterised by the implicit assumption that 

teachers ‘carry’ the knowledge and skill they need for teaching ‘in their heads’ (Putnam 
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& Borko, 1997). Significant moves have been made to recognise and capture the 

complex, contextualised nature of teachers’ knowledge, through the development of a 

range of conceptualisations of teacher knowledge including, for example, craft 

knowledge (Meijer, 2010; Putnam, 2003), personal practical knowledge (Meijer, 2010; 

Putnam, 2003), event-structured knowledge (Putnam, 2003), case and strategic 

knowledge (Shulman, 1986), narrative forms of knowing (Grossman, 1995). 

Specifically these efforts reflect a more general movement in psychology and education 

towards viewing knowledge as situated, and teachers’ knowledge in particular as 

situated in classroom practice (Putnam, 2003). Nevertheless, most research on teacher 

knowledge remains underpinned by the same essentially individualistic assumptions 

mentioned above (Putnam & Borko, 1997). In particular, research on teacher knowledge 

informed by views of cognition as distributed across persons and tools (Hutchins, 1995; 

Lave, 1988) remains underdeveloped (Putnam & Borko, 1997).  

 

2.3 Technology in research on teachers and teacher knowledge in 

mathematics education 

In mathematics education, research on teachers and teacher knowledge follows similar 

trends to those outlined above in the wider education literature. Sections on teachers and 

teaching in handbooks of research on mathematics education do focus on teachers’ 

knowledge, beliefs and affect, but again within such research little attention is given to 

mathematics teachers’ knowledge in relation to using technology in their teaching. 

Although there are brief reports that using technology can lead to changes in teachers’ 

mathematical knowledge and beliefs, these tend to be based on evidence from research 

on technology in mathematics education, rather than research within the field of teacher 

knowledge, and are therefore discussed in more detail in the second half of this 

literature review. Thus research on teacher knowledge in mathematics education tends 

to neglect technology, both in terms of the knowledge needed to teach mathematics 

effectively using technology and as a tool for investigating mathematical knowledge in 

teaching. For example, in the Handbook of Research on Teaching (Richardson, 2001), 

Ball et al’s (2001) article reviewing research on teaching mathematics, delineating the 

“unsolved problem of teachers’ mathematical knowledge”, does not contain any 

references to teachers’ knowledge of technology. In the Handbook of Research on 

Mathematics Teaching and Learning (Grouws, 1992), reporting the state of the field of 
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research on mathematics teachers’ knowledge, Fennema and Franke (1992) distinguish 

the following components of knowledge: knowledge of mathematics; knowledge of 

mathematical representations; knowledge of students’ learning; and general knowledge 

of teaching and decision-making. They mention technology only fleetingly in the 

context of outlining the curricular knowledge component of Shulman’s model of teacher 

knowledge (Fennema & Franke, 1992). Similarly, articles in the same volume 

reviewing research on teachers’ beliefs and conceptions (Thompson, 1992) and 

mathematics teaching practices and their effects (M. Koehler & Grouws, 1992) do not 

mention technology in any detail. In the Second Handbook of Research on Mathematics 

Teaching and Learning (Lester Jr, 2007), Hill et al (2007) note that new technologies 

such as multimedia may provide a promising means of assessing teachers’ mathematical 

knowledge. However, they do not refer to assessments focusing on mathematics 

teachers’ knowledge for teaching using technology. Concluding a section on teachers’ 

beliefs about technology in his article on mathematics teachers’ beliefs and affect, 

Philipp (2007) summarises that teachers may not believe using computers to teach is 

appropriate even if they are comfortable in using them for their own learning and that 

teachers' beliefs about technology are constrained by their beliefs about mathematics 

and their beliefs about teaching and learning. Sowder (2007) briefly mentions 

technology in relation to adopting a focus on curriculum as an approach to teacher 

learning, citing Bowers and Doerr (2001) as an example of a project where technology 

was used to develop teachers’ mathematical understanding of change. Similarly, in the 

Second International Handbook of Mathematics Education (Bishop et al., 2003), 

Cooney and Wiegel (2003) note that technology can be used as a catalyst to restructure 

teachers’ understanding of mathematics, quoting Laborde (2001) as an example; 

however, they do not explicitly address teachers’ mathematical knowledge for teaching 

using technology. In the most recent, third edition of the International Handbook of 

Mathematics Education (Clements et al., 2013), the chapters relating to teachers’ 

knowledge and learning (e.g. White et al., 2013) do not address teacher knowledge or 

learning in relation to using technology to teach mathematics. Ponte and Chapman 

(2008) also cite several studies (Bowers & Doerr, 2001; Goos, 2005; Ponte, Oliveira & 

Varandas, 2002) suggesting that technology may be used to develop pre-service 

mathematics teachers’ knowledge but also do not address teachers’ mathematical 

knowledge for teaching using technology directly. Boero, Dapueto and Parenti (1996) 

briefly state that the advent of new technologies requires new competencies on the 

teacher’s part, to take advantage of the new educational opportunities they offer, 
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however they do not expand on what these competencies might entail. Even and Tirosh 

(2008) make no mention of technology in their review of research on teachers’ 

knowledge and understanding of students’ mathematical learning and thinking. The 

entries in the Encyclopedia of Mathematics Education (Lerman, 2014) relating to 

teacher knowledge, the assessment of teacher knowledge and teachers as learners also 

do not mention teachers’ knowledge or learning in relation to technology. Finally, in 

two recent volumes reviewing research on mathematical knowledge in teaching 

(Rowland & Ruthven, 2011; Sullivan & Wood, 2008), not one of the papers discusses 

teacher knowledge directly in relation to teaching with technology. The last section of 

Rowland and Ruthven’s (2011) volume Mathematical Knowledge in Teaching focuses 

on building mathematical knowledge in teaching through theorised tools. Ryan and 

Williams’ (2011) paper is the only one that employs technology in their methodology 

for exploring teachers’ knowledge. They use Quest software to produce a mathsmap of 

teachers’ subject knowledge and use this as a basis for individual reflection to build 

knowledge. However, the items the teachers engaged with to create the mathsmap did 

not involve technology and hence this tool is unlikely to build or give insight into 

teachers’ mathematical knowledge for teaching using technology. Similarly, the papers 

in the last section of Sullivan and Wood (2008) focusing on the assessment of, and 

research on, teacher knowledge do not contain any references to technology. 

Much of the research conceptualising teachers’ mathematical knowledge in teaching is 

informed by or draws upon Shulman’s (1986; 1987) categorisation of teacher 

knowledge (Ruthven, 2011). In particular, the concept of pedagogic content knowledge 

(PCK) has been the most influential of Shulman’s three areas of content-related 

knowledge (Petrou & Goulding, 2011). Shulman (1986) describes PCK as including 

knowledge of an armoury of different ways of formulating and representing 

mathematics to make it most comprehensible to others; knowledge of what makes 

specific topics easy or difficult to apprehend and the conceptions (and misconceptions) 

that students of a certain age bring to a topic, as well as strategies for helping students 

overcome their misconceptions. Research effort has centred on elaborating the concept 

in the context of mathematics, refining and distinguishing it from other areas of content 

knowledge and developing measures of teachers’ PCK. For example, Petrou and 

Goulding (2011) attempt to synthesise three theoretical frameworks for analysing 

teachers’ mathematical knowledge in teaching: Fennema and Franke’s (1992) 

conceptualisation described in their article (noted above) in the Handbook of Research 
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on Mathematics Teaching and Learning; Ball, Thames and Phelps’ (2008) model 

developed through an extensive programme of research and development at the 

University of Michigan; and the Knowledge Quartet (Rowland et al., 2005) developed 

by a research team at the University of Cambridge. Petrou and Goulding’s attempted 

synthesis of these frameworks re-emphasises curriculum knowledge, alongside content 

knowledge and pedagogical content knowledge, reverting to something close to the 

original Shulman categorisation (Ruthven, 2011). Each of the three frameworks 

discussed draws to some degree on Shulman’s work to inform their design. Fennema 

and Franke’s (1992) model extends the subject-related components of Shulman’s 

categorisation by incorporating teachers’ beliefs and highlighting knowledge of learner 

cognitions. Ruthven (2011, p. 84) suggests that possibly the most important feature of 

this model was Fennema and Franke’s (1992, p. 162) insistence on “the interactive and 

dynamic nature of teacher knowledge” and the need to examine it “as it occurs in the 

classroom”. 

Ball, Thames and Phelps’ (2008) model, in refining Shulman’s categorisation, aims to 

lay the foundation for a practice-based theory for mathematical knowledge for teaching. 

Their model retains Shulman’s distinction between PCK and content knowledge, 

reconstituted as subject matter knowledge (SMK); however curricular knowledge is 

provisionally subsumed as a sub-category of PCK and renamed knowledge of content 

and curriculum. In addition, PCK contains two further sub-categories: knowledge of 

content and students, “an amalgam, involving a particular mathematical idea or 

procedure and familiarity with what students often think or do”, and knowledge of 

content and teaching, also “an amalgam, involving a particular mathematical idea or 

procedure and familiarity with pedagogical principles for teaching that particular 

content” (Ball et al., 2008, p. 401-402). SMK is also split into three sub-categories: 

common content knowledge (CCK); specialised content knowledge (SCK) and a more 

tentative sub-category entitled knowledge at the mathematical horizon. CCK is defined 

“as the mathematical knowledge and skill used in settings other than teaching” – it is 

common in that it is used in a wide variety of settings, not unique to teaching (Ball et 

al., 2008, p. 399). SCK appears as a central idea in the model proposed, consisting of a 

unique body of decompressed mathematical knowledge and skill specialised to teaching 

(Ball et al., 2008). Finally, horizon knowledge is “an awareness of how mathematical 

topics are related over the span of mathematics included in the curriculum” and “the 

vision useful in seeing connections to much later mathematical ideas” (Ball et al., 2008, 
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p. 403). Ball et al’s (2008) model was developed from a study of the way mathematical 

knowledge plays out in classroom practice and contributed to the development of 

operational measures of teacher knowledge: their test items are used throughout their 

paper to illustrate their view of mathematical knowledge for teaching. In particular, Hill, 

Rowan and Ball (2005) used a series of multiple choice items as a measure of teachers’ 

mathematical knowledge for teaching, providing evidence to support their argument that 

teachers’ mathematical knowledge is related to students’ achievement. This was a 

significant result in itself since such evidence had proved surprisingly elusive and 

previous studies had largely failed to establish that teachers with sound mathematical 

knowledge are more effective than those with a limited knowledge of mathematics, at 

least as measured in terms of academic mathematical qualifications (Askew et al., 

1997). In an influential study, Liping Ma (1999), one of Deborah Ball’s students at the 

University of Michigan, used test items developed by Ball for her dissertation research 

in interviews with elementary teachers from China and the United States. Comparing 

the teachers’ mathematical knowledge she concluded that the teachers in the US had a 

limited knowledge of mathematics in comparison with their Chinese counterparts. In 

particular, Ma (1999) articulated her conception of what it means to have a profound 

understanding of fundamental mathematics, characterising it in terms of depth, breadth 

and thoroughness. Ma (1999) defines depth as the ability to connect topics to the large, 

powerful ideas of the domain; breadth refers to the ability to make connections among 

ideas of similar or less conceptual power and thoroughness is required to weave ideas 

into a coherent whole. Her characterisation of mathematical knowledge in these terms 

serves to emphasise the importance of having a connected knowledge of mathematics 

for teaching. In a study of primary school teachers in the UK focusing on their teaching 

of numeracy, Askew et al (1997) found that more effective teachers of numeracy 

displayed what they described as a connectionist orientation in contrast to the 

transmission or discovery orientations of their less effective colleagues. In their model 

of the interplay and relationship between beliefs, knowledge and classroom practices, 

informed in part by Shulman’s (1987) work, they define pedagogic content knowledge 

as comprising numeracy subject knowledge, knowledge of how pupils learn numeracy 

and knowledge of numeracy teaching approaches (Askew et al., 1997). Askew et al 

(1997, p. 69) found there was little to distinguish more and less effective teachers in 

terms of “their understanding of the content of the numeracy curriculum as far as 

correctness and a very straightforward sense of meaning were concerned”. Thus they 

define their three orientations mainly in terms of the teachers’ beliefs – though in the 
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terms of this study, these are taken to be part of teacher knowledge (see Chapter 1). 

Specifically, connectionist teachers believe that being numerate means having a rich 

network of connections between different mathematical ideas and employ teaching 

approaches that establish and emphasise such connections (Askew et al., 1997, p. 3). 

However, Askew et al (1997, p. 69) did find “the connectedness of the teachers’ 

mathematical knowledge in terms of the depth and multi-faceted nature of their 

meanings” was a factor that appeared to be associated with pupil gains. None of the 

teachers in this study displayed a profound understanding of fundamental mathematics 

as described by Ma (1999). Nevertheless Ma’s (1999) findings are coherent with Askew 

et al (1997) in their joint emphasis of the importance of connected knowledge in 

mathematics. 

Finally, the third framework discussed by Petrou and Goulding, the Knowledge Quartet 

emerged from research aimed at developing an empirically-based conceptual framework 

to guide lesson review discussions between teacher-mentor and student-teacher in the 

practicum placement of the Postgraduate Certificate in Education course in the UK 

(Rowland et al., 2005; Rowland et al., 2009; Turner & Rowland, 2011). The purpose of 

developing such a framework was to focus these discussions on the mathematical 

content of the lesson and the role of the student-teacher’s mathematics subject matter 

knowledge and pedagogical content knowledge. The Knowledge Quartet was initially 

developed from 24 lesson observations of student teachers, training to teach at primary 

level. These observations generated 18 codes relating to the student teachers’ classroom 

actions that appeared significant in the sense that they were informed by the trainee’s 

SMK or PCK. The codes were then grouped into four super-ordinate categories, named 

foundation, transformation, connection and contingency. The foundation category 

consists of propositional knowledge (Shulman, 1986) of mathematical concepts and the 

relationships between them and of significant research findings regarding the teaching 

and learning of mathematics (Rowland et al., 2005). The second category of 

transformation refers to knowledge-in-action, concerning the ways that teachers make 

what they know accessible to learners: this category focuses in particular on their choice 

and use of representations and examples (Rowland et al., 2005). Connection also refers 

to knowledge-in-action, regarding the manner in which the teacher unifies and draws 

out coherence in the subject matter by making connections between different concepts, 

representations and procedures and the decisions made by the teacher regarding 

appropriate sequencing of topics. Rowland et al (2005) draw parallels between the 
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connection dimension of the Knowledge Quartet and the emphasis placed on having a 

connected knowledge of mathematics by Ball (1990), Askew et al (1997) and Ma 

(1999). Contingency concerns the teacher’s ability to ‘think on one’s feet’, to provide an 

appropriate response to unanticipated pupil contributions, and also notable ‘in-flight’ 

teacher insights (Thwaites, Jared & Rowland, 2011). The framework has subsequently 

been examined in classrooms at secondary level (Thwaites et al., 2011) and in 

classrooms outside the UK, specifically in Ireland and Cyprus (Turner & Rowland, 

2011), resulting in the addition of new codes and alteration of some of the original 

codes. The Knowledge Quartet acknowledges links to Shulman’s categorisation of 

teacher knowledge and his six-stage cycle of pedagogical reasoning (Shulman, 1987), 

which has been comparatively neglected in the field relative to his categorisation 

(Ruthven, 2011). However, in contrast to the other two models discussed by Petrou and 

Goulding, this model does not seek to extend or refine Shulman’s work (Ruthven, 

2011). Instead, the Knowledge Quartet essentially provides a heuristic tool to guide 

attention to and aid the analysis of mathematical knowledge-in-use in teaching 

(Ruthven, 2011). In particular, the Knowledge Quartet differs from the other two 

models discussed by Petrou and Goulding in that “the distinction between different 

kinds of knowledge is of lesser significance than the classification of situations in which 

mathematical knowledge surfaces in teaching” (Turner & Rowland, 2011, p. 196). In 

this sense, the Knowledge Quartet may be better suited to analysing teachers’ 

knowledge-in-action or theories-in-action (Argyris & Schon, 1974, see Chapter 1) than 

Ball et al’s (2008) or Fennema and Franke’s (1992) frameworks. However, the 

Foundation category in particular also allows for an analysis of teachers’ espoused 

theory or articulated knowledge, even if this is not realised in classroom practice. 

All of these studies mentioned above effectively retain to some degree the essentially 

individualistic assumptions underlying Shulman’s original model, since they emphasise 

the critical role of professional knowledge and beliefs in teaching and that, for 

knowledge to be influential in teaching, it has to reside with the teacher. Indeed Petrou 

and Goulding (2011, p. 23) acknowledge the “largely individualistic assumption which 

underpins” each of the models they discuss. Although Fennema and Franke (1992) and 

Ball et al (2008) insist upon the need to examine teachers’ knowledge as it occurs in the 

classroom, essentially recognising the situated nature of mathematical knowledge in 

teaching, their conceptualisations do not appear to extend to considering teachers’ 

knowledge as distributed (Hutchins, 1995) across persons and tools. It is worth noting 
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here that Shulman (1986) himself conceived of knowledge involving propositional, case 

and strategic aspects. His notions of case and strategic knowledge actually move some 

way towards recognising the situatedness of teachers’ knowledge in classroom 

situations and its dynamic nature in the face of classroom perturbations (Hodgen, 2011). 

The Knowledge Quartet also recognises the nature of mathematical knowledge for 

teaching as situated but it appears to adhere more closely to this assumption than either 

of the other two models reviewed by Petrou and Goulding (2011). For example, despite 

Ball et al’s (2008) insistence that their model lays the foundation for a practice-based 

theory for mathematical knowledge for teaching, the abstract quality of their categories 

and the categories apparent separation from each other tends towards an impression of 

static “knowledge”, for which Shulman’s original categorisation has similarly been 

criticised (Fennema & Franke, 1992). By focusing on classroom actions, the original 

codes of the Knowledge Quartet remain closer to practice and therefore retain a greater 

sense of dynamism, of “knowing” in practice, than either Ball et al (2008) or Fennema 

and Franke’s (1992) models. Of course, there is a risk that if the super-ordinate 

categories of the Knowledge Quartet are considered in detachment from their grounding 

in the original codes then this sense of dynamism might be lost or reduced (Ruthven, 

2011). In addition, although Rowland et al (2005, p. 260) make use of an acquisition 

metaphor, implying individualist assumptions about knowledge by describing their 

foundation category as being about “knowledge possessed”, Turner and Rowland (2011, 

footnote on p. 200) suggest that “this ‘fount’ of knowledge can also be envisaged and 

accommodated within more distributed accounts of knowledge resources”. 

Alternatively, Davis and Simmt (2006) present a model for what they term teachers’ 

mathematics-for-teaching, consisting of four intertwining and nested aspects, namely 

mathematical objects, curriculum structures, classroom collectivity and subjective 

understanding. The third aspect, classroom collectivity, emphasises how their 

conception of mathematics-for-teaching is considered as ‘shared’ knowledge, which 

they take to be synonymous for ‘distributed’ knowledge – at least across persons. 

Unlike Rowland et al (2005) and Ball et al (2008), whose models of teacher knowledge 

were developed through observations of mathematical knowledge arising in the context 

of actual classroom practice, Davis and Simmt (2006, see also Davis & Renert, 2009a) 

develop and illustrate their model with data arising from an in-service training session. 

Although they discuss data from classroom observation in relation to their tool of 

concept study (Davis & Renert, 2009b), they do not relate this data to the four aspects of 

their model. Thus it is unclear how their conception of mathematics-for-teaching might 
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relate to mathematical knowledge in teaching, as it plays out in the classroom, and how 

such knowledge might be distributed across technology. Nevertheless, although Hodgen 

(2011) presents a convincing argument for conceptualising mathematical knowledge in 

teaching as situated, social and distributed, Ruthven (2011) asserts that the evidence 

base for this conceptualisation remains slender and fragmentary. Thus research on 

teacher knowledge in the field of mathematics education appears to follow a pattern 

similar to the wider field of education in which research on teacher knowledge informed 

by views of cognition as distributed (Hutchins, 1995) across persons and tools remains 

underdeveloped. 

The spur for Petrou and Goulding’s (2011) re-emphasis of curriculum knowledge in the 

synthesis of the three frameworks noted above was their experience of transferring the 

Knowledge Quartet from an English context to a Cypriot one, in particular, by their 

recognition that the importance of textbooks in the school mathematics context of 

Cyprus was not reflected in the Knowledge Quartet. Thus Petrou and Goulding (2011) 

emphasise (the cultural) context as an important factor in their model. They include in 

this ‘context’ the educational system, the aims of mathematics education, the curriculum 

and its associated materials (such as textbooks) and the assessment system within a 

given country, although they acknowledge that teachers’ contexts are also local, 

including “the resources, both material and human, existing in their school or locality as 

well as the practices and ethos of the workplace” (Petrou & Goulding, 2011, p. 21). 

Ruthven (2011) notes that the contextual element of Petrou and Goulding’s framework 

remains relatively under-developed, however other researchers also highlight the 

importance of cultural context in understanding teachers’ mathematical knowledge in 

teaching. For example, Andrews (2011) presents evidence that the SMK and PCK 

required of teachers varies across geographic boundaries according to country curricula. 

He argues further that frameworks such as the Knowledge Quartet (Rowland et al., 

2005) and Ball et al’s (2008) model of mathematical knowledge for teaching are a 

consequence of the particular cultural contexts they were developed in, drawing on both 

systemic imperatives and didactic folklore (Andrews, 2011, p. 99). Similarly, Pepin 

(2011) contends that the work of teaching differs from country to country. Rowland 

(2014) summarises the issue of cultural context in relation to frameworks for 

conceptualising mathematics teacher knowledge, such as Ball et al’s categorisation and 

the Knowledge Quartet, noting it is important to bear in mind that they originate from 

Anglo-American culture. He gives examples of other cultural emphases and influences, 
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in parts of Europe and the Far East, which “significantly shape ways of thinking about 

how teachers develop as professionals” although they do not directly address 

mathematics teacher knowledge. In addition to cultural context, Andrews (2011) 

suggests the context of the mathematical topic under scrutiny may influence the 

apparent depth of mathematical knowledge for teaching displayed by the teacher. Much 

of the research conceptualising mathematics teacher knowledge has been limited in 

terms of its curriculum coverage, for example, Ma (1999) focused on arithmetic 

operations and Askew et al (1997) focused on numeracy. Finally, Williams (2011) 

provides evidence that teachers’ knowledge may be highly sensitive to the 

methodological tools through which it is measured: teachers in his study were more able 

to articulate their knowledge in the context of a task than in researcher interviews.  

 

2.3.1 Measurement of teacher knowledge in mathematics education 

Relatively sophisticated measures of teachers’ mathematical knowledge for teaching 

have been developed in research on teacher knowledge within the field of mathematics 

education (Baumert et al., 2010; Blomeke & Delaney, 2012; Hill et al., 2005; Izsak et 

al., 2012; Mesa & Leckrone, 2014; Tatto et al., 2012). The impact that the contextual 

factors highlighted in the previous section, such as cultural context, mathematical topic 

and methodological tools, have on teacher knowledge has important implications for the 

development of measures of mathematical knowledge for teaching. For example, in a 

study of secondary school teachers’ mathematical knowledge in teaching in Germany, 

Baumert et al (2010) developed separate written tests to measure teachers’ content and 

pedagogic content knowledge. Baumert et al (2010) succeeded in theoretically and 

empirically distinguishing between content knowledge and pedagogic content 

knowledge, as measured by their test items, also providing evidence that both are 

important factors in the quality of teaching and student learning. In particular, Baumert 

et al (2010) found that the positive effect for PCK on students’ learning was mediated 

by the quality of instruction, in terms of providing cognitively challenging tasks and 

learner support. This mediation effect was not observed for content knowledge. Their 

test items for content knowledge covered arithmetic (including measurement; 4 items), 

algebra (2 items), geometry (1 item), functions (1 item), probability (1 item) and 

geometry, functions and algebra (4 items).  The test of pedagogic content knowledge 

comprised items regarding the teachers’ ability to identify multiple solution strategies to 
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tasks, to recognise the difficulties, misconceptions and solution strategies of their 

students and their knowledge of instruction in terms of different representations and 

explanations of standard mathematics problems. Their test items were all open-ended, 

no multiple choice items were used and the tests conducted by trained administrators in 

single-interview situations. In contrast, using the Michigan test items, Hill et al (2008) 

were unable establish a clear distinction between KCS and subject matter knowledge, 

although as noted previously, Hill et al (2005) managed to provide the first strong 

evidence linking teachers’ mathematical knowledge to student achievement. Again in 

contrast with Baumert et al’s (2010) study, Hill et al’s (2005; 2008) test items were 

multiple choice and the tests were administered through questionnaires rather than in an 

interview format. Their test items were aimed at primary school teachers and were 

limited to the three mathematical content areas they judged as most frequently taught: 

number concepts, operations, and patterns, functions, and algebra (Hill et al., 2005). 

Thus these two measures of teacher knowledge differ in terms of the cultural contexts in 

which they were developed, the methods with which they were applied and the 

mathematical topics that they cover. Research on constructing measures of teachers’ 

mathematical knowledge in teaching has only recently focussed on exploring the impact 

of cultural context (see for example, Delaney et al., 2008; Blomeke & Delaney, 2012 in 

the special issue in the 44th volume of ZDM – The International Journal on 

Mathematics Education (Ball et al., 2012) on assessment of teacher knowledge). Hence 

this area still requires substantial development and further research is needed focussing 

on the effects of cultural context, mathematical topic and the methodological tools on 

the measurement of mathematical knowledge for teaching. In particular, the 

development of test items embedded in a technological context to measure teachers’ 

mathematical knowledge for teaching appears to have been neglected (Mesa & 

Leckrone, 2014).  

 

2.4 Teachers and teacher knowledge in research on technology in education  

In handbook entries on technology in education teachers often appear in the context of 

limited use of technology in classroom practice. Frequently based on evidence from 

teacher surveys, teacher knowledge emerges as a factor explaining the success or failure 

of technology integration, rather than as an explicit focus of research. The knowledge 

teachers need to teach using technology has seldom been explored in depth. The range 
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of terms used to refer to teacher knowledge exemplifies its inadequate conceptualisation 

in research on technology in education, as well as shifting trends in teacher education. 

Where research on technology in education mentions teacher knowledge explicitly, it is 

often as one amongst a range of other barriers or obstacles to successful technology 

integration operating at the individual, institutional and system levels. For example, 

Salomon (1992) follows Cuban’s (1986) cycle of technology innovation by detailing the 

hopes for technology, the dramatic spread of access to hardware and then the reality of 

underuse. Drawing on Becker’s (1985) study, Salomon (1992) notes that lack of teacher 

training in the use of computers may be a key explanatory factor in the under-use of 

computers, supported by teachers’ self-reported lack of knowledge. Unwin and 

MacAleese (1988) and Becker (1992) both criticise teacher education for failing to keep 

up with the fast pace of development in computer technology, leaving teachers feeling 

under-prepared for teaching with computers compared to other aspects of practice. 

Similarly, having discussed improvements in access and the opportunities for ‘problem-

based learning’ created by digital technologies, S. M. Williams (2003) notes that only 

one third of teachers feel prepared to use technology effectively. Lack of teacher 

knowledge and inadequate training is first on Hativa’s (1995) list of obstacles to the 

proper integration of computers into classroom teaching. Noting that most teachers, 

teacher educators and policymakers were raised in an analogue world, Sancho (2010) 

identifies updating educators’ knowledge of digital technologies as one of the key 

challenges to technology integration, amongst other systemic factors constraining the 

use of ICT. Hadley and Sheingold (1993) also report teachers’ doubts, lack of interest or 

knowledge about computers as one of the main barriers to integration reported by 

teachers, although this factor decreased over time as teachers increased in expertise. 

Surveying mathematics teachers in the US, Manoucherhri (1999) found that non-users 

of computers lacked knowledge about how to use computers to improve learning, again 

amongst other factors. Lawless and Pellegrino (2007) criticised the reliance on self-

report measures to indicate knowledge growth through professional development on 

integrating technology into teaching. In particular, they criticise the operationalisation 

of teacher knowledge, stating that self-report measures reflect teachers’ confidence or 

self-efficacy rather than actual knowledge. However, since self-report measures were 

often the means of identifying teacher knowledge as a factor in technology integration 

in the first instance, this reliance suggests a more deep-seated weakness in the 

conceptualisation and understanding of what constitutes teacher knowledge in relation 

to technology integration. 
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Teacher knowledge is also mentioned implicitly, by referring to the skills (Forgasz, 

2006; Law, 2010; Means & Roschelle, 2010; Mumtaz, 2000; S. M. Williams, 2003; 

Zammit, 1992), abilities (Collis, 1996a; Law, 2010; Zhao, Zhang & Lai, 2010), 

capabilities (Collis, 1996b) or competences (Law, 2010) teachers need for successful 

technology integration. The relationship between these terms and knowledge is not 

always clear: for example, at times knowledge may seem to underpin, lie alongside or 

encompass aspects of skill or ability; at times these terms seem interchangeable. 

Nevertheless, despite the variation in terms, research in technology education seems 

fairly consistent in describing teacher knowledge broadly in relation to three main areas. 

Firstly, teachers need to know how to use digital technologies. This is described 

variously as having ICT skills (Means & Roschelle, 2010); technical proficiency or the 

knowledge needed to operate hardware and software (Hativa, 1995); ‘basic skills’, such 

as being able to use word-processing, spreadsheet, presentation and Internet-browsing 

software, and familiarity with ICT tools and materials in the subjects they teach 

(Williams, 2003); the technical ability to use the necessary hardware and software 

(Zhao et al., 2010); and technical competence (Law, 2010). Secondly, teachers should 

have knowledge of how to choose appropriate software (Hativa, 1995); the ability to 

evaluate the reliability and usefulness of digital resources (Zhao et al., 2010); and the 

ability to make appropriate selection of ICT tools (Law, 2010). Finally, teachers should 

know how to incorporate digital resources into classroom activities (Williams, 2003); 

integrate hardware and software into classroom instruction (Hativa, 1995); and make 

appropriate use of ICT tools in different curriculum contexts for different pedagogical 

purposes (Law, 2010). These three areas appear roughly to mirror the first three 

recommendations made by the UK Department of Education and Science (1992) for the 

inclusion of information technology (IT) in initial teacher training, which at the time 

represented emerging thinking in the field of teacher education (Collis, 1996b). The 

recommendations state that all student teachers should develop an IT capability 

encompassing:  

i) ability to make confident personal use of a range (albeit limited) of software 

packages and IT devices appropriate to their chosen subject and age range;  

ii) the ability to review critically the relevance of software packages and IT 

devices;  

iii) the ability to make constructive use of IT in their teaching;  
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iv) the ability to evaluate the way in which the use of IT changes the nature of 

teaching and learning. 

Research in technology education also raises a number of other relevant teacher 

characteristics, related success or failure in technology integration, including beliefs 

about the nature of teaching and learning (Becker, Ravitz & Wong, 1999; Means & 

Roschelle, 2010), attitudes (Collis, 1996a; Hativa, 1995; Mumtaz, 2000), motivation 

(Hativa, 1995; Sancho, 2010), background experience (Collis, 1996a), confidence 

(Zammit, 1992), participation in professional development (Means & Roschelle, 2010) 

and a broader range of professional activities (Means & Roschelle, 2010). However, 

beyond the indications described above, teacher knowledge is rarely explored in further 

depth. For example, a detailed consideration of the nature and content of teacher 

knowledge needed for technology integration and how this knowledge interweaves with 

other types of teacher knowledge, such as knowledge of subject content or pedagogical 

considerations is rarely evident. As noted above, in research on technology in education, 

teacher knowledge tends to emerge as a factor explaining the success or failure of 

technology integration, rather than as an explicit focus of research. This may explain 

why links between research on teacher knowledge and research on technology in 

education are rare. As Kirschner et al (2008) state “the main stream teacher education 

research does not pay much attention to ICT while researchers studying ICT pay little 

attention to research conducted on teacher education”. However, the brief description of 

teacher knowledge in relation to technology given above resonates with aspects of 

Shulman’s (1986) curriculum knowledge, defined as knowledge of the “full range of 

programs and associated materials designed for teaching particular subjects and topics 

at a given level, the variety of instructional materials available in relation to those 

programs” (p. 10), as well as recognising when it may be appropriate to deploy such 

materials. In both cases ‘technology’ or the tools of teaching tend to be viewed as things 

that teachers should have knowledge about. For example, teachers should know of their 

existence and know how to use them, when and where to employ them to greatest 

advantage. Defined in this way, knowledge about technology or curriculum knowledge 

becomes another set of knowledge that needs to be “carried around inside the teacher’s 

head”, as Putnam and Borko (1997) put it. Thus in terms of teacher knowledge, research 

on technology in education rarely seems informed by notions of distributed cognition 

(Hutchins, 1995), requiring a shift in focus from the knowledge of the individual teacher 
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to the knowledge of the teacher in conjunction with various available technologies 

(Putnam & Borko, 1997). 

 

2.4.1 A new direction: teachers’ knowledge as an explicit research focus 

Law’s (2010) article entitled Teacher Skills and Knowledge for Technology Integration 

indicates a new direction in research on technology in education with teacher 

knowledge as an explicit focus. Law (2010) quotes the SITES 2006 study findings that 

teachers’ self-perceived technical and pedagogical ICT competence to be positive, 

significant predictors for teachers’ ICT adoption in their own practice. In particular, she 

states that pedagogical ICT competence, described as the teachers’ ability to make 

appropriate selection and use of ICT tools in different curriculum contexts for different 

pedagogical purposes, is the most crucial determinant of actual ICT use in instruction 

(Law, 2010). Law (2010) states that this kind of knowledge and the associated skills 

required of teachers is conceptualised by Mishra and Koehler (2006) within the 

Technological Pedagogical Content Knowledge (TPACK) framework – see also 

Chapter 1. Their framework represents Shulman’s (1986) conception of pedagogic 

content knowledge diagrammatically as the intersection of two circles representing 

general pedagogic knowledge and content knowledge. Extending this representation 

using a Venn diagram with three overlapping circles, they incorporate technology 

knowledge as a third domain of teacher knowledge, to indicate the skills or knowledge 

needed to successfully operate technology, referred to elsewhere as technical 

competence (Law, 2010). The inclusion of technology knowledge introduces two new 

dyads, technological pedagogical knowledge (TPK) and technological content 

knowledge (TCK), representing the intersection of technology knowledge with 

pedagogic knowledge and content knowledge respectively, and a triad representing the 

intersection of all three types of knowledge: technological pedagogical content 

knowledge (TPACK, see Figure 2).  

Koehler and Mishra (2009) define TCK as knowledge about the manner in which 

technology and content influence and constrain one another. They argue that teachers 

need to develop an understanding of how the subject matter (or the kinds of 

representations that can be constructed) can be changed by the application of particular 

technologies (Koehler & Mishra, 2009). For example in mathematics, dynamic 

geometry software, such as Cabri Geometry (Texas Instruments, 2007), introduces an 
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explicit order to the construction of geometric figures that does not exist in a paper and 

pencil environment (Jones, 2000). Using dynamic geometry software, dragging 

becomes a method for verifying a geometric construction, since the geometric 

relationships in a correctly constructed figure will be invariant under drag. This in turn 

raises questions about the role of proof in geometry. Thus TCK can be conceptualised 

as knowledge of how software models mathematical concepts and relations and of how 

the software design may therefore affect both the substantive and syntactic structures of 

mathematics. 

 

 

Figure 2.2 The TPACK framework, source http://tpack.org/ 

 

TPK comprises knowledge of the existence, components and capabilities of various 

technologies for use in teaching and learning settings and pedagogical considerations 

for their selection (Mishra & Koehler, 2006). For example, teachers need to be able to 

reinterpret the function of generic software and hardware, such as word-processing, 

spreadsheet or presentational software or interactive whiteboard hardware, to suit their 

own pedagogical purposes (Koehler & Mishra, 2009). This might include how to 

manage changes in the working environment and activity format (Ruthven, 2009), 

requiring the adaptation of strategies for classroom management and organisation. 

Mishra and Koehler (2006) suggest TPK would also include knowledge of technologies 

for maintaining class records, attendance, and grading.  
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Mishra and Koehler (2006) argue that TPACK goes beyond knowledge of the 

individual components (content, pedagogy and technology). Rather TPACK represents 

knowledge of the dynamic, transactional relationship between the three knowledge 

components. In a similar vein to Shulman’s (1986) argument for pedagogic content 

knowledge, Mishra and Koehler (2006) suggest that TPACK is a special form of 

knowledge, different from that of the technology expert, subject matter specialist or the 

general pedagogic knowledge shared by teachers across disciplines. In teaching 

mathematics, TPACK could be exemplified by the knowledge underlying a teacher’s 

selection of spreadsheet software for the capability to manipulate variables and 

formulae dynamically for the pedagogic purpose of supporting an investigative 

approach to learning algebra, whilst understanding the limitations of the mathematical 

representation, such as the discrepancies between spreadsheet and standard algebraic 

notation (Dettori et al., 1995), and recognising and developing strategies to deal with 

the pedagogical implications of these limitations. 

Mishra and Koehler’s TPACK framework is representative of a new direction in 

research on technology in education. Their explicit focus on teacher knowledge led 

them to incorporate and extend research from the field of teacher knowledge, in 

particular Shulman’s concept of pedagogic content knowledge, to frame their 

conception of the knowledge teachers need for technology integration. In addition, they 

use situated theories of cognition, referring to (Brown, Collins, & Duguid, 1989), to 

inform their conceptualisation of TPACK, moving away from a strictly individualistic 

approach to recognise that knowledge about technology cannot be treated as context-

free (Mishra & Koehler, 2006). They are not alone in focussing explicitly on teacher 

knowledge for technology integration (see also Cox & Webb (2004), Leach & Moon 

(2000), Loveless & Ellis (2001), McCormick & Scrimshaw (2001), for example), nor 

do they claim to be unique in arguing that knowledge about technology cannot be 

treated as context-free and is interwoven with knowledge of pedagogy and content 

(Mishra & Koehler (2006), see for example Zhao, 2003). However, their articulation of 

a framework specifying the relationships between knowledge of pedagogy, content and 

technology in terms of the dyads TCK and TPK and the triad of TPACK does 

distinguish their approach from that of other researchers. Hence for the present study, 

the TPACK framework provides a particular focus on knowledge with respect to 

technology that is lacking in frameworks developed in research on teachers and teacher 

knowledge. In addition, it seems reasonable to assume that the TPACK framework 
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could be used to analyse both articulated knowledge and knowledge-in-action. For 

example, the TPACK framework is based on Shulman’s (1986) concept of PCK, which 

was underpinned by his notions of propositional, case and strategic knowledge 

introduced in the same paper – although Mishra and Koehler (2006) do not refer to 

these notions in their description of the TPACK framework. Propositional knowledge 

can be roughly equated with articulated knowledge, whereas case and strategic 

knowledge appear to refer to knowledge-in-action. 

Law (2008) suggests the TPACK framework described by Mishra and Koehler (2006) 

bridges the gap between the fields of educational technology and teacher education 

identified by Kirschner et al (2008). Similarly, Borko et al (2009) recognise Mishra and 

Koehler’s contribution to understanding the “wicked problem” of teaching and learning 

with new technologies, describing the TPACK framework as a compelling 

conceptualisation of the unique knowledge teachers need to develop to embed 

technology knowledge in their instructional practice so that it fosters student learning. 

However Law (2008; 2010) argues it is not adequate to describe the kinds of teacher 

learning required for “ICT integration as a lever for innovation and transformation”. In 

addition, to support educational transformation, Law (2008; 2010, p. 215) argues the 

need for teachers to develop a range of metacognitive, sociometacognitive and 

socioemotional abilities and capacities, requiring both courage and motivation as well 

as epistemological beliefs aligned with socially grounded, constructivist theories of 

learning. Nevertheless, the TPACK framework covers the kinds of knowledge and skills 

denoted by pedagogical ICT competence, which Law (2010) identifies as the crucial 

determinant in successful technology integration. Hence developing TPACK may be 

seen as a pre-requisite or at least an integral part of the process of developing the kinds 

of abilities and capabilities that Law (2010) suggests are necessary for ICT to act as a 

lever for educational transformation. 

 

2.4.2 Problems concerning the TPACK framework 

Considerable work needs to be done to contextualise constructs issuing from a 

generalist framework such as TPACK within specific subject domains. For example, 

extensive research effort has been directed towards contextualising Shulman’s concept 

of pedagogical content knowledge, the construct underlying the TPACK framework, 

within mathematics education. In particular, Ball and colleagues have elaborated PCK 
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within mathematics education (Ball, et al., 2008) and developed measures of 

mathematics teachers’ specialised content knowledge which have been successfully 

linked to student achievement (Hill, Ball, & Schilling, 2008; Hill, et al., 2005). In 

contrast, few researchers have attempted, even within the field of educational 

technology, to create survey instruments to measure TPACK constructs (Graham, 2011) 

and even these have tended to rely on the type of teacher self-reports of knowledge 

criticised by Lawless and Pellegrino (2007) - see for example, Archambault and Barnett 

(2010). In addition, the TPACK framework is only beginning to be explored within 

research on specific subject domains (Voogt et al, 2012) and in mathematics education 

specifically (e.g. Bellman et al., 2014; Bowers & Stephens, 2011; Drijvers et al., 2013; 

Drijvers et al., 2014). A paper by Bowers and Stephens (2011) provides an example of 

an attempt to contextualise the framework within mathematics. They argue that PCK 

and TPK have previously received much research attention, whereas TCK has not. Thus 

they limit their examination of research to findings relating to TCK and TPACK within 

mathematics education. Bowers and Stephens (2011) offer three constructs that they 

consider as lying at the intersection of mathematical knowledge and technological 

knowledge but conclude that TPACK, as the intersection of knowledge of mathematics, 

pedagogy and technology, may represent the empty set. Instead, they suggest TPACK 

should be regarded as an orientation rather than a subset of particular knowledge or 

skills. By orientation, they mean that teachers should develop a disposition or proclivity 

towards viewing technology as a critical tool for identifying mathematical relationships. 

Citing Zbiek and Hollebrands (2008), they suggest that to develop TPACK, teachers 

need to become “aware of how to design rich tasks that integrate technology into the 

classroom discourse so that technology-based conjectures and arguments become 

normative” (Bowers and Stephens, 2011), thereby essentially equating a TPACK 

orientation with successful technology integration. In contrast, Niess et al (2009) 

propose TPACK as integrated knowledge, representing the intersection and 

interconnection of content, pedagogy and technology knowledge. The differences 

between Niess et al (2009) and Bowers and Stephens’ (2011) conception of the central 

TPACK construct is illustrative of some of the theoretical difficulties besetting the 

TPACK framework elaborated by Graham (2011). Graham (2011) identifies a lack of 

coherence in the interpretation of the central TPACK construct, with some researchers 

taking an integrative perspective, viewing TPACK as the use of the distinct domains of 

pedagogical, content and technological knowledge in combination, whilst others take a 

transformative perspective, viewing TPACK as a new domain of synthesised 
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knowledge that cannot be explained by the sum of its parts.  Graham (2011) argues this 

confusion is exhibited in Mishra and Koehler’s paper, where the representation of the 

TPACK using a Venn diagram suggests an integrative model, whilst the language they 

use to describe the central TPACK construct suggests instead a transformative model. 

Further, Graham (2011) argues that some researchers elide this tension altogether by 

making no distinction between TPACK and technology integration, ignoring the other 

elements in the model. To some degree, Bowers and Stephens (2011) fall into this 

camp, although they acknowledge the other model constructs, they disavow the 

existence of the central TPACK construct as a form of knowledge, instead essentially 

equating it with technology integration. Voogt et al (2012) and Ruthven (2014) echo 

Graham’s criticisms of the weak theorisation of the TPACK framework, drawing 

attention to its ambiguities and lack of clarity in defining the framework’s constructs 

and the inter-relations between them. More specifically, the TCK, PCK, TPK and 

TPACK constructs seem particularly ambiguous in terms of their theoretical definition 

(Ruthven, 2014). In addition, Ruthven (2014) suggests the TPACK framework provides 

“a rather coarse-grained tool” for analysing teacher knowledge and, hence, may need 

supplementing by other frameworks to achieve a sufficient depth of analysis. 

Mishra and Koehler criticise Shulman’s conception of PCK for ignoring the knowledge 

needed to use technology, stating he “did not discuss technology and its relationship to 

pedagogy and content”. They argue that Shulman’s PCK was limited by the time of its 

conception: that in the 1980s, for example, traditional pedagogical technologies 

achieved a transparency of perception such that they had become commonplace, not 

even regarded as technology. They suggest that the rise of new digital technologies, not 

yet part of the mainstream, has forced the recognition that teachers need a body of 

knowledge incorporating the skills and techniques needed to make use of technology (in 

the wider sense). Yet Shulman’s (1986) curriculum knowledge is a recognition of a 

body of teacher knowledge incorporating the skills and techniques needed to make use 

of technology. His exemplification of a biology teacher’s curriculum knowledge to 

include “alternative texts, software, programs, visual materials, single-concept films” 

etc (p. 10) suggests that digital technologies were already around to challenge the 

apparent status quo of traditional pedagogical technologies. The process of 

transformation indicated in Shulman’s (1987) model of pedagogical reasoning focuses 

on the critical interpretation of texts (which could be taken to include technology), the 

representation of disciplinary concepts and their adaptation and tailoring to a school 
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situation and group of students. As suggested by Ruthven (2011, p. 86), viewing 

transformation as a problem solving process, we see that it is subject to a range of 

constraints at the same time mathematical, pedagogical and curricular, which often 

cannot be considered in isolation. In this sense, if curricular constraints are taken as 

those imposed by the ‘tools of the teaching trade’, i.e. to include technology as in 

Shulman’s conception of curriculum knowledge, then the process of transformation 

appears closer to the transformative model of TPACK than the integrative model. 

However, it is important to acknowledge that whilst Shulman’s use of transformation 

refers to a process, the central TPACK construct is viewed as a new domain of 

knowledge from a transformative perspective. Shulman’s process of transformation is 

central to the second category of the Knowledge Quartet, to which it gives its name. 

However, the Transformation category of the Knowledge Quartet groups classroom 

situations, where teachers’ SMK or PCK was evident in making what they know 

accessible to learners. 

Viewing transformation as a problem-solving process as described above, Ruthven 

(2011, p. 86) argues helps to explain “why it has been so difficult to make demonstrable 

progress in establishing persuasive and productive knowledge taxonomies” for 

mathematical knowledge in teaching. Ruthven (2011, p. 85) argues further: 

…many teaching problems cannot be adequately framed in ‘pure’ terms drawn from a 

single knowledge domain, or even by drawing on several domains independently. Put 

simply, satisfactory resolution of teaching problems must take account of, and often 

trade off between, interacting considerations of quite different types… This gives rise 

to solutions that often involve an irreducible fusion of such considerations, not 

reducible to the practice, or even logic, of any single pure knowledge domain. 

 

In particular, applying Ruthven’s argument to the TPACK framework helps to explain 

some of the other theoretical difficulties identified by Graham (2011). Namely, why 

achieving clear definitions of the individual constructs in the TPACK framework and 

delineating precise boundary conditions between adjacent constructs has proved 

problematic: Graham (2011) quotes Cox’s (2008) comprehensive conceptual analysis of 

the TPACK research literature which found 13 distinct definitions for TCK, 10 

definitions for TPK, and 89 different definitions for TPACK in the reviewed literature. 

Taking the transformative perspective implies viewing the central TPACK construct as 

an irreducible synthesis of pedagogic, content and technology knowledge that cannot be 

broken down into its single or paired knowledge domains. Thus the individual 

constructs may not actually exist in the reality of classroom practice and serve purely as 
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a heuristic for reducing complexity to a manageable level by effacing one or more of the 

knowledge domains. As Mishra and Koehler (2006, p. 1029) themselves suggest, 

“separating the three components (content, pedagogy, and technology) in our model is 

an analytic act and one that is difficult to tease out in practice”. It is therefore 

unsurprising that Graham (2011) finds pedagogical knowledge considerations are often 

mentioned in the context of TCK despite the fact that PK does not contribute at all to 

TCK according to the framework. For example, although Bowers and Stephens (2011) 

identify three constructs from mathematics education relating to TCK, pedagogical 

considerations still emerge in their descriptions. In describing knowledge constructed 

from noticing, Bowers and Stephens (2011) mention various pedagogic techniques for 

encouraging noticing, including the use of colour, motion and markings during software 

use and the importance of experimentation, surprise and the inclusion of multiple 

solution pathways as features in task design. They also suggest engaging pupils in open-

ended explorations or “what-if” explorations with software as profitable pedagogic 

strategies. Indeed their description of a TPACK orientation as one that “views 

technology as a critical tool for identifying mathematical relationships” implies a 

judgement that students may learn better with technology than they do in other 

environments. This judgement can only be based on pedagogical considerations 

involving knowledge of how students learn. This suggests that the central TPACK 

construct is likely to involve more than a positive stance towards technology. In 

addition, the transformative model of TPACK may be closer to the reality of classroom 

practice than an integrative model. 

 

Finally, Mishra and Koehler’s criticism of the separation of PCK and curriculum 

knowledge could instead be seen as a call to investigate the distributed (Hutchins, 1995) 

nature of mathematical knowledge in teaching. Their recognition that the interaction 

between PCK and technological knowledge has been neglected, suggests shifting away 

from individualistic approaches to focus on “the interplay between teachers’ knowledge 

and other available resources” (Putnam & Borko, 1997), for example digital 

technologies. This entails thinking in terms of distributed cognition (Hutchins, 1995). In 

this case, rather than viewing knowledge solely as a property of an individual, it is 

distributed or “stretched over” (Lave, 1988) both the individual teacher and the various 

technologies available (Putnam & Borko, 2000). Although Mishra and Koehler invoke 

the situated nature of knowledge in describing TPACK, they do so in the sense that the 

classroom situation provides contextual shaping for a teacher’s knowledge, nevertheless 
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knowledge remains internal to the individual teacher. Mishra and Koehler’s critique of 

Shulman’s taxonomy lies in their criticism of his distinction and hence separation of 

PCK and curriculum knowledge. As argued above, the transformative model of TPACK 

appears to draw closer to the process of transformation in Shulman’s model of 

pedagogic reasoning and, as a result of their individualistic approach, Mishra and 

Koehler do not move far beyond Shulman’s original taxonomy. Adopting a distributive 

approach, it is argued, would be more likely to provide the kind of research 

understandings that could be used to support teachers in their pedagogical reasoning 

through the use of digital technologies (Putnam & Borko, 1997). 

 

2.5 Teachers in research on technology in mathematics education 

A review of research on technology in mathematics education covering the period from 

1994-98 found that very few papers considered the teacher dimension, that is the role of 

the teacher in technology integration, focussing instead on understanding the interaction 

between students and technology (Lagrange et al., 2003). This is reflected in the relative 

absence of the teacher from handbook articles on technology and mathematics 

education covering a similar period. In the Handbook of Research on Mathematics 

Teaching and Learning (Grouws, 1992), Kaput (1992) briefly notes the importance of 

support for teachers who must come to terms with the profound changes in their beliefs 

about mathematics, teaching, learning and students, that may be provoked by 

technology innovation. Citing Lampert (1988), he suggests that such changes may be 

akin to a “religious transformation, with all the accompanying travail and exhilaration” 

(Kaput, 1992, p. 548). Kaput (1992) also notes that the level of effort and expertise 

required to retrofit general tools and applications, such as calculators, symbol 

manipulators, graphing utilities and spreadsheets, as learning tools is closely related to 

the difficulty of technology integration and hence the limited penetration of technology 

into mathematics classrooms. Ruthven (1996) lists teacher confidence amongst other 

factors relating to the modest impact of calculators on mathematics education, but 

otherwise makes little reference to teachers. In the same volume, Balacheff and Kaput 

(1996) suggest that teachers’ traditional professional knowledge is insufficient to deal 

with the deep changes in learning, teaching and epistemological phenomena emerging 

due to computer-based learning environments, but no give indication of what new 

knowledge it is that teachers might require. None of the papers in the section entitled 
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Influences of Advanced Technologies in either the first or second edition of the 

Handbook of International Research in Mathematics Education (English, 2002; 2008) 

has teachers’ use of technology as a major focus. However, Yerushalmy and Chazan 

(2002) do include a section on teacher knowledge of school algebra, discussing how one 

teacher’s efforts to integrate graphing technology into a standard approach to school 

algebra led to her recognition of the tension between viewing letters as unknowns in an 

equation or as variables in a function – this is discussed further below.  

Following recognition of the complexity of integrating technology, Lagrange et al 

(2003) point to an emerging trend in research focusing on the role of the teacher in 

technology integration, through observations of ‘ordinary’ teachers as they struggle to 

integrate ICT into their classroom practice. Similarly, Hoyles and Noss (2003) identify 

a common research trajectory for the study of digital technologies in mathematical 

learning: starting with documenting potentials and obstacles in software use and then 

gradually shifting to discussions of tool mediation, tasks and activities and the role of 

the teacher. The Second Handbook of Research on Mathematics Teaching and Learning 

(Lester Jr, 2007) gives an indication of the shift in research focus: Zbiek et al (2007) 

identify three research constructs relating to teachers’ practice involving technology, 

amongst 17 in total variously relating to technology and technology in connection with 

students and with the curriculum. Similarly, the recent 17th ICMI Study Mathematics 

Education and Technology – Rethinking the Terrain (Hoyles & Lagrange, 2010) 

demonstrates this shift with a section entitled Teachers and Technology, organised to 

consider a range of issues related to preparing teachers to teach using technology and to 

the challenges of technology integration. The publication of The Mathematics Teacher 

in the Digital Era (Clark-Wilson, Robutti & Sinclair, 2014) makes the role of the 

teacher in integrating digital technologies the central focus of research, bringing to the 

fore an explicit focus on teachers’ knowledge and a range of frameworks for analysing 

that knowledge (e.g. see Ruthven, 2014). The special issue in the 45th volume of ZDM – 

The International Journal on Mathematics Education on Re-sourcing Teacher Work 

and Interaction (Pepin, Gueudet & Trouche, 2013) similarly makes interactions 

between teacher and technology the central research focus, providing frameworks to 

analyse these interactions at the level of the individual teacher and to consider the 

collective work of groups of teachers. The next section of this literature review 

discusses the findings of this research trend in relation to teacher knowledge.  
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2.6 Teacher knowledge in research on technology in mathematics education 

In their synthesis of research on incorporating mathematics technology into classroom 

practice, Zbiek and Hollebrands (2008) distinguish teachers’ conceptions or beliefs 

about mathematics and technology from teachers’ understanding or knowledge of 

mathematics. In terms of the present study, beliefs and conceptions are considered as 

part of teacher knowledge. 

2.6.1 Teachers’ conceptions 

Several studies detail the changes to teachers’ beliefs that may be provoked by 

professional development either grounded in technology use or actively promoting 

technology integration. Reporting on a study supporting seven teachers to implement a 

guided-inquiry approach to geometry using the Geometric Supposer software, Lampert 

(1988) records that teachers radically altered their views of what geometry is, of what 

the aims of teaching it are, and the way it should be taught. In particular, this involved 

re-sequencing the subject matter, finding a new way to map the geometrical terrain 

(Lampert, 1988). Similarly, Moriera and Noss (1995) focus on describing Portuguese 

teachers’ attitudes and views as they unfolded during the course aimed at introducing a 

“Logo-mathematical culture”. In the Microworlds Project, Noss and Hoyles (1996) 

found that changes in teachers’ beliefs often centred on epistemological concerns, 

involving a broadening of the range of activities which could be considered 

mathematical and connecting to changes in their personal, pedagogical and professional 

beliefs. Laborde (2001) used the “perturbation” of introducing Cabri-Geometre into four 

mathematics teachers classroom practice as a window onto their tacit hypotheses and 

beliefs about teaching and learning mathematics, noting that such a situation can also 

catalyse change in teachers’ beliefs, thus restructuring their mathematics. For example, 

an activity proposed by the researcher “challenged the beliefs” of one of the teachers 

about the kind of problems he could ask his students to do and the level of conceptual 

reasoning and software use that he could expect from his students (Laborde, 2001). 

Bottino and Furinghetti (1996) outline a typology of secondary school mathematics 

teachers’ conceptions in relation to technology and teaching mathematics with 

technology when confronted with a change in the mathematics curriculum requiring the 

inclusion of computer use in lessons. 

Another set of studies documents the influence of teachers’ beliefs on their integration 

of technology into classroom practice. For example, in their review of research on 
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technology in mathematics education, Zbiek et al (2007) identify the constructs of 

pedagogical fidelity and privileging as useful in understanding the extent and nature of 

technology integration in a teacher’s classroom practice. Pedagogical fidelity is 

described as the degree to which teachers’ beliefs about the way a digital technology 

allows students to act mathematically coincide with their beliefs about the nature of 

mathematical learning (Zbiek et al., 2007). Privileging is a notion developed by Kendal 

and Stacey (2001) to describe how teachers, consciously or unconsciously, frequently 

use or place a priority on certain things in their practice, for example, types of 

representation, skills or concepts and by-hand or by-technology methods (Zbiek et al., 

2007). Both these constructs relate to teachers’ conceptions of mathematics as a 

discipline (Thompson, 1992), their beliefs about the nature of teaching and learning 

mathematics and how these interact with their beliefs about technology. Employing 

sociocultural perspectives on learning, Goos (2005; 2014) traces the development of 

teachers’ professional identities as technology users, by focusing on their negotiation of 

the changing relationships between their teaching environment, actions, and beliefs.  

These studies have in common a focus on teachers’ global conceptions of mathematics 

as a discipline and on teachers’ beliefs about the nature of teaching and learning 

mathematics with technology. In the terms of the present study then, they focus on 

global aspects of teachers’ espoused theories and theories-in-action (Argyris and Schon, 

1974, see Chapter 1). They do not tend to focus on teachers’ knowledge of specific 

mathematical concepts in relation to technology, either in relation to their espoused 

theories or theories-in-action. This is an important omission since the documented shifts 

in teachers’ views suggest a move towards models of teaching aimed at developing 

conceptual understanding. Such models require a great deal of knowledge for successful 

implementation (Thompson & Thompson, 1996) and as noted earlier, inconsistencies 

between teachers’ professed beliefs and practices may be the result of lacking sufficient 

knowledge and skills necessary to implement them (Thompson, 1992).  

 

2.6.2 Teachers’ knowledge or understanding of mathematics (with technology) 

Zbiek and Hollebrands (2008) cite two studies (Doerr & Zangor, 2000; Heid, Glendon, 

Zbiek & Edwards, 1998) which they state give general indications that teachers’ 

knowledge of mathematics influences their use of technology in the classroom. Teacher 

knowledge is not the main focus of the research in either of these studies, rather it is 
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analysed as a factor with explanatory value in understanding teachers’ practices. 

Nevertheless these studies explicitly analyse teacher knowledge, as opposed to the 

studies in the previous section which focus on teacher beliefs. 

Heid et al (1998) separate the influences of teachers’ mathematical understanding from 

technology-related influences on interviewing, precluding an analysis of teachers’ 

mathematical knowledge for teaching as a synthesis of mathematical, pedagogical and 

technology knowledge. Thus the technological context seems largely tangential to Heid 

et al’s (1998) analysis of the mathematical understandings of Sara, one of the teachers 

participating in their study of teachers learning to do task-based interviews to assess 

students’ understandings of algebra. They analyse Sara’s confusion of parameter and 

variable and weaknesses in her understanding of quadratic functions and suggest that 

her limited understanding led her to ask misleading questions in her interviews with 

students. Their analysis could be seen as identifying gaps in Sara’s foundational 

knowledge (Rowland et al., 2005) of algebra, although they do not refer to any research 

on mathematical knowledge for teaching. However, there is no indication of how the 

technological context impinged either on Sara’s personal mathematical understandings 

or on her mathematical knowledge for teaching. For example, Heid et al (1998) do not 

discuss Sara’s understanding of how situating the algebraic content within a 

technological context might influence her interview questioning. On the other hand, 

Heid et al (1998) note teacher Leanne’s inattention to her students’ mathematical 

understanding exhibited in CAS-based strategies alternative to the ones she set out to 

teach. Heid et al (1998) ascribe Leanne’s inattention to her views of technology as 

curriculum – a set of skills to be learned – rather than to weaknesses in the synthesis of 

her mathematical, technological and pedagogical knowledge. Alternatively her failure to 

attend to her students’ understanding could be taken to indicate a weakness in her 

technology-situated mathematical knowledge for teaching. In the cases of Sara and 

Leanne, Heid et al (1998) can be seen to focus purely on content knowledge and 

technological knowledge respectively, neglecting for example the dyadic and central 

triadic constructs of the TPACK framework. 

The technological context appears similarly tangential to Yerushalmy and Chazan’s 

(2002) discussion of teacher knowledge of school algebra. When faced with the 

question of helping a student to understand the meaning of the solution to                     

3x + 7 = 2(x + 5) + x - 1, the teacher in their study suggested graphing y = 3x + 7 and     

y = 2(x + 5) + x – 1 on a two-dimensional Cartesian plane and looking for the x-
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coordinate of the intersection point. She went on to recognise two tensions arising from 

her graphical approach that would be liable to cause her students confusion. Firstly, in 

the graphical representation, x is seen as a variable rather than an unknown as in the 

equation. Secondly, the teacher herself had difficulty in distinguishing her graphical 

approach to solving an equation in one variable from using graphs to solve a system of 

equations in two variables. Yerushalmy and Chazan (2002) suggest the teacher’s 

confusion arose from weaknesses in her substantive mathematical knowledge, in 

relation to her ability to discriminate between functions and equations (Chazan et al., 

1999). Like Heid et al’s (1998) analysis of Sara’s knowledge, Yerushalmy and Chazan 

(2002) indicate gaps in the teacher’s foundational knowledge of algebra, but do not 

suggest how the technological context impinged on the teacher’s understanding - other 

than by making the use of a graphical approach more amenable. In terms of the TPACK 

framework, Yerushalmy and Chazan (2002) appear to focus solely on the teacher’s 

content knowledge and pedagogic content knowledge, to the exclusion of the 

technologically oriented constructs. 

Doerr and Zangor (2000) provide a brief description of one teacher’s knowledge and 

beliefs about the graphic calculator as reflected in her pedagogic strategies. Like Heid et 

al (1998), their description of teacher knowledge is not informed by research on 

mathematical knowledge for teaching. Doerr and Zangor (2000) initially emphasise the 

strength of the teacher’s technical knowledge, evidenced by her own competency in 

using the calculator and her ease in answering students’ questions about calculator 

procedures. Similarly to Heid et al (1998), Doerr and Zangor’s (2000) emphasis on the 

teacher’s technical knowledge (TK) is at the expense of considering how her pedagogic 

strategies reflect a synthesis of the teacher’s technical, mathematical and pedagogic 

knowledge, as suggested by the transformative model of TPACK and by Ruthven 

(2011). For example, unlike Leanne, this teacher was able and willing to accommodate 

students’ suggestions of alternative calculator strategies while using the overhead 

projection unit. Due both to the brevity of their description and their interpretation of 

this event from a purely technical point of view, Doerr and Zangor (2000) provide no 

indication of whether the teacher was able to fuse her technical flexibility with her 

mathematical and pedagogical knowledge to develop such unanticipated contributions 

in ways that benefited her students mathematically. Describing such a fusion might 

contribute to understanding mathematics teachers’ contingent knowledge (Rowland et 

al., 2005) in a technological situation.  
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Doerr and Zangor’s (2000) description of the teacher’s knowledge gives some further 

indications of what mathematical knowledge for teaching using technology might entail. 

They state that the teacher drew students’ attention to the mathematical limitations of 

the calculator and that she encouraged them to interpret calculator results to provide 

meaningful responses to problem situations (Doerr & Zangor, 2000). Both these 

pedagogic strategies suggest possible attempts to manage issues of ‘double reference’, 

where the calculator syntax diverges from the conventions of school mathematics 

(Ruthven, 2002). Issues of double reference tend to be invisible to mathematically 

expert and computationally experienced technology users (Ruthven, 2002, p. 286): thus 

doing mathematics using technology only requires an implicit recognition of such 

issues. The suggestion made here is that teaching mathematics using technology 

involves an explicit recognition of these issues fused with pedagogic knowledge of 

strategies for managing them. Doerr and Zangor (2000) do not analyse the teacher’s 

knowledge in this way, nevertheless their description might suggest a case of teachers’ 

knowledge-in-action, drawing out mathematical coherence by making connections 

(Rowland et al., 2005) between mathematical environments. 

Bowers and Doerr (2001) make teacher knowledge the main focus of their research to 

the extent that they analyse growth in prospective teachers’ knowing when using 

technology. Although they occasionally use the phrase pedagogic content knowledge, 

they do not reference Shulman (1986) or any research on mathematical knowledge for 

teaching. Bowers and Doerr (2001) separate their prospective teachers’ insights into 

categories of mathematical and pedagogical knowing, although it is not always clear on 

what basis they make this distinction. For example, they categorise recognition of the 

importance of appropriate contexts for situating mathematical content as a 

mathematical insight. However, it could equally be seen as a pedagogic insight or, 

perhaps more properly, an insight combining both mathematical and pedagogic 

knowing. Certainly, knowledge of the most powerful analogies and illustrations of 

mathematical ideas is included by Shulman (1986) in his description of pedagogic 

content knowledge. Bowers and Doerr (2001) do not indicate whether the use of 

technology influenced what counted as an appropriate context, however such an insight 

might exemplify teachers’ transformation (Rowland et al., 2005) of their own meanings 

and descriptions in a technological context to make them amenable to learners. Only 

one of the insights Bowers and Doerr (2001) identify appears directly linked to teaching 

mathematics with technology: the “pedagogic insight” of the influence of hidden 



72 

 

supports and constraints of technology on students’ mathematical activities. They 

describe participant Julie’s understanding that the use of discontinuous velocity graphs 

was an artefact of the design of the MathWorlds software, but her regarding it as a 

pedagogical impediment which she would have to overcome. Other participants instead 

saw opportunities for understanding the value of mathematical abstraction in the 

discrepancies between MathWorlds and ‘real world’ data. In either case, there are 

similarities between this insight and the teacher’s attempts to manage issues of double 

reference in Doerr and Zangor’s study. Both involve an appreciation of the 

mathematical limitations of the technology fused with an understanding of their 

pedagogical implications and could therefore be seen as exemplifying the central 

TPACK construct.  

 

2.6.3 Holistic accounts of teacher practice involving technology integration: an 

implicit focus on teacher knowledge 

As previously indicated, the 17th ICMI Study Mathematics Education and Technology – 

Rethinking the Terrain (Hoyles & Lagrange, 2010) demonstrates the shift in research on 

technology in mathematics education towards a focus on the role of the teacher. 

However, none of the chapters in the section entitled Teachers and Technology 

explicitly focus on teachers’ knowledge with respect to technology integration. Instead, 

teachers’ knowledge emerges as an implicit focus. Indeed, in chapter 14, Goos et al 

(2010, p. 321) note each of the three papers under discussion "implicitly drew attention 

to the mathematical and pedagogical content knowledge that teachers require in order to 

integrate technology into their classroom practice" but do not discuss this in any further 

detail, relegating teacher knowledge as one amongst many other factors influencing 

technology integration.  

Similarly, in studies aiming to give holistic accounts of teacher practice involving 

technology integration, teacher knowledge emerges as an implicit focus. Mapping the 

pedagogical opportunities provided by mathematical software, Pierce and Stacey (2010) 

suggest that teachers may deliberately exploit the constraints, anomalies or limitations 

of technology to provoke students’ mathematical thinking. As Pierce and Stacey (2010) 

mention, this implies an appreciation of the issues surrounding the mathematical fidelity 

of the software - that is “the faithfulness of the tool in reflecting the mathematical 

properties, conventions, and behaviours (as would be understood or expected by the 
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mathematical community)” (Zbiek et al., 2007). Similarly, in chapter 8 of the ICMI 

study, Olive et al (2010) tentatively suggest that mathematics teachers should have an 

understanding of the issues surrounding mathematical fidelity and be able to react to 

them appropriately, whilst noting that the question of “who needs to know what” about 

such issues has not previously been discussed in depth. The construct of mathematical 

fidelity corresponds in large part with the issues of double reference discussed in the 

previous section. Having an appreciation of the mathematical fidelity of a particular 

software package could be considered as part of the TCK construct – one that Bowers 

and Stephens (2011) neglect in their consideration of the TPACK framework. Pierce 

and Stacey (2010) note that their approach only addresses the (positive) pedagogical 

opportunities of using mathematical software, thus they do not consider potential 

drawbacks. Knowing pedagogic strategies both to exploit issues of mathematical 

fidelity or alternatively being aware of potential misconceptions arising from such 

issues and knowing how to deal with them could exemplify the central TPACK 

construct. 

