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Abstract

The focus of this PhD study is teachers’ knowledge and how it is involved in
interacting with technology to produce the mathematical knowledge made available in
the classroom. Contrasting connectionist and transmissionist teachers’ use of
technology provides a means of making such knowledge visible, allowing an
exploration of the nature and content of mathematical knowledge for teaching using
technology. In addition, this study examines how and to what extent the mathematical
knowledge made available through a teacher’s interaction with technology is distributed

across the teacher and technology.

The first, quantitative phase of the project surveyed English secondary mathematics
teachers’ use of technology (n=183). Using Rasch analysis to construct a transmissionist
measure of self-reported pedagogic practice, a surprising association is found between
frequent use of teacher-centred software and a more connectionist orientation. The
survey data also suggests that ‘teacher-centred’ practices involving ICT may instead be
construed as ‘dominant’ practices, since they are most frequently occurring across all

teachers.

In the second, qualitative phase of the project, two connectionist and two
transmissionist teachers were selected as case studies on the basis of their responses to
the survey instrument. Data collection involved a semi-structured interview based
around a GeoGebra file on circle theorems, two classroom observations and post-
observation interviews. Data analysis using the TPACK framework suggests the nature
of mathematical knowledge for teaching using technology as abstract, mathematical
knowledge and yet simultaneously as mathematical knowledge situated in the context
of teaching using technology. Using the Knowledge Quartet, a conceptualisation of the
content of mathematical knowledge for teaching using technology in relation to the
topic of circle theorems is developed, demonstrating the highly complex nature of such
knowledge. Ameliorating this complexity, this study provides indications of how a
distributed view of cognition might offer potential strategies for facilitating teacher

interaction with technology.
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Chapter 1 - Introduction

This thesis brings together the fields of mathematics teacher knowledge and technology
integration into classroom practice to explore teachers’ knowledge in relation to using
technology to teach mathematics. Using survey data, classroom observations and
interviews, this thesis describes the nature and content of individual teachers’
knowledge and how it is involved in interacting with technology to produce
mathematical knowledge made available in the classroom. This contributes towards a
broader aim to develop a deeper understanding of both how and why mathematics
teachers use technology in their classroom practice.

This introductory chapter begins by providing some contextual background: describing
the author’s personal motivations for undertaking the study as well as setting the study
in a wider context. The following sections then describe and justify the theoretical
framework for understanding individual teachers’ knowledge and how it is involved in
interacting with technology, which underpins this study. Key terms, such as
‘technology’ and ‘knowledge’ are also defined. Returning to the context of the study,
two main research questions and two subsidiary questions are identified. The chapter

concludes with a brief description of the structure of the rest of the thesis.
1.1 Setting the scene: the personal and wider context for the study

The original impetus for this United Kingdom (UK) Economic and Social Research
Council (ESRC) funded PhD research project came from the difficulties the author
experienced, as a secondary school mathematics teacher, in trying to integrate digital
technology into her own classroom practice, despite viewing herself as a competent and
confident user of such technology. She explored her own use of digital technology in
teaching, specifically the development of teaching techniques for using dynamic
geometry software, through an empirically-based post-graduate Master of Arts (MA)
dissertation (Bretscher, 2007). This fuelled an interest in developing a deeper
understanding of the complexities of integrating digital technologies experienced by
teachers more widely and the apparent deficit between aspirations for technology use in
schools and the classroom reality of technology use. These issues were explored further
through a post-graduate Master in Research Methods (MRes) study (Bretscher, 2009)

employing frameworks drawn from the literature on digital technology in mathematics
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education to analyse teachers’ classroom practice using digital technology. The MRes
study informed the PhD research project, providing a first pilot for the qualitative phase
of data collection. In addition, attempting to develop a deeper understanding of
teachers’ classroom practice using digital technology led to the progressive focusing of
the PhD research project on teachers’ mathematical knowledge for teaching using
technology. This focus feeds into the broader aim of the study to develop a deeper
understanding of both how and why mathematics teachers use technology in their

classroom practice.

1.1.1 A deficit in mathematics teachers’ use of digital technologies?

A deficit in mathematics teachers’ use of digital technologies appears to exist in two
senses. Firstly, mathematics teachers appear to make only occasional use of digital
technologies in their teaching. Secondly, when teachers do make use of digital
technologies, the potential of these technologies to enhance pupils’ mathematical
experience in the classroom is rarely realised. This apparent dual deficit is particularly
significant in the context of unprecedented spending by governments around the world
on initiatives to develop educational technology (Selwyn, 2000) and the emphasis
placed on using Information and Communication Technologies (ICT) in previous UK
National Curricula (e.g. 2007) for mathematics and the inclusion of digital technologies

in mathematics curricula more globally (Wong, 2003).

There seems to be unequivocal evidence for the deficit in terms of the frequency with
which mathematics teachers use ICT. The 2007 Trends in International Mathematics
and Science Study (TIMSS: Mullis, Martin, & Foy, 2008) reports that it was rare for
computers to be used for any activity as often as in half the mathematics lessons, even
in countries with relatively high availability. The Eurydice report (2011) on ICT use in
European schools states that only a minority of mathematics teachers have successfully
embedded digital technologies into their lessons and that computers are most often used
for skill practice in mathematics. In the UK, the Impact of ICT on Pupil Learning and
Attainment report (Harrison et al., 2003) stated that 67% of pupils at Key Stage 3 never
or hardly ever used ICT in their mathematics lessons. In addition, Selwyn (2008) noted
that despite the previous years of unprecedented investment by the then Labour
government, directing over £5 billion of funding towards educational ICT during the
1997 to 2007 period, the UK Office for Standards in Education (Ofsted, 2008) reported

that opportunities for pupils to use ICT to solve or explore mathematical problems had
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markedly decreased. Four years later, Ofsted (2012) reported there had been little
change in teachers’ use of ICT, concluding that the potential of ICT to enhance learning

in mathematics continued to be underdeveloped.

The conclusions of the Ofsted report (2012) provide an indicator of the deficit in terms
of the extent to which the potential of digital technologies remains unfulfilled. That is,
where mathematics teachers do make use of digital technologies, the potential of these
technologies is rarely realised. Lagrange and Erdogan (2008) refer to this as a
qualitative gap in ICT use, citing inter alia Ruthven and Hennessy’s (2002) study of
mathematics teachers in England as evidence. Lagrange & Erdogan (2008, p.66) refer to
the tendency of teachers to view the benefits of technology in terms of enabling
“general ‘pedagogical’ aspirations rather than for its ‘didactical’ contribution to
mathematics learning”. In Ruthven and Hennessy’s study, mathematics teachers
articulated the benefits of technology as indirectly enhancing students’ learning through
increased pace and productivity and improved engagement rather than providing a

direct means of enhancing mathematics pedagogy.

Hence, many mathematics teachers do integrate some types of digital technology into
their classroom practice. Moss et al’s (2007) survey on the introduction of interactive
whiteboards (IWBs) in London schools shows that many teachers are using IWBs in
most or every lesson. This was especially true in mathematics and science, where the
majority did so (65% in mathematics). Moreover, in case study lessons, they observed
mathematics teachers using presentation software, such as ActivStudio, as well as
subject-specific software such as Geometer’s Sketchpad (Key Curriculum Press, 2003).
In the US, Becker, Ravitz and Wong (1999) found that drill-and-practice software was
the type of software most often used by mathematics teachers. Descriptive statistics of
teachers’ technology use, based on data from this PhD study but published elsewhere
(Bretscher, 2014), suggest that English secondary mathematics teachers do make
frequent use of technology. Bretscher (2014) reports that IWBs were used in almost
every lesson by 85% of the responding teachers (n =175). Presentation-oriented
software dominates IWB use, whilst the MyMaths web-site (Oxford University Press,
2012) offering pre-prepared lessons dominates teachers’ use of computer suites as well

as featuring prominently amongst software used with IWBs (Bretscher, 2014).

However, the digital technologies that are relatively widely implemented tend to be

compatible with and facilitate whole-class instruction through enhanced presentation.
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These are often perceived as teacher-centred (rather than student-centred) (e.g.
Zevernbergen & Lerman, 2008) and viewed as maintaining or even encouraging
existing ‘traditional’ pedagogies. These types of technology tend to be overlooked in the
literature (e.g. Pierce & Stacey, 2010; Zbiek et al., 2007) or even dismissed as ‘not
really using ICT’. For example, Zbiek et al (2007) state that they do not include digital
technologies whose primary purpose is as a presentation tool rather than as a problem-
solving or mathematical tool in their review of research. The deficit in terms of the
frequency of ICT use appears therefore only in relation to digital technologies valorised
by the mathematics education research community (e.g. Kaput, 1992; Zbiek et al.,
2007). This suggests that mathematics education research on technology integration has
tended to focus on understanding a minority of practice and the reasons why using
digital technologies, such as those identified by Zbiek et al (2007) as cognitive
technological tools or Pierce and Stacey (2010) as mathematical analysis software,
remains a minority practice. As a result, widespread practice involving ICT remains
under-analysed and (potentially) this has also had the effect of presenting an overly
pessimistic view of teachers’ classroom use of ICT. Thus the deficit in teachers’ use of
digital technologies in general may be over-estimated: both in terms of the low
frequency of use and of the extent to which the potential of digital technologies remains

unrealised.

1.1.2 Defining technology

This study focuses on digital technologies as a means of understanding teachers’ use of
technology more generally. This section first defines the more general term
‘technology’ and then goes on to define what is meant by ‘digital technologies’ in

relation to this study.

In this study, ‘technology’ is used to indicate an artefact (physical or virtual) that has
been designed for use or has been appropriated for use in teaching mathematics. This
definition follows from Ruthven’s (2009) usage of ‘resource’ and, in a sense, is
intended to be interchangeable with this term. Why then use the term technology instead
of resource? Technology has tended to be used to indicate and abbreviate digital
technologies, separating them from non-digital technologies, to mark them out as
worthy of special consideration or as unique in some way. For example, both Kaput

(1992) and Zbiek et al’s (2007) chapters focusing on digital technology in subsequent
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editions of the Handbook of Research on Mathematics Teaching and Learning are
entitled Technology in Mathematics Education. Instead, in this study, whilst digital
technologies are the focus, they are viewed simply as a particular type of technology
amongst others and not as something special or unique. Referring to both digital and
non-digital alike using the term ‘technology’ makes this point more salient precisely
because it is perhaps less usual to call non-digital technologies, such as textbooks, a
‘technology’. Mishra and Koehler (2006, p. 1023) state that ‘traditional’ technologies
have become so well integrated into teachers’ classroom practice they are not even
regarded as technologies. Using the term ‘technology’ in this study is intended to serve
as a reminder that artefacts such as textbooks, non-interactive whiteboards and graph
paper are also technologies of teaching. The term ‘resource’, as Ruthven (2009)
suggests, follows the everyday language of teachers and therefore appears more easily
applicable to both digital and non-digital technologies. For this reason, ‘resource’ does
not supply a cognitive prompt to the author at least in the way that the term
‘technology’ does, to recall that ‘traditional’ technologies, particularly those that are

non-digital, are nevertheless types of teaching technology.

In the previous section, the deficit in teachers’ use of digital technology was identified
with digital technologies valorised by the mathematics education community, such as
those singled out by Zbiek et al (2007) as cognitive technological tools (abbreviated to
cognitive tools). However, limiting the definition of digital technology to those
described as cognitive tools tends to omit the very types of hardware and software that
teachers do manage to integrate into their classrooms. It was argued that this has
prevented an analysis of widespread practice. For the purposes of this PhD study a
broader definition of digital technology was therefore adopted. Following from the
definition of ‘technology’ used in this study, ‘digital technologies’ is used to indicate a
digital artefact (physical or virtual) that has been designed for use or has been
appropriated for use in teaching mathematics. This definition is broader than Zbiek et
al’s definition because it incorporates any digital artefact used or designed for use in
teaching mathematics, including those that are not obviously “mathematical tools” for
example. In particular, it includes teacher-centred digital technologies such as
presentation-oriented software (e.g. PowerPoint, IWB software and the MyMaths
website) that appear to be prominent in teachers’ use of ICT, but excludes non-digital
technologies such as textbooks. As with any technology, how and why teachers make

use of the technology in their teaching is a central research question. Viewing digital
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technologies simply as a particular type of technology is in keeping with the broader
aim of this study to develop a deeper understanding of both how and why mathematics
teachers use technology in their classroom practice. Similarly, Ruthven (2009) and
Gueudet and Trouche (2009) focus on digital technologies as a means of understanding

teachers’ use of technology more generally.

1.2 A socio-cultural perspective on teachers’ technology use

Whilst many believe that technology has the power to transform education, Cuban’s
(1986, 1993, 2001) studies of educational innovation over time suggest otherwise,
predicting that where digital technologies are taken up on a large-scale they will not
fundamentally change teaching practice. Cuban’s studies and the discussion in Section
1.1.1 show that integrating technology into the classroom is far from straightforward. In
particular, Cuban’s studies indicate a range of social factors influence teachers’ use of
technology, such as cultural beliefs, the school and classroom context. Socio-cultural
perspectives appear to offer the most promising approach towards understanding
teachers’ technology use because they account for social factors in the context of
teaching and learning. In addition, socio-cultural perspectives acknowledge that the
design of a piece of software or hardware does not determine its use in the classroom.
Instead, teachers interpret technology in the process of integrating it into their classroom
practice. Thus a teacher’s interpretation of a piece of technology is an important factor
in shaping its end use in the classroom. For example, teachers who adopt a student-
centred approach to pedagogy may interpret and use teacher-centred technologies, such
as presentation-oriented software (e.g. PowerPoint, IWB software and the MyMaths
website), to facilitate such an approach. If this is the case, then the deficit in teachers’
use of digital technologies discussed in section 1.1.1, in terms of the extent to which the
potential of digital technologies remains unrealised, may be over-estimated.
Nevertheless, socio-cultural perspectives also acknowledge that the design of a piece of
software or hardware constrains teachers’ interpretations of the technology. Socio-
cultural perspectives are useful in this study because they view teachers’ use of
technology as a two-way process where the teacher is engaged in a participatory
relationship with the technology.

Hence a socio-cultural perspective on teachers’ use of resources was adopted for this

study, informed by Remillard’s (2005) description of “curriculum use as participation
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with the text”. This perspective was developed in relation to ‘curriculum materials’,
specifically referring to printed, often published resources designed for use by teachers
and students during instruction. The definition of technology used in this study is
broader than that of Remillard’s usage of the term ‘curriculum materials’ and her use of
the term ‘text’, referring to the components that comprise curriculum materials.
However it is narrower than the definition of ‘resources’ used by Gueudet and Trouche
(2009) who also align their approach with Remillard’s perspective. For example,
Gueudet and Trouche include “discussions with teachers orally or online” in their
definition of resources. Thus, although Gueudet and Trouche (2009) also focus on
digital technologies as a means of understanding teachers’ use of technology more
generally, they seek to generalise their approach to a wider range of resources. The
definition adopted in this study was narrower because it is assumed that the nature of
the participatory relationship between an individual teacher and technology is likely to
be different to a participatory relationship between teachers. Remillard’s (2005)
perspective is appropriate for addressing the broader aim of this PhD study and provides

an over-arching theoretical framework for understanding teachers’ use of technology.

1.2.1 Applying Remillard’s perspective to teachers’ use of technology

Remillard’s (2005) perspective views teachers as being engaged in a participatory
relationship with technology, resulting in the planned and enacted curriculum i.e. the
mathematical knowledge made available in the classroom. Hence understanding
teachers’ use of technology — the broader aim of this study — means investigating what
factors influence the participatory relationship and how they are involved in producing
the mathematical knowledge made available in the classroom. Underlying Remillard’s
(2005, p221) perspective are Vygotskian notions of tool! use, wherein technological
tools both shape and are shaped by human action through their constraints and
affordances. Applying Remillard’s perspective to digital technology implies that,
although the constraints and affordances inherent in digital technologies may help to
shape its end use in the classroom, inevitably, the end user, in this case individual
teachers, will also work to shape the technology. Thus the design and nature of

hardware or software is an ingredient in, but does not determine, the way individual

1 “Tools” is used here to indicate a wider range of (physical or virtual) artefacts appropriated for
human use i.e. not limited to those used for teaching mathematics. See also the use of the term
“tools” in Hutchins’ (1995) view of distributed cognition.
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teachers interpret and make use of particular digital technologies in their classroom
practice. For example, Ruthven’s (with Hennessy & Deaney, 2008; 2009) research on
mathematics teachers’ use of technology and in particular his notion of interpretative
flexibility is commensurate with the perspective described by Remillard. Similarly,
Gueudet and Trouche’s (2009) outline of the documentational approach, extending the
widely influential instrumental approach to teachers’ appropriation of technology,

shares the same Vygotskian roots as Remillard’s perspective.

In Remillard’s (2005) perspective both the teacher and technology play an active role in
a dynamic and interactive relationship to produce the mathematical knowledge made
available in the classroom. As a result, both the characteristics of the individual teacher
and the technology are identified as key factors influencing this relationship. In
particular, Stein et al (2007) identify teachers’ knowledge and beliefs about
mathematics teaching and learning and their orientation? towards a specific technology
as teacher characteristics that affect the participatory relationship with the technology.
Stein et al (2007) identify content and sequencing, as well as the way this is structured
and communicated to the teacher, as characteristics of curriculum materials that affect
the participatory relationship. The way these characteristics map to technology more
generally needs consideration. A textbook or set of curriculum materials might be
expected to cover the range of topics included in the curriculum. Thus content and
sequencing in relation to curriculum materials could refer to the range of curricula
topics covered and the way they are sequenced. Considering technology more generally,
an individual artefact (physical or virtual) might address a particular topic — rather than
a range of topics — or even a particular concept within a topic. Nevertheless, the content
and sequencing of material designed to address a given topic or concept, and the way
this is structured and communicated to the teacher, can be considered as characteristics
of technology that affect the participatory relationship. Remillard’s (2005) perspective
also recognises the impact of students and context in enabling or constraining teachers’
participation with technology. In particular, Stein et al (2007) highlight contextual
features, such as time available for planning and instruction, local (school and
departmental) cultures and teacher support through professional development, that can
constrain or enable teachers’ interpretations of curriculum materials. Similarly, Ruthven

(2009) describes working environment and time economy as two of five structuring

2 Stein et al (2007) use the term ‘Orientation’ to indicate a teacher’s stance towards a type of
technology in relation to teaching mathematics. In this study, the term orientation is taken to
include teacher’s confidence in using technology to teach mathematics.
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factors of classroom practice in relation to technology and Gueudet and Trouche (2009)

include institutional influences as part of their model of the documentational approach.

No study can take all factors into account, thus all studies are necessarily limited in
scope to a greater or lesser extent. The focus of this study is on individual teachers’
knowledge and how it is involved in interacting with technology to produce the
mathematical knowledge made available in the classroom. Other individual
characteristics of teachers, characteristics of technology, students and contextual
features identified in Remillard’s perspective as important factors affecting the
participatory relationship are acknowledged and where possible these are taken into

account.

1.2.2 Knowledge, beliefs and orientation

In the Effective Teachers of Numeracy study carried out in the UK, Askew et al (1997)
found that highly effective teaching of primary school mathematics was associated with
what they termed a connectionist orientation. Their use of orientation suggested an
amalgam of beliefs and knowledge in relation to teaching and learning mathematics
and, in this sense, is similar to Stein et al’s (2007) use of the term orientation in relation
to a teacher’s stance towards technology. In this study, ‘orientation’ is used in a similar
way to suggest an amalgam of beliefs and knowledge, but also to include teacher
confidence in relation to teaching and learning mathematics. In particular, in Chapter 4,
‘ICT orientation’ is taken to include a teacher’s confidence in relation to using ICT to
teach mathematics because research suggests this is an important factor related to

technology use (e.g. Zammit, 1992).

Askew et al’s (1997) definition of a connectionist orientation centred mainly on what
they termed ‘beliefs’ rather than on what they termed ‘knowledge’. Similarly, Zbiek and
Hollebrands’ (2008) distinguish teacher ‘conceptions’ from knowledge about
mathematics and technology (see Chapter 2). Askew et al’s (1997) use of beliefs and
Zbiek and Hollebrands’ use of conceptions refer to teachers’ global beliefs about
mathematics as a discipline and their beliefs about the nature of teaching and learning
mathematics (using technology). However, distinguishing knowledge from beliefs is
difficult because they are closely related (Scheffler, 1965) and hence distinctions

between them are “fuzzy” (Thompson, 1992). As a result, in this study, beliefs and
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conceptions in relation to teaching and learning mathematics (using technology) are

taken to be part of teacher knowledge.

Pampaka et al (2012) summarise what they term a “consensus view” amongst the
English mathematics education community, represented by Advisory Committee on
Mathematics Education (ACME) and National Centre for Excellence in Teaching
Mathematics (NCETM), that promotes an approach to mathematics teaching which

includes:

e connecting teaching to students’ mathematical understandings; and

e connecting teaching and learning across topics, and between mathematics and other

areas of knowledge.

Amongst similar professional communities in the US there is also a consensus in
relation to these two statements, although the first of these is more usually associated
with constructivist views (Cobb, 1994), whilst the latter is associated with teaching for
conceptual understanding (Kilpatrick, Swafford & Findell, 2001). In this study, it is
asserted that these statements underpin a connectionist orientation to teaching

mathematics.

1.2.3 What is mathematical knowledge for teaching using technology in terms of
this study?

For the purposes of this study, borrowing from Shulman (1986, p.13), mathematical
knowledge for teaching using technology is assumed not only to be a matter of knowing
how — being competent in teaching mathematics using technology - but also of knowing
what and why. That is, although much of teachers’ knowledge may be tacit (Ruthven,
2014, p. 390), at least some of their know-how is underpinned by articulated knowledge
that provides for “a rational, reasoned approach to decision-making” (Rowland et al,
2005, p.260) in relation to teaching mathematics using technology. In other words,
mathematical knowledge for teaching using technology, as defined in this study, is
when know-how or knowledge-in-action is underpinned by and coincides with the
teacher’s articulated knowledge. This intersection between articulated knowledge and
knowledge-in-action (i.e. articulated knowledge-in-action) is important because it is this
type of knowledge that initial teacher education (ITE) or continuing professional
development (CPD) programmes focus on developing.
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It is now possible to turn to the issue of how can we know about ‘knowledge’. Clearly,
it is not possible to observe an individual teacher’s knowledge directly. Written
assessments, such as those employed in Hill et al (2005), can provide a valid indicator
of mathematical knowledge for teaching. However, a distinction must be acknowledged
between what we say we do, articulated knowledge, and what we do, know-how. This
relates to Argyris and Schon’s (1974, pp. 6-10) definition of “espoused theory” (theory
to which we give our allegiance) and “theory-in-use” (theory which governs actions).
That is, we cannot always do as we say (Adler, 2001): it is possible to infer knowledge
from a teacher’s responses to a written assessment or interview that is not realised in the
actuality of their classroom practice. Similarly, we cannot always say what we do
(Adler, 2001). It is equally possible to infer knowledge from a teacher’s performance in
the classroom that is not articulated during an interview or written assessment, e.g.
Hodgen (2011) and Thwaites et al (2010). When articulation does coincide with
performance, i.e. when a teacher appears to do as they have said or appears able to say
what they have done, then this may provide a more reliable basis for inference about
their mathematical knowledge for teaching using technology. In analysing individual
teacher’s knowledge, it should be stated that the purpose of this study is to make
inferences about the nature and content of teachers’ knowledge in general; it is not to
critique the knowledge of individual teachers.

1.3 Understanding individual teachers’ knowledge in participation with

technology

This section sets out a theoretical framework for understanding how an individual
teacher’s knowledge is involved in the participatory relationship (Remillard, 2005) with
technology to produce the mathematical knowledge made available in the classroom.
Arguably, the mathematical knowledge made available in the classroom through the
interaction of the teacher with technology has a more direct impact on the quality of
pupils’ mathematical experience in the classroom than the knowledge of the individual
teacher. The teacher in combination with technology might interact to augment or
impede mathematical knowledge being made available in the classroom. That is, the
mathematical knowledge made available in the classroom through a teacher’s
interaction with technology might be greater or less than the sum of knowledge of the
individual constituents of the teacher-technology combination.
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1.3.1 Hutchins’ view of distributed cognition

Hutchins’ (1995) view of distributed cognition is used as a framework for
understanding how individual teachers’ knowledge is involved in interacting with
technology to produce the mathematical knowledge made available in the classroom.
Detailing how and to what extent knowledge is distributed across teacher and
technology is a means of describing the participatory relationship (Remillard, 2005).
This theoretical framework is depicted in Figure 1.1 in a diagram based upon

Remillard’s (2005) model.
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Figure 1.1 Theoretical framework for this study, based on Remillard (2005)

Hutchins (1995) presents his view of distributed cognition as a means of
conceptualising cognition in a way that is “as applicable to events that involve the
interaction of humans with artefacts and with other humans as it is to events that are
entirely internal to individual persons” (p. 118). Critically, Hutchins argues that

conceptualising cognition in this way assumes that cognition is not only a property of an
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individual person, but also occurs through human interaction with artefacts and other
humans. In particular, he argues that cognition partially resides in tools — taken to mean
any artefact appropriated for use by humans - since they incorporate in their
construction the results of past cognitive efforts. The strength of his argument for a
distributed view of cognition lies in his specification of minimum knowledge
requirements for individual persons to carry out the computational tasks necessary for
navigating a military ship in interaction with artefacts and other humans (e.g. reading
bearings, pp. 137-140). The specification of minimum knowledge requirements
provides strong evidence that it is not necessary for cognition as computation of
navigational tasks to occur entirely through the actions of an individual. By specifying
the minimum knowledge requirements necessary for an individual to carry out a
computational task in interaction with an artefact, Hutchins (1995) provides an
indication of to what extent cognition may be distributed across both human and
artefact. For example, in his description of four ways to do distance-rate-time problems
(p. 147-155), he indicates how the computation could be successfully carried out whilst

the person was doing less because the tool did more.

Applying Hutchin’s view of distributed cognition to this study means conceptualising
the mathematical knowledge made available in the classroom as being distributed across
the teacher, technology and other human participants — typically pupils, but also
potentially teacher-colleagues and the author herself when in the role of participant-
observer or interviewer. As noted in section 1.2.1, the focus of this study is on how
individual teachers’ knowledge is involved in interacting with technology to produce
the mathematical knowledge made available in the classroom. Hence whilst the other
human participants are acknowledged and where possible taken into account, the
primary focus is on understanding how the mathematical knowledge made available in
the classroom is distributed across the individual teacher and the technology.
Understanding how an individual teacher’s knowledge is involved in interacting with
technology is then a matter of investigating to what extent the mathematical knowledge
made available in the classroom is distributed across the individual teacher and the
technology. This means investigating to what extent the mathematical knowledge made
available in the classroom can be accounted for through the individual teacher’s
mathematical knowledge for teaching using technology. In particular, specifying the
minimum knowledge requirements necessary for the teacher to produce the

mathematical knowledge made available in the classroom in interaction with the
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technology (and other human participants) provides an indication of how and to what

extent cognition may be distributed across both teacher and technology.

Hence, Hutchins’ (1995) view of distributed cognition provides a means of
investigating how individual teachers’ knowledge is involved in the participatory
relationship with technology. Critically for this study, by specifying minimum
knowledge requirements, Hutchins’ (1995) view of distributed cognition provides a
means of indicating how and to what extent the case study teachers’ mathematical
knowledge for teaching was distributed across the software, the author and teaching-

colleagues.

In chapters 6 and 7, the terms readerly and writerly response (Bowe, Ball & Gold, 1992,
drawing on the work of Barthes) are introduced to indicate how and to what extent
knowledge is distributed across teacher and technology. Departing from their original
meaning, that writerly texts invite the reader to participate in meaning-making and are
therefore in a sense superior to readerly texts that make no such demands, the use of
these terms in this study takes a less normative view. Instead, a readerly/writerly
response indicates the role of the individual teachers’ knowledge in the participatory
relationship with technology to produce the mathematical knowledge made available in
the classroom. Similarly, contrasting tacit to articulated knowledge in section 1.2.3 is
not intended to set up a hard dichotomy but rather to suggest a continuum indicating the

extent to which knowledge is distributed across the teacher and technology.

1.3.2 The instrumental approach

This study uses an amalgam of Remillard’s (2005) perspective and Hutchins’ (1995)
view of distributed cognition as a means of understanding how individual teachers’
knowledge is involved in interacting with technology. However, these are not the only
available frameworks for understanding how individual teachers’ knowledge is involved
in interacting with technology. In particular, the instrumental approach has been highly
influential in research on teachers and technology in mathematics education (see
Chapter 2). This section briefly describes the instrumental approach and, by contrasting
it with Hutchins’ view of distributed cognition, justifies the author’s theoretical

selection.

The instrumental approach (Guin, Trouche & Ruthven, 2005) in research on technology

in mathematics education was based on Verillon and Rabardel’s (1995) theory of
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instrumented activity systems. Their model of an instrumented activity system (1AS)
consists of a triad: a human subject, an instrument and an object towards which the
action using the instrument is directed, as well as the interactions between the three
elements of the model (Verillon & Rabardel, 1995). The IAS model was developed as a
means of understanding human interactions with artefacts to perform a task. An artefact
becomes an instrument as the human subject appropriates it for use to perform a given
task. The process of appropriation is termed instrumental genesis. An instrument is thus
considered distinct from the artefact because it represents a psychological tool,
incorporating both the artefact and utilisation schemes developed though the

instrumental genesis of the subject.

The instrumental approach was first used in mathematics education in relation to pupils
learning to use digital technologies for solving mathematical tasks (e.g. Guin &
Trouche, 1999). Verillon and Rabardel (1995) used their model in relation to pupils
imagining machines that could transform prisms made out of wood into cylinders and
cones; pupils learning to use lathes to perform similar transformations of wooden
objects; and pupils learning to use a robot to move an object in 3-dimensional space.
Due to the similarity of the research contexts, appropriating the IAS model into the field
of mathematics education for the purpose of analysing pupils learning to use digital
technologies for solving mathematical tasks seems straightforward, requiring little
further theoretical elaboration.

Applying the instrumental approach to teachers’ use of technology in mathematics
education however, has been less straightforward, apparently requiring further
theoretical elaboration. For example, Haspekian (2005, 2014) found it necessary to
distinguish between a teacher’s personal and professional instrumental genesis. That is,
appropriating an artefact for the teacher’s personal mathematical work produces one
instrument, whilst appropriating an artefact for the professional work of teaching
mathematics produces a different instrument. Another example is Gueudet and
Trouche’s (2009) introduction of the documentational approach as a new framework for
describing a teacher’s appropriation of technology. The documentational approach,
mirroring the instrumental approach, replaces artefact with resources and instrument
with document. Thus teachers are modelled as appropriating resources and, through a
process of documentational genesis, incorporating utilisation schemes to form a

document.
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The centrality of the construct of instrumental/documentational genesis, i.e. the process
of appropriation, in these adaptations of the instrumental approach means that these
studies focus on teachers’ learning in relation to using technology to teach mathematics.
Whilst teachers’ learning is important, it is not the primary focus of this study. Instead,
this study concentrates on teachers as workers where the focus is on the knowledge they
‘have’, using technology in their work of teaching mathematics, rather than on teachers
as learners where the focus is on how their knowledge changes and develops. Hence
Hutchins’ view of distributed cognition seemed more appropriate to this study because
it focuses on an analysing the interaction of humans with artefacts in the workplace. In
particular, by defining minimum knowledge requirements, distributed cognition
provides a means of analysing how individual knowledge is involved in human-artefact
interactions in the workplace rather than the process of knowledge acquisition. Hence
Hutchins’ view of distributed cognition was selected as a framework for understanding
how individual teachers’ knowledge is involved in interacting with technology to
produce the mathematical knowledge made available in the classroom. The workplace
Hutchins analyses in his book Cognition in the Wild is that of a United States Navy ship
the USS Palau. There are significant differences between this workplace and that of the
mathematics classroom. In particular, the work of members of the navigation team on
the USS Palau was very strictly regulated in comparison to that of teachers. These
regulations were imposed on the navigation team to avoid contingencies or unexpected
situations arising. Such situations could result in life-threatening consequences on the
USS Palau so strict regulations were critical to their work. In contrast, unexpected
situations might be more welcome in the work of teaching and represent opportunities
for teachers to learn (Clark-Wilson, 2010; 2014). This represents a possible limitation of
the theoretical framework adopted for this study. Nevertheless, Hutchins’ view of

cognitive framework was selected as a framework for understanding

Remillard’s (2005) perspective identifies pupils as a key factor in influencing the
participatory relationship between teachers and technology. However, Verillon and
Rabardel (1995) make clear that the IAS model does not cover situations of
instrumented activity involving collective activity i.e. more than one subject. Thus the
IAS model would not easily apply to teacher-student interactions with technology or to
interactions between teachers and their colleagues with technology. Based on the IAS
model, the instrumental approach in mathematics education and subsequent adaptations

suffer from similar limitations. Gueudet and Trouche (2009) suggest that human-human
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interactions are included under the documentational approach and that they take account
of teachers working collectively. However, it remains unclear how such interactions and
collective work figure in their theoretical model of a document, based as it is on the

original IAS model.

In contrast, Hutchins’ view of distributed cognition was developed with the explicit
intention that it should be “as applicable to events that involve the interaction of humans
with artefacts and with other humans as it is to events that are entirely internal to
individual persons” (p. 118). For example, Hutchins analyses members of the
navigation team working in coordination with each other to execute tasks successfully.
Hence this framework does provide a means of taking teacher-student interactions with
technology or to interactions between teachers and their colleagues with technology into
consideration. Although the primary focus of this study is on understanding how the
mathematical knowledge made available in the classroom is distributed across the
individual teacher and the technology, Hutchins’ view of distributed cognition allows

the other human participants to be acknowledged and where possible taken into account.

1.4 Frameworks for analysing teachers’ individual knowledge

An individual teacher’s mathematical knowledge for teaching using technology, as
defined in section 1.2.3, is when their know-how or knowledge-in-action coincides with
their articulated knowledge. Hutchins’ (1995) view of distributed cognition provides a
means for understanding how individual teachers’ knowledge is involved in interacting
with technology to produce the mathematical knowledge made available in the
classroom. However, it does not provide a means of analysing an individual teacher’s
own knowledge in relation to using technology to teach mathematics. That is, another
framework is needed to analyse and compare teachers’ espoused theories (articulated
knowledge) and their theories-in-action (knowledge-in-action), in order to make
inferences about individual’s mathematical knowledge for teaching using technology —
see Figure 1.1. This section justifies the selection of the Technological Pedagogical and
Content Knowledge (TPACK) framework (Mishra & Koehler, 2006) and the

Knowledge Quartet (Rowland et al., 2005) as frameworks suitable for this purpose.

In view of the definition of mathematical knowledge for teaching and the focus on

digital technologies adopted in this study, a framework for analysing an individual
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teacher’s own knowledge in relation to using technology to teach mathematics should

fulfil two criteria:
1) accommodates an analysis of both knowledge-in-action and articulated knowledge

2) enables a focus on teachers’ mathematical knowledge for teaching in relation to
technology.

The literature review in Chapter 2 provides a more detailed analysis of potential
frameworks for analysing an individual teacher’s own knowledge in relation to using
technology to teach mathematics. The broad finding from the literature review was that
frameworks from research on teacher knowledge in general and in mathematics
education in particular tended to fulfil the first criterion but did not focus on technology
(Ball et al., 2008; Baumert et al., 2010; Davis & Simmt, 2006; Ma, 1999; Rowland et
al., 2005; Shulman, 1986). Research on teachers and technology in mathematics
education tended to fulfil the second criterion but focussed either on knowledge-in-
action or know-how (Drijvers et al., 2010; Gueudet & Trouche, 2009; Ruthven et al.,
2008; Ruthven, 2009; Trouche, 2005) or on aspects of articulated knowledge (Bowers
& Stephens, 2011; Monaghan, 2004; Pierce & Stacey, 2010; Zbiek et al., 2007) but not
on both.

The TPACK framework (Mishra & Koehler, 2006) is unusual in fulfilling both criteria
— hence its selection for this study. Their framework represents Shulman’s (1986)
conception of pedagogic content knowledge diagrammatically as the intersection of two
circles representing general pedagogic knowledge and content knowledge. Extending
this representation using a Venn diagram with three overlapping circles, they
incorporate technology knowledge as a third domain of teacher knowledge. The
inclusion of this third domain of teacher knowledge enables a focus on teachers’
mathematical knowledge for teaching in relation to technology. Since the TPACK
framework is informed by Shulman’s (1986) concept of PCK, it is reasonable to assume
that it enables analysis of individual teachers’ articulated knowledge or propositional
knowledge in Shulman’s terms. However Mishra and Koehler also emphasise the
situated (Brown, Collins & Duguid, 1989) nature of teacher knowledge in the context of
classroom practice, enabling an analysis of knowledge-in-action or know-how. In
Chapter 5, Noss and Hoyles’ (1996; & Kent, 2004; & Pozzi, 2002) notion of situated
abstraction is used to reconcile the apparent duality of an individual teacher’s

mathematical knowledge for teaching using technology as at once ‘abstract’, articulated
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knowledge and yet situated in the context of teaching mathematics using technology.
Similarly, Adler’s (1999; 2001) concepts of the dilemma of transparency and
visibility/invisibility are used to provide insight on this tension.

The TPACK framework is not without limitations, sketched briefly here and in more
detail in the literature review in Chapter 2. Firstly, the components of the TPACK
framework appear weakly theorised and thus establishing clear distinctions between
them in empirical terms has proved problematic. Secondly, due to the TPACK
framework’s development outside of mathematics education, it lacks of subject-
specificity — this may explain in part Ruthven’s (2014, p.380) criticism that it provides a
rather “coarse-grained tool” for conceptualising and analysing teacher knowledge. To
mitigate this second limitation, the Knowledge Quartet (Rowland et al., 2005) was also
selected to complement the TPACK framework. The Knowledge Quartet was chosen as
a suitable tool for analysis primarily due to the framework’s development as a means of
focusing attention on teachers’ mathematical knowledge, hence compensating for the
TPACK framework’s lack of subject specificity. In addition, the Knowledge Quartet
fulfils the first criterion in accommodating an analysis of both knowledge-in-action and
articulated knowledge. The fourth category of the Knowledge Quartet, Contingency,
focuses on teachers’ knowledge in relation to unexpected situations arising in the
mathematics classroom. This focus on knowledge arising in contingent or unexpected
situations helps to ameliorate the limitations of Hutchins’ view of distributed cognition
mentioned in section 1.3.2. Finally, the strong face validity of the Knowledge Quartet

also made the framework generally appealing to the author.

This study uses an amalgam of Remillard’s (2005) perspective and Hutchins’ (1995)
view of distributed cognition as a means of understanding how individual teachers’
knowledge is involved in participation with technology. However, the TPACK
framework (Mishra & Koehler, 2006) and Knowledge Quartet (Rowland et al., 2005)
complement each other to provide a dual means of focusing on and analysing individual
teachers’ own knowledge in relation to using technology to teach mathematics. In
particular, whilst the TPACK framework enables a focus on teachers’ mathematical
knowledge for teaching in relation to technology, the Knowledge Quartet enables a

more fine-grained analysis of mathematical knowledge for teaching using technology.
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1.5 An imperative for exploring a connectionist orientation in relation to

technology

This section begins by defining a connectionist orientation in more detail and
contrasting it with the transmission and discovery orientations that Askew et al (1997)
found were associated with less effective teaching of mathematics. Sub-section 1.5.1
sets out the relevance of a connectionist orientation in relation to technology use and to
the context in which this study is set to argue that there is an imperative for exploring a
connectionist orientation in relation to technology. Finally, the imperative for exploring
a connectionist orientation in relation to technology is used to justify the two main

research questions and two subsidiary research questions that this study aims to address.

In a study of primary school teachers in the UK focusing on their teaching of numeracy,
Askew et al (1997) found that more effective teachers of numeracy displayed what they
described as a connectionist orientation in contrast to the transmission or discovery
orientations of their less effective colleagues. Askew et al (1997) defined these
orientations mainly in terms of beliefs about what it means to be numerate and about the
relationship between teaching and learning. In section 1.2.2 it was noted that such

beliefs are considered as ‘knowledge’ in the terms of this study.

As a result, connectionist teachers are defined as knowing that “being numerate means
having a rich network of connections between different mathematical ideas and
employing teaching approaches that establish and emphasise such connections” (Askew
etal., 1997, p.3). In contrast, transmissionist teachers’ knowledge of what it means to be
numerate is that it concerns the acquisition of a collection of routines or procedures. As
a consequence, transmissionist teachers place more emphasis on teaching as a clear
explanation of routines, reducing interactions between teachers and pupils to checks that
these routines can be reproduced correctly. For discovery teachers, learning takes
precedence over teaching: pupils' own strategies are the most important, irrespective of
how effective or efficient they are. Discovery teachers make extensive use of practical
experiences to embody mathematical ideas so that pupils discover methods for
themselves. Connectionist teachers seek to balance teaching and learning so that there is
a dialogue between teacher and pupils, both to exemplify the teacher's network of

knowledge and skills and to reveal pupils' thinking.

In terms of knowledge of what it means to be numerate, connectionist and

transmissionist teachers can therefore be seen as occupying opposite ends of a spectrum,
34



with a connected understanding of mathematics at one end versus a isolated and
fragmented at the other. In terms of pedagogy, transmissionist teachers can be
characterised as being teacher-centred, whilst discovery teachers occupy an extreme
student-centred position. Connectionist teachers adopt a pedagogic approach that seeks

to balance the best aspects of both student and teacher-centred pedagogies.

1.5.1 Justifying the research questions of this study

The first section of this chapter argued that mathematics education research has tended
to focus narrowly on digital technologies such as those termed cognitive technological
tools (Zbiek et al., 2007) or mathematical analysis software (Pierce & Stacey, 2010).
This has led to the perception of a deficit in teachers’ use of digital technologies. The
apparent deficit exists in two senses. Firstly, mathematics teachers appear to make only
occasional use of digital technologies in their teaching. Secondly, when teachers do
make use of digital technologies, the potential of these technologies to enhance pupils’
mathematical experience in the classroom is rarely realised. Adopting a wider definition
of digital technologies suggests the apparent deficit in teachers’ frequency of use may
be over-estimated. Teachers do integrate some types of digital technology into their
classroom practice. However, these types of digital technology are commonly assumed
to be teacher-centred (rather than student-centred) and to maintain or even encourage

existing ‘traditional’ pedagogies.

Remillard’s (2005) perspective is a reminder that although the constraints and
affordances inherent in digital technologies may help to shape its end use in the
classroom, inevitably, teachers as end-users will also work to shape the technology.
Thus connectionist-oriented teachers may work to shape digital technologies commonly
assumed to be teacher-centred, using them in ways that conform to their own more
student-centred pedagogy. If this is the case, then the apparent deficit in teachers’ use of
digital technologies in terms of the extent to which their potential is realised may also

be over-estimated.

A connectionist orientation towards teaching mathematics has not been investigated in
relation to ICT use. This is surprising given the prominence of ICT and links made
between ICT and student-centred practices (see Becker et al., 1999; Law et al., 2008).

Given the consensus that effective mathematics teaching should involve features that
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underpin a connectionist approach to teaching mathematics (see section 1.2.2), there is
an imperative for research on how technology use is associated with a connectionist
orientation. This study has defined a connectionist orientation mainly in terms of
knowledge, for example, knowing that understanding mathematics means having a
connected knowledge of the subject. Transmissionist teachers provide a contrast with
connectionist teachers in this respect. This contrast provides a means of exploring
connectionist teachers’ use of technology through a comparison with transmissionist
teachers’ use of technology. In addition, the main focus of this PhD project is an
examination of individual teachers’ knowledge and how it is involved in interacting
with technology to produce the mathematical knowledge made available in the

classroom.

The imperative for research on how technology use is associated with a connectionist
orientation and this study’s focus on teacher knowledge in relation to using technology
to teach mathematics give rise to the two main research questions, RQ1 and RQ2, and
two subsidiary questions, RQ2a and RQ2b, listed below. Contrasting transmissionist
and connectionist teachers’ use of technology should make visible individual teachers’
mathematical knowledge for teaching using technology and thus allow RQ2 and its
subsidiary questions to be addressed. In this sense, RQ1 provides a frame of reference
for the rest of the research project through an initial exploration of how a connectionist
orientation may be related to technology.

RQ1 How is a connectionist orientation towards teaching mathematics associated
with teachers’ frequency of use of ICT, their orientation towards ICT and their
pedagogic practices involving ICT?

RQ2 What is the nature and content of teachers’ mathematical knowledge for
teaching using technology, as represented by the central TPACK construct?

RQ2a How does a conceptualisation of teachers’ mathematical knowledge for teaching

using technology suggest ways in which such knowledge could be measured?

RQ2b To what extent is the mathematical knowledge made available through a
teachers’ interaction with technology distributed across the individual teacher

and the technology?

36



1.6 Structure of the thesis

Chapter 2 is a review of literature in relation to mathematical knowledge for teaching

using technology.

Chapter 3 sets out the methodology and research design adopted for the study, in

accordance with the theoretical framework set out in this introductory chapter.

Chapter 4 reports findings from using survey data to explore associations between ICT

use and a connectionist orientation towards teaching mathematics, addressing RQL1.

Chapter 5 begins to address RQ2 by investigating the nature of mathematical
knowledge for teaching using technology, drawing on interview and classroom

observation data from four case study teachers.

Chapter 6 investigates the content of mathematical knowledge for teaching using
technology in relation to the topic of circle theorems. In particular, the analysis reports
the development and post-hoc justification of a conceptualisation of this knowledge to

address RQ2 and as a first step towards addressing RQ2a.

Addressing RQ2b, Chapter 7 introduces a framework for identifying instances of
distributed cognition (Hutchins, 1995), developed from an analysis of the case study
teachers’ mathematical knowledge for teaching circle theorems using technology
presented in Chapter 6. In particular, the development of this framework led to the
specification of minimum knowledge requirements necessary for a teacher to produce a

choice and use of examples and decisions about sequencing (Rowland et al., 2005).

Chapter 8 synthesises the findings of the four preceding data analysis chapters and

considers implications for future research, policy and practice.
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Chapter 2 - Literature Review

This chapter reviews the literature for two purposes. Firstly, to identify and analyse
potential frameworks for analysing individual teachers’ own knowledge that fulfil the
two criteria described in Chapter 1. Namely, that in view of the definition of
mathematical knowledge for teaching and the focus on digital technologies adopted in
this study, a framework for analysing individual teachers’ own knowledge in relation to

using technology to teach mathematics should:
1) accommodate an analysis of both knowledge-in-action and articulated knowledge

2) enable a focus on teachers’ mathematical knowledge for teaching in relation to

technology.

The identification and analysis of potential frameworks for analysing an individual
teacher’s own knowledge should therefore provide a justification for the author’s choice
of the TPACK framework and Knowledge Quartet for this purpose as argued in Chapter
1.

Secondly this chapter aims to justify Research Questions 2, 2a and 2b by identifying
gaps in the research literature, which these questions seek to address. This chapter
reviews research relevant to this study across the general and subject-specific fields of
research on teachers and teacher knowledge and research on technology in education.
This review therefore uses the literature selectively, providing a review for, rather than
of, research (Maxwell, 2006).

2.1 Introduction

The structure of this literature review attempts to reflect the distribution of the literature
relevant to this study across the general fields of research on teachers and teacher
knowledge and research on technology in education. Conducting the search for
literature, it became apparent that there was little overlap between these fields: within
handbooks they appear to be treated as distinct research domains (see, for example
Anderson, 1995). In particular, although research on teacher knowledge has begun to
inform research on technology in education, there is little evidence to suggest the

reverse process is occurring. A similar pattern appears in research within the (subject-
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specific) field of mathematics education. Research on teacher knowledge in
mathematics education rarely seems to inform or be informed by research on technology
in mathematics education. Thus this literature review consists of three main sections.
The first section explores the general field of research on teachers and teacher
knowledge and its findings with respect to technology, before focusing specifically on
research on teacher knowledge in mathematics education and its findings in relation to
technology. The second section explores the general field of technology in education
with regard to its findings on teachers and teacher knowledge, before again focusing on
mathematics education, this time with regard to research on technology and its findings
in relation to teachers’ knowledge. Finally, the third section provides a summary and
draws conclusions, which are used to justify RQs 2, 2a and 2b. The structure of this

literature review is illustrated in Figure 2.1, below:

First Section Second Section
Technology Teachers and
in Research on teacher knowledge
teachers and in Research on
teacher knowledge technology in

education
Technology Teachers and
in Research on teacher knowledge
teachers and in Research on
teacher knowledge technology in
in mathematics mathematics
education education
Summary and conclusions
Teachers’ mathematical knowledge for teaching using technology

Figure 2.1 Literature review structure
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2.2 Technology in research on teachers and teacher knowledge

Handbook entries in sections on teachers and teaching tend not to have technology as a
focus — articles on teachers and technology, if they exist, are in sections devoted to
research on technology in education (Anderson, 1995; Biddle, Good & Goodson, 1997;
Guthrie, 2003; Peterson, Baker & McGaw, 2010). The Handbook of Research on
Teaching (Richardson, 2001) exemplifies this tendency: none of its chapters has
technology as a focus and its index contains only a handful of scattered references to
technology or computers. Subject-specific handbooks in mathematics and science
education follow this trend: reviews of research on teachers and teaching and research
on technology rarely appear to coincide (Bishop, 1996; Bishop, Clements, Keitel,
Kilpatrick & Leung, 2003; Clements, Bishop, Keitel, Kilpatrick & Leung, 2013;
English, 2008; Fraser & Tobin, 1998; Grouws, 1992; Lerman, 2014; Lester Jr, 2007).

Technology use in teacher education does appear as a focus both in generalist and
subject-specific handbooks (see for example, Musley, Lamndin and Koc (2003); Borko,
Jacobs and Koellner (2010); Wiske and Spicer (2010) and Tittle (2006) on assessment
of teacher learning). However, pre-service and in-service teachers’ learning about how
to integrate technology was not the focus of such research. Instead the focus on
technology in the context of teacher education lies in how technology may be used by
teacher educators to help pre- and in-service teachers engage with wider issues of
(subject-specific) pedagogy, for example through internet-based communities,
interactive media, video case studies and digitised work (Borko et al., 2010; Lampert &
Ball, 1998; Musley et al., 2003; Wiske & Spicer, 2010). Such uses of technology in
teacher education may contribute indirectly to developing teacher knowledge for
teaching using technology, however this does not appear as an explicit focus in teacher
education research. For example, in an introduction to a special issue of the Journal of
Teacher Education on technology use in teacher education, Borko et al (2009)
acknowledge that exploration of the knowledge and skills that teachers must have to use
technology effectively in their teaching was not addressed in the issue’s call for
manuscripts. Attending to this lacuna, Borko et al (2009) describe TPACK
(technological pedagogical content knowledge, Mishra & Koehler, 2006) as a promising
construct for directing such an exploration of teacher knowledge for technology

integration. The TPACK framework and its limitations are discussed in detail in the
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second half of this literature review, which focuses on reviewing research on teachers
and teacher knowledge in the field of technology in education. Finally, Borko et al
(2010) states that research on contemporary professional development programs
(whether they include new technologies or not) falls mostly within the initial proof-of-
concept phase of research: few studies move beyond this phase to examine the impact of

professional development on teachers’ learning and classroom practice.

Research on teachers and teaching does focus on teachers’ knowledge, beliefs and
affect, but within such research little attention is given to teachers’ knowledge in
relation to technology. For example, Munby et al’s (2001) review of research entitled
Teachers’ knowledge and how it develops, which summarises reviews in previous
editions of the Handbook of Research on Teaching and the Handbook of Educational
Psychology, makes no reference to teachers’ knowledge in relation to technology. In the
most recent edition of the Handbook of Educational Psychology, Hoy et al’s (2006)
review of research on teacher knowledge and beliefs likewise contains no references to
the knowledge teachers need for technology integration. Describing the content of
teacher knowledge, Grossman (1995) and Putnam (2003) both present a list of
categories based around Shulman’s (1987) categorisation of the professional knowledge
base for teaching. Similarly, Meijer (2010) quotes Shulman (1987, p. 8) in her portrayal

of the content of teacher knowledge, listing his seven categories as follows:

e content knowledge;

e general pedagogical knowledge, with special reference to those broad
principles and strategies of classroom management and organization that
appear to transcend subject matter;

e curriculum knowledge, with particular grasp of the materials and programs
that serve as "tools of the trade™ for teachers;

e pedagogical content knowledge, that special amalgam of content and
pedagogy that is uniquely the province of teachers, their own special form of
professional understanding;

e knowledge of learners and their characteristics;

e knowledge of educational contexts, ranging from the workings of the group
or classroom, the governance and financing of school districts, to the

character of communities and cultures; and
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e knowledge of educational ends, purposes, and values, and their philosophical

and historical grounds.

Putnam and Borko (1997) choose to focus on general pedagogic knowledge, subject
matter knowledge and pedagogic content knowledge as the three most researched areas
of teacher knowledge, although they include curriculum knowledge as part of pedagogic
content knowledge. Of Shulman’s categories, curriculum knowledge appears most
clearly related to teachers’ knowledge of technology. Shulman (1986) describes
curriculum knowledge as knowledge of the “full range of programs and associated
materials designed for teaching particular subjects and topics at a given level, the
variety of instructional materials available in relation to those programs” (p. 10), as well
as recognising when it may be appropriate to deploy such materials. Beyond this brief
description, neither Meijer (2010) nor Grossman (1995) provide further insight into
what teachers’ knowledge with regard to technology might entail. Putnam (2003) notes
that much of what teachers know is connected to technology, referring to textbooks and
instructional materials, although he does not explicitly mention digital technologies.
The brevity of the description of teachers’ knowledge of technology is perhaps not
surprising: Putnam and Borko (1997) observe that research on pre-service and
experienced teachers’ knowledge and use of curriculum materials is sparse. In contrast,
Van Driel and Berry (2010) state that pedagogic content knowledge has received
considerable attention in the research literature, however their summary of this literature
does not refer to teachers’ knowledge of technology. Despite the concentration of
research on pedagogic content knowledge, VVan Driel and Berry (2010, p. 657) note that
no universally accepted conceptualisation of pedagogic content knowledge has
emerged, thus “that which is searched for and that which is uncovered is variable
indeed”. Research on teachers’ knowledge, in particular Shulman’s categorisation and
its variants, arose from attempts (mainly in the US) to identify and establish a
professional knowledge base for teaching, seen as integral in contributing to the
professionalisation of teaching (Grossman, 1995; Meijer, 2010; Munby et al., 2001,
Putnam & Borko, 1997; Shulman, 1986; 1987). As such research emphasises the critical
role of professional knowledge and beliefs in teaching, it essentially makes an
individualistic assumption that, for knowledge to be influential in teaching, it has to
remain internal to the teacher (Putnam & Borko, 1997). Thus individualistic approaches
to teacher knowledge tend to dominate, characterised by the implicit assumption that

teachers ‘carry’ the knowledge and skill they need for teaching ‘in their heads’ (Putnam
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& Borko, 1997). Significant moves have been made to recognise and capture the
complex, contextualised nature of teachers’ knowledge, through the development of a
range of conceptualisations of teacher knowledge including, for example, craft
knowledge (Meijer, 2010; Putnam, 2003), personal practical knowledge (Meijer, 2010;
Putnam, 2003), event-structured knowledge (Putnam, 2003), case and strategic
knowledge (Shulman, 1986), narrative forms of knowing (Grossman, 1995).
Specifically these efforts reflect a more general movement in psychology and education
towards viewing knowledge as situated, and teachers’ knowledge in particular as
situated in classroom practice (Putnam, 2003). Nevertheless, most research on teacher
knowledge remains underpinned by the same essentially individualistic assumptions
mentioned above (Putnam & Borko, 1997). In particular, research on teacher knowledge
informed by views of cognition as distributed across persons and tools (Hutchins, 1995;
Lave, 1988) remains underdeveloped (Putham & Borko, 1997).

2.3 Technology in research on teachers and teacher knowledge in

mathematics education

In mathematics education, research on teachers and teacher knowledge follows similar
trends to those outlined above in the wider education literature. Sections on teachers and
teaching in handbooks of research on mathematics education do focus on teachers’
knowledge, beliefs and affect, but again within such research little attention is given to
mathematics teachers’ knowledge in relation to using technology in their teaching.
Although there are brief reports that using technology can lead to changes in teachers’
mathematical knowledge and beliefs, these tend to be based on evidence from research
on technology in mathematics education, rather than research within the field of teacher
knowledge, and are therefore discussed in more detail in the second half of this
literature review. Thus research on teacher knowledge in mathematics education tends
to neglect technology, both in terms of the knowledge needed to teach mathematics
effectively using technology and as a tool for investigating mathematical knowledge in
teaching. For example, in the Handbook of Research on Teaching (Richardson, 2001),
Ball et al’s (2001) article reviewing research on teaching mathematics, delineating the
“unsolved problem of teachers’ mathematical knowledge”, does not contain any
references to teachers’ knowledge of technology. In the Handbook of Research on

Mathematics Teaching and Learning (Grouws, 1992), reporting the state of the field of
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research on mathematics teachers’ knowledge, Fennema and Franke (1992) distinguish
the following components of knowledge: knowledge of mathematics; knowledge of
mathematical representations; knowledge of students’ learning; and general knowledge
of teaching and decision-making. They mention technology only fleetingly in the
context of outlining the curricular knowledge component of Shulman’s model of teacher
knowledge (Fennema & Franke, 1992). Similarly, articles in the same volume
reviewing research on teachers’ beliefs and conceptions (Thompson, 1992) and
mathematics teaching practices and their effects (M. Koehler & Grouws, 1992) do not
mention technology in any detail. In the Second Handbook of Research on Mathematics
Teaching and Learning (Lester Jr, 2007), Hill et al (2007) note that new technologies
such as multimedia may provide a promising means of assessing teachers’ mathematical
knowledge. However, they do not refer to assessments focusing on mathematics
teachers’ knowledge for teaching using technology. Concluding a section on teachers’
beliefs about technology in his article on mathematics teachers’ beliefs and affect,
Philipp (2007) summarises that teachers may not believe using computers to teach is
appropriate even if they are comfortable in using them for their own learning and that
teachers' beliefs about technology are constrained by their beliefs about mathematics
and their beliefs about teaching and learning. Sowder (2007) briefly mentions
technology in relation to adopting a focus on curriculum as an approach to teacher
learning, citing Bowers and Doerr (2001) as an example of a project where technology
was used to develop teachers’ mathematical understanding of change. Similarly, in the
Second International Handbook of Mathematics Education (Bishop et al., 2003),
Cooney and Wiegel (2003) note that technology can be used as a catalyst to restructure
teachers’ understanding of mathematics, quoting Laborde (2001) as an example;
however, they do not explicitly address teachers’ mathematical knowledge for teaching
using technology. In the most recent, third edition of the International Handbook of
Mathematics Education (Clements et al., 2013), the chapters relating to teachers’
knowledge and learning (e.g. White et al., 2013) do not address teacher knowledge or
learning in relation to using technology to teach mathematics. Ponte and Chapman
(2008) also cite several studies (Bowers & Doerr, 2001; Goos, 2005; Ponte, Oliveira &
Varandas, 2002) suggesting that technology may be used to develop pre-service
mathematics teachers’ knowledge but also do not address teachers’ mathematical
knowledge for teaching using technology directly. Boero, Dapueto and Parenti (1996)
briefly state that the advent of new technologies requires new competencies on the

teacher’s part, to take advantage of the new educational opportunities they offer,
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however they do not expand on what these competencies might entail. Even and Tirosh
(2008) make no mention of technology in their review of research on teachers’
knowledge and understanding of students’ mathematical learning and thinking. The
entries in the Encyclopedia of Mathematics Education (Lerman, 2014) relating to
teacher knowledge, the assessment of teacher knowledge and teachers as learners also
do not mention teachers’ knowledge or learning in relation to technology. Finally, in
two recent volumes reviewing research on mathematical knowledge in teaching
(Rowland & Ruthven, 2011; Sullivan & Wood, 2008), not one of the papers discusses
teacher knowledge directly in relation to teaching with technology. The last section of
Rowland and Ruthven’s (2011) volume Mathematical Knowledge in Teaching focuses
on building mathematical knowledge in teaching through theorised tools. Ryan and
Williams” (2011) paper is the only one that employs technology in their methodology
for exploring teachers’ knowledge. They use Quest software to produce a mathsmap of
teachers’ subject knowledge and use this as a basis for individual reflection to build
knowledge. However, the items the teachers engaged with to create the mathsmap did
not involve technology and hence this tool is unlikely to build or give insight into
teachers’ mathematical knowledge for teaching using technology. Similarly, the papers
in the last section of Sullivan and Wood (2008) focusing on the assessment of, and

research on, teacher knowledge do not contain any references to technology.

Much of the research conceptualising teachers’ mathematical knowledge in teaching is
informed by or draws upon Shulman’s (1986; 1987) categorisation of teacher
knowledge (Ruthven, 2011). In particular, the concept of pedagogic content knowledge
(PCK) has been the most influential of Shulman’s three areas of content-related
knowledge (Petrou & Goulding, 2011). Shulman (1986) describes PCK as including
knowledge of an armoury of different ways of formulating and representing
mathematics to make it most comprehensible to others; knowledge of what makes
specific topics easy or difficult to apprehend and the conceptions (and misconceptions)
that students of a certain age bring to a topic, as well as strategies for helping students
overcome their misconceptions. Research effort has centred on elaborating the concept
in the context of mathematics, refining and distinguishing it from other areas of content
knowledge and developing measures of teachers’ PCK. For example, Petrou and
Goulding (2011) attempt to synthesise three theoretical frameworks for analysing
teachers’ mathematical knowledge in teaching: Fennema and Franke’s (1992)

conceptualisation described in their article (noted above) in the Handbook of Research
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on Mathematics Teaching and Learning; Ball, Thames and Phelps’ (2008) model
developed through an extensive programme of research and development at the
University of Michigan; and the Knowledge Quartet (Rowland et al., 2005) developed
by a research team at the University of Cambridge. Petrou and Goulding’s attempted
synthesis of these frameworks re-emphasises curriculum knowledge, alongside content
knowledge and pedagogical content knowledge, reverting to something close to the
original Shulman categorisation (Ruthven, 2011). Each of the three frameworks
discussed draws to some degree on Shulman’s work to inform their design. Fennema
and Franke’s (1992) model extends the subject-related components of Shulman’s
categorisation by incorporating teachers’ beliefs and highlighting knowledge of learner
cognitions. Ruthven (2011, p. 84) suggests that possibly the most important feature of
this model was Fennema and Franke’s (1992, p. 162) insistence on “the interactive and
dynamic nature of teacher knowledge” and the need to examine it “as it occurs in the

classroom”.

Ball, Thames and Phelps’ (2008) model, in refining Shulman’s categorisation, aims to
lay the foundation for a practice-based theory for mathematical knowledge for teaching.
Their model retains Shulman’s distinction between PCK and content knowledge,
reconstituted as subject matter knowledge (SMK); however curricular knowledge is
provisionally subsumed as a sub-category of PCK and renamed knowledge of content
and curriculum. In addition, PCK contains two further sub-categories: knowledge of
content and students, “an amalgam, involving a particular mathematical idea or
procedure and familiarity with what students often think or do”, and knowledge of
content and teaching, also “an amalgam, involving a particular mathematical idea or
procedure and familiarity with pedagogical principles for teaching that particular
content” (Ball et al., 2008, p. 401-402). SMK is also split into three sub-categories:
common content knowledge (CCK); specialised content knowledge (SCK) and a more
tentative sub-category entitled knowledge at the mathematical horizon. CCK is defined
“as the mathematical knowledge and skill used in settings other than teaching” — it is
common in that it is used in a wide variety of settings, not unique to teaching (Ball et
al., 2008, p. 399). SCK appears as a central idea in the model proposed, consisting of a
unique body of decompressed mathematical knowledge and skill specialised to teaching
(Ball et al., 2008). Finally, horizon knowledge is “an awareness of how mathematical
topics are related over the span of mathematics included in the curriculum” and “the

vision useful in seeing connections to much later mathematical ideas™ (Ball et al., 2008,
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p. 403). Ball et al’s (2008) model was developed from a study of the way mathematical
knowledge plays out in classroom practice and contributed to the development of
operational measures of teacher knowledge: their test items are used throughout their
paper to illustrate their view of mathematical knowledge for teaching. In particular, Hill,
Rowan and Ball (2005) used a series of multiple choice items as a measure of teachers’
mathematical knowledge for teaching, providing evidence to support their argument that
teachers’ mathematical knowledge is related to students’ achievement. This was a
significant result in itself since such evidence had proved surprisingly elusive and
previous studies had largely failed to establish that teachers with sound mathematical
knowledge are more effective than those with a limited knowledge of mathematics, at
least as measured in terms of academic mathematical qualifications (Askew et al.,
1997). In an influential study, Liping Ma (1999), one of Deborah Ball’s students at the
University of Michigan, used test items developed by Ball for her dissertation research
in interviews with elementary teachers from China and the United States. Comparing
the teachers’ mathematical knowledge she concluded that the teachers in the US had a
limited knowledge of mathematics in comparison with their Chinese counterparts. In
particular, Ma (1999) articulated her conception of what it means to have a profound
understanding of fundamental mathematics, characterising it in terms of depth, breadth
and thoroughness. Ma (1999) defines depth as the ability to connect topics to the large,
powerful ideas of the domain; breadth refers to the ability to make connections among
ideas of similar or less conceptual power and thoroughness is required to weave ideas
into a coherent whole. Her characterisation of mathematical knowledge in these terms
serves to emphasise the importance of having a connected knowledge of mathematics
for teaching. In a study of primary school teachers in the UK focusing on their teaching
of numeracy, Askew et al (1997) found that more effective teachers of numeracy
displayed what they described as a connectionist orientation in contrast to the
transmission or discovery orientations of their less effective colleagues. In their model
of the interplay and relationship between beliefs, knowledge and classroom practices,
informed in part by Shulman’s (1987) work, they define pedagogic content knowledge
as comprising numeracy subject knowledge, knowledge of how pupils learn numeracy
and knowledge of numeracy teaching approaches (Askew et al., 1997). Askew et al
(1997, p. 69) found there was little to distinguish more and less effective teachers in
terms of “their understanding of the content of the numeracy curriculum as far as
correctness and a very straightforward sense of meaning were concerned”. Thus they

define their three orientations mainly in terms of the teachers’ beliefs — though in the
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terms of this study, these are taken to be part of teacher knowledge (see Chapter 1).
Specifically, connectionist teachers believe that being numerate means having a rich
network of connections between different mathematical ideas and employ teaching
approaches that establish and emphasise such connections (Askew et al., 1997, p. 3).
However, Askew et al (1997, p. 69) did find “the connectedness of the teachers’
mathematical knowledge in terms of the depth and multi-faceted nature of their
meanings” was a factor that appeared to be associated with pupil gains. None of the
teachers in this study displayed a profound understanding of fundamental mathematics
as described by Ma (1999). Nevertheless Ma’s (1999) findings are coherent with Askew
et al (1997) in their joint emphasis of the importance of connected knowledge in

mathematics.

Finally, the third framework discussed by Petrou and Goulding, the Knowledge Quartet
emerged from research aimed at developing an empirically-based conceptual framework
to guide lesson review discussions between teacher-mentor and student-teacher in the
practicum placement of the Postgraduate Certificate in Education course in the UK
(Rowland et al., 2005; Rowland et al., 2009; Turner & Rowland, 2011). The purpose of
developing such a framework was to focus these discussions on the mathematical
content of the lesson and the role of the student-teacher’s mathematics subject matter
knowledge and pedagogical content knowledge. The Knowledge Quartet was initially
developed from 24 lesson observations of student teachers, training to teach at primary
level. These observations generated 18 codes relating to the student teachers’ classroom
actions that appeared significant in the sense that they were informed by the trainee’s
SMK or PCK. The codes were then grouped into four super-ordinate categories, named
foundation, transformation, connection and contingency. The foundation category
consists of propositional knowledge (Shulman, 1986) of mathematical concepts and the
relationships between them and of significant research findings regarding the teaching
and learning of mathematics (Rowland et al., 2005). The second category of
transformation refers to knowledge-in-action, concerning the ways that teachers make
what they know accessible to learners: this category focuses in particular on their choice
and use of representations and examples (Rowland et al., 2005). Connection also refers
to knowledge-in-action, regarding the manner in which the teacher unifies and draws
out coherence in the subject matter by making connections between different concepts,
representations and procedures and the decisions made by the teacher regarding

appropriate sequencing of topics. Rowland et al (2005) draw parallels between the
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connection dimension of the Knowledge Quartet and the emphasis placed on having a
connected knowledge of mathematics by Ball (1990), Askew et al (1997) and Ma
(1999). Contingency concerns the teacher’s ability to ‘think on one’s feet’, to provide an
appropriate response to unanticipated pupil contributions, and also notable ‘in-flight’
teacher insights (Thwaites, Jared & Rowland, 2011). The framework has subsequently
been examined in classrooms at secondary level (Thwaites et al., 2011) and in
classrooms outside the UK, specifically in Ireland and Cyprus (Turner & Rowland,
2011), resulting in the addition of new codes and alteration of some of the original
codes. The Knowledge Quartet acknowledges links to Shulman’s categorisation of
teacher knowledge and his six-stage cycle of pedagogical reasoning (Shulman, 1987),
which has been comparatively neglected in the field relative to his categorisation
(Ruthven, 2011). However, in contrast to the other two models discussed by Petrou and
Goulding, this model does not seek to extend or refine Shulman’s work (Ruthven,
2011). Instead, the Knowledge Quartet essentially provides a heuristic tool to guide
attention to and aid the analysis of mathematical knowledge-in-use in teaching
(Ruthven, 2011). In particular, the Knowledge Quartet differs from the other two
models discussed by Petrou and Goulding in that “the distinction between different
kinds of knowledge is of lesser significance than the classification of situations in which
mathematical knowledge surfaces in teaching” (Turner & Rowland, 2011, p. 196). In
this sense, the Knowledge Quartet may be better suited to analysing teachers’
knowledge-in-action or theories-in-action (Argyris & Schon, 1974, see Chapter 1) than
Ball et al’s (2008) or Fennema and Franke’s (1992) frameworks. However, the
Foundation category in particular also allows for an analysis of teachers’ espoused

theory or articulated knowledge, even if this is not realised in classroom practice.

All of these studies mentioned above effectively retain to some degree the essentially
individualistic assumptions underlying Shulman’s original model, since they emphasise
the critical role of professional knowledge and beliefs in teaching and that, for
knowledge to be influential in teaching, it has to reside with the teacher. Indeed Petrou
and Goulding (2011, p. 23) acknowledge the “largely individualistic assumption which
underpins” each of the models they discuss. Although Fennema and Franke (1992) and
Ball et al (2008) insist upon the need to examine teachers’ knowledge as it occurs in the
classroom, essentially recognising the situated nature of mathematical knowledge in
teaching, their conceptualisations do not appear to extend to considering teachers’

knowledge as distributed (Hutchins, 1995) across persons and tools. It is worth noting
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here that Shulman (1986) himself conceived of knowledge involving propositional, case
and strategic aspects. His notions of case and strategic knowledge actually move some
way towards recognising the situatedness of teachers’ knowledge in classroom
situations and its dynamic nature in the face of classroom perturbations (Hodgen, 2011).
The Knowledge Quartet also recognises the nature of mathematical knowledge for
teaching as situated but it appears to adhere more closely to this assumption than either
of the other two models reviewed by Petrou and Goulding (2011). For example, despite
Ball et al’s (2008) insistence that their model lays the foundation for a practice-based
theory for mathematical knowledge for teaching, the abstract quality of their categories
and the categories apparent separation from each other tends towards an impression of
static “knowledge”, for which Shulman’s original categorisation has similarly been
criticised (Fennema & Franke, 1992). By focusing on classroom actions, the original
codes of the Knowledge Quartet remain closer to practice and therefore retain a greater
sense of dynamism, of “knowing” in practice, than either Ball et al (2008) or Fennema
and Franke’s (1992) models. Of course, there is a risk that if the super-ordinate
categories of the Knowledge Quartet are considered in detachment from their grounding
in the original codes then this sense of dynamism might be lost or reduced (Ruthven,
2011). In addition, although Rowland et al (2005, p. 260) make use of an acquisition
metaphor, implying individualist assumptions about knowledge by describing their
foundation category as being about “knowledge possessed”, Turner and Rowland (2011,
footnote on p. 200) suggest that “this ‘fount’ of knowledge can also be envisaged and
accommodated within more distributed accounts of knowledge resources”.
Alternatively, Davis and Simmt (2006) present a model for what they term teachers’
mathematics-for-teaching, consisting of four intertwining and nested aspects, namely
mathematical objects, curriculum structures, classroom collectivity and subjective
understanding. The third aspect, classroom collectivity, emphasises how their
conception of mathematics-for-teaching is considered as ‘shared’ knowledge, which
they take to be synonymous for ‘distributed’ knowledge — at least across persons.
Unlike Rowland et al (2005) and Ball et al (2008), whose models of teacher knowledge
were developed through observations of mathematical knowledge arising in the context
of actual classroom practice, Davis and Simmt (2006, see also Davis & Renert, 2009a)
develop and illustrate their model with data arising from an in-service training session.
Although they discuss data from classroom observation in relation to their tool of
concept study (Davis & Renert, 2009b), they do not relate this data to the four aspects of

their model. Thus it is unclear how their conception of mathematics-for-teaching might
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relate to mathematical knowledge in teaching, as it plays out in the classroom, and how
such knowledge might be distributed across technology. Nevertheless, although Hodgen
(2011) presents a convincing argument for conceptualising mathematical knowledge in
teaching as situated, social and distributed, Ruthven (2011) asserts that the evidence
base for this conceptualisation remains slender and fragmentary. Thus research on
teacher knowledge in the field of mathematics education appears to follow a pattern
similar to the wider field of education in which research on teacher knowledge informed
by views of cognition as distributed (Hutchins, 1995) across persons and tools remains

underdeveloped.

The spur for Petrou and Goulding’s (2011) re-emphasis of curriculum knowledge in the
synthesis of the three frameworks noted above was their experience of transferring the
Knowledge Quartet from an English context to a Cypriot one, in particular, by their
recognition that the importance of textbooks in the school mathematics context of
Cyprus was not reflected in the Knowledge Quartet. Thus Petrou and Goulding (2011)
emphasise (the cultural) context as an important factor in their model. They include in
this ‘context’ the educational system, the aims of mathematics education, the curriculum
and its associated materials (such as textbooks) and the assessment system within a
given country, although they acknowledge that teachers’ contexts are also local,
including “the resources, both material and human, existing in their school or locality as
well as the practices and ethos of the workplace” (Petrou & Goulding, 2011, p. 21).
Ruthven (2011) notes that the contextual element of Petrou and Goulding’s framework
remains relatively under-developed, however other researchers also highlight the
importance of cultural context in understanding teachers’ mathematical knowledge in
teaching. For example, Andrews (2011) presents evidence that the SMK and PCK
required of teachers varies across geographic boundaries according to country curricula.
He argues further that frameworks such as the Knowledge Quartet (Rowland et al.,
2005) and Ball et al’s (2008) model of mathematical knowledge for teaching are a
consequence of the particular cultural contexts they were developed in, drawing on both
systemic imperatives and didactic folklore (Andrews, 2011, p. 99). Similarly, Pepin
(2011) contends that the work of teaching differs from country to country. Rowland
(2014) summarises the issue of cultural context in relation to frameworks for
conceptualising mathematics teacher knowledge, such as Ball et al’s categorisation and
the Knowledge Quartet, noting it is important to bear in mind that they originate from

Anglo-American culture. He gives examples of other cultural emphases and influences,
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in parts of Europe and the Far East, which “significantly shape ways of thinking about
how teachers develop as professionals” although they do not directly address
mathematics teacher knowledge. In addition to cultural context, Andrews (2011)
suggests the context of the mathematical topic under scrutiny may influence the
apparent depth of mathematical knowledge for teaching displayed by the teacher. Much
of the research conceptualising mathematics teacher knowledge has been limited in
terms of its curriculum coverage, for example, Ma (1999) focused on arithmetic
operations and Askew et al (1997) focused on numeracy. Finally, Williams (2011)
provides evidence that teachers’ knowledge may be highly sensitive to the
methodological tools through which it is measured: teachers in his study were more able
to articulate their knowledge in the context of a task than in researcher interviews.

2.3.1 Measurement of teacher knowledge in mathematics education

Relatively sophisticated measures of teachers’ mathematical knowledge for teaching
have been developed in research on teacher knowledge within the field of mathematics
education (Baumert et al., 2010; Blomeke & Delaney, 2012; Hill et al., 2005; Izsak et
al., 2012; Mesa & Leckrone, 2014; Tatto et al., 2012). The impact that the contextual
factors highlighted in the previous section, such as cultural context, mathematical topic
and methodological tools, have on teacher knowledge has important implications for the
development of measures of mathematical knowledge for teaching. For example, in a
study of secondary school teachers’ mathematical knowledge in teaching in Germany,
Baumert et al (2010) developed separate written tests to measure teachers’ content and
pedagogic content knowledge. Baumert et al (2010) succeeded in theoretically and
empirically distinguishing between content knowledge and pedagogic content
knowledge, as measured by their test items, also providing evidence that both are
important factors in the quality of teaching and student learning. In particular, Baumert
et al (2010) found that the positive effect for PCK on students’ learning was mediated
by the quality of instruction, in terms of providing cognitively challenging tasks and
learner support. This mediation effect was not observed for content knowledge. Their
test items for content knowledge covered arithmetic (including measurement; 4 items),
algebra (2 items), geometry (1 item), functions (1 item), probability (1 item) and
geometry, functions and algebra (4 items). The test of pedagogic content knowledge

comprised items regarding the teachers’ ability to identify multiple solution strategies to
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tasks, to recognise the difficulties, misconceptions and solution strategies of their
students and their knowledge of instruction in terms of different representations and
explanations of standard mathematics problems. Their test items were all open-ended,
no multiple choice items were used and the tests conducted by trained administrators in
single-interview situations. In contrast, using the Michigan test items, Hill et al (2008)
were unable establish a clear distinction between KCS and subject matter knowledge,
although as noted previously, Hill et al (2005) managed to provide the first strong
evidence linking teachers’ mathematical knowledge to student achievement. Again in
contrast with Baumert et al’s (2010) study, Hill et al’s (2005; 2008) test items were
multiple choice and the tests were administered through questionnaires rather than in an
interview format. Their test items were aimed at primary school teachers and were
limited to the three mathematical content areas they judged as most frequently taught:
number concepts, operations, and patterns, functions, and algebra (Hill et al., 2005).
Thus these two measures of teacher knowledge differ in terms of the cultural contexts in
which they were developed, the methods with which they were applied and the
mathematical topics that they cover. Research on constructing measures of teachers’
mathematical knowledge in teaching has only recently focussed on exploring the impact
of cultural context (see for example, Delaney et al., 2008; Blomeke & Delaney, 2012 in
the special issue in the 44" volume of ZDM — The International Journal on
Mathematics Education (Ball et al., 2012) on assessment of teacher knowledge). Hence
this area still requires substantial development and further research is needed focussing
on the effects of cultural context, mathematical topic and the methodological tools on
the measurement of mathematical knowledge for teaching. In particular, the
development of test items embedded in a technological context to measure teachers’
mathematical knowledge for teaching appears to have been neglected (Mesa &
Leckrone, 2014).

2.4 Teachers and teacher knowledge in research on technology in education

In handbook entries on technology in education teachers often appear in the context of
limited use of technology in classroom practice. Frequently based on evidence from
teacher surveys, teacher knowledge emerges as a factor explaining the success or failure
of technology integration, rather than as an explicit focus of research. The knowledge

teachers need to teach using technology has seldom been explored in depth. The range
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of terms used to refer to teacher knowledge exemplifies its inadequate conceptualisation
in research on technology in education, as well as shifting trends in teacher education.
Where research on technology in education mentions teacher knowledge explicitly, it is
often as one amongst a range of other barriers or obstacles to successful technology
integration operating at the individual, institutional and system levels. For example,
Salomon (1992) follows Cuban’s (1986) cycle of technology innovation by detailing the
hopes for technology, the dramatic spread of access to hardware and then the reality of
underuse. Drawing on Becker’s (1985) study, Salomon (1992) notes that lack of teacher
training in the use of computers may be a key explanatory factor in the under-use of
computers, supported by teachers’ self-reported lack of knowledge. Unwin and
MacAleese (1988) and Becker (1992) both criticise teacher education for failing to keep
up with the fast pace of development in computer technology, leaving teachers feeling
under-prepared for teaching with computers compared to other aspects of practice.
Similarly, having discussed improvements in access and the opportunities for ‘problem-
based learning’ created by digital technologies, S. M. Williams (2003) notes that only
one third of teachers feel prepared to use technology effectively. Lack of teacher
knowledge and inadequate training is first on Hativa’s (1995) list of obstacles to the
proper integration of computers into classroom teaching. Noting that most teachers,
teacher educators and policymakers were raised in an analogue world, Sancho (2010)
identifies updating educators’ knowledge of digital technologies as one of the key
challenges to technology integration, amongst other systemic factors constraining the
use of ICT. Hadley and Sheingold (1993) also report teachers’ doubts, lack of interest or
knowledge about computers as one of the main barriers to integration reported by
teachers, although this factor decreased over time as teachers increased in expertise.
Surveying mathematics teachers in the US, Manoucherhri (1999) found that non-users
of computers lacked knowledge about how to use computers to improve learning, again
amongst other factors. Lawless and Pellegrino (2007) criticised the reliance on self-
report measures to indicate knowledge growth through professional development on
integrating technology into teaching. In particular, they criticise the operationalisation
of teacher knowledge, stating that self-report measures reflect teachers’ confidence or
self-efficacy rather than actual knowledge. However, since self-report measures were
often the means of identifying teacher knowledge as a factor in technology integration
in the first instance, this reliance suggests a more deep-seated weakness in the
conceptualisation and understanding of what constitutes teacher knowledge in relation

to technology integration.
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Teacher knowledge is also mentioned implicitly, by referring to the skills (Forgasz,
2006; Law, 2010; Means & Roschelle, 2010; Mumtaz, 2000; S. M. Williams, 2003;
Zammit, 1992), abilities (Collis, 1996a; Law, 2010; Zhao, Zhang & Lai, 2010),
capabilities (Collis, 1996b) or competences (Law, 2010) teachers need for successful
technology integration. The relationship between these terms and knowledge is not
always clear: for example, at times knowledge may seem to underpin, lie alongside or
encompass aspects of skill or ability; at times these terms seem interchangeable.
Nevertheless, despite the variation in terms, research in technology education seems
fairly consistent in describing teacher knowledge broadly in relation to three main areas.
Firstly, teachers need to know how to use digital technologies. This is described
variously as having ICT skills (Means & Roschelle, 2010); technical proficiency or the
knowledge needed to operate hardware and software (Hativa, 1995); ‘basic skills’, such
as being able to use word-processing, spreadsheet, presentation and Internet-browsing
software, and familiarity with ICT tools and materials in the subjects they teach
(Williams, 2003); the technical ability to use the necessary hardware and software
(Zhao et al., 2010); and technical competence (Law, 2010). Secondly, teachers should
have knowledge of how to choose appropriate software (Hativa, 1995); the ability to
evaluate the reliability and usefulness of digital resources (Zhao et al., 2010); and the
ability to make appropriate selection of ICT tools (Law, 2010). Finally, teachers should
know how to incorporate digital resources into classroom activities (Williams, 2003);
integrate hardware and software into classroom instruction (Hativa, 1995); and make
appropriate use of ICT tools in different curriculum contexts for different pedagogical
purposes (Law, 2010). These three areas appear roughly to mirror the first three
recommendations made by the UK Department of Education and Science (1992) for the
inclusion of information technology (IT) in initial teacher training, which at the time
represented emerging thinking in the field of teacher education (Collis, 1996b). The
recommendations state that all student teachers should develop an IT capability

encompassing:

i) ability to make confident personal use of a range (albeit limited) of software
packages and IT devices appropriate to their chosen subject and age range;

ii) the ability to review critically the relevance of software packages and IT
devices;

iii) the ability to make constructive use of IT in their teaching;
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iv) the ability to evaluate the way in which the use of IT changes the nature of

teaching and learning.

Research in technology education also raises a number of other relevant teacher
characteristics, related success or failure in technology integration, including beliefs
about the nature of teaching and learning (Becker, Ravitz & Wong, 1999; Means &
Roschelle, 2010), attitudes (Collis, 1996a; Hativa, 1995; Mumtaz, 2000), motivation
(Hativa, 1995; Sancho, 2010), background experience (Collis, 1996a), confidence
(Zammit, 1992), participation in professional development (Means & Roschelle, 2010)
and a broader range of professional activities (Means & Roschelle, 2010). However,
beyond the indications described above, teacher knowledge is rarely explored in further
depth. For example, a detailed consideration of the nature and content of teacher
knowledge needed for technology integration and how this knowledge interweaves with
other types of teacher knowledge, such as knowledge of subject content or pedagogical
considerations is rarely evident. As noted above, in research on technology in education,
teacher knowledge tends to emerge as a factor explaining the success or failure of
technology integration, rather than as an explicit focus of research. This may explain
why links between research on teacher knowledge and research on technology in
education are rare. As Kirschner et al (2008) state “the main stream teacher education
research does not pay much attention to ICT while researchers studying ICT pay little
attention to research conducted on teacher education”. However, the brief description of
teacher knowledge in relation to technology given above resonates with aspects of
Shulman’s (1986) curriculum knowledge, defined as knowledge of the “full range of
programs and associated materials designed for teaching particular subjects and topics
at a given level, the variety of instructional materials available in relation to those
programs” (p. 10), as well as recognising when it may be appropriate to deploy such
materials. In both cases ‘technology’ or the tools of teaching tend to be viewed as things
that teachers should have knowledge about. For example, teachers should know of their
existence and know how to use them, when and where to employ them to greatest
advantage. Defined in this way, knowledge about technology or curriculum knowledge
becomes another set of knowledge that needs to be “carried around inside the teacher’s
head”, as Putnam and Borko (1997) put it. Thus in terms of teacher knowledge, research
on technology in education rarely seems informed by notions of distributed cognition
(Hutchins, 1995), requiring a shift in focus from the knowledge of the individual teacher
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to the knowledge of the teacher in conjunction with various available technologies
(Putnam & Borko, 1997).

2.4.1 A new direction: teachers’ knowledge as an explicit research focus

Law’s (2010) article entitled Teacher Skills and Knowledge for Technology Integration
indicates a new direction in research on technology in education with teacher
knowledge as an explicit focus. Law (2010) quotes the SITES 2006 study findings that
teachers’ self-perceived technical and pedagogical ICT competence to be positive,
significant predictors for teachers’ ICT adoption in their own practice. In particular, she
states that pedagogical ICT competence, described as the teachers’ ability to make
appropriate selection and use of ICT tools in different curriculum contexts for different
pedagogical purposes, is the most crucial determinant of actual ICT use in instruction
(Law, 2010). Law (2010) states that this kind of knowledge and the associated skills
required of teachers is conceptualised by Mishra and Koehler (2006) within the
Technological Pedagogical Content Knowledge (TPACK) framework — see also
Chapter 1. Their framework represents Shulman’s (1986) conception of pedagogic
content knowledge diagrammatically as the intersection of two circles representing
general pedagogic knowledge and content knowledge. Extending this representation
using a Venn diagram with three overlapping circles, they incorporate technology
knowledge as a third domain of teacher knowledge, to indicate the skills or knowledge
needed to successfully operate technology, referred to elsewhere as technical
competence (Law, 2010). The inclusion of technology knowledge introduces two new
dyads, technological pedagogical knowledge (TPK) and technological content
knowledge (TCK), representing the intersection of technology knowledge with
pedagogic knowledge and content knowledge respectively, and a triad representing the
intersection of all three types of knowledge: technological pedagogical content
knowledge (TPACK, see Figure 2).

Koehler and Mishra (2009) define TCK as knowledge about the manner in which
technology and content influence and constrain one another. They argue that teachers
need to develop an understanding of how the subject matter (or the kinds of
representations that can be constructed) can be changed by the application of particular
technologies (Koehler & Mishra, 2009). For example in mathematics, dynamic

geometry software, such as Cabri Geometry (Texas Instruments, 2007), introduces an
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explicit order to the construction of geometric figures that does not exist in a paper and
pencil environment (Jones, 2000). Using dynamic geometry software, dragging
becomes a method for verifying a geometric construction, since the geometric
relationships in a correctly constructed figure will be invariant under drag. This in turn
raises questions about the role of proof in geometry. Thus TCK can be conceptualised
as knowledge of how software models mathematical concepts and relations and of how
the software design may therefore affect both the substantive and syntactic structures of
mathematics.

Technological
Pedagogical Content
Knowledge
(TPACK)

Technological Te%‘gﬂggtical
Knowledge Knowledge
(TCK)

Technological
Pedagogical
Knowledge

Content
Knowledge
(CK)

Pedagogical
Knowledge
(PK)

Pedagogical
Content
Knowledge

Contexts

Figure 2.2 The TPACK framework, source http://tpack.org/

TPK comprises knowledge of the existence, components and capabilities of various
technologies for use in teaching and learning settings and pedagogical considerations
for their selection (Mishra & Koehler, 2006). For example, teachers need to be able to
reinterpret the function of generic software and hardware, such as word-processing,
spreadsheet or presentational software or interactive whiteboard hardware, to suit their
own pedagogical purposes (Koehler & Mishra, 2009). This might include how to
manage changes in the working environment and activity format (Ruthven, 2009),
requiring the adaptation of strategies for classroom management and organisation.
Mishra and Koehler (2006) suggest TPK would also include knowledge of technologies

for maintaining class records, attendance, and grading.

58



Mishra and Koehler (2006) argue that TPACK goes beyond knowledge of the
individual components (content, pedagogy and technology). Rather TPACK represents
knowledge of the dynamic, transactional relationship between the three knowledge
components. In a similar vein to Shulman’s (1986) argument for pedagogic content
knowledge, Mishra and Koehler (2006) suggest that TPACK is a special form of
knowledge, different from that of the technology expert, subject matter specialist or the
general pedagogic knowledge shared by teachers across disciplines. In teaching
mathematics, TPACK could be exemplified by the knowledge underlying a teacher’s
selection of spreadsheet software for the capability to manipulate variables and
formulae dynamically for the pedagogic purpose of supporting an investigative
approach to learning algebra, whilst understanding the limitations of the mathematical
representation, such as the discrepancies between spreadsheet and standard algebraic
notation (Dettori et al., 1995), and recognising and developing strategies to deal with

the pedagogical implications of these limitations.

Mishra and Koehler’s TPACK framework is representative of a new direction in
research on technology in education. Their explicit focus on teacher knowledge led
them to incorporate and extend research from the field of teacher knowledge, in
particular Shulman’s concept of pedagogic content knowledge, to frame their
conception of the knowledge teachers need for technology integration. In addition, they
use situated theories of cognition, referring to (Brown, Collins, & Duguid, 1989), to
inform their conceptualisation of TPACK, moving away from a strictly individualistic
approach to recognise that knowledge about technology cannot be treated as context-
free (Mishra & Koehler, 2006). They are not alone in focussing explicitly on teacher
knowledge for technology integration (see also Cox & Webb (2004), Leach & Moon
(2000), Loveless & Ellis (2001), McCormick & Scrimshaw (2001), for example), nor
do they claim to be unique in arguing that knowledge about technology cannot be
treated as context-free and is interwoven with knowledge of pedagogy and content
(Mishra & Koehler (2006), see for example Zhao, 2003). However, their articulation of
a framework specifying the relationships between knowledge of pedagogy, content and
technology in terms of the dyads TCK and TPK and the triad of TPACK does
distinguish their approach from that of other researchers. Hence for the present study,
the TPACK framework provides a particular focus on knowledge with respect to
technology that is lacking in frameworks developed in research on teachers and teacher

knowledge. In addition, it seems reasonable to assume that the TPACK framework
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could be used to analyse both articulated knowledge and knowledge-in-action. For
example, the TPACK framework is based on Shulman’s (1986) concept of PCK, which
was underpinned by his notions of propositional, case and strategic knowledge
introduced in the same paper — although Mishra and Koehler (2006) do not refer to
these notions in their description of the TPACK framework. Propositional knowledge
can be roughly equated with articulated knowledge, whereas case and strategic
knowledge appear to refer to knowledge-in-action.

Law (2008) suggests the TPACK framework described by Mishra and Koehler (2006)
bridges the gap between the fields of educational technology and teacher education
identified by Kirschner et al (2008). Similarly, Borko et al (2009) recognise Mishra and
Koehler’s contribution to understanding the “wicked problem” of teaching and learning
with new technologies, describing the TPACK framework as a compelling
conceptualisation of the unique knowledge teachers need to develop to embed
technology knowledge in their instructional practice so that it fosters student learning.
However Law (2008; 2010) argues it is not adequate to describe the kinds of teacher
learning required for “ICT integration as a lever for innovation and transformation”. In
addition, to support educational transformation, Law (2008; 2010, p. 215) argues the
need for teachers to develop a range of metacognitive, sociometacognitive and
socioemotional abilities and capacities, requiring both courage and motivation as well
as epistemological beliefs aligned with socially grounded, constructivist theories of
learning. Nevertheless, the TPACK framework covers the kinds of knowledge and skills
denoted by pedagogical ICT competence, which Law (2010) identifies as the crucial
determinant in successful technology integration. Hence developing TPACK may be
seen as a pre-requisite or at least an integral part of the process of developing the kinds
of abilities and capabilities that Law (2010) suggests are necessary for ICT to act as a

lever for educational transformation.

2.4.2 Problems concerning the TPACK framework

Considerable work needs to be done to contextualise constructs issuing from a
generalist framework such as TPACK within specific subject domains. For example,
extensive research effort has been directed towards contextualising Shulman’s concept
of pedagogical content knowledge, the construct underlying the TPACK framework,

within mathematics education. In particular, Ball and colleagues have elaborated PCK
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within mathematics education (Ball, et al., 2008) and developed measures of
mathematics teachers’ specialised content knowledge which have been successfully
linked to student achievement (Hill, Ball, & Schilling, 2008; Hill, et al., 2005). In
contrast, few researchers have attempted, even within the field of educational
technology, to create survey instruments to measure TPACK constructs (Graham, 2011)
and even these have tended to rely on the type of teacher self-reports of knowledge
criticised by Lawless and Pellegrino (2007) - see for example, Archambault and Barnett
(2010). In addition, the TPACK framework is only beginning to be explored within
research on specific subject domains (Voogt et al, 2012) and in mathematics education
specifically (e.g. Bellman et al., 2014; Bowers & Stephens, 2011; Drijvers et al., 2013;
Drijvers et al., 2014). A paper by Bowers and Stephens (2011) provides an example of
an attempt to contextualise the framework within mathematics. They argue that PCK
and TPK have previously received much research attention, whereas TCK has not. Thus
they limit their examination of research to findings relating to TCK and TPACK within
mathematics education. Bowers and Stephens (2011) offer three constructs that they
consider as lying at the intersection of mathematical knowledge and technological
knowledge but conclude that TPACK, as the intersection of knowledge of mathematics,
pedagogy and technology, may represent the empty set. Instead, they suggest TPACK
should be regarded as an orientation rather than a subset of particular knowledge or
skills. By orientation, they mean that teachers should develop a disposition or proclivity
towards viewing technology as a critical tool for identifying mathematical relationships.
Citing Zbiek and Hollebrands (2008), they suggest that to develop TPACK, teachers
need to become “aware of how to design rich tasks that integrate technology into the
classroom discourse so that technology-based conjectures and arguments become
normative” (Bowers and Stephens, 2011), thereby essentially equating a TPACK
orientation with successful technology integration. In contrast, Niess et al (2009)
propose TPACK as integrated knowledge, representing the intersection and
interconnection of content, pedagogy and technology knowledge. The differences
between Niess et al (2009) and Bowers and Stephens’ (2011) conception of the central
TPACK construct is illustrative of some of the theoretical difficulties besetting the
TPACK framework elaborated by Graham (2011). Graham (2011) identifies a lack of
coherence in the interpretation of the central TPACK construct, with some researchers
taking an integrative perspective, viewing TPACK as the use of the distinct domains of
pedagogical, content and technological knowledge in combination, whilst others take a

transformative perspective, viewing TPACK as a new domain of synthesised
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knowledge that cannot be explained by the sum of its parts. Graham (2011) argues this
confusion is exhibited in Mishra and Koehler’s paper, where the representation of the
TPACK using a Venn diagram suggests an integrative model, whilst the language they
use to describe the central TPACK construct suggests instead a transformative model.
Further, Graham (2011) argues that some researchers elide this tension altogether by
making no distinction between TPACK and technology integration, ignoring the other
elements in the model. To some degree, Bowers and Stephens (2011) fall into this
camp, although they acknowledge the other model constructs, they disavow the
existence of the central TPACK construct as a form of knowledge, instead essentially
equating it with technology integration. Voogt et al (2012) and Ruthven (2014) echo
Graham’s criticisms of the weak theorisation of the TPACK framework, drawing
attention to its ambiguities and lack of clarity in defining the framework’s constructs
and the inter-relations between them. More specifically, the TCK, PCK, TPK and
TPACK constructs seem particularly ambiguous in terms of their theoretical definition
(Ruthven, 2014). In addition, Ruthven (2014) suggests the TPACK framework provides
“a rather coarse-grained tool” for analysing teacher knowledge and, hence, may need

supplementing by other frameworks to achieve a sufficient depth of analysis.

Mishra and Koehler criticise Shulman’s conception of PCK for ignoring the knowledge
needed to use technology, stating he “did not discuss technology and its relationship to
pedagogy and content”. They argue that Shulman’s PCK was limited by the time of its
conception: that in the 1980s, for example, traditional pedagogical technologies
achieved a transparency of perception such that they had become commonplace, not
even regarded as technology. They suggest that the rise of new digital technologies, not
yet part of the mainstream, has forced the recognition that teachers need a body of
knowledge incorporating the skills and techniques needed to make use of technology (in
the wider sense). Yet Shulman’s (1986) curriculum knowledge is a recognition of a
body of teacher knowledge incorporating the skills and techniques needed to make use
of technology. His exemplification of a biology teacher’s curriculum knowledge to
include “alternative texts, software, programs, visual materials, single-concept films”
etc (p. 10) suggests that digital technologies were already around to challenge the
apparent status quo of traditional pedagogical technologies. The process of
transformation indicated in Shulman’s (1987) model of pedagogical reasoning focuses
on the critical interpretation of texts (which could be taken to include technology), the

representation of disciplinary concepts and their adaptation and tailoring to a school
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situation and group of students. As suggested by Ruthven (2011, p. 86), viewing
transformation as a problem solving process, we see that it is subject to a range of
constraints at the same time mathematical, pedagogical and curricular, which often
cannot be considered in isolation. In this sense, if curricular constraints are taken as
those imposed by the ‘tools of the teaching trade’, i.e. to include technology as in
Shulman’s conception of curriculum knowledge, then the process of transformation
appears closer to the transformative model of TPACK than the integrative model.
However, it is important to acknowledge that whilst Shulman’s use of transformation
refers to a process, the central TPACK construct is viewed as a new domain of
knowledge from a transformative perspective. Shulman’s process of transformation is
central to the second category of the Knowledge Quartet, to which it gives its name.
However, the Transformation category of the Knowledge Quartet groups classroom
situations, where teachers’” SMK or PCK was evident in making what they know

accessible to learners.

Viewing transformation as a problem-solving process as described above, Ruthven
(2011, p. 86) argues helps to explain “why it has been so difficult to make demonstrable
progress in establishing persuasive and productive knowledge taxonomies” for
mathematical knowledge in teaching. Ruthven (2011, p. 85) argues further:
...many teaching problems cannot be adequately framed in ‘pure’ terms drawn from a
single knowledge domain, or even by drawing on several domains independently. Put
simply, satisfactory resolution of teaching problems must take account of, and often
trade off between, interacting considerations of quite different types... This gives rise

to solutions that often involve an irreducible fusion of such considerations, not
reducible to the practice, or even logic, of any single pure knowledge domain.

In particular, applying Ruthven’s argument to the TPACK framework helps to explain
some of the other theoretical difficulties identified by Graham (2011). Namely, why
achieving clear definitions of the individual constructs in the TPACK framework and
delineating precise boundary conditions between adjacent constructs has proved
problematic: Graham (2011) quotes Cox’s (2008) comprehensive conceptual analysis of
the TPACK research literature which found 13 distinct definitions for TCK, 10
definitions for TPK, and 89 different definitions for TPACK in the reviewed literature.
Taking the transformative perspective implies viewing the central TPACK construct as
an irreducible synthesis of pedagogic, content and technology knowledge that cannot be
broken down into its single or paired knowledge domains. Thus the individual

constructs may not actually exist in the reality of classroom practice and serve purely as
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a heuristic for reducing complexity to a manageable level by effacing one or more of the
knowledge domains. As Mishra and Koehler (2006, p. 1029) themselves suggest,
“separating the three components (content, pedagogy, and technology) in our model is
an analytic act and one that is difficult to tease out in practice”. It is therefore
unsurprising that Graham (2011) finds pedagogical knowledge considerations are often
mentioned in the context of TCK despite the fact that PK does not contribute at all to
TCK according to the framework. For example, although Bowers and Stephens (2011)
identify three constructs from mathematics education relating to TCK, pedagogical
considerations still emerge in their descriptions. In describing knowledge constructed
from noticing, Bowers and Stephens (2011) mention various pedagogic techniques for
encouraging noticing, including the use of colour, motion and markings during software
use and the importance of experimentation, surprise and the inclusion of multiple
solution pathways as features in task design. They also suggest engaging pupils in open-
ended explorations or “what-if” explorations with software as profitable pedagogic
strategies. Indeed their description of a TPACK orientation as one that “views
technology as a critical tool for identifying mathematical relationships” implies a
judgement that students may learn better with technology than they do in other
environments. This judgement can only be based on pedagogical considerations
involving knowledge of how students learn. This suggests that the central TPACK
construct is likely to involve more than a positive stance towards technology. In
addition, the transformative model of TPACK may be closer to the reality of classroom

practice than an integrative model.

Finally, Mishra and Koehler’s criticism of the separation of PCK and curriculum
knowledge could instead be seen as a call to investigate the distributed (Hutchins, 1995)
nature of mathematical knowledge in teaching. Their recognition that the interaction
between PCK and technological knowledge has been neglected, suggests shifting away
from individualistic approaches to focus on “the interplay between teachers’ knowledge
and other available resources” (Putnam & Borko, 1997), for example digital
technologies. This entails thinking in terms of distributed cognition (Hutchins, 1995). In
this case, rather than viewing knowledge solely as a property of an individual, it is
distributed or “stretched over” (Lave, 1988) both the individual teacher and the various
technologies available (Putnam & Borko, 2000). Although Mishra and Koehler invoke
the situated nature of knowledge in describing TPACK, they do so in the sense that the

classroom situation provides contextual shaping for a teacher’s knowledge, nevertheless
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knowledge remains internal to the individual teacher. Mishra and Koehler’s critique of
Shulman’s taxonomy lies in their criticism of his distinction and hence separation of
PCK and curriculum knowledge. As argued above, the transformative model of TPACK
appears to draw closer to the process of transformation in Shulman’s model of
pedagogic reasoning and, as a result of their individualistic approach, Mishra and
Koehler do not move far beyond Shulman’s original taxonomy. Adopting a distributive
approach, it is argued, would be more likely to provide the kind of research
understandings that could be used to support teachers in their pedagogical reasoning

through the use of digital technologies (Putham & Borko, 1997).

2.5 Teachers in research on technology in mathematics education

A review of research on technology in mathematics education covering the period from
1994-98 found that very few papers considered the teacher dimension, that is the role of
the teacher in technology integration, focussing instead on understanding the interaction
between students and technology (Lagrange et al., 2003). This is reflected in the relative
absence of the teacher from handbook articles on technology and mathematics
education covering a similar period. In the Handbook of Research on Mathematics
Teaching and Learning (Grouws, 1992), Kaput (1992) briefly notes the importance of
support for teachers who must come to terms with the profound changes in their beliefs
about mathematics, teaching, learning and students, that may be provoked by
technology innovation. Citing Lampert (1988), he suggests that such changes may be
akin to a “religious transformation, with all the accompanying travail and exhilaration”
(Kaput, 1992, p. 548). Kaput (1992) also notes that the level of effort and expertise
required to retrofit general tools and applications, such as calculators, symbol
manipulators, graphing utilities and spreadsheets, as learning tools is closely related to
the difficulty of technology integration and hence the limited penetration of technology
into mathematics classrooms. Ruthven (1996) lists teacher confidence amongst other
factors relating to the modest impact of calculators on mathematics education, but
otherwise makes little reference to teachers. In the same volume, Balacheff and Kaput
(1996) suggest that teachers’ traditional professional knowledge is insufficient to deal
with the deep changes in learning, teaching and epistemological phenomena emerging
due to computer-based learning environments, but no give indication of what new

knowledge it is that teachers might require. None of the papers in the section entitled
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Influences of Advanced Technologies in either the first or second edition of the
Handbook of International Research in Mathematics Education (English, 2002; 2008)
has teachers’ use of technology as a major focus. However, Yerushalmy and Chazan
(2002) do include a section on teacher knowledge of school algebra, discussing how one
teacher’s efforts to integrate graphing technology into a standard approach to school
algebra led to her recognition of the tension between viewing letters as unknowns in an

equation or as variables in a function — this is discussed further below.

Following recognition of the complexity of integrating technology, Lagrange et al
(2003) point to an emerging trend in research focusing on the role of the teacher in
technology integration, through observations of ‘ordinary’ teachers as they struggle to
integrate ICT into their classroom practice. Similarly, Hoyles and Noss (2003) identify
a common research trajectory for the study of digital technologies in mathematical
learning: starting with documenting potentials and obstacles in software use and then
gradually shifting to discussions of tool mediation, tasks and activities and the role of
the teacher. The Second Handbook of Research on Mathematics Teaching and Learning
(Lester Jr, 2007) gives an indication of the shift in research focus: Zbiek et al (2007)
identify three research constructs relating to teachers’ practice involving technology,
amongst 17 in total variously relating to technology and technology in connection with
students and with the curriculum. Similarly, the recent 17" ICMI Study Mathematics
Education and Technology — Rethinking the Terrain (Hoyles & Lagrange, 2010)
demonstrates this shift with a section entitled Teachers and Technology, organised to
consider a range of issues related to preparing teachers to teach using technology and to
the challenges of technology integration. The publication of The Mathematics Teacher
in the Digital Era (Clark-Wilson, Robutti & Sinclair, 2014) makes the role of the
teacher in integrating digital technologies the central focus of research, bringing to the
fore an explicit focus on teachers’ knowledge and a range of frameworks for analysing
that knowledge (e.g. see Ruthven, 2014). The special issue in the 45" volume of ZDM —
The International Journal on Mathematics Education on Re-sourcing Teacher Work
and Interaction (Pepin, Gueudet & Trouche, 2013) similarly makes interactions
between teacher and technology the central research focus, providing frameworks to
analyse these interactions at the level of the individual teacher and to consider the
collective work of groups of teachers. The next section of this literature review
discusses the findings of this research trend in relation to teacher knowledge.
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2.6 Teacher knowledge in research on technology in mathematics education

In their synthesis of research on incorporating mathematics technology into classroom
practice, Zbiek and Hollebrands (2008) distinguish teachers’ conceptions or beliefs
about mathematics and technology from teachers’ understanding or knowledge of
mathematics. In terms of the present study, beliefs and conceptions are considered as

part of teacher knowledge.

2.6.1 Teachers’ conceptions

Several studies detail the changes to teachers’ beliefs that may be provoked by
professional development either grounded in technology use or actively promoting
technology integration. Reporting on a study supporting seven teachers to implement a
guided-inquiry approach to geometry using the Geometric Supposer software, Lampert
(1988) records that teachers radically altered their views of what geometry is, of what
the aims of teaching it are, and the way it should be taught. In particular, this involved
re-sequencing the subject matter, finding a new way to map the geometrical terrain
(Lampert, 1988). Similarly, Moriera and Noss (1995) focus on describing Portuguese
teachers’ attitudes and views as they unfolded during the course aimed at introducing a
“Logo-mathematical culture”. In the Microworlds Project, Noss and Hoyles (1996)
found that changes in teachers’ beliefs often centred on epistemological concerns,
involving a broadening of the range of activities which could be considered
mathematical and connecting to changes in their personal, pedagogical and professional
beliefs. Laborde (2001) used the “perturbation” of introducing Cabri-Geometre into four
mathematics teachers classroom practice as a window onto their tacit hypotheses and
beliefs about teaching and learning mathematics, noting that such a situation can also
catalyse change in teachers’ beliefs, thus restructuring their mathematics. For example,
an activity proposed by the researcher “challenged the beliefs” of one of the teachers
about the kind of problems he could ask his students to do and the level of conceptual
reasoning and software use that he could expect from his students (Laborde, 2001).
Bottino and Furinghetti (1996) outline a typology of secondary school mathematics
teachers’ conceptions in relation to technology and teaching mathematics with
technology when confronted with a change in the mathematics curriculum requiring the

inclusion of computer use in lessons.

Another set of studies documents the influence of teachers’ beliefs on their integration

of technology into classroom practice. For example, in their review of research on
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technology in mathematics education, Zbiek et al (2007) identify the constructs of
pedagogical fidelity and privileging as useful in understanding the extent and nature of
technology integration in a teacher’s classroom practice. Pedagogical fidelity is
described as the degree to which teachers’ beliefs about the way a digital technology
allows students to act mathematically coincide with their beliefs about the nature of
mathematical learning (Zbiek et al., 2007). Privileging is a notion developed by Kendal
and Stacey (2001) to describe how teachers, consciously or unconsciously, frequently
use or place a priority on certain things in their practice, for example, types of
representation, skills or concepts and by-hand or by-technology methods (Zbiek et al.,
2007). Both these constructs relate to teachers’ conceptions of mathematics as a
discipline (Thompson, 1992), their beliefs about the nature of teaching and learning
mathematics and how these interact with their beliefs about technology. Employing
sociocultural perspectives on learning, Goos (2005; 2014) traces the development of
teachers’ professional identities as technology users, by focusing on their negotiation of
the changing relationships between their teaching environment, actions, and beliefs.

These studies have in common a focus on teachers’ global conceptions of mathematics
as a discipline and on teachers’ beliefs about the nature of teaching and learning
mathematics with technology. In the terms of the present study then, they focus on
global aspects of teachers’ espoused theories and theories-in-action (Argyris and Schon,
1974, see Chapter 1). They do not tend to focus on teachers’ knowledge of specific
mathematical concepts in relation to technology, either in relation to their espoused
theories or theories-in-action. This is an important omission since the documented shifts
in teachers’ views suggest a move towards models of teaching aimed at developing
conceptual understanding. Such models require a great deal of knowledge for successful
implementation (Thompson & Thompson, 1996) and as noted earlier, inconsistencies
between teachers’ professed beliefs and practices may be the result of lacking sufficient

knowledge and skills necessary to implement them (Thompson, 1992).

2.6.2 Teachers’ knowledge or understanding of mathematics (with technology)

Zbiek and Hollebrands (2008) cite two studies (Doerr & Zangor, 2000; Heid, Glendon,
Zbiek & Edwards, 1998) which they state give general indications that teachers’
knowledge of mathematics influences their use of technology in the classroom. Teacher

knowledge is not the main focus of the research in either of these studies, rather it is
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analysed as a factor with explanatory value in understanding teachers’ practices.
Nevertheless these studies explicitly analyse teacher knowledge, as opposed to the
studies in the previous section which focus on teacher beliefs.

Heid et al (1998) separate the influences of teachers’ mathematical understanding from
technology-related influences on interviewing, precluding an analysis of teachers’
mathematical knowledge for teaching as a synthesis of mathematical, pedagogical and
technology knowledge. Thus the technological context seems largely tangential to Heid
et al’s (1998) analysis of the mathematical understandings of Sara, one of the teachers
participating in their study of teachers learning to do task-based interviews to assess
students’ understandings of algebra. They analyse Sara’s confusion of parameter and
variable and weaknesses in her understanding of quadratic functions and suggest that
her limited understanding led her to ask misleading questions in her interviews with
students. Their analysis could be seen as identifying gaps in Sara’s foundational
knowledge (Rowland et al., 2005) of algebra, although they do not refer to any research
on mathematical knowledge for teaching. However, there is no indication of how the
technological context impinged either on Sara’s personal mathematical understandings
or on her mathematical knowledge for teaching. For example, Heid et al (1998) do not
discuss Sara’s understanding of how situating the algebraic content within a
technological context might influence her interview questioning. On the other hand,
Heid et al (1998) note teacher Leanne’s inattention to her students’ mathematical
understanding exhibited in CAS-based strategies alternative to the ones she set out to
teach. Heid et al (1998) ascribe Leanne’s inattention to her views of technology as
curriculum — a set of skills to be learned — rather than to weaknesses in the synthesis of
her mathematical, technological and pedagogical knowledge. Alternatively her failure to
attend to her students’ understanding could be taken to indicate a weakness in her
technology-situated mathematical knowledge for teaching. In the cases of Sara and
Leanne, Heid et al (1998) can be seen to focus purely on content knowledge and
technological knowledge respectively, neglecting for example the dyadic and central
triadic constructs of the TPACK framework.

The technological context appears similarly tangential to Yerushalmy and Chazan’s
(2002) discussion of teacher knowledge of school algebra. When faced with the
question of helping a student to understand the meaning of the solution to
3x+ 7 =2(x +5) +x -1, the teacher in their study suggested graphingy = 3x + 7 and
y = 2(x + 5) + x — 1 on a two-dimensional Cartesian plane and looking for the x-
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coordinate of the intersection point. She went on to recognise two tensions arising from
her graphical approach that would be liable to cause her students confusion. Firstly, in
the graphical representation, x is seen as a variable rather than an unknown as in the
equation. Secondly, the teacher herself had difficulty in distinguishing her graphical
approach to solving an equation in one variable from using graphs to solve a system of
equations in two variables. Yerushalmy and Chazan (2002) suggest the teacher’s
confusion arose from weaknesses in her substantive mathematical knowledge, in
relation to her ability to discriminate between functions and equations (Chazan et al.,
1999). Like Heid et al’s (1998) analysis of Sara’s knowledge, Yerushalmy and Chazan
(2002) indicate gaps in the teacher’s foundational knowledge of algebra, but do not
suggest how the technological context impinged on the teacher’s understanding - other
than by making the use of a graphical approach more amenable. In terms of the TPACK
framework, Yerushalmy and Chazan (2002) appear to focus solely on the teacher’s
content knowledge and pedagogic content knowledge, to the exclusion of the
technologically oriented constructs.

Doerr and Zangor (2000) provide a brief description of one teacher’s knowledge and
beliefs about the graphic calculator as reflected in her pedagogic strategies. Like Heid et
al (1998), their description of teacher knowledge is not informed by research on
mathematical knowledge for teaching. Doerr and Zangor (2000) initially emphasise the
strength of the teacher’s technical knowledge, evidenced by her own competency in
using the calculator and her ease in answering students’ questions about calculator
procedures. Similarly to Heid et al (1998), Doerr and Zangor’s (2000) emphasis on the
teacher’s technical knowledge (TK) is at the expense of considering how her pedagogic
strategies reflect a synthesis of the teacher’s technical, mathematical and pedagogic
knowledge, as suggested by the transformative model of TPACK and by Ruthven
(2011). For example, unlike Leanne, this teacher was able and willing to accommodate
students’ suggestions of alternative calculator strategies while using the overhead
projection unit. Due both to the brevity of their description and their interpretation of
this event from a purely technical point of view, Doerr and Zangor (2000) provide no
indication of whether the teacher was able to fuse her technical flexibility with her
mathematical and pedagogical knowledge to develop such unanticipated contributions
in ways that benefited her students mathematically. Describing such a fusion might
contribute to understanding mathematics teachers’ contingent knowledge (Rowland et

al., 2005) in a technological situation.
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Doerr and Zangor’s (2000) description of the teacher’s knowledge gives some further
indications of what mathematical knowledge for teaching using technology might entail.
They state that the teacher drew students’ attention to the mathematical limitations of
the calculator and that she encouraged them to interpret calculator results to provide
meaningful responses to problem situations (Doerr & Zangor, 2000). Both these
pedagogic strategies suggest possible attempts to manage issues of ‘double reference’,
where the calculator syntax diverges from the conventions of school mathematics
(Ruthven, 2002). Issues of double reference tend to be invisible to mathematically
expert and computationally experienced technology users (Ruthven, 2002, p. 286): thus
doing mathematics using technology only requires an implicit recognition of such
issues. The suggestion made here is that teaching mathematics using technology
involves an explicit recognition of these issues fused with pedagogic knowledge of
strategies for managing them. Doerr and Zangor (2000) do not analyse the teacher’s
knowledge in this way, nevertheless their description might suggest a case of teachers’
knowledge-in-action, drawing out mathematical coherence by making connections

(Rowland et al., 2005) between mathematical environments.

Bowers and Doerr (2001) make teacher knowledge the main focus of their research to
the extent that they analyse growth in prospective teachers’ knowing when using
technology. Although they occasionally use the phrase pedagogic content knowledge,
they do not reference Shulman (1986) or any research on mathematical knowledge for
teaching. Bowers and Doerr (2001) separate their prospective teachers’ insights into
categories of mathematical and pedagogical knowing, although it is not always clear on
what basis they make this distinction. For example, they categorise recognition of the
importance of appropriate contexts for situating mathematical content as a
mathematical insight. However, it could equally be seen as a pedagogic insight or,
perhaps more properly, an insight combining both mathematical and pedagogic
knowing. Certainly, knowledge of the most powerful analogies and illustrations of
mathematical ideas is included by Shulman (1986) in his description of pedagogic
content knowledge. Bowers and Doerr (2001) do not indicate whether the use of
technology influenced what counted as an appropriate context, however such an insight
might exemplify teachers’ transformation (Rowland et al., 2005) of their own meanings
and descriptions in a technological context to make them amenable to learners. Only
one of the insights Bowers and Doerr (2001) identify appears directly linked to teaching

mathematics with technology: the “pedagogic insight” of the influence of hidden
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supports and constraints of technology on students’ mathematical activities. They
describe participant Julie’s understanding that the use of discontinuous velocity graphs
was an artefact of the design of the MathWorlds software, but her regarding it as a
pedagogical impediment which she would have to overcome. Other participants instead
saw opportunities for understanding the value of mathematical abstraction in the
discrepancies between MathWorlds and ‘real world’ data. In either case, there are
similarities between this insight and the teacher’s attempts to manage issues of double
reference in Doerr and Zangor’s study. Both involve an appreciation of the
mathematical limitations of the technology fused with an understanding of their
pedagogical implications and could therefore be seen as exemplifying the central
TPACK construct.

2.6.3 Holistic accounts of teacher practice involving technology integration: an
implicit focus on teacher knowledge

As previously indicated, the 171" ICMI Study Mathematics Education and Technology —
Rethinking the Terrain (Hoyles & Lagrange, 2010) demonstrates the shift in research on
technology in mathematics education towards a focus on the role of the teacher.
However, none of the chapters in the section entitled Teachers and Technology
explicitly focus on teachers’ knowledge with respect to technology integration. Instead,
teachers’ knowledge emerges as an implicit focus. Indeed, in chapter 14, Goos et al
(2010, p. 321) note each of the three papers under discussion "implicitly drew attention
to the mathematical and pedagogical content knowledge that teachers require in order to
integrate technology into their classroom practice” but do not discuss this in any further
detail, relegating teacher knowledge as one amongst many other factors influencing
technology integration.

Similarly, in studies aiming to give holistic accounts of teacher practice involving
technology integration, teacher knowledge emerges as an implicit focus. Mapping the
pedagogical opportunities provided by mathematical software, Pierce and Stacey (2010)
suggest that teachers may deliberately exploit the constraints, anomalies or limitations
of technology to provoke students’ mathematical thinking. As Pierce and Stacey (2010)
mention, this implies an appreciation of the issues surrounding the mathematical fidelity
of the software - that is “the faithfulness of the tool in reflecting the mathematical

properties, conventions, and behaviours (as would be understood or expected by the
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mathematical community)” (Zbiek et al., 2007). Similarly, in chapter 8 of the ICMI
study, Olive et al (2010) tentatively suggest that mathematics teachers should have an
understanding of the issues surrounding mathematical fidelity and be able to react to
them appropriately, whilst noting that the question of “who needs to know what” about
such issues has not previously been discussed in depth. The construct of mathematical
fidelity corresponds in large part with the issues of double reference discussed in the
previous section. Having an appreciation of the mathematical fidelity of a particular
software package could be considered as part of the TCK construct — one that Bowers
and Stephens (2011) neglect in their consideration of the TPACK framework. Pierce
and Stacey (2010) note that their approach only addresses the (positive) pedagogical
opportunities of using mathematical software, thus they do not consider potential
drawbacks. Knowing pedagogic strategies both to exploit issues of mathematical
fidelity or alternatively being aware of potential misconceptions arising from such
issues and knowing how to deal with them could exemplify the central TPACK

construct.

Monaghan (2004) also attempts to capture the “wholeness of teachers’ practices” in
their attempts to integrate technology. He employs Saxe’s four-parameter model in an
effort to produce holistic accounts of teacher practice. Teachers’ prior understandings
feature as one of the parameters in Saxe’s model, incorporating teachers’ beliefs about
teaching and learning, the nature of mathematics and their mathematical and technical
proficiency and also their understandings with regard to social practices such as how
they plan their lessons. In terms of mathematical knowledge for teaching, ‘prior
understandings’ suggests the foundational knowledge component of the Knowledge
Quartet (Rowland et al., 2005), thus teachers’ knowledge-in-action remains a largely
implicit consideration. Following Monaghan (2004), Lagrange and Erdogan (2008)
adopt Saxe’s model to analyse the practices of two teachers (one a technology sceptic;
the other an experienced technology user) as they use spreadsheets to teach their
students about linear and exponential progressions. Whilst their description of teachers’
prior understandings is brief, focusing on detailing the teachers’ beliefs about
technology, Lagrange and Erdogan (2008) conclude that having a good disposition
towards technology is insufficient for easy integration. Contra Bowers and Stephens
(2011) view of TPACK simply as having a positive stance towards technology,
Lagrange and Erdogan (2008) argue that teachers need an awareness of the necessity of

making students’ recognise and use the spreadsheet as a mathematical tool (rather than
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as a tool for effecting neat presentation), the necessity of knowing how to create tasks
which effectively support mathematical use of the spreadsheet and a more conscious
appreciation of spreadsheet techniques both in terms of their pragmatic value in
increasing mathematical productivity and in terms of their epistemic value in supporting
conceptual understanding. Their analysis suggests that the introduction of spreadsheets
influences what counts as an appropriate context (see discussion of Bowers and Doerr,
2001) and provides indications of how the transformation component of the Knowledge

Quartet (Rowland et al., 2005) might be exemplified in a technological context.

2.6.4 Frameworks for analysing individual teacher knowledge in research on
technology in mathematics education

As noted above, The Mathematics Teacher in the Digital Era (Clark-Wilson et al.,
2014) and the special issue in the 45" volume of ZDM — The International Journal on
Mathematics Education on Re-sourcing Teacher Work and Interaction (Pepin et al.,
2013) bring to the fore a range of frameworks and constructs for analysing individual
teachers’ knowledge in relation to using technology to teach mathematics. Many of
these derive from the instrumental approach, for example, the documentational
approach (Gueudet et al., 2014; Gueudet & Trouche, 2009; 2011; Pepin et al., 2013),
instrumental orchestration (Trouche, 2004; Drijvers et al., 2010; Drijvers et al., 2013;
Drijvers et al., 2014) and teachers’ personal and professional genesis (Clark-Wilson,
2014; Haspekian, 2005; 2014). As argued in Chapter 1, the centrality of the construct of
instrumental/documentational genesis, i.e. the process of appropriation, means that these
studies tend to focus on teachers’ learning in relation to using technology to teach
mathematics. Whilst teachers’ learning is important, it is not the primary focus of this
study. Instrumental orchestration is an exception here in that it focuses on how teachers
co-ordinate students’ instrumental geneses. Finally, Ruthven’s (2007; 2009; 2014)
Structuring Features of Classroom Practice framework presents an alternative for
analysing individual teachers’ knowledge to frameworks based on the instrumental

approach.

Gueudet and Trouche (2009; 2011) develop the documentational approach as a holistic
framework for studying teachers’ professional development focusing on their use of
resources, as an extension of the instrumental approach (Artigue, 2002; Guin &
Trouche, 1999). The interwoven nature of mathematical knowledge and the technical

skills needed for competent use of technology is highlighted by the instrumental
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approach (Guin & Trouche, 1999; Trouche, 2005). As Fuglestad (2011) suggests, the
instrumental approach may offer a way of describing the development of TCK in terms
of the process of instrumental genesis as well as a possible structure for TCK in terms
of utilisation schemes. Similarly, the documentational approach may offer a way of
describing the development of TPACK in terms of documentational genesis as well as a
possible structure for TPACK in terms of utilisation schemes. Their inference of
operational invariants such as ‘a DGE can be used to help the students to observe
properties of measures’ (Gueudet & Trouche, 2011) points to teachers’ tacit
knowledge-in-action. However, research on teacher knowledge in mathematics
education does not centrally inform their framework: they note briefly Shulman’s
(1986) categorisation of teacher knowledge, stating that for now they consider
“teachers’ knowledge as a whole, without sorting out its different kinds” although this
might be an area for future research and refinement of the theory (Gueudet & Trouche,
2009, p. 201). Also building on the instrumental approach, Drijvers et al (2010) use the
notion of instrumental orchestration to analyse teacher practices involving technology
integration. They identify archetypal teacher behaviours, such as the Technical-demo
(Drijvers, et al., 2010) orchestration concerning the demonstration of tool techniques by
the teacher, which, given their lack of specificity in relation to mathematical content,
could be taken to exemplify the TPK construct. Again these orchestrations appear to

focus on teachers’ tacit knowledge-in-action.

Ruthven (2007; 2009) identifies five factors structuring teachers’ classroom practice
that together provide a framework for developing a holistic understanding of technology
use in teaching mathematics, specifically working environment, resource system,
activity format, curriculum script and time economy. Ruthven employs this five factor
framework to analyse adaptations in teachers’ craft knowledge (Brown & Mclintyre,
1993; Leinhardt, 1988) as they attempt to integrate technology into classroom practice.
Ruthven’s use of terms such as craft knowledge and “expertise” (Ruthven, 2014) puts a
deliberate emphasis on teachers’ tacit knowledge in action. In particular, in taking a
craft perspective, Ruthven et al (2009, p. 281) seek to draw away from what they term
“the more decontextualised and rationalistic approach to characterising ‘a professional
knowledge base for teaching’ (Wilson, Shulman, & Richert, 1987)”. Nevertheless, the
framework of factors structuring classroom practice tends also to lend a structure to
teachers’ craft knowledge. For example, the adaptations in craft knowledge that

Ruthven et al (2009) associate with working environment appear mainly to coincide
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with knowledge of general pedagogic strategies situated in a technology environment
(TPK) — not specific to the type of software or to mathematics teaching per se. In
particular, Ruthven et al’s (2009, p. 281) description of curriculum script, as
interweaving the “mathematical ideas to be developed, appropriate topic-related tasks to
be undertaken, suitable activity formats to be used and potential student difficulties to
be anticipated... ”, bears some resemblance to Shulman’s (1986) strategic form of
pedagogical content knowledge. Finally, Ruthven et al’s (2009) assertion that elements
of adaptation associated with working environment, resource system and activity format
interweave in the development of teachers’ curriculum scripts, together with Ruthven’s
(2009) identification of curriculum script with Gueudet and Trouche’s (2009) concept
of documentation systems, might be seen to provide support for the transformative
model of TPACK.

2.7 ldentifying research questions

This section summarises the conclusions drawn from the review of literature. These

findings led to the identification of Research Questions 2, 2a and 2b listed in Chapter 1.

2.7.1 The nature and content of teachers’ mathematical knowledge for teaching
using technology

Research on teacher knowledge from the field of technology in education is immature:
conceptualisations of the knowledge teachers’ use in teaching with technology remain
underdeveloped. This is exemplified by the theoretical and methodological difficulties
surrounding the TPACK framework. A fundamental theoretical issue for the TPACK
framework lies in the conflict between transformative and integrative models of the
central TPACK construct. As a result, the constructs representing the intersections of
technology, pedagogy and content knowledge i.e. TCK, PCK, TPK and in particular the
central TPACK construct are ambiguous, thus the nature of teachers’ knowledge for
teaching using technology remains unresolved. Further, little work has been done to
contextualise the TPACK constructs in the field of mathematics education. By
comparison, research on teacher knowledge in the field of mathematics education is
relatively well conceptualised, however it has rarely considered teachers’ mathematical

knowledge for teaching in the context of technology use. In addition, research on
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teacher knowledge in mathematics education has been dominated by research in
primary/elementary education, although there is evidence that the issues raised might
well extend to the secondary sector (Hodgen, 2011). Research on technology in
mathematics education, whilst exploring the relationship between global aspects of
teachers’ espoused theories and theories-in-action and their technology use in some
depth, has paid relatively little attention to teachers’ knowledge of specific
mathematical concepts in relation to technology. Research on technology in
mathematics education that focuses explicitly on teacher knowledge as a factor in
explaining teachers’ practices, but not as a central research focus, is rarely informed
either by studies of teacher knowledge in mathematics education or by studies of
teacher knowledge in the field of technology in education, thus they do not build
towards a systematic analysis of mathematical knowledge for teaching using
technology. For example, while Heid et al (1998) consider teachers’ technical and
mathematical knowledge separately, Doerr and Zangor (2000) focus their description of
teacher knowledge primarily on technology to the exclusion of pedagogy and content
and Bowers and Doerr (2001) point to teachers’ mathematical and pedagogical insights
without specifying clearly how they are situated in the technological context. In none of
these studies, do the researchers make clear how they distinguish these different ‘types’
of knowledge, nor on what basis they choose to include or exclude consideration of
either one or more of mathematical, pedagogical and technical knowledge.
Nevertheless, there are sporadic instances where their descriptions give indications
towards viewing teachers’ knowledge as a synthesis of mathematical, pedagogical and
technical domains. Similarly, research aimed at producing holistic accounts of teacher
practice involving technology integration tends to provide support for a transformative
model of TPACK. However, since teachers’ knowledge is usually an implicit focus in
such studies, such indications remain sporadic and unsystematic. More recently,
frameworks such as the documentational approach (Gueudet & Trouche, 2009; 2011),
instrumental orchestration (Trouche, 2004; Drijvers et al., 2010) and Ruthven’s (2007,
2009; 2014) Structuring Features of Classroom Practice framework have been
developed, providing a means for analysing individual teachers’ knowledge in relation
to using technology to teach mathematics. The documentational approach has a
tendency to focus on teachers’ learning, which it is not the primary focus of this study.
All three frameworks appear to have a tendency to highlight teachers’ tacit knowledge-
in-action, rather than providing a focus on teachers’ articulated knowledge or espoused

theories, although this is more deliberate in Ruthven’s framework. As a result, the
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nature and content of teachers’ mathematical knowledge for teaching using technology,
represented by the central TPACK construct, remains an unresolved question. This
conclusion led to the identification of Research Question 2:

RQ2 What is the nature and content of teachers’ mathematical knowledge for

teaching using technology, as represented by the central TPACK construct?

Research on teacher knowledge in the field of mathematics education has also
highlighted the importance of a connectionist orientation (Askew et al., 1997), defined
mainly in terms of knowledge for the purposes of the present study, and of connected
knowledge for teaching (Ball, 1990; Ma, 1999). An intended outcome of this research
will be to explore these issues in relation to technology, in particular in terms of the
central TPACK construct, by contrasting connectionist and transmissionist teachers’ use

of digital technologies.

2.7.2 Measuring teachers’ mathematical knowledge for teaching using technology

Measurements of teacher knowledge in the field of technology in education appear not
to have moved beyond self-report questionnaires. A few researchers have created survey
instruments to measure the constructs of the TPACK framework, however these have
relied on self-reports of knowledge, criticised by Lawless and Pellegrino (2007) for
reflecting teachers’ confidence or self-efficacy rather than actual knowledge. Similarly,
within the field of technology in mathematics education, measures of teachers’
mathematical knowledge for teaching using technology have not progressed beyond
self-reports of technical competence or confidence. In contrast, relatively sophisticated
measures of teachers’ mathematical knowledge for teaching have been developed in
research on teacher knowledge within the field of mathematics education. These
measures have succeeded in providing evidence linking teachers’ mathematical
knowledge to student achievement (Hill et al., 2005; Baumert et al., 2010) as well as
evidence supporting the distinction between content and pedagogic content knowledge
(Baumert et al., 2010). However, research on constructing measures of teachers’
mathematical knowledge in teaching has only recently begun to explore the impact of
cultural context (e.g. Delaney et al., 2008; Blomeke & Delaney, 2012). The impact of

the methods with which test items are applied (e.g. multiple-choice questions, paper-
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and-pencil tests etc) and the mathematical topics covered on what is measured has
received relatively little attention. In particular, the development of test items embedded
in a technological context to measure teachers’ mathematical knowledge for teaching
appears to have been neglected. This area still requires substantial development, leading

to the identification of subsidiary Research Question 2a:

RQ2a How does a conceptualisation of teachers’ mathematical knowledge for teaching

using technology suggest ways in which such knowledge could be measured?

Conceptualising mathematical knowledge for teaching using technology necessarily
exists in a dialectical relationship with measuring such knowledge: that is, exploring
one necessitates exploration of the other and so on in an iterative cycle. For example,
Hill et al’s (2008) failure to establish a clear distinction between KCS and subject
matter knowledge using the Michigan test items, led them to recognise weaknesses in
their original specification of KCS and subject matter knowledge. Hill et al (2008, p.
373) describe their paper as “a first effort to conceptualize, develop, and test measures
of teachers’ knowledge of content and students (KCS)”. In reporting this first effort,
Hill et al (2008, p. 373) ultimately connect “all three pieces of this work, tying the
conceptualization directly to the specification of items, and tying results from field tests

back to strengths and weaknesses of the initial conceptualization.”

2.7.3 Teachers’ mathematical knowledge for teaching using technology as
distributed

Finally, most research on teacher knowledge, whilst recognising the situated nature of
knowledge, remains underpinned by essentially individualistic assumptions (Putnam &
Borko, 1997). In particular, research on teacher knowledge informed by views of
cognition as distributed (Hutchins, 1995) across persons and technology remains
underdeveloped (Putnam & Borko, 1997). In this respect, research on teacher
knowledge in the field of mathematics education appears to follow a pattern similar to
the wider field of education. Mishra and Koehler’s criticism of the separation of PCK
and curriculum knowledge could be seen as a call to investigate the distributed nature of
mathematical knowledge in teaching. However, they stop short of this, hence in the

TPACK framework knowledge remains internal to the individual.

In research on technology in mathematics education, the instrumental approach appears
commensurate with Hutchins’ (1995) distributed view of cognition in the sense that, by

considering an instrument as the combination of an artefact with the user’s schemes of
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use, knowledge appears distributed across both teacher and technology. However, as
noted in Chapter 1, the instrumental approach has a tendency to focus on teachers’
learning, which it is not the primary focus of this study. Instead, this study concentrates
on teachers as workers where the focus is on the knowledge they ‘have’, using
technology in their work of teaching mathematics. Hence Hutchins’ (1995) view of
distributed cognition seemed more appropriate to this study because it focuses on
analysing the interaction of humans with artefacts in the workplace.

Putnam and Borko (1997; 2000) briefly describe examples of digital technologies and
forms of communication between people across which they suggest knowledge for
teaching could be distributed. Putnam and Borko (2000) assert that distributing
knowledge for teaching across people and certain types of digital technologies might
have the potential to transform practice whereas other forms of digital technologies
(simply) serve to support existing practices. Crucially, in neither case do they specify
how knowledge for teaching might be distributed across either people or the digital
technologies they identify. For example, Putnam and Borko (1997, p. 1287) suggest
teachers might augment their pedagogical thinking through making “judicious use” of
new information technologies available via the Internet or existing technologies such as
textbooks (see also Putnam & Borko, 2000). Making judicious use of such technologies
suggests teachers might require a thorough, apriori knowledge of these technologies for
the purposes of teaching. Thus it remains unclear to what extent such technology could
augment teachers’ thinking. In other words, it remains unclear to what extent
knowledge for teaching (using these technologies) would necessarily be internal to the
teacher and to what extent it could be said to reside in the technology itself i.e. what part
of knowledge for teaching could be considered as being distributed across the
technology. Similarly, with Hoyles and Noss’ (2009) notion of out-sourcing, there is a
sense that the user has to ‘have’ knowledge in the first place, before devolving it to the
technology. Again in this case, it remains unclear to what extent knowledge could be

considered as being distributed across the technology.

The strength of Hutchins’ (1995) argument for a distributed view of cognition lies in his
specification of minimum knowledge requirements for individual persons to carry out
the computational tasks necessary for navigating a military ship in interaction with
artefacts and other humans (e.g. reading bearings, pp. 137-140). By specifying the
minimum knowledge requirements necessary for an individual to carry out a

computational task in interaction with an artefact, Hutchins (1995) provides an
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indication of how cognition may be distributed across both human and artefact. Thus
specifying minimum knowledge requirements, provides a means of indicating how and
to what extent teachers’ knowledge is distributed across technology. This conclusion led

to the identification of subsidiary Research Question 2b:

RQ2b To what extent is the mathematical knowledge made available through a
teachers’ interaction with technology distributed across the individual teacher

and the technology?

2.8 Summary

This chapter has reviewed the literature selectively for the purposes of this study. This
led to the identification of the main research question relating to mathematical
knowledge for teaching using technology, RQ2, and two subsidiary research questions
RQ2a and RQ2b. In addition, this chapter provided a more detailed analysis of potential
frameworks for analysing individual teachers’ own knowledge in relation to using
technology to teach mathematics. This analysis supports the selection of the TPACK
framework (Mishra & Koehler, 2006) and the Knowledge Quartet (Rowland et al.,
2005) in Chapter 1 as frameworks suitable for this purpose and for the purposes of this

study.
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Chapter 3 - Methodology

This chapter sets out how the research for this PhD study was designed to address the
questions identified in the introductory chapter (see Chapter 1). The research design is
justified with respect to the epistemological stance and socio-cultural perspective in
relation to technology use outlined in Chapter 1. The methods for data collection and

analysis are also described and justified.

The focus of this study is on individual teachers’ knowledge and how it is involved in
interacting with technology to produce the mathematical knowledge made available in
the classroom. In Chapter 1, it was argued that there is an imperative for exploring a
connectionist orientation (Askew et al., 1997) in relation to technology use. In the terms
of this study, a connectionist orientation is defined mainly in terms of knowledge.
Hence comparing and contrasting connectionist-oriented teachers’ use of technology to
that of transmissionist-oriented teachers provided a means of making mathematical

knowledge for teaching using technology more visible.

This study adopted a mixed-methods approach towards investigating individual
teachers’ knowledge and how it is involved in interacting with technology to produce
the mathematical knowledge made available in the classroom. Adopting a mixed
methods approach represented a pragmatic methodological means of addressing the
research questions identified and justified in Chapters 1 and 2. The quantitative and
qualitative elements of this study were of similar importance (Johnson & Onwuegbuzie,
2004) in the research design. For ease of reference, the research questions are listed in

the following section, below Table 3.1.

A largely quantitative approach was taken to addressing Research Question 1, using
survey data to explore associations between a connectionist orientation and ICT use, in
order to be able to generalise more effectively to the population of English secondary
school teachers. The study did not aim for a statistically representative sample. Instead
case selection was theoretically purposive (Miles & Huberman, 1994), aiming to
maximise the proportion of connectionist teachers included in the sample, and to enable
the collection of data on contextual features (Stein et al., 2007) in line with the socio-
cultural perspective outlined in Chapter 1. However, the sample size of 183 teachers
was considered sufficient for the purposes of statistical analysis, in line with Pampaka et

al’s study (2012), and in this sense it allowed a more effective generalisation from a
82



larger number of critical cases. This quantitative approach was made possible by
Pampaka et al’s (2012) development and validation of a set of items that could be used
to create a scale of transmissionist self-reported pedagogic practice using Rasch
analysis. The scale of transmissionist self-reported pedagogic practice provided a means
of selecting two connectionist and two transmissionist teachers as critical cases for

investigating mathematical knowledge for teaching using technology.

Addressing Research Question 2 and the subsidiary questions 2a and 2b, a qualitative
approach was judged necessary to investigate individual teachers’ knowledge and how
it is involved in the participatory relationship (Remillard, 2005) between teacher and
technology. More specifically, a qualitative approach was judged necessary to
investigate the nature and content of individual teachers’ knowledge in relation to
teaching using technology and how and to what extent knowledge is distributed
(Hutchins, 1995) across teacher and technology. In particular, in line with the
epistemological position outlined in Chapter 1, it was appropriate both to probe
teachers’ theories-in-action and triangulate (Lincoln & Guba, 1985) this with data on
their espoused theories to provide evidence indicating mathematical knowledge for
teaching using technology. Hence data collection entailed observing lessons involving
ICT, followed by a post-observation interview, and a semi-structured interview or ‘think
aloud’ based around manipulating a GeoGebra (2008) file on circle theorems. Analysing
this data to investigate individual teachers’ knowledge using the Knowledge Quartet
(Rowland et al., 2005) provided a means of conceptualising mathematical knowledge
for teaching using technology as a pre-requisite for considering how such knowledge
could be measured, to address RQ2a. In analysing individual teacher’s knowledge, the
purpose is to make inferences about the nature and content of teachers’ knowledge in
general; it is not to critique the knowledge of individual teachers.