Monaghan (2004) also attempts to capture the “wholeness of teachers’ practices” in 

their attempts to integrate technology. He employs Saxe’s four-parameter model in an 

effort to produce holistic accounts of teacher practice. Teachers’ prior understandings 

feature as one of the parameters in Saxe’s model, incorporating teachers’ beliefs about 

teaching and learning, the nature of mathematics and their mathematical and technical 

proficiency and also their understandings with regard to social practices such as how 

they plan their lessons. In terms of mathematical knowledge for teaching, ‘prior 

understandings’ suggests the foundational knowledge component of the Knowledge 

Quartet (Rowland et al., 2005), thus teachers’ knowledge-in-action remains a largely 

implicit consideration. Following Monaghan (2004), Lagrange and Erdogan (2008) 

adopt Saxe’s model to analyse the practices of two teachers (one a technology sceptic; 

the other an experienced technology user) as they use spreadsheets to teach their 

students about linear and exponential progressions. Whilst their description of teachers’ 

prior understandings is brief, focusing on detailing the teachers’ beliefs about 

technology, Lagrange and Erdogan (2008) conclude that having a good disposition 

towards technology is insufficient for easy integration. Contra Bowers and Stephens 

(2011) view of TPACK simply as having a positive stance towards technology, 

Lagrange and Erdogan (2008) argue that teachers need an awareness of the necessity of 

making students’ recognise and use the spreadsheet as a mathematical tool (rather than 
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as a tool for effecting neat presentation), the necessity of knowing how to create tasks 

which effectively support mathematical use of the spreadsheet and a more conscious 

appreciation of spreadsheet techniques both in terms of their pragmatic value in 

increasing mathematical productivity and in terms of their epistemic value in supporting 

conceptual understanding. Their analysis suggests that the introduction of spreadsheets 

influences what counts as an appropriate context (see discussion of Bowers and Doerr, 

2001) and provides indications of how the transformation component of the Knowledge 

Quartet (Rowland et al., 2005) might be exemplified in a technological context. 

2.6.4 Frameworks for analysing individual teacher knowledge in research on 

technology in mathematics education 

As noted above, The Mathematics Teacher in the Digital Era (Clark-Wilson et al., 

2014) and the special issue in the 45th volume of ZDM – The International Journal on 

Mathematics Education on Re-sourcing Teacher Work and Interaction (Pepin et al., 

2013) bring to the fore a range of frameworks and constructs for analysing individual 

teachers’ knowledge in relation to using technology to teach mathematics. Many of 

these derive from the instrumental approach, for example, the documentational 

approach (Gueudet et al., 2014; Gueudet & Trouche, 2009; 2011; Pepin et al., 2013), 

instrumental orchestration (Trouche, 2004; Drijvers et al., 2010; Drijvers et al., 2013; 

Drijvers et al., 2014) and teachers’ personal and professional genesis (Clark-Wilson, 

2014; Haspekian, 2005; 2014). As argued in Chapter 1, the centrality of the construct of 

instrumental/documentational genesis, i.e. the process of appropriation, means that these 

studies tend to focus on teachers’ learning in relation to using technology to teach 

mathematics. Whilst teachers’ learning is important, it is not the primary focus of this 

study. Instrumental orchestration is an exception here in that it focuses on how teachers 

co-ordinate students’ instrumental geneses. Finally, Ruthven’s (2007; 2009; 2014) 

Structuring Features of Classroom Practice framework presents an alternative for 

analysing individual teachers’ knowledge to frameworks based on the instrumental 

approach. 

Gueudet and Trouche (2009; 2011) develop the documentational approach as a holistic 

framework for studying teachers’ professional development focusing on their use of 

resources, as an extension of the instrumental approach (Artigue, 2002; Guin & 

Trouche, 1999). The interwoven nature of mathematical knowledge and the technical 

skills needed for competent use of technology is highlighted by the instrumental 
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approach (Guin & Trouche, 1999; Trouche, 2005). As Fuglestad (2011) suggests, the 

instrumental approach may offer a way of describing the development of TCK in terms 

of the process of instrumental genesis as well as a possible structure for TCK in terms 

of utilisation schemes. Similarly, the documentational approach may offer a way of 

describing the development of TPACK in terms of documentational genesis as well as a 

possible structure for TPACK in terms of utilisation schemes. Their inference of 

operational invariants such as ‘a DGE can be used to help the students to observe 

properties of measures’ (Gueudet & Trouche, 2011) points to teachers’ tacit 

knowledge-in-action. However, research on teacher knowledge in mathematics 

education does not centrally inform their framework: they note briefly Shulman’s 

(1986) categorisation of teacher knowledge, stating that for now they consider 

“teachers’ knowledge as a whole, without sorting out its different kinds” although this 

might be an area for future research and refinement of the theory (Gueudet & Trouche, 

2009, p. 201). Also building on the instrumental approach, Drijvers et al (2010) use the 

notion of instrumental orchestration to analyse teacher practices involving technology 

integration. They identify archetypal teacher behaviours, such as the Technical-demo 

(Drijvers, et al., 2010) orchestration concerning the demonstration of tool techniques by 

the teacher, which, given their lack of specificity in relation to mathematical content, 

could be taken to exemplify the TPK construct. Again these orchestrations appear to 

focus on teachers’ tacit knowledge-in-action.  

Ruthven (2007; 2009) identifies five factors structuring teachers’ classroom practice 

that together provide a framework for developing a holistic understanding of technology 

use in teaching mathematics, specifically working environment, resource system, 

activity format, curriculum script and time economy. Ruthven employs this five factor 

framework to analyse adaptations in teachers’ craft knowledge (Brown & McIntyre, 

1993; Leinhardt, 1988) as they attempt to integrate technology into classroom practice. 

Ruthven’s use of terms such as craft knowledge and “expertise” (Ruthven, 2014) puts a 

deliberate emphasis on teachers’ tacit knowledge in action. In particular, in taking a 

craft perspective, Ruthven et al (2009, p. 281) seek to draw away from what they term 

“the more decontextualised and rationalistic approach to characterising ‘a professional 

knowledge base for teaching’ (Wilson, Shulman, & Richert, 1987)”. Nevertheless, the 

framework of factors structuring classroom practice tends also to lend a structure to 

teachers’ craft knowledge. For example, the adaptations in craft knowledge that 

Ruthven et al (2009) associate with working environment appear mainly to coincide 
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with knowledge of general pedagogic strategies situated in a technology environment 

(TPK) – not specific to the type of software or to mathematics teaching per se. In 

particular, Ruthven et al’s (2009, p. 281) description of curriculum script, as 

interweaving the “mathematical ideas to be developed, appropriate topic-related tasks to 

be undertaken, suitable activity formats to be used and potential student difficulties to 

be anticipated… ”, bears some resemblance to Shulman’s (1986) strategic form of 

pedagogical content knowledge. Finally, Ruthven et al’s (2009) assertion that elements 

of adaptation associated with working environment, resource system and activity format 

interweave in the development of teachers’ curriculum scripts, together with Ruthven’s 

(2009) identification of curriculum script with Gueudet and Trouche’s (2009) concept 

of documentation systems, might be seen to provide support for the transformative 

model of TPACK. 

 

 

2.7 Identifying research questions 

This section summarises the conclusions drawn from the review of literature. These 

findings led to the identification of Research Questions 2, 2a and 2b listed in Chapter 1. 

2.7.1 The nature and content of teachers’ mathematical knowledge for teaching 

using technology 

Research on teacher knowledge from the field of technology in education is immature: 

conceptualisations of the knowledge teachers’ use in teaching with technology remain 

underdeveloped. This is exemplified by the theoretical and methodological difficulties 

surrounding the TPACK framework. A fundamental theoretical issue for the TPACK 

framework lies in the conflict between transformative and integrative models of the 

central TPACK construct. As a result, the constructs representing the intersections of 

technology, pedagogy and content knowledge i.e. TCK, PCK, TPK and in particular the 

central TPACK construct are ambiguous, thus the nature of teachers’ knowledge for 

teaching using technology remains unresolved. Further, little work has been done to 

contextualise the TPACK constructs in the field of mathematics education. By 

comparison, research on teacher knowledge in the field of mathematics education is 

relatively well conceptualised, however it has rarely considered teachers’ mathematical 

knowledge for teaching in the context of technology use. In addition, research on 
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teacher knowledge in mathematics education has been dominated by research in 

primary/elementary education, although there is evidence that the issues raised might 

well extend to the secondary sector (Hodgen, 2011). Research on technology in 

mathematics education, whilst exploring the relationship between global aspects of 

teachers’ espoused theories and theories-in-action and their technology use in some 

depth, has paid relatively little attention to teachers’ knowledge of specific 

mathematical concepts in relation to technology. Research on technology in 

mathematics education that focuses explicitly on teacher knowledge as a factor in 

explaining teachers’ practices, but not as a central research focus, is rarely informed 

either by studies of teacher knowledge in mathematics education or by studies of 

teacher knowledge in the field of technology in education, thus they do not build 

towards a systematic analysis of mathematical knowledge for teaching using 

technology. For example, while Heid et al (1998) consider teachers’ technical and 

mathematical knowledge separately, Doerr and Zangor (2000) focus their description of 

teacher knowledge primarily on technology to the exclusion of pedagogy and content 

and Bowers and Doerr (2001) point to teachers’ mathematical and pedagogical insights 

without specifying clearly how they are situated in the technological context. In none of 

these studies, do the researchers make clear how they distinguish these different ‘types’ 

of knowledge, nor on what basis they choose to include or exclude consideration of 

either one or more of mathematical, pedagogical and technical knowledge. 

Nevertheless, there are sporadic instances where their descriptions give indications 

towards viewing teachers’ knowledge as a synthesis of mathematical, pedagogical and 

technical domains. Similarly, research aimed at producing holistic accounts of teacher 

practice involving technology integration tends to provide support for a transformative 

model of TPACK. However, since teachers’ knowledge is usually an implicit focus in 

such studies, such indications remain sporadic and unsystematic. More recently, 

frameworks such as the documentational approach (Gueudet & Trouche, 2009; 2011), 

instrumental orchestration (Trouche, 2004; Drijvers et al., 2010) and Ruthven’s (2007; 

2009; 2014) Structuring Features of Classroom Practice framework have been 

developed, providing a means for analysing individual teachers’ knowledge in relation 

to using technology to teach mathematics. The documentational approach has a 

tendency to focus on teachers’ learning, which it is not the primary focus of this study. 

All three frameworks appear to have a tendency to highlight teachers’ tacit knowledge-

in-action, rather than providing a focus on teachers’ articulated knowledge or espoused 

theories, although this is more deliberate in Ruthven’s framework. As a result, the 



78 

 

nature and content of teachers’ mathematical knowledge for teaching using technology, 

represented by the central TPACK construct, remains an unresolved question. This 

conclusion led to the identification of Research Question 2: 

RQ2 What is the nature and content of teachers’ mathematical knowledge for 

teaching using technology, as represented by the central TPACK construct? 

Research on teacher knowledge in the field of mathematics education has also 

highlighted the importance of a connectionist orientation (Askew et al., 1997), defined 

mainly in terms of knowledge for the purposes of the present study, and of connected 

knowledge for teaching (Ball, 1990; Ma, 1999). An intended outcome of this research 

will be to explore these issues in relation to technology, in particular in terms of the 

central TPACK construct, by contrasting connectionist and transmissionist teachers’ use 

of digital technologies. 

 

 

2.7.2 Measuring teachers’ mathematical knowledge for teaching using technology 

Measurements of teacher knowledge in the field of technology in education appear not 

to have moved beyond self-report questionnaires. A few researchers have created survey 

instruments to measure the constructs of the TPACK framework, however these have 

relied on self-reports of knowledge, criticised by Lawless and Pellegrino (2007) for 

reflecting teachers’ confidence or self-efficacy rather than actual knowledge. Similarly, 

within the field of technology in mathematics education, measures of teachers’ 

mathematical knowledge for teaching using technology have not progressed beyond 

self-reports of technical competence or confidence. In contrast, relatively sophisticated 

measures of teachers’ mathematical knowledge for teaching have been developed in 

research on teacher knowledge within the field of mathematics education. These 

measures have succeeded in providing evidence linking teachers’ mathematical 

knowledge to student achievement (Hill et al., 2005; Baumert et al., 2010) as well as 

evidence supporting the distinction between content and pedagogic content knowledge 

(Baumert et al., 2010). However, research on constructing measures of teachers’ 

mathematical knowledge in teaching has only recently begun to explore the impact of 

cultural context  (e.g. Delaney et al., 2008; Blomeke & Delaney, 2012). The impact of 

the methods with which test items are applied (e.g. multiple-choice questions, paper-
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and-pencil tests etc) and the mathematical topics covered on what is measured has 

received relatively little attention. In particular, the development of test items embedded 

in a technological context to measure teachers’ mathematical knowledge for teaching 

appears to have been neglected. This area still requires substantial development, leading 

to the identification of subsidiary Research Question 2a: 

RQ2a How does a conceptualisation of teachers’ mathematical knowledge for teaching 

using technology suggest ways in which such knowledge could be measured? 

Conceptualising mathematical knowledge for teaching using technology necessarily 

exists in a dialectical relationship with measuring such knowledge: that is, exploring 

one necessitates exploration of the other and so on in an iterative cycle. For example, 

Hill et al’s (2008) failure to establish a clear distinction between KCS and subject 

matter knowledge using the Michigan test items, led them to recognise weaknesses in 

their original specification of KCS and subject matter knowledge. Hill et al (2008, p. 

373) describe their paper as “a first effort to conceptualize, develop, and test measures 

of teachers’ knowledge of content and students (KCS)”. In reporting this first effort, 

Hill et al (2008, p. 373) ultimately connect “all three pieces of this work, tying the 

conceptualization directly to the specification of items, and tying results from field tests 

back to strengths and weaknesses of the initial conceptualization.” 

2.7.3 Teachers’ mathematical knowledge for teaching using technology as 

distributed 

Finally, most research on teacher knowledge, whilst recognising the situated nature of 

knowledge, remains underpinned by essentially individualistic assumptions (Putnam & 

Borko, 1997). In particular, research on teacher knowledge informed by views of 

cognition as distributed (Hutchins, 1995) across persons and technology remains 

underdeveloped (Putnam & Borko, 1997). In this respect, research on teacher 

knowledge in the field of mathematics education appears to follow a pattern similar to 

the wider field of education. Mishra and Koehler’s criticism of the separation of PCK 

and curriculum knowledge could be seen as a call to investigate the distributed nature of 

mathematical knowledge in teaching. However, they stop short of this, hence in the 

TPACK framework knowledge remains internal to the individual.  

In research on technology in mathematics education, the instrumental approach appears 

commensurate with Hutchins’ (1995) distributed view of cognition in the sense that, by 

considering an instrument as the combination of an artefact with the user’s schemes of 



80 

 

use, knowledge appears distributed across both teacher and technology. However, as 

noted in Chapter 1, the instrumental approach has a tendency to focus on teachers’ 

learning, which it is not the primary focus of this study. Instead, this study concentrates 

on teachers as workers where the focus is on the knowledge they ‘have’, using 

technology in their work of teaching mathematics. Hence Hutchins’ (1995) view of 

distributed cognition seemed more appropriate to this study because it focuses on 

analysing the interaction of humans with artefacts in the workplace.  

Putnam and Borko (1997; 2000) briefly describe examples of digital technologies and 

forms of communication between people across which they suggest knowledge for 

teaching could be distributed. Putnam and Borko (2000) assert that distributing 

knowledge for teaching across people and certain types of digital technologies might 

have the potential to transform practice whereas other forms of digital technologies 

(simply) serve to support existing practices. Crucially, in neither case do they specify 

how knowledge for teaching might be distributed across either people or the digital 

technologies they identify. For example, Putnam and Borko (1997, p. 1287) suggest 

teachers might augment their pedagogical thinking through making “judicious use” of 

new information technologies available via the Internet or existing technologies such as 

textbooks (see also Putnam & Borko, 2000). Making judicious use of such technologies 

suggests teachers might require a thorough, apriori knowledge of these technologies for 

the purposes of teaching. Thus it remains unclear to what extent such technology could 

augment teachers’ thinking. In other words, it remains unclear to what extent 

knowledge for teaching (using these technologies) would necessarily be internal to the 

teacher and to what extent it could be said to reside in the technology itself i.e. what part 

of knowledge for teaching could be considered as being distributed across the 

technology. Similarly, with Hoyles and Noss’ (2009) notion of out-sourcing, there is a 

sense that the user has to ‘have’ knowledge in the first place, before devolving it to the 

technology. Again in this case, it remains unclear to what extent knowledge could be 

considered as being distributed across the technology. 

The strength of Hutchins’ (1995) argument for a distributed view of cognition lies in his 

specification of minimum knowledge requirements for individual persons to carry out 

the computational tasks necessary for navigating a military ship in interaction with 

artefacts and other humans (e.g. reading bearings, pp. 137-140). By specifying the 

minimum knowledge requirements necessary for an individual to carry out a 

computational task in interaction with an artefact, Hutchins (1995) provides an 
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indication of how cognition may be distributed across both human and artefact. Thus 

specifying minimum knowledge requirements, provides a means of indicating how and 

to what extent teachers’ knowledge is distributed across technology. This conclusion led 

to the identification of subsidiary Research Question 2b: 

RQ2b To what extent is the mathematical knowledge made available through a 

teachers’ interaction with technology distributed across the individual teacher 

and the technology? 

2.8 Summary 

This chapter has reviewed the literature selectively for the purposes of this study. This 

led to the identification of the main research question relating to mathematical 

knowledge for teaching using technology, RQ2, and two subsidiary research questions 

RQ2a and RQ2b. In addition, this chapter provided a more detailed analysis of potential 

frameworks for analysing individual teachers’ own knowledge in relation to using 

technology to teach mathematics. This analysis supports the selection of the TPACK 

framework (Mishra & Koehler, 2006) and the Knowledge Quartet (Rowland et al., 

2005) in Chapter 1 as frameworks suitable for this purpose and for the purposes of this 

study. 
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Chapter 3 - Methodology 

 

This chapter sets out how the research for this PhD study was designed to address the 

questions identified in the introductory chapter (see Chapter 1). The research design is 

justified with respect to the epistemological stance and socio-cultural perspective in 

relation to technology use outlined in Chapter 1. The methods for data collection and 

analysis are also described and justified. 

The focus of this study is on individual teachers’ knowledge and how it is involved in 

interacting with technology to produce the mathematical knowledge made available in 

the classroom. In Chapter 1, it was argued that there is an imperative for exploring a 

connectionist orientation (Askew et al., 1997) in relation to technology use. In the terms 

of this study, a connectionist orientation is defined mainly in terms of knowledge. 

Hence comparing and contrasting connectionist-oriented teachers’ use of technology to 

that of transmissionist-oriented teachers provided a means of making mathematical 

knowledge for teaching using technology more visible.  

This study adopted a mixed-methods approach towards investigating individual 

teachers’ knowledge and how it is involved in interacting with technology to produce 

the mathematical knowledge made available in the classroom. Adopting a mixed 

methods approach represented a pragmatic methodological means of addressing the 

research questions identified and justified in Chapters 1 and 2.  The quantitative and 

qualitative elements of this study were of similar importance (Johnson & Onwuegbuzie, 

2004) in the research design. For ease of reference, the research questions are listed in 

the following section, below Table 3.1.  

A largely quantitative approach was taken to addressing Research Question 1, using 

survey data to explore associations between a connectionist orientation and ICT use, in 

order to be able to generalise more effectively to the population of English secondary 

school teachers. The study did not aim for a statistically representative sample. Instead 

case selection was theoretically purposive (Miles & Huberman, 1994), aiming to 

maximise the proportion of connectionist teachers included in the sample, and to enable 

the collection of data on contextual features (Stein et al., 2007) in line with the socio-

cultural perspective outlined in Chapter 1. However, the sample size of 183 teachers 

was considered sufficient for the purposes of statistical analysis, in line with Pampaka et 

al’s study (2012), and in this sense it allowed a more effective generalisation from a 
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larger number of critical cases. This quantitative approach was made possible by 

Pampaka et al’s (2012) development and validation of a set of items that could be used 

to create a scale of transmissionist self-reported pedagogic practice using Rasch 

analysis. The scale of transmissionist self-reported pedagogic practice provided a means 

of selecting two connectionist and two transmissionist teachers as critical cases for 

investigating mathematical knowledge for teaching using technology. 

Addressing Research Question 2 and the subsidiary questions 2a and 2b, a qualitative 

approach was judged necessary to investigate individual teachers’ knowledge and how 

it is involved in the participatory relationship (Remillard, 2005) between teacher and 

technology. More specifically, a qualitative approach was judged necessary to 

investigate the nature and content of individual teachers’ knowledge in relation to 

teaching using technology and how and to what extent knowledge is distributed 

(Hutchins, 1995) across teacher and technology. In particular, in line with the 

epistemological position outlined in Chapter 1, it was appropriate both to probe 

teachers’ theories-in-action and triangulate (Lincoln & Guba, 1985) this with data on 

their espoused theories to provide evidence indicating mathematical knowledge for 

teaching using technology. Hence data collection entailed observing lessons involving 

ICT, followed by a post-observation interview, and a semi-structured interview or ‘think 

aloud’ based around manipulating a GeoGebra (2008) file on circle theorems. Analysing 

this data to investigate individual teachers’ knowledge using the Knowledge Quartet 

(Rowland et al., 2005) provided a means of conceptualising mathematical knowledge 

for teaching using technology as a pre-requisite for considering how such knowledge 

could be measured, to address RQ2a. In analysing individual teacher’s knowledge, the 

purpose is to make inferences about the nature and content of teachers’ knowledge in 

general; it is not to critique the knowledge of individual teachers. 

The issues raised in this introductory section will be discussed and justified further in 

the following section, which sets out the research design.  

3.1 Research Design 

The PhD study comprised two phases of data collection. The first phase of data 

collection was quantitative, surveying secondary school mathematics teachers’ 

technology use in England. The second, mainly qualitative, phase of data collection 

used the survey data to identify four case study teachers. In this second phase, for each 

case study teacher, data collection involved observations of two lessons involving ICT, 
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followed by a post-observation interview, and a semi-structured interview based around 

a GeoGebra file on circle theorems. Table 3.1 depicts the research design, showing 

which data were used to inform the research questions identified in Chapter 1. The 

research questions are listed below Table 3.1 for ease of reference. In addition, Table 

3.1 provides an indication of how the data were analysed to address these research 

questions. 

A survey was used to address RQ1 since the aim was to explore associations between a 

connectionist orientation and ICT use that could be generalised effectively to the 

population of English secondary school teachers. The survey data consisted of teachers’ 

self-reports of their classroom practice. The theoretical perspective outlined in the 

introduction to the project (see Chapter 1) highlights the limitations of such data as a 

descriptive measure of teachers’ actual classroom practice. In this sense, choosing a 

survey method represented a necessary trade-off between being able to make effective 

generalisations and potentially obtaining more detailed and accurate information 

(Hammersley, 1992, p. 186) through direct observation of teachers’ classroom practice.  

Table 3.1 Research Design 

 Data Respondents Analysis Findings 

RQ1 

Survey data 183 respondents 
Rasch and other 

statistical analyses 

Chapter 4 
Two lesson 

observations + post-

observation interviews 

4 respondents 
Triangulation of 

survey findings  

RQ2 

GeoGebra interview 4 respondents 

TPACK framework Chapter 5 
Two lesson 

observations + post-

observation interviews 

4 respondents 

RQ2 + 

RQ2a 
GeoGebra interview 4 respondents Knowledge Quartet Chapter 6 

RQ2b 

GeoGebra interview 4 respondents Framework for 

identifying instances 

of distributed 

cognition 

Chapter 7 
Two lesson 

observations + post-

observation interviews 

4 respondents 
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RQ1  How is a connectionist orientation towards teaching mathematics associated with 

teachers’ frequency of use of ICT, their orientation towards ICT and their pedagogic 

practices involving ICT? 

RQ2 What is the nature and content of teachers’ mathematical knowledge for teaching using 

technology, as represented by the central TPACK construct? 

RQ2a  In what ways can teachers’ mathematical knowledge for teaching using technology be 

measured? 

RQ2b To what extent is the mathematical knowledge made available through a teachers’ 

interaction with technology distributed across the individual teacher and the 

technology? 

Data from lesson observations of the four case study teachers presented a means of 

ameliorating the limitations of the survey approach by triangulating (Lincoln & Guba, 

1985) the survey findings. In particular, the lesson observations of the four case study 

teachers provided critical cases (Miles & Huberman, 1994) with which to triangulate the 

survey findings of dominant practices in ICT use (see Chapter 4). They were critical 

cases in two senses. Firstly, the case study teachers represented critical cases of 

connectionist and transmissionist orientation in relation to ICT use. Using the survey 

data, the four case study teachers were chosen to be two of the most connectionist-

oriented and two of the most transmission-oriented teachers from the survey 

respondents who had volunteered to be contacted for this purpose. The case study 

teachers were also chosen so that one of the connectionist-oriented teachers came from 

a school supportive of ICT use and one from a non-supportive school (and similarly for 

the transmissionist teachers), again identified via the survey data, in accordance with the 

socio-cultural perspective towards teachers’ ICT use described in Chapter 1. In addition, 

the four case study teachers had described themselves as being confident with ICT. 

Thus they were likely to be technology enthusiasts who would represent strongly 

transmissionist or connectionist-oriented practice involving ICT if any association were 

present.  

Secondly, the case study teachers appeared to view the lesson observations as an 

opportunity to ‘show-case’ their best or innovatory practice involving ICT. The only 

stipulation the case study teachers were given with regard to the ICT lessons was that 

one should take place in a whole-class context with an IWB and the other in a computer 

suite, where the pupils had direct access to the hardware and software.  This stipulation 

was an attempt to recognise the constraints placed on teachers’ classroom practice due 

to different working environments (Ruthven, 2007; 2009), also reflected in the structure 

of the survey questions. No other stipulations were made in terms of the observed 

lessons to avoid over-burdening the teachers for ethical reasons and for practical reasons 
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– they were volunteers after all. Nevertheless, the lessons observed appeared to 

represent the teachers’ attempts (not always entirely successful) to demonstrate what 

they regarded as ideal, innovatory practice, rather than their standard or normal practice 

involving ICT. Again, in this sense, the observed lessons were critical rather than 

‘typical’ cases of the case study teachers’ classroom practice involving ICT. Thus the 

lessons observed were likely to represent strongly transmissionist or connectionist-

oriented practice involving ICT if any association were present. 

In terms of RQs 2, 2a and 2b, the case study teachers again represent critical cases for 

investigating mathematical knowledge for teaching using technology. For reasons 

described above, the case study teachers were likely to be technology enthusiasts and 

therefore more likely to have acquired some mathematical knowledge for teaching using 

technology, for example through their experience of using technology in their own 

classroom practice. It was also critical that between the teachers there should be 

variation in dimensions that might be associated with mathematical knowledge for 

teaching using technology. Thus contrasting the case study teachers’ use of technology 

would be more likely to force productive reflection, serving to make more “visible” 

mathematical knowledge for teaching using technology, to highlight the absences 

(things left unsaid) as well as the presences (things made explicit), (Hoyles et al., 1999; 

Venkatakrishnan, 2004). The choice of two connectionist-oriented and two 

transmissionist-oriented teachers and the level of school support provided two such 

dimensions of variation. Within the group of four case study teachers there was also 

variation in terms of teaching experience and expertise with technology prior to 

teaching (e.g. from a previous career or university degree). In addition, and in relation to 

RQ2a, the choice of two connectionist-oriented and two transmissionist-oriented 

teachers enabled an investigation of individual teachers’ knowledge using the 

Knowledge Quartet (Rowland et al., 2005) to conceptualise mathematical knowledge 

for teaching using technology as a pre-requisite for considering how such knowledge 

could be measured. 

Since no stipulation had been made regarding the lesson observations, other than that 

one should take place in a computer suite and the other in a whole-class context with an 

IWB, comparability was problematic e.g. the lesson content and technology used was 

different across lessons. Thus the semi-structured interviews based around a GeoGebra 

file on circle theorems were judged necessary to provide a common situation across 

which the case study teachers’ use of technology for teaching mathematics could be 
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contrasted as discussed above. The case study teachers were prompted to show and 

discuss how they would use the diagrams presented in the GeoGebra file to demonstrate 

the angle at the centre theorem to their pupils. Circle theorems were chosen since it is a 

topic, in the English mathematics curriculum, which is commonly identified with the 

use of dynamic geometry software (Ruthven et al., 2008). It was therefore reasonable to 

assume that the case study teachers would be familiar with technological resources 

similar to the diagrams presented in the GeoGebra file and might even have previously 

used such resources in their own teaching. Thus they would be likely to have some 

mathematical knowledge for teaching circle theorems using the GeoGebra file, even if 

they were unfamiliar with the particular software. In addition, the topic of circle 

theorems is at the apex of geometry in the compulsory English mathematics curriculum, 

since it is typically where proof is introduced. Hence it provided a potentially 

challenging context even for experienced teachers who were both mathematically and 

technologically confident. In addition, much of the research conceptualising 

mathematics teacher knowledge has been limited in terms of its curriculum coverage, 

for example, focusing on arithmetic operations (Ma, 1999) and on numeracy (Askew et 

al., 1997) – see Chapter 2. Hence conceptualising teacher knowledge in relation to a 

topic in geometry contributes to widening the evidence base for mathematical 

knowledge in teaching. 

In line with the epistemological position outlined in Chapter 1, it was appropriate both 

to observe the case study teachers’ theories-in-action and triangulate (Lincoln & Guba, 

1985) this with data on their espoused theories to provide evidence indicating 

mathematical knowledge for teaching using technology. In addition, the term 

“mathematical knowledge for teaching using technology” is intended to suggest a 

situated view of knowledge, implying that it is knowledge used in situations involving 

“the work of teaching mathematics using technology” (see Hill et al., 2005). Most 

obviously, the IWB and computer suite lesson observations provided opportunities to 

observe the case study teachers’ theories-in-action in a situation involving the work of 

teaching mathematics with technology. The post-observation interviews then provided 

an opportunity to infer the case study teachers’ espoused theories and hence triangulate 

them against their theories-in-action observed in the lesson, to provide evidence 

indicating mathematical knowledge for teaching using technology. Due to the author’s 

past experience as a teacher of mathematics, these post-observation interviews could be 

reasonably construed as a discussion between colleagues, reflecting on a mathematics 
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lesson involving technology i.e. a situation involving the work of teaching mathematics 

with technology. Similarly, the semi-structured interviews based around a GeoGebra 

file on circle theorems could be construed as a discussion between colleagues on, for 

example, planning a possible mathematics lesson involving technology. The GeoGebra 

interviews provided an opportunity to infer the case study teachers’ espoused theories in 

relation to teaching circle theorems using technology. Since the case study teachers 

were also asked to manipulate the GeoGebra file in a simulation of what they might 

actually demonstrate to pupils, this also arguably provided an opportunity to observe 

their theories-in-action.  

 

Table 3.2 Methodological strengths and weaknesses of GeoGebra interviews and lesson 

observations coupled with the post-observation interviews. 

 + Reliability + Validity 

- Reliability  
Lesson observations + post-

observation interviews 

- Validity GeoGebra interviews  

 

The methodological strengths and weaknesses of the data obtained from the GeoGebra 

interviews and the lesson observations coupled with post-observation interviews, in 

terms of their validity and reliability, are summarised in Table 3.2. The extent to which 

the teachers’ manipulation of the GeoGebra file can be argued to correspond with their 

theories-in-action (i.e. what they would actually do in classroom practice) represents a 

methodological limitation of the GeoGebra interviews. The case study teachers’ own, 

unsolicited assertions that their manipulation of the GeoGebra file in the interview was 

similar to their previous classroom use of such resources provides some evidence to 

support this validity claim. The lesson observations and post-observation interviews 

ameliorate this limitation to some extent, by providing supporting evidence that claims 

about mathematical knowledge for teaching using technology made on the basis of the 

GeoGebra interview data do hold when applied in the context of actual classroom 

practice (see for example, the analysis in Chapters 5 and 7).  
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The evidence presented by this study for mathematical knowledge for teaching using 

technology is not really the degree to which the case study teachers’ espoused theories 

actually correspond to their theories-in-action. Instead, of course, it is the degree to 

which the author perceives a correspondence between the case study teachers’ espoused 

theory and theories-in-action. In this sense, the GeoGebra interviews may provide better 

opportunities for the author to perceive reliably a correspondence or non-

correspondence between the case study teachers’ espoused theories and their theories-

in-action than the lesson observation and post-observation interview. This is because in 

the GeoGebra interviews, the case study teachers explain their actions in the moment, 

i.e. in a ‘think-aloud’ (Ericsson & Simon, 1993; Fox et al., 2011), in response to a pre-

prepared set of interview questions. By contrast, the post-observation interviews may 

suffer from hindsight-bias or after-the-fact-rationalisation (Evans, 2005) by not only the 

case study teacher but the author as well, since the interview schedule was minimally 

structured to allow the author flexibility to ask questions addressing issues raised during 

the lesson observation. 

 

3.2 Data collection 

This section begins by describing and justifying the data collection methods employed 

in the quantitative phase of the project. In particular, the design and development of the 

survey instrument and the survey sample are discussed and justified. The case study 

teachers are then introduced through a brief description, indicating how each individual 

varied along dimensions that might be associated with mathematical knowledge for 

teaching using technology. Finally, the data collection methods employed during the 

GeoGebra interviews, lesson observations and post-observation interviews are 

described. 

 

3.2.1 The survey instrument and sample  

The aim of the survey was to explore associations between a connectionist orientation 

and English secondary school teachers’ ICT use to address RQ1. Underlying this aim is 

the recognition that individual teachers interpret and make use of particular technologies 

in their classroom practice in ways that are not (fully) determined by the design and 

nature of the hardware and software (Remillard, 2005; Spillane, 2006). In particular, 
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this survey attempted to take into account individual level factors and contextual 

features (Stein et al., 2007) that might influence the participatory relationship between 

teachers and technology. This theoretical perspective is set out in more detail in Chapter 

1. The final survey instrument contained mainly closed Likert-type response formats 

grouped under the following sections (see Appendix A):  

A ICT in your school – items on access to hardware/software and 

school/departmental level factors effecting ICT use;  

B ICT use in your own mathematics teaching  

i Your use of hardware - perceived impact and frequency of use of 

hardware; 

ii Using an interactive whiteboard or data projector in maths lessons – 

items on frequency of software use, individual factors affecting ICT use 

and pedagogic practices with an IWB or data projector in a whole-class 

context; 

iii Maths lessons in a computer suite or using laptops – similarly, items on 

frequency of software use, individual factors effecting ICT use and 

pedagogic practices with ICT in the context of a computer suite or using 

laptops; 

C Your own mathematics teaching in general – Pampaka et al’s (2012) items 

relating to pedagogic practices in general (not specific to ICT use); and  

D About You – personal background details.  

 

The survey questions in section A aimed to gather data on contextual features (Stein et 

al., 2007), such as school and departmental support for ICT, which might influence the 

participatory relationship between teachers and technology. Section B collected self-

report data on the frequency of mathematics teachers’ use of hardware and software and 

their pedagogic practices involving ICT. Again an attempt was made to take contextual 

features into account, specifically the working environment (Ruthven, 2009), by 

dividing questions between using software in a whole-class context with an IWB and 

using ICT in a computer suite where students have direct access to the software. The 

inclusion of questions on pedagogic practices involving ICT was in recognition that the 

design and nature of the hardware and software that teachers use does not fully 

determine their classroom practice. In addition, Sections B and D included questions on 
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individual level factors, recognising that these might also influence the participatory 

relationship between teachers and technology. 

Section C of the survey instrument comprised Pampaka et al’s (2012) items relating to 

pedagogic practices in teaching mathematics in general i.e. not specific to ICT use. 

These items were included to construct a measure of teachers’ transmissionist self-

reported pedagogic practice as an indicator of their transmissionist or student-centred/ 

connectionist orientation, in line with the aim of the survey to address RQ1. Pampaka et 

al (2012) revised and validated Swan’s (2006) set of self-report items on pedagogic 

practice as a means of developing a measure of transmissionist self-reported pedagogic 

practice in post-compulsory, ‘advanced’ level mathematics college classrooms. The 

item-stems described classroom activities associated with student-centred or teacher-

centred practices. Teachers were asked to indicate the frequency with which these 

activities occurred in their classroom practice on a five-point scale: almost never, 

occasionally, about half the time, most of the time, almost always. The full set of items 

in listed in Appendix A and re-produced in Chapter 4 for ease of interpretation. 

Pampaka et al’s (2012) items relate to teachers’ classroom practices rather than to the 

knowledge that underpins a connectionist or transmissionist orientation. Nevertheless, 

the teachers’ responses to these items provide an indicator of their espoused theories 

(Argyris & Schon, 1974; Pampaka et al., 2012) of teaching practice, hence they may be 

taken as an indirect indication of their mathematical knowledge for teaching.   

The list of software used in the survey was derived mainly from Hyde’s (2004) list, 

checked against a survey of software use by the Fischer Family Trust (2003), to ensure 

that the main types of software used by secondary mathematics teachers in England had 

been included. Notably, IWB software and the MyMaths.co.uk website (Oxford 

University Press, 2012) were also included in the survey. IWB technology and 

resources such as the MyMaths website have tended to be dismissed within the 

mathematics education community (e.g. Zbiek et al., 2007) because there is a tendency 

to assume they facilitate and even encourage teacher-centred practices. Indeed, they are 

sometimes not even regarded as ‘using ICT’ as a result. However, the theoretical 

perspective outlined in Chapter 1 suggests that teachers may use such resources with 

interpretative flexibility (Ruthven, 2008; 2009), in ways that may not appear to 

correspond with the outward design and nature of the software or hardware. In addition, 

as discussed in the following paragraph, there was evidence to suggest that these 
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software are widely used in practice, thus omitting them would lead to a 

misrepresentation of teachers’ ICT use. 

IWB software refers to often presentation-type software that is designed specifically for 

use with IWB hardware, for example SMART Notebook (2014) or Promethean 

ActivInspire (2011). The growing presence of IWBs in mathematics lessons in England, 

indicated by the pilot study and other reports (e.g. Moss et al., 2007), suggests that IWB 

software may be used regularly by mathematics teachers and it was therefore included 

in the list of software for this survey. The MyMaths website was included since this site 

was known anecdotally to be widely used in UK schools (see for example, the school 

case studies reported in Clark-Wilson, 2008, p. 103-4). It is a subscription site offering 

pre-planned lessons, on-line homework and many other resources. The lessons and 

homework are linked to an “Assessment Management system”, allowing teachers to 

track individual student’s progress. 

The survey instrument was progressively developed over the course of various phases 

of piloting. The initial questionnaire design was informed by previous surveys of 

mathematics teachers’ use of ICT, primarily Hyde’s (2004) survey of mathematics 

teachers in Southampton and Forgasz’s (2002) survey of mathematics teachers in 

Victoria, Australia. This questionnaire was trialled with students on the Post-Graduate 

Certificate of Education (PGCE) mathematics course at King’s College London, before 

being piloted with 27 schools working in partnership with King’s College London to 

offer initial teacher education in secondary mathematics. The results of the pilot survey 

are reported in Bretscher (2011). As a result of this piloting, the questionnaire was re-

developed to include items relating to teachers’ pedagogic practices with ICT and to 

highlight more clearly the division of questions between using ICT in a whole-class 

context and using ICT in the context of a computer suite or using laptops. Items relating 

to school and individual factors affecting teachers’ use of ICT were also re-written to 

aid clarity. The re-designed questionnaire was trialled in two think-alouds (Willis, 2005) 

with PGCE students and with three experienced in-service teachers, who completed the 

questionnaire and then gave verbal feedback. The theoretical perspective outlined above 

implies that survey respondents engage in a participatory relationship with the text of 

the questionnaire, actively interpreting questionnaire items in the light of their own 

circumstances, whilst the questionnaire items may also shape respondents’ perception of 

these circumstances. Indeed, one of the three experienced in-service teachers, with 

whom the questionnaire was trialled, commented with surprise on how she perceived 
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shifts in her own conception of what ‘ICT use’ meant as she progressed through 

different sections of the questionnaire.  

Questionnaires were sent to teachers in mathematics departments in 87 secondary 

schools selected mainly through contacts with teacher educators in three English 

universities. The study did not aim for a statistically representative sample, which in any 

case was not feasible within the limited resources of the project. Instead, the sample was 

purposively directed at school level, with schools selected mainly through contacts with 

teacher educators in three English universities. This selection was made to ensure 

sufficient representation of connectionist teachers in the sample. Askew et al (1997) 

suggested that transmission orientations are likely to be more common amongst 

secondary teachers than primary teachers. Indeed, the sample of teachers in Pampaka et 

al’s (2012) study was skewed towards a transmission orientation. By selecting schools 

with contacts to universities through initial teacher education programmes, this study 

aimed to ensure a sufficient number of connectionist-oriented teachers in the sample. In 

addition, purposively directing the sample at school level enabled the collection of data 

on contextual features (Stein et al., 2007) such as local school or departmental level 

factors effecting ICT use. This ensured that the participating schools varied across a 

number of characteristics that might affect access to and use of technology. For 

example, in London there was a successful policy drive to equip one core subject area 

with IWBs (defined as Maths, Science or English, see Moss et al., 2007), thus access to 

particular types of technology may vary according to geographical area. The sampling 

method ensured some geographical variation, with schools situated mainly within three 

areas: Greater London, West Yorkshire and the South of England (taken as comprising 

the counties of Hampshire, West Sussex and Dorset). The participating schools also 

varied across a number of characteristics that might effect access to and use of 

technology, including a wide range of attainment in national tests; most were state 

schools but some were private schools; some have speciality status and some do not; 

some are single sex and some are selective. 

Nine questionnaires were sent to each school and 50 schools agreed to take part. A total 

of 188 completed individual teacher questionnaires were returned, an average of 3.8 

questionnaires per school. Of these, data from 183 teachers were entered for statistical 

analysis; 5 were removed due to missing or problematic data in Section C of the survey. 

The sample size was considered sufficient for the purposes of statistical analysis, in line 

with Pampaka et al’s study (2012). Twelve schools returned only one completed 
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questionnaire, whilst one returned all nine. The participating teachers (101 F; 86 M; 1 

unspecified) had a mean age of 38.5 years and mean length of service of 10.5 years, 

ranging from NQT to over 25 years experience. The majority of respondents (96) 

described their main responsibility as classroom teacher. The sample also included 24 

heads of department, 18 deputy heads of department and 24 Key Stage coordinators. 

Thus whilst the survey sample cannot be said to be statistically representative of the 

population of English secondary school mathematics teachers, the respondents vary 

across a range of individual level factors that might be associated with technology use. 

In addition, the data may be skewed due to the clustering of teachers in schools. There 

may also be a potential bias in the survey sample towards teachers who are relatively 

well-disposed towards ICT or those wishing to be seen as frequent users of ICT. 

Comparing themselves to their colleagues in the maths department, only 9.0% of survey 

respondents thought they use ICT less or much less frequently whereas 33.5% thought 

they use ICT more or much more frequently. As argued in the previous section, this 

potential bias may be seen as a strength in relation to the selection of case study teachers 

as critical cases of connectionist and transmissionist orientation in relation to ICT use. 

 

3.2.2 Introducing the case study teachers 

As discussed in the previous section detailing the research design, the four case study 

teachers (Robert, Anne, Edward and Michael) were chosen along two dimensions of 

variation that might be associated with mathematical knowledge for teaching using 

technology, as depicted in Table 3.3. Thus the case study teachers were chosen to be 

two of the most connectionist-oriented and two of the most transmissionist-oriented 

teachers of those who volunteered. The level of school support provided the other 

dimension of variation. This sub-section provides a brief description of each case study 

teacher in relation to these two dimensions of variation and other relevant dimensions, 

such as teaching experience and expertise with technology prior to teaching. 

Table 3.3 Choice of case study teachers along two dimensions of variation 

 + connectionist-oriented + transmission-oriented 

low school support Anne Edward 

high school support Robert Michael 
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Robert 

Robert was one of the most connectionist teachers in the survey sample (see Chapter 4, 

Figure 4.1, transmissionist measure -1.01). His school was generally supportive of ICT 

use compared to the other schools surveyed, based on the reports of 3 respondents 

including Robert’s own survey response. He had 4-6 years of teaching experience and 

held a management position within the mathematics department, as second-in-

command. His initial teacher education had been via a Post-Graduate Certificate of 

Education and he had subsequently completed a Masters in Education degree. Robert 

was the most technologically proficient of the four case study teachers: his 

undergraduate degree was a Bachelor of Engineering in Computing. This was 

underlined by his use of a pupil-response system in the IWB lesson observation that he 

had designed and programmed with help from colleagues. 

 

Anne 

Anne was one of the more connectionist-oriented teachers in the sample (see Chapter 4, 

Figure 4.1, transmissionist measure -0.50). Her school was less supportive of ICT use 

compared to the other schools surveyed, based on the reports of 4 respondents including 

Anne’s own survey response. Anne was the most experienced teacher of the four case 

study teachers, with 10-15 years of teaching experience. She held a management 

position as a Head of Year, responsible for the pastoral care of students (rather than a 

subject-related role). Her initial teacher training had been via an undergraduate degree, 

Bachelor of Education in secondary mathematics. She was the least technologically 

proficient and confident of the four case study teachers. For example, she mentioned her 

reliance on her son’s skills with technology to help her use software to design ICT 

resources and on a teaching colleague to help her negotiate the filing system on her 

computer. 

 

Edward 

Edward was one of the more transmission-oriented teachers in the survey sample (see 

Chapter 4, Figure 4.1, transmissionist measure 0.74). His school was unsupportive of 

ICT use compared to the other schools surveyed, based on the reports of 7 respondents 
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including Edward’s own survey response. Out of the four case study teachers, Edward 

was the only one working in a private (i.e. fee-paying) school – the other three taught in 

state-funded secondary schools. His department was somewhat unusual in that the 

classrooms were not equipped with IWBs, having data projectors only installed instead. 

Edward preferred this arrangement in any case, however he did have access to IWBs by 

booking classrooms used by other subject departments. He had 2-3 years teaching 

experience and had completed a Post-Graduate Certificate of Education. He obtained a 

first-class grade in his undergraduate degree in mathematics and, in this sense, had the 

strongest mathematical background of the four case study teachers. He appeared 

technologically proficient and confident. For example, he mentioned obtaining 

permission to up-date the web-browsing software himself on school computers. 

 

Michael 

Michael was one of the most transmissionist teachers in the sample (see Chapter 4, 

Figure 4.1, transmissionist measure +1.01). His school was supportive of ICT use 

compared to the other schools surveyed, based on the reports of 6 respondents including 

Michael’s own survey response. He had 2-3 years teaching experience and had 

completed a Post-Graduate Certificate of Education. His undergraduate degree was in 

Economics and he had subsequently completed a Masters in Economics. Michael 

appeared to be the least confident of the teachers in relation to his own subject 

knowledge. For example, he indicated that he hoped to teach economics and seemed to 

view teaching mathematics as a means to that end. In addition, Michael tended to treat 

the author as a senior colleague, commenting off-record on the similarity between 

conversations with his mentor in initial teaching training. 

 

3.2.3 The GeoGebra file on circle theorems and interview protocol 

The GeoGebra file comprised three diagrams relating to the circle theorem stating that 

angle at the centre of the circle, subtended by an arc, is double the angle at the 

circumference subtended by the same arc (see Figure 3.1 and Appendix N). Table 3.4 

provides a list of the semi-structured interviews based around the GeoGebra file. 
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Table 3.4 List of GeoGebra interviews 

Case study 

teacher 

Date GeoGebra 

interview 

Robert 13.6.2012 Rob-GGb-int 

Anne 28.6.2012 

29.6.2012 

Anne-GGb-intA 

Anne-GGb-intB 

Edward 20.6.2012 Ed-GGb-int 

Michael 31.5.2012 Mic-GGb-int 

 

 

Figure 3.1 The GeoGebra interview file on circle theorems 

The GeoGebra file also incorporated some text, setting the task of manipulating the 

diagrams in the pedagogical context of planning how to introduce pupils to this circle 

theorem based on a demonstration using these diagrams. The first diagram D1 was 

designed to be similar to resources found on a web-search. Thus the case study teachers 

were likely to have at least some familiarity with a dynamic diagram like D1 and 

possibly have even used something similar in their own lessons. The second and third 

diagrams were designed to be unusual by comparison: Dietmar Kuchemann’s (2003) 

article “Angle at the centre: taking a point for a walk” was instrumental in their design. 

These diagrams could be manipulated to produce a soft construction (Laborde, 2005) of 

the angle at the centre theorem but could also be disrupted to produce non-examples of 
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the theorem. These diagrams were included to provide a context that would challenge 

the subject knowledge of and provide some interest to a technologically proficient and 

mathematically confident secondary mathematics teacher. The GeoGebra interviews 

were semi-structured around a protocol with questions designed to cover each of the 

dyadic and triadic categories of the TPACK framework (see Appendix B). Before 

opening the GeoGebra file on circle theorems, the case study teachers were asked to 

practise ‘thinking-aloud’ whilst manipulating a GeoGebra file with a soft and robust 

construction (Laborde, 2005) of a square. The semi-structuring of the interview allowed 

the author some flexibility to respond to events during the interview, whilst maintaining 

an overall structure that would allow for and facilitate comparison. The GeoGebra 

interviews generally took place in a mathematics classroom at the case study teacher’s 

school that was not being used for teaching at that time. The author’s laptop with mouse 

attached was arranged on a desk so that both the author and the case study teacher could 

comfortably see the screen and use the mouse to manipulate D1, enabling collaboration 

on the task. Both the visual and audio aspects of the GeoGebra interviews were 

recorded on the author’s laptop using iShowU (Shinywhitebox Ltd, 2011) software. 

3.2.4 Lesson observations and post-observation interviews 

Each case study teacher was observed teaching two lessons using ICT. With the 

exception of Anne, one of these lessons was where the teacher used an IWB in a whole 

class context and the other lesson took place in a computer suite where the pupils had 

direct access to technology. This was a deliberate choice by the author to provide a 

contrast in working environment (Ruthven, 2009) that might make differences in 

knowledge between connectionist and transmissionist-oriented teachers more visible. 

Anne chose to do both her lessons in a computer suite. Since Anne was less confident 

using technology, the author did not insist on observing an IWB lesson for pragmatic 

and ethical reasons. Table 3.5 provides a list of lesson observations and post-

observation interviews. 

 

 

 

 



99 

 

Table 3.5 List of lesson observations 

Case 

study 

teacher 

Observation 

type 
Date Post-observation 

Interview 
Year group, mathematical 

topic, main use of technology 

Robert 

IWB  13.6.2012 Rob-IWB-int Year 12 the Chain Rule using 

PowerPoint and pupil response 

system designed by Robert 

Computer 

suite 
13.6.2012 Rob-CS-int Year 8 reflection of 2D shapes 

using maze activities designed 

in GeoGebra 

Anne 

Computer 

suite 1 
28.6.2012 Anne-CS1-int Year 8 transformation of 

graphs using Autograph 

Computer 

suite 2 
29.6.2012 Anne-CS2-int Year 8 transformation of 

graphs using Autograph 

Edward 

IWB 20.6.2012 Ed-IWB-int Year 12 graphing inverse 

functions using GeoGebra 

Computer 

suite 
27.6.2012 Ed-CS-Int Year 9 revising equation of 

straight-line graphs using 

Internet game 

Michael 

IWB 29.5.2012 Mic-IWB-int Year 7 translation of 2D-shapes 

using pupil response system 

Computer 

suite 
31.5.2012 Mic-CS-int Year 8 volume of cuboid using 

MyMaths.co.uk 

 

During the lesson observations, the author assumed the role of participant-observer 

(Cohen, Manion, & Morrison, 2000) in that she was not directly involved in the lesson, 

beyond brief interactions with a handful of students. The case study teacher’s 

mathematical delivery of the lesson was the main focus of observation. Field notes were 

taken every three or four minutes and a descriptive synopsis (Rowland et al., 2005) of 

the lesson was written from memory shortly after the lesson, these were later typed up – 

see Appendix I. Copies of resources used in the lesson, such as PowerPoint slides, 

GeoGebra files, worksheets or links to online resources, were gathered when available. 

The post-observation interviews took place as soon as possible after the lesson 

observation and on the same day. The interviews were minimally structured to provide 

the author with flexibility to follow up and seek clarification on events/issues arising 

from the lesson observation. An interview schedule, included in Appendix C, was more 

like a list of prompts, reminding the author of areas she wished to cover in the 

interview, as well as providing a means to stimulate conversation when necessary. The 

post-observation interviews were digitally audio-recorded. 
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3.3 Data Analysis 

This section begins by describing and justifying the statistical analyses carried out on 

the survey data to address RQ1 in the quantitative phase of the project. The chapter 

concludes with a description and justification of the qualitative analysis of data from the 

GeoGebra interviews and lesson observations coupled with post-observations 

interviews used to address RQs 2, 2a and 2b, cross-referenced with the relevant data 

analysis chapters where appropriate. 

3.3.1 Statistical analysis of survey data 

The statistical analysis presented in this thesis focuses on the use of Rasch modelling to 

construct a scale of transmissionist self-reported pedagogic practice from teachers’ 

responses to Pampaka et al’s (2012) items, comprising section C of the survey 

instrument. The Rasch model is discussed in the next paragraph and also in Chapter 4, 

where the results of the measure construction are presented. The Rasch analysis was 

carried out using the Winsteps (2011) software. Finally statistical analyses exploring the 

association between the transmissionist self-reported pedagogic practice and other 

variables, carried out using the PASW Statistics 18.0 (2009) software, are described. 

The Rasch Model 

The Rasch model was selected because it provides a method of constructing an interval 

level scale of measurement, necessary for conducting parametric tests, from ordinal 

level data. In particular, following Pampaka et al (2012), Rasch modelling was used in 

this study to construct a scale of transmissionist self-reported pedagogic practice for 

secondary school mathematics teachers using their items. Due to its purpose for 

constructing scales adequate for measurement, Rasch differs from other statistical 

models in that the data must fit the model, rather than the other way round. That is, if 

the data do not fit the model then they are inadequate for the purpose of constructing an 

interval scale of measurement i.e. the data rather than the model is at fault and must be 

rejected. Coe (2008) suggests this unconventional approach may be the reason why the 

use of Rasch has been controversial, particularly in the UK, though in other parts of the 

world it is widely accepted. Similarly, Pampaka et al (2012) note the controversy over 

Rasch modelling, asserting its widespread use internationally in educational assessment 

and beyond in the field of health sciences. 
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Rasch modelling assumes the ‘ability’ of persons and the ‘difficulty’ of items can be 

measured on the same scale. In this study, the difficulty of an item can be taken to mean 

the tendency for the pedagogic practice in the item-stem to be endorsed. Person ability 

can be taken to mean the extent to which a teacher feels able to endorse a 

transmissionist pedagogic practice i.e. indicative of a transmissionist versus student-

centred or connectionist orientation. The probability of a person succeeding on a 

particular item is modelled as being dependent only on the difference between the 

person’s ability and the item’s difficulty. The mathematical function that relates these 

two is the logit function or log of the odds. For the simplest Rasch model, involving 

only items with dichotomous responses, this relationship is expressed as: 

ln (
𝑃𝑛𝑖

1 − 𝑃𝑛𝑖
) =  𝐵𝑛 − 𝐷𝑖 

 

where Pni is the probability of success for person n on item i, Bn is the ability measure of 

person n and Di is the difficulty measure of item i. In this study, the Rasch rating scale 

model (Andrich, 1999; Bond & Fox, 2007; Wright & Mok, 2000) was used, which 

extends the dichotomous model for use with items with Likert-scale response formats, 

such as those employed in Pampaka et al’s (2012) items. For example, items with a 

five-point response scale, such as Pampaka et al’s, are modelled as having four 

thresholds. Each item threshold k has its own difficulty estimate Fk and this estimate is 

modelled as the threshold at which the person has a 50/50 chance of choosing one 

category over the category below (Bond & Fox, 2007). In the rating scale model, the 

relative difficulty of each threshold is estimated only once across the entire set of items 

in the rating scale i.e. the relative difficulty of each threshold is assumed to be the same 

across all items. The model equation for the rating scale model is therefore expressed 

as: 

𝑙𝑛 (
𝑃𝑛𝑖𝑘

1 − 𝑃𝑛𝑖𝑘
) = 𝐵𝑛 − 𝐷𝑖 − 𝐹𝑘 

 

where Pnik is the probability of person n choosing a given category on item i, Bn is the 

ability measure of person n, Di is the difficulty measure of item i and Fk is the difficulty 

for threshold k (Bond & Fox, 2007). 
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The Rasch model is based on three key assumptions of unidimensionality, invariance 

and local independence (Panayides et al., 2010). The assumption of unidimensionality 

means that items should all be measuring essentially the same thing. The model requires 

that items should also discriminate appropriately i.e. that test-items distinguish between 

persons because having a higher ‘ability’ entails a higher probability of success (Coe, 

2008). Local independence means that items should not provide hints, clues, insights or 

guidance for the solution of other items (Panayides et al., 2010). For persons, the 

assumption of invariance implies that item parameters should ideally remain constant 

across different samples of the relevant population i.e. that, for persons, their relative 

probabilities of success must be in line with those of others in the population (Coe, 

2008).  

Fit statistics provide a diagnostic tool for judging how well the data fit the Rasch model. 

Two types of fit statistics, infit and outfit, are both calculated based on the mean of the 

squared residuals, but employ slightly different techniques for judging how well a 

particular item (or person) fit the model. The infit statistic is weighted to give more 

consideration to the residuals of persons whose ability is near the item’s difficulty 

(Bond & Fox, 2007). The outfit statistic is simply the mean square of the residuals, 

divided by degrees of freedom (Coe, 2008), and is not weighted. Hence the outfit 

statistic may be unduly sensitive to extreme outliers and, as a result, the infit statistic is 

routinely paid more attention (Bond & Fox, 2007). Infit and outfit values are both 

expected to be close to 1, thus mis-fitting items (or persons) are usually defined as those 

lying outside an specified interval of values close to 1. In particular, values above 1 

indicate a poor fit to the model, whilst those below 1 indicate a better than expected fit 

or overfit. Following Pampaka et al (2012), in this study, values of infit and outfit 

higher than 1.3 are taken to indicate misfit. However, what constitutes an acceptable 

range of values for fit statistics varies in the literature (for example, Bond and Fox, 

2007; Smith et al., 1998; Wu and Adams, 2007). Partly for this reason, in this study, 

misfit is taken as an indicator for further investigation rather than an absolute cut-off 

point indicating an item should be rejected. In addition, items are usually included to 

represent various aspects of the construct to be measured. Thus careful consideration is 

required before throwing them out, since this has implications for content validity and 

the theoretical conceptualisation of the construct (Bohlig et al., 1998; Pampaka et al., 

2012). The approach taken towards the interpretation of fit statistics in this study is 

discussed further in Chapter 4 alongside the presentation of the results of the Rasch 
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analysis of data from section C of the survey instrument, comprising Pampaka et al’s 

(2012) items. 

A major strength of Rasch analysis is that, precisely because the model is underpinned 

by the assumptions of unidimensionality, invariance and local independence, the 

veracity of these assumptions may be tested empirically (Panayides et al., 2010). For 

example, in line with Swan’s (2006) original practices scale, Pampaka et al (2012) 

assumed that the opposite end of the spectrum from being transmission-oriented was 

having a connectionist orientation or being student-centred more generally. Hence, for 

the purposes of analysis, items with stems describing student-centred or connectionist 

practices were reverse-coded. However, Pampaka et al (2012) noted their results might 

indicate a second dimension of connectionism, orthogonal to student-centrism, 

concluding that the multidimensionality of the scale is worthy of further study. A 

principal components analysis of the Rasch residuals3 provides a means for testing to 

what extent the data conforms to the assumption of unidimensionality and, in particular, 

for exploring its potential multi-dimensionality. 

A second example is the use of Differential Test Functioning (DTF) and Differential 

Item Functioning (DIF) to test empirically the assumption of invariance across different 

samples. The items used in this study, conducted with secondary school mathematics 

teachers, were originally designed by Swan (2006) for use with GCSE mathematics 

teachers working in Further Education colleges. Pampaka et al (2012) adjusted and 

validated these items for use with teachers of post-compulsory mathematics. To some 

extent, the samples in these three studies could be construed as being drawn from 

different teacher populations. Thus Rasch analysis provides a means of testing to what 

extent a measure of transmissionist pedagogic practice generalizes across these teacher 

populations. 

 

Other statistical analyses 

Data that could be analysed statistically were manually entered into PASW Statistics 

18.0 initially. This package was used to generate descriptive statistics (i.e. frequency 

distributions and means) and calculate inferential statistics (t-tests and 2 tests) where 

appropriate. Descriptive statistics relating to teachers’ ICT use, in terms of their 

                                                 
3 The difference between a person’s observed response to an item and the response 

predicted by the Rasch model (Bond & Fox, 2007; Coe, 2008). 
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frequency of ICT use, their orientation towards ICT and their pedagogic practices 

involving ICT use are reported in Bretscher (2014). An independent data coding check, 

based on a 10% sample of questionnaires, gave a coding accuracy of greater than 

99.9%.  

The purpose of constructing the measure of transmissionist self-reported pedagogic 

practice was to explore associations between a connectionist orientation towards 

teaching mathematics and teachers’ ICT use, in terms of their frequency of ICT use, 

their orientation towards ICT and their pedagogic practices involving ICT. Once the 

measure of transmissionist self-reported pedagogic practice was constructed, the 

individual teacher’s measures were imported back into the PASW Statistics 18.0 

software. Independent samples t-tests were then carried out comparing the 

transmissionist measure of frequent and occasional users of ICT; of teachers with a 

positive and negative orientation towards ICT and of teachers reporting frequent and 

occasional occurrence of pedagogic practices using ICT. Levene’s test for equality of 

variances was checked. On the occasions where equality of variances could not be 

assumed the appropriate degrees of freedom and adjusted t-statistics were reported. 

Similarly, independent samples t-tests and chi-squared tests were used, where 

appropriate, to explore associations between the transmissionist measure and ICT use 

with background variables such as gender, age and length of service in the teaching 

profession. Bonferroni adjustments were not applied, since the intention was to indicate 

where associations might lie rather than to be conclusive. 

 

3.3.2 Analysis of GeoGebra interviews, lesson observations and post-observation 

interviews 

Data from the GeoGebra interviews were the main focus for qualitative analysis to 

address RQs 2, 2a and 2b since these interviews provided a common situation across 

which the case study teachers’ use of technology for teaching mathematics could be 

contrasted. Initially both the GeoGebra interviews and post-observation interviews were 

transcribed (see Appendices G, I, J for transcription protocol and interview excerpts). A 

visual transcript, a pictorial list of configurations of the angle at the centre theorem 

made visible by the case study teacher, was also made for the discussion of Diagram 1 

in the GeoGebra interview (see Appendix H and Chapter 6 for a more detailed 

discussion of this process). However, coordinating the visual, on-screen video of the 
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case study teachers’ manipulation of the GeoGebra file with the interview transcript for 

coding purposes proved highly problematic. Thus a narrative of the GeoGebra interview 

was written as a means of coordinating the visual data with the interview transcript and 

highlighting key moments in the interview to break down the real-time flow of the 

video. Writing the narrative meant viewing the video at different speeds i.e. by breaking 

it down into different grain-sizes of interval. For example, watching the discussion of 

the first GeoGebra diagram all the way through, without stopping, gave a sense of key 

moments and the general flow of the interview. It was then possible to zoom in, 

watching short sequences of the video in order to write the narrative, paying closer 

attention to key moments, and at times watching the video stop/start to coordinate better 

the case study teacher’s manipulation of GeoGebra with the interview transcript. 

Zooming out again to watch longer intervals provided a means of checking whether the 

narrative gave a valid portrayal of the key moments and general flow of the interview. 

Brief quotes from the interview transcript were included in the narrative as a means of 

linking what the teachers did – their theories-in-action – with what they said – their 

espoused theories. For example, configurations of the angle in the centre theorem 

mentioned in the narrative were those that were both elicited through dragging and 

identified verbally by the case study teacher (see also Chapter 6). 

The narratives of the GeoGebra interviews were coded using the TPACK framework 

and Knowledge Quartet (see Appendices D, E and F for coding exemplars), focussing 

primarily on the discussion of Diagram 1, since this diagram was most familiar to the 

case study teachers. The TPACK framework was chosen to address RQ2 because it 

provided a means of analysing teachers’ knowledge with a particular lens for focussing 

on technology that other frameworks for teacher knowledge in mathematics education 

lack (see Chapter 2). The Knowledge Quartet was chosen to complement the TPACK 

framework, providing a means of producing a fine-grained analysis of teacher 

knowledge, focusing on their mathematical knowledge in particular to address RQ2a 

(see also Chapters 1 and 6 for a more detailed discussion supporting this choice). From 

the lesson observations and post-observation interviews, episodes were identified that 

were significant in the sense that they could be construed to be informed by a case study 

teacher’s mathematical knowledge for teaching using technology (Rowland et al., 

2005). These episodes were then similarly coded using the TPACK framework and 

Knowledge Quartet. The lesson observations and post-observation interviews were also 

used to triangulate (Lincoln & Guba, 1985) the finding (see Chapter 4) that the ICT 
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pedagogic practice items in the survey, intended to be teacher-centred, actually appear 

to reflect dominant or prevalent practices involving ICT. The triangulation involved 

categorising the case study teacher’s use of software and hardware in each lesson 

observation and their rationale for doing so, as expressed in the post-observation 

interview, using the ICT pedagogic practice item stems. To address RQ2b, a framework 

for identifying instances of distributed cognition was developed by mapping the 

elements of Hutchins’ (1995) view of distributed cognition onto the discussion of 

Diagram 1 in the GeoGebra interviews. The development of this framework, including 

methodological issues involved in the analysis, is described in more detail in Chapter 7. 

The data from the GeoGebra interviews then provided a basis for conducting a series of 

thought experiments to populate this framework and hence to identify minimum 

knowledge requirements for each of the categories in the framework. 

 

3.4 Summary 

This chapter has set out and justified the adoption of a mixed-methods approach 

towards investigating individual teachers’ knowledge and how it is involved in 

interacting with technology to produce the mathematical knowledge made available in 

the classroom. It was argued that adopting a mixed methods approach represented a 

pragmatic methodological means of addressing the research questions identified and 

justified in Chapters 1 and 2.  The research design was justified with respect to the 

epistemological stance and socio-cultural perspective in relation to technology use 

outlined in Chapter 1. The methods for data collection and analysis were also described 

and justified.  
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Chapter 4 - Exploring associations between ICT use and 

transmissionist versus connectionist orientations 

 

This chapter uses survey data to explore associations between ICT use and a 

transmissionist versus connectionist orientation towards teaching mathematics to 

address Research Question 1: 

RQ1  How is a connectionist orientation towards teaching mathematics associated 

with teachers’ frequency of use of ICT, their orientation towards ICT and their 

pedagogic practices involving ICT? 

Specifically, this chapter reports the results of constructing a scale of transmissionist 

self-reported pedagogic practice using Rasch analysis on data from applying Pampaka 

et al’s (2012) items to secondary school mathematics teachers. This measure is then 

used to explore associations between a transmissionist versus connectionist orientation 

towards teaching mathematics and teachers’ ICT use, in terms of their frequency of ICT 

use, their orientation towards ICT and their pedagogic practices involving ICT. Case 

study data from lesson observations and post-observation interviews are used to explore 

these findings further and to triangulate (Lincoln & Guba, 1985) the findings relating to 

pedagogic practices involving ICT. 

In Chapter 1, it was noted that while Askew et al (1997) defined connectionist and 

transmissionist orientations mainly in terms of beliefs, in the terms of this study such 

beliefs are considered as part of teacher ‘knowledge’. For example, a connectionist 

orientation means knowing that understanding mathematics means having a connected 

knowledge of the subject. Transmissionist teachers provide a contrast with connectionist 

teachers in this respect, since their knowledge of what it means to understand 

mathematics is that it concerns the acquisition of a collection of routines or procedures. 

A connectionist orientation towards teaching mathematics has not been investigated in 

relation to ICT use. This is surprising given the prominence of ICT and links made 

between ICT and student-centred practices (Becker et al., 1999; Law et al., 2008). In 

Chapter 1, it was argued that there is an imperative for exploring a connectionist 

orientation in relation to technology. Teachers do integrate some types of digital 

technology into their classroom practice. However, these types of digital technology are 

commonly assumed to be teacher-centred (rather than student-centred) and to maintain 

or even encourage existing ‘traditional’ pedagogies. Remillard’s (2005) perspective 
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suggests that connectionist-oriented teachers may work to shape digital technologies 

commonly assumed to be teacher-centred, using them in ways that conform to their own 

more student-centred pedagogy. If this is the case, then the apparent deficit in teachers’ 

use of digital technologies in terms of the extent to which their potential is realised may 

be over-estimated. In addition, one might expect connectionist teachers to make more 

frequent use of mathematical analysis software (Pierce & Stacey, 2010), such as 

spreadsheets, dynamic geometry software and graphing software. 