The issues raised in this introductory section will be discussed and justified further in

the following section, which sets out the research design.
3.1 Research Design

The PhD study comprised two phases of data collection. The first phase of data
collection was quantitative, surveying secondary school mathematics teachers’
technology use in England. The second, mainly qualitative, phase of data collection
used the survey data to identify four case study teachers. In this second phase, for each

case study teacher, data collection involved observations of two lessons involving ICT,
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followed by a post-observation interview, and a semi-structured interview based around
a GeoGebra file on circle theorems. Table 3.1 depicts the research design, showing
which data were used to inform the research questions identified in Chapter 1. The
research questions are listed below Table 3.1 for ease of reference. In addition, Table
3.1 provides an indication of how the data were analysed to address these research

questions.

A survey was used to address RQ1 since the aim was to explore associations between a
connectionist orientation and ICT use that could be generalised effectively to the
population of English secondary school teachers. The survey data consisted of teachers’
self-reports of their classroom practice. The theoretical perspective outlined in the
introduction to the project (see Chapter 1) highlights the limitations of such data as a
descriptive measure of teachers’ actual classroom practice. In this sense, choosing a
survey method represented a necessary trade-off between being able to make effective
generalisations and potentially obtaining more detailed and accurate information

(Hammersley, 1992, p. 186) through direct observation of teachers’ classroom practice.

Table 3.1 Research Design

Data Respondents Analysis Findings
Survey data 183 respondents Ras_ch_ and other
statistical analyses
RQ1 Chapter 4
Two lesson

Triangulation of

observations + post- 4 respondents o
survey findings

observation interviews

GeoGebra interview 4 respondents

RQ2 TPACK framework Chapter 5
Two lesson
observations + post- 4 respondents
observation interviews

RQ2 +

RQ2a GeoGebra interview 4 respondents Knowledge Quartet Chapter 6
GeoGebra interview 4 respondents Framework for

RQ2b iden-tifying instances Chapter 7
Two lesson of d|§:_r|buted
observations + post- 4 respondents cognrtion

observation interviews
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RQ1 How is a connectionist orientation towards teaching mathematics associated with
teachers’ frequency of use of ICT, their orientation towards ICT and their pedagogic
practices involving ICT?

RQ2  What is the nature and content of teachers’ mathematical knowledge for teaching using
technology, as represented by the central TPACK construct?

RQ2a In what ways can teachers’ mathematical knowledge for teaching using technology be
measured?

RQ2b To what extent is the mathematical knowledge made available through a teachers’
interaction with technology distributed across the individual teacher and the
technology?

Data from lesson observations of the four case study teachers presented a means of
ameliorating the limitations of the survey approach by triangulating (Lincoln & Guba,
1985) the survey findings. In particular, the lesson observations of the four case study
teachers provided critical cases (Miles & Huberman, 1994) with which to triangulate the
survey findings of dominant practices in ICT use (see Chapter 4). They were critical
cases in two senses. Firstly, the case study teachers represented critical cases of
connectionist and transmissionist orientation in relation to ICT use. Using the survey
data, the four case study teachers were chosen to be two of the most connectionist-
oriented and two of the most transmission-oriented teachers from the survey
respondents who had volunteered to be contacted for this purpose. The case study
teachers were also chosen so that one of the connectionist-oriented teachers came from
a school supportive of ICT use and one from a non-supportive school (and similarly for
the transmissionist teachers), again identified via the survey data, in accordance with the
socio-cultural perspective towards teachers’ ICT use described in Chapter 1. In addition,
the four case study teachers had described themselves as being confident with ICT.
Thus they were likely to be technology enthusiasts who would represent strongly
transmissionist or connectionist-oriented practice involving ICT if any association were

present.

Secondly, the case study teachers appeared to view the lesson observations as an
opportunity to ‘show-case’ their best or innovatory practice involving ICT. The only
stipulation the case study teachers were given with regard to the ICT lessons was that
one should take place in a whole-class context with an IWB and the other in a computer
suite, where the pupils had direct access to the hardware and software. This stipulation
was an attempt to recognise the constraints placed on teachers’ classroom practice due
to different working environments (Ruthven, 2007; 2009), also reflected in the structure
of the survey questions. No other stipulations were made in terms of the observed

lessons to avoid over-burdening the teachers for ethical reasons and for practical reasons
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— they were volunteers after all. Nevertheless, the lessons observed appeared to
represent the teachers’ attempts (not always entirely successful) to demonstrate what
they regarded as ideal, innovatory practice, rather than their standard or normal practice
involving ICT. Again, in this sense, the observed lessons were critical rather than
‘typical’ cases of the case study teachers’ classroom practice involving ICT. Thus the
lessons observed were likely to represent strongly transmissionist or connectionist-

oriented practice involving ICT if any association were present.

In terms of RQs 2, 2a and 2b, the case study teachers again represent critical cases for
investigating mathematical knowledge for teaching using technology. For reasons
described above, the case study teachers were likely to be technology enthusiasts and
therefore more likely to have acquired some mathematical knowledge for teaching using
technology, for example through their experience of using technology in their own
classroom practice. It was also critical that between the teachers there should be
variation in dimensions that might be associated with mathematical knowledge for
teaching using technology. Thus contrasting the case study teachers’ use of technology
would be more likely to force productive reflection, serving to make more “visible”
mathematical knowledge for teaching using technology, to highlight the absences
(things left unsaid) as well as the presences (things made explicit), (Hoyles et al., 1999;
Venkatakrishnan, 2004). The choice of two connectionist-oriented and two
transmissionist-oriented teachers and the level of school support provided two such
dimensions of variation. Within the group of four case study teachers there was also
variation in terms of teaching experience and expertise with technology prior to
teaching (e.g. from a previous career or university degree). In addition, and in relation to
RQ2a, the choice of two connectionist-oriented and two transmissionist-oriented
teachers enabled an investigation of individual teachers’ knowledge using the
Knowledge Quartet (Rowland et al., 2005) to conceptualise mathematical knowledge
for teaching using technology as a pre-requisite for considering how such knowledge

could be measured.

Since no stipulation had been made regarding the lesson observations, other than that
one should take place in a computer suite and the other in a whole-class context with an
IWB, comparability was problematic e.g. the lesson content and technology used was
different across lessons. Thus the semi-structured interviews based around a GeoGebra
file on circle theorems were judged necessary to provide a common situation across

which the case study teachers’ use of technology for teaching mathematics could be
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contrasted as discussed above. The case study teachers were prompted to show and
discuss how they would use the diagrams presented in the GeoGebra file to demonstrate
the angle at the centre theorem to their pupils. Circle theorems were chosen since it is a
topic, in the English mathematics curriculum, which is commonly identified with the
use of dynamic geometry software (Ruthven et al., 2008). It was therefore reasonable to
assume that the case study teachers would be familiar with technological resources
similar to the diagrams presented in the GeoGebra file and might even have previously
used such resources in their own teaching. Thus they would be likely to have some
mathematical knowledge for teaching circle theorems using the GeoGebra file, even if
they were unfamiliar with the particular software. In addition, the topic of circle
theorems is at the apex of geometry in the compulsory English mathematics curriculum,
since it is typically where proof is introduced. Hence it provided a potentially
challenging context even for experienced teachers who were both mathematically and
technologically confident. In addition, much of the research conceptualising
mathematics teacher knowledge has been limited in terms of its curriculum coverage,
for example, focusing on arithmetic operations (Ma, 1999) and on numeracy (Askew et
al., 1997) — see Chapter 2. Hence conceptualising teacher knowledge in relation to a
topic in geometry contributes to widening the evidence base for mathematical
knowledge in teaching.

In line with the epistemological position outlined in Chapter 1, it was appropriate both
to observe the case study teachers’ theories-in-action and triangulate (Lincoln & Guba,
1985) this with data on their espoused theories to provide evidence indicating
mathematical knowledge for teaching using technology. In addition, the term
“mathematical knowledge for teaching using technology” is intended to suggest a
situated view of knowledge, implying that it is knowledge used in situations involving
“the work of teaching mathematics using technology” (see Hill et al., 2005). Most
obviously, the IWB and computer suite lesson observations provided opportunities to
observe the case study teachers’ theories-in-action in a situation involving the work of
teaching mathematics with technology. The post-observation interviews then provided
an opportunity to infer the case study teachers’ espoused theories and hence triangulate
them against their theories-in-action observed in the lesson, to provide evidence
indicating mathematical knowledge for teaching using technology. Due to the author’s
past experience as a teacher of mathematics, these post-observation interviews could be

reasonably construed as a discussion between colleagues, reflecting on a mathematics
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lesson involving technology i.e. a situation involving the work of teaching mathematics
with technology. Similarly, the semi-structured interviews based around a GeoGebra
file on circle theorems could be construed as a discussion between colleagues on, for
example, planning a possible mathematics lesson involving technology. The GeoGebra
interviews provided an opportunity to infer the case study teachers’ espoused theories in
relation to teaching circle theorems using technology. Since the case study teachers
were also asked to manipulate the GeoGebra file in a simulation of what they might
actually demonstrate to pupils, this also arguably provided an opportunity to observe

their theories-in-action.

Table 3.2 Methodological strengths and weaknesses of GeoGebra interviews and lesson

observations coupled with the post-observation interviews.

+ Reliability + Validity

N Lesson observations + post-
- Reliability

observation interviews

- Validity GeoGebra interviews _

The methodological strengths and weaknesses of the data obtained from the GeoGebra

interviews and the lesson observations coupled with post-observation interviews, in
terms of their validity and reliability, are summarised in Table 3.2. The extent to which
the teachers’ manipulation of the GeoGebra file can be argued to correspond with their
theories-in-action (i.e. what they would actually do in classroom practice) represents a
methodological limitation of the GeoGebra interviews. The case study teachers’ own,
unsolicited assertions that their manipulation of the GeoGebra file in the interview was
similar to their previous classroom use of such resources provides some evidence to
support this validity claim. The lesson observations and post-observation interviews
ameliorate this limitation to some extent, by providing supporting evidence that claims
about mathematical knowledge for teaching using technology made on the basis of the
GeoGebra interview data do hold when applied in the context of actual classroom

practice (see for example, the analysis in Chapters 5 and 7).
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The evidence presented by this study for mathematical knowledge for teaching using
technology is not really the degree to which the case study teachers’ espoused theories
actually correspond to their theories-in-action. Instead, of course, it is the degree to
which the author perceives a correspondence between the case study teachers’ espoused
theory and theories-in-action. In this sense, the GeoGebra interviews may provide better
opportunities for the author to perceive reliably a correspondence or non-
correspondence between the case study teachers’ espoused theories and their theories-
in-action than the lesson observation and post-observation interview. This is because in
the GeoGebra interviews, the case study teachers explain their actions in the moment,
i.e. in a ‘think-aloud’ (Ericsson & Simon, 1993; Fox et al., 2011), in response to a pre-
prepared set of interview questions. By contrast, the post-observation interviews may
suffer from hindsight-bias or after-the-fact-rationalisation (Evans, 2005) by not only the
case study teacher but the author as well, since the interview schedule was minimally
structured to allow the author flexibility to ask questions addressing issues raised during
the lesson observation.

3.2 Data collection

This section begins by describing and justifying the data collection methods employed
in the quantitative phase of the project. In particular, the design and development of the
survey instrument and the survey sample are discussed and justified. The case study
teachers are then introduced through a brief description, indicating how each individual
varied along dimensions that might be associated with mathematical knowledge for
teaching using technology. Finally, the data collection methods employed during the
GeoGebra interviews, lesson observations and post-observation interviews are

described.

3.2.1 The survey instrument and sample

The aim of the survey was to explore associations between a connectionist orientation
and English secondary school teachers’ ICT use to address RQ1. Underlying this aim is
the recognition that individual teachers interpret and make use of particular technologies
in their classroom practice in ways that are not (fully) determined by the design and
nature of the hardware and software (Remillard, 2005; Spillane, 2006). In particular,
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this survey attempted to take into account individual level factors and contextual
features (Stein et al., 2007) that might influence the participatory relationship between
teachers and technology. This theoretical perspective is set out in more detail in Chapter
1. The final survey instrument contained mainly closed Likert-type response formats

grouped under the following sections (see Appendix A):

A ICT in your school — items on access to hardware/software and
school/departmental level factors effecting ICT use;
B ICT use in your own mathematics teaching

i Your use of hardware - perceived impact and frequency of use of
hardware;

il Using an interactive whiteboard or data projector in maths lessons —
items on frequency of software use, individual factors affecting ICT use
and pedagogic practices with an IWB or data projector in a whole-class
context;

il Maths lessons in a computer suite or using laptops — similarly, items on
frequency of software use, individual factors effecting ICT use and
pedagogic practices with ICT in the context of a computer suite or using
laptops;

C Your own mathematics teaching in general — Pampaka et al’s (2012) items
relating to pedagogic practices in general (not specific to ICT use); and

D About You — personal background details.

The survey questions in section A aimed to gather data on contextual features (Stein et
al., 2007), such as school and departmental support for ICT, which might influence the
participatory relationship between teachers and technology. Section B collected self-
report data on the frequency of mathematics teachers’ use of hardware and software and
their pedagogic practices involving ICT. Again an attempt was made to take contextual
features into account, specifically the working environment (Ruthven, 2009), by
dividing questions between using software in a whole-class context with an IWB and
using ICT in a computer suite where students have direct access to the software. The
inclusion of questions on pedagogic practices involving ICT was in recognition that the
design and nature of the hardware and software that teachers use does not fully
determine their classroom practice. In addition, Sections B and D included questions on
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individual level factors, recognising that these might also influence the participatory

relationship between teachers and technology.

Section C of the survey instrument comprised Pampaka et al’s (2012) items relating to
pedagogic practices in teaching mathematics in general i.e. not specific to ICT use.
These items were included to construct a measure of teachers’ transmissionist self-
reported pedagogic practice as an indicator of their transmissionist or student-centred/
connectionist orientation, in line with the aim of the survey to address RQ1. Pampaka et
al (2012) revised and validated Swan’s (2006) set of self-report items on pedagogic
practice as a means of developing a measure of transmissionist self-reported pedagogic
practice in post-compulsory, ‘advanced’ level mathematics college classrooms. The
item-stems described classroom activities associated with student-centred or teacher-
centred practices. Teachers were asked to indicate the frequency with which these
activities occurred in their classroom practice on a five-point scale: almost never,
occasionally, about half the time, most of the time, almost always. The full set of items
in listed in Appendix A and re-produced in Chapter 4 for ease of interpretation.
Pampaka et al’s (2012) items relate to teachers’ classroom practices rather than to the
knowledge that underpins a connectionist or transmissionist orientation. Nevertheless,
the teachers’ responses to these items provide an indicator of their espoused theories
(Argyris & Schon, 1974; Pampaka et al., 2012) of teaching practice, hence they may be
taken as an indirect indication of their mathematical knowledge for teaching.

The list of software used in the survey was derived mainly from Hyde’s (2004) list,
checked against a survey of software use by the Fischer Family Trust (2003), to ensure
that the main types of software used by secondary mathematics teachers in England had
been included. Notably, IWB software and the MyMaths.co.uk website (Oxford
University Press, 2012) were also included in the survey. IWB technology and
resources such as the MyMaths website have tended to be dismissed within the
mathematics education community (e.g. Zbiek et al., 2007) because there is a tendency
to assume they facilitate and even encourage teacher-centred practices. Indeed, they are
sometimes not even regarded as ‘using ICT’ as a result. However, the theoretical
perspective outlined in Chapter 1 suggests that teachers may use such resources with
interpretative flexibility (Ruthven, 2008; 2009), in ways that may not appear to
correspond with the outward design and nature of the software or hardware. In addition,

as discussed in the following paragraph, there was evidence to suggest that these
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software are widely used in practice, thus omitting them would lead to a

misrepresentation of teachers’ ICT use.

IWB software refers to often presentation-type software that is designed specifically for
use with IWB hardware, for example SMART Notebook (2014) or Promethean
Activinspire (2011). The growing presence of IWBs in mathematics lessons in England,
indicated by the pilot study and other reports (e.g. Moss et al., 2007), suggests that IWB
software may be used regularly by mathematics teachers and it was therefore included
in the list of software for this survey. The MyMaths website was included since this site
was known anecdotally to be widely used in UK schools (see for example, the school
case studies reported in Clark-Wilson, 2008, p. 103-4). It is a subscription site offering
pre-planned lessons, on-line homework and many other resources. The lessons and
homework are linked to an “Assessment Management system”, allowing teachers to

track individual student’s progress.

The survey instrument was progressively developed over the course of various phases
of piloting. The initial questionnaire design was informed by previous surveys of
mathematics teachers’ use of ICT, primarily Hyde’s (2004) survey of mathematics
teachers in Southampton and Forgasz’s (2002) survey of mathematics teachers in
Victoria, Australia. This questionnaire was trialled with students on the Post-Graduate
Certificate of Education (PGCE) mathematics course at King’s College London, before
being piloted with 27 schools working in partnership with King’s College London to
offer initial teacher education in secondary mathematics. The results of the pilot survey
are reported in Bretscher (2011). As a result of this piloting, the questionnaire was re-
developed to include items relating to teachers’ pedagogic practices with ICT and to
highlight more clearly the division of questions between using ICT in a whole-class
context and using ICT in the context of a computer suite or using laptops. Items relating
to school and individual factors affecting teachers’ use of ICT were also re-written to
aid clarity. The re-designed questionnaire was trialled in two think-alouds (Willis, 2005)
with PGCE students and with three experienced in-service teachers, who completed the
questionnaire and then gave verbal feedback. The theoretical perspective outlined above
implies that survey respondents engage in a participatory relationship with the text of
the questionnaire, actively interpreting questionnaire items in the light of their own
circumstances, whilst the questionnaire items may also shape respondents’ perception of
these circumstances. Indeed, one of the three experienced in-service teachers, with

whom the questionnaire was trialled, commented with surprise on how she perceived
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shifts in her own conception of what ‘ICT use’ meant as she progressed through

different sections of the questionnaire.

Questionnaires were sent to teachers in mathematics departments in 87 secondary
schools selected mainly through contacts with teacher educators in three English
universities. The study did not aim for a statistically representative sample, which in any
case was not feasible within the limited resources of the project. Instead, the sample was
purposively directed at school level, with schools selected mainly through contacts with
teacher educators in three English universities. This selection was made to ensure
sufficient representation of connectionist teachers in the sample. Askew et al (1997)
suggested that transmission orientations are likely to be more common amongst
secondary teachers than primary teachers. Indeed, the sample of teachers in Pampaka et
al’s (2012) study was skewed towards a transmission orientation. By selecting schools
with contacts to universities through initial teacher education programmes, this study
aimed to ensure a sufficient number of connectionist-oriented teachers in the sample. In
addition, purposively directing the sample at school level enabled the collection of data
on contextual features (Stein et al., 2007) such as local school or departmental level
factors effecting ICT use. This ensured that the participating schools varied across a
number of characteristics that might affect access to and use of technology. For
example, in London there was a successful policy drive to equip one core subject area
with IWBs (defined as Maths, Science or English, see Moss et al., 2007), thus access to
particular types of technology may vary according to geographical area. The sampling
method ensured some geographical variation, with schools situated mainly within three
areas: Greater London, West Yorkshire and the South of England (taken as comprising
the counties of Hampshire, West Sussex and Dorset). The participating schools also
varied across a number of characteristics that might effect access to and use of
technology, including a wide range of attainment in national tests; most were state
schools but some were private schools; some have speciality status and some do not;

some are single sex and some are selective.

Nine questionnaires were sent to each school and 50 schools agreed to take part. A total
of 188 completed individual teacher questionnaires were returned, an average of 3.8
questionnaires per school. Of these, data from 183 teachers were entered for statistical
analysis; 5 were removed due to missing or problematic data in Section C of the survey.
The sample size was considered sufficient for the purposes of statistical analysis, in line

with Pampaka et al’s study (2012). Twelve schools returned only one completed
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questionnaire, whilst one returned all nine. The participating teachers (101 F; 86 M; 1
unspecified) had a mean age of 38.5 years and mean length of service of 10.5 years,
ranging from NQT to over 25 years experience. The majority of respondents (96)
described their main responsibility as classroom teacher. The sample also included 24
heads of department, 18 deputy heads of department and 24 Key Stage coordinators.
Thus whilst the survey sample cannot be said to be statistically representative of the
population of English secondary school mathematics teachers, the respondents vary
across a range of individual level factors that might be associated with technology use.
In addition, the data may be skewed due to the clustering of teachers in schools. There
may also be a potential bias in the survey sample towards teachers who are relatively
well-disposed towards ICT or those wishing to be seen as frequent users of ICT.
Comparing themselves to their colleagues in the maths department, only 9.0% of survey
respondents thought they use ICT less or much less frequently whereas 33.5% thought
they use ICT more or much more frequently. As argued in the previous section, this
potential bias may be seen as a strength in relation to the selection of case study teachers

as critical cases of connectionist and transmissionist orientation in relation to ICT use.

3.2.2 Introducing the case study teachers

As discussed in the previous section detailing the research design, the four case study
teachers (Robert, Anne, Edward and Michael) were chosen along two dimensions of
variation that might be associated with mathematical knowledge for teaching using
technology, as depicted in Table 3.3. Thus the case study teachers were chosen to be
two of the most connectionist-oriented and two of the most transmissionist-oriented
teachers of those who volunteered. The level of school support provided the other
dimension of variation. This sub-section provides a brief description of each case study
teacher in relation to these two dimensions of variation and other relevant dimensions,

such as teaching experience and expertise with technology prior to teaching.

Table 3.3 Choice of case study teachers along two dimensions of variation

+ connectionist-oriented + transmission-oriented
low school support Anne Edward
high school support Robert Michael
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Robert

Robert was one of the most connectionist teachers in the survey sample (see Chapter 4,
Figure 4.1, transmissionist measure -1.01). His school was generally supportive of ICT
use compared to the other schools surveyed, based on the reports of 3 respondents
including Robert’s own survey response. He had 4-6 years of teaching experience and
held a management position within the mathematics department, as second-in-
command. His initial teacher education had been via a Post-Graduate Certificate of
Education and he had subsequently completed a Masters in Education degree. Robert
was the most technologically proficient of the four case study teachers: his
undergraduate degree was a Bachelor of Engineering in Computing. This was
underlined by his use of a pupil-response system in the IWB lesson observation that he
had designed and programmed with help from colleagues.

Anne

Anne was one of the more connectionist-oriented teachers in the sample (see Chapter 4,
Figure 4.1, transmissionist measure -0.50). Her school was less supportive of ICT use
compared to the other schools surveyed, based on the reports of 4 respondents including
Anne’s own survey response. Anne was the most experienced teacher of the four case
study teachers, with 10-15 years of teaching experience. She held a management
position as a Head of Year, responsible for the pastoral care of students (rather than a
subject-related role). Her initial teacher training had been via an undergraduate degree,
Bachelor of Education in secondary mathematics. She was the least technologically
proficient and confident of the four case study teachers. For example, she mentioned her
reliance on her son’s skills with technology to help her use software to design ICT
resources and on a teaching colleague to help her negotiate the filing system on her

computer.

Edward

Edward was one of the more transmission-oriented teachers in the survey sample (see
Chapter 4, Figure 4.1, transmissionist measure 0.74). His school was unsupportive of

ICT use compared to the other schools surveyed, based on the reports of 7 respondents
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including Edward’s own survey response. Out of the four case study teachers, Edward
was the only one working in a private (i.e. fee-paying) school — the other three taught in
state-funded secondary schools. His department was somewhat unusual in that the
classrooms were not equipped with IWBs, having data projectors only installed instead.
Edward preferred this arrangement in any case, however he did have access to IWBs by
booking classrooms used by other subject departments. He had 2-3 years teaching
experience and had completed a Post-Graduate Certificate of Education. He obtained a
first-class grade in his undergraduate degree in mathematics and, in this sense, had the
strongest mathematical background of the four case study teachers. He appeared
technologically proficient and confident. For example, he mentioned obtaining
permission to up-date the web-browsing software himself on school computers.

Michael

Michael was one of the most transmissionist teachers in the sample (see Chapter 4,
Figure 4.1, transmissionist measure +1.01). His school was supportive of ICT use
compared to the other schools surveyed, based on the reports of 6 respondents including
Michael’s own survey response. He had 2-3 years teaching experience and had
completed a Post-Graduate Certificate of Education. His undergraduate degree was in
Economics and he had subsequently completed a Masters in Economics. Michael
appeared to be the least confident of the teachers in relation to his own subject
knowledge. For example, he indicated that he hoped to teach economics and seemed to
view teaching mathematics as a means to that end. In addition, Michael tended to treat
the author as a senior colleague, commenting off-record on the similarity between

conversations with his mentor in initial teaching training.

3.2.3 The GeoGebra file on circle theorems and interview protocol

The GeoGebra file comprised three diagrams relating to the circle theorem stating that
angle at the centre of the circle, subtended by an arc, is double the angle at the
circumference subtended by the same arc (see Figure 3.1 and Appendix N). Table 3.4

provides a list of the semi-structured interviews based around the GeoGebra file.
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Table 3.4 List of GeoGebra interviews

Case study Date GeoGebra
teacher interview
Robert 13.6.2012 Rob-GGb-int

Anne 28.6.2012 Anne-GGb-intA
29.6.2012 Anne-GGb-intB
Edward 20.6.2012 Ed-GGb-int
Michael 31.5.2012 Mic-GGb-int

GeoGebra - circle theoremsL.ggb

H Move
Z AT B @) 4 Nﬁ% «J» Drag or select objects (Esc)

Ms Harris is planning to use dynamic geometry software to introduce circle theorems to her class.
One of the theorems is the angle at the centre of the circle is twice the angle at the circumference.
She experiments with some diagrams, shown below.

What do you think about these diagrams? Which do you think she should use and why?

Diagram 1

Diagram 2

Try dragging the red and
blue points.

Diagram 3

The black points are the
centres of the circles.

Figure 3.1 The GeoGebra interview file on circle theorems

The GeoGebra file also incorporated some text, setting the task of manipulating the
diagrams in the pedagogical context of planning how to introduce pupils to this circle
theorem based on a demonstration using these diagrams. The first diagram D1 was
designed to be similar to resources found on a web-search. Thus the case study teachers
were likely to have at least some familiarity with a dynamic diagram like D1 and
possibly have even used something similar in their own lessons. The second and third
diagrams were designed to be unusual by comparison: Dietmar Kuchemann’s (2003)
article “Angle at the centre: taking a point for a walk” was instrumental in their design.
These diagrams could be manipulated to produce a soft construction (Laborde, 2005) of

the angle at the centre theorem but could also be disrupted to produce non-examples of
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the theorem. These diagrams were included to provide a context that would challenge
the subject knowledge of and provide some interest to a technologically proficient and
mathematically confident secondary mathematics teacher. The GeoGebra interviews
were semi-structured around a protocol with questions designed to cover each of the
dyadic and triadic categories of the TPACK framework (see Appendix B). Before
opening the GeoGebra file on circle theorems, the case study teachers were asked to
practise ‘thinking-aloud’ whilst manipulating a GeoGebra file with a soft and robust
construction (Laborde, 2005) of a square. The semi-structuring of the interview allowed
the author some flexibility to respond to events during the interview, whilst maintaining
an overall structure that would allow for and facilitate comparison. The GeoGebra
interviews generally took place in a mathematics classroom at the case study teacher’s
school that was not being used for teaching at that time. The author’s laptop with mouse
attached was arranged on a desk so that both the author and the case study teacher could
comfortably see the screen and use the mouse to manipulate D1, enabling collaboration
on the task. Both the visual and audio aspects of the GeoGebra interviews were

recorded on the author’s laptop using iShowU (Shinywhitebox Ltd, 2011) software.

3.2.4 Lesson observations and post-observation interviews

Each case study teacher was observed teaching two lessons using ICT. With the
exception of Anne, one of these lessons was where the teacher used an IWB in a whole
class context and the other lesson took place in a computer suite where the pupils had
direct access to technology. This was a deliberate choice by the author to provide a
contrast in working environment (Ruthven, 2009) that might make differences in
knowledge between connectionist and transmissionist-oriented teachers more visible.
Anne chose to do both her lessons in a computer suite. Since Anne was less confident
using technology, the author did not insist on observing an IWB lesson for pragmatic
and ethical reasons. Table 3.5 provides a list of lesson observations and post-

observation interviews.
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Table 3.5 List of lesson observations

Case Observation Date Post-observation | Year group, mathematical
study type Interview topic, main use of technology
teacher
IWB 13.6.2012 | Rob-IWB-int Year 12 the Chain Rule using
PowerPoint and pupil response
Robert system designed by Robert
Computer 13.6.2012 | Rob-CS-int Year 8 reflection of 2D shapes
suite using maze activities designed
in GeoGebra
Computer 28.6.2012 | Anne-CS1-int Year 8 transformation of
Anne suite 1 graphs using Autograph
Computer 29.6.2012 | Anne-CS2-int Year 8 transformation of
suite 2 graphs using Autograph
IWB 20.6.2012 | Ed-IWB-int Year 12 graphing inverse
functions using GeoGebra
Edward | Computer 27.6.2012 | Ed-CS-Int Year 9 revising equation of
suite straight-line graphs using
Internet game
IWB 29.5.2012 | Mic-IWB-int Year 7 translation of 2D-shapes
Michael using pupil response system
Computer 31.5.2012 | Mic-CS-int Year 8 volume of cuboid using
suite MyMaths.co.uk

During the lesson observations, the author assumed the role of participant-observer
(Cohen, Manion, & Morrison, 2000) in that she was not directly involved in the lesson,
beyond brief interactions with a handful of students. The case study teacher’s
mathematical delivery of the lesson was the main focus of observation. Field notes were
taken every three or four minutes and a descriptive synopsis (Rowland et al., 2005) of
the lesson was written from memory shortly after the lesson, these were later typed up —
see Appendix I. Copies of resources used in the lesson, such as PowerPoint slides,
GeoGebra files, worksheets or links to online resources, were gathered when available.
The post-observation interviews took place as soon as possible after the lesson
observation and on the same day. The interviews were minimally structured to provide
the author with flexibility to follow up and seek clarification on events/issues arising
from the lesson observation. An interview schedule, included in Appendix C, was more
like a list of prompts, reminding the author of areas she wished to cover in the
interview, as well as providing a means to stimulate conversation when necessary. The

post-observation interviews were digitally audio-recorded.
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3.3 Data Analysis

This section begins by describing and justifying the statistical analyses carried out on
the survey data to address RQ1 in the quantitative phase of the project. The chapter
concludes with a description and justification of the qualitative analysis of data from the
GeoGebra interviews and lesson observations coupled with post-observations
interviews used to address RQs 2, 2a and 2b, cross-referenced with the relevant data
analysis chapters where appropriate.

3.3.1 Statistical analysis of survey data

The statistical analysis presented in this thesis focuses on the use of Rasch modelling to
construct a scale of transmissionist self-reported pedagogic practice from teachers’
responses to Pampaka et al’s (2012) items, comprising section C of the survey
instrument. The Rasch model is discussed in the next paragraph and also in Chapter 4,
where the results of the measure construction are presented. The Rasch analysis was
carried out using the Winsteps (2011) software. Finally statistical analyses exploring the
association between the transmissionist self-reported pedagogic practice and other

variables, carried out using the PASW Statistics 18.0 (2009) software, are described.

The Rasch Model

The Rasch model was selected because it provides a method of constructing an interval
level scale of measurement, necessary for conducting parametric tests, from ordinal
level data. In particular, following Pampaka et al (2012), Rasch modelling was used in
this study to construct a scale of transmissionist self-reported pedagogic practice for
secondary school mathematics teachers using their items. Due to its purpose for
constructing scales adequate for measurement, Rasch differs from other statistical
models in that the data must fit the model, rather than the other way round. That is, if
the data do not fit the model then they are inadequate for the purpose of constructing an
interval scale of measurement i.e. the data rather than the model is at fault and must be
rejected. Coe (2008) suggests this unconventional approach may be the reason why the
use of Rasch has been controversial, particularly in the UK, though in other parts of the
world it is widely accepted. Similarly, Pampaka et al (2012) note the controversy over
Rasch modelling, asserting its widespread use internationally in educational assessment

and beyond in the field of health sciences.
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Rasch modelling assumes the ‘ability’ of persons and the ‘difficulty’ of items can be
measured on the same scale. In this study, the difficulty of an item can be taken to mean
the tendency for the pedagogic practice in the item-stem to be endorsed. Person ability
can be taken to mean the extent to which a teacher feels able to endorse a
transmissionist pedagogic practice i.e. indicative of a transmissionist versus student-
centred or connectionist orientation. The probability of a person succeeding on a
particular item is modelled as being dependent only on the difference between the
person’s ability and the item’s difficulty. The mathematical function that relates these
two is the logit function or log of the odds. For the simplest Rasch model, involving
only items with dichotomous responses, this relationship is expressed as:

Pni
ln(l—Pni>_ Bn =Dy

where Py is the probability of success for person n on item i, By, is the ability measure of
person n and D; is the difficulty measure of item i. In this study, the Rasch rating scale
model (Andrich, 1999; Bond & Fox, 2007; Wright & Mok, 2000) was used, which
extends the dichotomous model for use with items with Likert-scale response formats,
such as those employed in Pampaka et al’s (2012) items. For example, items with a
five-point response scale, such as Pampaka et al’s, are modelled as having four
thresholds. Each item threshold k has its own difficulty estimate Fx and this estimate is
modelled as the threshold at which the person has a 50/50 chance of choosing one
category over the category below (Bond & Fox, 2007). In the rating scale model, the
relative difficulty of each threshold is estimated only once across the entire set of items
in the rating scale i.e. the relative difficulty of each threshold is assumed to be the same
across all items. The model equation for the rating scale model is therefore expressed
as:

Ppix
l <L>:B —D;—F

where Phix is the probability of person n choosing a given category on item i, By is the
ability measure of person n, Di is the difficulty measure of item i and Fyis the difficulty
for threshold k (Bond & Fox, 2007).
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The Rasch model is based on three key assumptions of unidimensionality, invariance
and local independence (Panayides et al., 2010). The assumption of unidimensionality
means that items should all be measuring essentially the same thing. The model requires
that items should also discriminate appropriately i.e. that test-items distinguish between
persons because having a higher ‘ability’ entails a higher probability of success (Coe,
2008). Local independence means that items should not provide hints, clues, insights or
guidance for the solution of other items (Panayides et al., 2010). For persons, the
assumption of invariance implies that item parameters should ideally remain constant
across different samples of the relevant population i.e. that, for persons, their relative
probabilities of success must be in line with those of others in the population (Coe,
2008).

Fit statistics provide a diagnostic tool for judging how well the data fit the Rasch model.
Two types of fit statistics, infit and outfit, are both calculated based on the mean of the
squared residuals, but employ slightly different techniques for judging how well a
particular item (or person) fit the model. The infit statistic is weighted to give more
consideration to the residuals of persons whose ability is near the item’s difficulty
(Bond & Fox, 2007). The outfit statistic is simply the mean square of the residuals,
divided by degrees of freedom (Coe, 2008), and is not weighted. Hence the outfit
statistic may be unduly sensitive to extreme outliers and, as a result, the infit statistic is
routinely paid more attention (Bond & Fox, 2007). Infit and outfit values are both
expected to be close to 1, thus mis-fitting items (or persons) are usually defined as those
lying outside an specified interval of values close to 1. In particular, values above 1
indicate a poor fit to the model, whilst those below 1 indicate a better than expected fit
or overfit. Following Pampaka et al (2012), in this study, values of infit and outfit
higher than 1.3 are taken to indicate misfit. However, what constitutes an acceptable
range of values for fit statistics varies in the literature (for example, Bond and Fox,
2007; Smith et al., 1998; Wu and Adams, 2007). Partly for this reason, in this study,
misfit is taken as an indicator for further investigation rather than an absolute cut-off
point indicating an item should be rejected. In addition, items are usually included to
represent various aspects of the construct to be measured. Thus careful consideration is
required before throwing them out, since this has implications for content validity and
the theoretical conceptualisation of the construct (Bohlig et al., 1998; Pampaka et al.,
2012). The approach taken towards the interpretation of fit statistics in this study is

discussed further in Chapter 4 alongside the presentation of the results of the Rasch
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analysis of data from section C of the survey instrument, comprising Pampaka et al’s

(2012) items.

A major strength of Rasch analysis is that, precisely because the model is underpinned
by the assumptions of unidimensionality, invariance and local independence, the
veracity of these assumptions may be tested empirically (Panayides et al., 2010). For
example, in line with Swan’s (2006) original practices scale, Pampaka et al (2012)
assumed that the opposite end of the spectrum from being transmission-oriented was
having a connectionist orientation or being student-centred more generally. Hence, for
the purposes of analysis, items with stems describing student-centred or connectionist
practices were reverse-coded. However, Pampaka et al (2012) noted their results might
indicate a second dimension of connectionism, orthogonal to student-centrism,
concluding that the multidimensionality of the scale is worthy of further study. A
principal components analysis of the Rasch residuals® provides a means for testing to
what extent the data conforms to the assumption of unidimensionality and, in particular,

for exploring its potential multi-dimensionality.

A second example is the use of Differential Test Functioning (DTF) and Differential
Item Functioning (DIF) to test empirically the assumption of invariance across different
samples. The items used in this study, conducted with secondary school mathematics
teachers, were originally designed by Swan (2006) for use with GCSE mathematics
teachers working in Further Education colleges. Pampaka et al (2012) adjusted and
validated these items for use with teachers of post-compulsory mathematics. To some
extent, the samples in these three studies could be construed as being drawn from
different teacher populations. Thus Rasch analysis provides a means of testing to what
extent a measure of transmissionist pedagogic practice generalizes across these teacher

populations.

Other statistical analyses

Data that could be analysed statistically were manually entered into PASW Statistics
18.0 initially. This package was used to generate descriptive statistics (i.e. frequency
distributions and means) and calculate inferential statistics (t-tests and y? tests) where

appropriate. Descriptive statistics relating to teachers’ ICT use, in terms of their

% The difference between a person’s observed response to an item and the response
predicted by the Rasch model (Bond & Fox, 2007; Coe, 2008).
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frequency of ICT use, their orientation towards ICT and their pedagogic practices
involving ICT use are reported in Bretscher (2014). An independent data coding check,
based on a 10% sample of questionnaires, gave a coding accuracy of greater than
99.9%.

The purpose of constructing the measure of transmissionist self-reported pedagogic
practice was to explore associations between a connectionist orientation towards
teaching mathematics and teachers’ ICT use, in terms of their frequency of ICT use,
their orientation towards ICT and their pedagogic practices involving ICT. Once the
measure of transmissionist self-reported pedagogic practice was constructed, the
individual teacher’s measures were imported back into the PASW Statistics 18.0
software. Independent samples t-tests were then carried out comparing the
transmissionist measure of frequent and occasional users of ICT; of teachers with a
positive and negative orientation towards ICT and of teachers reporting frequent and
occasional occurrence of pedagogic practices using ICT. Levene’s test for equality of
variances was checked. On the occasions where equality of variances could not be
assumed the appropriate degrees of freedom and adjusted t-statistics were reported.
Similarly, independent samples t-tests and chi-squared tests were used, where
appropriate, to explore associations between the transmissionist measure and ICT use
with background variables such as gender, age and length of service in the teaching
profession. Bonferroni adjustments were not applied, since the intention was to indicate

where associations might lie rather than to be conclusive.

3.3.2 Analysis of GeoGebra interviews, lesson observations and post-observation
interviews

Data from the GeoGebra interviews were the main focus for qualitative analysis to
address RQs 2, 2a and 2b since these interviews provided a common situation across
which the case study teachers’ use of technology for teaching mathematics could be
contrasted. Initially both the GeoGebra interviews and post-observation interviews were
transcribed (see Appendices G, 1, J for transcription protocol and interview excerpts). A
visual transcript, a pictorial list of configurations of the angle at the centre theorem
made visible by the case study teacher, was also made for the discussion of Diagram 1
in the GeoGebra interview (see Appendix H and Chapter 6 for a more detailed

discussion of this process). However, coordinating the visual, on-screen video of the
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case study teachers’ manipulation of the GeoGebra file with the interview transcript for
coding purposes proved highly problematic. Thus a narrative of the GeoGebra interview
was written as a means of coordinating the visual data with the interview transcript and
highlighting key moments in the interview to break down the real-time flow of the
video. Writing the narrative meant viewing the video at different speeds i.e. by breaking
it down into different grain-sizes of interval. For example, watching the discussion of
the first GeoGebra diagram all the way through, without stopping, gave a sense of key
moments and the general flow of the interview. It was then possible to zoom in,
watching short sequences of the video in order to write the narrative, paying closer
attention to key moments, and at times watching the video stop/start to coordinate better
the case study teacher’s manipulation of GeoGebra with the interview transcript.
Zooming out again to watch longer intervals provided a means of checking whether the
narrative gave a valid portrayal of the key moments and general flow of the interview.
Brief quotes from the interview transcript were included in the narrative as a means of
linking what the teachers did — their theories-in-action — with what they said — their
espoused theories. For example, configurations of the angle in the centre theorem
mentioned in the narrative were those that were both elicited through dragging and

identified verbally by the case study teacher (see also Chapter 6).

The narratives of the GeoGebra interviews were coded using the TPACK framework
and Knowledge Quartet (see Appendices D, E and F for coding exemplars), focussing
primarily on the discussion of Diagram 1, since this diagram was most familiar to the
case study teachers. The TPACK framework was chosen to address RQ2 because it
provided a means of analysing teachers’ knowledge with a particular lens for focussing
on technology that other frameworks for teacher knowledge in mathematics education
lack (see Chapter 2). The Knowledge Quartet was chosen to complement the TPACK
framework, providing a means of producing a fine-grained analysis of teacher
knowledge, focusing on their mathematical knowledge in particular to address RQ2a
(see also Chapters 1 and 6 for a more detailed discussion supporting this choice). From
the lesson observations and post-observation interviews, episodes were identified that
were significant in the sense that they could be construed to be informed by a case study
teacher’s mathematical knowledge for teaching using technology (Rowland et al.,
2005). These episodes were then similarly coded using the TPACK framework and
Knowledge Quartet. The lesson observations and post-observation interviews were also
used to triangulate (Lincoln & Guba, 1985) the finding (see Chapter 4) that the ICT
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pedagogic practice items in the survey, intended to be teacher-centred, actually appear
to reflect dominant or prevalent practices involving ICT. The triangulation involved
categorising the case study teacher’s use of software and hardware in each lesson
observation and their rationale for doing so, as expressed in the post-observation
interview, using the ICT pedagogic practice item stems. To address RQ2b, a framework
for identifying instances of distributed cognition was developed by mapping the
elements of Hutchins’ (1995) view of distributed cognition onto the discussion of
Diagram 1 in the GeoGebra interviews. The development of this framework, including
methodological issues involved in the analysis, is described in more detail in Chapter 7.
The data from the GeoGebra interviews then provided a basis for conducting a series of
thought experiments to populate this framework and hence to identify minimum

knowledge requirements for each of the categories in the framework.

3.4 Summary

This chapter has set out and justified the adoption of a mixed-methods approach
towards investigating individual teachers’ knowledge and how it is involved in
interacting with technology to produce the mathematical knowledge made available in
the classroom. It was argued that adopting a mixed methods approach represented a
pragmatic methodological means of addressing the research questions identified and
justified in Chapters 1 and 2. The research design was justified with respect to the
epistemological stance and socio-cultural perspective in relation to technology use
outlined in Chapter 1. The methods for data collection and analysis were also described

and justified.
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Chapter 4 - Exploring associations between ICT use and
transmissionist versus connectionist orientations

This chapter uses survey data to explore associations between ICT use and a
transmissionist versus connectionist orientation towards teaching mathematics to

address Research Question 1:

RQ1 How is a connectionist orientation towards teaching mathematics associated
with teachers’ frequency of use of ICT, their orientation towards ICT and their
pedagogic practices involving ICT?

Specifically, this chapter reports the results of constructing a scale of transmissionist
self-reported pedagogic practice using Rasch analysis on data from applying Pampaka
et al’s (2012) items to secondary school mathematics teachers. This measure is then
used to explore associations between a transmissionist versus connectionist orientation
towards teaching mathematics and teachers’ ICT use, in terms of their frequency of ICT
use, their orientation towards ICT and their pedagogic practices involving ICT. Case
study data from lesson observations and post-observation interviews are used to explore
these findings further and to triangulate (Lincoln & Guba, 1985) the findings relating to

pedagogic practices involving ICT.

In Chapter 1, it was noted that while Askew et al (1997) defined connectionist and
transmissionist orientations mainly in terms of beliefs, in the terms of this study such
beliefs are considered as part of teacher ‘knowledge’. For example, a connectionist
orientation means knowing that understanding mathematics means having a connected
knowledge of the subject. Transmissionist teachers provide a contrast with connectionist
teachers in this respect, since their knowledge of what it means to understand

mathematics is that it concerns the acquisition of a collection of routines or procedures.

A connectionist orientation towards teaching mathematics has not been investigated in
relation to ICT use. This is surprising given the prominence of ICT and links made
between ICT and student-centred practices (Becker et al., 1999; Law et al., 2008). In
Chapter 1, it was argued that there is an imperative for exploring a connectionist
orientation in relation to technology. Teachers do integrate some types of digital
technology into their classroom practice. However, these types of digital technology are
commonly assumed to be teacher-centred (rather than student-centred) and to maintain

or even encourage existing ‘traditional’ pedagogies. Remillard’s (2005) perspective
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suggests that connectionist-oriented teachers may work to shape digital technologies
commonly assumed to be teacher-centred, using them in ways that conform to their own
more student-centred pedagogy. If this is the case, then the apparent deficit in teachers’
use of digital technologies in terms of the extent to which their potential is realised may
be over-estimated. In addition, one might expect connectionist teachers to make more
frequent use of mathematical analysis software (Pierce & Stacey, 2010), such as
spreadsheets, dynamic geometry software and graphing software.

4.1 The development of a measure of transmissionist self-reported pedagogic

practice

This section briefly summarises the research leading to the development and validation
of Pampaka et al’s (2012) set of items. In this study, these items were used to construct
a scale of transmissionist self-reported pedagogic practice for secondary school
mathematics teachers, using Rasch analysis. The results of the measure construction are

reported in Section 4.2.

Combining the work of Ernest (1991) and Askew et al (1997), Swan (2006)
operationalised connectionist, transmissionist and discovery orientations in the form of
a questionnaire on teacher beliefs, as well as developing and validating a set of self-
report items on pedagogic practices. Swan used the questionnaires as a means for
tracking the changes wrought by a professional development intervention with a group
of 64 GCSE mathematics teachers working in Further Education colleges in England.
The self-report items on pedagogic practices were conceptualised as representing either
teacher-centred classroom behaviours, arising from transmission-oriented beliefs, or
student-centred classroom behaviours, arising from a constructivist position. Swan
constructed a practices scale from these items and related teachers’ scores on this scale
to their categorisation, via the beliefs questionnaire, as transmission, discovery or
connection-oriented. For his sample of FE teachers, he found that, as expected,
transmission-oriented teachers reported a greater frequency of teacher-centred practices,
but that although discovery teachers reported an increase in student-centred practices,
connectionist teachers were the most student-centred of all. Thus on Swan’s scale of
teacher versus student-centred practice, transmissionist and connectionist teachers
appear on opposite ends of the scale whilst discovery teachers occupy an indeterminate,

‘middle’ position, not related to distinctive practices.
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Building on Swan’s work, Pampaka et al (2012) revised and validated the set of self-
report items on pedagogic practice for measuring teachers’ practices in post-
compulsory, ‘advanced’ level mathematics college classrooms. Using data from 110
responses to this revised set of items, they employed a Rasch measurement approach to
create an interval measure of transmissionist self-reported pedagogic practice. Whilst
Pampaka et al’s data showed an acceptable fit to the assumption of uni-dimensionality
implemented in Rasch analysis, they interpret some of their results as potential evidence
of a second dimension of connectionist practice that might be orthogonal to student-
centrism, concluding that the multidimensionality of the scale is worthy of further
study. Pampaka et al (2012, p. 484) state they “therefore proceed with caution,
bracketing for the moment whether the opposite end of the spectrum from
‘transmissionism’ [in their study] is ‘connectionism’ or ‘student-centrism’ more
generally. However, given Swan’s (2006) findings in relation to his practices scale, for
the purposes of this study, it is reasonable to assume that the opposite end of the
spectrum from a transmission-orientation is a connectionist orientation. Finally, in
Chapter 3, it was noted that Pampaka et al’s (2012) items relate to teachers’ classroom
practices rather than to the knowledge that underpins a connectionist or transmissionist
orientation. Nevertheless, the teachers’ responses to these items provide an indicator of
their espoused theories (Argyris & Schon, 1974; Pampaka et al., 2012) of teaching
practice, hence they may be taken as an indirect indication of their mathematical

knowledge for teaching.

4.2 Results of measure construction: a scale of transmissionist self-reported

pedagogic practice

This section reports the results of constructing a scale of transmissionist self-reported
pedagogic practice using Rasch analysis on data from applying Pampaka et al’s (2012)
items to secondary school mathematics teachers. In particular, through a discussion of
fit statistics and other means available through Rasch analysis (see also Chapter 3), it is
argued that Pampaka et al’s (2012) items could constitute a reasonable scale for
measuring a construct which, following their lead, is called ‘transmissionist self-

reported practice in secondary mathematics teachers’.

The Rasch analysis of Pampaka et al’s (2012) set of pedagogic practice items achieved a

person reliability score of 0.83 suggesting an acceptable overall level of consistency and
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reliability. Table 4.1 shows the item measures, fit statistics and point-measure
correlation resulting from the Rasch analysis of the data. The fit statistics for all except
six items were below the 1.3 threshold of concern. Similarly, for all except two items,
the point-measure correlation was above the 0.2 threshold. The misfitting items are
discussed in the following paragraph. Taken together, these results suggest that
Pampaka et al’s items could constitute a reasonable scale for measuring the construct of

‘transmissionist self-reported practice in secondary mathematics teachers’.

The six items identified as mis-fitting according to the 1.3 threshold are shown in bold
in Table 4.1 (C6, C10, C22, C23, C24, C26). The item stems are shown in Figure 4.1
and Appendix A. Of these items, two in particular, C6 ‘I encourage students to work
more slowly’ and C24 ‘I cover only the important ideas in a topic’, seem like possible
candidates for deletion due to their point-measure correlation being well below 0.2 and
indeed close to zero. However, deleting these two items had no practically significant
effect on the summary statistics of the Rasch analysis. Re-running the Rasch analysis
without C6 and C24 marginally improved the person reliability to 0.84; however the
item separation decreased from 7.70 to 7.55. Similarly, there were no practically

significant changes to the measures and fit of the other items.

Items C6, C22, C24 and C26 were also mis-fitting in Pampaka et al’s data. They argued
on theoretical and methodological grounds that these items should not be excluded at
this point, since they may belong to a secondary dimension of connectionist teaching,
yet may also be interpreted differently by some discovery or even transmission-oriented
teachers (Pampaka et al, 2012). For example, they suggest that C6 ‘working more
slowly’ and C24 ‘covering only the important ideas’ may be seen as part of a laissez-
faire, discovery approach rather than encouraging more thoughtful work. In addition, a
transmission-oriented secondary maths teacher preparing pupils for high-stakes
examinations at KS4 might construe C24 positively as revising ‘only the important
ideas’ for the exam. Pampaka et al argue item C22 ‘I find out which parts students
already understand and don’t teach those parts’ indicates an approach to formative
assessment as an important part of connectionist teaching, which may not be present in

all student-centred teaching since this also incorporates discovery-oriented approaches.
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Table 4.1 Item measures, fit statistics and point-measure correlation

ltem Raw Count Measure Model  Infit Outfit Pt-Meas_ure
score S.EE. MNSQ MNSQ Correlation
Cl 647 180 -43 .09 97 .98 54
C2 616 181 -.20 .08 .87 .86 41
C3 552 181 23 .08 77 17 53
C4 719 183 -.92 .09 .93 .90 40
C5 656 183 -42 .08 94 .96 .55
C6 738 183 -1.09 10 1.39 1.42 .06
C7 567 183 16 .08 .68 .70 .55
C8 401 182 1.17 .08 1.14 1.10 44
C9 720 183 -.93 .09 74 74 43
C10 624 182 -.22 .08 1.31 1.37 29
Cl1 403 181 1.13 .08 99 .96 .38
C12 621 183 -.18 .08 75 72 51
C13 627 183 -.22 .08 1.02 1.02 49
Cl4 442 183 92 .08 94 .93 67
C15 448 183 .88 .08 .70 .69 .56
C16 520 183 45 .08 73 74 .50
C17 696 182 -76 .09 .83 .82 53
C18 632 181 -31 .08 .78 81 49
C19 647 183 -.36 .08 .85 .87 .66
C20 546 183 29 .08 1.00 1.03 .30
c21 447 181 .85 .08 90 .90 50
C22 545 182 .28 .08 1.39 1.40 29
C23 560 181 16 .08 1.47 1.49 24
C24 683 180 -.72 .09 1.44 1.49 .02
C25 483 180 .62 .08 .93 .92 .56
C26 700 182 -.79 .09 1.52 1.50 .34
Cc28 526 183 41 .08 1.11 1.12 32
Mean .00 .08 1.00 1.01
S.D. .65 .01 .25 .26
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The same argument applies to item C23 ‘I teach each student differently according to
individual needs’, suggesting a tailored approach to teaching, in line with formative
assessment, not necessarily present in discovery-oriented approaches. ltem C26
(‘knowing exactly what maths the lesson will contain’) is intended as a transmissionist
item, suggesting the lesson is controlled to exclude non-standard mathematics.
However, Pampaka et al suggest some student-centred teachers may instead interpret
this item as regarding subject matter knowledge, i.e., that they should have knowledge
of all the mathematics that ‘might’ arise in the lesson. Similarly, although intended as a
transmissionist item, some student-centred teachers may also interpret C10 ‘I try to
cover everything in a topic’ as a need to provide sufficient coverage of an examination

syllabus or scheme of work.

Rasch analysis provides a means of exploring the possibility of a secondary dimension
of connectionist teaching via a principal components analysis (PCA) of the Rasch
residuals. The PCA of Rasch residuals is a means of extracting the common factor
explaining the most residual variance, under the assumption there is a meaningful
structure in the residuals that could constitute another dimension. If this factor is found
merely to ‘explain’ random noise, then there is no meaningful structure in the residuals
(Linacre, 1998). Unlike a standard PCA on raw data, the absolute size with which an
item loads on the factor is inconsequential for a PCA of Rasch residuals. Instead, it is
the patterning of the loadings that is important, in particular, contrasting positive and
negative loadings (Linacre, 2011). For the data-set in this study, the PCA of Rasch
residuals produced a factor or ‘first contrast’ with an eigenvalue of 3.4, slightly larger
than 2, the rule of thumb used as the smallest amount that could be considered to
indicate a dimension (Raiche, 2005; Linacre, 2011). Transmissionist items had mainly
positive loadings and connectionist items had mainly negative loadings, suggesting
there might be some meaningful structure indicative of a possible second dimension in
the data. However, this evidence was inconclusive on the presence of a second
dimension since, for example, it was not clear whether the patterning might simply be
an artefact of the reverse-coding of connectionist items (see Figure 4.1 for reverse coded

items).

In conclusion, a decision was made to retain the six mis-fitting items in the model at this
point. Although there is some statistical evidence to suggest their exclusion, in
agreement with Pampaka et al’s argument, this was outweighed on the grounds of

theoretical and methodological considerations. In particular, the six items may still
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contribute to aspects of a transmissionist scale of pedagogic practice, thus they are
retained for the purpose of maintaining content validity (Bohlig et al., 1998). Though a
second dimension in the data might exist, the evidence remains inconclusive and
requires further research. In addition, retaining the complete set of items is
advantageous in maintaining the possibility of comparison across data sets for the

purposes of future research.

Figure 4.1 shows the distribution of both items and secondary mathematics teachers on
the resulting measurement scale of transmissionist self-reported pedagogic practice, in a
diagram adapted from the item-person map provided by the Winsteps software. On the
right hand side, the distribution of teachers is displayed as a histogram, with higher
positioning on the scale indicating more transmissionist practice. Conversely, lower
positioning on the scale is indicative of more connectionist practice. On the left hand
side, the approximate position of items is shown, with positioning on the scale
indicating the ease of reporting frequent occurrence in practice. In other words, items
placed low on the scale were relatively easy to report as frequently occurring, whilst
those placed high on the scale were relatively difficult to report as frequently occurring.
For reverse-coded items, the opposite holds e.g. C15. Case study teachers are also
represented on the scale as red points. The positive mean person measure (0.17),
displayed on the histogram, indicates that the set of test-items was slightly too ‘easy’ for
the target sample. That is, the most transmissionist teachers have too few ‘difficult’
items to differentiate them; whilst there are too few sufficiently connectionist teachers
to provide good information about the ‘easiest’ items. Another interpretation of the
mean person measure is that the population of teachers is somewhat skewed towards
transmissionist pedagogic practices. Nevertheless, the test seems reasonably well-
targeted at the sample. Differential Test Functioning, involving the comparison of item
measures across samples, suggests that the measure of transmissionist pedagogic
practice did not vary significantly between Pampaka et al’s (2012) sample of post-
compulsory mathematics teachers and the sample of secondary mathematics teachers

used in this study (see scatter graph comparing item measures in Appendix K).
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Item distribution: ease of reporting as Teacher distribution
frequent practice 2.0

Most ‘difficult’ Most transmissionist

@@

@ L

Mean =0.17

‘Easiest’ Case study teachers

Most connectionist . Michael
. Edward
Normal-coded items I T T T T T
O 0 50 10.0 150 200 25.0 Anne
. Reverse-coded items Teachers Robert

C1 | Students work through exercises.

Students work on their own, consulting a neighbour
from time to time.

C3 | Students use only the methods | teach them.

Students start with easy items and work up to harder
questions.

€19 | Itell students which questions to tackle.

C20 | | encourage students to work more quickly.

C21 | | go through only one method for doing each question.

| teach each topic from the beginning, assuming they
know nothing.

C9 | Iteach the whole class at once.

C10 | I try to cover everything in a topic.

I teach each topic separately.

I know exactly what maths the lesson will contain.

c13 | avoid students making mistakes by explaining
things carefully first.
C14 | Itend to follow the textbook closely. Note: C27 was not included in this study

Figure 4.1 Scale of transmissionist self-reported practice for secondary maths teachers
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4.3 Results

The purpose of constructing the measure of transmissionist self-reported pedagogic
practice was to explore associations between teachers’ ICT use and their orientation
towards teaching mathematics. Before presenting the results of this, it is worth giving a
brief indication of how the transmissionist measure and ICT use are associated with
background variables such as gender, age and length of service in the teaching

profession. Further statistical information is provided in Appendix M.

Female teachers were significantly more connectionist than their male colleagues (df =
180, t = -2.87, p = .005). Significantly more female teachers reported low levels of
confidence than men in using ICT in both lessons with an IWB (n = 181, df = 3, 42 =
10.1, p = .018) and lessons in a computer suite (n = 174, df = 4, x> = 10.9, p = .028). For
lessons in a computer suite, significantly more female teachers than men agreed with the
statement that students’ lack of familiarity with software makes lessons difficult (n =
174, df = 4, x> = 13.0, p = .011). There were no clear differences between male and
female teachers in the frequency of their use of hardware and software or their reporting

of pedagogical practices involving ICT.

There was no significant association between age or length of service and the
transmissionist measure. More teachers than expected with less than six years
experience report using ICT more frequently than their colleagues, significant at the 5%
level (n = 183, df = 3, ¥* = 10.6, p = .014). This greater frequency of ICT use by less
experienced teachers appears to translate into more frequent use of IWBs (n = 187, df =
3, 2 =10.9, p = .012) and use of IWB software (n = 183, df = 4, x> = 12.3, p = .015) -
in a whole-class context with an IWB as opposed to in a computer suite. In both cases,
more teachers than expected with less than six years experience use IWBs and IWB
software in almost every lesson. In a similar vein, significantly more teachers than
expected aged less than 30 used PowerPoint frequently in a computer suite (n = 174, df
=4, x> = 11.6, p = .021) and, approaching significance at the 5% level, with an IWB (n
=182, df = 4, x> = 9.44, p = .051). There is a belief that a change in generation may be
necessary for ICT to become more fully integrated into classroom practice (e.g. Sancho,
2010). If so, these results suggest that this belief may be overly optimistic. Whilst a new

generation of secondary mathematics teachers in this survey might use ICT more
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frequently, it does not appear to be in ways that mathematics education research

suggests would be most desirable.

4.3.1 A surprising association between frequent use of teacher-centred software
and a more connectionist orientation.

A general association seems to hold across almost all types of hardware and software
that teachers who make frequent use of ICT tend to be more connectionist than
occasional users. Tables 4.2, 4.3 and 4.4 show the results of t-tests comparing the mean
transmissionist measure of frequent and occasional users of software when used in
conjunction with an IWB, of software used in a computer suite and of hardware
respectively. For hardware and software used on an IWB, frequent use corresponds to
the concatenation of categories ‘once per week’ and ‘almost every lesson’, with
occasional use corresponding to categories ‘never’, ‘annually’ and ‘once or twice per
term’. For two exceptions, graphic calculators and Logo with an IWB, due to very low
levels of use, ‘once or twice per term’ was included as indicating frequent use, so that
occasional use corresponds to categories ‘never’ and ‘annually’ only. Similarly for
software use in computer suites, due to levels of use being lower overall, frequent use

was considered to include ‘once or twice per term’.

Although the difference in mean transmissionist measure between frequent and
occasional users of ICT does not always reach statistical significance, in almost all cases
of hardware and software the difference is negative, indicating frequent users have a
lower mean measure and thus a more connectionist orientation than occasional users.
The exception to this pattern was laptops (see Table 4.4) where frequent users had a
slightly higher mean transmissionist measure than occasional users, however this result
was not statistically significant and frequent users were only 13 in number. In addition,
comparing themselves to their departmental colleagues, teachers who regarded
themselves as more frequent users of ICT (n = 61) tended to be more connectionist than
those who did not (n = 118), although this was not a significant difference at the 5%
level (df =177, t=-1.87, p = .064).
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Table 4.2 Comparing mean transmissionist measure of frequent and occasional users of
software when used in conjunction with an IWB

IWB: frequency n Mean difference

t-stat df p-value
of software use freq, occ freq - occ
CD-Roms 36; 139 -.100 -1.01 173 313
Database 23; 151 -.088 -.738 172 462
Email 53; 119 -.086 -991 170 383
Graphing software 49; 122 -.017 -185 169 .853
Dynamic geometry 30; 145 -.324 -3.13 173 .002*
IWB software 146; 33 -.285 -2.86 177 .005*
Logo 15; 151 -.196 -1.36 164 175
MyMaths 116; 64 -.284 -3.58 178 p<.001*
Other websites 112; 61 -.315 -3.92 171 p<.001*
PowerPoint 107, 72 -.251 -3.21 177 .002*
SMILE 11; 152 -.130 - 770 161 443
Spreadsheet 45; 134 -174 -1.92 177 .056
Word 74; 105 -119 -1.50 177 137

* indicates statistical significance at the 5% level. Occasional user = (never, annually,
once or twice per term); Frequent user = (once per week, almost every lesson). Except
Logo, where Occasional user = (never, annually); Frequent user = (once or twice per

term, once per week, almost every lesson)

Surprisingly, the association between frequent use of ICT and a more connectionist
orientation is statistically significant for what is generally assumed to be teacher-centred
software. Specifically, frequent use of IWB software, PowerPoint, the MyMaths website
and ‘Other websites’ in a whole-class context with an IWB showed a statistically
significant association with more connectionist self-reported pedagogic practice — see
Table 4.2. Similarly for lessons in a computer suite, teachers who reported frequent use
of the MyMaths website, Word and ‘Other websites’ were significantly more
connectionist than occasional users — see Table 4.3 — with IWB software also
approaching the 5% significance level. It is surprising that such software appears to be
associated with a more connectionist orientation since it is usually assumed to maintain

and even encourage existing transmission-oriented pedagogies.
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In terms of mathematical analysis software, frequent use of dynamic geometry software
was significantly associated with a more connectionist orientation, both in a whole class
context with an IWB and giving students direct access to software in a computer suite.
In lessons with an IWB, spreadsheets approached statistical significance at the 5% level,
with frequent use again associated with a more connectionist orientation than occasional
use, although use of graphing software was not significantly associated with the
transmissionist measure — see Table 4.2. In a computer suite, frequent use of both
spreadsheets and graphing software were significantly associated with a more
connectionist orientation. In addition, Email, SMILE and Logo also showed statistically
significant associations between frequent use and a more connectionist orientation,
however teachers making frequent use of the latter two types of software were in a very
small minority — see Table 4.3. These results are not unexpected since maths education
research suggests that such software is compatible with and may even support more
connectionist practices.

Table 4.3 Comparing mean transmissionist measure of frequent and occasional users of
software when used in a computer suite

Computer suite: n Mean difference

t-stat df p-value
frequency of software use  freq, occ freq - occ
CD-Roms 33; 136 -.129 -1.26 167 .208
Database 29; 143 -.013 -124 170 .902
Email 45; 123 =231 -2.54 166 .012*
Graphing software 88; 85 -.240 -3.02 171 .003*
Dynamic geometry 83; 90 -.323 -4.20 171 p<.001*
IWB software 69; 102 -.158 -1.94 169 .054
Logo 19; 152 -.330 -2.60 169 .010*
MyMaths 129; 44 -.233 -2.54 171 .012*
Other websites 126; 48 -.328 -3.78 172 p<.001*
PowerPoint 90; 82 -.123 -1.51  155.5 133
SMILE 15; 152 -.461 -3.24 165 .001*
Spreadsheet 103; 72 -.227 -2.83 173 .005*
Word 89; 84 -.216 -2.72 171 .007*

* indicates statistical significance at the 5% level. Occasional user = (never, annually);

Frequent user = (once or twice per term, once per week, almost every lesson)
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Interpreting these results, it is important to bear in mind the levels of usage of the
different types of software. In lessons with an IWB, for teacher-centred software such as
IWB software, the MyMaths website, PowerPoint and ‘Other websites’, the majority of
teachers were frequent users, with occasional users in the minority, and indeed these
software were the most frequently used in this context. In comparison, most teachers
were only occasional users of mathematical analysis software with an IWB, a finding in
common with other surveys reporting low integration of such software in classroom
practice (Miller & Glover, 2006). Similarly, for lessons where pupils are given direct
access to software in a computer suite, the MyMaths website and ‘Other websites” were
the most frequently used software, again with mathematical analysis software reported

as having lower levels of usage.

Table 4.4 Comparing mean transmissionist measure of frequent and occasional users of
hardware

n Mean difference
Frequency of hardware use t-stat df p-value
freq, occ freq - occ
IWB 158; 25 -.300 -2.71 181 .007*
Data projector 67; 114 -.089 -1.10 179 271
Computer suite (shared) 32; 150 -.199 -1.98 180 .050
Computer suite (maths only)  10; 170 -172 -1.02 178 311
Laptops 13; 170 .049 328 181 743
Graphic calculator 32; 149 -.267 -2.66 179 .009*

* indicates statistical significance at the 5% level. Occasional user = (never, annually,
once or twice per term); Frequent user = (once per week, almost every lesson). Except
graphic calculators, where Occasional user = (never, annually); Frequent user = (once

or twice per term, once per week, almost every lesson)

In terms of hardware, teachers who report making frequent use of IWBs were
significantly more connectionist than occasional users, see Table 4.4. Interpreting this
statistic, it should be remembered that frequent users of IWBs formed the vast majority:
158 teachers compared to 25 occasional users. Of the 25 occasional users, 15 were
clustered in two schools. The teachers in one of these schools had access to IWBs; in
the other school, they had access to data projectors but not to IWBs. The remaining 10
occasional users were among the respondents from 8 different schools. The mean
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difference in transmissionist measure between frequent and occasional users of shared
computer suites approached statistical significance at the 5% level, again with frequent
users reporting more connectionist pedagogic practices. However, the skew in usage of
shared computer suites is in the opposite direction to IWBs with occasional users
forming the vast majority. Frequent use of graphic calculators also appears to be
significantly associated with a more connectionist orientation, however again some care
Is needed in interpreting this result. Usage of graphic calculators was so low that a
‘frequent” user corresponds with anything more than annual usage. Detailed descriptive
statistics on both the frequency of hardware and software use are reported in Bretscher
(2014).

4.3.2 Associations between teachers’ orientation towards ICT and the
transmissionist measure.
A general association also appears to hold between having a positive orientation
towards ICT and having a more connectionist orientation towards teaching
mathematics. Tables 4.5 and 4.6 display the results of t-tests comparing the mean
transmissionist measure of teachers reporting a positive orientation and those reporting
a negative orientation towards ICT in the context of teaching mathematics in a whole-
class context with an IWB and in the context of giving students direct access to software
in a computer suite respectively. A positive orientation towards ICT corresponds to the
concatenation of categories ‘strongly agree’ and ‘agree’; whilst a negative orientation
corresponds to categories ‘strongly disagree’, ‘disagree’ and ‘neither agree nor
disagree’. For items worded in the negative sense, indicated in Tables 4.5 and 4.6 by
italics, a negative orientation towards ICT corresponds to the concatenation of
categories ‘strongly agree’, ‘agree’ and ‘neither agree nor disagree’; whilst a positive

orientation corresponds to categories ‘strongly disagree’ and ‘disagree’.

For almost all items regarding ICT orientation, teachers responding positively were
somewhat more connectionist-oriented than those responding negatively, although again
this general association was not always statistically significant. The negative difference
in mean measure between these two groups indicates that teachers reporting a positive
orientation towards ICT have a lower mean measure and thus a more connectionist
orientation than those reporting a negative orientation. The two exceptions to this

pattern were both negatively worded items. Firstly, teachers who showed a negative
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ICT orientation, by agreeing with the statement Students’ lack of familiarity with
software makes lessons involving ICT difficult, were slightly more connectionist than
those who disagreed with the statement, though not significantly. In the following
section, allowing students to take control over the IWB more frequently is seen to be
significantly associated with a more connectionist orientation, thus it is possible that
connectionist-oriented teachers face more difficulties in the classroom if students lack
familiarity with the software. The second exception was those who disagreed that ICT
lessons in a computer suite take more time to prepare, interpreted as a positive ICT
orientation, were slightly more transmissionist than those who expressed agreement
with the statement, although again this was not significant.

Table 4.5 Comparing mean transmissionist measure of positive and negative orientation
towards ICT when using an IWB in lessons

n Mean difference
IWB: ICT orientation t-stat df p-value
pos, neg pos - neg
confident using ICT 152; 24 -.061 -551 174 583
more time needed for preparation 52; 126 -.082 -971 176 333
ICT contributes to learning 135; 45 -.232 -2.63 178 .009*
ICT improves engagement 147; 34 -.169 -1.72 179 .087
students’ lack of familiarity with software 80; 101 .013 162 179 872
ICT helps understanding 140; 40 -.230 -251 178 .013*
classroom management more difficult 149; 31 -.278 -2.76 178 .006*
cover more ground 99; 81 -.110 -143 178 153

* indicates statistical significance at the 5% level. Negative ICT orientation = (SD, D,
N); Positive ICT orientation = (A, SA). For negatively worded items in italics Negative
ICT orientation = (SA, A, N); Positive ICT orientation = (D, SD)

Both in the context of using ICT with an IWB and in a computer suite, those who
responded positively that ICT makes an important contribution to students’ learning and
helps them understand mathematics were significantly more connectionist than those
who responded negatively. These results are not unexpected since maths education
research suggests that when ICT is used in ways that generally accord with
connectionist practices, it may support students’ understanding of mathematics. In
addition, teachers who disagreed that classroom management was more difficult in a
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whole-class context with an IWB (i.e. were positively inclined towards ICT use) were

significantly more connectionist than those who either agreed or who expressed no

preference either way.

Table 4.6 Comparing mean transmissionist measure of positive and negative orientation

towards ICT when for lessons in a computer suite

Computer suite: n Mean difference

ICT orientation pos, neg pos - neg totatdr prvalue
confident using ICT 140; 32 -.253 -2.47 170 .015*
more time needed for preparation 51; 122 079 892 171 374
ICT contributes to learning 129; 44 -.219 -238 171 .018*
ICT improves engagement 135; 38 -127 -1.31 171 192
students’ lack of familiarity with software 73; 99 -.045 -551 170 .582
ICT helps understanding 127; 45 -.196 -2.15 170 .033*
classroom management more difficult 81; 92 -.120 -1.49 171 139
cover more ground 36; 135 -.232 -2.36 169 .020*

* indicates statistical significance at the 5% level. Negative ICT orientation = (SD, D,
N); Positive ICT orientation = (A, SA). For negatively worded items in italics Negative
ICT orientation = (SA, A, N); Positive ICT orientation = (D, SD)

Bretscher (2014) found that teachers were significantly less confident, found classroom
management more difficult and felt they covered less ground (i.e. curriculum material)
when using ICT in a computer suite compared to using ICT in a whole-class context
with an IWB. The results in Table 6 show that for ICT lessons in a computer suite,
teachers who expressed confidence in using ICT and who agreed that they cover more
ground were significantly more connectionist than those who did not. However, the
perception of difficulties with classroom management in a computer suite showed no
association with the transmissionist measure. These results suggest having a more
connectionist orientation might enable teachers to overcome barriers of confidence and
perceptions of covering less ground in a computer suite compared to in a whole-class
context with an IWB. However, having a connectionist orientation may not support
teachers in overcoming perceived difficulties with classroom management when giving
students direct access to ICT in a computer suite compared with using ICT in a whole
class context with an IWB.
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4.3.3 Dominant as opposed to teacher-centred practices: associations between ICT
pedagogic practices and the transmissionist measure.

Originally the ICT pedagogic practices items were intended to be either teacher or
student-centred, in a similar manner to Swan’s (2006) items, which Pampaka et al
(2012) revised to construct their measure of transmissionist self-reported pedagogic
practice. Tables 4.7 and 4.8 display the results of t-tests comparing the mean
transmissionist measure of teachers reporting frequent occurrence of ICT pedagogic
practices with those reporting occasional occurrence in their ICT lessons with an IWB
and in a computer suite respectively. Frequent occurrence corresponds to categories
‘almost always’ and ‘most of the time’; whilst occasional occurrence corresponds to

categories ‘almost never’, ‘occasionally’ and ‘half the time’.

Of those items that showed a statistically significant association with the transmissionist
measure, all were intended as student-centred items, with frequent occurrence of these
practices associated with having a more connectionist orientation. None of the ICT
pedagogic practice items, in particular not one of the items intended to be teacher-
centred, showed a statistically significant association between frequent occurrence and
having a more transmissionist orientation. More specifically, for lessons with an IWB,
two of the items originally intended to be teacher-centred | use ICT for presentation
purposes and | control the software on the IWB were the most frequently occurring
practices across all teachers. Similarly, for lessons in a computer suite, the items
Students’ use ICT to practise skills and | provide precise instructions for software use
were the most frequently occurring and were originally intended to be ‘teacher-centred’.
None of these four items showed a statistically significant association with the
transmissionist measure. This suggests that rather than being teacher-centred per se,
these items may reflect dominant or prevalent practices involving ICT, that occur
frequently in any teachers’ classroom practice irrespective of their connectionist or

transmissionist orientation.
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Table 4.7 Comparing mean transmissionist measure of teachers reporting frequent and

occasional occurrence of pedagogic practices using ICT with an IWB

n Mean difference
IWB practices t-stat df p-value
freq, occ freq - occ
teacher presentation 138; 40 .038 406 176 .685
student discussion 78; 102 -.312 -415 178  p<.001*
teacher control 146; 33 .060 491 40.3 .626
explore students’ ideas 50; 130 -.250 -294 178 .004*
prevent discrepancies 74; 96 -.013 -.166 168 .868
students control 39; 141 -.338 -3.71 178 p<.001*
highlight discrepancies 55; 118 -.152 -1.79 171 .075
avoid mistakes 77,99 135 1.70 174 .090

occasionally, half the time); Frequent = (most of the time, almost always)

* indicates statistical significance at the 5% level. Occasional = (almost never,

Table 4.8 Comparing mean transmissionist measure of teachers reporting frequent and
occasional occurrence of pedagogic practices using ICT in a computer suite

n Mean difference
Computer suite practices t-stat df p-value
freq, occ freq - occ
practise skills 92; 75 -.028 -337 165 137
work collaboratively 90; 82 -.236 -3.04 170 .003*
‘get a feel” for the software 80; 92 -.258 -3.34 170  .001*
explore discrepancies 22; 143 -271 -231 163  .022*
individual work 70; 100 -.063 - 782 168 436
investigate problems 61; 111 -212 -2.60 170 .010*
provide precise instructions 90; 77 .093 1.15 165 252
avoid technical difficulties 51; 118 -.014 -164 167 .870

occasionally, half the time); Frequent = (most of the time, almost always)

* indicates statistical significance at the 5% level. Occasional = (almost never,

The next section uses case study data from lesson observations and post-observation

interviews to triangulate (Lincoln & Guba, 1985) the finding that the ICT pedagogic
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practices items intended to be teacher-centred actually appear to reflect dominant or
prevalent practices involving ICT, that occur frequently in any teachers’ classroom
practice irrespective of their connectionist or transmissionist orientation. The
triangulation involved categorising the case study teacher’s use of software and
hardware in each lesson observation and their rationale for doing so, as expressed in the
post-observation interview, using the ICT pedagogic practice item stems. The final
section of this chapter explores these dominant practices in relation to mathematical
knowledge for teaching using technology, finding that even these practices, whether
they employ ‘teacher-centred’ software or mathematical analysis software (Pierce &

Stacey, 2010), appear to involve significant knowledge on the part of the teacher.

The four case study teachers (Robert, Anne, Edward and Michael) were chosen along
two dimensions of variation that might be associated with mathematical knowledge for
teaching using technology. Thus the case study teachers were chosen to be two of the
most connectionist-oriented — Robert and Anne - and two of the most transmissionist-
oriented teachers — Edward and Michael - of those who volunteered (see Figure 4.1).
The level of school support provided the other dimension of variation (see Table 3.3,
Chapter 3).

4.4 Dominant practices: using ICT to enhance pedagogic aspirations

In common with Askew et al’s (1997) original study, no straightforward distinction
could be made between the pedagogic practices involving ICT of the two connectionist
case study teachers, Robert and Anne, and the two transmissionist teachers, Edward and
Michael. At times, during their IWB and computer suite lessons, each of the case study
teachers employed dominant pedagogic practices in line with the survey findings
described in the previous section. In particular, none of the teachers went beyond using
ICT to enable general pedagogic aspirations (Ruthven, 2009) towards using ICT to
transform their mathematics pedagogy, with one possible exception. Thus, in each of
the lessons, ICT was used to enhance pedagogy, making it more effective, more

efficient and more appealing, rather than to transform practice.

Robert was one of the most connectionist teachers in the survey sample (see Figure 4.1,
transmissionist measure -1.01). In his lesson with an IWB, he used a web-based pupil-

response system, which he designed with help from colleagues, to test his Year 12
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pupils’ knowledge of basic rules of differentiation. The pupil-response system collated
the students’ answers to multiple choice questions and presented an analysis of the
results, for the class as a whole or for an individual student, which Robert could display
on the IWB if he chose. He then used a PowerPoint presentation, recapping the basic
rules of differentiation and introducing the procedure for carrying out the Chain Rule

for differentiation as the main point of the lesson.

Similarly, Michael, one of the most transmissionist teachers in the sample (see Figure
4.1, transmissionist measure +1.01), used an Activinspire presentation to recap
coordinates and introduce translations as a type of geometric transformation to his Year
7 class. He also used a pupil-response system, commercially produced by Activote, to
test whether his pupils could read coordinate points from a set of axes and identify
translation vectors for various pairs of congruent triangles positioned in the first

quadrant.

In both cases, the teachers used ICT for presentation purposes and maintained overall
control of the software in accordance with the survey finding of dominant practices. The
PowerPoint and Activinspire software aided their demonstrations, making them more
effective through use of colour and accurate diagrams and more efficient since the
teacher saved time in the lesson by not having to write out or draw the procedures by
hand. For example, Robert used colour in his PowerPoint presentation to draw students’
attention to patterns in notation in the basic rules for differentiation and the Chain Rule
procedure. Michael used facilities for creating accurate diagrams and dynamic
possibilities to demonstrate triangles moving under translation to create a more effective
presentation. Although Michael asked pupils to the board to translate the triangles, he
ended up directing their movement of the shape so that in effect this was a teacher
demonstration. Both teachers used the pupil-response systems to engage pupils in
question-and-answer sessions that practised the demonstrated procedures and to assess
pupils’ progress in a manner that was more effective and efficient than was possible
using other means. In this sense, both teachers used ICT to enhance their pedagogic

practices, which were, at least superficially, very similar in these lessons.

Edward was one of the more transmission-oriented teachers in the survey sample (see
Figure 4.1, transmissionist measure 0.74). His mathematics department was not
equipped with IWBSs, having data projectors installed instead, which Edward in any case

preferred. In his lesson with a data projector, he chose to use a pre-prepared GeoGebra
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file (see Figure 4.2), downloaded from the MEI website, to convince his Year 12
students empirically that the graph of an inverse function is a reflection in the line y = x
of the original function. Here, Edward also used ICT for presentation purposes,
maintaining control of the software, in accordance with the survey finding of dominant
practices. He controlled the software, using GeoGebra to graph a function y = f(x). He
brought students to the board, intending them to sketch by hand the graph of y = f (x)
onto the axes projected on the normal whiteboard once they had found the inverse
function by algebraic means. Then using GeoGebra, Edward dragged a point on the
graph of y = f(x), causing a reflection of this point in the line y = x to trace out the
reflection of the function. He drew their attention to the fact that the reflection of the
graph y = f(x) and their sketch graph of the inverse function matched. In the lesson, this
worked as intended for Edward’s first example of a straight-line graph. In following
examples, the students instead attempted to sketch the reflection in the line y = x of
y = f(x) on the board, only subsequently finding the equation of the inverse function
algebraically. This meant that using the trace simply verified the correctness of their
sketch of the reflection rather than providing the empirical evidence Edward’s rationale
for using the GeoGebra file required. Nevertheless, his intention was to enhance his
teacher presentation of the mathematical topic, making it more effective by
accentuating features, providing vivid images and striking effects to highlight
properties and relations (Ruthven & Hennessy, 2002).
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Figure 4.2 Edward’s GeoGebra file on graphs of inverse functions

Anne, one of the more connectionist-oriented teachers in the sample (see Figure 4.1
transmissionist measure -0.50), did not do a lesson centred on using software with an
IWB in a whole-class context in the sense that the other teachers did. In her two
computer suite lessons, however, she also used PowerPoint slides and teacher
presentation on an IWB to give instructions for software use amongst other things. This
coincides with one of the dominant practices from the survey, | provide precise
instructions for software use, involving ICT use in a computer suite. Across her two
lessons in the computer suite, Anne intended her students to use Autograph as a means
of empirically establishing the rule that y = f(x) + a is a transformation of y = f(x)
through a translation of +a units vertically and O units horizontally, by experimenting
first with straight line graphs of the form y = mx + ¢ and then with quadratics of the
form y = x* + c¢. Anne aimed to use the software to enhance her general pedagogic
aspirations, by establishing the rule that y = f(x) + a is a transformation of y = f(x)
through a translation of +a units vertically more efficiently and effectively. Anne hoped
that by removing the need to graph the functions by hand, her students would spot the
rule more quickly and, similar to Edward, that using the software would accentuate the
rule, for example, by juxtaposing the visual representations of functions with their
equations, thus establishing it more effectively. During the course of the two lessons,

2

Anne had specified that pupils should input equations as ‘y =’ into Autograph. The
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worksheet she gave to pupils introduced function notation y = f(x) and y = f(x) + 2
alongside straight line equations y = x and y = x + 2 as a means of leading pupils
towards a more general definition of the translation rule. However, many of her pupils
interpreted the function notation as a cue to enter y = f(x) and y = f(x) + 2 into
Autograph, without first defining f(x). Unexpectedly, instead of rejecting the undefined
function, the Autograph software responded by plotting horizontal linesy =1 and y = 3,
apparently setting f(x) = 1 by default. This resulted in confusing and counterproductive
output on the students’ screens and their sketches on the worksheet. Seeking to avoid
further disruption to the lesson, Anne issued more precise instructions to only enter

equations as ‘y =’ and not to enter function notation into Autograph.

In their computer suite lessons Robert, Michael and Edward all used software for the
purpose of students using ICT to practise skills in accordance with the survey finding of
dominant practices. The planned activities were similar in that the teachers hoped that
use of the software would enhance general pedagogic aspirations in terms of

intensifying engagement, effecting activity and establishing ideas (Ruthven, 2009).

Michael took his Year 8 students into the computer room so that they could interact
with an online lesson on volume of cuboids provided by the MyMaths website. His
pupils were to work through the explanatory slides included as part of the lesson, before
practising calculating the volumes of cuboids on subsequent worksheet-style slides and
other skill-practice games. Michael adopted an almost discovery-oriented approach to
the MyMaths lesson, hoping that interacting with the software would help the students
be more autonomous in their learning. In particular, he liked a dynamic diagram
embedded in one of the slides, which led towards developing the formula for the

volume of a cuboid by demonstrating volume as building up layers of unit height.

Edward took his Year 9 students to revise straight-line graphs using a game named Save
our Dumb Planet provided by the MangaHigh website, fronted by a team including
Marcus du Sautoy (see Figure 4.3). In the early stages, the game provided an impetus
for pupils to practise substituting co-ordinates into equations of the form y = mx + c,
verifying the correct equation passing through two points to determine the path of a
meteor destined to collide with Earth. In addition to practising problems of this type,
Edward hoped his pupils might indirectly gain experience of how the coefficients m and

c effect the graph of the equation y = mx + c.
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Save Our Dumb Planet, an algebra and graphing math game from Mangahigh.com

<| & |+ T htps:/ jwww. com/en-us/games/saveour & | Qr save our dumb planet
[0 ## I0E Moodle IoE Portal IoE mail KCLMail FHSoc BSRLM DEPS KCL Ejournals - KCL Newsv Ned email Popularv Skills Forge LMT Families SKA

Click FIRE to launch the missile!

Figure 4.3 Save our Dumb Planet from Edward's computer suite lesson

Robert’s computer suite lesson was with a Year 8 group learning about reflection. For
the second part of his lesson, Robert intended his pupils to practise constructing the
reflections of various shapes (e.g. triangles) using GeoGebra files that he had prepared
in advance. He described these files as being similar to a paper-and-pencil exercise but
with the advantage that pupils were able to use the software to check and correct their
work. With more difficult tasks where the line of reflection was diagonal, he had added
line segments connecting corresponding points on the object and image of reflection.
Robert’s aim was that these line segments would help pupils to construct the reflections
correctly and in addition reinforce an understanding the line of reflection as the
perpendicular bisector of the line segments. During the lesson, technical difficulties
resulted in the pupils’ computer screens freezing so that they were unable to engage

with this task.

4.4.1 An exception to dominant practice: Robert’s use of GeoGebra

For the first part of his computer suite lesson, Robert had created a series of maze
activities, embedded in GeoGebra files, designed to take advantage of students’
intuitive, tacit understandings of reflection as a means of making these understandings
explicit and thus leading towards a more formal understanding of reflection. Using the
mouse to direct the movement of a point, coloured in blue, the pupils had to guide the
blue point’s reflection, shown in red, successfully through a maze (See Figure 4.4.). The
reflection line was super-imposed on the maze diagram and the path of the red point
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was traced. Robert hoped that the activity would encourage pupils to predict how the
reflected red point would move in relation to movement of the blue point as a means of
increasing their chances of completing the maze successfully. By predicting the
movement of the red and blue points, he hoped his pupils intuitive understandings of

reflection would be made more explicit.
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Figure 4.4 One of Robert's GeoGebra maze activities - by dragging the blue dot, guide the
reflected red dot through the maze

The mazes were intended to progress in difficulty, with later files incorporating a
diagonal line of reflection and a line segment joining the pair of reflected points. Robert
hoped that using the line segment would aid students in their negotiation of the maze
and so prompt their recognition of the line of reflection as the perpendicular bisector of
the red and blue points. Robert’s use of GeoGebra appears to be an exception because
he uses the mathematical affordances of the software to affect his pupils’ learning in a
way that would not be easy to achieve without digital technology, in comparison to the
lessons described above where software is used to replicate and enhance paper-and-

pencil activities.
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4.5 Indications of mathematical knowledge for teaching using technology

The case study lessons described in the previous section provide indications that even
the dominant pedagogic practices involving ICT reported in the survey, that do not go
beyond using ICT to enhance general pedagogic aspirations, require significant
knowledge on the part of the teacher. This assertion is illustrated below using the case
study lessons as telling cases. The nature and content of this knowledge is explored in
more detail in the next chapter using data from the semi-structured interviews on using

GeoGebra files to teach circle theorems.

On the surface, Robert and Michael’s pedagogic practices involving ICT appeared very
similar in their IWB lessons. Looking in more detail, however, they are quite different
in terms of the mathematical knowledge for teaching using technology in evidence
during the lesson. Robert decided that purchasing a pupil-response system of the kind
Michael had access to would be too costly and not of sufficient benefit for his school.
Instead, he thought smart phones would be a cheaper and more mathematically versatile
alternative to the voting handsets Michael handed out to his pupils, in particular since
Robert observed that most of his pupils already owned such devices. Along with a
colleague, Robert designed and programmed a web-based interface where he could set
questions to which his pupils could respond via their smart phones and which collated
their responses, presenting the data in ways that could be accessed and interpreted
during a lesson. Robert thought that requiring his students to enter mathematical
notation using a smart phone would result in errors that would detract from his
pedagogic purpose of enhancing learning through formative assessment. For this reason,
he opted for multiple-choice questions, avoiding this difficulty whilst still allowing him
to pose complex questions by carefully choosing common errors as “distractors” (Rob-
IWB-int, 13.6.2012) to inform him of where his students might be going wrong. During
his IWB lesson, Robert displayed a bar chart of the results for at least one question,
noting the modal answer was correct and going through the distractors in turn. Thus as a
designer, Robert had given careful consideration to how the mathematical format of the
questions, given the technology available, could best meet his pedagogical purposes.

For Michael, the lesson observation provided an impetus to use the Activote pupil-
response system available at his school. He thought using the system would engage his
pupils and provide some useful assessment data. Although coordinates and translation

vectors seemed like a good topic to assess using multiple-choice questions, Michael had
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found it difficult to create standard notation column vectors when devising a quiz within
the restrictions of the Activote software. In the end, he resorted to coordinate-style
notation both for coordinates and translation vectors, introducing a potential confusion.
Creating the quiz, entering pupil data for identifying their answers and setting up the
handsets for the lesson took substantially more effort and time than a typical lesson.
Michael had not given much consideration to the design of the multiple-choice
questions, generating distractors almost at random by swapping coordinates and the
positive/negative sign. Thus he was unable to use the assessment information in the

lesson beyond noting what percentage of the class had chosen the correct answer.

As described in the previous section, in the second of Anne’s two computer suite
lessons, she encountered some difficulties with Autograph when pupils entered y = f(x)
and y = f(x) + 2 without defining f(x) and unexpectedly the software responded by
plotting horizontal lines y = 1 and y = 3, apparently setting f(x) = 1 by default instead of
rejecting the undefined function. In this contingency, Anne’s reaction was to cut off any
further confusion by simply telling her pupils it was wrong to enter y = f(x). This
seemed a reasonable reaction at the time, but in the post-observation interview Anne
was dissatisfied with her response. Anticipating and preparing for this complexity,
would have required some knowledge of the rules governing the software’s
interpretation of mathematical notation and its relevance to the teaching of the lesson,
for example, in terms of providing more precise instructions for software use or perhaps
delaying the introduction of function notation or indeed using the software’s recognition

of function notation as a means to explore transformations of functions.

Another instance of mathematical knowledge for teaching using technology arose in
Anne’s first lesson in the computer suite. Using software to graph functions tends to
focus attention on the global shape of the graph, possibly obscuring a local
understanding of the graph as a set of coordinate points. This has particular relevance to
the topic of transformations of graphs, since a connection is being made between
applying a transformation locally to a set of graphical coordinates and the function in
terms of its equation. Anne wanted her pupils to investigate transformations of graphs
by experimenting first with straight-line graphs of the form y = mx + ¢, so that she
could make a connection with their previous work on the effect of the coefficients m
and c. At the end of the lesson, she asked her pupils what transformation would bring y
=X to y = x+ 2 (see Figure 4.5). Encouraged by using the software, her pupils

attended to the global shape of the graph, suggesting various possibilities for the
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transformation including a vertical translation of +2 units, a horizontal translation of -2
units or a reflection in the line y = x + 1. Whilst each of these transformations does map
the graph y = x onto y = x + 2, considered locally as a transformation of coordinates,
only a vertical translation of +2 units can be connected easily to the equation y = x + 2

in a manner that extends to other, non-linear functions.
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Figure 4.5 Autograph output in Anne's CS lesson

For example, writing y = f(x) where f(x) = x, it is possible to consider y = x + 2 as
y = f(x + 2) + 0, i.e. a horizontal translation of y = x by -2 units, however this is
relatively unhelpful in linking the transformation to its equation in the formy = mx + ¢
and does not extend to other functions such as y = x> + c. Similarly, in terms of the
global shape of the graph, reflecting y = x in the line y = x + 1 appears to be a
reasonable answer, resulting in the line y = x + 2. However, considered locally as a
transformation of coordinates, it is difficult to use function notation to write down a
reflection in the line y = x + 1 in a way that can be meaningfully connected to the

equation y = x + 2 and certainly not in a way that extends to other functions.

Anne acknowledged these options by recording them on the IWB, however she
appeared to steer her students towards a vertical translation of +2 units, sidelining the
other responses without explanation. From her lesson plan, Anne did not appear to have
anticipated these responses. In the post-observation interview, Anne appeared to be

planning to resolve the question in the next lesson by extending the investigation to
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quadratics of the form y = x? + ¢, thereby justifying the choice of a vertical translation
in the case of straight-line graphs as the only option capable of generalising and hence
the most useful option mathematically. In the second lesson, whilst some of the pupils
did go on to investigate quadratics of the form y = x> + ¢, Anne again steered her
students towards the vertical translation through whole-class discussion and the
structuring of her worksheets, thus a principled argument for choosing the vertical
translation remained elusive. Anticipating the pupils’ responses and having a pedagogic
strategy for countering their conjectures in a principled way in these lessons, would
seem to require some knowledge of how pupils’ attention is drawn to the local and

global features of functions when presented graphically using the Autograph software.

Similarly, in Edward’s IWB lesson with GeoGebra on inverse functions, attending to
the global shape of the graph, pupils quickly spotted from the first example that the
graph of y = f “}(x) was likely to be the reflection of y = f(x) in the line y = x. Justifying
this conjecture requires attending to the graph locally as a set of coordinate points, an

argument that was not made explicit during the lesson.

Finally, in his computer suite lesson, Edward hoped his pupils might be reminded
indirectly of how the coefficients m and c effect the graph of the equation y = mx + ¢ by
repetitively substituting coordinates into straight-line equations and watching the graphs
being plotted as they played the skill-practice game Save our Dumb Planet. In the post-
observation interview, he thought that whilst they would be unlikely to gain experience
of gradient as “rise over run” or “l unit along and m units up” (Ed-CS-int, 27.6.2012),
they might be reminded of the difference between positive and negative gradients at
least. Although axes were provided for the graphical representation of the meteor’s path,
they did not make it easy to read off coordinates and on closer inspection the axes were
not square, making it difficult to interpret both local and global features of the straight-
line graph. Knowledge of how the software generated examples of coordinates and
straight-line graphs, e.g. randomly or by design, at least to the extent that there were
questions including straight-line graphs with both positive and negative gradients;
regarding the quality of the graphical representation in the game; and of how this related
to his pedagogic purposes might reasonably be assumed to have informed Edward’s

post-lesson judgement.
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4.6 Summary

The survey findings suggest that frequent use of hardware and software has a general
association with a more connectionist orientation. Surprisingly, frequent use of software
commonly assumed to maintain and even encourage existing transmission-oriented
pedagogies is also associated with a more connectionist orientation. Whilst there are
pedagogic practices involving ICT associated with a connectionist orientation, items on
pedagogic practices involving ICT that were designed to be ‘teacher-centred’ appear to
have no association either way. These ‘teacher-centred’ practices involving ICT may
instead be construed as ‘dominant’ practices, in that they are also the most frequently

occurring across all teachers.

Case study data supports the survey finding of dominant practices, suggesting that,
superficially at least, there is little difference between connectionist and transmission
teachers use of ICT. Both connectionist and transmission-oriented teachers used
software in IWB and computer suite lessons to enhance general pedagogic aspirations
rather than to transform mathematics pedagogy, with one possible exception. The case
study lessons also provide indications that even these dominant practices, whether they
involve ‘teacher-centred’ software or mathematical analysis software (Pierce & Stacey,

2010) place significant demands on teacher knowledge.
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Chapter 5 - The nature and content of mathematical knowledge for
teaching using technology

This chapter begins to address Research Question 2 by investigating the nature and
content of individual teachers’ own knowledge in relation to using technology to teach

mathematics.

RQ2 What is the nature and content of teachers’ mathematical knowledge for
teaching using technology, as represented by the central TPACK construct?

In Chapter 1, borrowing from Shulman (1986, p.13), mathematical knowledge for
teaching using technology was assumed not only to be a matter of knowing how — being
competent in teaching mathematics using technology - but also of knowing what and
why. In other words, mathematical knowledge for teaching using technology, as defined
in this study, is when know-how or knowledge-in-action is underpinned by and
coincides with the teacher’s articulated knowledge. The TPACK framework was
identified as a suitable means for analysing and comparing teachers’ espoused theories
(articulated knowledge) and their theories-in-action (knowledge-in-action), in order to
make inferences about individual’s mathematical knowledge for teaching using
technology (see Chapter 1). Finally, contrasting the two transmissionist with the two
connectionist case study teachers’ use of technology should make visible individual
teachers’ mathematical knowledge for teaching using technology, as argued in Chapter
1, allowing RQ?2 to be addressed.

The first section of this chapter analyses case study teacher Robert’s computer suite
lesson to suggest that a positive stance towards technology, in terms of global aspects of
teacher knowledge (e.g. Bowers & Stephens, 2011; Zbiek & Hollebrands, 2008), may
not be sufficient to ensure a teacher’s use of technology enhances mathematical
instruction. In addition, the first section of this chapter suggests that using technology
places significant demands on individual teachers” own knowledge for teaching

mathematics.

The second section of this chapter goes on to explore the nature and content of
mathematical knowledge for teaching using technology, by analysing data from the four
case study teachers’ semi-structured GeoGebra interviews using the TPACK

framework. The analysis focuses on exemplifying the dyadic construct TCK as a means
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of exploring the nature of the central TPACK construct. This section argues that what
distinguishes TPACK from the dyadic construct TCK appears to be mathematical
knowledge, abstract in the sense that it generalises across particular technological
contexts and mathematical topics. In addition, it serves to highlight the situated nature
of TPACK, as a transformation (Rowland et al., 2005; Shulman, 1987) of mathematical
knowledge for the purposes of teaching using technology. Similar arguments can be
made in relation to the other two dyadic constructs PCK and TPK, however they have

not been included in this chapter for the sake of brevity.

In the final section of this chapter, the apparent duality in seeing TPACK
simultaneously as abstract, mathematical knowledge and yet as situated in the context
of teaching using technology is addressed using Noss and Hoyles’ (1996; & Kent, 2004;
& Pozzi, 2002) notion of situated abstraction and Adler’s (1999; 2001) concepts of the
dilemma of transparency and visibility/invisibility. The criticisms of the weak
theorisation of the TPACK framework (Graham, 2011; Ruthven, 2014; Voogt et al.,
2012) are acknowledged, however it is argued that this represented a key affordance by
allowing the user to move between an integrative and transformative perspective

(Graham, 2011) in particular in relation to the central TPACK construct.

5.1 The significance of mathematical knowledge for teaching using

technology as represented by the central TPACK construct

The case study lessons, described at the end of Chapter 4, suggest that even carrying
out dominant practices, that do not go beyond enhancing general pedagogic aspirations,
place significant demands on individual teachers’ own knowledge in relation to teaching
mathematics using technology. In Chapter 2, the review of research literature identified
a group of studies with a common focus on teachers’ global conceptions of mathematics
as a discipline and on teachers’ beliefs about the nature of teaching and learning
mathematics with technology (Zbiek & Hollebrands, 2008). In terms of the present
study, beliefs and conceptions are considered as part of teacher knowledge. This group
of studies (Zbiek & Hollebrands, 2008) serves to highlight the important role teachers’
conceptions play in determining the extent and nature of technology integration in
classroom practice. However, these studies do not tend to focus on teachers’ knowledge

of specific mathematical concepts in relation to technology, either in relation to their
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espoused theories or theories-in-action. Thus, research on technology in mathematics
education, whilst exploring the relationship between global aspects of teachers’
espoused theories and theories-in-action and their technology use in some depth, has
paid relatively little attention to teachers’ knowledge of specific mathematical concepts
in relation to technology. This is an important omission since the documented shifts in
teachers’ views suggest a move towards models of teaching aimed at developing
conceptual understanding. Such models may require a great deal of knowledge for
successful implementation (Thompson & Thompson, 1996) and as noted earlier,
inconsistencies between teachers’ professed beliefs and practices may be the result of
lacking sufficient knowledge necessary to implement them (Thompson, 1992). Whilst
highlighting the role of teachers’ conceptions in technology integration is important,
this section argues that the significance of mathematical knowledge for teaching using

technology should not be overlooked nor underestimated.

For example, Bowers and Stephens (2011, p. 290) assert that the central TPACK
construct is an empty set with regard to (teachable) knowledge and skills, emphasising
instead that teacher educators should seek to nurture a favourable conception of
“technology as a critical tool for identifying mathematical relationships”. Whilst it may
be that teacher educators should seek to nurture favourable conceptions towards using
ICT in their trainees, the knowledge required to put such conceptions into practice
should not be neglected. Robert’s creation and use of the GeoGebra maze activities in
his computer suite lesson on reflections demonstrates the kind of favourable conception
of technology that Bowers and Stephens (2011) advocate. However, using the maze
activities in practice was not trivial and Robert did not entirely succeed in making
explicit the mathematical relationships the pupils were exploring using the GeoGebra
software. The difficulties Robert experienced provide evidence suggesting mathematical
knowledge for teaching using technology plays a significant role in technology
integration, perhaps alongside the kind of favourable orientation that Bowers and
Stephens (2011) describe.

Robert’s series of maze activities, created using GeoGebra, appear as an exception
amongst the case study teachers’ lessons because he used the mathematical affordances
of the software to affect his pupils’ learning in a way that would not be easy to achieve
without digital technology. In particular, he took advantage of the affordance of the
software to preserve geometric relationships under drag to build upon his pupils’

intuitive, tacit understandings of reflection as a means of making these understandings
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explicit and thus leading them towards a more formal understanding of reflection. The
aim of his lesson was for pupils to be able to construct the image of a simple shape
given the object and reflection line and to recognise the reflection line as the
perpendicular bisector of line segments connecting corresponding points on the object
and image. A second GeoGebra activity was intended as skill-practice for constructing
the image under reflection and to reinforce understanding of the reflection line as a
perpendicular bisector. Due to the disruption caused by technical difficulties there was
no time for the second activity. This skill-practice activity and the maze activities are

described in more detail in Chapter 4.

In the post observation interview, Robert explained what inspired him to create the
maze activities. He provided a critique of similar GeoGebra activities lacking an
impetus to focus attention on and articulate tacit understandings:

I had a look on the GeoGebra wiki and most things tended to be ‘Here’s a mirror line,

here’s a shape, if you drag this, what’s happening?’ just kind of ... and say what you

see. And | could imagine them sitting there with that and basically just dragging the

mouse a bit and seeing it happen and ... and then where does it go from there? [Rob-
CS-int, 13.6.2012]

He also described a pedagogic strategy of predict-then-test that he aimed to use in the
lesson to make pupils’ understandings of mathematical relationships explicit

just you know introduce that pause of what do we think is going to happen and then
let’s test that it’s going to happen [Rob-CS-int, 13.6.2012]

and how he intended to formalise these understandings during the lesson by introducing
mathematical vocabulary
So one of the things I wanted to talk about was that if you’re moving that point
parallel to the mirror line, the point moves in the same direction, whereas as soon as

you’re moving it in a direction that’s not parallel, the point doesn’t move in the same
way. [Rob-CS-int, 13.6.2012]

Summarising at the end of the lesson, he did introduce mathematical vocabulary during
class discussion, in a similar way to the intention described above, describing the
movement of the red and blue points. In later more challenging mazes, Robert had
included a line segment joining the blue and red points as a potential aid to maze
completion (see Figure 5.1). Further, he juxtaposed two identical mazes, one with and
one without the line segment, in an attempt to prompt the students to notice the value of
the line segment in solving mazes and to question what was special about the line

segment that made it helpful. He had hoped to use whole class discussion to lead them
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towards recognising the line of reflection as the perpendicular bisector of the line

segment but ran out of time in part due to the technical difficulties he experienced.
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Figure 5.1 Robert's GeoGebra maze with additional line joining red and blue points

During the lesson, Robert did intervene on an individual basis to prompt this realisation:

R: | tried it with one pupil and it was quite interesting, before | explained
what that line was or before we’d had a talk through about what that line was, I don’t
think he found it helpful at all, but I think, in particular, it was useful, when you were
trying to go diagonally through a ... so you had to move the point diagonally kind of
down through a passageway in the maze, if you just kept ... but if you moved the
point along that support line, it made it incredibly easy.

I: Right.

R: And so | think once I’d explained what was going on to him, he actually
did ... and the quality of his path was much better in the second attempt. But I think
it’s ... I don’t think any of those pupils made that connection themselves, what that
line was, or how it might be helpful. [Rob-CS-int, 13.6.2012]

Thus Robert’s design of the maze activities, his use of them in the lesson and his
comments about the lesson in the post-observation interview demonstrate the strong
emphasis he placed on the use of technology to explore the mathematical relations
behind the mathematical phenomenon of reflection, consistent with Bowers and
Stephen’s (2011) description of a favourable conception of technology. During the post-
observation interview, Robert described another GeoGebra activity on the topic of

reflection that he uses with higher attaining pupils, designed to provide an impetus for
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realising the line of reflection as the perpendicular bisector of the line segments
connecting corresponding points on the object and image:
for example, possibly turn it the other way around, right, this is the object, this is the

image, where is the mirror line? How can we use the computer to determine where it

is? What are the kind of construction methods that you’d use to work out where that
mirror line might be? [Rob-CS-int, 13.6.2012]

This suggests that the observation lesson was not an anomaly in Robert’s practice but
indicative of a coherent conception of “technology as a critical tool for identifying

mathematical relationships” (Bowers & Stephens, 2011, p. 290).

Using the series of maze activities successfully to meet the aims of the lesson depended
on transforming students’ strategies for completing the mazes into more formal
understandings of reflection that could be used as strategies for constructing the image
given an object and line of reflection. As indicated above in excerpts from the post-
observation interview, Robert recognised his interventions with individual pupils and

directing whole class discussion as being critical to effecting this transformation.

The maze activities potentially addressed two complementary strategies for using
geometric properties to construct the image given the object and line of reflection:

1) using the local geometry of the object together with the properties of reflection,
namely, preservation of length and of direction parallel to the line of reflection and
reversal of direction in the axis perpendicular to the line of reflection, to construct the

image; and

2) using the geometric property that the line of reflection is the perpendicular bisector of

line segments connecting corresponding points on the object and image.

The first strategy was addressed through the maze activities by the necessity of
considering how to drag the blue point, i.e. in what direction and how far, to guide the
reflected red point through the maze. In particular, the main challenge in completing the
maze is derived from the reversal of direction caused by the reflection. Less obvious
perhaps is that length is preserved: dragging the blue point causes the red point to move
the same distance. The second strategy was addressed in later maze activities by the
addition of the line segment connecting the blue and red points as a possible aid to maze

completion.
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Robert was not satisfied with his interventions during the lesson. In the post-observation
interview, he pointed to the technical difficulties, his desire to let the students enjoy the
maze activities and his rush to move onto the second activity as contributing to the
result that he did not spend as much time as intended on discussing the geometric
implications of the pupils’ maze-solving strategies. Timing was certainly a factor and
the technical difficulties meant that he was unable to direct a whole class discussion
juxtaposing the identical mazes with and without the line segment joining the red and
blue points. As a result, Robert was unable to address the second strategy outlined
above involving recognition of the line of reflection as the perpendicular bisector of the
line segment joining the red and blue points. However, he did have two opportunities
during the lesson to elicit the geometric properties of reflection that underpin the first

strategy through whole class discussion.

The first opportunity came when Robert brought the class back together after some time
engaging with the maze activities. He displayed one of the early maze activities with a
vertical line of reflection and asked pupils to give instructions to a pupil-volunteer to
direct their movement of the blue point (see Figure 5.2). Robert summarised their
responses, drawing their attention to the relative direction of movement of the red and
blue points i.e. that when the blue point was dragged up or down the red point moved in
the same way but that dragging the blue point left or right caused the red point to move
in the opposite direction. Whilst drawing their attention to the direction of movement,
Robert did not mention that dragging the blue point causes the red point to move the
same distance, thus he did not draw his pupils attention to the geometric property that

length is preserved under reflection.
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Figure 5.2 Robert's first GeoGebra maze with vertical line of reflection

Robert then displayed a maze with a horizontal line of reflection and, employing his
predict-then-test strategy, asked the pupils to predict whether the relative direction of
movement would be the same or different. The pupils correctly predicted it would
change: now, dragging the blue point left or right would result in the red point moving
in the same way but dragging the blue point up or down would cause the red point to
move in the opposite direction. Contrasting these diagrams made the point that the
relative direction of movement of the red and blue points was connected to the
orientation of the line of reflection. At this juncture, Robert could have introduced the
mathematical terms parallel and perpendicular to specify the nature of the connection
between the relative direction of movement and the orientation of the line of reflection,
thus generalising to state the effect of reflection on direction. He could also have noted
that in both maze diagrams, independent of the orientation of the line of reflection,
dragging the blue point causes the red point to move the same distance, hence length is

preserved under reflection.

Robert did not introduce the mathematical terms parallel and perpendicular at this point
nor did he note the geometric property that length is preserved under reflection. Instead,
apparently on impulse, he offered his pupils a new challenge: to find out whether
turning the mouse back to front would help them to complete the mazes, presumably by
double-reversing the direction of movement. This challenge risked distracting from the
aims of the lesson, since turning the mouse back to front involves a rotation of 180
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degrees and not a reflection — it is an unhelpful deviation from the lesson agenda
(Rowland et al., 2005). Later in the post-observation interview, Robert explained that it
was “just something he was thinking about on the way in”, dismissing it as “just a silly
question to get a few of them thinking” [Rob-CS-int, 13.6.2012]. However, in asking
this question, he missed an opportunity to capitalise on his pupils’ correct predictions to
generalise their maze-solving strategies towards a shared, formal understanding of the
geometric properties of reflection.

The second opportunity occurred at the end of the lesson. Due to the shutdown of the
computer system, the students were unable to begin the second GeoGebra activity
Robert had prepared. After spending some time wrestling with the technology, Robert
gave up and gathered the pupils to summarise the lesson. In this moment of
contingency, Robert was inspired to ask his pupils to imagine the join between two
rectangular tables, where they met along their longest edge, was a mirror. One of the
pupils sitting at the table was holding a ball: this became the de facto ‘blue point’.
Robert discussed moving the ‘blue point’ close to the mirror, through the mirror (which
he noted you can’t do in reality), and finally parallel to the mirror. He did not have
another chance to discuss what happens when the ‘blue point’ moves perpendicular to
the mirror nor to discuss the preservation of length under reflection because, at that

point, the bell rang for the next lesson.

Although his second opportunity to elicit the geometric properties of reflection was cut
short, in the post-observation interview, when asked what he wished to do had there
been more time, Robert did not articulate that he meant to discuss what happened when
the blue point moved perpendicular to the line of reflection and to note that distances
remained the same under reflection. These missed opportunities, together with the post-
observation interview, suggest that Robert had not planned precisely what and how he
would use mathematical terminology in his interventions to transform his pupils’ maze-
solving strategies into more formal understandings of reflection to connect with the
aims of the lesson. In addition, when asked what he would have done differently in
preparing the lesson, he focused solely on planning to prevent the technical difficulties
arising rather than suggesting he could have been more precise in his use of
mathematical terminology. Although Robert did not have much time to deliberate over
the lesson (as the author has) and it is understandable that the technical difficulties that
were so disruptive were uppermost in his mind, this suggests his experience during the

lesson did not prompt Robert to recognise the need to plan his interventions more
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precisely to connect his series of maze activities with the mathematical aims of the
lesson. In particular, Robert appeared to lack a frame of reference to help him identify
what his mathematical difficulties were in using technology to make his pupils’ tacit
understandings explicit and, as a result, why his interventions appeared unsatisfactory.
As noted in Chapter 1 and the introduction to this chapter, this is part of mathematical
knowledge for teaching using technology, since in this study such knowledge is
assumed not only to be a matter of knowing how — being competent in teaching
mathematics using technology - but also of knowing what and why (Shulman, 1986,
p.13).

Despite his favourable conception of technology, using the maze activities in practice
was not trivial and Robert did not entirely succeed in making explicit the mathematical
relationships the pupils were exploring using the GeoGebra software. This suggests that
a positive stance towards technology, in terms of global aspects of teacher knowledge
(e.g. Bowers & Stephens, 2011; Zbiek & Hollebrands, 2008), may not be sufficient to
ensure a teacher’s use of technology enhances mathematical instruction. The missed
opportunities to transform pupils’ maze-solving strategies into more formal statements
of the geometric properties of reflection, using precise mathematical terminology to
make connections between the maze activities and the aims of the lesson, suggest that
mathematical knowledge for teaching using technology has a significant role to play in
successful technology integration. Thus, whilst highlighting the role of teachers’
conceptions in technology integration is important, this section has argued that the
significance of mathematical knowledge for teaching using technology should not be

overlooked nor underestimated.

5.2 The nature and content of the central TPACK construct

The analysis presented in this section focuses on exemplifying the dyadic construct
TCK, using data from the four case study teachers’ GeoGebra interviews, as a means of
exploring the nature of the central TPACK construct. This section presents four
examples of TCK arising from the GeoGebra interview data. These are listed below as

follows, thus TCK is knowing about:
- rounding errors in measuring angles in GeoGebra;

- how angles are defined and measured in GeoGebra;
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- issues of dependency; and
- dynamic imagery or preservation of geometric relationships under drag.

These examples are intended as being indicative rather than an attempt to provide an
exhaustive list of the types of TCK that arose during the case study teachers’ interaction
with the GeoGebra file in interview. Using the examples presented below, this section
argues that the central TPACK construct does not represent the integration of TCK with
pedagogic knowledge. Instead, what distinguishes TPACK from the dyadic construct
TCK appears to be mathematical knowledge, abstract in the sense that it generalises
across particular technological contexts and mathematical topics. Nevertheless, it is
argued that each example of TCK is itself an indicator of an example of TPACK. In
particular, identifying knowledge as an example of TCK indicates the case study
teachers’ emphasis on technology and mathematical content in their articulated
knowledge-in-action when addressing a situation involving a synthesis of mathematical,
pedagogical and technology knowledge. This approach acknowledges the criticisms of
the weak theorisation of the TPACK framework (Graham, 2011; Ruthven, 2014; Voogt
et al., 2012) that draw attention to its ambiguities and lack of clarity in defining the
framework’s constructs and the inter-relations between them. In addition, it serves to
highlight the situated nature of TPACK, as a transformation (Shulman, 1987; Rowland
et al., 2005) of mathematical knowledge for the purposes of teaching using technology.
Similar arguments can be made in relation to the other two dyadic constructs PCK and
TPK, however they have not been included here for the sake of brevity. Finally, the
apparent duality in seeing TPACK simultaneously as abstract, mathematical knowledge
and yet as situated in the context of teaching using technology is addressed in the last
section of this chapter, using Noss and Hoyles’ (1996; & Kent, 2004; & Pozzi, 2002)
notion of situated abstraction and Adler’s (1999; 2001) concepts of the dilemma of
transparency and visibility/invisibility.

Rounding errors in GeoGebra

At some point during the discussion of the three diagrams, each of the teachers
appreciated that the software displayed rounding errors in measuring the angles at the
centre and circumference of the circle (see Figure 5.3). The teachers noted the apparent

breakdown in the doubling relationship between the angle at the circumference and the

147



angle at the centre, but appreciated this was a result of rounding errors in the software’s
measurement rather than a counter-example that might lead them to reject the theorem.
The appreciation of rounding errors indicates an understanding that the GeoGebra
software does not conform to a mathematical ideal but merely models Euclidean
geometry, subject to the limitations of computer hardware and programming. This is an
example of TCK because it shows an understanding of how the GeoGebra software
models geometric concepts and relations, in particular, how it affects the apparent

relationship between the angles at the centre and circumference of the circle.

B

Diagram 1

Figure 5.3 Rounding errors in angle measurement

In his initial dragging of the first diagram D1, Robert deliberately demonstrated the
existence of rounding errors, thus exemplifying TCK. Later on, when prompted to
discuss how he would address the issue of rounding errors with his pupils, Robert stated
that trying to avoid this issue “I think you’ll always be disappointed, so I think I would
embrace it as quickly as you possibly can” (Rob-GGb-int, 13.6.2012). Robert explained
that by ‘embracing’ this issue he meant he would deliberately introduce rounding errors
as a possible instance of the conjectured relationship breaking down. As he explained,
Robert illustrated how he embraces the rounding issue by setting GeoGebra to round
numbers to O decimal places and then positioning D so that the angle at the
circumference appears to be 58 degrees and the angle at the centre appears to be 117
degrees. As he did so, he stated, in this instance, it appears the conjectured circle
theorem is “not true [...] but it really is true” (Rob-GGb-int, 13.6.2012). Thus
recognising the rounding errors, he immediately dismissed them as irrelevant in the
context of Euclidean geometry by rejecting the supposed counter-example. Robert went
on to note that he uses the issue of rounding errors as a means of indicating the
limitations of the computer hardware and software and that, although not a “great

motivator”, the issue of rounding errors provides a useful justification for the necessity
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of proof. This demonstration was very similar to his initial dragging of D1, yet here it
appeared as TPACK: part of an articulated strategy for dealing with the issue of
rounding errors in GeoGebra for the purposes of mathematics pedagogy.

Edward was deeply frustrated by the presence of rounding errors, as the quotes from his
GeoGebra interview below indicate:

Cos it’s built for a purpose this [software]. The rounding really gets in the way of
what you’re trying to show.

[later in the interview] I’d definitely mention it because sometimes it doesn’t seem to
work does it? ...it was one degree out... but | really see it as a hindrance to learning
what’s going on. I’d just, I’d have to keep saying ‘Look, within rounding error this
result is...”, sort of, it’s much less convincing... [Ed-GGb-int, 20.6.2012]
His frustration stems from the conflict between the ‘real” world, where computer
hardware places limits on the accuracy of measurement in GeoGebra, and the idealised
mathematical world of Euclidean geometry to which the topic of circle theorems
belongs. Thus the rounding errors are an indication to Edward that the software does not
entirely ‘fit’ his purpose of providing a true representation of Euclidean geometry.
Edward was also adamant that he would raise the issue of rounding errors but, unlike
Robert, he did not articulate a pedagogic strategy to deal with the issue beyond drawing

it to his pupils’ attention.

Michael and Anne also suggested that they would raise the issue of rounding errors with
their pupils. However, in addition, they both indicated that the discussion of rounding
errors would provide an opportunity to link the hypothetical lesson on circle theorems
more widely with topics on the accuracy of measurement. Michael suggests:
It brings up a wider point of accuracy | guess and how everything is measured to
varying degrees of accuracy and the importance of accuracy, because if you’re not

accurate then the theorems won’t work. I guess if you’re kind of sloppy in your angle
measuring then you won’t be able to prove anything. [Mic-GGb-int, 31.5.2012]

Similarly, Anne suggests linking the issue of rounding errors to the topic of upper and
lower bounds of measurement, asking pupils within what bounds the angle could have
been, given that it had been rounded to a certain degree:
Yeah | would discuss it with pupils you know, the numbers were rounded. Yeah. |
would discuss it with them, and depending on if we’ve done ... what is it called ...

depending on if we’ve done bounds of measure, I could just bring it up, what could it
[the angle] have been. [Anne-GGb-intB, 29.6.2012]
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The approach Michael and Anne suggest risks confusion by conflating the real world
with the idealised mathematical world of Euclidean geometry. Contrary to Michael’s
suggestion, in Euclidean geometry, the accuracy of angle measurement is immaterial to
proof or whether the circle theorems ‘work’, precisely because they only exist in an

idealised world where angles and other ‘measures’ are assumed to be exact.

Robert’s articulation of his strategy for dealing with the issue of rounding errors in
GeoGebra for the purposes of mathematics pedagogy is an example of TPACK.
However, his strategy does not appear as a result of integrating pedagogic knowledge
with TCK. Indeed all four teachers recognise the issue of rounding errors requires some
kind of pedagogic intervention, however their strategies in response to this recognition
differ. Edward did not articulate a pedagogic strategy to deal with the issue beyond
drawing it to his pupils’ attention. Michael and Anne risked confusion by connecting
topics associated with the real world of measurement to the topic of circle theorems and
proof, which exist only in the idealised mathematical world of Euclidean geometry. In
contrast, Robert’s strategy stands apart because it makes a clear mathematical
distinction between these two worlds. He connects rounding errors to real world
limitations of computer hardware and to using GeoGebra to establish conjectures
though empirical testing, thus distinguishing circle theorems and proof as belonging to
another ideal world of mathematics. Making this distinction requires mathematical
knowledge: understanding that rounding errors and notions of accuracy are
incompatible with Euclidean geometry and proof. Thus, Robert’s articulation of his
strategy for dealing with the issue of rounding errors in GeoGebra suggests that, in this
case, TPACK is not the integration of TCK with pedagogic knowledge. Instead,
TPACK appears to be mathematical knowledge, abstract in the sense that it generalises
across particular technological contexts and mathematical topics. For example, rounding
errors appear in measurement whenever one tries to relate mathematic ideals to the
empirical world, whether in the context of using GeoGebra or a paper-and-pencil

environment.

On the other hand, this knowledge appears to be simultaneously situated in the context
of using GeoGebra to teach circle theorems. For example, knowing that the appearance
of rounding errors in GeoGebra is an issue that requires a pedagogic strategy, e.g.
drawing pupils’ attention to rounding errors or otherwise, seems situated in the context
of teaching. In addition, circle theorems are typically presented in textbooks through

figures that invite the reader to imagine ideal mathematical objects i.e. where rounding
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is not an issue. Of course, as noted above, GeoGebra is not the only technological
context where rounding errors arise. However, the combination of the textbook-style
‘neatness’ of GeoGebra figures and empirical measurement, appears to make the issue
of rounding errors more salient - surprising even, given Edward’s expression of
frustration. Thus, Robert’s articulation of his strategy for dealing with the issue of
rounding errors in GeoGebra also suggests that TPACK is a synthesis of mathematical,
pedagogical and technological knowledge, highlighting its situated nature. In this sense,
TPACK appears to draw attention to a transformation of mathematical knowledge for

the purposes of teaching using technology.

Defining angles in GeoGebra: Edward’s dilemma

Michael and Edward were both prompted to question how angles are defined for the
purposes of measurement in the GeoGebra software by unexpected configurations of D1
appearing during dragging, displaying the ‘incorrect’ angle at the centre (See Figure
5.4). After experimenting by dragging points C and D, and in Edward’s case some
prompting by the interviewer, they concluded the angle measured at the centre was
dependent on the relative position of points C and D. More specifically, in GeoGebra
the angle measured at the centre in D1 is defined by specifying the ordered triad of
points CAD and measured anticlockwise from the line segment AC to the line segment
AD. Thus when the relative positions of C and D are reversed, as in Figure 5.4, the

angle appears to ‘flip” between being less than 180 degrees and being reflex.

D1 had been designed so that, whilst the angle at the centre could become reflex, the
angle measured at the circumference was constrained to be less than 180 degrees
whatever the relative position of points C and D. Hence the ‘correct’ angle at the
circumference in relation to the circle theorem was always displayed, however some
configurations of DI displayed the ‘incorrect’ angle at the centre. Michael and
Edward’s questioning of how the software defines and measures angles and their
realisation of the angle at the centre’s dependence on the relative positions of C and D is
an example of TCK because it shows a developing understanding of how the GeoGebra

software models geometric concepts and relations.
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Figure 5.4 Angle measurement and reversing the relative positions of C and D

For Edward, the software’s definition and measurement of angles was another source of

frustration, appearing idiosyncratic in the way D1 ‘flipped’ between displaying the

correct and the incorrect angle at the centre in relation to the circle theorem. He argued:
... this is sort of a function of how the software works isn’t it, rather than a ... is that

bringing out anything useful mathematically that ... that’s just a bit annoying the way
it does that, isn’t it? [Ed-GGb-int, 20.6.2012]

Implicitly here, Edward appears to be comparing the ease of defining angles when
teaching circle theorems without digital technologies, e.g. marking angles on a diagram
using a pen on a whiteboard, in a textbook diagram or with pencil and paper, to the
difficulties he faced understanding how angles are defined in GeoGebra. Diagrams
presented in software such as GeoGebra are constrained to follow the rules for defining
angles that have been programmed into that piece of software. It seems unlikely that a
dynamic geometry software package will have been programmed to define angles
according to their relevance to circle theorems, thus it may not be possible to construct a
diagram such that the correct angle at the centre is always displayed. One of the
affordances of drawing diagrams without digital technologies is that the relevant angles
of the circle theorem may simply be marked on a diagram with a brief stroke of a pen or
pencil, without needing to consider how they are defined precisely. It is not that a
precise definition of the angles does not exist or is not necessary in a paper-and-pencil
environment, of course, but that often it does not appear necessary to give it explicit
consideration. This argument serves again to highlight the situatedness of individual

teacher knowledge in the technological context.

A case where it might be necessary to give explicit consideration to a precise definition
of the angles, even in a pencil-and-paper environment, would be when giving a full
statement of the circle theorem, rather than an abbreviated form such as ‘the angle at the

centre is double the angle at the circumference’. For example, a full statement of the
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circle theorem is ‘the angle subtended at the centre by an arc is double the angle
subtended at the circumference by the same arc’. The difference between the
abbreviated form and the full statement is in the specification that the two angles must
be subtended from the same arc. More specifically, using the full statement of the

theorem clarifies which is the ‘correct’ and ‘incorrect’ angle at the centre.

In his initial discussion of D1, Edward assumes the angles are defined as being
subtended by the chord CD:

the chord C and D, joining C and D ... subtends an angle of 108 at the centre and 54 at

the circumference, so uh ... for this configuration of points it’s showing that the angle

at the centre is twice the angle at the circumference. [...] ... so what it shows is the

angle subtended at the circumference by chord CD is always twice the angle at the
centre, irrespective of where B is. [Ed-GGb-int, 20.6.2012]

Defining the two angles as subtended from the chord is unproblematic as long as the
two angles remain in the same segment; however, when they are in opposing segments

the theorem appears to break down (see Figure 5.5 a and b).

(@) Que— (b)

Figure 5.5 Angles in the opposite segments with (a) the ‘incorrect’ angle at the centre displayed
and (b) the ‘correct’ angle at the centre displayed.

In fact, the doubling relationship between the angle at the centre and the angle at the
circumference still holds when the angles are in opposing segments, as long as the
angles are defined as being subtended from the same arc. Thus defining the angles
based on the chord CD is an unfortunate narrowing of the cases to which the theorem

may be applied.

The situation where the two angles appear in opposing segments occurred twice during
Edward’s GeoGebra interview. Firstly, as depicted in Figure 5.5 (a), it occurred where
the ‘incorrect’ angle at the centre is shown, assuming the angles in the circle theorem
are defined as being subtended from the same arc. He had anticipated this case to some

extent. Thus, for Edward, this case was not unduly problematic and did not disrupt his
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statement of the circle theorem defining the angles as subtended from the chord CD, as
the quote below suggests:
And then if you drag B this side [onto the minor arc CD], then suddenly it goes from
54 to 126. So ... uh ... what’s happening there? So ... uh ... what’s happening there
is the angle on the other side of the 108 is now double the angle at the centre, the
angle at the circumference ... but it’s not showing on the diagram, the computer’s not

showing that other angle ... but you can calculate it as 360 — 108, so 252. And 252 is
double 126. Yeah. [Ed-GGb-int, 20.6.2012]

Instead he called this case a “complication”, suggests “ignoring” it at least initially with
pupils, and refers to the ‘correct’ angle at the centre, measuring 252 degrees, as “the
reflex angle”. His treatment of the case in Figure 5.5 (a) as a sort of deviant example or
extension of his statement of the circle theorem, where the angle at the centre is reflex,
avoided a mathematical critique of his definition of the angles being subtended from the
chord. However, the situation arose for a second time, similar to Figure 5.5 (b), where
the ‘correct’ angle at the centre is shown, assuming the angles in the circle theorem are
defined as being subtended from the same arc. This time, the situation was unexpected
and troubling for Edward. In particular, it leads him to question his previous definition
of the central angle as being subtended by the chord CD. The following quote indicates
his struggles as he attempted to find a correct mathematical interpretation of this
configuration of D1, see Figure 5.6 for the numerical example he discusses at the start:

Um ... so ... let’s take an example ... so 94 doubled is 188, so it’s still true that ... so

that angle is twice that angle. But uh ... how do you know it was that angle ... so the

computer is kind of showing you the right angle for what it’s working for isn’t it?

But in words, how do you explain what that angle is, it’s not really the angle that

chord CD is subtending at the centre is it? Because it’s that ... chord CD is

subtending that angle at the centre, so suddenly you have to say it’s the other angle,

the reflex angle at the centre that’s subtending. So... so CD is subtending 99 at the

circumference and, ... er ... the reflex angle is 198 yeah. Uh ... which is not a very
good explanation. [E laughs] [Ed-GGb-int, 20.6.2012]

At the end of this quote, Edward tries to re-state the theorem using a particular
numerical example, taking into account his realisation that the ‘correct’ angle at the
centre was not, as he previously assumed, the angle subtended by the chord CD. He
struggles, eventually settling for “the reflex angle”, whilst acknowledging this seemed

inadequate.
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Figure 5.6 Edward’s angle definition dilemma

Returning to Edward’s frustration at the apparently idiosyncratic way GeoGebra defined
and measured the angles in D1, the discussion above shows that instead of being “just a
bit annoying” [Ed-GGb-int, 20.6.2012], the way GeoGebra defines and measures angles
does bring out something mathematically useful. The variation in whether the ‘correct’
or ‘incorrect’ angle is displayed in D1 provides a means of discussing how angles are
defined in other contexts and, in particular, how the angles referred to in the
(abbreviated) ‘angle at the centre is double the angle at the circumference’ circle
theorem are defined precisely in a full statement of the theorem. In addition, the reason
why Edward’s statement of the angle at the centre theorem, defining angles as
subtending from the chord CD, is unsatisfactory relates to another circle theorem,
commonly abbreviated to ‘angles in the same segment are the same’. To show the
geometrical connection between the two theorems, the latter might more helpfully be
stated as ‘angles subtended by the same arc are the same’. Articulating a strategy to use
the way GeoGebra defines angles to raise these issues for the purposes of teaching circle
theorems would be an example of TPACK. Again, such a strategy would not appear to
depend on integrating pedagogic knowledge with TCK. Instead it requires mathematical
knowledge regarding the precise definition of the angles in a full statement of the angle
at the centre circle theorem, as well as how this theorem connects to other circle
theorems. Hence, TPACK appears to be mathematical knowledge, abstract in the sense
that it generalises across particular technological contexts and mathematical topics. For
example, a precise definition of the angles in a full statement of the angle at the centre
circle theorem should hold both in the context of using GeoGebra or a paper-and-pencil

environment.

However, once again TPACK appears simultaneously to be mathematical knowledge

situated in the context of teaching using technology. The issue of how angles are
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defined appears more salient and, like rounding issues, even surprising — for Michael
and Edward at least — in the context of GeoGebra. In addition, the author notes that at
the time, in England, the high-stakes GCSE examinations only required pupils to state
an abbreviated form of the circle theorems. As a result, it is possible that the case study
teachers were unaware of a precise definition of the angles in a full statement of the
angle at the centre circle theorem. Hence, an individual teacher’s TPACK may also be
seen as situated in the examination system and national curriculum of the country in that
teacher is working. This argument suggests that TPACK is a synthesis of mathematical,
pedagogical and technological knowledge, highlighting its situated nature as a
transformation of mathematical knowledge for the purposes of teaching using
technology.

It should be noted here that Edward was not alone in his confusion over the definition of
the angles in the angle at the centre theorem. Analysing his interview, the author
realised that she did not know a full statement of the angle at the centre theorem.
Indeed, the design of D1, incorporating the extraneous chord CD, indicates the author’s
own lack of knowledge in this regard. Fortunately, it proved useful in terms of data
collection and triggered a growth in understanding for the author in what had previously
seemed a fairly straightforward topic. None of the other case study teachers provided a
full statement of the theorem. Whilst they each provided some form of the abbreviated
version of the angle at the centre theorem, Edward was the only one to attempt to define
the angles precisely. Although Robert briefly questioned the presence of the chord, he
later appeared to find it useful to identify the relevant angles in a particularly contorted
configuration of D1 and, alluding to the angles in the same segment theorem, he said:

I think dragging point B kind of demonstrates the, | mean, the invariance of the fact
that well it’s still coming from the same chord. [Rob-GGb-int, 13.6.2012]

Trying to account for her own lack of knowledge regarding the full statement of the
theorem, as the author noted in the previous paragraph, in England the high-stakes
GCSE examinations only require pupils to state an abbreviated form of the circle
theorems. Taking into account reports of widespread teaching-to-the-test (Ofsted, 2008),
it is just possible that a generation of teachers and pupils have not been exposed to a full
statement of the circle theorem other than by serendipitous experience. A quick Internet
search reveals that on websites, such as the MyMaths website and the BBC GCSE
Bitesize revision website, emphasise the abbreviated version of the theorem, whilst a

precise definition of the angles via a full statement of the theorem is not provided.

156



Issue of Dependency in GeoGebra

Like other dynamic geometry software, GeoGebra introduces an explicit order of
construction, a sequential organisation of actions necessary to produce a figure (Jones,
2000). Since certain parts of a figure are dependent on other parts, figures need to be
created in a particular sequence, thus initiating a hierarchy of dependencies (Holzl et al,
1994). For example, in relation to the dynamic geometry package Cabri Geometre,
HOlzl et al (1994) describe three different types of points that occur. A basic point can
be dragged freely without restriction. A point on an object, such as a circle or a line, can
only move along the object since it is dependent upon that object for its existence. A
point of intersection cannot be dragged at all: it can only be moved as a result of
dragging the objects upon whose intersection the point depends. Holzl (1996) argues
that since these distinctions do not occur in a paper-and-pencil context, they could be
considered as a form of geometry specific to Cabri. The same argument can be made for

points in GeoGebra.

Each of the case study teachers showed TCK by demonstrating some understanding of
the issue of dependency, when asked directly about the difference between the red and
blue points in relation to all three diagrams. For example, they all noted that the red
points are restricted to move on the circumference, whereas the blue points P and R, in
D2 and D3 respectively, may be dragged freely. Hence, using the language above, P and
R are basic points, whereas the red points are points on an object. More subtly, the
circumference of the circle is constrained to go through point G in D1, so although it
might initially appear that G is restricted to move on the circumference like the red
points, in fact it is the circle whose movement is restricted. Thus point G is also a basic
point, which may be dragged freely, and is therefore coloured blue. The case study
teachers struggled during the interview to provide a plausible explanation for the

colouration of point G.

Discussing the three circle theorem diagrams, the case study teachers mentioned issues
of dependency less frequently in comparison to the Practice Squares GeoGebra file,
where they were asked to practise ‘thinking aloud’ as they manipulated two diagrams,
one constructed as a geometric figure of a square and the other as a drawing of a square,
which deformed under drag. This is unsurprising since the Practice Squares file was

designed as an introductory file to highlight the ‘rules of construction’ or dependency in
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GeoGebra. Similarly, issues of dependency arose more frequently during the discussion
of circle theorem diagrams 2 and 3 in comparison to D1. Nevertheless, Robert’s initial
comments about D1 indicate he is aware of the ‘rules of construction’ or issues of
dependency in GeoGebra. He noted that the points B, C and D “are presumably all fixed
to the circumference of the circle” (Rob-GGb-int, 13.6.2012). Similarly, with D2,
before dragging the diagram, Robert immediately said, “I guess the big difference is P is
no longer fixed” (Rob-GGb-int, 13.6.2012). Edward also recognised issues of
dependency. Initially, describing D1, he implicitly referred to issues of dependency,
noting “So in this diagram you’ve got three red points on the circumference” (Ed-GGb-
int, 20.6.2012). With D2, he was more explicit, noting that “L’s confined to the
circumference” (Ed-GGb-int, 20.6.2012), then after further dragging, he generalised that
all red points in the GeoGebra file are confined to move on the circumference but that P
is “pretty free form” (Ed-GGb-int, 20.6.2012). Thus Robert and Edward’s
understanding of issues of dependency in GeoGebra demonstrate TCK i.e. an
understanding of geometry situated in the software.

Dragging D1 provides a means of testing the conjecture that the position of point A at
the centre and points B, C and D on the circumference is a sufficient condition for the
angle at the centre to be double the angle at the circumference. Robert and Edward’s
opening comments regarding D1, describing the construction of the diagram, draw
attention to the positioning of the points B, C and D. Their description suggests that the
positioning of the B, C and D on the circumference is a critical feature of this particular
diagram (as opposed to some other diagram). Thus, implicitly, they suggested any
relationship that appears to hold between the angle at the centre and the angle at the
circumference is conditional on the positioning of B, C and D on the circumference.
Notably, although Michael and Anne demonstrate TCK, appreciating issues of
dependency in later diagrams, they did not draw attention to the position of the points in
D1 by describing the construction of the diagram, before indicating the doubling
relationship between the angle at the centre and the angle at the circumference through
dragging.

With D2, as Robert suggested in his discussion of the diagram, the status of point P as a
basic point, released from the constraint of being positioned at the centre, allows an
exploration of a partial converse of the theorem:

I’d use something like this with pupils working independently and asking them
questions like when are the angles the same? When are the angles twice one of the
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other angles? And so on and establishing the conditions that are, you know, kind of
working almost from the converse of the theorem. [Rob-GGb-int, 13.6.2012]

In particular, constructing P as a basic point, allows D2 to be used as means of testing
the conjecture that positioning P on the centre is a necessary condition for the angle at P
to be double the angle at the circumference, given that L, M and N are positioned on the
circumference. Indeed, whilst dragging point P, Robert stumbled on a set of counter-
examples to this conjecture, although during the interview he eventually rejected them,
assuming they appeared to occur due to rounding errors. Using the trace function in
GeoGebra, it is possible to indicate the locus of point P where the angle at P subtended
by the arc MN is double the angle at the circumference subtended by the same arc — see

Figure 5.7.

Diagram 2

Figure 5.7 A trace indicating the locus of P where the doubling relationship between the angles
at L and P holds, given points L, M and N are on the circumference.

Similarly, with D3, constructing point R as a basic point, allows the diagram to be used
as a means of testing the conjecture that positioning R on the circumference is a
necessary condition for the angle at the centre of the circle to be double the angle at R,
given that points S and T are positioned on the circumference and point Q is positioned
at the centre. In this case, the position of R on the circumference is a necessary
condition for the doubling relationship to hold i.e. positioning R off the circumference
causes the relationship to break down. Edward showed his appreciation of this purpose
for D3 by dragging point R on and off the circumference to show the “negative case” of
the angle at the centre theorem, as he termed the set of points where the doubling
relationship breaks down. In particular, in relation to D3, he states:

E: it’s really good for showing that the circle really is the special set of points
where it works. So there’s something beautiful about that. [Ed-GGb-int, 20.6.2012]
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Michael also recognises the possibility of using D3 for the purpose of testing the
necessity of positioning point R on the circumference:
M: Um, I guess it’s [D3 is] useful in that it shows that the rules only apply on

the circumference or certainly that particular rule of the double angle at the centre,
circumference etc.

l: Mmm, mmm.

M: Um, so I guess it’s useful to show that that [D3] doesn’t work, whereas
that [D1] does work. [Mic-GGb-int, 31.5.2012]

Articulating a strategy for using the diagrams D1, D2 and D3 as a means of testing the
positioning of the points on the circumference and at the centre as necessary and
sufficient conditions for the angle at the centre circle theorem to hold, for the purposes
of teaching the topic of circle theorems, is an example of TPACK. Thus Robert, Edward
and Michael’s recognition of the potential of diagrams D2 and D3 for testing partial
converses of the circle theorem showed TPACK. Again, this suggests TPACK is
mathematical knowledge, abstract in the sense that it generalises across particular
technological contexts and mathematical topics. For example, knowledge of necessary
and sufficient conditions and how they relate to the converse of a theorem should hold

across particular technological contexts and mathematical topics.

However, this example also highlights the situated nature of an individual teacher’s
TPACK: that this knowledge is a function of the context in which the teacher is
operating. For example, the issue of dependency itself depends on the ‘rules of
construction’ programmed into the particular software package. In addition, issues of
dependency did not arise as frequently with the circle theorem diagrams as they did with
the Practice Squares file, neither did they occur as frequently with D1 as they did with
D2 and D3. Finally, as Robert alludes in the quote below, knowledge of the converse of
circle theorems or of their necessary and sufficient conditions is not included in GCSE
examination syllabi (e.g. EdExcel, 2012), nor is it part of the English National
Curriculum (QCA, 2007) for mathematics.

I: Would that be something that you highlighted to kids, the converse?