4.1 The development of a measure of transmissionist self-reported pedagogic 

practice 

This section briefly summarises the research leading to the development and validation 

of Pampaka et al’s (2012) set of items. In this study, these items were used to construct 

a scale of transmissionist self-reported pedagogic practice for secondary school 

mathematics teachers, using Rasch analysis. The results of the measure construction are 

reported in Section 4.2. 

Combining the work of Ernest (1991) and Askew et al (1997), Swan (2006) 

operationalised connectionist, transmissionist and discovery orientations in the form of 

a questionnaire on teacher beliefs, as well as developing and validating a set of self-

report items on pedagogic practices. Swan used the questionnaires as a means for 

tracking the changes wrought by a professional development intervention with a group 

of 64 GCSE mathematics teachers working in Further Education colleges in England. 

The self-report items on pedagogic practices were conceptualised as representing either 

teacher-centred classroom behaviours, arising from transmission-oriented beliefs, or 

student-centred classroom behaviours, arising from a constructivist position. Swan 

constructed a practices scale from these items and related teachers’ scores on this scale 

to their categorisation, via the beliefs questionnaire, as transmission, discovery or 

connection-oriented. For his sample of FE teachers, he found that, as expected, 

transmission-oriented teachers reported a greater frequency of teacher-centred practices, 

but that although discovery teachers reported an increase in student-centred practices, 

connectionist teachers were the most student-centred of all. Thus on Swan’s scale of 

teacher versus student-centred practice, transmissionist and connectionist teachers 

appear on opposite ends of the scale whilst discovery teachers occupy an indeterminate, 

‘middle’ position, not related to distinctive practices.  
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Building on Swan’s work, Pampaka et al (2012) revised and validated the set of self-

report items on pedagogic practice for measuring teachers’ practices in post-

compulsory, ‘advanced’ level mathematics college classrooms. Using data from 110 

responses to this revised set of items, they employed a Rasch measurement approach to 

create an interval measure of transmissionist self-reported pedagogic practice. Whilst 

Pampaka et al’s data showed an acceptable fit to the assumption of uni-dimensionality 

implemented in Rasch analysis, they interpret some of their results as potential evidence 

of a second dimension of connectionist practice that might be orthogonal to student-

centrism, concluding that the multidimensionality of the scale is worthy of further 

study. Pampaka et al (2012, p. 484) state they “therefore proceed with caution, 

bracketing for the moment whether the opposite end of the spectrum from 

‘transmissionism’ [in their study] is ‘connectionism’ or ‘student-centrism’ more 

generally. However, given Swan’s (2006) findings in relation to his practices scale, for 

the purposes of this study, it is reasonable to assume that the opposite end of the 

spectrum from a transmission-orientation is a connectionist orientation. Finally, in 

Chapter 3, it was noted that Pampaka et al’s (2012) items relate to teachers’ classroom 

practices rather than to the knowledge that underpins a connectionist or transmissionist 

orientation. Nevertheless, the teachers’ responses to these items provide an indicator of 

their espoused theories (Argyris & Schon, 1974; Pampaka et al., 2012) of teaching 

practice, hence they may be taken as an indirect indication of their mathematical 

knowledge for teaching.   

 

4.2 Results of measure construction: a scale of transmissionist self-reported 

pedagogic practice  

This section reports the results of constructing a scale of transmissionist self-reported 

pedagogic practice using Rasch analysis on data from applying Pampaka et al’s (2012) 

items to secondary school mathematics teachers. In particular, through a discussion of 

fit statistics and other means available through Rasch analysis (see also Chapter 3), it is 

argued that Pampaka et al’s (2012) items could constitute a reasonable scale for 

measuring a construct which, following their lead, is called ‘transmissionist self-

reported practice in secondary mathematics teachers’. 

The Rasch analysis of Pampaka et al’s (2012) set of pedagogic practice items achieved a 

person reliability score of 0.83 suggesting an acceptable overall level of consistency and 
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reliability. Table 4.1 shows the item measures, fit statistics and point-measure 

correlation resulting from the Rasch analysis of the data. The fit statistics for all except 

six items were below the 1.3 threshold of concern. Similarly, for all except two items, 

the point-measure correlation was above the 0.2 threshold. The misfitting items are 

discussed in the following paragraph. Taken together, these results suggest that 

Pampaka et al’s items could constitute a reasonable scale for measuring the construct of 

‘transmissionist self-reported practice in secondary mathematics teachers’. 

The six items identified as mis-fitting according to the 1.3 threshold are shown in bold 

in Table 4.1 (C6, C10, C22, C23, C24, C26). The item stems are shown in Figure 4.1 

and Appendix A. Of these items, two in particular, C6 ‘I encourage students to work 

more slowly’ and C24 ‘I cover only the important ideas in a topic’, seem like possible 

candidates for deletion due to their point-measure correlation being well below 0.2 and 

indeed close to zero. However, deleting these two items had no practically significant 

effect on the summary statistics of the Rasch analysis. Re-running the Rasch analysis 

without C6 and C24 marginally improved the person reliability to 0.84; however the 

item separation decreased from 7.70 to 7.55. Similarly, there were no practically 

significant changes to the measures and fit of the other items. 

Items C6, C22, C24 and C26 were also mis-fitting in Pampaka et al’s data. They argued 

on theoretical and methodological grounds that these items should not be excluded at 

this point, since they may belong to a secondary dimension of connectionist teaching, 

yet may also be interpreted differently by some discovery or even transmission-oriented 

teachers (Pampaka et al, 2012). For example, they suggest that C6 ‘working more 

slowly’ and C24 ‘covering only the important ideas’ may be seen as part of a laissez-

faire, discovery approach rather than encouraging more thoughtful work. In addition, a 

transmission-oriented secondary maths teacher preparing pupils for high-stakes 

examinations at KS4 might construe C24 positively as revising ‘only the important 

ideas’ for the exam. Pampaka et al argue item C22 ‘I find out which parts students 

already understand and don’t teach those parts’ indicates an approach to formative 

assessment as an important part of connectionist teaching, which may not be present in 

all student-centred teaching since this also incorporates discovery-oriented approaches.  
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Table 4.1 Item measures, fit statistics and point-measure correlation 

Item  
Raw 

score 
Count Measure 

Model 

S.E. 

Infit 

MNSQ 

Outfit 

MNSQ 

Pt-Measure 

Correlation 

C1 647 180 -.43 .09 .97 .98 .54 

C2 616 181 -.20 .08 .87 .86 .41 

C3 552 181 .23 .08 .77 .77 .53 

C4 719 183 -.92 .09 .93 .90 .40 

C5 656 183 -.42 .08 .94 .96 .55 

C6 738 183 -1.09 .10 1.39 1.42 .06 

C7 567 183 .16 .08 .68 .70 .55 

C8 401 182 1.17 .08 1.14 1.10 .44 

C9 720 183 -.93 .09 .74 .74 .43 

C10 624 182 -.22 .08 1.31 1.37 .29 

C11 403 181 1.13 .08 .99 .96 .38 

C12 621 183 -.18 .08 .75 .72 .51 

C13 627 183 -.22 .08 1.02 1.02 .49 

C14 442 183 .92 .08 .94 .93 .67 

C15 448 183 .88 .08 .70 .69 .56 

C16 520 183 .45 .08 .73 .74 .50 

C17 696 182 -.76 .09 .83 .82 .53 

C18 632 181 -.31 .08 .78 .81 .49 

C19 647 183 -.36 .08 .85 .87 .66 

C20 546 183 .29 .08 1.00 1.03 .30 

C21 447 181 .85 .08 .90 .90 .50 

C22 545 182 .28 .08 1.39 1.40 .29 

C23 560 181 .16 .08 1.47 1.49 .24 

C24 683 180 -.72 .09 1.44 1.49 .02 

C25 483 180 .62 .08 .93 .92 .56 

C26 700 182 -.79 .09 1.52 1.50 .34 

C28 526 183 .41 .08 1.11 1.12 .32 

Mean   .00 .08 1.00 1.01  

S.D.   .65 .01 .25 .26  
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The same argument applies to item C23 ‘I teach each student differently according to 

individual needs’, suggesting a tailored approach to teaching, in line with formative 

assessment, not necessarily present in discovery-oriented approaches. Item C26 

(‘knowing exactly what maths the lesson will contain’) is intended as a transmissionist 

item, suggesting the lesson is controlled to exclude non-standard mathematics. 

However, Pampaka et al suggest some student-centred teachers may instead interpret 

this item as regarding subject matter knowledge, i.e., that they should have knowledge 

of all the mathematics that ‘might’ arise in the lesson. Similarly, although intended as a 

transmissionist item, some student-centred teachers may also interpret C10 ‘I try to 

cover everything in a topic’ as a need to provide sufficient coverage of an examination 

syllabus or scheme of work. 

Rasch analysis provides a means of exploring the possibility of a secondary dimension 

of connectionist teaching via a principal components analysis (PCA) of the Rasch 

residuals. The PCA of Rasch residuals is a means of extracting the common factor 

explaining the most residual variance, under the assumption there is a meaningful 

structure in the residuals that could constitute another dimension. If this factor is found 

merely to ‘explain’ random noise, then there is no meaningful structure in the residuals 

(Linacre, 1998). Unlike a standard PCA on raw data, the absolute size with which an 

item loads on the factor is inconsequential for a PCA of Rasch residuals. Instead, it is 

the patterning of the loadings that is important, in particular, contrasting positive and 

negative loadings (Linacre, 2011). For the data-set in this study, the PCA of Rasch 

residuals produced a factor or ‘first contrast’ with an eigenvalue of 3.4, slightly larger 

than 2, the rule of thumb used as the smallest amount that could be considered to 

indicate a dimension (Raiche, 2005; Linacre, 2011). Transmissionist items had mainly 

positive loadings and connectionist items had mainly negative loadings, suggesting 

there might be some meaningful structure indicative of a possible second dimension in 

the data. However, this evidence was inconclusive on the presence of a second 

dimension since, for example, it was not clear whether the patterning might simply be 

an artefact of the reverse-coding of connectionist items (see Figure 4.1 for reverse coded 

items).  

In conclusion, a decision was made to retain the six mis-fitting items in the model at this 

point. Although there is some statistical evidence to suggest their exclusion, in 

agreement with Pampaka et al’s argument, this was outweighed on the grounds of 

theoretical and methodological considerations. In particular, the six items may still 
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contribute to aspects of a transmissionist scale of pedagogic practice, thus they are 

retained for the purpose of maintaining content validity (Bohlig et al., 1998). Though a 

second dimension in the data might exist, the evidence remains inconclusive and 

requires further research. In addition, retaining the complete set of items is 

advantageous in maintaining the possibility of comparison across data sets for the 

purposes of future research. 

Figure 4.1 shows the distribution of both items and secondary mathematics teachers on 

the resulting measurement scale of transmissionist self-reported pedagogic practice, in a 

diagram adapted from the item-person map provided by the Winsteps software. On the 

right hand side, the distribution of teachers is displayed as a histogram, with higher 

positioning on the scale indicating more transmissionist practice. Conversely, lower 

positioning on the scale is indicative of more connectionist practice. On the left hand 

side, the approximate position of items is shown, with positioning on the scale 

indicating the ease of reporting frequent occurrence in practice. In other words, items 

placed low on the scale were relatively easy to report as frequently occurring, whilst 

those placed high on the scale were relatively difficult to report as frequently occurring. 

For reverse-coded items, the opposite holds e.g. C15. Case study teachers are also 

represented on the scale as red points. The positive mean person measure (0.17), 

displayed on the histogram, indicates that the set of test-items was slightly too ‘easy’ for 

the target sample. That is, the most transmissionist teachers have too few ‘difficult’ 

items to differentiate them; whilst there are too few sufficiently connectionist teachers 

to provide good information about the ‘easiest’ items. Another interpretation of the 

mean person measure is that the population of teachers is somewhat skewed towards 

transmissionist pedagogic practices. Nevertheless, the test seems reasonably well-

targeted at the sample. Differential Test Functioning, involving the comparison of item 

measures across samples, suggests that the measure of transmissionist pedagogic 

practice did not vary significantly between Pampaka et al’s (2012) sample of post-

compulsory mathematics teachers and the sample of secondary mathematics teachers 

used in this study (see scatter graph comparing item measures in Appendix K). 
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Figure 4.1 Scale of transmissionist self-reported practice for secondary maths teachers 
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4.3 Results 

The purpose of constructing the measure of transmissionist self-reported pedagogic 

practice was to explore associations between teachers’ ICT use and their orientation 

towards teaching mathematics. Before presenting the results of this, it is worth giving a 

brief indication of how the transmissionist measure and ICT use are associated with 

background variables such as gender, age and length of service in the teaching 

profession. Further statistical information is provided in Appendix M. 

Female teachers were significantly more connectionist than their male colleagues (df = 

180, t = -2.87, p = .005). Significantly more female teachers reported low levels of 

confidence than men in using ICT in both lessons with an IWB (n = 181, df = 3, 2 = 

10.1, p = .018) and lessons in a computer suite (n = 174, df = 4, 2 = 10.9, p = .028). For 

lessons in a computer suite, significantly more female teachers than men agreed with the 

statement that students’ lack of familiarity with software makes lessons difficult (n = 

174, df = 4, 2 = 13.0, p = .011). There were no clear differences between male and 

female teachers in the frequency of their use of hardware and software or their reporting 

of pedagogical practices involving ICT. 

There was no significant association between age or length of service and the 

transmissionist measure. More teachers than expected with less than six years 

experience report using ICT more frequently than their colleagues, significant at the 5% 

level (n = 183, df = 3, 2 = 10.6, p = .014). This greater frequency of ICT use by less 

experienced teachers appears to translate into more frequent use of IWBs (n = 187, df = 

3, 2 = 10.9, p = .012) and use of IWB software (n = 183, df = 4, 2 = 12.3, p = .015) - 

in a whole-class context with an IWB as opposed to in a computer suite. In both cases, 

more teachers than expected with less than six years experience use IWBs and IWB 

software in almost every lesson. In a similar vein, significantly more teachers than 

expected aged less than 30 used PowerPoint frequently in a computer suite (n = 174, df 

= 4, 2 = 11.6, p = .021) and, approaching significance at the 5% level, with an IWB (n 

= 182, df = 4, 2 = 9.44, p = .051). There is a belief that a change in generation may be 

necessary for ICT to become more fully integrated into classroom practice (e.g. Sancho, 

2010). If so, these results suggest that this belief may be overly optimistic. Whilst a new 

generation of secondary mathematics teachers in this survey might use ICT more 
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frequently, it does not appear to be in ways that mathematics education research 

suggests would be most desirable. 

 

4.3.1 A surprising association between frequent use of teacher-centred software 

and a more connectionist orientation. 

A general association seems to hold across almost all types of hardware and software 

that teachers who make frequent use of ICT tend to be more connectionist than 

occasional users. Tables 4.2, 4.3 and 4.4 show the results of t-tests comparing the mean 

transmissionist measure of frequent and occasional users of software when used in 

conjunction with an IWB, of software used in a computer suite and of hardware 

respectively. For hardware and software used on an IWB, frequent use corresponds to 

the concatenation of categories ‘once per week’ and ‘almost every lesson’, with 

occasional use corresponding to categories ‘never’, ‘annually’ and ‘once or twice per 

term’. For two exceptions, graphic calculators and Logo with an IWB, due to very low 

levels of use, ‘once or twice per term’ was included as indicating frequent use, so that 

occasional use corresponds to categories ‘never’ and ‘annually’ only. Similarly for 

software use in computer suites, due to levels of use being lower overall, frequent use 

was considered to include ‘once or twice per term’.  

Although the difference in mean transmissionist measure between frequent and 

occasional users of ICT does not always reach statistical significance, in almost all cases 

of hardware and software the difference is negative, indicating frequent users have a 

lower mean measure and thus a more connectionist orientation than occasional users. 

The exception to this pattern was laptops (see Table 4.4) where frequent users had a 

slightly higher mean transmissionist measure than occasional users, however this result 

was not statistically significant and frequent users were only 13 in number. In addition, 

comparing themselves to their departmental colleagues, teachers who regarded 

themselves as more frequent users of ICT (n = 61) tended to be more connectionist than 

those who did not (n = 118), although this was not a significant difference at the 5% 

level (df = 177, t = -1.87, p = .064). 
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Table 4.2 Comparing mean transmissionist measure of frequent and occasional users of 

software when used in conjunction with an IWB 

IWB: frequency  

of software use 

n 

freq, occ 

Mean difference 

freq - occ 
t-stat df p-value 

CD-Roms 36; 139 -.100 -1.01 173 .313 

Database 23; 151 -.088 -.738 172 .462 

Email 53; 119 -.086 -.991 170 .383 

Graphing software 49; 122 -.017 -.185 169 .853 

Dynamic geometry 30; 145 -.324 -3.13 173 .002* 

IWB software 146; 33 -.285 -2.86 177 .005* 

Logo 15; 151 -.196 -1.36 164 .175 

MyMaths 116; 64 -.284 -3.58 178 p<.001* 

Other websites 112; 61 -.315 -3.92 171 p<.001* 

PowerPoint 107; 72 -.251 -3.21 177 .002* 

SMILE 11; 152 -.130 -.770 161 .443 

Spreadsheet 45; 134 -.174 -1.92 177 .056 

Word 74; 105 -.119 -1.50 177 .137 

* indicates statistical significance at the 5% level. Occasional user = (never, annually, 

once or twice per term); Frequent user = (once per week, almost every lesson).  Except 

Logo, where Occasional user = (never, annually); Frequent user = (once or twice per 

term, once per week, almost every lesson)   

Surprisingly, the association between frequent use of ICT and a more connectionist 

orientation is statistically significant for what is generally assumed to be teacher-centred 

software. Specifically, frequent use of IWB software, PowerPoint, the MyMaths website 

and ‘Other websites’ in a whole-class context with an IWB showed a statistically 

significant association with more connectionist self-reported pedagogic practice – see 

Table 4.2. Similarly for lessons in a computer suite, teachers who reported frequent use 

of the MyMaths website, Word and ‘Other websites’ were significantly more 

connectionist than occasional users – see Table 4.3 – with IWB software also 

approaching the 5% significance level. It is surprising that such software appears to be 

associated with a more connectionist orientation since it is usually assumed to maintain 

and even encourage existing transmission-oriented pedagogies. 
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In terms of mathematical analysis software, frequent use of dynamic geometry software 

was significantly associated with a more connectionist orientation, both in a whole class 

context with an IWB and giving students direct access to software in a computer suite. 

In lessons with an IWB, spreadsheets approached statistical significance at the 5% level, 

with frequent use again associated with a more connectionist orientation than occasional 

use, although use of graphing software was not significantly associated with the 

transmissionist measure – see Table 4.2. In a computer suite, frequent use of both 

spreadsheets and graphing software were significantly associated with a more 

connectionist orientation. In addition, Email, SMILE and Logo also showed statistically 

significant associations between frequent use and a more connectionist orientation, 

however teachers making frequent use of the latter two types of software were in a very 

small minority – see Table 4.3. These results are not unexpected since maths education 

research suggests that such software is compatible with and may even support more 

connectionist practices. 

Table 4.3 Comparing mean transmissionist measure of frequent and occasional users of 

software when used in a computer suite  

Computer suite: 

frequency of software use 

n 

freq, occ 

Mean difference 

freq - occ 
t-stat df p-value 

CD-Roms 33; 136 -.129 -1.26 167 .208 

Database 29; 143 -.013 -.124 170 .902 

Email 45; 123 -.231 -2.54 166 .012* 

Graphing software 88; 85 -.240 -3.02 171 .003* 

Dynamic geometry 83; 90 -.323 -4.20 171 p<.001* 

IWB software 69; 102 -.158 -1.94 169 .054 

Logo 19; 152 -.330 -2.60 169 .010* 

MyMaths 129; 44 -.233 -2.54 171 .012* 

Other websites 126; 48 -.328 -3.78 172 p<.001* 

PowerPoint 90; 82 -.123 -1.51 155.5 .133 

SMILE 15; 152 -.461 -3.24 165 .001* 

Spreadsheet 103; 72 -.227 -2.83 173 .005* 

Word 89; 84 -.216 -2.72 171 .007* 

* indicates statistical significance at the 5% level. Occasional user = (never, annually); 

Frequent user = (once or twice per term, once per week, almost every lesson) 
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Interpreting these results, it is important to bear in mind the levels of usage of the 

different types of software. In lessons with an IWB, for teacher-centred software such as 

IWB software, the MyMaths website, PowerPoint and ‘Other websites’, the majority of 

teachers were frequent users, with occasional users in the minority, and indeed these 

software were the most frequently used in this context. In comparison, most teachers 

were only occasional users of mathematical analysis software with an IWB, a finding in 

common with other surveys reporting low integration of such software in classroom 

practice (Miller & Glover, 2006). Similarly, for lessons where pupils are given direct 

access to software in a computer suite, the MyMaths website and ‘Other websites’ were 

the most frequently used software, again with mathematical analysis software reported 

as having lower levels of usage.  

 

Table 4.4 Comparing mean transmissionist measure of frequent and occasional users of 

hardware  

Frequency of hardware use 
n 

freq, occ 

Mean difference 

freq - occ 
t-stat df p-value 

IWB  158; 25 -.300 -2.71 181 .007* 

Data projector 67; 114 -.089 -1.10 179 .271 

Computer suite (shared) 32; 150 -.199 -1.98 180 .050 

Computer suite (maths only) 10; 170 -.172 -1.02 178 .311 

Laptops 13; 170 .049 .328 181 .743 

Graphic calculator 32; 149 -.267 -2.66 179 .009* 

* indicates statistical significance at the 5% level. Occasional user = (never, annually, 

once or twice per term); Frequent user = (once per week, almost every lesson).  Except 

graphic calculators, where Occasional user = (never, annually); Frequent user = (once 

or twice per term, once per week, almost every lesson)   

In terms of hardware, teachers who report making frequent use of IWBs were 

significantly more connectionist than occasional users, see Table 4.4. Interpreting this 

statistic, it should be remembered that frequent users of IWBs formed the vast majority: 

158 teachers compared to 25 occasional users. Of the 25 occasional users, 15 were 

clustered in two schools. The teachers in one of these schools had access to IWBs; in 

the other school, they had access to data projectors but not to IWBs. The remaining 10 

occasional users were among the respondents from 8 different schools. The mean 
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difference in transmissionist measure between frequent and occasional users of shared 

computer suites approached statistical significance at the 5% level, again with frequent 

users reporting more connectionist pedagogic practices. However, the skew in usage of 

shared computer suites is in the opposite direction to IWBs with occasional users 

forming the vast majority. Frequent use of graphic calculators also appears to be 

significantly associated with a more connectionist orientation, however again some care 

is needed in interpreting this result. Usage of graphic calculators was so low that a 

‘frequent’ user corresponds with anything more than annual usage. Detailed descriptive 

statistics on both the frequency of hardware and software use are reported in Bretscher 

(2014). 

 

4.3.2 Associations between teachers’ orientation towards ICT and the 

transmissionist measure. 

A general association also appears to hold between having a positive orientation 

towards ICT and having a more connectionist orientation towards teaching 

mathematics. Tables 4.5 and 4.6 display the results of t-tests comparing the mean 

transmissionist measure of teachers reporting a positive orientation and those reporting 

a negative orientation towards ICT in the context of teaching mathematics in a whole-

class context with an IWB and in the context of giving students direct access to software 

in a computer suite respectively. A positive orientation towards ICT corresponds to the 

concatenation of categories ‘strongly agree’ and ‘agree’; whilst a negative orientation 

corresponds to categories ‘strongly disagree’, ‘disagree’ and ‘neither agree nor 

disagree’. For items worded in the negative sense, indicated in Tables 4.5 and 4.6 by 

italics, a negative orientation towards ICT corresponds to the concatenation of 

categories ‘strongly agree’, ‘agree’ and ‘neither agree nor disagree’; whilst a positive 

orientation corresponds to categories ‘strongly disagree’ and ‘disagree’. 

For almost all items regarding ICT orientation, teachers responding positively were 

somewhat more connectionist-oriented than those responding negatively, although again 

this general association was not always statistically significant. The negative difference 

in mean measure between these two groups indicates that teachers reporting a positive 

orientation towards ICT have a lower mean measure and thus a more connectionist 

orientation than those reporting a negative orientation. The two exceptions to this 

pattern were both negatively worded items. Firstly, teachers who showed a negative 
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ICT orientation, by agreeing with the statement Students’ lack of familiarity with 

software makes lessons involving ICT difficult, were slightly more connectionist than 

those who disagreed with the statement, though not significantly. In the following 

section, allowing students to take control over the IWB more frequently is seen to be 

significantly associated with a more connectionist orientation, thus it is possible that 

connectionist-oriented teachers face more difficulties in the classroom if students lack 

familiarity with the software. The second exception was those who disagreed that ICT 

lessons in a computer suite take more time to prepare, interpreted as a positive ICT 

orientation, were slightly more transmissionist than those who expressed agreement 

with the statement, although again this was not significant. 

Table 4.5 Comparing mean transmissionist measure of positive and negative orientation 

towards ICT when using an IWB in lessons 

IWB: ICT orientation 
n 

pos, neg 

Mean difference 

pos - neg 
t-stat df p-value 

confident using ICT 152; 24 -.061 -.551 174 .583 

more time needed for preparation 52; 126 -.082 -.971 176 .333 

ICT contributes to learning 135; 45 -.232 -2.63 178 .009* 

ICT improves engagement 147; 34 -.169 -1.72 179 .087 

students’ lack of familiarity with software 80; 101 .013 .162 179 .872 

ICT helps understanding 140; 40 -.230 -2.51 178 .013* 

classroom management more difficult 149; 31 -.278 -2.76 178 .006* 

cover more ground 99; 81 -.110 -.143 178 .153 

* indicates statistical significance at the 5% level. Negative ICT orientation = (SD, D, 

N); Positive ICT orientation = (A, SA). For negatively worded items in italics Negative 

ICT orientation = (SA, A, N); Positive ICT orientation = (D, SD) 

 

Both in the context of using ICT with an IWB and in a computer suite, those who 

responded positively that ICT makes an important contribution to students’ learning and 

helps them understand mathematics were significantly more connectionist than those 

who responded negatively. These results are not unexpected since maths education 

research suggests that when ICT is used in ways that generally accord with 

connectionist practices, it may support students’ understanding of mathematics. In 

addition, teachers who disagreed that classroom management was more difficult in a 
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whole-class context with an IWB (i.e. were positively inclined towards ICT use) were 

significantly more connectionist than those who either agreed or who expressed no 

preference either way. 

 

Table 4.6 Comparing mean transmissionist measure of positive and negative orientation 

towards ICT when for lessons in a computer suite 

Computer suite:  

ICT orientation 

n 

pos, neg 

Mean difference 

pos - neg 
t-stat df p-value 

confident using ICT 140; 32 -.253 -2.47 170 .015* 

more time needed for preparation 51; 122 .079 .892 171 .374 

ICT contributes to learning 129; 44 -.219 -2.38 171 .018* 

ICT improves engagement 135; 38 -.127 -1.31 171 .192 

students’ lack of familiarity with software 73; 99 -.045 -.551 170 .582 

ICT helps understanding 127; 45 -.196 -2.15 170 .033* 

classroom management more difficult 81; 92 -.120 -1.49 171 .139 

cover more ground 36; 135 -.232 -2.36 169 .020* 

* indicates statistical significance at the 5% level. Negative ICT orientation = (SD, D, 

N); Positive ICT orientation = (A, SA). For negatively worded items in italics Negative 

ICT orientation = (SA, A, N); Positive ICT orientation = (D, SD) 

Bretscher (2014) found that teachers were significantly less confident, found classroom 

management more difficult and felt they covered less ground (i.e. curriculum material) 

when using ICT in a computer suite compared to using ICT in a whole-class context 

with an IWB. The results in Table 6 show that for ICT lessons in a computer suite, 

teachers who expressed confidence in using ICT and who agreed that they cover more 

ground were significantly more connectionist than those who did not. However, the 

perception of difficulties with classroom management in a computer suite showed no 

association with the transmissionist measure. These results suggest having a more 

connectionist orientation might enable teachers to overcome barriers of confidence and 

perceptions of covering less ground in a computer suite compared to in a whole-class 

context with an IWB. However, having a connectionist orientation may not support 

teachers in overcoming perceived difficulties with classroom management when giving 

students direct access to ICT in a computer suite compared with using ICT in a whole 

class context with an IWB. 
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4.3.3 Dominant as opposed to teacher-centred practices: associations between ICT 

pedagogic practices and the transmissionist measure. 

Originally the ICT pedagogic practices items were intended to be either teacher or 

student-centred, in a similar manner to Swan’s (2006) items, which Pampaka et al 

(2012) revised to construct their measure of transmissionist self-reported pedagogic 

practice. Tables 4.7 and 4.8 display the results of t-tests comparing the mean 

transmissionist measure of teachers reporting frequent occurrence of ICT pedagogic 

practices with those reporting occasional occurrence in their ICT lessons with an IWB 

and in a computer suite respectively. Frequent occurrence corresponds to categories 

‘almost always’ and ‘most of the time’; whilst occasional occurrence corresponds to 

categories ‘almost never’, ‘occasionally’ and ‘half the time’. 

Of those items that showed a statistically significant association with the transmissionist 

measure, all were intended as student-centred items, with frequent occurrence of these 

practices associated with having a more connectionist orientation. None of the ICT 

pedagogic practice items, in particular not one of the items intended to be teacher-

centred, showed a statistically significant association between frequent occurrence and 

having a more transmissionist orientation. More specifically, for lessons with an IWB, 

two of the items originally intended to be teacher-centred I use ICT for presentation 

purposes and I control the software on the IWB were the most frequently occurring 

practices across all teachers. Similarly, for lessons in a computer suite, the items 

Students’ use ICT to practise skills and I provide precise instructions for software use 

were the most frequently occurring and were originally intended to be ‘teacher-centred’. 

None of these four items showed a statistically significant association with the 

transmissionist measure. This suggests that rather than being teacher-centred per se, 

these items may reflect dominant or prevalent practices involving ICT, that occur 

frequently in any teachers’ classroom practice irrespective of their connectionist or 

transmissionist orientation. 
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Table 4.7 Comparing mean transmissionist measure of teachers reporting frequent and 

occasional occurrence of pedagogic practices using ICT with an IWB 

IWB practices 
n 

freq, occ 

Mean difference 

freq - occ 
t-stat df p-value 

teacher presentation 138; 40 .038 .406 176 .685 

student discussion 78; 102 -.312 -4.15 178 p<.001* 

teacher control 146; 33 .060 .491 40.3 .626 

explore students’ ideas 50; 130 -.250 -2.94 178 .004* 

prevent discrepancies 74; 96 -.013 -.166 168 .868 

students control 39; 141 -.338 -3.71 178 p<.001* 

highlight discrepancies 55; 118 -.152 -1.79 171 .075 

avoid mistakes 77; 99 .135 1.70 174 .090 

* indicates statistical significance at the 5% level. Occasional = (almost never, 

occasionally, half the time); Frequent = (most of the time, almost always)  

 

Table 4.8 Comparing mean transmissionist measure of teachers reporting frequent and 

occasional occurrence of pedagogic practices using ICT in a computer suite 

Computer suite practices 
n 

freq, occ 

Mean difference 

freq - occ 
t-stat df p-value 

practise skills 92; 75 -.028 -.337 165 .737 

work collaboratively 90; 82 -.236 -3.04 170 .003* 

‘get a feel’ for the software 80; 92 -.258 -3.34 170 .001* 

explore discrepancies 22; 143 -.271 -2.31 163 .022* 

individual work 70; 100 -.063 -.782 168 .436 

investigate problems 61; 111 -.212 -2.60 170 .010* 

provide precise instructions 90; 77 .093 1.15 165 .252 

avoid technical difficulties 51; 118 -.014 -.164 167 .870 

* indicates statistical significance at the 5% level. Occasional = (almost never, 

occasionally, half the time); Frequent = (most of the time, almost always)  

 

The next section uses case study data from lesson observations and post-observation 

interviews to triangulate (Lincoln & Guba, 1985) the finding that the ICT pedagogic 
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practices items intended to be teacher-centred actually appear to reflect dominant or 

prevalent practices involving ICT, that occur frequently in any teachers’ classroom 

practice irrespective of their connectionist or transmissionist orientation. The 

triangulation involved categorising the case study teacher’s use of software and 

hardware in each lesson observation and their rationale for doing so, as expressed in the 

post-observation interview, using the ICT pedagogic practice item stems. The final 

section of this chapter explores these dominant practices in relation to mathematical 

knowledge for teaching using technology, finding that even these practices, whether 

they employ ‘teacher-centred’ software or mathematical analysis software (Pierce & 

Stacey, 2010), appear to involve significant knowledge on the part of the teacher. 

The four case study teachers (Robert, Anne, Edward and Michael) were chosen along 

two dimensions of variation that might be associated with mathematical knowledge for 

teaching using technology. Thus the case study teachers were chosen to be two of the 

most connectionist-oriented – Robert and Anne - and two of the most transmissionist-

oriented teachers – Edward and Michael - of those who volunteered (see Figure 4.1). 

The level of school support provided the other dimension of variation (see Table 3.3, 

Chapter 3). 

 

4.4 Dominant practices: using ICT to enhance pedagogic aspirations 

In common with Askew et al’s (1997) original study, no straightforward distinction 

could be made between the pedagogic practices involving ICT of the two connectionist 

case study teachers, Robert and Anne, and the two transmissionist teachers, Edward and 

Michael. At times, during their IWB and computer suite lessons, each of the case study 

teachers employed dominant pedagogic practices in line with the survey findings 

described in the previous section. In particular, none of the teachers went beyond using 

ICT to enable general pedagogic aspirations (Ruthven, 2009) towards using ICT to 

transform their mathematics pedagogy, with one possible exception. Thus, in each of 

the lessons, ICT was used to enhance pedagogy, making it more effective, more 

efficient and more appealing, rather than to transform practice. 

Robert was one of the most connectionist teachers in the survey sample (see Figure 4.1, 

transmissionist measure -1.01). In his lesson with an IWB, he used a web-based pupil-

response system, which he designed with help from colleagues, to test his Year 12 
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pupils’ knowledge of basic rules of differentiation. The pupil-response system collated 

the students’ answers to multiple choice questions and presented an analysis of the 

results, for the class as a whole or for an individual student, which Robert could display 

on the IWB if he chose. He then used a PowerPoint presentation, recapping the basic 

rules of differentiation and introducing the procedure for carrying out the Chain Rule 

for differentiation as the main point of the lesson. 

Similarly, Michael, one of the most transmissionist teachers in the sample (see Figure 

4.1, transmissionist measure +1.01), used an ActivInspire presentation to recap 

coordinates and introduce translations as a type of geometric transformation to his Year 

7 class. He also used a pupil-response system, commercially produced by Activote, to 

test whether his pupils could read coordinate points from a set of axes and identify 

translation vectors for various pairs of congruent triangles positioned in the first 

quadrant. 

In both cases, the teachers used ICT for presentation purposes and maintained overall 

control of the software in accordance with the survey finding of dominant practices. The 

PowerPoint and ActivInspire software aided their demonstrations, making them more 

effective through use of colour and accurate diagrams and more efficient since the 

teacher saved time in the lesson by not having to write out or draw the procedures by 

hand. For example, Robert used colour in his PowerPoint presentation to draw students’ 

attention to patterns in notation in the basic rules for differentiation and the Chain Rule 

procedure. Michael used facilities for creating accurate diagrams and dynamic 

possibilities to demonstrate triangles moving under translation to create a more effective 

presentation. Although Michael asked pupils to the board to translate the triangles, he 

ended up directing their movement of the shape so that in effect this was a teacher 

demonstration. Both teachers used the pupil-response systems to engage pupils in 

question-and-answer sessions that practised the demonstrated procedures and to assess 

pupils’ progress in a manner that was more effective and efficient than was possible 

using other means. In this sense, both teachers used ICT to enhance their pedagogic 

practices, which were, at least superficially, very similar in these lessons.  

Edward was one of the more transmission-oriented teachers in the survey sample (see 

Figure 4.1, transmissionist measure 0.74). His mathematics department was not 

equipped with IWBs, having data projectors installed instead, which Edward in any case 

preferred. In his lesson with a data projector, he chose to use a pre-prepared GeoGebra 
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file (see Figure 4.2), downloaded from the MEI website, to convince his Year 12 

students empirically that the graph of an inverse function is a reflection in the line y = x 

of the original function. Here, Edward also used ICT for presentation purposes, 

maintaining control of the software, in accordance with the survey finding of dominant 

practices. He controlled the software, using GeoGebra to graph a function y = f(x). He 

brought students to the board, intending them to sketch by hand the graph of y = f -1(x) 

onto the axes projected on the normal whiteboard once they had found the inverse 

function by algebraic means. Then using GeoGebra, Edward dragged a point on the 

graph of y = f(x), causing a reflection of this point in the line y = x to trace out the 

reflection of the function. He drew their attention to the fact that the reflection of the 

graph y = f(x) and their sketch graph of the inverse function matched. In the lesson, this 

worked as intended for Edward’s first example of a straight-line graph. In following 

examples, the students instead attempted to sketch the reflection in the line y = x of       

y = f(x) on the board, only subsequently finding the equation of the inverse function 

algebraically. This meant that using the trace simply verified the correctness of their 

sketch of the reflection rather than providing the empirical evidence Edward’s rationale 

for using the GeoGebra file required. Nevertheless, his intention was to enhance his 

teacher presentation of the mathematical topic, making it more effective by 

accentuating features, providing vivid images and striking effects to highlight 

properties and relations (Ruthven & Hennessy, 2002). 



128 

 

 

Figure 4.2 Edward’s GeoGebra file on graphs of inverse functions 

Anne, one of the more connectionist-oriented teachers in the sample (see Figure 4.1 

transmissionist measure -0.50), did not do a lesson centred on using software with an 

IWB in a whole-class context in the sense that the other teachers did. In her two 

computer suite lessons, however, she also used PowerPoint slides and teacher 

presentation on an IWB to give instructions for software use amongst other things. This 

coincides with one of the dominant practices from the survey, I provide precise 

instructions for software use, involving ICT use in a computer suite. Across her two 

lessons in the computer suite, Anne intended her students to use Autograph as a means 

of empirically establishing the rule that y = f(x) + a is a transformation of y = f(x) 

through a translation of +a units vertically and 0 units horizontally, by experimenting 

first with straight line graphs of the form y = mx + c and then with quadratics of the 

form y = x2 + c. Anne aimed to use the software to enhance her general pedagogic 

aspirations, by establishing the rule that y = f(x) + a is a transformation of y = f(x) 

through a translation of +a units vertically more efficiently and effectively. Anne hoped 

that by removing the need to graph the functions by hand, her students would spot the 

rule more quickly and, similar to Edward, that using the software would accentuate the 

rule, for example, by juxtaposing the visual representations of functions with their 

equations, thus establishing it more effectively. During the course of the two lessons, 

Anne had specified that pupils should input equations as ‘y =’ into Autograph. The 
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worksheet she gave to pupils introduced function notation y = f(x) and y = f(x) + 2 

alongside straight line equations y = x and y = x + 2 as a means of leading pupils 

towards a more general definition of the translation rule. However, many of her pupils 

interpreted the function notation as a cue to enter y = f(x) and y = f(x) + 2 into 

Autograph, without first defining f(x). Unexpectedly, instead of rejecting the undefined 

function, the Autograph software responded by plotting horizontal lines y = 1 and y = 3, 

apparently setting f(x) = 1 by default. This resulted in confusing and counterproductive 

output on the students’ screens and their sketches on the worksheet. Seeking to avoid 

further disruption to the lesson, Anne issued more precise instructions to only enter 

equations as ‘y =’ and not to enter function notation into Autograph. 

In their computer suite lessons Robert, Michael and Edward all used software for the 

purpose of students using ICT to practise skills in accordance with the survey finding of 

dominant practices. The planned activities were similar in that the teachers hoped that 

use of the software would enhance general pedagogic aspirations in terms of 

intensifying engagement, effecting activity and establishing ideas (Ruthven, 2009). 

Michael took his Year 8 students into the computer room so that they could interact 

with an online lesson on volume of cuboids provided by the MyMaths website. His 

pupils were to work through the explanatory slides included as part of the lesson, before 

practising calculating the volumes of cuboids on subsequent worksheet-style slides and 

other skill-practice games. Michael adopted an almost discovery-oriented approach to 

the MyMaths lesson, hoping that interacting with the software would help the students 

be more autonomous in their learning. In particular, he liked a dynamic diagram 

embedded in one of the slides, which led towards developing the formula for the 

volume of a cuboid by demonstrating volume as building up layers of unit height. 

Edward took his Year 9 students to revise straight-line graphs using a game named Save 

our Dumb Planet provided by the MangaHigh website, fronted by a team including 

Marcus du Sautoy (see Figure 4.3). In the early stages, the game provided an impetus 

for pupils to practise substituting co-ordinates into equations of the form y = mx + c, 

verifying the correct equation passing through two points to determine the path of a 

meteor destined to collide with Earth. In addition to practising problems of this type, 

Edward hoped his pupils might indirectly gain experience of how the coefficients m and 

c effect the graph of the equation y = mx + c. 
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Figure 4.3 Save our Dumb Planet from Edward's computer suite lesson 

Robert’s computer suite lesson was with a Year 8 group learning about reflection. For 

the second part of his lesson, Robert intended his pupils to practise constructing the 

reflections of various shapes (e.g. triangles) using GeoGebra files that he had prepared 

in advance. He described these files as being similar to a paper-and-pencil exercise but 

with the advantage that pupils were able to use the software to check and correct their 

work. With more difficult tasks where the line of reflection was diagonal, he had added 

line segments connecting corresponding points on the object and image of reflection. 

Robert’s aim was that these line segments would help pupils to construct the reflections 

correctly and in addition reinforce an understanding the line of reflection as the 

perpendicular bisector of the line segments. During the lesson, technical difficulties 

resulted in the pupils’ computer screens freezing so that they were unable to engage 

with this task. 

4.4.1 An exception to dominant practice: Robert’s use of GeoGebra 

For the first part of his computer suite lesson, Robert had created a series of maze 

activities, embedded in GeoGebra files, designed to take advantage of students’ 

intuitive, tacit understandings of reflection as a means of making these understandings 

explicit and thus leading towards a more formal understanding of reflection. Using the 

mouse to direct the movement of a point, coloured in blue, the pupils had to guide the 

blue point’s reflection, shown in red, successfully through a maze (see Figure 4.4.). The 

reflection line was super-imposed on the maze diagram and the path of the red point 
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was traced. Robert hoped that the activity would encourage pupils to predict how the 

reflected red point would move in relation to movement of the blue point as a means of 

increasing their chances of completing the maze successfully. By predicting the 

movement of the red and blue points, he hoped his pupils intuitive understandings of 

reflection would be made more explicit.  

 

Figure 4.4 One of Robert's GeoGebra maze activities - by dragging the blue dot, guide the 

reflected red dot through the maze 

 

The mazes were intended to progress in difficulty, with later files incorporating a 

diagonal line of reflection and a line segment joining the pair of reflected points. Robert 

hoped that using the line segment would aid students in their negotiation of the maze 

and so prompt their recognition of the line of reflection as the perpendicular bisector of 

the red and blue points. Robert’s use of GeoGebra appears to be an exception because 

he uses the mathematical affordances of the software to affect his pupils’ learning in a 

way that would not be easy to achieve without digital technology, in comparison to the 

lessons described above where software is used to replicate and enhance paper-and-

pencil activities. 
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4.5 Indications of mathematical knowledge for teaching using technology 

The case study lessons described in the previous section provide indications that even 

the dominant pedagogic practices involving ICT reported in the survey, that do not go 

beyond using ICT to enhance general pedagogic aspirations, require significant 

knowledge on the part of the teacher. This assertion is illustrated below using the case 

study lessons as telling cases. The nature and content of this knowledge is explored in 

more detail in the next chapter using data from the semi-structured interviews on using 

GeoGebra files to teach circle theorems. 

On the surface, Robert and Michael’s pedagogic practices involving ICT appeared very 

similar in their IWB lessons. Looking in more detail, however, they are quite different 

in terms of the mathematical knowledge for teaching using technology in evidence 

during the lesson. Robert decided that purchasing a pupil-response system of the kind 

Michael had access to would be too costly and not of sufficient benefit for his school. 

Instead, he thought smart phones would be a cheaper and more mathematically versatile 

alternative to the voting handsets Michael handed out to his pupils, in particular since 

Robert observed that most of his pupils already owned such devices. Along with a 

colleague, Robert designed and programmed a web-based interface where he could set 

questions to which his pupils could respond via their smart phones and which collated 

their responses, presenting the data in ways that could be accessed and interpreted 

during a lesson. Robert thought that requiring his students to enter mathematical 

notation using a smart phone would result in errors that would detract from his 

pedagogic purpose of enhancing learning through formative assessment. For this reason, 

he opted for multiple-choice questions, avoiding this difficulty whilst still allowing him 

to pose complex questions by carefully choosing common errors as “distractors” (Rob-

IWB-int, 13.6.2012) to inform him of where his students might be going wrong. During 

his IWB lesson, Robert displayed a bar chart of the results for at least one question, 

noting the modal answer was correct and going through the distractors in turn. Thus as a 

designer, Robert had given careful consideration to how the mathematical format of the 

questions, given the technology available, could best meet his pedagogical purposes. 

For Michael, the lesson observation provided an impetus to use the Activote pupil-

response system available at his school. He thought using the system would engage his 

pupils and provide some useful assessment data. Although coordinates and translation 

vectors seemed like a good topic to assess using multiple-choice questions, Michael had 
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found it difficult to create standard notation column vectors when devising a quiz within 

the restrictions of the Activote software. In the end, he resorted to coordinate-style 

notation both for coordinates and translation vectors, introducing a potential confusion. 

Creating the quiz, entering pupil data for identifying their answers and setting up the 

handsets for the lesson took substantially more effort and time than a typical lesson. 

Michael had not given much consideration to the design of the multiple-choice 

questions, generating distractors almost at random by swapping coordinates and the 

positive/negative sign. Thus he was unable to use the assessment information in the 

lesson beyond noting what percentage of the class had chosen the correct answer.  

As described in the previous section, in the second of Anne’s two computer suite 

lessons, she encountered some difficulties with Autograph when pupils entered y = f(x) 

and  y = f(x) + 2 without defining f(x) and unexpectedly the software responded by 

plotting horizontal lines y = 1 and y = 3, apparently setting f(x) = 1 by default instead of 

rejecting the undefined function. In this contingency, Anne’s reaction was to cut off any 

further confusion by simply telling her pupils it was wrong to enter y = f(x). This 

seemed a reasonable reaction at the time, but in the post-observation interview Anne 

was dissatisfied with her response. Anticipating and preparing for this complexity, 

would have required some knowledge of the rules governing the software’s 

interpretation of mathematical notation and its relevance to the teaching of the lesson, 

for example, in terms of providing more precise instructions for software use or perhaps 

delaying the introduction of function notation or indeed using the software’s recognition 

of function notation as a means to explore transformations of functions. 

Another instance of mathematical knowledge for teaching using technology arose in 

Anne’s first lesson in the computer suite. Using software to graph functions tends to 

focus attention on the global shape of the graph, possibly obscuring a local 

understanding of the graph as a set of coordinate points. This has particular relevance to 

the topic of transformations of graphs, since a connection is being made between 

applying a transformation locally to a set of graphical coordinates and the function in 

terms of its equation. Anne wanted her pupils to investigate transformations of graphs 

by experimenting first with straight-line graphs of the form y = mx + c, so that she 

could make a connection with their previous work on the effect of the coefficients m 

and c. At the end of the lesson, she asked her pupils what transformation would bring y  

= x  to  y  = x + 2 (see Figure 4.5). Encouraged by using the software, her pupils 

attended to the global shape of the graph, suggesting various possibilities for the 
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transformation including a vertical translation of +2 units, a horizontal translation of -2 

units or a reflection in the line y = x + 1. Whilst each of these transformations does map 

the graph  y = x onto y = x + 2, considered locally as a transformation of coordinates, 

only a vertical translation of +2 units can be connected easily to the equation y = x + 2 

in a manner that extends to other, non-linear functions. 

 

Figure 4.5 Autograph output in Anne's CS lesson 

For example, writing y = f(x) where f(x) = x, it is possible to consider y = x + 2 as            

y = f(x + 2) + 0, i.e. a horizontal translation of y = x by -2 units, however this is 

relatively unhelpful in linking the transformation to its equation in the form y = mx + c 

and does not extend to other functions such as y = x2 + c. Similarly, in terms of the 

global shape of the graph, reflecting y = x in the line y = x + 1 appears to be a 

reasonable answer, resulting in the line y = x + 2. However, considered locally as a 

transformation of coordinates, it is difficult to use function notation to write down a 

reflection in the line y = x + 1 in a way that can be meaningfully connected to the 

equation y = x + 2 and certainly not in a way that extends to other functions. 

Anne acknowledged these options by recording them on the IWB, however she 

appeared to steer her students towards a vertical translation of +2 units, sidelining the 

other responses without explanation. From her lesson plan, Anne did not appear to have 

anticipated these responses. In the post-observation interview, Anne appeared to be 

planning to resolve the question in the next lesson by extending the investigation to 
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quadratics of the form y = x2 + c, thereby justifying the choice of a vertical translation 

in the case of straight-line graphs as the only option capable of generalising and hence 

the most useful option mathematically. In the second lesson, whilst some of the pupils 

did go on to investigate quadratics of the form y = x2 + c, Anne again steered her 

students towards the vertical translation through whole-class discussion and the 

structuring of her worksheets, thus a principled argument for choosing the vertical 

translation remained elusive. Anticipating the pupils’ responses and having a pedagogic 

strategy for countering their conjectures in a principled way in these lessons, would 

seem to require some knowledge of how pupils’ attention is drawn to the local and 

global features of functions when presented graphically using the Autograph software. 

Similarly, in Edward’s IWB lesson with GeoGebra on inverse functions, attending to 

the global shape of the graph, pupils quickly spotted from the first example that the 

graph of y = f -1(x) was likely to be the reflection of y = f(x) in the line y = x. Justifying 

this conjecture requires attending to the graph locally as a set of coordinate points, an 

argument that was not made explicit during the lesson. 

Finally, in his computer suite lesson, Edward hoped his pupils might be reminded 

indirectly of how the coefficients m and c effect the graph of the equation y = mx + c by 

repetitively substituting coordinates into straight-line equations and watching the graphs 

being plotted as they played the skill-practice game Save our Dumb Planet. In the post-

observation interview, he thought that whilst they would be unlikely to gain experience 

of gradient as “rise over run” or “1 unit along and m units up” (Ed-CS-int, 27.6.2012), 

they might be reminded of the difference between positive and negative gradients at 

least. Although axes were provided for the graphical representation of the meteor’s path, 

they did not make it easy to read off coordinates and on closer inspection the axes were 

not square, making it difficult to interpret both local and global features of the straight-

line graph. Knowledge of how the software generated examples of coordinates and 

straight-line graphs, e.g. randomly or by design, at least to the extent that there were 

questions including straight-line graphs with both positive and negative gradients; 

regarding the quality of the graphical representation in the game; and of how this related 

to his pedagogic purposes might reasonably be assumed to have informed Edward’s 

post-lesson judgement. 
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4.6 Summary 

The survey findings suggest that frequent use of hardware and software has a general 

association with a more connectionist orientation. Surprisingly, frequent use of software 

commonly assumed to maintain and even encourage existing transmission-oriented 

pedagogies is also associated with a more connectionist orientation. Whilst there are 

pedagogic practices involving ICT associated with a connectionist orientation, items on 

pedagogic practices involving ICT that were designed to be ‘teacher-centred’ appear to 

have no association either way. These ‘teacher-centred’ practices involving ICT may 

instead be construed as ‘dominant’ practices, in that they are also the most frequently 

occurring across all teachers.  

Case study data supports the survey finding of dominant practices, suggesting that, 

superficially at least, there is little difference between connectionist and transmission 

teachers use of ICT. Both connectionist and transmission-oriented teachers used 

software in IWB and computer suite lessons to enhance general pedagogic aspirations 

rather than to transform mathematics pedagogy, with one possible exception. The case 

study lessons also provide indications that even these dominant practices, whether they 

involve ‘teacher-centred’ software or mathematical analysis software (Pierce & Stacey, 

2010) place significant demands on teacher knowledge.  
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Chapter 5 - The nature and content of mathematical knowledge for 

teaching using technology 

 

This chapter begins to address Research Question 2 by investigating the nature and 

content of individual teachers’ own knowledge in relation to using technology to teach 

mathematics. 

RQ2 What is the nature and content of teachers’ mathematical knowledge for 

teaching using technology, as represented by the central TPACK construct? 

In Chapter 1, borrowing from Shulman (1986, p.13), mathematical knowledge for 

teaching using technology was assumed not only to be a matter of knowing how – being 

competent in teaching mathematics using technology - but also of knowing what and 

why. In other words, mathematical knowledge for teaching using technology, as defined 

in this study, is when know-how or knowledge-in-action is underpinned by and 

coincides with the teacher’s articulated knowledge. The TPACK framework was 

identified as a suitable means for analysing and comparing teachers’ espoused theories 

(articulated knowledge) and their theories-in-action (knowledge-in-action), in order to 

make inferences about individual’s mathematical knowledge for teaching using 

technology (see Chapter 1). Finally, contrasting the two transmissionist with the two 

connectionist case study teachers’ use of technology should make visible individual 

teachers’ mathematical knowledge for teaching using technology, as argued in Chapter 

1, allowing RQ2 to be addressed. 

The first section of this chapter analyses case study teacher Robert’s computer suite 

lesson to suggest that a positive stance towards technology, in terms of global aspects of 

teacher knowledge (e.g. Bowers & Stephens, 2011; Zbiek & Hollebrands, 2008), may 

not be sufficient to ensure a teacher’s use of technology enhances mathematical 

instruction. In addition, the first section of this chapter suggests that using technology 

places significant demands on individual teachers’ own knowledge for teaching 

mathematics. 

The second section of this chapter goes on to explore the nature and content of 

mathematical knowledge for teaching using technology, by analysing data from the four 

case study teachers’ semi-structured GeoGebra interviews using the TPACK 

framework. The analysis focuses on exemplifying the dyadic construct TCK as a means 



138 

 

of exploring the nature of the central TPACK construct. This section argues that what 

distinguishes TPACK from the dyadic construct TCK appears to be mathematical 

knowledge, abstract in the sense that it generalises across particular technological 

contexts and mathematical topics. In addition, it serves to highlight the situated nature 

of TPACK, as a transformation (Rowland et al., 2005; Shulman, 1987) of mathematical 

knowledge for the purposes of teaching using technology. Similar arguments can be 

made in relation to the other two dyadic constructs PCK and TPK, however they have 

not been included in this chapter for the sake of brevity. 

In the final section of this chapter, the apparent duality in seeing TPACK 

simultaneously as abstract, mathematical knowledge and yet as situated in the context 

of teaching using technology is addressed using Noss and Hoyles’ (1996; & Kent, 2004; 

& Pozzi, 2002) notion of situated abstraction and Adler’s (1999; 2001) concepts of the 

dilemma of transparency and visibility/invisibility. The criticisms of the weak 

theorisation of the TPACK framework (Graham, 2011; Ruthven, 2014; Voogt et al., 

2012) are acknowledged, however it is argued that this represented a key affordance by 

allowing the user to move between an integrative and transformative perspective 

(Graham, 2011) in particular in relation to the central TPACK construct. 

 

5.1 The significance of mathematical knowledge for teaching using 

technology as represented by the central TPACK construct 

The case study lessons, described at the end of Chapter 4, suggest that even  carrying 

out dominant practices, that do not go beyond enhancing general pedagogic aspirations, 

place significant demands on individual teachers’ own knowledge in relation to teaching 

mathematics using technology. In Chapter 2, the review of research literature identified 

a group of studies with a common focus on teachers’ global conceptions of mathematics 

as a discipline and on teachers’ beliefs about the nature of teaching and learning 

mathematics with technology (Zbiek & Hollebrands, 2008). In terms of the present 

study, beliefs and conceptions are considered as part of teacher knowledge. This group 

of studies (Zbiek & Hollebrands, 2008) serves to highlight the important role teachers’ 

conceptions play in determining the extent and nature of technology integration in 

classroom practice. However, these studies do not tend to focus on teachers’ knowledge 

of specific mathematical concepts in relation to technology, either in relation to their 
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espoused theories or theories-in-action. Thus, research on technology in mathematics 

education, whilst exploring the relationship between global aspects of teachers’ 

espoused theories and theories-in-action and their technology use in some depth, has 

paid relatively little attention to teachers’ knowledge of specific mathematical concepts 

in relation to technology. This is an important omission since the documented shifts in 

teachers’ views suggest a move towards models of teaching aimed at developing 

conceptual understanding. Such models may require a great deal of knowledge for 

successful implementation (Thompson & Thompson, 1996) and as noted earlier, 

inconsistencies between teachers’ professed beliefs and practices may be the result of 

lacking sufficient knowledge necessary to implement them (Thompson, 1992). Whilst 

highlighting the role of teachers’ conceptions in technology integration is important, 

this section argues that the significance of mathematical knowledge for teaching using 

technology should not be overlooked nor underestimated. 

For example, Bowers and Stephens (2011, p. 290) assert that the central TPACK 

construct is an empty set with regard to (teachable) knowledge and skills, emphasising 

instead that teacher educators should seek to nurture a favourable conception of 

“technology as a critical tool for identifying mathematical relationships”. Whilst it may 

be that teacher educators should seek to nurture favourable conceptions towards using 

ICT in their trainees, the knowledge required to put such conceptions into practice 

should not be neglected. Robert’s creation and use of the GeoGebra maze activities in 

his computer suite lesson on reflections demonstrates the kind of favourable conception 

of technology that Bowers and Stephens (2011) advocate. However, using the maze 

activities in practice was not trivial and Robert did not entirely succeed in making 

explicit the mathematical relationships the pupils were exploring using the GeoGebra 

software. The difficulties Robert experienced provide evidence suggesting mathematical 

knowledge for teaching using technology plays a significant role in technology 

integration, perhaps alongside the kind of favourable orientation that Bowers and 

Stephens (2011) describe.  

Robert’s series of maze activities, created using GeoGebra, appear as an exception 

amongst the case study teachers’ lessons because he used the mathematical affordances 

of the software to affect his pupils’ learning in a way that would not be easy to achieve 

without digital technology. In particular, he took advantage of the affordance of the 

software to preserve geometric relationships under drag to build upon his pupils’ 

intuitive, tacit understandings of reflection as a means of making these understandings 
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explicit and thus leading them towards a more formal understanding of reflection. The 

aim of his lesson was for pupils to be able to construct the image of a simple shape 

given the object and reflection line and to recognise the reflection line as the 

perpendicular bisector of line segments connecting corresponding points on the object 

and image. A second GeoGebra activity was intended as skill-practice for constructing 

the image under reflection and to reinforce understanding of the reflection line as a 

perpendicular bisector. Due to the disruption caused by technical difficulties there was 

no time for the second activity. This skill-practice activity and the maze activities are 

described in more detail in Chapter 4. 

In the post observation interview, Robert explained what inspired him to create the 

maze activities. He provided a critique of similar GeoGebra activities lacking an 

impetus to focus attention on and articulate tacit understandings:  

I had a look on the GeoGebra wiki and most things tended to be ‘Here’s a mirror line, 

here’s a shape, if you drag this, what’s happening?’ just kind of … and say what you 

see.  And I could imagine them sitting there with that and basically just dragging the 

mouse a bit and seeing it happen and ... and then where does it go from there? [Rob-

CS-int, 13.6.2012] 

 

He also described a pedagogic strategy of predict-then-test that he aimed to use in the 

lesson to make pupils’ understandings of mathematical relationships explicit  

just you know introduce that pause of what do we think is going to happen and then 

let’s test that it’s going to happen [Rob-CS-int, 13.6.2012] 

 

and how he intended to formalise these understandings during the lesson by introducing 

mathematical vocabulary 

So one of the things I wanted to talk about was that if you’re moving that point 

parallel to the mirror line, the point moves in the same direction, whereas as soon as 

you’re moving it in a direction that’s not parallel, the point doesn’t move in the same 

way. [Rob-CS-int, 13.6.2012] 

 

Summarising at the end of the lesson, he did introduce mathematical vocabulary during 

class discussion, in a similar way to the intention described above, describing the 

movement of the red and blue points. In later more challenging mazes, Robert had 

included a line segment joining the blue and red points as a potential aid to maze 

completion (see Figure 5.1). Further, he juxtaposed two identical mazes, one with and 

one without the line segment, in an attempt to prompt the students to notice the value of 

the line segment in solving mazes and to question what was special about the line 

segment that made it helpful. He had hoped to use whole class discussion to lead them 
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towards recognising the line of reflection as the perpendicular bisector of the line 

segment but ran out of time in part due to the technical difficulties he experienced.  

 

Figure 5.1 Robert's GeoGebra maze with additional line joining red and blue points 

During the lesson, Robert did intervene on an individual basis to prompt this realisation:  

R:   I tried it with one pupil and it was quite interesting, before I explained 

what that line was or before we’d had a talk through about what that line was, I don’t 

think he found it helpful at all, but I think, in particular, it was useful, when you were 

trying to go diagonally through a … so you had to move the point diagonally kind of 

down through a passageway in the maze, if you just kept … but if you moved the 

point along that support line, it made it incredibly easy.   

 

I:  Right.  

 

R:   And so I think once I’d explained what was going on to him, he actually 

did … and the quality of his path was much better in the second attempt.  But I think 

it’s … I don’t think any of those pupils made that connection themselves, what that 

line was, or how it might be helpful. [Rob-CS-int, 13.6.2012] 

 

Thus Robert’s design of the maze activities, his use of them in the lesson and his 

comments about the lesson in the post-observation interview demonstrate the strong 

emphasis he placed on the use of technology to explore the mathematical relations 

behind the mathematical phenomenon of reflection, consistent with Bowers and 

Stephen’s (2011) description of a favourable conception of technology. During the post-

observation interview, Robert described another GeoGebra activity on the topic of 

reflection that he uses with higher attaining pupils, designed to provide an impetus for 
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realising the line of reflection as the perpendicular bisector of the line segments 

connecting corresponding points on the object and image:  

for example, possibly turn it the other way around, right, this is the object, this is the 

image, where is the mirror line?  How can we use the computer to determine where it 

is?  What are the kind of construction methods that you’d use to work out where that 

mirror line might be? [Rob-CS-int, 13.6.2012] 

 

This suggests that the observation lesson was not an anomaly in Robert’s practice but 

indicative of a coherent conception of “technology as a critical tool for identifying 

mathematical relationships” (Bowers & Stephens, 2011, p. 290).  

Using the series of maze activities successfully to meet the aims of the lesson depended 

on transforming students’ strategies for completing the mazes into more formal 

understandings of reflection that could be used as strategies for constructing the image 

given an object and line of reflection. As indicated above in excerpts from the post-

observation interview, Robert recognised his interventions with individual pupils and 

directing whole class discussion as being critical to effecting this transformation.  

The maze activities potentially addressed two complementary strategies for using 

geometric properties to construct the image given the object and line of reflection: 

1) using the local geometry of the object together with the properties of reflection, 

namely, preservation of length and of direction parallel to the line of reflection and 

reversal of direction in the axis perpendicular to the line of reflection, to construct the 

image; and 

2) using the geometric property that the line of reflection is the perpendicular bisector of 

line segments connecting corresponding points on the object and image. 

The first strategy was addressed through the maze activities by the necessity of 

considering how to drag the blue point, i.e. in what direction and how far, to guide the 

reflected red point through the maze. In particular, the main challenge in completing the 

maze is derived from the reversal of direction caused by the reflection. Less obvious 

perhaps is that length is preserved: dragging the blue point causes the red point to move 

the same distance. The second strategy was addressed in later maze activities by the 

addition of the line segment connecting the blue and red points as a possible aid to maze 

completion. 
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Robert was not satisfied with his interventions during the lesson. In the post-observation 

interview, he pointed to the technical difficulties, his desire to let the students enjoy the 

maze activities and his rush to move onto the second activity as contributing to the 

result that he did not spend as much time as intended on discussing the geometric 

implications of the pupils’ maze-solving strategies. Timing was certainly a factor and 

the technical difficulties meant that he was unable to direct a whole class discussion 

juxtaposing the identical mazes with and without the line segment joining the red and 

blue points. As a result, Robert was unable to address the second strategy outlined 

above involving recognition of the line of reflection as the perpendicular bisector of the 

line segment joining the red and blue points. However, he did have two opportunities 

during the lesson to elicit the geometric properties of reflection that underpin the first 

strategy through whole class discussion. 

The first opportunity came when Robert brought the class back together after some time 

engaging with the maze activities. He displayed one of the early maze activities with a 

vertical line of reflection and asked pupils to give instructions to a pupil-volunteer to 

direct their movement of the blue point (see Figure 5.2). Robert summarised their 

responses, drawing their attention to the relative direction of movement of the red and 

blue points i.e. that when the blue point was dragged up or down the red point moved in 

the same way but that dragging the blue point left or right caused the red point to move 

in the opposite direction. Whilst drawing their attention to the direction of movement, 

Robert did not mention that dragging the blue point causes the red point to move the 

same distance, thus he did not draw his pupils attention to the geometric property that 

length is preserved under reflection.  
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Figure 5.2 Robert's first GeoGebra maze with vertical line of reflection 

Robert then displayed a maze with a horizontal line of reflection and, employing his 

predict-then-test strategy, asked the pupils to predict whether the relative direction of 

movement would be the same or different. The pupils correctly predicted it would 

change: now, dragging the blue point left or right would result in the red point moving 

in the same way but dragging the blue point up or down would cause the red point to 

move in the opposite direction. Contrasting these diagrams made the point that the 

relative direction of movement of the red and blue points was connected to the 

orientation of the line of reflection. At this juncture, Robert could have introduced the 

mathematical terms parallel and perpendicular to specify the nature of the connection 

between the relative direction of movement and the orientation of the line of reflection, 

thus generalising to state the effect of reflection on direction. He could also have noted 

that in both maze diagrams, independent of the orientation of the line of reflection, 

dragging the blue point causes the red point to move the same distance, hence length is 

preserved under reflection. 

Robert did not introduce the mathematical terms parallel and perpendicular at this point 

nor did he note the geometric property that length is preserved under reflection. Instead, 

apparently on impulse, he offered his pupils a new challenge: to find out whether 

turning the mouse back to front would help them to complete the mazes, presumably by 

double-reversing the direction of movement. This challenge risked distracting from the 

aims of the lesson, since turning the mouse back to front involves a rotation of 180 
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degrees and not a reflection – it is an unhelpful deviation from the lesson agenda 

(Rowland et al., 2005). Later in the post-observation interview, Robert explained that it 

was “just something he was thinking about on the way in”, dismissing it as “just a silly 

question to get a few of them thinking” [Rob-CS-int, 13.6.2012]. However, in asking 

this question, he missed an opportunity to capitalise on his pupils’ correct predictions to 

generalise their maze-solving strategies towards a shared, formal understanding of the 

geometric properties of reflection. 

The second opportunity occurred at the end of the lesson. Due to the shutdown of the 

computer system, the students were unable to begin the second GeoGebra activity 

Robert had prepared. After spending some time wrestling with the technology, Robert 

gave up and gathered the pupils to summarise the lesson. In this moment of 

contingency, Robert was inspired to ask his pupils to imagine the join between two 

rectangular tables, where they met along their longest edge, was a mirror. One of the 

pupils sitting at the table was holding a ball: this became the de facto ‘blue point’. 

Robert discussed moving the ‘blue point’ close to the mirror, through the mirror (which 

he noted you can’t do in reality), and finally parallel to the mirror. He did not have 

another chance to discuss what happens when the ‘blue point’ moves perpendicular to 

the mirror nor to discuss the preservation of length under reflection because, at that 

point, the bell rang for the next lesson. 

Although his second opportunity to elicit the geometric properties of reflection was cut 

short, in the post-observation interview, when asked what he wished to do had there 

been more time, Robert did not articulate that he meant to discuss what happened when 

the blue point moved perpendicular to the line of reflection and to note that distances 

remained the same under reflection. These missed opportunities, together with the post-

observation interview, suggest that Robert had not planned precisely what and how he 

would use mathematical terminology in his interventions to transform his pupils’ maze-

solving strategies into more formal understandings of reflection to connect with the 

aims of the lesson. In addition, when asked what he would have done differently in 

preparing the lesson, he focused solely on planning to prevent the technical difficulties 

arising rather than suggesting he could have been more precise in his use of 

mathematical terminology. Although Robert did not have much time to deliberate over 

the lesson (as the author has) and it is understandable that the technical difficulties that 

were so disruptive were uppermost in his mind, this suggests his experience during the 

lesson did not prompt Robert to recognise the need to plan his interventions more 
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precisely to connect his series of maze activities with the mathematical aims of the 

lesson. In particular, Robert appeared to lack a frame of reference to help him identify 

what his mathematical difficulties were in using technology to make his pupils’ tacit 

understandings explicit and, as a result, why his interventions appeared unsatisfactory. 

As noted in Chapter 1 and the introduction to this chapter, this is part of mathematical 

knowledge for teaching using technology, since in this study such knowledge is 

assumed not only to be a matter of knowing how – being competent in teaching 

mathematics using technology - but also of knowing what and why (Shulman, 1986, 

p.13).  

Despite his favourable conception of technology, using the maze activities in practice 

was not trivial and Robert did not entirely succeed in making explicit the mathematical 

relationships the pupils were exploring using the GeoGebra software.  This suggests that 

a positive stance towards technology, in terms of global aspects of teacher knowledge 

(e.g. Bowers & Stephens, 2011; Zbiek & Hollebrands, 2008), may not be sufficient to 

ensure a teacher’s use of technology enhances mathematical instruction. The missed 

opportunities to transform pupils’ maze-solving strategies into more formal statements 

of the geometric properties of reflection, using precise mathematical terminology to 

make connections between the maze activities and the aims of the lesson, suggest that 

mathematical knowledge for teaching using technology has a significant role to play in 

successful technology integration. Thus, whilst highlighting the role of teachers’ 

conceptions in technology integration is important, this section has argued that the 

significance of mathematical knowledge for teaching using technology should not be 

overlooked nor underestimated. 

 

5.2 The nature and content of the central TPACK construct 

The analysis presented in this section focuses on exemplifying the dyadic construct 

TCK, using data from the four case study teachers’ GeoGebra interviews, as a means of 

exploring the nature of the central TPACK construct. This section presents four 

examples of TCK arising from the GeoGebra interview data. These are listed below as 

follows, thus TCK is knowing about: 

- rounding errors in measuring angles in GeoGebra; 

- how angles are defined and measured in GeoGebra; 
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- issues of dependency; and 

- dynamic imagery or preservation of geometric relationships under drag. 

These examples are intended as being indicative rather than an attempt to provide an 

exhaustive list of the types of TCK that arose during the case study teachers’ interaction 

with the GeoGebra file in interview. Using the examples presented below, this section 

argues that the central TPACK construct does not represent the integration of TCK with 

pedagogic knowledge. Instead, what distinguishes TPACK from the dyadic construct 

TCK appears to be mathematical knowledge, abstract in the sense that it generalises 

across particular technological contexts and mathematical topics. Nevertheless, it is 

argued that each example of TCK is itself an indicator of an example of TPACK. In 

particular, identifying knowledge as an example of TCK indicates the case study 

teachers’ emphasis on technology and mathematical content in their articulated 

knowledge-in-action when addressing a situation involving a synthesis of mathematical, 

pedagogical and technology knowledge. This approach acknowledges the criticisms of 

the weak theorisation of the TPACK framework (Graham, 2011; Ruthven, 2014; Voogt 

et al., 2012) that draw attention to its ambiguities and lack of clarity in defining the 

framework’s constructs and the inter-relations between them. In addition, it serves to 

highlight the situated nature of TPACK, as a transformation (Shulman, 1987; Rowland 

et al., 2005) of mathematical knowledge for the purposes of teaching using technology. 

Similar arguments can be made in relation to the other two dyadic constructs PCK and 

TPK, however they have not been included here for the sake of brevity. Finally, the 

apparent duality in seeing TPACK simultaneously as abstract, mathematical knowledge 

and yet as situated in the context of teaching using technology is addressed in the last 

section of this chapter, using Noss and Hoyles’ (1996; & Kent, 2004; & Pozzi, 2002) 

notion of situated abstraction and Adler’s (1999; 2001) concepts of the dilemma of 

transparency and visibility/invisibility. 

 

Rounding errors in GeoGebra 

At some point during the discussion of the three diagrams, each of the teachers 

appreciated that the software displayed rounding errors in measuring the angles at the 

centre and circumference of the circle (see Figure 5.3). The teachers noted the apparent 

breakdown in the doubling relationship between the angle at the circumference and the 
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angle at the centre, but appreciated this was a result of rounding errors in the software’s 

measurement rather than a counter-example that might lead them to reject the theorem. 

The appreciation of rounding errors indicates an understanding that the GeoGebra 

software does not conform to a mathematical ideal but merely models Euclidean 

geometry, subject to the limitations of computer hardware and programming. This is an 

example of TCK because it shows an understanding of how the GeoGebra software 

models geometric concepts and relations, in particular, how it affects the apparent 

relationship between the angles at the centre and circumference of the circle. 

 

Figure 5.3 Rounding errors in angle measurement 

In his initial dragging of the first diagram D1, Robert deliberately demonstrated the 

existence of rounding errors, thus exemplifying TCK. Later on, when prompted to 

discuss how he would address the issue of rounding errors with his pupils, Robert stated 

that trying to avoid this issue “I think you’ll always be disappointed, so I think I would 

embrace it as quickly as you possibly can” (Rob-GGb-int, 13.6.2012). Robert explained 

that by ‘embracing’ this issue he meant he would deliberately introduce rounding errors 

as a possible instance of the conjectured relationship breaking down. As he explained, 

Robert illustrated how he embraces the rounding issue by setting GeoGebra to round 

numbers to 0 decimal places and then positioning D so that the angle at the 

circumference appears to be 58 degrees and the angle at the centre appears to be 117 

degrees. As he did so, he stated, in this instance, it appears the conjectured circle 

theorem is “not true [...] but it really is true” (Rob-GGb-int, 13.6.2012). Thus 

recognising the rounding errors, he immediately dismissed them as irrelevant in the 

context of Euclidean geometry by rejecting the supposed counter-example. Robert went 

on to note that he uses the issue of rounding errors as a means of indicating the 

limitations of the computer hardware and software and that, although not a “great 

motivator”, the issue of rounding errors provides a useful justification for the necessity 
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of proof. This demonstration was very similar to his initial dragging of D1, yet here it 

appeared as TPACK: part of an articulated strategy for dealing with the issue of 

rounding errors in GeoGebra for the purposes of mathematics pedagogy.  

Edward was deeply frustrated by the presence of rounding errors, as the quotes from his 

GeoGebra interview below indicate: 

Cos it’s built for a purpose this [software].  The rounding really gets in the way of 

what you’re trying to show.  

 

[later in the interview] I’d definitely mention it because sometimes it doesn’t seem to 

work does it?  ...it was one degree out... but I really see it as a hindrance to learning 

what’s going on.  I’d just, I’d have to keep saying ‘Look, within rounding error this 

result is...’, sort of, it’s much less convincing... [Ed-GGb-int, 20.6.2012] 

 

His frustration stems from the conflict between the ‘real’ world, where computer 

hardware places limits on the accuracy of measurement in GeoGebra, and the idealised 

mathematical world of Euclidean geometry to which the topic of circle theorems 

belongs. Thus the rounding errors are an indication to Edward that the software does not 

entirely ‘fit’ his purpose of providing a true representation of Euclidean geometry. 

Edward was also adamant that he would raise the issue of rounding errors but, unlike 

Robert, he did not articulate a pedagogic strategy to deal with the issue beyond drawing 

it to his pupils’ attention. 

Michael and Anne also suggested that they would raise the issue of rounding errors with 

their pupils. However, in addition, they both indicated that the discussion of rounding 

errors would provide an opportunity to link the hypothetical lesson on circle theorems 

more widely with topics on the accuracy of measurement. Michael suggests: 

It brings up a wider point of accuracy I guess and how everything is measured to 

varying degrees of accuracy and the importance of accuracy, because if you’re not 

accurate then the theorems won’t work.  I guess if you’re kind of sloppy in your angle 

measuring then you won’t be able to prove anything. [Mic-GGb-int, 31.5.2012] 

 

Similarly, Anne suggests linking the issue of rounding errors to the topic of upper and 

lower bounds of measurement, asking pupils within what bounds the angle could have 

been, given that it had been rounded to a certain degree: 

Yeah I would discuss it with pupils you know, the numbers were rounded.  Yeah.  I 

would discuss it with them, and depending on if we’ve done ... what is it called ... 

depending on if we’ve done bounds of measure, I could just bring it up, what could it 

[the angle] have been. [Anne-GGb-intB, 29.6.2012] 
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The approach Michael and Anne suggest risks confusion by conflating the real world 

with the idealised mathematical world of Euclidean geometry. Contrary to Michael’s 

suggestion, in Euclidean geometry, the accuracy of angle measurement is immaterial to 

proof or whether the circle theorems ‘work’, precisely because they only exist in an 

idealised world where angles and other ‘measures’ are assumed to be exact. 

Robert’s articulation of his strategy for dealing with the issue of rounding errors in 

GeoGebra for the purposes of mathematics pedagogy is an example of TPACK. 

However, his strategy does not appear as a result of integrating pedagogic knowledge 

with TCK. Indeed all four teachers recognise the issue of rounding errors requires some 

kind of pedagogic intervention, however their strategies in response to this recognition 

differ. Edward did not articulate a pedagogic strategy to deal with the issue beyond 

drawing it to his pupils’ attention. Michael and Anne risked confusion by connecting 

topics associated with the real world of measurement to the topic of circle theorems and 

proof, which exist only in the idealised mathematical world of Euclidean geometry. In 

contrast, Robert’s strategy stands apart because it makes a clear mathematical 

distinction between these two worlds. He connects rounding errors to real world 

limitations of computer hardware and to using GeoGebra to establish conjectures 

though empirical testing, thus distinguishing circle theorems and proof as belonging to 

another ideal world of mathematics. Making this distinction requires mathematical 

knowledge: understanding that rounding errors and notions of accuracy are 

incompatible with Euclidean geometry and proof. Thus, Robert’s articulation of his 

strategy for dealing with the issue of rounding errors in GeoGebra suggests that, in this 

case, TPACK is not the integration of TCK with pedagogic knowledge. Instead, 

TPACK appears to be mathematical knowledge, abstract in the sense that it generalises 

across particular technological contexts and mathematical topics. For example, rounding 

errors appear in measurement whenever one tries to relate mathematic ideals to the 

empirical world, whether in the context of using GeoGebra or a paper-and-pencil 

environment.  

On the other hand, this knowledge appears to be simultaneously situated in the context 

of using GeoGebra to teach circle theorems. For example, knowing that the appearance 

of rounding errors in GeoGebra is an issue that requires a pedagogic strategy, e.g. 

drawing pupils’ attention to rounding errors or otherwise, seems situated in the context 

of teaching. In addition, circle theorems are typically presented in textbooks through 

figures that invite the reader to imagine ideal mathematical objects i.e. where rounding 



151 

 

is not an issue. Of course, as noted above, GeoGebra is not the only technological 

context where rounding errors arise. However, the combination of the textbook-style 

‘neatness’ of GeoGebra figures and empirical measurement, appears to make the issue 

of rounding errors more salient - surprising even, given Edward’s expression of 

frustration. Thus, Robert’s articulation of his strategy for dealing with the issue of 

rounding errors in GeoGebra also suggests that TPACK is a synthesis of mathematical, 

pedagogical and technological knowledge, highlighting its situated nature. In this sense, 

TPACK appears to draw attention to a transformation of mathematical knowledge for 

the purposes of teaching using technology. 

 

Defining angles in GeoGebra: Edward’s dilemma 

Michael and Edward were both prompted to question how angles are defined for the 

purposes of measurement in the GeoGebra software by unexpected configurations of D1 

appearing during dragging, displaying the ‘incorrect’ angle at the centre (see Figure 

5.4). After experimenting by dragging points C and D, and in Edward’s case some 

prompting by the interviewer, they concluded the angle measured at the centre was 

dependent on the relative position of points C and D. More specifically, in GeoGebra 

the angle measured at the centre in D1 is defined by specifying the ordered triad of 

points CAD and measured anticlockwise from the line segment AC to the line segment 

AD. Thus when the relative positions of C and D are reversed, as in Figure 5.4, the 

angle appears to ‘flip’ between being less than 180 degrees and being reflex. 

D1 had been designed so that, whilst the angle at the centre could become reflex, the 

angle measured at the circumference was constrained to be less than 180 degrees 

whatever the relative position of points C and D. Hence the ‘correct’ angle at the 

circumference in relation to the circle theorem was always displayed, however some 

configurations of D1 displayed the ‘incorrect’ angle at the centre. Michael and 

Edward’s questioning of how the software defines and measures angles and their 

realisation of the angle at the centre’s dependence on the relative positions of C and D is 

an example of TCK because it shows a developing understanding of how the GeoGebra 

software models geometric concepts and relations. 
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Figure 5.4 Angle measurement and reversing the relative positions of C and D 

For Edward, the software’s definition and measurement of angles was another source of 

frustration, appearing idiosyncratic in the way D1 ‘flipped’ between displaying the 

correct and the incorrect angle at the centre in relation to the circle theorem. He argued: 

… this is sort of a function of how the software works isn’t it, rather than a … is that 

bringing out anything useful mathematically that … that’s just a bit annoying the way 

it does that, isn’t it?  [Ed-GGb-int, 20.6.2012] 

 

Implicitly here, Edward appears to be comparing the ease of defining angles when 

teaching circle theorems without digital technologies, e.g. marking angles on a diagram 

using a pen on a whiteboard, in a textbook diagram or with pencil and paper, to the 

difficulties he faced understanding how angles are defined in GeoGebra. Diagrams 

presented in software such as GeoGebra are constrained to follow the rules for defining 

angles that have been programmed into that piece of software. It seems unlikely that a 

dynamic geometry software package will have been programmed to define angles 

according to their relevance to circle theorems, thus it may not be possible to construct a 

diagram such that the correct angle at the centre is always displayed. One of the 

affordances of drawing diagrams without digital technologies is that the relevant angles 

of the circle theorem may simply be marked on a diagram with a brief stroke of a pen or 

pencil, without needing to consider how they are defined precisely. It is not that a 

precise definition of the angles does not exist or is not necessary in a paper-and-pencil 

environment, of course, but that often it does not appear necessary to give it explicit 

consideration. This argument serves again to highlight the situatedness of individual 

teacher knowledge in the technological context. 

A case where it might be necessary to give explicit consideration to a precise definition 

of the angles, even in a pencil-and-paper environment, would be when giving a full 

statement of the circle theorem, rather than an abbreviated form such as ‘the angle at the 

centre is double the angle at the circumference’. For example, a full statement of the 
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circle theorem is ‘the angle subtended at the centre by an arc is double the angle 

subtended at the circumference by the same arc’. The difference between the 

abbreviated form and the full statement is in the specification that the two angles must 

be subtended from the same arc. More specifically, using the full statement of the 

theorem clarifies which is the ‘correct’ and ‘incorrect’ angle at the centre. 

In his initial discussion of D1, Edward assumes the angles are defined as being 

subtended by the chord CD: 

the chord C and D, joining C and D ... subtends an angle of 108 at the centre and 54 at 

the circumference, so uh … for this configuration of points it’s showing that the angle 

at the centre is twice the angle at the circumference. [...] ... so what it shows is the 

angle subtended at the circumference by chord CD is always twice the angle at the 

centre, irrespective of where B is.  [Ed-GGb-int, 20.6.2012] 

 

Defining the two angles as subtended from the chord is unproblematic as long as the 

two angles remain in the same segment; however, when they are in opposing segments 

the theorem appears to break down (see Figure 5.5 a and b).  

 

Figure 5.5 Angles in the opposite segments with (a) the ‘incorrect’ angle at the centre displayed 

and (b) the ‘correct’ angle at the centre displayed. 

In fact, the doubling relationship between the angle at the centre and the angle at the 

circumference still holds when the angles are in opposing segments, as long as the 

angles are defined as being subtended from the same arc. Thus defining the angles 

based on the chord CD is an unfortunate narrowing of the cases to which the theorem 

may be applied.  

The situation where the two angles appear in opposing segments occurred twice during 

Edward’s GeoGebra interview. Firstly, as depicted in Figure 5.5 (a), it occurred where 

the ‘incorrect’ angle at the centre is shown, assuming the angles in the circle theorem 

are defined as being subtended from the same arc. He had anticipated this case to some 

extent. Thus, for Edward, this case was not unduly problematic and did not disrupt his 



154 

 

statement of the circle theorem defining the angles as subtended from the chord CD, as 

the quote below suggests: 

And then if you drag B this side [onto the minor arc CD], then suddenly it goes from 

54 to 126.  So ... uh ... what’s happening there?  So … uh … what’s happening there 

is the angle on the other side of the 108 is now double the angle at the centre, the 

angle at the circumference … but it’s not showing on the diagram, the computer’s not 

showing that other angle ... but you can calculate it as 360 – 108, so 252.  And 252 is 

double 126.  Yeah.  [Ed-GGb-int, 20.6.2012] 

 

Instead he called this case a “complication”, suggests “ignoring” it at least initially with 

pupils, and refers to the ‘correct’ angle at the centre, measuring 252 degrees, as “the 

reflex angle”. His treatment of the case in Figure 5.5 (a) as a sort of deviant example or 

extension of his statement of the circle theorem, where the angle at the centre is reflex, 

avoided a mathematical critique of his definition of the angles being subtended from the 

chord. However, the situation arose for a second time, similar to Figure 5.5 (b), where 

the ‘correct’ angle at the centre is shown, assuming the angles in the circle theorem are 

defined as being subtended from the same arc. This time, the situation was unexpected 

and troubling for Edward. In particular, it leads him to question his previous definition 

of the central angle as being subtended by the chord CD. The following quote indicates 

his struggles as he attempted to find a correct mathematical interpretation of this 

configuration of D1, see Figure 5.6 for the numerical example he discusses at the start:  

Um ... so … let’s take an example ... so 94 doubled is 188, so it’s still true that … so 

that angle is twice that angle.  But uh … how do you know it was that angle … so the 

computer is kind of showing you the right angle for what it’s working for isn’t it?  

But in words, how do you explain what that angle is, it’s not really the angle that 

chord CD is subtending at the centre is it?  Because it’s that … chord CD is 

subtending that angle at the centre, so suddenly you have to say it’s the other angle, 

the reflex angle at the centre that’s subtending.  So... so CD is subtending 99 at the 

circumference and, ... er ... the reflex angle is 198 yeah.  Uh … which is not a very 

good explanation.  [E laughs]  [Ed-GGb-int, 20.6.2012] 

 

At the end of this quote, Edward tries to re-state the theorem using a particular 

numerical example, taking into account his realisation that the ‘correct’ angle at the 

centre was not, as he previously assumed, the angle subtended by the chord CD. He 

struggles, eventually settling for “the reflex angle”, whilst acknowledging this seemed 

inadequate. 
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Figure 5.6 Edward’s angle definition dilemma 

Returning to Edward’s frustration at the apparently idiosyncratic way GeoGebra defined 

and measured the angles in D1, the discussion above shows that instead of being “just a 

bit annoying” [Ed-GGb-int, 20.6.2012], the way GeoGebra defines and measures angles 

does bring out something mathematically useful. The variation in whether the ‘correct’ 

or ‘incorrect’ angle is displayed in D1 provides a means of discussing how angles are 

defined in other contexts and, in particular, how the angles referred to in the 

(abbreviated) ‘angle at the centre is double the angle at the circumference’ circle 

theorem are defined precisely in a full statement of the theorem. In addition, the reason 

why Edward’s statement of the angle at the centre theorem, defining angles as 

subtending from the chord CD, is unsatisfactory relates to another circle theorem, 

commonly abbreviated to ‘angles in the same segment are the same’. To show the 

geometrical connection between the two theorems, the latter might more helpfully be 

stated as ‘angles subtended by the same arc are the same’. Articulating a strategy to use 

the way GeoGebra defines angles to raise these issues for the purposes of teaching circle 

theorems would be an example of TPACK. Again, such a strategy would not appear to 

depend on integrating pedagogic knowledge with TCK. Instead it requires mathematical 

knowledge regarding the precise definition of the angles in a full statement of the angle 

at the centre circle theorem, as well as how this theorem connects to other circle 

theorems. Hence, TPACK appears to be mathematical knowledge, abstract in the sense 

that it generalises across particular technological contexts and mathematical topics. For 

example, a precise definition of the angles in a full statement of the angle at the centre 

circle theorem should hold both in the context of using GeoGebra or a paper-and-pencil 

environment.  

However, once again TPACK appears simultaneously to be mathematical knowledge 

situated in the context of teaching using technology. The issue of how angles are 
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defined appears more salient and, like rounding issues, even surprising – for Michael 

and Edward at least – in the context of GeoGebra. In addition, the author notes that at 

the time, in England, the high-stakes GCSE examinations only required pupils to state 

an abbreviated form of the circle theorems. As a result, it is possible that the case study 

teachers were unaware of a precise definition of the angles in a full statement of the 

angle at the centre circle theorem. Hence, an individual teacher’s TPACK may also be 

seen as situated in the examination system and national curriculum of the country in that 

teacher is working. This argument suggests that TPACK is a synthesis of mathematical, 

pedagogical and technological knowledge, highlighting its situated nature as a 

transformation of mathematical knowledge for the purposes of teaching using 

technology. 

It should be noted here that Edward was not alone in his confusion over the definition of 

the angles in the angle at the centre theorem. Analysing his interview, the author 

realised that she did not know a full statement of the angle at the centre theorem. 

Indeed, the design of D1, incorporating the extraneous chord CD, indicates the author’s 

own lack of knowledge in this regard. Fortunately, it proved useful in terms of data 

collection and triggered a growth in understanding for the author in what had previously 

seemed a fairly straightforward topic. None of the other case study teachers provided a 

full statement of the theorem. Whilst they each provided some form of the abbreviated 

version of the angle at the centre theorem, Edward was the only one to attempt to define 

the angles precisely. Although Robert briefly questioned the presence of the chord, he 

later appeared to find it useful to identify the relevant angles in a particularly contorted 

configuration of D1 and, alluding to the angles in the same segment theorem, he said: 

I think dragging point B kind of demonstrates the, I mean, the invariance of the fact 

that well it’s still coming from the same chord. [Rob-GGb-int, 13.6.2012] 

 

Trying to account for her own lack of knowledge regarding the full statement of the 

theorem, as the author noted in the previous paragraph, in England the high-stakes 

GCSE examinations only require pupils to state an abbreviated form of the circle 

theorems. Taking into account reports of widespread teaching-to-the-test (Ofsted, 2008), 

it is just possible that a generation of teachers and pupils have not been exposed to a full 

statement of the circle theorem other than by serendipitous experience. A quick Internet 

search reveals that on websites, such as the MyMaths website and the BBC GCSE 

Bitesize revision website, emphasise the abbreviated version of the theorem, whilst a 

precise definition of the angles via a full statement of the theorem is not provided. 
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Issue of Dependency in GeoGebra 

Like other dynamic geometry software, GeoGebra introduces an explicit order of 

construction, a sequential organisation of actions necessary to produce a figure (Jones, 

2000). Since certain parts of a figure are dependent on other parts, figures need to be 

created in a particular sequence, thus initiating a hierarchy of dependencies (Hölzl et al, 

1994). For example, in relation to the dynamic geometry package Cabri Geometre, 

Hölzl et al (1994) describe three different types of points that occur. A basic point can 

be dragged freely without restriction. A point on an object, such as a circle or a line, can 

only move along the object since it is dependent upon that object for its existence. A 

point of intersection cannot be dragged at all: it can only be moved as a result of 

dragging the objects upon whose intersection the point depends. Hölzl (1996) argues 

that since these distinctions do not occur in a paper-and-pencil context, they could be 

considered as a form of geometry specific to Cabri. The same argument can be made for 

points in GeoGebra.  

Each of the case study teachers showed TCK by demonstrating some understanding of 

the issue of dependency, when asked directly about the difference between the red and 

blue points in relation to all three diagrams. For example, they all noted that the red 

points are restricted to move on the circumference, whereas the blue points P and R, in 

D2 and D3 respectively, may be dragged freely. Hence, using the language above, P and 

R are basic points, whereas the red points are points on an object. More subtly, the 

circumference of the circle is constrained to go through point G in D1, so although it 

might initially appear that G is restricted to move on the circumference like the red 

points, in fact it is the circle whose movement is restricted. Thus point G is also a basic 

point, which may be dragged freely, and is therefore coloured blue.  The case study 

teachers struggled during the interview to provide a plausible explanation for the 

colouration of point G. 

Discussing the three circle theorem diagrams, the case study teachers mentioned issues 

of dependency less frequently in comparison to the Practice Squares GeoGebra file, 

where they were asked to practise ‘thinking aloud’ as they manipulated two diagrams, 

one constructed as a geometric figure of a square and the other as a drawing of a square, 

which deformed under drag. This is unsurprising since the Practice Squares file was 

designed as an introductory file to highlight the ‘rules of construction’ or dependency in 
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GeoGebra. Similarly, issues of dependency arose more frequently during the discussion 

of circle theorem diagrams 2 and 3 in comparison to D1. Nevertheless, Robert’s initial 

comments about D1 indicate he is aware of the ‘rules of construction’ or issues of 

dependency in GeoGebra. He noted that the points B, C and D “are presumably all fixed 

to the circumference of the circle” (Rob-GGb-int, 13.6.2012). Similarly, with D2, 

before dragging the diagram, Robert immediately said, “I guess the big difference is P is 

no longer fixed” (Rob-GGb-int, 13.6.2012). Edward also recognised issues of 

dependency. Initially, describing D1, he implicitly referred to issues of dependency, 

noting “So in this diagram you’ve got three red points on the circumference” (Ed-GGb-

int, 20.6.2012). With D2, he was more explicit, noting that “L’s confined to the 

circumference” (Ed-GGb-int, 20.6.2012), then after further dragging, he generalised that 

all red points in the GeoGebra file are confined to move on the circumference but that P 

is “pretty free form” (Ed-GGb-int, 20.6.2012). Thus Robert and Edward’s 

understanding of issues of dependency in GeoGebra demonstrate TCK i.e. an 

understanding of geometry situated in the software. 

Dragging D1 provides a means of testing the conjecture that the position of point A at 

the centre and points B, C and D on the circumference is a sufficient condition for the 

angle at the centre to be double the angle at the circumference. Robert and Edward’s 

opening comments regarding D1, describing the construction of the diagram, draw 

attention to the positioning of the points B, C and D. Their description suggests that the 

positioning of the B, C and D on the circumference is a critical feature of this particular 

diagram (as opposed to some other diagram). Thus, implicitly, they suggested any 

relationship that appears to hold between the angle at the centre and the angle at the 

circumference is conditional on the positioning of B, C and D on the circumference. 

Notably, although Michael and Anne demonstrate TCK, appreciating issues of 

dependency in later diagrams, they did not draw attention to the position of the points in 

D1 by describing the construction of the diagram, before indicating the doubling 

relationship between the angle at the centre and the angle at the circumference through 

dragging. 

With D2, as Robert suggested in his discussion of the diagram, the status of point P as a 

basic point, released from the constraint of being positioned at the centre, allows an 

exploration of a partial converse of the theorem: 

I’d use something like this with pupils working independently and asking them 

questions like when are the angles the same? When are the angles twice one of the 
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other angles?  And so on and establishing the conditions that are, you know, kind of 

working almost from the converse of the theorem. [Rob-GGb-int, 13.6.2012] 

 

In particular, constructing P as a basic point, allows D2 to be used as means of testing 

the conjecture that positioning P on the centre is a necessary condition for the angle at P 

to be double the angle at the circumference, given that L, M and N are positioned on the 

circumference. Indeed, whilst dragging point P, Robert stumbled on a set of counter-

examples to this conjecture, although during the interview he eventually rejected them, 

assuming they appeared to occur due to rounding errors. Using the trace function in 

GeoGebra, it is possible to indicate the locus of point P where the angle at P subtended 

by the arc MN is double the angle at the circumference subtended by the same arc – see 

Figure 5.7. 

 

Figure 5.7 A trace indicating the locus of P where the doubling relationship between the angles 

at L and P holds, given points L, M and N are on the circumference. 

Similarly, with D3, constructing point R as a basic point, allows the diagram to be used 

as a means of testing the conjecture that positioning R on the circumference is a 

necessary condition for the angle at the centre of the circle to be double the angle at R, 

given that points S and T are positioned on the circumference and point Q is positioned 

at the centre. In this case, the position of R on the circumference is a necessary 

condition for the doubling relationship to hold i.e. positioning R off the circumference 

causes the relationship to break down. Edward showed his appreciation of this purpose 

for D3 by dragging point R on and off the circumference to show the “negative case” of 

the angle at the centre theorem, as he termed the set of points where the doubling 

relationship breaks down. In particular, in relation to D3, he states:  

E:  it’s really good for showing that the circle really is the special set of points 

where it works.  So there’s something beautiful about that. [Ed-GGb-int, 20.6.2012] 
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Michael also recognises the possibility of using D3 for the purpose of testing the 

necessity of positioning point R on the circumference: 

M:  Um, I guess it’s [D3 is] useful in that it shows that the rules only apply on 

the circumference or certainly that particular rule of the double angle at the centre, 

circumference etc.  

  

I:  Mmm, mmm. 

 

M:  Um, so I guess it’s useful to show that that [D3] doesn’t work, whereas 

that [D1] does work. [Mic-GGb-int, 31.5.2012] 

 

Articulating a strategy for using the diagrams D1, D2 and D3 as a means of testing the 

positioning of the points on the circumference and at the centre as necessary and 

sufficient conditions for the angle at the centre circle theorem to hold, for the purposes 

of teaching the topic of circle theorems, is an example of TPACK. Thus Robert, Edward 

and Michael’s recognition of the potential of diagrams D2 and D3 for testing partial 

converses of the circle theorem showed TPACK. Again, this suggests TPACK is 

mathematical knowledge, abstract in the sense that it generalises across particular 

technological contexts and mathematical topics. For example, knowledge of necessary 

and sufficient conditions and how they relate to the converse of a theorem should hold 

across particular technological contexts and mathematical topics. 

However, this example also highlights the situated nature of an individual teacher’s 

TPACK: that this knowledge is a function of the context in which the teacher is 

operating. For example, the issue of dependency itself depends on the ‘rules of 

construction’ programmed into the particular software package. In addition, issues of 

dependency did not arise as frequently with the circle theorem diagrams as they did with 

the Practice Squares file, neither did they occur as frequently with D1 as they did with 

D2 and D3. Finally, as Robert alludes in the quote below, knowledge of the converse of 

circle theorems or of their necessary and sufficient conditions is not included in GCSE 

examination syllabi (e.g. EdExcel, 2012), nor is it part of the English National 

Curriculum (QCA, 2007) for mathematics.  

I:  Would that be something that you highlighted to kids, the converse? 

 

R:  I have in the past yeah, but only with very, very strong groups.  You know 

because we don’t do it much do we really?  I mean I think the only thing they really 

need to, I think, you know, in our kind of curriculum I think, [ ... ] … we tend to use 

these theorems just in one direction. [Rob-GGb-int, 13.6.2012] 
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Thus an individual teacher’s TPACK may be seen as a function of the software, the 

mathematical topic and even the particular diagram the teacher is using, as well as the 

examination system and national curriculum of the country in that teacher is working. 

Highlighting the situated nature of TPACK suggests it is a synthesis of mathematical, 

pedagogical and technological knowledge, representing a transformation of 

mathematical knowledge for the purposes of teaching using technology. 

 

Dynamic imagery or preservation of geometric relationships under drag 

A fourth example of TCK is an understanding that geometric relationships are preserved 

under drag, thus the dynamic imagery of GeoGebra is a means of representing 

geometric relationships. All four teachers demonstrated an understanding that geometric 

relationships are preserved under drag, by moving points B, C and D to different 

positions around the circumference and noting that the relationship between the angle at 

the centre and the angle at the circumference was preserved. Demonstrating D1 to 

pupils, Robert, Edward and Anne each suggested they would begin by dragging point B, 

showing initially that the relationship holds wherever B was placed on the major arc 

CD, before arguing that it also holds if B is positioned on the minor arc CD. Thus, by 

dragging B, they demonstrated the angle at the centre is double the angle at the 

circumference wherever B is positioned on the circumference – although none of the 

teachers entirely resolved what occurs when B coincides with either point C or D. 

Robert later clarified that dragging B also demonstrates the theorem that angles in the 

same segment are the same. In contrast to the other three case study teachers, when 

asked how he would demonstrate D1 to pupils, although Michael briefly dragged B on 

the major arc CD, he did not position B on the minor arc before continuing his 

exploration of D1 by dragging points C and D. 
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Figure 5.8 (a) the ‘arrowhead’ configuration (b) the ‘convex quadrilateral’ configuration 

produced by dragging B onto the minor arc (c) the convex quadrilateral configuration produced 

by dragging points C and D upwards 

Dragging B first, resulted in Robert, Edward and Anne emphasising the ‘arrowhead’ 

configuration of D1 (see Figure 5.8 a) as the normal or standard configuration of the 

angle at the centre theorem. As a consequence, when they dragged B onto the minor arc 

CD, the ‘convex quadrilateral’ configuration of D1 where the angle at the centre is 

reflex (see Figure 5.8 b) appeared to be an abnormal or non-standard configuration, 

requiring a special statement and explanation – exacerbated perhaps by the presence of 

the extraneous chord. In particular, as Robert later noted, dragging B demonstrates the 

theorem that angles in the same segment are the same. Thus dragging B onto the other, 

minor segment causes this theorem to break down, distracting attention from the fact 

that the angle in the centre theorem still holds. The distraction caused by moving B onto 

the minor segment also seemed to disrupt the case study teachers’ knowledge of the 

angle at the centre theorem as holding true for all positions of B, C and D, as long as the 

three points remain distinct. For example, Robert said “I can’t remember what happens 

if I bring it over here” (Rob-GGb-int, 13.6.2012) before dragging B onto the minor arc. 

He notes subsequently that previously he has prevented B from being dragged onto the 

minor arc, thus barring the convex quadrilateral configuration, “Because on diagrams 

I’ve had in the past I’ve forced it to just lie on the major arc” (Rob-GGb-int, 13.6.2012). 

Anne struggles with whether the angle at the centre theorem has broken down or not 

when B moves onto the minor segment, she says: “the rule has not fallen apart ... it 

hasn’t fallen apart here, in that um ... yeah the rule has fallen apart a bit, hasn’t it?” 

(Anne-GGb-intA, 28.6.2012). Whilst Edward is convinced that the theorem still holds 

when B is positioned on the minor arc, he refers to this configuration as a 

“complication” (Ed-GGb-int, 20.6.2012) and later is confounded when he realises that 

the configuration is not encompassed by his statement of the theorem. 
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In Michael’s case, the convex quadrilateral configuration first arose as shown in Figure 

5.8 (c) as a result of dragging C and D, rather than encountering the configuration as 

shown in Figure 5.8 (b) as a result of dragging B onto the minor arc. Arising in this 

manner, the convex quadrilateral configuration does not appear as an abnormal or non-

standard configuration. Instead it appears as a natural consequence of varying the angles 

at the centre and circumference to observe the doubling relationship. Thus the convex 

quadrilateral configuration appears on more equal terms with the arrowhead 

configuration, as one among a number of cases of the angle at the centre theorem. At 

least the convex quadrilateral configuration does not trouble Michael in the same way as 

the other three case study teachers. When it first arises as a result of dragging points C 

and D ‘upwards’, Michael remarks that the rule still applies, hesitating only to point out 

rounding errors: 

M:  ... Then I can start moving C and D to probably you know nice round 

numbers maybe, so 120 so you can see it’s twice as much.  If you go … yeah, I’d 

probably then eventually move it up like that to form like a quadrilateral so that the 

rule still applies.   

 

I:  Mmm, mmm. 

 

M:  Well it was an arrowhead before, wasn’t it, but now it’s a reflex angle on 

the outside of a quadrilateral but it still applies just.  I guess that’s a rounding [error].  

We were talking about that before weren’t we?  [Mic-GGb-int, 31.5.2012]  

 

After this initial exploration, dragging C and D, Michael concluded: 

Um, so yeah I think that’s about as much as I would do with diagram 1.  In fact I have 

done something similar with a similar diagram before. [Mic-GGb-int, 31.5.2012] 

 

Later in the interview, he was prompted to drag point B by the author. He then dragged 

point B past D and onto the minor arc CD causing the convex quadrilateral 

configuration to arise as shown in Figure 5.8 (b). However, unlike the other three case 

study teachers, this configuration seemed to cause him no confusion. He simply noted 

that he had mentioned this configuration earlier: 

.... and then this goes … well you know I mentioned that one earlier didn’t I ... [Mic-

GGb-int, 31.5.2012] 

 

Given the difficulties Robert, Anne and Edward faced interpreting the convex 

quadrilateral configuration when it first arose as a result of dragging B onto the minor 

arc CD, it would seem reasonable to assume that pupils might also find this 

configuration a cause for confusion. In addition, dragging point B first seems to place 
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undue emphasis on the arrowhead configuration. Thus it seems preferable to adopt a 

strategy of initially dragging points C and D to manage the dynamic imagery so that 

pupils first encounter the convex quadrilateral configuration as shown in Figure 5.8 (c), 

thereby also maintaining this configuration on more equal terms with the arrowhead 

configuration. Articulating such a strategy for managing dynamic imagery is an 

example of TPACK. This requires an understanding that dragging point B in D1 

confuses the angles in the same segment theorem with the angle at the centre theorem, 

and thus may be unwise as an introductory dragging strategy (to either theorem). Hence 

such a strategy requires controlling mathematical variation to highlight the specificity 

and the generality of a particular geometric relationship (rather than any other geometric 

relationship), in this case, the relationship that the angle at the centre of circle is double 

that at the circumference. In this sense, TPACK appears to be mathematical knowledge, 

abstract in the sense that it generalises across particular technological contexts and 

mathematical topics. For example, the codes choice and use of examples and decisions 

about sequencing in the Knowledge Quartet (Rowland et al., 2005) represent instances 

of controlling numerical and geometric variation that are intended to apply across 

technological contexts and mathematical topics. However, the means of controlling 

mathematical variation through dragging to generate examples is particular to dynamic 

geometry software. In addition, Leung and Lee (2013) suggest dynamic variation is 

central to software such as GeoGebra, hence controlling variation to highlight the 

specificity and the generality of a particular geometric relationship may be more salient 

in these technological contexts. Again this serves to highlight the situated nature of 

TPACK as a transformation of mathematical knowledge for the purposes of teaching 

using technology. 

 

 

5.3 Conclusion: the nature and content of mathematical knowledge for 

teaching using technology 

The analysis of case study teacher Robert’s computer suite lesson, presented in section 

5.1, suggested that a positive stance towards technology, in terms of global aspects of 

teacher knowledge (e.g. Bowers & Stephens, 2011; Zbiek & Hollebrands, 2008), may 

not be sufficient to ensure a teacher’s use of technology enhances mathematical 
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instruction. In addition, this analysis suggested that using technology places significant 

demands on individual teachers’ knowledge. 

Further, the analysis of the four case study teachers’ GeoGebra interviews in section 5.2 

suggested that the nature of mathematical knowledge for teaching using technology, as 

represented by the central TPACK construct, is not the integration of the dyadic 

constructs, TCK, PCK or TPK, with a third domain of knowledge. For example, in the 

exemplars of TCK described in section 5.2, the central TPACK construct did not appear 

to depend on integrating pedagogic knowledge with a combination of technological and 

mathematical knowledge. Instead, these exemplars of TCK highlighted mathematical 

knowledge for teaching using technology as mathematical knowledge, abstract in the 

sense that it generalises across particular technological contexts and mathematical 

topics. For example, rounding errors appear in measurement whenever one tries to relate 

mathematic ideals to the empirical world, whether in the context of using GeoGebra or a 

paper-and-pencil environment. In this sense, viewing mathematical knowledge for 

teaching using technology as abstract mathematical knowledge draws closer to the 

integrative perspective (Graham, 2011) of TPACK in that such knowledge may not be 

seen as particular to the context of teaching with technology. On the other hand, the 

TCK exemplars simultaneously highlighted the situated nature of mathematical 

knowledge for teaching using technology. Thus, having an articulated pedagogic 

strategy for dealing with the issue of rounding errors in GeoGebra, for example, 

suggested that the central TPACK construct signified a synthesis of mathematical, 

pedagogical and technological knowledge, indicating the situated nature of 

mathematical knowledge for teaching using technology. In this sense, the central 

TPACK construct appears to draw attention to the transformation (Rowland et al., 2005, 

Shulman, 1987) of mathematical knowledge for the purposes of teaching using 

technology. 

The apparent duality of mathematical knowledge for teaching using technology 

produces a tension: teacher knowledge appears simultaneously to be both situated in 

and abstracted across technological contexts and mathematical topics. To this extent, 

Noss and Hoyles’ (1996; & Kent, 2004; & Pozzi, 2002) notion of situated abstraction 

seems appropriate as a description of mathematical knowledge for teaching using 

technology. This notion is useful in allaying the concern that seeing mathematical 

knowledge for teaching using technology as situated should not be taken to mean that 

each piece of technology requires teachers to learn an entirely new and distinct domain 
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of mathematical knowledge for teaching i.e. mathematical knowledge for teaching using 

GeoGebra as distinct from mathematical knowledge for teaching using a static paper-

and-pencil environment as distinct from mathematical knowledge for teaching using 

Geometer’s Sketchpad and so on. Thus a teacher with mathematical knowledge for 

teaching using GeoGebra and mathematical knowledge for teaching using a static 

paper-and-pencil environment should find it easier to develop mathematical knowledge 

for teaching using Geometer’s Sketchpad and so on. However, at the same time the 

notion of situated abstraction allows that mathematical knowledge for teaching using 

technology may not always be separated from the context of its construction or 

application, thus the particular technological context in which it was developed may be 

central to its meaning (Noss et al., 2002). 

 

Adler’s (1999) use of Lave and Wenger’s (1991) notion of transparency to describe 

teachers’ dilemmas in negotiating the dual visibility and invisibility of talk as a resource 

in the practice of school mathematics also appears useful although, here, it is applied to 

the use of technology as a resource in the practice of teaching school mathematics. 

Adler (1999) describes Lave and Wenger’s use of the metaphor of a window to explain 

their notion of transparency: 

Lave and Wenger (1991) used the metaphor of a window to clarify their concept of 

transparency. A window's invisibility is what makes it a window. It is an object 

through which the outside world becomes visible. However, set in a wall, the window 

is simultaneously highly visible. In other words, that one can see through it is 

precisely what also makes it highly visible. 

 

Thus technology as a teaching resource for mathematics needs to be simultaneously 

both visible, so that it can be noticed and used in the practice of teaching school 

mathematics, and invisible so that attention is focused on the subject matter, teaching 

mathematics to pupils. The specificity of teaching mathematics using a particular piece 

of technology influences the mathematics that can be taught. For example, sketch 

diagrams in paper-and-pencil environments are flexible in that they do not have to obey 

fixed rules in relation to measurement of lengths and angles. Diagrams in GeoGebra 

appear more rigid in this respect - hence Edward’s irritation with rounding errors and 

the definition and measurement of angles in the software. The flexibility of the paper-

and-pencil environment by contrast affords the user the freedom to imagine they are 

working in an ideal mathematical world, where perfect circles, exact angle 

measurement, circle theorems and proof ‘exist’. Hence, whilst all four case study 
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teachers were generally favourable towards using the GeoGebra diagrams for 

establishing the theorems on an empirical basis, Robert and Edward did not see the 

software as a means for developing proof. Similarly, the window frame, its shape and 

positioning on the wall, influences which part of the outside world can be seen. Thus 

teachers need to understand the significance of the particular technology for the 

mathematics they are teaching; hence the technology requires explicit attention, it needs 

to be visible. In this sense, mathematical knowledge for teaching using technology is 

always situated, since the technological context in which it is being applied is central to 

its meaning.  

Simultaneously, however, technology should enable the teaching of mathematics, in this 

case the GeoGebra software should enable the teaching of circle theorems, and should 

thus be invisible. It is the window through which mathematical knowledge for the 

purposes of teaching can be seen: the GeoGebra software is a means of controlling 

numerical and geometric variation so that pupils are systematically exposed to a wide 

range of examples of the angle at the centre theorem.   Here, mathematical knowledge 

for teaching using technology appears more abstract, allowing teachers to make 

comparisons and connections across technological contexts. 

Adler’s description of a dilemma of transparency where the teacher manages talk as a 

classroom resource, so that it is neither too visible for pupils, obscuring the 

mathematical subject matter, nor too invisible so that they are unable to access it, has 

some explanatory value for this study. However, here, the dilemma is managing 

technology so that it does not become too visible for teachers, obscuring mathematical 

knowledge for teaching using technology, nor too invisible, so that teachers assume that 

the use of technology unproblematically provides a pedagogic structuring for 

mathematics. For example, Edward’s irritation with the definition and measurement of 

angles in GeoGebra indicated that the software was too visible for him. In this case the 

GeoGebra software obscured his access to mathematical knowledge for teaching using 

technology, i.e. the articulation of a pedagogic strategy to use the software as a means 

for discussing how to define the angles involved in a full statement of the angle at the 

centre theorem. On the other hand, the case study teachers’ focus on dragging point B in 

D1, emphasising the arrowhead configuration as the standard configuration of the angle 

at the centre theorem provides an instance where technology seems too invisible. Here, 

the unintentional pedagogic structuring of mathematics suggests that the technology has 

become too invisible, with an assumption that technology provides unproblematic 
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access to mathematical knowledge for teaching. Similarly, the Knowledge Quartet code 

adherence to textbook might suggest instances where technology in the form of a 

textbook has become too invisible in the practice of teaching school mathematics.  

The TPACK framework and the central TPACK construct in particular were useful for 

the purposes of this study for concentrating attention on teacher knowledge in relation 

to technology, identifying mathematical knowledge for teaching using technology as a 

focus for research (see also Chapters 1 and 2). In a similar sense, Shulman’s (1986) 

concept of PCK has been highly productive, stimulating research focused on the nature 

and content of teacher knowledge (see Chapter 2).  

The central TPACK construct also provided a useful metaphor for recognising the 

nature of mathematical knowledge for teaching using technology simultaneously as 

abstract mathematical knowledge and as a synthesis of content, pedagogy and 

technology knowledge i.e. highlighting the situatedness of mathematical knowledge in 

the context of teaching and technology. In other words, the strength of the TPACK 

framework for this study is the contribution it makes in helping to manage the dilemma 

of transparency: the framework helps to balance the dual visibility and invisibility of 

technology as a resource in the practice of teaching school mathematics. The weak 

theorisation of the TPACK framework (Graham, 2011; Ruthven, 2014; Voogt et al., 

2012) provides a key affordance in this respect, by allowing the user to move between 

an integrative and transformative perspective in particular in relation to the central 

TPACK construct. 

However, the categorisation of knowledge, induced by the Venn diagram depiction of 

the TPACK framework, into the seven constructs (TK, CK, PK, TCK, PCK, TPK and 

the central TPACK construct) suffers from difficulties similar to those of other 

knowledge taxonomies (e.g. Ball et al., 2008). Namely, it seems unlikely that 

demonstrable progress will be made in establishing “persuasive and productive 

distinctions” (Ruthven, 2011) between the categories of knowledge hypothesised by the 

TPACK framework, since as the examples discussed in this chapter suggest, problems 

of using technology to teach mathematics generally cannot “be adequately framed in 

‘pure’ terms drawn from a single knowledge domain, or even by drawing on several 

domains independently” (ibid). In addition, the abstract quality of the TPACK 

categories and their apparent separation from each other tends towards an impression of 

static ‘knowledge’, for which Shulman’s original categorisation of PCK, on which the 
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framework was based, has similarly been criticised (Fennema & Franke, 1992). Thus 

although a transformative perspective of the TPACK framework draws closer to 

Shulman’s (1987, also Rowland et al., 2005) use of transformation, nevertheless the 

central TPACK construct is theorised as a new domain of knowledge rather than as a 

dynamic process. Finally, the analysis presented in section 5.2 suggests that the content 

of mathematical knowledge for teaching using technology consists of a repertoire of 

articulated strategies for using the constraints and affordances (Greeno, 1998) of the 

technology for the purposes of teaching mathematics. However, beyond this the 

TPACK framework does not appear useful in terms of producing a more fine-grained 

analysis (Ruthven, 2014) of the content of mathematical knowledge for teaching using 

technology because it lacks subject-specificity. Thus, in Chapter 6, the Knowledge 

Quartet provides an analytic tool for a more detailed investigation of the content of 

mathematical knowledge for teaching using technology due to its development in the 

field of mathematics education research.  

 

5.4 Summary 

This chapter has focussed on individual teachers’ own knowledge in relation to using 

technology to teach mathematics. Thus this chapter has begun to address RQ2, by 

describing the nature of mathematical knowledge for teaching using technology in terms 

of the notion of situated abstraction and indications of content in relation to the topic of 

circle theorems. However, beyond this the TPACK framework did not appear useful in 

terms of producing a more fine-grained analysis (Ruthven, 2014) of the content of 

mathematical knowledge for teaching using technology because it lacked subject-

specificity. Hence Chapter 6 returns to RQ2, using the Knowledge Quartet as an 

analytic tool to provide such a fine-grained analysis of the content of mathematical 

knowledge for teaching using technology in relation to the topic of circle theorems. In 

focusing on individual teachers’ own knowledge in relation to using technology to teach 

mathematics, neither Chapter 5 nor 6 include an explicit consideration of the 

participatory relationship between teacher and technology. This is addressed in Chapter 

7, where Hutchins’ view of distributed cognition provides a framework for 

understanding how individual teachers’ knowledge is involved in the participatory 

relationship (Remillard, 2005) with technology. 
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Chapter 6 - Conceptualising mathematical knowledge for teaching 

circle theorems using technology 

 

The literature review in Chapter 2 found that research on technology in mathematics 

education has paid relatively little attention to teachers’ knowledge of specific 

mathematical concepts in relation to technology. By comparison, research on teacher 

knowledge in the field of mathematics education is relatively well conceptualised, 

although limited in terms of its curriculum coverage. For example, Ma’s (1999) 

research focused on arithmetic operations and Askew et al (1997) focused on numeracy. 

In addition, research on teacher knowledge in the field of mathematics education has 

rarely considered teachers’ mathematical knowledge for teaching in the context of 

technology use. Hence the literature review concluded that the nature and content of 

teachers’ mathematical knowledge for teaching using technology remained an 

unresolved question, leading to the identification of Research Question 2: 

RQ2 What is the nature and content of teachers’ mathematical knowledge for 

teaching using technology, as represented by the central TPACK construct? 

Chapter 5 began to address RQ2, using Noss and Hoyles’ (1996; & Kent, 2004; & 

Pozzi, 2002) notion of situated abstraction and Adler’s (1999; 2001) concepts of the 

dilemma of transparency and visibility/invisibility to describe the nature of 

mathematical knowledge for teaching using technology as abstract, mathematical 

knowledge and yet simultaneously as mathematical knowledge situated in the context of 

teaching using technology. The analysis presented in Chapter 5 using the TPACK 

framework suggested that the content of mathematical knowledge for teaching using 

technology consists of a repertoire of articulated strategies for using the constraints and 

affordances (Greeno, 1998) of the technology for the purposes of teaching mathematics. 

However, beyond this the TPACK framework did not appear useful in terms of 

producing a more fine-grained analysis (Ruthven, 2014) of the content of mathematical 

knowledge for teaching using technology because it lacked subject-specificity. 

This chapter addresses RQ2 through a detailed investigation of the content of 

mathematical knowledge for teaching using technology in relation to the topic of circle 

theorems, arriving at a conceptualisation of this knowledge. This conceptualisation 

demonstrates the high level of complexity of mathematical knowledge for teaching 

using technology in relation to the topic of circle theorems. This high level of 
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complexity is justified post-hoc by the analysis of data from the four case study 

teachers’ semi-structured GeoGebra interviews, using the Knowledge Quartet.  

The Knowledge Quartet was chosen as a suitable tool for analysis primarily due to the 

framework’s development as a means of focusing attention on teachers’ mathematical 

knowledge. The suitability of the framework for this study is discussed further in 

section 6.1 (see also Chapters 1 and 3). The analysis presented in this chapter 

demonstrates the emergence of choice and use of examples and decisions about 

sequencing as central codes, using exemplars of codes from each of the supra-categories 

of the Knowledge Quartet. The centrality of these two codes also provides a post-hoc 

justification for the development of a circle theorem case list for each case study 

teacher, as a means of measuring mathematical knowledge for teaching circle theorems 

using technology, allowing a comparison of both the specific circle theorem cases 

arising and the sequence in which they arose during the interview. Thus this chapter 

also addresses the subsidiary Research Question 2a:  

RQ2a How does a conceptualisation of teachers’ mathematical knowledge for teaching 

using technology suggest ways in which such knowledge could be measured? 

The literature review in Chapter 2 found that relatively sophisticated measures of 

teachers’ mathematical knowledge for teaching have been developed in research on 

teacher knowledge within the field of mathematics education. However, research on 

constructing measures of teachers’ mathematical knowledge in teaching has only 

recently begun to explore the impact of cultural context  (e.g. Delaney et al., 2008; 

Blomeke & Delaney, 2012). The impact of the methods with which test items are 

applied (e.g. multiple-choice questions, paper-and-pencil tests etc) and the mathematical 

topics covered on what is measured has received relatively little attention. In particular, 

the development of test items embedded in a technological context to measure teachers’ 

mathematical knowledge for teaching appears to have been neglected. 

The review of literature in Chapter 2 also suggested that research on mathematical 

knowledge for teaching emphasises the importance of connected knowledge. For 

example, Ma (1999) explains her notions of breadth and depth, which serve to 

characterise a profound understanding of fundamental mathematics, in terms of 

connections among concepts and between topics. Thus a reasonable hypothesis is that 

mathematical knowledge for teaching using technology might be measured in terms of 

the connectedness of teachers’ mathematical knowledge, for example, the number of 
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connections between concepts. In particular, from their concept-mapping interviews, 

Askew et al (1997, p.55) found a moderate relationship between their variable depth, the 

percentage of links that were explained by the teacher in conceptual terms, and pupil 

gains. Their other variables in relation to teachers’ mathematical knowledge did not 

show any relationship to pupil gains. In addition, depth was the only variable which 

appeared to be related to teaching orientation, with transmissionist teachers making a 

relatively low percentage of conceptual links compared to their connectionist and 

discovery-oriented colleagues (Askew et al, 1997, p. 60). This suggests a measure of 

mathematical knowledge for teaching using technology, defined in terms of conceptual 

connections, might show a moderate relationship with teachers’ transmissionist or 

connectionist orientation.  

In section 6.3, this chapter concludes by tentatively suggesting ways in which the circle 

theorem case list could be used to measure teachers’ mathematical knowledge for 

teaching using technology in terms of conceptual connections in relation to the topic of 

circle theorems. Validating these ways of measuring teachers’ mathematical knowledge 

for teaching using technology in relation to the topic of circle theorems was beyond the 

scope of this study. 

 

6.1 Analysis of GeoGebra interviews using the Knowledge Quartet 

In terms of this study, the strengths of the Knowledge Quartet lie in the framework’s 

focus on mathematical knowledge for teaching and the grounding of its codes in 

classroom observation, as prototypical classroom situations where mathematical 

knowledge for teaching arises, thereby maintaining strong face and content validity. In 

Chapter 5, the distinction between the dyadic constructs and the central TPACK was 

found to be in terms of mathematical knowledge, providing evidence that mathematical 

knowledge for teaching using technology can be thought of primarily as mathematical 

knowledge, albeit simultaneously situated in the context of teaching using technology. 

The TPACK framework does not provide a means for analysing mathematical 

knowledge due to its lack of subject-specificity. Thus, in relation to this study, the 

Knowledge Quartet’s focus on mathematical knowledge was a useful attribute, 

providing a subject-specific lens through which to view the data, complementing the 

TPACK framework’s focus on technology and compensating for its relative lack of 

subject-specificity. In particular, the Knowledge Quartet’s Connection supra-category 
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seems advantageous as an analytic tool in relation to the hypothesis that mathematical 

knowledge for teaching using technology might be measured in terms of the 

connectedness of teachers’ mathematical knowledge. In addition, research on the 

importance of variation to structure sense-making (Marton & Booth, 1997; Watson & 

Mason, 2005; 2006) suggests the code choice and use of examples (Transformation) 

may be advantageous as a tool for analysing mathematical knowledge for teaching using 

technology in the context of the semi-structured GeoGebra interviews, since dynamic 

variation is central to such software (Leung & Lee, 2013). 

On the other hand, the lack of focus on technology in the Knowledge Quartet, in 

particular on digital technologies, was a possible weakness in attempting to develop a 

measure of mathematical knowledge for teaching circle theorems using technology. 

However, as the literature review (Chapter 2) suggests, the Knowledge Quartet is not 

unique amongst frameworks on mathematical knowledge for teaching in lacking a focus 

on technology. The strong face validity of the Knowledge Quartet also made the 

framework generally appealing to the author. In addition, and perhaps more importantly, 

analysing the GeoGebra interview data using the Knowledge Quartet provided a means 

of ensuring that any measure of mathematical knowledge for teaching circle theorems 

using technology based upon this analysis would be likely to retain the strong content 

validity of the parent framework. However, the strong content validity of the 

Knowledge Quartet derives from the framework’s grounding in classroom observations, 

thus applying its codes to interview data might result in some discordancy. These issues 

regarding the Knowledge Quartet are returned to later in Section 6.1.5. 

The following sections draw on data from the discussion of the first diagram D1 in the 

semi-structured interviews on using GeoGebra files to teach circle theorems to 

exemplify the four supra-categories of the Knowledge Quartet, namely Foundation, 

Transformation, Connection and Contigency. These examples are intended as being 

indicative rather than an attempt to provide an exhaustive list of each Knowledge 

Quartet code that arose during the case study teachers’ interaction with the GeoGebra 

file in interview. In particular, the examples have been chosen to illustrate the 

emergence of choice and use of examples (Transformation) and decisions of sequencing 

(Connection) as central codes. In addition, where appropriate, indications or examples 

are given where codes were absent or required an interpretation that appeared to deviate 

somewhat from the original Knowledge Quartet meaning due to the interview or 

technological context. 
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6.1.1 Foundation  

The extraneous chord  

D1 was designed as a means of demonstrating the angle at the centre theorem. All four 

of the case study teachers, Robert, Anne, Edward and Michael, readily recognised the 

purpose of the diagram. D1 was constructed with the angle at the circumference at point 

B, subtended by the arc CD, and the angle at the centre-point A, also subtended by the 

arc CD, as shown in Figure 6.1. In addition, an extraneous chord was constructed as a 

dashed line segment joining points C and D.  

 

Figure 6.1 The starting configuration of Diagram 1 

The chord CD is extraneous because it is not mathematically useful either in defining or 

proving the angle at the centre theorem. Indeed, the extraneous chord is a potential 

distraction from the angle at the centre theorem, since it divides the circle into two 

segments, drawing attention to another circle theorem: the angles in the same segment 

theorem. It could be argued instead that the chord CD provides a useful means of 

connecting the two theorems. However, the chord CD is also not necessary either in 

defining or proving the angles in the same segment theorem. In fact, such a connection 

might be better made mathematically by introducing the ‘angles in the same segment’ 

theorem as ‘angles on the circumference subtended by the same arc’. Thus recognising 

the chord CD as extraneous to D1 for the purpose of demonstrating the angle at the 

centre theorem, or at least questioning its relevance, is an example of overt subject 

knowledge, indicating a coherent mathematical understanding of this circle theorem. 

Robert was the only case study teacher to question the relevance of the chord CD for the 

angle at the centre theorem. Early on in the discussion of D1, he stated: 

R:  the thing I thought when I was looking at this first time around was, if the 

intention of this is to, for pupils to see that the angle at the centre is double that at the 
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circumference, then I wasn’t necessarily sure about how actually drawing in the chord 

helped them with this. [Rob-GGb-int, 13.6.2012] 

 

Later in the interview, Robert appeared to find a possible use for the chord CD in 

identifying the relevant angles in a particularly contorted configuration of D1 and, 

alluding to the angles in the same segment theorem, he also referred to the chord CD: 

R:  I think dragging point B kind of demonstrates the, I mean, the invariance 

of the fact that well it’s still coming from the same chord. [Rob-GGb-int, 13.6.2012] 

 

In contrast, Edward incorrectly assumed that the chord CD was relevant to the angle in 

the centre theorem, using the chord in his attempt to define the angle at the 

circumference and the angle at the centre in a statement of the theorem: 

E:  the chord C and D, joining C and D ... subtends an angle of 108 at the 

centre and 54 at the circumference, so uh … for this configuration of points it’s 

showing that the angle at the centre is twice the angle at the circumference. [Ed-GGb-

int, 20.6.2012] 

 

Edward was the only case study teacher to volunteer an attempt at a precise definition of 

the angles involved in the angle at the centre theorem. The other three teachers left the 

definition of the angles implicit, generally referring to them as the ‘angle at the 

circumference’ and the ‘angle at the centre’. Edward’s attempted definition later caused 

him difficulties as he encountered the convex quadrilateral configuration of D1 where 

the relevant angles, i.e. those involved in the doubling relationship, did not conform to 

his definition based on the chord – see Figure 5.6, Edward’s angle definition dilemma. 

Neither Anne nor Michael mentioned the chord CD. 

Recognising the chord CD as extraneous seems an important example of foundational 

knowledge because of how the chord seemed to influence Edward and Robert’s choice 

and use of examples and decisions about sequencing. In particular, perhaps as a result of 

defining the angle at the centre as subtended by the chord CD, Edward viewed the 

convex quadrilateral configuration shown in Figure 5.6 as a complication to be avoided 

rather than a natural continuation of the theorem. Similarly, Robert suggested he would 

drag B first, essentially demonstrating the angles in the same segment theorem, causing 

the convex quadrilateral configuration to first arise with the ‘incorrect’ angle at the 

centre. Thus, unfortunately, the convex quadrilateral configuration first appears as a 

non-standard or special case of the angle at the centre theorem due to the relative 

positioning of points B, C and D. The appearance of the convex quadrilateral 

configuration as a non-standard or special case may have been heightened by the 

presence of the chord CD, since it separates the circle into two segments, indicated by 
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Robert’s reference to B being positioned in the “opposite segment” as one of two main 

special cases: 

R:  I think I mean those are the two main ones I think in the opposite segment 

and also the DC being a diameter. [Rob-GGb-int, 13.6.2012] 

 

The ‘Arrowhead’ Rule 

Michael was the only case study teacher to state that “in my head this rule is the 

Arrowhead Rule” [Mic-GGb-int, 31.5.2012]. He said this in response to the 

interviewer’s introduction of the upside-down arrowhead configuration, a 180-degree 

rotation of Figure 5.3 or Figure 5.8 (a) the standard arrowhead configuration, to indicate 

that the rotation did not seem a significant alteration to him. A little later, Michael 

moderated this response, after further prompting from the interviewer, to:  

Yeah, I guess the point is I mean not to call it the Arrowhead Rule so that they look 

for an arrowhead, because now they might look at that and go you know ‘It’s two 

spikes going up, I’m used to one spike going up’ and then don’t realise it’s just upside 

down.  So yeah, I guess yeah I guess there is a benefit to that. [Mic-GGb-int, 

31.5.2012] 

 

To some extent, Michael’s moderated response is a positive instance of identifying pupil 

errors i.e. a recognition that pupils may find different orientations difficult to identify as 

the same configuration. On the other hand, his admission that, for him, the angle at the 

centre theorem is really the ‘Arrowhead’ Rule is a rather negative instance of overt 

subject knowledge, suggesting he views the arrowhead configuration as the standard 

configuration of the angle at the centre theorem, relegating other mathematically valid 

configurations of this theorem as non-standard, exceptional or special cases. 

Although Michael was the only teacher to articulate that he saw the angle at the centre 

theorem as the Arrowhead Rule, the choice and use of examples and decisions about 

sequencing of the other case study teachers also suggested they might implicitly share 

the same understanding. Edward argued that he would drag points B, C and D, 

maintaining the arrowhead configuration, until he felt that his pupils had grasped the 

doubling relationship, only then moving on to “complicate” it by considering alternative 

configurations: 

E:  What I’d start with is look just move B between C and D but don’t cross it 

and move D just so it doesn’t go further round than CD being a diameter. [Ed-GGb-

int, 20.6.2012] 
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E:  When I was happy everyone had got that idea for that sort of arrow-shape, 

I’d then move on and complicate it.  [Ed-GGb-int, 20.6.2012] 

 

Robert and Anne also suggested they would drag point B first, essentially demonstrating 

the angles in the same segment theorem, leaving the cross quadrilateral configuration 

implicit and causing the convex quadrilateral configuration to first arise with the 

‘incorrect’ angle at the centre. As argued previously, this has the effect of causing the 

convex quadrilateral configuration to appear as a non-standard or special case, reifying 

the arrowhead configuration as the standard configuration. 

Adhering to the starting configuration 

Robert was the only case study teacher to consider modifying the starting configuration 

of D1 to suit his own pedagogical requirements. He suggested he might alter D1 so that 

the initial numerical example displayed when opening the GeoGebra file would be an 

almost implausibly ‘nice’ pair of numbers, setting the angle at the circumference to 60 

degrees and the angle at the centre to 120 degrees as an example. His intention was to 

set up a situation that appeared ‘too good to be true’ so that pupils would assume no 

relationship was likely to exist and would therefore sustain cognitive conflict when the 

angle at the circumference remained invariant under drag, hopefully making the result 

more memorable. The other three case study teachers uncritically accepted the starting 

configuration, questioning neither the numerical example nor the geometric 

configuration.  

The geometric nature of the starting configuration, in particular, is important since it 

provides an implicit pedagogic structuring. For example, opening the GeoGebra file so 

that D1 initially displays an arrowhead configuration implies a choice and use of 

examples and a decision about sequencing that alternative configurations will occur as a 

consequence of the arrowhead configuration, potentially reinforcing the impression of 

the arrowhead as the standard configuration of the angle at the centre theorem. An 

alternative would be to open the GeoGebra file so that D1 initially displays the convex 

quadrilateral configuration as a means of challenging this apparent orthodoxy. In 

addition, the starting configuration tends to impose decisions about sequencing, since 

some configurations are more difficult to obtain depending on whether they require 

dragging point B, C or D only or a combination of these points.  

The case study teachers’ adherence to or modification of the starting configuration 

appears to coincide with the meaning of the code adherence to textbook, in the sense 
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that it describes a situation involving mathematical knowledge for teaching where a 

teacher decides either to adhere to or to modify the pedagogic structuring of 

mathematics by a teaching resource. The teacher’s decision, implicit or explicit, 

regarding the pedagogic structure of the teaching resource provides an indicator of 

foundational knowledge. An implicit (i.e. uncritical) adherence to the pedagogic 

structure of the teaching resource implies a negative reading of the code. Thus Anne, 

Edward and Michael’s uncritical acceptance of the starting configuration suggests they 

lack foundational knowledge that the starting configuration of D1 might be (usefully or 

otherwise) critiqued in terms of the pedagogic structuring it provides. Hence they make 

a readerly response to D1 (Bowe, Ball and Gold, 1992, drawing on the work of 

Barthes). Nevertheless, a readerly response might apparently result in a positive choice 

and use of examples say, if the pedagogic structuring of the resource was sound. Thus, 

confusingly, a readerly response could also be interpreted as a positive example of the 

code adherence to textbook. 

A writerly response (Bowe et al., 1992) to D1 would entail a recognition that the 

starting configuration of D1 might be critiqued in terms of the pedagogic structuring it 

provides, resulting in an explicit decision either to adhere to or to modify the pedagogic 

structuring of the teaching resource. This suggests a positive reading of the code 

adherence to textbook. Indeed, an explicit decision to adhere to the pedagogic 

structuring of the teaching resource would be a positive example of the code adherence 

to textbook if the pedagogic structuring of the resource were sound. On the other hand, 

such a decision could also be interpreted as a negative example of the code if the 

pedagogic structuring turned out to be flawed in some way. An explicit decision to 

modify the pedagogic structuring of the teaching resource which resulted in 

improvement, would again indicate a positive example of adherence to textbook – this 

latter is also dealt with by the new code use of instructional materials under the 

Transformation category introduced by (Petrou & Goulding, 2011). However, Robert’s 

decision to modify the starting configuration could be interpreted as a deterioration in 

the pedagogic quality of the initial choice of example: it is geometrically too close to 

being symmetric and the numbers are exceptional. Thus Robert’s modification could be 

interpreted both as a positive and negative instance of the code adherence to textbook 

under Foundation and a negative example of use of instructional materials. This 

analysis is rather cumbersome and symptomatic of the Knowledge Quartet’s relative 

lack of focus on knowledge in relation to teaching resources in general. 
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Finally, there is a slight discordancy in using this code to describe the case study 

teachers’ adherence to or modification of the starting configuration, since the code 

specifically refers to a textbook and not a digital resource such as the GeoGebra file on 

circle theorems. The specificity of the adherence to textbook code derives from the non-

digital technology context in which it was grounded. The discordancy may be 

ameliorated by a minor alteration to the code, so that it refers to a more generic teaching 

resource as in use of instructional materials (Transformation) or responding to the 

(un)availability of tools and resources (Contingency). 

6.1.2 Transformation 

Numerical examples 

Numerical variation is crucial to appreciate the nature of the numerical relationship 

between the angle at the circumference and the angle at the centre as a doubling 

relationship as opposed to any other kind of numerical relationship, e.g. an additive one. 