R: I have in the past yeah, but only with very, very strong groups. You know
because we don’t do it much do we really? I mean I think the only thing they really
need to, I think, you know, in our kind of curriculum I think, [ ... ] ... we tend to use
these theorems just in one direction. [Rob-GGb-int, 13.6.2012]
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Thus an individual teacher’s TPACK may be seen as a function of the software, the
mathematical topic and even the particular diagram the teacher is using, as well as the
examination system and national curriculum of the country in that teacher is working.
Highlighting the situated nature of TPACK suggests it is a synthesis of mathematical,
pedagogical and technological knowledge, representing a transformation of

mathematical knowledge for the purposes of teaching using technology.

Dynamic imagery or preservation of geometric relationships under drag

A fourth example of TCK is an understanding that geometric relationships are preserved
under drag, thus the dynamic imagery of GeoGebra is a means of representing
geometric relationships. All four teachers demonstrated an understanding that geometric
relationships are preserved under drag, by moving points B, C and D to different
positions around the circumference and noting that the relationship between the angle at
the centre and the angle at the circumference was preserved. Demonstrating D1 to
pupils, Robert, Edward and Anne each suggested they would begin by dragging point B,
showing initially that the relationship holds wherever B was placed on the major arc
CD, before arguing that it also holds if B is positioned on the minor arc CD. Thus, by
dragging B, they demonstrated the angle at the centre is double the angle at the
circumference wherever B is positioned on the circumference — although none of the
teachers entirely resolved what occurs when B coincides with either point C or D.
Robert later clarified that dragging B also demonstrates the theorem that angles in the
same segment are the same. In contrast to the other three case study teachers, when
asked how he would demonstrate D1 to pupils, although Michael briefly dragged B on
the major arc CD, he did not position B on the minor arc before continuing his

exploration of D1 by dragging points C and D.
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Figure 5.8 (a) the ‘arrowhead’ configuration (b) the ‘convex quadrilateral’ configuration
produced by dragging B onto the minor arc (c) the convex quadrilateral configuration produced
by dragging points C and D upwards

Dragging B first, resulted in Robert, Edward and Anne emphasising the ‘arrowhead’
configuration of D1 (see Figure 5.8 a) as the normal or standard configuration of the
angle at the centre theorem. As a consequence, when they dragged B onto the minor arc
CD, the ‘convex quadrilateral’ configuration of D1 where the angle at the centre is
reflex (see Figure 5.8 b) appeared to be an abnormal or non-standard configuration,
requiring a special statement and explanation — exacerbated perhaps by the presence of
the extraneous chord. In particular, as Robert later noted, dragging B demonstrates the
theorem that angles in the same segment are the same. Thus dragging B onto the other,
minor segment causes this theorem to break down, distracting attention from the fact
that the angle in the centre theorem still holds. The distraction caused by moving B onto
the minor segment also seemed to disrupt the case study teachers’ knowledge of the
angle at the centre theorem as holding true for all positions of B, C and D, as long as the
three points remain distinct. For example, Robert said “I can’t remember what happens
if T bring it over here” (Rob-GGb-int, 13.6.2012) before dragging B onto the minor arc.
He notes subsequently that previously he has prevented B from being dragged onto the
minor arc, thus barring the convex quadrilateral configuration, “Because on diagrams
I’ve had in the past I’ve forced it to just lie on the major arc” (Rob-GGb-int, 13.6.2012).
Anne struggles with whether the angle at the centre theorem has broken down or not
when B moves onto the minor segment, she says: “the rule has not fallen apart ... it
hasn’t fallen apart here, in that um ... yeah the rule has fallen apart a bit, hasn’t it?”
(Anne-GGb-intA, 28.6.2012). Whilst Edward is convinced that the theorem still holds
when B is positioned on the minor arc, he refers to this configuration as a
“complication” (Ed-GGb-int, 20.6.2012) and later is confounded when he realises that

the configuration is not encompassed by his statement of the theorem.
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In Michael’s case, the convex quadrilateral configuration first arose as shown in Figure
5.8 (c) as a result of dragging C and D, rather than encountering the configuration as
shown in Figure 5.8 (b) as a result of dragging B onto the minor arc. Arising in this
manner, the convex quadrilateral configuration does not appear as an abnormal or non-
standard configuration. Instead it appears as a natural consequence of varying the angles
at the centre and circumference to observe the doubling relationship. Thus the convex
quadrilateral configuration appears on more equal terms with the arrowhead
configuration, as one among a number of cases of the angle at the centre theorem. At
least the convex quadrilateral configuration does not trouble Michael in the same way as
the other three case study teachers. When it first arises as a result of dragging points C
and D ‘upwards’, Michael remarks that the rule still applies, hesitating only to point out
rounding errors:

M: ... Then | can start moving C and D to probably you know nice round

numbers maybe, so 120 so you can see it’s twice as much. If you go ... yeah, I’d

probably then eventually move it up like that to form like a quadrilateral so that the
rule still applies.

I: Mmm, mmm.

M: Well it was an arrowhead before, wasn’t it, but now it’s a reflex angle on
the outside of a quadrilateral but it still applies just. I guess that’s a rounding [error].
We were talking about that before weren’t we? [Mic-GGb-int, 31.5.2012]

After this initial exploration, dragging C and D, Michael concluded:

Um, so yeah I think that’s about as much as [ would do with diagram 1. In fact [ have
done something similar with a similar diagram before. [Mic-GGb-int, 31.5.2012]

Later in the interview, he was prompted to drag point B by the author. He then dragged
point B past D and onto the minor arc CD causing the convex quadrilateral
configuration to arise as shown in Figure 5.8 (b). However, unlike the other three case
study teachers, this configuration seemed to cause him no confusion. He simply noted
that he had mentioned this configuration earlier:

.... and then this goes ... well you know I mentioned that one earlier didn’t I ... [Mic-
GGb-int, 31.5.2012]

Given the difficulties Robert, Anne and Edward faced interpreting the convex
quadrilateral configuration when it first arose as a result of dragging B onto the minor
arc CD, it would seem reasonable to assume that pupils might also find this
configuration a cause for confusion. In addition, dragging point B first seems to place
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undue emphasis on the arrowhead configuration. Thus it seems preferable to adopt a
strategy of initially dragging points C and D to manage the dynamic imagery so that
pupils first encounter the convex quadrilateral configuration as shown in Figure 5.8 (c),
thereby also maintaining this configuration on more equal terms with the arrowhead
configuration. Articulating such a strategy for managing dynamic imagery is an
example of TPACK. This requires an understanding that dragging point B in D1
confuses the angles in the same segment theorem with the angle at the centre theorem,
and thus may be unwise as an introductory dragging strategy (to either theorem). Hence
such a strategy requires controlling mathematical variation to highlight the specificity
and the generality of a particular geometric relationship (rather than any other geometric
relationship), in this case, the relationship that the angle at the centre of circle is double
that at the circumference. In this sense, TPACK appears to be mathematical knowledge,
abstract in the sense that it generalises across particular technological contexts and
mathematical topics. For example, the codes choice and use of examples and decisions
about sequencing in the Knowledge Quartet (Rowland et al., 2005) represent instances
of controlling numerical and geometric variation that are intended to apply across
technological contexts and mathematical topics. However, the means of controlling
mathematical variation through dragging to generate examples is particular to dynamic
geometry software. In addition, Leung and Lee (2013) suggest dynamic variation is
central to software such as GeoGebra, hence controlling variation to highlight the
specificity and the generality of a particular geometric relationship may be more salient
in these technological contexts. Again this serves to highlight the situated nature of
TPACK as a transformation of mathematical knowledge for the purposes of teaching

using technology.

5.3 Conclusion: the nature and content of mathematical knowledge for

teaching using technology

The analysis of case study teacher Robert’s computer suite lesson, presented in section
5.1, suggested that a positive stance towards technology, in terms of global aspects of
teacher knowledge (e.g. Bowers & Stephens, 2011; Zbiek & Hollebrands, 2008), may

not be sufficient to ensure a teacher’s use of technology enhances mathematical
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instruction. In addition, this analysis suggested that using technology places significant

demands on individual teachers’ knowledge.

Further, the analysis of the four case study teachers’ GeoGebra interviews in section 5.2
suggested that the nature of mathematical knowledge for teaching using technology, as
represented by the central TPACK construct, is not the integration of the dyadic
constructs, TCK, PCK or TPK, with a third domain of knowledge. For example, in the
exemplars of TCK described in section 5.2, the central TPACK construct did not appear
to depend on integrating pedagogic knowledge with a combination of technological and
mathematical knowledge. Instead, these exemplars of TCK highlighted mathematical
knowledge for teaching using technology as mathematical knowledge, abstract in the
sense that it generalises across particular technological contexts and mathematical
topics. For example, rounding errors appear in measurement whenever one tries to relate
mathematic ideals to the empirical world, whether in the context of using GeoGebra or a
paper-and-pencil environment. In this sense, viewing mathematical knowledge for
teaching using technology as abstract mathematical knowledge draws closer to the
integrative perspective (Graham, 2011) of TPACK in that such knowledge may not be
seen as particular to the context of teaching with technology. On the other hand, the
TCK exemplars simultaneously highlighted the situated nature of mathematical
knowledge for teaching using technology. Thus, having an articulated pedagogic
strategy for dealing with the issue of rounding errors in GeoGebra, for example,
suggested that the central TPACK construct signified a synthesis of mathematical,
pedagogical and technological knowledge, indicating the situated nature of
mathematical knowledge for teaching using technology. In this sense, the central
TPACK construct appears to draw attention to the transformation (Rowland et al., 2005,
Shulman, 1987) of mathematical knowledge for the purposes of teaching using
technology.

The apparent duality of mathematical knowledge for teaching using technology
produces a tension: teacher knowledge appears simultaneously to be both situated in
and abstracted across technological contexts and mathematical topics. To this extent,
Noss and Hoyles’ (1996; & Kent, 2004; & Pozzi, 2002) notion of situated abstraction
seems appropriate as a description of mathematical knowledge for teaching using
technology. This notion is useful in allaying the concern that seeing mathematical
knowledge for teaching using technology as situated should not be taken to mean that

each piece of technology requires teachers to learn an entirely new and distinct domain
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of mathematical knowledge for teaching i.e. mathematical knowledge for teaching using
GeoGebra as distinct from mathematical knowledge for teaching using a static paper-
and-pencil environment as distinct from mathematical knowledge for teaching using
Geometer’s Sketchpad and so on. Thus a teacher with mathematical knowledge for
teaching using GeoGebra and mathematical knowledge for teaching using a static
paper-and-pencil environment should find it easier to develop mathematical knowledge
for teaching using Geometer’s Sketchpad and so on. However, at the same time the
notion of situated abstraction allows that mathematical knowledge for teaching using
technology may not always be separated from the context of its construction or
application, thus the particular technological context in which it was developed may be
central to its meaning (Noss et al., 2002).

Adler’s (1999) use of Lave and Wenger’s (1991) notion of transparency to describe
teachers’ dilemmas in negotiating the dual visibility and invisibility of talk as a resource
in the practice of school mathematics also appears useful although, here, it is applied to
the use of technology as a resource in the practice of teaching school mathematics.
Adler (1999) describes Lave and Wenger’s use of the metaphor of a window to explain
their notion of transparency:

Lave and Wenger (1991) used the metaphor of a window to clarify their concept of

transparency. A window's invisibility is what makes it a window. It is an object

through which the outside world becomes visible. However, set in a wall, the window

is simultaneously highly visible. In other words, that one can see through it is
precisely what also makes it highly visible.

Thus technology as a teaching resource for mathematics needs to be simultaneously
both visible, so that it can be noticed and used in the practice of teaching school
mathematics, and invisible so that attention is focused on the subject matter, teaching
mathematics to pupils. The specificity of teaching mathematics using a particular piece
of technology influences the mathematics that can be taught. For example, sketch
diagrams in paper-and-pencil environments are flexible in that they do not have to obey
fixed rules in relation to measurement of lengths and angles. Diagrams in GeoGebra
appear more rigid in this respect - hence Edward’s irritation with rounding errors and
the definition and measurement of angles in the software. The flexibility of the paper-
and-pencil environment by contrast affords the user the freedom to imagine they are
working in an ideal mathematical world, where perfect circles, exact angle

measurement, circle theorems and proof ‘exist’. Hence, whilst all four case study
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teachers were generally favourable towards using the GeoGebra diagrams for
establishing the theorems on an empirical basis, Robert and Edward did not see the
software as a means for developing proof. Similarly, the window frame, its shape and
positioning on the wall, influences which part of the outside world can be seen. Thus
teachers need to understand the significance of the particular technology for the
mathematics they are teaching; hence the technology requires explicit attention, it needs
to be visible. In this sense, mathematical knowledge for teaching using technology is
always situated, since the technological context in which it is being applied is central to

its meaning.

Simultaneously, however, technology should enable the teaching of mathematics, in this
case the GeoGebra software should enable the teaching of circle theorems, and should
thus be invisible. It is the window through which mathematical knowledge for the
purposes of teaching can be seen: the GeoGebra software is a means of controlling
numerical and geometric variation so that pupils are systematically exposed to a wide
range of examples of the angle at the centre theorem. Here, mathematical knowledge
for teaching using technology appears more abstract, allowing teachers to make

comparisons and connections across technological contexts.

Adler’s description of a dilemma of transparency where the teacher manages talk as a
classroom resource, so that it is neither too visible for pupils, obscuring the
mathematical subject matter, nor too invisible so that they are unable to access it, has
some explanatory value for this study. However, here, the dilemma is managing
technology so that it does not become too visible for teachers, obscuring mathematical
knowledge for teaching using technology, nor too invisible, so that teachers assume that
the use of technology unproblematically provides a pedagogic structuring for
mathematics. For example, Edward’s irritation with the definition and measurement of
angles in GeoGebra indicated that the software was too visible for him. In this case the
GeoGebra software obscured his access to mathematical knowledge for teaching using
technology, i.e. the articulation of a pedagogic strategy to use the software as a means
for discussing how to define the angles involved in a full statement of the angle at the
centre theorem. On the other hand, the case study teachers’ focus on dragging point B in
D1, emphasising the arrowhead configuration as the standard configuration of the angle
at the centre theorem provides an instance where technology seems too invisible. Here,
the unintentional pedagogic structuring of mathematics suggests that the technology has

become too invisible, with an assumption that technology provides unproblematic
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access to mathematical knowledge for teaching. Similarly, the Knowledge Quartet code
adherence to textbook might suggest instances where technology in the form of a
textbook has become too invisible in the practice of teaching school mathematics.

The TPACK framework and the central TPACK construct in particular were useful for
the purposes of this study for concentrating attention on teacher knowledge in relation
to technology, identifying mathematical knowledge for teaching using technology as a
focus for research (see also Chapters 1 and 2). In a similar sense, Shulman’s (1986)
concept of PCK has been highly productive, stimulating research focused on the nature

and content of teacher knowledge (see Chapter 2).

The central TPACK construct also provided a useful metaphor for recognising the
nature of mathematical knowledge for teaching using technology simultaneously as
abstract mathematical knowledge and as a synthesis of content, pedagogy and
technology knowledge i.e. highlighting the situatedness of mathematical knowledge in
the context of teaching and technology. In other words, the strength of the TPACK
framework for this study is the contribution it makes in helping to manage the dilemma
of transparency: the framework helps to balance the dual visibility and invisibility of
technology as a resource in the practice of teaching school mathematics. The weak
theorisation of the TPACK framework (Graham, 2011; Ruthven, 2014; Voogt et al.,
2012) provides a key affordance in this respect, by allowing the user to move between
an integrative and transformative perspective in particular in relation to the central
TPACK construct.

However, the categorisation of knowledge, induced by the Venn diagram depiction of
the TPACK framework, into the seven constructs (TK, CK, PK, TCK, PCK, TPK and
the central TPACK construct) suffers from difficulties similar to those of other
knowledge taxonomies (e.g. Ball et al., 2008). Namely, it seems unlikely that
demonstrable progress will be made in establishing “persuasive and productive
distinctions” (Ruthven, 2011) between the categories of knowledge hypothesised by the
TPACK framework, since as the examples discussed in this chapter suggest, problems
of using technology to teach mathematics generally cannot “be adequately framed in
‘pure’ terms drawn from a single knowledge domain, or even by drawing on several
domains independently” (ibid). In addition, the abstract quality of the TPACK
categories and their apparent separation from each other tends towards an impression of

static ‘knowledge’, for which Shulman’s original categorisation of PCK, on which the
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framework was based, has similarly been criticised (Fennema & Franke, 1992). Thus
although a transformative perspective of the TPACK framework draws closer to
Shulman’s (1987, also Rowland et al., 2005) use of transformation, nevertheless the
central TPACK construct is theorised as a new domain of knowledge rather than as a
dynamic process. Finally, the analysis presented in section 5.2 suggests that the content
of mathematical knowledge for teaching using technology consists of a repertoire of
articulated strategies for using the constraints and affordances (Greeno, 1998) of the
technology for the purposes of teaching mathematics. However, beyond this the
TPACK framework does not appear useful in terms of producing a more fine-grained
analysis (Ruthven, 2014) of the content of mathematical knowledge for teaching using
technology because it lacks subject-specificity. Thus, in Chapter 6, the Knowledge
Quartet provides an analytic tool for a more detailed investigation of the content of
mathematical knowledge for teaching using technology due to its development in the

field of mathematics education research.

5.4 Summary

This chapter has focussed on individual teachers’ own knowledge in relation to using
technology to teach mathematics. Thus this chapter has begun to address RQ2, by
describing the nature of mathematical knowledge for teaching using technology in terms
of the notion of situated abstraction and indications of content in relation to the topic of
circle theorems. However, beyond this the TPACK framework did not appear useful in
terms of producing a more fine-grained analysis (Ruthven, 2014) of the content of
mathematical knowledge for teaching using technology because it lacked subject-
specificity. Hence Chapter 6 returns to RQZ2, using the Knowledge Quartet as an
analytic tool to provide such a fine-grained analysis of the content of mathematical
knowledge for teaching using technology in relation to the topic of circle theorems. In
focusing on individual teachers’ own knowledge in relation to using technology to teach
mathematics, neither Chapter 5 nor 6 include an explicit consideration of the
participatory relationship between teacher and technology. This is addressed in Chapter
7, where Hutchins’ view of distributed cognition provides a framework for
understanding how individual teachers’ knowledge is involved in the participatory

relationship (Remillard, 2005) with technology.

169



Chapter 6 - Conceptualising mathematical knowledge for teaching
circle theorems using technology

The literature review in Chapter 2 found that research on technology in mathematics
education has paid relatively little attention to teachers’ knowledge of specific
mathematical concepts in relation to technology. By comparison, research on teacher
knowledge in the field of mathematics education is relatively well conceptualised,
although limited in terms of its curriculum coverage. For example, Ma’s (1999)
research focused on arithmetic operations and Askew et al (1997) focused on numeracy.
In addition, research on teacher knowledge in the field of mathematics education has
rarely considered teachers’ mathematical knowledge for teaching in the context of
technology use. Hence the literature review concluded that the nature and content of
teachers’ mathematical knowledge for teaching using technology remained an

unresolved question, leading to the identification of Research Question 2:

RQ2 What is the nature and content of teachers’ mathematical knowledge for
teaching using technology, as represented by the central TPACK construct?

Chapter 5 began to address RQ2, using Noss and Hoyles’ (1996; & Kent, 2004; &
Pozzi, 2002) notion of situated abstraction and Adler’s (1999; 2001) concepts of the
dilemma of transparency and visibility/invisibility to describe the nature of
mathematical knowledge for teaching using technology as abstract, mathematical
knowledge and yet simultaneously as mathematical knowledge situated in the context of
teaching using technology. The analysis presented in Chapter 5 using the TPACK
framework suggested that the content of mathematical knowledge for teaching using
technology consists of a repertoire of articulated strategies for using the constraints and
affordances (Greeno, 1998) of the technology for the purposes of teaching mathematics.
However, beyond this the TPACK framework did not appear useful in terms of
producing a more fine-grained analysis (Ruthven, 2014) of the content of mathematical

knowledge for teaching using technology because it lacked subject-specificity.

This chapter addresses RQ2 through a detailed investigation of the content of
mathematical knowledge for teaching using technology in relation to the topic of circle
theorems, arriving at a conceptualisation of this knowledge. This conceptualisation
demonstrates the high level of complexity of mathematical knowledge for teaching

using technology in relation to the topic of circle theorems. This high level of
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complexity is justified post-hoc by the analysis of data from the four case study

teachers’ semi-structured GeoGebra interviews, using the Knowledge Quartet.

The Knowledge Quartet was chosen as a suitable tool for analysis primarily due to the
framework’s development as a means of focusing attention on teachers’ mathematical
knowledge. The suitability of the framework for this study is discussed further in
section 6.1 (see also Chapters 1 and 3). The analysis presented in this chapter
demonstrates the emergence of choice and use of examples and decisions about
sequencing as central codes, using exemplars of codes from each of the supra-categories
of the Knowledge Quartet. The centrality of these two codes also provides a post-hoc
justification for the development of a circle theorem case list for each case study
teacher, as a means of measuring mathematical knowledge for teaching circle theorems
using technology, allowing a comparison of both the specific circle theorem cases
arising and the sequence in which they arose during the interview. Thus this chapter

also addresses the subsidiary Research Question 2a:

RQ2a How does a conceptualisation of teachers’ mathematical knowledge for teaching
using technology suggest ways in which such knowledge could be measured?

The literature review in Chapter 2 found that relatively sophisticated measures of
teachers’ mathematical knowledge for teaching have been developed in research on
teacher knowledge within the field of mathematics education. However, research on
constructing measures of teachers’ mathematical knowledge in teaching has only
recently begun to explore the impact of cultural context (e.g. Delaney et al., 2008;
Blomeke & Delaney, 2012). The impact of the methods with which test items are
applied (e.g. multiple-choice questions, paper-and-pencil tests etc) and the mathematical
topics covered on what is measured has received relatively little attention. In particular,
the development of test items embedded in a technological context to measure teachers’

mathematical knowledge for teaching appears to have been neglected.

The review of literature in Chapter 2 also suggested that research on mathematical
knowledge for teaching emphasises the importance of connected knowledge. For
example, Ma (1999) explains her notions of breadth and depth, which serve to
characterise a profound understanding of fundamental mathematics, in terms of
connections among concepts and between topics. Thus a reasonable hypothesis is that
mathematical knowledge for teaching using technology might be measured in terms of

the connectedness of teachers’ mathematical knowledge, for example, the number of
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connections between concepts. In particular, from their concept-mapping interviews,
Askew et al (1997, p.55) found a moderate relationship between their variable depth, the
percentage of links that were explained by the teacher in conceptual terms, and pupil
gains. Their other variables in relation to teachers’ mathematical knowledge did not
show any relationship to pupil gains. In addition, depth was the only variable which
appeared to be related to teaching orientation, with transmissionist teachers making a
relatively low percentage of conceptual links compared to their connectionist and
discovery-oriented colleagues (Askew et al, 1997, p. 60). This suggests a measure of
mathematical knowledge for teaching using technology, defined in terms of conceptual
connections, might show a moderate relationship with teachers’ transmissionist or

connectionist orientation.

In section 6.3, this chapter concludes by tentatively suggesting ways in which the circle
theorem case list could be used to measure teachers’ mathematical knowledge for
teaching using technology in terms of conceptual connections in relation to the topic of
circle theorems. Validating these ways of measuring teachers’ mathematical knowledge
for teaching using technology in relation to the topic of circle theorems was beyond the

scope of this study.

6.1 Analysis of GeoGebra interviews using the Knowledge Quartet

In terms of this study, the strengths of the Knowledge Quartet lie in the framework’s
focus on mathematical knowledge for teaching and the grounding of its codes in
classroom observation, as prototypical classroom situations where mathematical
knowledge for teaching arises, thereby maintaining strong face and content validity. In
Chapter 5, the distinction between the dyadic constructs and the central TPACK was
found to be in terms of mathematical knowledge, providing evidence that mathematical
knowledge for teaching using technology can be thought of primarily as mathematical
knowledge, albeit simultaneously situated in the context of teaching using technology.
The TPACK framework does not provide a means for analysing mathematical
knowledge due to its lack of subject-specificity. Thus, in relation to this study, the
Knowledge Quartet’s focus on mathematical knowledge was a useful attribute,
providing a subject-specific lens through which to view the data, complementing the
TPACK framework’s focus on technology and compensating for its relative lack of

subject-specificity. In particular, the Knowledge Quartet’s Connection supra-category
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seems advantageous as an analytic tool in relation to the hypothesis that mathematical
knowledge for teaching using technology might be measured in terms of the
connectedness of teachers’ mathematical knowledge. In addition, research on the
importance of variation to structure sense-making (Marton & Booth, 1997; Watson &
Mason, 2005; 2006) suggests the code choice and use of examples (Transformation)
may be advantageous as a tool for analysing mathematical knowledge for teaching using
technology in the context of the semi-structured GeoGebra interviews, since dynamic

variation is central to such software (Leung & Lee, 2013).

On the other hand, the lack of focus on technology in the Knowledge Quartet, in
particular on digital technologies, was a possible weakness in attempting to develop a
measure of mathematical knowledge for teaching circle theorems using technology.
However, as the literature review (Chapter 2) suggests, the Knowledge Quartet is not
unique amongst frameworks on mathematical knowledge for teaching in lacking a focus
on technology. The strong face validity of the Knowledge Quartet also made the
framework generally appealing to the author. In addition, and perhaps more importantly,
analysing the GeoGebra interview data using the Knowledge Quartet provided a means
of ensuring that any measure of mathematical knowledge for teaching circle theorems
using technology based upon this analysis would be likely to retain the strong content
validity of the parent framework. However, the strong content validity of the
Knowledge Quartet derives from the framework’s grounding in classroom observations,
thus applying its codes to interview data might result in some discordancy. These issues

regarding the Knowledge Quartet are returned to later in Section 6.1.5.

The following sections draw on data from the discussion of the first diagram D1 in the
semi-structured interviews on using GeoGebra files to teach circle theorems to
exemplify the four supra-categories of the Knowledge Quartet, namely Foundation,
Transformation, Connection and Contigency. These examples are intended as being
indicative rather than an attempt to provide an exhaustive list of each Knowledge
Quartet code that arose during the case study teachers’ interaction with the GeoGebra
file in interview. In particular, the examples have been chosen to illustrate the
emergence of choice and use of examples (Transformation) and decisions of sequencing
(Connection) as central codes. In addition, where appropriate, indications or examples
are given where codes were absent or required an interpretation that appeared to deviate
somewhat from the original Knowledge Quartet meaning due to the interview or

technological context.
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6.1.1 Foundation

The extraneous chord

D1 was designed as a means of demonstrating the angle at the centre theorem. All four
of the case study teachers, Robert, Anne, Edward and Michael, readily recognised the
purpose of the diagram. D1 was constructed with the angle at the circumference at point
B, subtended by the arc CD, and the angle at the centre-point A, also subtended by the
arc CD, as shown in Figure 6.1. In addition, an extraneous chord was constructed as a

dashed line segment joining points C and D.

Duagram 1 rd S
rd 4

Figure 6.1 The starting configuration of Diagram 1

The chord CD is extraneous because it is not mathematically useful either in defining or
proving the angle at the centre theorem. Indeed, the extraneous chord is a potential
distraction from the angle at the centre theorem, since it divides the circle into two
segments, drawing attention to another circle theorem: the angles in the same segment
theorem. It could be argued instead that the chord CD provides a useful means of
connecting the two theorems. However, the chord CD is also not necessary either in
defining or proving the angles in the same segment theorem. In fact, such a connection
might be better made mathematically by introducing the ‘angles in the same segment’
theorem as ‘angles on the circumference subtended by the same arc’. Thus recognising
the chord CD as extraneous to D1 for the purpose of demonstrating the angle at the
centre theorem, or at least questioning its relevance, is an example of overt subject

knowledge, indicating a coherent mathematical understanding of this circle theorem.

Robert was the only case study teacher to question the relevance of the chord CD for the

angle at the centre theorem. Early on in the discussion of D1, he stated:

R: the thing I thought when | was looking at this first time around was, if the
intention of this is to, for pupils to see that the angle at the centre is double that at the
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circumference, then I wasn’t necessarily sure about how actually drawing in the chord
helped them with this. [Rob-GGb-int, 13.6.2012]

Later in the interview, Robert appeared to find a possible use for the chord CD in
identifying the relevant angles in a particularly contorted configuration of D1 and,
alluding to the angles in the same segment theorem, he also referred to the chord CD:

R: I think dragging point B kind of demonstrates the, | mean, the invariance
of the fact that well it’s still coming from the same chord. [Rob-GGb-int, 13.6.2012]

In contrast, Edward incorrectly assumed that the chord CD was relevant to the angle in
the centre theorem, using the chord in his attempt to define the angle at the
circumference and the angle at the centre in a statement of the theorem:
E: the chord C and D, joining C and D ... subtends an angle of 108 at the
centre and 54 at the circumference, so uh ... for this configuration of points it’s

showing that the angle at the centre is twice the angle at the circumference. [Ed-GGb-
int, 20.6.2012]

Edward was the only case study teacher to volunteer an attempt at a precise definition of
the angles involved in the angle at the centre theorem. The other three teachers left the
definition of the angles implicit, generally referring to them as the ‘angle at the
circumference’ and the ‘angle at the centre’. Edward’s attempted definition later caused
him difficulties as he encountered the convex quadrilateral configuration of D1 where
the relevant angles, i.e. those involved in the doubling relationship, did not conform to
his definition based on the chord — see Figure 5.6, Edward’s angle definition dilemma.

Neither Anne nor Michael mentioned the chord CD.

Recognising the chord CD as extraneous seems an important example of foundational
knowledge because of how the chord seemed to influence Edward and Robert’s choice
and use of examples and decisions about sequencing. In particular, perhaps as a result of
defining the angle at the centre as subtended by the chord CD, Edward viewed the
convex quadrilateral configuration shown in Figure 5.6 as a complication to be avoided
rather than a natural continuation of the theorem. Similarly, Robert suggested he would
drag B first, essentially demonstrating the angles in the same segment theorem, causing
the convex quadrilateral configuration to first arise with the ‘incorrect’ angle at the
centre. Thus, unfortunately, the convex quadrilateral configuration first appears as a
non-standard or special case of the angle at the centre theorem due to the relative
positioning of points B, C and D. The appearance of the convex quadrilateral
configuration as a non-standard or special case may have been heightened by the

presence of the chord CD, since it separates the circle into two segments, indicated by
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Robert’s reference to B being positioned in the “opposite segment” as one of two main
special cases:

R: I think I mean those are the two main ones I think in the opposite segment
and also the DC being a diameter. [Rob-GGb-int, 13.6.2012]

The ‘Arrowhead’ Rule

Michael was the only case study teacher to state that “in my head this rule is the
Arrowhead Rule” [Mic-GGb-int, 31.5.2012]. He said this in response to the
interviewer’s introduction of the upside-down arrowhead configuration, a 180-degree
rotation of Figure 5.3 or Figure 5.8 (a) the standard arrowhead configuration, to indicate
that the rotation did not seem a significant alteration to him. A little later, Michael
moderated this response, after further prompting from the interviewer, to:

Yeah, | guess the point is | mean not to call it the Arrowhead Rule so that they look

for an arrowhead, because now they might look at that and go you know ‘It’s two

spikes going up, I’'m used to one spike going up’ and then don’t realise it’s just upside

down. So yeah, | guess yeah | guess there is a benefit to that. [Mic-GGb-int,
31.5.2012]

To some extent, Michael’s moderated response is a positive instance of identifying pupil
errors i.e. a recognition that pupils may find different orientations difficult to identify as
the same configuration. On the other hand, his admission that, for him, the angle at the
centre theorem is really the ‘Arrowhead’ Rule is a rather negative instance of overt
subject knowledge, suggesting he views the arrowhead configuration as the standard
configuration of the angle at the centre theorem, relegating other mathematically valid

configurations of this theorem as non-standard, exceptional or special cases.

Although Michael was the only teacher to articulate that he saw the angle at the centre
theorem as the Arrowhead Rule, the choice and use of examples and decisions about
sequencing of the other case study teachers also suggested they might implicitly share
the same understanding. Edward argued that he would drag points B, C and D,
maintaining the arrowhead configuration, until he felt that his pupils had grasped the
doubling relationship, only then moving on to “complicate” it by considering alternative
configurations:
E: What I’d start with is look just move B between C and D but don’t cross it

and move D just so it doesn’t go further round than CD being a diameter. [Ed-GGb-
int, 20.6.2012]
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E: When | was happy everyone had got that idea for that sort of arrow-shape,
I’d then move on and complicate it. [Ed-GGb-int, 20.6.2012]

Robert and Anne also suggested they would drag point B first, essentially demonstrating
the angles in the same segment theorem, leaving the cross quadrilateral configuration
implicit and causing the convex quadrilateral configuration to first arise with the
‘incorrect’ angle at the centre. As argued previously, this has the effect of causing the
convex quadrilateral configuration to appear as a non-standard or special case, reifying

the arrowhead configuration as the standard configuration.
Adhering to the starting configuration

Robert was the only case study teacher to consider modifying the starting configuration
of D1 to suit his own pedagogical requirements. He suggested he might alter D1 so that
the initial numerical example displayed when opening the GeoGebra file would be an
almost implausibly ‘nice’ pair of numbers, setting the angle at the circumference to 60
degrees and the angle at the centre to 120 degrees as an example. His intention was to
set up a situation that appeared ‘too good to be true’ so that pupils would assume no
relationship was likely to exist and would therefore sustain cognitive conflict when the
angle at the circumference remained invariant under drag, hopefully making the result
more memorable. The other three case study teachers uncritically accepted the starting
configuration, questioning neither the numerical example nor the geometric

configuration.

The geometric nature of the starting configuration, in particular, is important since it
provides an implicit pedagogic structuring. For example, opening the GeoGebra file so
that D1 initially displays an arrowhead configuration implies a choice and use of
examples and a decision about sequencing that alternative configurations will occur as a
consequence of the arrowhead configuration, potentially reinforcing the impression of
the arrowhead as the standard configuration of the angle at the centre theorem. An
alternative would be to open the GeoGebra file so that D1 initially displays the convex
quadrilateral configuration as a means of challenging this apparent orthodoxy. In
addition, the starting configuration tends to impose decisions about sequencing, since
some configurations are more difficult to obtain depending on whether they require
dragging point B, C or D only or a combination of these points.

The case study teachers’ adherence to or modification of the starting configuration

appears to coincide with the meaning of the code adherence to textbook, in the sense
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that it describes a situation involving mathematical knowledge for teaching where a
teacher decides either to adhere to or to modify the pedagogic structuring of
mathematics by a teaching resource. The teacher’s decision, implicit or explicit,
regarding the pedagogic structure of the teaching resource provides an indicator of
foundational knowledge. An implicit (i.e. uncritical) adherence to the pedagogic
structure of the teaching resource implies a negative reading of the code. Thus Anne,
Edward and Michael’s uncritical acceptance of the starting configuration suggests they
lack foundational knowledge that the starting configuration of D1 might be (usefully or
otherwise) critiqued in terms of the pedagogic structuring it provides. Hence they make
a readerly response to D1 (Bowe, Ball and Gold, 1992, drawing on the work of
Barthes). Nevertheless, a readerly response might apparently result in a positive choice
and use of examples say, if the pedagogic structuring of the resource was sound. Thus,
confusingly, a readerly response could also be interpreted as a positive example of the

code adherence to textbook.

A writerly response (Bowe et al., 1992) to D1 would entail a recognition that the
starting configuration of D1 might be critiqued in terms of the pedagogic structuring it
provides, resulting in an explicit decision either to adhere to or to modify the pedagogic
structuring of the teaching resource. This suggests a positive reading of the code
adherence to textbook. Indeed, an explicit decision to adhere to the pedagogic
structuring of the teaching resource would be a positive example of the code adherence
to textbook if the pedagogic structuring of the resource were sound. On the other hand,
such a decision could also be interpreted as a negative example of the code if the
pedagogic structuring turned out to be flawed in some way. An explicit decision to
modify the pedagogic structuring of the teaching resource which resulted in
improvement, would again indicate a positive example of adherence to textbook — this
latter is also dealt with by the new code use of instructional materials under the
Transformation category introduced by (Petrou & Goulding, 2011). However, Robert’s
decision to modify the starting configuration could be interpreted as a deterioration in
the pedagogic quality of the initial choice of example: it is geometrically too close to
being symmetric and the numbers are exceptional. Thus Robert’s modification could be
interpreted both as a positive and negative instance of the code adherence to textbook
under Foundation and a negative example of use of instructional materials. This
analysis is rather cumbersome and symptomatic of the Knowledge Quartet’s relative

lack of focus on knowledge in relation to teaching resources in general.
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Finally, there is a slight discordancy in using this code to describe the case study
teachers’ adherence to or modification of the starting configuration, since the code
specifically refers to a textbook and not a digital resource such as the GeoGebra file on
circle theorems. The specificity of the adherence to textbook code derives from the non-
digital technology context in which it was grounded. The discordancy may be
ameliorated by a minor alteration to the code, so that it refers to a more generic teaching
resource as in use of instructional materials (Transformation) or responding to the

(un)availability of tools and resources (Contingency).

6.1.2 Transformation

Numerical examples

Numerical variation is crucial to appreciate the nature of the numerical relationship
between the angle at the circumference and the angle at the centre as a doubling
relationship as opposed to any other kind of numerical relationship, e.g. an additive one.
It also indicates the range of numerical values over which the relationship is conjectured
to hold. Providing numerical variation using D1 is essentially dependent on dragging
either point C or D, since dragging point B leaves the angle at the centre invariant and

only allows two possible numerical values for the angle at the circumference.

All the case study teachers, at some point in the interview, dragged points C and D and
made an explicit choice and use of examples with regard to the numerical examples they
thought worthwhile demonstrating to their pupils. Often these choices were articulated
in terms of ensuring the doubling relationship would not be obscured by an onerous
calculation or disguised by rounding errors, rather than an explicit consideration of the
need to provide numerical variation for the purposes described above. For example, as
described in Chapter 5, both Michael and Robert chose numerical examples where the
angle measures were multiples of 10 to make the doubling calculation more
straightforward, helping their pupils ‘spot’ the relationship. Anne and Edward expressed
disquiet about the potential of numerical examples containing rounding errors to
obscure the doubling relationship (see Chapter 5), and all four teachers acknowledged
the need to draw pupils’ attention to numerical examples containing rounding errors as a
means of effacing the issue. For example, by dragging point D so that it coincided with
point C, Michael found a particularly nice series of numerical examples with small

angles as a means of addressing the issue of rounding errors, see Figure 6.2:
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M: If I okay, so if I move C and D together, they’re both going to be zero.
Okay, that’s good because as soon as you start moving C and D apart, so you get,
yeah, that’s again, that’s rounding isn’t it, because you’ve got the angle at the centre
is 1. The angle at the circumference is zero, but then when you ... that’s a lovely
illustration. It’s gone from 2 to 1, but then you’re going to get 3 to 1, so there’s
halves isn’t there?

l: Right.

M: So 4 to 2, so you’re going to get 5 to 2 before you get 6 to 3 or yeah. [Mic-
GGb-int, 31.5.2012]
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Figure 6.2 Michael’s series of numerical examples with small angles. Note he does not mention
(v) but it is included here for completeness.

Geometric configurations

Geometric variation is crucial to appreciate the sufficiency of the condition that points
B, C and D lie on the circumference of the circle for the angle at the centre theorem to
hold. That is, the theorem holds no matter where the three points are positioned on the
circumference, so long as they are distinct from each other. The positioning of points B,
C and D in relation to each other determines the ‘shape’ of the internal quadrilateral
BDAC. Thus there are three standard geometric configurations of the angle at the centre
theorem: the arrowhead configuration, the convex quadrilateral configuration and the

cross-quadrilateral configuration (see Figure 6.3). All four case study teachers explicitly
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recognised the arrowhead and convex quadrilateral configurations and thought it
important to demonstrate these to their pupils. For Robert, Anne and Edward, the cross-
quadrilateral configuration first arose as a result of dragging point B around the major
arc CD, when asked how they would demonstrate D1 for pupils. At this stage in their
interviews, the cross-quadrilateral configuration remained implicit: none of the teachers

articulated recognition of this configuration as a distinct example.
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Figure 6.3 (a) The arrowhead configuration (b) the cross quadrilateral configuration and (c) the
convex quadrilateral configuration

Later in their interview, each of these three teachers again came across the cross-
quadrilateral configuration but as a result of dragging either point C or D. Robert, Anne
and Edward each discussed this instance of the cross-quadrilateral configuration,
explicitly recognising it as a distinct example. Their recognition of the cross-
quadrilateral configuration in this instance was due to the ‘incorrect’ angle at the centre
being displayed, requiring some thought as to whether the theorem still applied or had
broken down. Michael first came across the cross-quadrilateral configuration in this
manner, through dragging point D. Both Robert and Michael discussed whether this
example was appropriate to show their pupils. Robert concluded that it might be useful
for his students to struggle to verify the theorem still applied, in the manner he himself
had done, though it remained unclear whether he would make a point of demonstrating
it to them explicitly. Michael suggested he would probably demonstrate the example to
his highest-attaining students, as long as he felt sure they had a strong grasp of the
theorem already, but it seemed unlikely that he would demonstrate this example for
slightly lower attaining students. The case study teachers’ decisions about whether a
particular geometric configuration was suitable for demonstrating to their pupils
provides another example of their choice and use of examples. It is worth noting here
that a teacher’s recognition of a case (or not) is an example of Foundation knowledge.
Having recognised a particular case as an example, a teacher’s choice about whether
and how to use the case with pupils falls under the Transformation category.
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Teacher demonstration

The code teacher demonstration provides an example of where the interview context
appeared to disrupt the intended meaning of the code i.e. an instance of mathematical
knowledge for teaching arising through a teacher demonstrating something
mathematical to pupils in the context of a lesson. During the interview, there were no
pupils present and, of course, to some extent, the case study teachers could be said to be
demonstrating some aspect of circle theorems to the author at all times throughout the
interview. However, the disruption of the teacher demonstration code appears more
subtle than this statement would seem to imply.

At times during the interview, in particular when asked how they would demonstrate D1
for pupils, the case study teachers demonstrated to the author how they might drag the
diagram for (imaginary) pupils. These instances remain as close to the original meaning
of the code as possible in the interview context. At other times, the case study teachers
appeared to demonstrate the diagram to the author as if to a colleague i.e. a fellow
mathematics teacher from their department, for example. Robert provided the clearest
instance of this in his initial description of D1, before being asked how he would use the
diagram with pupils. He demonstrated his understanding of how the diagram is
constructed; of the pedagogic purpose of the diagram i.e. to introduce the angle at the
centre theorem and that there is an issue with rounding errors, which needs to be dealt
with pedagogically.

Okay, so we’ve got, so the three red points are presumably all fixed to the

circumference of the circle and I can modify all of them so they’re all free to move.

Um, and what they do, so two of the points define a chord. The third point are

connected to those two points and it ... well, that chord, there’s a subtended angle

which is marked and measured and at the centre there’s the same angle which in the

way that it’s currently looking is double [dragging B back and forth], but not always,
if you choose numbers that round awkwardly. [Rob-GGb-int, 13.6.2012]

This demonstration of the diagram is quite different to how he later suggested he would
demonstrate D1 to pupils. Following on from this demonstration, Robert continued to
explore the diagram, this time dragging point C. Coming on an unexpected

configuration, he seemed to be speaking to himself rather than to an observer: he
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appeared to speak more softly, asking questions that seemed directed to himself about
what was happening, since he answered them himself.
What happens if it comes this way? [dragging point C, stops at angles B=100, A=200]

That still works. And if that comes over there? [dragging C past B, ‘incorrect’ angle
at centre shown] It doesn’t work anymore. [Rob-GGb-int, 13.6.2012]

The other case study teachers similarly appeared to ‘demonstrate’ the diagram to
themselves when confronted with unexpected configurations. Thus, in an interview
context, there appears to be three types of demonstration: demonstration to (imaginary)
pupils; demonstration to a colleague/the interviewer, and ‘demonstration’ to oneself i.e.
personal exploration. The first two types of demonstration belong under
Transformation, since they suggest a demonstration of the diagram for pedagogic
purposes, whilst the third is more appropriately considered under Foundation as it

indicates a personal understanding of mathematics.

6.1.3 Connection

Sequencing configurations

All the case study teachers made decisions about sequencing in terms of the order in
which they introduced geometric configurations to their pupils. For example, Edward
suggested he would maintain the arrowhead configuration, first dragging point B and
then points C and D, until he felt his pupils had a good grasp of this configuration,
before introducing new configurations as a “complication” [Ed-GGb-int, 20.6.2012]. As
a first complication, Edward suggested he would introduce the convex quadrilateral
configuration by dragging point B onto the minor arc CD. Secondly, Edward suggested
he would drag point D so that the chord CD becomes a diameter. Finally, he suggested
he might continue to drag point D, thereby introducing a different version of the convex
quadrilateral configuration. Edward’s sequencing of geometric configurations is

depicted in Figure 6.4.
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Figure 6.4 An indication of Edward’s sequence of configurations. The trace gives a sense of
how he dragged points B, C and D.

Similarly, Robert and Anne suggested they would maintain the arrowhead configuration
initially, before introducing the convex quadrilateral configuration by dragging point B
onto the minor arc CD. In addition, Robert later suggested he would also introduce the
configuration where CD is a diameter and the alternative version of the convex

quadrilateral configuration arrived at through dragging point D.

Michael also suggested he would maintain the arrowhead configuration initially whilst
dragging points B, C and D. However, in contrast, he then suggested he would
introduce the convex quadrilateral configuration by dragging points C and D, as shown
in Figure 6.5. Michael’s sequencing produces a different impression of the convex
quadrilateral configuration and is preferable to the other three case study teachers’

decisions about sequencing for reasons discussed in Chapter 5.
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Figure 6.5 An indication of Michael’s sequence of configurations

Making connections between circle theorems

Using D1 to make connections between circle theorems is an example of making
connections between concepts. Robert wanted to use D1 to make connections between
the angle in the centre theorem and two other circle theorems, the angles in the same
segment theorem and ‘Thales theorem’ or the angle in a semi-circle is right. Similarly
Edward thought that dragging point D so that CD forms a diameter made a “nice”
connection, showing “really well” that the angle in a semi-circle is right is a

consequence of the angle in the centre theorem [Ed-GGb-int, 20.6.2012].

Making these connections between the circle theorems impacted on the case study
teachers’ choice and use of examples and decisions about sequencing. In particular,
Robert and Edward both dragged point B to initiate their demonstration of D1 to pupils,
which is in essence a demonstration of the angles in the same segment theorem (see
Figure 6.4 i and iii). Whilst dragging point B does make a connection between the two
theorems and may connect with prior work, as Robert suggested, the decision about
sequencing, i.e. choosing to introduce D1 in this way, risks distracting from the main
pedagogic purpose of diagram, namely to introduce the angle in the centre theorem.
Pedagogically, it seems preferable to use D1 to make connections with the angle in the
same segment theorem once the angle in the centre theorem has been established. The
angle in the semi-circle theorem by contrast can be viewed as a particular numerical
example of the angle in the centre theorem. Thus choosing to make this connection
between the two theorems represents a positive case of the choice and use of examples.
In addition, making this connection by dragging point C and/or point D represents a

positive case of decisions about sequencing, leading onto the introduction of the convex
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quadrilateral configuration, since providing both geometrical and numerical variation is
crucial to demonstrating the angle at the centre theorem, as argued above. Figure 6.6
provides an illustration of what such a dragging sequence might look like.
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Figure 6.6 Illustration of an introductory dragging sequence for D1, connecting the angle in the
centre theorem to the angle in a semi-circle is right theorem

6.1.4 Contingency

Unexpected configurations

During their dragging of the diagram, each of the case study teachers came across
unexpected configurations of D1 that gave rise to teacher insight. Typically, these
configurations were unexpected either due to their unusual orientation or because the
‘incorrect’ angle was displayed at the centre, thus the doubling relationship was not
readily perceptible (see Figure 6.7 for examples). The case study teachers had to put
some effort into reconciling these unexpected configurations with their existing
knowledge, to recognise the angle at the centre theorem still held, entailing a (perhaps
unstable) change in their Foundation overt subject knowledge. Here, a critical part of
overt subject knowledge appears to be the range of examples of the angle at the centre
theorem the teacher has explicit knowledge of in relation to D1 and in the context of the
interview, i.e. their evoked concept image (Tall & Vinner, 1981). It is this set of
explicitly known examples, evoked both in and by the technological and interview
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context, that the case study teachers can draw on in a transformation of their knowledge

for pedagogic purposes through a deliberate choice and use of examples.

In addition, at times prompted by the author, the case study teachers sometimes
considered whether and how they would use such a configuration if it arose during the
course of a lesson. The convex quadrilateral configuration that arose during Robert’s
interview by dragging point B onto the minor arc CD, described in the section on
sequencing configurations, is an example of such an instance. Robert concluded that if
he had known this configuration was going to arise in the lesson, he might deliberately
avoid it, at least initially, in the hope that one of his pupils might raise it instead. He
stated that previously he had constructed diagrams so that B was forced to lie on the
major arc CD, so that such a configuration could not occur, but did not think he would
do this in future. In the context of the interview, Robert’s conclusion represents a
deviation from lesson agenda since it involves a change in his knowledge of how to
transform the diagram for pedagogic purposes, in particular, a change in his choice and

use of examples.

Figure 6.7 Three examples of case study teachers’ unexpected configurations

Two absences and a presence

The codes responding to student’s ideas and responding to the (un)availability of tools
and resources from Contingency were necessarily absent from the data. Given the
interview design, based around a GeoGebra file, there were necessarily no tools and
resources either unexpectedly present or unavailable. Without the necessary technology,
the interview could not take place and there was no remit within the interview protocol
for introducing additional tools or resources. Trivially, there were no children present

during the interview, to whom the case study teachers could respond.
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One type of contingency was not covered by the Knowledge Quartet codes: when the
author introduced configurations as a prompt for the case study teacher, as in the
upside-down arrowhead configuration, for example. These prompted configurations
were generally unexpected, at least for the case study teacher. It is conceivable that an
analogous contingency might occur in the context of a lesson where a teaching
colleague was present, for example, due to team-teaching or due to the presence of a
teaching assistant — the latter a reasonably common situation in current UK classrooms.
Such a code might be termed responding to colleague’s intervention. The contingencies
caused by the author’s prompts generally revolved around choice and use of examples,
for example, of what pedagogic benefit was the upside-down arrowhead i.e. was it
worth demonstrating to pupils. For Edward, this configuration also raised decisions
about sequencing: he was concerned about the dragging sequence required to effect this

configuration.

6.1.5 Summarising the Knowledge Quartet analysis

The analysis above demonstrates the emergence of choice and use of examples and
decisions about sequencing as central codes in describing mathematical knowledge for
teaching circle theorems using technology. The centrality of choice and use of examples
in describing mathematical knowledge for teaching circle theorems using technology
coincides with research emphasising the importance of variation for learning and
pedagogy in general and for mathematics in particular (Marton & Booth, 1997; Watson
& Mason, 2005; 2006). The centrality of decisions about sequencing from the
Connection category of the Knowledge Quartet provides evidence in support of the
hypothesis, stated in the introduction to this chapter, that mathematical knowledge for
teaching using technology might be measured in terms of the connectedness of teachers’
mathematical knowledge. In particular, whilst variation in terms of choosing a set of
examples is pedagogically important, the sequencing of these examples to provide a
structure, in which attention is drawn to particular invariants before others, is equally
important for pedagogic purposes. For example, choosing to introduce D1 by dragging
point B produces variation which draws attention to the invariance of angles in the same
segment theorem, thus distracting from the pedagogic purpose of the diagram, namely,
to introduce the angle at the centre theorem. Introducing D1 by dragging B first had the

added disadvantage of causing the convex quadrilateral configuration to seem like a
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“complication” rather than a natural consequence of the angle at the centre theorem. In
other words, providing numerical variation to make connections between different
configurations of the same theorem before making connections with other theorems
seems to be preferable for pedagogic purposes, indicating mathematical knowledge for
teaching circle theorems using technology. Thus any measure of mathematical
knowledge for teaching circle theorems using technology should reflect both the choice
of examples and their sequencing.

In addition, ideally a measure of mathematical knowledge for teaching circle theorems
using technology should reflect the distinction, made in the section entitled ‘Unexpected
configurations’ under Contingency, between examples (i.e. geometric configurations)
that are explicitly recognised by the teacher and those that arise during the teacher’s or
the author’s manipulation of the diagram but which remain implicit. This is important
because it may be the mathematical knowledge made available in the classroom i.e. the
knowledge distributed across both teacher and technology, rather than the individual
teacher’s own knowledge that has most impact on the quality of pupils’ mathematical
experience in the classroom. In making a deliberate choice and use of examples, the
case study teachers were limited to the set of their explicitly known examples, evoked
both in and by the technological and interview context i.e. their evoked concept image
(Tall & Vinner, 1981). A further distinction was made between those explicitly-
recognised configurations that the teacher chose to include through a deliberate choice
and use of examples, and those they chose to exclude, either by suggesting they might
discuss such configurations (only) if they happened to arise through dragging or by
suggesting they might deliberately avoid them when demonstrating D1 to pupils. Again,
a measure of mathematical knowledge for teaching circle theorems using technology
should ideally reflect this distinction.

The analysis presented in the previous section shows that the Knowledge Quartet
remained a useful tool for focusing analysis on mathematical knowledge despite the
shift away from the classroom context in which the framework was originally
developed and grounded. This finding is not entirely surprising since although the
classroom is a particularly important context, it is not the only context in which teachers
are likely to employ their mathematical knowledge for teaching. Nevertheless, the
change in context, both in terms of the interview setting and the technological context,
did result in two absences, notably under Contingency: a lack of situations requiring a

response to pupils’ ideas and a lack of situations requiring a response to the
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(un)availability of tools and resources. This reflects the findings of Chapter 5 that
mathematical knowledge for teaching using technology is a situated abstraction,
simultaneously representing ‘abstract’ mathematical knowledge that can be applied
across contexts and yet situated knowledge in that the particular context in which it was

developed may be central to its meaning.

In addition, the analysis of the GeoGebra interview data suggested some minor
modifications to the Knowledge Quartet, both in relation to technology and to the
interview context, that might prove useful when re-applied back to the original
classroom setting or to other settings where teachers employ their mathematical
knowledge for teaching. For example, responding to colleague’s intervention was
suggested as an additional code under Contingency that might be applicable beyond the
interview context. A distinction was also made between three types of teacher
demonstration, i.e. a demonstration to pupils versus a colleague under Transformation
and to oneself under Foundation. This distinction seems less applicable beyond the
interview context, since it is hard to envisage how the latter two types might occur in a

classroom context.

The cumbersome analysis of situations involving the code adherence to textbook is
symptomatic of the Knowledge Quartet’s lack of focus on knowledge in relation to
(digital) technology. The difficulty with this code is that it categorises situations
involving the application of foundational knowledge both in perceiving the technology
as something requiring a pedagogic critique and in terms of the quality of the critique
applied to the teaching resource. The former relates to the teachers’ foundational
knowledge in adopting a readerly or writerly approach to the resource (Bowe et al.,
1992). The latter is also dealt with under the Transformation category, specifically the
code use of instructional materials, which additionally reflects back onto the teachers’
foundational knowledge indicated by the quality of the pedagogic critique applied to
transform the resource for the purpose of teaching. There is no easy way to ameliorate
this difficulty within the Knowledge Quartet, however, adherence to textbook could be
modified to reflect a broader range of teaching resources rather than privileging this
paper-based technology. Furthermore, as a result of new codes added by a range of
researchers, the codes of the Knowledge Quartet use an impromptu variety of terms to
refer to teaching resources including textbook, instructional materials, tools and
resources. The variety of terms is not intended to make any productive distinctions, as

far as the author is aware, thus it might simplify and improve the coherence of the
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Knowledge Quartet to settle on a particular term or group of terms to refer to teaching
technologies. Finally, the analysis above provides an exemplification of the Knowledge
Quartet in relation to digital technologies, albeit not in a classroom context. This
exemplification might be useful in helping teachers to use the Knowledge Quartet as a
tool for professional development in relation to their use of technology, as described in
Turner and Rowland (2011).

The next section builds on these findings to justify the development of the circle
theorem case list as a potential tool for measuring mathematical knowledge for teaching

circle theorems using technology.

6.2 Developing a tool for measurement: the circle theorem case list

A circle theorem case list is a numbered sequence of the pedagogic cases of the angle at
the centre theorem in the order they arose through an individual case study teacher’s
dragging of D1 during their semi-structured GeoGebra interview. Describing the
development of this measurement tool shows how this process was necessarily entwined
in a dialectic relationship with the conceptualisation of mathematical knowledge for
teaching circle theorems using technology (Hill et al., 2008). In particular, it shows how
the process of developing the circle theorem case list was crucial to unravelling the
complexity of this knowledge. However, due to the complexity of mathematical
knowledge for teaching circle theorems using technology, it seems expedient first to
describe in detail the final measurement tool to provide a context for understanding the
process of tool development. Thus the next sub-section provides a detailed description
of the circle theorem case list, showing how the measurement tool allows comparisons
to be made between the case study teachers’ choice and use of examples and decisions
about sequencing. In addition, the analysis of interview data above using the
Knowledge Quartet is employed to provide a post-hoc justification that the circle
theorem case list shows potential as a measurement tool. This section then returns to
provide a description of the process of developing the circle theorem case list. Finally,
section 6.3 considers how the conceptualisation of mathematical knowledge for
teaching using technology in relation to the topic of circle theorems, presented here,
suggests ways in which such knowledge could be measured. The chapter concludes by
speculating tentatively about the relationship (if any) between a connectionist versus
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transmissionist teaching orientation and mathematical knowledge for teaching circle

theorems using technology.

6.2.1 A description and justification of the circle theorem case list

The circle theorem case list provides a means of summarising the case study teachers’
choice and use of examples and decisions about sequencing in a manner that facilitates
comparison. This fulfils the main criterion for a potential tool for measuring
mathematical knowledge for teaching circle theorems using technology identified above
in the analysis of the interview data using the Knowledge Quartet. Figure 6.8 presents
the circle theorem case list for each of the four case study teachers. The reader is
advised to view Figure 6.8 alongside Figure 6.9. To this end, both figures are included
as separate sheets in the back cover of the thesis. The numbers in Figure 6.8 indicate the
pedagogic cases of the angle at the centre theorem, elicited during the case study
teacher’s interview. The numerical list of these pedagogic cases is depicted in Figure
6.9 in order of the ease with which they can be obtained from the starting configuration
through dragging points B, C and D. The pedagogic cases are numbered in this way in
an attempt to preserve the case study teachers’ patterns of dragging, in effect the
pedagogic structuring of cases imposed by the construction and starting configuration of
D1. The list of pedagogic cases is also represented as a table in Figure 6.10 to
demonstrate that the list represents a complete set of cases, given the criteria under
which they were identified. The table was constructed so that its columns indicate the
set of pedagogic cases that might be identified in an environment where dynamic
variation through dragging the diagram was not possible, such as a textbook. That is, the
columns indicate a set of eight standard, special and extreme geometric configurations,
together with the recognition that for configurations where the angle at the centre is not
a multiple of 180, displaying a reflex angle at the centre constitutes a separate
pedagogic case to the configuration where an angle less than 180 degrees is displayed.
The recognition of configurations displaying the reflex and non-reflex angles at the
centre as separate pedagogic cases is important due to the relative difficulty of
apprehending the doubling relationship at the heart of the angle at the centre theorem
when the ‘incorrect’ angle at the centre is displayed. The table was constructed with two
rows to reflect the dynamic nature of the GeoGebra software. Thus, a configuration was

considered to constitute a separate pedagogic case if it arose as a result of dragging

192



point B or as a result of dragging points C and/or D. This distinction is important since
dragging points C and D results in numerical variation, providing evidence for the
doubling relationship between the angle at the centre and circumference, whereas
dragging point B only varies whether the ‘correct’ or ‘incorrect’ angle at the centre is

shown, as a consequence of the angles in the same segment theorem.

The numbers representing pedagogic cases in each of the circle theorem case lists are
also formatted, using bold, italics, underline, and grayscale, according to the following
coding system, to indicate whether the pedagogic case arising during the interview was:

(@) chosen by the case study teacher to show pupils in a deliberate choice and use of

examples;
(b) explicitly recognised by the case study teacher or remained implicit; and
(c) unprompted, prompted indirectly or prompted directly by the author.

The specification of the coding system is described in Table 6.1 and the details of how
formatting is used to indicate this coding are provided as part of Figure 6.8. This coding
system fulfils the secondary criteria for a potential tool for measuring mathematical
knowledge for teaching circle theorems using technology that such a tool should reflect
the distinctions made in the analysis of the interview data using the Knowledge Quartet,
in the section entitled ‘Unexpected configurations’ under Contingency. These
distinctions were two-fold, involving (1) differentiating between the pedagogic cases
which appear to form part of the case study teacher’s evoked concept image, and those
that arise during the teacher’s or the author’s manipulation of the diagram but which
remain implicit and (2) distinguishing between those cases forming part of the case
study teacher’s evoked concept image that the teacher chose to include through a
deliberate choice and use of examples, and those they chose to exclude for whatever

reason.
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Table 6.1 Specification of coding system for pedagogic cases

Show Pupils
Did the case study teacher state they would show
their pupils the pedagogic case in a deliberate
choice and use of examples?

Yes
The case study teacher stated they would show this
pedagogic case to their pupils.

No

Unclear whether the case study teacher would
have shown this pedagogic case to their pupils e.g.
stated they might avoid the case (initially); case
would be acceptable if it comes up through
exploration; case remained tacit.

Case recognition
Did the case study teacher recognise the pedagogic
case explicitly or did it remain implicit?

Explicit recognition

The case study teacher commented verbally on the
pedagogic case, whilst D1 was held stationary or
left static showing the case.

Implicit recognition

D1 was held stationary or left static, if only
briefly, but the case study teacher did not comment
verbally on the pedagogic case OR the pedagogic
case arose repeatedly during continuous dragging
to show a ‘family’ of cases but was not referred to
e.g. for Robert, Anne and Edward the cross-
guadrilateral configuration arising from dragging
point B initially.

Not Listed

Pedagogic cases were not included in the case
study teacher’s circle theorem case list if they did
not arise during the interview or only occurred
briefly during continuous dragging i.e. D1 was not
stationary or static; continuous dragging was not to
show a ‘family’ of cases.

Prompting
How was the case study teacher prompted by the
author to recognise the case?

Unprompted

Pedagogic cases that arose from the case study
teacher’s dragging after the first two interview
questions: ‘what’s going on in this diagram?’ and
‘how would you drag it for pupils?’

Indirectly prompted

Pedagogic cases that arose following subsequent
interview questions from the author, but were not
directly introduced by the author.

Directly prompted
Pedagogic cases that were introduced directly
through dragging by the author.
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Robert* 1 3 5 6 13 4 12 10 271 17 16 19 § 120 6 17 3
Anne 1 3 5 4 6 & 10 w00 6 120 177 16 21
Edward 1 3 5 6 12 13 /00 6 122 19 § 10 7
Michael 1 6 12 9 & 11 10 3 5 7 100 19 16 23 7 21 6 I
Key to formatting of pedagogic cases
Show Pupils Case Recognition Prompting
Yes - underline Explicit - normal text Unprompted - bold
No - normal text Implicit - italics Indirect prompt - normal text
Direct prompt - grayscale

6 = yes, would show pupils; explicit case recognition; unprompted

6 = no, would not show to pupils; explicit case recognition; indirectly prompted
6 = no, would not show to pupils; explicit case recognition; directly prompted

6 = no, would not show to pupils; implicit case recognition; indirectly prompted
6” = indicates a 180-degree rotation of pedagogic case 6

Cases are listed in the order they arose in the interview with the exception of Robert*. If a case
arose repeatedly, only the first instance is shown and the formatting shows the strongest code for
the case recognition and show pupils variables across these instances. For the prompting variable,
the formatting shows the coding of the first instance the case arose in the interview.

Robert* - presents the pedagogic cases as they arose through Robert’s dragging following the
second question ‘how would you drag it for pupils?” This seemed to provide a fairer comparison
with the other three case study teachers. The other three case study teachers suggested their
dragging in response to the first question was indicative of how they would drag D1 for pupils,
whereas Robert’s dragging was significantly different.

Figure 6.8 Circle theorem case lists
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‘Standard’ configurations Special configurations Extreme configurations
Configuration AH XQ CQ One-leg AH Semi-circle Odd triangle V-shape T-shape
Angleatcentre | NR | R NR R NR R NR R 180 NR R 0 360
B 1|19 3 21 5 23 2 20 4 22
13 9 14
CD 6 | 16 8 10 17 | 12 7 15 18 11

NR = angle at the centre is between 0 and 180 degrees i.e. not reflex
R = angle at the centre is between 180 and 360 degrees i.e. reflex
B and CD indicate the last point dragged to arrive at the configuration.

&

AH - arrowhead XQ — cross-quadrilateral CQ — convex quadrilateral One-leg AH
@ @
Il
Semi-circle Odd triangle V-shape T-shape

Figure 6.10 Tabular list of pedagogic cases
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6.2.2 Developing the circle theorem case list: the coding system and list of
pedagogic cases

Initially, the idea for a circle theorem case list appeared to originate spontaneously from
the data, perhaps as a welcome by-product of coding the data using the TPACK and
Knowledge Quartet frameworks. Following the presentation of the case study teachers’
final circle theorem case lists in the last section, this spontaneity seems hard to credit
since the analysis of the interview data using the Knowledge Quartet provides a post-
hoc justification of the features of the circle theorem case list as a potential tool for

measuring mathematical knowledge for teaching circle theorems using technology.

The circle theorem case list began as a rough attempt to create a numerical list of the
configurations encountered by each case study teacher through their dragging of D1.
The initial attempt was worth developing further because it seemed to provide a means
of depicting how Michael’s dragging sequence differed from the other three case study
teachers (for example, see Figure 6.8). From this initial attempt, a working list of
possible pedagogic cases arising from D1 was compiled. At this early stage of
development, this working list comprised the standard arrowhead, cross-quadrilateral
and convex quadrilateral configurations, recognising that displaying the incorrect angle
at the centre might constitute a separate case for pedagogic purposes, as well as a
selection of special and extreme cases. Due to the use of the upside-down arrowhead
configuration as an interview prompt, 180-degree rotations were also included in the
working list as separate cases in an ad hoc fashion, as and when they occurred through

the case study teachers’ dragging.

A second stage of development attempted to make more rigorous the method of
identifying pedagogic cases, by specifying the conditions that would have to be fulfilled
for inclusion in a case study teacher’s circle theorem case list. The coding system
detailed in Table 6.1 and described briefly in the previous sub-section resulted from this
second developmental stage. A decision was made that a pedagogic case would be
included if D1 was left static or held stationary so that it was possible for the author to
recognise the configuration from the video in real time. In addition, a pedagogic case
was included if it arose repeatedly as the result of continuous dragging as if to show a
‘family’ of cases — the cross-quadrilateral configuration caused by dragging point B
initially is the main example of such inclusion. A narrative of the GeoGebra interview

(see methodology, Chapter 3) was used alongside the video to guide observation.
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Guiding observation using the narrative increased the efficiency of compiling a list of
pedagogic cases arising in the interviews, by identifying static periods (where no new
cases arose), which could be skipped over. As the author watched each video, the
pedagogic cases were noted on the narrative as they arose and compared to the
description of events provided by the narrative. Noting pedagogic cases on the narrative
located them within the interview and also highlighted the location of author prompts in
relation to where pedagogic cases arose. This location was useful for comparing
interviews to verify the reliability of coding criteria across case study teachers. In
addition, the process of comparing the narrative against a re-viewing of the video

provided a form of triangulation over time as evidence of reliability.

Using the narrative to guide observation helped to identify a clear rationale for
discriminating between explicitly and implicitly recognised pedagogic cases based on
verbal data, resulting in the specification of the ‘Case Recognition’ variable detailed in
Table 6.1. The original purpose of developing the narratives had been to provide an
accessible summary of each interview, linking verbal and visual data together. Thus the
pedagogic cases that occurred in the narrative generally did so because they were cases
that the case study teacher had cause to comment on verbally, implying explicit
recognition. Pedagogic cases that arose but did not feature in the narrative were those
that did not excite verbal comment. Without verbal evidence, there was no support for a
claim that the pedagogic case had been explicitly recognised by the case study teacher.
Hence these pedagogic cases were included in the case study teacher’s circle theorem

case list but were coded as remaining tacit or implicit.

Coding the upside-down arrowhead configuration, in particular, led to a need to
distinguish further between pedagogic cases according to whether they were introduced
by the author or arose through the case study teacher’s dragging, leading to the
specification of the ‘Prompt’ variable detailed in Table 6.1. The upside-down arrowhead
was introduced by the author as a direct prompt in each of the four GeoGebra
interviews. Thus each case study teacher necessarily commented in response, as
recorded in the narrative of their interview, and the upside-down arrowhead was coded
as being an explicitly recognised pedagogic case. However, it seemed misleading to
code the upside-down arrowhead in the same way as pedagogic cases that arose without
direct intervention from the author. Further, the dragging that gave rise to some of the
pedagogic cases, recognised by the teachers either implicitly or explicitly, appeared to

be triggered in response to a prompt by the author. For example, Michael seemed to
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have finished with D1 until the author asked if there were any special or extreme cases
he would want to show pupils. He responded by saying “There is now you’ve said that”
and proceeded to drag D1 such that points C and D coincided to produce the ‘V-shape’
configuration. Thus it seemed reasonable to distinguish between pedagogic cases that
were largely unprompted, arising as a result of dragging in response to the first two
questions (“what’s going on in this diagram?” and “how would you drag it for
pupils?”); those that were indirectly prompted through follow-up questions, as for
Michael’s V-shape configuration; and those that were introduced as direct prompt by

the author e.g. the upside-down arrowhead configuration.

Finally, in the second stage of development, the case study teachers appeared to place
greater pedagogic value on some configurations than others, stating explicitly they
would make a point of showing some configurations to their pupils, whereas for other
configurations they remained ambivalent or even suggested they might avoid them. This
led to the specification of the ‘Show Pupils’ variable detailed in Table 6.1. For example,
Anne stated she would show her pupils the upside-down arrowhead configuration as
well as the standard arrowhead and convex quadrilateral configurations. She was
ambivalent to other pedagogic cases she came across, neither suggesting she would
deliberately show or avoid them. Robert also stated he would show his pupils the
upside-down arrowhead configuration, however Michael was largely ambivalent,
whereas Edward was concerned by the dragging procedure used to obtain the
configuration. Again the narrative was useful for helping to identify and locate
pedagogic cases in the interview where the teacher stated they would show the
configuration to pupils, since these pedagogic cases clearly gave cause for the teacher to

make a verbal comment.

A third stage of development was prompted by the need to ensure that all pedagogic
cases arising through the case study teachers’ dragging had been included in their case
lists. Until this stage, if a pedagogic case arose repeatedly in interview, the circle
theorem case list had only recorded the first instance of the case. Producing a case list
including repetitions or multiple instances of pedagogic cases provided an opportunity
to check that all pedagogic cases had been included. Thus a visual transcript of each
interview was created to aid the production of a case list including multiple instances
and as a means of ensuring that that all pedagogic cases arising through the case study
teachers’ dragging had been included. A visual transcript is a pictorial list of

configurations made visible by the case study teacher through dragging D1, whether
200



recognised tacitly or explicitly or not at all (see Appendix H). Thus a visual transcript
includes configurations of D1 that were momentarily visible during continuous
dragging as well as those where the diagram was briefly stationary or static. To some
extent, the visual transcript also recorded which point was being dragged to elicit a
particular configuration although this was not done consistently. The production of a
visual transcript entailed viewing the video of the interview at different speeds. For
example, a short sequence of the video was viewed to ‘get a feel’ for what had
transpired, then the video was viewed in a stop/start manner to ensure all cases were
recorded. The video recording was sufficient to look at several configurations per
second in this manner. At times, the dragging was too rapid for the author to observe all
the intermediate cases when the video was played at normal speed and very difficult to
isolate the cases by using the stop/start method, thus although the diagram must
logically have passed through these cases, they were not recorded. The video of each
interview was then viewed once again at normal speed for the full length of the
discussion of D1, without stop/starting, to verify the visual transcript was accurate.

The creation of the visual transcript indicated that the working list of pedagogic cases
was inadequate since it did not represent a complete, systematic list of pedagogic cases.
In particular, it forced a deliberate consideration of visually similar pedagogic cases
arising through different dragging approaches. For example, the two cases in Figure
6.11 are visually similar in that they are both cross-quadrilateral configurations when
left static or held stationary, however dynamically they appear quite different since one
arises through dragging point B and the other from dragging point C or D. The creation
of the visual transcript prompted the recognition of the two configurations in Figure

6.11 as dynamically distinct pedagogic cases.

/
/ ﬂ
/ "

[ l

/\/

(a)

Figure 6.11 Dynamically distinct pedagogic cases of the cross-quadrilateral configuration
arising through dragging (a) point D and (b) point B.

Recognising that pedagogic cases could be dynamically distinct entailed some
deliberate decisions about what would constitute a distinct pedagogic case to prevent

the number of cases becoming unmanageable. In particular, a decision was made that
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configurations arising through the clockwise or anti-clockwise dragging of a point are
considered the same and similarly reflections in a vertical axis are considered the same.
Thus the four configurations in Figure 6.12 are considered to be examples of the same

pedagogic case.

Figure 6.12 Four examples of the cross-quadrilateral configuration, all representing the same
pedagogic case.

Points C and D are symmetrical so configurations arising from dragging point C were
considered to be the same pedagogic case as those arising from dragging point D, as

illustrated in Figure 6.13.

Figure 6.13 Points C and D are symmetrical so these two cross-quadrilateral configurations
represent the same pedagogic case.

Ultimately this led to the compilation of a complete, systematic list of pedagogic cases
as illustrated in Figures 6.9 and 6.10. Following the compilation of the complete
numerical list of pedagogic cases, the videos were reviewed and a final circle theorem
case list produced for each case study teacher, as illustrated in Figure 6.8. A second
circle theorem case list was also created for Robert (see ‘Robert*’ in Figure 6.8)
presenting the pedagogic cases as they arose through Robert’s dragging following the
second question ‘how would you drag it for pupils?” Robert was unique in that his
response to the second interview question ‘how would you drag it for pupils?’ was
intentionally different from his response to the first question ‘what’s going on in this
diagram?’ Anne, Edward and Michael responded to the second interview question
indicating they would drag D1 in a similar way to their response to question 1, before

continuing their dragging to provide cases in addition to those already shown. This
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suggests that for these three teachers, listing cases in the order they arose in the
interview also provides a reasonable indicator of how they would demonstrate D1 to
pupils. Initially, Robert behaved more like a ‘developer’ of pedagogic resources,
dragging the diagram mainly for his own exploration or to demonstrate something to the
author as if to a colleague. His response to the second question was to start afresh,
dragging D1 to his chosen starting configuration and dragging to show cases instead of
those already shown. This suggests his response following the second question might be
a better indicator of how he would demonstrate D1 to pupils. Whilst the case list
‘Robert’ provides a record of the interview, the case list ‘Robert*’ is a reasonable
indicator of how he would demonstrate D1 to pupils and thus provides a fairer
comparison with the case lists of the other three case study teachers.

6.3 Conclusion

The conceptualisation presented in the previous section demonstrates the complexity of
mathematical knowledge for teaching circle theorems using technology. The complexity
of this conceptualisation is paralleled by the complexity of knowledge in relation to
arithmetic revealed by Ma’s (1999) study, which led her to define a profound
understanding of fundamental mathematics. The tabular list depicted in Figure 6.10
comprises 23 pedagogic cases, rising to 46 if 180-degree rotations are included.
Memorising all these cases is unnecessary since it is possible to reconstruct the tabular
list in Figure 6.10 given explicit knowledge of the eight main configurations;
knowledge that the reflex angle at the centre represents a different pedagogic case to
displaying the angle less than 180 degrees at the centre; and knowledge that dragging
point B creates a different set of examples to dragging either point C or D. Nevertheless,
even this amount of knowledge seems unrealistic for all teachers to acquire, especially if
a similar level of complex knowledge is needed for all aspects of the curriculum.
Adopting a distributed view of knowledge might offer potential strategies for supporting
teachers to make coping with the complexity of mathematical knowledge for teaching

using technology in general a more realistic proposition.

The topic of circle theorems provided an area of mathematical content that the case
study teachers would be likely to be familiar with in the context of technology (Ruthven
et al, 2008). This meant that a general lack of familiarity with the technological context,

which would prevent inferences about teacher knowledge from being drawn, was
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unlikely. As discussed below, Anne exemplifies where a lack of general familiarity with
the software arguably prevented access to her mathematical knowledge for teaching
using technology. The topic of circle theorems can also be argued to represent the apex
of geometry in the compulsory English school mathematics curriculum, since it is the
topic where geometric proof is traditionally introduced. Thus it was likely to be a topic
that challenged the case study teachers’ mathematical knowledge. This was important to
create an opportunity to observe and reflect on mathematical knowledge for teaching
using technology, since as Putnam et al (1992) assert, the necessity of knowledge
becomes apparent in its absence. Finally, the Knowledge Quartet provides a post-hoc
justification for the highly complex conceptualisation of knowledge, presented in
section 6.2, that forms a basis for informing and justifying a teacher’s choice and use of
examples and decisions about sequencing. This post-hoc justification alongside Mason
and Watson’s (2005; 2006) research on example spaces suggests that the approach taken
here, i.e. mapping out a complete set of pedagogic cases and identifying a preferred
pedagogical sequencing, may provide a means for conceptualising mathematical
knowledge for teaching using technology for other areas of the mathematics curriculum.
In particular, the conceptualisation presented in section 6.2 provides a basis for
suggesting ways in which such knowledge could be measured. It is this type of
conceptualisation, that underpins the construction of test-items, that is currently under-
developed in existing measures of mathematical knowledge for teaching (e.g. Baumert
et al., 2010; Hill et al., 2005; Tatto et al., 2012) as argued in Chapter 2. The next
paragraph suggests ways in which mathematical knowledge for teaching using
technology in relation to the topic of circle theorems could be measured. The chapter
concludes by speculating tentatively about the relationship (if any) between a
connectionist versus transmissionist teaching orientation and mathematical knowledge
for teaching circle theorems using technology. These post-hoc inferences should be
treated with caution and will require further research.

The development of the circle theorem case list suggests teachers’ mathematical
knowledge for teaching circle theorems using technology may be summarised as a two-
dimensional measure, with one dimension providing an indicator of teachers’ choice
and use of examples and the other dimension providing an indicator of their decisions
about sequencing. The total number of pedagogic cases the case study teacher elicited in
the interview (column T in Table 6.2) provides a numerical summary as one possible

indicator of teachers’ choice and use of examples. Another possible indicator of

204



teachers’ choice and use of examples is the percentage of explicitly recognised
pedagogic cases that teachers suggested they would show their pupils (column % in
Table 6.2). Initiating a demonstration of D1 for pupils by (i) dragging point B or
alternatively (ii) points C or D to elicit a new configuration provides a potential
dichotomous indicator of teachers’ decisions about sequencing. These potential
indicators suggest the conceptualisation of mathematical knowledge for teaching circle
theorems using technology could be operationalised in the form of an item asking
teachers to provide all the configurations of the angle of the centre theorem that they
can think of, possibly with the technological support of a diagram such as D1, with a
follow up question asking which of these configurations they would select to show
pupils and how they would sequence this selection of configurations if presenting them
to pupils. The relevance of these potential indicators is discussed below along with a
speculation as to their relationship or otherwise with teacher orientation in terms of the

transmissionist measure of self-reported pedagogic practice.

Table 6.2 Possible quantitative indicators of the case study teachers’ choice and use of

examples
transmissionist P
E P %= —"100
measure E
Robert* -1.01 12 8 6 75
Anne -0.50 10 8 3 38
Edward +0.74 10 8 4 50
Michael +1.01 15 13 5 38

T = total number of pedagogic cases elicited in interview by case study teacher (implicit and
explicit excluding direct prompts)

E = number of explicitly recognised pedagogic cases (explicit only including direct prompts)

P = number of pedagogic cases the teacher would positively show pupils

% = percentage of explicitly recognised pedagogic cases the case study teacher would positively
show pupils (rounded to nearest whole number)

Note:. Robert* is presented here as a fairer comparison with the other case study teachers (see

previous section) though the figures for Robert and Robert* were actually the same.

The total number of pedagogic cases the case study teacher elicited in the interview is a
plausible indicator because it may be the mathematical knowledge made available in the

classroom, i.e. including not only explicitly planned examples but also those arising
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through contingency and those left implicit, that has most impact on the quality of
pupils’ mathematical experience in the classroom. That is, it may be the knowledge
distributed across both people and technology that has the most impact on the quality of
pupils’ mathematical experience in the classroom rather than the knowledge that resides
in the individual teacher. The total number of pedagogic cases the case study teacher
elicited in the interview shows no relationship with transmissionist measure, albeit
acknowledging the problems of making any reliable inference given the small size and
selective nature of the sample. The most transmissionist teacher, Michael, elicited the
highest total number of pedagogic cases (15) of the four case study teachers, with the
most connectionist teacher, Robert*, eliciting a total of 12 pedagogic cases - see Table
6.2. Occupying more intermediate positions on the scale of transmissionist self-reported
pedagogic practice, Anne and Edward both elicited 10 pedagogic cases in total. The
lack of relationship between the total number of pedagogic cases elicited in interview
and teacher orientation is perhaps unsurprising given the findings of Askew et al (1997)
that all but one of their measures of teacher knowledge were unrelated to teacher
orientation. In particular, the only variable Askew et al (1997) found to be related to
teacher orientation was depth, the percentage of links that were explained by the teacher
in conceptual terms. The type of articulated conceptual knowledge suggested by the
depth variable cannot be inferred from the total number of pedagogic cases elicited,
since this number includes both pedagogic cases that were recognised explicitly and
implicitly in the interview. This might offer some explanation as to why the total

number of pedagogic cases elicited in interview appears unrelated to teacher orientation.

The percentage of explicitly recognised pedagogic cases that teachers suggested they
would show their pupils (column % in Table 6.2) provides another possible indicator of
teachers’ choice and use of examples. When the case study teachers made a deliberate
choice to include a particular pedagogic case in a demonstration to pupils, it indicated
they could articulate a conceptual linkage to justify how the case would contribute to
their pupils’ understanding of the angle at the centre theorem. In addition to this
conceptual linkage, a form of cost-benefit analysis appears to be included in this
measure, perhaps similar to Ruthven’s (2009) time economy. Transmissionist teachers
might be more likely to place greater emphasis on the cost; connectionist teachers more
on the benefit of showing pupils a particular pedagogic case, hence this measure might
show some relationship to transmissionist measure. None of the teachers made a

deliberate choice to exclude a pedagogic case. This is important because it suggests that
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the case study teachers believed there might be some benefit in a pedagogic case (even
if they weren’t quite sure what it was) and even if they didn’t think it was sufficient to
want to deliberately demonstrate that case to their pupils. Lack of inclusion tended to
indicate that the teachers either did not articulate a conceptual linkage to justify how the
case would contribute to understanding the theorem; that the teachers suggested they
might delay (indefinitely) introducing the case due to instrumental concerns that it
might make the theorem harder to ‘spot’ or that it might confuse low-attaining pupils.
Thus the percentage of explicitly recognised pedagogic cases that teachers choose to
show their pupils might bear some similarity to the depth variable in that it is an
indicator of the percentage of conceptual links the case study teachers articulated, and
thought worthwhile from a pedagogic viewpoint, between configurations of the angle at
the centre theorem. Hence this measure of the case study teachers’ choice and use of
examples may be more likely to show a moderate relationship with teacher orientation.
The figures in Table 6.2 provide tentative support for this speculative assertion, again
given the small size and selective nature of the sample. The most connectionist teacher,
Robert*, shows by far the highest percentage (75%) of explicitly recognised cases he
suggested he would show pupils. A more transmission-oriented teacher, Edward, has a
lower percentage of cases he would show pupils (50%) and Michael, the most
transmissionist teacher, has the joint lowest percentage (38%). The exception to this
pattern is Anne, a more connectionist-oriented teacher, who shares the joint lowest
percentage (38%) with Michael. Anne was the least confident in using digital
technologies. Unfortunately, she was also the only case study teacher not to receive the
GeoGebra file in advance of the interview. These mitigating factors may offer an
explanation of why Anne appears to have a low percentage of cases she would show

pupils despite her connectionist orientation.

Initiating a demonstration of D1 for pupils by (i) dragging point B or alternatively (ii)
points C or D to elicit a new configuration provides a potential dichotomous indicator of
teachers’ decisions about sequencing. This is important because dragging point C or D
provides numerical variation to appreciate the doubling nature of the relationship
between the angles in the theorem, whereas dragging point B does not. In addition,
whether dragging was initiated with point B or points C/D tended to indicate how the
convex quadrilateral configuration first occurred. For example, Michael’s circle
theorem case list shows that the convex quadrilateral configuration first occurred as

pedagogic case 12, i.e. as a consequence of dragging point C or D, thus appearing as a
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natural continuation of numerically varying the angle at the centre to include reflex
angles. In contrast, the circle theorem case lists of the other three case study teachers
(Robert*, Anne and Edward) show the convex quadrilateral configuration first occurred
as pedagogic case 5, i.e. as a consequence of dragging point B. This is a less preferable
sequence of configurations since the convex quadrilateral configuration appears as a
deviant example or ‘“complication”, reinforcing an impression of the arrowhead
configuration as the standard or iconic configuration. This indicator of teachers’

decisions about sequencing also shows no relationship with transmissionist measure.

Michael was the most transmissionist teacher. He was also one of the least experienced
case study teachers, being only in his second year of teaching. In particular, he appeared
to be the least mathematically confident of the four teachers and, with his undergraduate
and masters degrees in economics, was hoping to transition to becoming an economics
teacher. It is therefore surprising, despite the lack of relationship with transmissionist
measure, that Michael’s circle theorem case list should be the only one to indicate the
preferred sequence of dragging to elicit the convex quadrilateral configuration first
through dragging point C or D. In addition, Michael also has the highest total number of
pedagogic cases the case study teacher elicited in the interview. Based on these
indicators, Michael’s circle theorem case list would be pedagogically preferable over
those of the other three case study teachers since it maximises the mathematical
knowledge made available (in the interview) as well as providing a better sequencing of
configurations. One means of explaining this unexpected result is by viewing
knowledge as distributed over both people and technology (Hutchins, 1995). Thus, in
the context of the interview, Michael was able to demonstrate D1 to create a
pedagogically preferable circle theorem case list because the knowledge made available
through his demonstration was distributed more effectively both across the GeoGebra
software and the author than the other case study teachers. On the other hand, although
the knowledge made available in Michael’s interview was more effectively distributed
in terms of the number of configurations he elicited, arguably Robert, in particular, was
better able to take pedagogic advantage of the knowledge distributed in his interview.
Robert elicited the second highest total number of pedagogic cases, slightly fewer than
Michael, however he was able to see and justify pedagogic value in a far higher

percentage of the cases he recognised explicitly.

A distributed view of knowledge explains how teaching resources such as D1 could

augment the knowledge made available in the classroom by supporting even a relatively
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inexperienced and mathematically unconfident teacher, such as Michael, to elicit a
greater range of examples and sequence them to greater pedagogic effect. A teacher
with relatively strong mathematical knowledge for teaching, such as Robert, would be
better able to take pedagogic advantage of the greater range of examples made available
through using teaching resources such as D1. This provides possible support for the
interaction effect between PCK and the quality of tasks observed by Baumert et al
(2010). In addition, as noted in the opening paragraph of this section, adopting a
distributed view of knowledge might offer potential strategies for supporting teachers
for coping with the complexity of mathematical knowledge for teaching using
technology. Chapter 7 explores to what extent the mathematical knowledge made
available through a teachers’ interaction with technology is distributed across the

individual teacher and the technology.

6.4 Summary

This chapter used the Knowledge Quartet as an analytic tool to provide a fine-grained
analysis of the content of mathematical knowledge for teaching using technology in
relation to the topic of circle theorems. In particular, this analysis revealed the highly
complex nature of mathematical knowledge for teaching using technology, through the
conceptualisation of such knowledge in relation to the topic of circle theorems.
Addressing RQ2a, the centrality of the Knowledge Quartet codes choice and use of
examples and decisions about sequencing provided a post-hoc justification for the
development of a circle theorem case list for each case study teacher. The circle
theorem case list allowed a comparison of both the specific circle theorem cases arising
and the sequence in which they arose during the interview, providing a basis for
suggesting ways in which mathematical knowledge for teaching using technology in
relation to the topic of circle theorems could be measured. The chapter concluded by
speculating tentatively about the relationship (if any) between transmissionist measure
and mathematical knowledge for teaching circle theorems using technology. These post-

hoc inferences should be treated with caution and will require further research.
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Chapter 7 - Mathematical knowledge for teaching using technology as
distributed: how and to what extent

Chapters 5 and 6 concentrated on the nature and content of individual teachers’ own
knowledge in relation to teaching mathematics using technology. In Chapter 5, Noss
and Hoyles’ (1996; & Kent, 2004; & Pozzi, 2002) notion of situated abstraction seemed
appropriate as a description of mathematical knowledge for teaching using technology.
This notion, along with Adler’s (1999; 2001) concepts of the dilemma of transparency
and visibility/invisibility, was useful in negotiating the apparent duality in seeing this
knowledge simultaneously as abstract, mathematical knowledge and yet as situated in
the context of teaching using technology. The data analysis reported in Chapter 6
produced a conceptualisation of mathematical knowledge for teaching using technology
in relation to the topic of circle theorems. This conceptualisation indicates the highly
complex nature of mathematical knowledge for teaching using technology. Chapter 6
concluded by suggesting that adopting a distributed view of knowledge might offer
potential strategies for supporting teachers to cope with the highly complex nature of

mathematical knowledge for teaching using technology.

Hence, in this chapter, the research focus shifts from individual teachers’ own
knowledge to how this knowledge is involved in the participatory relationship with
technology (Remillard, 2005). Chapter 1 justified the use of Hutchins’ (1995) view of
distributed cognition as a framework for understanding how individual teachers’
knowledge is involved in interacting with technology to produce the mathematical
knowledge made available in the classroom. Detailing how and to what extent
knowledge is distributed across teacher and technology is a means of describing the
participatory relationship (Remillard, 2005). Thus this chapter addresses Research
Question 2b, identified through the literature review in Chapter 2:

RQ2b To what extent is the mathematical knowledge made available through a
teachers’ interaction with technology distributed across the individual teacher

and the technology?

The review of literature in Chapter 2 reported that most research on teacher knowledge
in general and in mathematics education specifically, whilst recognising the situated

nature of knowledge, remains underpinned by essentially individualistic assumptions
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(Putnam & Borko, 1997). In particular, research on teacher knowledge informed by
views of cognition as distributed (Hutchins, 1995) across persons and tools remains
underdeveloped (Putnam & Borko, 1997). In research on technology in mathematics
education, the instrumental approach appears commensurate with Hutchins’® (1995)
distributed view of cognition in the sense that, by considering an instrument as the
combination of an artefact with the user’s schemes of use, knowledge appears
distributed across both teacher and technology. However, as noted in Chapter 1, the
instrumental approach has a tendency to focus on teachers’ learning, which it is not the
primary focus of this study. Instead, this study concentrates on teachers as workers
where the focus is on the knowledge they ‘have’, using technology in their work of
teaching mathematics. Hence Hutchins’ (1995) view of distributed cognition seemed
more appropriate to this study because it focuses on analysing the interaction of humans

with artefacts in the workplace.

Where a distributed view of cognition has been advocated, it remains unclear to what
extent knowledge for teaching (using these resources) would necessarily be internal to
the teacher and to what extent it could be said to reside in the resource itself. For
example, Putnam and Borko (1997, p. 1287) suggest teachers might augment their
pedagogical thinking through making “judicious use” of new information technologies
available via the Internet or existing technologies such as textbooks (see also Putnam &
Borko, 2000). Making judicious use of such technologies suggests teachers might
require a thorough, apriori knowledge of these technologies for the purposes of
teaching. Thus it remains unclear to what extent such the technology could augment
teachers’ thinking i.e. what part of knowledge for teaching could be considered as being

distributed across the resource.

In contrast, Hutchins (1995) is careful to avoid suggesting tools augment human
cognition, suggesting instead that tools transform a task by taking on some cognitive
attributes. Critically, Hutchins states that his view of distributed cognition assumes that
cognition does not only occur within an individual person, but also occurs through
human interaction with artefacts and other humans and, in particular, that cognition
partially resides in tools (see Chapter 1). In addition, his specification of minimum
knowledge requirements necessary for an individual to carry out a computational task in
interaction with an artefact provides an indication of how and to what extent cognition

may be distributed across both human and artefact.
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This chapter applies Hutchins’ (1995) mode of argument to the case study teachers’
suggestions of how they would use the GeoGebra diagram D1 to demonstrate the angle
at the centre theorem to pupils. A framework for identifying instances of distributed
cognition, where the mathematical knowledge made available was more or less
distributed across the technology, was developed from an analysis of the circle theorem
case lists presented in Chapter 6. In particular, the development of this framework led to
the specification of minimum knowledge requirements necessary for the case study
teachers to produce the circle theorem case lists in interaction with the GeoGebra
software, the author and teaching-colleagues. By specifying minimum knowledge
requirements, an indication is provided of how and to what extent the case study
teacher’s mathematical knowledge for teaching was distributed across the software, the
author and teaching-colleagues. The minimum knowledge requirements provide a
means of explaining why case study teacher Michael was able to produce a better circle
theorem case list in pedagogical terms than the other more experienced and more
mathematically confident case study teachers. This provides convincing evidence
towards a distributed view of cognition. In particular, it suggests that an individual
teacher ‘having” more knowledge does not necessarily equate to an improvement in the
mathematical knowledge made available at least in the interview setting. It seems
reasonable to speculate that this might also generalise to a classroom setting. Finally,
data from classroom observations of the case study teachers’ use of technology are used
to provide brief indications of how the framework might be exemplified in mathematics

teachers’ classroom practice.

7.1 Mapping the elements of Hutchins’ description of distributed cognition

to mathematics education

Hutchins (1995) argues that cognition is a socially situated cultural process that is
distributed between humans, tools and the settings and environment within which tasks
take place. In Hutchins’ description of cognition as computation of navigational tasks
distributed over humans in interaction with tools and each other, the humans were
members of the navigation team on the USS Palau, an amphibious helicopter transport
in the US Navy. The members of the navigation team had specific and well-defined
roles, such as the pelorus operator, the bearing recorder and the plotter, which they

carried out according to very strict regulations to be expected in a military setting. The
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computation of navigational tasks involved carrying out well-established routines that,
although very strictly regulated, still left room for interpretation and improvisation.
Hutchins lists amongst the various tools the navigation team use to carry out their tasks
the alidade, the bearing log, the hoey (a one-arm protractor), the chart and so on. He
argues these tools have cognitive attributes as they literally contain a repository of
navigational knowledge, embedded in their construction. In particular, Hutchins argues
these tools provide two things simultaneously (p.154). Firstly, they change the nature of
the task. In Hutchins’ terms, the computation of the navigational task is achieved
through the “propagation of representational state” rather than through direct
calculation. For, example, the nautical slide rule and nomograph permit the navigator to
avoid algebraic reasoning and arithmetic in distance-rate-time problems by aligning
indices with numbers on scales, or imagining numerical representations and making
simple transformations of them. Secondly, these tools provide constraints on the
organisation of action, in the sense that they regulate behaviour in such a way that the
propagation of representational state that implements the computation can take place
(Hutchins, p.154). For example, the nautical slide rule and nomogram preclude mistakes
resulting from incorrect algebraic transformations taking place in the calculation of
distance-rate-times since the relations D = RT, R = D/T, and T = D/R are built into their
physical structure. The environment in which the ship was embedded, in terms of the
harbour, the landmarks, the sea-bed and the stars, also plays a critical role in organising

and transforming the computational tasks of the navigation team.

Mapping the elements of Hutchins’ description of distributed cognition, i.e. humans,
tools etc, provides a means of contextualising his description in relation to this research
project in particular and mathematics education research more generally. In terms of the
semi-structured GeoGebra interviews, the setting was a discussion for research purposes
between the author and the case study teacher based around a task involving knowledge
of mathematics pedagogy in a technological context i.e. how they might use diagram D1
to demonstrate the angle at the centre theorem to their students. As in Hutchins’
description, the setting is important because it describes the context in which the task
was situated. The case study teachers were currently employed teaching mathematics to
students in English secondary schools. Circle theorems is a topic often taught in year 10
or 11 since it is included in GCSE mathematics examination syllabi* and represents
perhaps the most advanced topic in geometry in the compulsory English National

4 At higher tier only, see for example the Edexcel (2012) syllabus.
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Curriculum (QCA, 2007) for mathematics. For example, the topic of circle theorems
may provide students’ first (and only) encounter with geometric proof. Hence the case
study teachers’ considerations about how D1 might be used to demonstrate the angle at
the centre theorem were to some extent shaped by knowledge of their own students and
their perception of their students’ needs in relation to the GCSE examination. The
environment of the GeoGebra interviews tended to be in a mathematics classroom at the
case study teacher’s school that was not being used for teaching at that time. The
author’s laptop with mouse attached was arranged on a desk so that both the author and
the case study teacher could comfortably see the screen and use the mouse to

manipulate D1, enabling collaboration on the task.

The humans involved in the GeoGebra interviews were the author, the case study
teacher, the case study teacher’s students and the case study teacher’s departmental
colleagues. In the GeoGebra interviews, the students and the case study teacher’s
departmental colleagues were only hypothetically involved. There are two senses in
which the students were hypothetical. Firstly and most obviously, no students were
actually present during the interview. Secondly, the case study teachers were not
planning a demonstration that was intended for use with actual students in an actual
lesson. Due to the setting in terms of a discussion for research purposes, the case study
teachers were discussing a demonstration of D1 for hypothetical students. It does
however seem reasonable to assume that these hypothetical students would be largely
based on an amalgam of those that the case study teachers actually taught. Finally,
except in the case of Anne, the GeoGebra file was emailed in advance of the semi-
structured interview and the case study teachers were encouraged to explore it
beforehand and share it with their departmental colleagues. Michael at least showed the
GeoGebra file to his Head of Department, mentioning this at the start of his interview.
Again, the case study teacher’s departmental colleagues were not present during the
interview. Nonetheless, at least in Michael’s case, they had a role to play in the

performance of the interview task.

In comparison to members of the navigation team in the military setting of the USS
Palau, the roles of the human participants in the interview setting were relatively fluid,
in that they weren’t laid down according to strict regulations. Nevertheless, there were
expectations in relation to these roles. As teachers of mathematics in English secondary
schools, expressing some confidence in their use of ICT, the case study teachers were

expected to be able to participate in the interview task, to the extent they had planned
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and taught lessons on circle theorems before and would therefore be likely to have at
least some familiarity with a dynamic diagram like D1 and possibly have even used
something similar in their own lessons. For example, both Robert and Michael
commented that they had used similar diagrams in their previous teaching. Edward had
made brief notes on the GeoGebra file before the interview and his comments during the
interview echoed these notes. Anne commented in the interview that she had never used
such a diagram before, “I’ve never done this myself like this”; however she also noted
that “There’s a lot of this around, you know, done by other ... we always use them, |
share them” [Anne-GGb-intA, 28.6.2012]. In particular, since they had an opportunity
to explore the GeoGebra file before the interview, albeit with the exception of Anne, it
seemed reasonable to assume that planning a demonstration using D1 represented a
routine task for the case study teachers, which they would be able to perform despite the
unusual interview setting. Similarly, as teachers of mathematics in English secondary
schools, the case study teacher’s departmental colleagues were expected to be able to
discuss and offer advice on using D1 as a teaching resource for mathematics. Although
these colleagues were not actually present in the interview, the cognitive processes
involved in performing the interview task could potentially be distributed across them
as human participants, due to the possibility of their involvement in discussing the
GeoGebra file with the case study teacher beforehand.

The author’s role was as an interviewer interested in mathematics teachers’ use of
technology for research purposes. However, a critical part of this role in shaping both
the nature and content of the interview was the author’s own experience of teaching
mathematics in English secondary schools. Thus at times, the case study teachers
appeared to perceive the author to some extent as a colleague, though clearly one
without the contextual knowledge of their departmental colleagues in relation to
teaching mathematics at their particular school. For example, Robert appeared to speak
on equal terms with the author in discussing the design of D1. Michael on the other
hand tended to treat the author as a senior colleague, commenting off-record on the
similarity between conversations with his mentor in initial teaching training. This was
an indicator both of his lack of experience and mathematical confidence in relation to
teaching compared with the other case study teachers. Despite the difference in roles, it
therefore seems reasonable to assume that the cognitive processes involved in
performing the interview task might be distributed across the author and the case study

teacher’s departmental colleagues in similar ways.
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The case study teacher’s students were hypothetically expected to cooperate with the
planned demonstration using D1, in accordance with the norms of a mathematics
classroom. Again, although the students were not present in the interview, the cognitive
processes involved in performing the interview task could potentially be distributed
across them as human participants, since the case study teachers were likely to base
their planning on expectations of their mathematical behaviour in lessons gleaned from
past classroom experience. However, how and to what extent cognitive processes were
distributed across students seemed likely to be qualitatively different from how and to
what extent they were distributed across either the author or the case study teacher’s
departmental colleagues, by virtue of the significant difference in the roles these human
participants play in the performance of the interview task.

The tool that is the main focus of the analysis presented in this chapter is the diagram
D1, constructed in GeoGebra. Like the tools in Hutchins’ description of navigation, D1
provides two things simultaneously. Firstly, it changes the nature of the task. That is,
using D1 changes the cognitive processes necessary for a teacher’s demonstration of the
angle at the centre theorem to display a pedagogically desirable choice and use of
examples and decisions about sequencing. For example, D1 permits the teacher to
generate examples of the angle at the centre theorem by dragging any one of points B, C
or D. This avoids having to generate and construct examples from ‘scratch’. In addition,
these examples are not generated at random. Instead, they are produced to give the
appearance of continuous dynamic variation according to the construction of the
diagram following the rules of Euclidean geometry embedded in the software through
its design. This has the effect of sequencing the examples produced in particular ways,
since only one point may be dragged at a time, to provide a pedagogic structuring of
examples whether intended by the teacher or not. Indeed on opening the GeoGebra file,
the starting configuration of D1 introduces limits on the decisions about sequencing that

are possible — see for example Figure 6.9 in Chapter 6.

Secondly, D1 provides constraints on the organisation of action. The construction of
D1, according to the geometric rules programmed into the software, limits the
mathematical variation possible through manipulation of the diagram. In general,
limiting the dimensions of mathematical variation seems to be pedagogically desirable,
to allow instances of mathematical invariance such as the angle at the centre theorem to
be apprehended. If everything is changing no invariance may be distinguished. Thus

some of the case study teachers were less in favour of using diagrams D2 and D3 to
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introduce the angle at the centre theorem because there were too many dimensions of
mathematical variation, whether they articulated it in quite these terms or not. In this
sense, the constraints provided by D1 regulate behaviour in such a way that a
demonstration of the angle at the centre theorem can take place. For example, dragging
D1 will not produce non-examples of the angle at the centre theorem (ignoring rounding
errors). Similarly, as noted above, dragging D1 will not produce a random sequence of
examples. Instead, examples are generated in a particular way, coordinating aspects of
geometric and numerical variation so that mathematical invariance may be

apprehended.

In terms of the classroom observations of the case study teachers’ use of technology, the
setting was a mathematics lesson on a topic and with a group of students of the
teacher’s choice. The task was to teach an actual lesson using some form of digital
technology, rather than planning a hypothetical one. The human participants were again
the author, the case study teacher, the case study teacher’s students and the case study
teacher’s departmental colleagues. Clearly, the roles played by the participants were
somewhat different in this setting. Most obviously, the students were present and not at
all hypothetical as in the GeoGebra interviews. The author was observing the lesson,
suggesting a more passive role rather than the active participation required in the
GeoGebra interviews. The roles of the case study teacher and their departmental
colleagues were still as teachers of mathematics in English secondary schools. Again,
although the case study teachers’ colleagues were not actually present in the lesson, the
cognitive processes involved in performing the interview task could potentially be
distributed across them as human participants, due to the possibility of their direct or
indirect involvement in planning the lesson beforehand. The case study teachers
employed a range of digital and non-digital tools in their IWB and computer suite
lessons, whose use served to transform and organise the task of teaching the
mathematical topic to their students. The environment varied according to where the
lesson took place. For Robert and Michael’s IWB lessons, the environment was their
normal mathematics classroom. The other observations required room changes so that
the teachers were conducting their lessons in a relatively unfamiliar working

environment (Ruthven, 2009), requiring adaptations of their normal classroom routines.
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7.2 A framework for identifying instances of distributed cognition

This section describes a two-dimensional framework for identifying instances of
distributed cognition, developed from an analysis of the circle theorem case lists
presented in Chapter 6. In particular, this framework indicates to what extent cognition
could be considered as residing in the individual case study teacher or as distributed
over tools and other human participants in the interview. The justification for these
assertions is provided in the following section through the specification of minimum
knowledge requirements necessary for the case study teachers to produce the circle
theorem case lists in interaction with the GeoGebra software, the author and teaching-

colleagues.

7.2.1 Outlining the framework

The circle theorem case lists are a representation of the mathematical knowledge made
available in the semi-structured GeoGebra interviews through the case study teacher’s
manipulation of D1. More specifically, they represent the choice and use of examples
and decisions about sequencing made by the case study teacher in interaction with D1
and the other human participants in the interview. The choice and use of examples and
decisions about sequencing made in the interview is the observable outcome of
cognitive processes. These processes are assumed to be distributed over the case study
teacher, the tool D1 and the other human participants, involved in the performance of
the task of suggesting how diagram D1 might be used to demonstrate the angle at the
centre theorem to the case study teacher’s students. As described in the previous
section, the other human participants include the author, the case study teacher’s
departmental colleagues and the case study teacher’s students. Thus instances of
distributed cognition might be identified through analysing the choice and use of
examples and decisions about sequencing the case study teacher made in interaction
with (a) the diagram D1, (b) their students, and (c) the author or their departmental

colleagues, as represented by their circle theorem case list.

The three categories (a) technology, (b) their students, and (c) the author or their
departmental colleagues, therefore form the first dimension of the framework for
identifying instances of distributed cognition. For example, from the circle theorem case
lists, pedagogic cases that were coded as being directly prompted by the author were
regarded as instances where cognition was distributed to some extent over the author in
interaction with the case study teacher and the technology (see Chapter 6, Table 6.1 for
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coding system). Pedagogic cases that were coded as indirectly prompted or unprompted
were regarded as instances where cognition was distributed to some extent over the
technology i.e. diagram D1. The categorisation along this dimension might appear to
introduce an artificial separation between instances of cognition distributed across
technology and the other human participants in interaction with the case study teacher.
These examples suggest that the categories should not be seen as mutually exclusive i.e.
the categories should not be assumed to indicate instances where cognitive processes
were distributed solely over diagram D1 or solely over the author in interaction with the
case study teacher, for example. Instead the categories should be taken to indicate
instances where cognition was distributed mainly over diagram D1 (in interaction with
the author) or mainly over the author (in interaction with D1) and in interaction with the
case study teacher. Since the focus of this research project was primarily on technology,
instances of distributed cognition arising from the data in the categories involving the
other human participants in interaction with the case study teacher are relatively limited.
In particular, instances of distributed cognition arising from the data involving the case
study teacher’s students or their departmental colleagues are especially limited, since no
participants from either category were present in the GeoGebra interviews.
Nevertheless, occasionally, where a case study teacher mentioned their students or their
departmental colleagues, this provided the basis for a thought experiment hypothesising
the kind of instance of distributed cognition that might have occurred had these

participants been present.

The second dimension of the framework signifies to what extent cognition could be
inferred as distributed across the GeoGebra diagram D1 as opposed to residing in the
individual case study teacher. In other words, the second dimension of the framework
indicates to what extent cognition could be inferred as more or less distributed across
technology in interaction with the case study teacher and the other human participants.
The second dimension consists of two categories indicating instances of distributed
cognition where the case study teachers’ choice and use of examples and decisions
about sequencing were either articulated or unarticulated, each of which is sub-divided
into two further categories, anticipated and unanticipated opportunities. The system for
coding instances of distributed cognition according to these categories is described

below.

From the circle theorem case lists, an articulated choice and use of examples indicates

the case study teacher commented verbally on the pedagogic case, whilst D1 was held
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stationary or left static showing the case, following the code explicit recognition, see
Table 6.1 in Chapter 6. Thus an articulated choice and use of examples suggests a
writerly response (Bowe et al., 1992) to a particular configuration of D1: a recognition
that the configuration represents a distinct case from a pedagogic point of view, hence a
choice needs to be made as to whether and how to use it. Similarly, an articulated
decision about sequencing indicates the case study teacher commented verbally on their
preference for one dragging sequence over another. Again an articulated decision about
sequencing suggests a writerly response to D1: recognition that dragging D1 imposes a
particular pedagogic structure or sequence of examples that is then available to critique.
This makes no commitment to the quality of the case study teacher’s critique or their
choice regarding a pedagogic case. Thus it is important to clarify that although linking
the articulated category with a writerly response suggests a positive example of
foundational knowledge in some respects, it is neutral in terms of the case study
teacher’s transformation of mathematical knowledge for pedagogic purposes and the
foundational knowledge underpinning that transformation. That is, linking the
articulated category with a writerly response does not imply that the mathematical
knowledge made available in the interview through an articulated choice and use of
examples or decisions about sequencing would necessarily be any better (or worse) than
an unarticulated choice and use of examples or decisions about sequencing - see also the
discussion in Chapter 6 regarding to the Knowledge Quartet code adherence to
textbook. It is also important to note that the articulated category is not intended to
signify that the case study teacher provided a full description and/or justification of their
choice and use of examples and decisions about sequencing, but rather that some verbal

indication was provided.

An unarticulated choice and use of examples indicates the case study teacher made no
verbal comment regarding the pedagogic case, despite eliciting it through dragging in
the course of the interview, following the implicit recognition code, see Table 6.1 in
Chapter 6. Thus an unarticulated choice and use of examples suggests a readerly
response (Bowe et al., 1992) to a particular configuration of D1. That is, the case study
teacher did not recognise that the configuration could represent a distinct case from a
pedagogic viewpoint, hence there was no deliberate choice to articulate. Similarly, an
unarticulated decision about sequencing indicates the case study teacher dragged D1 to
elicit a particular sequence of pedagogic cases without verbally commenting on their

pedagogical preference for this particular sequence. Again an unarticulated decision
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about sequencing suggests a readerly response to D1: a lack of recognition that dragging
D1 imposes a particular pedagogic structure or sequence of examples, which as a result
Is unavailable to critique. Again it is important to clarify here that although linking the
unarticulated category with a readerly response suggests a lack of foundational
knowledge in some respects, it is neutral in terms of the case study teacher’s
transformation of mathematical knowledge for pedagogic purposes. That is, linking the
unarticulated category with a readerly response does not imply that the mathematical
knowledge made available in the interview through an unarticulated choice and use of
examples or decisions about sequencing would necessarily be any worse (or better) than
an articulated choice and use of examples or decisions about sequencing. In particular,
in the next sub-section examples that could be interpreted as a positive choice and use
of examples or decision about sequencing are provided in both the articulated and the
unarticulated category. Similarly, examples that could be interpreted as a negative
choice and use of examples or decision about sequencing are provided in both

categories.

Anticipated opportunities indicate a choice and use of examples or decision about
sequencing which appeared to be part of the case study teacher’s routine response when
presented with the task of suggesting how they might demonstrate the angle at the
centre theorem using D1 to their pupils. Anticipated opportunities were identified as the
case study teachers’ unprompted choice and use of examples and decisions about
sequencing i.e. as elicited through their dragging in response to the first two interview
questions, see Chapter 6, Table 6.1. Unanticipated opportunities were identified as the
case study teachers’ indirectly prompted or directly prompted choice and use of
examples and decisions about sequencing i.e. in as elicited through their dragging in
response to the further interview prompts, see Chapter 6, Table 6.1. Thus unanticipated
opportunities indicate a choice and use of examples or decisions about sequencing
which did not appear to be part of the case study teacher’s routine response, but rather a
response to a contingent situation brought about by the author’s unanticipated prompts.
This suggests that instances of distributed cognition categorised as unanticipated
opportunities might correspond to situations coded under the Knowledge Quartet supra-
category of Contingency. Similarly, anticipated opportunities correspond to situations
that might be coded as indicating Foundation, Transformation or Connection
knowledge, since they indicate the knowledge made available through the case study

teachers’ routine performance.

221



7.2.2 Exemplifying the framework

Table 7.1 displays the framework for identifying instances of distributed cognition and
exemplifies the categories using data from the semi-structured GeoGebra interviews
where possible. In reading this section, the reader will find it helpful to have Figure 6.9,
the numerical list of pedagogic cases from Chapter 6, to hand — see separate sheet
provided in the back cover of the thesis. As noted in the previous sub-section, since the
focus of this research project was primarily on technology, the categories involving
technology are more fully exemplified with instances of distributed cognition than those
involving the other human participants in interaction with the case study teacher. Table
7.1 also displays the four, second dimension categories in order, according to what
extent cognition could be inferred as more or less distributed across technology in
interaction with the case study teacher and the other human participants, as follows,

starting with the most distributed:

- unarticulated, unanticipated opportunities
- unarticulated, anticipated opportunities
- articulated, unanticipated opportunities

- articulated, anticipated opportunities
This ordering is partially justified below through a discussion of the examples in each

category of the framework. The specification of minimum knowledge requirements in

the next section completes the justification.

222



Less distributed across technology and other human participants

<5

More internal to the teacher

Table 7.1 Framework for identifying instances of distributed cognition

Technology

Students

Colleagues

Unanticipated
Opportunities

CUE and DS: Indirectly prompted,
unarticulated e.g. Robert’s sequence

CUE and DS: pedagogic cases
introduced due to the author’s
dragging e.g. Robert’s interview 8-

(KQ: Cy) of cases 21-17-16-19 12°-6°
Unarticulated
CUE: Robert, Anne and Edward
Anticipated elicited pedagogic case 3 was DS: Michael’s Head of Department

Opportunities
(KQ: Fo, Tr, Co)

unprompted and unarticulated

DS: Michael’s sequence of cases 1-6-
12; Anne’s sequence of cases 1-3-5-4

might have advised him to drag D1 to
produce the sequence of cases 1-6-12

Unanticipated
Opportunities

CUE: Indirectly prompted, articulated
e.g. all case study teachers elicited
pedagogic case 10; Robert and
Edward elicited pedagogic case 12, 13

CUE: Directly prompted, articulated —
the author elicited the upside-down
arrowhead i.e. either pedagogic case

(KQ: Cy) DS: Robert and Edward choosing the 1’ or6’
sequence 1-5 before 1-6-12-13
Articulated CUE: Unprompted, articulated e.g.
Michael elicited pedagogic cases 1, 6,
Anticipated 12; Robert and Edward elicited 1,5, | CUE: Robert’s implication that
Obportunities 6; and Anne elicited 1, 5, 4 students’ dragging tends to elicit a
(Kp(g Fo, Tr, Co) DS: Robert’s decision to elicit the pedagogically undesirable choice and
o sequence of cases 1-5 before 1-6; use of examples
Edward’s decision to sequence 1-1
before 1-6
CUE = choice and use of examples; DS = decisions about sequencing. Note where these codes appear under an unanticipated category, it

indicates that a contingent moment led to a CUE or DS being made, whether this appeared deliberate or inadvertent at the time.
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Unarticulated, unanticipated opportunities

Unarticulated, unanticipated opportunities are instances of distributed cognition where
the cognitive processes involved in producing the case study teachers’ circle theorem
cases lists appear to be most distributed over technology and the other human
participants. This is because, due to the case study teacher’s readerly response to D1,
the generation of pedagogic cases and their sequencing seemed to have been mainly
delegated to the technology and other human participants rather than the case study
teacher. Instances in this category, where cognition appears mainly distributed over
technology, occurred when the case study teachers were dragging D1 in an exploratory
way, exploring D1 for themselves perhaps, following an indirect prompt. Such
exploratory dragging sometimes elicited and sequenced pedagogic cases of which (and
in ways) the case study teacher appeared unaware, since they did not comment on them.
Nevertheless the pedagogic cases were made available in the interview and so
contributed to the case study teacher’s circle theorem case list. For example, Robert’s
exploratory dragging of D1 produced a sequence of four pedagogic cases, 21 17 16 19,
none of which he commented on. Neither did he comment on the dragging sequence
needed to elicit these four pedagogic cases. Thus he seemed unaware of the pedagogic
cases he elicited and hence the responsibility for generating these particular cases (as
opposed to some other cases) appeared to rest mainly with the technology. The
desirability of having these cases made available in the interview is dependent on their
usefulness for pedagogic purposes, not on Robert’s readerly response per se. Robert’s
exploratory dragging might represent a positive choice and use of examples if it raised
useful cases that he wouldn’t have elicited otherwise, even though they remained
unarticulated. His exploratory dragging might instead be interpreted as a negative
choice and use of examples if the cases distracted from the angle at the centre theorem,

again even though they remained unarticulated.

Unarticulated, unanticipated opportunities where cognition appears mainly distributed
over the author (in interaction with the technology), occurred when the author was
dragging D1 deliberately to elicit the upside-down arrowhead configuration and in
doing so inadvertently introduced and sequenced pedagogic cases. The author did not
comment on these pedagogic cases because to do so would have distracted from the

intended introduction of the upside-down arrowhead configuration. The author had also
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asked the case study teachers to “bear with me”, indicating they were not expected to
follow the dragging sequence. The case study teachers did not comment on these
inadvertently introduced pedagogic cases, and thus appeared unaware that they had been
elicited. Hence again, responsibility over the generation of pedagogic cases and their
sequencing seemed to rest mainly with the author in interaction with the technology
rather than the case study teacher. For example, during Robert’s interview, the author
elicited a sequence of three pedagogic cases (8 12’ 6”) whilst dragging D1 to introduce
the upside-down arrowhead configuration. Robert did not comment on these cases or on
their sequencing. Similarly, in each of the other case study teachers’ interviews, the
author elicited one pedagogic case whilst dragging D1 (Edward and Anne 10°; Michael
21). Again, the case study teachers did not comment on the inadvertent case.

Unarticulated, anticipated opportunities

Unarticulated, anticipated opportunities are those where the case study teachers’
apparently routine response in terms of dragging of D1 elicited pedagogic cases or a
sequencing of pedagogic cases that remained unarticulated. Robert, Anne and Edward
all elicited the cross quadrilateral configuration (pedagogic case 3) through their routine
of dragging point B to initiate a demonstration of the angle at the centre theorem,
however none of them commented verbally on this case. This provides an example of an
unarticulated anticipated choice and use of examples, where cognition appears mainly
distributed over technology. Since their dragging appeared to be a routine response, the
case study teachers seemed to be somewhat more in control of their generation of this
pedagogic case than for an unarticulated, unanticipated opportunity. Nevertheless, their
lack of articulation suggests a readerly response, i.e. that they were unaware of the
pedagogic case they had elicited and hence the responsibility for generating this
particular case (as opposed to some other unspecified case) appeared to rest mainly with
the technology.

Two further examples of unarticulated, anticipated opportunities, where cognition
appears mainly distributed over technology, are provided by Michael and Anne’s
decisions about sequencing. Michael’s routine response produced the sequence of
pedagogic cases 1-6-12, through dragging points C and D to initiate a demonstration of
the angle at the centre theorem. At no point did Michael drag point B to disrupt the
arrowhead configuration until directly prompted to by the author. Even then he avoided

articulating a decision about sequencing by commenting on his apparent preference for
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dragging points C or D versus point B to initiate a demonstration of the angle at the
centre theorem. Anne’s routine response was to begin by dragging point B, producing
the sequence 1-3-5-4. Although she later dragged points C and D without direct
prompting from the author, at no point during the interview did she comment on her
apparent preference for dragging point B to initiate a demonstration of the angle at the
centre theorem. Michael and Anne’s lack of an articulated preference for dragging
either point B or points C/D to initiate their demonstration suggested they were unaware
of the existence of an alternative to their initial dragging routine. Hence, they appeared
unaware of their decisions about sequencing. Since their dragging appeared to be a
routine response, the case study teachers seemed to be somewhat more in control of
their decisions about sequencing than for an unarticulated, unanticipated opportunity.
However, their apparent lack of awareness regarding their decisions about sequencing
suggests a readerly response, which seems to imply the responsibility for generating the
particular sequencing of cases (as opposed to some other sequencing) appeared again to
rest mainly with the technology. Again, labelling Michael and Anne’s decisions about
sequencing as a readerly response does not imply a writerly response would have
produced a better result. Indeed, as described below in the section on articulated
anticipated opportunities, Edward and Robert’s writerly response produced a sequence
of pedagogic cases similar to Anne’s readerly response and arguably less desirable from

a pedagogical perspective than Michael’s readerly response (see also Chapters 5 and 6).

There were no clear examples of unarticulated, anticipated opportunities, where
cognition appears mainly distributed over the other human participants, in interaction
with technology and the case study teacher. However, Michael’s remark that he showed
the GeoGebra file to his Head of Department provides the basis for a thought
experiment as an example of an unarticulated, anticipated opportunity where cognition
appears mainly distributed over his departmental colleagues. It is possible that
Michael’s Head of Department suggested to him that dragging C and D was a good way
to use D1 to introduce the angle at the centre theorem and demonstrated the dragging
sequence to produce pedagogic cases 1-6-12 to illustrate his/her point. Michael might
have accepted this suggestion unquestioningly without need for an explanation, since it
came from a senior teaching colleague (a readerly response), or he might simply have
temporarily forgotten the explanation provided. In either case, his replication of this
dragging sequence as a routine response, without articulating his decisions about

sequencing, would provide an example of an unarticulated, anticipated opportunity
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where cognition appears mainly distributed over his departmental colleagues. Again this
thought experiment underlines that knowing a good routine can sometimes provide a
pedagogically desirable outcome i.e. a good decision about sequencing, even if a
justification for doing so is (temporarily) not known. In addition, knowing a good
routine might allow the teacher to avoid having to make explicit decisions about
sequencing, affording an opportunity to focus elsewhere, for example, on making
connections through a good choice and use of examples instead. In this sense, Michael
was able to make a straightforward connection between the arrowhead and convex
quadrilateral configurations to demonstrate the angle at the centre theorem holds for
both angles less than 180 degrees and reflex angles that eluded Edward and to some
extent Robert as well.

Articulated, unanticipated opportunities

Articulated, unanticipated opportunities form part of the case study teachers’ evoked
concept image (Tall & Vinner, 1981). As noted in Chapter 6, the case study teacher’s
evoked concept image is the set of explicitly known pedagogic cases (amongst other
things), evoked both in and by the technological and interview context, that they can
draw on to make a deliberate choice and use of examples or decision about sequencing.
A deliberate choice and use of examples or decision about sequencing implies the case
study teachers’ made a writerly response to the pedagogic case or sequence of
pedagogic cases they elicited through dragging. Articulated, unanticipated opportunities
are those where the case study teachers’ encountered pedagogic cases or a sequencing
of cases, which were not part of their routine response, causing them to pause and
comment verbally. At times such opportunities seemed more or less unexpected. For
example, in response to indirect prompting by the author, Robert and Edward dragged
D1 to elicit pedagogic case 13, where the segment CD forms a diameter so that D1
shows the angle in a semi-circle is right. This configuration seemed familiar to both
Robert and Edward and so less unexpected. Indeed it might be reasonable to assume this
case would usually have formed part of their planned demonstration for a real lesson.
Nevertheless, it did not form part of their routine response in the interview situation.
More unexpected was pedagogic case 10, a confusing orientation of the cross-
quadrilateral configuration. This case caused both Robert and Michael, for example, to
spend some time checking whether the angle at the centre theorem still held. Similarly,
pedagogic case 12, the convex quadrilateral configuration, caused Edward some

consternation, which he did not entirely resolve to his satisfaction. In these examples, as
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noted earlier in the paragraph, the case study teachers’ articulation of the pedagogic
cases allowed them to make a deliberate choice and use of examples i.e. a writerly
response. Thus they appear more in control and correspondingly cognition seems less
distributed across the technology and the other human participants. Nevertheless, since
these examples were not part of the case study teachers’ routine response, the
responsibility for generating them still appears to lie to some extent with the
technology. Here a writerly response can be seen to produce both positive and negative
outcomes in terms of a choice and use of examples. For example, in a negative outcome
of a writerly response, Edward chose to relegate a key pedagogic case due to a lack of
foundational knowledge regarding the statement of the angle at the centre theorem. On
the other hand, in a positive example of a writerly response, both Robert and Edward
saw an opportunity to use pedagogic case 13 to make a connection with the angle in a
semi-circle theorem. These examples could also be considered as instances where
cognition also appears distributed to some extent across the author. However, since the
case study teachers’ dragging was in response to an indirect prompt, they were coded as
articulated, unanticipated opportunities, where cognition appears distributed (mainly)

over technology.

An example of an articulated, unanticipated decision about sequencing, where cognition
appears mainly distributed over technology, is Edward and Robert’s choice to introduce
pedagogic case 5 before 12. Both Edward and Robert chose to drag B first, producing
the sequence 1-5, and only later dragged points C and D to produce 1-6-13-12. This was
an unanticipated decision about sequencing because, for both case study teachers,
pedagogic cases 12 and 13 arose only after indirect prompting from the author. Edward
stated he would drag B to elicit pedagogic case 5, as a first “complication”, before
continuing to drag points C and D to elicit pedagogic case 13, the angle in a semi-circle,
and pedagogic case 12, the convex quadrilateral configuration displaying the correct
angle at the centre. Similarly, Robert suggested he would drag B first, hoping his
students would prompt him to move B onto the ‘wrong’ segment, thus eliciting
pedagogic case 5. He suggested he would then continue his demonstration by dragging
points C and D, presumably to elicit pedagogic cases 6, 13 and 12 as he had done earlier
in the interview — see circle theorem case lists, Chapter 6. This instance is discussed

further under the next category articulated, anticipated opportunities.

Articulated, unanticipated opportunities where cognition appears mainly distributed

over the author (in interaction with the technology), occurred when the author dragged
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D1 deliberately to elicit the upside-down arrowhead configuration. The pedagogic case
was unanticipated, since none of the case study teachers had elicited it through their
own dragging. When asked what they thought of this configuration, each of the case
study teachers articulated why it could be seen as different to previous cases from the
point of view of mathematics pedagogy, although Michael required some further
prompting to do so. This prompted them to make a deliberate choice and use of
examples, with Robert and Anne suggesting this was a case they thought worthwhile
showing to their students, whilst Edward and Michael were more sceptical of its worth.
The case study teachers made a writerly response to the upside-down arrowhead
configuration and thus appear more in control of their choice and use of examples.
Correspondingly, cognition seems less distributed across the author. Nevertheless, since
this pedagogic case was not part of the case study teachers’ routine response, the
responsibility for generating them still appears to lie to some extent with the author, in

interaction with the technology.
Articulated anticipated opportunities

Articulated, anticipated opportunities are where the case study teachers’ encountered
pedagogic cases, which caused them to pause and comment verbally, during what
appeared to be their routine response to demonstrating the angle at the centre theorem
using a diagram such as D1. They are instances of distributed cognition where the
cognitive processes involved in producing the case study teachers’ circle theorem cases
lists appear to be least distributed over technology and the other human participants.
This is because, due to the case study teacher’s routine and writerly response to D1,
responsibility and control over the generation of pedagogic cases and their sequencing
seemed to rest mainly with the case study teacher rather than the technology and other
human participants. For example, in their apparently routine response to using D1 to
demonstrate the angle at the centre theorem, each of the case study teachers elicited and
articulated two pedagogic cases beyond the starting configuration. In the interview
context, some of these instances actually appeared more like an articulated,
unanticipated choice of examples. However, it is possible to imagine that if the case
study teachers had planned their demonstrations in advance, as they might for a lesson,
then these would have been clear-cut instances of articulated, anticipated choice and use
of examples. Thus it is reasonable to infer the case study teachers dragged D1 in

anticipated ways to elicit pedagogic cases in a deliberate choice and use of examples. In
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these instances, to the extent cognition appears distributed, it appears mainly distributed

over technology compared to the other human participants.

Robert and Edward also both made articulated, anticipated decisions about sequencing.
As shown by their respective circle theorem case lists, both Edward and Robert began
by dragging point B to elicit pedagogic case 5, the convex quadrilateral configuration
displaying the ‘incorrect’ angle at the centre. Returning D1 to the starting configuration,
they then went on to drag point C or D to elicit pedagogic case 6, demonstrating
numerical variation whilst retaining the arrowhead configuration. Both later articulated
their decisions about sequencing later in the interview. Robert stated he thought it was
important to drag B first, showing the invariance of the angle on the circumference, to
make a link with students’ knowledge of the angles in the same segment theorem. In
dragging B first, he hoped his students would prompt him to move B onto the ‘wrong’
segment, thus eliciting pedagogic case 5, to make the point that the angle at the
circumference would change. He stated that he would then go on to drag points C and D
to demonstrate the angle at the centre theorem. Thus he articulated a decision to drag D1
to elicit the sequence of cases 1-5 before the sequence 1-6. Edward later clarified that he
would drag B first, showing the invariance of the angle on the circumference, restricting
his dragging to the ‘correct’ segment. He would then drag points C and D, without
disrupting the arrowhead. Thus he articulated a decision to drag D1 to elicit the
sequence of cases 1-1 before the sequence 1-6. Edward stated he would only then drag
B to elicit pedagogic case 5, before continuing to drag points C and D to elicit
pedagogic case 13, the angle in a semi-circle, and pedagogic case 12, the convex

quadrilateral configuration displaying the correct angle at the centre.

Robert and Edward made a writerly response to D1 in deciding to drag point B before
dragging points C and D in what appeared to be their routine sequencing of cases. In
addition, this decision partly led to an articulated yet unanticipated decision about
sequencing to introduce pedagogic case 5 before 12. That is, both Edward and Robert
chose to drag B first, producing the sequence 1-5, and only later dragged points C and D
to produce 1-6-13-12. This was an unanticipated decision about sequencing because, for
both case study teachers, pedagogic cases 12 and 13 arose only after indirect prompting
from the author (see articulated, unanticipated opportunities). This appears to be a
negative outcome of a writerly response, since showing the invariance of the angle on
the circumference, by dragging B first, distracts attention from the angle at the centre

theorem. Thus when pedagogic case 5 is introduced, the doubling relationship initially
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appears to have broken down and requires some work to re-establish that it still holds.
Hence the convex quadrilateral configuration can appear to be a ‘special case’ rather
than a standard configuration of the angle at the centre theorem. If instead points C and
D are dragged first to elicit the sequence 1-6-13-12, numerical variation demonstrates
the doubling relationship and the convex quadrilateral configuration appears as a natural
consequence of allowing the angle at the centre to vary beyond 180 degrees. Thus
Michael’s readerly response, dragging to produce the sequence 1-6-12 (see
unarticulated, anticipated opportunities), seems arguably more desirable than Edward
and Robert’s writerly response with regard to decisions about sequencing. In these
instances, to the extent cognition appears distributed, Edward and Robert’s articulated,
anticipated decisions about sequencing appear mainly distributed over technology

compared to the other human participants.

Early on during the interview, Robert demonstrated his impression of students’
dragging when given a diagram like D1 to explore. He dragged the points B, C and D
quickly in a jerky fashion, as if to imply that students’ dragging is unsystematic and
hence they fail to encounter key pedagogic cases such as the three standard
configurations. This could be interpreted as an articulated, anticipated choice and use of
examples: a recognition that some explicit pedagogic structure needs to be imposed in
some way, either via a teacher demonstration or a structured worksheet for example, to
ensure students encounter key pedagogic cases. In this instance, to the extent cognition
appears distributed, Robert’s articulated, anticipated choice and use of examples would

appear mainly distributed over students in interaction with the technology.

7.3 Minimum Knowledge Requirements

This section proposes minimum knowledge requirements for a choice and use of
examples and decisions about sequencing in each of the four categories of the second
dimension of the framework for identifying instances of distributed cognition. The
minimum knowledge requirements provide a means of explaining why case study
teacher Michael was able to produce a better circle theorem case list in pedagogical
terms than the other more experienced and more mathematically confident case study
teachers (see the next section and also Chapter 6). By specifying minimum knowledge
requirements, an indication is provided of how and to what extent the case study

teacher’s mathematical knowledge for teaching was distributed across the software, the
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author and teaching-colleagues. In particular, this provides evidence to support the
assertions made in the previous section of the ordering of the four categories in terms of
the extent cognition was distributed over technology and the other human participants,
from most to least distributed. Where possible, the minimum knowledge requirements
are also grounded in examples drawn from GeoGebra interview data to provide a

context in which they can be understood.

This section begins by introducing notation to describe the knowledge requirements for
a choice and use of examples and decisions about sequencing. The diagram below
represents a choice and use of examples where M and N are pedagogic cases and s is a

dragging sequence to obtain N from M.

Thus, for example, an articulated choice and use of examples implies the case study
teacher’s recognition of N as a pedagogic case distinct from some M. Recognition of M
is also implied, although this may simply be the starting i.e. arrowhead configuration. If
it is to be repeatable, an articulated choice and use of examples additionally implies
recognition of the dragging sequence s, i.e. pedagogic case N cannot be used again
unless a dragging sequence is known to elicit it from some pedagogic case M. A
teacher’s articulation of a choice and use of examples is observable through their
recorded speech. Their recognition of a pedagogic case or dragging sequence is

unobservable: it is inferred from their articulation.

Similarly, the diagram below represents a decision about sequencing where M, N1 and
N> are pedagogic cases and s; and s, are dragging sequences. s1 and sz are not equal,
hence N at least is distinct from M and Ni. Pedagogic cases M and Ni need not be
distinct, although s1 must be non-zero. For example, if M is the starting configuration, s:
could be a repeatable dragging sequence involving one or more of points B, C and D,
which shows the family of arrowhead-type examples but does not disrupt the arrowhead

configuration per se.

M

S/Nl
\

S2 N2

232



At the end of this section, Figure 7.1 illustrates the hierarchy of minimum knowledge
requirements for the four categories of the framework. It is also included as a separate
sheet in the back cover of the thesis.

7.3.1 Minimum knowledge requirements for Unarticulated, Unanticipated
opportunities

Robert’s exploratory dragging of D1 produced a sequence of four pedagogic cases 21-
17-16-19. This provided an instance of an unarticulated, unanticipated choice and use of
examples and decision about sequencing. He appeared unaware of the pedagogic cases
he elicited and of the dragging sequence needed to elicit these four pedagogic cases
since he did not comment on either. Thus it is not necessary to recognise any dragging
sequence s or any pedagogic case elicited N for an unarticulated, unanticipated choice
and use of examples and decision about sequencing. In other words, it is only necessary
to recognise that the angle at the centre theorem holds for some configuration M of D1
a priori, most obviously the starting configuration, and that dragging points B, C and D
will produce further (unspecified) examples of the angle at the centre theorem. The

minimum knowledge requirements are therefore as follows:

¢ knowing some configuration M of D1, e.g. the starting (arrowhead) configuration, as
a case of the angle at the centre theorem. It is necessary to know M a priori, i.e.

before dragging.

¢ knowing that one or more of points B, C and D can be dragged and how to drag them

using the mouse i.e. technical knowledge.

e knowing that dragging points B, C and D produces mathematical variation. The
nature of this variation may be unspecified i.e. dragging B, C or D causes the
diagram D1 to change somehow. How it changes or precisely what causes the
change, beyond dragging B, C or D, is not necessary knowledge.

e knowing that one or more of points B, C or D should be dragged and dropped in a
variety of positions to convincingly demonstrate the angle at the centre theorem.
However, such dragging may be unsystematic and therefore unrepeatable i.e. no

routine for dragging.
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7.3.2 Minimum  knowledge requirements for Unarticulated, Anticipated
opportunities

Robert, Anne and Edward elicited pedagogic case 3 by dragging point B as part of their
apparently routine demonstration of the angle at the centre theorem using D1. These
provided instances of an unarticulated, anticipated choice and use of examples. To some
extent, each of them commented on the dragging sequence needed to elicit pedagogic
case 3, yet none of the three case study teachers seemed aware of the case itself since
they did not comment on it. Thus for an unarticulated, anticipated choice and use of
examples, in addition to the pedagogic case M, it is necessary to recognise a priori the
dragging sequence s, so that it is anticipated i.e. routine. However, it is unnecessary to

recognise any pedagogic case N that might be elicited.

Michael and Anne elicited sequences of cases 1-6-12 and 1-3-5-4 respectively as part of
their apparently routine demonstration of the angle at the centre theorem using D1.
These provided examples of an unarticulated, anticipated decision about sequencing. To
some extent, Michael and Anne each commented on the dragging sequence needed to
elicit their sequence of cases, however they did not compare it to another dragging
sequence. Thus for an unarticulated, anticipated decision about sequencing it is again
only necessary to recognise a priori the dragging sequence s, in addition to the
pedagogic case M. Although Michael did recognise all three pedagogic cases elicited
through his dragging sequence, Anne’s apparent unawareness of pedagogic case 3
implies it is not necessary to recognise any pedagogic case N that might be elicited. The

minimum knowledge requirements are therefore as follows:

e knowledge required for Unarticulated, Unanticipated opportunities and in addition,

e knowing a dragging sequence s i.e. a repeatable routine for dragging one or more of

points B, C and D, which elicits some pedagogic case N distinct from M.

7.3.3 Minimum  knowledge requirements for Articulated, Unanticipated
opportunities

This sub-section attempts to posit minimum knowledge requirements for three possible
types of articulated, unanticipated choice and use of examples. The first type is one
where the choice and use of examples may be unrepeatable. The second and third are
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both types where the choice and use of examples is repeatable, but which derive from
different knowledge requirements a priori. Similarly, this sub-section also attempts to
posit minimum knowledge requirements for three possible types of articulated,
unanticipated decisions about sequencing, the first of which may be unrepeatable; the
second and third are repeatable but again derive from different knowledge requirements

a priori.
Articulated, unanticipated choice and use of examples that may be unrepeatable

After indirect prompting, Michael elicited pedagogic case 19, the arrowhead
configuration displaying the reflex angle at the centre, which he commented on as being
different to the starting configuration. This provided an example of an articulated,
unanticipated choice and use of examples. Thus an articulated, unanticipated choice and
use of examples implies it is necessary to recognise N as a pedagogic case distinct from
some M a posteriori, i.e. after dragging sequence s. Immediately after eliciting
pedagogic case 19, Michael exclaimed “okay, so now I’m not quite sure how I’ve done
that”. His statement implies it is not necessary to recognise any dragging sequence s
used to elicit pedagogic case N from M, however in this case the articulated,
unanticipated choice and use of examples may be unrepeatable. The minimum
knowledge requirements for an articulated, unanticipated choice and use of examples,

which may be unrepeatable, are therefore as follows:
¢ knowledge required for Unarticulated, Unanticipated opportunities and in addition,

e knowing one or more criteria for distinguishing pedagogic cases (criteria can be

incomplete) e.g. ‘not an arrowhead’ or ‘angle displayed at the centre is different’.

¢ knowing one or more criteria for judging pedagogic benefit of introducing pedagogic

case N via some dragging routine s.

Repeatable, articulated, unanticipated choice and use of examples (1)

After indirect prompting, Edward noted he hadn’t yet explored “the problem of what
happens if you drag D all the way round there”, referring to dragging point D up
towards and past point B at the top of the circle. He then appeared to elicit pedagogic
case 12 unexpectedly, by dragging point D in the way he described. This also provided
an instance of an articulated, unanticipated choice and use of examples. However, in
this case Edward describes the dragging sequence s a priori, thus it is likely that the
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articulated, unanticipated choice and use of examples would be repeatable. In this case,
the minimum knowledge requirements for a repeatable articulated, unanticipated choice

and use of examples, where the dragging sequence s is known a priori, are as follows:
e knowledge for Unarticulated, Anticipated opportunities and in addition,

e knowing one or more criteria for distinguishing pedagogic cases (criteria can be
incomplete) e.g. ‘not an arrowhead’ or ‘angle displayed at the centre is different’.

¢ knowing one or more criteria for judging pedagogic benefit of introducing pedagogic
case N via some dragging routine s.

Repeatable, articulated, unanticipated choice and use of examples (1)

Immediately after a prompt regarding special or extreme cases of the angle at the centre
theorem, Robert said, “I’d probably want to show this [drags C so that CD is a
diameter]”, and elicited pedagogic case 13, representing the angle in a semi-circle
theorem. This provides another type of a repeatable, articulated, unanticipated choice
and use of examples. This configuration seemed familiar to Robert, yet he had
apparently not considered dragging point C or D far enough to make the chord CD a
diameter as part of his routine dragging of D1. Another example of this type of
repeatable, articulated, unanticipated choice and use of examples is the author’s own
dragging to elicit the upside-down arrowhead configuration. Here, there was a clear
intention to elicit a particular configuration, but the author improvised a dragging
sequence to arrive at the upside-down arrowhead during her first GeoGebra interview,
gradually improving the efficiency of her dragging over the course of the interviews. In
these cases, knowing pedagogic case N a priori is a necessary requirement, however it
is only necessary to recognise the dragging sequence s a posteriori. In this case, the
minimum knowledge requirements for a repeatable articulated, unanticipated choice and

use of examples, where the pedagogic case N is known a priori, are as follows:

¢ knowledge for Articulated, Unanticipated choice and use of examples that may be

unrepeatable and in addition,

¢ knowing one further pedagogic case N distinct from M e.g. apart from the starting

configuration.