It also indicates the range of numerical values over which the relationship is conjectured 

to hold. Providing numerical variation using D1 is essentially dependent on dragging 

either point C or D, since dragging point B leaves the angle at the centre invariant and 

only allows two possible numerical values for the angle at the circumference. 

All the case study teachers, at some point in the interview, dragged points C and D and 

made an explicit choice and use of examples with regard to the numerical examples they 

thought worthwhile demonstrating to their pupils. Often these choices were articulated 

in terms of ensuring the doubling relationship would not be obscured by an onerous 

calculation or disguised by rounding errors, rather than an explicit consideration of the 

need to provide numerical variation for the purposes described above. For example, as 

described in Chapter 5, both Michael and Robert chose numerical examples where the 

angle measures were multiples of 10 to make the doubling calculation more 

straightforward, helping their pupils ‘spot’ the relationship. Anne and Edward expressed 

disquiet about the potential of numerical examples containing rounding errors to 

obscure the doubling relationship (see Chapter 5), and all four teachers acknowledged 

the need to draw pupils’ attention to numerical examples containing rounding errors as a 

means of effacing the issue. For example, by dragging point D so that it coincided with 

point C, Michael found a particularly nice series of numerical examples with small 

angles as a means of addressing the issue of rounding errors, see Figure 6.2:  
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M:  If I okay, so if I move C and D together, they’re both going to be zero.  

Okay, that’s good because as soon as you start moving C and D apart, so you get, 

yeah, that’s again, that’s rounding isn’t it, because you’ve got the angle at the centre 

is 1.  The angle at the circumference is zero, but then when you … that’s a lovely 

illustration.  It’s gone from 2 to 1, but then you’re going to get 3 to 1, so there’s 

halves isn’t there? 

 

I:  Right. 

 

M:  So 4 to 2, so you’re going to get 5 to 2 before you get 6 to 3 or yeah. [Mic-

GGb-int, 31.5.2012] 

    

 

Figure 6.2 Michael’s series of numerical examples with small angles. Note he does not mention 

(v) but it is included here for completeness. 

 

Geometric configurations 

Geometric variation is crucial to appreciate the sufficiency of the condition that points 

B, C and D lie on the circumference of the circle for the angle at the centre theorem to 

hold. That is, the theorem holds no matter where the three points are positioned on the 

circumference, so long as they are distinct from each other. The positioning of points B, 

C and D in relation to each other determines the ‘shape’ of the internal quadrilateral 

BDAC. Thus there are three standard geometric configurations of the angle at the centre 

theorem: the arrowhead configuration, the convex quadrilateral configuration and the 

cross-quadrilateral configuration (see Figure 6.3). All four case study teachers explicitly 
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recognised the arrowhead and convex quadrilateral configurations and thought it 

important to demonstrate these to their pupils. For Robert, Anne and Edward, the cross-

quadrilateral configuration first arose as a result of dragging point B around the major 

arc CD, when asked how they would demonstrate D1 for pupils. At this stage in their 

interviews, the cross-quadrilateral configuration remained implicit: none of the teachers 

articulated recognition of this configuration as a distinct example.  

 

Figure 6.3 (a) The arrowhead configuration (b) the cross quadrilateral configuration and (c) the 

convex quadrilateral configuration 

Later in their interview, each of these three teachers again came across the cross-

quadrilateral configuration but as a result of dragging either point C or D. Robert, Anne 

and Edward each discussed this instance of the cross-quadrilateral configuration, 

explicitly recognising it as a distinct example. Their recognition of the cross-

quadrilateral configuration in this instance was due to the ‘incorrect’ angle at the centre 

being displayed, requiring some thought as to whether the theorem still applied or had 

broken down. Michael first came across the cross-quadrilateral configuration in this 

manner, through dragging point D. Both Robert and Michael discussed whether this 

example was appropriate to show their pupils. Robert concluded that it might be useful 

for his students to struggle to verify the theorem still applied, in the manner he himself 

had done, though it remained unclear whether he would make a point of demonstrating 

it to them explicitly. Michael suggested he would probably demonstrate the example to 

his highest-attaining students, as long as he felt sure they had a strong grasp of the 

theorem already, but it seemed unlikely that he would demonstrate this example for 

slightly lower attaining students. The case study teachers’ decisions about whether a 

particular geometric configuration was suitable for demonstrating to their pupils 

provides another example of their choice and use of examples. It is worth noting here 

that a teacher’s recognition of a case (or not) is an example of Foundation knowledge. 

Having recognised a particular case as an example, a teacher’s choice about whether 

and how to use the case with pupils falls under the Transformation category. 
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Teacher demonstration 

The code teacher demonstration provides an example of where the interview context 

appeared to disrupt the intended meaning of the code i.e. an instance of mathematical 

knowledge for teaching arising through a teacher demonstrating something 

mathematical to pupils in the context of a lesson. During the interview, there were no 

pupils present and, of course, to some extent, the case study teachers could be said to be 

demonstrating some aspect of circle theorems to the author at all times throughout the 

interview. However, the disruption of the teacher demonstration code appears more 

subtle than this statement would seem to imply. 

At times during the interview, in particular when asked how they would demonstrate D1 

for pupils, the case study teachers demonstrated to the author how they might drag the 

diagram for (imaginary) pupils. These instances remain as close to the original meaning 

of the code as possible in the interview context. At other times, the case study teachers 

appeared to demonstrate the diagram to the author as if to a colleague i.e. a fellow 

mathematics teacher from their department, for example. Robert provided the clearest 

instance of this in his initial description of D1, before being asked how he would use the 

diagram with pupils. He demonstrated his understanding of how the diagram is 

constructed; of the pedagogic purpose of the diagram i.e. to introduce the angle at the 

centre theorem and that there is an issue with rounding errors, which needs to be dealt 

with pedagogically.  

Okay, so we’ve got, so the three red points are presumably all fixed to the 

circumference of the circle and I can modify all of them so they’re all free to move.  

Um, and what they do, so two of the points define a chord.  The third point are 

connected to those two points and it … well, that chord, there’s a subtended angle 

which is marked and measured and at the centre there’s the same angle which in the 

way that it’s currently looking is double [dragging B back and forth], but not always, 

if you choose numbers that round awkwardly. [Rob-GGb-int, 13.6.2012] 

 

This demonstration of the diagram is quite different to how he later suggested he would 

demonstrate D1 to pupils. Following on from this demonstration, Robert continued to 

explore the diagram, this time dragging point C. Coming on an unexpected 

configuration, he seemed to be speaking to himself rather than to an observer: he 
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appeared to speak more softly, asking questions that seemed directed to himself about 

what was happening, since he answered them himself. 

What happens if it comes this way? [dragging point C, stops at angles B=100, A=200] 

That still works. And if that comes over there? [dragging C past B, ‘incorrect’ angle 

at centre shown] It doesn’t work anymore. [Rob-GGb-int, 13.6.2012] 

 

The other case study teachers similarly appeared to ‘demonstrate’ the diagram to 

themselves when confronted with unexpected configurations. Thus, in an interview 

context, there appears to be three types of demonstration: demonstration to (imaginary) 

pupils; demonstration to a colleague/the interviewer, and ‘demonstration’ to oneself i.e. 

personal exploration. The first two types of demonstration belong under 

Transformation, since they suggest a demonstration of the diagram for pedagogic 

purposes, whilst the third is more appropriately considered under Foundation as it 

indicates a personal understanding of mathematics. 

6.1.3 Connection 

Sequencing configurations 

All the case study teachers made decisions about sequencing in terms of the order in 

which they introduced geometric configurations to their pupils. For example, Edward 

suggested he would maintain the arrowhead configuration, first dragging point B and 

then points C and D, until he felt his pupils had a good grasp of this configuration, 

before introducing new configurations as a “complication” [Ed-GGb-int, 20.6.2012]. As 

a first complication, Edward suggested he would introduce the convex quadrilateral 

configuration by dragging point B onto the minor arc CD. Secondly, Edward suggested 

he would drag point D so that the chord CD becomes a diameter. Finally, he suggested 

he might continue to drag point D, thereby introducing a different version of the convex 

quadrilateral configuration. Edward’s sequencing of geometric configurations is 

depicted in Figure 6.4.  
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Figure 6.4 An indication of Edward’s sequence of configurations. The trace gives a sense of 

how he dragged points B, C and D. 

Similarly, Robert and Anne suggested they would maintain the arrowhead configuration 

initially, before introducing the convex quadrilateral configuration by dragging point B 

onto the minor arc CD. In addition, Robert later suggested he would also introduce the 

configuration where CD is a diameter and the alternative version of the convex 

quadrilateral configuration arrived at through dragging point D. 

Michael also suggested he would maintain the arrowhead configuration initially whilst 

dragging points B, C and D. However, in contrast, he then suggested he would 

introduce the convex quadrilateral configuration by dragging points C and D, as shown 

in Figure 6.5. Michael’s sequencing produces a different impression of the convex 

quadrilateral configuration and is preferable to the other three case study teachers’ 

decisions about sequencing for reasons discussed in Chapter 5. 
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Figure 6.5 An indication of Michael’s sequence of configurations 

 

Making connections between circle theorems 

Using D1 to make connections between circle theorems is an example of making 

connections between concepts. Robert wanted to use D1 to make connections between 

the angle in the centre theorem and two other circle theorems, the angles in the same 

segment theorem and ‘Thales theorem’ or the angle in a semi-circle is right. Similarly 

Edward thought that dragging point D so that CD forms a diameter made a “nice” 

connection, showing “really well” that the angle in a semi-circle is right is a 

consequence of the angle in the centre theorem [Ed-GGb-int, 20.6.2012]. 

Making these connections between the circle theorems impacted on the case study 

teachers’ choice and use of examples and decisions about sequencing. In particular, 

Robert and Edward both dragged point B to initiate their demonstration of D1 to pupils, 

which is in essence a demonstration of the angles in the same segment theorem (see 

Figure 6.4 i and iii). Whilst dragging point B does make a connection between the two 

theorems and may connect with prior work, as Robert suggested, the decision about 

sequencing, i.e. choosing to introduce D1 in this way, risks distracting from the main 

pedagogic purpose of diagram, namely to introduce the angle in the centre theorem. 

Pedagogically, it seems preferable to use D1 to make connections with the angle in the 

same segment theorem once the angle in the centre theorem has been established. The 

angle in the semi-circle theorem by contrast can be viewed as a particular numerical 

example of the angle in the centre theorem. Thus choosing to make this connection 

between the two theorems represents a positive case of the choice and use of examples. 

In addition, making this connection by dragging point C and/or point D represents a 

positive case of decisions about sequencing, leading onto the introduction of the convex 
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quadrilateral configuration, since providing both geometrical and numerical variation is 

crucial to demonstrating the angle at the centre theorem, as argued above. Figure 6.6 

provides an illustration of what such a dragging sequence might look like. 

 

Figure 6.6 Illustration of an introductory dragging sequence for D1, connecting the angle in the 

centre theorem to the angle in a semi-circle is right theorem 

 

6.1.4 Contingency 

Unexpected configurations 

During their dragging of the diagram, each of the case study teachers came across 

unexpected configurations of D1 that gave rise to teacher insight. Typically, these 

configurations were unexpected either due to their unusual orientation or because the 

‘incorrect’ angle was displayed at the centre, thus the doubling relationship was not 

readily perceptible (see Figure 6.7 for examples). The case study teachers had to put 

some effort into reconciling these unexpected configurations with their existing 

knowledge, to recognise the angle at the centre theorem still held, entailing a (perhaps 

unstable) change in their Foundation overt subject knowledge. Here, a critical part of 

overt subject knowledge appears to be the range of examples of the angle at the centre 

theorem the teacher has explicit knowledge of in relation to D1 and in the context of the 

interview, i.e. their evoked concept image (Tall & Vinner, 1981). It is this set of 

explicitly known examples, evoked both in and by the technological and interview 
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context, that the case study teachers can draw on in a transformation of their knowledge 

for pedagogic purposes through a deliberate choice and use of examples.  

In addition, at times prompted by the author, the case study teachers sometimes 

considered whether and how they would use such a configuration if it arose during the 

course of a lesson. The convex quadrilateral configuration that arose during Robert’s 

interview by dragging point B onto the minor arc CD, described in the section on 

sequencing configurations, is an example of such an instance. Robert concluded that if 

he had known this configuration was going to arise in the lesson, he might deliberately 

avoid it, at least initially, in the hope that one of his pupils might raise it instead. He 

stated that previously he had constructed diagrams so that B was forced to lie on the 

major arc CD, so that such a configuration could not occur, but did not think he would 

do this in future. In the context of the interview, Robert’s conclusion represents a 

deviation from lesson agenda since it involves a change in his knowledge of how to 

transform the diagram for pedagogic purposes, in particular, a change in his choice and 

use of examples.  

 

Figure 6.7 Three examples of case study teachers’ unexpected configurations 

 

Two absences and a presence 

The codes responding to student’s ideas and responding to the (un)availability of tools 

and resources from Contingency were necessarily absent from the data. Given the 

interview design, based around a GeoGebra file, there were necessarily no tools and 

resources either unexpectedly present or unavailable. Without the necessary technology, 

the interview could not take place and there was no remit within the interview protocol 

for introducing additional tools or resources. Trivially, there were no children present 

during the interview, to whom the case study teachers could respond. 
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One type of contingency was not covered by the Knowledge Quartet codes: when the 

author introduced configurations as a prompt for the case study teacher, as in the 

upside-down arrowhead configuration, for example. These prompted configurations 

were generally unexpected, at least for the case study teacher. It is conceivable that an 

analogous contingency might occur in the context of a lesson where a teaching 

colleague was present, for example, due to team-teaching or due to the presence of a 

teaching assistant – the latter a reasonably common situation in current UK classrooms. 

Such a code might be termed responding to colleague’s intervention. The contingencies 

caused by the author’s prompts generally revolved around choice and use of examples, 

for example, of what pedagogic benefit was the upside-down arrowhead i.e. was it 

worth demonstrating to pupils. For Edward, this configuration also raised decisions 

about sequencing: he was concerned about the dragging sequence required to effect this 

configuration. 

 

6.1.5 Summarising the Knowledge Quartet analysis 

The analysis above demonstrates the emergence of choice and use of examples and 

decisions about sequencing as central codes in describing mathematical knowledge for 

teaching circle theorems using technology. The centrality of choice and use of examples 

in describing mathematical knowledge for teaching circle theorems using technology 

coincides with research emphasising the importance of variation for learning and 

pedagogy in general and for mathematics in particular (Marton & Booth, 1997; Watson 

& Mason, 2005; 2006). The centrality of decisions about sequencing from the 

Connection category of the Knowledge Quartet provides evidence in support of the 

hypothesis, stated in the introduction to this chapter, that mathematical knowledge for 

teaching using technology might be measured in terms of the connectedness of teachers’ 

mathematical knowledge. In particular, whilst variation in terms of choosing a set of 

examples is pedagogically important, the sequencing of these examples to provide a 

structure, in which attention is drawn to particular invariants before others, is equally 

important for pedagogic purposes. For example, choosing to introduce D1 by dragging 

point B produces variation which draws attention to the invariance of angles in the same 

segment theorem, thus distracting from the pedagogic purpose of the diagram, namely, 

to introduce the angle at the centre theorem. Introducing D1 by dragging B first had the 

added disadvantage of causing the convex quadrilateral configuration to seem like a 
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“complication” rather than a natural consequence of the angle at the centre theorem. In 

other words, providing numerical variation to make connections between different 

configurations of the same theorem before making connections with other theorems 

seems to be preferable for pedagogic purposes, indicating mathematical knowledge for 

teaching circle theorems using technology. Thus any measure of mathematical 

knowledge for teaching circle theorems using technology should reflect both the choice 

of examples and their sequencing.  

In addition, ideally a measure of mathematical knowledge for teaching circle theorems 

using technology should reflect the distinction, made in the section entitled ‘Unexpected 

configurations’ under Contingency, between examples (i.e. geometric configurations) 

that are explicitly recognised by the teacher and those that arise during the teacher’s or 

the author’s manipulation of the diagram but which remain implicit. This is important 

because it may be the mathematical knowledge made available in the classroom i.e. the 

knowledge distributed across both teacher and technology, rather than the individual 

teacher’s own knowledge that has most impact on the quality of pupils’ mathematical 

experience in the classroom. In making a deliberate choice and use of examples, the 

case study teachers were limited to the set of their explicitly known examples, evoked 

both in and by the technological and interview context i.e. their evoked concept image 

(Tall & Vinner, 1981). A further distinction was made between those explicitly-

recognised configurations that the teacher chose to include through a deliberate choice 

and use of examples, and those they chose to exclude, either by suggesting they might 

discuss such configurations (only) if they happened to arise through dragging or by 

suggesting they might deliberately avoid them when demonstrating D1 to pupils. Again, 

a measure of mathematical knowledge for teaching circle theorems using technology 

should ideally reflect this distinction. 

The analysis presented in the previous section shows that the Knowledge Quartet 

remained a useful tool for focusing analysis on mathematical knowledge despite the 

shift away from the classroom context in which the framework was originally 

developed and grounded. This finding is not entirely surprising since although the 

classroom is a particularly important context, it is not the only context in which teachers 

are likely to employ their mathematical knowledge for teaching. Nevertheless, the 

change in context, both in terms of the interview setting and the technological context, 

did result in two absences, notably under Contingency: a lack of situations requiring a 

response to pupils’ ideas and a lack of situations requiring a response to the 
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(un)availability of tools and resources. This reflects the findings of Chapter 5 that 

mathematical knowledge for teaching using technology is a situated abstraction, 

simultaneously representing ‘abstract’ mathematical knowledge that can be applied 

across contexts and yet situated knowledge in that the particular context in which it was 

developed may be central to its meaning.  

In addition, the analysis of the GeoGebra interview data suggested some minor 

modifications to the Knowledge Quartet, both in relation to technology and to the 

interview context, that might prove useful when re-applied back to the original 

classroom setting or to other settings where teachers employ their mathematical 

knowledge for teaching. For example, responding to colleague’s intervention was 

suggested as an additional code under Contingency that might be applicable beyond the 

interview context. A distinction was also made between three types of teacher 

demonstration, i.e. a demonstration to pupils versus a colleague under Transformation 

and to oneself under Foundation. This distinction seems less applicable beyond the 

interview context, since it is hard to envisage how the latter two types might occur in a 

classroom context. 

The cumbersome analysis of situations involving the code adherence to textbook is 

symptomatic of the Knowledge Quartet’s lack of focus on knowledge in relation to 

(digital) technology. The difficulty with this code is that it categorises situations 

involving the application of foundational knowledge both in perceiving the technology 

as something requiring a pedagogic critique and in terms of the quality of the critique 

applied to the teaching resource. The former relates to the teachers’ foundational 

knowledge in adopting a readerly or writerly approach to the resource (Bowe et al., 

1992). The latter is also dealt with under the Transformation category, specifically the 

code use of instructional materials, which additionally reflects back onto the teachers’ 

foundational knowledge indicated by the quality of the pedagogic critique applied to 

transform the resource for the purpose of teaching. There is no easy way to ameliorate 

this difficulty within the Knowledge Quartet, however, adherence to textbook could be 

modified to reflect a broader range of teaching resources rather than privileging this 

paper-based technology. Furthermore, as a result of new codes added by a range of 

researchers, the codes of the Knowledge Quartet use an impromptu variety of terms to 

refer to teaching resources including textbook, instructional materials, tools and 

resources. The variety of terms is not intended to make any productive distinctions, as 

far as the author is aware, thus it might simplify and improve the coherence of the 
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Knowledge Quartet to settle on a particular term or group of terms to refer to teaching 

technologies. Finally, the analysis above provides an exemplification of the Knowledge 

Quartet in relation to digital technologies, albeit not in a classroom context. This 

exemplification might be useful in helping teachers to use the Knowledge Quartet as a 

tool for professional development in relation to their use of technology, as described in 

Turner and Rowland (2011). 

The next section builds on these findings to justify the development of the circle 

theorem case list as a potential tool for measuring mathematical knowledge for teaching 

circle theorems using technology. 

 

6.2 Developing a tool for measurement: the circle theorem case list 

A circle theorem case list is a numbered sequence of the pedagogic cases of the angle at 

the centre theorem in the order they arose through an individual case study teacher’s 

dragging of D1 during their semi-structured GeoGebra interview. Describing the 

development of this measurement tool shows how this process was necessarily entwined 

in a dialectic relationship with the conceptualisation of mathematical knowledge for 

teaching circle theorems using technology (Hill et al., 2008). In particular, it shows how 

the process of developing the circle theorem case list was crucial to unravelling the 

complexity of this knowledge. However, due to the complexity of mathematical 

knowledge for teaching circle theorems using technology, it seems expedient first to 

describe in detail the final measurement tool to provide a context for understanding the 

process of tool development. Thus the next sub-section provides a detailed description 

of the circle theorem case list, showing how the measurement tool allows comparisons 

to be made between the case study teachers’ choice and use of examples and decisions 

about sequencing. In addition, the analysis of interview data above using the 

Knowledge Quartet is employed to provide a post-hoc justification that the circle 

theorem case list shows potential as a measurement tool. This section then returns to 

provide a description of the process of developing the circle theorem case list. Finally, 

section 6.3 considers how the conceptualisation of mathematical knowledge for 

teaching using technology in relation to the topic of circle theorems, presented here, 

suggests ways in which such knowledge could be measured. The chapter concludes by 

speculating tentatively about the relationship (if any) between a connectionist versus 
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transmissionist teaching orientation and mathematical knowledge for teaching circle 

theorems using technology. 

 

6.2.1 A description and justification of the circle theorem case list 

The circle theorem case list provides a means of summarising the case study teachers’ 

choice and use of examples and decisions about sequencing in a manner that facilitates 

comparison. This fulfils the main criterion for a potential tool for measuring 

mathematical knowledge for teaching circle theorems using technology identified above 

in the analysis of the interview data using the Knowledge Quartet. Figure 6.8 presents 

the circle theorem case list for each of the four case study teachers. The reader is 

advised to view Figure 6.8 alongside Figure 6.9. To this end, both figures are included 

as separate sheets in the back cover of the thesis. The numbers in Figure 6.8 indicate the 

pedagogic cases of the angle at the centre theorem, elicited during the case study 

teacher’s interview. The numerical list of these pedagogic cases is depicted in Figure 

6.9 in order of the ease with which they can be obtained from the starting configuration 

through dragging points B, C and D. The pedagogic cases are numbered in this way in 

an attempt to preserve the case study teachers’ patterns of dragging, in effect the 

pedagogic structuring of cases imposed by the construction and starting configuration of 

D1. The list of pedagogic cases is also represented as a table in Figure 6.10 to 

demonstrate that the list represents a complete set of cases, given the criteria under 

which they were identified. The table was constructed so that its columns indicate the 

set of pedagogic cases that might be identified in an environment where dynamic 

variation through dragging the diagram was not possible, such as a textbook. That is, the 

columns indicate a set of eight standard, special and extreme geometric configurations, 

together with the recognition that for configurations where the angle at the centre is not 

a multiple of 180, displaying a reflex angle at the centre constitutes a separate 

pedagogic case to the configuration where an angle less than 180 degrees is displayed. 

The recognition of configurations displaying the reflex and non-reflex angles at the 

centre as separate pedagogic cases is important due to the relative difficulty of 

apprehending the doubling relationship at the heart of the angle at the centre theorem 

when the ‘incorrect’ angle at the centre is displayed. The table was constructed with two 

rows to reflect the dynamic nature of the GeoGebra software. Thus, a configuration was 

considered to constitute a separate pedagogic case if it arose as a result of dragging 
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point B or as a result of dragging points C and/or D. This distinction is important since 

dragging points C and D results in numerical variation, providing evidence for the 

doubling relationship between the angle at the centre and circumference, whereas 

dragging point B only varies whether the ‘correct’ or ‘incorrect’ angle at the centre is 

shown, as a consequence of the angles in the same segment theorem. 

The numbers representing pedagogic cases in each of the circle theorem case lists are 

also formatted, using bold, italics, underline, and grayscale, according to the following 

coding system, to indicate whether the pedagogic case arising during the interview was: 

(a) chosen by the case study teacher to show pupils in a deliberate choice and use of 

examples; 

(b) explicitly recognised by the case study teacher or remained implicit; and 

(c) unprompted, prompted indirectly or prompted directly by the author. 

The specification of the coding system is described in Table 6.1 and the details of how 

formatting is used to indicate this coding are provided as part of Figure 6.8. This coding 

system fulfils the secondary criteria for a potential tool for measuring mathematical 

knowledge for teaching circle theorems using technology that such a tool should reflect 

the distinctions made in the analysis of the interview data using the Knowledge Quartet, 

in the section entitled ‘Unexpected configurations’ under Contingency. These 

distinctions were two-fold, involving (1) differentiating between the pedagogic cases 

which appear to form part of the case study teacher’s evoked concept image, and those 

that arise during the teacher’s or the author’s manipulation of the diagram but which 

remain implicit and (2) distinguishing between those cases forming part of the case 

study teacher’s evoked concept image that the teacher chose to include through a 

deliberate choice and use of examples, and those they chose to exclude for whatever 

reason. 
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Table 6.1 Specification of coding system for pedagogic cases 

Show Pupils 

Did the case study teacher state they would show 

their pupils the pedagogic case in a deliberate 

choice and use of examples? 

 

Yes 

The case study teacher stated they would show this 

pedagogic case to their pupils. 

 

No 

Unclear whether the case study teacher would 

have shown this pedagogic case to their pupils e.g. 

stated they might avoid the case (initially); case 

would be acceptable if it comes up through 

exploration; case remained tacit. 

 

 

Case recognition 

Did the case study teacher recognise the pedagogic 

case explicitly or did it remain implicit? 

 

Explicit recognition 
The case study teacher commented verbally on the 

pedagogic case, whilst D1 was held stationary or 

left static showing the case. 

 

Implicit recognition 
D1 was held stationary or left static, if only 

briefly, but the case study teacher did not comment 

verbally on the pedagogic case OR the pedagogic 

case arose repeatedly during continuous dragging 

to show a ‘family’ of cases but was not referred to 

e.g. for Robert, Anne and Edward the cross-

quadrilateral configuration arising from dragging 

point B initially.  

 

Not Listed 

Pedagogic cases were not included in the case 

study teacher’s circle theorem case list if they did 

not arise during the interview or only occurred 

briefly during continuous dragging i.e. D1 was not 

stationary or static; continuous dragging was not to 

show a ‘family’ of cases. 

Prompting 

How was the case study teacher prompted by the 

author to recognise the case? 

 

Unprompted  
Pedagogic cases that arose from the case study 

teacher’s dragging after the first two interview 

questions: ‘what’s going on in this diagram?’ and 

‘how would you drag it for pupils?’ 

 

Indirectly prompted 

Pedagogic cases that arose following subsequent 

interview questions from the author, but were not 

directly introduced by the author. 

 

Directly prompted 

Pedagogic cases that were introduced directly 

through dragging by the author. 
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Figure 6.8 Circle theorem case lists 

  

Figure 6.X.8 Circle theorem case lists  

Robert 1 6 12 10 3 5 13 4 21 17 16 19 8 12’ 6’ 1’ 3’  

Robert* 1 3 5 6 13 4 12 10 21 17 16 19 8 12’ 6’ 1’ 3’  

Anne 1 3 5 4 6 8 10 10’ 6’ 12’ 17’ 16’ 21      

Edward 1 3 5 6 12 13 10’ 6’ 12’ 19 8 10 7      

Michael 1 6 12 9 8 11 10 3 5 7’ 10’ 19 16 23 7 21 6’ 1’ 

 

Key to formatting of pedagogic cases 

Show Pupils Case Recognition Prompting 

Yes - underline 

No - normal text 

Explicit - normal text 

Implicit - italics 

Unprompted - bold 

Indirect prompt - normal text 

Direct prompt - grayscale 

 

6 = yes, would show pupils; explicit case recognition; unprompted  

6 = no, would not show to pupils; explicit case recognition; indirectly prompted 

6 = no, would not show to pupils; explicit case recognition; directly prompted 

6 = no, would not show to pupils; implicit case recognition; indirectly prompted 

6’ = indicates a 180-degree rotation of pedagogic case 6 

Cases are listed in the order they arose in the interview with the exception of Robert*. If a case 

arose repeatedly, only the first instance is shown and the formatting shows the strongest code for 

the case recognition and show pupils variables across these instances. For the prompting variable, 

the formatting shows the coding of the first instance the case arose in the interview.  

 

Robert* - presents the pedagogic cases as they arose through Robert’s dragging following the 

second question ‘how would you drag it for pupils?’ This seemed to provide a fairer comparison 

with the other three case study teachers. The other three case study teachers suggested their 

dragging in response to the first question was indicative of how they would drag D1 for pupils, 

whereas Robert’s dragging was significantly different. 
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Figure 6.9 Numerical list of pedagogic cases 

Figure 6.X.9 Numerical list of pedagogic cases  

Arise from dragging 

point B only 

Arise from dragging 

point C or D only 

Arise from dragging 

both points C and D 

Require dragging all 

three points to arise 
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Figure 6.10 Tabular list of pedagogic cases 

Figure 6.X.10 Tabular list of pedagogic cases 

 

NR = angle at the centre is between 0 and 180 degrees i.e. not reflex 

R = angle at the centre is between 180 and 360 degrees i.e. reflex  

B and CD indicate the last point dragged to arrive at the configuration.  

 

 

 

 ‘Standard’ configurations Special configurations Extreme configurations 

Configuration AH XQ CQ One-leg AH Semi-circle Odd triangle V-shape T-shape 

Angle at centre NR R NR R NR R NR R 180 NR R 0 360 

B 1 19 3 21 5 23 2 20 4 22 

CD 6 16 8 10 17 12 7 15 
13 

18 11 
9 14 

AH - arrowhead XQ – cross-quadrilateral CQ – convex quadrilateral One-leg AH 

Semi-circle Odd triangle V-shape T-shape 
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6.2.2 Developing the circle theorem case list: the coding system and list of 

pedagogic cases 

Initially, the idea for a circle theorem case list appeared to originate spontaneously from 

the data, perhaps as a welcome by-product of coding the data using the TPACK and 

Knowledge Quartet frameworks. Following the presentation of the case study teachers’ 

final circle theorem case lists in the last section, this spontaneity seems hard to credit 

since the analysis of the interview data using the Knowledge Quartet provides a post-

hoc justification of the features of the circle theorem case list as a potential tool for 

measuring mathematical knowledge for teaching circle theorems using technology. 

The circle theorem case list began as a rough attempt to create a numerical list of the 

configurations encountered by each case study teacher through their dragging of D1. 

The initial attempt was worth developing further because it seemed to provide a means 

of depicting how Michael’s dragging sequence differed from the other three case study 

teachers (for example, see Figure 6.8). From this initial attempt, a working list of 

possible pedagogic cases arising from D1 was compiled. At this early stage of 

development, this working list comprised the standard arrowhead, cross-quadrilateral 

and convex quadrilateral configurations, recognising that displaying the incorrect angle 

at the centre might constitute a separate case for pedagogic purposes, as well as a 

selection of special and extreme cases. Due to the use of the upside-down arrowhead 

configuration as an interview prompt, 180-degree rotations were also included in the 

working list as separate cases in an ad hoc fashion, as and when they occurred through 

the case study teachers’ dragging.  

A second stage of development attempted to make more rigorous the method of 

identifying pedagogic cases, by specifying the conditions that would have to be fulfilled 

for inclusion in a case study teacher’s circle theorem case list. The coding system 

detailed in Table 6.1 and described briefly in the previous sub-section resulted from this 

second developmental stage. A decision was made that a pedagogic case would be 

included if D1 was left static or held stationary so that it was possible for the author to 

recognise the configuration from the video in real time. In addition, a pedagogic case 

was included if it arose repeatedly as the result of continuous dragging as if to show a 

‘family’ of cases – the cross-quadrilateral configuration caused by dragging point B 

initially is the main example of such inclusion. A narrative of the GeoGebra interview 

(see methodology, Chapter 3) was used alongside the video to guide observation. 
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Guiding observation using the narrative increased the efficiency of compiling a list of 

pedagogic cases arising in the interviews, by identifying static periods (where no new 

cases arose), which could be skipped over. As the author watched each video, the 

pedagogic cases were noted on the narrative as they arose and compared to the 

description of events provided by the narrative. Noting pedagogic cases on the narrative 

located them within the interview and also highlighted the location of author prompts in 

relation to where pedagogic cases arose. This location was useful for comparing 

interviews to verify the reliability of coding criteria across case study teachers. In 

addition, the process of comparing the narrative against a re-viewing of the video 

provided a form of triangulation over time as evidence of reliability.  

Using the narrative to guide observation helped to identify a clear rationale for 

discriminating between explicitly and implicitly recognised pedagogic cases based on 

verbal data, resulting in the specification of the ‘Case Recognition’ variable detailed in 

Table 6.1. The original purpose of developing the narratives had been to provide an 

accessible summary of each interview, linking verbal and visual data together. Thus the 

pedagogic cases that occurred in the narrative generally did so because they were cases 

that the case study teacher had cause to comment on verbally, implying explicit 

recognition. Pedagogic cases that arose but did not feature in the narrative were those 

that did not excite verbal comment. Without verbal evidence, there was no support for a 

claim that the pedagogic case had been explicitly recognised by the case study teacher. 

Hence these pedagogic cases were included in the case study teacher’s circle theorem 

case list but were coded as remaining tacit or implicit. 

Coding the upside-down arrowhead configuration, in particular, led to a need to 

distinguish further between pedagogic cases according to whether they were introduced 

by the author or arose through the case study teacher’s dragging, leading to the 

specification of the ‘Prompt’ variable detailed in Table 6.1. The upside-down arrowhead 

was introduced by the author as a direct prompt in each of the four GeoGebra 

interviews. Thus each case study teacher necessarily commented in response, as 

recorded in the narrative of their interview, and the upside-down arrowhead was coded 

as being an explicitly recognised pedagogic case. However, it seemed misleading to 

code the upside-down arrowhead in the same way as pedagogic cases that arose without 

direct intervention from the author. Further, the dragging that gave rise to some of the 

pedagogic cases, recognised by the teachers either implicitly or explicitly, appeared to 

be triggered in response to a prompt by the author. For example, Michael seemed to 
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have finished with D1 until the author asked if there were any special or extreme cases 

he would want to show pupils. He responded by saying “There is now you’ve said that” 

and proceeded to drag D1 such that points C and D coincided to produce the ‘V-shape’ 

configuration. Thus it seemed reasonable to distinguish between pedagogic cases that 

were largely unprompted, arising as a result of dragging in response to the first two 

questions (“what’s going on in this diagram?” and “how would you drag it for 

pupils?”); those that were indirectly prompted through follow-up questions, as for 

Michael’s V-shape configuration; and those that were introduced as direct prompt by 

the author e.g. the upside-down arrowhead configuration.  

Finally, in the second stage of development, the case study teachers appeared to place 

greater pedagogic value on some configurations than others, stating explicitly they 

would make a point of showing some configurations to their pupils, whereas for other 

configurations they remained ambivalent or even suggested they might avoid them. This 

led to the specification of the ‘Show Pupils’ variable detailed in Table 6.1. For example, 

Anne stated she would show her pupils the upside-down arrowhead configuration as 

well as the standard arrowhead and convex quadrilateral configurations. She was 

ambivalent to other pedagogic cases she came across, neither suggesting she would 

deliberately show or avoid them. Robert also stated he would show his pupils the 

upside-down arrowhead configuration, however Michael was largely ambivalent, 

whereas Edward was concerned by the dragging procedure used to obtain the 

configuration. Again the narrative was useful for helping to identify and locate 

pedagogic cases in the interview where the teacher stated they would show the 

configuration to pupils, since these pedagogic cases clearly gave cause for the teacher to 

make a verbal comment.  

A third stage of development was prompted by the need to ensure that all pedagogic 

cases arising through the case study teachers’ dragging had been included in their case 

lists. Until this stage, if a pedagogic case arose repeatedly in interview, the circle 

theorem case list had only recorded the first instance of the case. Producing a case list 

including repetitions or multiple instances of pedagogic cases provided an opportunity 

to check that all pedagogic cases had been included. Thus a visual transcript of each 

interview was created to aid the production of a case list including multiple instances 

and as a means of ensuring that that all pedagogic cases arising through the case study 

teachers’ dragging had been included. A visual transcript is a pictorial list of 

configurations made visible by the case study teacher through dragging D1, whether 
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recognised tacitly or explicitly or not at all (see Appendix H). Thus a visual transcript 

includes configurations of D1 that were momentarily visible during continuous 

dragging as well as those where the diagram was briefly stationary or static. To some 

extent, the visual transcript also recorded which point was being dragged to elicit a 

particular configuration although this was not done consistently. The production of a 

visual transcript entailed viewing the video of the interview at different speeds. For 

example, a short sequence of the video was viewed to ‘get a feel’ for what had 

transpired, then the video was viewed in a stop/start manner to ensure all cases were 

recorded. The video recording was sufficient to look at several configurations per 

second in this manner. At times, the dragging was too rapid for the author to observe all 

the intermediate cases when the video was played at normal speed and very difficult to 

isolate the cases by using the stop/start method, thus although the diagram must 

logically have passed through these cases, they were not recorded. The video of each 

interview was then viewed once again at normal speed for the full length of the 

discussion of D1, without stop/starting, to verify the visual transcript was accurate. 

The creation of the visual transcript indicated that the working list of pedagogic cases 

was inadequate since it did not represent a complete, systematic list of pedagogic cases. 

In particular, it forced a deliberate consideration of visually similar pedagogic cases 

arising through different dragging approaches. For example, the two cases in Figure 

6.11 are visually similar in that they are both cross-quadrilateral configurations when 

left static or held stationary, however dynamically they appear quite different since one 

arises through dragging point B and the other from dragging point C or D. The creation 

of the visual transcript prompted the recognition of the two configurations in Figure 

6.11 as dynamically distinct pedagogic cases. 

 

Figure 6.11 Dynamically distinct pedagogic cases of the cross-quadrilateral configuration 

arising through dragging (a) point D and (b) point B. 

Recognising that pedagogic cases could be dynamically distinct entailed some 

deliberate decisions about what would constitute a distinct pedagogic case to prevent 

the number of cases becoming unmanageable. In particular, a decision was made that 
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configurations arising through the clockwise or anti-clockwise dragging of a point are 

considered the same and similarly reflections in a vertical axis are considered the same. 

Thus the four configurations in Figure 6.12 are considered to be examples of the same 

pedagogic case. 

 

Figure 6.12 Four examples of the cross-quadrilateral configuration, all representing the same 

pedagogic case. 

Points C and D are symmetrical so configurations arising from dragging point C were 

considered to be the same pedagogic case as those arising from dragging point D, as 

illustrated in Figure 6.13. 

 

Figure 6.13 Points C and D are symmetrical so these two cross-quadrilateral configurations 

represent the same pedagogic case. 

Ultimately this led to the compilation of a complete, systematic list of pedagogic cases 

as illustrated in Figures 6.9 and 6.10. Following the compilation of the complete 

numerical list of pedagogic cases, the videos were reviewed and a final circle theorem 

case list produced for each case study teacher, as illustrated in Figure 6.8. A second 

circle theorem case list was also created for Robert (see ‘Robert*’ in Figure 6.8) 

presenting the pedagogic cases as they arose through Robert’s dragging following the 

second question ‘how would you drag it for pupils?’ Robert was unique in that his 

response to the second interview question ‘how would you drag it for pupils?’ was 

intentionally different from his response to the first question ‘what’s going on in this 

diagram?’ Anne, Edward and Michael responded to the second interview question 

indicating they would drag D1 in a similar way to their response to question 1, before 

continuing their dragging to provide cases in addition to those already shown. This 
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suggests that for these three teachers, listing cases in the order they arose in the 

interview also provides a reasonable indicator of how they would demonstrate D1 to 

pupils. Initially, Robert behaved more like a ‘developer’ of pedagogic resources, 

dragging the diagram mainly for his own exploration or to demonstrate something to the 

author as if to a colleague. His response to the second question was to start afresh, 

dragging D1 to his chosen starting configuration and dragging to show cases instead of 

those already shown. This suggests his response following the second question might be 

a better indicator of how he would demonstrate D1 to pupils. Whilst the case list 

‘Robert’ provides a record of the interview, the case list ‘Robert*’ is a reasonable 

indicator of how he would demonstrate D1 to pupils and thus provides a fairer 

comparison with the case lists of the other three case study teachers. 

 

6.3 Conclusion 

The conceptualisation presented in the previous section demonstrates the complexity of 

mathematical knowledge for teaching circle theorems using technology. The complexity 

of this conceptualisation is paralleled by the complexity of knowledge in relation to 

arithmetic revealed by Ma’s (1999) study, which led her to define a profound 

understanding of fundamental mathematics. The tabular list depicted in Figure 6.10 

comprises 23 pedagogic cases, rising to 46 if 180-degree rotations are included. 

Memorising all these cases is unnecessary since it is possible to reconstruct the tabular 

list in Figure 6.10 given explicit knowledge of the eight main configurations; 

knowledge that the reflex angle at the centre represents a different pedagogic case to 

displaying the angle less than 180 degrees at the centre; and knowledge that dragging 

point B creates a different set of examples to dragging either point C or D. Nevertheless, 

even this amount of knowledge seems unrealistic for all teachers to acquire, especially if 

a similar level of complex knowledge is needed for all aspects of the curriculum. 

Adopting a distributed view of knowledge might offer potential strategies for supporting 

teachers to make coping with the complexity of mathematical knowledge for teaching 

using technology in general a more realistic proposition. 

The topic of circle theorems provided an area of mathematical content that the case 

study teachers would be likely to be familiar with in the context of technology (Ruthven 

et al, 2008). This meant that a general lack of familiarity with the technological context, 

which would prevent inferences about teacher knowledge from being drawn, was 
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unlikely. As discussed below, Anne exemplifies where a lack of general familiarity with 

the software arguably prevented access to her mathematical knowledge for teaching 

using technology. The topic of circle theorems can also be argued to represent the apex 

of geometry in the compulsory English school mathematics curriculum, since it is the 

topic where geometric proof is traditionally introduced. Thus it was likely to be a topic 

that challenged the case study teachers’ mathematical knowledge. This was important to 

create an opportunity to observe and reflect on mathematical knowledge for teaching 

using technology, since as Putnam et al (1992) assert, the necessity of knowledge 

becomes apparent in its absence. Finally, the Knowledge Quartet provides a post-hoc 

justification for the highly complex conceptualisation of knowledge, presented in 

section 6.2, that forms a basis for informing and justifying a teacher’s choice and use of 

examples and decisions about sequencing. This post-hoc justification alongside Mason 

and Watson’s (2005; 2006) research on example spaces suggests that the approach taken 

here, i.e. mapping out a complete set of pedagogic cases and identifying a preferred 

pedagogical sequencing, may provide a means for conceptualising mathematical 

knowledge for teaching using technology for other areas of the mathematics curriculum. 

In particular, the conceptualisation presented in section 6.2 provides a basis for 

suggesting ways in which such knowledge could be measured. It is this type of 

conceptualisation, that underpins the construction of test-items, that is currently under-

developed in existing measures of mathematical knowledge for teaching (e.g. Baumert 

et al., 2010; Hill et al., 2005; Tatto et al., 2012) as argued in Chapter 2. The next 

paragraph suggests ways in which mathematical knowledge for teaching using 

technology in relation to the topic of circle theorems could be measured. The chapter 

concludes by speculating tentatively about the relationship (if any) between a 

connectionist versus transmissionist teaching orientation and mathematical knowledge 

for teaching circle theorems using technology. These post-hoc inferences should be 

treated with caution and will require further research. 

The development of the circle theorem case list suggests teachers’ mathematical 

knowledge for teaching circle theorems using technology may be summarised as a two-

dimensional measure, with one dimension providing an indicator of teachers’ choice 

and use of examples and the other dimension providing an indicator of their decisions 

about sequencing. The total number of pedagogic cases the case study teacher elicited in 

the interview (column T in Table 6.2) provides a numerical summary as one possible 

indicator of teachers’ choice and use of examples. Another possible indicator of 
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teachers’ choice and use of examples is the percentage of explicitly recognised 

pedagogic cases that teachers suggested they would show their pupils (column % in 

Table 6.2). Initiating a demonstration of D1 for pupils by (i) dragging point B or 

alternatively (ii) points C or D to elicit a new configuration provides a potential 

dichotomous indicator of teachers’ decisions about sequencing. These potential 

indicators suggest the conceptualisation of mathematical knowledge for teaching circle 

theorems using technology could be operationalised in the form of an item asking 

teachers to provide all the configurations of the angle of the centre theorem that they 

can think of, possibly with the technological support of a diagram such as D1, with a 

follow up question asking which of these configurations they would select to show 

pupils and how they would sequence this selection of configurations if presenting them 

to pupils. The relevance of these potential indicators is discussed below along with a 

speculation as to their relationship or otherwise with teacher orientation in terms of the 

transmissionist measure of self-reported pedagogic practice. 

Table 6.2 Possible quantitative indicators of the case study teachers’ choice and use of 

examples 

 
transmissionist 

measure 
T E P % =  

Robert* -1.01 12 8 6 75 

Anne -0.50 10 8 3 38 

Edward +0.74 10 8 4 50 

Michael +1.01 15 13 5 38 

T = total number of pedagogic cases elicited in interview by case study teacher (implicit and 

explicit excluding direct prompts) 

E = number of explicitly recognised pedagogic cases (explicit only including direct prompts) 

P = number of pedagogic cases the teacher would positively show pupils 

% = percentage of explicitly recognised pedagogic cases the case study teacher would positively 

show pupils (rounded to nearest whole number) 

Note:. Robert* is presented here as a fairer comparison with the other case study teachers (see 

previous section) though the figures for Robert and Robert* were actually the same. 

 

The total number of pedagogic cases the case study teacher elicited in the interview is a 

plausible indicator because it may be the mathematical knowledge made available in the 

classroom, i.e. including not only explicitly planned examples but also those arising 
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through contingency and those left implicit, that has most impact on the quality of 

pupils’ mathematical experience in the classroom. That is, it may be the knowledge 

distributed across both people and technology that has the most impact on the quality of 

pupils’ mathematical experience in the classroom rather than the knowledge that resides 

in the individual teacher. The total number of pedagogic cases the case study teacher 

elicited in the interview shows no relationship with transmissionist measure, albeit 

acknowledging the problems of making any reliable inference given the small size and 

selective nature of the sample. The most transmissionist teacher, Michael, elicited the 

highest total number of pedagogic cases (15) of the four case study teachers, with the 

most connectionist teacher, Robert*, eliciting a total of 12 pedagogic cases - see Table 

6.2. Occupying more intermediate positions on the scale of transmissionist self-reported 

pedagogic practice, Anne and Edward both elicited 10 pedagogic cases in total. The 

lack of relationship between the total number of pedagogic cases elicited in interview 

and teacher orientation is perhaps unsurprising given the findings of Askew et al (1997) 

that all but one of their measures of teacher knowledge were unrelated to teacher 

orientation. In particular, the only variable Askew et al (1997) found to be related to 

teacher orientation was depth, the percentage of links that were explained by the teacher 

in conceptual terms. The type of articulated conceptual knowledge suggested by the 

depth variable cannot be inferred from the total number of pedagogic cases elicited, 

since this number includes both pedagogic cases that were recognised explicitly and 

implicitly in the interview. This might offer some explanation as to why the total 

number of pedagogic cases elicited in interview appears unrelated to teacher orientation. 

The percentage of explicitly recognised pedagogic cases that teachers suggested they 

would show their pupils (column % in Table 6.2) provides another possible indicator of 

teachers’ choice and use of examples. When the case study teachers made a deliberate 

choice to include a particular pedagogic case in a demonstration to pupils, it indicated 

they could articulate a conceptual linkage to justify how the case would contribute to 

their pupils’ understanding of the angle at the centre theorem. In addition to this 

conceptual linkage, a form of cost-benefit analysis appears to be included in this 

measure, perhaps similar to Ruthven’s (2009) time economy. Transmissionist teachers 

might be more likely to place greater emphasis on the cost; connectionist teachers more 

on the benefit of showing pupils a particular pedagogic case, hence this measure might 

show some relationship to transmissionist measure. None of the teachers made a 

deliberate choice to exclude a pedagogic case. This is important because it suggests that 
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the case study teachers believed there might be some benefit in a pedagogic case (even 

if they weren’t quite sure what it was) and even if they didn’t think it was sufficient to 

want to deliberately demonstrate that case to their pupils. Lack of inclusion tended to 

indicate that the teachers either did not articulate a conceptual linkage to justify how the 

case would contribute to understanding the theorem; that the teachers suggested they 

might delay (indefinitely) introducing the case due to instrumental concerns that it 

might make the theorem harder to ‘spot’ or that it might confuse low-attaining pupils. 

Thus the percentage of explicitly recognised pedagogic cases that teachers choose to 

show their pupils might bear some similarity to the depth variable in that it is an 

indicator of the percentage of conceptual links the case study teachers articulated, and 

thought worthwhile from a pedagogic viewpoint, between configurations of the angle at 

the centre theorem. Hence this measure of the case study teachers’ choice and use of 

examples may be more likely to show a moderate relationship with teacher orientation. 

The figures in Table 6.2 provide tentative support for this speculative assertion, again 

given the small size and selective nature of the sample. The most connectionist teacher, 

Robert*, shows by far the highest percentage (75%) of explicitly recognised cases he 

suggested he would show pupils. A more transmission-oriented teacher, Edward, has a 

lower percentage of cases he would show pupils (50%) and Michael, the most 

transmissionist teacher, has the joint lowest percentage (38%). The exception to this 

pattern is Anne, a more connectionist-oriented teacher, who shares the joint lowest 

percentage (38%) with Michael. Anne was the least confident in using digital 

technologies. Unfortunately, she was also the only case study teacher not to receive the 

GeoGebra file in advance of the interview. These mitigating factors may offer an 

explanation of why Anne appears to have a low percentage of cases she would show 

pupils despite her connectionist orientation. 

Initiating a demonstration of D1 for pupils by (i) dragging point B or alternatively (ii) 

points C or D to elicit a new configuration provides a potential dichotomous indicator of 

teachers’ decisions about sequencing. This is important because dragging point C or D 

provides numerical variation to appreciate the doubling nature of the relationship 

between the angles in the theorem, whereas dragging point B does not. In addition, 

whether dragging was initiated with point B or points C/D tended to indicate how the 

convex quadrilateral configuration first occurred. For example, Michael’s circle 

theorem case list shows that the convex quadrilateral configuration first occurred as 

pedagogic case 12, i.e. as a consequence of dragging point C or D, thus appearing as a 
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natural continuation of numerically varying the angle at the centre to include reflex 

angles. In contrast, the circle theorem case lists of the other three case study teachers 

(Robert*, Anne and Edward) show the convex quadrilateral configuration first occurred 

as pedagogic case 5, i.e. as a consequence of dragging point B. This is a less preferable 

sequence of configurations since the convex quadrilateral configuration appears as a 

deviant example or “complication”, reinforcing an impression of the arrowhead 

configuration as the standard or iconic configuration. This indicator of teachers’ 

decisions about sequencing also shows no relationship with transmissionist measure. 

Michael was the most transmissionist teacher. He was also one of the least experienced 

case study teachers, being only in his second year of teaching. In particular, he appeared 

to be the least mathematically confident of the four teachers and, with his undergraduate 

and masters degrees in economics, was hoping to transition to becoming an economics 

teacher. It is therefore surprising, despite the lack of relationship with transmissionist 

measure, that Michael’s circle theorem case list should be the only one to indicate the 

preferred sequence of dragging to elicit the convex quadrilateral configuration first 

through dragging point C or D. In addition, Michael also has the highest total number of 

pedagogic cases the case study teacher elicited in the interview. Based on these 

indicators, Michael’s circle theorem case list would be pedagogically preferable over 

those of the other three case study teachers since it maximises the mathematical 

knowledge made available (in the interview) as well as providing a better sequencing of 

configurations. One means of explaining this unexpected result is by viewing 

knowledge as distributed over both people and technology (Hutchins, 1995). Thus, in 

the context of the interview, Michael was able to demonstrate D1 to create a 

pedagogically preferable circle theorem case list because the knowledge made available 

through his demonstration was distributed more effectively both across the GeoGebra 

software and the author than the other case study teachers. On the other hand, although 

the knowledge made available in Michael’s interview was more effectively distributed 

in terms of the number of configurations he elicited, arguably Robert, in particular, was 

better able to take pedagogic advantage of the knowledge distributed in his interview. 

Robert elicited the second highest total number of pedagogic cases, slightly fewer than 

Michael, however he was able to see and justify pedagogic value in a far higher 

percentage of the cases he recognised explicitly.  

A distributed view of knowledge explains how teaching resources such as D1 could 

augment the knowledge made available in the classroom by supporting even a relatively 
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inexperienced and mathematically unconfident teacher, such as Michael, to elicit a 

greater range of examples and sequence them to greater pedagogic effect. A teacher 

with relatively strong mathematical knowledge for teaching, such as Robert, would be 

better able to take pedagogic advantage of the greater range of examples made available 

through using teaching resources such as D1. This provides possible support for the 

interaction effect between PCK and the quality of tasks observed by Baumert et al 

(2010). In addition, as noted in the opening paragraph of this section, adopting a 

distributed view of knowledge might offer potential strategies for supporting teachers 

for coping with the complexity of mathematical knowledge for teaching using 

technology. Chapter 7 explores to what extent the mathematical knowledge made 

available through a teachers’ interaction with technology is distributed across the 

individual teacher and the technology. 

 

6.4 Summary 

This chapter used the Knowledge Quartet as an analytic tool to provide a fine-grained 

analysis of the content of mathematical knowledge for teaching using technology in 

relation to the topic of circle theorems. In particular, this analysis revealed the highly 

complex nature of mathematical knowledge for teaching using technology, through the 

conceptualisation of such knowledge in relation to the topic of circle theorems. 

Addressing RQ2a, the centrality of the Knowledge Quartet codes choice and use of 

examples and decisions about sequencing provided a post-hoc justification for the 

development of a circle theorem case list for each case study teacher. The circle 

theorem case list allowed a comparison of both the specific circle theorem cases arising 

and the sequence in which they arose during the interview, providing a basis for 

suggesting ways in which mathematical knowledge for teaching using technology in 

relation to the topic of circle theorems could be measured. The chapter concluded by 

speculating tentatively about the relationship (if any) between transmissionist measure 

and mathematical knowledge for teaching circle theorems using technology. These post-

hoc inferences should be treated with caution and will require further research. 
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Chapter 7 - Mathematical knowledge for teaching using technology as 

distributed: how and to what extent 

 

Chapters 5 and 6 concentrated on the nature and content of individual teachers’ own 

knowledge in relation to teaching mathematics using technology. In Chapter 5, Noss 

and Hoyles’ (1996; & Kent, 2004; & Pozzi, 2002) notion of situated abstraction seemed 

appropriate as a description of mathematical knowledge for teaching using technology. 

This notion, along with Adler’s (1999; 2001) concepts of the dilemma of transparency 

and visibility/invisibility, was useful in negotiating the apparent duality in seeing this 

knowledge simultaneously as abstract, mathematical knowledge and yet as situated in 

the context of teaching using technology. The data analysis reported in Chapter 6 

produced a conceptualisation of mathematical knowledge for teaching using technology 

in relation to the topic of circle theorems. This conceptualisation indicates the highly 

complex nature of mathematical knowledge for teaching using technology. Chapter 6 

concluded by suggesting that adopting a distributed view of knowledge might offer 

potential strategies for supporting teachers to cope with the highly complex nature of 

mathematical knowledge for teaching using technology. 

Hence, in this chapter, the research focus shifts from individual teachers’ own 

knowledge to how this knowledge is involved in the participatory relationship with 

technology (Remillard, 2005). Chapter 1 justified the use of Hutchins’ (1995) view of 

distributed cognition as a framework for understanding how individual teachers’ 

knowledge is involved in interacting with technology to produce the mathematical 

knowledge made available in the classroom. Detailing how and to what extent 

knowledge is distributed across teacher and technology is a means of describing the 

participatory relationship (Remillard, 2005). Thus this chapter addresses Research 

Question 2b, identified through the literature review in Chapter 2:  

RQ2b To what extent is the mathematical knowledge made available through a 

teachers’ interaction with technology distributed across the individual teacher 

and the technology? 

The review of literature in Chapter 2 reported that most research on teacher knowledge 

in general and in mathematics education specifically, whilst recognising the situated 

nature of knowledge, remains underpinned by essentially individualistic assumptions 
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(Putnam & Borko, 1997). In particular, research on teacher knowledge informed by 

views of cognition as distributed (Hutchins, 1995) across persons and tools remains 

underdeveloped (Putnam & Borko, 1997). In research on technology in mathematics 

education, the instrumental approach appears commensurate with Hutchins’ (1995) 

distributed view of cognition in the sense that, by considering an instrument as the 

combination of an artefact with the user’s schemes of use, knowledge appears 

distributed across both teacher and technology. However, as noted in Chapter 1, the 

instrumental approach has a tendency to focus on teachers’ learning, which it is not the 

primary focus of this study. Instead, this study concentrates on teachers as workers 

where the focus is on the knowledge they ‘have’, using technology in their work of 

teaching mathematics. Hence Hutchins’ (1995) view of distributed cognition seemed 

more appropriate to this study because it focuses on analysing the interaction of humans 

with artefacts in the workplace.  

Where a distributed view of cognition has been advocated, it remains unclear to what 

extent knowledge for teaching (using these resources) would necessarily be internal to 

the teacher and to what extent it could be said to reside in the resource itself.  For 

example, Putnam and Borko (1997, p. 1287) suggest teachers might augment their 

pedagogical thinking through making “judicious use” of new information technologies 

available via the Internet or existing technologies such as textbooks (see also Putnam & 

Borko, 2000). Making judicious use of such technologies suggests teachers might 

require a thorough, apriori knowledge of these technologies for the purposes of 

teaching. Thus it remains unclear to what extent such the technology could augment 

teachers’ thinking i.e. what part of knowledge for teaching could be considered as being 

distributed across the resource. 

In contrast, Hutchins (1995) is careful to avoid suggesting tools augment human 

cognition, suggesting instead that tools transform a task by taking on some cognitive 

attributes. Critically, Hutchins states that his view of distributed cognition assumes that 

cognition does not only occur within an individual person, but also occurs through 

human interaction with artefacts and other humans and, in particular, that cognition 

partially resides in tools (see Chapter 1). In addition, his specification of minimum 

knowledge requirements necessary for an individual to carry out a computational task in 

interaction with an artefact provides an indication of how and to what extent cognition 

may be distributed across both human and artefact.  
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This chapter applies Hutchins’ (1995) mode of argument to the case study teachers’ 

suggestions of how they would use the GeoGebra diagram D1 to demonstrate the angle 

at the centre theorem to pupils. A framework for identifying instances of distributed 

cognition, where the mathematical knowledge made available was more or less 

distributed across the technology, was developed from an analysis of the circle theorem 

case lists presented in Chapter 6. In particular, the development of this framework led to 

the specification of minimum knowledge requirements necessary for the case study 

teachers to produce the circle theorem case lists in interaction with the GeoGebra 

software, the author and teaching-colleagues. By specifying minimum knowledge 

requirements, an indication is provided of how and to what extent the case study 

teacher’s mathematical knowledge for teaching was distributed across the software, the 

author and teaching-colleagues. The minimum knowledge requirements provide a 

means of explaining why case study teacher Michael was able to produce a better circle 

theorem case list in pedagogical terms than the other more experienced and more 

mathematically confident case study teachers. This provides convincing evidence 

towards a distributed view of cognition. In particular, it suggests that an individual 

teacher ‘having’ more knowledge does not necessarily equate to an improvement in the 

mathematical knowledge made available at least in the interview setting. It seems 

reasonable to speculate that this might also generalise to a classroom setting. Finally, 

data from classroom observations of the case study teachers’ use of technology are used 

to provide brief indications of how the framework might be exemplified in mathematics 

teachers’ classroom practice. 

 

7.1 Mapping the elements of Hutchins’ description of distributed cognition 

to mathematics education 

Hutchins (1995) argues that cognition is a socially situated cultural process that is 

distributed between humans, tools and the settings and environment within which tasks 

take place. In Hutchins’ description of cognition as computation of navigational tasks 

distributed over humans in interaction with tools and each other, the humans were 

members of the navigation team on the USS Palau, an amphibious helicopter transport 

in the US Navy. The members of the navigation team had specific and well-defined 

roles, such as the pelorus operator, the bearing recorder and the plotter, which they 

carried out according to very strict regulations to be expected in a military setting. The 
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computation of navigational tasks involved carrying out well-established routines that, 

although very strictly regulated, still left room for interpretation and improvisation. 

Hutchins lists amongst the various tools the navigation team use to carry out their tasks 

the alidade, the bearing log, the hoey (a one-arm protractor), the chart and so on. He 

argues these tools have cognitive attributes as they literally contain a repository of 

navigational knowledge, embedded in their construction. In particular, Hutchins argues 

these tools provide two things simultaneously (p.154). Firstly, they change the nature of 

the task. In Hutchins’ terms, the computation of the navigational task is achieved 

through the “propagation of representational state” rather than through direct 

calculation. For, example, the nautical slide rule and nomograph permit the navigator to 

avoid algebraic reasoning and arithmetic in distance-rate-time problems by aligning 

indices with numbers on scales, or imagining numerical representations and making 

simple transformations of them. Secondly, these tools provide constraints on the 

organisation of action, in the sense that they regulate behaviour in such a way that the 

propagation of representational state that implements the computation can take place 

(Hutchins, p.154). For example, the nautical slide rule and nomogram preclude mistakes 

resulting from incorrect algebraic transformations taking place in the calculation of 

distance-rate-times since the relations D = RT, R = D/T, and T = D/R are built into their 

physical structure. The environment in which the ship was embedded, in terms of the 

harbour, the landmarks, the sea-bed and the stars, also plays a critical role in organising 

and transforming the computational tasks of the navigation team. 

Mapping the elements of Hutchins’ description of distributed cognition, i.e. humans, 

tools etc, provides a means of contextualising his description in relation to this research 

project in particular and mathematics education research more generally. In terms of the 

semi-structured GeoGebra interviews, the setting was a discussion for research purposes 

between the author and the case study teacher based around a task involving knowledge 

of mathematics pedagogy in a technological context i.e. how they might use diagram D1 

to demonstrate the angle at the centre theorem to their students. As in Hutchins’ 

description, the setting is important because it describes the context in which the task 

was situated. The case study teachers were currently employed teaching mathematics to 

students in English secondary schools. Circle theorems is a topic often taught in year 10 

or 11 since it is included in GCSE mathematics examination syllabi4 and represents 

perhaps the most advanced topic in geometry in the compulsory English National 

                                                 
4 At higher tier only, see for example the Edexcel (2012) syllabus. 
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Curriculum (QCA, 2007) for mathematics. For example, the topic of circle theorems 

may provide students’ first (and only) encounter with geometric proof. Hence the case 

study teachers’ considerations about how D1 might be used to demonstrate the angle at 

the centre theorem were to some extent shaped by knowledge of their own students and 

their perception of their students’ needs in relation to the GCSE examination. The 

environment of the GeoGebra interviews tended to be in a mathematics classroom at the 

case study teacher’s school that was not being used for teaching at that time. The 

author’s laptop with mouse attached was arranged on a desk so that both the author and 

the case study teacher could comfortably see the screen and use the mouse to 

manipulate D1, enabling collaboration on the task. 

The humans involved in the GeoGebra interviews were the author, the case study 

teacher, the case study teacher’s students and the case study teacher’s departmental 

colleagues. In the GeoGebra interviews, the students and the case study teacher’s 

departmental colleagues were only hypothetically involved. There are two senses in 

which the students were hypothetical. Firstly and most obviously, no students were 

actually present during the interview. Secondly, the case study teachers were not 

planning a demonstration that was intended for use with actual students in an actual 

lesson. Due to the setting in terms of a discussion for research purposes, the case study 

teachers were discussing a demonstration of D1 for hypothetical students. It does 

however seem reasonable to assume that these hypothetical students would be largely 

based on an amalgam of those that the case study teachers actually taught. Finally, 

except in the case of Anne, the GeoGebra file was emailed in advance of the semi-

structured interview and the case study teachers were encouraged to explore it 

beforehand and share it with their departmental colleagues. Michael at least showed the 

GeoGebra file to his Head of Department, mentioning this at the start of his interview. 

Again, the case study teacher’s departmental colleagues were not present during the 

interview. Nonetheless, at least in Michael’s case, they had a role to play in the 

performance of the interview task. 

In comparison to members of the navigation team in the military setting of the USS 

Palau, the roles of the human participants in the interview setting were relatively fluid, 

in that they weren’t laid down according to strict regulations. Nevertheless, there were 

expectations in relation to these roles. As teachers of mathematics in English secondary 

schools, expressing some confidence in their use of ICT, the case study teachers were 

expected to be able to participate in the interview task, to the extent they had planned 
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and taught lessons on circle theorems before and would therefore be likely to have at 

least some familiarity with a dynamic diagram like D1 and possibly have even used 

something similar in their own lessons. For example, both Robert and Michael 

commented that they had used similar diagrams in their previous teaching. Edward had 

made brief notes on the GeoGebra file before the interview and his comments during the 

interview echoed these notes. Anne commented in the interview that she had never used 

such a diagram before, “I’ve never done this myself like this”; however she also noted 

that “There’s a lot of this around, you know, done by other ... we always use them, I 

share them” [Anne-GGb-intA, 28.6.2012]. In particular, since they had an opportunity 

to explore the GeoGebra file before the interview, albeit with the exception of Anne, it 

seemed reasonable to assume that planning a demonstration using D1 represented a 

routine task for the case study teachers, which they would be able to perform despite the 

unusual interview setting. Similarly, as teachers of mathematics in English secondary 

schools, the case study teacher’s departmental colleagues were expected to be able to 

discuss and offer advice on using D1 as a teaching resource for mathematics. Although 

these colleagues were not actually present in the interview, the cognitive processes 

involved in performing the interview task could potentially be distributed across them 

as human participants, due to the possibility of their involvement in discussing the 

GeoGebra file with the case study teacher beforehand. 

The author’s role was as an interviewer interested in mathematics teachers’ use of 

technology for research purposes. However, a critical part of this role in shaping both 

the nature and content of the interview was the author’s own experience of teaching 

mathematics in English secondary schools. Thus at times, the case study teachers 

appeared to perceive the author to some extent as a colleague, though clearly one 

without the contextual knowledge of their departmental colleagues in relation to 

teaching mathematics at their particular school. For example, Robert appeared to speak 

on equal terms with the author in discussing the design of D1. Michael on the other 

hand tended to treat the author as a senior colleague, commenting off-record on the 

similarity between conversations with his mentor in initial teaching training. This was 

an indicator both of his lack of experience and mathematical confidence in relation to 

teaching compared with the other case study teachers. Despite the difference in roles, it 

therefore seems reasonable to assume that the cognitive processes involved in 

performing the interview task might be distributed across the author and the case study 

teacher’s departmental colleagues in similar ways. 
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The case study teacher’s students were hypothetically expected to cooperate with the 

planned demonstration using D1, in accordance with the norms of a mathematics 

classroom. Again, although the students were not present in the interview, the cognitive 

processes involved in performing the interview task could potentially be distributed 

across them as human participants, since the case study teachers were likely to base 

their planning on expectations of their mathematical behaviour in lessons gleaned from 

past classroom experience. However, how and to what extent cognitive processes were 

distributed across students seemed likely to be qualitatively different from how and to 

what extent they were distributed across either the author or the case study teacher’s 

departmental colleagues, by virtue of the significant difference in the roles these human 

participants play in the performance of the interview task. 

The tool that is the main focus of the analysis presented in this chapter is the diagram 

D1, constructed in GeoGebra. Like the tools in Hutchins’ description of navigation, D1 

provides two things simultaneously. Firstly, it changes the nature of the task. That is, 

using D1 changes the cognitive processes necessary for a teacher’s demonstration of the 

angle at the centre theorem to display a pedagogically desirable choice and use of 

examples and decisions about sequencing. For example, D1 permits the teacher to 

generate examples of the angle at the centre theorem by dragging any one of points B, C 

or D. This avoids having to generate and construct examples from ‘scratch’. In addition, 

these examples are not generated at random. Instead, they are produced to give the 

appearance of continuous dynamic variation according to the construction of the 

diagram following the rules of Euclidean geometry embedded in the software through 

its design. This has the effect of sequencing the examples produced in particular ways, 

since only one point may be dragged at a time, to provide a pedagogic structuring of 

examples whether intended by the teacher or not. Indeed on opening the GeoGebra file, 

the starting configuration of D1 introduces limits on the decisions about sequencing that 

are possible – see for example Figure 6.9 in Chapter 6. 