Articulated, unanticipated decisions about sequencing that may be unrepeatable
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Articulated decisions about sequencing involve expressing a pedagogical preference for
one of two recognised sequences of cases, starting from the same pedagogic case M, as
depicted in the diagram in the introduction to this section. For articulated, unanticipated
decisions about sequencing, one of these sequences, involving dragging sequence sz to
elicit pedagogic case Ni say, is necessarily recognised a priori, with the other being
recognised only after dragging. This gives rise to an unanticipated comparison and
expression of preference for one of the two sequences of cases. Thus knowing
pedagogic cases M, N1 and dragging sequence Si a priori is a necessary requirement,
and in addition it is necessary to recognise N2 as distinct from M, Ny a posteriori.
Pedagogic cases M and N1 may belong to the same family of cases i.e. they need not be
distinct, although s: must be non-zero, otherwise the decision about sequencing
collapses to a choice and use of examples. It is not necessary to recognise any dragging
sequence sz, used to elicit pedagogic case N2 from M, however in this case the
articulated, unanticipated decision about sequencing may be unrepeatable. The
minimum knowledge requirements for an articulated, unanticipated decision about

sequencing, which may be unrepeatable, are therefore as follows:

e knowledge for an Articulated, Unanticipated choice and use of examples that may be

unrepeatable and in addition,

e knowing a non-zero dragging sequence si, i.e. a repeatable routine to elicit pedagogic

case N1 from M, where M and N1 need not be distinct.

e knowing one or more criteria for judging the pedagogic benefit of introducing
pedagogic case N2 via dragging sequence s compared to introducing pedagogic case

N1 via dragging sequence s1.

Repeatable, articulated, unanticipated decisions about sequencing (1)

Edward stated he would drag B to elicit pedagogic case 5, as a first “complication”,
before continuing to drag points C and D to elicit pedagogic case 13, the angle in a
semi-circle, and pedagogic case 12, the convex quadrilateral configuration displaying
the correct angle at the centre. This also provided an example of an articulated,
unanticipated decision about sequencing: Edward expressed a preference for the
sequence 1-5 over the unanticipated sequence 1-6-13-12. The sequence 1-6-13-12 was
unanticipated because Edward elicited pedagogic cases 12 and 13 unexpectedly. In this
instance, Edward had articulated the sequence 1-5 beforehand, elicited through his
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routine dragging, before going on to recognise pedagogic case 12 and 13 a posteriori.
However, Edward had also commented on the dragging sequence to elicit pedagogic
cases 12 and 13 a priori, as described under the sub-section repeatable, articulated,
unanticipated choice and use of examples (I). Since Edward recognised dragging
sequence sy a priori, it is likely that the articulated, unanticipated decision about
sequencing would be repeatable. Thus, in addition to knowing pedagogic cases M, N1
and dragging sequence s1 a priori, knowing the dragging sequence s a priori is a
necessary requirement for a repeatable articulated, unanticipated decision about
sequencing. It is also necessary to recognise N2 as distinct from M, N1 a posteriori.
Hence the minimum knowledge requirements for a repeatable articulated, unanticipated
choice and use of examples, where the dragging sequence s. is known a priori, are as

follows:

¢ knowledge for an Articulated, Unanticipated decisions about sequencing that may be

unrepeatable and in addition,

e knowing one further dragging sequence s, i.e. a repeatable routine to elicit some

pedagogic case N distinct from M.

Repeatable, articulated, unanticipated decisions about sequencing (I1)

Robert suggested he would drag B first, hoping his students would prompt him to move
B onto the ‘wrong’ segment, thus eliciting pedagogic case 5. He suggested he would
then continue his demonstration by dragging points C and D, presumably eliciting
pedagogic cases 6, 13 as he had done earlier in the interview. Thus Robert implied he
would elicit the sequence of cases 1-5 before the unanticipated sequence 1-6-13. Again
this provided an example of another type of repeatable, articulated, unanticipated
decisions about sequencing. In this instance, Robert appeared to articulate pedagogic
case 12 as well as the sequence of cases 1-5 a priori, before unexpectedly recognising
the dragging sequence needed to elicit case 12, as described under the sub-section
repeatable, articulated, unanticipated choice and use of examples (11). Thus, in addition
to knowing pedagogic cases M, Ni and dragging sequence si1 a priori, knowing
pedagogic case N2 a priori is a necessary requirement for this type of repeatable
articulated, unanticipated decisions about sequencing. It is also necessary to recognise

dragging sequence s a posteriori. Hence the minimum knowledge requirements for a
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repeatable articulated, unanticipated choice and use of examples, where the dragging

sequence N2 is known a priori, are as follows:

¢ knowledge for an Articulated, Unanticipated decisions about sequencing that may be

unrepeatable and in addition,

e knowing one further pedagogic case N distinct from M e.g. apart from the starting

configuration.

7.3.4 Minimum  knowledge requirements for  Articulated, Anticipated
opportunities

This sub-section summarises the posited minimum knowledge requirements for an
articulated, anticipated choice and use of examples and decision about sequencing based

on the minimum knowledge required for unarticulated, unanticipated opportunities.

Articulated, anticipated choice and use of examples

In their apparently routine response to using D1 to demonstrate the angle at the centre
theorem, each of the case study teachers elicited and articulated two pedagogic cases
beyond the starting configuration. In the interview context, some of these instances
actually appeared more like an articulated, unanticipated choice of examples. However,
it is possible to imagine that if the case study teachers had planned their demonstrations
in advance, as they might for a lesson, then these would have been clear-cut instances of
articulated, anticipated choice and use of examples. For example, Edward dragged point

B to elicit pedagogic case 5 after saying:

But now ... obviously there’s an issue of what about if you move B on the other side.

Before we do that though, let’s see what G does.

In this statement, Edward anticipated that the dragging sequence “move B onto the
other side [of C or D]” would raise “an issue” i.e. the pedagogic case 5, distinct from the
starting configuration. From Edward’s statement it is possible to infer that he had prior
knowledge of both the pedagogic case 5 and the dragging sequence necessary to elicit it
from the starting configuration. Hence this provided one of the clearest instances of
articulated, anticipated choice and use of examples. Thus for an articulated, anticipated

choice and use of examples, in addition to knowing the pedagogic case M, it is
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necessary to know both a pedagogic case N, distinct from M, and a dragging sequence s
to elicit N from M. Hence the minimum knowledge requirements for an articulated,

anticipated choice and use of examples are as follows:
e knowledge required for Unarticulated, Unanticipated opportunities and in addition,

e knowing one or more criteria for distinguishing pedagogic cases (criteria can be
incomplete) e.g. ‘not an arrowhead’ or ‘angle displayed at the centre is different’.

¢ knowing one further pedagogic case N distinct from M e.g. apart from the starting

configuration.

e knowing a dragging sequence s i.e. a repeatable routine for dragging one or more of

points B, C and D, which elicits some pedagogic case N distinct from M.

¢ knowing one or more criteria for judging pedagogic benefit of introducing pedagogic

case N via some dragging routine s.

Articulated, anticipated decisions about sequencing

Robert articulated a decision to drag D1 to elicit the sequence of cases 1-5 before the
sequence 1-6. Similarly, Edward articulated a decision to drag D1 to elicit the sequence
of cases 1-1 before the sequence 1-6. In both instances, the case study teacher had
articulated both sequences of cases before stating their preferential ordering. Hence
these provided examples of an articulated, anticipated decisions about sequencing. Thus
for articulated, anticipated decisions about sequencing knowing pedagogic cases M, Ny,
and N2 as distinct from M and dragging sequences s; and S a priori are necessary
requirements. Hence the minimum knowledge requirements for articulated, anticipated

decisions about sequencing are as follows:
¢ knowledge required for Unarticulated, Unanticipated opportunities and in addition,

¢ knowing one or more criteria for distinguishing pedagogic cases (criteria can be

incomplete) e.g. ‘not an arrowhead’ or ‘angle displayed at the centre is different’.

¢ knowing one or more criteria for judging pedagogic benefit of introducing pedagogic

case N via some dragging routine s.

e knowing a non-zero dragging sequence si, i.e. a repeatable routine to elicit pedagogic
case N1 from M, where M and N1 need not be distinct.
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e knowing one further dragging sequence s, i.e. a repeatable routine to elicit some

pedagogic case N2 distinct from M.

e knowing one further pedagogic case N> distinct from M e.g. apart from the starting

configuration.

e knowing one or more criteria for judging the pedagogic benefit of introducing
pedagogic case N2 via dragging sequence s compared to introducing pedagogic case

N1 via dragging sequence S.
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7.4 Explaining Michael’s circle theorem case list: distributed cognition

Michael’s circle theorem case list was surprising in two ways when compared to those
of the other three case study teachers (see also Chapter 6). First, his circle theorem case
list was the only one to indicate the pedagogically preferable sequence of cases,
eliciting pedagogic case 12, the convex quadrilateral configuration displaying the
‘correct’ angle at the centre through dragging point C or D, before eliciting pedagogic
case 5, the convex quadrilateral configuration displaying the ‘wrong’ angle at the centre
through dragging point B. Secondly, his circle theorem case list also had the highest
total number of pedagogic cases elicited by the case study teacher in the interview. That
his circle theorem case list should exhibit these features was surprising because Michael
was one of the least experienced case study teachers, being only in his second year of
teaching. In particular, he appeared to be the least mathematically confident of the four
teachers and, with his undergraduate and masters degrees in economics, was hoping to
transition to becoming an economics teacher. Hence, superficially at least, Michael
appeared likely to have the least mathematical knowledge for teaching circle theorems
using technology, yet based on these indicators, the circle theorem case list he elicited

made the most mathematical knowledge available in the interview.

The minimum knowledge requirements provide a means of explaining how a teacher
with less mathematical knowledge for teaching might elicit a pedagogically preferable
sequence of cases than teachers with more mathematical knowledge for teaching.
Knowing a dragging routine is enough to produce a particular sequence of cases
because generating and sequencing examples of the angle at the centre theorem can be
delegated to the GeoGebra software. Thus a teacher simply knowing one good dragging
routine might elicit a pedagogically preferable sequence of cases than another teacher
who articulates a decision about sequencing, comparing two or more dragging routines,
based on incomplete or otherwise flawed criteria. This seems a plausible explanation for
the unarticulated, anticipated decision about sequencing Michael produced in the
GeoGebra interview. Michael’s routine response produced the sequence of pedagogic
cases 1-6-12, through dragging points C and D to initiate a demonstration of the angle at
the centre theorem. At no point did Michael drag point B to disrupt the arrowhead
configuration until directly prompted to by the author. Thus he appeared to know one

good dragging routine: briefly drag each of points B, C and D without disrupting the
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arrowhead configuration, then drag points C and D up towards B. It is also possible he
followed this dragging routine based on advice from his Head of Department. On the
other hand, Robert and Edward articulated a decision about sequencing, implying they
recognised at least two dragging routines and based their decision on some criteria
regarding the pedagogic benefit of the dragging routines. Thus they appeared to know
more than Michael. They recognised the pedagogic benefit in making a connection
between the angle at the centre theorem and the angles in the same segment theorem by
dragging B to elicit pedagogic case 5. However, their criteria for comparison were
incomplete, since they did not appreciate that making this connection, before
establishing the angle at the centre theorem, might distract from the theorem itself.
Hence it was possible for Michael, apparently knowing less than Robert or Edward, to

elicit a pedagogically preferable sequence of cases.

All four case study teachers fulfilled the minimum knowledge requirements for an
articulated, anticipated choice and use of examples, each eliciting two pedagogic cases
beyond the starting configuration. Table 7.2 shows the number of pedagogic cases each
case study teacher elicited in each of the four categories of the second dimension of the
framework for identifying instances of distributed cognition. In particular, Michael
elicited eight pedagogic cases in an articulated, unanticipated choice and use of
examples compared to the other case study teachers who each elicited four. It is this
category that contributes most to Michael’s circle theorem case list having the highest

total number of pedagogic cases elicited by the case study teacher in the interview.

Table 7.2 The number of pedagogic cases elicited in each of the four categories of the second
dimension of the framework for identifying instances of distributed cognition

uu UA AU AA Total elicited
Robert* 4 1 4 3 12
Anne 2 1 4 3 10
Edward 2 1 4 3 10
Michael 4 0 8 3 15

AA = articulated anticipated; AU = articulated unanticipated; UA = unarticulated anticipated,

UU = unarticulated unanticipated.
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The minimum knowledge requirements for an articulated, unanticipated choice and use
of examples suggest that generating pedagogic cases in this category could be mostly
delegated to the GeoGebra software e.g. for an articulated, unanticipated choice and
use of examples that may be unrepeatable there is no need to know either a dragging
sequence or a pedagogic case distinct from the starting configuration a priori. Hence,
despite appearing to be the least mathematically confident of the four teachers, Michael
was able to elicit more pedagogic cases through exploratory dragging than the other
case study teachers. As a result, the mathematical knowledge made available in
Michael’s interview appears more effectively distributed across the GeoGebra software
than in the interviews of the other case study teachers. Thus viewing cognition as
distributed provides a plausible explanation for how Michael could produce a circle
theorem case list with the highest total number of pedagogic cases elicited by the case

study teacher in the interview.

7.5 Instances of distributed cognition from classroom observations

In this section, data from observations of the case study teachers’ use of technology
are used to provide two instances where cognition appears to be distributed ‘in the wild’
of mathematics teachers’ classroom practice. The first instance exemplifies the
unarticulated, anticipated category of the framework where the mathematical
knowledge made available in the lesson appeared to be distributed over technology, in
this case the MyMaths website. The second instance provides an example of an
articulated, unanticipated opportunity where the mathematical knowledge made
available in the lesson appeared to be distributed over a student’s query in relation to a

textbook question.

The first instance, where the mathematical knowledge made available in the lesson
appeared to be distributed over technology, occurred in the observation of Michael’s
computer suite lesson. Michael had asked his year 8 pupils to work through a MyMaths
lesson on calculating the volume of cuboids, comprising a series of slides incorporating
explanations and exercises on the topic. In particular, the MyMaths lesson on volume
included two animated slides offering a justification for the formula for the volume of a
cuboid e.g. volume = width x length x height. The justification made a connection
between a counting-cubes procedure for working out the volume of a cuboid and the

multiplicative formula by animating the repeated addition of cuboids of unit height.
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Thus the animation used a sequence of cuboids with heights increasing by an increment
of one unit to make a connection between procedures, a code from the Connection
category of the Knowledge Quartet. This connection was made available in the lesson
by the decisions about sequencing and the choice and use of examples embedded in the
design of the MyMaths lesson. The animation culminated in a 3x5x6 cuboid. Since the
three dimensions of the cuboid are distinguishable by virtue of their differing lengths,
the choice of this example also made it possible to demonstrate the interchangeability of
the labels ‘length’, ‘width’ and ‘height’, although this was not explicitly stated on the

animated slide.

In the post-observation interview, Michael suggested he thought the animation was
pedagogically useful and something that was not easily done using other resources.
It’s a nice neat little demonstration I think, that’s definitely something you wouldn’t

be able to do ... in a book you wouldn’t be able to do that. I think that’s a real nice
demonstration. [Mic-CS-int, 31.5.2012]

However, Michael didn’t articulate why the animation was pedagogically useful for
teaching volume, beyond being visually appealing. In particular, in preparing for the
lesson, it seemed unlikely Michael had considered the usefulness of the MyMaths lesson
from the point of view of mathematics pedagogy. After the post-observation interview,
Michael commented that he felt he relied on the MyMaths website too much, trusting
the software so that he didn’t think about how to structure his explanation of
mathematical concepts. During the lesson, he did not draw pupils’ attention specifically
to the animated slide, although he did encourage them to work through all the slides and
not just to complete the assessed exercise at the end. Before taking his pupils to the
computer suite, Michael provided a worked example of calculating the volume of a
cuboid on the IWB in his normal classroom for his students to copy down into their
exercise books. This example was not informed by the justification provided by the
MyMaths animated slide. Michael used a cuboid with dimensions 1x1x5 to demonstrate
the volume formula. This is a poor choice and use of examples for at least two reasons.
Firstly, counting cubes appears a more efficient procedure than using the volume
formula in this case, hence justifying the formula is problematic. Secondly, the
repetition of unit length for two dimensions of the cuboid makes it difficult to
demonstrate the interchangeability of the labels ‘length’, ‘width’ and ‘height’. Michael
also adopted an algebraic approach in helping pupils to find a missing length given the

volume of a cuboid, rather than connecting his explanation to the concept of volume. He
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assumed pupils’ difficulty with this type of question stemmed from an aversion to the
division operation, rather than to a lack of conceptual understanding of volume. In
general, Michael said he did not understand why pupils had difficulties with this topic
but did later acknowledge that the vocabulary of length, width, breadth, depth, base and

so on and the interchangeability of these terms could be confusing.

Michael’s use of the animated slide as part of the MyMaths lesson provides an example
of an unarticulated, anticipated choice and use of examples and decisions about
sequencing. Michael planned to use the slide as part of the MyMaths lesson on volume
and thought it was a “nice demonstration” at least in general pedagogic terms. In this
sense it was an anticipated opportunity. However, Michael did not articulate the
usefulness of the slide in terms of mathematics pedagogy. In particular, it seems
unlikely that he had considered the pedagogic structuring provided by the MyMaths
lesson, in terms of the choice and use of examples or decisions about sequencing
embedded in the software. It also seems unlikely that Michael would have made a
connection between the counting-cubes procedure and volume formula available in the
lesson without the use of a resource like the MyMaths website. Thus Michael had a
readerly response to the software: the choice and use of examples and decisions about
sequencing were mainly delegated to the technology. Hence Michael’s use of the
MyMaths lesson provides an instance of distributed cognition, where the mathematical
knowledge made available in the lesson appeared to be distributed mainly over the
technology, likely leading to a better outcome than would have been possible without

the use of a resource like the MyMaths website.

The second instance, where the mathematical knowledge made available in the lesson
appeared to be distributed over a student in interaction with the textbook, occurred in
the observation of Edward’s IWB lesson. The aim of Edward’s lesson was to teach his
year 12 students that the graph of an inverse function y = f 1(x) is a reflection in the line
y = x of the original function y = f(x). Towards the end of the lesson the students were
working on an exercise in relation to this topic from the course textbook. One of
Edward’s students drew his attention to a textbook question where they were asked to
find the inverse function of f(x) = 4 — x. The student thought his answer must be wrong
because he had f }(x) = 4 — x and couldn’t understand how the function could be an
inverse of itself. The student’s query prompted a sudden insight for Edward into the
value of this question in terms of mathematics pedagogy. He realised that the line

y =4 — x is perpendicular to the line y = x, thus the reflection of y = f(x) in the liney = x
247



simply maps the function back onto itself. As a result, the graph of the inverse function
must also be y = 4 — x, explaining why function is self-inverse. This question was
pedagogically useful because it provided an opportunity to consider why this function
was self-inverse, and thus by extension what other functions might be self-inverse,
whilst linking to the main aim of the lesson. In particular, the choice of example
provided by the textbook question presents an opportunity to make connections between
concepts (Knowledge Quartet, Connection), e.g. connecting the global property of
having reflective symmetry in the line y = x with the concept of a self-inverse function.
This insight caused Edward to deviate from his lesson agenda (Knowledge Quartet,
Contingency), drawing the attention of the whole class to this example and replacing the

planned example of finding the inverse function of y = x? — 3.

Edward’s response to the student’s query, connecting the global property of having
reflective symmetry in the line y = x with the concept of a self-inverse function,
provides an example of an articulated, unanticipated choice and use of examples.
Edward articulated the pedagogic value of the example in the lesson, through his
exposition of the example, and also later in the post-observation interview (see quotes
below). The choice and use of examples was unanticipated because, although he had
chosen the exercise from the textbook to some extent, he had no pedagogic expectations
of the questions. For example, describing his planning of the lesson in the post-
observation interview Edward said:
No no, | ignored the textbook completely. [I: Right okay.] Did what | want to do, and

then went ‘Oh no the textbook seems to ask random questions’... [Ed-IWB-int,
20.6.2012]

His use of the word “random” to describe the textbook questions implies he assumed
there was no intentional pedagogical structuring in the exercise i.e. no deliberate choice
and use of examples or decisions about sequencing embedded in the design of the
exercise. Hence he did not expect the questions to be of any particular pedagogic value.
In addition, Edward acknowledged during the interview that he had not looked at the
questions beforehand when planning the lesson and wouldn’t have thought of this
“learning objective” otherwise. He still argued that the textbook sometimes appeared
“random” i.e. without pedagogic structure, but that this example was an exception.
E: It was a question from the book, but I hadn’t looked at it before and I was

stuck for a bit, it’s like is that right or wrong ... oh that means this [inaudible] realised
it was self-inverse and reflective.
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I: Yeah, okay.

E: Which could have been a really good learning objective I just hadn’t
thought of it. So that’s another example of the book coming up with points that |
wouldn’t have thought of. So it’s not all bad, the questions in the book, they are a bit
random sometimes. In fact that wasn’t, that was quite a good question to ask actually.
[Ed-IWB-int, 20.6.2012]

The student’s query in relation to the correctness of his answer, given that it appeared to
be the same as the original question, appeared instrumental in drawing Edward’s
attention to the pedagogic value of this particular example. Without this intervention, it
seems unlikely that Edward would have recognised the pedagogic value of the question,
hence the mathematical knowledge made available in the lesson appeared to be
distributed over a student in interaction with the textbook. Thus Edward’s response to
the student’s query provides an instance of distributed cognition, where the
mathematical knowledge made available in the lesson appeared to be distributed over a
student in interaction with the textbook, likely leading to a better outcome than would

otherwise have been possible.

7.6 Summary

In this chapter, the research focus shifted from individual teachers’ own knowledge to
how this knowledge is involved in the participatory relationship with technology
(Remillard, 2005). Hutchins’ (1995) view of distributed cognition was used as a
framework for understanding how individual teachers’ knowledge is involved in
interacting with technology to produce the mathematical knowledge made available in
the classroom. In particular, specifying minimum knowledge requirements provided a
means of detailing how and to what extent knowledge is distributed across teacher and
technology and hence describing the participatory relationship (Remillard, 2005).

In section 7.1, Hutchins’ (1995) mode of argument was applied to the case study
teachers’ suggestions of how they would use the GeoGebra diagram D1 to demonstrate
the angle at the centre theorem to pupils. This involved mapping the elements of his
framework to the participants, hypothetical or otherwise, in the GeoGebra interviews.
Mapping the elements provided a means of contextualising Hutchins’ view of
distributed cognition in relation to this research project in particular and mathematics

education research more generally.
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A framework for identifying instances of distributed cognition, where the mathematical
knowledge made available was more or less distributed across the technology, was
developed and exemplified from an analysis of the circle theorem case lists presented in
Chapter 6. The framework differentiated between the case study teachers’ unarticulated
and articulated choice and use of examples and decisions about sequencing.
Unarticulated and articulated choice and use of examples and decisions about
sequencing were identified respectively with a readerly and writerly response to D1.
Identifying the case study teachers’ choice and use of examples and decisions about
sequencing with a readerly or writerly response was a means of indicating where the
mathematical knowledge made available was more or less distributed across the
technology. In addition, indicating where the mathematical knowledge made available
was more or less distributed across the technology allowed the framework to expand the
Knowledge Quartet, unravelling the tension bound up in the code adherence to textbook
identified in Chapter 6.

The development of the framework for identifying instances of distributed cognition led
to the specification of minimum knowledge requirements necessary for the case study
teachers to produce the circle theorem case lists depicted in Chapter 6. Specifying
minimum knowledge requirements provided an indication of how and to what extent the
case study teacher’s mathematical knowledge for teaching was distributed across the
software, the author and hypothetical teaching-colleagues. More generally, the
specification of minimum knowledge requirements potentially provides a theoretical
means of indicating how and to what teachers’ mathematical knowledge for teaching is
distributed across technology and hence a means of describing the participatory
relationship between teacher and technology (Remillard, 2005). The minimum
knowledge requirements also provided a means of explaining why case study teacher
Michael was able to produce a better circle theorem case list in pedagogical terms than
the other more experienced and more mathematically confident case study teachers.
This provides convincing evidence in support of a distributed view of cognition. In
particular, it suggests that an individual teacher ‘having’ more knowledge does not
necessarily equate to an improvement in the mathematical knowledge made available -
at least in the interview setting. It seems reasonable to speculate that this might also
generalise to a classroom setting. The last section of this chapter, data from classroom

observations of the case study teachers’ use of technology were used to provide brief
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indications of how the framework might be exemplified in mathematics teachers’

classroom practice.
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Chapter 8 - Mathematical knowledge for teaching using technology

The broader aim of this study was to develop a deeper understanding of both how and
why mathematics teachers use technology in their classroom practice. This final chapter
presents the findings of the study and the contribution this study makes to research in
the fields of teacher knowledge and technology in mathematics education. Following
this, the generalisability of the findings and limitations of the study are discussed. This
chapter concludes by considering the implications of this study for future research,

policy and practice.

8.1 Introduction

The motivation for this study was to develop a deeper understanding of teachers’
classroom practice using digital technology. This led to the progressive focusing of the
PhD research project on teachers’ mathematical knowledge for teaching using
technology. ‘Technology’ is defined broadly as any artefact (physical or virtual) that has
been designed for use or has been appropriated for use in teaching mathematics.
Similarly, ‘digital technologies’ is used to indicate a digital artefact (physical or virtual)
that has been designed for use or has been appropriated for use in teaching mathematics.
This definition of digital technologies includes software and hardware that are not
obviously ‘mathematical tools’. For example, teacher-centred digital technologies such
as presentation-oriented software (e.g. PowerPoint, IWB software and the MyMaths

website) are included, but non-digital technologies such as textbooks are excluded.

The first section of Chapter 1 argued that mathematics education research has tended to
focus narrowly on digital technologies such as those termed cognitive technological
tools (Zbiek et al., 2007) or mathematical analysis software (Pierce & Stacey, 2010). It
was argued this has led to the perception of a deficit in teachers’ use of digital
technologies. The apparent deficit exists in two senses. Firstly, mathematics teachers
appear to make only occasional use of digital technologies in their teaching. Secondly,
when teachers do make use of digital technologies, the potential of these technologies to

enhance pupils’ mathematical experience in the classroom is rarely realised. Adopting a
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wider definition of digital technologies, such as the one used in this study, suggests the
apparent deficit in teachers’ frequency of use may be over-estimated. Teachers do
integrate some types of digital technology into their classroom practice. However, these
types of digital technology are commonly assumed to be teacher-centred (rather than

student-centred) and to maintain or even encourage existing ‘traditional’ pedagogies.

Remillard’s (2005) perspective provided a reminder that although the constraints and
affordances inherent in digital technologies may help to shape its end use in the
classroom, inevitably, teachers as end-users will also work to shape the technology.
Thus connectionist-oriented teachers may work to shape digital technologies commonly
assumed to be teacher-centred, using them in ways that conform to their own more
student-centred pedagogy. Chapter 1 hypothesised that, if this is the case, then the
apparent deficit in teachers’ use of digital technologies in terms of the extent to which

their potential is realised may also be over-estimated.

In addition, Chapter 1 argued there is an imperative for research on how technology use
is associated with a connectionist orientation. This imperative, alongside this study’s
focus on teacher knowledge in relation to using technology to teach mathematics, gave
rise to the two main research questions, RQ1 and RQ2, and two subsidiary questions,
RQ2a and RQ2b, listed below. Since this study has defined a connectionist orientation
mainly in terms of knowledge, contrasting connectionist teachers’ with transmissionist
teachers’ use of technology provided a means of making visible individual teachers’

mathematical knowledge for teaching using technology.

RQ1 How is a connectionist orientation towards teaching mathematics associated
with teachers’ frequency of use of ICT, their orientation towards ICT and their

pedagogic practices involving ICT?

RQ2 What is the nature and content of teachers’ mathematical knowledge for

teaching using technology, as represented by the central TPACK construct?

RQ2a How does a conceptualisation of teachers’ mathematical knowledge for
teaching using technology suggest ways in which such knowledge could be

measured?

RQ2b To what extent is the mathematical knowledge made available through a
teachers’ interaction with technology distributed across the individual teacher

and the technology?
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This study adopted a mixed-methods approach towards investigating individual
teachers’ knowledge and how it is involved in interacting with technology to produce
the mathematical knowledge made available in the classroom. A largely quantitative
approach was taken to addressing Research Question 1, using survey data to explore
associations between a connectionist orientation and ICT use, in order to be able to
generalise more effectively to the population of English secondary school teachers.
Addressing Research Question 2 and the subsidiary questions 2a and 2b, a qualitative
approach was judged necessary to investigate individual teachers’ knowledge and how
it is involved in the participatory relationship (Remillard, 2005) between teacher and
technology. Qualitative data collection involved observing lessons where ICT was being
used, followed by a post-observation interview, and a semi-structured interview or

‘think aloud’ based around manipulating a GeoGebra file on circle theorems.

8.2 Findings

RQ1 How is a connectionist orientation towards teaching mathematics associated
with teachers’ frequency of use of ICT, their orientation towards ICT and their

pedagogic practices involving ICT?

The findings in Chapter 4 suggest that moving research on teachers’ use of technology
in mathematics education away from a narrow focus on cognitive tools (Zbiek et al.,
2007) or mathematics analysis software (Pierce & Stacey, 2010) to include teacher-
centred digital technologies such as presentation-oriented software (e.g. PowerPoint,
IWB software and the MyMaths website) may be productive in terms of developing a
deeper understanding of both how and why mathematics teachers use digital
technologies in their classroom practice. In Chapter 4, a key finding was that frequent
use of software commonly assumed to maintain and even encourage existing
transmission-oriented pedagogies was surprisingly associated with a more connectionist
orientation. Whilst mathematical analysis software is associated with making
connections, for example between multiple representations (Kaput, 1992), this finding
seems to suggest that ‘teacher-centred’ digital technologies might also be important in
supporting connectionist-oriented practices. This supports the suggestion that the
apparent deficit in teachers’ frequency of use may be over-estimated. In particular, this
finding suggests that if connectionist teachers do adapt ‘teacher-centred’ digital

technologies in ways that support or conform to their own more student-centred
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pedagogy, the apparent deficit in teachers’ use of digital technologies in terms of the

extent to which their potential is realised may indeed be over-estimated.

In addition, Chapter 4 found that whilst there are pedagogic practices involving ICT
associated with a connectionist orientation, items on pedagogic practices involving ICT
that were designed to be ‘teacher-centred’ appear to have no association either way.
These ‘teacher-centred’ practices involving ICT may instead be construed as ‘dominant’
practices, in that they are also the most frequently occurring across all teachers. Case
study data supports the survey finding of dominant practices, suggesting that,
superficially at least, there is little difference between connectionist and transmission
teachers use of ICT. This points to a need for further research focussing on how and to
what extent connectionist teachers adapt ‘teacher-centred’ digital technologies in ways
that support or conform to their own more student-centred pedagogy — see Section 8.6
on implications of this study. Chapter 4 also provided indications that even these

dominant practices make significant demands on teachers’ knowledge.

RQ2 What is the nature and content of teachers’ mathematical knowledge for

teaching using technology, as represented by the central TPACK construct?

A key contribution this study makes is developing an understanding of the nature and
content of individual teachers’ mathematical knowledge for teaching using technology.
In Chapter 1, borrowing from Shulman (1986, p.13), mathematical knowledge for
teaching using technology was assumed not only to be a matter of knowing how — being
competent in teaching mathematics using technology - but also of knowing what and
why. In other words, mathematical knowledge for teaching using technology, as defined
in this study, is when know-how or knowledge-in-action is underpinned by and
coincides with the teacher’s articulated knowledge. This was depicted in Figure 1.1 as
the intersection of individual teachers’ articulated knowledge and their knowledge-in-
action. Contrasting the two transmissionist with the two connectionist case study
teachers’ use of technology provided a methodological means of making visible
individual teachers’ mathematical knowledge for teaching using technology. The
literature review in Chapter 2 makes a contribution in identifying mathematical
knowledge for teaching using technology as an area that has been under-researched.
More specifically, the literature review found that research on technology in

mathematics education has paid relatively little attention to teachers’ knowledge of

255



specific mathematical concepts in relation to technology. By comparison, research on
teacher knowledge in the field of mathematics education is relatively well
conceptualised, although limited in terms of its curriculum coverage. For example, Ma’s
(1999) research focused on arithmetic operations and Askew et al (1997) focused on
numeracy. In addition, research on teacher knowledge in the field of mathematics
education has rarely considered teachers’ mathematical knowledge for teaching in the
context of technology use. Hence the literature review concluded that the nature and
content of teachers’ mathematical knowledge for teaching using technology remained
an unresolved question. In this respect, the TPACK framework and the central TPACK
construct in particular were useful, for the purposes of this study, for concentrating
attention on teacher knowledge in relation to technology, identifying mathematical
knowledge for teaching using technology as a focus for research (see also Chapters 1
and 2). In a similar sense, Shulman’s (1986) concept of PCK has been highly
productive, stimulating research focused on the nature and content of teacher
knowledge (see Chapter 2). Chapter 5 underlines the significance of mathematical
knowledge for teaching using technology, showing that while a positive stance towards

technology might be necessary, it is not sufficient.

The main contribution of Chapter 5 was to identify the nature of mathematical
knowledge for teaching using technology with the notion of situated abstraction (Noss
& Hoyles, 1996; & Kent, 2004; & Pozzi, 2002). This is indicated in Figure 8.1, by
showing revisions to the theoretical framework used in this study. This notion,
alongside Adler’s (1999; 2001) concepts of the dilemma of transparency and
visibility/invisibility, was useful in indicating the nature of mathematical knowledge for
teaching using technology as abstract, mathematical knowledge and yet simultaneously
as mathematical knowledge situated in the context of teaching using technology. In
particular, the notion of situated abstraction was useful in allaying the concern that
seeing mathematical knowledge for teaching using technology as situated should not be
taken to mean that each piece of technology requires teachers to learn an entirely new
and distinct domain of mathematical knowledge for teaching. Thus a teacher with
mathematical knowledge for teaching using a static paper-and-pencil environment
should find it easier to develop mathematical knowledge for teaching using GeoGebra
and other technologies. Further, for the purposes of this study, Adler’s concepts, linked
to Lave and Wenger’s (1998) metaphor of a window, help to explain how mathematical

knowledge for teaching using technology can be simultaneously situated and abstract
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knowledge. Here, situated indicates that the context of teaching using technology
provides a frame of reference through which teachers’ view ‘abstract’ mathematical
knowledge. The weak theorisation of the TPACK framework (Graham, 2011; Ruthven,
2014; Voogt et al., 2012) provided a key affordance in identifying the nature of
mathematical knowledge for teaching using technology with the notion of situated
abstraction. By allowing the user to move between an integrative and transformative
perspective, in particular in relation to the central TPACK construct, the framework
helped to balance the dual visibility and invisibility of technology in the practice of

teaching school mathematics.

Mathematical
Knowledge for Teaching .
using Technology Participatory relationship:
Artfieulated . Tacit Bno.ﬁ.]mgc i, to what extent distributed —
knowledge, not Articulated knowledge- unarticulated knowledge- writerly-readerly response
. ’ in-action; in-acticn:

realisedd In action situated abstraction more distributed

less distributed

— _____,/
Knowledge stored
in the technology

Individual teacher’s
knowledge

mathematical
knowledge made

Figure 8.1 Revised framework
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The analysis in Chapter 5 began to investigate the content of mathematical knowledge
for teaching using technology, indicating that such knowledge could consist of a
repertoire of articulated strategies for using the constraints and affordances (Greeno,
1998) of the technology for the purposes of teaching mathematics. Whilst Chapter 5
provided indications of content, Chapter 6 developed this investigation further by
providing a fine-grained analysis, conceptualising the content of mathematical
knowledge for teaching using technology in relation to the topic of circle theorems. The
Knowledge Quartet provided a post-hoc justification for the conceptualisation of
knowledge, presented in section 6.2, that forms a basis for informing and justifying a
teacher’s choice and use of examples and decisions about sequencing. This post-hoc
justification alongside Mason and Watson’s (2005; 2006) research on example spaces
suggested that the approach taken in Chapter 6, i.e. mapping out a complete set of
pedagogic cases and identifying a preferred pedagogical sequencing, may provide a
means for conceptualising mathematical knowledge for teaching using technology for
other areas of the mathematics curriculum. In addition, the analysis in Chapter 6
identifies a tension in relation to technology within the Knowledge Quartet, bound up in

the code adherence to textbook — this tension was unravelled later in Chapter 7.

The main contribution of Chapter 6 is the demonstration of the highly complex nature
of mathematical knowledge for teaching using technology, through the
conceptualisation of such knowledge in relation to the topic of circle theorems. This
high level of complexity provides an indication of why carrying out even the dominant
practices discussed in Chapter 4, that do not go beyond enhancing general pedagogic
aspirations, might prove problematic in the classroom. Reconstructing the tabular list of
pedagogic cases, depicted in Figure 6.10, in practice would likely overload teachers’
working memory. In addition, the high level of complexity makes it seem unrealistic for
all teachers to acquire such knowledge, especially if a similar level of complex
knowledge is needed for all aspects of the curriculum. Chapter 7 ameliorates this
situation, providing indications of how a distributed view of cognition might offer
potential strategies for facilitating teacher interaction with technology. The minimum
knowledge requirements, specified in Chapter 7, suggest that knowing a dragging
routine is enough to produce a particular sequence of cases. This is because generating
and sequencing examples of the angle at the centre theorem can be delegated to the

GeoGebra software. Thus a teacher simply knowing one good dragging routine might
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elicit a pedagogically preferable sequence of cases than another teacher who articulates
a decision about sequencing, comparing two or more dragging routines, based on
incomplete or otherwise flawed criteria. In addition, since a dragging routine brings
pedagogic cases to light in a particular order, this could alleviate the demands placed on
teachers’ working memory in terms of recognising pedagogic cases from the tabular list

depicted in Figure 6.10.

RQ2a How does a conceptualisation of teachers’ mathematical knowledge for teaching

using technology suggest ways in which such knowledge could be measured?

The conceptualisation of mathematical knowledge for teaching using technology in
relation to the topic of circle theorems, presented in Chapter 6, is the type of
conceptualisation that is currently under-developed in existing measures of
mathematical knowledge for teaching (e.g. Baumert et al., 2010; Hill et al., 2005; Tatto
et al., 2012) as argued in Chapter 2. The original intention of this study was to develop
test items for measuring mathematical knowledge for teaching using technology, for
example, based upon the GeoGebra file used in the semi-structured interviews.
Research Question 2a was not addressed in as much depth as the other research
questions due to the unexpected richness of data arising from the GeoGebra interviews
and, in particular, the high complexity of conceptualising mathematical knowledge for
teaching using technology in relation to the topic of circle theorems. Nevertheless, the
conceptualisation presented in section 6.2 provided a basis for suggesting ways in which
such knowledge could be measured. In particular, the circle theorem case lists provided
a means of summarising the mathematical knowledge made available through the case
study teachers’ participation with a diagram in GeoGebra. The development of the
circle theorem case list suggests teachers’ mathematical knowledge for teaching using
technology in relation to the topic of circle theorems may be summarised as a two-
dimensional measure, with one dimension providing an indicator of teachers’ choice
and use of examples and the other dimension providing an indicator of their decisions
about sequencing. The total number of pedagogic cases the case study teacher elicited in
the interview provides a numerical summary as one possible indicator of teachers’
choice and use of examples. Another possible numerical indicator of teachers’ choice
and use of examples is the percentage of explicitly recognised pedagogic cases that
teachers suggested they would show their pupils. Chapter 6 conjectured that this latter

indicator might show some relationship to transmissionist measure. However, these
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post-hoc inferences will require further research.

RQ2b To what extent is the mathematical knowledge made available through a
teachers’ interaction with technology distributed across the individual teacher

and the technology?

The literature review in Chapter 2 noted that research on teacher knowledge informed
by views of cognition as distributed (Hutchins, 1995) across persons and technology
remains underdeveloped (Putnam & Borko, 1997). In particular, the extent to which the
mathematical knowledge made available through a teachers’ interaction with
technology distributed across the individual teacher and the technology remains unclear.
In Chapter 7, the main contribution was to describe the nature of the participatory
relationship (Remillard, 2005) between teacher and technology in terms of a
readerly/writerly response. Designating a teachers’ response as readerly or writerly is
not intended to as a normative judgement. Instead, a readerly or writerly response was a
means of indicating where the mathematical knowledge made available was more or
less distributed across the technology — see Figure 8.1. In Chapter 7, a framework for
identifying instances of distributed cognition was developed and exemplified from an
analysis of the circle theorem case lists presented in Chapter 6. The circle theorem case
lists provided a summary of the mathematical knowledge made available through the
case study teachers’ participation with a diagram in GeoGebra, a type of mathematical
analysis software. The development of the framework for identifying instances of
distributed cognition led to the specification of minimum knowledge requirements
necessary for the case study teachers to produce the circle theorem case lists depicted in
Chapter 6. More generally, the specification of minimum knowledge requirements
potentially provides a theoretical means of indicating how and to what extent teachers’
mathematical knowledge for teaching is distributed across technology and hence a
means of describing the participatory relationship between teacher and technology
(Remillard, 2005). In addition, indicating where the mathematical knowledge made
available was more or less distributed across the technology allowed the framework to
expand the Knowledge Quartet, unravelling the tension bound up in the code adherence
to textbook identified in Chapter 6.
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8.3 Developing a deeper understanding of how and why mathematics

teachers use technology in practice

Bringing the analysis together, these findings suggest that focussing on teachers’
participation with technology (Remillard, 2005) in terms of a readerly or writerly
response, in relation to the broader definition of technology used in this study, might be
more productive than focusing narrowly on teachers’ integration of the types of
software valorised by the maths education research community (e.g. Pierce & Stacey,
2010; Zbiek et al., 2007). This is not to say that the type of technology is unimportant,
but that the mathematical knowledge made available by the teacher in interaction with
technology is critical. In particular, broadening the focus to include teacher-centred
technologies (e.g. PowerPoint, IWB software and the MyMaths website) might reduce
the deficit view of teachers’ technology use. Hutchins (1995, p. 172) states that he is
careful not to define a class of designed external tools for thinking, such as cognitive
artifacts, since a distributed view of cognition suggests any artefact (used for teaching
mathematics) can to some extent be viewed as ‘having’ cognitive attributes. Thus a
distributed view of cognition should be applicable to the broader definition of digital
technology adopted in this study. In section 7.6, data from classroom observations of
the case study teachers’ use of technology were used to provide brief indications of how
the framework for identifying instances of distributed cognition, developed in Chapter
7, might be exemplified in mathematics teachers’ classroom practice. In particular, these
brief indications provide examples of how and to what extent mathematical knowledge
made available through a teacher’s interaction with technology might be distributed
across ‘teacher-centred’ digital technologies and non-digital technologies, such as
textbooks. For example, Michael’s participation with the MyMaths website in his lesson
on volume provided an instance of a readerly response to a ‘teacher-centred’
technology, where an explanation for the formula for the volume of cuboid appeared
more distributed across the technology than the teacher. In Edward’s lesson, his insight
in relation to a student’s query concerning a textbook question provided an instance of a
writerly response, where the identification of self-inverse functions appeared somewhat
more distributed across the teacher than the technology and the student. Further
indications are needed of how the framework for identifying instances of distributed
cognition might be exemplified in mathematics teachers’ classroom practice. In

particular, examples are needed of how and to what extent mathematical knowledge
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made available through connectionist teachers’ interaction with ‘teacher-centred’ digital

technologies might be distributed across the technology and teacher.
8.4 The generalisability of this study

This section addresses the generalisability of findings from this study. In both the
quantitative and qualitative phases of this study, the sample of teachers upon which the
findings were based represented a theoretically purposive choice. In this sense, in both
phases of data collection, case selection aimed for an atypical sample rather than a
representative sample of the underlying population of teachers. For this reason, the
findings from this study cannot be generalised in a simplistic way to a wider population
of teachers without further empirical validation. However, as critical cases, the samples
in both phases of data collection were central to building a compelling argument for the
findings set out in section 8.2. This section discusses the generalisability of claims made
in relation to the quantitative and qualitative phases of this study in more detail in the

following paragraphs.

The findings based on the survey data and reported in Chapter 4 in relation to
associations between a connectionist orientation and teachers’ frequency of use of ICT,
their orientation towards ICT and their pedagogic practices involving ICT are not
representative of teachers as a whole. The survey sample was purposively directed to
ensure sufficient representation of connectionist teachers in the sample. The study did
not aim for a statistically representative sample, which in any case was not feasible
within the resources of the project. In particular, as stated in Chapter 3, the survey
sample is likely to be biased towards teachers who are relatively well-disposed towards
ICT or those wishing to be seen as frequent users of ICT. However, this bias may be
seen as a strength of case selection in that it serves to underline the surprising nature of
the association between frequent use of teacher-centred technologies and a more
connectionist orientation, making this finding worthy of further investigation. Hence,
there is relatively strong evidence supporting the surprising finding that frequent use of
software commonly assumed to maintain and even encourage existing transmission-

oriented pedagogies was associated with a more connectionist orientation.

The four case study teachers were selected as critical cases, hence this study aimed for
analytic generalisability (Mitchell, 1984). Indeed, the strength of this sample lies in the
purposive choice of cases: contrasting connectionist and transmissionist teachers’ use of

technology was a means of making visible individual teachers’ mathematical
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knowledge for teaching using technology. In Chapter 5, the finding that the nature of
mathematical knowledge for teaching using technology can be described as a situated
abstraction provides a theoretical insight. Similarly, in Chapter 7, describing the
participatory relationship between teacher and technology in terms of a readerly/writerly
response (i.e. as more or less distributed) and the specification of minimum knowledge
requirements provide theoretical insights into mathematical knowledge for teaching
using technology. The generalisability as well as the validity of such insights rests on
the extent to which they are useful (Hodgen, 2003) in understanding mathematical
knowledge for teaching using technology in contexts beyond this study. In other words,
these theoretical insights require further empirical testing in other technological
contexts, with wider samples of teachers, in different curriculum areas, in cultural
contexts outside England and so on to determine the extent of their generalisability. In
Chapter 6, the high complexity of the conceptualisation of mathematical knowledge for
teaching using technology in relation to the topic of circle theorems seems likely to
generalise beyond the four case study teachers, although another sample of teachers
might experience more or less difficulty in managing the large number of pedagogic
cases. The high level of complexity may be partly related to the dynamic nature of the
GeoGebra software. In addition, further research would be required to test whether the
centrality of the Knowledge Quartet codes choice and use of examples and decisions
about sequencing generalises to other technological contexts and curricula contexts. The
extent to which findings in Chapter 6 might generalise beyond the English cultural

context is also a matter for further research.

8.5 Limitations of this study

The focus of this study was on individual teachers’ knowledge and how it is involved in
interacting with technology to produce the mathematical knowledge made available in
the classroom. This study also chose to focus on the geometrical topic of circle
theorems, since research on mathematical knowledge for teaching has tended to focus
elsewhere, for example for example, on arithmetic operations (Ma, 1999) and on
numeracy (Askew et al., 1997) — see Chapter 2. In addition, this study focused on a
particular piece of dynamic geometry software: the semi-structured interviews with case
study teachers were based around a file designed in GeoGebra. This provided a familiar

yet challenging technological context for the case teachers, enabling an investigation of
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the teachers’ mathematical knowledge for teaching using technology. As noted in
Chapter 1, no study can take all factors into account, thus all studies are necessarily
limited in scope to a greater or lesser extent. This study chose not to focus on other
factors which Remillard (2005) identified as important in affecting the participatory
relationship between teacher and technology, such as other individual characteristics of
teachers; characteristics of technology; students; and contextual features (e.g. school
and departmental culture and the level of teacher support). In addition, this study is
limited in terms of the technological context, the curricula topic and the English cultural
context. Limiting the scope of the study in this way enabled a focus on individual
teachers’ knowledge and how it is involved in interacting with technology to produce
the mathematical knowledge made available in the classroom.

Whilst the study did not focus on other factors affecting the participatory relationship
between teacher and technology, these factors were acknowledged and where possible
were taken into account. For example, the survey attempted to take into account
contextual features (Stein et al., 2007) that might influence the participatory relationship
between teachers and technology by including items on access to hardware/software and
school/departmental level factors effecting ICT use. In addition, contextual features
were taken into account, specifically the working environment (Ruthven, 2009), by
dividing questions between using software in a whole-class context with an IWB and
using ICT in a computer suite where students have direct access to the software.
Further, the survey sample was purposively directed at school level, enabling the
collection of data on contextual features (Stein et al., 2007) such as local school or
departmental level factors effecting ICT use. For the qualitative phase of the study, the
level of school support was used as one dimension of variation upon which to base the
selection of the four case study teachers. During lesson observations, an effort was
made to note students’ comments to which the teacher responded, particularly in
moments of contingency, which appeared to make demands on the teacher’s
mathematical knowledge for teaching using technology. Similarly, in Chapter 7, in
mapping the elements of Hutchins’ view of distributed cognition, the humans involved
in the GeoGebra interviews were acknowledged as the author, the case study teacher,
the case study teacher’s students and the case study teacher’s departmental colleagues —
although of course the students and the case study teacher’s departmental colleagues
were only hypothetically involved. To an extent, the lesson observations provided

opportunities to investigate mathematical knowledge for teaching using technology with
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a wider variety of technologies and curricula topics outside the context of the semi-

structured GeoGebra interviews.

8.6 Further research and implications for policy and practice

This section sets out suggestions for future research and tentative implications for
policy and practice in initial teacher education, teacher education more generally,

curriculum resource design and development.

8.6.1 Research

Further research is needed to corroborate the surprising finding that frequent use of
teacher-centred software was associated with a more connectionist orientation. In
addition, a larger scale qualitative study should seek to explore how and to what extent
connectionist teachers adapt teacher-centred digital technologies in ways that support or

conform to their own more student-centred pedagogy.

Further research is also needed to examine the wider applicability of the theoretical
insights provided in Chapters 5 and 7, beyond the immediate context of this study.
Initially this might focus most usefully on investigating to what extent these insights
extend to different curricula topics and different technological contexts, both digital and
non-digital.

Similarly, further research is necessary to test whether the centrality of the Knowledge
Quartet codes choice and use of examples and decisions about sequencing, in Chapter 6,
generalises to other technological contexts and curricula topics. In particular, such
qualitative research, aimed at developing conceptualisations of mathematical knowledge
for teaching using technology, should suggest ways in which such knowledge could be
measured. For example, in relation to the topic of circle theorems, the circle theorem
case list provided a means of summarising teachers’ knowledge and suggested
indicators that could provide measures of such knowledge. A feasibility study would be
needed to develop ways of automating the production of a circle theorem case list or
operationalising the conceptualisation presented in Chapter 6 as a test item. A

quantitative study would then be needed to test this at scale.

Chapter 6 concluded with some post-hoc inferences about possible relationships

between transmissionist measure and indicators of mathematical knowledge for
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teaching circle theorems using technology. Specifically, further research is needed to
test the hypothesis that there would be no relationship between transmissionist measure
and the total number of pedagogic cases in a teacher’s circle theorem case list. In
addition, further research would be needed to test the hypothesis that the percentage of
explicitly recognised pedagogic cases that teachers suggested they would show their

pupils would be associated with transmissionist measure.

8.6.2 Policy

The quality of mathematical knowledge made available in the classroom depends in part
on the design-quality of technologies for teaching mathematics. Chapter 7 suggests that
well-designed technologies might support teachers in making mathematical knowledge
available to their pupils in their classroom practice. For example, knowing a good
routine for dragging dynamic software might allow teachers to delegate the generation
and sequencing of pedagogic cases to the technology. However, this implies the quality
of mathematical knowledge made available in the classroom would then rely in part on
the quality of design of such technology for teaching mathematics. For example, the
design of teaching technologies should pay particular attention to providing a systematic
exploration of the example space of pedagogic cases i.e. pay careful attention to the
choice and use of examples and decisions about sequencing to provide a mathematically
coherent experience. In particular, this suggests frequent curriculum changes may be
counter-productive, since the rapid re-design of textbooks in response to such changes is
likely to incur a decline in their design-quality. Similarly the proliferation of web-based
resources for teaching mathematics, where the design-quality is unclear, may result in a
deterioration in the mathematical knowledge teachers are able to make available to their
pupils in their classroom practice. On the other hand, if further research corroborates
and can explain the surprising finding that frequent use of teacher-centred software was
associated with a more connectionist orientation, then enhancing web-based resources
such as the MyMaths web-site might provide a means of improving classroom practice

incrementally on a wide scale.
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8.6.3 Practice

An implication of this study for practice is that teacher education should cover a broader
range of technology. In particular, teacher education should not be limited to a
consideration of technologies such as those termed cognitive technological tools (Zbiek
et al., 2007) or mathematical analysis software (Pierce & Stacey, 2010). Teacher
education should also cover teacher-centred digital technologies such as presentation-

oriented software (e.g. PowerPoint, IWB software and the MyMaths website).

In Chapter 5, the dilemma of transparency provides an indication of why it has been so
hard to explain teachers’ difficulties in integrating technology. Managing this dilemma
of transparency in the practice of teaching school mathematics is perhaps a task for
teacher educators in particular, as well as the mathematics education community as a
whole, involving decisions about to what extent can mathematical knowledge be
delegated to technology in the classroom.

In addition, this study suggests that teacher education should focus on developing
teachers’ routines for using technology. Case study teacher Michael’s routine for
dragging D1 to exemplify the angle at the centre is twice the angle at the circumference
provides a possible example: his dragging routine produced an arguably better sequence

of pedagogic cases than the other three case study teachers.

Finally, this study suggests that specifying minimum knowledge requirements for
teaching may be possible. If further research shows this to be the case, then a focus on
equipping trainees with the minimum knowledge requirements to use technology for

teaching mathematics would be important in initial teacher education.
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Appendices

Appendix A. Survey instrument

Using ICT to investigate Mathematical Knowledge in Teaching

Survey of ICT Use

TEACHER QUESTIONNAIRE

The questionnaire should take 20-30 mins to complete.

Please read the information sheet overleaf before completing the
questionnaire.

Nicola Bretscher ’
PhD Student in Mathematics Education IN G S
Department of Education C 0 //eg’g
King's College London

Franklin-Wilkins Building (Waterloo Bridge Wing) LOND ON

Waterloo Road
London SE1 9NH
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INFORMATION SHEET FOR SURVEY PARTICIPANTS
King’s College Research Ethics Committee Ref: REP(EM)/10/11-74

TITLE OF STUDY: Using ICT to investigate Mathematical Knowledge in Teaching

You are being invited to participate in the main study for my PhD research project. Before you
decide whether to take part, it is important for you to read the following information carefully and
understand why the research is being done and what it will involve. You should only participate if
you want to; choosing not to take part will not disadvantage you in any way. Please take time to
read the following information carefully and discuss it with others if you wish. If you have any
questions about the project, please do not hesitate to contact me using the contact details below.

What is the purpose of this study? This study aims to investigate the mathematical knowledge
that teachers draw upon in their teaching of mathematics using ICT. In this project ICT is also
used as a tool to explore teachers’ mathematical knowledge.

Why have | been chosen to participate? Your school was chosen due to its existing contacts
with King’s College London. If you have received this information sheet, your head of department
is willing for you to participate in this survey should you wish.

What will happen to me if | take part? If you choose to participate, please complete the
attached questionnaire and seal it in the envelope provided, before retumning it to your head of
department — please note that completion of the questionnaire implies your consent to take part in
the study. The questionnaire should take you no longer than 30 minutes to complete. You may
also be invited to be a case study teacher based on your answers to the questionnaire. Should
you be invited to be a case study teacher, you will receive a letter of invitation and a sheet
explaining what being a case study teacher involves.

What are the possible benefits? Participation in the study may make you more aware of how
you use ICT resources in your teaching and give you an opportunity to reflect on your professional
practice. At the end of the study you will be able to receive information about the survey results,
should you wish.

Will my personal data be kept confidential? Your confidentiality will be ensured at all imes and
you will not be identified in any publication. Questionnaire data will be stored anonymously for
seven years. Since the questionnaire is anonymous it will not be possible to remove your
individual data from the survey, following receipt of your questionnaire.

Who is organising and funding the research? The research is part of the principal
investigator's PhD research at King's College London and is funded by the ESRC. This study is
reviewed by the College Research Ethics Committee of King’s College London.

Contact for further information: The principal investigator of this study is Nicola Bretscher,
Department of Education and Professional Studies. This is part of a PhD project, supervised by
Dr. Jeremy Hodgen, Department of Professional and Educational Studies. Should you have any
comments or concerns resulting from your participation in the study please contact me via email:
nicola.bretscher@kcl.ac.uk If this study has harmed you in any way you can contact King's
College London using the details below for further advice and information: Jeremy Hodgen, email:
jeremy.hodgen@kcl.ac.uk
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Using ICT to investigate Mathematical Knowledge in Teaching: Survey of ICT Use
TEACHER QUESTIONNAIRE

Please note: completion of this questionnaire implies your consent to participate in this project.

A ICT in your school
1. What hardware do you have access to for teaching maths?

[ ]Interactive whiteboard, with a data projector
[]Data projector only, linked to a computer

[ ] Computer suite, shared with other departments

[ ] Computer suite, dedicated to the maths department
[ ] Class set of laptops

[ ] Class set of graphic calculators

[ ] Other, PIease SPECITY .........c.ccviieeieieeeeeeee et

2. What software do you have access to for teaching maths?

[ ]CD-ROMs

[ ] Database (eg Microsoft Access)

[ ] E-mail

[_] Graphing software (eg. Omnigraph, Autograph)

[ ] Interactive Geometry software (eg Cabri, Geometer's Sketchpad, GeoGebra)
[ ] Interactive whiteboard software (eg SMART tools)

[ ]Logo

[ ] MyMaths.co.uk website

[ ] Other websites

[ ] PowerPoint

[ ] SMILE mathematics

[_] Spreadsheet (eg Microsoft Excel)

[]Word processor (eg Microsoft Word)

[ ] Other, PIEasE SPECITY..........cveeiiiieiiiie ittt
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Please indicate the strength of your agreement with the following statements.

Write one of the numbers from 5 down to 1 against each statement, where
5 = strongly agree, 4 = agree, 3 = neither agree or disagree, 2 = disagree, 1 = strongly

disagree

ICT use is a high priority in my department.

| get support on using ICT from colleagues in my department.

ICT resources are poorly integrated into schemes of work.

| often have problems accessing hardware.

Access to software is easy and reliable.

The available software lacks relevance to the curriculum.

The level of technical support is poor.

| have had relevant professional development in using ICT.

4, Please use this space to make comments on issues relating to access to hardware and/or
software.
B. ICT use in your own mathematics teaching
1. How frequently do you use ICT for teaching mathematics, compared to other teachers in the
department?
Much more More frequently About the same Less frequently A lot less
frequently frequently
[] [] [] [] []
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2. Your use of hardware

a) For each type of hardware, please indicate how often you use it for teaching maths.

Please tick ([7) a box in each row. If you do not have access to the hardware tick ‘Never'.

Almost Once a Onceor | Annually Never

every week twice a

lesson term
Interactive whiteboard, with a data projector [] ] ] ] ]
Data projector only, linked to a computer ] [] [] ] []
Computer suite (shared) L] ] ] L] []
Computer suite (maths dept only) ] ] L] L] []
Class set of laptops L] [] [] L] L]
Class set of graphic calculators ] L] [] [] []
b) For each type of hardware, please indicate the impact you feel it has on students’ learning.

Please tick ([7) a box in each row, even if you do not currently have access to the hardware.

Substantial Significant Some Very little
Interactive whiteboard, with a data projector |:| E] |:| |:|
Data projector only, linked to a computer ] L] [] []
Computer suite (shared) [] L] L] []
Computer suite (maths dept only) L] L] [] []
Class set of laptops ] L] [] []
Class set of graphic calculators ] L] [] []
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3. Using an interactive whiteboard or data projector in maths lessons

a) Thinking about your use of ICT with an interactive whiteboard or data projector in a
whole class context, please indicate how often you use each type of software in maths

lessons.

If you do not have access to the software, tick ‘Never'.

Almost Once a Once or Annually
every week twice a
lesson term

Please tick (1) a box in
each row.

Never

CD-ROMs

Database

Email

Graphing software

Interactive geometry software

Interactive whiteboard software

Logo

MyMaths.co.uk website

Other websites

PowerPoint

SMILE mathematics

Spreadsheet

(I 0 0 ) T
[ B 0 0 ) 0 ) 0 ) D
[ B0 0 0 ) 0 ) 0 ) e
() ) 0 0 0 0 ) 0 0 0

Word processor

[ 0 0 0 0 ) 0 ) 0

b) Again thinking about your use of ICT with an interactive whiteboard or data projector,

please indicate the strength of your agreement with the following statements.

Write one of the numbers from 5 down to 1 against each statement, where

5 = strongly agree, 4 =agree, 3 = neither agree or disagree, 2 = disagree, 1 = strongly

disagree

| am confident using ICT in lessons.

Lessons using an interactive whiteboard/data projector take more time to prepare.

ICT makes an important contribution to students’ learning of mathematics.

Using ICT improves student engagement in lessons.

Students’ lack of familiarity with software make lessons involving ICT difficult.

ICT resources help students to understand mathematics.

Classroom management is more difficult when using an interactive whiteboard/data
projector.

We cover more ground in lessons with an interactive whiteboard/data projector.
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C) Still thinking about your use of ICT with an interactive whiteboard or data projector,
please indicate how often each of the following takes place in your mathematics
teaching.

Write one of the numbers 5 down to 1 against each statement, where
5 = almost always, 4 = most of the time, 3 = half the time, 2 = occasionally, 1= almost
never

| use ICT for presentation purposes.

[ use ICT to generate student discussion.

| control the software on the interactive whiteboard or data projector.

| use ICT to follow up and explore students’ ideas.

I manage software carefully to prevent mathematical discrepancies arising.

Students control the software on the interactive whiteboard or data projector.

| draw attention to mathematical discrepancies in the software.

Using ICT, | avoid students making mistakes by explaining things carefully first.

4. Maths lessons in a computer suite or using laptops

a) Now thinking about your use of ICT in a computer suite or with students working on
laptops, please indicate how often you use each type of software in maths lessons.

If you do not have access to the software, tick ‘Never’.

Please tick (71) a box in Almost Once a On_ce or Annually Never
each row. every week twice a
lesson term

CD-ROMs [] ] [] [] []
Database |:| |:| |:| |:| D
Emai ] ] ] [] []
Graphing software |:| |:| |:| |:| D
Interactive geometry software |:] |:] |:| |:| |:|
Interactive whiteboard software |:| |:| |:| |:| D
Logo |:| |:| |:| |:| D
MyMaths.co.uk website |:| |:| |:| D D
Other websites |:| |:| |:| |:| |:|
PowerPoint |:| |:| D D D
SMILE mathematics ] ] [] [] L]
Spreadsheet |:| |:| |:| D D
Word processor |:] |:] |:| |:| |:|

291



Again thinking about your use of ICT in a computer suite or with students working on
laptops, please indicate the strength of your agreement with the following statements.

Write one of the numbers from 5 down to 1 against each statement, where
5 = strongly agree, 4 = agree, 3 = neither agree or disagree, 2 = disagree, 1 = strongly
disagree

| am confident using ICT in lessons.

ICT lessons take more time to prepare.

ICT makes an important contribution to students’ learning of mathematics.

Using ICT improves student engagement in lessons.

Students’ lack of familiarity with software make lessons involving ICT difficult.

ICT resources help students to understand mathematics.

Classroom management is more difficult in ICT lessons.

We cover more ground in ICT lessons.

c)

Still thinking about your use of ICT in a computer suite or with students working on
laptops, please indicate how often each of the following takes place in your mathematics
teaching.

Write one of the numbers 5 down to 1 against each statement, where
5 = almost always, 4 = most of the time, 3 = half the time, 2 = occasionally, 1= almost
never

Students use ICT to practice mathematical skills.

| encourage students to work collaboratively.

I let students 'get a feel' for the software.

Students explore mathematical discrepancies in the software.

Students work on their own, consulting a neighbour from time to time.

Students use ICT to investigate mathematical problems and concepts.

| provide precise instructions for software use.

| prepare software files in advance to avoid student difficulties using the software.

d. Please use this space to make comments on using ICT in general in maths lessons.
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C. Your own mathematics teaching in general

Please indicate how often each of the following takes place in your mathematics teaching.

Write one of the numbers 5 down to 1 against each statement, where

5 = almost always, 4 = most of the time, 3 = half the time, 2 = occasionally, 1=almost never

Students work through exercises.

Students work on their own, consulting a neighbour from time to time.

Students use only the methods | teach them.

Students start with easy items and work up to harder questions.

Students choose which questions they tackle.

| encourage students to work more slowly.

Students compare different methods for doing questions.

| teach each topic from the beginning, assuming they know nothing.

| teach the whole class at once.

I try to cover everything in a topic.

| draw links between topics and move back and forth between topics.

Students work collaboratively in small groups.

| avoid students making mistakes by explaining things carefully first.

| tend to follow the textbook closely.

Students discuss their ideas.

Students work collaboratively in pairs.

Students invent their own methods.

Students work on substantial tasks that can be worked on at different levels.

| tell students which questions to tackle.

| encourage students to work more quickly.

| go through only one method for doing each question.

[ find out which parts students already understand and don’t teach those parts.

| teach each student differently according to individual needs.

| cover only the important ideas in a topic.

| teach each topic separately.

| know exactly what maths the lesson will contain.

| jump between topics as the need arises.
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About You - please tick the appropriate box in response to each question

Age: []21-25 [[]31-40 [ []51-60
[[]26-30 [ []41-50 [ ]61+
Gender: [ ]Male [ ]Female

Length of Service: How many years have you been teaching?

[ ]1year (NQT) [ ]17-9 years [ ]over 25 years
[ ]2-3 years [ ]10-15 years
[ ]4-6 years [ ]16-25 years

Your Position: please tick the box which reflects your main responsibility.

[ ]Head of Department

[_]2i/c or deputy head of department

[ _]Key Stage coordinator, please specify the key stage: .........

[ ] Classroom teacher

[ ] Other, please SPECIfY: ........ccveevveeeiieeeeie e

d. Training:

Please give details of educational background in the table below, including school-level
mathematics qualifications (eg GCSE, A-level or equivalent), college or university level
qualifications (undergraduate degree and/or postgraduate degree etc), teacher training (eg

PGCE, CertEd, Bed, GTR efc).

Details of Qualification

Date

Level Awarded
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E. Case Study Participation

Please tick the box below and leave your contact details if you are willing to take part in this
project as a case study participant.

[] By ticking this box, | understand that | may be invited to be a case study teacher based on my
answers to the questionnaire. | agree to be contacted in the future for this purpose.

Contact details
1 - |

Phone NUMDBET: ....cveiiiei e er e e e e eees

Thank you for completing this questionnaire.
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Appendix B. GeoGebra interview protocol

The interview is colour coded to indicate where the questions target the dyadic and
triadic constructs of the TPACK framework.
Colour coding: TCK PEK TPK TPCK

[Start recording]
In this interview, we will discuss the scenarios in the GeoGebra files | emailed to you.

During the interview, you will find it helpful to manipulate the diagrams in the
scenarios, especially to show how you might use them or demonstrate them to pupils.

I’d like you to think out loud as you do so, to explain what you’re doing.

First of all, here’s a practice file just to help you practice thinking out loud as you
manipulate a diagram. [Open the practice item]

Practice Item

So what is going on in this diagram? Please do drag the points and think out loud as you
do so.

Circle Theorem item.

We’ll discuss each diagram in turn and then | have some general questions about the
diagrams. [make sure that each diagram is discussed]

The black points are the centres of each circle. Please do drag the red and blue points
and think out loud as you do so.

Prompts for Diagram 1: standard example

e What is going on in this diagram?

e Show me how you might drag the diagram if you were demonstrating it to
pupils.

—

e |s there anywhere you would avoid dragging the diagram?

e Is dragging point B different to dragging points C and D? Why?

e What is happening when you drag point B here [drag point B to the ‘wrong
segment’]. Should Ms Harris address this in class? How and why?

e What about dragging it like this? [drag ‘upside down’ — would you do this,
why?]

e What about dragging it like this? [drag C and D up towards B to demonstrate the
theorem works for reflex angles]

e Someone suggested adding a ray like this as a possible lead into proof [add ray
going thru A and B]. What do you think about that?
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Prompts for Diagram 2: non-example 1 (off-centre)

What is going on in this diagram? Try dragging the red and blue points and think
out loud as you do so.

What happens if you drag point P to the circumference? Where else could you
drag point P?

Show me how you might drag the diagram if you were demonstrating it to
pupils.

Is there anywhere you would avoid dragging the diagram?

It’s quite tricky to position point P exactly on the circumference or at the centre.
Does that matter - is it useful in some way or just a hindrance?

Is this diagram any different to having 3 separate diagrams showing each
theorem on its own?

Prompts for Diagram 3: non-example 2 (off-circumference)

What is going on in this diagram?
How does the angle at the edge change as you drag point R?
Inside, outside the circle, at the centre? Can you place R so that the angle at the

centre is 3 times the size of the angle at R?
How would you use this diagram with pupils?

Similar to diagram 2, is it useful in any way or is it just a hindrance to have to
position point R exactly on the circumference?

General prompts relating to all diagrams

Some points are red and some are blue. Why do you think they are coloured
differently? Would you discuss this with your pupils?

The angles have been rounded to be whole numbers and sometimes there are
rounding errors. How would you deal with that in a lesson — would you discuss
it with pupils?

If you were going address proof with your pupils, which of the diagrams do you
think is best and why?

Would you use the diagrams on an IWB or let pupils work directly with them on
a computer (ignoring problems of booking computer rooms etc).

if IWB, what would the kids gain mathematically and why not with computers
(setting aside other issues e.g. behaviour);

if Computers, what would they gain, is there anything you would demonstrate to
them

Which pupils/classes would you use the diagrams with and why? Would you use
them differently for high and low-attaining pupils?
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Appendix C. Post-observation interview schedule

Tell me about your preparation for this lesson.

- why choose ICT? what ICT? why?

- what resources did you draw on?

- how and why did you organise the classroom? Equipment? Students?

- how and why did you structure the lesson? activities? pupil interactions with the
software? Your role?

- any differences compared to a non-ICT lesson?

What are your reflections on the lesson?

- refer to/ask about key events? choice of examples, representations?

- good points of the lesson?

- benefits of using ICT? (over other types of lesson)

- things to improve? What would you do differently?

- if you were doing this lesson with higher/lower attaining pupils, what would you
change?

Give me specific examples of where you saw successful learning.
- what made it successful? How do you know?

- what difference did ICT make? How?

What are the key factors in making ICT use successful?

- in this lesson? in improving learning? Which topics?

- more generally? Who else uses ICT? Who supports your use? Key moment in your
ICT development?

What do you perceive to be the potential pitfalls of ICT use?

When should it be switched off?
What would be required to overcome these pitfalls?
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Appendix D. Coding with the TPACK framework

Excerpt of Robert’s GeoGebra narrative coded with TPACK framework

Corresponding to Rob-GGb-int, 13.6.2012, mins 5.05-12.10

5.05 Diagram 1
(5.36) Robert quickly tries dragging A then Q. He returns to D1 and

describes the diagram, noting the red points are all fixed to the
circumference and are all free to move, two points (C&D) define a
chord, the angles subtended etc. He states the way it currently looks
it’s double, then slightly displaces C and notes that due to rounding
it doesn’t always look that way. | think here Robert demonstrates
the rounding error, rather than stumbling on it, because of the way
he moves C — he’s looking for badly rounded numbers. It’s like he’s
slipping into presentation mode, presenting this to teacher-
colleague? He drags G — again describing the diagram, it’s there so
you can change the size of the circle and see the relationship is

always true. He states that
and that maybe he is missing

something.