Secondly, D1 provides constraints on the organisation of action. The construction of 

D1, according to the geometric rules programmed into the software, limits the 

mathematical variation possible through manipulation of the diagram. In general, 

limiting the dimensions of mathematical variation seems to be pedagogically desirable, 

to allow instances of mathematical invariance such as the angle at the centre theorem to 

be apprehended. If everything is changing no invariance may be distinguished. Thus 

some of the case study teachers were less in favour of using diagrams D2 and D3 to 
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introduce the angle at the centre theorem because there were too many dimensions of 

mathematical variation, whether they articulated it in quite these terms or not. In this 

sense, the constraints provided by D1 regulate behaviour in such a way that a 

demonstration of the angle at the centre theorem can take place. For example, dragging 

D1 will not produce non-examples of the angle at the centre theorem (ignoring rounding 

errors). Similarly, as noted above, dragging D1 will not produce a random sequence of 

examples. Instead, examples are generated in a particular way, coordinating aspects of 

geometric and numerical variation so that mathematical invariance may be 

apprehended. 

In terms of the classroom observations of the case study teachers’ use of technology, the 

setting was a mathematics lesson on a topic and with a group of students of the 

teacher’s choice. The task was to teach an actual lesson using some form of digital 

technology, rather than planning a hypothetical one. The human participants were again 

the author, the case study teacher, the case study teacher’s students and the case study 

teacher’s departmental colleagues. Clearly, the roles played by the participants were 

somewhat different in this setting. Most obviously, the students were present and not at 

all hypothetical as in the GeoGebra interviews. The author was observing the lesson, 

suggesting a more passive role rather than the active participation required in the 

GeoGebra interviews. The roles of the case study teacher and their departmental 

colleagues were still as teachers of mathematics in English secondary schools. Again, 

although the case study teachers’ colleagues were not actually present in the lesson, the 

cognitive processes involved in performing the interview task could potentially be 

distributed across them as human participants, due to the possibility of their direct or 

indirect involvement in planning the lesson beforehand. The case study teachers 

employed a range of digital and non-digital tools in their IWB and computer suite 

lessons, whose use served to transform and organise the task of teaching the 

mathematical topic to their students. The environment varied according to where the 

lesson took place. For Robert and Michael’s IWB lessons, the environment was their 

normal mathematics classroom. The other observations required room changes so that 

the teachers were conducting their lessons in a relatively unfamiliar working 

environment (Ruthven, 2009), requiring adaptations of their normal classroom routines. 
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7.2 A framework for identifying instances of distributed cognition 

This section describes a two-dimensional framework for identifying instances of 

distributed cognition, developed from an analysis of the circle theorem case lists 

presented in Chapter 6. In particular, this framework indicates to what extent cognition 

could be considered as residing in the individual case study teacher or as distributed 

over tools and other human participants in the interview. The justification for these 

assertions is provided in the following section through the specification of minimum 

knowledge requirements necessary for the case study teachers to produce the circle 

theorem case lists in interaction with the GeoGebra software, the author and teaching-

colleagues. 

7.2.1 Outlining the framework 

The circle theorem case lists are a representation of the mathematical knowledge made 

available in the semi-structured GeoGebra interviews through the case study teacher’s 

manipulation of D1. More specifically, they represent the choice and use of examples 

and decisions about sequencing made by the case study teacher in interaction with D1 

and the other human participants in the interview. The choice and use of examples and 

decisions about sequencing made in the interview is the observable outcome of 

cognitive processes. These processes are assumed to be distributed over the case study 

teacher, the tool D1 and the other human participants, involved in the performance of 

the task of suggesting how diagram D1 might be used to demonstrate the angle at the 

centre theorem to the case study teacher’s students. As described in the previous 

section, the other human participants include the author, the case study teacher’s 

departmental colleagues and the case study teacher’s students. Thus instances of 

distributed cognition might be identified through analysing the choice and use of 

examples and decisions about sequencing the case study teacher made in interaction 

with (a) the diagram D1, (b) their students, and (c) the author or their departmental 

colleagues, as represented by their circle theorem case list.  

The three categories (a) technology, (b) their students, and (c) the author or their 

departmental colleagues, therefore form the first dimension of the framework for 

identifying instances of distributed cognition. For example, from the circle theorem case 

lists, pedagogic cases that were coded as being directly prompted by the author were 

regarded as instances where cognition was distributed to some extent over the author in 

interaction with the case study teacher and the technology (see Chapter 6, Table 6.1 for 
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coding system). Pedagogic cases that were coded as indirectly prompted or unprompted 

were regarded as instances where cognition was distributed to some extent over the 

technology i.e. diagram D1. The categorisation along this dimension might appear to 

introduce an artificial separation between instances of cognition distributed across 

technology and the other human participants in interaction with the case study teacher. 

These examples suggest that the categories should not be seen as mutually exclusive i.e. 

the categories should not be assumed to indicate instances where cognitive processes 

were distributed solely over diagram D1 or solely over the author in interaction with the 

case study teacher, for example. Instead the categories should be taken to indicate 

instances where cognition was distributed mainly over diagram D1 (in interaction with 

the author) or mainly over the author (in interaction with D1) and in interaction with the 

case study teacher. Since the focus of this research project was primarily on technology, 

instances of distributed cognition arising from the data in the categories involving the 

other human participants in interaction with the case study teacher are relatively limited. 

In particular, instances of distributed cognition arising from the data involving the case 

study teacher’s students or their departmental colleagues are especially limited, since no 

participants from either category were present in the GeoGebra interviews. 

Nevertheless, occasionally, where a case study teacher mentioned their students or their 

departmental colleagues, this provided the basis for a thought experiment hypothesising 

the kind of instance of distributed cognition that might have occurred had these 

participants been present. 

The second dimension of the framework signifies to what extent cognition could be 

inferred as distributed across the GeoGebra diagram D1 as opposed to residing in the 

individual case study teacher. In other words, the second dimension of the framework 

indicates to what extent cognition could be inferred as more or less distributed across 

technology in interaction with the case study teacher and the other human participants. 

The second dimension consists of two categories indicating instances of distributed 

cognition where the case study teachers’ choice and use of examples and decisions 

about sequencing were either articulated or unarticulated, each of which is sub-divided 

into two further categories, anticipated and unanticipated opportunities. The system for 

coding instances of distributed cognition according to these categories is described 

below. 

From the circle theorem case lists, an articulated choice and use of examples indicates 

the case study teacher commented verbally on the pedagogic case, whilst D1 was held 



220 

 

stationary or left static showing the case, following the code explicit recognition, see 

Table 6.1 in Chapter 6. Thus an articulated choice and use of examples suggests a 

writerly response (Bowe et al., 1992) to a particular configuration of D1: a recognition 

that the configuration represents a distinct case from a pedagogic point of view, hence a 

choice needs to be made as to whether and how to use it. Similarly, an articulated 

decision about sequencing indicates the case study teacher commented verbally on their 

preference for one dragging sequence over another. Again an articulated decision about 

sequencing suggests a writerly response to D1: recognition that dragging D1 imposes a 

particular pedagogic structure or sequence of examples that is then available to critique. 

This makes no commitment to the quality of the case study teacher’s critique or their 

choice regarding a pedagogic case. Thus it is important to clarify that although linking 

the articulated category with a writerly response suggests a positive example of 

foundational knowledge in some respects, it is neutral in terms of the case study 

teacher’s transformation of mathematical knowledge for pedagogic purposes and the 

foundational knowledge underpinning that transformation. That is, linking the 

articulated category with a writerly response does not imply that the mathematical 

knowledge made available in the interview through an articulated choice and use of 

examples or decisions about sequencing would necessarily be any better (or worse) than 

an unarticulated choice and use of examples or decisions about sequencing - see also the 

discussion in Chapter 6 regarding to the Knowledge Quartet code adherence to 

textbook. It is also important to note that the articulated category is not intended to 

signify that the case study teacher provided a full description and/or justification of their 

choice and use of examples and decisions about sequencing, but rather that some verbal 

indication was provided.  

An unarticulated choice and use of examples indicates the case study teacher made no 

verbal comment regarding the pedagogic case, despite eliciting it through dragging in 

the course of the interview, following the implicit recognition code, see Table 6.1 in 

Chapter 6. Thus an unarticulated choice and use of examples suggests a readerly 

response (Bowe et al., 1992) to a particular configuration of D1. That is, the case study 

teacher did not recognise that the configuration could represent a distinct case from a 

pedagogic viewpoint, hence there was no deliberate choice to articulate. Similarly, an 

unarticulated decision about sequencing indicates the case study teacher dragged D1 to 

elicit a particular sequence of pedagogic cases without verbally commenting on their 

pedagogical preference for this particular sequence. Again an unarticulated decision 
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about sequencing suggests a readerly response to D1: a lack of recognition that dragging 

D1 imposes a particular pedagogic structure or sequence of examples, which as a result 

is unavailable to critique. Again it is important to clarify here that although linking the 

unarticulated category with a readerly response suggests a lack of foundational 

knowledge in some respects, it is neutral in terms of the case study teacher’s 

transformation of mathematical knowledge for pedagogic purposes. That is, linking the 

unarticulated category with a readerly response does not imply that the mathematical 

knowledge made available in the interview through an unarticulated choice and use of 

examples or decisions about sequencing would necessarily be any worse (or better) than 

an articulated choice and use of examples or decisions about sequencing. In particular, 

in the next sub-section examples that could be interpreted as a positive choice and use 

of examples or decision about sequencing are provided in both the articulated and the 

unarticulated category. Similarly, examples that could be interpreted as a negative 

choice and use of examples or decision about sequencing are provided in both 

categories. 

Anticipated opportunities indicate a choice and use of examples or decision about 

sequencing which appeared to be part of the case study teacher’s routine response when 

presented with the task of suggesting how they might demonstrate the angle at the 

centre theorem using D1 to their pupils. Anticipated opportunities were identified as the 

case study teachers’ unprompted choice and use of examples and decisions about 

sequencing i.e. as elicited through their dragging in response to the first two interview 

questions, see Chapter 6, Table 6.1. Unanticipated opportunities were identified as the 

case study teachers’ indirectly prompted or directly prompted choice and use of 

examples and decisions about sequencing i.e. in as elicited through their dragging in 

response to the further interview prompts, see Chapter 6, Table 6.1. Thus unanticipated 

opportunities indicate a choice and use of examples or decisions about sequencing 

which did not appear to be part of the case study teacher’s routine response, but rather a 

response to a contingent situation brought about by the author’s unanticipated prompts. 

This suggests that instances of distributed cognition categorised as unanticipated 

opportunities might correspond to situations coded under the Knowledge Quartet supra-

category of Contingency. Similarly, anticipated opportunities correspond to situations 

that might be coded as indicating Foundation, Transformation or Connection 

knowledge, since they indicate the knowledge made available through the case study 

teachers’ routine performance. 
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7.2.2 Exemplifying the framework 

Table 7.1 displays the framework for identifying instances of distributed cognition and 

exemplifies the categories using data from the semi-structured GeoGebra interviews 

where possible. In reading this section, the reader will find it helpful to have Figure 6.9, 

the numerical list of pedagogic cases from Chapter 6, to hand – see separate sheet 

provided in the back cover of the thesis. As noted in the previous sub-section, since the 

focus of this research project was primarily on technology, the categories involving 

technology are more fully exemplified with instances of distributed cognition than those 

involving the other human participants in interaction with the case study teacher. Table 

7.1 also displays the four, second dimension categories in order, according to what 

extent cognition could be inferred as more or less distributed across technology in 

interaction with the case study teacher and the other human participants, as follows, 

starting with the most distributed: 

- unarticulated, unanticipated opportunities 

- unarticulated, anticipated opportunities 

- articulated, unanticipated opportunities 

- articulated, anticipated opportunities 

 

This ordering is partially justified below through a discussion of the examples in each 

category of the framework. The specification of minimum knowledge requirements in 

the next section completes the justification. 
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Table 7.1 Framework for identifying instances of distributed cognition 

 Technology Students Colleagues 

 

Unarticulated 

 

 

Unanticipated 

Opportunities 

(KQ: Cy) 

 

CUE and DS: Indirectly prompted, 

unarticulated e.g. Robert’s sequence 

of cases 21-17-16-19 

 

CUE and DS: pedagogic cases 

introduced due to the author’s 

dragging e.g. Robert’s interview 8-

12’-6’ 

Anticipated 

Opportunities 

(KQ: Fo, Tr, Co) 

CUE: Robert, Anne and Edward 

elicited pedagogic case 3 was 

unprompted and unarticulated 

DS: Michael’s sequence of cases 1-6-

12; Anne’s sequence of cases 1-3-5-4 

 

DS: Michael’s Head of Department 

might have advised him to drag D1 to 

produce the sequence of cases 1-6-12 

Articulated 

 

Unanticipated 

Opportunities 

(KQ: Cy) 

CUE: Indirectly prompted, articulated 

e.g. all case study teachers elicited 

pedagogic case 10; Robert and 

Edward elicited pedagogic case 12, 13  

DS: Robert and Edward choosing the 

sequence 1-5 before 1-6-12-13 

 

 

 

 

CUE: Directly prompted, articulated – 

the author elicited the upside-down 

arrowhead i.e. either pedagogic case 

1’ or 6’ 

Anticipated 

Opportunities 

(KQ: Fo, Tr, Co) 

CUE: Unprompted, articulated e.g.   

Michael elicited pedagogic cases 1, 6, 

12; Robert and Edward elicited 1, 5, 

6; and Anne elicited 1, 5, 4 

DS: Robert’s decision to elicit the 

sequence of cases 1-5 before 1-6; 

Edward’s decision to sequence 1-1 

before 1-6 

CUE: Robert’s implication that 

students’ dragging tends to elicit a 

pedagogically undesirable choice and 

use of examples 

 

 

 

 

CUE = choice and use of examples; DS = decisions about sequencing. Note where these codes appear under an unanticipated category, it 

indicates that a contingent moment led to a CUE or DS being made, whether this appeared deliberate or inadvertent at the time. 
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Unarticulated, unanticipated opportunities 

 

Unarticulated, unanticipated opportunities are instances of distributed cognition where 

the cognitive processes involved in producing the case study teachers’ circle theorem 

cases lists appear to be most distributed over technology and the other human 

participants. This is because, due to the case study teacher’s readerly response to D1, 

the generation of pedagogic cases and their sequencing seemed to have been mainly 

delegated to the technology and other human participants rather than the case study 

teacher. Instances in this category, where cognition appears mainly distributed over 

technology, occurred when the case study teachers were dragging D1 in an exploratory 

way, exploring D1 for themselves perhaps, following an indirect prompt. Such 

exploratory dragging sometimes elicited and sequenced pedagogic cases of which (and 

in ways) the case study teacher appeared unaware, since they did not comment on them. 

Nevertheless the pedagogic cases were made available in the interview and so 

contributed to the case study teacher’s circle theorem case list. For example, Robert’s 

exploratory dragging of D1 produced a sequence of four pedagogic cases, 21 17 16 19, 

none of which he commented on. Neither did he comment on the dragging sequence 

needed to elicit these four pedagogic cases. Thus he seemed unaware of the pedagogic 

cases he elicited and hence the responsibility for generating these particular cases (as 

opposed to some other cases) appeared to rest mainly with the technology. The 

desirability of having these cases made available in the interview is dependent on their 

usefulness for pedagogic purposes, not on Robert’s readerly response per se. Robert’s 

exploratory dragging might represent a positive choice and use of examples if it raised 

useful cases that he wouldn’t have elicited otherwise, even though they remained 

unarticulated. His exploratory dragging might instead be interpreted as a negative 

choice and use of examples if the cases distracted from the angle at the centre theorem, 

again even though they remained unarticulated. 

Unarticulated, unanticipated opportunities where cognition appears mainly distributed 

over the author (in interaction with the technology), occurred when the author was 

dragging D1 deliberately to elicit the upside-down arrowhead configuration and in 

doing so inadvertently introduced and sequenced pedagogic cases. The author did not 

comment on these pedagogic cases because to do so would have distracted from the 

intended introduction of the upside-down arrowhead configuration. The author had also 
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asked the case study teachers to “bear with me”, indicating they were not expected to 

follow the dragging sequence. The case study teachers did not comment on these 

inadvertently introduced pedagogic cases, and thus appeared unaware that they had been 

elicited. Hence again, responsibility over the generation of pedagogic cases and their 

sequencing seemed to rest mainly with the author in interaction with the technology 

rather than the case study teacher. For example, during Robert’s interview, the author 

elicited a sequence of three pedagogic cases (8 12’ 6’) whilst dragging D1 to introduce 

the upside-down arrowhead configuration. Robert did not comment on these cases or on 

their sequencing. Similarly, in each of the other case study teachers’ interviews, the 

author elicited one pedagogic case whilst dragging D1 (Edward and Anne 10’; Michael 

21). Again, the case study teachers did not comment on the inadvertent case. 

Unarticulated, anticipated opportunities 

Unarticulated, anticipated opportunities are those where the case study teachers’ 

apparently routine response in terms of dragging of D1 elicited pedagogic cases or a 

sequencing of pedagogic cases that remained unarticulated. Robert, Anne and Edward 

all elicited the cross quadrilateral configuration (pedagogic case 3) through their routine 

of dragging point B to initiate a demonstration of the angle at the centre theorem, 

however none of them commented verbally on this case. This provides an example of an 

unarticulated anticipated choice and use of examples, where cognition appears mainly 

distributed over technology. Since their dragging appeared to be a routine response, the 

case study teachers seemed to be somewhat more in control of their generation of this 

pedagogic case than for an unarticulated, unanticipated opportunity. Nevertheless, their 

lack of articulation suggests a readerly response, i.e. that they were unaware of the 

pedagogic case they had elicited and hence the responsibility for generating this 

particular case (as opposed to some other unspecified case) appeared to rest mainly with 

the technology. 

Two further examples of unarticulated, anticipated opportunities, where cognition 

appears mainly distributed over technology, are provided by Michael and Anne’s 

decisions about sequencing. Michael’s routine response produced the sequence of 

pedagogic cases 1-6-12, through dragging points C and D to initiate a demonstration of 

the angle at the centre theorem. At no point did Michael drag point B to disrupt the 

arrowhead configuration until directly prompted to by the author. Even then he avoided 

articulating a decision about sequencing by commenting on his apparent preference for 
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dragging points C or D versus point B to initiate a demonstration of the angle at the 

centre theorem. Anne’s routine response was to begin by dragging point B, producing 

the sequence 1-3-5-4. Although she later dragged points C and D without direct 

prompting from the author, at no point during the interview did she comment on her 

apparent preference for dragging point B to initiate a demonstration of the angle at the 

centre theorem. Michael and Anne’s lack of an articulated preference for dragging 

either point B or points C/D to initiate their demonstration suggested they were unaware 

of the existence of an alternative to their initial dragging routine. Hence, they appeared 

unaware of their decisions about sequencing. Since their dragging appeared to be a 

routine response, the case study teachers seemed to be somewhat more in control of 

their decisions about sequencing than for an unarticulated, unanticipated opportunity. 

However, their apparent lack of awareness regarding their decisions about sequencing 

suggests a readerly response, which seems to imply the responsibility for generating the 

particular sequencing of cases (as opposed to some other sequencing) appeared again to 

rest mainly with the technology. Again, labelling Michael and Anne’s decisions about 

sequencing as a readerly response does not imply a writerly response would have 

produced a better result. Indeed, as described below in the section on articulated 

anticipated opportunities, Edward and Robert’s writerly response produced a sequence 

of pedagogic cases similar to Anne’s readerly response and arguably less desirable from 

a pedagogical perspective than Michael’s readerly response (see also Chapters 5 and 6). 

There were no clear examples of unarticulated, anticipated opportunities, where 

cognition appears mainly distributed over the other human participants, in interaction 

with technology and the case study teacher. However, Michael’s remark that he showed 

the GeoGebra file to his Head of Department provides the basis for a thought 

experiment as an example of an unarticulated, anticipated opportunity where cognition 

appears mainly distributed over his departmental colleagues. It is possible that 

Michael’s Head of Department suggested to him that dragging C and D was a good way 

to use D1 to introduce the angle at the centre theorem and demonstrated the dragging 

sequence to produce pedagogic cases 1-6-12 to illustrate his/her point. Michael might 

have accepted this suggestion unquestioningly without need for an explanation, since it 

came from a senior teaching colleague (a readerly response), or he might simply have 

temporarily forgotten the explanation provided. In either case, his replication of this 

dragging sequence as a routine response, without articulating his decisions about 

sequencing, would provide an example of an unarticulated, anticipated opportunity 
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where cognition appears mainly distributed over his departmental colleagues. Again this 

thought experiment underlines that knowing a good routine can sometimes provide a 

pedagogically desirable outcome i.e. a good decision about sequencing, even if a 

justification for doing so is (temporarily) not known. In addition, knowing a good 

routine might allow the teacher to avoid having to make explicit decisions about 

sequencing, affording an opportunity to focus elsewhere, for example, on making 

connections through a good choice and use of examples instead. In this sense, Michael 

was able to make a straightforward connection between the arrowhead and convex 

quadrilateral configurations to demonstrate the angle at the centre theorem holds for 

both angles less than 180 degrees and reflex angles that eluded Edward and to some 

extent Robert as well. 

Articulated, unanticipated opportunities 

Articulated, unanticipated opportunities form part of the case study teachers’ evoked 

concept image (Tall & Vinner, 1981). As noted in Chapter 6, the case study teacher’s 

evoked concept image is the set of explicitly known pedagogic cases (amongst other 

things), evoked both in and by the technological and interview context, that they can 

draw on to make a deliberate choice and use of examples or decision about sequencing. 

A deliberate choice and use of examples or decision about sequencing implies the case 

study teachers’ made a writerly response to the pedagogic case or sequence of 

pedagogic cases they elicited through dragging. Articulated, unanticipated opportunities 

are those where the case study teachers’ encountered pedagogic cases or a sequencing 

of cases, which were not part of their routine response, causing them to pause and 

comment verbally. At times such opportunities seemed more or less unexpected. For 

example, in response to indirect prompting by the author, Robert and Edward dragged 

D1 to elicit pedagogic case 13, where the segment CD forms a diameter so that D1 

shows the angle in a semi-circle is right. This configuration seemed familiar to both 

Robert and Edward and so less unexpected. Indeed it might be reasonable to assume this 

case would usually have formed part of their planned demonstration for a real lesson. 

Nevertheless, it did not form part of their routine response in the interview situation. 

More unexpected was pedagogic case 10, a confusing orientation of the cross-

quadrilateral configuration. This case caused both Robert and Michael, for example, to 

spend some time checking whether the angle at the centre theorem still held. Similarly, 

pedagogic case 12, the convex quadrilateral configuration, caused Edward some 

consternation, which he did not entirely resolve to his satisfaction. In these examples, as 



228 

 

noted earlier in the paragraph, the case study teachers’ articulation of the pedagogic 

cases allowed them to make a deliberate choice and use of examples i.e. a writerly 

response. Thus they appear more in control and correspondingly cognition seems less 

distributed across the technology and the other human participants. Nevertheless, since 

these examples were not part of the case study teachers’ routine response, the 

responsibility for generating them still appears to lie to some extent with the 

technology. Here a writerly response can be seen to produce both positive and negative 

outcomes in terms of a choice and use of examples. For example, in a negative outcome 

of a writerly response, Edward chose to relegate a key pedagogic case due to a lack of 

foundational knowledge regarding the statement of the angle at the centre theorem. On 

the other hand, in a positive example of a writerly response, both Robert and Edward 

saw an opportunity to use pedagogic case 13 to make a connection with the angle in a 

semi-circle theorem. These examples could also be considered as instances where 

cognition also appears distributed to some extent across the author. However, since the 

case study teachers’ dragging was in response to an indirect prompt, they were coded as 

articulated, unanticipated opportunities, where cognition appears distributed (mainly) 

over technology. 

An example of an articulated, unanticipated decision about sequencing, where cognition 

appears mainly distributed over technology, is Edward and Robert’s choice to introduce 

pedagogic case 5 before 12. Both Edward and Robert chose to drag B first, producing 

the sequence 1-5, and only later dragged points C and D to produce 1-6-13-12. This was 

an unanticipated decision about sequencing because, for both case study teachers, 

pedagogic cases 12 and 13 arose only after indirect prompting from the author. Edward 

stated he would drag B to elicit pedagogic case 5, as a first “complication”, before 

continuing to drag points C and D to elicit pedagogic case 13, the angle in a semi-circle, 

and pedagogic case 12, the convex quadrilateral configuration displaying the correct 

angle at the centre. Similarly, Robert suggested he would drag B first, hoping his 

students would prompt him to move B onto the ‘wrong’ segment, thus eliciting 

pedagogic case 5. He suggested he would then continue his demonstration by dragging 

points C and D, presumably to elicit pedagogic cases 6, 13 and 12 as he had done earlier 

in the interview – see circle theorem case lists, Chapter 6. This instance is discussed 

further under the next category articulated, anticipated opportunities. 

Articulated, unanticipated opportunities where cognition appears mainly distributed 

over the author (in interaction with the technology), occurred when the author dragged 
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D1 deliberately to elicit the upside-down arrowhead configuration. The pedagogic case 

was unanticipated, since none of the case study teachers had elicited it through their 

own dragging. When asked what they thought of this configuration, each of the case 

study teachers articulated why it could be seen as different to previous cases from the 

point of view of mathematics pedagogy, although Michael required some further 

prompting to do so. This prompted them to make a deliberate choice and use of 

examples, with Robert and Anne suggesting this was a case they thought worthwhile 

showing to their students, whilst Edward and Michael were more sceptical of its worth. 

The case study teachers made a writerly response to the upside-down arrowhead 

configuration and thus appear more in control of their choice and use of examples. 

Correspondingly, cognition seems less distributed across the author. Nevertheless, since 

this pedagogic case was not part of the case study teachers’ routine response, the 

responsibility for generating them still appears to lie to some extent with the author, in 

interaction with the technology. 

Articulated anticipated opportunities 

Articulated, anticipated opportunities are where the case study teachers’ encountered 

pedagogic cases, which caused them to pause and comment verbally, during what 

appeared to be their routine response to demonstrating the angle at the centre theorem 

using a diagram such as D1. They are instances of distributed cognition where the 

cognitive processes involved in producing the case study teachers’ circle theorem cases 

lists appear to be least distributed over technology and the other human participants. 

This is because, due to the case study teacher’s routine and writerly response to D1, 

responsibility and control over the generation of pedagogic cases and their sequencing 

seemed to rest mainly with the case study teacher rather than the technology and other 

human participants. For example, in their apparently routine response to using D1 to 

demonstrate the angle at the centre theorem, each of the case study teachers elicited and 

articulated two pedagogic cases beyond the starting configuration. In the interview 

context, some of these instances actually appeared more like an articulated, 

unanticipated choice of examples. However, it is possible to imagine that if the case 

study teachers had planned their demonstrations in advance, as they might for a lesson, 

then these would have been clear-cut instances of articulated, anticipated choice and use 

of examples. Thus it is reasonable to infer the case study teachers dragged D1 in 

anticipated ways to elicit pedagogic cases in a deliberate choice and use of examples. In 
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these instances, to the extent cognition appears distributed, it appears mainly distributed 

over technology compared to the other human participants. 

Robert and Edward also both made articulated, anticipated decisions about sequencing. 

As shown by their respective circle theorem case lists, both Edward and Robert began 

by dragging point B to elicit pedagogic case 5, the convex quadrilateral configuration 

displaying the ‘incorrect’ angle at the centre. Returning D1 to the starting configuration, 

they then went on to drag point C or D to elicit pedagogic case 6, demonstrating 

numerical variation whilst retaining the arrowhead configuration. Both later articulated 

their decisions about sequencing later in the interview. Robert stated he thought it was 

important to drag B first, showing the invariance of the angle on the circumference, to 

make a link with students’ knowledge of the angles in the same segment theorem. In 

dragging B first, he hoped his students would prompt him to move B onto the ‘wrong’ 

segment, thus eliciting pedagogic case 5, to make the point that the angle at the 

circumference would change. He stated that he would then go on to drag points C and D 

to demonstrate the angle at the centre theorem. Thus he articulated a decision to drag D1 

to elicit the sequence of cases 1-5 before the sequence 1-6. Edward later clarified that he 

would drag B first, showing the invariance of the angle on the circumference, restricting 

his dragging to the ‘correct’ segment. He would then drag points C and D, without 

disrupting the arrowhead. Thus he articulated a decision to drag D1 to elicit the 

sequence of cases 1-1 before the sequence 1-6. Edward stated he would only then drag 

B to elicit pedagogic case 5, before continuing to drag points C and D to elicit 

pedagogic case 13, the angle in a semi-circle, and pedagogic case 12, the convex 

quadrilateral configuration displaying the correct angle at the centre. 

Robert and Edward made a writerly response to D1 in deciding to drag point B before 

dragging points C and D in what appeared to be their routine sequencing of cases. In 

addition, this decision partly led to an articulated yet unanticipated decision about 

sequencing to introduce pedagogic case 5 before 12. That is, both Edward and Robert 

chose to drag B first, producing the sequence 1-5, and only later dragged points C and D 

to produce 1-6-13-12. This was an unanticipated decision about sequencing because, for 

both case study teachers, pedagogic cases 12 and 13 arose only after indirect prompting 

from the author (see articulated, unanticipated opportunities). This appears to be a 

negative outcome of a writerly response, since showing the invariance of the angle on 

the circumference, by dragging B first, distracts attention from the angle at the centre 

theorem. Thus when pedagogic case 5 is introduced, the doubling relationship initially 
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appears to have broken down and requires some work to re-establish that it still holds. 

Hence the convex quadrilateral configuration can appear to be a ‘special case’ rather 

than a standard configuration of the angle at the centre theorem. If instead points C and 

D are dragged first to elicit the sequence 1-6-13-12, numerical variation demonstrates 

the doubling relationship and the convex quadrilateral configuration appears as a natural 

consequence of allowing the angle at the centre to vary beyond 180 degrees. Thus 

Michael’s readerly response, dragging to produce the sequence 1-6-12 (see 

unarticulated, anticipated opportunities), seems arguably more desirable than Edward 

and Robert’s writerly response with regard to decisions about sequencing. In these 

instances, to the extent cognition appears distributed, Edward and Robert’s articulated, 

anticipated decisions about sequencing appear mainly distributed over technology 

compared to the other human participants. 

Early on during the interview, Robert demonstrated his impression of students’ 

dragging when given a diagram like D1 to explore. He dragged the points B, C and D 

quickly in a jerky fashion, as if to imply that students’ dragging is unsystematic and 

hence they fail to encounter key pedagogic cases such as the three standard 

configurations. This could be interpreted as an articulated, anticipated choice and use of 

examples: a recognition that some explicit pedagogic structure needs to be imposed in 

some way, either via a teacher demonstration or a structured worksheet for example, to 

ensure students encounter key pedagogic cases. In this instance, to the extent cognition 

appears distributed, Robert’s articulated, anticipated choice and use of examples would 

appear mainly distributed over students in interaction with the technology. 

 

7.3 Minimum Knowledge Requirements 

This section proposes minimum knowledge requirements for a choice and use of 

examples and decisions about sequencing in each of the four categories of the second 

dimension of the framework for identifying instances of distributed cognition. The 

minimum knowledge requirements provide a means of explaining why case study 

teacher Michael was able to produce a better circle theorem case list in pedagogical 

terms than the other more experienced and more mathematically confident case study 

teachers (see the next section and also Chapter 6). By specifying minimum knowledge 

requirements, an indication is provided of how and to what extent the case study 

teacher’s mathematical knowledge for teaching was distributed across the software, the 
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author and teaching-colleagues. In particular, this provides evidence to support the 

assertions made in the previous section of the ordering of the four categories in terms of 

the extent cognition was distributed over technology and the other human participants, 

from most to least distributed. Where possible, the minimum knowledge requirements 

are also grounded in examples drawn from GeoGebra interview data to provide a 

context in which they can be understood.  

This section begins by introducing notation to describe the knowledge requirements for 

a choice and use of examples and decisions about sequencing. The diagram below 

represents a choice and use of examples where M and N are pedagogic cases and s is a 

dragging sequence to obtain N from M.  

 

 

Thus, for example, an articulated choice and use of examples implies the case study 

teacher’s recognition of N as a pedagogic case distinct from some M. Recognition of M 

is also implied, although this may simply be the starting i.e. arrowhead configuration. If 

it is to be repeatable, an articulated choice and use of examples additionally implies 

recognition of the dragging sequence s, i.e. pedagogic case N cannot be used again 

unless a dragging sequence is known to elicit it from some pedagogic case M. A 

teacher’s articulation of a choice and use of examples is observable through their 

recorded speech. Their recognition of a pedagogic case or dragging sequence is 

unobservable: it is inferred from their articulation. 

Similarly, the diagram below represents a decision about sequencing where M, N1 and 

N2 are pedagogic cases and s1 and s2 are dragging sequences. s1 and s2 are not equal, 

hence N2 at least is distinct from M and N1. Pedagogic cases M and N1 need not be 

distinct, although s1 must be non-zero. For example, if M is the starting configuration, s1 

could be a repeatable dragging sequence involving one or more of points B, C and D, 

which shows the family of arrowhead-type examples but does not disrupt the arrowhead 

configuration per se. 

 

 

 

M 

N1 

N2 

s1 

s2 

M N 
s 
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At the end of this section, Figure 7.1 illustrates the hierarchy of minimum knowledge 

requirements for the four categories of the framework.  It is also included as a separate 

sheet in the back cover of the thesis. 

7.3.1 Minimum knowledge requirements for Unarticulated, Unanticipated 

opportunities 

Robert’s exploratory dragging of D1 produced a sequence of four pedagogic cases 21- 

17-16-19. This provided an instance of an unarticulated, unanticipated choice and use of 

examples and decision about sequencing. He appeared unaware of the pedagogic cases 

he elicited and of the dragging sequence needed to elicit these four pedagogic cases 

since he did not comment on either. Thus it is not necessary to recognise any dragging 

sequence s or any pedagogic case elicited N for an unarticulated, unanticipated choice 

and use of examples and decision about sequencing. In other words, it is only necessary 

to recognise that the angle at the centre theorem holds for some configuration M of D1 

a priori, most obviously the starting configuration, and that dragging points B, C and D 

will produce further (unspecified) examples of the angle at the centre theorem. The 

minimum knowledge requirements are therefore as follows: 

 knowing some configuration M of D1, e.g. the starting (arrowhead) configuration, as 

a case of the angle at the centre theorem. It is necessary to know M a priori, i.e. 

before dragging. 

 knowing that one or more of points B, C and D can be dragged and how to drag them 

using the mouse i.e. technical knowledge. 

 knowing that dragging points B, C and D produces mathematical variation. The 

nature of this variation may be unspecified i.e. dragging B, C or D causes the 

diagram D1 to change somehow. How it changes or precisely what causes the 

change, beyond dragging B, C or D, is not necessary knowledge. 

 knowing that one or more of points B, C or D should be dragged and dropped in a 

variety of positions to convincingly demonstrate the angle at the centre theorem. 

However, such dragging may be unsystematic and therefore unrepeatable i.e. no 

routine for dragging. 
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7.3.2 Minimum knowledge requirements for Unarticulated, Anticipated 

opportunities 

Robert, Anne and Edward elicited pedagogic case 3 by dragging point B as part of their 

apparently routine demonstration of the angle at the centre theorem using D1. These 

provided instances of an unarticulated, anticipated choice and use of examples. To some 

extent, each of them commented on the dragging sequence needed to elicit pedagogic 

case 3, yet none of the three case study teachers seemed aware of the case itself since 

they did not comment on it. Thus for an unarticulated, anticipated choice and use of 

examples, in addition to the pedagogic case M, it is necessary to recognise a priori the 

dragging sequence s, so that it is anticipated i.e. routine. However, it is unnecessary to 

recognise any pedagogic case N that might be elicited. 

Michael and Anne elicited sequences of cases 1-6-12 and 1-3-5-4 respectively as part of 

their apparently routine demonstration of the angle at the centre theorem using D1. 

These provided examples of an unarticulated, anticipated decision about sequencing. To 

some extent, Michael and Anne each commented on the dragging sequence needed to 

elicit their sequence of cases, however they did not compare it to another dragging 

sequence. Thus for an unarticulated, anticipated decision about sequencing it is again 

only necessary to recognise a priori the dragging sequence s, in addition to the 

pedagogic case M. Although Michael did recognise all three pedagogic cases elicited 

through his dragging sequence, Anne’s apparent unawareness of pedagogic case 3 

implies it is not necessary to recognise any pedagogic case N that might be elicited. The 

minimum knowledge requirements are therefore as follows: 

 knowledge required for Unarticulated, Unanticipated opportunities and in addition, 

 knowing a dragging sequence s i.e. a repeatable routine for dragging one or more of 

points B, C and D, which elicits some pedagogic case N distinct from M. 

 

7.3.3 Minimum knowledge requirements for Articulated, Unanticipated 

opportunities 

This sub-section attempts to posit minimum knowledge requirements for three possible 

types of articulated, unanticipated choice and use of examples. The first type is one 

where the choice and use of examples may be unrepeatable. The second and third are 
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both types where the choice and use of examples is repeatable, but which derive from 

different knowledge requirements a priori. Similarly, this sub-section also attempts to 

posit minimum knowledge requirements for three possible types of articulated, 

unanticipated decisions about sequencing, the first of which may be unrepeatable; the 

second and third are repeatable but again derive from different knowledge requirements 

a priori. 

Articulated, unanticipated choice and use of examples that may be unrepeatable 

After indirect prompting, Michael elicited pedagogic case 19, the arrowhead 

configuration displaying the reflex angle at the centre, which he commented on as being 

different to the starting configuration. This provided an example of an articulated, 

unanticipated choice and use of examples. Thus an articulated, unanticipated choice and 

use of examples implies it is necessary to recognise N as a pedagogic case distinct from 

some M a posteriori, i.e. after dragging sequence s. Immediately after eliciting 

pedagogic case 19, Michael exclaimed “okay, so now I’m not quite sure how I’ve done 

that”. His statement implies it is not necessary to recognise any dragging sequence s 

used to elicit pedagogic case N from M, however in this case the articulated, 

unanticipated choice and use of examples may be unrepeatable. The minimum 

knowledge requirements for an articulated, unanticipated choice and use of examples, 

which may be unrepeatable, are therefore as follows: 

 knowledge required for Unarticulated, Unanticipated opportunities and in addition, 

 knowing one or more criteria for distinguishing pedagogic cases (criteria can be 

incomplete) e.g. ‘not an arrowhead’ or ‘angle displayed at the centre is different’. 

 knowing one or more criteria for judging pedagogic benefit of introducing pedagogic 

case N via some dragging routine s. 

 

Repeatable, articulated, unanticipated choice and use of examples (I) 

After indirect prompting, Edward noted he hadn’t yet explored “the problem of what 

happens if you drag D all the way round there”, referring to dragging point D up 

towards and past point B at the top of the circle. He then appeared to elicit pedagogic 

case 12 unexpectedly, by dragging point D in the way he described. This also provided 

an instance of an articulated, unanticipated choice and use of examples. However, in 

this case Edward describes the dragging sequence s a priori, thus it is likely that the 
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articulated, unanticipated choice and use of examples would be repeatable. In this case, 

the minimum knowledge requirements for a repeatable articulated, unanticipated choice 

and use of examples, where the dragging sequence s is known a priori, are as follows: 

 knowledge for Unarticulated, Anticipated opportunities and in addition, 

 knowing one or more criteria for distinguishing pedagogic cases (criteria can be 

incomplete) e.g. ‘not an arrowhead’ or ‘angle displayed at the centre is different’. 

 knowing one or more criteria for judging pedagogic benefit of introducing pedagogic 

case N via some dragging routine s. 

 

Repeatable, articulated, unanticipated choice and use of examples (II) 

Immediately after a prompt regarding special or extreme cases of the angle at the centre 

theorem, Robert said, “I’d probably want to show this [drags C so that CD is a 

diameter]”, and elicited pedagogic case 13, representing the angle in a semi-circle 

theorem. This provides another type of a repeatable, articulated, unanticipated choice 

and use of examples. This configuration seemed familiar to Robert, yet he had 

apparently not considered dragging point C or D far enough to make the chord CD a 

diameter as part of his routine dragging of D1. Another example of this type of 

repeatable, articulated, unanticipated choice and use of examples is the author’s own 

dragging to elicit the upside-down arrowhead configuration. Here, there was a clear 

intention to elicit a particular configuration, but the author improvised a dragging 

sequence to arrive at the upside-down arrowhead during her first GeoGebra interview, 

gradually improving the efficiency of her dragging over the course of the interviews. In 

these cases, knowing pedagogic case N a priori is a necessary requirement, however it 

is only necessary to recognise the dragging sequence s a posteriori. In this case, the 

minimum knowledge requirements for a repeatable articulated, unanticipated choice and 

use of examples, where the pedagogic case N is known a priori, are as follows: 

 knowledge for Articulated, Unanticipated choice and use of examples that may be 

unrepeatable and in addition, 

 knowing one further pedagogic case N distinct from M e.g. apart from the starting 

configuration. 

 

Articulated, unanticipated decisions about sequencing that may be unrepeatable 
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Articulated decisions about sequencing involve expressing a pedagogical preference for 

one of two recognised sequences of cases, starting from the same pedagogic case M, as 

depicted in the diagram in the introduction to this section. For articulated, unanticipated 

decisions about sequencing, one of these sequences, involving dragging sequence s1 to 

elicit pedagogic case N1 say, is necessarily recognised a priori, with the other being 

recognised only after dragging. This gives rise to an unanticipated comparison and 

expression of preference for one of the two sequences of cases. Thus knowing 

pedagogic cases M, N1 and dragging sequence s1 a priori is a necessary requirement, 

and in addition it is necessary to recognise N2 as distinct from M, N1 a posteriori. 

Pedagogic cases M and N1 may belong to the same family of cases i.e. they need not be 

distinct, although s1 must be non-zero, otherwise the decision about sequencing 

collapses to a choice and use of examples. It is not necessary to recognise any dragging 

sequence s2, used to elicit pedagogic case N2 from M, however in this case the 

articulated, unanticipated decision about sequencing may be unrepeatable. The 

minimum knowledge requirements for an articulated, unanticipated decision about 

sequencing, which may be unrepeatable, are therefore as follows: 

 knowledge for an Articulated, Unanticipated choice and use of examples that may be 

unrepeatable and in addition, 

 knowing a non-zero dragging sequence s1, i.e. a repeatable routine to elicit pedagogic 

case N1 from M, where M and N1 need not be distinct. 

 knowing one or more criteria for judging the pedagogic benefit of introducing 

pedagogic case N2 via dragging sequence s2 compared to introducing pedagogic case 

N1 via dragging sequence s1. 

 

Repeatable, articulated, unanticipated decisions about sequencing (I) 

Edward stated he would drag B to elicit pedagogic case 5, as a first “complication”, 

before continuing to drag points C and D to elicit pedagogic case 13, the angle in a 

semi-circle, and pedagogic case 12, the convex quadrilateral configuration displaying 

the correct angle at the centre. This also provided an example of an articulated, 

unanticipated decision about sequencing: Edward expressed a preference for the 

sequence 1-5 over the unanticipated sequence 1-6-13-12. The sequence 1-6-13-12 was 

unanticipated because Edward elicited pedagogic cases 12 and 13 unexpectedly. In this 

instance, Edward had articulated the sequence 1-5 beforehand, elicited through his 
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routine dragging, before going on to recognise pedagogic case 12 and 13 a posteriori. 

However, Edward had also commented on the dragging sequence to elicit pedagogic 

cases 12 and 13 a priori, as described under the sub-section repeatable, articulated, 

unanticipated choice and use of examples (I). Since Edward recognised dragging 

sequence s2 a priori, it is likely that the articulated, unanticipated decision about 

sequencing would be repeatable. Thus, in addition to knowing pedagogic cases M, N1 

and dragging sequence s1 a priori, knowing the dragging sequence s2 a priori is a 

necessary requirement for a repeatable articulated, unanticipated decision about 

sequencing. It is also necessary to recognise N2 as distinct from M, N1 a posteriori. 

Hence the minimum knowledge requirements for a repeatable articulated, unanticipated 

choice and use of examples, where the dragging sequence s2 is known a priori, are as 

follows: 

 knowledge for an Articulated, Unanticipated decisions about sequencing that may be 

unrepeatable and in addition, 

 knowing one further dragging sequence s2, i.e. a repeatable routine to elicit some 

pedagogic case N2 distinct from M. 

 

Repeatable, articulated, unanticipated decisions about sequencing (II) 

Robert suggested he would drag B first, hoping his students would prompt him to move 

B onto the ‘wrong’ segment, thus eliciting pedagogic case 5. He suggested he would 

then continue his demonstration by dragging points C and D, presumably eliciting 

pedagogic cases 6, 13 as he had done earlier in the interview. Thus Robert implied he 

would elicit the sequence of cases 1-5 before the unanticipated sequence 1-6-13. Again 

this provided an example of another type of repeatable, articulated, unanticipated 

decisions about sequencing. In this instance, Robert appeared to articulate pedagogic 

case 12 as well as the sequence of cases 1-5 a priori, before unexpectedly recognising 

the dragging sequence needed to elicit case 12, as described under the sub-section 

repeatable, articulated, unanticipated choice and use of examples (II). Thus, in addition 

to knowing pedagogic cases M, N1 and dragging sequence s1 a priori, knowing 

pedagogic case N2 a priori is a necessary requirement for this type of repeatable 

articulated, unanticipated decisions about sequencing. It is also necessary to recognise 

dragging sequence s2 a posteriori. Hence the minimum knowledge requirements for a 
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repeatable articulated, unanticipated choice and use of examples, where the dragging 

sequence N2 is known a priori, are as follows: 

 knowledge for an Articulated, Unanticipated decisions about sequencing that may be 

unrepeatable and in addition, 

 knowing one further pedagogic case N2 distinct from M e.g. apart from the starting 

configuration. 

 

7.3.4 Minimum knowledge requirements for Articulated, Anticipated 

opportunities 

This sub-section summarises the posited minimum knowledge requirements for an 

articulated, anticipated choice and use of examples and decision about sequencing based 

on the minimum knowledge required for unarticulated, unanticipated opportunities. 

 

Articulated, anticipated choice and use of examples 

In their apparently routine response to using D1 to demonstrate the angle at the centre 

theorem, each of the case study teachers elicited and articulated two pedagogic cases 

beyond the starting configuration. In the interview context, some of these instances 

actually appeared more like an articulated, unanticipated choice of examples. However, 

it is possible to imagine that if the case study teachers had planned their demonstrations 

in advance, as they might for a lesson, then these would have been clear-cut instances of 

articulated, anticipated choice and use of examples. For example, Edward dragged point 

B to elicit pedagogic case 5 after saying: 

But now ... obviously there’s an issue of what about if you move B on the other side. 

Before we do that though, let’s see what G does. 

In this statement, Edward anticipated that the dragging sequence “move B onto the 

other side [of C or D]” would raise “an issue” i.e. the pedagogic case 5, distinct from the 

starting configuration. From Edward’s statement it is possible to infer that he had prior 

knowledge of both the pedagogic case 5 and the dragging sequence necessary to elicit it 

from the starting configuration. Hence this provided one of the clearest instances of 

articulated, anticipated choice and use of examples. Thus for an articulated, anticipated 

choice and use of examples, in addition to knowing the pedagogic case M, it is 
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necessary to know both a pedagogic case N, distinct from M, and a dragging sequence s 

to elicit N from M. Hence the minimum knowledge requirements for an articulated, 

anticipated choice and use of examples are as follows: 

 knowledge required for Unarticulated, Unanticipated opportunities and in addition, 

 knowing one or more criteria for distinguishing pedagogic cases (criteria can be 

incomplete) e.g. ‘not an arrowhead’ or ‘angle displayed at the centre is different’. 

 knowing one further pedagogic case N distinct from M e.g. apart from the starting 

configuration. 

 knowing a dragging sequence s i.e. a repeatable routine for dragging one or more of 

points B, C and D, which elicits some pedagogic case N distinct from M. 

 knowing one or more criteria for judging pedagogic benefit of introducing pedagogic 

case N via some dragging routine s. 

 

Articulated, anticipated decisions about sequencing 

Robert articulated a decision to drag D1 to elicit the sequence of cases 1-5 before the 

sequence 1-6. Similarly, Edward articulated a decision to drag D1 to elicit the sequence 

of cases 1-1 before the sequence 1-6. In both instances, the case study teacher had 

articulated both sequences of cases before stating their preferential ordering. Hence 

these provided examples of an articulated, anticipated decisions about sequencing. Thus 

for articulated, anticipated decisions about sequencing knowing pedagogic cases M, N1, 

and N2 as distinct from M and dragging sequences s1 and s2 a priori are necessary 

requirements. Hence the minimum knowledge requirements for articulated, anticipated 

decisions about sequencing are as follows: 

 knowledge required for Unarticulated, Unanticipated opportunities and in addition, 

 knowing one or more criteria for distinguishing pedagogic cases (criteria can be 

incomplete) e.g. ‘not an arrowhead’ or ‘angle displayed at the centre is different’. 

 knowing one or more criteria for judging pedagogic benefit of introducing pedagogic 

case N via some dragging routine s. 

 knowing a non-zero dragging sequence s1, i.e. a repeatable routine to elicit pedagogic 

case N1 from M, where M and N1 need not be distinct. 
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 knowing one further dragging sequence s2, i.e. a repeatable routine to elicit some 

pedagogic case N2 distinct from M. 

 knowing one further pedagogic case N2 distinct from M e.g. apart from the starting 

configuration. 

 knowing one or more criteria for judging the pedagogic benefit of introducing 

pedagogic case N2 via dragging sequence s2 compared to introducing pedagogic case 

N1 via dragging sequence s1. 



242 

 

U-U	CUE	&	DS	
M	a	priori	

Non-repeatable	
A-U	CUE	
M	a	priori	

N	a	posteriori	

Repeatable	
U-A	CUE	&	DS	
M,	s	a	priori	

Repeatable	
A-U	CUE	(II)	
M,	N	a	priori	
s	a	posteriori	

Repeatable	
A-U	CUE	(I)	
M,	s	a	priori	
N	a	posteriori	

A-A	CUE	
M,	s,	N	a	priori	

Non-repeatable	
A-U	DS	

M,	s1	a	priori	
N2	a	posteriori	

Repeatable	
A-U	DS	(I)	

M,	s1,	s2	a	priori	
N2	a	posteriori	

Repeatable	
A-U	DS	(II)	

M,	s1,	N2	a	priori	
s2	a	posteriori	

A-A	DS	
M,	N2,	s1,	s2	a	priori	

+	s	
+	criteria	
for	cases	

+	criteria	
for	cases	

+	s	

+	N	

+	N	

+	s1	and	
criteria	for	
sequences	

+	s1	and	
criteria	for	
sequences	

+	N2	

+	N2	

+	s2	

+	s2	

Key	

A-A	=	Ar culated,	an cipated	opportuni es	
A-U	=	Ar culated,	unan cipated	opportuni es	
U-A	=	Unar culated,	an cipated	opportuni es	
U-U	=	Unar culated,	unan cipated	opportuni es	

CUE	=	choice	and	use	of	examples	
DS	=	decisions	about	sequencing	

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.1 Hierarchy of minimum knowledge requirements 



243 

 

 

7.4 Explaining Michael’s circle theorem case list: distributed cognition  

Michael’s circle theorem case list was surprising in two ways when compared to those 

of the other three case study teachers (see also Chapter 6). First, his circle theorem case 

list was the only one to indicate the pedagogically preferable sequence of cases, 

eliciting pedagogic case 12, the convex quadrilateral configuration displaying the 

‘correct’ angle at the centre through dragging point C or D, before eliciting pedagogic 

case 5, the convex quadrilateral configuration displaying the ‘wrong’ angle at the centre 

through dragging point B. Secondly, his circle theorem case list also had the highest 

total number of pedagogic cases elicited by the case study teacher in the interview. That 

his circle theorem case list should exhibit these features was surprising because Michael 

was one of the least experienced case study teachers, being only in his second year of 

teaching. In particular, he appeared to be the least mathematically confident of the four 

teachers and, with his undergraduate and masters degrees in economics, was hoping to 

transition to becoming an economics teacher. Hence, superficially at least, Michael 

appeared likely to have the least mathematical knowledge for teaching circle theorems 

using technology, yet based on these indicators, the circle theorem case list he elicited 

made the most mathematical knowledge available in the interview. 

The minimum knowledge requirements provide a means of explaining how a teacher 

with less mathematical knowledge for teaching might elicit a pedagogically preferable 

sequence of cases than teachers with more mathematical knowledge for teaching. 

Knowing a dragging routine is enough to produce a particular sequence of cases 

because generating and sequencing examples of the angle at the centre theorem can be 

delegated to the GeoGebra software. Thus a teacher simply knowing one good dragging 

routine might elicit a pedagogically preferable sequence of cases than another teacher 

who articulates a decision about sequencing, comparing two or more dragging routines, 

based on incomplete or otherwise flawed criteria. This seems a plausible explanation for 

the unarticulated, anticipated decision about sequencing Michael produced in the 

GeoGebra interview. Michael’s routine response produced the sequence of pedagogic 

cases 1-6-12, through dragging points C and D to initiate a demonstration of the angle at 

the centre theorem. At no point did Michael drag point B to disrupt the arrowhead 

configuration until directly prompted to by the author. Thus he appeared to know one 

good dragging routine: briefly drag each of points B, C and D without disrupting the 
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arrowhead configuration, then drag points C and D up towards B. It is also possible he 

followed this dragging routine based on advice from his Head of Department. On the 

other hand, Robert and Edward articulated a decision about sequencing, implying they 

recognised at least two dragging routines and based their decision on some criteria 

regarding the pedagogic benefit of the dragging routines. Thus they appeared to know 

more than Michael. They recognised the pedagogic benefit in making a connection 

between the angle at the centre theorem and the angles in the same segment theorem by 

dragging B to elicit pedagogic case 5. However, their criteria for comparison were 

incomplete, since they did not appreciate that making this connection, before 

establishing the angle at the centre theorem, might distract from the theorem itself. 

Hence it was possible for Michael, apparently knowing less than Robert or Edward, to 

elicit a pedagogically preferable sequence of cases. 

All four case study teachers fulfilled the minimum knowledge requirements for an 

articulated, anticipated choice and use of examples, each eliciting two pedagogic cases 

beyond the starting configuration. Table 7.2 shows the number of pedagogic cases each 

case study teacher elicited in each of the four categories of the second dimension of the 

framework for identifying instances of distributed cognition. In particular, Michael 

elicited eight pedagogic cases in an articulated, unanticipated choice and use of 

examples compared to the other case study teachers who each elicited four. It is this 

category that contributes most to Michael’s circle theorem case list having the highest 

total number of pedagogic cases elicited by the case study teacher in the interview.  

 

Table 7.2 The number of pedagogic cases elicited in each of the four categories of the second 

dimension of the framework for identifying instances of distributed cognition 

 UU UA AU AA Total elicited 

Robert* 4 1 4 3 12 

Anne 2 1 4 3 10 

Edward 2 1 4 3 10 

Michael 4 0 8 3 15 

AA = articulated anticipated; AU = articulated unanticipated; UA = unarticulated anticipated; 

UU = unarticulated unanticipated. 
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The minimum knowledge requirements for an articulated, unanticipated choice and use 

of examples suggest that generating pedagogic cases in this category could be mostly 

delegated to the GeoGebra software e.g. for an articulated, unanticipated choice and 

use of examples that may be unrepeatable there is no need to know either a dragging 

sequence or a pedagogic case distinct from the starting configuration a priori. Hence, 

despite appearing to be the least mathematically confident of the four teachers, Michael 

was able to elicit more pedagogic cases through exploratory dragging than the other 

case study teachers. As a result, the mathematical knowledge made available in 

Michael’s interview appears more effectively distributed across the GeoGebra software 

than in the interviews of the other case study teachers. Thus viewing cognition as 

distributed provides a plausible explanation for how Michael could produce a circle 

theorem case list with the highest total number of pedagogic cases elicited by the case 

study teacher in the interview. 

 

7.5 Instances of distributed cognition from classroom observations 

In this section, data from observations of the case study teachers’ use of technology 

are used to provide two instances where cognition appears to be distributed ‘in the wild’ 

of mathematics teachers’ classroom practice. The first instance exemplifies the 

unarticulated, anticipated category of the framework where the mathematical 

knowledge made available in the lesson appeared to be distributed over technology, in 

this case the MyMaths website. The second instance provides an example of an 

articulated, unanticipated opportunity where the mathematical knowledge made 

available in the lesson appeared to be distributed over a student’s query in relation to a 

textbook question.  

The first instance, where the mathematical knowledge made available in the lesson 

appeared to be distributed over technology, occurred in the observation of Michael’s 

computer suite lesson. Michael had asked his year 8 pupils to work through a MyMaths 

lesson on calculating the volume of cuboids, comprising a series of slides incorporating 

explanations and exercises on the topic. In particular, the MyMaths lesson on volume 

included two animated slides offering a justification for the formula for the volume of a 

cuboid e.g. volume = width  length  height. The justification made a connection 

between a counting-cubes procedure for working out the volume of a cuboid and the 

multiplicative formula by animating the repeated addition of cuboids of unit height. 
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Thus the animation used a sequence of cuboids with heights increasing by an increment 

of one unit to make a connection between procedures, a code from the Connection 

category of the Knowledge Quartet. This connection was made available in the lesson 

by the decisions about sequencing and the choice and use of examples embedded in the 

design of the MyMaths lesson. The animation culminated in a 356 cuboid. Since the 

three dimensions of the cuboid are distinguishable by virtue of their differing lengths, 

the choice of this example also made it possible to demonstrate the interchangeability of 

the labels ‘length’, ‘width’ and ‘height’, although this was not explicitly stated on the 

animated slide. 

In the post-observation interview, Michael suggested he thought the animation was 

pedagogically useful and something that was not easily done using other resources. 

It’s a nice neat little demonstration I think, that’s definitely something you wouldn’t 

be able to do ... in a book you wouldn’t be able to do that.  I think that’s a real nice 

demonstration. [Mic-CS-int, 31.5.2012] 

 

However, Michael didn’t articulate why the animation was pedagogically useful for 

teaching volume, beyond being visually appealing. In particular, in preparing for the 

lesson, it seemed unlikely Michael had considered the usefulness of the MyMaths lesson 

from the point of view of mathematics pedagogy. After the post-observation interview, 

Michael commented that he felt he relied on the MyMaths website too much, trusting 

the software so that he didn’t think about how to structure his explanation of 

mathematical concepts. During the lesson, he did not draw pupils’ attention specifically 

to the animated slide, although he did encourage them to work through all the slides and 

not just to complete the assessed exercise at the end. Before taking his pupils to the 

computer suite, Michael provided a worked example of calculating the volume of a 

cuboid on the IWB in his normal classroom for his students to copy down into their 

exercise books. This example was not informed by the justification provided by the 

MyMaths animated slide. Michael used a cuboid with dimensions 115 to demonstrate 

the volume formula. This is a poor choice and use of examples for at least two reasons. 

Firstly, counting cubes appears a more efficient procedure than using the volume 

formula in this case, hence justifying the formula is problematic. Secondly, the 

repetition of unit length for two dimensions of the cuboid makes it difficult to 

demonstrate the interchangeability of the labels ‘length’, ‘width’ and ‘height’. Michael 

also adopted an algebraic approach in helping pupils to find a missing length given the 

volume of a cuboid, rather than connecting his explanation to the concept of volume. He 
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assumed pupils’ difficulty with this type of question stemmed from an aversion to the 

division operation, rather than to a lack of conceptual understanding of volume. In 

general, Michael said he did not understand why pupils had difficulties with this topic 

but did later acknowledge that the vocabulary of length, width, breadth, depth, base and 

so on and the interchangeability of these terms could be confusing. 

Michael’s use of the animated slide as part of the MyMaths lesson provides an example 

of an unarticulated, anticipated choice and use of examples and decisions about 

sequencing. Michael planned to use the slide as part of the MyMaths lesson on volume 

and thought it was a “nice demonstration” at least in general pedagogic terms. In this 

sense it was an anticipated opportunity. However, Michael did not articulate the 

usefulness of the slide in terms of mathematics pedagogy. In particular, it seems 

unlikely that he had considered the pedagogic structuring provided by the MyMaths 

lesson, in terms of the choice and use of examples or decisions about sequencing 

embedded in the software. It also seems unlikely that Michael would have made a 

connection between the counting-cubes procedure and volume formula available in the 

lesson without the use of a resource like the MyMaths website. Thus Michael had a 

readerly response to the software: the choice and use of examples and decisions about 

sequencing were mainly delegated to the technology. Hence Michael’s use of the 

MyMaths lesson provides an instance of distributed cognition, where the mathematical 

knowledge made available in the lesson appeared to be distributed mainly over the 

technology, likely leading to a better outcome than would have been possible without 

the use of a resource like the MyMaths website. 

The second instance, where the mathematical knowledge made available in the lesson 

appeared to be distributed over a student in interaction with the textbook, occurred in 

the observation of Edward’s IWB lesson. The aim of Edward’s lesson was to teach his 

year 12 students that the graph of an inverse function y = f -1(x) is a reflection in the line 

y = x of the original function y = f(x). Towards the end of the lesson the students were 

working on an exercise in relation to this topic from the course textbook. One of 

Edward’s students drew his attention to a textbook question where they were asked to 

find the inverse function of f(x) = 4 – x. The student thought his answer must be wrong 

because he had f -1(x) = 4 – x and couldn’t understand how the function could be an 

inverse of itself. The student’s query prompted a sudden insight for Edward into the 

value of this question in terms of mathematics pedagogy. He realised that the line          

y = 4 – x is perpendicular to the line y = x, thus the reflection of y = f(x) in the line y = x 
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simply maps the function back onto itself. As a result, the graph of the inverse function 

must also be y = 4 – x, explaining why function is self-inverse. This question was 

pedagogically useful because it provided an opportunity to consider why this function 

was self-inverse, and thus by extension what other functions might be self-inverse, 

whilst linking to the main aim of the lesson. In particular, the choice of example 

provided by the textbook question presents an opportunity to make connections between 

concepts (Knowledge Quartet, Connection), e.g. connecting the global property of 

having reflective symmetry in the line y = x with the concept of a self-inverse function. 

This insight caused Edward to deviate from his lesson agenda (Knowledge Quartet, 

Contingency), drawing the attention of the whole class to this example and replacing the 

planned example of finding the inverse function of y = x2 – 3.  

Edward’s response to the student’s query, connecting the global property of having 

reflective symmetry in the line y = x with the concept of a self-inverse function, 

provides an example of an articulated, unanticipated choice and use of examples. 

Edward articulated the pedagogic value of the example in the lesson, through his 

exposition of the example, and also later in the post-observation interview (see quotes 

below). The choice and use of examples was unanticipated because, although he had 

chosen the exercise from the textbook to some extent, he had no pedagogic expectations 

of the questions. For example, describing his planning of the lesson in the post-

observation interview Edward said:  

No no, I ignored the textbook completely. [I: Right okay.] Did what I want to do, and 

then went ‘Oh no the textbook seems to ask random questions’... [Ed-IWB-int, 

20.6.2012] 

 

His use of the word “random” to describe the textbook questions implies he assumed 

there was no intentional pedagogical structuring in the exercise i.e. no deliberate choice 

and use of examples or decisions about sequencing embedded in the design of the 

exercise. Hence he did not expect the questions to be of any particular pedagogic value. 

In addition, Edward acknowledged during the interview that he had not looked at the 

questions beforehand when planning the lesson and wouldn’t have thought of this 

“learning objective” otherwise. He still argued that the textbook sometimes appeared 

“random” i.e. without pedagogic structure, but that this example was an exception. 

E:  It was a question from the book, but I hadn’t looked at it before and I was 

stuck for a bit, it’s like is that right or wrong ... oh that means this [inaudible] realised 

it was self-inverse and reflective.  
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I:  Yeah, okay.  

 

E:  Which could have been a really good learning objective I just hadn’t 

thought of it.  So that’s another example of the book coming up with points that I 

wouldn’t have thought of.  So it’s not all bad, the questions in the book, they are a bit 

random sometimes.  In fact that wasn’t, that was quite a good question to ask actually. 

[Ed-IWB-int, 20.6.2012] 

 

The student’s query in relation to the correctness of his answer, given that it appeared to 

be the same as the original question, appeared instrumental in drawing Edward’s 

attention to the pedagogic value of this particular example. Without this intervention, it 

seems unlikely that Edward would have recognised the pedagogic value of the question, 

hence the mathematical knowledge made available in the lesson appeared to be 

distributed over a student in interaction with the textbook. Thus Edward’s response to 

the student’s query provides an instance of distributed cognition, where the 

mathematical knowledge made available in the lesson appeared to be distributed over a 

student in interaction with the textbook, likely leading to a better outcome than would 

otherwise have been possible. 

 

7.6 Summary 

In this chapter, the research focus shifted from individual teachers’ own knowledge to 

how this knowledge is involved in the participatory relationship with technology 

(Remillard, 2005). Hutchins’ (1995) view of distributed cognition was used as a 

framework for understanding how individual teachers’ knowledge is involved in 

interacting with technology to produce the mathematical knowledge made available in 

the classroom. In particular, specifying minimum knowledge requirements provided a 

means of detailing how and to what extent knowledge is distributed across teacher and 

technology and hence describing the participatory relationship (Remillard, 2005).  

In section 7.1, Hutchins’ (1995) mode of argument was applied to the case study 

teachers’ suggestions of how they would use the GeoGebra diagram D1 to demonstrate 

the angle at the centre theorem to pupils. This involved mapping the elements of his 

framework to the participants, hypothetical or otherwise, in the GeoGebra interviews. 

Mapping the elements provided a means of contextualising Hutchins’ view of 

distributed cognition in relation to this research project in particular and mathematics 

education research more generally.  
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A framework for identifying instances of distributed cognition, where the mathematical 

knowledge made available was more or less distributed across the technology, was 

developed and exemplified from an analysis of the circle theorem case lists presented in 

Chapter 6. The framework differentiated between the case study teachers’ unarticulated 

and articulated choice and use of examples and decisions about sequencing. 

Unarticulated and articulated choice and use of examples and decisions about 

sequencing were identified respectively with a readerly and writerly response to D1. 

Identifying the case study teachers’ choice and use of examples and decisions about 

sequencing with a readerly or writerly response was a means of indicating where the 

mathematical knowledge made available was more or less distributed across the 

technology. In addition, indicating where the mathematical knowledge made available 

was more or less distributed across the technology allowed the framework to expand the 

Knowledge Quartet, unravelling the tension bound up in the code adherence to textbook 

identified in Chapter 6. 

The development of the framework for identifying instances of distributed cognition led 

to the specification of minimum knowledge requirements necessary for the case study 

teachers to produce the circle theorem case lists depicted in Chapter 6. Specifying 

minimum knowledge requirements provided an indication of how and to what extent the 

case study teacher’s mathematical knowledge for teaching was distributed across the 

software, the author and hypothetical teaching-colleagues. More generally, the 

specification of minimum knowledge requirements potentially provides a theoretical 

means of indicating how and to what teachers’ mathematical knowledge for teaching is 

distributed across technology and hence a means of describing the participatory 

relationship between teacher and technology (Remillard, 2005). The minimum 

knowledge requirements also provided a means of explaining why case study teacher 

Michael was able to produce a better circle theorem case list in pedagogical terms than 

the other more experienced and more mathematically confident case study teachers. 

This provides convincing evidence in support of a distributed view of cognition. In 

particular, it suggests that an individual teacher ‘having’ more knowledge does not 

necessarily equate to an improvement in the mathematical knowledge made available - 

at least in the interview setting. It seems reasonable to speculate that this might also 

generalise to a classroom setting. The last section of this chapter, data from classroom 

observations of the case study teachers’ use of technology were used to provide brief 
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indications of how the framework might be exemplified in mathematics teachers’ 

classroom practice. 
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Chapter 8 - Mathematical knowledge for teaching using technology 

 

The broader aim of this study was to develop a deeper understanding of both how and 

why mathematics teachers use technology in their classroom practice. This final chapter 

presents the findings of the study and the contribution this study makes to research in 

the fields of teacher knowledge and technology in mathematics education. Following 

this, the generalisability of the findings and limitations of the study are discussed. This 

chapter concludes by considering the implications of this study for future research, 

policy and practice. 

 

8.1 Introduction 

The motivation for this study was to develop a deeper understanding of teachers’ 

classroom practice using digital technology. This led to the progressive focusing of the 

PhD research project on teachers’ mathematical knowledge for teaching using 

technology. ‘Technology’ is defined broadly as any artefact (physical or virtual) that has 

been designed for use or has been appropriated for use in teaching mathematics. 

Similarly, ‘digital technologies’ is used to indicate a digital artefact (physical or virtual) 

that has been designed for use or has been appropriated for use in teaching mathematics. 

This definition of digital technologies includes software and hardware that are not 

obviously ‘mathematical tools’. For example, teacher-centred digital technologies such 

as presentation-oriented software (e.g. PowerPoint, IWB software and the MyMaths 

website) are included, but non-digital technologies such as textbooks are excluded. 