He’s given similar diagrams to pupils before (w/o the chord and G):
he thinks pupils convince themselves that the angle at the centre is

double that at the circumference —
He drags C upwards,

towards B, past where CD is a diameter, so the internal shape is
now a convex quadrilateral, angle at the centre is reflex. Robert
seems to be dragging for himself now, he speaks more softly,
almost to himself “what happens if it comes this way?”” - he notes it
still works (100, 200). He drags C further past B “and if that comes
over there?”” He pauses, anymore. Of course
it does work, but GGb is measuring the ‘wrong’ angles. Robert

, but continues, coming
out of his brief reverie, saying he thinks diagrams like this are
almost “too easy, too obvious”, “like Catchphrase” — whilst he’s

(8.23) I ask him about how he’d demonstrate it to pupils. FHiE'asks

I slightly obfuscate his question.
Anyway, he starts to explain as if he were demonstrating the
theorem.

Before dragging B, he’d
hover over the point and ask the pupils to predict what happens
when he drags it to one side. Robert says he would pose the
question so they didn’t have the option of saying stay the same
(does it get bigger or smaller?) in order to provide a bit of conflict

TCK: dependency

TCK: rounding

TPCK: pedagogic
dragging strategy
to demonstrate
rounding

BERE pedagogic
benefit (?) of
chord

TPCK: see
“Catchphrase”
quote below
pupils’ use
of technology, not
articulated

TCK: dragging for
own mathematical
discovery

TCK: angle
measurement

TPCK: how pupils
use technology in
learning maths

TPKE alternative

pedagogic uses for
the technology

BEK: Choice of

numerical &
geometric example

TPCK: pedagogic
‘predict-then-test’
dragging strategy
to demonstrate
invariance
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for when he does drag B and the angle remains constant. He would
then drag B “all the way round” the major arc CD, to see it never
changes — he never gets very close to C or D.

Robert then says, more softly, AR CCAIDCIHANINAOCSHIEN
bring it through here,

dragging B onto the minor arc. He says if he
knew it was going to do that, he deliberately avoid it, in the hope
that one of his pupils would ask. As he says this, Robert is dragging
B in a peculiar way, sort of bouncing B on C and D, as if there is a
sort of force field at C and D repelling his efforts to go through.
When he does go “past” D, he rushes B past and onto the minor arc.
When he’s made diagrams like this before, he’s forced B to remain
on the major arc but now he wouldn’t do this, he would want them
to think about what’s going to happen.

He wants the pupils to predict that the angle at B won’t
remain at 60 anymore. He adeptly adjusts some angle labels to his
liking, without comment, without apparent thought, like a routine,
reflex action.

Robert recaps,

He’d ask the pupils to make predictions about what happens to
the angles when you drag D upwards? What about When angle'at
hen what’s B? He explains he tends to “ask
before doing”. He drops B too close to G and sorts out the ensuing
technical difficulty with ease,

(11.16) I ask about special cases.

Then he wonders what else could we do? He
says the case where B and C meet, become the same point,
dragging B onto C as he does so. He then struggles, the angle at B
slowly flips between 80 and 100 (A=160), asking “what does that

mean?” to himself,

, and moves on,

TPCK: pedagogic
‘deliberate
avoidance’
dragging strategy
to draw attention
to variance
TPCK: using
technology to
limit/allow
pedagogic cases

BERE choice of

examples

TK

BBRE decisions

about sequencing
pedagogic cases
TPCK: pedagogic
‘predict-then-test’
dragging strategy
to demonstrate
variance

TK
BBRI choice of

numerical
examples

BEK: choice of

examples

TCK: dragging for
own mathematical
discovery

PERE choice of

examples
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Appendix E. TPACK collation for comparison across codes and cases

 TPACK collation.xlsx ()

Sheets Charts Smartart Graphics ‘WordArt
oY & [ ¢ [ o [ € [ F [ 6 [ H [ v T 3 [ kK [ L [ ™M T N H
1 |TCK
2
3 |Anne Psguares dependency: She says by dragging C she can “form other shapes”, which is true, but suggests she lacks awareness of how the software works ie the mathematical rules it follo
4 dependency: She goes back to PQRS, “this one, this particular one”, drags R again, this one is not moving, it's just rotating it.
5
6 D1 dependency: Anne tries to drag A but it doesn’t move. I encouraged her to explain what's happening and to drag the points, so she repeats about 3-4 times that it's not draggi
7 misunderstanding dynamic imagery: "it's still remaining, no matter how" and "wherever the circumference that angle is, is still half the one in the centre”. So for her, dragging
8 angle measurement? the reflex angle at A is measured (B=26, A=308). Then she stops dragging and says it is different because you have to "talk about other angle properties,
9 misunderstanding dynamic imagery: stating the angle at the centre is twice the angle at the circumference “if you drag B, that's what B is".
10 angle measurement? wrong angle doesn’t bother her: She uses the cursor to indicate the ‘correct’ angle at A, implying that B relates ie is half of the non-reflex angle at the cen
11
12 D2 dependency: no description of diagram
13 ? positioning P: should be 180, tricky to position accurately
14 dependency: fake tangent
15 rounding vs implicit converse: can't use converse because conflict with rounding errors
16
17 D3 dependency: She is then stumped as to the difference between the two diagrams.
18
19 General Qs dependency: she comes up with the “red ones are only on the circumference”. She then says the “blue ones can go out and in and out”,
20
21
22 |Edward Psquares vocab: Edward first moves the non-square, noting he can "deform” the sguare
23 dependency, distinguishes crudely between free and constrained: He then notes that you “can totally move the points wherever you want”
24 figure vs drawing: first square tries to replace it noting, “not sure I can get it quite back into square, looks maybe like it".
25 dependency: noting you can't drag P,Q, so you can only drag the light blue squares (he meant circles/dots/points I guess)
26 dependency: He states that R is restricted to move on the circumference of circle
27 peoints as levers: you can rotate the square by dragging R and translate it around the screen by dragging S
28 dependency: the diagram is "pretty”, but he never suggests that the circles/lines might have something to do with how the sguare was constructed
29
30 D1 misunderstanding dynamic imagery: He moves B around the major arc CD, noting the angles stay the same (B=54, A=10R) which he says shows that the angle at the centre is always doub
31 CT cases from technology? “See there’s all sorts of special cases and funny things that happen if you let it be completely free form™.
E misunderstanding dynamic imagery: Edward drags B and C in a limited manner and responds dragging B leaves the numbers the same but dragging C changes the numbers.
33 relative position of points: He found it confusing: i.e. what happened when you swapped the points over? mentions the relative positions of B,C,D
34 defining angles in GGb: rejects it as "annoying” idiesyncrasy of the software: why has it decided to do that when it doesn't need to? He questions whether there is any mathem:
35 ? proof: Edward prefers neat template vs sketch diagram.
36 rounding errors: Edward says he can’t see the point of rounding errors, they just get in the way of what you're trying to do
37 -
38 D2 dependency: Edward drags L first, notes that it is restricted to the circumference, then generalises (with testing) that all red points are confined to move on the circumference. | *
39 itinnina P+ why is i § _it should amnlaininn_that it should snan to the circumference _snan to noin I
@@\ R ‘ TPCK Tek | FCK TPK. TH cK bR Sheets R
Normal View Ready © SCAL | & CAPS | © NUM Y
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Appendix F. Coding with the Knowledge Quartet

Excerpt of Robert’s GeoGebra narrative coded with the Knowledge Quartet

Corresponding to Rob-GGb-int, 13.6.2012, mins 5.05-12.10

Key to Knowledge Quartet codes

Foundation, Fo

AtT — adheres to textbook

AP — awareness of purpose

CoP — concentrates on procedures
IE — identifying errors

OSK — overt subject knowledge
TUP — theoretical underpinning
UT — use of terminology

Transformation, Tr

Connection, Co

AC — anticipation of complexity

DS — decisions about sequencing
MCC — making connections between

Contingency, Cy

concepts TI — teacher insight
MCP — making connections between
procedures and resources

RCA - recognising conceptual
appropriateness

CUE - choice and use of examples
CUR - choice and use of representation
TD — teacher demonstration

UIM — use of instructional materials

DA — deviation from agenda
RCI — responding to children’s ideas
UO — use of opportunities

RAT - responding to (un)availability of tools

5.05 Diagram 1
(5.36) Robert quickly tries dragging A then Q. He returns to D1

and describes the diagram, noting the red points are all fixed to
the circumference and are all free to move, two points (C&D)
define a chord, the angles subtended etc. He states the way it
currently looks it’s double, then slightly displaces C and notes
that due to rounding it doesn’t always look that way. I think
here Robert demonstrates the rounding error, rather than
stumbling on it, because of the way he moves C — he’s looking
for badly rounded numbers. It’s like he’s slipping into
presentation mode, presenting this to teacher-colleague? He
drags G — again describing the diagram, it’s there SO you can
change the size of the circle and see the relationship is always
true. He states that he doesn’t understand why the chord is
there, what benefit it provides and that maybe he is missing
something.

He’s given similar diagrams to pupils before (w/o the chord
and G): he thinks pupils convince themselves that the angle at
the centre is double that at the circumference — he drags B in a
jerky, uncoordinated way, as if mimicking a pupil. He drags C
upwards, towards B, past where CD is a diameter, so the
internal shape is now a convex quadrilateral, angle at the centre
is reflex. Robert seems to be dragging for himself now, he

Tr/TD, demonstrating
dependency

Fo/OSK, stating of
angle at the centre
theorem

Tr/TD, demonstrating
rounding errors; CUE,
choosing numerical
example

Tr/TD, changing the
size of circle; Co/MCC,
seeing the relationship
holds

Fo/OSK, extraneous
chord?

Tr/CUR, assessing
pedagogic benefit of
chord

Tr/CUR, choosing
diagram with or w/o
chord and G

Fo/OSK, exploring for
oneself
Fo/OSK, recognising a
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- he notes it still works (100, 200). r

saying it doesn’t work anymore. Of course it does work, but
GGb is measuring the ‘wrong’ angles. Robert doesn’t stop to
consider why it doesn’t work, but continues, coming out of his
brief reverie, saying he thinks diagrams like this are almost
“too easy, too obvious”, “like Catchphrase” — whilst he’s
saying this he’s slipped back into dragging it like a pupil,
dragging B in a jerky way, then D, then B and D again.

(8.23) I ask him about how he’d demonstrate it to pupils. He
asks about whether he’s demonstrating the theorem to them or
demonstrating how to use the diagram, so that they can explore
it for themselves on a computer. | slightly obfuscate his
question. Anyway, he starts to explain as if he were
demonstrating the theorem. He’d have it set up with nice
numbers (B=60, A=120) so that they could easily spot the
relationship, near symmetrical, chord near horizontal, B near
vertically above A. Before dragging B,

He would
then drag B ““all the way round” the major arc CD,

never changes — he never gets very close to C or D.

Robert then says, more softly,

. As he says this,

. When he’s made diagrams like
this before, he’s forced B to remain on the major arc but now
he wouldn’t do this, he would want them to think about what’s
going to happen. Due to his initial chosen set up, both angles in
D1 read 120 at the moment when B is on the minor arc. He
wants the pupils to predict that the angle at B won’t remain at
60 anymore. He adeptly adjusts some angle labels to his liking,
without comment, without apparent thought, like a routine,
reflex action.

Robert recaps,

about when angle at the centre =150 or 140, then what’s B? He

explains he tends to “ask before doing”. He drops B too close

to G and sorts out the ensuing technical difficulty with ease,
returning B to a nice angle B=65, A=130.

case ‘works’

Y, resolving
unexpected cases
Fo/OSK, concluding a
case doesn’t ‘work’

Fo/AtT, not adhering to
initial setup; Tr/UIM,
modifying initial setup

[Tr/CUE, choosing
numerical examples
[Tr/CUE, choosing
geometric configuration

CBIMEC, highlighting
relationship between
angles

Tr/CUE, showing a
‘family’ of cases 2>

Tr/CUE, avoiding
extremes

@Y recollecting
cases as they arise
CBIAC, anticipating a

‘complex’ case

COIMCC] drawing

attention to variance

Tr/CUE,
limiting/allowing cases
[Tr/CUE, choosing
special numerical
example; UIM,
changing initial set-up

€aIDS, sequencing
configurations
CBIMCE, highlighting
relationship between
angles

Tr/CUE, choosing
numerical examples

[Tr/CUE, choosing
numerical examples
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(11.16) 1 ask about special cases. Robert immediately drags C
so that CD is a diameter, saying he would show them “Thales
theorem or whatever it is”, the angle in a semi-circle as a

special case of the angle at the centre. Then he wonders what
else could we do?

and
then “I don’t know what that means...” He doesn’t resolve this
difficulty, and moves on, recapping that he’d bring up the angle
in a semi-circle and the case where B moves on to the minor
arc.

Tr/CUE, choosing
geometrical
configuration

Fo/UT, naming theorem

YN resolving

unexpected case

Fo/OSK, concluding
case remains unresolved
Tr/CUE, choosing
geometric
configurations
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Appendix G. Excerpt from Robert’s GeoGebra interview transcript

Rob-GGb-int, 13.6.2012, mins 5.05-12.10

| = interviewer, R = Robert.

I So what’s going on in, what’s going on with this diagram?

R Okay, so we’ve got, so the three red points are presumably all fixed to
the circumference of the circle and | can modify all of them, so they’re all
free to move. Um, and what they do, so two of the points define a chord.
The third point are connected to those two points and it ... more about
that chord, there’s a subtended angle which is marked and measured
and at the centre there’s the same angle which in the way that it's
currently looking is double, but not always if you choose numbers that
round awkwardly. Um, and G means | can change the size of the circle
and see that this relationship is always true. Um, the thing | thought
when | was looking at this first time around was if the intention of this is
to for pupils to see that the angle at the centre is double that at the
circumference, then | wasn’t necessarily sure about how actually drawing
in the chord helped them with this. So that was one thought and that
was on all three diagrams, so maybe there’s a way of explaining this that
I’'ve not thought through. So this | mean | think each of these diagrams
has merit and | think in different circumstances I think if ... in the past I've
given pupils this exact diagram minus the chord, although | think I've not
let them change the size of the circle | think in the versions I've given
them. And they kind of sit here and play with this for a bit and | think they
convince themselves of the fact that this you know that no matter what |
do with the exception of the rounding issue the angle at the centre is
always double the angle at the circumference. What happens if it comes
this way? That still works. And if that comes over there it doesn’t work
anymore. Um, yeah when I've given this to pupils I've never been
convinced they’ve you know it almost seems too easy and too obvious is
one thing.

| Mmm, mmm.

R And often like the activities I've seen and downloaded with circle
theorems do just seem to be kind of you know like Catchphrase like say
what you see you know.

I Okay, um, so if you were going to demonstrate ...

R Yeah.

I ... this to pupils, can you show me how you might drag the diagram?

R Um, so this is me demonstrating them to, demonstrate this circle theorem

or me demonstrating them what to do so that when they get onto the
computer themselves they can ...? Are they going onto a computer
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themselves with this diagram or is this a I'm teaching them about circle
theorems in class and this is me discussing?

| guess I’'m going to ask you about what you would do in different
circumstances.

Yeah.

So | think for this if you were demonstrating this diagram to them.
Okay.

Um, how would you drag it?

I'd probably I'd have it so when it came up I'd probably have it set up with
I guess fairly nice numbers that they should be able to spot quite easily
and I'd probably ask them what the relationship is. And then before
dragging this point I'd probably you know I'd probably have it set up so
that maybe it looks a bit well this is a kind of this is a nice symmetrical,
that’s horizontal, they almost look vertical you know. And so I'd probably
ask them well what happens if | move this over here? Is it going to get
bigger? Is it going to get smaller?

Can you show me?

So | probably would be if this was an interactive whiteboard I'd be
hovering over this and not actually touching it and saying I’'m going to
drag this this way. What's going to happen?

Mmm, mmm.

And I'd probably try to lead them into, | probably wouldn’t give them the
option of it staying the same. I'd probably ask them is it going to get
bigger or going to get smaller?

Mmm, mmm.

To | guess when they see that it does stay the same to provide a bit of
conflict there. And then I'd drag it and we’d drag it all the way around
here and show that it never changes. | can’t remember what happens if |
bring it over here. So | think if, | think if | knew it was going to do that |
think I'd possibly ... | think I'd probably deliberately avoid doing it and
hoping that one of them would say well what happens if you go past
here?

Mmm, mmm.

Because on diagrams I've had in the past I've forced it to just lie on the
major arc, but | think now | wouldn’t force that restriction, but I'd probably
want them to think about what's going to happen. You know because |
think they should hopefully be able to see that when it happens there’s
no way that that can be 60 degrees anymore. Um, and then at this point
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I'd then ... so | think the thing I'd vary first is I'd just establish that it
doesn’t matter where this point is in on the circumference of in that
segment. And then I'd start thinking about these points and I'd probably
again I'd probably pause and ask the question if | move this point round
up here, what’s going to happen to this angle and what do you think will
happen to this angle? And hopefully, so if | change this angle here to be
150 degrees or let's say 140 degrees, what’s going to happen to this
angle here?

So it’s key you're asking them to predict first before ...

That’s what | tend, that’'s what | tend to do now yeah before, so if this is
as a whole class | tend to ask before doing.

Mmm, mmm, okay.
| think.

So, um, so you kind of mentioned about dragging it round and then
avoiding or trying to trigger something, so that’s kind of like a special
case | guess. Um, are there any other special cases or extreme cases
that you would show to your pupils?

Um, I'd probably want to show this. I'd probably want to show you know
linking into ... what’s it called theorem of Thales? ... the angle in a semi-
circle is just really a special case of the angle at the circumference being
half the angle at the centre. Um, | probably ... what else could we do?
So that’s one. Um, | would if they didn’t come up with it probably think
about the case when this eventually gets to be you know B and C. This
would be effectively the same point. I'm trying to think what that means.
That would mean that they’re ... | don’t know what that means. Yeah, |
think | mean those are the two main ones | think in the opposite segment
and also the D, C being a diameter.
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Appendix H. Visual transcript

Green circle
shows case
recognised,
implicitly or

explicitly Blue bracket

shows case
occurring briefly,

Case arises not recognised
repeatedly
during
continuous
dragging
Yellow circle
shows case
New cases introduced by
recognised fro interviewer

visual transcrif
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After the list of pedagogic cases was finalised and renumbered, see Figure 6.9, the video
of Robert’s GeoGebra was reviewed to produce the case list below. A similar process
took place for the other three case study teachers. This time it did not seem necessary to
sketch circle theorem configurations to form a visual transcript, since the pedagogic
case list was assumed to be complete
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x o, o

Ry AT )& LG O
,2 \:\ V 3 /(y

Here, the green circles indicate cases that were explicitly recognised; any other cases
listed are implicitly recognised. The yellow circles again indicate cases arising due to
the interviewer’s dragging rather than the case study teacher’s. The vertical dividing
lines indicate the interviewer’s verbal prompts. The bracketed cases indicate the case
arises repeatedly during continuous dragging to show a ‘family’ of cases. This list was
then typed and formatted according to the coding system in Table 6.1 and Figure 6.8 to
produce a final case list.

Robert

161210 3513421171619 |8 /2" 6" 1" 3’
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Appendix I. Triangulation across lesson observation and post-observation

interview

The following excerpts have been chosen to indicate the triangulation process across
lesson observation and post-observation interview, comparing teachers’ espoused
theories with their theories-in-action. The excerpts relate to a contingent moment in
Edward’s IWB lesson, where he has an insight with regard to self-inverse functions —
detailed in Chapter 7. The post-observation interview clarifies the observation notes,
showing that the moment was unplanned and represented a deviation from the planned
lesson agenda. An excerpt from more detailed notes written shortly after the lesson
observation and interview are also included.

Excerpt from observation notes made in Edward’s IWB lesson, Wednesday 20.6.2012

Observation of year 12 ‘single maths’ group, period 4 11.15-11.55 so 40 min
lesson. The group was ‘mixed-ability’ — Edward described it as the most mixed
ability maths class in the school, bar year 7 groups taught in form groups. To
put this in some perspective, in 2012, no pupil in the school got below grade B
in GCSE maths. The students were post-AS-level exams and Edward said he
had increased the pace of lessons. Lesson content: graphing inverse functions,
knowing it's a reflection in the line y=x, need to restrict the domain of some
functions to ensure inverse exists.

ICT: Data projector (no IWB) onto a rotating whiteboard. Edward had manually
installed GeoGebra onto the teacher computer in the classroom. The room was
the second room change (one due to exams, one due to wanting to use ICT).
WB is at the front, pupils sat in rows in pairs or threes in a ‘traditional’ classroom
layout. GeoGebra file with function + point on function + trace of reflection of
point on function in the line y=x

Incredibly rapid fire Q+A I'd guess sometimes less than 1
second to answer, even with ones they’re meant to be working
on in their books

Goes thru’
pupil: how can it be an inverse of itself?

Edward: good question, gives example y=4-x and sketches
graph KQ code,

fE—
teacher insight,
use of opportunity

pupil: oh cos perpendicular

Edward: excellent point | think we should summarise

Recaps some of the ‘big ideas’ he referred to including ‘self-
inverse function’

Ran out of time to address
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Excerpt from post-observation interview on Edward’s IWB lesson, Ed-IWB-int,
20.6.2012, mins 21.24 - 23.38

| = interviewer, E = Edward

I Okay right. And | was going to say you also booked this ... the room
specially. Um ..

E Oh yeah because ... uh ... so every room has a computer at the front,
but there was a room change today because the one we should have
been in was being used for exams. And uh ... the room we were going to
be in is a Classics room, which the set up is ... they never use computers
in Classics ... so the setup is like ergonomically insane, so ... the screen
is like facing the wall and you have to stand on your head to use the
computer, it’s like it's not useful ... using that room ... notionally having a
computer in the room.

I Yeah yeah okay. | had a question now that ... as you said there was a
neat thing when at the end of the lesson one of the boys ... he got one
of the questions wrong, and he sort of went ‘Yeah I've got it wrong’ and
then the answer turned outto be Y =4 — X

E He actually got it right, but he thought it was wrong.

I Oh okay okay. And uh ... yeah, and he said “‘Wow how can it be the
same thing?’

E How can the inverse of Y = 4 — X be the same thing be the same thing as
Y=4-X

I Yeah yeah. And | was going to ask you, did that example come off the
top of your head, but actually | misunderstood, it was actually the
example in the book.

E —

I Yeah, okay.

E
So it’'s not all bad, the questions in

the book, they are a bit random sometimes. In fact that wasn’t, that was
quite a good question to ask actually.

I Good. Um ... there was something in the lesson that | had a bit of a
stumble with ... or again | just wanted to get my head round it with you.
One of the girls asked something like how many inverse functions are
there for the X3 — 2X +1, and it was trying to understand the conversation
that went round that, cos you pointed to the f(X) = X3 — 2X + 1, and you
said something like it's not a function, it's a mapping.
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Excerpt from notes typed up on Wednesday 20.6.2012. after Edward’s IWB lesson
observation and post-observation interview

The pupils then begin work on the questions from the textbook and | guess they
have about 5 mins to do this and then he starts going through the answers to
the first question. Edward was going to introduce a final example when the
vocal boy at the side has a problem with one of the answers — he thinks he has
it wrong, how can the inverse of y=4-x be y=4-x? He asks how can it be an
inverse of itself?

Asking him in interview, the example he was going to look at was y=x"2 — 3
which was one of the questions he had given them — a boy at the back that |
talked to and who didn’t contribute during the lesson came a bit unstuck on this
when | probed him. Edward had also come across a pupil having difficulty with
this one and so thought he’d address it at the board, but he didn’t have time in
the end.
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Appendix J. Transcription protocol

When it is clear from the surrounding text in a chapter who the speaker is, then an initial
Is not provided for identifying the speaker. When clarification seems necessary, an
initial is provided, separated from speech by a colon and indentation.

Speaker initials: | = interviewer, M = Michael, E = Edward, A = Anne, R = Robert
Pauses are indicated by three full stops ... in the text of the speech.

Square brackets [] are used to indicate where extra words have been added by the author
for clarification or to provide extra information for context.

Speech marks °” within a quote are used when the speaker suggests what they would
say, for example, in a classroom context.

Underline indicates the speaker’s heavy emphasis on the words so indicated.

“Er”, “um” or “uh” are used as they sounded to indicate utterances where the speaker is
hesitating. “Mmm” indicates an utterance, usually a non-question prompt from the
interviewer to the respondent to continue talking.

Punctuation has been used in a conventional sense: question marks have been used
when a raised note suggests a question is being asked and exclamation marks indicate
surprise or excitement.

Spoken mathematics is recorded as mathematical notation. For example, where numbers
are spoken to convey an angle, “140 degrees” is recorded. Similarly, when formulae or
functions are spoken this is recorded in mathematical notation e.g. “f(x) =4 — x”.

When the recording was not good enough for the speech to be heard, this is indicated by
(inaudible).

Indicative examples used in Chapter 5:

E: [later in the interview] I'd definitely mention it because
sometimes it doesn’t seem to work does it? ...it was one degree out... but I really
see it as a hindrance to learning what’s going on. I’d just, I’d have to keep
saying ‘Look, within rounding error this result is...’, sort of, it’s much less
convincing... [Ed-GGb-int, 20.6.2012]

M: Um, I guess it’s [D3 is] useful in that it shows that the rules only
apply on the circumference or certainly that particular rule of the double angle at
the centre, circumference etc.

l: Mmm, mmm.

M: Um, so I guess it’s useful to show that that [D3] doesn’t work,
whereas that [D1] does work. [Mic-GGb-int, 31.5.2012]
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Appendix K. Scatter graph comparing item measures

Comparing item difficulty across samples
1.5

Bretscher data: Item difficulty

" B6

-1.5
Pampaka et al (2011) data: Item difficulty
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Appendix L. Ethical approval

Nicola Bretscher
Department of Educational and Professional Studies
28th September 2011

Dear Nicola,
REP(EM)/10/11-74 - ‘Using ICT to Investigate Mathematical Knowledge in Teaching.’

| am pleased to inform you that the above application has been reviewed by the E&M Research
Ethics Panel that FULL APPROVAL is now granted.

Please ensure that you follow all relevant guidance as laid out in the King’s College London
Guidelines on Good Practice in Academic Research
(http://www.kcl.ac.uk/college/policyzone/attachments/good practice May 08 FINAL.pdf).

For your information ethical approval is granted until 27th September 2013. If you need approval
beyond this point you will need to apply for an extension to approval at least two weeks prior to
this explaining why the extension is needed, (please note however that a full re-application will
not be necessary unless the protocol has changed). You should also note that if your approval is
for one year, you will not be sent a reminder when it is due to lapse.

If you do not start the project within three months of this letter please contact the Research Ethics
Office. Should you need to modify the project or request an extension to approval you will need
approval for this and should follow the guidance relating to modifying approved applications:
http://www.kcl.ac.uk/research/ethics/applicants/modifications.html

Any unforeseen ethical problems arising during the course of the project should be reported to
the approving committee/panel. In the event of an untoward event or an adverse reaction a full
report must be made to the Chairman of the approving committee/review panel within one week
of the incident.

Please would you also note that we may, for the purposes of audit, contact you from time to time
to ascertain the status of your research.

If you have any query about any aspect of this ethical approval, please contact your
panel/committee administrator in the first instance
(http://www.kcl.ac.uk/research/ethics/contacts.html). We wish you every success with this work.

Yours sincerely

Daniel Butcher
Research Ethics Administrator
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Amendments

Changes to the questionnaire and accompanying information sheet

*  The information sheet has been altered 1o say completion implies consent. Similary a senlence
has been added st the start of the questionnaire indicaling completion impies consent.

* A zeclion has been added 1o the end of the quesiionnaire so that paricipants wishing o be
invoived in any further part of my case study can fick a relevant box and leave their email

address or equivalent.

* Appropriate changes have been made 1o the section on Informed conzent on the appication
form 1o reflect the changes above.

Regarding anonymity issues in returning the questionnaire to the HoD.

Following the same procedure as for my pilot for this survey, a Blank envelope is atlached o each
questionnaire. The paricpants are instructad on the information sheet to place completed
Juestionnaires in the envelope and seal it, before refurning i to the BoD. Thus at no point should the
HoD have access o paricipants’ data. This should ensure participants anonymity and the
confidentisfity of their data.

| confirm that | will not be video or audie recording classroom observations.

Informing students of observations and opting out if they do not wish to take part
Although not directly paricipant, some sludents will nevertheless be incidental to the study. At the start

of a lesson prior to the lesson under observation, the resesrcher will outine the study in brief a3 one of
siudying their teachars use of ICT to teach mathematics and invite them to raise guestions with the
researcher if they have any concem. In particular, they will b2 reasswred that they are nof the object of
the observation and no student wil be identifiable from any written account of the stedy. It wil be
pozsible 1o proceed with the study while avoiding a given small number of students if that is what they
wizh, without compromising the data.
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Research Ethics — Risk Checklist

» Complele he checklist ticking yes to any of the seclions relevant 1o yaur shedy.
= Submil the checklis! along with your application o the committee, ensuring each copy of

the application has a checklist aliached on top.
Name: Micola Sretscher
Review Committee: | Educalion and Management Research Efhics Pans
Title of Study: Using ICT 1o irvestigate Malherratical Knawledge in Teaching
Yes | Mo
A| Does the study involve participants wivo are particularly vulnerable or unable to give O H

informed consent of in a dependent, position {e.g. children, your own students, over-
resesrched groups, people with learning difficulties, people with mental heslih problems,
young offenders, pecple in care facilibes, including prisons)?

If you have ticked yes fo this section, will financial incentives (other than expenses) be
offered to participants? YES [] NO []

If yes, please state how much.

g Wil participants be asked io take part in the study without their consent or knowledge at the [] (]
time or will deception of any sort be involved {e.g. cover: cbservation of people in non-public
places)?

¢ |5 there a risk that the highly sensitive nature of the research topic might lead to disclosures O M
from the participant conceming their own involvement in illegal activities or other activibies that
represent a threat to themselves or others (e.g. sexual activity, drug use, or professions!
misconduc)?

| Could the study induce psychological stress or anxiety, or produce humiliation or cause L] |
harm or negative consequences beyond the risks encountered in nomal life?
g | Does the study invalve physically intrusive procedures? O H
[f ygs, continue below:
i Does the study imlve only moderately intrusive procedures (taking less fhan 40m/ O ([
blood, collecting bodily wasfe, cheex swabs)?
ji  Aresubstances io be administered (such as food substances) which are pot dassified ]
a5 ‘medicinal producis’ by the MHRAT {see 15¢ of the guidelings for more details)
i | Are substances which are classified as ‘medicinal products’ by the MHRA to be OO
administersd? (see 15¢ of the guidelines for more details)
e Does the stedy involve imaging techniques such as MRI scans, x-rays or ultrazound? N
v Does the stedy involve DNA or RNA analysis of any kind? {see Appendix D)7 O
i | Aeinvasive, intrusive or potentially harmful procedures not already covered byitems | [ | []

i, W, iii, v, & v to be used in this study?
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[ N'C;‘(J For offes use anly:

3 o REC Pratocal No
(.: !'J-I"{-I"ffgf Date rec'd:

LONDON

APPLICATION FOR ETHICAL APPROVAL

Please tick the Committee you are applying to:

Sub-Committees (RESC)
PNM RESC [ SSHL RESC [
[Psychiatry, Nursing & Midwifery) (Social Sciences, Humanities & Law
High Risk)

BDM RESC {Heallh] L
[Biomedical & Health Sciences, Dentistry, Medicing
and Natural & Mathematical Sciences)

Research Ethics Panels (REP)
For 35PP, Humanities and Law (non-high risk only)

E&M REP [ GGS REP [

[Education & Management) {Geography, Gerentology, SCWRU)

Humanities REP [] War Studies Group REP [ Law REP [
(Law & Department

of Political Economy)

Notes for all applicants

Please raad the guidelines bafors filling out the application form and refer to the speciic guidelines about
each saction when flling in the form. (hilp:eww kel g ukressarchielhicsapolicanis’)

Reafer to the Guidalines for the submission deadlines for your Commitles and the number of copies 1o
submit (inchuding electronic versions if applicable).

All applications should be submitied by Spm on the deadline day.
All Sub-commitlze applications should be submitied to the Resaarch Ethics Office, 5.11 Franklin Wilkins

Buiding, (Watedao Bridge Wing), Waterdoo Campus, King's College London, Stamford Street, Landon SE1
aNH.

All Resaarch Elhics Panel applications should be submitled to S5PP Elhics Administrator, K058 Ground
Flaor Strand Building, King's College Londan, The Strand, Londan WC2R 2L5.
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SECTION A - TO BE COMPLETED BY ALL APPLICANTS

1.1 RESEARCHER
Researchers Name: Nicola Bratscher

Researchar's Department & School: Depatment of Education and Prolessional Studies. School of Social Scienca and
Pubilic Palicy

Status:
[ Undergraduate [ Taught Pestgraduste <] MPhil / PhD Specialist Doctorate [_] Staff Research

If Student:
Name of course/qualification: MPhiUFhD in Educalion

If Staff:
Researcher’s Paost: NA

1.2 CONTACT DETAILS

Email: nicola. bredschenolac.uk

Telephone number: 07937 242433

Addrass: 13 Desty Hill Crescant, Foresl Hill, London SEZ3 3YL

1.3 SUPERVISOR - COMPLETE FOR ALL STUDENT PROJECTS (Including PhD)
MName of Supervisar: Jemamy Hodgen

Supervisar's Post: Sanmor Lecluar in Education

Supervisor's Depariment [if different o student): DEFS

Supervisor's email address: jeremy hodgenZkc acuk

1.4 OTHER INVESTIGATORS, COLLABORATORS, DRGANISATIONS

Lest any olher investigalors/collaborabors mvalved with the study, and ensure thal heir role (eg. collaborator, galekeaper)

and responzibililies within the propct are axplained.  You should include amy draftpraliminary apprach lellars 1o
gatekeepar organizalions and condirm 15al you will have permission lablers available for inspacton if requesled lor audil

pUFpGSAS.
NB: For ofhar imesligatorsicollabarators carily if their amployer is nol King's College Landan,

i

. PROJECT DETAILS

1.1 Project Title Using ICT %o inwestgale Mathemalical Knowladge in Teaching
1.2 Projecied Start Date of Project Sephember 2011

Thiz shou'd oe when you intand 3o star work with paricipants

1.3 Expecied Completion Date of Project April 2013

2.4 Sponsoring Organisation
¥our sporsce will be ezsumad to ba King's Collage London
urless stated otherwise. WB: Do not put 'MIA'

2.5 Funder Esac
(2.g. self-funded, King's Collage London, ESRC, AHRB, EU|
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ME: It may be lhe cass thal research does not involve hurman parlicipants yel raisas olher elhical issues
wilh potential social or environmenlal implications. In this case you should =5l apply. Please consull with lhe Reseanch
Ethics Office (reciikelac.uk) # in doubt.

[ ves Cke
(L7 OTHER INFORMATIONRELATNGTORISK

Will the study place the researcher at any risk greater than that encountered in his/her daily life? (2.9 interviewing
glene or in dangercus circumstances, or dete colection cutsce the UKL

Yas [] No [

Does the study invalve the using a Medical Device outside of the CE mark approved method of usa? (see
guidetings) f you are weing @ medical devica ‘off labe! (outsida of e eporoved method of uza) $an & risk assessment neads fo ba
nurrq:latad Fnrfurl’mrln‘in:lrrrﬂiun chn rrrat:inaldwmassaa ﬂm Madicnes and Healthcars Products Ragulatory Agency wabpages:

h mnra wukJ'PL.ninauun I udamﬂamﬁﬁumnmmEmumﬂaMmuﬂm“htrn

Yos [ No [

If you have ticked yes ta either of the abave:

[ Yes, and | have compleled a nsk assessment which has bean co-signed by the Head of Depariment! | have discussed
the risks irvolved with my supervisor or Head of Degarment and agresd a skalegy for minimising lhese risks.

AHDTHEH. H.EUIE\HTHG EDDT!FEIHHESHJHE Are any olher aporovals by anather reviewing body (including ofhe

ey required? If yas, give delails and say when Lhese will be oblained. |1
lha;- nava alaau:,- baan nmarmﬂ ynu srmlu prawide a copy of the approval with the apphcation olbherwise you will need o
sUpgly it whan ready.

ves [ no [

CRIMINAL RECORDS BUREAU - |z Criminal Records Bureau clearance necessary? If so, please confirm thal clearance
will ba sought bafore commancemant of the project. YES [ WA [

Does & human trials questionnaire need to be subenitled? TES (1 no [

If yes, confirm thal the Human Trials Guestionnaine will be submitted prior ta the start of fe study. YES [
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1. AIMS, OBJECTIVES & NATURE OF STUDY

This study aims 1 investigale malberatical knowladge in teaching using Information and Communication Tachnalogies
(ICT). Ina major review of rasaarch on mathematical knowledge i leaching (Rewland and Ruthven, 2011), not one of tha
papers decusses leacher knowledge directly in relation to ICT. Using ICT as a means for concepluaiizing, axplaring or
davaloping leachers’ mathemalical knowledge is nol discussad. Meilher 5 e knowladge neaded fo lBach mathemalics
effectively using ICT explored. This s surprising given the emphasis on using ICT in fe UK National Curiculurn for
mathamalics and e incusion of ICT in malhemalics curricula mona glabally, coupled with widespread recognilion of e
complexily of inlegraling ICT ik teachars' practica (eg Rultwen, 2007). This study sims fo address these issues by
davaloping well-researched fools [Willams, 2011) involving ICT 1o confribute towards answering the following rasearch
queslions:

- What is e nature of malhematical knowledge neaded for teaching malhemalics using ICT?

- How is this knawledge aclualised in teaching mathemabics using ICT?

Hodgen (2011] angues he case for concaplualising the nature of mafematical knowladge in leaching as situaled, socal
and distributed. However, Rultven (2011, p.87) notes that te evidenlial basis for adopling such a perspeclive remains
slender and fragmentary. Williams investigaled leacher knowledge in ralation Lo qraphs, comparing a tes! inslrurmen
invalving pager and pencil lasks bo knowledge alicitled through interviews. He concluded that teacher knowledpe was lask
and ool dependent and fhus teacher knowledge is ‘distibuled’. By using ICT as a foal for investigaling loachars’
mathamalical knowladge in varying personal and social contexts, this study hopes 1o contridule % an understanding of
mathamalical knowledge in leaching as siluated, socal and distibuled.

4. STUDY DESIGNMETHODOLOGY, DATA COLLECTION & ANALYSIS

Provide a brief oufline of the siep-by-step procedure of youwr proposed siudy, in no more than 1 page where
possible. [An example of a flow chart that could be used is in the Guidelines.)

The research project will employ mixed methads in terms of a larpe-scale survey of leachers’ ICT usa alongside in-gaplh
case shudies. Parlicipants in the survey will fill out a queslionnaire, which should take no longer than 30 minules ko
complele. Teachers ama frae bo complels the questionnaire al a tima and place of ther choosing. Four case sludias of
individual teachars wil be selecled using information gained fram the questionnaires. Case sludy leachers will be expacted
bo lake part in hree ntarviews and bawo classroom cbearvations. Inbarviews shoukd lasl no mone than one hour. Inferviews
and clazsmom obsendalions will lake placa al the parlicipant’s school, al a me of thair choosing. Pleaza see sample
questionnaive and intarview guides for lurther details.

The survey will provide a broad averview of ordinary malhemalics teachers’ ICT use. In addilion, the data will be used Lo
invastigals patiems of use according 1o dapartmantal and individual facloes. The survey inslrument will seak background
informalion on persanal and conleslual faclars, which will be wsed loinform case sludy saleclion. In parfcular, Pampaka e
a's (2010) itams will be used, with passible adaplalions, to messure lBachers pedagagic orentalions on & connactianisl-
Iransmissionisl scale. The questicnnaire wil also seak information on contexlual faciors: the degree of inlegration of ICT
inte schemes of woek and the prioly given Lo ICT wilkin the depariment. These measures give a sanse of the level of
supgort for using ICT within the degartment The survey will Be used o develap an improved concaplualisation of
conneclionis! and transmission orientaions in relabion o 1CT use and Bus Se malhemalical knewledge in leaching
associatad with these oranlalions. Based on lhe survey dala, four case sfudies will be selacted accardng o the following
crilena:

Conractionisl leacher in dept supporive of ICT Transmizsion faachar in depl supportive of ICT
uga use

Connachionisl leacher in dept unsupporlive of ICT | Transmission taacher in depl unsupportive of ICT
usa use

Drawing on previous research (Askew el al, 1997, Bibby, 2002), dala colleclion in casa sludas will imobve classroom
oirsarvalion, stiuctured and sami-slrucluned mbarviews. Viawing laachars’ knowledge a2 sluabed, colecting dala n vanad
silugtions will pravide diffarenl windows on leachers’ knowledge [Adler, 2001). Classroom ohaarvalion gives actess 1o Ma
krivafedae teachers’ use as they respond lo conbinpancies arising in the immediacy of dassroom pracies ICT usa in

323



dlemative classroom contexls (whole-class insluclion wersus studen! compubsr work] may provoke  differant
confingencies, giving access o diffarent facels of leachers’ malbamalical knowledge. Intendew data peovide anothar
impartant window on mathemalical knowledpe in teaching. For example, inlerdaws may highlight feachers’ knowledge of
mathamalice for profassional use cutside of the classroom, and their knowledoe of pupils’ malkematical learning.
Screencasts wil be collecled duing inberviews and observalions 1o provide visual record of teachers compuber work. The
lypes ol dala callaction within case sludeas are ksled below:

Classraom obsanvalion, whole-class mstrucion

Classraom obsarvalion, drecl sludent access o compulens

Parsonal corslrucl inberviaw— knowladga of pupds’ mathemabcal leaming in refation 1o ICT

Concapl mapping inberview — mathematical knowledge in relatian &2 ICT

Background infarview — 1o provide mone detail on survay items

Cuestionnaire dala will be analysed using descriplive and infarential sfatistics [aq esls and Chi-sguared tasts) where
appropriale. Opan-ended responses wil ba analysed manually. Infarviews wil ba ranseribed and caded for qualitative
analysis. Classroom obsarvalions will focus on the feacher, Berr teaching slyles, rescurces and managemeanl and
orjanizalional siralegies, Lo produce detailed accounls of the flow, conbent and context of the lesson (Askew ef al, 1997).
Thesa actounts wil be coded for qualitalive analbysis. Advice on data analysis has been soughl primarily fram my
SLIPERVISOF.

5 | PARTICIPANTS TO BE STUDIED

51 PROJECTED NUMBER OF PARTICIPANTS
Number: Estimated 125 survay paticipants; £ indvidual casa sludy leachers
If applicabla: How mary will be male and famale. Nia

Justification for the sample size: A samgple of 125 mathematics teachers shauld provide sufficient and manageatie data
for slalistical analysis, based on research using similar measures eg Pampaka et al (2010). 100 schools wil be
approached o lake parl in the survey. Assuming a response rale of 25% and an average of 5 leachers per school
participating (Based on pilol sunvey results), 125 parlicipants should be achievable. Four case sludies will be selected lo
provide conlrasling siluations, based on personal and contexdual Factars, in which 1o investigale leachers' mathamalical
knwiedge in leaching using ICT.

If an upper age limil is needed you mus! provide a justification.
Upper Age Limit: Ni& Lower age limit: N/A
5.2 SELECTION CRITERLA

Burvey participants must be actively leaching mathamalics in a UK secondary schoal. Schools approached o partizipate in
the survey musl be sacondary schoels offafing malhemalics acrass Kay slagos 3 and 4. Case study lsachers must be
aclively leaching matematics in a UK secondary school with some access w0 ICT rescurces and willng o be observed
using ICT in their leaching. |n addition, Sey should fulfi ane st of case study critedia, for example, have a connectionist
erigntation in & mathemalics depariment that is unsupporive of ICT use,

53 RECRUITMENT
Describe how participants will be (i) identified and (i) approached.

The schosks will be idenlified via msling contacts wilh King's Collage Londen, for examnple, their parlicipation in the
sacondary mathematics PGCE course. The head of malbematics of each schoal will be approached by letler and amail
inifially and their permission sought 1o distribute questionnaires to each member of stafl in ther department (see head of
department letier). Polential case study teachers wil be identfied via heir questionnaire data. They wil be approached via
letler and email (see leacher's hller)

54 LOCATION

State where the work will be carried out e.g. public place, in researcher’s office, in private office at erganisation.

Teachers ane free fo complele the questionnaire al a time and place of their choosing. Classroom observalions and
interviews will take place at lhe parlicipanl's school, al a time of their chocsing.

£  ETHICAL CONSIDERATIONS
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Descrive fe procass vou will use 1o ensure your paricipanls are frealy giving fully informed consent o paricipale. This
will always include e pravision of an infarmation sheat and will normally require a consanl form unless iLis a purely sel-
complelion queslionnaire bazed study o there is a jusficalion for not doing so [this must be clearly slated). Templates for
these are al the end of this dacument and they should be filled in and modified whare nacassary,

A corsent form will be attached wilh the leter seaking permission from the head of depariment. Since the quasSonnaing is
purely sall-completion and anonymous, comphetion will be taken 1o imply consent - parcpants ane inloermed of his on e
gueshionnare and information sheel. Thers will ba a saparale information sheel and consent form for polental casa study
laachars, aachad [0 the letlar seeking their paricipation i the case study.

(Participanls should be able & withdraw from the research procass at any lime and absa should be able lo withdraw (hair
data if il is ientilisble 25 heirs and should ba toid when this will no longer be possible (e.g. once il has been included in
the final report). Flease describe the axact arrangements for withdrawal from parficipation and withdrawal of dala
dapending on your sludy design).

The head of dapartment is informed in the lelier seeking fhair parmission thal their scheol's parficipalion is woluntary and
that they may withdraw fram the study at any time. Guestionnaires will ba linked 1o the parlicipating schoal via a coded
reference, erabling me o withdaw all the dala from a parlicipaing schoal should the head of depariment requast it
Participants can contact me via a-mal 1o stala Sal thay no Ionger wish 1o lake par

Case sludy teachers are informed hat their paricipation is voluntary and that they may withdraw from 1he sludy 2l any ima
in Lhe latler seaking their parScipation and on fe altached information sheel

Participants may reques! the withdrawal of their data up until Se date of firs! publicationidissemination of resaanch findings.
This is ervisaged o b 11272012 for survey data and 162012 or case sludy data,

Whare you have licked "Yes' on the risk checklist, provide details of relevant quabfications and expenence with
refarence to those sections.  This must include 1he researcher andior supervisar as wall as olher collaborators (if
anplicatile) invalved in those sections markad as prazanting risk. (Do nol submila c.v.)

A

You musi also specifically address the ethical issues raised from those sections hera.
A

ME: If you ticked yes fo any point in E i -vi of the checklist, you must also complete and submit Section B of the
application form.

Flease consider whelhes thare are alher afical issues you shoukd be covering bare. Further, if applicable, please also
add fhe pm!asmral code of m'ﬂudym inlend o follow in your rasearch.

The m:npl:l a:lrrams 1n tha Enhsh Em.r:almal Emmn Agsociation’s Rewvised Elhical Guidalines far Educalional
Fie-s.vaarch (2002) mﬁmnmaammmmmu@r 564 also

It alhics gl pseanch-i and the King's College Landan Guidalinas on Good
Pram::a n .ﬂ.-r.a:lam;c Fiasaarm Filtpy: .'.'www = uxicnliage/policyzonaindax php?id=247

Plaase describe any expected benefits and risks to the research participant

For exampla:
Will participants recaive a copy of the final repori?
What is the potential for adwerse effects resulting from study participation, e.g

= participants suffering pain, discomfort, distress, inconvanisnce or changes to lifestyle.
=  sansitive, embarrassing of upseiting topics being discussediraised.

Idenfity 1he potanlial for each of above and slate how you will minimise risk and deal with any unlowand incidenis/adversa
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reachons,

Participation in tha aither the survey or as a case study may make parlicipanls more awang of how they use ICT resources
in fheir feaching. In His sense, parlicipaiion in the research may provide an opporfunily for refleclion on professional
praciica which parlicipants may find baneficial. Af the and of the sludy participants will be able ko receive information about
the resulls of the survay, should thiy wish. Neilber (he survey nor case shudy research invalves lhe collection of sansilive
parsonal of insfutional information. Parficipation in the research will nol disadvantage parlicipants in any way and ere is
s rigk, discomiont or incorvenience (minar or major) invalved.

I% it possible that criminal or other disclosures requiring action (e.g. evidence of professional misconduct) could
be made during this study?

YES ] NO []

If ya=, datail whet proceduras wil be put in placa to deal with these Esues. The informetion Sheat should maka & chear undar which
croumstences arion may b= fakan by e resaarchar.

T FINANCIAL INCENTIVES, EXPENSES AND COMPENSATION

vEs [ wo [

‘ %

YES [ NO [

YES (] NO [

YES, | an making the schema available o participants (<]
WO, the study s based oulside the UK and so the scheme is nat applicatla [
N, the shudy is within Be LK but lhe No-faull compensalion schame is nol offered for the following reazon:

f. DATA PROTECTION, CONFIDENTIALITY, AND DATA AND RECORDS MANAGEMENT
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Parficipants are given axplicil assurance of conlidantiality. With fe use of praper anonymization lechnaigues, for example
by giving each schaol a coded reference, | ensure thal paricipants data will not be associated with any specific indvidual,
daparkmanl or inslibulion. Indwidual teachers will enly be identifisble via a numens idenlifier, known only b me. Lists linking
schoals with Lheir coded referance and individual beachers with their numeric identifiers will ba slored secunaly and

saparately from the dala. Pseudonyms will b crealed for case sludy leachers, Parfcpants will not ba idenSfied in any
publication.

My supenasars and | will have access bo the data colectad, Infenview data will be transcrbed by the resaarchar (me). Thus,
for the purposas of this study, no disclesures of personal information beyond the sludy leam are planned.

| confirm hal the Principal Imvestigator will ke full responsiailily for answing appropriate storage and securily for all study
infermnalion including reseanch dala, consent forms and administralive recards and fal, whare appropriale, tha nesessary
arrangements wil be mada in order io procass comyright material lawtully.

YES ] NO [

Zlate how long sludy informalion including research dala, consent forms and adminisirative records will ba relained, what
format(s) tha mfnrn'latinn will be huplm and where lnwal:a will b slorad, For axampha, whare within King's College

Gmwalaﬂ q.mshmnm amsam hmma mawamn records and lranscrpls will be relaned for seven yaars after e
study willin the Department of Education and Professional Sludies. Dala exiracled from the gueslionnaies will be slored
elactroncally ard kept for (he sama perod. Recorded cbservalion and inberview matarial will be deleted after franscription.

ME: Any personally identifiable data that is held on any mobile device should be encrypted. This includes data
stored on USE keys, laptop/netbooks, deskiop computers, smart phones, workgroup servers and relevant emails.

In axddition, confirm whather Lhe slorage arrangements comply with the Dala Protecton Acl 1598 and the College
puidelines.

ves [ no []

Wil dala be anchived for usa by afer resaarchars?

No [

YES {ir ancnymisad fom] O H you interd to share anonymised cate wih other researchars, you must make this dear on the
infermation shaat

YES (in icenti“abia form following e guicance below) [

Wil any perscnal infarmation retatad bo this sludy ba ralained and shared in unanonymisad farm? If you Sck yas you musi
enzure that these amangaments ane datgiled in the Informaion Sneet and that participant consent will bs in placa.
vEs (] no [

§. AUTHORISING SIGNATURES

| undertake to abide by accepled ethical principles and appropriate codefs) of practice In carrying out this
study. The informalion suppiied above is to the best of my knowledge accurate. | have read the Application
Guidelines and clearly understand my obligations and the rights of participants, particulanly in so far as to
obtaining valid consant. | understand that [ must rot commence research with hurman participants until |
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have recelved full approval from the ethics commithee.
Signaturg ......... Nicola Brotseher.. ..o Date...... THER20TY. i

8.2 SUPERVISOR AUTHORISATION FOR STUDENT PROJECTS (including PhD)
| confirm that | have read this application and will be acting as the student researcher's supervisor for this
project. The propesal (s wiable and the student has appropriate skills to undertake the research, The
Information Sheet and recruitment procedures for abtaining informed consent are appropriate and the ethical
Issues arsing from the project have been addressed in the application. | understand thal research with
human participants must not commence without full approval from the ethics committes,

|f applicabla:
The student has read an appropriate professional code of ethical practice &=
The student has completed a risk assessment form [

Marme of Supervigor: Jeremy Hodgen

Signature ...... M Date, oo 2RO i

5.3 MEDICAL SUPERVISION - zae the Guidel
Name of Medical Supervisar: NA
Medical Supervisor's MDUIMPS (or other insurance provider) number:

Signature of Medical Supervisar:

D1 R

10. INFORMATION SHEET AND CONSENT FORM

Remember o submil your inferrmation sheets for participants and consent form {if necessany) with your application.
Failure b do so will causze delays o your applications.

The information sheet for participants shoukd be compozed accordng 10 e guidelines. The text in red should be
deleted or modified as appropriate. f the language in the template is not suitable for your intended participant
group it can be modified. There is also a lemplate consent form that can be used. Please refer o the guidelires for
further information on how these documents should be used.
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TINCGTS
I

LTI

ey ] | ik

[date]

[Drear Head of Mathemartics

Using ICT to investigate Mathematical Knowledpe in Teaching

[ am writing to invite your depanment to paricipate in a survey as part of the main study for my PhD research
project at the Department of Education, King's College London, This project aims to investigate the
mathematical knowledge that teachers draw upon in their teaching of mathematics using ICT. In this project
[CT is also used as a tool to cxplore teachers” mathematical knowledge.

[f you choose to participate in my survey, members of your department will be asked to fill out a questionnaire
on a strictly voluntary and anonymous basis. The guestionnaire should take no more than thirty mimtes to
complete and asks for information relating to the availability of ICT resources in your school and how these
resourees are used in the teacher's classroom practice. Members of your department may subsequently be
invited to participate in the project as a case study teacher based on their answers to the questionnaire.

All information will be treated as strictly confidential*, coded references will be used in order to preserve the
ancaymity of individual teachees, vour department and school. Your details will be held confidentially and will
not be passed to any other organisation. The information given will be used for the purposes of this project,
which may include publications.

There is no compulsion for you to participate in this study. [f you do choose to participate, you are free to
withdraw your deparment from the study until /22002, by contacting me using the contact details overleaf.
Participation in the project will not disadvantage you in any way and there is no risk, discomfort or
inconvenicnee [minor or major) involved.

The project adheres w the British Educational Research Association’s Revised Ethical Guidelines for
Educational Rescarch {2004} hitp:\warar beraac.uk! ﬁlc-i"-’IIIIZIS 09/ ethical pdfami thn: King's Cnlln:g-: Landnn
Guidelines on Goad Practics in Academic Research hitpo?

Please pead the information sheet and sign and retum the attached consent form, along with any completed
gquestionnaires, in the envelope provided.

[f wou have any guestions about the project, please do not hesitate to contact me using the contact details
owverleaf. Thank you.

¥ours sincerely

Nicola Bretscher
Post-graduate student
King's College London
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Nicola Bretscher Jeremy Hodgen (supervisor)

Department of Education & Professional Diegartment of Education & Professional
Smdics Studics

King's College London King's College London

Franklin-Wilkins Building {Waterloo Bridge Franklin-Wilkins Building ("Waterloo Bridge
Wing} Wing}

Waterloo Road Waterloo Fead

London SEL 98H London SE1 9MH

Tel: 020 7848 3102
Email: nicola. bretscherimkel.ac.uk Email: jeremy.hodgenimkel.ac.uk

* Please note that there are exceptions to the obligation of confidentiality which would justify disclosure of
confidential information. Any such disclosures would comply with the Data Protection Act and include:

*  Public interest: There may be circumstances where the right to confidentiality must be weighed against
the public interest where there is a real or serious risk that another, or the public at large, may be put in
danger by the participant.

*  Statutory Provisions: e.g. Children Act 1989 and 2004; Public Health {Control of Discases) Act 1984
[notifiable discases).
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Consent form (participating institution
Project: Using ICT to Investigate Mathematical Knowledpe in Teaching
[ understand the nature and purpose of the project and agree to participate.

[ agree that there is no compulsion for me or the members of my department to participate in this research and,
if I do choose to parmicipate, 1 may withdraw my participation before 12201 2 without penaloy;

[ understand that any information which I or the members of my depamment give will be wsed solely for the
purpases of this research project, which may include publications. [ understand that such information will be
treated as stricdly confidential and handled in accordance with the Data Protection Act 1998,

[ understand that members of my deparment may subsequently be invited to participate as a case study teacher
hased on their answers to the gquestionnaire. [ agree for them to be contacted in the future for this purpose.

(Please prinf vour pame and afficlal position in your insiitution and affix the insnmtional stamp below. Thank
o)

Please retumn the signed and stamped form to:

Micola Bretscher

Diepartment of Education & Professional Studics
King's College London

Franklin-Wilkins Bullding (\Waterloo Bridge Wing)
Waterloo Road

London SE1 9MH

Email: nicola.bretscherfikel.ac.uk

Thank you
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FIMNG™S
1ol

LONDOMN

weeruky ol Lendea

[date]
Dizar [name of teacher]

Using ICT to investipate Mathematical Knowledge in Teaching

[ am writing ta invite you to participate as a case study teacher in my PhDd research project at the Department of
Education, King's College London. This project aims to investigate the mathematical knowledge that teachers
draw upon in their teaching of mathematics using ICT. In this project ICT is also used as a tool to explore
teachers” mathematical knowledge. You have been invited to be a case study teacher on the basis of your
answers to the guestionnaire you previously filled out on ICT use.

[f you choose to participate, you will be asked to take part in theee interviews lasting no more than one hour
each and two obscrvations of your teaching using ICT. The interviews will be recorded for transcription. Omne
observation should be where ICT is used in a whole-clazs context; the ather should be where students are given
direet access to computers. The Interviews and observations will happen at a time and place of vour choosing.
Participation in the study may make you more aware of how you use [CT resources in your teaching and may
give you an opporanicy to reflect on your profiessional practice. At the end of the study vou will be able to
receive information about the survey and case study results, should you wish,

Any information you give will be treated as strictly confidential® and pscudonyms will be wsed to preserve your
ananymity. Your details will be held confidentially and will not be passed to any other organisation. The
information you give will be used for the purpeses of this project, which may include publications.

There is no compulsion for you to paticipate in this study. [f you do choose to participate, you are free to
withdraw from the study antl 17772012, by contacting me using the contact details overleaf. Participation in the
project will not disadvantage yvou in any way and there is no risk, discomfort or inconvenience (minor of majoes)
imvolved.

The praject adheres to the British Educam:-na] Research quclatmn 5 Revised Ethical Guidelines for
Educational Research {2004} ! 2 and the King's Cnll:g-: London
Guidelines on Good Practice in Atadmnlc Research hitpiwarw kel ac.uk'college/policyzonc/index. php?id=247

Please read the information sheet and sign and retum the attached consent form.

[f wou have any gquestions about the project, please do not hesitate to contact me using the contact details
owverleaf. Thank you.

Y ours sincerely

Micola Bretscher

Post-graduate student
King's College London
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Nicola Bretscher Jeremy Hodgen (supervisor)

Department of Edweation & Professional Department of Education & Professional
Smdies Studies

King's College London King's College London

Franklin-Wilkins Building (W aterloo Bridge Franklin-Wilkins Building (Waterloo Bridge
Wing) Wing)

Waterloo Road Waterloo Road

London SE1 9%H London SE1 98NH

Tcl: 020 7848 3102
Email: nicola bretscherfikel. ac.uk Email: jeremy hodgenfkel ac.uk

* Please note thar there are exceptions w the obligation of confidentiality which would justify disclosure of

confidential information. Any such disclosures would comply with the Data Protection Act and include:

= Public interest: There may be circumstances where the right to confidentiality nmust be weighed against
the public interest where there is a real or serious risk that another, or the public at large, may be put in
danpger by the participan:.

= Statutory Provisions: e.g. Children Act 1989 and 2004; Public Health {Control of Diseases) Act 1984
[notifiable discases).
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INFORMATION SHEET FOR CASE STUDY PARTICIPANTS

INFORMATION SHEET AND CONSENT FORM
Please complete this form after you have read this Information Sheet and before
completing the questionnaire.

TITLE OF STUDY: Using ICT to investigate Mathemalical Knowledge in Teaching

You are bEing invited 10 paricipsie as a case study tescher in my PhD research project Before you decide
whether b take par, it is imporiant for you to read the following information carefully and wndersiand why the
research is being done and what it will imwoive. You should only participate if you want to; choosing not to take part
will mot disadvantage you in any way. Flease take fime to read the following informafion carefully and discuss it
with others if you wish. If you have any questions about the project, please do not hesitate to contact me using the
contact delails below.

What is the purpose of this study? This sludy aims to invesgfigate the mathematical knowledge that ieachers
draw upon in their teaching of mathematics using ICT. In this project ICT 5 also used as a fool fo explore
teachers’ mathematical knowledge.

Why have | been chosen o participate? You have been invited to be a case shudy teacher on the basis of your
answers t0 the questionnaire you previcusly filled out on ICT wse. Your schodl was chosen fo take part in the
survey due 1o it existing contacts with ¥ing's College.

What will happen to me if | fake part? If you choose fo participate, you wil be asked to fake part in three
interviews lasting no more than one hour each and two observations of wour teaching using ICT. One cbserdation
should be where ICT is used in a whole-class context; the other should be where studenis are given direct access
0 computers. The inerdiews and observations will happen at a ime and place of your choasing.

What are the possible benefits? Participation in the siudy may make you more aware of how you use ICT
resouUrces in your teaching and may give you an opporiunity to reflect on vour professional praciice. Al the end of
the study you will be able to receive information about the survey and case study resulis, should you wish.

Will my personal data be kept confidential? Your confidentialfity will be ensured at all fimes and you will not be
identified in amy publication. Data from the study will be stored anonymaously for seven years. You may withdraw
your data from the project at any time, without giving any reason, before 1172012

Who is organising and funding the research? The research is part of the principal investigator's FhD research
at King's College London and is funded by the ESRC. This sbedy is reviewed by the College Research Ethics
Committes of King's College London.

Contact fior further information: The principal investigator of this stedy is Nicola Bretscher, Depariment of
Educalion and Professional Studies. This is part of a PhD projec!, supenvised by DOr. Jeremy Hodgen, Depariment
of Professional and Educational Studies. Should you have any comments or concems resuting from your
participation in the study please contact me via email: nicola, bretscher@ kel acuk

If this stedy has harmed you in any way you can contact King's Collegpe London using the defails below for further
advice and information: Jeremy Hodgen, email: jeremy.hodgenidkc.ac.uk
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CONSENT FORM FOR PARTICIPANTS IN RESEARCH STUDIES

King's College Research Ethics Committes

TITLE OF STUDY: Using ICT to investigate Mathematical Knowledge in Teaching

Thank you far considering taking part in this research. This form will be detachad from your guestionnaire and
stored separately. Please complate the form:

Name of TRACRBT ... e e

| undarstand that there is no compulsion for mea o parlicipalea in tis research and, if | do choose 1o participate, |
may &l any slage withdraw my paricipalion, wilbaul penally, unll 1/7/2012;

| undarstand that any informaion which | give will ba used schaly for the purpeses of this research prajecl, which
may include publicalions;

| consent o the procassing of my personal nformation for the purposes of this research study. | undersland thal
such infarmation will be lreatad as sinclly confidential and handled in accordance wilh the Dala Praleclion Al
1938,

[Sigrialure of feacher) [Dale]
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Appendix M. Additional statistical information

These tables provide additional statistical information to complement the results
reported in Chapter 4, Section 4.3. The first four tables compare transmissionist
measure across various background variables. The remaining tables in this appendix
complement the results Tables in Section 4.3 as indicated. The results of two non-
significant t-tests (see Age; Length of service) are reported here; the results of other t-
tests are reported in the main body of the thesis.

n Mean (S.D.) Mean diff | C.I.of difference = Effect
Gender

(S.E) Lower to Upper size
Female 98 .064 (.515)
-.218 (.076) -.368 to -.068 - 427
Male 84 .282 (.507)
A n Mean (S.D.) Mean diff C.l1. of difference | Effect
ge (years) (S.E.) Lower to Upper | size
30 or under 59 .166 (.429)
.005 (.076) -.144 t0 .155 011

Over 30 122 .161 (.564)
No significant difference: df = 146.4, t = .069, p = .945

Mean . .

Length of n (S.D.) Mean diff | C.I. of difference | Effect
service (years) o (S.E) Lower to Upper size
6 or under 89 191 (.473)

.052 (.077) -.101 to .205 .099
Over 6 years 93 .139 (.565)

No significant difference: df = 180, t = .670, p = .504

Mean . .
Frequency of n (S.D)) Mean diff | C.I. of difference | Effect
ICT use (S.E.) Lower to Upper size
Frequent users 61 .063 (.548)

; -.152 (.082) -.313 to .009 -.294
Occasional users 118 .216 (.502)
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IWB: Frequency of N Mean®D) | \andiff SE) | Effect size
software use o
freq 36 .089 (.492)
CD-Roms -.100 (.099) -.189
occ 139 .189 (.539)
fre 23 .089 (.442
Database L (.442) -.088 (.119) -.165
occ 151 176 (.543)
. freq 53 121 (.454)
Email -.086 (.087) -.164
occ 119 .207 (.555)
Graphing freq 49 .166 (.553) 017 (089) 031
software occ 122 182 (.517) ' ' '
Dynamic freq 30 -.099 (.570) 324 (104) 628
geometry occ 145 225 (.505) ' ' '
freq 146 115 (.516)
IWB software -.285 (.100) -.551
occ 33 .340 (.515)
freq 15 -.006 (.590)
Logo -.196 (.144) -.369
occ 151 .190 (.527)
fre 116 .069 (.481
MyMaths 1 (.481) -.284 (.079) -.557
occ 64 353 (.558)
fre 112 .065 (.500
Other websites d (:500) -.315 (.080) -.624
occ 61 .380 (.516)
_ freq 107 .071 (.495)
PowerPoint -.251 (.078) -.489
occ 72 .322 (.540)
freq 11 .068 (.500)
SMILE -.130 (.169) -.240
occ 152 .198 (.542)
fre 45 .039 (.498
Spreadsheet L (.498) -.174 (.090) -331
occ 134 212 (.532)
f 74 101 (.480
Word e (.480) -.119 (.080) -.227
occ 105 220 (.556)
See also Table 4.2

338



Computer suite: n Mean (S.D
Frequency of (5D Mean diff (S.E.) Effect size
software use
freq 33 .081 (.503)
CD-Roms -.129 (.102) -.245
occ 136 .210 (.533)
fre 29 .163 (.508
Database L (:508) -.013 (.109) -.025
occ 143 177 (.540)
. freq 45 .016 (.483)
Email -.230 (.091) -442
occ 123 .248 (.535)
i fre 88 .048 (.544
Graphing 1 (548 1 o0 (079) -302
software occ 85 .288 (.496)
i fre 83 -.004 (.521
Dynamic L (521) 1303 077) -638
geometry occ 90 .319 (.493)
freq 69 072 (.479)
IWB software -.158 (.081) -.302
occ 102 .230 (.550)
freq 19 -.120 (.541)
Logo -.330 (.127) -.633
occ 152 .210 (.518)
fre 129 .109 (.530
MyMaths L (:530) -.233 (.092) -444
occ 44 .342 (.512)
fre 126 .082 (.516
Other websites L (:516) -.328 (.087) -.642
occ 48 410 (.497)
. freq 90 115 (.473)
PowerPoint -.123 (.082) -.230
occ 82 .239 (.588)
freq 15 -.244 (.541)
SMILE -461 (.142) -.878
occ 152 217 (.523)
fre 103 .076 (.502
Spreadsheet L (:502) -.227 (.080) -.435
occ 72 .302 (.547)
fre 89 .069 (.478
Word da (:478) -.216 (.079) -413
occ 84 .285 (.566)
See also Table 4.3
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Frequency of hardware use

Mean (S.D.)

freq 158 127 (.508)
IWB
occ 25 427 (.546)
) freq 67 111 (.530)
Data projector
occ 114 .200 (.521)
. freq 32 .008 (.494)
Computer suite (shared)
occ 150 .207 (.522)
fre 10 -.003 (.490
Computer suite (maths only) 1 (.490)
occ 170 170 (.523)
freq 13 .214 (.554)
Laptops
occ 170 164 (.521)
) freq 32 -.054 (.523)
Graphic calculator
occ 149 212 (.513)
See also Table 4.4
. . n Mean (S.D.)
IWB: ICT orientation
. . pos 152 .139 (.515)
confident using ICT
neg 24 .200 (.463)
0S 52 .107 (.503
More time needed for prep P (:503)
neg 126 .189 (.520)
. . pos 135 101 (.512)
ICT contributes to learning
neg 45 .334 (.515)
. pos 147 .129 (.506)
ICT improves engagement
neg 34 .298 (.563)
o pos 80 .167 (.508)
Students’ lack of familiarity
neg 101 .155 (.532)
0S 140 .105 (.518
ICT helps understanding P (:518)
neg 40 .336 (.486)
0S 149 110 (.521
Management more difficult P (:521)
neg 31 .388 (.453)
pos 99 117 (.506)
Cover more ground
neg 81 227 (.521)

See also Table 4.5
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Computer Suite: ICT orientation

Mean (S.D.)

. . pos 140 124 (.502)
confident using ICT
neg 32 .378 (.610)
0S 51 223 (471
More time needed for prep P (471)
neg 122 .144 (.554)
. . pos 129 .115 (.530)
ICT contributes to learning
neg 44 .334 (.513)
. pos 135 .140 (.524)
ICT improves engagement
neg 38 .267 (.550)
o pos 73 .144 (.553)
Students’ lack of familiarity
neg 99 .189 (.522)
i pos 127 113 (.513)
ICT helps understanding
neg 45 .309 (.558)
. pos 81 .103 (.553)
Management more difficult
neg 92 .223 (.505)
pos 36 -.018 (.443)
Cover more ground
neg 135 .214 (.545)
See also Table 4.6
. n Mean (S.D.)
IWB practices
. freq 138 167 (.489)
Teacher presentation
occ 40 129 (.619)
fre 78 -.017 (.527
Student discussion L (:527)
occ 102 295 (.477)
fre 146 170 (.488
Teacher control a (.488)
occ 33 .110 (.660)
. freq 50 -.021 (.540)
Explore students’ ideas
occ 130 .229 (.499)
. . freq 74 .149 (.536)
Prevent discrepanies
occ 96 162 (.514)
fre 39 -.105 (516
Students control a (516)
occ 141 .233 (.500)
- . . freq 55 .056 (.536)
Highlight discrepancies
occ 118 .208 (.512)
. freq 77 .236 (.505)
Avoid mistakes
occ 99 .101 (.535)

See also Table 4.7
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Appendix N. Back cover material

Included as separate sheets: Figure 6.8, Figure 6.9, Figure 7.1

Included on CD: Robert’s GeoGebra interview, mins 5.05 — 12.10, and the GeoGebra
interview file on circle theorems
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