The first section of Chapter 1 argued that mathematics education research has tended to 

focus narrowly on digital technologies such as those termed cognitive technological 

tools (Zbiek et al., 2007) or mathematical analysis software (Pierce & Stacey, 2010). It 

was argued this has led to the perception of a deficit in teachers’ use of digital 

technologies. The apparent deficit exists in two senses. Firstly, mathematics teachers 

appear to make only occasional use of digital technologies in their teaching. Secondly, 

when teachers do make use of digital technologies, the potential of these technologies to 

enhance pupils’ mathematical experience in the classroom is rarely realised. Adopting a 



253 

 

wider definition of digital technologies, such as the one used in this study, suggests the 

apparent deficit in teachers’ frequency of use may be over-estimated. Teachers do 

integrate some types of digital technology into their classroom practice. However, these 

types of digital technology are commonly assumed to be teacher-centred (rather than 

student-centred) and to maintain or even encourage existing ‘traditional’ pedagogies.  

Remillard’s (2005) perspective provided a reminder that although the constraints and 

affordances inherent in digital technologies may help to shape its end use in the 

classroom, inevitably, teachers as end-users will also work to shape the technology. 

Thus connectionist-oriented teachers may work to shape digital technologies commonly 

assumed to be teacher-centred, using them in ways that conform to their own more 

student-centred pedagogy. Chapter 1 hypothesised that, if this is the case, then the 

apparent deficit in teachers’ use of digital technologies in terms of the extent to which 

their potential is realised may also be over-estimated. 

In addition, Chapter 1 argued there is an imperative for research on how technology use 

is associated with a connectionist orientation. This imperative, alongside this study’s 

focus on teacher knowledge in relation to using technology to teach mathematics, gave 

rise to the two main research questions, RQ1 and RQ2, and two subsidiary questions, 

RQ2a and RQ2b, listed below. Since this study has defined a connectionist orientation 

mainly in terms of knowledge, contrasting connectionist teachers’ with transmissionist 

teachers’ use of technology provided a means of making visible individual teachers’ 

mathematical knowledge for teaching using technology. 

RQ1  How is a connectionist orientation towards teaching mathematics associated 

with teachers’ frequency of use of ICT, their orientation towards ICT and their 

pedagogic practices involving ICT? 

RQ2 What is the nature and content of teachers’ mathematical knowledge for 

teaching using technology, as represented by the central TPACK construct? 

RQ2a  How does a conceptualisation of teachers’ mathematical knowledge for 

teaching using technology suggest ways in which such knowledge could be 

measured? 

RQ2b To what extent is the mathematical knowledge made available through a 

teachers’ interaction with technology distributed across the individual teacher 

and the technology? 
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This study adopted a mixed-methods approach towards investigating individual 

teachers’ knowledge and how it is involved in interacting with technology to produce 

the mathematical knowledge made available in the classroom. A largely quantitative 

approach was taken to addressing Research Question 1, using survey data to explore 

associations between a connectionist orientation and ICT use, in order to be able to 

generalise more effectively to the population of English secondary school teachers. 

Addressing Research Question 2 and the subsidiary questions 2a and 2b, a qualitative 

approach was judged necessary to investigate individual teachers’ knowledge and how 

it is involved in the participatory relationship (Remillard, 2005) between teacher and 

technology. Qualitative data collection involved observing lessons where ICT was being 

used, followed by a post-observation interview, and a semi-structured interview or 

‘think aloud’ based around manipulating a GeoGebra file on circle theorems.  

 

8.2 Findings 

RQ1  How is a connectionist orientation towards teaching mathematics associated 

with teachers’ frequency of use of ICT, their orientation towards ICT and their 

pedagogic practices involving ICT? 

The findings in Chapter 4 suggest that moving research on teachers’ use of technology 

in mathematics education away from a narrow focus on cognitive tools (Zbiek et al., 

2007) or mathematics analysis software (Pierce & Stacey, 2010) to include teacher-

centred digital technologies such as presentation-oriented software (e.g. PowerPoint, 

IWB software and the MyMaths website) may be productive in terms of developing a 

deeper understanding of both how and why mathematics teachers use digital 

technologies in their classroom practice. In Chapter 4, a key finding was that frequent 

use of software commonly assumed to maintain and even encourage existing 

transmission-oriented pedagogies was surprisingly associated with a more connectionist 

orientation. Whilst mathematical analysis software is associated with making 

connections, for example between multiple representations (Kaput, 1992), this finding 

seems to suggest that ‘teacher-centred’ digital technologies might also be important in 

supporting connectionist-oriented practices. This supports the suggestion that the 

apparent deficit in teachers’ frequency of use may be over-estimated. In particular, this 

finding suggests that if connectionist teachers do adapt ‘teacher-centred’ digital 

technologies in ways that support or conform to their own more student-centred 
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pedagogy, the apparent deficit in teachers’ use of digital technologies in terms of the 

extent to which their potential is realised may indeed be over-estimated. 

In addition, Chapter 4 found that whilst there are pedagogic practices involving ICT 

associated with a connectionist orientation, items on pedagogic practices involving ICT 

that were designed to be ‘teacher-centred’ appear to have no association either way. 

These ‘teacher-centred’ practices involving ICT may instead be construed as ‘dominant’ 

practices, in that they are also the most frequently occurring across all teachers. Case 

study data supports the survey finding of dominant practices, suggesting that, 

superficially at least, there is little difference between connectionist and transmission 

teachers use of ICT. This points to a need for further research focussing on how and to 

what extent connectionist teachers adapt ‘teacher-centred’ digital technologies in ways 

that support or conform to their own more student-centred pedagogy – see Section 8.6 

on implications of this study. Chapter 4 also provided indications that even these 

dominant practices make significant demands on teachers’ knowledge. 

 

RQ2 What is the nature and content of teachers’ mathematical knowledge for 

teaching using technology, as represented by the central TPACK construct? 

A key contribution this study makes is developing an understanding of the nature and 

content of individual teachers’ mathematical knowledge for teaching using technology. 

In Chapter 1, borrowing from Shulman (1986, p.13), mathematical knowledge for 

teaching using technology was assumed not only to be a matter of knowing how – being 

competent in teaching mathematics using technology - but also of knowing what and 

why. In other words, mathematical knowledge for teaching using technology, as defined 

in this study, is when know-how or knowledge-in-action is underpinned by and 

coincides with the teacher’s articulated knowledge. This was depicted in Figure 1.1 as 

the intersection of individual teachers’ articulated knowledge and their knowledge-in-

action. Contrasting the two transmissionist with the two connectionist case study 

teachers’ use of technology provided a methodological means of making visible 

individual teachers’ mathematical knowledge for teaching using technology. The 

literature review in Chapter 2 makes a contribution in identifying mathematical 

knowledge for teaching using technology as an area that has been under-researched. 

More specifically, the literature review found that research on technology in 

mathematics education has paid relatively little attention to teachers’ knowledge of 
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specific mathematical concepts in relation to technology. By comparison, research on 

teacher knowledge in the field of mathematics education is relatively well 

conceptualised, although limited in terms of its curriculum coverage. For example, Ma’s 

(1999) research focused on arithmetic operations and Askew et al (1997) focused on 

numeracy. In addition, research on teacher knowledge in the field of mathematics 

education has rarely considered teachers’ mathematical knowledge for teaching in the 

context of technology use. Hence the literature review concluded that the nature and 

content of teachers’ mathematical knowledge for teaching using technology remained 

an unresolved question. In this respect, the TPACK framework and the central TPACK 

construct in particular were useful, for the purposes of this study, for concentrating 

attention on teacher knowledge in relation to technology, identifying mathematical 

knowledge for teaching using technology as a focus for research (see also Chapters 1 

and 2). In a similar sense, Shulman’s (1986) concept of PCK has been highly 

productive, stimulating research focused on the nature and content of teacher 

knowledge (see Chapter 2). Chapter 5 underlines the significance of mathematical 

knowledge for teaching using technology, showing that while a positive stance towards 

technology might be necessary, it is not sufficient.  

The main contribution of Chapter 5 was to identify the nature of mathematical 

knowledge for teaching using technology with the notion of situated abstraction (Noss 

& Hoyles, 1996; & Kent, 2004; & Pozzi, 2002). This is indicated in Figure 8.1, by 

showing revisions to the theoretical framework used in this study. This notion, 

alongside Adler’s (1999; 2001) concepts of the dilemma of transparency and 

visibility/invisibility, was useful in indicating the nature of mathematical knowledge for 

teaching using technology as abstract, mathematical knowledge and yet simultaneously 

as mathematical knowledge situated in the context of teaching using technology. In 

particular, the notion of situated abstraction was useful in allaying the concern that 

seeing mathematical knowledge for teaching using technology as situated should not be 

taken to mean that each piece of technology requires teachers to learn an entirely new 

and distinct domain of mathematical knowledge for teaching. Thus a teacher with 

mathematical knowledge for teaching using a static paper-and-pencil environment 

should find it easier to develop mathematical knowledge for teaching using GeoGebra 

and other technologies. Further, for the purposes of this study, Adler’s concepts, linked 

to Lave and Wenger’s (1998) metaphor of a window, help to explain how mathematical 

knowledge for teaching using technology can be simultaneously situated and abstract 



257 

 

knowledge. Here, situated indicates that the context of teaching using technology 

provides a frame of reference through which teachers’ view ‘abstract’ mathematical 

knowledge. The weak theorisation of the TPACK framework (Graham, 2011; Ruthven, 

2014; Voogt et al., 2012) provided a key affordance in identifying the nature of 

mathematical knowledge for teaching using technology with the notion of situated 

abstraction. By allowing the user to move between an integrative and transformative 

perspective, in particular in relation to the central TPACK construct, the framework 

helped to balance the dual visibility and invisibility of technology in the practice of 

teaching school mathematics. 

 

Figure 8.1 Revised framework 
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The analysis in Chapter 5 began to investigate the content of mathematical knowledge 

for teaching using technology, indicating that such knowledge could consist of a 

repertoire of articulated strategies for using the constraints and affordances (Greeno, 

1998) of the technology for the purposes of teaching mathematics. Whilst Chapter 5 

provided indications of content, Chapter 6 developed this investigation further by 

providing a fine-grained analysis, conceptualising the content of mathematical 

knowledge for teaching using technology in relation to the topic of circle theorems. The 

Knowledge Quartet provided a post-hoc justification for the conceptualisation of 

knowledge, presented in section 6.2, that forms a basis for informing and justifying a 

teacher’s choice and use of examples and decisions about sequencing. This post-hoc 

justification alongside Mason and Watson’s (2005; 2006) research on example spaces 

suggested that the approach taken in Chapter 6, i.e. mapping out a complete set of 

pedagogic cases and identifying a preferred pedagogical sequencing, may provide a 

means for conceptualising mathematical knowledge for teaching using technology for 

other areas of the mathematics curriculum. In addition, the analysis in Chapter 6 

identifies a tension in relation to technology within the Knowledge Quartet, bound up in 

the code adherence to textbook – this tension was unravelled later in Chapter 7.  

 

The main contribution of Chapter 6 is the demonstration of the highly complex nature 

of mathematical knowledge for teaching using technology, through the 

conceptualisation of such knowledge in relation to the topic of circle theorems. This 

high level of complexity provides an indication of why carrying out even the dominant 

practices discussed in Chapter 4, that do not go beyond enhancing general pedagogic 

aspirations, might prove problematic in the classroom. Reconstructing the tabular list of 

pedagogic cases, depicted in Figure 6.10, in practice would likely overload teachers’ 

working memory. In addition, the high level of complexity makes it seem unrealistic for 

all teachers to acquire such knowledge, especially if a similar level of complex 

knowledge is needed for all aspects of the curriculum. Chapter 7 ameliorates this 

situation, providing indications of how a distributed view of cognition might offer 

potential strategies for facilitating teacher interaction with technology. The minimum 

knowledge requirements, specified in Chapter 7, suggest that knowing a dragging 

routine is enough to produce a particular sequence of cases. This is because generating 

and sequencing examples of the angle at the centre theorem can be delegated to the 

GeoGebra software. Thus a teacher simply knowing one good dragging routine might 
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elicit a pedagogically preferable sequence of cases than another teacher who articulates 

a decision about sequencing, comparing two or more dragging routines, based on 

incomplete or otherwise flawed criteria. In addition, since a dragging routine brings 

pedagogic cases to light in a particular order, this could alleviate the demands placed on 

teachers’ working memory in terms of recognising pedagogic cases from the tabular list 

depicted in Figure 6.10. 

 

RQ2a  How does a conceptualisation of teachers’ mathematical knowledge for teaching 

using technology suggest ways in which such knowledge could be measured? 

The conceptualisation of mathematical knowledge for teaching using technology in 

relation to the topic of circle theorems, presented in Chapter 6, is the type of 

conceptualisation that is currently under-developed in existing measures of 

mathematical knowledge for teaching (e.g. Baumert et al., 2010; Hill et al., 2005; Tatto 

et al., 2012) as argued in Chapter 2.  The original intention of this study was to develop 

test items for measuring mathematical knowledge for teaching using technology, for 

example, based upon the GeoGebra file used in the semi-structured interviews. 

Research Question 2a was not addressed in as much depth as the other research 

questions due to the unexpected richness of data arising from the GeoGebra interviews 

and, in particular, the high complexity of conceptualising mathematical knowledge for 

teaching using technology in relation to the topic of circle theorems. Nevertheless, the 

conceptualisation presented in section 6.2 provided a basis for suggesting ways in which 

such knowledge could be measured. In particular, the circle theorem case lists provided 

a means of summarising the mathematical knowledge made available through the case 

study teachers’ participation with a diagram in GeoGebra. The development of the 

circle theorem case list suggests teachers’ mathematical knowledge for teaching using 

technology in relation to the topic of circle theorems may be summarised as a two-

dimensional measure, with one dimension providing an indicator of teachers’ choice 

and use of examples and the other dimension providing an indicator of their decisions 

about sequencing. The total number of pedagogic cases the case study teacher elicited in 

the interview provides a numerical summary as one possible indicator of teachers’ 

choice and use of examples. Another possible numerical indicator of teachers’ choice 

and use of examples is the percentage of explicitly recognised pedagogic cases that 

teachers suggested they would show their pupils. Chapter 6 conjectured that this latter 

indicator might show some relationship to transmissionist measure. However, these 
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post-hoc inferences will require further research. 

 

 

 

RQ2b To what extent is the mathematical knowledge made available through a 

teachers’ interaction with technology distributed across the individual teacher 

and the technology? 

 

The literature review in Chapter 2 noted that research on teacher knowledge informed 

by views of cognition as distributed (Hutchins, 1995) across persons and technology 

remains underdeveloped (Putnam & Borko, 1997). In particular, the extent to which the 

mathematical knowledge made available through a teachers’ interaction with 

technology distributed across the individual teacher and the technology remains unclear. 

In Chapter 7, the main contribution was to describe the nature of the participatory 

relationship (Remillard, 2005) between teacher and technology in terms of a 

readerly/writerly response. Designating a teachers’ response as readerly or writerly is 

not intended to as a normative judgement. Instead, a readerly or writerly response was a 

means of indicating where the mathematical knowledge made available was more or 

less distributed across the technology – see Figure 8.1. In Chapter 7, a framework for 

identifying instances of distributed cognition was developed and exemplified from an 

analysis of the circle theorem case lists presented in Chapter 6. The circle theorem case 

lists provided a summary of the mathematical knowledge made available through the 

case study teachers’ participation with a diagram in GeoGebra, a type of mathematical 

analysis software. The development of the framework for identifying instances of 

distributed cognition led to the specification of minimum knowledge requirements 

necessary for the case study teachers to produce the circle theorem case lists depicted in 

Chapter 6. More generally, the specification of minimum knowledge requirements 

potentially provides a theoretical means of indicating how and to what extent teachers’ 

mathematical knowledge for teaching is distributed across technology and hence a 

means of describing the participatory relationship between teacher and technology 

(Remillard, 2005). In addition, indicating where the mathematical knowledge made 

available was more or less distributed across the technology allowed the framework to 

expand the Knowledge Quartet, unravelling the tension bound up in the code adherence 

to textbook identified in Chapter 6. 



261 

 

 

8.3 Developing a deeper understanding of how and why mathematics 

teachers use technology in practice 

Bringing the analysis together, these findings suggest that focussing on teachers’ 

participation with technology (Remillard, 2005) in terms of a readerly or writerly 

response, in relation to the broader definition of technology used in this study, might be 

more productive than focusing narrowly on teachers’ integration of the types of 

software valorised by the maths education research community (e.g. Pierce & Stacey, 

2010; Zbiek et al., 2007). This is not to say that the type of technology is unimportant, 

but that the mathematical knowledge made available by the teacher in interaction with 

technology is critical. In particular, broadening the focus to include teacher-centred 

technologies (e.g. PowerPoint, IWB software and the MyMaths website) might reduce 

the deficit view of teachers’ technology use. Hutchins (1995, p. 172) states that he is 

careful not to define a class of designed external tools for thinking, such as cognitive 

artifacts, since a distributed view of cognition suggests any artefact (used for teaching 

mathematics) can to some extent be viewed as ‘having’ cognitive attributes. Thus a 

distributed view of cognition should be applicable to the broader definition of digital 

technology adopted in this study. In section 7.6, data from classroom observations of 

the case study teachers’ use of technology were used to provide brief indications of how 

the framework for identifying instances of distributed cognition, developed in Chapter 

7, might be exemplified in mathematics teachers’ classroom practice. In particular, these 

brief indications provide examples of how and to what extent mathematical knowledge 

made available through a teacher’s interaction with technology might be distributed 

across ‘teacher-centred’ digital technologies and non-digital technologies, such as 

textbooks. For example, Michael’s participation with the MyMaths website in his lesson 

on volume provided an instance of a readerly response to a ‘teacher-centred’ 

technology, where an explanation for the formula for the volume of cuboid appeared 

more distributed across the technology than the teacher. In Edward’s lesson, his insight 

in relation to a student’s query concerning a textbook question provided an instance of a 

writerly response, where the identification of self-inverse functions appeared somewhat 

more distributed across the teacher than the technology and the student. Further 

indications are needed of how the framework for identifying instances of distributed 

cognition might be exemplified in mathematics teachers’ classroom practice. In 

particular, examples are needed of how and to what extent mathematical knowledge 
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made available through connectionist teachers’ interaction with ‘teacher-centred’ digital 

technologies might be distributed across the technology and teacher. 

8.4 The generalisability of this study 

This section addresses the generalisability of findings from this study. In both the 

quantitative and qualitative phases of this study, the sample of teachers upon which the 

findings were based represented a theoretically purposive choice.   In this sense, in both 

phases of data collection, case selection aimed for an atypical sample rather than a 

representative sample of the underlying population of teachers. For this reason, the 

findings from this study cannot be generalised in a simplistic way to a wider population 

of teachers without further empirical validation. However, as critical cases, the samples 

in both phases of data collection were central to building a compelling argument for the 

findings set out in section 8.2. This section discusses the generalisability of claims made 

in relation to the quantitative and qualitative phases of this study in more detail in the 

following paragraphs. 

The findings based on the survey data and reported in Chapter 4 in relation to 

associations between a connectionist orientation and teachers’ frequency of use of ICT, 

their orientation towards ICT and their pedagogic practices involving ICT are not 

representative of teachers as a whole. The survey sample was purposively directed to 

ensure sufficient representation of connectionist teachers in the sample. The study did 

not aim for a statistically representative sample, which in any case was not feasible 

within the resources of the project. In particular, as stated in Chapter 3, the survey 

sample is likely to be biased towards teachers who are relatively well-disposed towards 

ICT or those wishing to be seen as frequent users of ICT. However, this bias may be 

seen as a strength of case selection in that it serves to underline the surprising nature of 

the association between frequent use of teacher-centred technologies and a more 

connectionist orientation, making this finding worthy of further investigation. Hence, 

there is relatively strong evidence supporting the surprising finding that frequent use of 

software commonly assumed to maintain and even encourage existing transmission-

oriented pedagogies was associated with a more connectionist orientation. 

The four case study teachers were selected as critical cases, hence this study aimed for 

analytic generalisability (Mitchell, 1984). Indeed, the strength of this sample lies in the 

purposive choice of cases: contrasting connectionist and transmissionist teachers’ use of 

technology was a means of making visible individual teachers’ mathematical 
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knowledge for teaching using technology. In Chapter 5, the finding that the nature of 

mathematical knowledge for teaching using technology can be described as a situated 

abstraction provides a theoretical insight. Similarly, in Chapter 7, describing the 

participatory relationship between teacher and technology in terms of a readerly/writerly 

response (i.e. as more or less distributed) and the specification of minimum knowledge 

requirements provide theoretical insights into mathematical knowledge for teaching 

using technology. The generalisability as well as the validity of such insights rests on 

the extent to which they are useful (Hodgen, 2003) in understanding mathematical 

knowledge for teaching using technology in contexts beyond this study. In other words, 

these theoretical insights require further empirical testing in other technological 

contexts, with wider samples of teachers, in different curriculum areas, in cultural 

contexts outside England and so on to determine the extent of their generalisability. In 

Chapter 6, the high complexity of the conceptualisation of mathematical knowledge for 

teaching using technology in relation to the topic of circle theorems seems likely to 

generalise beyond the four case study teachers, although another sample of teachers 

might experience more or less difficulty in managing the large number of pedagogic 

cases. The high level of complexity may be partly related to the dynamic nature of the 

GeoGebra software. In addition, further research would be required to test whether the 

centrality of the Knowledge Quartet codes choice and use of examples and decisions 

about sequencing generalises to other technological contexts and curricula contexts. The 

extent to which findings in Chapter 6 might generalise beyond the English cultural 

context is also a matter for further research. 

 

8.5 Limitations of this study 

The focus of this study was on individual teachers’ knowledge and how it is involved in 

interacting with technology to produce the mathematical knowledge made available in 

the classroom. This study also chose to focus on the geometrical topic of circle 

theorems, since research on mathematical knowledge for teaching has tended to focus 

elsewhere, for example for example, on arithmetic operations (Ma, 1999) and on 

numeracy (Askew et al., 1997) – see Chapter 2. In addition, this study focused on a 

particular piece of dynamic geometry software: the semi-structured interviews with case 

study teachers were based around a file designed in GeoGebra. This provided a familiar 

yet challenging technological context for the case teachers, enabling an investigation of 
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the teachers’ mathematical knowledge for teaching using technology. As noted in 

Chapter 1, no study can take all factors into account, thus all studies are necessarily 

limited in scope to a greater or lesser extent. This study chose not to focus on other 

factors which Remillard (2005) identified as important in affecting the participatory 

relationship between teacher and technology, such as other individual characteristics of 

teachers; characteristics of technology; students; and contextual features (e.g. school 

and departmental culture and the level of teacher support). In addition, this study is 

limited in terms of the technological context, the curricula topic and the English cultural 

context. Limiting the scope of the study in this way enabled a focus on individual 

teachers’ knowledge and how it is involved in interacting with technology to produce 

the mathematical knowledge made available in the classroom.    

Whilst the study did not focus on other factors affecting the participatory relationship 

between teacher and technology, these factors were acknowledged and where possible 

were taken into account. For example, the survey attempted to take into account 

contextual features (Stein et al., 2007) that might influence the participatory relationship 

between teachers and technology by including items on access to hardware/software and 

school/departmental level factors effecting ICT use. In addition, contextual features 

were taken into account, specifically the working environment (Ruthven, 2009), by 

dividing questions between using software in a whole-class context with an IWB and 

using ICT in a computer suite where students have direct access to the software. 

Further, the survey sample was purposively directed at school level, enabling the 

collection of data on contextual features (Stein et al., 2007) such as local school or 

departmental level factors effecting ICT use. For the qualitative phase of the study, the 

level of school support was used as one dimension of variation upon which to base the 

selection of the four case study teachers. During lesson observations, an effort was 

made to note students’ comments to which the teacher responded, particularly in 

moments of contingency, which appeared to make demands on the teacher’s 

mathematical knowledge for teaching using technology. Similarly, in Chapter 7, in 

mapping the elements of Hutchins’ view of distributed cognition, the humans involved 

in the GeoGebra interviews were acknowledged as the author, the case study teacher, 

the case study teacher’s students and the case study teacher’s departmental colleagues – 

although of course the students and the case study teacher’s departmental colleagues 

were only hypothetically involved. To an extent, the lesson observations provided 

opportunities to investigate mathematical knowledge for teaching using technology with 
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a wider variety of technologies and curricula topics outside the context of the semi-

structured GeoGebra interviews. 

 

8.6 Further research and implications for policy and practice 

This section sets out suggestions for future research and tentative implications for 

policy and practice in initial teacher education, teacher education more generally, 

curriculum resource design and development. 

8.6.1 Research 

Further research is needed to corroborate the surprising finding that frequent use of 

teacher-centred software was associated with a more connectionist orientation. In 

addition, a larger scale qualitative study should seek to explore how and to what extent 

connectionist teachers adapt teacher-centred digital technologies in ways that support or 

conform to their own more student-centred pedagogy. 

Further research is also needed to examine the wider applicability of the theoretical 

insights provided in Chapters 5 and 7, beyond the immediate context of this study. 

Initially this might focus most usefully on investigating to what extent these insights 

extend to different curricula topics and different technological contexts, both digital and 

non-digital. 

Similarly, further research is necessary to test whether the centrality of the Knowledge 

Quartet codes choice and use of examples and decisions about sequencing, in Chapter 6, 

generalises to other technological contexts and curricula topics. In particular, such 

qualitative research, aimed at developing conceptualisations of mathematical knowledge 

for teaching using technology, should suggest ways in which such knowledge could be 

measured. For example, in relation to the topic of circle theorems, the circle theorem 

case list provided a means of summarising teachers’ knowledge and suggested 

indicators that could provide measures of such knowledge. A feasibility study would be 

needed to develop ways of automating the production of a circle theorem case list or 

operationalising the conceptualisation presented in Chapter 6 as a test item. A 

quantitative study would then be needed to test this at scale.   

Chapter 6 concluded with some post-hoc inferences about possible relationships 

between transmissionist measure and indicators of mathematical knowledge for 
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teaching circle theorems using technology. Specifically, further research is needed to 

test the hypothesis that there would be no relationship between transmissionist measure 

and the total number of pedagogic cases in a teacher’s circle theorem case list. In 

addition, further research would be needed to test the hypothesis that the percentage of 

explicitly recognised pedagogic cases that teachers suggested they would show their 

pupils would be associated with transmissionist measure. 

 

8.6.2 Policy 

The quality of mathematical knowledge made available in the classroom depends in part 

on the design-quality of technologies for teaching mathematics. Chapter 7 suggests that 

well-designed technologies might support teachers in making mathematical knowledge 

available to their pupils in their classroom practice. For example, knowing a good 

routine for dragging dynamic software might allow teachers to delegate the generation 

and sequencing of pedagogic cases to the technology. However, this implies the quality 

of mathematical knowledge made available in the classroom would then rely in part on 

the quality of design of such technology for teaching mathematics. For example, the 

design of teaching technologies should pay particular attention to providing a systematic 

exploration of the example space of pedagogic cases i.e. pay careful attention to the 

choice and use of examples and decisions about sequencing to provide a mathematically 

coherent experience. In particular, this suggests frequent curriculum changes may be 

counter-productive, since the rapid re-design of textbooks in response to such changes is 

likely to incur a decline in their design-quality. Similarly the proliferation of web-based 

resources for teaching mathematics, where the design-quality is unclear, may result in a 

deterioration in the mathematical knowledge teachers are able to make available to their 

pupils in their classroom practice. On the other hand, if further research corroborates 

and can explain the surprising finding that frequent use of teacher-centred software was 

associated with a more connectionist orientation, then enhancing web-based resources 

such as the MyMaths web-site might provide a means of improving classroom practice 

incrementally on a wide scale. 
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8.6.3 Practice 

An implication of this study for practice is that teacher education should cover a broader 

range of technology. In particular, teacher education should not be limited to a 

consideration of technologies such as those termed cognitive technological tools (Zbiek 

et al., 2007) or mathematical analysis software (Pierce & Stacey, 2010). Teacher 

education should also cover teacher-centred digital technologies such as presentation-

oriented software (e.g. PowerPoint, IWB software and the MyMaths website).  

In Chapter 5, the dilemma of transparency provides an indication of why it has been so 

hard to explain teachers’ difficulties in integrating technology. Managing this dilemma 

of transparency in the practice of teaching school mathematics is perhaps a task for 

teacher educators in particular, as well as the mathematics education community as a 

whole, involving decisions about to what extent can mathematical knowledge be 

delegated to technology in the classroom.  

In addition, this study suggests that teacher education should focus on developing 

teachers’ routines for using technology. Case study teacher Michael’s routine for 

dragging D1 to exemplify the angle at the centre is twice the angle at the circumference 

provides a possible example: his dragging routine produced an arguably better sequence 

of pedagogic cases than the other three case study teachers.  

Finally, this study suggests that specifying minimum knowledge requirements for 

teaching may be possible. If further research shows this to be the case, then a focus on 

equipping trainees with the minimum knowledge requirements to use technology for 

teaching mathematics would be important in initial teacher education.  

  



268 

 

Bibliography 

 

Adler, J. (1999). The Dilemma of Transparency: Seeing and Seeing through Talk in the 

Mathematics Classroom. Journal for Research in Mathematics Education, 30(1), 

47-64.  

Adler, J. (2001). Teaching Mathematics in Multilingual Classrooms. Dordrecht: 

Kluwer. 

Anderson, L. W. (1995). International Encyclopedia of Teaching and Teacher 

Education. Oxford: Elsevier Science Ltd. 

Andrews, P. (2011). The Cultural Location of Teachers' Mathematical Knowledge: 

Another Hidden Variable in Mathematics Education Research? In T. Rowland & 

K. Ruthven (Eds.), Mathematical Knowledge in Teaching (pp. 99-118). London: 

Springer. 

Andrich, D. (1999). Rating scale model. In G. N. Masters & J. P. Keeves (Eds.), 

Advances in measurement in educational research and assessment (pp. 110-

121). Oxford: Pergamon. 

Archambault, L. M., & Barnett, J. H. (2010). Revisiting technological pedagogical 

content knowledge: Exploring the TPACK framework. Computers & Education, 

55(4), 1656-1662.  

Argyris, C., & Schoen, D. A. (1974). Theory in Practice: Increasing Professional 

Effectiveness. San Fracnsico: Jossey-Bass. 

Artigue, M. (2002). Learning Mathematics in a CAS environment: the genesis of a 

reflection about instrumentation and the dialectics between technical and 

conceptual work. International Journal of Computers for Mathematical 

Learning, 7(3), 245-274.  

Askew, M., Rhodes, V., Brown, M., Wiliam, D., & Johnson, D. (1997). Effective 

Teachers of Numeracy. London: King's College. 

Balacheff, N., & Kaput, J. J. (1996). Computer-based learning environments in 

mathematics. In A. J. Bishop (Ed.), International Handbook of Mathematics 

Education: first edition. Dordrecht: Kluwer Academic Publishers. 

Ball, D. L. (1990). The Mathematical understandings that prospective teachers bring to 

teacher education. Elementary School Journal, 90(4), 449–466.  

Ball, D. L., Blomeke, S., Delaney, S., & Kaiser, G. (2012). Measuring Teacher 

Knowledge - Approaches and Results from a Cross-National Perspective. 

Zentralblatt fur Didaktik der Mathematik, 44(3).  

Ball, D. L., Lubienski, S. T., & Mewborn, D. S. (2001). Research on teaching 

mathematics: the unsolved problem of teachers' mathematical knowledge. In V. 

Richardson (Ed.), Handbook of Research on Teaching (pp. 433-456). 

Washington DC: American Educational Research Association. 

Ball, D. L., Thames, M. H., & Phelps, G. (2008). Content Knowledge for Teaching. 

Journal of Teacher Education, 59(5), 389-407.  

Baumert, J., Kunter, M., Blum, W., Brunner, M., Voss, T., Jordan, A., et al. (2010). 

Teachers' Mathematical Knowledge, Cognivite Activation in the Classroom and 

Student Progress. American Educational Research Journal, 47(1), 133-180.  



269 

 

Becker, H. J. (1985). How schools use microcomputers: Results from a national survey. 

In M. Chen & W. Paisley (Eds.), Children and Microcomputers: Research on 

the Newest Medium (pp. 87-107). Beverly Hills, CA: Sage. 

Becker, H. J. (1992). On technology: computer education. In M. C. Alkin (Ed.), 

Encyclopedia of Educational Research. New York: Macmillan. 

Becker, H. J., Ravitz, J. L., & Wong, Y. T. (1999). Teacher and teacher-directed student 

use of computers and software Technical Report #3: Teaching, Learning and 

Computing, 1998 National Survey Irvine, CA: University of California at Irvine. 

Bellman, A., Foshay, W. R., & Gremillion, D. (2014). A Developmental Model for 

Adaptive and Differentiated Instruction Using Classroom Networking 

Technology. In A. Clark-Wilson, O. Robutti & N. Sinclair (Eds.), The 

Mathematics Teacher in the Digital Era: an International Perspective on 

Technology Focused Professional Development (pp. 91-110). Dordrecht: 

Springer. 

Biddle, B. J., Good, T. L., & Goodson, I. F. (Eds.). (1997). International Handbook of 

Teachers and Teaching. Dordrecht: Kluwer Academic Publishers. 

Bishop, A. J. (Ed.). (1996). International Handbook of Mathematics Education: first 

edition. Dordrecht: Kluwer Academic Publishers. 

Bishop, A. J., Clements, M. A., Keitel, C., Kilpatrick, J., & Leung, F. K. S. (2003). 

Second International Handbook of Mathematics Education. Dordrecht: Kluwer 

Academic Publishers. 

Blomeke, S., & Delaney, S. (2012). Assessment of teacher knowledge across countries: 

a review of the state of research. Zentralblatt fur Didaktik der Mathematik, 

44(3), 223-247.  

Boero, P., Dapueto, C., & Parenti, L. (1996). Didactics of mathematics and the 

professional knoweldge of teachers. In A. J. Bishop (Ed.), International 

Handbook of Mathematics Education: first edition (pp. 1097-1121). Dordrecht: 

Kluwer Academic Publishers. 

Bohlig, M., Fisher, W. P. J., Masters, G. N., & Bond, T. (1998). Content Validity, 

Construct Validity and Misfitting Items. Rasch Measurement Transactions, 

12(1), 607.  

Bond, T., & Fox, C. M. (2007). Applying the Rasch Model: Fundamental Measurement 

in the Human Sciences, second edition. Mahwah, NJ: Lawrence Erlbaum 

Associates. 

Borko, H., Jacobs, J., & Koellner, K. (2010). Contemporary approaches to teacher 

professional development. In P. Peterson, E. Baker & B. McGaw (Eds.), 

International Encyclopedia of Education (pp. 548-556). Oxford: Elsevier. 

Borko, H., Whitcomb, J., & Liston, D. (2009). Wicked Problems and Other Thoughts 

on Issues of Technology and Teacher Learning. Journal of Teacher Education, 

60(1), 3-7.  

Bottino, R. M., & Furinghetti, F. (1996). The emerging of teachers' conceptions of new 

subjects inserted in mathematics programs: the case of informatics. Educational 

Studies in Mathematics, 30(2), 109-134.  

Bowe, R., Ball, S., & Gold, A. (1992). Reforming education and changing schools: case 

studies in policy sociology. London: Routledge. 



270 

 

Bowers, J., & Doerr, H. (2001). An Analysis of Prospective Teachers' Dual Roles in 

Understanding the Mathematics of Change: Eliciting Growth With Technology. 

Journal of Mathematics Teacher Education, 4(2), 115-137.  

Bowers, J., & Stephens, B. (2011). Using technology to explore mathematical 

relationships: a framework for orienting mathematics courses for prospective 

teachers. Journal of Mathematics Teacher Education, 14(4), 285-304.  

Bretscher, N. (2007). Dynamic Geometry Software as a Resource for Teaching 

Geometrical Proof MA Masters Dissertation, King's College London, London.    

Bretscher, N. (2009). Networking Frameworks for Analysing Teachers’ Classroom 

Practices: a focus on technology. MRes Masters Dissertation, King's College 

London, London.    

Bretscher, N. (2011). A survey of technology use: the rise of interactive whiteboards 

and the MyMaths website Proceedings of the Seventh Congress of the European 

Society for Research in Mathematics Education CERME 7. Poland: Rzeszow. 

Bretscher, N. (2014). Exploring the quantitative and qualitative gap between 

expectation and implementation - a survey of English mathematics teachers’ use 

of ICT. In A. Clark-Wilson, O. Robutti & N. Sinclair (Eds.), The Mathematics 

teacher in the Digital Era (pp. 43-70): Springer. 

Brown, J. S., Collins, A., & Duguid, P. (1989). Situated cognition and the culture of 

learning. Educational Researcher, 18(1), 32-42.  

Brown, S., & McIntyre, D. (1993). Making Sense of Teaching. Buckingham: Open 

University Press. 

Chazan, D., Larriva, C., & Sandow, D. (1999). What kind of mathematical knowledge 

supports teaching for "conceptual understanding"? Pre-service teachers and 

solving equations. Paper presented at the 23rd Pyschology of Mathematics 

Education International Conference, Haifa, Israel.  

Clark-Wilson, A. (2008). Evaluating TI-Nspire in secondary mathematics classrooms. 

Chichester: University of Chichester. 

Clark-Wilson, A. (2010). How does a multi-representational mathematical ICT tool 

mediate teachers’ mathematical and pedagogical knowledge concerning 

variance and invariance? PhD Doctoral Thesis, Institute of Education, 

University of London, London.    

Clark-Wilson, A. (2014). A Methodological Approach to Researching the Development 

of teachers' Knowledge in a Multi-Representational Technological Setting. In A. 

Clark-Wilson, O. Robutti & N. Sinclair (Eds.), The Mathematics Teacher in the 

Digital Era: an International Perspective on Technology Focused Professional 

Development (pp. 277-296). Dordrecht: Springer. 

Clark-Wilson, A., Robutti, O., & Sinclair, N. (Eds.). (2014). The Mathematics Teacher 

in the Digital Era: an International Perspective on Technology Focused 

Professional Development. Dordrecht: Springer. 

Clements, M. A., Bishop, A. J., Keitel, C., Kilpatrick, J., & Leung, F. K. S. (2013). 

Third International Handbook of Mathematics Education. New York: Springer. 

Cobb, P. (1994). Learning mathematics: Constructivist and interactionist theories of 

mathematical development. Dordrecht, Netherlands: Kluwer. 



271 

 

Coe, R. (2008). Comparability of GCSE examinations in different subjects: an 

application of the Rasch model. Oxford Review of Education, 34(5), 609-636.  

Cohen, L., Manion, L., & Morrison, K. (2000). Research methods in education (5th 

ed.). London: Routledge. 

Collis, B. A. (1996a). Computers in Education. In T. Plomp & D. P. Ely (Eds.), 

International Encyclopedia of Educational Technology (pp. 402-407). Oxford: 

Elsevier Science Ltd. 

Collis, B. A. (1996b). Technology in Teacher Education. In T. Plomp & D. P. Ely 

(Eds.), International Encyclopedia of Educational Technology (pp. 534-535). 

Oxford: Elsevier Science Ltd. 

Cooney, T. J., & Wiegel, H. (2003). Examining the mathematics in mathematics teacher 

education. In A. J. Bishop (Ed.), Second International Handbook of 

Mathematics Education (pp. 795-828). Dordrecht: Kluwer Academic Publishers. 

Cox, M., & Webb, M. (2004). An investigation of the research evidence relating to ICT 

pedagogy, a report to the DfES. Coventry: British Educational Communication 

and Technology Agency. 

Cox, S. (2008). A conceptual analysis of technological pedagogical content knowledge. 

PhD Doctoral Dissertation, Brigham Young University, Provo UT.    

Cuban, L. (1986). Teachers and Machines: the classroom use of technology since 1920. 

New York: Teachers College Press. 

Cuban, L. (1993). How Teachers Taught: constancy and change in American 

classrooms 1880-1990, second edition. New York: Teachers College Press. 

Cuban, L. (2001). Oversold and Underused: Computers in the Classroom. Cambridge, 

Massachusetts: Harvard University Press. 

Davis, B., & Renert, M. (2009a). Concept study as a response to algorithmetic. Paper 

presented at the 33rd Conference of the International Groupfor the Pyschology 

of Mathematics Education, Thessaloniki, Greece. 

Davis, B., & Renert, M. (2009b). Mathematics-for-Teaching as Shared Dynamic 

Participation. For the Learning of Mathematics, 29(3), 37-43.  

Davis, B., & Simmt, E. (2006). Mathematics-for-Teaching: An Ongoing Investigation 

of the Mathematics That Teachers (Need to) Know. Educational Studies in 

Mathematics, 61(3), 293-319.  

Delaney, S., Ball, D., Hill, H., Schilling, S., & Zopf, D. (2008). "Mathematical 

knowledge for teaching": adapting U.S. measures for use in Ireland. Journal of 

Mathematics Teacher Education, 11(3), 171-197. doi: 10.1007/s10857-008-

9072-1 

DES. (1992). The Reform of Initial Teacher Training (Consultation Document 40/92).  

London: DES. 

Dettori, G., Garuti, R., Lemut, E., & Netchitailova, L. (1995). An analysis of the 

relationship between spreadsheet and algebra. In L. Burton & B. Jaworski 

(Eds.), Technology in Mathematics Teaching - a bridge between teaching and 

learning (pp. 261-274). Bromley: Chartwell-Bratt. 

Doerr, H. M., & Zangor, R. (2000). Creating Meaning for and with the Graphing 

Calculator. Educational Studies in Mathematics, 41(2), 143-163.  



272 

 

Drijvers, P., Doorman, M., Boon, P., Reed, H., & Gravemeijer, K. (2010). The teacher 

and the tool: instrumental orchestrations in the technology-rich mathematics 

classroom. Educational Studies in Mathematics, 75(2), 213-234.  

Drijvers, P., Tacoma, S., Besamusca, A., Doorman, M., & Boon, P. (2013). Digital 

resources inviting changes in mid-adopting teachers' practices and 

orchestrations. Zentralblatt fur Didaktik der Mathematik, 45(7), 987-1001.  

Drijvers, P., Tacoma, S., Besamusca, A., van der Heuvel, C., Doorman, M., & Boon, P. 

(2014). Digital Technology and Mid-Adopting Teachers' Professional 

Development: A case study. In A. Clark-Wilson, O. Robutti & N. Sinclair 

(Eds.), The Mathematics Teacher in the Digital Era: an International 

Perspective on Technology Focused Professional Development (pp. 189-212). 

Dordrecht: Springer. 

Edexcel. (2012). Edexcel GCSE in Mathematics A Specification, first certification 2014. 

Harlow, Essex: Pearson Ltd. 

English, L. D. (Ed.). (2002). Handbook of International Research in Mathematics 

Educaiton: first edition. Mahwah, NJ: Lawrence Erlbaum Associates. 

English, L. D. (Ed.). (2008). Handbook of International Research in Mathematics 

Education: second edition. Abingdon: Routledge. 

Ericsson, K. A., & Simon, H. A. (1993). Protocol analysis: Verbal reports as data. 

Cambridge, MA: The MIT Press. 

Ernest, P. (1991). The philosophy of mathematics education. London: Falmer. 

Eurydice. (2011). Key Data on Learning and Innovation through ICT at School in 

Europe. Brussels: Education, Audiovisual and Culture Executive Agency. 

Evans, J. S. B. T. (2005). How to do Research: A Psychologist's Guide. Hove, East 

Sussex: Psychology Press. 

Even, R., & Tirosh, D. (2008). Teacher knowledge and understanding of students' 

mathematical learning and thinking. In L. D. English (Ed.), Handbook of 

International Research in Mathematics Education: second edition. Abingdon: 

Routledge. 

Fennema, E., & Franke, M. L. (1992). Teachers' knowledge and its impact In D. A. 

Grouws (Ed.), Handbook of research on mathematics teaching and learning: a 

project of the National Council of Teachers of Mathematics (pp. 147-164). 

Oxford: Macmillan. 

Fischer Family Trust. (2003). ICT Surveys & Research: ICT Resources used in 

Mathematics   

Forgasz, H. (2006). Teachers, equity, and computers for secondary mathematics 

learning. Journal of Mathematics Teacher Education, 9(5), 437-469.  

Fox, M. C., Ericsson, K. A., & Best, R. (2011). Do procedures for verbal reporting of 

thinking have to be reactive? A meta-analysis and recommendations for best 

reporting methods. Psychological Bulletin, 137(2).  

Fraser, B. J., & Tobin, K. G. (1998). International Handbook of Science Education. 

Dordrecht: Kluwer Academic Publishes. 

Fuglestad, A. B. (2011). Challenges teachers face with integrating ICT with an inquiry 

approach in mathematics Proceedings of the Seventh Congress of the European 

Society for Research in Mathematics Education CERME 7. Poland: Rzeszow. 



273 

 

GeoGebra Inc. (2008). GeoGebra. http://www.geogebra.org/ 

Goos, M. (2005). A sociocultural analysis of the development of pre-service and 

beginning teachers‚Äô pedagogical identities as users of technology. Journal of 

Mathematics Teacher Education, 8(1), 35-59.  

Goos, M. (2014). Technology Integration in Secondary School Mathematics: The 

Development of teachers' Professional Identities. In A. Clark-Wilson, O. Robutti 

& N. Sinclair (Eds.), The Mathematics Teacher in the Digital Era: an 

International Perspective on Technology Focused Professional Development 

(pp. 139-162). Dordrecht: Springer. 

Goos, M., Soury-Lavergne, S., Assude, T., Brown, J., Kong, C. M., Glover, D., et al. 

(2010). Teachers and Teaching: Theoretical Perspectives and Issues Concerning 

Classroom Implementation. In C. Hoyles & J.-B. Lagrange (Eds.), Mathematics 

Education and Technology - Rethinking the Terrain (pp. 311-328). New York: 

Springer. 

Graham, C. R. (2011). Theoretical considerations for understanding technological 

pedagogical content knowledge (TPACK). Computers & Education, 57(3), 

1953-1960.  

Greeno, J. G. (1998). The Situativity of Knowing, Learning and Research. American 

Pyschologist, 53(1), 5-26.  

Grossman, P. L. (1995). Teachers' Knowledge. In L. W. Anderson (Ed.), International 

Encyclopedia of Teaching and Teacher Education (pp. 20-24). Oxford: Elsevier 

Science Ltd. 

Grouws, D. A. (Ed.). (1992). Handbook of research on mathematics teaching and 

learning: a project of the National Council of Teachers of Mathematics. Oxford: 

Macmillan. 

Gueudet, G., Bueno-Ravel, L., & Poisard, C. (2014). Teaching Mathematics with 

Technology at the Kindergarten Level: Resources and Orchestrations. In A. 

Clark-Wilson, O. Robutti & N. Sinclair (Eds.), The Mathematics Teacher in the 

Digital Era: an International Perspective on Technology Focused Professional 

Development (pp. 213-240). Dordrecht: Springer. 

Gueudet, G., & Trouche, L. (2009). Towards new documentation systems for 

mathematics teachers? Educational Studies in Mathematics, 71(3), 199-218.  

Gueudet, G., & Trouche, L. (2011). Mathematics teacher education advanced methods: 

an example in dynamic geometry. Zentralblatt fur Didaktik der Mathematik, 

43(3), 399-411.  

Guin, D., Ruthven, K., & Trouche, L. (2005). The didactical challenge of symbolic 

calculators: turning a computational device into a mathematical instrument. 

New York: Springer. 

Guin, D., & Trouche, L. (1999). The Complex Process of Converting Tools into 

Mathematical Instruments: the case of calculators. International Journal of 

Computers for Mathematical Learning, 3(3), 195-227.  

Guthrie, J. W. (2003). Encyclopedia of Education second edition. New York: 

Macmillan Reference USA. 

Hadley, M., & Sheingold, K. (1993). Commonalities and Distinctive Patterns in 

Teachers' Integration of Computers. American Journal of Education, 101(3), 

261-315.  



274 

 

Hammersley, M. (1992). What's wrong with ethnography? : methodological 

explorations. London: Routledge. 

Harrison, C., Comber, C., Fisher, T., Haw, K., Lewin, C., Lunzer, E., et al. (2003). 

ImpaCT2: The Impact of Information and Communication Technologies on 

Pupil Learning and Attainment. Coventry: Becta. 

Haspekian, M. (2005). An "instrumental approach" to study the integration of a 

computer tool into mathematics teaching. International Journal of Computers 

for Mathematical Learning, 10(2), 109-141.  

Haspekian, M. (2014). Teachers' Instrumental Geneses When Integrating Spreadsheet 

Software. In A. Clark-Wilson, O. Robutti & N. Sinclair (Eds.), The Mathematics 

Teacher in the Digital Era: an International Perspective on Technology 

Focused Professional Development (pp. 241-276). Dordrecht: Springer. 

Hativa, N. (1995). Technology and the Classroom Teacher. In L. W. Anderson (Ed.), 

International Encyclopedia of Teaching and Teacher Education (pp. 359-362). 

Oxford: Elsevier Science Ltd. 

Heid, M. K., Glendon, W. B., Zbiek, R. M., & Edwards, B. S. (1998). Factors That 

Influence Teachers Learning to Do Interviews to Understand Students' 

Mathematical Understandings. Educational Studies in Mathematics, 37(3), 223-

249.  

Hill, H. C., Loewenberg Ball, D., & Schilling, S. G. (2008). Unpacking Pedagogical 

Content Knowledge: Conceptualising and Measuring Teachers' Topic-Specific 

Knowledge of Students. Journal for Research in Mathematics Education, 39(4), 

372-400.  

Hill, H. C., Rowan, B., & Loewenberg Ball, D. (2005). Effects of Teachers' 

Mathematical Knowledge for Teaching on Student Achievement. American 

Educational Research Journal, 42(2), 371-406.  

Hill, H. C., Sleep, L., Lewis, J. M., & Loewenberg Ball, D. (2007). Assessing Teachers' 

Mathematical Knowledge: What Knowledge Matters and What Evidence 

Counts? In F. K. Lester Jr (Ed.), Second handbook of research on mathematics 

teaching and learning: a project of the National Council of Teachers of 

Mathematics (pp. 111-156). Charlotte NC: Information Age Publishers. 

Hodgen, J. (2003). Teacher identity and professional development in primary school 

mathematics. PhD, King's College London, Lonson.    

Hodgen, J. (2011). Knowing and Identity: A Situated Theory of Mathematics 

Knowledge in Teaching. In T. Rowland & K. Ruthven (Eds.), Mathematical 

Knowledge in Teaching (pp. 27-42). London: Springer. 

Holzl, R. (1996). How does 'dragging' affect the learning of geometry? International 

Journal of Computers for Mathematical Learning, 1(2), 169-187.  

Holzl, R., Healy, L., Hoyles, C., & Noss, R. (1994). Geometrical relationships and 

dependences in Cabri. Micromath, 10(3), 8-11.  

Hoy, A. W., Davis, H., & Pape, S. J. (2006). Teacher Knowledge and Beliefs. In P. A. 

Alexander & P. H. Winne (Eds.), Handbook of Educational Psychology. 

Mahwah, New Jersey: Lawrence Erlbaum Associates. 

Hoyles, C., & Lagrange, J.-B. (2010). The 17th ICMI Study: Mathematics Education 

and Technology - Rethinking the Terrain. New York: Springer. 



275 

 

Hoyles, C., & Noss, R. (2003). What digital technologies take from and bring to 

research on mathematics education. In A. J. Bishop (Ed.), Second International 

Handbook of Mathematics Education (pp. 323-349). Dordrecht: Kluwer 

Academic Publishers. 

Hoyles, C., & Noss, R. (2009). The technological mediation of mathematics and its 

learning. Human Development, 52(2), 129-147.  

Hoyles, C., Noss, R., & Kent, P. (2004). On the Integration of Digital Techologies into 

Mathematics Classrooms. International Journal of Computers for Mathematical 

Learning, 9(3), 309-326.  

Hoyles, C., Noss, R., & Pozzi, S. (1999). Mathematizing in Practice. In C. Hoyles, C. 

Morgan & G. Woodhouse (Eds.), Rethinking the mathematics curriculum (pp. 

48-62). London: Falmer Press. 

Hutchins, E. (1995). Cognition in the Wild. Cambridge, MA: MIT Press. 

Hyde, R. (2004). A snapshot of practice: views of teachers on the use and impact of 

technology in secondary mathematics classrooms. Paper presented at the 10th 

International Congress on Mathematics Education, Copenhagen, Denmark. 

http://www.icme-organisers.dk/tsg15/ 

IBM Corporation. (2009). PASW Statistics 18.0. http://www-01.ibm.com/software/  

Izsak, A., Jabobson, E., de Araujo, Z., & Orrill, C. H. (2012). Measuring Mathematical 

Knowledge for Teaching Fractions with Drawn Quantities. Journal for Research 

in Mathematics Education, 43(4), 391-427.  

Johnson, R. B., & Onwuegbuzie, A. J. (2004). Mixed methods research: A research 

paradigm whose time has come. Educational Researcher, 33(7), 14-26.  

Jones, K. (2000). Providing a Foundation for Deductive Reasoning: students' 

interpretations when using dynamic geometry software. Educational Studies in 

Mathematics, 44(1&2), 55-85.  

Kaput, J. J. (1992). Technology and Mathematics Education. In D. A. Grouws (Ed.), 

Handbook of Research on Mathematics Teaching and Learning (pp. 515-556). 

Oxford: Macmillan. 

Kendal, M., & Stacey, K. (2001). The impact of teacher privileging on learning 

differentiation with technology. International Journal of Computers for 

Mathematical Learning, 6(2), 143-165. 

Key Curriculum Press. (2003). The Geometer’s Sketchpad v.4. Emeryville CA: Key 

Curriculum Press.  

Kilpatrick, J., Swafford, J., & Findell, B. (2001). Adding It Up: Helping Children Learn 

Mathematics (Prepared by the Mathematics Learning Study Committee, 

National Research Council). Washington DC: The National Academies Press. 

Kirschner, P., Wubbels, T., & Brekelmans, M. (2008). Benchmarks for teacher 

education programs in the pedagogical use of ICT. In J. Voogt & G. Knezek 

(Eds.), International Handbook of Information Technology in Primary and 

Secondary Education (pp. 435-447). New York: Springer. 

Koehler, M., & Grouws, D. A. (1992). Mathematics teaching practices and their effects. 

In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and 

learning: a project of the National Council of Teachers of Mathematics. Oxford: 

Macmillan. 

http://www.icme-organisers.dk/tsg15/


276 

 

Koehler, M. J., & Mishra, P. (2009). What is Technological Pedagogical Content 

Knowledge (TPACK)? Contemporary Issues in Technology and Teacher 

Education, 9(1), 60-70.  

Kuchemann, D. (2003). Angle at the centre: taking a point for a walk. Mathematics in 

School, 32(2), 18-22.  

Laborde, C. (2001). The Use of New Technologies as a vehicle for restructuring 

teachers' mathematics. In F. L. Lin & T. J. Cooney (Eds.), Making Sense of 

Mathematics Teacher Education (pp. 87-109). Dordrecht: Kluwer Academic 

Publishers. 

Laborde, C. (2005). Robust and soft constructions: two sides of the use of dynamic 

geometry environments. Paper presented at the 10th Asian Technology 

Conference in Mathematics, Cheong-Ju, South Korea.  

Lagrange, J.-B., Artigue, M., Laborde, C., & Trouche, L. (2003). Technology and 

Mathematics Education: A Multidimensional Study of the Evolution of Research 

and Innovation. In A. J. Bishop, M. A. Clements, C. Keitel, J. Kilpatrick & F. K. 

S. Leung (Eds.), Second International Handbook of Mathematics Education (pp. 

237-269). Dordrecht: Kluwer Academic Publishers. 

Lagrange, J.-B., & Erdogan, E. O. (2008). Teachers’ emergent goals in spreadsheet-

based lessons: analyzing the complexity of technology integration. Educational 

Studies in Mathematics, 71(1), 65-84.  

Lampert, M. (1988). Teachers' thinking about students' thinking about geometry: The 

effects of new teaching tools (Technical Report 88-1). Cambridge MA: Harvard 

Graduate School of Education, Educational Technology Center. 

Lampert, M., & Ball, D. (1998). Teaching, Multimedia and Mathematics: Investigations 

of Real Practice. New York: Teachers' College Press. 

Lave, J. (1988). Cognition in Practice: mind, mathematics and culture in everyday life. 

Cambridge: Cambridge University Press. 

Lave, J., & Wenger, E. (1991). Situated Learning: Legitimate Peripheral Participation. 

Cambridge: Cambridge University Press. 

Law, N. (2008). Teacher learning beyond knowledge for pedagogical innovations with 

ICT. In J. Voogt & G. Knezek (Eds.), International Handbook of Information 

Technology in Primary and Secondary Education (pp. 425-434). New York: 

Springer. 

Law, N. (2010). Teacher Skills and Knowledge for Technology Integration. In P. 

Peterson, E. Baker & B. McGaw (Eds.), International Encyclopedia of 

Education, 3rd edition (pp. 211-216). Oxford Elsevier. 

Law, N., Pelgrum, W. J., & Plomp, T. (2008). Pedagogy and ICT Use in Schools 

around the World: findings from the IEA SITES 2006 Study. Hong Kong: 

Springer. 

Lawless, K. A., & Pellegrino, J. W. (2007). Professional Development in Integrating 

Technology into Teaching and Learning: Knowns, Unknowns, and Ways to 

Pursue Better Questions and Answers. Review of Educational Research, 77(4), 

575-614.  

Leach, J., & Moon, B. (2000). Pedagogy, information and communications technology 

and teachers' professional knowledge. The Curriculum Journal, 11(3), 385-404.  



277 

 

Leinhardt, G. (1988). Situated Knowledge and Expertise in Teaching. In J. Calderhead 

(Ed.), Teachers' Professional Learning (pp. 146-168). London: Falmer. 

Lerman, S. (2014). Encyclopedia of Mathematics Education. Dordrecht: Springer. 

Lester Jr, F. K. (Ed.). (2007). Second handbook of research on mathematics teaching 

and learning: a project of the National Council of Teachers of Mathematics. 

Charlotte NC: Information Age Publishers. 

Leung, A., & Lee, A. M. S. (2013). Students' geometrical perception on a task-based 

dynamic geometry platform. Educational Studies in Mathematics, 82(3), 361-

377.  

Linacre, J. M. (1998). Structure in Rasch residuals: Why principal components analysis 

(PCA)? . Rasch Measurement Transactions, 12(2), 636.  

Linacre, J. M. (2011). A User's Guide to Winsteps and Ministep Rasch model computer 

programs, program manual 3.73.0, from http://www.winsteps.com/a/winsteps-

manual.pdf 

Lincoln, Y. S., & Guba, E. G. (1985). Naturalistic inquiry. Newbury Park, Calif. ; 

London: SAGE. 

Loveless, A., & Ellis, V. (2001). ICT, pedagogy and the curriculum. London: 

RoutledgeFalmer. 

Ma, L. (1999). Knowing and teaching elementary mathematics: Teachers' 

understanding of fundamental mathematics in China and the United States. 

Mahwah NJ: Lawrence Erlbaum Associates. 

Manoucherhri, A. (1999). Computers and school mathematics reform: implications for 

mathematics teacher education. Journal of Computers in Mathematics and 

Science Teaching, 18(1), 31-48.  

Marton, F., & Booth, S. (1997). Learning and awareness. Mahwah, NJ: Lawrence 

Erlbaum. 

Maxwell, J. A. (2006). Literature Reviews of, and for, Educational Research: A 

Commentary on Boote and Beile's "Scholars before Researchers". Educational 

Researcher, 35(9), 28-31.  

McCormick, R., & Scrimshaw, P. (2001). Information and Communications 

Technology, Knowledge and Pedagogy. Education, Communication and 

Information, 1(1), 37-57.  

Means, B., & Roschelle, J. (2010). An Overview of Technology and Learning. In P. 

Peterson, E. Baker & B. McGaw (Eds.), International Encyclopedia of 

Education, 3rd edition (pp. 1-10). Oxford: Elsevier. 

Meijer, P. C. (2010). Experienced teachers craft knowledge. In P. Peterson, E. Baker & 

B. McGaw (Eds.), International Encyclopedia of Education (pp. 642-649). 

Oxford: Elsevier. 

Mesa, V., & Leckrone, L. (2014). Assessment of Mathematics Teacher Knowledge. In 

S. Lerman (Ed.), Encyclopedia of Mathematics Education (pp. 48-51). 

Dordrecht: Springer. 

Miles, M. B., & Huberman, A. M. (1994). Qualitative data analysis : an expanded 

sourcebook (2nd ed.). Thousand Oaks ; London: SAGE. 



278 

 

Miller, D., & Glover, D. (2006). Interactive Whiteboard Evaluation for the Secondary 

National Strategy: Developing the use of Interactive Whiteboards in 

Mathematics. 

Mishra, P., & Koehler, M. J. (2006). Technological Pedagogical Content Knowledge: A 

Framework for Teacher Knowledge. Teachers College Record, 108(6), 1017-

1054.  

Mitchell, J. C. (1984). Typicality and the Case Study. In R. F. Ellen (Ed.), Ethnographic 

Research: A Guide to General Conduct (pp. 238-241). London: Academic Press. 

Monaghan, J. (2004). Teachers' Activities in Technology-based Mathematics Lessons. 

International Journal of Computers for Mathematical Learning, 9(3), 327-357.  

Moriera, C., & Noss, R. (1995). Understanding Teachers' Attitudes t oChange in a 

LogoMathematics Environment. Educational Studies in Mathematics, 28(2), 

155-176.  

Moss, G., Jewitt, C., Levacic, R., Armstrong, V., Cardini, A., & Castle, F. (2007). The 

Interactive Whiteboards, Pedagogy and Pupil Performance Evaluation: an 

evaluation of the Schools Whiteboard Expansion Project - the London 

Challenge. London: Insitute of Education. 

Mullis, I., Martin, M., & Foy, P. (2008). TIMSS 2007 International Mathematics 

Report: TIMSS & PIRLS International Study Centre, Boston College. 

Mumtaz, S. (2000). Factors affecting teachers' use of information and communications 

technology: a review of the literature. Journal of Information Techology for 

Teacher Education, 9(3), 319-342. 

Munby, H., Russell, T., & Martin, A. K. (2001). Teachers' Knowledge and How it 

Develops. In V. Richardson (Ed.), Handbook of Research on teaching. 

Washington DC: American Educational Research Association. 

Musley, J., Lamndin, D., & Koc, Y. (2003). Mathematics teacher education and 

technology. In A. J. Bishop, M. A. Clements, C. Keitel, J. Kilpatrick & F. K. S. 

Leung (Eds.), Second International Handbook of Mathematics Education. 

Dordrecht: Kluwer Academic Publishers. 

Niess, M. L., Ronau, R. N., Shafer, K. G., Driskell, S. O., Harper, S. R., Johnston, C., et 

al. (2009). Mathematics Teacher TPACK Standards and Development Model. 

Contemporary Issues in Technology and Teacher Education, 9(1).  

Noss, R., & Hoyles, C. (1996). Windows on Mathematical Meanings: Learning 

Cultures and Computers. Dordrecht: Kluwer Academic Publishers. 

Noss, R., Hoyles, C., & Pozzi, S. (2002). Abstraction in expertise: A study of nurses' 

conceptions of concentration. Journal for Research in Mathematics Education, 

33(3), 204-229.  

Ofsted. (2008). Mathematics - understanding the score. London: Ofsted. 

Ofsted. (2012). Made to measure. London: Ofsted. 

Olive, J., Makar, K., Hoyos, V., Kor, L. K., Kosholeva, O., & Straesser, R. (2010). 

Mathematical Knowledge and Practices Resulting from Access to Digital 

Technologies. In C. Hoyles & J.-B. Lagrange (Eds.), Mathematics Education 

and Technology - Rethinking the Terrain (pp. 133-178). New York: Springer. 

Oxford University Press. (2012). MyMaths.co.uk. Oxford: Oxford University Press, 

www.mymaths.co.uk accessed 15.10.2012 

http://www.mymaths.co.uk/


279 

 

Pampaka, M., Williams, J., Hutcheson, G., Wake, G., Black, L., Davis, P., et al. (2012). 

The association between mathematics pedagogy and learners' dispositions for 

university study. British Educational Research Journal, 38(3), 473-496.  

Panayides, P., Robinson, C., & Tymms, P. (2010). The assessment revolution that has 

passed England by: Rasch measurement. British Educational Research Journal, 

36(4), 611-626.  

Pepin, B. (2011). How Educational Systems and Cultures Mediate Teacher Knowledge: 

'Listening' in English, French and German Classrooms. In T. Rowland & K. 

Ruthven (Eds.), Mathematical Knowledge in Teaching (pp. 119-138). London: 

Springer. 

Pepin, B., Gueudet, G., & Trouche, L. (2013). Re-Sourcing Teacher Work and 

Interaction: New Perspectives on Resource Design, Use and Teacher 

Collaboration. Zentralblatt fur Didaktik der Mathematik, 45(7).  

Peterson, P., Baker, E., & McGaw, B. (2010). International Encyclopedia of Education. 

Oxford Elsevier. 

Petrou, M., & Goulding, M. (2011). Conceptualising Teachers' Mathematical 

Knowledge in Teaching. In T. Rowland & K. Ruthven (Eds.), Mathematical 

Knowledge in Teaching (pp. 9-26). London: Springer. 

Philipp, R. A. (2007). Mathematics teachers' beliefs and affect. In F. K. Lester Jr (Ed.), 

Second handbook of research on mathematics teaching and learning: a project 

of the National Council of Teachers of Mathematics (pp. 257-315). Charlotte 

NC: Information Age Publishers. 

Pierce, R., & Stacey, K. (2010). Mapping Pedagogical Opportunities Provided by 

Mathematics Analysis Software. International Journal of Computers for 

Mathematical Learning, 15(1), 1-20.  

Ponte, J. P., & Chapman, O. (2008). Preservice mathematics teachers' knowledge and 

development In L. D. English (Ed.), Handbook of International Research in 

Mathematics Education: second edition. Abingdon: Routledge. 

Ponte, J. P., Oliveira, H., & Varandas, J. M. (2002). Development of Pre-Service 

Mathematics Teachers' Professional Knowledge and Identity in Working with 

Information and Communication Technology. Journal of Mathematics Teacher 

Education, 5(2), 93-115.  

Promethean Limited (2011) ActivInspire Blackburn: Promethean Ltd. 

Putnam, R. T. (2003). Knowledge Bases of Teaching. In J. W. Guthrie (Ed.), 

Encyclopedia of Education second edition (Vol. 7, pp. 2482-2485). New York: 

Macmillan Reference USA. 

Putnam, R. T., & Borko, H. (1997). Teacher Learning: Implications of New Views of 

Cognition. In B. J. Biddle, T. L. Good & I. F. Goodson (Eds.), International 

Handbook of Teachers and Teaching (Vol. 2, pp. 1223-1296). Dordrecht: 

Kluwer Academic Publishers. 

Putnam, R. T., & Borko, H. (2000). What Do New Views of Knowledge and Thinking 

Have to Say about Research on Teacher Learning? Educational Researcher, 

29(1), 4-15.  

Putnam, R. T., Heaton, R. M., Prawat, R. S., & Remillard, J. T. (1992). Teaching 

Mathematics for Understanding: Discussing Case Studies of Four Fifth-grade 

Teachers. The Elementary School Journal, 93(2), 213-228. 



280 

 

Qualifications and Curriculum Authority. (2008). National Curriculum 2007. 

http://webarchive.nationalarchives.gov.uk/  

Raiche, G. (2005). Critical Eigenvalue Sizes (Variances) in Standardised Residual 

Principal Components Analysis. Rasch Measurement Transactions, 19(1), 1012.  

Remillard, J. T. (2005). Examining key concepts in research on teachers' use of 

mathematics curricula. Review of Educational Research, 75(2), 211-246.  

Richardson, V. (Ed.). (2001). Handbook of Research on Teaching. Washington DC: 

American Educational Research Association. 

Rowland, T. (2014). Frameworks for Conceptualising Mathematics Teacher 

Knowledge. In S. Lerman (Ed.), Encyclopedia of Mathematics Education (pp. 

235-238). Dordrecht: Springer. 

Rowland, T., Huckstep, P., & Thwaites, A. (2005). Elementary Teachers' Mathematics 

Subject Knowledge: the Knowledge Quartet and the case of Naomi. Journal of 

Mathematics Teacher Education, 8, 255-281.  

Rowland, T., & Ruthven, K. (2011). Mathematical Knowledge in Teaching. London: 

Springer. 

Rowland, T., Turner, F., Thwaites, A., & Huckstep, P. (2009). Developing Primary 

Mathematics Teaching: reflecting on practice with the Knowledge Quartet. 

London: Sage. 

Ruthven, K. (1996). Calculators in the Mathematics Curriculum: the scope of personal 

computer technology. In A. J. Bishop (Ed.), International Handbook of 

Mathematics Education: first edition. Dordrecht: Kluwer Academic Publishers. 

Ruthven, K. (2002). Instrumenting Mathematical Activity: Reflections on Key Studies 

of the Educational Use of Computer Algebra Systems. International Journal of 

Computers for Mathematical Learning, 7(3), 275-291.  

Ruthven, K. (2007). Teachers, technologies and the structures of schooling. In D. Pitta-

Pantazi & G. Philipou (Eds.), Proceedings of the Fifth Congress of the European 

Society for Research in Mathematics Education CERME 5 (pp. 52-67). Cyprus: 

Larnaca. 

Ruthven, K. (2009). Towards a naturalistic conceptualisation of technology integration 

in classroom practice: The example of school mathematics. Education and 

Didactique, 3(1), 131-152.  

Ruthven, K. (2011). Conceptualising Mathematical Knowledge in Teaching. In T. 

Rowland & K. Ruthven (Eds.), Mathematical Knowledge in Teaching (pp. 83-

96). London: Springer. 

Ruthven, K. (2014). Frameworks for Analysing the Expertise that Underpins Successful 

Integration of Digital Technologies into Everyday Teaching Practice. In A. 

Clark-Wilson, O. Robutti & N. Sinclair (Eds.), The Mathematics Teacher in the 

Digital Era: an International Perspective on Technology Focused Professional 

Development (pp. 373-394). Dordrecht: Springer. 

Ruthven, K., Deaney, R., & Hennessy, S. (2009). Using graphing software to teach 

about algebraic forms: a study of technology-supported practice in secondary 

school mathematics. Educational Studies in Mathematics, 71(3), 279-297.  



281 

 

Ruthven, K., & Hennessy, S. (2002). A Practitioner Model of the Use of Computer-

Based Tools and Resources to Support Mathematics Teaching and Learning. 

Educational Studies in Mathematics, 49(1), 47-88.  

Ruthven, K., Hennessy, S., & Deaney, R. (2008). Constructions of dynamic geometry: 

A study of the interpretative flexibility of educational software in classroom 

practice. Computers and Education, 51(1), 297-317.  

Ryan, J., & Williams, J. (2011). Teachers' Stories of Mathematical Subject Knowledge: 

Accounting for the Unexpected. In T. Rowland & K. Ruthven (Eds.), 

Mathematical Knowledge in Teaching (pp. 251-272). London: Springer. 

Salomon, G. (1992). New Information technologies in education. In M. C. Alkin (Ed.), 

Encyclopedia of Educational Research (pp. 892-903). New York: Macmillan. 

Sancho, J. M. (2010). Digital Technologies and Educational Change. In A. Hargreaves, 

A. Lieberman, M. Fullan & D. Hopkins (Eds.), Second International Handbook 

of Educational Change (Vol. 1, pp. 433-444). Dordrecht: Springer. 

Scheffler, I. (1965). Conditions of Knowledge. Chicago: The University of Chicago 

Press. 

Selwyn, N. (2000). Researching computers and education - glimpses of the wider 

picture. Computers and Education, 34, 93-101.  

Selwyn, N. (2008). Realising the potential of new technology? Assessing the legacy of 

New Labour's ICT agenda 1997-2007. Oxford Review of Education, 34(6), 701-

712.  

Shinywhitebox Ltd. (2011). iShowU. http://shinywhitebox.com/ 

Shulman, L. S. (1986). Those Who Understand: Knowledge Growth in Teaching. 

Educational Researcher, 15(2), 4-14.  

Shulman, L. S. (1987). Knowledge and Teaching: Foundations of the New Reform. 

Harvard Educational Review, 57(1), 1-22.  

SMART Technologies. (2014). SMART Notebook. Calgary: SMART Technologies 

Smith, R. M., Schumaker, R. E., & Busch, M. J. (1998). Using item mean squares to 

evaluate fit to the Rasch model. Journal of Outcome Measurement, 2(1), 66-78.  

Sowder, J. T. (2007). The mathematical education and development of teachers In F. K. 

Lester Jr (Ed.), Second handbook of research on mathematics teaching and 

learning: a project of the National Council of Teachers of Mathematics (pp. 

157-224). Charlotte NC: Information Age Publishers. 

Spillane, J. P. (2006). Standards Deviation: how schools misunderstand education 

policy. London: Harvard University Press. 

Stein, M. K., Remillard, J. T., & Smith, M. (2007). How Curriculum Influences Student 

Learning. In F. K. Lester Jr (Ed.), Second handbook of research on mathematics 

teaching and learning: a project of the National Council of Teachers of 

Mathematics (pp. 319-370). Charlotte NC: Information Age Publishers. 

Sullivan, P., & Wood, T. (Eds.). (2008). The International Handbook of Mathematics 

Teacher Education: Volume 1 Knowledge and Beliefs in Mathematics Teaching 

and Teaching Development. Rotterdam: Sense Publishers. 

Swan, M. (2006). Designing and using research instruments to describe the beliefs and 

practices of mathematics teachers. Research in Education, 75, 58-70.  



282 

 

Tall, D., & Vinner, S. (1981). Concept image and concept definition in mathematics 

with particular reference to limits and continuity. Educational Studies in 

Mathematics, 12(2), 151-169.  

Tatto, M., Schwille, J., Senk, S. L., Ingvarson, L., Rowley, G., R, P., et al. (2012). 

Policy, practice and readiness to teach primary and secondary mathematics in 17 

countries. Findings from the IEA teacher education and development study in 

mathematics (TEDS-M). Amsterdam: International Association for the 

Evaluation of Student Achievement. 

Texas Instruments. (2007). Cabri Geometry. Dallas, TX: Texas Instruments. 

Thompson, A. G. (1992). Teachers' beliefs and conceptions: a synthesis of research. In 

D. A. Grouws (Ed.), Handbook of research on mathematics teaching and 

learning: a project of the National Council of Teachers of Mathematics (pp. 

127-146). Oxford: Macmillan. 

Thompson, A. G., & Thompson, P. W. (1996). Talking About Rates Conceptually, Part 

II: Mathematical Knowledge for Teaching Journal for Research in Mathematics 

Education, 27(1), 2-24.  

Thwaites, A., Jared, L., & Rowland, T. (2010). Analysing Secondary Mathematics 

Teaching with the Knowledge Quartet. Paper presented at the British Society for 

Research into Learning Mathematics, Newcastle. 

http://www.bsrlm.org.uk/IPs/ip30-3/index.html 

Thwaites, A., Jared, L., & Rowland, T. (2011). Analysing secondary mathematics 

teaching with the Knowledge Quartet. Research in Mathematics Education, 

13(2), 227-228.  

Tittle, C. K. (2006). Assessment of Teacher Learning and Development. In P. A. 

Alexander & P. H. Winne (Eds.), Handbook of Educational Psychology. 

Mahwah, New Jersey: Lawrence Erlbaum Associates. 

Trouche, L. (2004). Managing the Complexity of Human/Machine Interactions in 

Computerized Learning Environments: Guiding Students' Command Process 

throuugh Instrumental Orchestrations. International Journal of Computers for 

Mathematical Learning, 9(3), 281-307.  

Trouche, L. (2005). Instrumental Genesis, Individual and Social Aspects. In D. Guin, K. 

Ruthven & L. Trouche (Eds.), The didactical challenge of symbolic calculators : 

turning a computational device into a mathematical instrument (pp. 197-230). 

New York: Springer. 

Turner, F., & Rowland, T. (2011). The Knowledge Quartet as an Organising 

Framework for Developing and Deepening Teachers' Mathematical Knowledge. 

In T. Rowland & K. Ruthven (Eds.), Mathematical Knowledge in Teaching (pp. 

195-212). London: Springer. 

Unwin, D., & McAleese, R. (1988). The Encyclopaedia of Educational Media 

Communications and Technology. New York: Greenwood Press. 

Van Driel, J. H., & Berry, A. (2010). Pedagogic content knowledge. In P. Peterson, E. 

Baker & B. McGaw (Eds.), International Encyclopedia of Education (pp. 656-

661). Oxford: Elsevier. 

Venkatakrishnan, H. (2004). The implementation of the Mathematics Strand of the Key 

Stage 3 Strategy : a comparative case study.  PhD Doctoral Thesis, King's 

College London, 2004.    



283 

 

Verillon, P., & Rabardel, P. (1995). Cognition and Artefact: a contribution to the study 

of thought in relation to instrumented activity. European Journal of Psychology 

in Education, 9(3), 1-33.  

Voogt, J., Fisser, P., Roblin, P. N., Tondeur, J., & van Braak, J. (2012). Technological 

pedagogical content knowledge - a review of the literature. Journal of Computer 

Assisted Learning, 29(2), 109-121.  

Watson, A., & Mason, J. (2005). Mathematics as a constructive activity: Learners 

generating examples. Mahwah NJ: Lawrence Erlbaum. 

Watson, A., & Mason, J. (2006). Seeing an exercise as a single mathematical object: 

using variation to structure sense-making. Mathematical Thinking and Learning, 

8(2), 91-111.  

White, A. L., Jaworski, B., Agudelo-Valderrama, C., & Gooya, Z. (2013). Teachers 

Learning from Teachers. In M. A. Clements, A. J. Bishop, C. Keitel, J. 

Kilpatrick & F. K. S. Leung (Eds.), Third International Handbook of 

Mathematics Education. New York: Springer. 

Williams, J. (2011). Audit and Evaluation of Pedagogy: Towards a Cultural-Historical 

Perspective. In T. Rowland & K. Ruthven (Eds.), Mathematical Knowledge in 

Teaching (pp. 161-178). London: Springer. 

Williams, S. M. (2003). Technology in education: current trends. In J. W. Guthrie (Ed.), 

Encyclopedia of Education second edition (Vol. 7, pp. 2509-2513). New York: 

MacMillan Reference USA. 

Willis, G. (2005). Cognitive interviewing: a tool for improving questionnaire design. 

London: Sage Publications. 

Wilson, S. M., Shulman, L. S., & Richert, A. E. (1987). '150 different ways' of 

knowing: representations of knowledge in teaching. In J. Calderhead (Ed.), 

Exploring teachers' thinking (pp. 104-124). London: Cassell. 

Winsteps. (2011). Winsteps. Chicago IL: Winsteps, http://www.winsteps.com 

Wiske, M. S., & Spicer, D. E. (2010). Teacher education as teaching for understanding 

using new technologies. In P. Peterson, E. Baker & B. McGaw (Eds.), 

International Encyclopedia of Education. Oxford: Elsevier. 

Wong, N.-Y. (2003). The influence of technology on the mathematics curriculum. In A. 

J. Bishop, M. A. Clements, C. Keitel, J. Kilpatrick & F. K. S. Leung (Eds.), 

Second International Handbook of Mathematics Education (pp. 271-321). 

Dordrecht: Kluwer. 

Wright, B. D., & Mok, M. (2000). Rasch models overview. Journal of Applied 

Measurement, 1(1), 83-106.  

Wu, M., & Adams, R. (2007). Applying the Rasch model to psycho-social 

measurement: a practical approach. Melbourne: Educational Measurement 

Solutions. 

Yerushalmy, M., & Chazan, D. (2002). Flux in school algebra: curricular change, 

graphing technology and research on student learning and teacher knowledge. In 

L. D. English (Ed.), Handbook of International Research in Mathematics 

Educaiton: first edition. Mahwah, NJ: Lawrence Erlbaum Associates. 

Zammit, S. A. (1992). Factors facilitating or hindering the use of computers in schools. 

Educational Research, 34(1), 57-66.  



284 

 

Zbiek, R. M., Heid, M. K., & Dick, T. P. (2007). Research on Technology in 

Mathematics Education: a perspective of constructs. In F. K. Lester Jr (Ed.), 

Second handbook of research on mathematics teaching and learning: a project 

of the National Council of Teachers of Mathematics. Charlotte NC: Information 

Age Publishers. 

Zbiek, R. M., & Hollebrands, K. (2008). A Research-Informed View of the Process of 

Incorporating Mathematics Technology Into Classroom Practice by In-Service 

and Prospective Teachers. In M. K. Heid & G. W. Blume (Eds.), Research on 

Technology and the Teaching and Learning of Mathematics: Research Syntheses 

(Vol. 1, pp. 287-344). Charlotte NC: IAP Publishing. 

Zevernbergen, R., & Lerman, S. (2008). Learning Environments Using Interactive 

Whiteboards: New Learning Spaces or Reproduction of Old Technologies? 

Mathematics Education Research Journal, 20(1), 108-126.  

Zhao, Y. (Ed.). (2003). What should Teachers know about Technology? Perspectives 

and practices. Greenwich, CT: Information Age. 

Zhao, Y., Zhang, G., & Lai, C. (2010). Curriculum, Digital Resources and Delivery. In 

P. Peterson, E. Baker & B. McGaw (Eds.), International Encyclopedia of 

Education, 3rd edition (pp. 390-396). Oxford: Elsevier. 

 

 

 

 

 

 

 

 

  



285 

 

Appendices 

Appendix A. Survey instrument 

 

Using ICT to investigate Mathematical Knowledge in Teaching 
 
 

Survey of ICT Use 

 
 
 
 

TEACHER QUESTIONNAIRE 

 
The questionnaire should take 20-30 mins to complete. 

 

Please read the information sheet overleaf before completing the 
questionnaire. 

 
 
 
 
 
 

Nicola Bretscher 
PhD Student in Mathematics Education 
Department of Education 
King's College London 
Franklin-Wilkins Building (Waterloo Bridge Wing) 
Waterloo Road 
London SE1 9NH 
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INFORMATION SHEET FOR SURVEY PARTICIPANTS 
 
King’s College Research Ethics Committee Ref: REP(EM)/10/11-74   

  
TITLE OF STUDY: Using ICT to investigate Mathematical Knowledge in Teaching 
 
You are being invited to participate in the main study for my PhD research project. Before you 
decide whether to take part, it is important for you to read the following information carefully and 
understand why the research is being done and what it will involve. You should only participate if 
you want to; choosing not to take part will not disadvantage you in any way. Please take time to 
read the following information carefully and discuss it with others if you wish. If you have any 
questions about the project, please do not hesitate to contact me using the contact details below. 
 
What is the purpose of this study? This study aims to investigate the mathematical knowledge 
that teachers draw upon in their teaching of mathematics using ICT. In this project ICT is also 
used as a tool to explore teachers’ mathematical knowledge.  
 
Why have I been chosen to participate? Your school was chosen due to its existing contacts 
with King’s College London. If you have received this information sheet, your head of department 
is willing for you to participate in this survey should you wish. 
 
What will happen to me if I take part? If you choose to participate, please complete the 
attached questionnaire and seal it in the envelope provided, before returning it to your head of 
department – please note that completion of the questionnaire implies your consent to take part in 
the study. The questionnaire should take you no longer than 30 minutes to complete. You may 
also be invited to be a case study teacher based on your answers to the questionnaire. Should 
you be invited to be a case study teacher, you will receive a letter of invitation and a sheet 
explaining what being a case study teacher involves.  
 
What are the possible benefits? Participation in the study may make you more aware of how 
you use ICT resources in your teaching and give you an opportunity to reflect on your professional 
practice. At the end of the study you will be able to receive information about the survey results, 
should you wish. 
 
Will my personal data be kept confidential? Your confidentiality will be ensured at all times and 
you will not be identified in any publication. Questionnaire data will be stored anonymously for 
seven years. Since the questionnaire is anonymous it will not be possible to remove your 
individual data from the survey, following receipt of your questionnaire. 
 
Who is organising and funding the research? The research is part of the principal 
investigator’s PhD research at King’s College London and is funded by the ESRC. This study is 
reviewed by the College Research Ethics Committee of King’s College London. 
Contact for further information: The principal investigator of this study is Nicola Bretscher, 
Department of Education and Professional Studies. This is part of a PhD project, supervised by 
Dr. Jeremy Hodgen, Department of Professional and Educational Studies. Should you have any 
comments or concerns resulting from your participation in the study please contact me via email: 
nicola.bretscher@kcl.ac.uk If this study has harmed you in any way you can contact King’s 
College London using the details below for further advice and information: Jeremy Hodgen, email: 
jeremy.hodgen@kcl.ac.uk 
 

  

mailto:nicola.bretscher@kcl.ac.uk
mailto:jeremy.hodgen@kcl.ac.uk
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Using ICT to investigate Mathematical Knowledge in Teaching: Survey of ICT Use 
 
TEACHER QUESTIONNAIRE 
 
Please note: completion of this questionnaire implies your consent to participate in this project. 
 
 
A.  ICT in your school  
 
1. What hardware do you have access to for teaching maths?  
 
  Interactive whiteboard, with a data projector      

  Data projector only, linked to a computer    

  Computer suite, shared with other departments   

  Computer suite, dedicated to the maths department  

  Class set of laptops      

  Class set of graphic calculators     

 Other, please specify  …………………………………………………………………………………. 

 
 
 
2.  What software do you have access to for teaching maths? 
 
  CD-ROMs 

 Database (eg Microsoft Access) 

 E-mail 

 Graphing software (eg. Omnigraph, Autograph) 

 Interactive Geometry software (eg Cabri, Geometer’s Sketchpad, GeoGebra) 

 Interactive whiteboard software (eg SMART tools) 

 Logo 

 MyMaths.co.uk website        

 Other websites 

 PowerPoint   

 SMILE mathematics 

 Spreadsheet (eg Microsoft Excel)     

 Word processor (eg Microsoft Word)      

 Other, please specify………………………………………………………………………………. 
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3. Please indicate the strength of your agreement with the following statements. 
 

Write one of the numbers from 5 down to 1 against each statement, where  
5 = strongly agree,  4 = agree,  3 = neither agree or disagree,  2 = disagree,  1 = strongly 
disagree 

 

ICT use is a high priority in my department.  

I get support on using ICT from colleagues in my department.  

ICT resources are poorly integrated into schemes of work.  

I often have problems accessing hardware.  

Access to software is easy and reliable.  

The available software lacks relevance to the curriculum.  

The level of technical support is poor.  

I have had relevant professional development in using ICT.  

 
 
4.  Please use this space to make comments on issues relating to access to hardware and/or 

software. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
B. ICT use in your own mathematics teaching 
 
 
1. How frequently do you use ICT for teaching mathematics, compared to other teachers in the 

department? 
 

Much more 
frequently 

More frequently About the same Less frequently 
A lot less 
frequently 

     
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2. Your use of hardware 
 
a) For each type of hardware, please indicate how often you use it for teaching maths.  
 

Please tick () a box in each row. If you do not have access to the hardware tick ‘Never’. 
 

 

 Almost 
every 
lesson 

Once a 
week 

Once or 
twice a 

term 

Annually Never 

Interactive whiteboard, with a data projector      

Data projector only, linked to a computer      

Computer suite (shared)      

Computer suite (maths dept only)      

Class set of laptops      

Class set of graphic calculators      

 
 
 
 
b) For each type of hardware, please indicate the impact you feel it has on students’ learning. 
 

Please tick () a box in each row, even if you do not currently have access to the hardware. 
 
 

 Substantial Significant Some Very little 

Interactive whiteboard, with a data projector     

Data projector only, linked to a computer     

Computer suite (shared)     

Computer suite (maths dept only)     

Class set of laptops     

Class set of graphic calculators     
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3. Using an interactive whiteboard or data projector in maths lessons 
 
a)  Thinking about your use of ICT with an interactive whiteboard or data projector in a 

whole class context, please indicate how often you use each type of software in maths 
lessons.  
 
If you do not have access to the software, tick ‘Never’. 

 

Please tick () a box in  
each row. 

Almost 
every 
lesson 

Once a 
week 

Once or 
twice a 

term 

Annually Never 

CD-ROMs      

Database      

Email      

Graphing software      

Interactive geometry software      

Interactive whiteboard software      

Logo      

MyMaths.co.uk website       

Other websites      

PowerPoint      

SMILE mathematics      

Spreadsheet      

Word processor      

 
 
b) Again thinking about your use of ICT with an interactive whiteboard or data projector, 

please indicate the strength of your agreement with the following statements. 
 

Write one of the numbers from 5 down to 1 against each statement, where  
5 = strongly agree,  4 = agree,  3 = neither agree or disagree,  2 = disagree,  1 = strongly 
disagree 

 

I am confident using ICT in lessons.  

Lessons using an interactive whiteboard/data projector take more time to prepare.  

ICT makes an important contribution to students’ learning of mathematics.  

Using ICT improves student engagement in lessons.  

Students’ lack of familiarity with software make lessons involving ICT difficult.  

ICT resources help students to understand mathematics.   

Classroom management is more difficult when using an interactive whiteboard/data 
projector. 

 

We cover more ground in lessons with an interactive whiteboard/data projector.  
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c) Still thinking about your use of ICT with an interactive whiteboard or data projector, 
please indicate how often each of the following takes place in your mathematics 
teaching. 

  
 Write one of the numbers 5 down to 1 against each statement, where  

5 = almost always,  4 = most of the time,  3 = half the time,  2 = occasionally,  1= almost 
never 

 

I use ICT for presentation purposes.  

I use ICT to generate student discussion.  

I control the software on the interactive whiteboard or data projector.  

I use ICT to follow up and explore students’ ideas.  

I manage software carefully to prevent mathematical discrepancies arising.  

Students control the software on the interactive whiteboard or data projector.  

I draw attention to mathematical discrepancies in the software.  

Using ICT, I avoid students making mistakes by explaining things carefully first.  

 
 

4. Maths lessons in a computer suite or using laptops 

 
a) Now thinking about your use of ICT in a computer suite or with students working on 

laptops, please indicate how often you use each type of software in maths lessons.  
 

If you do not have access to the software, tick ‘Never’. 
 

Please tick () a box in  
each row. 

Almost 
every 
lesson 

Once a 
week 

Once or 
twice a 

term 

Annually Never 

CD-ROMs      

Database      

Email      

Graphing software      

Interactive geometry software      

Interactive whiteboard software      

Logo      

MyMaths.co.uk website      

Other websites      

PowerPoint      

SMILE mathematics      

Spreadsheet      

Word processor      
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b) Again thinking about your use of ICT in a computer suite or with students working on 
laptops, please indicate the strength of your agreement with the following statements. 

 
Write one of the numbers from 5 down to 1 against each statement, where  
5 = strongly agree,  4 = agree,  3 = neither agree or disagree,  2 = disagree,  1 = strongly 
disagree 

 

I am confident using ICT in lessons.  

ICT lessons take more time to prepare.  

ICT makes an important contribution to students’ learning of mathematics.  

Using ICT improves student engagement in lessons.  

Students’ lack of familiarity with software make lessons involving ICT difficult.  

ICT resources help students to understand mathematics.   

Classroom management is more difficult in ICT lessons.  

We cover more ground in ICT lessons.  

 
c) Still thinking about your use of ICT in a computer suite or with students working on 

laptops, please indicate how often each of the following takes place in your mathematics 
teaching. 

  
 Write one of the numbers 5 down to 1 against each statement, where  

5 = almost always,  4 = most of the time,  3 = half the time,  2 = occasionally,  1= almost 
never 

 

Students use ICT to practice mathematical skills.  

I encourage students to work collaboratively.  

I let students 'get a feel' for the software.  

Students explore mathematical discrepancies in the software.  

Students work on their own, consulting a neighbour from time to time.  

Students use ICT to investigate mathematical problems and concepts.  

I provide precise instructions for software use.  

I prepare software files in advance to avoid student difficulties using the software.  

 
 
5. Please use this space to make comments on using ICT in general in maths lessons. 
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C.  Your own mathematics teaching in general  
 
Please indicate how often each of the following takes place in your mathematics teaching.  
  
Write one of the numbers 5 down to 1 against each statement, where  
5 = almost always,  4 = most of the time,  3 = half the time,  2 = occasionally,  1= almost never 
 

Students work through exercises.  

Students work on their own, consulting a neighbour from time to time.  

Students use only the methods I teach them.  

Students start with easy items and work up to harder questions.  

Students choose which questions they tackle.  

I encourage students to work more slowly.  

Students compare different methods for doing questions.  

I teach each topic from the beginning, assuming they know nothing.  

I teach the whole class at once.  

I try to cover everything in a topic.  

I draw links between topics and move back and forth between topics.  

Students work collaboratively in small groups.  

I avoid students making mistakes by explaining things carefully first.  

I tend to follow the textbook closely.  

Students discuss their ideas.  

Students work collaboratively in pairs.  

Students invent their own methods.  

Students work on substantial tasks that can be worked on at different levels.  

I tell students which questions to tackle.  

I encourage students to work more quickly.  

I go through only one method for doing each question.  

I find out which parts students already understand and don’t teach those parts.  

I teach each student differently according to individual needs.  

I cover only the important ideas in a topic.  

I teach each topic separately.  

I know exactly what maths the lesson will contain.  

I jump between topics as the need arises.  
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D.  About You – please tick the appropriate box in response to each question 
 

1.  Age:   21 – 25    31 – 40   51 – 60 
  

 26 – 30    41 – 50   61+  

 

2.  Gender:  Male    Female  

 

3.  Length of Service: How many years have you been teaching? 

 

    1 year (NQT)   7-9 years   over 25 years 

 2-3 years   10-15 years    

 4-6 years   16-25 years  

 

4.  Your Position: please tick the box which reflects your main responsibility. 
 

 Head of Department     

 2i/c or deputy head of department  

 Key Stage coordinator, please specify the key stage: ……… 

 Classroom teacher    

 Other, please specify: ………………………………………………………. 

 

 
5.  Training:  
 
Please give details of educational background in the table below, including school-level 
mathematics qualifications (eg GCSE, A-level or equivalent), college or university level 
qualifications (undergraduate degree and/or postgraduate degree etc), teacher training (eg 
PGCE, CertEd, Bed, GTR etc). 
 

Details of Qualification Date Level Awarded 
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E. Case Study Participation  
 
Please tick the box below and leave your contact details if you are willing to take part in this 
project as a case study participant. 
 
   By ticking this box, I understand that I may be invited to be a case study teacher based on my 

answers to the questionnaire. I agree to be contacted in the future for this purpose.  
 
Contact details 
 
Email: …………………………………………………………………… 
 
Phone number: ……………………………………………………….. 
 
 
 

Thank you for completing this questionnaire. 
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Appendix B. GeoGebra interview protocol 

The interview is colour coded to indicate where the questions target the dyadic and 

triadic constructs of the TPACK framework. 

Colour coding: TCK PCK TPK TPCK 

[Start recording]   

In this interview, we will discuss the scenarios in the GeoGebra files I emailed to you. 

 

During the interview, you will find it helpful to manipulate the diagrams in the 

scenarios, especially to show how you might use them or demonstrate them to pupils. 

I’d like you to think out loud as you do so, to explain what you’re doing. 

 

First of all, here’s a practice file just to help you practice thinking out loud as you 

manipulate a diagram. [Open the practice item] 

 

Practice Item 

 

So what is going on in this diagram? Please do drag the points and think out loud as you 

do so. 

 

Circle Theorem item. 

 

We’ll discuss each diagram in turn and then I have some general questions about the 

diagrams. [make sure that each diagram is discussed]  

 

The black points are the centres of each circle. Please do drag the red and blue points 

and think out loud as you do so. 

 

Prompts for Diagram 1: standard example 

 

 What is going on in this diagram?  

 

 Show me how you might drag the diagram if you were demonstrating it to 

pupils.  

 Are there any special cases or extreme cases you would want to show your 

pupils? 

 Is there anywhere you would avoid dragging the diagram?  

 

 Is dragging point B different to dragging points C and D? Why? 

 What is happening when you drag point B here [drag point B to the ‘wrong 

segment’]. Should Ms Harris address this in class? How and why?  

 What about dragging it like this? [drag ‘upside down’ – would you do this, 

why?] 

 What about dragging it like this? [drag C and D up towards B to demonstrate the 

theorem works for reflex angles] 

 Someone suggested adding a ray like this as a possible lead into proof [add ray 

going thru A and B]. What do you think about that? 
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Prompts for Diagram 2: non-example 1 (off-centre) 

 

 What is going on in this diagram? Try dragging the red and blue points and think 

out loud as you do so.  

 What happens if you drag point P to the circumference? Where else could you 

drag point P? 

 

 Show me how you might drag the diagram if you were demonstrating it to 

pupils. 

 Is there anywhere you would avoid dragging the diagram?  

 It’s quite tricky to position point P exactly on the circumference or at the centre. 

Does that matter - is it useful in some way or just a hindrance? 

 Is this diagram any different to having 3 separate diagrams showing each 

theorem on its own? 

 

Prompts for Diagram 3: non-example 2 (off-circumference) 

 

 What is going on in this diagram? 

 How does the angle at the edge change as you drag point R?  

 Inside, outside the circle, at the centre? Can you place R so that the angle at the 

centre is 3 times the size of the angle at R? 

 

 How would you use this diagram with pupils?  

 Are there any special cases or extreme cases you would want to show your 

pupils? 

 Similar to diagram 2, is it useful in any way or is it just a hindrance to have to 

position point R exactly on the circumference? 

 

General prompts relating to all diagrams 

 

 Some points are red and some are blue. Why do you think they are coloured 

differently? Would you discuss this with your pupils? 

 

 The angles have been rounded to be whole numbers and sometimes there are 

rounding errors. How would you deal with that in a lesson – would you discuss 

it with pupils?  

 

 If you were going address proof with your pupils, which of the diagrams do you 

think is best and why? 

 

 Would you use the diagrams on an IWB or let pupils work directly with them on 

a computer (ignoring problems of booking computer rooms etc).   

 if IWB, what would the kids gain mathematically and why not with computers 

(setting aside other issues e.g. behaviour);  

 if Computers, what would they gain, is there anything you would demonstrate to 

them 

 

 Which pupils/classes would you use the diagrams with and why? Would you use 

them differently for high and low-attaining pupils? 
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Appendix C. Post-observation interview schedule 

Tell me about your preparation for this lesson. 

- why choose ICT? what ICT? why?  

- what resources did you draw on? 

- how and why did you organise the classroom? Equipment? Students?   

- how and why did you structure the lesson? activities? pupil interactions with the 

software? Your role? 

- any differences compared to a non-ICT lesson?  

 

What are your reflections on the lesson? 

- refer to/ask about key events? choice of examples, representations? 

- good points of the lesson? 

- benefits of using ICT? (over other types of lesson) 

- things to improve? What would you do differently? 

- if you were doing this lesson with higher/lower attaining pupils, what would you 

change? 

 

Give me specific examples of where you saw successful learning. 

- what made it successful? How do you know? 

- what difference did ICT make? How?  

 

What are the key factors in making ICT use successful? 

- in this lesson? in improving learning? Which topics? 

 

 

- more generally? Who else uses ICT? Who supports your use? Key moment in your 

ICT development? 

 

 

What do you perceive to be the potential pitfalls of ICT use? 

 

When should it be switched off? 

What would be required to overcome these pitfalls?   
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Appendix D. Coding with the TPACK framework 

Excerpt of Robert’s GeoGebra narrative coded with TPACK framework 

 

Corresponding to Rob-GGb-int, 13.6.2012, mins 5.05-12.10 

 

5.05 Diagram 1 

(5.36) Robert quickly tries dragging A then Q. He returns to D1 and 

describes the diagram, noting the red points are all fixed to the 

circumference and are all free to move, two points (C&D) define a 

chord, the angles subtended etc. He states the way it currently looks 

it’s double, then slightly displaces C and notes that due to rounding 

it doesn’t always look that way. I think here Robert demonstrates 

the rounding error, rather than stumbling on it, because of the way 

he moves C – he’s looking for badly rounded numbers. It’s like he’s 

slipping into presentation mode, presenting this to teacher-

colleague? He drags G – again describing the diagram, it’s there so 

you can change the size of the circle and see the relationship is 

always true. He states that he doesn’t understand why the chord is 

there, what benefit it provides and that maybe he is missing 

something.  

 

He’s given similar diagrams to pupils before (w/o the chord and G): 

he thinks pupils convince themselves that the angle at the centre is 

double that at the circumference – he drags B in a jerky, 

uncoordinated way, as if mimicking a pupil. He drags C upwards, 

towards B, past where CD is a diameter, so the internal shape is 

now a convex quadrilateral, angle at the centre is reflex. Robert 

seems to be dragging for himself now, he speaks more softly, 

almost to himself “what happens if it comes this way?” - he notes it 

still works (100, 200). He drags C further past B “and if that comes 

over there?” He pauses, saying it doesn’t work anymore. Of course 

it does work, but GGb is measuring the ‘wrong’ angles. Robert 

doesn’t stop to consider why it doesn’t work, but continues, coming 

out of his brief reverie, saying he thinks diagrams like this are 

almost “too easy, too obvious”, “like Catchphrase” – whilst he’s 

saying this he’s slipped back into dragging it like a pupil, dragging 

B in a jerky way, then D, then B and D again. 

 

 (8.23) I ask him about how he’d demonstrate it to pupils. He asks 

about whether he’s demonstrating the theorem to them or 

demonstrating how to use the diagram, so that they can explore it 

for themselves on a computer. I slightly obfuscate his question. 

Anyway, he starts to explain as if he were demonstrating the 

theorem. He’d have it set up with nice numbers (B=60, A=120) so 

that they could easily spot the relationship, near symmetrical, chord 

near horizontal, B near vertically above A. Before dragging B, he’d 

hover over the point and ask the pupils to predict what happens 

when he drags it to one side. Robert says he would pose the 

question so they didn’t have the option of saying stay the same 

(does it get bigger or smaller?) in order to provide a bit of conflict 

 

 

 

TCK: dependency 

 

TCK: rounding 

 

 

TPCK: pedagogic 

dragging strategy 

to demonstrate 

rounding 

 

 

PCK: pedagogic 

benefit (?) of 

chord 

 

 

TPCK: see 

“Catchphrase” 

quote below 

TPK: pupils’ use 

of technology, not 

articulated 

 

 

TCK: dragging for 

own mathematical 

discovery 

 

TCK: angle 

measurement 

CK 

TPCK: how pupils 

use technology in 

learning maths 

TPK 

 

 

TPK: alternative 

pedagogic uses for 

the technology 

 

 

PCK: Choice of 

numerical & 

geometric example 

 

 

TPCK: pedagogic 

‘predict-then-test’ 

dragging strategy 

to demonstrate 

invariance 



302 

 

for when he does drag B and the angle remains constant. He would 

then drag B “all the way round” the major arc CD, to see it never 

changes – he never gets very close to C or D. 

 

Robert then says, more softly, I can’t remember what it does if I 

bring it through here, dragging B onto the minor arc. He says if he 

knew it was going to do that, he deliberately avoid it, in the hope 

that one of his pupils would ask. As he says this, Robert is dragging 

B in a peculiar way, sort of bouncing B on C and D, as if there is a 

sort of force field at C and D repelling his efforts to go through. 

When he does go “past” D, he rushes B past and onto the minor arc. 

When he’s made diagrams like this before, he’s forced B to remain 

on the major arc but now he wouldn’t do this, he would want them 

to think about what’s going to happen. Due to his initial chosen set 

up, both angles in D1 read 120 at the moment when B is on the 

minor arc. He wants the pupils to predict that the angle at B won’t 

remain at 60 anymore. He adeptly adjusts some angle labels to his 

liking, without comment, without apparent thought, like a routine, 

reflex action. 

 

Robert recaps, he’d first establish that the angle at B doesn’t vary in 

the major “segment” and then he’d start thinking about points C and 

D. He’d ask the pupils to make predictions about what happens to 

the angles when you drag D upwards? What about when angle at 

the centre =150 or 140, then what’s B? He explains he tends to “ask 

before doing”. He drops B too close to G and sorts out the ensuing 

technical difficulty with ease, returning B to a nice angle B=65, 

A=130. 

 

(11.16) I ask about special cases. Robert immediately drags C so 

that CD is a diameter, saying he would show them “Thales theorem 

or whatever it is”, the angle in a semi-circle as a special case of the 

angle at the centre. Then he wonders what else could we do? He 

says the case where B and C meet, become the same point, 

dragging B onto C as he does so. He then struggles, the angle at B 

slowly flips between 80 and 100 (A=160), asking “what does that 

mean?” to himself, pauses and then “I don’t know what that 

means...” He doesn’t resolve this difficulty, and moves on, 

recapping that he’d bring up the angle in a semi-circle and the case 

where B moves on to the minor arc.  

 

 

 

 

 

CK 

TPCK: pedagogic 

‘deliberate 

avoidance’ 

dragging strategy 

to draw attention 

to variance  

TPCK: using 

technology to 

limit/allow 

pedagogic cases 

PCK: choice of 

examples 

 

 

TK 

 

 

PCK: decisions 

about sequencing 

pedagogic cases 

TPCK: pedagogic 

‘predict-then-test’ 

dragging strategy 

to demonstrate 

variance 

TK 

PCK: choice of 

numerical 

examples 

 

PCK: choice of 

examples 

 

 

 

TCK: dragging for 

own mathematical 

discovery 

CK 

 

PCK: choice of 

examples 
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Appendix E. TPACK collation for comparison across codes and cases 
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Appendix F. Coding with the Knowledge Quartet 

Excerpt of Robert’s GeoGebra narrative coded with the Knowledge Quartet 

 

Corresponding to Rob-GGb-int, 13.6.2012, mins 5.05-12.10 

 
Key to Knowledge Quartet codes 

 

Foundation, Fo 

AtT – adheres to textbook 

AP – awareness of purpose 

CoP – concentrates on procedures 

IE – identifying errors 

OSK – overt subject knowledge 

TUP – theoretical underpinning 

UT – use of terminology 

 

Transformation, Tr 

CUE – choice and use of examples 

CUR – choice and use of representation 

TD – teacher demonstration 

UIM – use of instructional materials 

Connection, Co 

AC – anticipation of complexity 

DS – decisions about sequencing 

MCC – making connections between 

concepts 

MCP – making connections between 

procedures 

RCA – recognising conceptual 

appropriateness 

Contingency, Cy 

DA – deviation from agenda 

RCI – responding to children’s ideas 

UO – use of opportunities 

TI – teacher insight 

RAT – responding to (un)availability of tools 

and resources 

 

 

5.05 Diagram 1 

(5.36) Robert quickly tries dragging A then Q. He returns to D1 

and describes the diagram, noting the red points are all fixed to 

the circumference and are all free to move, two points (C&D) 

define a chord, the angles subtended etc. He states the way it 

currently looks it’s double, then slightly displaces C and notes 

that due to rounding it doesn’t always look that way. I think 

here Robert demonstrates the rounding error, rather than 

stumbling on it, because of the way he moves C – he’s looking 

for badly rounded numbers. It’s like he’s slipping into 

presentation mode, presenting this to teacher-colleague? He 

drags G – again describing the diagram, it’s there so you can 

change the size of the circle and see the relationship is always 

true. He states that he doesn’t understand why the chord is 

there, what benefit it provides and that maybe he is missing 

something.  

 

He’s given similar diagrams to pupils before (w/o the chord 

and G): he thinks pupils convince themselves that the angle at 

the centre is double that at the circumference – he drags B in a 

jerky, uncoordinated way, as if mimicking a pupil. He drags C 

upwards, towards B, past where CD is a diameter, so the 

internal shape is now a convex quadrilateral, angle at the centre 

is reflex. Robert seems to be dragging for himself now, he 

speaks more softly, almost to himself “what happens if it 

 

Tr/TD, demonstrating 

dependency 

Fo/OSK, stating of 

angle at the centre 

theorem 

Tr/TD, demonstrating 

rounding errors; CUE, 

choosing numerical 

example 

 

Tr/TD, changing the 

size of circle; Co/MCC, 

seeing the relationship 

holds 

Fo/OSK, extraneous 

chord? 

Tr/CUR, assessing 

pedagogic benefit of 

chord 

Tr/CUR, choosing 

diagram with or w/o 

chord and G 

 

 

 

 

Fo/OSK, exploring for 

oneself 

Fo/OSK, recognising a 
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comes this way?” - he notes it still works (100, 200). He drags 

C further past B “and if that comes over there?” He pauses, 

saying it doesn’t work anymore. Of course it does work, but 

GGb is measuring the ‘wrong’ angles. Robert doesn’t stop to 

consider why it doesn’t work, but continues, coming out of his 

brief reverie, saying he thinks diagrams like this are almost 

“too easy, too obvious”, “like Catchphrase” – whilst he’s 

saying this he’s slipped back into dragging it like a pupil, 

dragging B in a jerky way, then D, then B and D again. 

 

 (8.23) I ask him about how he’d demonstrate it to pupils. He 

asks about whether he’s demonstrating the theorem to them or 

demonstrating how to use the diagram, so that they can explore 

it for themselves on a computer. I slightly obfuscate his 

question. Anyway, he starts to explain as if he were 

demonstrating the theorem. He’d have it set up with nice 

numbers (B=60, A=120) so that they could easily spot the 

relationship, near symmetrical, chord near horizontal, B near 

vertically above A. Before dragging B, he’d hover over the 

point and ask the pupils to predict what happens when he drags 

it to one side. Robert says he would pose the question so they 

didn’t have the option of saying stay the same (does it get 

bigger or smaller?) in order to provide a bit of conflict for 

when he does drag B and the angle remains constant. He would 

then drag B “all the way round” the major arc CD, to see it 

never changes – he never gets very close to C or D. 

 

Robert then says, more softly, I can’t remember what it does if 

I bring it through here, dragging B onto the minor arc. He says 

if he knew it was going to do that, he deliberately avoid it, in 

the hope that one of his pupils would ask. As he says this, 

Robert is dragging B in a peculiar way, sort of bouncing B on 

C and D, as if there is a sort of force field at C and D repelling 

his efforts to go through. When he does go “past” D, he rushes 

B past and onto the minor arc. When he’s made diagrams like 

this before, he’s forced B to remain on the major arc but now 

he wouldn’t do this, he would want them to think about what’s 

going to happen. Due to his initial chosen set up, both angles in 

D1 read 120 at the moment when B is on the minor arc. He 

wants the pupils to predict that the angle at B won’t remain at 

60 anymore. He adeptly adjusts some angle labels to his liking, 

without comment, without apparent thought, like a routine, 

reflex action. 

 

Robert recaps, he’d first establish that the angle at B doesn’t 

vary in the major “segment” and then he’d start thinking about 

points C and D. He’d ask the pupils to make predictions about 

what happens to the angles when you drag D upwards? What 

about when angle at the centre =150 or 140, then what’s B? He 

explains he tends to “ask before doing”. He drops B too close 

to G and sorts out the ensuing technical difficulty with ease, 

returning B to a nice angle B=65, A=130. 

case ‘works’  

Cy/TI, resolving 

unexpected cases 

Fo/OSK, concluding a 

case doesn’t ‘work’ 

 

 

 

 

 

 

 

 

 

 

Fo/AtT, not adhering to 

initial setup; Tr/UIM, 

modifying initial setup 

 

Tr/CUE, choosing 

numerical examples 

Tr/CUE, choosing 

geometric configuration 

 

Co/MCC, highlighting 

relationship between 

angles 

 

Tr/CUE, showing a 

‘family’ of cases   

Co/MCC 

Tr/CUE, avoiding 

extremes 

Cy/TI, recollecting 

cases as they arise 

Co/AC, anticipating a 

‘complex’ case 

 

Co/MCC, drawing 

attention to variance 

 

 

Tr/CUE, 

limiting/allowing cases 

Tr/CUE, choosing 

special numerical 

example; UIM, 

changing initial set-up 

 

 

 

 

Co/DS, sequencing 

configurations 

Co/MCC, highlighting 

relationship between 

angles 

Tr/CUE, choosing 

numerical examples 

Co/MCC 

Tr/CUE, choosing 

numerical examples 
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(11.16) I ask about special cases. Robert immediately drags C 

so that CD is a diameter, saying he would show them “Thales 

theorem or whatever it is”, the angle in a semi-circle as a 

special case of the angle at the centre. Then he wonders what 

else could we do? He says the case where B and C meet, 

become the same point, dragging B onto C as he does so. He 

then struggles, the angle at B slowly flips between 80 and 100 

(A=160), asking “what does that mean?” to himself, pauses and 

then “I don’t know what that means...” He doesn’t resolve this 

difficulty, and moves on, recapping that he’d bring up the angle 

in a semi-circle and the case where B moves on to the minor 

arc.  

 

 

 

Tr/CUE, choosing 

geometrical 

configuration 

Fo/UT, naming theorem 

 

 

Cy/TI, resolving 

unexpected case 

 

Fo/OSK, concluding 

case remains unresolved 

Tr/CUE, choosing 

geometric 

configurations 
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Appendix G. Excerpt from Robert’s GeoGebra interview transcript 

Rob-GGb-int, 13.6.2012, mins 5.05-12.10 

I = interviewer, R = Robert. 
 
 
I So what’s going on in, what’s going on with this diagram? 
 
R Okay, so we’ve got, so the three red points are presumably all fixed to 

the circumference of the circle and I can modify all of them, so they’re all 
free to move.  Um, and what they do, so two of the points define a chord.  
The third point are connected to those two points and it … more about 
that chord, there’s a subtended angle which is marked and measured 
and at the centre there’s the same angle which in the way that it’s 
currently looking is double, but not always if you choose numbers that 
round awkwardly.  Um, and G means I can change the size of the circle 
and see that this relationship is always true.  Um, the thing I thought 
when I was looking at this first time around was if the intention of this is 
to for pupils to see that the angle at the centre is double that at the 
circumference, then I wasn’t necessarily sure about how actually drawing 
in the chord helped them with this.  So that was one thought and that 
was on all three diagrams, so maybe there’s a way of explaining this that 
I’ve not thought through.  So this I mean I think each of these diagrams 
has merit and I think in different circumstances I think if … in the past I’ve 
given pupils this exact diagram minus the chord, although I think I’ve not 
let them change the size of the circle I think in the versions I’ve given 
them.  And they kind of sit here and play with this for a bit and I think they 
convince themselves of the fact that this you know that no matter what I 
do with the exception of the rounding issue the angle at the centre is 
always double the angle at the circumference.  What happens if it comes 
this way?  That still works.  And if that comes over there it doesn’t work 
anymore.  Um, yeah when I’ve given this to pupils I’ve never been 
convinced they’ve you know it almost seems too easy and too obvious is 
one thing. 

 
I Mmm, mmm. 
 
R And often like the activities I’ve seen and downloaded with circle 

theorems do just seem to be kind of you know like Catchphrase like say 
what you see you know. 

 
I Okay, um, so if you were going to demonstrate … 
 
R Yeah. 
 
I … this to pupils, can you show me how you might drag the diagram? 
 
R Um, so this is me demonstrating them to, demonstrate this circle theorem 

or me demonstrating them what to do so that when they get onto the 
computer themselves they can …?  Are they going onto a computer 
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themselves with this diagram or is this a I’m teaching them about circle 
theorems in class and this is me discussing? 

 
I I guess I’m going to ask you about what you would do in different 

circumstances. 
 
R Yeah. 
 
I So I think for this if you were demonstrating this diagram to them. 
 
R Okay. 
 
I Um, how would you drag it? 
 
R I’d probably I’d have it so when it came up I’d probably have it set up with 

I guess fairly nice numbers that they should be able to spot quite easily 
and I’d probably ask them what the relationship is.  And then before 
dragging this point I’d probably you know I’d probably have it set up so 
that maybe it looks a bit well this is a kind of this is a nice symmetrical, 
that’s horizontal, they almost look vertical you know.  And so I’d probably 
ask them well what happens if I move this over here?  Is it going to get 
bigger?  Is it going to get smaller? 

 
I Can you show me? 
 
R So I probably would be if this was an interactive whiteboard I’d be 

hovering over this and not actually touching it and saying I’m going to 
drag this this way.  What’s going to happen? 

 
I Mmm, mmm. 
 
R And I’d probably try to lead them into, I probably wouldn’t give them the 

option of it staying the same.  I’d probably ask them is it going to get 
bigger or going to get smaller? 

 
I Mmm, mmm. 
 
R To I guess when they see that it does stay the same to provide a bit of 

conflict there.  And then I’d drag it and we’d drag it all the way around 
here and show that it never changes.  I can’t remember what happens if I 
bring it over here.  So I think if, I think if I knew it was going to do that I 
think I’d possibly … I think I’d probably deliberately avoid doing it and 
hoping that one of them would say well what happens if you go past 
here? 

 
I Mmm, mmm. 
 
R Because on diagrams I’ve had in the past I’ve forced it to just lie on the 

major arc, but I think now I wouldn’t force that restriction, but I’d probably 
want them to think about what’s going to happen.  You know because I 
think they should hopefully be able to see that when it happens there’s 
no way that that can be 60 degrees anymore.  Um, and then at this point 
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I’d then … so I think the thing I’d vary first is I’d just establish that it 
doesn’t matter where this point is in on the circumference of in that 
segment.  And then I’d start thinking about these points and I’d probably 
again I’d probably pause and ask the question if I move this point round 
up here, what’s going to happen to this angle and what do you think will 
happen to this angle?  And hopefully, so if I change this angle here to be 
150 degrees or let’s say 140 degrees, what’s going to happen to this 
angle here?   

 
I So it’s key you’re asking them to predict first before … 
 
R That’s what I tend, that’s what I tend to do now yeah before, so if this is 

as a whole class I tend to ask before doing. 
 
I Mmm, mmm, okay. 
 
R I think. 
 
I So, um, so you kind of mentioned about dragging it round and then 

avoiding or trying to trigger something, so that’s kind of like a special 
case I guess.  Um, are there any other special cases or extreme cases 
that you would show to your pupils? 

 
R Um, I’d probably want to show this.  I’d probably want to show you know 

linking into ... what’s it called theorem of Thales? ...  the angle in a semi-
circle is just really a special case of the angle at the circumference being 
half the angle at the centre.  Um, I probably … what else could we do?  
So that’s one.  Um, I would if they didn’t come up with it probably think 
about the case when this eventually gets to be you know B and C.  This 
would be effectively the same point.  I’m trying to think what that means.  
That would mean that they’re … I don’t know what that means.  Yeah, I 
think I mean those are the two main ones I think in the opposite segment 
and also the D, C being a diameter. 
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Appendix H. Visual transcript 

 

New cases 

recognised from 

visual transcript   
Red line indicates 

interviewer 

prompt 

Yellow circle 

shows case 

introduced by 

interviewer 

Blue bracket 

shows case 

occurring briefly, 

not recognised  

Green circle 

shows case 

recognised, 

implicitly or 

explicitly 

Case arises 

repeatedly 

during 

continuous 

dragging  
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After the list of pedagogic cases was finalised and renumbered, see Figure 6.9, the video 

of Robert’s GeoGebra was reviewed to produce the case list below. A similar process 

took place for the other three case study teachers. This time it did not seem necessary to 

sketch circle theorem configurations to form a visual transcript, since the pedagogic 

case list was assumed to be complete. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Here, the green circles indicate cases that were explicitly recognised; any other cases 

listed are implicitly recognised. The yellow circles again indicate cases arising due to 

the interviewer’s dragging rather than the case study teacher’s. The vertical dividing 

lines indicate the interviewer’s verbal prompts. The bracketed cases indicate the case 

arises repeatedly during continuous dragging to show a ‘family’ of cases. This list was 

then typed and formatted according to the coding system in Table 6.1 and Figure 6.8 to 

produce a final case list. 

 

Robert 

1  6  12  10  |  3  5  |  13  4  21  17  |  16  19  ||  8  12’  6’  1’  3’ 
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Appendix I. Triangulation across lesson observation and post-observation 

interview 

The following excerpts have been chosen to indicate the triangulation process across 

lesson observation and post-observation interview, comparing teachers’ espoused 

theories with their theories-in-action. The excerpts relate to a contingent moment in 

Edward’s IWB lesson, where he has an insight with regard to self-inverse functions – 

detailed in Chapter 7. The post-observation interview clarifies the observation notes, 

showing that the moment was unplanned and represented a deviation from the planned 

lesson agenda. An excerpt from more detailed notes written shortly after the lesson 

observation and interview are also included. 

 

Excerpt from observation notes made in Edward’s IWB lesson, Wednesday 20.6.2012 

 

Observation of year 12 ‘single maths’ group, period 4 11.15-11.55 so 40 min 
lesson. The group was ‘mixed-ability’ – Edward described it as the most mixed 
ability maths class in the school, bar year 7 groups taught in form groups. To 
put this in some perspective, in 2012, no pupil in the school got below grade B 
in GCSE maths. The students were post-AS-level exams and Edward said he 
had increased the pace of lessons. Lesson content: graphing inverse functions, 
knowing it’s a reflection in the line y=x, need to restrict the domain of some 
functions to ensure inverse exists. 
 
ICT: Data projector (no IWB) onto a rotating whiteboard. Edward had manually 
installed GeoGebra onto the teacher computer in the classroom. The room was 
the second room change (one due to exams, one due to wanting to use ICT). 
WB is at the front, pupils sat in rows in pairs or threes in a ‘traditional’ classroom 
layout. GeoGebra file with function + point on function + trace of reflection of 
point on function in the line y=x 
 
 
Incredibly rapid fire Q+A I’d guess sometimes less than 1 
second to answer, even with ones they’re meant to be working 
on in their books 
 
Goes thru’ 
pupil: how can it be an inverse of itself? 
 
Edward: good question, gives example y=4-x and sketches 
graph 
[Did y=4-x come off the top of E’s head or was it planned?] 
Big idea: self-inverse functions eg y=4-x have reflective 
symmetry in y=x 
pupil: oh cos perpendicular 
Edward: excellent point I think we should summarise 
 
Recaps some of the ‘big ideas’ he referred to including ‘self-
inverse function’ 
 

Ran out of time to address 

  

y = x2 - 3

 

 
 
 
 
 
 
 
 
 
KQ code, 
Contingency: 
teacher insight, 
use of opportunity 
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Excerpt from post-observation interview on Edward’s IWB lesson, Ed-IWB-int, 

20.6.2012, mins 21.24 - 23.38 

 

I = interviewer, E = Edward 
 
I Okay right.  And I was going to say you also booked this ... the room 
specially. Um ..  
 
E Oh yeah because … uh … so every room has a computer at the front, 

but there was a room change today because the one we should have 
been in was being used for exams.  And uh ... the room we were going to 
be in is a Classics room, which the set up is ... they never use computers 
in Classics ... so the setup is like ergonomically insane, so … the screen 
is like facing the wall and you have to stand on your head to use the 
computer, it’s like it’s not useful ... using that room ... notionally having a 
computer in the room.   

 
I Yeah yeah okay.  I had a question now that … as you said there was a 

neat  thing when at the end of the lesson one of the boys … he got one 
of the questions wrong, and he sort of went ‘Yeah I’ve got it wrong’ and 
then the answer turned out to be Y = 4 – X  

 
E He actually got it right, but he thought it was wrong.   
 
I Oh okay okay.  And uh … yeah, and he said ‘Wow how can it be the 

same thing?’   
 
E How can the inverse of Y = 4 – X be the same thing be the same thing as 

Y = 4 – X   
 
I Yeah yeah.  And I was going to ask you, did that example come off the 

top of your head, but actually I misunderstood, it was actually the 
example in the book.    

 
E It was a question from the book, but I hadn’t looked at it before and I was 

stuck for a bit, it’s like is that right or wrong ... oh that means this and I 
realised it was self-inverse and reflective.  

 
I Yeah, okay.  
 
E Which could have been a really good learning objective I just hadn’t 

thought of it.  So that’s another example of the book coming up with 
points that I wouldn’t have thought of.  So it’s not all bad, the questions in 
the book, they are a bit random sometimes.  In fact that wasn’t, that was 
quite a good question to ask actually.   

 
I Good.  Um … there was something in the lesson that I had a bit of a 

stumble with … or again I just wanted to get my head round it with you.  
One of the girls asked something like how many inverse functions are 
there for the X3 – 2X +1, and it was trying to understand the conversation 
that went round that, cos you pointed to the f(X) = X3 – 2X + 1, and you 
said something like it’s not a function, it’s a mapping.  
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Excerpt from notes typed up on Wednesday 20.6.2012, after Edward’s IWB lesson 

observation and post-observation interview 

 

The pupils then begin work on the questions from the textbook and I guess they 
have about 5 mins to do this and then he starts going through the answers to 
the first question. Edward was going to introduce a final example when the 
vocal boy at the side has a problem with one of the answers – he thinks he has 
it wrong, how can the inverse of y=4-x be y=4-x? He asks how can it be an 
inverse of itself? 
 
Edward answers it’s a good question and draws the line on the board, noting it’s 
perpendicular to y=x and thus has reflective symmetry in y=x. This was clearly 
an unplanned moment, which I thought Edward dealt quite nicely with. He 
includes this in his summary of the big ideas of the lesson at what is now the 
end of the lesson. 
 
Asking him in interview, the example he was going to look at was y=x^2 – 3 
which was one of the questions he had given them – a boy at the back that I 
talked to and who didn’t contribute during the lesson came a bit unstuck on this 
when I probed him. Edward had also come across a pupil having difficulty with 
this one and so thought he’d address it at the board, but he didn’t have time in 
the end. 
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Appendix J. Transcription protocol 

When it is clear from the surrounding text in a chapter who the speaker is, then an initial 

is not provided for identifying the speaker. When clarification seems necessary, an 

initial is provided, separated from speech by a colon and indentation.  

 

Speaker initials: I = interviewer, M = Michael, E = Edward, A = Anne, R = Robert  

 

Pauses are indicated by three full stops ... in the text of the speech.  

 

Square brackets [] are used to indicate where extra words have been added by the author 

for clarification or to provide extra information for context.  

 

Speech marks ‘’ within a quote are used when the speaker suggests what they would 

say, for example, in a classroom context. 

 

Underline indicates the speaker’s heavy emphasis on the words so indicated. 

 

“Er”, “um” or “uh” are used as they sounded to indicate utterances where the speaker is 

hesitating. “Mmm” indicates an utterance, usually a non-question prompt from the 

interviewer to the respondent to continue talking. 

 

Punctuation has been used in a conventional sense: question marks have been used 

when a raised note suggests a question is being asked and exclamation marks indicate 

surprise or excitement.  

 

Spoken mathematics is recorded as mathematical notation. For example, where numbers 

are spoken to convey an angle, “140 degrees” is recorded. Similarly, when formulae or 

functions are spoken this is recorded in mathematical notation e.g. “f(x) = 4 – x”. 
 

When the recording was not good enough for the speech to be heard, this is indicated by 

(inaudible). 

 

Indicative examples used in Chapter 5: 

 

E:   [later in the interview] I’d definitely mention it because 

sometimes it doesn’t seem to work does it?  ...it was one degree out... but I really 

see it as a hindrance to learning what’s going on.  I’d just, I’d have to keep 

saying ‘Look, within rounding error this result is...’, sort of, it’s much less 

convincing... [Ed-GGb-int, 20.6.2012] 

 

M:  Um, I guess it’s [D3 is] useful in that it shows that the rules only 

apply on the circumference or certainly that particular rule of the double angle at 

the centre, circumference etc.  

  

I:  Mmm, mmm. 

 

M:  Um, so I guess it’s useful to show that that [D3] doesn’t work, 

whereas that [D1] does work. [Mic-GGb-int, 31.5.2012] 
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Appendix K. Scatter graph comparing item measures 
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Appendix L. Ethical approval 

Nicola Bretscher 
Department of Educational and Professional Studies 
28th September 2011 
 
Dear Nicola, 
 
REP(EM)/10/11-74 – ‘Using ICT to Investigate Mathematical Knowledge in Teaching.’  
 
I am pleased to inform you that the above application has been reviewed by the E&M Research 
Ethics Panel that FULL APPROVAL is now granted. 
 
Please ensure that you follow all relevant guidance as laid out in the King’s College London 
Guidelines on Good Practice in Academic Research 
(http://www.kcl.ac.uk/college/policyzone/attachments/good_practice_May_08_FINAL.pdf).   
 
For your information ethical approval is granted until 27th September 2013. If you need approval 
beyond this point you will need to apply for an extension to approval at least two weeks prior to 
this explaining why the extension is needed, (please note however that a full re-application will 
not be necessary unless the protocol has changed). You should also note that if your approval is 
for one year, you will not be sent a reminder when it is due to lapse. 
 
If you do not start the project within three months of this letter please contact the Research Ethics 
Office.  Should you need to modify the project or request an extension to approval you will need 
approval for this and should follow the guidance relating to modifying approved applications: 
http://www.kcl.ac.uk/research/ethics/applicants/modifications.html  
 
Any unforeseen ethical problems arising during the course of the project should be reported to 
the approving committee/panel.  In the event of an untoward event or an adverse reaction a full 
report must be made to the Chairman of the approving committee/review panel within one week 
of the incident. 
 
Please would you also note that we may, for the purposes of audit, contact you from time to time 
to ascertain the status of your research.  
 
If you have any query about any aspect of this ethical approval, please contact your 
panel/committee administrator in the first instance 
(http://www.kcl.ac.uk/research/ethics/contacts.html). We wish you every success with this work. 
 
 

Yours sincerely 
 
_________________________________________ 
Daniel Butcher 
Research Ethics Administrator 
  

http://www.kcl.ac.uk/college/policyzone/attachments/good_practice_May_08_FINAL.pdf
http://www.kcl.ac.uk/research/ethics/applicants/modifications.html
http://www.kcl.ac.uk/research/ethics/contacts.html
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Appendix M. Additional statistical information 

These tables provide additional statistical information to complement the results 

reported in Chapter 4, Section 4.3. The first four tables compare transmissionist 

measure across various background variables. The remaining tables in this appendix 

complement the results Tables in Section 4.3 as indicated. The results of two non-

significant t-tests (see Age; Length of service) are reported here; the results of other t-

tests are reported in the main body of the thesis. 

 

Gender 
n 

 

Mean (S.D.) 

 

Mean diff 

(S.E.) 

C.I. of difference 

Lower to Upper 

Effect 

size 

Female   98 .064 (.515) 
-.218 (.076) -.368 to -.068 -.427 

Male 84 .282 (.507) 

 

 

Age (years) 
n 

 

Mean (S.D.) 

 

Mean diff 

(S.E.) 

C.I. of difference 

Lower to Upper 

Effect 

size 

30 or under  59 .166 (.429) 
.005 (.076) -.144 to .155 .011 

Over 30  122 .161 (.564) 

No significant difference: df = 146.4, t = .069, p = .945 

 

Length of 

service (years) 

n 

 

Mean 

(S.D.) 

 

Mean diff 

(S.E.) 

C.I. of difference 

Lower to Upper 

Effect 

size 

6 or under   89 .191 (.473) 
.052 (.077) -.101 to .205 .099 

Over 6 years 93 .139 (.565) 

No significant difference: df = 180, t = .670, p = .504 

 

Frequency of 

ICT use 

n 

 

Mean 

(S.D.) 

 

Mean diff 

(S.E.) 

C.I. of difference 

Lower to Upper 

Effect 

size 

Frequent users  61 .063 (.548) 
-.152 (.082) -.313 to .009 -.294 

Occasional users  118 .216 (.502) 
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IWB: Frequency of 

software use 

n 

 

Mean (S.D.) 

 
Mean diff (S.E.) Effect size 

CD-Roms 
freq 36 .089 (.492) 

-.100 (.099) -.189 
occ 139 .189 (.539) 

Database 
freq 23 .089 (.442) 

-.088 (.119) -.165 
occ 151 .176 (.543) 

Email 
freq 53 .121 (.454) 

-.086 (.087) -.164 
occ 119 .207 (.555) 

Graphing 

software 

freq 49 .166 (.553) 
-.017 (.089) -.031 

occ 122 .182 (.517) 

Dynamic 

geometry 

freq 30 -.099 (.570) 
-.324 (.104) -.628 

occ 145 .225 (.505) 

IWB software 
freq 146 .115 (.516) 

-.285 (.100) -.551 
occ 33 .340 (.515) 

Logo 
freq 15 -.006 (.590) 

-.196 (.144) -.369 
occ 151 .190 (.527) 

MyMaths 
freq 116 .069 (.481) 

-.284 (.079) -.557 
occ 64 .353 (.558) 

Other websites 
freq 112 .065 (.500) 

-.315 (.080) -.624 
occ 61 .380 (.516) 

PowerPoint 
freq 107 .071 (.495) 

-.251 (.078) -.489 
occ 72 .322 (.540) 

SMILE 
freq 11 .068 (.500) 

-.130 (.169) -.240 
occ 152 .198 (.542) 

Spreadsheet 
freq 45 .039 (.498) 

-.174 (.090) -.331 
occ 134 .212 (.532) 

Word 
freq 74 .101 (.480) 

-.119 (.080) -.227 
occ 105 .220 (.556) 

See also Table 4.2 
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Computer suite: 

Frequency of  
software use 

n 

 

Mean (S.D.) 

 
Mean diff (S.E.) Effect size 

CD-Roms 
freq 33 .081 (.503) 

-.129 (.102) -.245 
occ 136 .210 (.533) 

Database 
freq 29 .163 (.508) 

-.013 (.109) -.025 
occ 143 .177 (.540) 

Email 
freq 45 .016 (.483) 

-.230 (.091) -.442 
occ 123 .248 (.535) 

Graphing 

software 

freq 88 .048 (.544) 
-.240 (.079) -.302 

occ 85 .288 (.496) 

Dynamic 

geometry 

freq 83 -.004 (.521) 
-.323 (.077) -.638 

occ 90 .319 (.493) 

IWB software 
freq 69 .072 (.479) 

-.158 (.081) -.302 
occ 102 .230 (.550) 

Logo 
freq 19 -.120 (.541) 

-.330 (.127) -.633 
occ 152 .210 (.518) 

MyMaths 
freq 129 .109 (.530) 

-.233 (.092) -.444 
occ 44 .342 (.512) 

Other websites 
freq 126 .082 (.516) 

-.328 (.087) -.642 
occ 48 .410 (.497) 

PowerPoint 
freq 90 .115 (.473) 

-.123 (.082) -.230 
occ 82 .239 (.588) 

SMILE 
freq 15 -.244 (.541) 

-.461 (.142) -.878 
occ 152 .217 (.523) 

Spreadsheet 
freq 103 .076 (.502) 

-.227 (.080) -.435 
occ 72 .302 (.547) 

Word 
freq 89 .069 (.478) 

-.216 (.079) -.413 
occ 84 .285 (.566) 

See also Table 4.3 
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Frequency of hardware use 
n 

 

Mean (S.D.) 

 

IWB 
freq 158 .127 (.508) 

occ 25 .427 (.546) 

Data projector 
freq 67 .111 (.530) 

occ 114 .200 (.521) 

Computer suite (shared) 
freq 32 .008 (.494) 

occ 150 .207 (.522) 

Computer suite (maths only) 
freq 10 -.003 (.490) 

occ 170 .170 (.523) 

Laptops 
freq 13 .214 (.554) 

occ 170 .164 (.521) 

Graphic calculator 
freq 32 -.054 (.523) 

occ 149 .212 (.513) 

See also Table 4.4 

 

IWB: ICT orientation 
n 

 

Mean (S.D.) 

 

confident using ICT 
pos 152 .139 (.515) 

neg 24 .200 (.463) 

More time needed for prep 
pos 52 .107 (.503) 

neg 126 .189 (.520) 

ICT contributes to learning 
pos 135 .101 (.512) 

neg 45 .334 (.515) 

ICT improves engagement 
pos 147 .129 (.506) 

neg 34 .298 (.563) 

Students’ lack of familiarity 
pos 80 .167 (.508) 

neg 101 .155 (.532) 

ICT helps understanding 
pos 140 .105 (.518) 

neg 40 .336 (.486) 

Management more difficult 
pos 149 .110 (.521) 

neg 31 .388 (.453) 

Cover more ground 
pos 99 .117 (.506) 

neg 81 .227 (.521) 

See also Table 4.5 
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Computer Suite: ICT orientation 
n 

 

Mean (S.D.) 

 

confident using ICT 
pos 140 .124 (.502) 

neg 32 .378 (.610) 

More time needed for prep 
pos 51 .223 (.471) 

neg 122 .144 (.554) 

ICT contributes to learning 
pos 129 .115 (.530) 

neg 44 .334 (.513) 

ICT improves engagement 
pos 135 .140 (.524) 

neg 38 .267 (.550) 

Students’ lack of familiarity 
pos 73 .144 (.553) 

neg 99 .189 (.522) 

ICT helps understanding 
pos 127 .113 (.513) 

neg 45 .309 (.558) 

Management more difficult 
pos 81 .103 (.553) 

neg 92 .223 (.505) 

Cover more ground 
pos 36 -.018 (.443) 

neg 135 .214 (.545) 

See also Table 4.6 

IWB practices 
n 

 

Mean (S.D.) 

 

Teacher presentation 
freq 138 .167 (.489) 

occ 40 .129 (.619) 

Student discussion 
freq 78 -.017 (.527) 

occ 102 .295 (.477) 

Teacher control 
freq 146 .170 (.488) 

occ 33 .110 (.660) 

Explore students’ ideas 
freq 50 -.021 (.540) 

occ 130 .229 (.499) 

Prevent discrepanies 
freq 74 .149 (.536) 

occ 96 .162 (.514) 

Students control 
freq 39 -.105 (516) 

occ 141 .233 (.500) 

Highlight discrepancies 
freq 55 .056 (.536) 

occ 118 .208 (.512) 

Avoid mistakes 
freq 77 .236 (.505) 

occ 99 .101 (.535) 

See also Table 4.7  
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Appendix N. Back cover material 

Included as separate sheets: Figure 6.8, Figure 6.9, Figure 7.1 

Included on CD: Robert’s GeoGebra interview, mins 5.05 – 12.10, and the GeoGebra 

interview file on circle theorems 
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